Solaris ZFS Administration Guide

S
2 Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-2271
May 2006

Copyright 2006 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. Legato
NetWorker is a trademark or registered trademark of Legato Systems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS1S” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2006 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis et
dans d’autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par I'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc. Legato NetWorker is a trademark or registered trademark of Legato Systems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour I'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place I'interface
d’utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font 'objet de cette publication et les informations qu’il contient sont régis par la legislation américaine en matiére de controle des exportations et
peuvent étre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de controle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LADOCUMENTATION EST FOURNIE "EN L’ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE ALA QUALITE MARCHANDE, AL’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFACON.

060525@14986

Contents

PIEIACE ...ttt bbb bbbttt 9
1 Solaris ZFS File System (INtroduction) ...ttt aeen 13
WRATS NEW I ZES? ...ttt sttt s sttt sessansssnsesanns 13
Using ZFS to Clone Non-Global Zones and Other Enhancementsccccuecuncninenierecencencnnas 13
ZFS Backup and Restore Commands are Renamed

Recovering Destroyed Storage POOLS ..ot ssesessesessenes
ZFS is Integrated With Fault MAnageroceeevvevevieiererieereeirereeeereseesereseesesessesesessesesessesesssseseses 14
New zpool clear COMMEANAcoeivereviieererieereeeeereeeree et er s ese s esese s esesessesesesesesssesessesesenes 15
Compact NFSV4 ACL FOIMALc.ovviiieiiiiiiciciiiicciceie e sessesssssesessasssssenes 15
File System Monitoring TOOI (fSSTAT) ..cvviieiieerieieeiereiieecieresseees ettt sessananens 15
ZFS Web-Based Management 16
WRALIS ZEST ...ttt ettt bbbt bbb etaes 16
ZES POOLEA STOTAZEevvreiereeiereiissisieiessisseste s sssssses s s sssss st s s sstesesssssstesessssssnsesessssssnsasesssssnsnsasnns 16
Transactional SEMANTICScvcvevevrereeeeieirieeeeiessisseste st tsssses s s s sass st sessasssssesessssssnsssesssssassnsesnes 17
Checksums and Self-Healing Datacccceeeeeeeieeieieieieee et essse s st sanans 17
Unparalleled SCAlabilityccocveeurieirieirinirieireenesiesseesses s ssesssssss s st ssssssssssssssssssssssssssssssssaes 18
ZES SNAPSIOLS ...evvvvereveteretetetecteeeetete ettt s s esesesesebebebese s asasas s s ss st esesenerereretene 18
Simplified AAMINISIIATION ..vvueererieieiiceeieieicee ettt ettt sssas s s sassstesseessassesesssssnses 18
ZFS TEIMINOIOZY ...oeveiieiiiiiiii ettt 19
ZFS Component Naming REQUITEMENTScccevrvueirieuerinieeinieieinieieenieesesreesesseessssesessesesessssesessssesesseses 20
2 Getting Started With ZFS ...ttt ses s ssesenne 21
ZFS Hardware and Software Requirements and Recommendationsc.ccceveeeeeererrereseerensessnesenns 21
Creating a Basic ZFS File SYStEIM ...c..vcueuiuiureueireeicieincieireieireeeirese ettt sese et ssesessesessensssencs 22
Creating @ ZFS StOTage POOLcciueieiriieieeireeiesires st tsess s tsass s ssssssssssssssssssssssssssssssssssenans 23
V Identifying Storage REQUITEIMENTScoueurieirieurieirieieieieteieieiesseie s ssesessese s ssesessessssessssessssnans 23
V Creating the ZFS Storage POOLc.ccocviicinciccrciceceeeese e ss s ssessessenns 23

Contents

Creating a ZFS File System HIerarchyccovoeoeeenniirnnrcsesrece sttt asssnsns 24
V¥ Determining the ZFS File System HI€rarchyccccccceieiiiieiereiniicereteecseresssssesesessassesessanens 24
VW Creating ZFS File SYSLEIMScociuiiiiiiiiiiiiiiiicsiessinss e sssssssssssssssssssssssssessssssssssssessssses 25

ZFS and Traditional File System Differ@ncescocooceeeiicieeninecseessss st 27

ZEFS File System GranUIATILYcccoieieieieiiiieiieieieetere et ssssssses et sese et betessssssssssasassssesesesesesesesas 27

ZEFS SPace ACCOUNLINGouvuiuiiiiiiiiiiiiiciiie et s st s st s s st s s sassesons

Out of Space Behavior

Mounting ZFS File Systems

Traditional Volume ManagemeEntcccovueverererererererereresenieseessesesesesesesesesesesesesessssssssssssesesesesesesesesenes 29

NEW SOIaris ACLIMOMELcuveriereeiririeceteieirics ettt ettt ssss st sssssassssssssssansssesanns 29

Managing ZFS STOrage POOIS ...ttt sttt ssnansne 31

Components 0f @ ZFS StOrage POOLcccueueiiiererieiieiereeeceiese s evesssss et s ssas s s sssassssesesssasassns 31

Using Disks in @ ZFS StO1age POOLcocveueeeieieiniiniiniineeieneineineieeseseesesensessessessesessessessessessesseaes 31
Using Files in @ ZFS StOrage POO]couviiririririicieesiceeetsiessissssssesssssese s sesesssssssssessssssssssns 33
Virtual Devices in @ StOrage POO]c.ccviiieieiiiicieieieecee et s be st s e sne

Replication Features of a ZFS Storage Pool

Mirrored Storage Pool Configuration

RAID-Z Storage Pool CONfIGUIALIONc.cvevieieereieiieiecieteseeceeiesessescs v se s s st se s sasassesesesanens
Self-Healing Data in a Replicated Configurationcuccccvieecinimncincnnnciniesiecssesiesnenns 34
Dynamic Striping in a Storage POOLc.ccocvireiinniiriniineciecseeiseei s seeseeeseeesessesessesessesesnes 35
Creating and Destroying ZFS Storage Pools .35
Creating a ZES StOrage POOLc.cucuiuiuiuiiiieeeeteee ettt ettt se s s bbbt ssesene 35
Handling ZFS Storage Pool Creation EITOTScocvcrriireneireneireniieeeiseeiseeieeesseseseeeseesesesesessesennes 36
Destroying ZEFS StOrage POOIScccceeiiieieieiiicieessics e tesesssstese s sssestesesssssesiese s ssssssssesesssassssns 39
Managing Devices in ZFS StOrage POOLScouvveriririreeririresse st ssessssssssssssssssssssssssssssens 40
Adding Devices to a Storage Pool
Attaching and Detaching Devices in a Storage POOLcccvuireieiniiisieiesessieresssssesesessenensns 40
Onlining and Offlining Devices in a Storage POOIccvceeiriieeeiniiseeesess e sssssessssnenees 41
Clearing Storage POOLDEVICESc.cucuiuiuieeeereneieieiseeseeensessessesseaeas s ssessessesssssesssssensessensessesesans 43
Replacing Devices in @ StOrage POOLc.cvuviieiriniriicieininiceeesecs et ssas et sssssesssssssans 43
Querying ZFS Storage POOL StatUs ... saesaees 43
Basic ZFS Storage POO] INfOIMAION c...ovuivevnieeiiiririniiirisieisiessisesiessisssssssssssssssssssssssssssessssessssesnes 43
ZFS Storage POOLI/O STALISTICS vuvvvuevrvrieeieeriieeiieetsesisesessesessesessessssessssssssssssssssssssssssssssssssssssssessssesness 45
Health Status 0f ZFS StOrage POOLScocveeeeeerereiiiriincineecieneineineiseeseseesessessesessessesessessessessessesseses 47

Solaris ZFS Administration Guide - May 2006

Contents

5

Migrating ZFS StOTage POOLSc.euevirerueieiieeieieiseesie ettt st ess st ssssesssssesesssssassessssnnas 49
Preparing for ZFS Storage POOl MIIationcccueueunerreuneuneememnernereeseeneeensenensesessessesessensensenns 50
EXporting a ZFS StOrage POOLc.cuvuiuriiiriiieieieieieice sttt sesssssssesesssse s st ssaes 50
Determining Available Storage POOIS t0 IMPOTTceuueuieriueeneeeeeineieireirciseeeeenessesseiseeseseesensensennes 50
Finding ZFS Storage Pools From Alternate Dir€CtOriescccoveureerreernemerreerseerneerseerseerseesnenes 52
Importing ZFS Storage Pools
Recovering Destroyed ZES Storage PoOIS ... 54
Upgrading ZES StOrage POOLScccvvvvveeevererererereteteteeseeeessessseseseseseseseseesessssssassssssssesesesesesesesesesens 56

Managing ZFS FIle SYSTEIMSouoiiiie ettt nenenes 59

Creating and Destroying ZEFS File SYSTEMSceceeieueierererereteeeeeeeeestesese ettt ssssesenes 60
Creating a ZFS File System

Destroying a ZFS File System ...
Renaming @ ZFS File SYSTEIM ...c.c.cuiuviiuiuiiririceieieietsecete ettt ettt ebe ettt st e b

ZES PIOPEITIES ...ueuiuiniieirieieieieiete ettt ettt ettt bbbt b bbb b bttt ettt st et et enan 62
REAA-ONIY ZES PLOPEILIES ...ouvrvueiucirineirieieieieieieieieteis ettt sese s ssssesssessssessesessssessssesssssssesees 67
Settable ZES PIOPEITIESvueviueieueirireiereirineiseseiseae sttt tsese st bsess st ssesebseasbsessssessssesessesssssassssncs 67

Querying ZFS File System INfOrmMationcocvcucereurcueeerereineinerneeneeneseseisessessesessesesessessesscsessesesnens 69
Listing Basic ZFS INfOrMAtiON ...c.c.veeeveueieiniineireiniieieieineiseisessesesesse e tsesscssesessesessessessessessssessessennes 69
Creating Complex ZFS QUETIEScccucuiiiiiiriiiiiicicieiscictcieisee s 70

Managing ZFS Properties
SEtUiNG ZES PIOPETTIES ..ouveviverereeriereeriereesteteesteeesseteseesesesesesessesesessssesessesesessesesessesessssesesssesessssesenens 72
INhETiting ZES PIOPEITIES ..ucuiuivieieiiiiieeererererereretetesesesssssses s sesesesesesesesesessssssasasssssssesesesesesesesesens 72
QUETYING ZFS PIOPEITIES ...veveveviiereiirieteirieietrteeesietesesteteesseesessesesessesesessesessssesessssesessssesensssesassesasens 73
Querying ZFS Properties fOr SCIPHNEcococrveveierieieteteeeeteteteee e tesesess s seses et s st ssananaes 75

Mounting and Sharing ZFS File SYStEIMSccceeuririeueiririerieieiriessteisesesesssssesssssstessssesssssessssesssssesssssens 76
Managing ZES MOUNE POINLESc.cciviviriririririeieieieieeeeeceeeeesess sttt st eesessssssssssesesesns 76
MOUNEING ZFS FAle SYSLEMSvvuviririreirineieieieieieieieieieseieseiesesesesssssssssssessssessssesssssssssssssssssssssssses 78

Temporary Mount Properties

Unmounting ZFS File Systems

Sharing ZES File SYSTEIMS ...c.c.vvueueueurimeiremeiremeiresetreseisesetsese ettt ssese st ssese et sesessessssesessessssenssscacs
ZFS Quotas and RESEIVATIONScceuevieeiirieieieieeereserereteete et eassssssssssesesesesesesesesesesesesessssasasasesssesesenes 81

Setting QuOtas 0N ZFS File SYSEIMSc.cueureueurimeeereieieinerneeerseneseiseisessessesessesesessessesscssssesesnenns 82

Setting Reservations on ZEFS File SYSEIMSccvcueuiunerinirneieiiieieieseisese e sssssessesssssessesens 82

Contents

6 Working With ZFS Snapshots and Clones ..o 85

ZES SNAPSNOLS ...ttt ettt b 85
Creating and Destroying ZFS Snapshots

Displaying and Accessing ZFS Snapshots

Rolling Back t0 @ ZFS SNAPSNOL ...c.cvvieiecieiiieicteteiecsiete e ve s se bbb s sasas e s s sanans
ZES CLOTNIES .uvvereereririerestesseissestessssessssessessesssssssessssssssssessssssssssesesssnssssssesssssssssesns 88
Creating @ ZFS ClOMEccuveiiiciriciriiiricieeeietei sttt eses s s et sesssessssessesessesessesennes 89
DeStroying @ ZES ClONEccviieiieieiiiieceieietcecstesesess et sssssestesesssssasese s sssasssse s s sssassesesssasassesessanans
Saving and Restoring ZFS Data
Saving ZFS Data With Other Backup Productsc.cecoceevevreneireniininiireniieecieineieeneseeneseeseseesesensesennes 90
SAVING @ ZES SNAPSNOL ..evveveriececieteieiece ettt et bbb s s b s sasassssesesanans 90
ReStoring a ZFS SNAPSNOL «.....cvcveveveieieictcccceeee ettt ettt b bbbt sesesene 91
Remote Replication Of ZFS DAtc.cueucereereueieieireirieseiseeeeeseiseiseisesseseesessessessessessessssessessessessesscsns 91
Using ACLs to Protect ZFS Files ... 93
New Solaris ACLMOMELc.cueeueeieiiiiiiiniieecienneineineeseeeeeenenenessesseseesessessessennes 93
Syntax Descriptions for Setting ACLScccueurcurimriiriuniecienseeneineieiseseseesessessessess s s ssessessessssenans 94
ACLINNEIILANICE 1uvovueveveeeiieeireieieesiresisee s ssesssssssssesssssssssssssssssssssssssssssssssssans
ACL Property Modes
Setting ACLs on ZFS Files
Setting and Displaying ACLs on ZFS Files in Verbose FOrmatcocceveeniernieinieeninnisisieenniessnsenns 101
Setting ACL Inheritance on ZFS Files in Verbose FOIrmMatcoueuvivrerieeinieeeneeeneeneneeeeseesseeensenns 107
Setting and Displaying ACLs on ZFS Files in Compact FOrmatcocoececeiecincinininincscciciscnnenns 114
ZFS AAVANCEA TOPICSovueiriiciiiciicecee ettt bbb eseseene 119
Emulated VOIUIMESc.cueureeeeeeeriieiriieeeeeeneineineisceseeeesesesessessesseseesessessesnens 119
Emulated Volumes as SWap or DUMP DEVICEScvvruriireriririirriniriisessssesesessessesssssssssssssssssseses 120
Using ZFS on a Solaris System With Zones Installed 120
Adding ZFS File Systems to a Non-Global Zone 120
Delegating Datasets to a NON-GlODal ZONEccoeeuririrereriiiineeeisseiessissssessssssessessssssssnsens 121
Adding ZFS Volumes to a Non-Global Zone ..o 122
Using ZFS Storage Pools Within @ ZOMNEcceeieueieiririreenirieseieeseess s essesessssesssssssssseses 122
Property Management Within @ Zone ... sssssssssaees 122
Understanding the Zoned PrOPErtyocoeveeerereerereisessesesesesensssssssennns 123
ZFS Alternate ROOt POOLScvueueireeiriririeinisisesistsiseeisessisestssssissssesssssssssenns 124
Creating ZFS Alternate ROOt POOLSc.cceeeuueuerneiniiniineeeeeieineieineiseeeeeeesessessessessessesssesessessesseses 124

Solaris ZFS Administration Guide - May 2006

Contents

Importing Alternate ROOT POOIScoueviiuriririiirieieireceie sttt ssasssseses 125
ZES RIGIES PIOTILES ...ttt ettt ettt s bbb bbbt be bt as s ssasasasssesesesenenen 125
ZFS Troubleshooting and Data RECOVETYoooiiiiiininiieeeceie et 127
ZFS FAIIUIE MOAES ...ttt ettt s ettt ssss st essesssssssessssssnsnsessnsansnsesnes 127
Missing Devices in @ ZFS Storage POOLc.cvcveereieiniiniineireneeeeeeinceseesesenesessessesscssessssessessens 128
Damaged Devices in a ZFS Storage POOLc.coccueieiiieieieieceevetee et eve s sens 128
COTTUPLEA ZES DAL ..eceucuieiriinciineinicieeeteteiete sttt sttt ettt ettt eies 128
ChecKing ZFS Data INTEGIILYvvceuevriiereeiersisseetessiesessessesssssssessssssssssessssssssssessssssssssessssssssssessssssssseses 129
Data Repair
Data Validation .
Controlling ZES Data SCrUbbINgcccvvuiiviiiiiiiiiiicisiccsicsie s ssssssssssssssssssses 129
Identifying Problems il ZESccocooiiieieiriiceiessiese et sessssssteses s sessssssssssessssssssssessssssssnsesens 131
Determining if Problems Exist in a ZFS Storage POOLccccuievnineinerninenenneneiseneciseienenns 131
Understanding zpo0l STAatUS OULPULccerueieeriireeieirireeeestsessie st ssssesss et ssessssesesssssasssses 132
System Reporting of ZES EXTOr MESSAZESccovevveeeereererererererereresesesesssssssesssesesesesesesesesesesessssasans 134
Repairing a Damaged ZFS CONfIGUIAtION ...c.cuvueurireirereirieirineireeisieieieissssisssssesssesssssssssssssssssssesssssssssees 135
Repairing a MiSSINEZ DEVICEccueeiiiiieieiiciecectecee ettt ettt s be et e s te e s e baeseeaaetesseennentaneas

Physically Reattaching the Device
Notifying ZFS of Device AVAIlabilityccccoeeeereueiiiiiireeeeteeererereerereeesessesesssesesesesesesesesesens
Repairing a Damaged DEVICEc.cueueueieureerernesnimeieieieiseiseiseseese et tsessessessssessesessessessessessssessessessens
Determining the Type of Device FAIlUIEccccueveveviuieieiieeiceeeeee et
Clearing Transient EITOIS ... sssssssssssessssssssses
Replacing a Device in a ZFS Storage POOLcccueieiieieieeieceeetee et s s senees
Repairing Damaged Datac.cccceceecinecieeinieinieneciseeisees sttt sssesesesseees
Identifying the Type of Data COTTUPLION ...c.cevereeeeireirsieieiiesieiseses s sssessssssessesssssssessessssssesnes
Repairing a Corrupted File OF DIT€CLOIYcoveereveriineeneereeeiereieeinceseseesensessesesessessesensensensens
Repairing ZFS Storage Pool-Wide Damage

Repairing an Unbootable SYStemMccccuiiiiiciciciicece e senees

INAE@X ...ttt bbb b s bbb bbbt a e e ettt ettt esesebeteteteteteanaens 145

Preface

The Solaris ZFS Administration Guide provides information about setting up and managing
Solaris™ ZFS file systems.

This guide contains information for both SPARC® based and x86 based systems.

Note - This Solaris release supports systems that use the SPARC and x86 families of processor
architectures: UltraSPARC?, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported systems
appear in the Solaris 10 Hardware Compatibility List at http://www.sun.com/bigadmin/hcl. This
document cites any implementation differences between the platform types.

In this document these x86 terms mean the following:

= “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
= “x64” points out specific 64-bit information about AMD64 or EM64T systems.

m “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris 10 Hardware Compatibility List.

Who Should Use This Book

This guide is intended for anyone who is interested in setting up and managing Solaris ZFS file
systems. Experience using the Solaris Operating System (OS) or another UNIX" version is
recommended.

How This Book Is Organized

The following table describes the chapters in this book.

Chapter Description

Chapter 1 Provides an overview of ZFS and its features and benefits. It also covers some
basic concepts and terminology.

http://www.sun.com/bigadmin/hcl

Preface

Chapter Description

Chapter 2 Provides step-by-step instructions on setting up simple ZFS configurations
with simple pools and file systems. This chapter also provides the hardware
and software required to create ZFS file systems.

Chapter 3 Identifies important features that make ZFS significantly different from
traditional file systems. Understanding these key differences will help reduce
confusion when using traditional tools to interact with ZFS.

Chapter 4 Provides a detailed description of how to create and administer storage
pools.
Chapter 5 Provides detailed information about managing ZFS file systems. Included are

such concepts as hierarchical file system layout, property inheritance, and
automatic mount point management and share interactions.

Chapter 6 Describes how to create and administer ZFS snapshots and clones.

Chapter 7 Describes how to use access control lists (ACLs) to protect your ZFS files by
providing more granular permissions then the standard UNIX permissions.

Chapter 8 Provides information on using emulated volumes, using ZFS on a Solaris
system with zones installed, and alternate root pools.

Chapter 9 Describes how to identify ZFS failure modes and how to recover from them.
Steps for preventing failures are covered as well.

Related Books

Related information about general Solaris system administration topics can be found in the
following books:

Solaris System Administration: Basic Administration
Solaris System Administration: Advanced Administration
Solaris System Administration: Devices and File Systems
Solaris System Administration: Security Services

Solaris Volume Manager Administration Guide

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

= Documentation (http://www.sun.com/documentation/)
= Support (http://www.sun.com/support/)
® Training (http://www.sun.com/training/)

10 Solaris ZFS Administration Guide - May 2006

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

Preface

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

TABLE P-1 Typographic Conventions

Typeface

Meaning

Example

AaBbCc123

AaBbCc123

aabbccl23

AaBbCcl123

The names of commands, files, and directories,

and onscreen computer output

What you type, contrasted with onscreen

computer output

Placeholder: replace with a real name or value

Book titles, new terms, and terms to be
emphasized

Edit your . login file.

Use 1s -a to list all files.
machine name% you have mail.
machine_nameS% su

Password:

The command to remove a file is rm
filename.

Read Chapter 6 in the User’s Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

TABLE P-2 Shell Prompts

Shell

Prompt

C shell

C shell for superuser

machine_name%

machine name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

1

L R R 4 CHAPTER 1

Solaris ZFS File System (Introduction)

This chapter provides an overview of the Solaris ZFS file system and its features and benefits. This
chapter also covers some basic terminology used throughout the rest of this book.

The following sections are provided in this chapter:

“What’s New in ZFS?” on page 13

“What Is ZFS?” on page 16

“ZFS Terminology” on page 19

“ZFS Component Naming Requirements” on page 20

What's New in ZFS?

This section summarizes new features in the ZFS file system that were added after the initial Solaris
Express December 2005 release.

“Using ZFS to Clone Non-Global Zones and Other Enhancements” on page 13
“ZFS Backup and Restore Commands are Renamed” on page 14

“Recovering Destroyed Storage Pools” on page 14

“ZFS is Integrated With Fault Manager” on page 14

“New zpool clear Command” on page 15

“Compact NFSv4 ACL Format” on page 15

“File System Monitoring Tool (fsstat)” on page 15

“ZFS Web-Based Management” on page 16

Using ZFS to Clone Non-Global Zones and Other
Enhancements

OpenSolaris, build 39: When the source zonepath and the target zonepath both reside on ZFS and
are in the same pool, zoneadm clone now automatically uses the ZFS clone feature to clone a zone.
This enhancement means that zoneadm clone will take a ZFS snapshot of the source zonepath and

13

What's New in ZFS?

set up the target zonepath. The snapshot is named SUNWzoneX, where X is a unique ID used to
distinguish between multiple snapshots. The destination zone’s zonepath is used to name the ZFS
clone. A software inventory is performed so that a snapshot used at a future time can be validated by
the system. Note that you can still specify that the ZFS zonepath be copied instead of the ZFS clone, if
desired.

To clone a source zone multiple times, a new parameter added to zoneadm allows you to specify that
an existing snapshot should be used. The system validates that the existing snapshot is usable on the
target. Additionally, the zone install process now has the capability to detect when a ZFS file system
can be created for a zone, and the uninstall process can detect when a ZFS file system in a zone can be
destroyed. These steps are then performed automatically by the zoneadm command.

Do not use the ZFS snapshot features to clone a zone.

For more information, see System Administration Guide: Solaris Containers-Resource Management
and Solaris Zones.

ZFS Backup and Restore Commands are Renamed

OpenSolaris, build 38: In this Solaris release, the zfs backup and zfs restore commands are
renamed to zfs send and zfs receive to more accurately describe their function. The function of
these commands is to save and restore ZFS data stream representations.

For more information about these commands, see “Saving and Restoring ZFS Data” on page 89.

Recovering Destroyed Storage Pools

OpenSolaris, build 37: This release includes the zpool import -D command, which enables you to
recover pools that were previously destroyed with the zpool destroy command.

For more information, see “Recovering Destroyed ZFS Storage Pools” on page 54.

ZFS is Integrated With Fault Manager

OpenSolaris, build 36: This release includes the integration of a ZFS diagnostic engine that is
capable of diagnosing and reporting pool failures and device failures. Checksum, I/O, device, and
pool errors associated with pool or device failures are also reported.

The diagnostic engine does not include predictive analysis of checksum and I/O errors, nor does it
include proactive actions based on fault analysis.

In the event of the ZFS failure, you might see a message similar to the following from fmd:

SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major
EVENT-TIME: Fri Mar 10 11:09:06 MST 2006
PLATFORM: SUNW,Ultra-60, CSN: -, HOSTNAME: neo

Solaris ZFS Administration Guide - May 2006

What's New in ZFS?

SOURCE: zfs-diagnosis, REV: 1.0

EVENT-ID: b55eel3b-cd74-4dff-8aff-ad575¢c372ef8

DESC: A ZFS device failed. Refer to http://sun.com/msg/ZFS-8000-D3 for more information.
AUTO-RESPONSE: No automated response will occur.

IMPACT: Fault tolerance of the pool may be compromised.

REC-ACTION: Run ’'zpool status -x’' and replace the bad device.

By reviewing the recommended action, which will be to follow the more specific directions in the
zpool status command, you will be able to quickly identify and resolve the failure.

For an example of recovering from a reported ZFS problem, see “Repairing a Missing Device”
on page 135.

New zpool clear Command

OpenSolaris, build 36: This release includes the zpool clear command for clearing error counts
associated with a device or the pool. Previously, error counts were cleared when a device in a pool was
brought online with the zpool online command. For more information, see zpool(1M) and
“Clearing Storage Pool Devices” on page 43.

Compact NFSv4 ACL Format

OpenSolaris, build 34: In this release, three NFSv4 ACL formats are available: verbose, positional,
and compact. The new compact and positional ACL formats are available to set and display ACLs.
You can use the chmod command to set all 3 ACL formats. You can use the 1s -V command to display
compact and positional ACL formats and the 1s -v command to display verbose ACL formats.

For more information, see “Setting and Displaying ACLs on ZFS Files in Compact Format” on page
114, chmod(1), and 1s(1).

File System Monitoring Tool (fsstat)

OpenSolaris, build 34: A new file system monitoring tool, fsstat, is available to report file system
operations. Activity can be reported by mount point or by file system type. The following example
shows general ZFS file system activity.

% fsstat zfs
new name name attr attr lookup rddir read read write write
file remov chng get set ops ops ops bytes ops bytes
729K 488K 282K 79.8M 266K 333M 5.33M 24.8M 115G 2.36M 27.8G zfs

For more information, see fsstat(1M).

Chapter 1 « Solaris ZFS File System (Introduction) 15

What s ZFS?

ZFS Web-Based Management

OpenSolaris, build 28: A web-based ZFS management tool is available to perform many
administrative actions. With this tool, you can perform the following tasks:

= Create a new storage pool.

= Add capacity to an existing pool.

= Move (export) a storage pool to another system.

= Importa previously exported storage pool to make it available on another system.
= View information about storage pools.

m Create a file system.

= Createavolume.

= Take a snapshot of a file system or a volume.

= Roll backa file system to a previous snapshot.

You can access the ZFS Administration console through a secure web browser at the following URL:

https://system-name:6789/zfs

If you type the appropriate URL and are unable to reach the ZFS Administration console, the server
might not be started. To start the server, run the following command:

/usr/sbin/smcwebserver start

If you want the server to run automatically when the system boots, run the following command:

/usr/sbin/smcwebserver enable

What Is ZFS?

The Solaris ZFS file system is a revolutionary new file system that fundamentally changes the way file
systems are administered, with features and benefits not found in any other file system available
today. ZFS has been designed to be robust, scalable, and simple to administer.

ZFS Pooled Storage

ZFS uses the concept of storage pools to manage physical storage. Historically, file systems were
constructed on top of a single physical device. To address multiple devices and provide for data
redundancy, the concept of a volume manager was introduced to provide the image of a single device
so that file systems would not have to be modified to take advantage of multiple devices. This design
added another layer of complexity and ultimately prevented certain file system advances, because the
file system had no control over the physical placement of data on the virtualized volumes.

Solaris ZFS Administration Guide - May 2006

What Is ZFS?

ZFS eliminates the volume management altogether. Instead of forcing you to create virtualized
volumes, ZFS aggregates devices into a storage pool. The storage pool describes the physical
characteristics of the storage (device layout, data redundancy, and so on,) and acts as an arbitrary
data store from which file systems can be created. File systems are no longer constrained to
individual devices, allowing them to share space with all file systems in the pool. You no longer need
to predetermine the size of a file system, as file systems grow automatically within the space allocated
to the storage pool. When new storage is added, all file systems within the pool can immediately use
the additional space without additional work. In many ways, the storage pool acts as a virtual
memory system. When a memory DIMM is added to a system, the operating system doesn’t force
you to invoke some commands to configure the memory and assign it to individual processes. All
processes on the system automatically use the additional memory.

Transactional Semantics

ZFS is a transactional file system, which means that the file system state is always consistent on disk.
Traditional file systems overwrite data in place, which means that if the machine loses power, for
example, between the time a data block is allocated and when it is linked into a directory, the file
system will be left in an inconsistent state. Historically, this problem was solved through the use of
the fsck command. This command was responsible for going through and verifying file system state,
making an attempt to repair any inconsistencies in the process. This problem caused great pain to
administrators and was never guaranteed to fix all possible problems. More recently, file systems
have introduced the concept of journaling. The journaling process records action in a separate
journal, which can then be replayed safely if a system crash occurs. This process introduces
unnecessary overhead, because the data needs to be written twice, and often results in a new set of
problems, such as when the journal can’t be replayed properly.

With a transactional file system, data is managed using copy on write semantics. Data is never
overwritten, and any sequence of operations is either entirely committed or entirely ignored. This
mechanism means that the file system can never be corrupted through accidental loss of power or a
system crash. So, no need for a fsck equivalent exists. While the most recently written pieces of data
might be lost, the file system itself will always be consistent. In addition, synchronous data (written
using the 0_DSYNC flag) is always guaranteed to be written before returning, so it is never lost.

Checksums and Self-Healing Data

With ZFS, all data and metadata is checksummed using a user-selectable algorithm. Traditional file
systems that do provide checksumming have performed it on a per-block basis, out of necessity due
to the volume management layer and traditional file system design. The traditional design means
that certain failure modes, such as writing a complete block to an incorrect location, can result in
properly checksummed data that is actually incorrect. ZFS checksums are stored in a way such that
these failure modes are detected and can be recovered from gracefully. All checksumming and data
recovery is done at the file system layer, and is transparent to applications.

Chapter 1 « Solaris ZFS File System (Introduction) 17

What s ZFS?

In addition, ZFS provides for self-healing data. ZFS supports storage pools with varying levels of data
redundancy, including mirroring and a variation on RAID-5. When a bad data block is detected, ZFS
fetches the correct data from another replicated copy; and repairs the bad data, replacing it with the
good copy.

Unparalleled Scalability

ZFS has been designed from the ground up to be the most scalable file system, ever. The file system
itself is 128-bit, allowing for 256 quadrillion zettabytes of storage. All metadata is allocated
dynamically, so no need exists to pre-allocate inodes or otherwise limit the scalability of the file
system when it is first created. All the algorithms have been written with scalability in mind.
Directories can have up to 2*® (256 trillion) entries, and no limit exists on the number of file systems
or number of files that can be contained within a file system.

ZFS Snapshots

A snapshot is a read-only copy of a file system or volume. Snapshots can be created quickly and easily.
Initially, snapshots consume no additional space within the pool.

As data within the active dataset changes, the snapshot consumes space by continuing to reference
the old data. As a result, the snapshot prevents the data from being freed back to the pool.

Simplified Administration

Most importantly, ZFS provides a greatly simplified administration model. Through the use of
hierarchical file system layout, property inheritance, and automanagement of mount points and NFS
share semantics, ZFS makes it easy to create and manage file systems without needing multiple
commands or editing configuration files. You can easily set quotas or reservations, turn compression
on or off, or manage mount points for numerous file systems with a single command. Devices can be
examined or repaired without having to understand a separate set of volume manager commands.
You can take an unlimited number of instantaneous snapshots of file systems. You can backup and
restore individual file systems.

ZFS manages file systems through a hierarchy that allows for this simplified management of
properties such as quotas, reservations, compression, and mount points. In this model, file systems
become the central point of control. File systems themselves are very cheap (equivalent to a new
directory), so you are encouraged to create a file system for each user, project, workspace, and so on.
This design allows you to define fine-grained management points.

Solaris ZFS Administration Guide - May 2006

ZFS Terminology

ZFS Terminology

This section describes the basic terminology used throughout this book:

checksum

clone

dataset

file system

mirror

pool

RAID-Z

resilvering

A 256-bit hash of the data in a file system block. The checksum capability can
range from the simple and fast fletcher2 (the default) to cryptographically strong
hashes such as SHA256.

A file system whose initial contents are identical to the contents of a snapshot.

For information about clones, see “ZFS Clones” on page 88.

A generic name for the following ZFS entities: clones, file systems, snapshots, or
volumes.

Each dataset is identified by a unique name in the ZFS namespace. Datasets are
identified using the following format:

poollpath|@snapshot]
pool Identifies the name of the storage pool that contains the dataset
path Is a slash-delimited path name for the dataset object

snapshot Isan optional component that identifies a snapshot of a dataset

For more information about datasets, see Chapter 5.

A dataset that contains a standard POSIX file system.

For more information about file systems, see Chapter 5.

Avirtual device that stores identical copies of data on two or more disks. If any
disk in a mirror fails, any other disk in that mirror can provide the same data.

Alogical group of devices describing the layout and physical characteristics of the
available storage. Space for datasets is allocated from a pool.

For more information about storage pools, see Chapter 4.

Avirtual device that stores data and parity on multiple disks, similar to RAID-5.
For more information about RAID-Z, see “RAID-Z Storage Pool Configuration”
on page 34.

The process of transferring data from one device to another device is known as
resilvering. For example, if a mirror component is replaced or taken offline, the
data from the up-to-date mirror component is copied to the newly restored mirror
component. This process is referred to as mirror resynchronization in traditional
volume management products.

For more information about ZFS resilvering, see “Viewing Resilvering Status”
on page 140.

Chapter 1 « Solaris ZFS File System (Introduction) 19

ZFS Component Naming Requirements

snapshot A read-only image of a file system or volume at a given point in time.

For more information about snapshots, see “ZFS Snapshots” on page 85.

virtual device Alogical device in a pool, which can be a physical device, a file, or a collection of
devices.

For more information about virtual devices, see “Virtual Devices in a Storage
Pool” on page 33.

volume A dataset used to emulate a physical device in order to support legacy file systems.

For more information about emulated volumes, see “Emulated Volumes” on page
119.

ZFS Component Naming Requirements

20

Each ZFS component must be named according to the following rules:

= Empty components are not allowed.

= Each component can only contain alphanumeric characters in addition to the following four

special characters:
m Underscore (_)
= Hyphen (-)

= Colon (%)

= Period (.)

= Pool names must begin with a letter, except that the beginning sequence c[0-9] is not allowed. In
addition, pool names that begin with mirror, raidz, or spare are not allowed as these name are
reserved.

= Dataset names must begin with an alphanumeric character.

Solaris ZFS Administration Guide - May 2006

L R R 4 CHAPTER 2

Getting Started With ZFS

This chapter provides step-by-step instructions on setting up simple ZFS configurations. By the end
of this chapter, you should have a basic idea of how the ZFS commands work, and should be able to
create simple pools and file systems. This chapter is not designed to be a comprehensive overview
and refers to later chapters for more detailed information.

The following sections are provided in this chapter:

“ZFS Hardware and Software Requirements and Recommendations” on page 21
“Creating a Basic ZFS File System” on page 22

“Creating a ZFS Storage Pool” on page 23

“Creating a ZFS File System Hierarchy” on page 24

ZFS Hardware and Software Requirements and
Recommendations

Make sure you review the following hardware and software requirements and recommendations
before attempting to use the ZFS software:

® ASPARC™ or x86 system that is running the Solaris™ Nevada release, build 27 or later.

® The minimum disk size is 128 Mbytes. The minimum amount of disk space required for a storage
pool is approximately 64 Mbytes.

= Currently, the minimum amount of memory recommended to install a Solaris system is 512
Mbytes. However, for good ZFS performance, at least one Gbyte or more of memory is
recommended.

= Ifyou create a mirrored disk configuration, multiple controllers are recommended.

21

Creating a Basic ZFS File System

Creating a Basic ZFS File System

22

ZFS administration has been designed with simplicity in mind. Among the goals of the ZFS design is
to reduce the number of commands needed to create a usable file system. When you create a new
pool, a new ZFS file system is created and mounted automatically.

The following example illustrates how to create a storage pool named tank and a ZFS file system
name tank in one command. Assume that the whole disk /dev/dsk/c1t@de is available for use.

zpool create tank c1t0do

The new ZFS file system, tank, can use as much of the disk space on c1t0d0 as needed, and is
automatically mounted at / tank.

mkfile 100m /tank/foo

df -h /tank

Filesystem size used avail capacity Mounted on
tank 80G 100M 80G 1% /tank

Within a pool, you will probably want to create additional file systems. File systems provide points of
administration that allow you to manage different sets of data within the same pool.

The following example illustrates how to create a file system named fs in the storage pool tank.
Assume that the whole disk /dev/dsk/c1t0d@ is available for use.

zpool create tank clt0do
zfs create tank/fs

The new ZFS file system, tank/fs, can use as much of the disk space on c1t0d0 as needed, and is
automatically mounted at /tank/fs.

mkfile 100m /tank/fs/foo

df -h /tank/fs

Filesystem size used avail capacity Mounted on
tank/fs 80G 100M 80G 1% /tank/fs

In most cases, you will probably want to create and organize a hierarchy of file systems that matches
your organizational needs. For more information about creating a hierarchy of ZFS file systems, see
“Creating a ZFS File System Hierarchy” on page 24.

Solaris ZFS Administration Guide - May 2006

Creating a ZFS Storage Pool

Creating a ZFS Storage Pool

The previous example illustrates the simplicity of ZFS. The remainder of this chapter demonstrates a
more complete example similar to what you would encounter in your environment. The first tasks
are to identify your storage requirements and create a storage pool. The pool describes the physical
characteristics of the storage and must be created before any file systems are created.

v ldentifying Storage Requirements

1 Determine available devices.

Before creating a storage pool, you must determine which devices will store your data. These devices
must be disks of at least 128 Mbytes in size, and they must not be in use by other parts of the
operating system. The devices can be individual slices on a preformatted disk, or they can be entire
disks that ZFS formats as a single large slice.

For the storage example used in “Creating the ZFS Storage Pool” on page 23, assume that the whole
disks /dev/dsk/c1t@do and /dev/dsk/c1t@d0 are available for use.

For more information about disks and how they are used and labeled, see “Using Disks in a ZFS
Storage Pool” on page 31.

2 Choose datareplication.

ZFS supports multiple types of data replication, which determines what types of hardware failures
the pool can withstand. ZFS supports nonredundant (striped) configurations, as well as mirroring
and RAID-Z (a variation on RAID-5).

For the storage example used in “Creating the ZFS Storage Pool” on page 23, basic mirroring of two
available disks is used.

For more information about ZFS replication features, see “Replication Features of a ZFS Storage
Pool” on page 33.

v Creating the ZFS Storage Pool

1 Becomeroot or assume an equivalent role with the appropriate ZFS rights profile.

For more information about the ZFS rights profiles, see “ZFS Rights Profiles” on page 125.

2 Pickapool name.

The pool name is used to identify the storage pool when you are using the zpool or zfs commands.
Most systems require only a single pool, so you can pick any name that you prefer, provided it
satisfies the naming requirements outlined in “ZFS Component Naming Requirements” on page 20.

Chapter2 -« Getting Started With ZFS 23

Creating a ZFS File System Hierarchy

3 Create the pool.
For example, create a mirrored pool that is named tank.
zpool create tank mirror clt0d0 cltldo

If one or more devices contains another file system or is otherwise in use, the command cannot
create the pool.

For more information about creating storage pools, see “Creating a ZFS Storage Pool” on page 35.

For more information about how device usage is determined, see “Detecting in Use Devices”
on page 36.

4 View theresults.
You can determine if your pool was successfully created by using the zpool 1ist command.

zpool list
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 80G 137K 80G 0% ONLINE -

For more information about viewing pool status, see “Querying ZFS Storage Pool Status” on page
43.

Creating a ZFS File System Hierarchy

After creating a storage pool to store your data, you can create your file system hierarchy. Hierarchies
are simple yet powerful mechanisms for organizing information. They are also very familiar to
anyone who has used a file system.

ZFS allows file systems to be organized into arbitrary hierarchies, where each file system has only a
single parent. The root of the hierarchy is always the pool name. ZFS leverages this hierarchy by
supporting property inheritance so that common properties can be set quickly and easily on entire
trees of file systems.

v Determining the ZFS File System Hierarchy

1 Pickthefile system granularity.

ZFS file systems are the central point of administration. They are lightweight and can be created
easily. A good model to use is a file system per user or project, as this model allows properties,
snapshots, and backups to be controlled on a per-user or per-project basis.

Two ZFS file systems, bonwick and billm, are created in “Creating ZFS File Systems” on page 25.

For more information on managing file systems, see Chapter 5.

24 Solaris ZFS Administration Guide - May 2006

Creating a ZFS File System Hierarchy

Group similar file systems.

ZFS allows file systems to be organized into hierarchies so that similar file systems can be grouped.
This model provides a central point of administration for controlling properties and administering
file systems. Similar file systems should be created under a common name.

For the example in “Creating ZFS File Systems” on page 25, the two file systems are placed under a
file system named home.

Choose the file system properties.

Most file system characteristics are controlled by using simple properties. These properties control a
variety of behavior, including where the file systems are mounted, how they are shared, if they use
compression, and if any quotas are in effect.

For the example in “Creating ZFS File Systems” on page 25, all home directories are mounted at
/export/zfs/user, are shared by using NFS, and with compression enabled. In addition, a quota of
10 Gbytes on bonwick is enforced.

For more information about properties, see “ZFS Properties” on page 62.

Creating ZFS File Systems

Become root or assume an equivalent role with the appropriate ZFS rights profile.

For more information about the ZFS rights profiles, see “ZFS Rights Profiles” on page 125.

Create the desired hierarchy.
In this example, a file system that acts as a container for individual file systems is created.

zfs create tank/home

Next, individual file systems are grouped under the home file system in the pool tank.

Settheinherited properties.

After the file system hierarchy is established, set up any properties that should be shared among all
users:

zfs set mountpoint=/export/zfs tank/home

zfs set sharenfs=on tank/home

zfs set compression=on tank/home

zfs get compression tank/home

NAME PROPERTY VALUE SOURCE
tank/home compression on local

For more information about properties and property inheritance, see “ZFS Properties” on page 62.

Chapter2 -« Getting Started With ZFS 25

Creating a ZFS File System Hierarchy

26

Create the individual file systems.

Note that the file systems could have been created and then the properties could have been changed
at the home level. All properties can be changed dynamically while file systems are in use.

zfs create tank/home/bonwick
zfs create tank/home/billm

These file systems inherit their property settings from their parent, so they are automatically
mounted at /export/zfs/user and are NFS shared. You do not need to edit the /etc/vfstab or
/etc/dfs/dfstab file.

For more information about creating file systems, see “Creating a ZFS File System” on page 60.

For more information about mounting and sharing file systems, see “Mounting and Sharing ZFS File
Systems” on page 76.

Set the file system-specific properties.

In this example, user bonwick is assigned a quota of 10 Gbytes. This property places a limit on the
amount of space he can consume, regardless of how much space is available in the pool.

zfs set quota=10G tank/home/bonwick

View the results.

View available file system information by using the zfs 1ist command:

zfs list

NAME USED AVAIL REFER MOUNTPOINT

tank 92.0K 67.0G 9.5K /tank

tank/home 24.0K 67.0G 8K /export/zfs
tank/home/billm 8K 67.0G 8K /export/zfs/billm
tank/home/bonwick 8K 10.0G 8K /export/zfs/bonwick

Note that the user bonwick only has 10 Gbytes of space available, while the user billm can use the full
pool (67 Gbytes).

For more information about viewing file system status, see “Querying ZFS File System Information”
on page 69.

For more information about how space is used and calculated, see “ZFS Space Accounting” on page
28.

Solaris ZFS Administration Guide - May 2006

L R R 4 CHAPTER 3

ZFS and Traditional File System Differences

This chapter discusses some significant differences between ZFS and traditional file systems.
Understanding these key differences can help reduce confusion when using traditional tools to
interact with ZFS.

The following sections are provided in this chapter:

“ZFS File System Granularity” on page 27
“ZFS Space Accounting” on page 28

“Out of Space Behavior” on page 28
“Mounting ZFS File Systems” on page 29
“Traditional Volume Management” on page 29
“New Solaris ACL Model” on page 29

ZFS File System Granularity

Historically, file systems have been constrained to one device so that the file systems themselves have
been constrained to the size of the device. Creating and re-creating traditional file systems because of
size constraints are time-consuming and sometimes difficult. Traditional volume management
products helped manage this process.

Because ZFS file systems are not constrained to specific devices, they can be created easily and
quickly, similar to the way directories are created. ZFS file systems grow automatically within the
space allocated to the storage pool.

Instead of creating one file system, such as /export/home, to manage many user subdirectories, you
can create one file system per user. In addition, ZFS provides a file system hierarchy so that you can
easily set up and manage many file systems by applying properties that can be inherited by file
systems contained within the hierarchy.

For an example of creating a file system hierarchy, see “Creating a ZFS File System Hierarchy”
on page 24.

27

ZFS Space Accounting

ZFS Space Accounting

28

ZFS is based on a concept of pooled storage. Unlike typical file systems, which are mapped to
physical storage, all ZFS file systems in a pool share the available storage in the pool. So, the available
space reported by utilities such as df might change even when the file system is inactive, as other file
systems in the pool consume or release space. Note that the maximum file system size can be limited
by using quotas. For information about quotas, see “Setting Quotas on ZFS File Systems” on page
82. Space can be guaranteed to a file system by using reservations. For information about
reservations, see “Setting Reservations on ZFS File Systems” on page 82. This model is very similar
to the NFS model, where multiple directories are mounted from the same file system (consider
/home).

All metadata in ZFS is allocated dynamically. Most other file systems pre-allocate much of their
metadata. As a result, an immediate space cost at file system creation for this metadata is required.
This behavior also means that the total number of files supported by the file systems is
predetermined. Because ZFS allocates its metadata as it needs it, no initial space cost is required, and
the number of files is limited only by the available space. The output from the df -g command must
be interpreted differently for ZFS than other file systems. The total files reported is only an
estimate based on the amount of storage that is available in the pool.

ZFS is a transactional file system. Most file system modifications are bundled into transaction groups
and committed to disk asynchronously. Until these modifications are committed to disk, they are
termed pending changes. The amount of space used, available, and referenced by a file or file system
does not consider pending changes. Pending changes are generally accounted for within a few
seconds. Even committing a change to disk by using fsync(3c) or 0_SYNC does not necessarily
guarantee that the space usage information is updated immediately.

Out of Space Behavior

File system snapshots are inexpensive and easy to create in ZFS. Most likely, snapshots will be
common in most ZFS environments. For information about ZFS snapshots, see Chapter 6.

The presence of snapshots can cause some unexpected behavior when you attempt to free space.
Typically, given appropriate permissions, you can remove a file from a full file system, and this action
results in more space becoming available in the file system. However, if the file to be removed exists
in a snapshot of the file system, then no space is gained from the file deletion. The blocks used by the
file continue to be referenced from the snapshot.

As aresult, the file deletion can consume more disk space, because a new version of the directory
needs to be created to reflect the new state of the namespace. This behavior means that you can get an
unexpected ENOSPC or EDQUOT when attempting to remove a file.

Solaris ZFS Administration Guide - May 2006

New Solaris ACL Model

Mounting ZFS File Systems

ZFS is designed to reduce complexity and ease administration. For example, with existing file
systems you must edit the /etc/vfstab file every time you add a new file system. ZFS has eliminated
this requirement by automatically mounting and unmounting file systems according to the
properties of the dataset. You do not need to manage ZFS entries in the /etc/vfstab file.

For more information about mounting and sharing ZFS file systems, see “Mounting and Sharing ZFS
File Systems” on page 76.

Traditional Volume Management

As described in “ZFS Pooled Storage” on page 16, ZFS eliminates the need for a separate volume
manager. ZFS operates on raw devices, so it is possible to create a storage pool comprised of logical
volumes, either software or hardware. This configuration is not reccommended, as ZFS works best
when it uses raw physical devices. Using logical volumes might sacrifice performance, reliability, or
both, and should be avoided.

New Solaris ACL Model

Previous versions of the Solaris OS supported an ACL implementation that was primarily based on
the POSIX ACL draft specification. The POSIX-draft based ACLs are used to protect UFS files. A new
ACL model that is based on the NFSv4 specification is used to protect ZFS files.

The main differences of the new Solaris ACL model are as follows:
= Based on the NFSv4 specification and are similar to NT-style ACLs.

= Much more granular set of access privileges.

® Setand displayed with the chmod and 1s commands rather than the setfacl and getfacl
commands.

= Richer inheritance semantics for designating how access privileges are applied from directory to
subdirectories, and so on.

For more information about using ACLs with ZFS files, see Chapter 7.

Chapter3 . ZFSand Traditional File System Differences 29

30

CHAPTER 4

Managing ZFS Storage Pools

This chapter describes how to create and administer ZFS storage pools.

The following sections are provided in this chapter:

“Components of a ZFS Storage Pool” on page 31
“Creating and Destroying ZFS Storage Pools” on page 35
“Managing Devices in ZFS Storage Pools” on page 40
“Querying ZFS Storage Pool Status” on page 43
“Migrating ZFS Storage Pools” on page 49

“Upgrading ZFS Storage Pools” on page 56

Components of a ZFS Storage Pool

This section provides detailed information about the following storage pool components:

= Disks
= Files
m Virtual devices

Using Disks in a ZFS Storage Pool

The most basic element of a storage pool is a piece of physical storage. Physical storage can be any
block device of at least 128 Mbytes in size. Typically, this device is a hard drive that is visible to the
system in the /dev/dsk directory.

A storage device can be a whole disk (c1t@d®) or an individual slice (c0t@d@s7). The reccommended
mode of operation is to use an entire disk, in which case the disk does not need to be specially
formatted. ZFS formats the disk using an EFI label to contain a single, large slice. When used in this
way, the partition table that is displayed by the format command appears similar to the following:

31

Components of a ZFS Storage Pool

32

Current partition table (original):
Total disk sectors available: 71670953 + 16384 (reserved sectors)

Part Tag Flag First Sector Size Last Sector

0 usr wm 34 34.18GB 71670953
1 unassigned wm 0 0 0

2 unassigned wm 0

3 unassigned wm 0 0 0

4 unassigned wm 0 0 0

5 unassigned wm 0 0 0

6 unassigned wm 0 0 0

7 unassigned wm 0 0 0

8 reserved wm 71670954 8.00MB 71687337

To use whole disks, the disks must be named using the standard Solaris convention, such as
/dev/dsk/cXtXdXsX. Some third-party drivers use a different naming convention or place disks in a
location other than the /dev/dsk directory. To use these disks, you must manually label the disk and
provide a slice to ZFS.

ZFS applies an EFI label when you create a storage pool with whole disks. Disks can be labeled with a
traditional Solaris VTOC label when you create a storage pool with a disk slice.

Slices should only be used under the following conditions:

® The device name is nonstandard.
= Asingle disk is shared between ZFS and another file system, such as UFS.
® Adiskis used as a swap or a dump device.

Disks can be specified by using either the full path, such as /dev/dsk/c1t@d0, or a shorthand name
that consists of the device name within the /dev/dsk directory, such as c1t0d@. For example, the
following are valid disk names:

= cltodo

® /dev/dsk/c1t0d0o
B cQt@d6s2

m /dev/foo/disk

ZFS works best when given whole physical disks. Although constructing logical devices using a
volume manager, such as Solaris Volume Manager (SVM), Veritas Volume Manager (VxVM), or a
hardware volume manager (LUNs or hardware RAID) is possible, these configurations are not
recommended. While ZFS functions properly on such devices, less-than-optimal performance might
be the result.

Disks are identified both by their path and by their device ID, if available. This method allows devices
to be reconfigured on a system without having to update any ZFS state. If a disk is switched between
controller 1 and controller 2, ZFS uses the device ID to detect that the disk has moved and should
now be accessed using controller 2. The device ID is unique to the drive’s firmware. While unlikely,
some firmware updates have been known to change device IDs. If this situation happens, ZFS can
still access the device by path and update the stored device ID automatically. If you inadvertently
change both the path and the ID of the device, then export and re-import the pool in order to use it.

Solaris ZFS Administration Guide - May 2006

Replication Features of a ZFS Storage Pool

Using Files in a ZFS Storage Pool

ZFS also allows you to use UFS files as virtual devices in your storage pool. This feature is aimed
primarily at testing and enabling simple experimentation, not for production use. The reason is that
any use of files relies on the underlying file system for consistency. If you create a ZFS pool backed
by files on a UFS file system, then you are implicitly relying on UFS to guarantee correctness and
synchronous semantics.

However, files can be quite useful when you are first trying out ZFS or experimenting with more
complicated layouts when not enough physical devices are present. All files must be specified as
complete paths and must be at least 128 Mbytes in size. If a file is moved or renamed, the pool must
be exported and re-imported in order to use it, as no device ID is associated with files by which they
can be located.

Virtual Devices in a Storage Pool

Each storage pool is comprised of one or more virtual devices. A virtual device is an internal
representation of the storage pool that describes the layout of physical storage and its fault
characteristics. As such, a virtual device represents the disk devices or files that are used to create the
storage pool.

Two top-level virtual devices provide data redundancy: mirror and RAID-Z virtual devices. These
virtual devices consist of disks, disk slices, or files.

Disks, disk slices, or files that are used in pools outside of mirrors and RAID-Z virtual devices,
function as top-level virtual devices themselves.

Storage pools typically contain multiple top-level virtual devices. ZFS dynamically stripes data
among all of the top-level virtual devices in a pool.

Replication Features of a ZFS Storage Pool

ZFS provides two levels of data redundancy in a mirrored and a RAID-Z configuration.

Mirrored Storage Pool Configuration

A mirrored storage pool configuration requires at least two disks, preferrably on separate controllers.
Many disks can be used in a mirrored configuration. In addition, you can create more than one
mirror in each pool. Conceptually, a simple mirrored configuration would look similar to the
following:

mirror c1t0d@ c2t0do

Conceptually, a more complex mirrored configuration would look similar to the following:

Chapter4 - Managing ZFS Storage Pools 33

Replication Features of a ZFS Storage Pool

mirror c1t0d@ c2t0d@ c3t0d0® mirror c4t@d0 c5t0d0 c6t0d0

For information about creating a mirrored storage pool, see “Creating a Mirrored Storage Pool”
on page 36.

RAID-Z Storage Pool Configuration

In addition to a mirrored storage pool configuration, ZFS provides a RAID-Z configuration. RAID-Z
is similar to RAID-5.

All traditional RAID-5-like algorithms (RAID-4. RAID-5. RAID-6, RDP, and EVEN-ODD, for
example) suffer from a problem known as the “RAID-5 write hole.” If only part of a RAID-5 stripe is
written, and power is lost before all blocks have made it to disk, the parity will remain out of sync
with the data, and therefore useless, forever (unless a subsequent full-stripe write overwrites it). In
RAID-Z, ZFS uses variable-width RAID stripes so that all writes are full-stripe writes. This design is
only possible because ZFS integrates file system and device management in such a way that the file
system’s metadata has enough information about the underlying data replication model to handle
variable-width RAID stripes. RAID-Z is the world’s first software-only solution to the RAID-5 write
hole.

You need at least two disks for a RAID-Z configuration. Otherwise, no special hardware is required
to create a RAID-Z configuration. Currently, RAID-Z provides single parity. For example, if you have
three disks in a RAID-Z configuration, parity data occupies space equal to one of the three disks.

Conceptually, RAID-Z configuration with three disks would look similar to the following:

raidz c1t0d@ c2t0do c3t0do

A more complex conceptual RAID-Z configuration would look similar to the following:

raidz c1t@d0 c2t0d0® c3t0d0 c4t0d0 c5t0d0 c6t0@d0 c7t0d0 raidz c8t@d0 c9t0dd cl0t0d0® cllt@d® c12t@d0 c13t0d0 cl4t0do

If you are creating a RAID-Z configuration with many disks, as in this example, a RAID-Z
configuration with 14 disks is better split into a two 7-disk groupings. RAID-Z configurations with
single-digit groupings of disks should perform better.

For information about creating a RAID-Z storage pool, see “Creating a RAID-Z Storage Pool”
on page 36.

Self-Healing Data in a Replicated Configuration

ZFS provides for self-healing data in a mirrored or RAID-Z configuration.

When a bad data block is detected, not only does ZFS fetch the correct data from another replicated
copy, but it also repairs the bad data by replacing it with the good copy.

34 Solaris ZFS Administration Guide - May 2006

Creating and Destroying ZFS Storage Pools

Dynamic Striping in a Storage Pool

For each virtual device that is added to the pool, ZES dynamically stripes data across all available
devices. The decision about where to place data is done at write time, so no fixed width stripes are
created at allocation time.

When virtual devices are added to a pool, ZFS gradually allocates data to the new device in order to
maintain performance and space allocation policies. Each virtual device can also be a mirror or a
RAID-Z device that contains other disk devices or files. This configuration allows for flexibility in
controlling the fault characteristics of your pool. For example, you could create the following
configurations out of 4 disks:

® Four disks using dynamic striping
= One four-way RAID-Z configuration
= Two two-way mirrors using dynamic striping

While ZFS supports combining different types of virtual devices within the same pool, this practice is
not recommended. For example, you can create a pool with a two-way mirror and a three-way
RAID-Z configuration. However, your fault tolerance is as good as your worst virtual device,
RAID-Z in this case. The recommended practice is to use top-level virtual devices of the same type
with the same replication level in each device.

Creating and Destroying ZFS Storage Pools

By design, creating and destroying pools is fast and easy. However, be cautious when doing these
operations. Although checks are performed to prevent using devices known to be in use in a new
pool, ZFS cannot always know when a device is already in use. Destroying a pool is even easier. Use
zpool destroy with caution. This is a simple command with significant consequences. For
information about destroy pools, see “Destroying ZFS Storage Pools” on page 39.

Creating a ZFS Storage Pool

To create a storage pool, use the zpool create command. This command takes a pool name and any
number of virtual devices as arguments. The pool name must satisfy the naming conventions
outlined in “ZFS Component Naming Requirements” on page 20.

Creating a Basic Storage Pool

The following command creates a new pool named tank that consists of the disks c1t@d@ and
cltldo:

zpool create tank c1t0d0 cltldo

These whole disks are found in the /dev/dsk directory and are labelled appropriately by ZFS to
contain a single, large slice. Data is dynamically striped across both disks.

Chapter4 - Managing ZFS Storage Pools 35

Creating and Destroying ZFS Storage Pools

36

Creating a Mirrored Storage Pool

To create a mirrored pool, use the mirror keyword, followed by any number of storage devices that
will comprise the mirror. Multiple mirrors can be specified by repeating the mirror keyword on the
command line. The following command creates a pool with two, two-way mirrors:

zpool create tank mirror cld® c2d@ mirror c3d0 c4d0

The second mirror keyword indicates that a new top-level virtual device is being specified. Data is
dynamically striped across both mirrors, with data being replicated between each disk appropriately.

Creating a RAID-Z Storage Pool

Creating a RAID-Z pool is identical to creating a mirrored pool, except that the raidz keyword is
used instead of mirror. The following example shows how to create a pool with a single RAID-Z
device that consists of five disks:

zpool create tank raidz c1t0d0 c2t0d0 c3t0d0 c4t0d0 /dev/dsk/c5t0d0

This example demonstrates that disks can be specified by using their full paths. The
/dev/dsk/c5t0d0 device is identical to the c5t0d0 device.

A similar configuration could be created with disk slices. For example:

zpool create tank raidz c1t0d0s0@ c2t0d0s0@ c3t0d0s0 c4t0d0s0 c5t0doso
However, the disks must be preformatted to have an appropriately sized slice zero.

For more information about a RAID-Z configuration, see “RAID-Z Storage Pool Configuration”
on page 34.

Handling ZFS Storage Pool Creation Errors

Pool creation errors can occur for many reasons. Some of these reasons are obvious, such as when a
specified device doesn’t exist, while other reasons are more subtle.

Detecting in Use Devices

Before formatting a device, ZFS first determines if the disk is in use by ZFS or some other part of the
operating system. If the disk is in use, you might see errors such as the following:

zpool create tank clt0d0 cltldo

invalid vdev specification

use '-f’ to override the following errors:
/dev/dsk/c1t@0d0s@ is currently mounted on /
/dev/dsk/c1t0d@s1l is currently mounted on swap
/dev/dsk/clt1ld0s@ is part of active ZFS pool 'zeepool’
Please see zpool(1M)

Solaris ZFS Administration Guide - May 2006

Creating and Destroying ZFS Storage Pools

Some of these errors can be overridden by using the - f option, but most errors cannot. The following
uses cannot be overridden by using the - f option, and you must manually correct them:

Mounted file system The disk or one of its slices contains a file system that is currently
mounted. To correct this error, use the umount command.

File system in /etc/vfstab The disk contains a file system that is listed in the /etc/vfstab file,
but the file system is not currently mounted. To correct this error,
remove or comment out the line in the /etc/vfstab file.

Dedicated dump device The disk is in use as the dedicated dump device for the system. To
correct this error, use the dumpadm command.

Part of a ZFS pool The disk or file is part of an active ZFS storage pool. To correct this
error, use the zpool command to destroy the pool.

The following in-use checks serve as helpful warnings and can be overridden by using the - f option
to create the pool:

Contains a file system The disk contains a known file system, though it is not mounted and
doesn’t appear to be in use.

Part of volume The disk is part of an SVM volume.
Live upgrade The disk is in use as an alternate boot environment for Solaris Live
Upgrade.

Part of exported ZFS pool ~ The disk is part of a storage pool that has been exported or manually
removed from a system. In the latter case, the pool is reported as
potentially active, as the disk might or might not be a
network-attached drive in use by another system. Be cautious when
overriding a potentially active pool.

The following example demonstrates how the - f option is used:

zpool create tank c1t0do

invalid vdev specification

use '-f’ to override the following errors:
/dev/dsk/c1t@d0s@® contains a ufs filesystem
zpool create -f tank clt0do

Ideally, correct the errors rather than use the - f option.

Mismatched Replication Levels

Creating pools with virtual devices of different replication levels is not recommended. The zpool
command tries to prevent you from accidentally creating a pool with mismatched replication levels.
If you try to create a pool with such a configuration, you see errors similar to the following:

Chapter4 - Managing ZFS Storage Pools 37

Creating and Destroying ZFS Storage Pools

38

zpool create tank clt0d0 mirror c2t0d0 c3t0do

invalid vdev specification

use '-f’' to override the following errors:

mismatched replication level: both disk and mirror vdevs are present

zpool create tank mirror clt0d0 c2t0d@ mirror c3t0d0 c4t0d0 c5t0do

invalid vdev specification

use '-f’ to override the following errors:

mismatched replication level: 2-way mirror and 3-way mirror vdevs are present

You can override these errors with the - f option, though this practice is not recommended. The
command also warns you about creating a mirrored or RAID-Z pool using devices of different sizes.
While this configuration is allowed, mismatched replication levels result in unused space on the
larger device, and requires the - f option to override the warning.

Doing a Dry Run of Storage Pool Creation

Because creating a pool can fail unexpectedly in different ways, and because formatting disks is such
a potentially harmful action, the zfs create command has an additional option, -n, which
simulates creating the pool without actually writing data to disk. This option performs the device
in-use checking and replication level validation, and reports any errors in the process. If no errors are
found, you see output similar to the following:

zpool create -n tank mirror clt0do cltldo
would create ’'tank’ with the following layout:

tank
mirror
cltodo
cltlde

Some errors cannot be detected without actually creating the pool. The most common example is
specifying the same device twice in the same configuration. This error cannot be reliably detected
without writing the data itself, so the create -n command can report success and yet fail to create
the pool when run for real.

Default Mount Point for Storage Pools

When a pool is created, the default mount point for the root dataset is /pool-name by default. This
directory must either not exist or be empty. If the directory does not exist, it is automatically created.
If the directory is empty, the root dataset is mounted on top of the existing directory. To create a pool
with a different default mount point, use the -m option of the zpool create command:

zpool create home c1lt0do

default mountpoint ’'/home’ exists and is not empty
use '-m’ option to specify a different default

zpool create -m /export/zfs home cltodo

Solaris ZFS Administration Guide - May 2006

Creating and Destroying ZFS Storage Pools

This command creates a new pool home and the home dataset with a mount point of /export/zfs.

For more information about mount points, see “Managing ZFS Mount Points” on page 76.

Destroying ZFS Storage Pools

Pools are destroyed by using the zpool destroy command. This command destroys the pool even if
it contains mounted datasets.

zpool destroy tank

Caution - Be very careful when you destroy a pool. Make sure you are destroying the right pool and
you always have copies of your data. If you accidentally destroy the wrong pool, you can attempt to
recover the pool. For more information, see “Recovering Destroyed ZFS Storage Pools” on page 54.

Destroying a Pool With Faulted Devices

The act of destroying a pool requires that data be written to disk to indicate that the pool is no longer
valid. This state information prevents the devices from showing up as a potential pool when you
perform an import. If one or more devices are unavailable, the pool can still be destroyed. However,
the necessary state information won’t be written to these damaged devices.

These devices, when suitably repaired, are reported as potentially active when you create a new pool,
and appear as valid devices when you search for pools to import. If a pool has enough faulted devices
such that the pool itself is faulted (meaning that a top-level virtual device is faulted), then the
command prints a warning and cannot complete without the - f option. This option is necessary
because the pool cannot be opened, so whether data is stored there or not is unknown. For example:

zpool destroy tank

cannot destroy 'tank’: pool is faulted
use '-f’ to force destruction anyway
zpool destroy -f tank

For more information about pool and device health, see “Health Status of ZES Storage Pools”
on page 47.

For more information about importing pools, see “Importing ZFS Storage Pools” on page 53.

Chapter4 - Managing ZFS Storage Pools 39

Managing Devices in ZFS Storage Pools

Managing Devices in ZFS Storage Pools

40

Most of the basic information regarding devices is covered in “Components of a ZFS Storage Pool”
on page 31. Once a pool has been created, you can perform several tasks to manage the physical
devices within the pool.

Adding Devices to a Storage Pool

You can dynamically add space to a pool by adding a new top-level virtual device. This space is
immediately available to all datasets within the pool. To add a new virtual device to a pool, use the
zpool add command. For example:

zpool add zeepool mirror c2tld0@ c2t2do

The format of the virtual devices is the same as for the zpool create command, and the same rules
apply. Devices are checked to determine if they are in use, and the command cannot change the
replication level without the - f option. The command also supports the -n option so that you can
perform a dry run. For example:

zpool add -n zeepool mirror c3tld@ c3t2d0
would update ’'zeepool’ to the following configuration:
zeepool
mirror
c1t0do
cltlde
mirror
c2t1d0
c2t2d0
mirror
c3t1do
c3t2d0

This command syntax would add mirrored devices c3t1d0 and c3t2d@ to zeepoo’s existing
configuration.

For more information about how virtual device validation is done, see “Detecting in Use Devices”
on page 36.

Attaching and Detaching Devices in a Storage Pool

In addition to the zpool add command, you can use the zpool attach command to add a new
device to an existing mirrored or non-mirrored device. For example:

zpool attach zeepool cltld0@ c2tld0

Solaris ZFS Administration Guide - May 2006

Managing Devices in ZFS Storage Pools

If the existing device is part of a two-way mirror, attaching the new device, creates a three-way
mirror, and so on. In either case, the new device begins to resilver immediately.

In is example, zeepool is an existing two-way mirror that is transformed to a three-way mirror by
attaching c2t1d0, the new device, to the existing device, c1t1d0.

You can use the zpool detach command to detach a device from a pool. For example:

zpool detach zeepool c2tld0

However, this operation is refused if there are no other valid replicas of the data. For example:

zpool detach newpool clt2d0
cannot detach c1t2d0: only applicable to mirror and replacing vdevs

Onlining and Offlining Devices in a Storage Pool

ZFS allows individual devices to be taken offline or brought online. When hardware is unreliable or
not functioning properly, ZFS continues to read or write data to the device, assuming the condition is
only temporary. If the condition is not temporary, it is possible to instruct ZFS to ignore the device by
bringing it offline. ZFS does not send any requests to an offlined device.

Note - Devices do not need to be taken offline in order to replace them.

You can use the offline command when you need to temporarily disconnect storage. For example,
if you need to physically disconnect an array from one set of Fibre Channel switches and connect the
array to a different set, you could take the LUNs offline from the array that was used in ZFS storage
pools. After the array was reconnected and operational on the new set of switches, you could then
bring the same LUNs online. Data that had been added to the storage pools while the LUNs were
offline would resilver to the LUNS after they were brought back online.

This scenario is possible assuming that the systems in question see the storage once it is attached to
the new switches, possibly through different controllers than before, and your pools are set up as
RAID-Z or mirrored configurations.

Taking a Device Offline

You can take a device offline by using the zpool of fline command. The device can be specified by
path or by short name, if the device is a disk. For example:

zpool offline tank clt0do
bringing device c1t0d@ offline

You cannot take a pool offline to the point where it becomes faulted. For example, you cannot take
offline two devices out of a RAID-Z configuration, nor can you take offline a top-level virtual device.

Chapter4 - Managing ZFS Storage Pools 41

Managing Devices in ZFS Storage Pools

zpool offline tank cltodo
cannot offline c1t@d0: no valid replicas

Note - Currently, you cannot replace a device that has been taken offline.

Offlined devices show up in the OFFLINE state when you query pool status. For information about
querying pool status, see “Querying ZFS Storage Pool Status” on page 43.

By default, the offline state is persistent. The device remains offline when the system is rebooted.

To temporarily take a device offline, use the zpool offline -t option. For example:

zpool offline -t tank clt0do
bringing device ’'c1t0d@’ offline

When the system is rebooted, this device is automatically returned to the ONLINE state.

For more information on device health, see “Health Status of ZFS Storage Pools” on page 47.

Bringing a Device Online

Once a device is taken offline, it can be restored by using the zpool online command:

zpool online tank clt0do
bringing device c1t@d@ online

When a device is brought online, any data that has been written to the pool is resynchronized to the
newly available device. Note that you cannot use device onlining to replace a disk. If you offline a
device, replace the drive, and try to bring it online, it remains in the faulted state.

If you attempt to online a faulted device, a message similar to the following is displayed from fmd:

zpool online tank c1t0do

Bringing device c1t@d®@ online

#

SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major
EVENT-TIME: Fri Mar 17 14:38:47 MST 2006

PLATFORM: SUNW,Ultra-60, CSN: -, HOSTNAME: neo

SOURCE: zfs-diagnosis, REV: 1.0

EVENT-ID: 043bb0dd-f0a5-4b8f-a52d-8809e2ce2e0a

DESC: A ZFS device failed. Refer to http://sun.com/msg/ZFS-8000-D3 for more information.
AUTO-RESPONSE: No automated response will occur.

IMPACT: Fault tolerance of the pool may be compromised.
REC-ACTION: Run ’'zpool status -x’' and replace the bad device.

For more information on replacing a faulted device, see “Repairing a Missing Device” on page 135.

42 Solaris ZFS Administration Guide - May 2006

Querying ZFS Storage Pool Status

Clearing Storage Pool Devices

If a device is taken offline due to a failure that causes errors to be listed in the zpool status output,
you can clear the error counts with the zpool clear command.

If specified with no arguments, this command clears all device errors within the pool. For example:

zpool clear tank

If one or more devices are specified, this command only clear errors associated with the specified
devices. For example:

zpool clear tank c1lt0do

For more information on clearing zpool errors, see “Clearing Transient Errors” on page 138.

Replacing Devicesin a Storage Pool

You can replace a device in a storage pool by using the zpool replace command.

zpool replace tank cltld@ clt2do
In this example, the previous device, c1t1d0, is replaced by c1t2do.

The replacement device must be greater than or equal to the minimum size of all the devices in a
mirror or RAID-Z configuration. If the replacement device is larger, the pool size in an unmirrored
or non RAID-Z configuration is increased when the replacement is complete.

For more information about replacing devices, see “Repairing a Missing Device” on page 135 and
“Repairing a Damaged Device” on page 137.

Querying ZFS Storage Pool Status

The zpool list command provides a number of ways to request information regarding pool status.
The information available generally falls into three categories: basic usage information, I/O statistics,
and health status. All three types of storage pool information are covered in this section.

Basic ZFS Storage Pool Information

You can use the zpool 1ist command to display basic information about pools.

Chapter4 - Managing ZFS Storage Pools 43

Querying ZFS Storage Pool Status

44

Listing Information About All Storage Pools

With no arguments, the command displays all the fields for all pools on the system. For example:

zpool 1list

NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 80.0G 22.3G 47.7G 28% ONLINE -
dozer 1.2T 384G 816G 32% ONLINE -

This output displays the following information:

NAME The name of the pool.

SIZE The total size of the pool, equal to the sum of the size of all top-level virtual
devices.

USED The amount of space allocated by all datasets and internal metadata. Note that
this amount is different from the amount of space as reported at the file system
level.

For more information about determining available file system space, see “ZFS
Space Accounting” on page 28.

AVAILABLE The amount of unallocated space in the pool.
CAPACITY (CAP) The amount of space used, expressed as a percentage of total space.

HEALTH The current health status of the pool.

For more information about pool health, see “Health Status of ZFS Storage
Pools” on page 47.

ALTROOT The alternate root of the pool, if any.

For more information about alternate root pools, see “ZFS Alternate Root
Pools” on page 124.

You can also gather statistics for a specific pool by specifying the pool name. For example:

zpool list tank
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 80.0G 22.3G 47.7G 28% ONLINE -

Listing Specific Storage Pool Statistics

Specific statistics can be requested by using the -0 option. This option allows for custom reports or a
quick way to list pertinent information. For example, to list only the name and size of each pool, you
use the following syntax:

zpool list -o name,size
NAME SIZE

Solaris ZFS Administration Guide - May 2006

Querying ZFS Storage Pool Status

tank 80.0G
dozer 1.2T

The column names correspond to the properties that are listed in “Listing Information About All
Storage Pools” on page 44.

Scripting ZFS Storage Pool Output

The default output for the zpool list command is designed for readability, and is not easy to use as
part of a shell script. To aid programmatic uses of the command, the -H option can be used to
suppress the column headings and separate fields by tabs, rather than by spaces. For example, to
request a simple list of all pool names on the system:

zpool list -Ho name
tank
dozer

Here is another example:

zpool list -H -o name,size
tank 80.0G
dozer 1.2T

ZFS Storage Pool I/0 Statistics

To request I/O statistics for a pool or specific virtual devices, use the zpool iostat command.
Similar to the iostat command, this command can display a static snapshot of all I/O activity so far,
as well as updated statistics for every specified interval. The following statistics are reported:

USED CAPACITY The amount of data currently stored in the pool or device. This figure
differs from the amount of space available to actual file systems by a small
amount due to internal implementation details.

For more information about the difference between pool space and dataset
space, see “ZFS Space Accounting” on page 28.

AVAILABLE CAPACITY The amount of space available in the pool or device. As with the used
statistic, this is differs from the amount of space available to datasets by a
small margin.

READ OPERATIONS The number of read I/O operations sent to the pool or device, including
metadata requests.

WRITE OPERATIONS The number of write I/O operations sent to the pool or device.

READ BANDWIDTH The bandwidth of all read operations (including metadata), expressed as
units per second.

Chapter4 - Managing ZFS Storage Pools 45

Querying ZFS Storage Pool Status

46

WRITE BANDWIDTH The bandwidth of all write operations, expressed as units per second.

Listing Pool-Wide Statistics

With no options, the zpool iostat command displays the accumulated statistics since boot for all
pools on the system. For example:

zpool iostat

capacity operations bandwidth
pool used avail read write read write
tank 100G 20.0G 1.2M 102K 1.2M 3.45K
dozer 12.3G 67.7G 132K 15.2K 32.1K 1.20K

Because these statistics are cumulative since boot, bandwidth might appear low if the pool is
relatively idle. You can request a more accurate view of current bandwidth usage by specifying an
interval. For example:

zpool iostat tank 2

capacity operations bandwidth
pool used avail read write read write
tank 100G 20.0G 1.2M 102K 1.2M 3.45K
tank 100G 20.0G 134 0 1.34K 0
tank 100G 20.0G 94 342 1.06K 4.1M

In this example, the command displays usage statistics only for the pool tank every two seconds until
the you type Ctrl-C. Alternately, you can specify an additional count parameter, which causes the
command to terminate after the specified number of iterations. For example, zpool iostat 2 3
would print a summary every two seconds for three iterations, for a total of six seconds. If there isa
single pool, then the statistics is displayed on consecutive lines. If more than one pool exists, then an
additional dashed line delineates each iteration to provide visual separation.

Listing Virtual Device Statistics

In addition to pool-wide I/O statistics, the zpool iostat command can display statistics for specific
virtual devices. This command can be used to identify abnormally slow devices, or simply to observe
the distribution of I/O generated by ZFS. To request the complete virtual device layout as well as all
I/O statistics, use the zpool iostat -v command. For example:

zpool iostat -v

capacity operations bandwidth

tank used avail read write read write
mirror 20.4G 59.6G 0 22 0 6.00K
cltodo - - 1 295 11.2K 148K
cltlde - - 1 299 11.2K 148K

Solaris ZFS Administration Guide - May 2006

Querying ZFS Storage Pool Status

total 24.5K 149M 0 22 0 6.00K

Note two important things when viewing I/O statistics on a virtual device basis.

= First, space usage is only available for top-level virtual devices. The way in which space is
allocated among mirror and RAID-Z virtual devices is particular to the implementation and not
easily expressed as a single number.

= Second, the numbers might not add up exactly as you would expect them to. In particular,
operations across RAID-Z and mirrored devices will not be exactly equal. This difference is
particularly noticeable immediately after a pool is created, as a significant amount of I/O is done
directly to the disks as part of pool creation that is not accounted for at the mirror level. Over
time, these numbers should gradually equalize, although broken, unresponsive, or offlined
devices can affect this symmetry as well.

You can use the same set of options (interval and count) when examining virtual device statistics.

Health Status of ZFS Storage Pools

ZFS provides an integrated method of examining pool and device health. The health of a pool is
determined from the state of all its devices. This state information is displaying by using the zpool
status command. In addition, potential pool and device failures are reported by fmd and are
displayed on the system console and the /var/adm/messages file. This section describes how to
determine pool and device health. This chapter does not document how to repair or recover from
unhealthy pools. For more information on troubleshooting and data recovery, see Chapter 9.

Each device can fall into one of the following states:

ONLINE The device is in normal working order. While some transient errors might still
occur, the device is otherwise in working order.

DEGRADED The virtual device has experienced failure but is still able to function. This state is
most common when a mirror or RAID-Z device has lost one or more constituent
devices. The fault tolerance of the pool might be compromised, as a subsequent
fault in another device might be unrecoverable.

FAULTED The virtual device is completely inaccessible. This status typically indicates total
failure of the device, such that ZFS is incapable of sending or receiving data from it.
If a top-level virtual device is in this state, then the pool is completely inaccessible.

OFFLINE The virtual device has been explicitly taken offline by the administrator.

UNAVAILABLE The device or virtual device cannot be opened. In some cases, pools with
UNAVAILABLE devices appear in DEGRADED mode. If a top-level virtual device is
unavailable, then nothing in the pool can be accessed.

The health of a pool is determined from the health of all its top-level virtual devices. If all virtual
devices are ONLINE, then the pool is also ONLINE. If any one of the virtual devices is DEGRADED or

Chapter4 - Managing ZFS Storage Pools 47

Querying ZFS Storage Pool Status

UNAVAILABLE, then the pool is also DEGRADED. If a top-level virtual device is FAULTED or OFFLINE, then
the pool is also FAULTED. A pool in the faulted state is completely inaccessible. No data can be
recovered until the necessary devices are attached or repaired. A pool in the degraded state continues
to run, but you might not achieve the same level of data replication or data throughput if the pool
were online.

Basic Storage Pool Health Status

The simplest way to request a quick overview of pool health status is to use the zpool status
command:

zpool status -x
all pools are healthy

Specific pools can be examined by specifying a pool name to the command. Any pool that is not in
the ONLINE state should be investigated for potential problems, as described in the next section.

Detailed Health Status

You can request a more detailed health summary by using the - v option. For example:

zpool status -v tank

pool: tank

state: DEGRADED
status: One or more devices could not be opened. Sufficient replicas exist

for the pool to continue functioning in a degraded state.
action: Attach the missing device and online it using ’'zpool online’.
see: http://www.sun.com/msg/ZFS-8000-2Q
scrub: none requested

config:
NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0
mirror DEGRADED 0 0 0
clt0do FAULTED 0 0 0 cannot open
cltlde ONLINE 0 0 0

errors: No known data errors

This output displays a complete description of why the pool is in its current state, including a
readable description of the problem and a link to a knowledge article for more information. Each
knowledge article provides up-to-date information on the best way to recover from your current
problem. Using the detailed configuration information, you should be able to determine which
device is damaged and how to repair the pool.

In the above example, the faulted device should be replaced. After the device is replaced, use the
zpool online command to bring the device back online. For example:

48 Solaris ZFS Administration Guide - May 2006

Migrating ZFS Storage Pools

zpool online tank cltodo
Bringing device c1t@d® online
zpool status -x

all pools are healthy

If a pool has an offlined device, the command output identifies the problem pool. For example:

zpool status -x

pool: tank

state: DEGRADED
status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.
action: Attach the missing device and online it using ’zpool online’.
see: http://www.sun.com/msg/ZFS-8000-D3
scrub: resilver completed with @ errors on Fri Mar 17 14:38:47 2006

config:
NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0
mirror DEGRADED 0 0 0
c1t0d® UNAVAIL 0 0 @ cannot open
clt1ldd ONLINE 0 0 0

The READ and WRITE columns provides a count of I/O errors seen on the device, while the CKSUM
column provides a count of uncorrectable checksum errors that occurred on the device. Both of these
error counts likely indicate potential device failure, and some corrective action is needed. If non-zero
errors are reported for a top-level virtual device, portions of your data might have become
inaccessible. The errors count identifies any known data errors.

In the example output above, the offlined device is not causing data errors.

For more information about diagnosing and repairing faulted pools and data, see Chapter 9.

Migrating ZFS Storage Pools

Occasionally, you might need to move a storage pool between machines. To do so, the storage devices
must be disconnected from the original machine and reconnected to the destination machine. This
task can be accomplished by physically recabling the devices, or by using multiported devices such as
the devices on a SAN. ZFS enables you to export the pool from one machine and import it on the
destination machine, even if the machines are of different endianness. For information about
replicating or migrating file systems between different storage pools, which might reside on different
machines, see “Saving and Restoring ZFS Data” on page 89.

Chapter4 - Managing ZFS Storage Pools 49

Migrating ZFS Storage Pools

50

Preparing for ZFS Storage Pool Migration

Storage pools should be explicitly exported to indicate that they are ready to be migrated. This
operation flushes any unwritten data to disk, writes data to the disk indicating that the export was
done, and removes all knowledge of the pool from the system.

If you do not explicitly export the pool, but instead remove the disks manually, you can still import
the resulting pool on another system. However, you might lose the last few seconds of data
transactions, and the pool will appear faulted on the original machine because the devices are no
longer present. By default, the destination machine refuses to import a pool that has not been
explicitly exported. This condition is necessary to prevent accidentally importing an active pool that
consists of network attached storage that is still in use on another system.

Exporting a ZFS Storage Pool

To export a pool, use the zpool export command. For example:

zpool export tank

Once this command is executed, the pool tank is no longer visible on the system. The command
attempts to unmount any mounted file systems within the pool before continuing. If any of the file
systems fail to unmount, you can forcefully unmount them by using the - f option. For example:

zpool export tank
cannot unmount ’'/export/home/eschrock’: Device busy
zpool export -f tank

If devices are unavailable at the time of export, the disks cannot be specified as cleanly exported. If
one of these devices is later attached to a system without any of the working devices, it appears as
“potentially active.” If emulated volumes are in use in the pool, the pool cannot be exported, even
with the - f option. To export a pool with an emulated volume, first make sure that all consumers of
the volume are no longer active.

For more information about emulated volumes, see “Emulated Volumes” on page 119.

Determining Available Storage Pools to Import

Once the pool has been removed from the system (either through export or by forcefully removing
the devices), attach the devices to the target system. Although ZFS can handle some situations in
which only a portion of the devices is available, all devices within the pool must be moved between
the systems. The devices do not necessarily have to be attached under the same device name. ZFS
detects any moved or renamed devices, and adjusts the configuration appropriately. To discover
available pools, run the zpool import command with no options. For example:

Solaris ZFS Administration Guide - May 2006

Migrating ZFS Storage Pools

zpool import
pool: tank
id: 3778921145927357706
state: ONLINE
action: The pool can be imported using its name or numeric identifier.
config:

tank ONLINE
mirror ONLINE
clt@0d® ONLINE
cltld® ONLINE

In this example, the pool tank is available to be imported on the target system. Each pool is identified
by a name as well as a unique numeric identifier. If multiple pools available to import have the same
name, you can use the numeric identifier to distinguish between them.

Similar to the zpool status command, the zpool import command refers to a knowledge article
available on the web with the most up-to-date information regarding repair procedures for this
problem. In this case, the user can force the pool to be imported. However, importing a pool that is
currently in use by another system over a storage network can result in data corruption and panics as
both systems attempt to write to the same storage. If some devices in the pool are not available but
enough redundancy is available to have a usable pool, the pool appears in the DEGRADED state. For
example:

zpool import

pool: tank

id: 3778921145927357706

state: DEGRADED
status: One or more devices are missing from the system.
action: The pool can be imported despite missing or damaged devices. The

fault tolerance of the pool may be compromised if imported.
see: http://www.sun.com/msg/ZFS-8000-2Q

config:

tank DEGRADED
mirror DEGRADED
clt@dd UNAVAIL cannot open
cltld® ONLINE

In this example, the first disk is damaged or missing, though you can still import the pool because the
mirrored data is still accessible. If too many faulted or missing devices are present, the pool cannot be
imported. For example:

zpool import
pool: dozer
id: 12090808386336829175
state: FAULTED

Chapter4 - Managing ZFS Storage Pools 51

Migrating ZFS Storage Pools

action: The pool cannot be imported. Attach the missing
devices and try again.
see: http://www.sun.com/msg/ZFS-8000-6X
config:
raidz FAULTED
c1t0do ONLINE
cltldo FAULTED
clt2de ONLINE
c1t3d0o FAULTED

In this example, two disks are missing from a RAID-Z virtual device, which means that sufficient
replicated data is not available to reconstruct the pool. In some cases, not enough devices are present
to determine the complete configuration. In this case, ZFS doesn’t know what other devices were
part of the pool, though ZFS does report as much information as possible about the situation. For
example:

zpool import
pool: dozer
id: 12090808386336829175
state: FAULTED
status: One or more devices are missing from the system.
action: The pool cannot be imported. Attach the missing
devices and try again.
see: http://www.sun.com/msg/ZFS-8000-6X
config:
dozer FAULTED missing device
raidz ONLINE
c1t0do ONLINE
cltldoe ONLINE
clt2do ONLINE
c1t3de ONLINE
Additional devices are known to be part of this pool, though their
exact configuration cannot be determined.

Finding ZFS Storage Pools From Alternate Directories

By default, the zpool import command only searches devices within the /dev/dsk directory. If
devices exist in another directory, or you are using pools backed by files, you must use the -d option
to search different directories. For example:

zpool create dozer /files/a /file/b
zpool export dozer
zpool import
no pools available
zpool import -d /file
pool: dozer

52 Solaris ZFS Administration Guide - May 2006

Migrating ZFS Storage Pools

id: 672153753596386982
state: ONLINE
action: The pool can be imported using its name or numeric identifier.
config:

dozer ONLINE
/file/a ONLINE
/file/b ONLINE
zpool import -d /file dozer

If devices exist in multiple directories, you can specify multiple -d options.

Importing ZFS Storage Pools

Once a pool has been identified for import, you can import it by specifying the name of the pool or its
numeric identifier as an argument to the zpool import command. For example:

zpool import tank

If multiple available pools have the same name, you can specify which pool to import using the
numeric identifier. For example:

zpool import
pool: dozer
id: 2704475622193776801
state: ONLINE
action: The pool can be imported using its name or numeric identifier.
config:

dozer ONLINE
c1t9do ONLINE

pool: dozer
id: 6223921996155991199
state: ONLINE
action: The pool can be imported using its name or numeric identifier.
config:

dozer ONLINE
c1t8d0o ONLINE
zpool import dozer
cannot import ’‘dozer’: more than one matching pool
import by numeric ID instead
zpool import 6223921996155991199

Chapter4 - Managing ZFS Storage Pools 53

Migrating ZFS Storage Pools

54

If the pool name conflicts with an existing pool name, you can import the pool under a different
name. For example:

zpool import dozer zeepool

This command imports the exported pool dozer using the new name zeepool. If the pool was not
cleanly exported, ZFS requires the - f flag to prevent users from accidentally importing a pool that is
still in use on another system. For example:

zpool import dozer

cannot import ’‘dozer’: pool may be in use on another system
use '-f’ to import anyway

zpool import -f dozer

Pools can also be imported under an alternate root by using the -R option. For more information on
alternate root pools, see “ZFS Alternate Root Pools” on page 124.

Recovering Destroyed ZFS Storage Pools

You can use the zpool import -D command to recover a storage pool that has been destroyed. For
example:

zpool destroy tank
zpool import -D
pool: tank
id: 3778921145927357706
state: ONLINE (DESTROYED)
action: The pool can be imported using its name or numeric identifier. The
pool was destroyed, but can be imported using the ’-Df’ flags.
config:

tank ONLINE
mirror ONLINE
c1lt@dd ONLINE
cltld® ONLINE

In the above zpool import output, you can identify this pool as the destroyed pool because of the
following state information:

state: ONLINE (DESTROYED)

To recover the destroyed pool, issue the zpool import -D command again with the pool to be
recovered and the - f option. For example:

zpool import -Df tank
zpool status tank

Solaris ZFS Administration Guide - May 2006

Migrating ZFS Storage Pools

pool: tank
state: ONLINE
scrub: none requested

config:
NAME STATE READ WRITE CKSUM
tank ONLINE 0
mirror ONLINE 0 0 0
clt@dd ONLINE 0 0 0
cltld® ONLINE 0 0 0

errors: No known data errors

If one of the devices in the destroyed pool is faulted or unavailable, you might be able to recover the
destroyed pool anyway. In this scenario, import the degraded pool and then attempt to fix the device
failure. For example:

zpool destroy dozer
zpool import -D
pool: dozer
id:
state: DEGRADED (DESTROYED)
status: One or more devices are missing from the system.
action: The pool can be imported despite missing or damaged devices. The
fault tolerance of the pool may be compromised if imported. The
pool was destroyed, but can be imported using the ’-Df’ flags.
see: http://www.sun.com/msg/ZFS-8000-2Q
config:

dozer DEGRADED
raidz ONLINE
c1t0do ONLINE
c1t1do ONLINE
clt2do UNAVAIL cannot open
c1t3d0 ONLINE
zpool import -Df dozer
zpool status -x
pool: dozer
state: DEGRADED
status: One or more devices could not be opened. Sufficient replicas exist for
the pool to continue functioning in a degraded state.
action: Attach the missing device and online it using ’'zpool online’.
see: http://www.sun.com/msg/ZFS-8000-D3
scrub: resilver completed with @ errors on Fri Mar 17 16:11:35 2006
config:

NAME STATE READ WRITE CKSUM

Chapter4 - Managing ZFS Storage Pools 55

Migrating ZFS Storage Pools

56

dozer DEGRADED 0 0 0
raidz ONLINE 0 0 0
cltodo ONLINE 0 0 0
cltlde ONLINE 0 0 0
clt2do UNAVAIL 0 0 0 cannot open
clt3do ONLINE 0 0 0

errors: No known data errors
zpool online dozer clt2d0
Bringing device c1t2d@ online
zpool status -x

all pools are healthy

Upgrading ZFS Storage Pools

In future ZFS releases, it might be necessary to upgrade your pools to a newer version to take
advantage of the features in the newer version. The zpool upgrade command is available for this
process. In addition, the zpool status command has been modified to notify you when your pools
are running older versions. For example:

zpool status
pool: test
state: ONLINE
status: The pool is formatted using an older on-disk format. The pool can
still be used, but some features are unavailable.
action: Upgrade the pool using ’'zpool upgrade’. Once this is done, the
pool will no longer be accessible on older software versions.
scrub: none requested

config:
NAME STATE READ WRITE CKSUM
test ONLINE 0 0 0
clt27d® ONLINE 0 0 0

errors: No known data errors

In this ZFS release, running the zpool upgrade command to upgrade pools should be unnecessary.
Currently, this command displays the initial ZFS version information.

zpool upgrade
This system is currently running ZFS version 1.

All pools are formatted using this version.

In future ZFS releases, you can use the following syntax to identify additional information about a
particular version and supported releases.

Solaris ZFS Administration Guide - May 2006

Migrating ZFS Storage Pools

zpool upgrade -v
This system is currently running ZFS version 1.

The following versions are supported:
VER DESCRIPTION
1 Initial ZFS version.
For more information on a particular version, including supported releases, see:
http://www.opensolaris.org/os/community/zfs/version/N

Where ‘N’ is the version number.

More information about the pool upgrade process will be provided in future versions of this guide.

Chapter4 - Managing ZFS Storage Pools 57

58

CHAPTER 5

Managing ZFS File Systems

This chapter provides detailed information about managing Solaris™ ZFS file systems. Concepts
such as hierarchical file system layout, property inheritance, and automatic mount point
management and share interactions are included in this chapter.

A ZFS file system is a lightweight POSIX file system that is built on top of a storage pool. File systems
can be dynamically created and destroyed without requiring you to allocate or format any underlying
space. Because file systems are so lightweight and because they are the central point of administration
in ZFS, you are likely to create many of them.

ZFS file systems are administered by using the zfs command. The zfs command provides a set of
subcommands that perform specific operations on file systems. This chapter describes these
subcommands in detail. Snapshots, volumes, and clones are also managed by using this command,
but these features are only covered briefly in this chapter. For detailed information about snapshots
and clones, see Chapter 6. For detailed information about emulated volumes, see “Emulated
Volumes” on page 119.

Note - The term dataset is used in this chapter as a generic term to refer to a file system, snapshot,
clone, or volume.

The following sections are provided in this chapter:

“Creating and Destroying ZFS File Systems” on page 60
“ZFS Properties” on page 62

“Querying ZFS File System Information” on page 69
“Managing ZFS Properties” on page 72

“Mounting and Sharing ZFS File Systems” on page 76
“ZFS Quotas and Reservations” on page 81

“Saving and Restoring ZFS Data” on page 89

59

Creating and Destroying ZFS File Systems

Creating and Destroying ZFS File Systems

60

ZFS file systems can be created and destroyed by using the zfs create and zfs destroy commands.

Creating a ZFS File System

ZFS file systems are created by using the zfs create command. The create subcommand takes a
single argument: the name of the file system to create. The file system name is specified as a path
name starting from the name of the pool:

pool-name/[filesystem-name/[filesystem-name

The pool name and initial file system names in the path identify the location in the hierarchy where
the new file system will be created. All the intermediate file system names must already exist in the
pool. The last name in the path identifies the name of the file system to be created. The file system
name must satisfy the naming conventions defined in “ZFS Component Naming Requirements”
on page 20.

In the following example, a file system named bonwick is created in the tank/home file system.

zfs create tank/home/bonwick

ZFS automatically mounts the newly created file system if it is created successfully. By default, file
systems are mounted as /dataset, using the path provided for the file system name in the create
subcommand. In this example, the newly created bonwick file system is at /tank/home/bonwick. For
more information about automanaged mount points, see “Managing ZFS Mount Points” on page
76.

For more information about the zfs create command, see zfs(1M).

Destroying a ZFS File System

To destroy a ZFS file system, use the zfs destroy command. The destroyed file system is
automatically unmounted and unshared. For more information about automanaged mounts or
automanaged shares, see “Automatic Mount Points” on page 76.

In the following example, the tabriz file system is destroyed.

zfs destroy tank/home/tabriz

Caution - No confirmation prompt appears with the destroy subcommand. Use it with extreme
caution.

If the file system to be destroyed is busy and so cannot be unmounted, the zfs destroy command
fails. To destroy an active file system, use the - f option. Use this option with caution as it can
unmount, unshare, and destroy active file systems, causing unexpected application behavior.

Solaris ZFS Administration Guide - May 2006

Creating and Destroying ZFS File Systems

zfs destroy tank/home/ahrens
cannot unmount ’'tank/home/ahrens’: Device busy

zfs destroy -f tank/home/ahrens

The zfs destroy command also fails if a file system has children. To recursively destroy a file system
and all its descendants, use the - r option. Note that a recursive destroy also destroys snapshots so use
this option with caution.

zfs destroy tank/ws

cannot destroy ’'tank/ws’: filesystem has children
use '-r’ to destroy the following datasets:
tank/ws/billm

tank/ws/bonwick

tank/ws/maybee

’

zfs destroy -r tank/ws

If the file system to be destroyed has indirect dependents, even the recursive destroy command
described above fails. To force the destruction of all dependents, including cloned file systems
outside the target hierarchy, the -R option must be used. Use extreme caution with this option.

zfs destroy -r tank/home/schrock

cannot destroy ’tank/home/schrock’: filesystem has dependent clones
use '-R’ to destroy the following datasets:
tank/clones/schrock-clone

zfs destroy -R tank/home/schrock

Caution - No confirmation prompt appears with the - f, - r, or -R options so use these options
carefully.

For more information about snapshots and clones, see Chapter 6.

Renaming a ZFS File System

File systems can be renamed by using the zfs rename command. Using the rename subcommand
can perform the following operations:

= Change the name of a file system
= Relocate the file system to a new location within the ZFS hierarchy
= Change the name of a file system and relocate it with the ZFS hierarchy

The following example uses the rename subcommand to do a simple rename of a file system:

zfs rename tank/home/kustarz tank/home/kustarz_old

Chapter5 « Managing ZFS File Systems 61

ZFS Properties

This example renames the kustarz file system to kustarz_old.

The following example shows how to use zfs rename to relocate a file system.

zfs rename tank/home/maybee tank/ws/maybee

In this example, the maybee file system is relocated from tank/home to tank/ws. When you relocate a
file system through rename, the new location must be within the same pool and it must have enough

space to hold this new file system. If the new location does not have enough space, possibly because it
has reached its quota, the rename will fail.

For more information about quotas, see “ZFS Quotas and Reservations” on page 81.

The rename operation attempts an unmount/remount sequence for the file system and any
descendant file systems. The rename fails if the operation is unable to unmount an active file system.
If this problem occurs, you will need to force unmount the file system.

For information about renaming snapshots, see “Renaming ZFS Snapshots” on page 86.

ZFS Properties

Properties are the main mechanism that you use to control the behavior of file systems, volumes,
snapshots, and clones. Unless stated otherwise, the properties defined in the section apply to all the
dataset types.

Properties are either read-only statistics or settable properties. Most settable properties are also
inheritable. An inheritable property is a property that, when set on a parent, is propagated down to
all of its descendants.

All inheritable properties have an associated source. The source indicates how a property was
obtained. The source of a property can have the following values:

local A local source indicates that the property was explicitly set on
the dataset by using the zfs set command as described in
“Setting ZFS Properties” on page 72.

inherited from dataset-name Avalue of inherited from dataset-name means that the
property was inherited from the named ancestor.

default Avalue of default means that the property setting was not
inherited or set locally. This source is a result of no ancestor
having the property as source local.

The following table identifies both read-only and settable ZFS file system properties. Read-only
properties are identified as such. All other properties are settable.

62 Solaris ZFS Administration Guide - May 2006

ZFS Properties

TABLE 5-1 ZFS Property Descriptions

Property Name

Type Default Value

Description

aclinherit

String secure

Controls how ACL entries are inherited when files and
directories are created. The values are discard, noallow,
secure, and passthrough. For a description of these values,
see “ACL Property Modes” on page 98.

aclmode

String groupmask

Controls how an ACL entry is modified during a chmod
operation. The values are discard, groupmask, and
passthrough. For a description of these values, see “ACL
Property Modes” on page 98.

atime

Boolean on

Controls whether the access time for files is updated when they
are read. Turning this property off avoids producing write
traffic when reading files and can result in significant
performance gains, though it might confuse mailers and other
similar utilities.

available

Number N/A

Read-only property that identifies the amount of space
available to the dataset and all its children, assuming no other
activity in the pool. Because space is shared within a pool,
available space can be limited by various factors including
physical pool size, quotas, reservations, or other datasets
within the pool.

This property can also be referenced by its shortened column
name, avail.

For more information about space accounting, see “ZFS Space
Accounting” on page 28.

checksum

String on

Controls the checksum used to verify data integrity. The
default value is on, which automatically selects an appropriate
algorithm, currently fletcher2. The values are on, off,
fletcher2, fletcher4, and sha256. A value of of f disables
integrity checking on user data. A value of off is not
recommended.

compression

String off

Controls the compression algorithm used for this dataset.
Currently, only one algorithm, 1zjb, exists.

This property can also be referred to by its shortened column
name, compress.

Chapter5 « Managing ZFS File Systems

63

ZFS Properties

TABLE 5-1 ZES Property Descriptions

(Continued)

Property Name

Type

Default Value

Description

compressratio

Number

N/A

Read-only property that identifies the compression ratio
achieved for this dataset, expressed as a multiplier.
Compression can be turned on by running zfs set
compression=on dataset.

Calculated from the logical size of all files and the amount of
referenced physical data. Includes explicit savings through the
use of the compression property.

creation

Number

N/A

Read-only property that identifies the date and time that this
dataset was created.

devices

Boolean

on

Controls whether device nodes found within this file system
can be opened.

exec

Boolean

on

Controls whether programs within this file system are allowed
to be executed. Also, when set to of f, mmap (2) calls with
PROT_EXEC are disallowed.

mounted

boolean

N/A

Read-only property that indicates whether this file system,
clone, or snapshot is currently mounted. This property does
not apply to volumes. Value can be either yes or no.

mountpoint

String

N/A

Controls the mount point used for this file system. When the
mountpoint property is changed for a file system, the file
system and any children that inherit the mount point are
unmounted. If the new value is legacy, then they remain
unmounted. Otherwise, they are automatically remounted in
the new location if the property was previously legacy or
none, or if they were mounted before the property was
changed. In addition, any shared file systems are unshared and
shared in the new location.

For more information about using this property, see
“Managing ZFS Mount Points” on page 76.

origin

String

N/A

Read-only property for cloned file systems or volumes that
identifies the snapshot from which the clone was created. The
origin cannot be destroyed (even with the - r or - f options) as
long as a clone exists.

Non-cloned file systems have an origin of none.

64 Solaris ZFS Administration Guide - May 2006

ZFS Properties

TABLE 5-1 ZFS Property Descriptions (Continued)

Property Name Type Default Value

Description

quota Number none
(or none)

Limits the amount of space a dataset and its descendents can
consume. This property enforces a hard limit on the amount of
space used, including all space consumed by descendents,
including file systems and snapshots. Setting a quotaon a
descendent of a dataset that already has a quota does not
override the ancestor’s quota, but rather imposes an additional
limit. Quotas cannot be set on volumes, as the volsize
property acts as an implicit quota.

For information about setting quotas, see “Setting Quotas on
ZFS File Systems” on page 82.

readonly Boolean off

Controls whether this dataset can be modified. When set to on,
no modifications can be made to the dataset.

This property can also be referred to by its shortened column
name, rdonly.

recordsize Number 128K

Specifies a suggested block size for files in the file system.

This property can also be referred to by its shortened column
name, recsize. For a detailed description, see “The
recordsize Property” on page 68.

referenced Number N/A

Read-only property that identifies the amount of data
accessible by this dataset, which might or might not be shared
with other datasets in the pool.

When a snapshot or clone is created, it initially references the
same amount of space as the file system or snapshot it was
created from, because its contents are identical.

This property can also be referred to by its shortened column
name, refer.

reservation Number none
(or none)

The minimum amount of space guaranteed to a dataset and its
descendents. When the amount of space used is below this
value, the dataset is treated as if it were using the amount of
space specified by its reservation. Reservations are accounted
for in the parent datasets’ space used, and count against the
parent datasets’ quotas and reservations.

This property can also be referred to by its shortened column
name, reserv.

For more information, see “Setting Reservations on ZFS File
Systems” on page 82.

Chapter5 « Managing ZFS File Systems

65

ZFS Properties

TABLE 5-1 ZES Property Descriptions

(Continued)

Property Name

Type

Default Value

Description

sharenfs

String

off

Controls whether the file system is available over NFS, and
what options are used. If set to on, the zfs share command is
invoked with no options. Otherwise, the zfs share command
is invoked with options equivalent to the contents of this
property. If set to off, the file system is managed by using the
legacy share and unshare commands and the dfstab file.

For more information on sharing ZFS file systems, see
“Sharing ZFS File Systems” on page 80.

setuid

Boolean

on

Controls whether the setuid bit is honored in the file system.

snapdir

String

hidden

Controls whether the . zfs directory is hidden or visible in the
root of the file system. For more information on using
snapshots, see “ZFS Snapshots” on page 85.

type

String

N/A

Read-only property that identifies the dataset type as
filesystenm (file system or clone), volume, or snapshot.

used

Number

N/A

Read-only property that identifies the amount of space
consumed by the dataset and all its descendants.

For a detailed description, see “The used Property” on page 67.

volsize

Number

N/A

For volumes, specifies the logical size of the volume.

For a detailed description, see “The volsize Property”
on page 69.

volblocksize

Number

8 Kbytes

For volumes, specifies the block size of the volume. The block
size cannot be changed once the volume has been written, so
set the block size at volume creation time. The default block
size for volumes is 8 Kbytes. Any power of 2 from 512 bytes to
128 Kbytes is valid.

This property can also be referred to by its shortened column
name, volblock.

zoned

Boolean

N/A

Indicates whether this dataset has been added to a non-global
zone. If this property is set, then the mount point is not
honored in the global zone, and ZFS cannot mount such a file
system when requested. When a zone is first installed, this
property is set for any added file systems.

For more information about using ZFS with zones installed,
see “Using ZFS on a Solaris System With Zones Installed”
on page 120.

66 Solaris ZFS Administration Guide - May 2006

ZFS Properties

Read-Only ZFS Properties

Read-only properties are properties that can be retrieved but cannot be set. Read-only properties are
not inherited. Some properties are specific to a particular type of dataset. In such cases, the particular
dataset type is mentioned in the description.

The read-only properties are listed here and are described in Table 5-1.

® available
® creation
= mounted
B origin
m compressratio
® referenced
= type
= used
For detailed information, see “The used Property” on page 67.

For more information on space accounting, including the used, referenced, and available
properties, see “ZFS Space Accounting” on page 28.

The used Property

The amount of space consumed by this dataset and all its descendants. This value is checked against
the dataset’s quota and reservation. The space used does not include the dataset’s reservation, but
does consider the reservation of any descendant datasets. The amount of space that a dataset
consumes from its parent, as well as the amount of space that is freed if the dataset is recursively
destroyed, is the greater of its space used and its reservation.

When snapshots are created, their space is initially shared between the snapshot and the file system,
and possibly with previous snapshots. As the file system changes, space that was previously shared
becomes unique to the snapshot, and counted in the snapshot’s space used. Additionally, deleting
snapshots can increase the amount of space unique to (and used by) other snapshots. For more
information about snapshots and space issues, see “Out of Space Behavior” on page 28.

The amount of space used, available, or referenced does not take into account pending changes.
Pending changes are generally accounted for within a few seconds. Committing a change to a disk
using fsync(3c) or 0_SYNC does not necessarily guarantee that the space usage information will be
updated immediately.

Settable ZFS Properties

Settable properties are properties whose values can be both retrieved and set. Settable properties are
set by using the zfs set command, as described in “Setting ZFS Properties” on page 72. With the

Chapter5 « Managing ZFS File Systems 67

ZFS Properties

68

exceptions of quotas and reservations, settable properties are inherited. For more information about
quotas and reservations, see “ZFS Quotas and Reservations” on page 81.

Some settable properties are specific to a particular type of dataset. In such cases, the particular
dataset type is mentioned in the description. If not specifically mentioned, a property applies to all
dataset types: file systems, volumes, clones, and snapshots.

The settable properties are listed here and are described in Table 5-1.

= aclinherit
For a detailed description, see “ACL Property Modes” on page 98.
= aclmode
For a detailed description, see “ACL Property Modes” on page 98.
® atime
= checksum
B compression
® devices
= exec
B mountpoint
= quota
® readonly
® recordsize
For a detailed description, see “The recordsize Property” on page 68.
® reservation
® sharenfs
= setuid
B spapdir
= volsize
For a detailed description, see “The volsize Property” on page 69.
= volblocksize

= zoned

The recordsize Property

Specifies a suggested block size for files in the file system.

This property is designed solely for use with database workloads that access files in fixed-size records.
ZFS automatically adjust block sizes according to internal algorithms optimized for typical access

patterns. For databases that create very large files but access the files in small random chunks, these
algorithms may be suboptimal. Specifying a recordsize greater than or equal to the record size of

Solaris ZFS Administration Guide - May 2006

Querying ZFS File System Information

the database can result in significant performance gains. Use of this property for general purpose file
systems is strongly discouraged, and may adversely affect performance. The size specified must be a
power of two greater than or equal to 512 and less than or equal to 128 Kbytes. Changing the file
system’s recordsize only affects files created afterward. Existing files are unaffected.

This property can also be referred to by its shortened column name, recsize.

Thevolsize Property

The logical size of the volume. By default, creating a volume establishes a reservation for the same
amount. Any changes to volsize are reflected in an equivalent change to the reservation. These
checks are used to prevent unexpected behavior for users. A volume that contains less space than it
claims is available can result in undefined behavior or data corruption, depending on how the
volume is used. These effects can also occur when the volume size is changed while it is in use,
particularly when you shrink the size. Extreme care should be used when adjusting the volume size.

Though not recommended, you can create a sparse volume by specifying the -s flag to zfs create
-V, or by changing the reservation once the volume has been created. A sparse volume is defined as a
volume where the reservation is not equal to the volume size. For a sparse volume, changes to
volsize are not reflected in the reservation.

For more information about using volumes, see “Emulated Volumes” on page 119.

Querying ZFS File System Information

The zfs list command provides an extensible mechanism for viewing and querying dataset
information. Both basic and complex queries are explained in this section.

Listing Basic ZFS Information

You can list basic dataset information by using the zfs 1ist command with no options. This
command displays the names of all datasets on the system including their used, available,
referenced, and mountpoint properties. For more information about these properties, see “ZFS
Properties” on page 62.

For example:

zfs list

NAME USED AVAIL REFER MOUNTPOINT

pool 84.0K 33.5G - /pool

pool/clone ® 33.5G 8.50K /pool/clone

pool/test 8K 33.5G 8K /test

pool/home 17.5K 33.5G 9.00K /pool/home
pool/home/marks 8.50K 33.5G 8.50K /pool/home/marks
pool/home/marks@snap 0 - 8.50K /pool/home/marks@snap

Chapter5 « Managing ZFS File Systems 69

Querying ZFS File System Information

70

You can also use this command to display specific datasets by providing the dataset name on the
command line. Additionally, use the the - r option to recursively display all descendants of that
dataset.

The following example shows how to display tank/home/chua and all of its descendant datasets.

zfs list -r tank/home/chua

NAME USED AVAIL REFER MOUNTPOINT

tank/home/chua 26.0K 4.81G 10.0K /tank/home/chua
tank/home/chua/projects 16K 4.81G 9.0K /tank/home/chua/projects
tank/home/chua/projects/fsl 8K 4.81G 8K /tank/home/chua/projects/fsl
tank/home/chua/projects/fs2 8K 4.81G 8K /tank/home/chua/projects/fs2

For additional information about the zfs 1ist command, see zfs(1M).

Creating Complex ZFS Queries
The zfs list output can be customized by using of the -o, - f, and -H options.

You can customize property value output by using the -o option and a comma-separated list of
desired properties. Supply any dataset property as a valid value. For a list of all supported dataset
properties, see “ZFS Properties” on page 62. In addition to the properties defined there, the -0 option
list can also contain the literal name to indicate that the output should include the name of the
dataset.

The following example uses zfs list to display the dataset name, along with the sharenfs and
mountpoint properties.

zfs list -o name,sharenfs,mountpoint

NAME SHARENFS MOUNTPOINT

tank rw /export
tank/archives rw /export/archives
tank/archives/zfs rw /export/archives/zfs
tank/calendar off /var/spool/calendar
tank/cores rw /cores

tank/dumps rw /export/dumps
tank/home rw /export/home
tank/home/ahl rw /export/home/ahl
tank/home/ahrens rw /export/home/ahrens
tank/home/andrei rw /export/home/andrei
tank/home/barts rw /export/home/barts
tank/home/billm rw /export/home/billm
tank/home/bjw rw /export/home/bjw
tank/home/bmc rw /export/home/bmc
tank/home/bonwick rw /export/home/bonwick
tank/home/brent rw /export/home/brent
tank/home/dilpreet rw /export/home/dilpreet

Solaris ZFS Administration Guide - May 2006

Querying ZFS File System Information

tank/home/dp rw /export/home/dp
tank/home/eschrock rw /export/home/eschrock
tank/home/fredz rw /export/home/fredz
tank/home/johansen rw /export/home/johansen
tank/home/jwadams rw /export/home/jwadams
tank/home/11ling rw /export/home/1ling
tank/home/mws rw /export/home/mws
tank/home/rab rw /export/home/rab
tank/home/sch rw /export/home/sch
tank/home/tabriz rw /export/home/tabriz
tank/home/tomee rw /export/home/tomee

You can use the - t option to specify the types of datasets to display. The valid types are described in
the following table.

TABLE 5-2 Types of ZFS Datasets

Type Description

filesystem File systems and clones
volume Volumes

snapshot Snapshots

The - t options takes a comma-separated list of the types of datasets to be displayed. The following
example uses the -t and -o options simultaneously to show the name and used property for all file
systems:

zfs list -t filesystem -o name,used

NAME USED
pool 105K
pool/container 0
pool/home 26.0K
pool/home/tabriz 26.0K

pool/home/tabriz_clone 0

You can use the -H option to omit the zfs list header from the generated output. With the -H
option, all white space is output as tabs. This option can be useful when you need parseable output,
for example, when scripting. The following example shows the output generated from using the zfs
list command with the -H option:

zfs list -H -o name

pool

pool/container

pool/home

pool/home/tabriz
pool/home/tabriz@now
pool/home/tabriz/container

Chapter5 « Managing ZFS File Systems 71

Managing ZFS Properties

Managing

72

pool/home/tabriz/container/fsl
pool/home/tabriz/container/fs2
pool/home/tabriz_clone

ZFS Properties

Dataset properties are managed through the zfs command’s set, inherit, and get subcommands.

Setting ZFS Properties

You can use the zfs set command to modify any settable dataset property. For a list of settable
dataset properties, see “Settable ZFS Properties” on page 67. The zfs set command takes a
property/value sequence in the format of property=value and a dataset name.

The following example sets the atime property to off for tank/home. Only one property can be set or
modified during each zfs set invocation.

zfs set atime=off tank/home

You can specify numeric properties by using the following easy to understand suffixes (in order of
magnitude): BKMGTPEZ. Any of these suffixes can be followed by an optional b, indicating bytes, with
the exception of the B suffix, which already indicates bytes. The following four invocations of zfs
set are equivalent numeric expressions indicating that the quota property be set to the value of 50
Gbytes on the tank/home/marks file system:

zfs set quota=50G tank/home/marks
zfs set quota=50g tank/home/marks
zfs set quota=50GB tank/home/marks
zfs set quota=50gb tank/home/marks

H H B H

Non-numeric properties are case-sensitive and must be lowercase, with the exception of mountpoint
and sharenfs. These properties may have mixed upper and lower case letters.

For more information about the zfs set command, see zfs(1M).

Inheriting ZFS Properties

All settable properties, with the exception of quotas and reservations, inherit their value from their
parent, unless a quota or reservation is explicitly set on the child. If no ancestor has an explicit value
set for an inherited property, the default value for the property is used. You can use the zfs inherit
command is to clear a property setting, thus causing the setting to be inherited from the parent.

The following example uses the zfs set command to turn on compression for the
tank/home/bonwick file system. Then, zfs inherit is used to unset the compression property, thus

Solaris ZFS Administration Guide - May 2006

Managing ZFS Properties

causing the property to inherit the default setting of of f. Because neither home nor tank have the
compression property set locally, the default value is used. If both had compression on, the value set
in the most immediate ancestor would be used (home in this example).

zfs set compression=on tank/home/bonwick
zfs get -r compression tank

NAME PROPERTY VALUE SOURCE
tank compression off default
tank/home compression off default
tank/home/bonwick compression on local

zfs inherit compression tank/home/bonwick
zfs get -r compression tank

NAME PROPERTY VALUE SOURCE
tank compression off default
tank/home compression off default
tank/home/bonwick compression off inherited from tank/home

The inherit subcommand is applied recursively when the - r option is specified. In the following
example, the command causes the value for the compression property to be inherited by tank/home
and any descendants it might have.

zfs inherit -r compression tank/home

Note - Be aware that the use of the - r option clears the current property setting for all descendant
datasets.

For more information about the zfs command, see zfs(1M).

Querying ZFS Properties

The simplest way to query property values is by using the zfs 1ist command. For more
information, see “Listing Basic ZFS Information” on page 69. However, for complicated queries and
for scripting, use the zfs get command to provide more detailed information in a customized
format.

You can use the zfs get command to retrieve any dataset property. The following example shows
how to retrieve a single property on a dataset:

zfs get checksum tank/ws
NAME PROPERTY VALUE SOURCE
tank/ws checksum on default

The fourth column, SOURCE, indicates where this property value has been set from. The following
table defines the meaning of the possible source values.

Chapter5 « Managing ZFS File Systems 73

Managing ZFS Properties

TABLE 5-3 Possible SOURCE Values (zfs get)

Source Value Description

default This property was never explicitly set for this dataset or any of its
ancestors. The default value for this property is being used.

inherited from dataset-name This property value is being inherited from the parent as specified by
dataset-name.

local This property value was explicitly set for this dataset by using zfs set.

temporary This property value was set by using the zfs mount -o option and is
only valid for the lifetime of the mount. For more information about
temporary mount point properties, see “Temporary Mount
Properties” on page 79.

- (none) This property is a read-only property. Its value is generated by ZFS.

You can use the special keyword all to retrieve all dataset properties. The following example uses the
all keyword to retrieve all existing dataset properties:

zfs get all pool

NAME PROPERTY VALUE SOURCE
pool type filesystem -

pool creation Mon Mar 13 11:41 2006 -

pool used 2.62M -

pool available 33.5G -

pool referenced 10.5K -

pool compressratio 1.00x -

pool mounted yes -

pool quota none default
pool reservation none default
pool recordsize 128K default
pool mountpoint /pool default
pool sharenfs off default
pool checksum on default
pool compression off default
pool atime on default
pool devices on default
pool exec on default
pool setuid on default
pool readonly off default
pool zoned off default
pool snapdir hidden default
pool aclmode groupmask default
pool aclinherit secure default

The - s option to zfs get enables you to specify, by source value, the type of properties to display.
This option takes a comma-separated list indicating the desired source types. Only properties with

74 Solaris ZFS Administration Guide - May 2006

Managing ZFS Properties

the specified source type are displayed. The valid source types are local, default, inherited,
temporary, and none. The following example shows all properties that have been locally set on pool.

zfs get -s local all pool
NAME PROPERTY VALUE SOURCE
pool compression on local

Any of the above options can be combined with the - r option to recursively display the specified
properties on all children of the specified dataset. In the following example, all temporary properties
on all datasets within tank are recursively displayed:

zfs get -r -s temporary all tank

NAME PROPERTY VALUE SOURCE

tank/home atime off temporary
tank/home/bonwick atime off temporary
tank/home/marks atime off temporary

For more information about the zfs get command, see zfs(1M).

Querying ZFS Properties for Scripting

The zfs get command supports the -Hand -o options, which are designed for scripting. The -H
option indicates that any header information should be omitted and that all white space should come
in the form of tab. Uniform white space allows for easily parseable data. You can use the -0 option to
customize the output. This option takes a comma-separated list of values to be output. All properties
defined in “ZFS Properties” on page 62, along with the literals name, value, property and source can
be supplied in the -o list.

The following example shows how to retrieve a single value by using the -Hand - o options of zfs
get.

zfs get -H -o value compression tank/home
on

The - p option reports numeric values as their exact values. For example, 1 Mbyte would be reported
as 1000000. This option can be used as follows:

zfs get -H -o value -p used tank/home
182983742

You can use the - r option along with any of the above options to recursively retrieve the requested
values for all descendants. The following example uses the -r, -0, and -H options to retrieve the
dataset name and the value of the used property for export/home and its descendants, while
omitting any header output:

zfs get -H -o name,value -r used export/home
export/home 5.57G

Chapter5 « Managing ZFS File Systems 75

Mounting and Sharing ZFS File Systems

export/home/marks 1.43G
export/home/maybee 2.15G

Mounting and Sharing ZFS File Systems

76

This section describes how mount points and shared file systems are managed in ZFS.

Managing ZFS Mount Points

By default, all ZFS file systems are mounted by ZFS at boot by using SMF’s
svc://system/filesystem/local service. File systems are mounted under /path, where path is the
name of the file system.

You can override the default mount point by setting the mountpoint property to a specific path by
using the zfs set command. ZFS automatically creates this mount point, if needed, and
automatically mounts this file system when the zfs mount -a command is invoked, without
requiring you to edit the /etc/vfstab file.

The mountpoint property is inherited. For example, if pool/home has mountpoint set to
/export/stuff,then pool/home/user inherits /export/stuff/user for itsmountpoint property.

The mountpoint property can be set to none to prevent the file system from being mounted.

If desired, file systems can also be explicitly managed through legacy mount interfaces by setting the
mountpoint property to legacy by using zfs set. Doing so prevents ZFS from automatically
mounting and managing this file system. Legacy tools including the mount and umount commands,
and the /etc/vfstab file must be used instead. For more information about legacy mounts, see
“Legacy Mount Points” on page 77.

When changing mount point management strategies, the following behaviors apply:

= Automatic mount point behavior
= Legacy mount point behavior

Automatic Mount Points

= When changing from legacy or none, ZFS automatically mounts the file system.
= IfZFSis currently managing the file system but it is currently unmounted, and the mountpoint
property is changed, the file system remains unmounted.

You can also set the default mount point for the root dataset at creation time by using zpool
create’s -m option. For more information about creating pools, see “Creating a ZFS Storage Pool”
on page 35.

Any dataset whose mountpoint property is not legacy is managed by ZFS. In the following example,
a dataset is created whose mount point is automatically managed by ZFS.

Solaris ZFS Administration Guide - May 2006

Mounting and Sharing ZFS File Systems

zfs create pool/filesystem
zfs get mountpoint pool/filesystem

NAME PROPERTY VALUE SOURCE
pool/filesystem mountpoint /pool/filesystem default
zfs get mounted pool/filesystem

NAME PROPERTY VALUE SOURCE
pool/filesystem mounted yes -

You can also explicitly set the mountpoint property as shown in the following example:

zfs set mountpoint=/mnt pool/filesystem
zfs get mountpoint pool/filesystem

NAME PROPERTY VALUE SOURCE
pool/filesystem mountpoint /mnt local
zfs get mounted pool/filesystem

NAME PROPERTY VALUE SOURCE
pool/filesystem mounted yes -

When the mountpoint property is changed, the file system is automatically unmounted from the old
mount point and remounted to the new mount point. Mount point directories are created as needed.
If ZFS is unable to unmount a file system due to it being active, an error is reported and a forced
manual unmount is necessary.

Legacy Mount Points

You can manage ZFS file systems with legacy tools by setting the mountpoint property to legacy.
Legacy file systems must be managed through the mount and umount commands and the
/etc/vfstab file. ZFS does not automatically mount legacy file systems on boot, and the ZFS mount
and umount command do not operate on datasets of this type. The following examples show how to
set up and manage a ZFS dataset in legacy mode:

zfs set mountpoint=legacy tank/home/eschrock
mount -F zfs tank/home/eschrock /mnt

In particular, if you have set up separate ZFS /usr or /var file systems, you must indicate that they
are legacy file systems. In addition, you must mount them by creating entries in the /etc/vfstab file.
Otherwise, the system/filesystem/local service enters maintenance mode when the system boots.

To automatically mount a legacy file system on boot, you must add an entry to the /etc/vfstab file.
The following example shows what the entry in the /etc/vfstab file might look like:

#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#

tank/home/eschrock - /mnt zfs - yes -

Chapter5 « Managing ZFS File Systems 77

Mounting and Sharing ZFS File Systems

78

Note that the device to fsck and fsck pass entries are set to -. This syntax is because the fsck
command is not applicable to ZFS file systems. For more information regarding data integrity and
thelack of need for fsck in ZFS, see “Transactional Semantics” on page 17.

Mounting ZFS File Systems

ZFS automatically mounts file systems when file systems are created or when the system boots. Use
of the zfs mount command is necessary only when changing mount options or explicitly mounting
or unmounting file systems.

The zfs mount command with no arguments shows all currently mounted file systems that are
managed by ZFS. Legacy managed mount points are not displayed. For example:

zfs mount

tank /tank

tank/home /tank/home
tank/home/bonwick /tank/home/bonwick
tank/ws /tank/ws

You can use the -a option to mount all ZFS managed file systems. Legacy managed file systems are
not mounted. For example:

zfs mount -a

By default, ZFS does not allow mounting on top of a nonempty directory. To force a mount on top of
a nonempty directory, you must use the -0 option. For example:

zfs mount tank/home/lalt

cannot mount ’/export/home/lalt’: directory is not empty

use legacy mountpoint to allow this behavior, or use the -0 flag
zfs mount -0 tank/home/lalt

Legacy mount points must be managed through legacy tools. An attempt to use ZFS tools results in
an error. For example:

zfs mount pool/home/billm

cannot mount ’pool/home/billm’: legacy mountpoint
use mount(1M) to mount this filesystem

mount -F zfs tank/home/billm

When a file system is mounted, it uses a set of mount options based on the property values associated
with the dataset. The correlation between properties and mount options is as follows:

Property Mount Options
devices devices/nodevices

exec exec/noexec

Solaris ZFS Administration Guide - May 2006

Mounting and Sharing ZFS File Systems

readonly ro/rw

setuid setuid/nosetuid

The mount option nosuid is an alias for nodevices, nosetuid.

Temporary Mount Properties

If any of the above options are set explicitly by using the-o option with the zfs mount command, the
associated property value is temporarily overridden. These property values are reported as
temporary by the zfs get command and revert back to their original settings when the file system is
unmounted. If a property value is changed while the dataset is mounted, the change takes effect
immediately, overriding any temporary setting.

In the following example, the read-only mount option is temporarily set on the tank/home/perrin
file system:

zfs mount -o ro tank/home/perrin

In this example, the file system is assumed to be unmounted. To temporarily change a property on a
file system that is currently mounted, you must use the special remount option. In the following
example, the atime property is temporarily changed to of f for a file system that is currently
mounted:

zfs mount -o remount,noatime tank/home/perrin

zfs get atime tank/home/perrin

NAME PROPERTY VALUE SOURCE
tank/home/perrin atime off temporary

For more information about the zfs mount command, see zfs(1M).

Unmounting ZFS File Systems

You can unmount file systems by using the zfs unmount subcommand. The unmount command can
take either the mount point or the file system name as arguments.

In the following example, a file system is unmounted by file system name:

zfs unmount tank/home/tabriz

In the following example, the file system is unmounted by mount point:

zfs unmount /export/home/tabriz

Chapter5 « Managing ZFS File Systems 79

Mounting and Sharing ZFS File Systems

The unmount command fails if the file system is active or busy. To forceably unmount a file system,
you can use the - f option. Be cautious when forceably unmounting a file system, if its contents are
actively being used. Unpredictable application behavior can result.

zfs unmount tank/home/eschrock
cannot unmount ’'/export/home/eschrock’: Device busy
zfs unmount -f tank/home/eschrock

To provide for backwards compatibility, the legacy umount command can be used to unmount ZFS
file systems. For example:

umount /export/home/bob

For more information about the zfs umount command, see zfs(1M).

Sharing ZFS File Systems

Similar to mount points, ZFS can automatically share file systems by using the sharenfs property.
Using this method, you do not have to modify the /etc/dfs/dfstab file when a new file system is
added. The sharenfs property is a comma-separated list of options to pass to the share command.
The special value on is an alias for the default share options, which are read/write permissions for
anyone. The special value of f indicates that the file system is not managed by ZFS and can be shared
through traditional means, such as the /etc/dfs/dfstab file. All file systems whose sharenfs
property is not of f are shared during boot.

Controlling Share Semantics

By default, all file systems are unshared. To share a new file system, use zfs set syntax similar to the
following:

zfs set sharenfs=on tank/home/eschrock

The property is inherited, and file systems are automatically shared on creation if their inherited
property is not of f. For example:

zfs set sharenfs=on tank/home

zfs create tank/home/bricker

zfs create tank/home/tabriz

zfs set sharenfs=ro tank/home/tabriz

o B W

Both tank/home/bricker and tank/home/tabriz are initially shared writable because they inherit
the sharenfs property from tank/home. Once the property is set to ro (readonly),
tank/home/tabriz is shared read-only regardless of the sharenfs property that is set for tank/home.

80 Solaris ZFS Administration Guide - May 2006

ZFS Quotas and Reservations

Unsharing ZFS File Systems

While most file systems are automatically shared and unshared during boot, creation, and
destruction, file systems sometimes need to be explicitly unshared. To do so, use the zfs unshare
command. For example:

zfs unshare tank/home/tabriz

This command unshares the tank/home/tabriz file system. To unshare all ZFS file systems on the
system, you need to use the -a option.

zfs unshare -a

Sharing ZFS File Systems

Most of the time the automatic behavior of ZFS, sharing on boot and creation, is sufficient for
normal operation. If, for some reason, you unshare a file system, you can share it again by using the
zfs share command. For example:

zfs share tank/home/tabriz

You can also share all ZFS file systems on the system by using the -a option.

zfs share -a

Legacy Share Behavior

If the sharenfs property is off, then ZFS does not attempt to share or unshare the file system at any
time. This setting enables you to administer through traditional means such as the /etc/dfs/dfstab

file.

Unlike the traditional mount command, the traditional share and unshare commands can still
function on ZFS file systems. As a result, you can manually share a file system with options that are
different from the settings of the sharenfs property. This administrative model is discouraged.
Choose to either manage NFS shares completely through ZFS or completely through the
/etc/dfs/dfstab file. The ZFS administrative model is designed to be simpler and less work than
the traditional model. However, in some cases, you might still want to control file system sharing
behavior through the familiar model.

ZFS Quotas and Reservations

ZFS supports quotas and reservations at the file system level. You can use the quota property to set a
limit on the amount of space a file system can use. In addition, you can use the reservation property
to guarantee that some amount of space is available to a file system. Both properties apply to the
dataset they are set on and all descendants of that dataset.

Chapter5 « Managing ZFS File Systems 81

ZFS Quotas and Reservations

82

That s, if a quota is set on the tank/home dataset, the total amount of space used by tank/home and
all of its descendants cannot exceed the quota. Similarly, if tank/home is given a reservation,
tank/home and all of its descendants draw from that reservation. The amount of space used by a
dataset and all of its descendents is reported by the used property.

Setting Quotas on ZFS File Systems

ZFS quotas can be set and displayed by using the zfs set and zfs get commands. In the following
example, a quota of 10 Gbytes is set on tank/home/bonwick.

zfs set quota=10G tank/home/bonwick

zfs get quota tank/home/bonwick

NAME PROPERTY VALUE SOURCE
tank/home/bonwick quota 10.0G local

ZFS quotas also impact the output of the zfs list and df commands. For example:

zfs list

NAME USED AVAIL REFER MOUNTPOINT

tank/home 16.5K 33.5G 8.50K /export/home
tank/home/bonwick 15.0K 10.0G 8.50K /export/home/bonwick

tank/home/bonwick/ws 6.50K 10.0G 8.50K /export/home/bonwick/ws

df -h /export/home/bonwick

Filesystem size used avail capacity Mounted on
tank/home/bonwick 10G 8K 10G 1% /export/home/bonwick

Note that although tank/home has 33.5 Gbytes of space available, tank/home/bonwick and
tank/home/bonwick/ws only have 10 Gbytes of space available, due to the quota on
tank/home/bonwick.

You cannot set a quota to an amount less than is currently being used by a dataset. For example:

zfs set quota=10K tank/home/bonwick
cannot set quota for ’'tank/home/bonwick’: size is less than current used or
reserved space

Setting Reservations on ZFS File Systems

A ZFS reservation is an allocation of space from the pool that is guaranteed to be available to a
dataset. As such, you cannot reserve space for a dataset if that space is not currently available in the
pool. The total amount of all outstanding unconsumed reservations cannot exceed the amount of
unused space in the pool. ZFS reservations can be set and displayed by using the zfs set and zfs
get commands. For example:

Solaris ZFS Administration Guide - May 2006

ZFS Quotas and Reservations

zfs set reservation=5G tank/home/moore

zfs get reservation tank/home/moore

NAME PROPERTY VALUE SOURCE
tank/home/moore reservation 5.00G local

ZFS reservations can affect the output of the zfs list command. For example:

zfs list

NAME USED AVAIL REFER MOUNTPOINT
tank/home 5.00G6 33.5G 8.50K /export/home
tank/home/moore 15.0K 10.0G 8.50K /export/home/moore

Note that tank/home is using 5 Gbytes of space, although the total amount of space referred to by
tank/home and its descendants is much less than 5 Gbytes. The used space reflects the space reserved
for tank/home/moore. Reservations are considered in the used space of the parent dataset and do
count against its quota, reservation, or both.

zfs set quota=5G pool/filesystem

zfs set reservation=10G pool/filesystem/userl

cannot set reservation for 'pool/filesystem/userl’: size is greater than
available space

A dataset can use more space than its reservation, as long as space is available in the pool that is
unreserved and the dataset’s current usage is below its quota. A dataset cannot consume space that
has been reserved for another dataset.

Reservations are not cumulative. That is, a second invocation of zfs set to set a reservation does not
add its reservation to the existing reservation. Rather, the second reservation replaces the first
reservation.

zfs set reservation=10G tank/home/moore

zfs set reservation=5G tank/home/moore

zfs get reservation tank/home/moore

NAME PROPERTY VALUE SOURCE
tank/home/moore reservation 5.00G local

Chapter5 « Managing ZFS File Systems 83

84

L R R 4 CHAPTER 6

Working With ZFS Snapshots and Clones

This chapter describes how to create and manage ZFS snapshots and clones. Information about
saving snapshots is also provided in this chapter.

The following sections are provided in this chapter:

“ZFS Snapshots” on page 85

“Creating and Destroying ZFS Snapshots” on page 86
“Displaying and Accessing ZFS Snapshots” on page 87
“Rolling Back to a ZFS Snapshot” on page 87

“ZFS Clones” on page 88

“Creating a ZFS Clone” on page 89

“Destroying a ZFS Clone” on page 89

“Saving and Restoring ZFS Data” on page 89

ZFS Snapshots

A snapshot is a read-only copy of a file system or volume. Snapshots can be created almost instantly,
and initially consume no additional disk space within the pool. However, as data within the active
dataset changes, the snapshot consumes disk space by continuing to reference the old data and so
prevents the space from being freed.

ZFS snapshots include the following features:

® Provides persistence across system reboots.

= The theoretical maximum number of snapshots is 2%,

m Uses no separate backing store. Snapshots consume disk space directly from the same storage

pool as the file system from which they were created.

Snapshots of volumes cannot be accessed directly, but they can be cloned, backed up, rolled back to,
and so on. For information about backing up a ZFS snapshot, see “Saving and Restoring ZFS Data”
on page 89.

85

ZFS Snapshots

86

Creating and Destroying ZFS Snapshots

Snapshots are created by using the zfs snapshot command, which takes as its only argument the
name of the snapshot to create. The snapshot name is specified as follows:

filesystem@snapname
volume@snapname

The snapshot name must satisfy the naming conventions defined in “ZFS Component Naming
Requirements” on page 20.

In the following example, a snapshot of tank/home/ahrens that is named friday is created.

zfs snapshot tank/home/ahrens@friday

Snapshots have no modifiable properties. Nor can dataset properties be applied to a snapshot.

zfs set compression=on tank/home/ahrens@tuesday
cannot set compression property for ’tank/home/ahrens@tuesday’: snapshot
properties cannot be modified

Snapshots are destroyed by using the zfs destroy command. For example:

zfs destroy tank/home/ahrens@friday

A dataset cannot be destroyed if snapshots of the dataset exist. For example:

zfs destroy tank/home/ahrens

cannot destroy ’'tank/home/ahrens’: filesystem has children
use '-r’ to destroy the following datasets:
tank/home/ahrens@tuesday

tank/home/ahrens@wednesday

tank/home/ahrens@thursday

In addition, if clones have been created from a snapshot, then they must be destroyed before the
snapshot can be destroyed.

For more information about the destroy subcommand, see “Destroying a ZFS File System” on page

60.

Renaming ZFS Snapshots

You can rename snapshots but they must be renamed within the pool and dataset from which they
were created. For example:

zfs rename tank/home/cindys@®31306 tank/home/cindys@today

The following snapshot rename operation is not supported because the target pool and file system
name are different from the pool and file system where the snapshot was created.

Solaris ZFS Administration Guide - May 2006

ZFS Snapshots

zfs rename tank/home/cindys@today pool/home/cindys@saturday
cannot rename to 'pool/home/cindys@today’: snapshots must be part of same
dataset

Displaying and Accessing ZFS Snapshots

Snapshots of file systems are accessible in the . zfs/snapshot directory within the root of the
containing file system. For example, if tank/home/ahrens is mounted on /home/ahrens, then the
tank/home/ahrens@thursday snapshot data is accessible in the
/home/ahrens/.zfs/snapshot/thursday directory.

1s /home/ahrens/.zfs/snapshot
tuesday wednesday thursday

You can list snapshots as follows:

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT
pool/home/anne@monday 0 - 780K -
pool/home/bob@monday 0 - 1.01M -
tank/home/ahrens@tuesday 8.50K - 780K -
tank/home/ahrens@wednesday 8.50K - l.omMm -
tank/home/ahrens@thursday 0 - 1.7M -
tank/home/cindys@today 8.50K - 524K -

You can list snapshots that were created for a particular file system as follows:

zfs list -r -t snapshot -o name,creation pool/home
NAME CREATION
pool/home/anne@monday Mon Mar 13 11:46 2006
pool/home/bob@monday Mon Mar 13 11:46 2006

Snapshot Space Accounting

When a snapshot is created, its space is initially shared between the snapshot and the file system, and
possibly with previous snapshots. As the file system changes, space that was previously shared
becomes unique to the snapshot, and thus is counted in the snapshot’s used property. Additionally,
deleting snapshots can increase the amount of space unique to (and thus used by) other snapshots.

A snapshot’s space referenced property is the same as the file system’s was when the snapshot was
created.

Rolling Back to a ZFS Snapshot

The zfs rollback command can be used to discard all changes made since a specific snapshot. The
file system reverts to its state at the time the snapshot was taken. By default, the command cannot roll
back to a snapshot other than the most recent snapshot.

Chapter6 - Working With ZFS Snapshots and Clones 87

ZFS Clones

To roll back to an earlier snapshot, all intermediate snapshots must be destroyed. You can destroy
earlier snapshots by specifying the - r option.

If clones of any intermediate snapshots exist, the -R option must be specified to destroy the clones as
well.

Note - The file system that you want to roll back must be unmounted and remounted, if it is currently
mounted. If the file system cannot be unmounted, the rollback fails. The - f option forces the file
system to be unmounted, if necessary.

In the following example, the tank/home/ahrens file system is rolled back to the tuesday snapshot:

zfs rollback tank/home/ahrens@tuesday

cannot rollback to ’tank/home/ahrens@tuesday’: more recent snapshots exist
use '-r’ to force deletion of the following snapshots:
tank/home/ahrens@wednesday

tank/home/ahrens@thursday

zfs rollback -r tank/home/ahrens@tuesday

In the above example, the wednesday and thursday snapshots are removed because you rolled back
to the previous tuesday snapshot.

zfs list -r -t snapshot -o name,creation tank/home/ahrens
NAME CREATION
tank/home/ahrens@tuesday Mon Mar 13 11:05 2006

ZFS Clones

88

A clone is a writable volume or file system whose initial contents are the same as the dataset from
which it was created. As with snapshots, creating a clone is nearly instantaneous, and initially
consumes no additional disk space.

Clones can only be created from a snapshot. When a snapshot is cloned, an implicit dependency is
created between the clone and snapshot. Even though the clone is created somewhere else in the
dataset hierarchy, the original snapshot cannot be destroyed as long as the clone exists. The origin
property exposes this dependency, and the zfs destroy command lists any such dependencies, if
they exist.

Clones do not inherit the properties of the dataset from which it was created. Rather, clones inherit
their properties based on where the clones are created in the pool hierarchy. Use the zfs get and zfs
set commands to view and change the properties of a cloned dataset. For more information about
setting ZFS dataset properties, see “Setting ZFS Properties” on page 72.

Because a clone initially shares all its disk space with the original snapshot, its used property is
initially zero. As changes are made to the clone, it uses more space. The used property of the original
snapshot does not consider the disk space consumed by the clone.

Solaris ZFS Administration Guide - May 2006

Saving and Restoring ZFS Data

Creating a ZFS Clone

To create a clone, use the zfs clone command, specifying the snapshot from which to create the
clone, and the name of the new file system or volume. The new file system or volume can be located
anywhere in the ZFS hierarchy. The type of the new dataset (for example, file system or volume) is the
same type as the snapshot from which the clone was created. You cannot create clone of a file system
in a pool that this different from where the original file system snapshot resides.

In the following example, a new clone named tank/home/ahrens/bug123 with the same initial
contents as the snapshot tank/ws/gate@yesterday is created.

zfs snapshot tank/ws/gate@yesterday
zfs clone tank/ws/gate@yesterday tank/home/ahrens/bugl23

In the following example, a cloned workspace is created from the projects/newproject@today
snapshot for a temporary user as projects/teamA/tempuser. Then, properties are set on the cloned
workspace.

zfs snapshot projects/newproject@today

zfs clone projects/newproject@today projects/teamA/tempuser
zfs set sharenfs=on projects/teamA/tempuser

zfs set quota=5G projects/teamA/tempuser

Destroying a ZFS Clone

ZFS clones are destroyed by using the zfs destroy command. For example:

zfs destroy tank/home/ahrens/bugl23

Clones must be destroyed before the parent snapshot can be destroyed.

Saving and Restoring ZFS Data

The zfs send command creates a stream representation of a snapshot that is written to standard
output. By default, a full stream is generated. You can redirect the output to a file or to a different
system. The zfs receive command creates a snapshot whose contents are specified in the stream
that is provided on standard input. If a full stream is received, a new file system is created as well. You
can save ZFS snapshot data and restore ZFS snapshot data and file systems with these commands. See
the examples in the next section.

The following solutions for saving ZFS data are provided:

® Saving ZFS snapshots and rolling back snapshots, if necessary.

= Saving full and incremental copies of ZFS snapshots and restoring the snapshots and file systems,
if necessary.

Chapter6 - Working With ZFS Snapshots and Clones 89

Saving and Restoring ZFS Data

90

= Remotely replicating ZFS file systems by saving and restoring ZFS snapshots and file systems.
= Saving ZFS data with archive utilities such as tar and cpio or third-party backup products.

Consider the following when choosing a solution for saving ZFS data:

= File system snapshots and rolling back snapshots — Use the zfs snapshot and zfs rollback
commands if you want to easily create a copy of a file system and revert back to a previous file
system version, if necessary. For example, if you want to restore a file or files from a previous
version of a file system, you could use this solution.

For more information about creating and rolling back to a snapshot, see “ZFS Snapshots”
on page 85.

= Saving snapshots — Use the zfs send and zfs receive commands to save and restore a ZFS
snapshot. You can save incremental changes between snapshots, but you cannot restore files
individually. You must restore the entire file system snapshot.

= Remote replication - Use the zfs send and zfs receive commands when you want to copy a
file system from one system to another. This process is different from a traditional volume
management product that might mirror devices across a WAN. No special configuration or
hardware is required. The advantage of replicating a ZFS file system is that you can re-create a file
system on a storage pool on another system, and specify different levels of configuration for the
newly created pool, such as RAID-Z, but with identical file system data.

Saving ZFS Data With Other Backup Products

In addition to the zfs send and zfs receive commands, you can also use archive utilities, such as
the tar and cpio commands, to save ZFS files. All of these utilities save and restore ZFS file attributes
and ACLs. Check the appropriate options for both the tar and cpio commands.

For update-to-date information about issues with ZFS and third-party backup products, please see
the Solaris Express release notes.

Saving a ZFS Snapshot

The simplest form of the zfs send command is to save a copy of a snapshot. For example:

zfs send tank/dana@040706 > /dev/rmt/0

You can save incremental data by using the zfs send - i option. For example:

zfs send -i tank/dana@040706 tank/dana@040806 > /dev/rmt/0

Note that the first argument is the earlier snapshot and the second argument is the later snapshot.

If you need to store many copies, you might consider compressing a ZFS snapshot stream
representation with the gzip command. For example:

Solaris ZFS Administration Guide - May 2006

Saving and Restoring ZFS Data

zfs send pool/fs@snap | gzip > backupfile.gz

Restoring a ZFS Snapshot

When you restore a file system snapshot, the file system is restored as well. The file system is
unmounted and is inaccessible while it is being restored. In addition, the original file system to be
restored must not exist while it is being restored. If a conflicting file system name exists, zfs rename
can be used to rename the file system. For example:

zfs send tank/gozer@040706 > /dev/rmt/0

zfs receive tank/gozer2@today < /dev/rmt/0
zfs rename tank/gozer tank/gozer.old
zfs rename tank/gozer2 tank/gozer

You can use zfs recv as an alias for the zfs receive command.

When you restore an incremental file system snapshot, the most recent snapshot must first be rolled
back. In addition, the destination file system must exist. In the following example, the previous
incremental saved copy of tank/dana is restored.

zfs rollback tank/dana@0o40706

cannot rollback to ’tank/dana@@40706’': more recent snapshots exist
use '-r’ to force deletion of the following snapshots:
tank/dana@now

zfs rollback -r tank/dana@040706/

zfs recv tank/dana < /dev/rmt/0

During the incremental restore process, the file system is unmounted and cannot be accessed.

Remote Replication of ZFS Data

You can use the zfs send and zfs recv commands to remotely copy a snapshot stream
representation from one system to another system. For example:

zfs send tank/cindy@today | ssh newsys zfs recv sandbox/restfs@today

This command saves the tank/cindy@today snapshot data and restores it into the sandbox/restfs
file system and also creates a restfs@today snapshot on the newsys system. In this example, the user
has been configured to use ssh on the remote system.

Chapter6 - Working With ZFS Snapshots and Clones 91

92

L R R 4 CHAPTER 7

Using ACLs to Protect ZFS Files

This chapter provides information about using access control lists (ACLs) to protect your ZFS files
by providing more granular permissions than the standard UNIX permissions.

The following sections are provided in this chapter:

“New Solaris ACL Model” on page 93

“Setting ACLs on ZFS Files” on page 99

“Setting and Displaying ACLs on ZFS Files in Verbose Format” on page 101
“Setting and Displaying ACLs on ZFS Files in Compact Format” on page 114

New Solaris ACL Model

Recent previous versions of Solaris supported an ACL implementation that was primarily based on
the POSIX-draft ACL specification. The POSIX-draft based ACLs are used to protect UFS files and
are translated by versions of NFS prior to NFSv4.

With the introduction of NFSv4, a new ACL model fully supports the interoperability that NFSv4
offers between UNIX and non-UNIX clients. The new ACL implementation, as defined in the NFSv4
specification, provides much richer semantics that are based on NT-style ACLs.

The main differences of the new ACL model are as follows:

= Based on the NFSv4 specification and similar to NT-style ACLs.
= Provide much more granular set of access privileges. For more information, see Table 7-2.

= Setand displayed with the chmod and 1s commands rather than the setfacl and getfacl
commands.

= Provide richer inheritance semantics for designating how access privileges are applied from
directory to subdirectories, and so on. For more information, see “ACL Inheritance” on page 97.

Both ACL models provide more fine-grained access control than is available with the standard file
permissions. Much like POSIX-draft ACLs, the new ACLs are composed of multiple Access Control
Entries (ACEs).

93

New Solaris ACL Model

94

POSIX-draft style ACLs use a single entry to define what permissions are allowed and what
permissions are denied. The new ACL model has two types of ACEs that affect access checking:
ALLOW and DENY. As such, you cannot infer from any single ACE that defines a set of permissions
whether or not the permissions that weren’t defined in that ACE are allowed or denied.

Translation between NESv4-style ACLs and POSIX-draft ACLs is as follows:

= Ifyou use any ACL-aware utility, such as the cp, mv, tar, cpio, or rcp commands, to transfer UFS
files with ACLs to a ZFS file system, the POSIX-draft ACLs are translated into the equivalent
NEFSv4-style ACLs.

= Some NFSv4-style ACLs are translated to POSIX-draft ACLs. You see a message similar to the
following if an NFSv4-style ACL isn’t translated to a POSIX-draft ACL:

cp -p filea /var/tmp
cp: failed to set acl entries on /var/tmp/filea

® Ifyou create a UFS tar or cpio archive with the preserve ACL option (tar -p or cpio -P)ona
system that runs a current Solaris release, you will lose the ACLs when the archive is extracted on
a system that runs a previous Solaris release.

All of the files are extracted with the correct file modes, but the ACL entries are ignored.

= Youcan use the ufsrestore command to restore data into a ZFS file system, but the ACLs will be
lost.

= Ifyouattempt to set an NFSv4-style ACL on a UFS file, you see a message similar to the following:

chmod: ERROR: ACL type’s are different

= Ifyouattempt to set a POSIX-style ACL on a ZFS file, you will see messages similar to the
following:

getfacl filea
File system doesn’t support aclent t style ACL’s.
See acl(5) for more information on Solaris ACL support.

For information about other limitations with ACLs and backup products, see “Saving ZFS Data With
Other Backup Products” on page 90.

Syntax Descriptions for Setting ACLs
Two basic ACL formats are provided as follows:
Syntax for Setting Trivial ACLs

chmod [options] A[index]{+|=}owner@, group@,
everyone@: access-permissions/...[:inheritance-flags]:deny | allow file

chmod [options] A-owner@, group@, everyone@:access—permissions/...[:inherimnce—ﬂags]:deny |
allowfile...

Solaris ZFS Administration Guide - May 2006

New Solaris ACL Model

chmod [options] A[index]- file
Syntax for Setting Explicit ACLs

chmod [options] A[index]{+|=}user|group:access-permissions/...[:inheritance-flags]:deny |
allowfile

chmod [options] A-user|group:access-permissions/...[:inheritance-flags] :deny | allow file ...

chmod [options] A[index]- file

owner@, group@, everyone@
Identifies the ACL-entry-type for trivial ACL syntax . For a description of ACL-entry-types, see
Table 7-1.

user or group:ACL-entry-ID=username or groupname
Identifies the ACL-entry-type for explicit ACL syntax. The user and group ACL-entry-type must
also contain the ACL-entry-ID, username or groupname. For a description of ACL-entry-types, see
Table 7-1.

access-permissions/.../
Identifies the access permissions that are granted or denied. For a description of ACL access
privileges, see Table 7-2.

inheritance-flags
Identifies an optional list of ACL inheritance flags. For a description of the ACL inheritance flags,
see Table 7-3.

deny | allow
Identifies whether the access permissions are granted or denied.

In the following example, the ACL-entry-ID value is not relevant.

group@:write data/append data/execute:deny

The following example includes an ACL-entry-ID because a specific user (ACL-entry-type) is
included in the ACL.

0:user:gozer:list directory/read data/execute:allow
When an ACL entry is displayed, it looks similar to the following:

2:group@:write data/append data/execute:deny

The 2 or the index-ID designation in this example identifies the ACL entry in the larger ACL, which
might have multiple entries for owner, specific UIDs, group, and everyone. You can specify the
index-ID with the chmod command to identify which part of the ACL you want to modify. For
example, you can identify index ID 3 as A3 to the chmod command, similar to the following:

chmod A3=user:venkman:read_acl:allow filename

Chapter7 « Using ACLs to Protect ZFS Files 95

New Solaris ACL Model

ACL entry types, which are the ACL representations of owner, group, and other, are described in the
following table.

TABLE 7-1 ACL Entry Types

ACL Entry Type Description

owner@ Specifies the access granted to the owner of the object.

group@ Specifies the access granted to the owning group of the object.

everyone@ Specifies the access granted to any user or group that does not match any other ACL
entry.

user With a user name, specifies the access granted to an additional user of the object.

Must include the ACL-entry-ID, which contains a username or userID. If the value is
not a valid numeric UID or username, the ACL entry type is invalid.

group With a group name, specifies the access granted to an additional group of the object.
Must include the ACL-entry-ID, which contains a groupname or groupID. If the
value is not a valid numeric GID or groupname, the ACL entry type is invalid.

ACL access privileges are described in the following table.

TABLE 7-2 ACL Access Privileges

Compact Access

Access Privilege Privilege Description

add_file w Permission to add a new file to a directory.

add_subdirectory p Permission to create a subdirectory in a directory.

append_data p On a file, permission to modify the contents of a file.

delete d Permission to delete a file.

delete_child D Permission to delete a file or directory within a directory.

execute X Permission to execute a file or search the contents of a directory.

list_directory r Permission to list the contents of a directory.

read_acl c Permission to read the ACL (1s).

read_attributes a Permission to read basic attributes (non-ACLs) of a file. Think of
basic attributes as the stat level attributes. Allowing this access mask
bit means the entity can execute 1s(1) and stat(2).

read_data r Permission to read the contents of the file.

read_xattr R Permission to read the extended attributes of a file or perform a

lookup in the file’s extended attributes directory.

96 Solaris ZFS Administration Guide - May 2006

New Solaris ACL Model

TABLE 7-2 ACL Access Privileges (Continued)
Compact Access

Access Privilege Privilege Description

synchronize s Placeholder, not used at this time.

write_xattr A Permission to create extended attributes or write to the extended
attributes directory.
Granting this permission to a user means that the user can create an
extended attribute directory for a file. The attribute file’s
permissions control the user’s access to the attribute.

write_data w Permission to modify or replace the contents of a file.

write_attributes

write_acl C

write_owner o

Permission to change the times associated with a file or directory to
an arbitrary value.

Permission to write the ACL or the ability to modify the ACL by
using the chmod command.

Permission to change the file’s owner or group. Or, the ability to
execute the chown or chgrp commands on the file.

Permission to take ownership of a file or permission to change the
group ownership of the file to a group of which the userisa
member. If you want to change the file or group ownership to an
arbitrary user or group, then the PRIV_FILE_CHOWN privilege is
required.

ACL Inheritance

The purpose of using ACL inheritance is so that a newly created file or directory can inherit the ACLs
they are intended to inherit, but without disregarding the existing permission bits on the parent

directory.

By default, ACLs are not propagated. If you set an explicit ACL on a directory, it is not inherited to
any subsequent directory. You must specify the inheritance of an ACL on a file or directory.

The optional inheritance flags are described in the following table.

TABLE 7-3 ACL Inheritance Flags

Compact Inheritance

Inheritance Flag Flag Description

file_inherit f Only inherit the ACL from the parent directory to the
directory’s files.

dir_inherit d Only inherit the ACL from the parent directory to the

directory’s subdirectories.

Chapter7 « Using ACLs to Protect ZFS Files

97

New Solaris ACL Model

98

TABLE 7-3 ACL Inheritance Flags (Continued)

Compact Inheritance

Inheritance Flag Flag Description

inherit_only i Inherit the ACL from the parent directory but applies only to

newly created files or subdirectories and not the directory itself.
This flag requires the file_inherit flag, thedir_inherit flag,
or both, to indicate what to inherit.

no_propagate n Only inherit the ACL from the parent directory to the first-level

contents of the directory, not the second-level or subsequent
contents. This flag requires the file_inherit flag, the
dir_inherit flag, or both, to indicate what to inherit.

In addition, you can set a default ACL inheritance policy on the file system that is more strict or less
strict by using the aclinherit file system property. For more information, see the next section.

ACL Property Modes

The ZFS file system includes two property modes related to ACLs:

aclinherit - This property determines the behavior of ACL inheritance. Values include the
following:

discard - For new objects, no ACL entries are inherited when a file or directory is created.
The ACL on the file or directory is equal to the permission mode of the file or directory.

noallow — For new objects, only inheritable ACL entries that have an access type of deny are
inherited.

secure — For new objects, thewrite_owner andwrite_acl permissions are removed when
an ACL entry is inherited.

passthrough — For new objects, the inheritable ACL entries are inherited with no changes
made to the them. This mode, in effect, disables secure mode.

The default mode for the aclinherit is secure.

aclmode - This property modifies ACL behavior whenever a file or directory’s mode is modified
by the chmod command or when a file is initially created. Values include the following:

discard — All ACL entries are removed except for the entries needed to define the mode of
the file or directory.

groupmask — User or group ACL permissions are reduced so that they are no greater than the
group permission bits, unless it is a user entry that has the same UID as the owner of the file
or directory. Then, the ACL permissions are reduced so that they are no greater than owner
permission bits.

passthrough — For new objects, the inheritable ACL entries are inherited with no changes
made to the them.

The default mode for the aclmode property is groupmask.

Solaris ZFS Administration Guide - May 2006

Setting ACLs on ZFS Files

Setting ACLs on ZFS Files

As implemented with ZFS, ACLs are composed of an array of ACL entries. ZFS provides a pure ACL
model, where all files have an ACL. Typically, the ACL s trivial in that it only represents the
traditional UNIX owner/group/other entries.

ZFS files still have permission bits and a mode, but these values are more of a cache of what the ACL
represents. As such, if you change the permissions of the file, the file’s ACL is updated accordingly. In
addition, if you remove an explicit ACL that granted a user access to a file or directory, that user could
still have access to the file or directory because of the file or directory’s permission bits that grant
access to group or everyone. All access control decisions are governed by the permissions
represented in a file or directory’s ACL.

The primary rules of ACL access on a ZFS file are as follows:

= ZFS processes ACL entries in the order they are listed in the ACL, from the top down.
= Only ACL entries that have a “who” that matches the requester of the access are processed.

= Once an allow permission has been granted, it cannot be denied by a subsequent ACL deny entry
in the same ACL permission set.

= The owner of the file is granted the write_acl permission unconditionally, even if the
permission is explicitly denied. Otherwise, any permission left unspecified is denied.

In the cases of deny permissions or when an access permission is missing, the privilege subsystem
determines what access request is granted for the owner of the file or for superuser. This
mechanism prevents owners of files from getting locked out of their files and enables superuser to
modify files for recovery purposes.

If you set an explicit ACL on a directory, the ACL is not automatically inherited by the directory’s
children. If you set an explicit ACL and you want it inherited to the directory’s children, you have to
use the ACL inheritance flags. For more information, see Table 7-3 and “Setting ACL Inheritance on
ZFS Files in Verbose Format” on page 107.

When you create a new file and depending on the umask value, a default trivial ACL, similar to the
following, is applied:

$ 1s -v file.l
-r--r--r-- 1 root root 206663 May 4 11:52 file.l
0:owner@:write data/append data/execute:deny
l:owner@:read data/write xattr/write attributes/write acl/write owner
rallow
2:group@:write data/append data/execute:deny
3:group@:read data:allow
4:everyone@:write data/append data/write xattr/execute/write attributes
/write acl/write owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize
rallow

Chapter7 « Using ACLs to Protect ZFS Files 99

Setting ACLs on ZFS Files

Note that each user category (owner@, group@, everyone@) in this example has two ACL entries. One
entry for deny permissions, and one entry is for allow permissions.

A description of this file ACL s as follows:
0:owner@ The owner is denied execute permissions to the file (execute:deny).

1:owner@ The owner can read and modify the contents of the file
(read_data/write_data/append_data). The owner can also modify the file’s
attributes such as timestamps, extended attributes, and ACLs
(write xattr/write attributes /write acl).In addition, the owner can
modify the ownership of the file (write_owner:allow)

2:group@ The group is denied modify and execute permissions to the file
(write data/append data/execute:deny).

3:group@ The group is granted read permissions to the file (read_data:allow).

4:everyone@ Everyone who is not user or group is denied permission to execute or modify the
contents of the file and to modify any attributes of the file
(write data/append data/write xattr/execute/
write attributes/write acl/write owner:deny).

5:everyone@ Everyone who is not user or group is granted read permissions to the file, and the
file’s attributes (read_data/read xattr/read attributes/read acl/
synchronize:allow). The synchronize access permission is not currently
implemented.

When a new directory is created and depending on the umask value, a default directory ACL is similar
to the following:

$ 1s -dv dir.1
drwxr-xr-x 2 root root 2 Feb 23 10:37 dir.1
0:owner@: :deny
l:owner@:list directory/read data/add file/write data/add _subdirectory
/append_data/write_xattr/execute/write_ attributes/write acl
/write_owner:allow
2:group@:add file/write data/add subdirectory/append data:deny
3:group@:list directory/read data/execute:allow
4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr
/write attributes/write acl/write owner:deny
5:everyone@:list directory/read data/read xattr/execute/read attributes
/read_acl/synchronize:allow

A description of this directory ACL is as follows:
0:owner@ The owner deny list is empty for the directory (: : deny).

1:owner@ The owner can read and modify the directory contents
(list directory/read data/add file/write data/
add_subdirectory/append_data), search the contents (execute), and modify the

100 Solaris ZFS Administration Guide - May 2006

Setting and Displaying ACLs on ZFS Files in Verbose Format

file’s attributes such as timestamps, extended attributes, and ACLs
(write xattr/write attributes/write_acl).In addition, the owner can
modify the ownership of the directory (write_owner:allow).

2:group@ The group cannot add to or modify the directory contents
(add_file/write data/add subdirectory/append data
:deny).
3:group@ The group can list and read the directory contents. In addition, the group has

execute permission to search the directory contents
(list directory/read data/execute:allow).

4:everyone@ Everyone who is not user or group is denied permission to add to or modify the
contents of the directory
(add_file/write data/add_subdirectory/append data).In addition, the
permission to modify any attributes of the directory is denied. (write_xattr
/write attributes/write acl/write owner:deny).

5:everyone@ Everyone who is not user or group is granted read and execute permissions to the
directory contents and the directory’s attributes
(list _directory/read data/read xattr/execute/read_
attributes/read_acl/synchronize:allow). The synchronize access
permission is not currently implemented.

Setting and Displaying ACLs on ZFS Files in Verbose Format

You can use the chmod command to modify ACLs on ZFS files. The following chmod syntax for
modifying ACLs uses acl-specification to identify the format of the ACL. For a description of
acl-specification, see “Syntax Descriptions for Setting ACLs” on page 94.

= Adding ACL entries
= Addingan ACL entry for a user

% chmod A+acl-specification filename

= Addingan ACL entry by index-ID

o

% chmod Aindex-ID+acl-specification filename

This syntax inserts the new ACL entry at the specified index-ID location.
m Replacing an ACL entry

% chmod Aindex-ID=acl-specification filename

% chmod A=acl-specification filename

= Removing ACL entries

Chapter7 « Using ACLs to Protect ZFS Files 101

Setting and Displaying ACLs on ZFS Files in Verbose Format

Removing an ACL entry by index-ID

% chmod Aindex-ID- filename

Removing an ACL entry by user

% chmod A-acl-specification filename

Removing all explicit ACEs from a file

% chmod A- filename

Verbose ACL information is displayed by using the 1s -v command. For example:

1s -v file.l

-rw-r-

0:

1

-r-- 1 root root 206663 Feb 16 11:00 file.l

owner@:execute:deny

:owner@:read_data/write_data/append_data/write xattr/write_attributes
/write _acl/write owner:allow

:group@:write data/append data/execute:deny

:group@: read_data:allow

reveryone@:write_data/append_data/write xattr/execute/write_attributes
/write acl/write owner:deny

teveryone@: read data/read xattr/read attributes/read acl/synchronize
rallow

For information about using the compact ACL format, see “Setting and Displaying ACLs on ZFS
Files in Compact Format” on page 114.

EXAMPLE

7-1 Modifying Trivial ACLs on ZFS Files

This section provides examples of setting and displaying trivial ACLs.

In the following example, a trivial ACL exists on file. 1:

1s -v file.l

-rw-r-

0:
1:

-r-- 1 root root 206663 Feb 16 11:00 file.1l

owner@:execute:deny

owner@:read_data/write_data/append_data/write xattr/write attributes
/write_acl/write owner:allow

:group@:write data/append data/execute:deny

:group@: read_data:allow

reveryone@:write data/append data/write xattr/execute/write attributes
/write_acl/write_owner:deny

teveryone@: read _data/read xattr/read attributes/read acl/synchronize
rallow

In the following example, write_data permissions are granted for groupe.

102 Solaris ZFS Administration Guide - May 2006

Setting and Displaying ACLs on ZFS Files in Verbose Format

EXAMPLE 7-1 Modifying Trivial ACLs on ZFS Files (Continued)

chmod A2=group@:append_data/execute:deny file.l
chmod A3=group@:read_data/write_data:allow file.l
1s -v file.l
-rwW-rw-r-- 1 root root 206663 May 3 16:36 file.l
0:owner@:execute:deny
l:owner@:read data/write data/append data/write xattr/write attributes
/write acl/write owner:allow
2:group@:append data/execute:deny
3:group@:read_data/write data:allow
4:everyone@:write data/append data/write xattr/execute/write attributes
/write acl/write owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize
rallow

In the following example, permissions on file. 1 are set back to 644.

chmod 644 file.1l
1s -v file.l
-rw-r--r-- 1 root root 206663 May 3 16:36 file.l
0:owner@:execute:deny
l:owner@:read data/write data/append data/write xattr/write attributes
/write acl/write owner:allow
2:group@:write data/append data/execute:deny
3:group@: read data:allow
4:everyone@:write data/append data/write xattr/execute/write attributes
/write acl/write owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize
rallow

EXAMPLE 7-2 Setting Explicit ACLs on ZFS Files

This section provides examples of setting and displaying trivial ACLs.

In the following example, read_data/execute permissions are added for the user gozer on the

test.dir directory.

chmod A+user:gozer:read_data/execute:allow test.dir
ls -dv test.dir
drwxr-xr-x+ 2 root root 2 Feb 16 11:12 test.dir
0:user:gozer:list directory/read data/execute:allow
1l:owner@: :deny
2:owner@:list_directory/read_data/add_file/write data/add_subdirectory
/append data/write xattr/execute/write attributes/write acl
/write_owner:allow
3:group@:add_file/write data/add subdirectory/append data:deny

Chapter7 « Using ACLs to Protect ZFS Files

103

Setting and Displaying ACLs on ZFS Files in Verbose Format

EXAMPLE 7-2 Setting Explicit ACLs on ZFS Files (Continued)

4:group@:list_directory/read_data/execute:allow

5:everyone@:add file/write data/add subdirectory/append data/write xattr
/write attributes/write acl/write owner:deny

6:everyone@:list directory/read data/read xattr/execute/read attributes
/read_acl/synchronize:allow

In the following example, read_data/execute permissions are removed for user gozer.

chmod AO- test.dir
1s -dv test.dir
drwxr-xr-x 2 root root 2 Feb 16 11:12 test.dir
0:owner@: :deny
l:owner@:list directory/read data/add_file/write data/add_subdirectory
/append_data/write xattr/execute/write attributes/write acl
/write_owner:allow
2:group@:add_file/write_data/add_subdirectory/append data:deny
3:group@:list directory/read data/execute:allow
4:everyone@:add file/write data/add subdirectory/append data/write xattr
/write attributes/write _acl/write owner:deny
5:everyone@:list directory/read data/read xattr/execute/read attributes
/read _acl/synchronize:allow

EXAMPLE 7-3 ACL Interaction With Permissions on ZFS Files

These ACL examples illustrate the interaction between setting explicit ACLs and then changing the
file or directory’s permission bits.

In the following example, a trivial ACL exists on file.2:

1s -v file.2
-rw-r--r-- 1 root root 2703 Feb 16 11:16 file.2
0:owner@:execute:deny
l:owner@:read data/write data/append data/write xattr/write attributes
/write_acl/write owner:allow
2:group@:write_data/append_data/execute:deny
3:group@: read data:allow
4:everyone@:write data/append data/write xattr/execute/write attributes
/write_acl/write_owner:deny
5:everyone@: read data/read xattr/read attributes/read acl/synchronize
rallow

In the following example, ACL allow permissions are removed from everyone@.

chmod A5- file.2
1s -v file.2

104 Solaris ZFS Administration Guide - May 2006

Setting and Displaying ACLs on ZFS Files in Verbose Format

EXAMPLE 7-3 ACL Interaction With Permissions on ZFS Files (Continued)

-rW-r----- 1 root root 2703 Feb 16 11:16 file.2

0:owner@:execute:deny

l:owner@:read data/write data/append data/write xattr/write attributes
/write acl/write owner:allow

2:group@:write_data/append_data/execute:deny

3:group@: read data:allow

4:everyone@:write data/append data/write xattr/execute/write attributes
/write_acl/write_owner:deny

In this output, the file’s permission bits are reset from 655 to 650. Read permissions for everyone@
have been effectively removed from the file’s permissions bits when the ACL allow permissions are
removed for everyone@.

In the following example, the existing ACL is replaced with read_data/write_data permissions for
everyone@.

chmod A=everyone@:read_data/write_data:allow file.3

1s -v file.3

-rw-rw-rw-+ 1 root root 1532 Feb 16 11:18 file.3
0:everyone@: read data/write data:allow

In this output, the chmod syntax effectively replaces the existing ACL with
read_data/write_data:allow permissions to read/write permissions for owner, group, and
everyone@. In this model, everyone@ specifies access to any user or group. Since no owner@ or
group@ ACL entry exists to override the permissions for owner and group, the permission bits are set
to 666.

In the following example, the existing ACL is replaced with read permissions for user gozer.

chmod A=user:gozer:read_data:allow file.3

1s -v file.3

—————————— + 1 root root 1532 Feb 16 11:18 file.3
0:user:gozer:read data:allow

In this output, the file permissions are computed to be 000 because no ACL entries exist for ownerg,
group@, or everyone@, which represent the traditional permission components of a file. The owner of
the file can resolve this problem by resetting the permissions (and the ACL) as follows:

chmod 655 file.3
1s -v file.3
-rw-r-xr-x+ 1 root root 0 Mar 8 13:24 file.3
0:user:gozer::deny
l:user:gozer:read_data:allow
2:owner@:execute:deny
3:owner@:read data/write data/append data/write xattr/write attributes

Chapter7 « Using ACLs to Protect ZFS Files 105

Setting and Displaying ACLs on ZFS Files in Verbose Format

106

EXAMPLE 7-3 ACL Interaction With Permissions on ZFS Files (Continued)

/write_acl/write_owner:allow
4:group@:write data/append_data:deny
5:group@: read data/execute:allow
6:everyone@:write data/append data/write xattr/write attributes
/write_acl/write_owner:deny
7:everyone@: read data/read xattr/execute/read attributes/read acl
/synchronize:allow

EXAMPLE 7-4 Restoring Trivial ACLs on ZFS Files

You can use the chmod command to remove all explicit ACLs on a file or directory.

In the following example, 2 explicit ACEs exist on test5.dir.

1s -dv test5.dir
drwxr-xr-x+ 2 root root 2 Feb 16 11:23 test5.dir
0:user:gozer:read data:file_inherit:deny
l:user:1lp:read data:file inherit:deny
2:owner@: :deny
3:owner@:list_directory/read_data/add_file/write_data/add_subdirectory
/append data/write xattr/execute/write attributes/write acl
/write owner:allow
4:group@:add_file/write data/add subdirectory/append data:deny
:group@: list directory/read data/execute:allow
6:everyone@:add file/write data/add subdirectory/append data/write xattr
/write attributes/write acl/write owner:deny
7:everyone@:list_directory/read_data/read_xattr/execute/read_attributes
/read _acl/synchronize:allow

(6]

In the following example, the explicit ACLs for users gozer and 1p are removed. The remaining ACL
contains the six default values for owner@, group@, and everyone@.

chmod A- test5.dir
ls -dv test5.dir
drwxr-xr-x 2 root root 2 Feb 16 11:23 test5.dir
0:owner@: :deny
l:owner@:list directory/read data/add file/write data/add subdirectory
/append_data/write xattr/execute/write attributes/write acl
/write _owner:allow
2:group@:add file/write data/add subdirectory/append data:deny
3:group@:list directory/read data/execute:allow
4:everyone@:add_file/write data/add_subdirectory/append_data/write_xattr
/write attributes/write acl/write owner:deny
5:everyone@:list directory/read data/read xattr/execute/read attributes
/read_acl/synchronize:allow

Solaris ZFS Administration Guide - May 2006

Setting and Displaying ACLs on ZFS Files in Verbose Format

Setting ACL Inheritance on ZFS Files in Verbose
Format

You can determine how ACLs are inherited or not inherited on files and directories. By default, AC
are not propagated. If you set an explicit ACL on a directory, the ACL is not inherited by any
subsequent directory. You must specify the inheritance of an ACL on a file or directory.

Ls

In addition, two ACL properties are provided that can be set globally on file systems: aclinherit and

aclmode. By default, aclinherit is set to secure and aclmode is set to groupmask.

For more information, see “ACL Inheritance” on page 97.

EXAMPLE 7-5 Default ACL Inheritance

By default, ACLs are not propagated through a directory structure.

In the following example, an explicit ACE of read_data/write_data/execute is applied for user
gozeron test.dir.

chmod A+user:gozer:read_data/write_data/execute:allow test.dir
ls -dv test.dir
drwxr-xr-x+ 2 root root 2 Feb 17 14:45 test.dir
0:user:gozer:list directory/read data/add file/write data/execute:allow
1:owner@: :deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory
/append data/write xattr/execute/write attributes/write acl
/write owner:allow
3:group@:add file/write data/add subdirectory/append data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add file/write data/add subdirectory/append data/write xattr
/write attributes/write acl/write owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow

Ifa test.dir subdirectory is created, the ACE for user gozer is not propagated. User gozer would
only have access to sub. dir if the permissions on sub. dir granted him access as the file owner,
group member, or everyone@.

mkdir test.dir/sub.dir
ls -dv test.dir/sub.dir
drwxr-xr-x 2 root root 2 Feb 17 14:46 test.dir/sub.dir
0:owner@: :deny
l:owner@:list directory/read data/add file/write data/add subdirectory
/append_data/write_xattr/execute/write attributes/write acl
/write_owner:allow
2:group@:add file/write data/add subdirectory/append data:deny
3:group@:list directory/read data/execute:allow

Chapter7 « Using ACLs to Protect ZFS Files

107

Setting and Displaying ACLs on ZFS Files in Verbose Format

EXAMPLE 7-5 Default ACL Inheritance (Continued)

4:everyone@:add_file/write data/add_subdirectory/append_data/write_ xattr
/write attributes/write acl/write owner:deny

5:everyone@:list directory/read data/read xattr/execute/read attributes
/read_acl/synchronize:allow

EXAMPLE 7-6 Granting ACL Inheritance on Files and Directories

This series of examples identify the file and directory ACEs that are applied when the file_inherit
flag is set.

In the following example, read_data/write_data permissions are added for files in the test.dir
directory for user gozer so that he has read access on any newly created files.

chmod A+user:gozer:read_data/write_data:file_inherit:allow test2.dir
1s -dv test2.dir
drwxr-xr-x+ 2 root root 2 Feb 17 14:47 test2.dir
0:user:gozer:read data/write data:file inherit:allow
1l:owner@: :deny
2:owner@:list directory/read data/add file/write data/add subdirectory
/append_data/write xattr/execute/write attributes/write acl
/write _owner:allow
3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list directory/read data/execute:allow
5:everyone@:add_file/write data/add_subdirectory/append_data/write_xattr
/write attributes/write acl/write owner:deny
6:everyone@:list directory/read data/read xattr/execute/read attributes
/read_acl/synchronize:allow

In the following example, user gozer’s permissions are applied on the newly created
test2.dir/file.2 file. The ACLinheritance granted, read_data:file_inherit:allow, means user
gozer can read the contents of any newly created file.

touch test2.dir/file.2
s -v test2.dir/file.2
-rw-r--r--+ 1 root root 0 Feb 17 14:49 test2.dir/file.2
0:user:gozer:write_data:deny
l:user:gozer:read data/write data:allow
2:owner@:execute:deny
3:owner@:read_data/write_data/append_data/write xattr/write_attributes+
/write_acl/write_owner:allow
:group@:write data/append data/execute:deny
5:group@: read data:allow
6:everyone@:write data/append_data/write_xattr/execute/write attributes
/write acl/write owner:deny

I

108 Solaris ZFS Administration Guide - May 2006

Setting and Displaying ACLs on ZFS Files in Verbose Format

EXAMPLE 7-6 Granting ACL Inheritance on Files and Directories (Continued)

7:everyone@: read_data/read_xattr/read_attributes/read_acl/synchronize
rallow

Because the aclmode for this file is set to the default mode, groupmask, user gozer does not have
write_data permission on file.2 because the group permission of the file does not allow it.

Note the inherit_only permission, which is applied when the file_inherit ordir_inherit flags
are set, is used to propagate the ACL through the directory structure. As such, user gozer is only
granted or denied permission from everyone@ permissions unless he is the owner of the file or a
member of the owning group of the file. For example:

mkdir test2.dir/subdir.2
ls -dv test2.dir/subdir.2
drwxr-xr-x+ 2 root root 2 Feb 17 14:50 test2.dir/subdir.2
0:user:gozer:list directory/read data/add file/write data:file inherit
/inherit_only:allow
1l:owner@: :deny
2:owner@:list directory/read data/add file/write data/add subdirectory
/append_data/write xattr/execute/write attributes/write acl
/write_owner:allow
3:group@:add file/write data/add subdirectory/append data:deny
4:group@:list directory/read data/execute:allow
5:everyone@:add_file/write data/add_subdirectory/append_data/write_xattr
/write attributes/write acl/write owner:deny
6:everyone@: list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow

The following series of examples identify the file and directory ACLs that are applied when both the
file_inheritanddir_inherit flags are set.

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files and directories.

chmod A+user:gozer:read_data/write_data/execute:file_inherit/dir_inherit:allow test3.dir
ls -dv test3.dir
drwxr-xr-x+ 2 root root 2 Feb 17 14:51 test3.dir
0:user:gozer:list directory/read data/add file/write data/execute
:file_inherit/dir_inherit:allow
1:owner@: :deny
2:owner@:list directory/read data/add file/write data/add subdirectory
/append_data/write xattr/execute/write attributes/write acl
/write owner:allow
3:group@:add file/write data/add subdirectory/append data:deny
4:group@:list directory/read data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

Chapter7 « Using ACLs to Protect ZFS Files 109

Setting and Displaying ACLs on ZFS Files in Verbose Format

110

EXAMPLE 7-6 Granting ACL Inheritance on Files and Directories (Continued)

/write attributes/write_acl/write owner:deny
6:everyone@:list directory/read data/read xattr/execute/read attributes
/read _acl/synchronize:allow

touch test3.dir/file.3
1s -v test3.dir/file.3
-rw-r--r--+ 1 root root 0 Feb 17 14:53 test3.dir/file.3

0:
l:user:gozer:read_data/write_data/execute:allow

2:

3:owner@:read data/write data/append data/write xattr/write attributes

IN

user:gozer:write data/execute:deny
owner@:execute:deny

/write acl/write owner:allow

:group@:write_data/append_data/execute:deny
:group@: read data:allow
reveryone@:write data/append data/write xattr/execute/write attributes

/write_acl/write_owner:deny

reveryone@: read data/read xattr/read attributes/read acl/synchronize

rallow

mkdir test3.dir/subdir.1
1s -dv test3.dir/subdir.1l
drwxr-xr-x+ 2 root root 2 May 4 15:00 test3.dir/subdir.1l

0:

A W N =

user:gozer:list directory/read data/add file/write data/execute
:file inherit/dir_inherit/inherit only:allow

:user:gozer:add file/write data:deny

:user:gozer:list directory/read data/add file/write data/execute:allow
:owner@: :deny
rowner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append data/write xattr/execute/write attributes/write acl
/write owner:allow

rgroup@:add file/write data/add subdirectory/append data:deny
rgroup@:list _directory/read _data/execute:allow
reveryone@:add file/write data/add subdirectory/append data/write xattr

/write attributes/write acl/write owner:deny

reveryone@: list directory/read data/read xattr/execute/read attributes

/read_acl/synchronize:allow

In these examples, because the permission bits of the parent directory for group@and everyone@
deny write and execute permissions, user gozer is denied write and execute permissions. The default
aclmode property is secure, which means that write_dataand execute permissions are not
inherited.

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files, but are not propagated to subsequent contents of the directory.

Solaris ZFS Administration Guide - May 2006

Setting and Displaying ACLs on ZFS Files in Verbose Format

EXAMPLE 7-6 Granting ACL Inheritance on Files and Directories (Continued)

chmod A+user:gozer:read_data/write_data/execute:file_inherit/no_propagate:allow test4.dir
ls -dv test4.dir
drwxr-xr-x+ 2 root root 2 Feb 17 14:54 test4.dir
0:user:gozer:list directory/read data/add file/write data/execute
:file inherit/no_propagate:allow
1:owner@: :deny
2:owner@:list directory/read data/add file/write data/add subdirectory
/append_data/write xattr/execute/write attributes/write acl
/write_owner:allow
3:group@:add file/write data/add subdirectory/append data:deny
4:group@:list directory/read data/execute:allow
5:everyone@:add_file/write data/add_subdirectory/append_data/write_xattr
/write attributes/write acl/write owner:deny
6:everyone@:list directory/read data/read xattr/execute/read attributes
/read_acl/synchronize:allow

As the following example illustrates, when a new subdirectory is created, user gozer’s
read_data/write_data/execute permission for files are not propagated to the new sub4.dir
directory.

mkdir test4.dir/sub4.dir
s -dv testd4.dir/sub4d.dir
drwxr-xr-x 2 root root 2 Feb 17 14:57 test4.dir/sub4.dir
0:owner@: :deny
l:owner@:list directory/read data/add_file/write data/add_subdirectory
/append data/write xattr/execute/write attributes/write acl
/write owner:allow
2:group@:add_file/write_data/add_subdirectory/append data:deny
3:group@:list directory/read data/execute:allow
4:everyone@:add file/write data/add subdirectory/append data/write xattr
/write_attributes/write_acl/write_owner:deny
5:everyone@:list directory/read data/read xattr/execute/read attributes
/read acl/synchronize:allow

As the following example illustrates, gozer’s read_data/write_data/execute permission for files is
propagated to the newly created file.

touch test4.dir/file.4

ls -v test4.dir/file.4

-rw-r--r--+ 1 root root 0 May 4 15:02 test4.dir/file.4
0:user:gozer:write data/execute:deny
l:user:gozer:read data/write data/execute:allow
2:owner@:execute:deny
3:owner@:read data/write data/append data/write xattr/write attributes

/write acl/write owner:allow

Chapter7 « Using ACLs to Protect ZFS Files m

Setting and Displaying ACLs on ZFS Files in Verbose Format

EXAMPLE 7-6 Granting ACL Inheritance on Files and Directories (Continued)

4:group@:write data/append _data/execute:deny

5:group@: read data:allow

6:everyone@:write data/append data/write xattr/execute/write attributes
/write acl/write owner:deny

7:everyone@:read _data/read xattr/read attributes/read _acl/synchronize
rallow

EXAMPLE 7-7 ACL Inheritance With ACL Mode Set to Passthrough

If the aclmode property on the tank/cindy file system is set to passthrough, then user gozer would
inherit the ACL applied on test4.dir for the newly created file.4 as follows:

zfs set aclmode=passthrough tank/cindy
touch test4.dir/file.4
1s -v testd.dir/file.4
-rw-r--r--+ 1 root root 0 Feb 17 15:15 test4.dir/file.4
0:user:gozer:read_data/write_data/execute:allow
1:owner@:execute:deny
2:owner@:read data/write data/append data/write xattr/write attributes
/write acl/write owner:allow
3:group@:write data/append _data/execute:deny
4:group@: read data:allow
5:everyone@:write data/append data/write xattr/execute/write attributes
/write_acl/write_owner:deny
6:everyone@: read_data/read xattr/read attributes/read acl/synchronize
rallow

This output illustrates that the
read data/write data/execute:allow:file inherit/dir_inherit ACL that was set on the
parent directory, test4.dir, is passed through to user gozer.

EXAMPLE 7-8 ACL Inheritance With ACL Mode Set to Discard

If the aclmode property on a file system is set to discard, then ACLs can potentially be discarded
when the permission bits on a directory change. For example:

zfs set aclmode=discard tank/cindy

chmod A+user:gozer:read_data/write_data/execute:dir_inherit:allow test5.dir

1s -dv test5.dir

drwxr-xr-x+ 2 root root 2 Feb 16 11:23 test5.dir
0:user:gozer:list directory/read data/add file/write data/execute

:dir_inherit:allow

1:owner@: :deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

12 Solaris ZFS Administration Guide - May 2006

Setting and Displaying ACLs on ZFS Files in Verbose Format

EXAMPLE 7-8 ACL Inheritance With ACL Mode Set to Discard (Continued)

/append_data/write_xattr/execute/write attributes/write acl
/write_owner:allow
3:group@:add file/write data/add subdirectory/append data:deny
4:group@:list directory/read data/execute:allow
5:everyone@:add_file/write data/add_subdirectory/append data/write xattr
/write attributes/write acl/write owner:deny
6:everyone@:list directory/read data/read xattr/execute/read attributes
/read_acl/synchronize:allow

If, at a later time, you decide to tighten the permission bits on a directory, the explicit ACLis
discarded. For example:

chmod 744 test5.dir
1s -dv test5.dir
drwxr--r-- 2 root root 2 Feb 16 11:23 test5.dir
0:owner@: :deny
l:owner@:list directory/read data/add_file/write data/add_subdirectory
/append _data/write xattr/execute/write attributes/write acl
/write_owner:allow
2:group@:add_file/write_data/add_subdirectory/append data/execute:deny
3:group@:list directory/read data:allow
4:everyone@:add file/write data/add subdirectory/append data/write xattr
/execute/write_attributes/write_acl/write owner:deny
5:everyone@:list directory/read data/read xattr/read attributes/read acl
/synchronize:allow

EXAMPLE 7-9 ACL Inheritance With ACL Inherit Mode Set to Noallow

In the following example, two explicit ACLs with file inheritance are set. One ACL allows read_data

permission, and one ACL denies read_data permission. This example also illustrates how you can

specify two ACEs in the same chmod command.

zfs set aclinherit=nonallow tank/cindy
chmod A+user:gozer:read_data:file_inherit:deny,user:lp:read_data:file_inherit:allow test6.dir
ls -dv test6.dir
drwxr-xr-x+ 2 root root 2 May 4 14:23 test6.dir
0:user:gozer:read data:file_inherit:deny

1:
2:
3:

user:lp:read data:file inherit:allow
owner@: :deny
owner@:list_directory/read_data/add_file/write_data/add_subdirectory
/append data/write xattr/execute/write attributes/write acl
/write owner:allow
:group@:add_file/write data/add_subdirectory/append_data:deny
:group@: list directory/read_data/execute:allow

Chapter7 « Using ACLs to Protect ZFS Files

113

Setting and Displaying ACLs on ZFS Files in Compact Format

EXAMPLE 7-9 ACL Inheritance With ACL Inherit Mode Set to Noallow (Continued)

6:everyone@:add_file/write data/add_subdirectory/append_data/write_xattr
/write attributes/write acl/write owner:deny

7:everyone@:list directory/read data/read xattr/execute/read attributes
/read_acl/synchronize:allow

As the following example shows, when a new file is created, the ACL that allows read_data
permission is discarded.

touch test6.dir/file.6
1s -v test6.dir/file.6
-rw-r--r--+ 1 root root 0 May 4 13:44 test6.dir/file.6
0:user:gozer:read_data:deny
1l:owner@:execute:deny
2:owner@:read data/write data/append data/write xattr/write attributes
/write acl/write owner:allow
3:group@:write data/append _data/execute:deny
4:group@: read data:allow
5:everyone@:write data/append data/write xattr/execute/write attributes
/write_acl/write_owner:deny
6:everyone@: read_data/read xattr/read attributes/read _acl/synchronize
rallow

Setting and Displaying ACLs on ZFS Files in Compact Format

You can set and display permissions on ZFS files in a compact format that uses 14 unique letters to
represent the permissions. The letters that represent the compact permissions are listed in Table 7-2
and Table 7-3.

You can display compact ACL listings for files and directories by using the 1s -V command. For
example:

1s -V file.l

-rw-r--r-- 1 root root 206663 Feb 16 11:00 file.1l
owner@:--X-------=---- e :deny
owner@: rw-p---A-W-Co-:------ :allow
group@: -wxp---------- R :deny
group@:r------------- e rallow
everyone@: -wxp---A-W-Co-:------ :deny
everyone@:r-----a-R-c--s:i------ :allow

The compact ACL output is described as follows:

owner@ The owner is denied execute permissions to the file (x=execute).

14 Solaris ZFS Administration Guide - May 2006

Setting and Displaying ACLs on ZFS Files in Compact Format

owner@ The owner can read and modify the contents of the file
(rw=read_data/write_data), (p=append_data). The owner can also modify the
file’s attributes such as timestamps, extended attributes, and ACLs (A=write xattr,
W=write attributes,C=write_acl).In addition, the owner can modify the
ownership of the file (O=write_owner).

group@ The group is denied modify and execute permissions to the file
(rw=read_data/write_data, p=append_data, and x=execute).

group@ The group is granted read permissions to the file (r=read_data).

everyone@ Everyone who is not user or group is denied permission to execute or modify the
contents of the file, and to modify any attributes of the file (w=write_data,
x=execute, p=append_data, A=write xattr,W=write attributes,C=write acl,
and o=write owner).

everyone@ Everyone who is not user or group is granted read permissions to the file and the file’s
attributes (r=read_data, a=append_data,R=read xattr,c=read acl,and
s=synchronize). The synchronize access permission is not currently implemented.

Compact ACL format provides the following advantages over verbose ACL format:

= Permissions can be specified as positional arguments to the chmod command.

® The hyphen (-) characters, which identify no permissions, can be removed and only the required
letters need to be specified.

= Both permissions and inheritance flags are set in the same fashion.

For information about using the verbose ACL format, see “Setting and Displaying ACLs on ZFS Files
in Verbose Format” on page 101.

EXAMPLE 7-10 Setting and Displaying ACLs in Compact Format

In the following example, a trivial ACL exists on file.1:

1s -V file.l

-rw-r-xr-x 1 root root 206663 Feb 16 11:00 file.l
owner@: --X----------- O :deny
owner@:rw-p---A-W-Co-:------ rallow
group@: -w-p---------- e :deny
group@:r-x----------- e rallow

everyone@: -w-p---A-W-Co-:------ :deny
everyone@:r-x---a-R-c--s:------ rallow

In this example, read_data/execute permissions are added for the user gozer on file.1.

chmod A+user:gozer:rx:allow file.l
1s -V file.l
-rw-r-xr-x+ 1 root root 206663 Feb 16 11:00 file.1l

Chapter7 « Using ACLs to Protect ZFS Files 115

Setting and Displaying ACLs on ZFS Files in Compact Format

116

EXAMPLE 7-10 Setting and Displaying ACLs in Compact Format (Continued)

user:gozer:r-X----------- e rallow
owner@: --X----------- R :deny
owner@:rw-p---A-W-Co-:------ rallow
group@: -w-p---------- Toe---- :deny
group@:r-x----------- R rallow

everyone@: -w-p---A-W-Co-:------ :deny

everyone@:r-x---a-R-c--s:------ rallow

Another way to add the same permissions for user gozer is to insert a new ACL at a specific position,
4, for example. As such, the existing ACLs at positions 4-6 are pushed down. For example:

chmod A4+user:gozer:rx:allow file.l
1s -V file.l

-rw-r-xr-x+ 1 root root 206663 Feb 16 11:00 file.l
owner@: --X----------- e :deny
owner@:rw-p---A-W-Co-:------ rallow
group@: -w-p---------- HEEERER :deny
group@:r-x----------- e rallow

user:gozer:r-X----------- e rallow
everyone@: -w-p---A-W-Co-:------ :deny
everyone@:r-x---a-R-c--s:------ rallow

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files and directories by using the compact ACL format.

chmod A+user:gozer:rwx:f:allow dir.1l
1s -dV dir.1

drwxr-xr-x+ 2 root root 2 Feb 23 10:37 dir.1
USer:gozer:rwx----------- fe---- rallow
OWNer@:-------------- R :deny
owner@: rwxp---A-W-Co-:------ :allow
group@: -w-p---------- e :deny
group@:r-X----------- e rallow
everyone@: -w-p---A-W-Co-:------ :deny
everyone@:r-x---a-R-c--s:------ :allow

You can also cut and paste permissions and inheritance flags from the s -V output into the compact
chmod format. For example, to duplicate the permissions and inheritance flags on dir. 1 for user
gozer to user cindys, copy and paste the permission and inheritance flags

(rwx------==--- ifo---- :allow) into your chmod command. For example:

chmod A+user:cindys:rwx----------- H EEEE :allow dir.1

1s -dV dir.1

drwxr-xr-x+ 2 root root 2 Feb 23 10:37 dir.1
user:cindysS:rwx----------- fe---- rallow

Solaris ZFS Administration Guide - May 2006

Setting and Displaying ACLs on ZFS Files in Compact Format

EXAMPLE 7-10 Setting and Displaying ACLs in Compact Format (Continued)

user:gozer:
owner@:
owner@:
group@:
group@:
everyone@:
everyone@:

FWX=---=--mm- - f----- :allow
-------------------- :deny
rwxp---A-W-Co-:------ rallow
B Pem---- :deny
F-X----------- HEEE R :allow
-wW-p---A-W-Co-:------ :deny
r-x---a-R-c--s:------ rallow

Chapter7 « Using ACLs to Protect ZFS Files 117

118

L R R 4 CHAPTER 8

ZFS Advanced Topics

This chapter describes emulated volumes, using ZFS on a Solaris system with zones installed, ZFS
alternate root pools, and ZFS rights profiles.

The following sections are provided in this chapter:

= “Emulated Volumes” on page 119

m “Using ZFS on a Solaris System With Zones Installed” on page 120
m “ZES Alternate Root Pools” on page 124

= “ZFS Rights Profiles” on page 125

Emulated Volumes

An emulated volume is a dataset that represents a block device and can be used like any block device.
ZFS volumes are identified as devices in the /dev/zvol/{dsk, rdsk}/path directory.

In the following example, 5-Gbyte ZFS volume, tank/vol, is created:

zfs create -V 5gb tank/vol

When you create a volume, a reservation is automatically set to the initial size of the volume. The
reservation size continues to equal the size of the volume so that unexpected behavior doesn’t occur.
For example, if the size of the volume shrinks, data corruption might occur. You must be careful
when changing the size of the volume.

If you are using a Solaris system with zones installed, you cannot create or clone a ZFS volume in a
non-global zone. Any attempt to create or clone a volume from within a non-global zone will fail. For
information about using ZFS volumes in a global zone, see “Adding ZFS Volumes to a Non-Global
Zone” on page 122.

119

Using ZFS on a Solaris System With Zones Installed

Emulated Volumes as Swap or Dump Devices

To set up a swap area, create a ZFS volume of a specific size and then enable swap on that device. Do
not swap to a file on a ZFS file system. A ZFS swap file configuration is not supported.

In the following example, the 5-Gbyte tank/vol volume is added as a swap device.

swap -a /dev/zvol/dsk/tank/vol

swap -1

swapfile dev swaplo blocks free
/dev/dsk/c0t0dosl 32,33 16 1048688 1048688
/dev/zvol/dsk/tank/vol 254,1 16 10485744 10485744

Using a ZFS volume as a dump device is not supported. Use the dumpadm command to set up a dump
device.

Using ZFS on a Solaris System With Zones Installed

120

ZFS datasets can be added to a zone either as a generic file system or as a delegated dataset.

Adding a file system allows the non-global zone to share space with the global zone, though the zone
administrator cannot control properties or create new file systems in the underlying file system
hierarchy. This is identical to adding any other type of file system to a zone, and should be used when
the primary purpose is solely to share common space.

ZFS also allows datasets to be delegated to a non-global zone, giving complete control over the
dataset and all its children to the zone administrator. The zone administrator can create and destroy
file systems within that dataset, and modify properties of the datasets. The zone administrator
cannot affect datasets that have not been added to the zone, and cannot exceed any top-level quotas
set on the exported dataset.

Consider the following interactions when working with ZFS on a system with Solaris zones installed:

= AZFS file system that is added to a non-global zone must have its mountpoint property set to
legacy.

= When a source zonepath and the target zonepath both reside on ZFS and are in the same pool,
zoneadm clone will now automatically use ZFS clone to clone a zone. The zoneadm clone
command will take a ZFS snapshot of the source zonepath and set up the target zonepath. Do
not use the ZFS snapshot features to clone a zone. For more information, see Part I, “Zones,” in
System Administration Guide: Solaris Containers-Resource Management and Solaris Zones.

Adding ZFS File Systems to a Non-Global Zone

You can add a ZFS file system as a generic file system when the goal is solely to share space with the
global zone. A ZFS file system that is added to a non-global zone must have its mountpoint property
set to legacy.

Solaris ZFS Administration Guide - May 2006

Using ZFS on a Solaris System With Zones Installed

You can add a ZFS file system to a non-global zone by using the zonecfg command’s add fs
subcommand. For example:

In the following example, a ZFS file system is added to a non-global zone by a global administrator in
the global zone.

zonecfg -z zion

zion: No such zone configured

Use ’'create’ to begin configuring a new zone.
zonecfg:zion> create

zonecfg:zion> add fs

zonecfg:zion:fs> set type=zfs
zonecfg:zion:fs> set special=tank/zone/zion
zonecfg:zion:fs> set dir=/export/shared
zonecfg:zion:fs> end

This syntax adds the ZFS file system, tank/zone/zion, to the zone zion, mounted at
/export/shared. The mountpoint property of the file system must be set to legacy, and the file
system cannot already be mounted in another location. The zone administrator can create and
destroy files within the file system. The file system cannot be remounted in a different location, nor
can the zone administrator change properties on the file system such as atime, readonly,
compression, and so on. The global zone administrator is responsible for setting and controlling
properties of the file system.

For more information about the zonecfg command and about configuring resource types with
zonecfg, see PartII, “Zones,” in System Administration Guide: Solaris Containers-Resource
Management and Solaris Zones.

Delegating Datasets to a Non-Global Zone

If the primary goal is to delegate the administration of storage to a zone, then ZFS supports adding
datasets to a non-global zone through use of the zonecfg command’s add dataset subcommand.

In the following example, a ZFS file system is delegated to a non-global zone by a global
administrator in the global zone.

zonecfg -z zion

zion: No such zone configured

Use ’'create’ to begin configuring a new zone.
zonecfg:zion> create

zonecfg:zion> add dataset
zonecfg:zion:dataset> set name=tank/zone/zion
zonecfg:zion:dataset> end

Unlike adding a file system, this syntax causes the ZFS file system tank/zone/zion to be visible
within the zone zion. The zone administrator can set file system properties, as well as create children.
In addition, the zone administrator can take snapshots, create clones, and otherwise control the
entire file system hierarchy.

Chapter8 - ZFSAdvanced Topics 121

Using ZFS on a Solaris System With Zones Installed

122

For more information about what actions are allowed within zones, see “Property Management
Within a Zone” on page 122.

Adding ZFS Volumes to a Non-Global Zone

Emulated volumes cannot be added to a non-global zone by using the zonecfg command’s add
dataset subcommand. If an attempt to add an emulated volume is detected, the zone cannot boot.
However, volumes can be added to a zone by using the zonecfg command’s add device
subcommand.

In the following example, a ZFS emulated volume is added to a non-global zone by a global
administrator in the global zone:

zonecfg -z zion

zion: No such zone configured

Use ’'create’ to begin configuring a new zone.
zonecfg:zion> create

zonecfg:zion> add device

zonecfg:zion:device> set match=/dev/zvol/dsk/tank/vol
zonecfg:zion:device> end

This syntax exports the tank/vol emulated volume to the zone. Note that adding a raw volume to a
zone has implicit security risks, even if the volume doesn’t correspond to a physical device. In
particular, the zone administrator could create malformed file systems that would panic the system
when a mount is attempted. For more information about adding devices to zones and the related
security risks, see “Understanding the zoned Property” on page 123.

For more information about adding devices to zones, see Part II, “Zones,” in System Administration
Guide: Solaris Containers-Resource Management and Solaris Zones.

Using ZFS Storage Pools Within aZone

ZFS storage pools cannot be created or modified within a zone. The delegated administration model
centralizes control of physical storage devices within the global zone and control of virtual storage to
non-global zones. While a pool-level dataset can be added to a zone, any command that modifies the
physical characteristics of the pool, such as creating, adding, or removing devices, is not allowed
from within a zone. Even if physical devices are added to a zone by using the zonecfg command’s
add device subcommand, or if files are used, the zpool command does not allow the creation of any
new pools within the zone.

Property Management Within aZone

Once a dataset is added to a zone, the zone administrator can control specific dataset properties.
When a dataset is added to a zone, all its ancestors are visible as read-only datasets, while the dataset
itself is writable as are all its children. For example, consider the following configuration:

Solaris ZFS Administration Guide - May 2006

Using ZFS on a Solaris System With Zones Installed

global# zfs list -Ho name
tank

tank/home

tank/data
tank/data/matrix
tank/data/zion
tank/data/zion/home

If tank/data/zion is added to a zone, each dataset would have the following properties.

Dataset Visible Writable Immutable Properties

tank Yes No -

tank/home No - -

tank/data Yes No -

tank/data/matrix No - -

tank/data/zion Yes Yes sharenfs, zoned, quota
reservation

tank/data/zion/home Yes Yes sharenfs, zoned

Note that every parent of tank/zone/zion is visible read-only, all children are writable, and datasets
that are not part of the parent hierarchy are not visible at all. The zone administrator cannot change
the sharenfs property, because non-global zones cannot act as NFS servers. Neither can the zone
administrator change the zoned property, because doing so would expose a security risk as described
in the next section.

Any other property can be changed, except for the added dataset itself, where the quota and
reservation properties cannot be changed. This behavior allows the global zone administrator to
control the space consumption of all datasets used by the non-global zone.

In addition, the sharenfs and mountpoint properties cannot be changed by the global zone
administrator once a dataset has been added to a non-global zone.

Understanding the zoned Property

When a dataset is added to a non-global zone, the dataset must be specially marked so that certain
properties are not interpreted within the context of the global zone. Once a dataset has been added to
a non-global zone under the control of a zone administrator, its contents can no longer be trusted. As
with any file system, there might be setuid binaries, symbolic links, or otherwise questionable
contents that might adversely affect the security of the global zone. In addition, the mountpoint
property cannot be interpreted in the context of the global zone. Otherwise, the zone administrator
could affect the global zone’s namespace. To address the latter, ZFS uses the zoned property to
indicate that a dataset has been delegated to a non-global zone at one point in time.

Chapter8 - ZFSAdvanced Topics 123

ZFS Alternate Root Pools

The zoned property is a boolean value that is automatically turned on when a zone containing a ZFS
dataset is first booted. A zone administrator will not need to manually turn on this property. If the
zoned property is set, the dataset cannot be mounted or shared in the global zone, and is ignored
when the zfs share -a command or the zfs mount -a command is executed. In the following
example, tank/zone/zion has been added to a zone, while tank/zone/global has not:

zfs list -o name,zoned,mountpoint -r tank/zone

NAME ZONED MOUNTPOINT

tank/zone/global off /tank/zone/global

tank/zone/zion on /tank/zone/zion

zfs mount

tank/zone/global /tank/zone/global

tank/zone/zion /export/zone/zion/root/tank/zone/zion

Note the difference between the mountpoint property and the directory where the tank/zone/zion
dataset is currently mounted. The mountpoint property reflects the property as stored on disk, not
where the dataset is currently mounted on the system.

When a dataset is removed from a zone or a zone is destroyed, the zoned property is not
automatically cleared. This behavior is due to the inherent security risks associated with these tasks.
Because an untrusted user has had complete access to the dataset and its children, the mountpoint
property might be set to bad values, or setuid binaries might exist on the file systems.

To prevent accidental security risks, the zoned property must be manually cleared by the global
administrator if you want to reuse the dataset in any way. Before setting the zoned property to off,
make sure that the mountpoint property for the dataset and all its children are set to reasonable
values and that no setuid binaries exist, or turn off the setuid property.

Once you have verified that no security vulnerabilities are left, the zoned property can be turned off
by using the zfs set or zfs inherit commands. If the zoned property is turned off while a dataset is
in use within a zone, the system might behave in unpredictable ways. Only change the property if you
are sure the dataset is no longer in use by a non-global zone.

ZFS Alternate Root Pools

124

When a pool is created, the pool is intrinsically tied to the host system. The host system maintains
knowledge about the pool so that it can detect when the pool is otherwise unavailable. While useful
for normal operation, this knowledge can prove a hindrance when booting from alternate media, or
creating a pool on removable media. To solve this problem, ZFS provides an alternate root pool
feature. An alternate root pool does not persist across system reboots, and all mount points are
modified to be relative to the root of the pool.

Creating ZFS Alternate Root Pools

The most common use for creating an alternate root pool is for use with removable media. In these
circumstances, users typically want a single file system, and they want it to be mounted wherever they

Solaris ZFS Administration Guide - May 2006

ZFS Rights Profiles

choose on the target system. When an alternate root pool is created by using the -R option, the
mount point of the root file system is automatically set to /, which is the equivalent of the alternate
root itself.

In the following example, a pool called morpheus is created with /mnt as the alternate root path:

zpool create -R /mnt morpheus c0t0do

zfs list morpheus

NAME USED AVAIL REFER MOUNTPOINT
morpheus 32.5K 33.5G 8K /mnt/

Note the single file system, morpheus, whose mount point is the alternate root of the pool, /mnt. The
mount point that is stored on disk is / and the full path to /mnt is interpreted only in the context of
the alternate root pool. This file system can then be exported and imported under an arbitrary
alternate root pool on a different system.

Importing Alternate Root Pools

Pools can also be imported using an alternate root. This feature allows for recovery situations, where
the mount points should not be interpreted in context of the current root, but under some temporary
directory where repairs can be performed. This feature also can be used when mounting removable
media as described above.

In the following example, a pool called morpheus is imported with /mnt as the alternate root path.
This example assumes that morpheus was previously exported.

zpool import -R /mnt morpheus
zpool list morpheus

NAME SIZE USED AVAIL CAP HEALTH ALTROOT
morpheus 33.8G 68.0K 33.7G 0% ONLINE /mnt

zfs list morpheus

NAME USED AVAIL REFER MOUNTPOINT

morpheus 32.5K 33.5G 8K /mnt/morpheus

ZFS Rights Profiles

If you want to perform ZFS management tasks without using the superuser (root) account, you can
assume a role with either of the following profiles to perform ZFS administration tasks:

= ZFS Storage Management — Provides the ability to create, destroy, and manipulate devices within
a ZFS storage pool

= ZFS File system Management — Provides the ability to create, destroy, and modify ZFS file
systems

For more information about creating or assigning roles, see System Administration Guide: Security
Services.

Chapter8 - ZFSAdvanced Topics 125

126

L R R 4 CHAPTER 9

ZFS Troubleshooting and Data Recovery

This chapter describes how to identify and recover from ZFS failure modes. Information for
preventing failures is provided as well.

The following sections are provided in this chapter:

m “ZFS Failure Modes” on page 127

® “Checking ZFS Data Integrity” on page 129

= “Identifying Problems in ZFS” on page 131

m “Repairing a Damaged ZFS Configuration” on page 135
= “Repairing a Missing Device” on page 135

m “Repairing a Damaged Device” on page 137

® “Repairing Damaged Data” on page 142

m “Repairing an Unbootable System” on page 144

ZFS Failure Modes

As a combined file system and volume manager, ZFS can exhibit many different failure modes. This
chapter begins by outlining the various failure modes, then discusses how to identify them on a
running system. This chapter concludes by discussing how to repair the problems. ZFS can
encounter three basic types of errors:

= Missing devices
= Damaged devices
= Corrupted data

Note that a single pool can experience all three errors, so a complete repair procedure involves
finding and correcting one error, proceeding to the next error, and so on.

127

ZFS Failure Modes

128

Missing Devices in a ZFS Storage Pool

If a device is completely removed from the system, ZFS detects that the device cannot be opened and
places it in the FAULTED state. Depending on the data replication level of the pool, this might or might
not result in the entire pool becoming unavailable. If one disk in a mirrored or RAID-Z device is
removed, the pool continues to be accessible. If all components of a mirror are removed, if more than
one device in a RAID-Z device is removed, or if a single-disk, top-level device is removed, the pool
becomes FAULTED. No data is accessible until the device is reattached.

Damaged Devices in a ZFS Storage Pool

The term “damaged” covers a wide variety of possible errors. Examples include the following errors:

Transient I/O errors due to a bad disk or controller

On-disk data corruption due to cosmic rays

Driver bugs resulting in data being transferred to or from the wrong location
Simply another user overwriting portions of the physical device by accident

In some cases, these errors are transient, such as a random I/O error while the controller is having
problems. In other cases, the damage is permanent, such as on-disk corruption. Even still, whether
the damage is permanent does not necessarily indicate that the error is likely to occur again. For
example, if an administrator accidentally overwrites part of a disk, no type of hardware failure has
occurred, and the device need not be replaced. Identifying exactly what went wrong with a device is
notan easy task and is covered in more detail in a later section.

Corrupted ZFS Data

Data corruption occurs when one or more device errors (indicating missing or damaged devices)
affects a top-level virtual device. For example, one half of a mirror can experience thousands of
device errors without ever causing data corruption. If an error is encountered on the other side of the
mirror in the exact same location, corrupted data will be the result.

Data corruption is always permanent and requires special consideration during repair. Even if the
underlying devices are repaired or replaced, the original data is lost forever. Most often this scenario
requires restoring data from backups. Data errors are recorded as they are encountered, and can be
controlled through regular disk scrubbing as explained in the following section. When a corrupted
block is removed, the next scrubbing pass recognizes that the corruption is no longer present and
removes any trace of the error from the system.

Solaris ZFS Administration Guide - May 2006

Checking ZFS Data Integrity

Checking ZFS Data Integrity

No fsck utility equivalent exists for ZFS. This utility has traditionally served two purposes, data
repair and data validation.

Data Repair

With traditional file systems, the way in which data is written is inherently vulnerable to unexpected
failure causing data inconsistencies. Because a traditional file system is not transactional,
unreferenced blocks, bad link counts, or other inconsistent data structures are possible. The addition
of journaling does solve some of these problems, but can introduce additional problems when the log
cannot be rolled back. With ZFS, none of these problems exist. The only way for inconsistent data to
exist on disk is through hardware failure (in which case the pool should have been replicated) or a
bug in the ZFS software exists.

Given that the fsck utility is designed to repair known pathologies specific to individual file systems,
writing such a utility for a file system with no known pathologies is impossible. Future experience
might prove that certain data corruption problems are common enough and simple enough such
that a repair utility can be developed, but these problems can always be avoided by using replicated
pools.

If your pool is not replicated, the chance that data corruption can render some or all of your data
inaccessible is always represent.

Data Validation

In addition to data repair, the fsck utility validates that the data on disk has no problems.
Traditionally, this task is done by unmounting the file system and running the fsck utility, possibly
taking the system to single-user mode in the process. This scenario results in downtime that is
proportional to the size of the file system being checked. Instead of requiring an explicit utility to
perform the necessary checking, ZFS provides a mechanism to perform regular checking of all data.
This functionality, known as scrubbing, is commonly used in memory and other systems as a method
of detecting and preventing errors before they result in hardware or software failure.

Controlling ZFS Data Scrubbing

Whenever ZFS encounters an error, either through scrubbing or when accessing a file on demand,
the error is logged internally so that you can get a quick overview of all known errors within the pool.

Explicit ZFS Data Scrubbing

The simplest way to check your data integrity is to initiate an explicit scrubbing of all data within the
pool. This operation traverses all the data in the pool once and verifies that all blocks can be read.
Scrubbing proceeds as fast as the devices allow, though the priority of any I/O remains below that of

Chapter9 - ZFSTroubleshooting and Data Recovery 129

Checking ZFS Data Integrity

130

normal operations. This operation might negatively impact performance, though the file system
should remain usable and nearly as responsive while the scrubbing occurs. To initiate an explicit
scrub, use the zpool scrub command. For example:

zpool scrub tank

The status of the current scrub can be displayed in the zpool status output. For example:

zpool status -v tank
pool: tank
state: ONLINE
scrub: scrub completed with @ errors on Tue Mar 7 15:27:36 2006

config:
NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror ONLINE 0 0 0
clt@dd ONLINE 0 0 0
cltld®d ONLINE 0 0 0

errors: No known data errors
Note that only one active scrubbing operation per pool can occur at one time.

Performing regular scrubbing also guarantees continuous I/O to all disks on the system. Regular
scrubbing has the side effect of preventing power management from placing idle disks in low-power
mode. If the system is generally performing I/O all the time, or if power consumption is not a
concern, then this issue can safely be ignored.

For more information about interpreting zpool status output, see “Querying ZFS Storage Pool
Status” on page 43.

ZFS Data Scrubbing and Resilvering

When a device is replaced, a resilvering operation is initiated to move data from the good copies to
the new device. This action is a form of disk scrubbing. Therefore, only one such action can happen
ata given time in the pool. If a scrubbing operation is in progress, a resilvering operation suspends
the current scrubbing, and restarts after the resilvering is complete.

For more information about resilvering, see “Viewing Resilvering Status” on page 140.

Solaris ZFS Administration Guide - May 2006

Identifying Problems in ZFS

Identifying Problems in ZFS

All ZFS troubleshooting is centered around the zpool status command. This command analyzes
the various failures in the system and identifies the most severe problem, presenting you with a
suggested action and a link to a knowledge article for more information. Note that the command
only identifies a single problem with the pool, though multiple problems can exist. For example, data
corruption errors always imply that one of the devices has failed. Replacing the failed device does not
fix the data corruption problems.

In addition, a ZFS diagnostic engine is provided to diagnose and report pool failures and device
failures. Checksum, I/O, device, and pool errors associated with pool or device failures are also
reported. ZFS failures as reported by fmd are displayed on the console as well as the system messages
file. In most cases, the fmd message directs you to the zpool status command for further recovery
instructions.

The basic recovery process is as follows:

® Identify the errors through the fmd messages that are displayed on the system console or in the
/var/adm/messages files.

= Find further repair instructions in the zpool status -x command.
® Repair the failures, such as:

Replace the faulted or missing device and bring it online.

Restore the faulted configuration or corrupted data from a backup.
Verify the recovery by using the zpool status x command.

Back up your restored configuration, if applicable.

This chapter describes how to interpret zpool status output in order to diagnose the type of failure
and directs you to one of the following sections on how to repair the problem. While most of the
work is performed automatically by the command, it is important to understand exactly what
problems are being identified in order to diagnose the type of failure.

Determining if Problems Exist in a ZFS Storage Pool

The easiest way to determine if any known problems exist on the system is to use the zpool status
-x command. This command describes only pools exhibiting problems. If no bad pools exist on the
system, then the command displays a simple message, as follows:

zpool status -x
all pools are healthy

Without the -x flag, the command displays the complete status for all pools (or the requested pool, if
specified on the command line), even if the pools are otherwise healthy.

For more information about command-line options to the zpool status command, see “Querying
ZFS Storage Pool Status” on page 43.

Chapter9 - ZFSTroubleshooting and Data Recovery 131

Identifying Problems in ZFS

132

Understanding zpool status Output

The complete zpool status output looks similar to the following:

zpool
pool:
state:
status:

action:

scrub:
config:

errors:

status tank

tank

DEGRADED

One or more devices has been taken offline by the administrator.
Sufficient replicas exist for the pool to continue functioning in a
degraded state.

Online the device using ’zpool online’ or replace the device with

"zpool replace’.

none requested

NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0
mirror DEGRADED 0 0 0
clt@0dd ONLINE 0 0 0
cltld®e OFFLINE 0 0 0

No known data errors

This output is divided into several sections:

Overall Pool Status Information

This header section in the zpool status output contains the following fields, some of which are only
displayed for pools exhibiting problems:

pool

state

status

action

see

scrub

errors

The name of the pool.

The current health of the pool. This information refers only to the ability of the pool to
provide the necessary replication level. Pools that are ONLINE might still have failing
devices or data corruption.

A description of what is wrong with the pool. This field is omitted if no problems are
found.

A recommended action for repairing the errors. This field is an abbreviated form
directing the user to one of the following sections. This field is omitted if no problems are
found.

A reference to a knowledge article containing detailed repair information. Online articles
are updated more often than this guide can be updated, and should always be referenced
for the most up-to-date repair procedures. This field is omitted if no problems are found.

Identifies the current status of a scrub operation, which might include the date and time
that the last scrub was completed, a scrub in progress, or if no scrubbing was requested.

Identifies known data errors or the absence of known data errors.

Solaris ZFS Administration Guide - May 2006

Identifying Problems in ZFS

Configuration Information

The config field in the zpool status output describes the configuration layout of the devices
comprising the pool, as well as their state and any errors generated from the devices. The state can be
one of the following: ONLINE, FAULTED, DEGRADED, UNAVAILABLE, or OFFLINE. If the state is anything
but ONLINE, the fault tolerance of the pool has been compromised.

The second section of the configuration output displays error statistics. These errors are divided into
three categories:

= READ - I/O error occurred while issuing a read request.
" WRITE - I/O error occurred while issuing a write request.

® CKSUM - Checksum error. The device returned corrupted data as the result of a read request.

These errors can be used to determine if the damage is permanent. A small number of I/O errors
might indicate a temporary outage, while a large number might indicate a permanent problem with
the device. These errors do not necessarily correspond to data corruption as interpreted by
applications. If the device is in a redundant configuration, the disk devices might show uncorrectable
errors, while no errors appear at the mirror or RAID-Z device level. If this scenario is the case, then
ZFS successfully retrieved the good data and attempted to heal the damaged data from existing
replicas.

For more information about interpreting these errors to determine device failure, see “Determining
the Type of Device Failure” on page 137.

Finally, additional auxiliary information is displayed in the last column of the zpool status output.
This information expands on the state field, aiding in diagnosis of failure modes. If a device is
FAULTED, this field indicates whether the device is inaccessible or whether the data on the device is
corrupted. If the device is undergoing resilvering, this field displays the current progress.

For more information about monitoring resilvering progress, see “Viewing Resilvering Status”
on page 140.

Scrubbing Status

The third section of the zpool status output describes the current status of any explicit scrubs. This
information is distinct from whether any errors are detected on the system, though this information
can be used to determine the accuracy of the data corruption error reporting. If the last scrub ended
recently, most likely, any known data corruption has been discovered.

For more information about data scrubbing and how to interpret this information, see “Checking
ZFS Data Integrity” on page 129.

Chapter9 - ZFSTroubleshooting and Data Recovery 133

Identifying Problems in ZFS

134

Data Corruption Errors

The zpool status command also shows whether any known errors are associated with the pool.
These errors might have been found during disk scrubbing or during normal operation. ZFS
maintains a persistent log of all data errors associated with the pool. This log is rotated whenever a
complete scrub of the system finishes.

Data corruption errors are always fatal. Their presence indicates that at least one application
experienced an I/O error due to corrupt data within the pool. Device errors within a replicated pool
do not result in data corruption and are not recorded as part of this log. By default, only the number
of errors found is displayed. A complete list of errors and their specifics can be found by using the
zpool status -v option. For example:

zpool status -v
pool: tank
state: DEGRADED
status: One or more devices has experienced an error resulting in data
corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the
entire pool from backup.
see: http://www.sun.com/msg/ZFS-8000-8A
scrub: resilver completed with 1 errors on Fri Mar 17 15:42:18 2006
config:

NAME STATE READ WRITE CKSUM
tank DEGRADED (1] 0 1
mirror DEGRADED 0 0 1
cltodo ONLINE 0 0 2
cltld®@ UNAVAIL 0 0 0 corrupted data

errors: The following persistent errors have been detected:

DATASET OBJECT RANGE
5 0 1v1=4294967295 blkid=0

A similar message is also displayed by fmd on the system console and the /var/adm/messages file.
These messages can also be tracked by using the fmdump command.

For more information about interpreting data corruption errors, see “Identifying the Type of Data
Corruption” on page 142.

System Reporting of ZFS Error Messages

In addition to persistently keeping track of errors within the pool, ZFS also displays syslog messages
when events of interest occur. The following scenarios generate events to notify the administrator:

Solaris ZFS Administration Guide - May 2006

Repairing a Missing Device

= Device state transition - If a device becomes FAULTED, ZFS logs a message indicating that the
fault tolerance of the pool might be compromised. A similar message is sent if the device is later
brought online, restoring the pool to health.

= Data corruption - If any data corruption is detected, ZFS logs a message describing when and
where the corruption was detected. This message is only logged the first time it is detected.
Subsequent accesses do not generate a message.

= Pool failures and device failures - If a pool failure or device failure occurs, the fault manager
daemon reports these errors through syslog messages as well as the fmdump command.

If ZFS detects a device error and automatically recovers from it, no notification occurs. Such errors
do not constitute a failure in the pool redundancy or data integrity. Moreover, such errors are
typically the result of a driver problem accompanied by its own set of error messages.

Repairing a Damaged ZFS Configuration

ZFS maintains a cache of active pools and their configuration on the root file system. If this file is
corrupted or somehow becomes out of sync with what is stored on disk, the pool can no longer be
opened. ZFS tries to avoid this situation, though arbitrary corruption is always possible given the
qualities of the underlying file system and storage. This situation typically results in a pool
disappearing from the system when it should otherwise be available. This situation can also manifest
itself as a partial configuration that is missing an unknown number of top-level virtual devices. In
either case, the configuration can be recovered by exporting the pool (if it is visible at all), and
re-importing it.

For more information about importing and exporting pools, see “Migrating ZFS Storage Pools”
on page 49.

Repairing a Missing Device

If a device cannot be opened, it displays as UNAVAILABLE in the zpool status output. This status
means that ZFS was unable to open the device when the pool was first accessed, or the device has
since become unavailable. If the device causes a top-level virtual device to be unavailable, then
nothing in the pool can be accessed. Otherwise, the fault tolerance of the pool might be
compromised. In either case, the device simply needs to be reattached to the system to restore normal
operation.

For example, you might see a message similar to the following from fmd after a device failure:

SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major
EVENT-TIME: Fri Mar 17 14:38:47 MST 2006

PLATFORM: SUNW,Ultra-60, CSN: -, HOSTNAME: neo

SOURCE: zfs-diagnosis, REV: 1.0

Chapter9 - ZFSTroubleshooting and Data Recovery 135

Repairing a Missing Device

EVENT-ID: 043bb@dd-f0a5-4b8f-a52d-8809e2ce2ela

DESC: A ZFS device failed. Refer to http://sun.com/msg/ZFS-8000-D3 for more information.
AUTO-RESPONSE: No automated response will occur.

IMPACT: Fault tolerance of the pool may be compromised.

REC-ACTION: Run ’'zpool status -x’ and replace the bad device.

136

The next step is to use the zpool status -x command to view more detailed information about the
device problem and the resolution. For example:

zpool status -x

pool: tank

state: DEGRADED
status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.
action: Attach the missing device and online it using ’'zpool online’.
see: http://www.sun.com/msg/ZFS-8000-D3

scrub: resilver completed with @ errors on Fri Mar 10 11:08:29 2006

config:

NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0
mirror DEGRADED 0 0 0
c0t1do UNAVAIL 0 0 0 cannot open
cltldd ONLINE 0 0 0

You can see from this output that the missing device c@0t1d@ is not functioning. If you determine that
the drive is faulty, replace the device.

Then, use the zpool online command to online the replaced device. For example:

zpool online tank c0t1d0

Confirm that the pool with the replaced device is healthy.

zpool status -x tank
pool ’tank’ is healthy

Physically Reattaching the Device

Exactly how a missing device is reattached depends on the device in question. If the device is a
network-attached drive, connectivity should be restored. If the device is a USB or other removable
media, it should be reattached to the system. If the device is a local disk, a controller might have failed
such that the device is no longer visible to the system. In this case, the controller should be replaced at
which point the disks will again be available. Other pathologies can exist and depend on the type of

Solaris ZFS Administration Guide - May 2006

Repairing a Damaged Device

hardware and its configuration. If a drive fails and it is no longer visible to the system (an unlikely
event), the device should be treated as a damaged device. Follow the procedures outlined in
“Repairing a Damaged Device” on page 137.

Notifying ZFS of Device Availability

Once a device is reattached to the system, ZFS might or might not automatically detect its availability.
If the pool was previously faulted, or the system was rebooted as part of the attach procedure, then
ZFS automatically rescans all devices when it tries to open the pool. If the pool was degraded and the
device was replaced while the system was up, you must notify ZFS that the device is now available
and ready to be reopened by using the zpool online command. For example:

zpool online tank c0t1do

For more information about bringing devices online, see “Bringing a Device Online” on page 42.

Repairing a Damaged Device

This section describes how to determine device failure types, clear transient errors, and replace a
device.

Determining the Type of Device Failure

The term damaged device is rather vague, and can describe a number of possible situations:

= Bitrot - Over time, random events, such as magnetic influences and cosmic rays, can cause bits
stored on disk to flip in unpredictable events. These events are relatively rare but common
enough to cause potential data corruption in large or long-running systems. These errors are
typically transient.

= Misdirected reads or writes — Firmware bugs or hardware faults can cause reads or writes of
entire blocks to reference the incorrect location on disk. These errors are typically transient,
though a large number might indicate a faulty drive.

= Administrator error - Administrators can unknowingly overwrite portions of the disk with bad
data (such as copying /dev/zero over portions of the disk) that cause permanent corruption on
disk. These errors are always transient.

= Temporary outage- A disk might become unavailable for a period time, causing I/Os to fail. This
situation is typically associated with network-attached devices, though local disks can experience
temporary outages as well. These errors might or might not be transient.

= Bad or flaky hardware - This situation is a catch-all for the various problems that bad hardware
exhibits. This could be consistent I/O errors, faulty transports causing random corruption, or
any number of failures. These errors are typically permanent.

Chapter9 - ZFSTroubleshooting and Data Recovery 137

Repairing a Damaged Device

138

= Offlined device - If a device is offline, it is assumed that the administrator placed the device in
this state because it is presumed faulty. The administrator who placed the device in this state can
determine is this assumption is accurate.

Determining exactly what is wrong can be a difficult process. The first step is to examine the error
counts in the zpool status output as follows:

zpool status -v pool

The errors are divided into I/O errors and checksum errors, both of which might indicate the
possible failure type. Typical operation predicts a very small number of errors (just a few over long
periods of time). If you are seeing large numbers of errors, then this situation probably indicates
impending or complete device failure. However, the pathology for administrator error can result in
large error counts. The other source of information is the system log. If the log shows a large number
of SCSI or fibre channel driver messages, then this situation probably indicates serious hardware
problems. If no syslog messages are generated, then the damage is likely transient.

The goal is to answer the following question:
Is another error likely to occur on this device?

Errors that happen only once are considered transient, and do not indicate potential failure. Errors
that are persistent or severe enough to indicate potential hardware failure are considered “fatal.” The
act of determining the type of error is beyond the scope of any automated software currently
available with ZFS, and so much must be done manually by you, the administrator. Once the
determination is made, the appropriate action can be taken. Either clear the transient errors or
replace the device due to fatal errors. These repair procedures are described in the next sections.

Even if the device errors are considered transient, it still may have caused uncorrectable data errors
within the pool. These errors require special repair procedures, even if the underlying device is
deemed healthy or otherwise repaired. For more information on repairing data errors, see “Repairing
Damaged Data” on page 142.

Clearing Transient Errors

If the device errors are deemed transient, in that they are unlikely to effect the future health of the
device, then the device errors can be safely cleared to indicate that no fatal error occurred. To clear
error counters for RAID-Z or mirrored devices, use the zpool clear command. For example:

zpool clear tank cltodo

This syntax clears any errors associated with the device and clears any data error counts associated
with the device.

To clear all errors associated with the virtual devices in the pool, and clear any data error counts
associated with the pool, use the following syntax:

Solaris ZFS Administration Guide - May 2006

Repairing a Damaged Device

zpool clear tank

For more information about clearing pool errors, see “Clearing Storage Pool Devices” on page 43.

Replacing a Device in a ZFS Storage Pool

If device damage is permanent or future permanent damage is likely, the device must be replaced.
Whether the device can be replaced depends on the configuration.

Determining if a Device Can Be Replaced

For a device to be replaced, the pool must be in the ONLINE state. The device must be part of a
replicated configuration, or it must be healthy (in the ONLINE state). If the disk is part of a replicated
configuration, sufficient replicas from which to retrieve good data must exist. If two disks in a
four-way mirror are faulted, then either disk can be replaced because healthy replicas are available.
However, if two disks in a four-way RAID-Z device are faulted, then neither disk can be replaced
because not enough replicas from which to retrieve data exist. If the device is damaged but otherwise
online, it can be replaced as long as the pool is not in the FAULTED state. However, any bad data on the
device is copied to the new device unless there are sufficient replicas with good data.

In the following configuration, the disk c1t1d@ can be replaced, and any data in the pool is copied
from the good replica, c1t0do.

mirror DEGRADED
cltodo ONLINE
cltldo FAULTED

The disk c1t@d0 can also be replaced, though no self-healing of data can take place because no good
replica is available.

In the following configuration, neither of the faulted disks can be replaced. The ONLINE disks cannot
be replaced either, because the pool itself is faulted.

raidz FAULTED
cltodo ONLINE
c2t0do FAULTED
c3t0do FAULTED
c3t0do ONLINE

In the following configuration, either top-level disk can be replaced, though any bad data present on
the disk is copied to the new disk.

c1t0do ONLINE
c1t1do ONLINE

Chapter9 - ZFSTroubleshooting and Data Recovery 139

Repairing a Damaged Device

140

If either disk were faulted, then no replacement could be performed because the pool itself would be
faulted.

Unreplaceable Devices

If the loss of a device causes the pool to become faulted, or the device contains too many data errors
in an unreplicated configuration, then the device cannot safely be replaced. Without sufficient
replicas, no good data with which to heal the damaged device exists. In this case, the only option is to
destroy the pool and re-create the configuration, restoring your data in the process.

For more information about restoring an entire pool, see “Repairing ZFS Storage Pool-Wide
Damage” on page 144.

Replacing a Device

Once you have determined that a device can be replaced, use the zpool replace command to
replace the device. If you are replacing the damaged device with another different device, use the
following command:

zpool replace tank c1lt0do c2todo

This command begins migrating data to the new device from the damaged device, or other devices in
the pool ifit is in a replicated configuration. When the command is finished, it detaches the damaged
device from the configuration, at which point the device can be removed from the system. If you have
already removed the device and replaced it with a new device in the same location, use the single
device form of the command. For example:

zpool replace tank clt0do

This command takes an unformatted disk, formats it appropriately, and then begins resilvering data
from the rest of the configuration.

For more information about the zpool replace command, see “Replacing Devices in a Storage
Pool” on page 43.

Viewing Resilvering Status

The process of replacing a drive can take an extended period of time, depending on the size of the
drive and the amount of data in the pool. The process of moving data from one device to another
device is known as resilvering, and can be monitored by using the zpool status command.

Traditional file systems resilver data at the block level. Because ZFS eliminates the artificial layering
of the volume manager, it can perform resilvering in a much more powerful and controlled manner.
The two main advantages of this feature are as follows:

Solaris ZFS Administration Guide - May 2006

Repairing a Damaged Device

= ZFS only resilvers the minimum amount of necessary data. In the case of a short outage (as
opposed to a complete device replacement), the entire disk can be resilvered in a matter of
minutes or seconds, rather than resilvering the entire disk, or complicating matters with “dirty
region” logging that some volume managers support. When an entire disk is replaced, the
resilvering process takes time proportional to the amount of data used on disk. Replacing a
500-Gbyte disk can take seconds if only a few gigabytes of used space is in the pool.

® Resilvering is interruptible and safe. If the system loses power or is rebooted, the resilvering
process resumes exactly where it left off, without any need for manual intervention.

To view the resilvering process, use the zpool status command. For example:

zpool status tank
pool: tank
state: DEGRADED
reason: One or more devices is being resilvered.
action: Wait for the resilvering process to complete.
see: http://www.sun.com/msg/ZFS-XXXX-08
scrub: none requested

config:
NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0
mirror DEGRADED 0 0 0
replacing DEGRADED 0 0 0 52% resilvered
c1t0do ONLINE 0 0 0
€2t0d0o ONLINE 0 0 0
cltldo ONLINE 0 0 0

In this example, the disk c1t0d0 is being replaced by c2t@d0. This event is observed in the status
output by presence of the replacing virtual device in the configuration. This device is not real, nor is it
possible for you to create a pool by using this virtual device type. The purpose of this device is solely
to display the resilvering process, and to identify exactly which device is being replaced.

Note that any pool currently undergoing resilvering is placed in the DEGRADED state, because the pool
cannot provide the desired replication level until the resilvering process is complete. Resilvering
proceeds as fast as possible, though the I/O is always scheduled with a lower priority than
user-requested I/O, to minimize impact on the system. Once the resilvering is complete, the
configuration reverts to the new, complete, configuration. For example:

zpool status tank
pool: tank
state: ONLINE
scrub: scrub completed with @ errors on Tue Mar 7 15:27:36 2006

config:
NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror ONLINE 0 0 0

Chapter9 - ZFSTroubleshooting and Data Recovery 141

Repairing Damaged Data

c2t0d@ ONLINE 0 0 0
cltldd ONLINE 0 0 0

errors: No known data errors

The pool is once again ONLINE, and the original bad disk (c1t0d@) has been removed from the
configuration.

Repairing Damaged Data

142

ZFS uses checksumming, replication, and self-healing data to minimize the chances of data
corruption. Nonetheless, data corruption can occur if the pool isn’t replicated, if corruption occurred
while the pool was degraded, or an unlikely series of events conspired to corrupt multiple copies of a
piece of data. Regardless of the source, the result is the same: The data is corrupted and therefore no
longer accessible. The action taken depends on the type of data being corrupted, and its relative
value. Two basic types of data can be corrupted:

= Pool metadata — ZFS requires a certain amount of data to be parsed to open a pool and access
datasets. If this data is corrupted, the entire pool or complete portions of the dataset hierarchy
will become unavailable.

= Object data - In this case, the corruption is within a specific file or directory. This problem might
result in a portion of the file or directory being inaccessible, or this problem might cause the
object to be broken altogether.

Data is verified during normal operation as well as through scrubbing. For more information about
how to verify the integrity of pool data, see “Checking ZFS Data Integrity” on page 129.

Identifying the Type of Data Corruption

By default, the zpool status command shows only that corruption has occurred, but not where this
corruption occurred. For example:

zpool status tank -v
pool: tank
state: ONLINE
status: One or more devices has experienced an error resulting in data
corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the
entire pool from backup.
see: http://www.sun.com/msg/ZFS-8000-8A
scrub: none requested
config:

NAME STATE READ WRITE CKSUM

Solaris ZFS Administration Guide - May 2006

Repairing Damaged Data

tank ONLINE
mirror ONLINE
c2t0d® ONLINE
cltld®d ONLINE

N N = =
[SIESTR SIS
[SRESTE SIS

errors: The following persistent errors have been detected:

DATASET OBJECT RANGE
tank 6 0-512

Each error indicates only that an error occurred at the given point in time. Each error is not
necessarily still present on the system. Under normal circumstances, this situation is true. Certain
temporary outages might result in data corruption that is automatically repaired once the outage
ends. A complete scrub of the pool is guaranteed to examine every active block in the pool, so the
error log is reset whenever a scrub finishes. If you determine that the errors are no longer present,
and you don’t want to wait for a scrub to complete, reset all errors in the pool by using the zpool
online command.

If the data corruption is in pool-wide metadata, the output is slightly different. For example:

zpool status -v morpheus
pool: morpheus
id: 1422736890544688191
state: FAULTED
status: The pool metadata is corrupted.
action: The pool cannot be imported due to damaged devices or data.
see: http://www.sun.com/msg/ZFS-8000-72
config:

morpheus FAULTED corrupted data
clt10do ONLINE

In the case of pool-wide corruption, the pool is placed into the FAULTED state, because the pool
cannot possibly provide the needed replication level.

Repairing a Corrupted File or Directory

If a file or directory is corrupted, the system might still be able to function depending on the type of
corruption. Any damage is effectively unrecoverable. No good copies of the data exist anywhere on
the system. If the data is valuable, you have no choice but to restore the affected data from backup.
Even so, you might be able to recover from this corruption without restoring the entire pool.

If the damage is within a file data block, then the file can safely be removed, thereby clearing the error
from the system. The first step is to try removing the file with the rm command. If this command
doesn’t work, the corruption is within the file’s metadata, and ZFS cannot determine which blocks
belong to the file in order to remove the corruption.

Chapter9 - ZFSTroubleshooting and Data Recovery 143

Repairing an Unbootable System

If the corruption is within a directory or a file’s metadata, the only choice is to move the file
elsewhere. You can safely move any file or directory to a less convenient location, allowing the
original object to be restored in place.

Repairing ZFS Storage Pool-Wide Damage

If the damage is in pool metadata that damage prevents the pool from being opened, then you must
restore the pool and all its data from backup. The mechanism you use varies widely by the pool
configuration and backup strategy. First, save the configuration as displayed by zpool status so that
you can recreate it once the pool is destroyed. Then, use zpool destroy - f to destroy the pool. Also,
keep a file describing the layout of the datasets and the various locally set properties somewhere safe,
as this information will become inaccessible if the pool is ever rendered inaccessible. With the pool
configuration and dataset layout, you can reconstruct your complete configuration after destroying
the pool. The data can then be populated by using whatever backup or restoration strategy you use.

Repairing an Unbootable System

144

ZFS is designed to be robust and stable despite errors. Even so, software bugs or certain unexpected
pathologies might cause the system to panic when a pool is accessed. As part of the boot process, each
pool must be opened, which means that such failures will cause a system to enter into a panic-reboot
loop. In order to recover from this situation, ZFS must be informed not to look for any pools on
startup.

ZFS maintains an internal cache of available pools and their configurations in
/etc/zfs/zpool.cache. The location and contents of this file are private and are subject to change.
If the system becomes unbootable, boot to the none milestone by using the -mmilestone=none boot
option. Once the system is up, remount your root file system as writable and then remove
/etc/zfs/zpool.cache. These actions cause ZFS to forget that any pools exist on the system,
preventing it from trying to access the bad pool causing the problem. You can then proceed to a
normal system state by issuing the svcadm milestone all command. You can use a similar process
when booting from an alternate root to perform repairs.

Once the system is up, you can attempt to import the pool by using the zpool import command.
However, doing so will likely cause the same error that occurred during boot, because the command
uses the same mechanism to access pools. If more than one pool is on the system and you want to
import a specific pool without accessing any other pools, you must re-initialize the devices in the
damaged pool, at which point you can safely import the good pool.

Solaris ZFS Administration Guide - May 2006

Index

A

accessing
ZFS snapshot accessing, ZFS snapshot (Continued)
(example of), 87
ACLmodel, Solaris, differences between ZFS and
traditional file systems, 29
ACL property mode
aclinherit, 63
aclmode, 63
aclinherit property mode, 98
aclmode property mode, 98
ACLs
access privileges, 96
ACLinheritance, 97
ACLinheritance flags, 97
ACL on ZFS directory ACLs, ACL on ZFS directory
(Continued)
detailed description, 100
ACLon ZFS file ACLs, ACL on ZFS file (Continued)
detailed description, 100
ACL property modes, 98
aclinherit property mode, 98
aclmode property mode, 98
description, 93
differences from POSIX-draft ACLs, 94
entry types, 96
format description, 94
modifying trivial ACL on ZFS file (verbose mode)
ACLs, modifying trivial ACL on ZFS file (verbose
mode) (Continued)
(example of), 102
restoring trivial ACL on ZFS file (verbose mode) ACLs,
restoring trivial ACL on ZFS file (verbose mode)
(Continued)

(example of), 106
setting ACL inheritance on ZFS file (verbose mode)
ACLs, setting ACL inheritance on ZFS file (verbose
mode) (Continued)
(example of), 107
setting ACLs on ZFS file (compact mode) ACLs, setting
ACLs on ZFS file (compact mode) (Continued)
(example of), 115
description, 114
setting ACLs on ZFS file (verbose mode) ACLs, setting
ACLs on ZFS file (verbose mode) (Continued)
description, 101
setting on ZFS files ACLs, setting on ZFS files
(Continued)
description, 99
adding
devices to ZFS storage pool (zpool add) adding, devices
to ZFS storage pool (zpool add) (Continued)
(example of), 40
ZFS file system to a non-global zone adding, ZFS file
system to a non-global zone (Continued)
(example of), 121
ZFS volume to a non-global zone adding, ZFS volume
to a non-global zone (Continued)
(example of), 122
alternate root pools
creating alternate root pools, creating (Continued)
(example of), 125
description, 124
importing alternate root pools, importing (Continued)
(example of), 125
atime property, description, 63

145

Index

attaching
devices to ZFS storage pool (zpool attach) attaching,
devices to ZFS storage pool (zpool attach)
(Continued)
(example of), 40
available property, description, 63

C
checking, ZFS data integrity, 129
checksum, definition, 19
checksum property, description, 63
checksummed data, description, 17
clearing
a device in a ZFS storage pool (zpool clear) clearing, a
device in a ZFS storage pool (zpool clear)
(Continued)
description, 43
device errors (zpool clear) clearing, device errors
(zpool clear) (Continued)
(example of), 138
clearing a device
ZFS storage pool clearing a device, ZFS storage pool
(Continued)
(example of), 43
clone, definition, 19
clones
creating clones, creating (Continued)
(example of), 89
destroying clones, destroying (Continued)
(example of), 89
features, 88
components of, ZFS storage pool, 31
components of ZFS, naming requirements, 20
compression property, description, 63
compressratio property, description, 64
controlling, data validation (scrubbing), 129
creating
a basic ZFS file system (zpool create) creating, a basic
ZFS file system (zpool create) (Continued)
(example of), 22
a ZFS storage pool (zpool create) creating, a ZFS
storage pool (zpool create) (Continued)
(example of), 22

146 Solaris ZFS Administration Guide - May 2006

alternate root pools creating, alternate root pools

(Continued)
(example of), 125

emulated volume creating, emulated volume
(Continued)
(example of), 119

emulated volume as swap device creating, emulated
volume as swap device (Continued)
(example of), 120

mirrored ZFS storage pool (zpool create) creating,
mirrored ZFS storage pool (zpool create)
(Continued)
(example of), 36

RAID-Z storage pool (zpool create) creating, RAID-Z
storage pool (zpool create) (Continued)
(example of), 36

ZFS clone creating, ZFS clone (Continued)
(example of), 89

ZFS file system, 25 creating, ZFS file system
(Continued)
(example of), 60
description, 60

ZFS file system hierarchy, 24

ZFS snapshot creating, ZFS snapshot (Continued)
(example of), 86

ZFS storage pool creating, ZFS storage pool
(Continued)
description, 35

ZFS storage pool (zpool create) creating, ZFS storage
pool (zpool create) (Continued)
(example of), 35

creation property, description, 64

D
data
corrupted, 128
corruption identified (zpool status -v) data,
corruption identified (zpool status -v)
(Continued)
(example of), 134
repair, 129
resilvering data, resilvering (Continued)
description, 130

Index

scrubbing data, scrubbing (Continued)
(example of), 130
validation (scrubbing), 129
dataset
definition, 19
description, 59
dataset types, description, 71
delegating
dataset to a non-global zone delegating, dataset to a
non-global zone (Continued)
(example of), 121
destroying
ZFS clone destroying, ZFS clone (Continued)
(example of), 89
ZFS file system destroying, ZFS file system (Continued)
(example of), 60
ZFS file system with dependents destroying, ZFS file
system with dependents (Continued)
(example of), 61
ZFS snapshot destroying, ZFS snapshot (Continued)
(example of), 86
ZFS storage pool destroying, ZFS storage pool
(Continued)
description, 35
ZFS storage pool (zpool destroy) destroying, ZFS
storage pool (zpool destroy) (Continued)
(example of), 39
detaching
devices to ZFS storage pool (zpool detach) detaching,
devices to ZFS storage pool (zpool detach)
(Continued)
(example of), 41
detecting
in-use devices detecting, in-use devices (Continued)
(example of), 37
mismatched replication levels detecting, mismatched
replication levels (Continued)
(example of), 37
determining
ifa device can be replaced determining, if a device can
be replaced (Continued)
description, 139
type of device failure determining, type of device failure
(Continued)
description, 137
devices property, description, 64

differences between ZFS and traditional file systems
file system granularity, 27
mounting ZFS file systems, 29
new Solaris ACL Model, 29
out of space behavior, 28
traditional volume management, 29
ZFS space accounting, 28
disks, as components of ZFS storage pools, 32
displaying
detailed ZFS storage pool health status displaying,
detailed ZFS storage pool health status (Continued)
(example of), 48
health status of storage pools displaying, health status of
storage pools (Continued)
description of, 47
syslog reporting of ZFS error messages displaying,
syslog reporting of ZFS error messages (Continued)
description, 134
ZFS storage pool health status displaying, ZFS storage
pool health status (Continued)
(example of), 48
ZFS storage pool I/O statistics displaying, ZFS storage
pool I/O statistics (Continued)
description, 45
ZFS storage pool vdev I/O statistics displaying, ZFS
storage pool vdev 1/O statistics (Continued)
(example of), 46
ZFS storage pool-wide I/O statistics displaying, ZFS
storage pool-wide I/O statistics (Continued)
(example of), 46
dry run
ZFS storage pool creation (zpool create -n) dry run,
ZFS storage pool creation (zpool create -n)
(Continued)
(example of), 38
dynamic striping
description, 35
storage pool feature, 35

E

EFIlabel
description, 32
interaction with ZFS, 32

147

Index

emulated volume
as swap device, 120
description, 119
exec property, description, 64
exporting
ZFS storage pool exporting, ZFS storage pool
(Continued)
(example of), 50

F

failure modes, 127
corrupted data, 128
damaged devices, 128
missing (faulted) devices, 128
file system, definition, 19
file system granularity, differences between ZFS and
traditional file systems, 27
file system hierarchy, creating, 24
files, as components of ZFS storage pools, 33

H

hardware and software requirements, 21

|
identifying
storage requirements, 23
type of data corruption (zpool status -v) identifying,
type of data corruption (zpool status -v)
(Continued)
(example of), 142
ZFS storage pool for import (zpool import -a)
identifying, ZFS storage pool for import (zpool
import -a) (Continued)
(example of), 51
importing
alternate root pools importing, alternate root pools
(Continued)
(example of), 125
ZFS storage pool importing, ZFS storage pool
(Continued)

148 Solaris ZFS Administration Guide - May 2006

(example of), 54
ZFS storage pool from alternate directories (zpool
import -d) importing, ZFS storage pool from
alternate directories (zpool import -d)
(Continued)
(example of), 53
in-use devices
detecting in-use devices, detecting (Continued)
(example of), 37
inheriting
ZFS properties (zfs inherit) inheriting, ZFS
properties (zfs inherit) (Continued)
description, 72

L
listing

descendants of ZFS file systems listing, descendants of
ZFS file systems (Continued)
(example of), 70

types of ZFS file systems listing, types of ZFS file
systems (Continued)
(example of), 71

ZFS file systems listing, ZFS file systems (Continued)
(example of), 69

ZFS file systems (zfs 1ist) listing, ZFS file systems
(zfs list) (Continued)
(example of), 26

ZFS file systems without header information listing,
ZFS file systems without header information
(Continued)
(example of), 71

ZFS pool information, 24

ZFS properties (zfs 1ist) listing, ZFS properties (zfs
list) (Continued)
(example of), 73

ZFS properties by source value listing, ZFS properties
by source value (Continued)
(example of), 75

ZFS properties for scripting listing, ZFS properties for
scripting (Continued)
(example of), 75

ZFS storage pools listing, ZFS storage pools
(Continued)
(example of), 44

Index

description, 43

M

migrating ZFS storage pools, description, 49
mirror, definition, 19
mirrored configuration
conceptual view, 33
description, 33
replication feature, 33
mirrored storage pool (zpool create), (example of), 36
mismatched replication levels
detecting mismatched replication levels, detecting
(Continued)
(example of), 37
modifying
trivial ACL on ZFS file (verbose mode) modifying,
trivial ACL on ZFS file (verbose mode) (Continued)
(example of), 102
mount points
automatic, 76
legacy, 76
managing ZFS mount points, managing ZFS
(Continued)
description, 76
mounted property, description, 64
mounting
ZFS file systems mounting, ZFS file systems
(Continued)
(example of), 78
mounting ZFS file systems, differences between ZFS and
traditional file systems, 29
mountpoint
default for ZFS file system, 60
default for ZFS storage pools, 38
mountpoint property, description, 64

N
naming requirements, ZFS components, 20
NFSv4 ACLs

ACLinheritance, 97

ACL inheritance flags, 97

ACL property modes, 98

differences from POSIX-draft ACLs, 94

format description, 94

model NFSv4 ACLs, model (Continued)
description, 93

notifying

ZFS of reattached device (zpool online) notifying, ZFS
of reattached device (zpool online) (Continued)
(example of), 137

(0]

offlining a device (zpool offline)
ZFS storage pool offlining a device (zpool of fline),
ZFS storage pool (Continued)
(example of), 41
onlining a device
ZFS storage pool (zpool online) onlining a device,
ZFS storage pool (zpool online) (Continued)
(example of), 42
onlining and offlining devices
ZFS storage pool onlining and offlining devices, ZFS
storage pool (Continued)
description, 41
origin property, description, 64
out of space behavior, differences between ZFS and
traditional file systems, 28

P

pool, definition, 19
pooled storage, description, 16
POSIX-draft ACLs, description, 94
properties of ZFS

description, 62

description of heritable properties, 62

Q

quota property, description, 65
quotas and reservations, description, 81

149

Index

R
RAID-Z, definition, 19
RAID-Z configuration
(example of), 36
conceptual view, 34
description, 34
replication feature, 34
read-only properties of ZFS
available, 63
compression, 64
creation, 64
description, 67
mounted, 64
origin, 64
referenced, 65
type, 66
used, 66
read-only property, description, 65
recordsize property
description, 65
detailed description, 68
recovering
destroyed ZFS storage pool recovering, destroyed ZFS
storage pool (Continued)
(example of), 55
referenced property, description, 65
renaming
ZFS file system renaming, ZFS file system (Continued)
(example of), 61
ZFS snapshot renaming, ZFS snapshot (Continued)
(example of), 86
repairing
a damaged ZFS configuration repairing, a damaged ZFS
configuration (Continued)
description, 135
an unbootable system repairing, an unbootable system
(Continued)
description, 144
pool-wide damage repairing, pool-wide damage
(Continued)
description, 144
repairing a corrupted file or directory repairing,
repairing a corrupted file or directory (Continued)
description, 143

150 Solaris ZFS Administration Guide - May 2006

replacing
a device (zpool replace) replacing, a device (zpool
replace) (Continued)
(example of), 43,140, 141
amissing device replacing, a missing device
(Continued)
(example of), 135
replication features of ZFS, mirrored or RAID-Z, 33
reservation property, description, 65
resilvering, definition, 19
resilvering and data scrubbing, description, 130
restoring
trivial ACL on ZFS file (verbose mode) restoring, trivial
ACL on ZFS file (verbose mode) (Continued)
(example of), 106
ZFS file system data (zfs receive) restoring, ZFS file
system data (zfs receive) (Continued)
(example of), 91
rights profiles
for management of ZFS file systems and storage pools
rights profiles, for management of ZFS file systems
and storage pools (Continued)
description, 125
rolling back
ZFS snapshot rolling back, ZFS snapshot (Continued)
(example of), 88

S
saving
ZFS file system data (zfs send) saving, ZFS file system
data (zfs send) (Continued)
(example of), 90
saving and restoring
ZFS file system data saving and restoring, ZFS file
system data (Continued)
description, 89
scripting
ZFS storage pool output scripting, ZFS storage pool
output (Continued)
(example of), 45
scrubbing
(example of), 130
data validation, 129
self-healing data, description, 34

Index

settable properties of ZFS

aclinherit, 63
aclmode, 63
atime, 63
checksum, 63
compression, 63
description, 68
devices, 64
exec, 64
mountpoint, 64
quota, 65
read-only, 65
recordsize, 65 settable properties of ZFS, recordsize
(Continued)
detailed description, 68
reservation, 65

setuid, 66
sharenfs, 66
snapdir, 66

used settable properties of ZFS, used (Continued)
detailed description, 67

volblocksize, 66

volsize, 66 settable properties of ZFS, volsize
(Continued)
detailed description, 69

zoned, 66

setting

ACL inheritance on ZFS file (verbose mode) setting,
ACL inheritance on ZFS file (verbose mode)
(Continued)

(example of), 107

ACLs on ZFS file (compact mode) setting, ACLs on ZFS
file (compact mode) (Continued)
(example of), 115
description, 114

ACLs on ZFS file (verbose mode) setting, ACLs on ZFS
file (verbose mode) (Continued)
(description, 101

ACLs on ZFS files setting, ACLs on ZFS files
(Continued)
description, 99

compression property setting, compression property
(Continued)

(example of), 25

legacy mount points setting, legacy mount points

(Continued)

(example of), 77
mountpoint property, 25
quota property (example of), 26
sharenfs property setting, sharenfs property
(Continued)
(example of), 25
ZFS atime property setting, ZFS atime property
(Continued)
(example of), 72
ZFS file system quota (zfs set quota) setting, ZFS file
system quota (zfs set quota) (Continued)
example of, 82
ZFS file system reservation setting, ZFS file system
reservation (Continued)
(example of), 82
ZFS mount points (zfs set mountpoint) setting, ZFS
mount points (zfs set mountpoint) (Continued)
(example of), 77
ZFS quota setting, ZFS quota (Continued)
(example of), 72
setuid property, description, 66
sharenfs property
description, 66,80
sharing
ZFS file systems sharing, ZFS file systems (Continued)
description, 80
example of, 80
simplified administration, description, 18
snapdir property, description, 66
snapshot
accessing snapshot, accessing (Continued)
(example of), 87
creating snapshot, creating (Continued)
(example of), 86
definition, 20
destroying snapshot, destroying (Continued)
(example of), 86
features, 85
renaming snapshot, renaming (Continued)
(example of), 86
rolling back snapshot, rolling back (Continued)
(example of), 88
space accounting, 87
Solaris ACLs
ACLinheritance, 97
ACLinheritance flags, 97

151

Index

ACL property modes, 98
differences from POSIX-draft ACLs, 94
format description, 94
new model Solaris ACLs, new model (Continued)
description, 93
storage requirements, identifying, 23

T

terminology
checksum, 19
clone, 19
dataset, 19
file system, 19
mirror, 19
pool, 19
RAID-Z, 19
resilvering, 19
snapshot, 20
virtual device, 20
volume, 20
traditional volume management, differences between ZFS
and traditional file systems, 29
transactional semantics, description, 17
troubleshooting
clear device errors (zpool clear) troubleshooting,
clear device errors (zpool clear) (Continued)
(example of), 138
damaged devices, 128
data corruption identified (zpool status -v)
troubleshooting, data corruption identified (zpool
status -v) (Continued)
(example of), 134
determining if a device can be replaced troubleshooting,
determining if a device can be replaced (Continued)
description, 139
determining if problems exist (zpool status -x), 131
determining type of data corruption (zpool status
-v) troubleshooting, determining type of data
corruption (zpool status -v) (Continued)
(example of), 142
determining type of device failure troubleshooting,
determining type of device failure (Continued)
description, 137
identifying problems, 131

152 Solaris ZFS Administration Guide - May 2006

missing (faulted) devices, 128

notifying ZFS of reattached device (zpool online)
troubleshooting, notifying ZFS of reattached device
(zpool online) (Continued)
(example of), 137

overall pool status information troubleshooting, overall
pool status information (Continued)
description, 132

repairing a corrupted file or directory troubleshooting,
repairing a corrupted file or directory (Continued)
description, 143

repairing a damaged ZFS configuration, 135

repairing an unbootable system troubleshooting,
repairing an unbootable system (Continued)
description, 144

repairing pool-wide damage troubleshooting, repairing
pool-wide damage (Continued)
description, 144

replacing a device (zpool replace) troubleshooting,
replacing a device (zpool replace) (Continued)
(example of), 140, 141

replacing a missing device troubleshooting, replacing a
missing device (Continued)
(example of), 135

syslog reporting of ZFS error messages, 134

ZFS failure modes, 127

type property, description, 66

unmounting

ZFS file systems unmounting, ZFS file systems
(Continued)
(example of), 79

unsharing

ZFS file systems unsharing, ZFS file systems
(Continued)
example of, 81

upgrading

ZFS storage pool upgrading, ZFS storage pool
(Continued)
description, 56

used property

description, 66
detailed description, 67

Index

Vv

virtual device, definition, 20
virtual devices, as components of ZFS storage pools, 33
volblocksize property, description, 66
volsize property
description, 66
detailed description, 69
volume, definition, 20

w

whole disks, as components of ZFS storage pools, 32

Y4
zfs create
(example of), 25,60
description, 60
zfs destroy, (example of), 60
zfs destroy -r, (example of), 61
ZFS file system, description, 59
ZFS file systems
ACL on ZFS directory ZFS file systems, ACL on ZFS
directory (Continued)
detailed description, 100
ACL on ZFS file ZFS file systems, ACL on ZFS file
(Continued)
detailed description, 100
adding ZFS file system to a non-global zone ZFS file
systems, adding ZFS file system to a non-global zone
(Continued)
(example of), 121
adding ZFS volume to a non-global zone ZFS file
systems, adding ZFS volume to a non-global zone
(Continued)
(example of), 122
checksum ZFS file systems, checksum (Continued)
definition, 19
checksummed data ZFS file systems, checksummed
data (Continued)
description, 17
clone ZFS file systems, clone (Continued)
creating, 89
destroying, 89

clones ZFS file systems, clones (Continued)
definition, 19
description, 88

component naming requirements, 20

creating ZFS file systems, creating (Continued)
(example of), 60

creating an emulated volume ZFS file systems, creating
an emulated volume (Continued)
(example of), 119

creating an emulated volume as swap device ZFS file
systems, creating an emulated volume as swap
device (Continued)
(example of), 120

dataset ZFS file systems, dataset (Continued)
definition, 19

dataset types ZFS file systems, dataset types (Continued)
description, 71

default mountpoint ZFS file systems, default
mountpoint (Continued)
(example of), 60

delegating dataset to a non-global zone ZFS file systems,
delegating dataset to a non-global zone (Continued)
(example of), 121

description, 16

destroying ZFS file systems, destroying (Continued)
(example of), 60

destroying with dependents ZFS file systems,
destroying with dependents (Continued)
(example of), 61

file system ZFS file systems, file system (Continued)
definition, 19

inheriting property of (zfs inherit) ZFS file systems,
inheriting property of (zfs inherit) (Continued)
(example of), 72

listing ZFS file systems, listing (Continued)
(example of), 69

listing descendants ZFS file systems, listing descendants
(Continued)
(example of), 70

listing properties by source value ZFS file systems,
listing properties by source value (Continued)
(example of), 75

listing properties for scripting ZFS file systems, listing
properties for scripting (Continued)
(example of), 75

153

Index

listing properties of (zfs 1ist) ZFS file systems, listing

properties of (zfs list) (Continued)
(example of), 73

listing types of ZFS file systems, listing types of
(Continued)
(example of), 71

listing without header information ZFS file systems,
listing without header information (Continued)
(example of), 71

managing automatic mount points, 76

managing legacy mount points ZFS file systems,
managing legacy mount points (Continued)
description, 76

managing mount points ZFS file systems, managing
mount points (Continued)
description, 76

modifying trivial ACL on ZFS file (verbose mode) ZFS
file systems, modifying trivial ACL on ZFS file
(verbose mode) (Continued)
(example of), 102

mounting ZFS file systems, mounting (Continued)
(example of), 78

pooled storage ZFS file systems, pooled storage
(Continued)
description, 16

property management within a zone ZFS file systems,
property management within a zone (Continued)
description, 122

renaming ZFS file systems, renaming (Continued)
(example of), 61

restoring data streams (zfs receive) ZFS file systems,
restoring data streams (zfs receive) (Continued)
(example of), 91

restoring trivial ACL on ZFS file (verbose mode) ZFS
file systems, restoring trivial ACL on ZFS file
(verbose mode) (Continued)
(example of), 106

rights profiles, 125

saving and restoring ZFS file systems, saving and
restoring (Continued)
description, 89

saving data streams (zfs send) ZFS file systems, saving
data streams (zfs send) (Continued)
(example of), 90

setting a reservation ZFS file systems, setting a
reservation (Continued)

Solaris ZFS Administration Guide - May 2006

(example of), 82

setting ACL inheritance on ZFS file (verbose mode) ZFS
file systems, setting ACL inheritance on ZFS file
(verbose mode) (Continued)
(example of), 107

setting ACLs on ZFS file (compact mode) ZFS file
systems, setting ACLs on ZFS file (compact mode)
(Continued)
(example of), 115
description, 114

setting ACLs on ZFS file (verbose mode) ZFS file
systems, setting ACLs on ZFS file (verbose mode)
(Continued)
description, 101

setting ACLs on ZFS files ZFS file systems, setting ACLs
on ZFS files (Continued)
description, 99

setting atime property ZFS file systems, setting atime
property (Continued)
(example of), 72

setting legacy mount point ZFS file systems, setting
legacy mount point (Continued)
(example of), 77

setting mount point (zfs set mountpoint) ZFS file
systems, setting mount point (zfs set mountpoint)
(Continued)
(example of), 77

setting quota property ZFS file systems, setting quota
property (Continued)
(example of), 72

sharing ZFS file systems, sharing (Continued)
description, 80
example of, 80

simplified administration ZFS file systems, simplified
administration (Continued)
description, 18

snapshot ZFS file systems, snapshot (Continued)
accessing, 87
creating, 86
definition, 20
description, 85
destroying, 86
renaming, 86
rolling back, 88

snapshot space accounting, 87

Index

transactional semantics ZFS file systems, transactional
semantics (Continued)
description, 17
unmounting ZFS file systems, unmounting (Continued)
(example of), 79
unsharing ZFS file systems, unsharing (Continued)
example of, 81
using on a Solaris system with zones installed ZFS file
systems, using on a Solaris system with zones
installed (Continued)
description, 120
volume ZFS file systems, volume (Continued)
definition, 20
ZFS file systems (zfs set quota)
setting a quota ZFS file systems (zfs set quota),
setting a quota (Continued)
example of, 82
zfs get, (example of), 73
zfs get -H -o, (example of), 75
zfs get -s, (example of), 75
zfs inherit, (example of), 72
zfs list
(example of), 26,69
zfs list -H, (example of), 71
zfs list -r, (example of), 70
zfs list -t, (example of), 71
zfs mount, (example of), 78
ZFS properties
aclinherit, 63
aclmode, 63
atime, 63
available, 63
checksum, 63
compression, 63
compressratio, 64
creation, 64
description, 62
devices, 64
exec, 64
inheritable, description of, 62
management within a zone ZFS properties,
management within a zone (Continued)
description, 122
mounted, 64
mountpoint, 64
origin, 64

quota, 65
read-only, 65
read-only, 67
recordsize, 65 ZFS properties, recordsize
(Continued)
detailed description, 68
referenced, 65
reservation, 65
settable, 68
setuid, 66
sharenfs, 66
snapdir, 66
type, 66
used, 66 ZFS properties, used (Continued)
detailed description, 67
volblocksize, 66
volsize, 66 ZFS properties, volsize (Continued)
detailed description, 69
zoned, 66
zoned property ZFS properties, zoned property
(Continued)
detailed description, 123
zfs receive, (example of), 91
zfs rename, (example of), 61
zfs send, (example of), 90
zfs set atime, (example of), 72
zfs set compression, (example of), 25
zfs set mountpoint
(example of), 25,77
zfs set mountpoint=legacy, (example of), 77
zfs set quota
(example of), 26
zfs set quota, (example of), 72
zfs set quota
example of, 82
zfs set reservation, (example of), 82
zfs set sharenfs, (example of), 25
zfs set sharenfs=on, example of, 80
ZFS space accounting, differences between ZFS and
traditional file systems, 28
ZFS storage pools
adding devices to (zpool add) ZFS storage pools,
adding devices to (zpool add) (Continued)
(example of), 40
alternate root pools, 124

155

Index

attaching devices to (zpool attach) ZFS storage pools,

attaching devices to (zpool attach) (Continued)
(example of), 40

clearing a device ZFS storage pools, clearing a device
(Continued)
(example of), 43

clearing device errors (zpool clear) ZFS storage pools,
clearing device errors (zpool clear) (Continued)
(example of), 138

components, 31

corrupted data ZFS storage pools, corrupted data
(Continued)
description, 128

creating (zpool create) ZFS storage pools, creating
(zpool create) (Continued)
(example of), 35

creating a RAID-Z configuration (zpool create) ZFS
storage pools, creating a RAID-Z configuration
(zpool create) (Continued)
(example of), 36

creating mirrored configuration (zpool create) ZFS
storage pools, creating mirrored configuration
(zpool create) (Continued)
(example of), 36

damaged devices ZFS storage pools, damaged devices
(Continued)
description, 128

data corruption identified (zpool status -v) ZFS
storage pools, data corruption identified (zpool
status -v) (Continued)
(example of), 134

data repair ZFS storage pools, data repair (Continued)
description, 129

data scrubbing ZFS storage pools, data scrubbing
(Continued)
(example of), 130
description, 129

data scrubbing and resilvering ZFS storage pools, data
scrubbing and resilvering (Continued)
description, 130

data validation ZFS storage pools, data validation
(Continued)
description, 129

default mountpoint, 38

destroying (zpool destroy) ZFS storage pools,
destroying (zpool destroy) (Continued)

Solaris ZFS Administration Guide - May 2006

(example of), 39

detaching devices from (zpool detach) ZFS storage
pools, detaching devices from (zpool detach)
(Continued)
(example of), 41

determining if a device can be replaced ZFS storage
pools, determining if a device can be replaced
(Continued)
description, 139

determining if problems exist (zpool status -x) ZFS
storage pools, determining if problems exist (zpool
status -x) (Continued)
description, 131

determining type of device failure ZFS storage pools,
determining type of device failure (Continued)
description, 137

displaying detailed health status ZFS storage pools,
displaying detailed health status (Continued)
(example of), 48

displaying health status, 47 ZFS storage pools,
displaying health status (Continued)
(example of), 48

doing a dry run (zpool create -n) ZFS storage pools,
doing a dry run (zpool create -n) (Continued)
(example of), 38

dynamic striping, 35

exporting ZFS storage pools, exporting (Continued)
(example of), 50

failure modes, 127

identifying for import (zpool import -a) ZFS storage
pools, identifying for import (zpool import -a)
(Continued)
(example of), 51

identifying problems ZFS storage pools, identifying
problems (Continued)
description, 131

identifying type of data corruption (zpool status -v)
ZFS storage pools, identifying type of data
corruption (zpool status -v) (Continued)
(example of), 142

importing ZFS storage pools, importing (Continued)
(example of), 54

importing from alternate directories (zpool import
-d) ZFS storage pools, importing from alternate
directories (zpool import -d) (Continued)
(example of), 53

Index

listing ZFS storage pools, listing (Continued)
(example of), 44

migrating ZFS storage pools, migrating (Continued)
description, 49

mirror ZFS storage pools, mirror (Continued)
definition, 19

mirrored configuration, description of, 33

missing (faulted) devices ZFS storage pools, missing
(faulted) devices (Continued)
description, 128

notifying ZFS of reattached device (zpool online) ZFS
storage pools, notifying ZFS of reattached device
(zpool online) (Continued)
(example of), 137

offlining a device (zpool of fline) ZFS storage pools,
offlining a device (zpool offline) (Continued)
(example of), 41

onlining and offlining devices ZFS storage pools,
onlining and offlining devices (Continued)
description, 41

overall pool status information for troubleshooting ZFS
storage pools, overall pool status information for
troubleshooting (Continued)
description, 132

pool ZES storage pools, pool (Continued)
definition, 19

pool-wide I/O statistics ZFS storage pools, pool-wide
1/O statistics (Continued)
(example of), 46

RAID-Z ZFS storage pools, RAID-Z (Continued)
definition, 19

RAID-Z configuration, description of, 34

recovering a destroyed pool ZFS storage pools,
recovering a destroyed pool (Continued)
(example of), 55

repairing a corrupted file or directory ZFS storage
pools, repairing a corrupted file or directory
(Continued)
description, 143

repairing a damaged ZFS configuration, 135

repairing an unbootable system ZFS storage pools,
repairing an unbootable system (Continued)
description, 144

repairing pool-wide damage ZFS storage pools,
repairing pool-wide damage (Continued)
description, 144

replacing a device (zpool replace) ZFS storage pools,

replacing a device (zpool replace) (Continued)
(example of), 43,140

replacing a missing device ZFS storage pools, replacing
amissing device (Continued)
(example of), 135

resilvering ZFS storage pools, resilvering (Continued)
definition, 19

rights profiles, 125

scripting storage pool output ZFS storage pools,
scripting storage pool output (Continued)
(example of), 45

system error messages ZFS storage pools, system error
messages (Continued)
description, 134

upgrading ZFS storage pools, upgrading (Continued)
description, 56

using files, 33

using whole disks, 32

vdev I/O statistics ZFS storage pools, vdev I/O statistics
(Continued)
(example of), 46

viewing resilvering process ZFS storage pools, viewing
resilvering process (Continued)
(example of), 141

virtual device ZFS storage pools, virtual device
(Continued)
definition, 20

virtual devices, 33

ZFS storage pools (zpool online)

onlining a device ZFS storage pools (zpool online),
onlining a device (Continued)
(example of), 42

zfs unmount, (example of), 79
zoned property

description, 66
detailed description, 123

zones

adding ZFS file system to a non-global zone zones,
adding ZFS file system to a non-global zone
(Continued)
(example of), 121

adding ZFS volume to a non-global zone zones, adding
ZFS volume to a non-global zone (Continued)
(example of), 122

157

Index

delegating dataset to a non-global zone zones,

delegating dataset to a non-global zone (Continued)
(example of), 121

using with ZFS file systems zones, using with ZFS file
systems (Continued)
description, 120

ZFS property management within a zone zones, ZFS
property management within a zone (Continued)
description, 122

zoned property zones, zoned property (Continued)
detailed description, 123

zpool add, (example of), 40
zpool attach, (example of), 40
zpool clear

(example of), 43
description, 43

zpool create

(example of), 22,24

basic pool zpool create, basic pool (Continued)
(example of), 35

mirrored storage pool zpool create, mirrored storage
pool (Continued)
(example of), 36

RAID-Z storage pool zpool create, RAID-Z storage
pool (Continued)
(example of), 36

zpool create -n

dry run zpool create -n, dry run (Continued)
(example of), 38

zpool destroy, (example of), 39

zpool detach, (example of), 41

zpool export, (example of), 50

zpool import -a, (example of), 51

zpool import -D, (example of), 55

zpool import -d, (example of), 53

zpool import name, (example of), 54
zpool iostat, pool-wide (example of), 46
zpool iostat -v, vdev (example of), 46
zpool list

(example of), 24,44
description, 43

zpool list -Ho name, (example of), 45
zpool offline, (example of), 41

zpool online, (example of), 42

zpool replace, (example of), 43

zpool status -v, (example of), 48

158

Solaris ZFS Administration Guide - May 2006

zpool status -x, (example of), 48
zpool upgrade, 56

	Solaris ZFS Administration Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Solaris ZFS File System (Introduction)
	What's New in ZFS?
	Using ZFS to Clone Non-Global Zones and Other Enhancements
	ZFS Backup and Restore Commands are Renamed
	Recovering Destroyed Storage Pools
	ZFS is Integrated With Fault Manager
	New zpool clear Command
	Compact NFSv4 ACL Format
	File System Monitoring Tool (fsstat)
	ZFS Web-Based Management

	What Is ZFS?
	ZFS Pooled Storage
	Transactional Semantics
	Checksums and Self-Healing Data
	Unparalleled Scalability
	ZFS Snapshots
	Simplified Administration

	ZFS Terminology
	ZFS Component Naming Requirements

	Getting Started With ZFS
	ZFS Hardware and Software Requirements and Recommendations
	Creating a Basic ZFS File System
	Creating a ZFS Storage Pool
	Identifying Storage Requirements
	Creating the ZFS Storage Pool

	Creating a ZFS File System Hierarchy
	Determining the ZFS File System Hierarchy
	Creating ZFS File Systems

	ZFS and Traditional File System Differences
	ZFS File System Granularity
	ZFS Space Accounting
	Out of Space Behavior

	Mounting ZFS File Systems
	Traditional Volume Management
	New Solaris ACL Model

	Managing ZFS Storage Pools
	Components of a ZFS Storage Pool
	Using Disks in a ZFS Storage Pool
	Using Files in a ZFS Storage Pool
	Virtual Devices in a Storage Pool

	Replication Features of a ZFS Storage Pool
	Mirrored Storage Pool Configuration
	RAID-Z Storage Pool Configuration
	Self-Healing Data in a Replicated Configuration
	Dynamic Striping in a Storage Pool

	Creating and Destroying ZFS Storage Pools
	Creating a ZFS Storage Pool
	Creating a Basic Storage Pool
	Creating a Mirrored Storage Pool
	Creating a RAID-Z Storage Pool

	Handling ZFS Storage Pool Creation Errors
	Detecting in Use Devices
	Mismatched Replication Levels
	Doing a Dry Run of Storage Pool Creation
	Default Mount Point for Storage Pools

	Destroying ZFS Storage Pools
	Destroying a Pool With Faulted Devices

	Managing Devices in ZFS Storage Pools
	Adding Devices to a Storage Pool
	Attaching and Detaching Devices in a Storage Pool
	Onlining and Offlining Devices in a Storage Pool
	Taking a Device Offline
	Bringing a Device Online

	Clearing Storage Pool Devices
	Replacing Devices in a Storage Pool

	Querying ZFS Storage Pool Status
	Basic ZFS Storage Pool Information
	Listing Information About All Storage Pools
	Listing Specific Storage Pool Statistics
	Scripting ZFS Storage Pool Output

	ZFS Storage Pool I/O Statistics
	Listing Pool-Wide Statistics
	Listing Virtual Device Statistics

	Health Status of ZFS Storage Pools
	Basic Storage Pool Health Status
	Detailed Health Status

	Migrating ZFS Storage Pools
	Preparing for ZFS Storage Pool Migration
	Exporting a ZFS Storage Pool
	Determining Available Storage Pools to Import
	Finding ZFS Storage Pools From Alternate Directories
	Importing ZFS Storage Pools
	Recovering Destroyed ZFS Storage Pools
	Upgrading ZFS Storage Pools

	Managing ZFS File Systems
	Creating and Destroying ZFS File Systems
	Creating a ZFS File System
	Destroying a ZFS File System
	Renaming a ZFS File System

	ZFS Properties
	Read-Only ZFS Properties
	The used Property

	Settable ZFS Properties
	The recordsize Property
	The volsize Property

	Querying ZFS File System Information
	Listing Basic ZFS Information
	Creating Complex ZFS Queries

	Managing ZFS Properties
	Setting ZFS Properties
	Inheriting ZFS Properties
	Querying ZFS Properties
	Querying ZFS Properties for Scripting

	Mounting and Sharing ZFS File Systems
	Managing ZFS Mount Points
	Automatic Mount Points
	Legacy Mount Points

	Mounting ZFS File Systems
	Temporary Mount Properties
	Unmounting ZFS File Systems
	Sharing ZFS File Systems
	Controlling Share Semantics
	Unsharing ZFS File Systems
	Sharing ZFS File Systems
	Legacy Share Behavior

	ZFS Quotas and Reservations
	Setting Quotas on ZFS File Systems
	Setting Reservations on ZFS File Systems

	Working With ZFS Snapshots and Clones
	ZFS Snapshots
	Creating and Destroying ZFS Snapshots
	Renaming ZFS Snapshots

	Displaying and Accessing ZFS Snapshots
	Snapshot Space Accounting

	Rolling Back to a ZFS Snapshot

	ZFS Clones
	Creating a ZFS Clone
	Destroying a ZFS Clone

	Saving and Restoring ZFS Data
	Saving ZFS Data With Other Backup Products
	Saving a ZFS Snapshot
	Restoring a ZFS Snapshot
	Remote Replication of ZFS Data

	Using ACLs to Protect ZFS Files
	New Solaris ACL Model
	Syntax Descriptions for Setting ACLs
	ACL Inheritance
	ACL Property Modes

	Setting ACLs on ZFS Files
	Setting and Displaying ACLs on ZFS Files in Verbose Format
	Setting ACL Inheritance on ZFS Files in Verbose Format

	Setting and Displaying ACLs on ZFS Files in Compact Format

	ZFS Advanced Topics
	Emulated Volumes
	Emulated Volumes as Swap or Dump Devices

	Using ZFS on a Solaris System With Zones Installed
	Adding ZFS File Systems to a Non-Global Zone
	Delegating Datasets to a Non-Global Zone
	Adding ZFS Volumes to a Non-Global Zone
	Using ZFS Storage Pools Within a Zone
	Property Management Within a Zone
	Understanding the zoned Property

	ZFS Alternate Root Pools
	Creating ZFS Alternate Root Pools
	Importing Alternate Root Pools

	ZFS Rights Profiles

	ZFS Troubleshooting and Data Recovery
	ZFS Failure Modes
	Missing Devices in a ZFS Storage Pool
	Damaged Devices in a ZFS Storage Pool
	Corrupted ZFS Data

	Checking ZFS Data Integrity
	Data Repair
	Data Validation
	Controlling ZFS Data Scrubbing
	Explicit ZFS Data Scrubbing
	ZFS Data Scrubbing and Resilvering

	Identifying Problems in ZFS
	Determining if Problems Exist in a ZFS Storage Pool
	Understanding zpool status Output
	Overall Pool Status Information
	Configuration Information
	Scrubbing Status
	Data Corruption Errors

	System Reporting of ZFS Error Messages

	Repairing a Damaged ZFS Configuration
	Repairing a Missing Device
	Physically Reattaching the Device
	Notifying ZFS of Device Availability

	Repairing a Damaged Device
	Determining the Type of Device Failure
	Clearing Transient Errors
	Replacing a Device in a ZFS Storage Pool
	Determining if a Device Can Be Replaced
	Unreplaceable Devices
	Replacing a Device
	Viewing Resilvering Status

	Repairing Damaged Data
	Identifying the Type of Data Corruption
	Repairing a Corrupted File or Directory
	Repairing ZFS Storage Pool-Wide Damage

	Repairing an Unbootable System

	Index

