
Solaris 8 Software Developer
Supplement

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-7503-10
April 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, JDK, Java HotSpot, Java 2D, J2SE, Java Naming
Directory Interface, JavaSpaces, JumpStart, and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc.
in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java, JDK, Java HotSpot, Java 2D, J2SE, Java Naming and
Directory Interface, JavaSpaces, JumpStart, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de
fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 7

1. What’s New at a Glance 11

2. Writing Device Drivers Topics 15

3. High-Availability Drivers 17

Driver Hardening 17

Device Driver Instances 18

Exclusive Use of DDI Access Handles 18

Detecting Corrupted Data 19

Containment of Faults 20

DMA Isolation 21

Handling Stuck Interrupts 21

Additional Driver Hardening Considerations 22

Serviceability 24

Checking the Current Device State 24

Correct Behavior When a Device Has Failed 24

Periodic Health Checks 26

4. SPARC: Driver Hardening Test Harness 27

Test Harness Description 27

Fault Injection 28

3

Data Access Functions 28

Setting Up the Test Harness 29

Installing the Test Harness 29

Configuring the Test Harness 30

Testing the Driver 31

Creating Faults 31

Injecting Faults 31

Fault-Injection Process 32

Test Harness Warnings 32

Using Scripts to Automate the Test Process 33

Automated Test Process 34

5. Drivers for Network Devices 37

Generic LAN Driver Overview 37

Type DL_ETHER: Ethernet V2 and ISO 8802-3 (IEEE 802.3) 38

Types DL_TPRand DL_FDDI: SNAP Processing 39

Type DL_TPR: Source Routing 39

Style 1 and Style 2 DLPI Providers 40

Implemented DLPI Primitives 40

Implemented ioctl Functions 42

GLD Driver Requirements 42

Network Statistics 44

Declarations and Data Structures 48

gld_mac_info Structure 48

gld_stats Structure 51

Entry Point and Service Routines 52

Arguments Used by GLD Routines 52

Entry Points 53

Service Routines 57

4 Solaris 8 Software Developer Supplement ♦ April 2001

6. Language Support Topics 61

7. Additional Partial Locales 63

Additional Partial Locales for European Solaris Software 63

Localization in the Base and Multilingual Solaris Product 64

8. Print Filter Enhancement mp(1) 69

mp(1) Print Filter Enhancement Overview 69

Localization of the Configuration File 70

Customizing Existing prolog Files and Adding New prolog Files 76

Creating a New .xpr File 84

9. Development Tools Topics 87

10. Using appcert 89

Purpose of the appcert Utility 89

What appcert Checks 90

Private Symbol Usage 90

Static Linking 90

Unbound Symbols 90

What appcert Does Not Check 91

Working with appcert 91

appcert Options 92

appcert Results 93

Correcting Problems Reported by appcert 95

11. WBEM SDK 97

Web-Based Enterprise Management (WBEM) 97

12. Linkers and Libraries Guide Revisions 99

Changes to Linkers and Libraries Guide 99

13. Solaris Modular Debugger Guide Revisions 101

Changes to Solaris Modular Debugger Guide 101

14. Multithreaded Programming Guide Revisions 103

Contents 5

SPARC: Changes to Multithreaded Programming Guide 103

15. Interface Development Topics 105

16. System Interface Guide Revisions 107

Changes to System Interface Guide 107

17. Java 2 Standard Edition and JDK Topics 109

18. Java 2 Standard Edition and JDK New Feature Information 111

Java 2 SDK, Standard Edition, version 1.3.0 111

Performance Enhancements 112

Easier Web Deployment 113

Enterprise Interoperability 114

Security Advances 115

Java Sound 116

Enhanced APIs and Improved Ease of Development 117

Java 2 SDK, Standard Edition, version 1.2.2_07a and Previous Releases 120

JDK Releases 121

Java Servlet Support in Apache Web Server 122

6 Solaris 8 Software Developer Supplement ♦ April 2001

Preface

The Solaris 8 Software Developer Supplement describes new features in SolarisTM

Update releases. The following information adds to or supersedes information in the
previous releases of Solaris 8 documentation sets. Solaris documentation is available
on the Solaris 8 Documentation CD.

Note - The Solaris operating environment runs on two types of hardware, or
platforms — SPARCTM and IA (Intel Architecture). The Solaris operating environment
also runs on both 64-bit and 32-bit address spaces. The information in this document
pertains to both platforms and address spaces unless called out in a special chapter,
section, note, bullet, figure, table, example, or code example.

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun .

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com .

7

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls −a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

8 Solaris 8 Software Developer Supplement ♦ April 2001

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser
prompt

#

Preface 9

10 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 1

What’s New at a Glance

This chapter highlights new features added to the SolarisTM 8 Update releases.

Note - For the most current man pages, use the man command. The Solaris 8 Update
release man pages include new feature information not found in the Solaris 8
Reference Manual Collection.

TABLE 1–1 Solaris 8 Update Features

Feature
Update
Release

Writing Device Drivers

SPARC: The driver hardening test harness is a Solaris device driver development tool. The
test harness injects a wide range of simulated hardware faults when the driver under
development accesses its hardware. This fault-injection test harness tests the resilience of a
SPARC based device driver.

For more information, see Chapter 4

4/01

High-availability drivers provides a detailed description of how to design drivers to support
high availability through driver hardening and ensuring serviceability. This material extends
information provided in the Solaris 8 Writing Device Drivers.

For more information, see Chapter 3.

10/00

11

TABLE 1–1 Solaris 8 Update Features (continued)

Feature
Update
Release

You can use Generic LAN driver (GLD) to implement much of the STREAMS and Data Link
Provider Interface (DLPI) functionality for a Solaris network driver. Until the Solaris 8 10/00
release, the GLD module was available only for Solaris Intel Platform Edition network drivers.
Now GLD is available for Solaris SPARC Platform Edition network drivers as well. For the 4/
01 release, GLD is updated with bug fixes.

For more information, see Chapter 5.

10/00 and
updated in
4/01

Language Support

The File System Safe Universal Transformation Format, or UTF-8, is an encoding defined by
X/Open as a multibyte representation of Unicode. UTF-8 encompasses almost all of the
characters for traditional single-byte and multibyte locales for European and Asian languages
for Solaris locales. For the 10/00 release, Russian and Polish and two new locales for Catalan
are added. For the 4/01 release, two additional languages, Turkish UTF-8 Codeset and
Russian UTF-8 Codeset are added to a table of already existing Eastern European locales.

For more information, see “Additional Partial Locales for European Solaris Software” on page
63.

10/00 and
updated in
4/01

The mp program accepts international text files of various Solaris locales and produces output
that is proper for the specified locale. The output will also contain proper text layout, for
instance, bidirectional text rendering, and shaping as the complex text layout (CTL) is
supported in mp. Depending on each locale’s system font configuration for mp, the PostScriptTM

output file can contain glyph images from Solaris system-resident scalable or bitmap fonts.

For more information, see Chapter 8.

4/01

Development Tools

The appcert utility verifies an object file’s conformance to the Solaris ABI. Conforming to
the Solaris ABI greatly increases an application’s probability of being compatible with future
releases of Solaris software.

For more information, see Chapter 10.

4/01

Web-Based Enterprise Management (WBEM) includes standards for web-based management
of systems, networks, and devices on multiple platforms. The Sun WBEM Software
Developer’s Toolkit (SDK) enables software developers to create standards-based applications
that manage resources in the Solaris operating environment. Developers can also use this
toolkit to write providers, programs that communicate with managed resources to access data.
The Sun WBEM SDK includes Client Application Programming Interfaces (APIs) for
describing and managing resources in Common Information Model (CIM), and Provider APIs
for getting and setting dynamic data on the managed resource. The Sun WBEM SDK also
provides CIM WorkShop, a Java application for creating and viewing the managed resources
on a system, and a set of example WBEM client and provider programs.

For more information, see the Sun WBEM SDK Developer’s Guide.

4/01

12 Solaris 8 Software Developer Supplement ♦ April 2001

TABLE 1–1 Solaris 8 Update Features (continued)

Feature
Update
Release

SPARC: Multithreaded Programming Guide has been updated with bug fixes: 4308968, 4356675,
4356690.

To view the book, see the Multithreaded Programming Guide

1/01

The Linkers and Libraries Guide has been updated with several new features.

For more information, see “Changes to Linkers and Libraries Guide ” on page 99.

1/01 and
10/00

System Interface Tools

The System Interface Guide is updated to incorporate bug fixes. This release corrects several
typographical errors in text and source code examples.

To view the book, see System Interface Guide.

6/00

Java Releases

The Java 2 SDKTM Standard Edition v. 1.3.0, also known as J2SETM 1.3.0, is an upgrade release
for Java 2 SDK. The J2SE release includes the following new features and enhancements.
� Performance Improvements

Java HotSpotTM technology- and performance-tuned runtime libraries make J2SE 1.3.0 the
fastest JavaTM platform to date.

� Easier Web Deployment

New features such as applet caching and automatic installation of optional packages by
J2SE 1.3.0’s JavaTM Plug-in component enhance the speed and flexibility with which you
can display programs on the web.

� Enterprise Interoperability

The addition of RMI/IIOP and the Java Naming and Directory InterfaceTM in J2SE 1.3.0
enhance the interoperability of the Java 2 Platform.

� Security Advances

New support for RSA electronic signing, dynamic trust management, X.509 certificates,
and verification of Netscape-signed files mean more ways for developers to protect their
electronic data.

� Java Sound

J2SE 1.3.0 includes a powerful new sound API. Previous releases of the platform limited
audio support to basic playback of audio clips. With this release, the Java 2 Platform
defines a set of standard classes and interfaces for low-level audio support.

� Enhanced APIs and Improved Ease of Development

In response to requests from the development community, J2SE 1.3.0 adds new features to
various areas of the Java 2 Platform. These features expand the functionality of the
platform to enable development of more powerful applications. In addition, many of the
new features make the development process itself faster and more efficient.

For more J2SE improvements, see “Java 2 SDK, Standard Edition, version 1.3.0” on page 111.

4/01

What’s New at a Glance 13

TABLE 1–1 Solaris 8 Update Features (continued)

Feature
Update
Release

The J2SE 1.2.2_07a contains fixes for bugs that were identified in previous releases in the J2SE
1.2.2 series. An important bug fix is a fix for a performance regression that was introduced in
J2SE 1.2.2_05. For more information about bug fixes in J2SE 1.2.2_07a, see this web site:
http://java.sun.com/j2se/1.2/ReleaseNotes.html .

4/01

The Java 2 SDK 1.2.2_06 and JDK 1.1.8_12 are improved with bug fixes since the last release. 1/01

The Java 2 SDK 1.2.2_05a includes the following new features.
� Scalability improvements to over 20 CPUs

� Improved just-in time (JIT) compiler optimizations

� Text-rendering performance improvements

� poller class demo package

� Swing improvements

For more information, see Table 18–1.

10/00

32-bit: With the addition of the mod_jserv module and related files, the Apache web server
now supports Java servlets.

For more information, see “Java Servlet Support in Apache Web Server” on page 122.

10/00

Early Access

This release includes an Early Access (EA) directory with EA software. For more information, see the Readme
on the Solaris Software CD 2 of 2.

14 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 2

Writing Device Drivers Topics

This section provides instructions for writing device drivers in the Solaris
environment. This section contains these chapters.

Chapter 3 Provides information on driver hardening to prevent
driver failures resulting from device failures

Chapter 4 Describes how to configure the test harness, create error
injection specifications (referred to as errdefs), and execute
the tests on your device driver

Chapter 5 Provides the information to use Generic LAN driver
(GLD) to implement much of the STREAMS and Data
Link Provider Interface (DLPI) functionality for a Solaris
network driver

15

16 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 3

High-Availability Drivers

Driver hardening is new in the Solaris 8 10/00 release. For more information about
how to create a Solaris device driver, see Writing Device Drivers.

Availability is a function of both failure rate and speed of repair. In many cases, the
failure of an individual device need not result in a total system failure. Redundant
hardware components, together with drivers that are designed to support High
Availability, can allow a system to continue operation even in the face of individual
component failure. In many cases, such drivers can allow the system to be repaired
even while it continues to provide service.

The programmatic elimination of driver failures that result from device failures is
called driver hardening. A hardened driver can tolerate and protect the rest of the
system from errors that might otherwise propagate from a faulty device.

Functions within a driver that help isolate faults and assist in more rapid recovery
and repair improve the system Serviceability; this improves Availability by reducing
time to repair.

Note - For the most current man pages, use the man command. The Solaris 8 Update
release man pages include new feature information that is not in the Solaris 8
Reference Manual Collection.

Driver Hardening
Hardening is the process of ensuring that a driver works correctly even though faults
occur in the I/O device that it controls or other faults originating outside the system
core. A hardened driver must not panic, hang the system, or allow the uncontrolled
spread of corrupted data as the result of any such faults.

17

The driver developer must take responsibility for:

� Correct use of the DDI functions

� Detecting and reporting any corruption of device I/O

� Handling devices with deviant interrupt logic

All Solaris drivers should be hardened. Hardened drivers obey these rules:

� Each piece of hardware should be controlled by a separate instance of the device
driver.

� Programmed I/O (PIO) must be performed only through the DDI access functions,
by using the appropriate data access handle.

� The device driver must assume that data it receives from the device could be
corrupted. The driver must check the integrity of the data before using it.

� The driver must control the effects of any faults that it detects. Known bad data
must not be released to the rest of the system.

� The driver must ensure that all writes by the device into DMA buffers
(DDI_DMA_READ) are contained within pages of memory that are controlled
entirely by the driver. This prevents a DMA fault from corrupting an arbitrary part
of the system’s main memory.

� The device driver must not be an unlimited drain on system resources if the
device locks up. The driver should time-out if a device claims to be continuously
busy. The driver should also detect a pathological (stuck) interrupt request and
take appropriate action.

� The driver must free resources after a fault. For example, the system must be able
to close all minor devices and detach driver instances even after the hardware fails.

Device Driver Instances
The Solaris kernel allows multiple instances of a driver. Each instance has its own
data space but shares the text and some global data with other instances. The device
is managed on a per-instance basis. Hardened drivers should use a separate instance
for each piece of hardware unless the driver is designed to handle failover internally.
There can be multiple instances of a driver per slot, for example, multi-function
cards, which is standard behavior for Solaris device drivers.

Exclusive Use of DDI Access Handles
All programmed I/O (PIO) access by a hardened driver must use Solaris DDI access
functions from the ddi_get X, ddi_put X, ddi_rep_get X, and ddi_rep_put X
families of routines. The driver should not directly access the mapped registers by
the address returned from ddi_regs_map_setup (9F). The use of an access handle

18 Solaris 8 Software Developer Supplement ♦ April 2001

ensures that an I/O fault is controlled and its effects confined to the returned value,
rather than possibly corrupting other parts of the machine state. (Avoid the
ddi_peek (9F) and ddi_poke (9F) routines because they do not use access handles.)

The DDI access mechanism is important because it provides an opportunity to
control how data is read into the kernel. DDI access routines provide protection by
constraining the effect of bus time-out traps.

Detecting Corrupted Data
The following sections consider where data corruption can occur and the steps you
can take to detect it.

Corruption of Device Management and Control Data
The driver should assume that any data obtained from the device, whether by PIO or
DMA, could have been corrupted. In particular, extreme care should be taken with
pointers, memory offsets, or array indexes read or calculated from data that is
supplied by the device. Such values can be malignant, meaning they can cause a
kernel panic if dereferenced. All such values should be checked for range and
alignment (if required) before use.

Even if a pointer is not malignant, it can still mislead. For example, it can point at a
valid instance of an object, but not the correct one. Where possible, the driver should
cross-check the pointer with the pointed-to object, or otherwise validate the data
obtained through it.

Other types of data can also be misleading, such as packet lengths, status words, or
channel IDs. Each type of data should be checked to the extent possible: a packet
length can be range-checked to ensure that it is not negative or larger than the
containing buffer; a status word can be checked for ”impossible” bits; and a channel
ID can be matched against a list of valid IDs.

Where a value is used to identify a Stream, the driver must ensure that the Stream
still exists. The asynchronous nature of STREAMS processing means that a Stream
can be dismantled while device interrupts are still outstanding.

The driver should not reread data from the device. The data should be read once,
validated, and stored in the driver’s local state. This avoids the hazard presented by
data that, although correct when initially read and validated, is incorrect when
reread later.

The driver should also ensure that all loops are bounded so that a device returning a
continuous BUSYstatus, or claiming that another buffer needs to be processed, does
not lock up the entire system.

High-Availability Drivers 19

Corruption of Received Data
Device errors can result in corrupted data being placed in receive buffers. Such
corruption is indistinguishable from corruption that occurs beyond the domain of the
device—for example, within a network. Typically, existing software is already in
place to handle such corruption; for example, through integrity checks at the
transport layer of a protocol stack or within the application using the device.

If the received data will not be checked for integrity at a higher layer—as in the case
of a disk driver, for example—it can be integrity-checked within the driver itself.
Methods of detecting corruption in received data are typically device-specific
(checksums, CRC, and so forth).

Detecting Faults
Any ancestor of a device driver can disable the data path to the device if it detects a
fault. When PIO access is disabled, any reads from the device return undefined
values, while writes are ignored. If DMA access is disabled, the device might be
prevented from accessing memory, or it might receive undefined data on reads and
have writes discarded.

A device driver can detect that a data path has been disabled by using the following
DDI routines:

� ddi_check_acc_handle (9F)

� ddi_check_dma_handle (9F)

Each function checks whether any faults affecting the data path represented by the
supplied handle have been detected. If one of these functions returns DDI_FAILURE ,
indicating that the data path has failed, the driver should report the fault by using
ddi_dev_report_fault (9F), perform any necessary cleanup, and, where possible,
return an appropriate error to its caller.

Containment of Faults
Preservation of system integrity requires that faults be detected before they alter the
system state. Consequently, the driver must test for faults whenever data returned
from the device is to be used by the system.

� The ddi_check_acc_handle (9F) and ddi_check_dma_handle (9F) calls
should be made at significant junctures, such as just before passing a data block to
the upper layers.

� Data must not be forwarded out of the driver if the device has failed.

� The driver must consider other possible impacts of the failure on the integrity of
the system. The driver must ensure that kernel resources, such as memory, are not
permanently lost when data cannot be forwarded. Threads should not remain
blocked waiting for signals that will never be generated.

20 Solaris 8 Software Developer Supplement ♦ April 2001

� The driver should limit its processing while in the failed state (for example,
freeing messages in wput routines, attempting to permanently disable interrupts
from a failed board, and so forth).

DMA Isolation
A defective device might initiate an improper DMA transfer over the bus. This data
transfer could corrupt good data that was previously delivered. A device that fails
might generate a corrupt address that can contaminate memory that does not even
belong to its own driver.

In systems with an IOMMU, a device can write only to pages mapped as writable for
DMA. Therefore, pages that are to be the target of DMA writes should be owned
solely by one driver instance and not shared with any other kernel structure. While
the page in question is mapped as writable for DMA, the driver should be suspicious
of data in that page. The page must be unmapped from the IOMMU before it is
passed beyond the driver, or before any validation of the data.

You can use ddi_umem_alloc (9F) to guarantee that a whole aligned page is
allocated, or allocate multiple pages and ignore the memory below the first page
boundary. You can find the size of an IOMMU page by using ddi_ptob (9F).

Alternatively, the driver can choose to copy the data into a safe part of memory
before processing it. If this is done, the data must first be synchronized by using
ddi_dma_sync (9F).

Calls to ddi_dma_sync (9F) should specify SYNC_FOR_DEVbefore using DMA to
transfer data to a device, and SYNC_FOR_CPUafter using DMA to transfer data from
the device to memory.

On some PCI-based systems with an IOMMU, devices might be able to use PCI dual
address cycles (64-bit addresses) to bypass the IOMMU. This gives the device the
potential to corrupt any region of main memory. Hardened device drivers must not
attempt to use such a mode and should disable it.

Handling Stuck Interrupts
The driver must identify stuck interrupts because a persistently asserted interrupt
severely affects system performance, almost certainly stalling a single-processor
machine.

Sometimes it is difficult for the driver to identify a particular interrupt as bogus. For
network drivers, if a receive interrupt is indicated but no new buffers have been
made available, no work was needed. When this is an isolated occurrence, it is not a
problem, as the actual work might already have been completed by another routine
(read service, for example).

High-Availability Drivers 21

On the other hand, continuous interrupts with no work for the driver to process can
indicate a stuck interrupt line. For this reason, all platforms allow a number of
apparently bogus interrupts to occur before taking defensive action.

A hung device, while appearing to have work to do, might be failing to update its
buffer descriptors. The driver should defend against such repetitive requests.

In some cases, platform–specific bus drivers might be capable of identifying a
persistently unclaimed interrupt and can disable the offending device. However, this
relies on the driver’s ability to identify the valid interrupts and return the
appropriate value. The driver should therefore return a DDI_INTR_UNCLAIMED
result unless it detects that the device legitimately asserted an interrupt. That is, the
device actually requires the driver to do some useful work.

The legitimacy of other more incidental interrupts is much harder to certify. To this
end, an interrupt-expected flag is a useful tool for evaluating whether an interrupt is
valid. Consider an interrupt such as descriptor free, which can be generated if all the
device’s descriptors had been previously allocated. If the driver detects that it has
taken the last descriptor from the card, it can set an interrupt-expected flag. If this
flag is not set when the associated interrupt is delivered, it is suspicious.

Some informative interrupts might not be predictable, such as one that indicates that
a medium has become disconnected or frame sync has been lost. The easiest method
of detecting whether such an interrupt is stuck is to mask this particular source on
first occurrence until the next polling cycle.

If the interrupt occurs again while disabled, this should be considered a false
interrupt. Some devices have interrupt status bits that can be read even if the mask
register has disabled the associated source and might not be causing the interrupt.
Driver designers can devise more appropriate algorithms specific to their devices.

Avoid looping on interrupt status bits indefinitely. Break such loops if none of the
status bits set at the start of a pass requires any real work.

Additional Driver Hardening Considerations
In addition to the requirements discussed in the previous sections, the driver
developer must consider a few other issues such as:

� Thread interaction

� Threats from top-down requests

� Adaptive strategies

Thread Interaction
Kernel panics in a device driver are often caused by the unexpected interaction of
kernel threads after a device failure. When a device fails, threads can interact in ways
that the designer had not anticipated.

22 Solaris 8 Software Developer Supplement ♦ April 2001

For example, if processing routines terminate early, they might fail to signal other
threads that are waiting on condition variables. Attempting to inform other modules
of the failure or handling unanticipated callbacks can result in undesirable thread
interactions. Examine the sequence of mutex acquisition and relinquishment that can
occur during device failures.

Threads that originate in an upstream STREAMS module can run into unfortunate
paradoxes if used to call back into that module unexpectedly. You might use
alternative threads to handle exception messages. For instance, a wput procedure
might use a read-side service routine to communicate an M_ERROR, rather than doing
it directly with a read-side putnext .

A failing STREAMS device that cannot be quiesced during close (because of the
fault) can generate an interrupt after the Stream has been dismantled. The interrupt
handler must not attempt to use a stale Stream pointer to try to process the message.

Threats From Top-Down Requests
While protecting the system from defective hardware, the driver designer also needs
to protect against driver misuse. Although the driver can assume that the kernel
infrastructure is always correct (a trusted core), user requests passed to it can be
potentially destructive.

For example, a user can request an action to be performed on a user-supplied data
block (M_IOCTL) that is smaller than that indicated in the control part of the
message. The driver should never trust a user application.

The design should consider the construction of each type of ioctl that it can receive
with a view to the potential harm that it could cause. The driver should make checks
to be sure that it does not process malformed ioctl s.

Adaptive Strategies
A driver can continue to provide service with faulty hardware and attempt to work
around the identified problem by using an alternative strategy for accessing the
device. Given that broken hardware is unpredictable and given the risk associated
with additional design complexity, adaptive strategies are not always wise. At most,
they should be limited to periodic interrupt polling and retry attempts. Periodically
retrying the device lets the driver know when a device has recovered. Periodic
polling can control the interrupt mechanism after a driver has been forced to disable
interrupts.

Ideally, a system always has an alternative device to provide a vital system service.
Service multiplexors in kernel or user space offer the best method of maintaining
system services when a device fails. Such practices are beyond the scope of this
chapter.

High-Availability Drivers 23

Serviceability
To ensure serviceability, you must enable the driver to do the following:

� Detect faulty devices and report the fault

� Remove a device (as supported by the Solaris hot-plug model)

� Add a new device (as supported by the Solaris hot-plug model)

� Perform periodic health checks to enable the detection of latent faults

Checking the Current Device State

A driver must check its device state at appropriate points in order to avoid
needlessly committing resources. The ddi_get_devstate (9F) function enables the
driver to determine the device’s current state, as maintained by the framework.

ddi_devstate_t ddi_get_devstate(dev_info_t * dip);

The driver is not normally called on to handle a device that is OFFLINE. Generally,
the device state reflects earlier device fault reports, possibly modified by any
reconfiguration activities that have occurred.

Correct Behavior When a Device Has Failed
The system must report a fault in terms of the impact it has on the ability of the
device to provide service. Typically, loss of service is expected when:

� A PIO or DMA error is detected.

� Data corruption is detected.

� The device is locked or hung (for example, when a command never completes).

� A condition has occurred that the driver does not handle because it was regarded
as impossible when the driver was designed.

If the device state, returned by ddi_get_devstate (9F), indicates that the device is
not usable, the driver should reject all new and outstanding I/O requests and return
(if possible) an appropriate error code (for example, EIO). For a STREAMS driver,
M_ERRORor M_HANGUP, as appropriate, should be put upstream to indicate that the
driver is not usable.

The state of the device should be checked at each major entry point, optionally
before committing resources to an operation, and after reporting a fault. If at any

24 Solaris 8 Software Developer Supplement ♦ April 2001

stage the device is found to be unusable, the driver should perform any cleanup
actions that are required (for example, releasing resources) and return in a timely
way. It should not attempt any retry or recovery action, nor does it need to report a
fault. The state is not a fault, and it is already known to the framework and
management agents. It should mark the current request and any other outstanding
or queued requests as complete, again with an error indication if possible.

The ioctl() entry point presents a problem in this respect: ioctl operations that
imply I/O to the device (for example, formatting a disk) should fail if the device is
unusable, while others (such as recovering error status) should continue to work. The
state check might therefore need to be on a per-command basis. Alternatively, you
can implement those operations that work in any state through another entry point
or minor device mode, although this might be constrained by issues of compatibility
with existing applications.

Note that close() should always complete successfully, even if the device is
unusable. If the device is unusable, the interrupt handler should return
DDI_INTR_UNCLAIMEDfor all subsequent interrupts. If interrupts continue to be
generated the eventual result is that the interrupt is disabled.

Fault Reporting
This following function notifies the system that your driver has discovered a device
fault.

void ddi_dev_report_fault(dev_info_t * dip, ddi_fault_impact_t impact,
ddi_fault_location_t location, const char * message);

The impact parameter indicates the impact of the fault on the device’s ability to
provide normal service, and is used by the fault management components of the
system to determine the appropriate action to take in response to the fault. This
action can cause a change in the device state. A service-lost fault causes the device
state to be changed to DOWNand a service-degraded fault causes the device state to
be changed to DEGRADED.

A device should be reported as faulty if:

� A PIO error is detected.

� Corrupted data is detected.

� The device has locked up.

Drivers should avoid reporting the same fault repeatedly, if possible. In particular, it
is redundant (and undesirable) for drivers to report any errors if the device is
already in an unusable state (see ddi_get_devstate (9F)).

If a hardware fault is detected during the attach process, the driver must report the
fault by using ddi_dev_report_fault (9F) as well as by returning DDI_FAILURE .

High-Availability Drivers 25

Periodic Health Checks
A latent fault is one that does not show itself until some other action occurs. For
example, a hardware failure occurring in a device that is a cold stand-by could
remain undetected until a fault occurs on the master device. At this point, it will be
discovered that the system now contains two defective devices and might be unable
to continue operation.

Generally, latent faults that are allowed to remain undetected will eventually cause
system failure. Without latent fault checking, the overall availability of a redundant
system is jeopardized. To avoid this, a device driver must detect latent faults and
report them in the same way as other faults.

The driver should ensure that it has a mechanism for making periodic health checks
on the device. In a fault-tolerant situation in which the device can be the secondary
or failover device, early detection of a failed secondary device is essential to ensure
that it can be repaired or replaced before any failure in the primary device occurs.

Periodic health checks can:

� Run a quick access check on the board (write, read), then check the device with
the ddi_check_acc_handle (9F) routine.

� Check a register or memory location on the device that has a value the driver
expects to have been deterministically altered since the last poll.

Features of a device that typically exhibit deterministic behavior include heartbeat
semaphores, device timers (for example, local lbolt that is used by download),
and event counters. Reading an updated predictable value from the device gives a
degree of confidence that things are proceeding satisfactorily.

� Time-stamp outgoing requests (transmit blocks or commands) when issued by the
driver.

The periodic health check can look for any overaged requests that have not
completed.

� Initiate an action on the device that should be completed before the next
scheduled check.

If this action is an interrupt, this is an ideal way of ensuring that the device’s
circuitry is still capable of delivering an interrupt.

26 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 4

SPARC: Driver Hardening Test Harness

The driver hardening test harness is new in the Solaris 8 SPARCTM Platform Edition
4/01 release. For information about how to create a Solaris device driver, see Writing
Device Drivers.

The driver hardening test harness is a Solaris device driver development tool. The
test harness injects a wide range of simulated hardware faults when the driver under
development accesses its hardware. This chapter describes how to configure the test
harness, create error-injection specifications (referred to as errdefs), and execute the
tests on your device driver.

Note - For the most current man pages, use the man command. The Solaris 8 Update
release man pages include new feature information that is not in the Solaris 8
Reference Manual Collection.

Test Harness Description
Hardened device drivers are resilient to potential hardware faults. You must test the
resilience of device drivers as part of the driver development process. This type of
testing requires that the driver handle a wide range of typical hardware faults in a
controlled and repeatable way. The driver hardening test harness enables driver
developers to simulate such hardware faults in software.

The test harness intercepts calls from the driver to various DDI routines, then
corrupts the result of the calls as if the hardware had caused the corruption. In
addition, the harness allows for corruption of accesses to specific registers as well as
definition of more random types of corruption.

27

Note - The driver must perform all I/O accesses by using DDI routines to comply
with the Solaris DDI/DKI.

The test harness can generate test scripts automatically by tracing all register accesses
as well as direct memory access (DMA) and interrupt usage during the running of a
specified workload. A script is generated that reruns that workload while injecting a
set of faults into each access.

The driver tester must create additional test cases to force the driver down more
obscure failure paths. The tester should also remove duplicate test cases from the
generated scripts.

The test harness is implemented as a device driver called bofi , which stands for
bus_ops fault injection, and two user-level utilities, th_define (1M) and
th_manage (1M).

The test harness does the following:

� Validates compliant use of Solaris DDI services

� Facilitates controlled corruption of programmed I/O (PIO) and DMA requests and
interference with interrupts, thus simulating faults that occur in the hardware
managed by the driver

� Facilitates simulation of failures in the data path between the CPU and the device,
which are reported from parent nexus drivers

� Monitors a driver’s access during a specified workload and generates
fault-injection scripts

Fault Injection
The driver hardening test harness intercepts and, when requested, corrupts each
access a driver makes to its hardware. This section provides information you should
understand to create faults to test the resilience of your driver.

Data Access Functions
Solaris devices are managed inside a tree-like structure called the device (devinfo)
tree. Each node of the devinfo tree stores information that relates to a particular
instance of a device in the system. Each leaf node corresponds to a device driver,
while all other nodes are called nexus nodes. Typically, a nexus represents a bus. A
bus node isolates leaf drivers from bus dependencies, which enables architecturally
independent drivers to be produced.

28 Solaris 8 Software Developer Supplement ♦ April 2001

Many of the DDI functions, particularly the data access functions (DAFs), result in
upcalls to the bus nexus drivers. When a leaf driver accesses its hardware, it passes a
handle to an access routine. The bus nexus understands how to manipulate the
handle and fulfill the request. A DDI-compliant driver only accesses hardware
through use of these DDI access routines. The test harness intercepts these upcalls
before they reach the specified bus nexus. If the data access matches the criteria that
is specified by the driver tester, the access will be corrupted. If the data access does
not match the criteria, it is given to the bus nexus to handle in the usual way.

A driver obtains an access handle by using the ddi_map_regs_setup(dip, rset, ma,
offset, size, handle) function. The arguments specify which ‘‘offboard’’ memory is to be
mapped. The driver must use the returned handle when it references the mapped I/O
addresses, as handles are meant to isolate drivers from the details of bus hierarchies.
Therefore, do not directly use the returned mapped address, ma. Direct use of the
mapped address destroys the current and future uses of the DAF mechanism.

For programmed I/O, the suite of DAFs are:

� I/O to Host: ddi_get X(handle, ma) and ddi_rep_get X(handle, buf, ma, repcnt,
flag)

� Host to I/O: ddi_put X(handle, ma, value) and ddi_rep_put X()

X and repcnt are the number of bytes to be transferred. X is the bus transfer size of 8,
16, 32, or 64 bytes.

DMA has a similar, yet richer, set of DAFs.

Setting Up the Test Harness
The driver hardening test harness is part of the Solaris Developer Cluster and the
Entire Distribution Cluster. If you have not installed either of these Solaris clusters,
you must manually install the test harness packages appropriate for your platform.

Installing the Test Harness
To install the test harness packages (SUNWftduu , SUNWftdur , and SUNWftdux), use
pkgadd (1M).

As superuser, go to the directory in which the packages are located and type:

pkgadd -d . SUNWftduu SUNWftdur SUNWftdux

SPARC: Driver Hardening Test Harness 29

Configuring the Test Harness
After the test harness is installed, edit the /kernel/drv/bofi.conf file to
configure the harness to interact with your driver. See the following section for
descriptions of the test harness properties.

When the harness configuration is complete, reboot the system to load the harness
driver.

Test Harness Properties
The test harness behavior is controlled by boot-time properties that were set in the /
kernel/drv/bofi.conf configuration file.

When the harness is first installed, enable the harness to intercept the DDI accesses
to your driver by setting these properties:

bofi-nexus Bus nexus type, such as the PCI bus

bofi-to-test Name of the driver under test

For example, to test a PCI bus network driver called xyznetdrv , set the following
property values:

bofi-nexus="pci"
bofi-to-test="xyznetdrv"

Other properties relate to the use and harness checking of the Solaris DDI data access
mechanisms for reading and writing from peripherals that use PIO and transferring
data to and from peripherals that use DMA.

bofi-range-check When this property is set, the test harness checks the
consistency of the arguments that are passed to PIO
DAFs.

bofi-ddi-check When this property is set, the test harness verifies that the
mapped address that is returned by
ddi_map_regs_setup() is not used outside of the
context of the DAFs.

bofi-sync-check When this property is set, the test harness verifies correct
usage of DMA functions and ensures that the driver
makes compliant use of ddi_dma_sync() .

30 Solaris 8 Software Developer Supplement ♦ April 2001

Testing the Driver
This section describes how to create and inject faults by using the th_define (1M)
and th_manage (1M) commands.

Creating Faults
The th_define (1M) utility provides an interface to the bofi device driver for
defining errdefs. An errdef corresponds to a specification for how to corrupt a device
driver’s accesses to its hardware. The th_define command-line arguments
determine the precise nature of the fault to be injected. If the supplied arguments
define a consistent errdef, the th_define process stores the errdef with the bofi
driver. The process suspends itself until the criteria given by the errdef becomes
satisfied. In practice, the suspension ends when the access counts go to zero (0).

Injecting Faults
The test harness operates at the level of data accesses. The characteristics of a data
access include the:

� Type of hardware being accessed (driver name)

� Instance of the hardware being accessed (driver instance)

� Register set being tested

� Subset of the register set that is targeted

� Direction of the transfer (read or write)

� Type of access (PIO or DMA)

The test harness intercepts data accesses and injects appropriate faults into the driver.
An errdef, specified by the th_define (1M) command, encodes the following
information:

� The driver instance and register set being tested (−n name, −i instance, and −r
reg_number)

� The subset of the register set eligible for corruption. This subset is indicated by
providing an offset into the register set and a length from that offset (−l offset
[len])

� The kind of access to be intercepted: log , pio , dma, pio_r , pio_w , dma_r ,
dma_w, intr (−a acc_types)

� How many accesses should be faulted (−c count [failcount])

SPARC: Driver Hardening Test Harness 31

� The kind of corruption that should be applied to a qualifying access (−o operator
[operand]):

� Replace datum with a fixed value (EQUAL)
� Perform a bitwise operation on the datum (AND, OR, XOR)
� Ignore the transfer (for host to I/O accesses NO_TRANSFER)
� Lose, delay, or inject spurious interrupts (LOSE, DELAY, EXTRA)

Use the −a acc_chk option to simulate framework faults in an errdef.

Fault-Injection Process
The process of injecting a fault involves two phases:

1. Create errdefs by using the th_define command.

Create errdefs by passing test definitions to the bofi driver, which stores the
definitions so they can be accessed by using th_manage (1M).

2. Create a workload, then use th_manage to activate and manage the errdef.

The th_manage (1M) command is a user interface to the various ioctl s that are
recognized by the bofi harness driver. th_manage operates at the level of driver
names and instances and includes these commands: get_handles to list access
handles, start to activate errdefs, and stop to deactivate errdefs.

The activation of an errdef results in qualifying data accesses to be faulted. The
th_manage utility supports these commands: broadcast to provide the current
state of the errdef and clear_errors to clear the errdef.

See th_define (1M) and th_manage (1M) for more information.

Test Harness Warnings
You can configure the test harness to handle warning messages in the following ways:

� Write warning messages to the console

� Write warning messages to the console and then panic the system

Use the second method to help pinpoint the root cause of a problem.

When the bofi-range-check property value is set to warn , the harness prints the
following messages (or panics if set to panic) when it detects a range violation of a
DDI function by your driver:

ddi_get X() out of range addr %x not in %x
ddi_put X() out of range addr %x not in %x
ddi_rep_get X() out of range addr %x not in %x

32 Solaris 8 Software Developer Supplement ♦ April 2001

(Continuation)

ddi_rep_put X() out of range addr %x not in %x

X is 8, 16, 32, or 64.

When the harness has been requested to insert over 1000 extra interrupts, the
following message is printed if the driver does not detect interrupt jabber:

undetected interrupt jabber - %s %d

Using Scripts to Automate the Test
Process
You can create fault-injection test scripts by using the logging access type of the
th_define utility:

th_define −n name −i instance −a log [−e fixup_script]

th_define takes the instance offline and brings it back online. Then th_define
runs the workload that is described by the fixup script and logs I/O accesses that are
made by the driver instance.

The fixup script is called twice with the set of optional arguments—once just before
the instance is taken offline and again after the instance has been brought online. The
following variables are passed into the environment of the called executable:

DRIVER_PATH Device path of the instance

DRIVER_INSTANCE Instance number of the driver

DRIVER_UNCONFIGURE Set to 1 when the instance is about to be taken offline

DRIVER_CONFIGURE Set to 1 when the instance has just been brought online

Typically, the fixup script ensures that the device under test is in a suitable state to
be taken offline (unconfigured) or in a suitable state for error injection (for example,
configured, error free, and servicing a workload). A minimal script for a network
driver could be:

SPARC: Driver Hardening Test Harness 33

#!/bin/ksh
driver=xyznetdrv
ifnum=$driver$DRIVER_INSTANCE

if [[$DRIVER_CONFIGURE = 1]]; then
ifconfig $ifnum plumb
ifconfig $ifnum ...
ifworkload start $ifnum

elif [[$DRIVER_UNCONFIGURE = 1]]; then
ifworkload stop $ifnum
ifconfig $ifnum down
ifconfig $ifnum unplumb

fi
exit $?

Note - ifworkload should initiate the workload as a background task. The fault
injection occurs after the fixup script configures the driver under test and brings it
online (DRIVER_CONFIGUREis set to 1).

If the −e fixup_script option is present, it must be the last option on the command
line. However, if that option is not present, a default script is used. The default script
repeatedly attempts to bring the device under test offline and online. Thus the
workload consists of the driver’s attach and detach paths.

The resulting log is converted into a set of executable scripts that are suitable for
running unassisted fault-injection tests. These scripts are created in a subdirectory of
the current directory with the name driver.test. id. The scripts inject faults, one at a
time, into the driver while running the workload that is described by the fixup script.

The driver tester has substantial control over the errdefs that are produced by the
test automation process. See th_define (1M).

If the tester chooses a suitable range of workloads for the test scripts, the harness
gives good coverage of the hardening aspects of the driver. However, to achieve full
coverage, the tester might need to create additional test cases manually. Add these
cases to the test scripts. To ensure that testing completes in a timely manner, the
tester might need to manually delete duplicate test cases.

Automated Test Process
The process for automated testing follows.

1. Identify the aspects of the driver to be tested.

Test all aspects of the driver that interact with the hardware:

� Attach and detach

� Plumb and unplumb under a stack

34 Solaris 8 Software Developer Supplement ♦ April 2001

� Normal data transfer

� Documented debug modes

A separate workload script (fixup_script) must be generated for each mode of use.

2. For each mode of use, prepare an executable program (fixup_script) that
configures and unconfigures the device, and creates and terminates a workload.

3. Run th_define with the errdefs, together with an access type of −a log .

4. Wait for the logs to fill.

The logs contain a dump of the bofi driver’s internal buffers. This data is
included at the front of the script.

Because it can take from a few seconds to several minutes to create the logs, use
the th_manage broadcast command to check the progress.

5. Change to the created test directory and run the master test script.

The master script runs each generated test script in sequence. Separate test scripts
are generated per register set.

6. Store the results for analysis.

Successful test results, such as success (corruption reported) and
success (corruption undetected) , show that the driver under test is
behaving properly.

It is fine for a few test not triggered failures to appear in the output.
However, several such failures indicate that the test is not working properly.
These failures can appear when the driver does not access the same registers as
when the test scripts were generated.

7. Run the test on multiple instances of the driver concurrently to test the
multithreading of error paths.

For example, each th_define command creates a separate directory that
contains test scripts and a master script:

th_define -n xyznetdrv -i 0 -a log -e script
th_define -n xyznetdrv -i 1 -a log -e script

Once created, run the master scripts in parallel.

SPARC: Driver Hardening Test Harness 35

Note - The generated scripts produce only simulated fault injections that are
based on what was logged during the time the logging errdef was active. When
you define a workload, ensure that the required results are logged. Also analyze
the resulting logs and fault-injection specifications. Verify that the hardware
access coverage that the resulting test scripts created is what is required.

36 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 5

Drivers for Network Devices

Generic LAN driver is new for the Solaris 8 10/00 release.

The Generic LAN driver (GLD) implements much of the STREAMS and Data Link
Provider Interface (DLPI) functionality for a SolarisTM network driver.

Until Solaris 8 10/00, the GLD module was only available for Solaris Intel Platform
Edition network drivers. Now GLD is available for Solaris SPARCTM Platform Edition
network drivers, as well.

For more information, see gld (7D), dlpi (7P), gld (9E), gld (9F),
gld_mac_info (9S), gld_stats (9S).

Note - For the most current man pages, use the man command. The Solaris 8 Update
release man pages include new feature information that is not in the Solaris 8
Reference Manual Collection.

Generic LAN Driver Overview
GLD is a multi-threaded, clonable, loadable kernel module providing support for
Solaris local area network device drivers. Local area network (LAN) device drivers in
Solaris are STREAMS-based drivers that use DLPI to communicate with network
protocol stacks. These protocol stacks use the network drivers to send and receive
packets on a local area network. A network device driver must implement and
conform to the requirements imposed by the DDI/DKI specification, STREAMS
specification, DLPI specification, and programmatic interface of the device itself.

GLD implements most STREAMS and DLPI functionality required of a Solaris LAN
driver. Several Solaris network drivers are implemented using GLD.

37

A Solaris network driver implemented using GLD is made up of two distinct parts: a
generic component that deals with STREAMS and DLPI interfaces, and a
device-specific component that deals with the particular hardware device. The
device-specific module indicates its dependency on the GLD module (which is found
at /kernel/misc/gld) and registers itself with GLD from within the driver’s
attach (9E) function. After it is successfully loaded, the driver is DLPI-compliant.
The device-specific part of the driver calls gld (9F) functions when it receives data
or needs some service from GLD. GLD makes calls into the gld (9E) entry points of
the device-specific driver through pointers provided to GLD by the device-specific
driver when it registered itself with GLD. The gld_mac_info (9S) structure is the
main data interface between GLD and the device-specific driver.

The GLD facility currently supports devices of type DL_ETHER, DL_TPR, and
DL_FDDI. GLD drivers are expected to process fully formed MAC-layer packets and
should not perform logical link control (LLC) handling.

In some cases, you might need or want to implement a full DLPI-compliant driver
without using the GLD facility. This is true for devices that are not ISO 8802-style
(IEEE 802) LAN devices, or where you need a device type or DLPI service not
supported by GLD.

Type DL_ETHER: Ethernet V2 and ISO 8802-3
(IEEE 802.3)
For devices designated type DL_ETHER, GLD provides support for both Ethernet V2
and ISO 8802-3 (IEEE 802.3) packet processing. Ethernet V2 enables a data link service
user to access and use any of a variety of conforming data link service providers
without special knowledge of the provider’s protocol. A service access point (SAP) is
the point through which the user communicates with the service provider.

Streams bound to SAP values in the range [0-255] are treated as equivalent and
denote that the user wants to use 8802-3 mode. If the value of the SAP field of the
DL_BIND_REQis within this range, GLD computes the length (not including the
14-byte media access control (MAC) header) of each subsequent DL_UNITDATA_REQ
message on that Stream and transmits 8802-3 frames having those lengths in the
MAC frame header type fields. Such lengths never exceed 1500.

All frames received from the media that have a type field in the range [0-1500] are
assumed to be 8802-3 frames and are routed up all open Streams that are in 8802-3
mode (those Streams bound to a SAP value in the [0-255] range). If more than one
Stream is in 8802-3 mode, the incoming frame is duplicated and routed up each such
Stream.

Streams bound to SAP values greater than 1500 (Ethernet V2 mode) receive incoming
packets whose Ethernet MAC header type value exactly matches the value of the
SAP to which the Stream is bound.

38 Solaris 8 Software Developer Supplement ♦ April 2001

Types DL_TPRand DL_FDDI: SNAP Processing
For media types DL_TPRand DL_FDDI, GLD implements minimal SNAP (Sub-Net
Access Protocol) processing for any Stream bound to a SAP value greater than 255.
SAP values in the range [0-255] are LLC SAP values and are carried naturally by the
media packet format. SAP values greater than 255 require a SNAP header,
subordinate to the LLC header, to carry the 16-bit Ethernet V2-style SAP value.

SNAP headers are carried under LLC headers with destination SAP 0xAA. For
outgoing packets with SAP values greater than 255, GLD creates an LLC+SNAP
header that always looks like:

AA AA 03 00 00 00 XX XX

where ‘‘XX XX’’ represents the 16-bit SAP, corresponding to the Ethernet V2 style
‘‘type.’’ This is the only class of SNAP header supported—non-zero OUI fields and
LLC control fields other than 03 are considered to be LLC packets with SAP 0xAA.
Clients wanting to use SNAP formats other than this one must use LLC and bind to
SAP 0xAA.

Incoming packets are examined to ascertain whether they conform to the format
shown above. Packets that conform to this format are matched to any Streams bound
to the packet’s 16-bit SNAP type, as well as being considered to match the LLC
SNAP SAP 0xAA.

Packets received for any LLC SAP are passed up all Streams that are bound to an
LLC SAP, as described for media type DL_ETHER.

Type DL_TPR: Source Routing
For type DL_TPRdevices, GLD implements minimal support for source routing.
Source routing enables a station that is sending a packet across a bridged medium to
specify (in the packet MAC header) routing information that determines the route
that the packet will take through the network.

Functionally, the source routing support provided by GLD learns routes, solicits and
responds to requests for information about possible multiple routes, and selects
among available routes. It adds Routing Information Fields to the MAC headers of
outgoing packets and recognizes such fields in incoming packets.

GLD’s source routing support does not implement the full Route Determination Entity
(RDE) specified in Section 9 of ISO 8802-2 (IEEE 802.2). However, it is designed to
interoperate with any such implementations that might exist in the same (or a
bridged) network.

Drivers for Network Devices 39

Style 1 and Style 2 DLPI Providers
GLD implements both Style 1 and Style 2 DLPI providers. A physical point of
attachment (PPA) is the point at which a system attaches itself to a physical
communication medium. All communication on that physical medium funnels
through the PPA. The Style 1 provider attaches the Stream to a particular PPA based
on the major/minor device that has been opened. The Style 2 provider requires the
DLS user to explicitly identify the desired PPA using DL_ATTACH_REQ.In this case,
open (9E) creates a Stream between the user and GLD, and DL_ATTACH_REQ
subsequently associates a particular PPA with that Stream. Style 2 is denoted by a
minor number of zero. If a device node whose minor number is not zero is opened,
Style 1 is indicated and the associated PPA is the minor number minus 1. In both
Style 1 and Style 2 open s, the device is cloned.

Implemented DLPI Primitives
GLD implements several DLPI primitives. The DL_INFO_REQprimitive requests
information about the DLPI Stream. The message consists of one M_PROTOmessage
block. GLD returns device-dependent values in the DL_INFO_ACKresponse to this
request, based on information the GLD-based driver specified in the
gldm_mac_info (9S) structure passed to gld_register() . However, GLD returns
the following values on behalf of all GLD-based drivers:

� Version is DL_VERSION_2.

� Service mode is DL_CLDLS— GLD implements connectionless-mode service.

� Provider style is DL_STYLE1 or DL_STYLE2, depending on how the Stream was
opened.

� No optional Quality Of Service (QOS) support is present and the QOS fields are
zero.

Note - Contrary to the DLPI specification, GLD returns the device’s correct address
length and broadcast address in DL_INFO_ACKeven before the Stream has been
attached to a PPA.

The DL_ATTACH_REQprimitive is used to associate a PPA with a Stream. This
request is needed for Style 2 DLS providers to identify the physical medium over
which the communication will transpire. Upon completion, the state changes from
DL_UNATTACHEDto DL_UNBOUND.The message consists of one M_PROTOmessage
block. This request is not permitted when using the driver in Style 1 mode; Streams
opened using Style 1 are already attached to a PPA by the time the open completes.

The DL_DETACH_REQprimitive requests to detach the PPA from the Stream. This is
only allowed if the Stream was opened using Style 2.

The DL_BIND_REQand DL_UNBIND_REQprimitives bind and unbind a DLSAP to
the Stream. The PPA associated with a Stream will have completed initialization

40 Solaris 8 Software Developer Supplement ♦ April 2001

before completion of the processing of the DL_BIND_REQon that Stream. Binding
multiple Streams to the same SAP is allowed; each such Stream receives a copy of
any packets received for that SAP.

The DL_ENABMULTI_REQand DL_DISABMULTI_REQprimitives enable and disable
reception of individual multicast group addresses. An application or other DLS user
is permitted to create or modify a set of multicast addresses on a per-Stream basis by
iterative use of these primitives. The Stream must be attached to a PPA for these
primitives to be accepted.

The DL_PROMISCON_REQand DL_PROMISCOFF_REQprimitives enable and disable
promiscuous mode on a per-Stream basis, either at a physical level or at the SAP
level. The DL Provider routes all received messages on the media to the DLS user
until either a DL_DETACH_REQor a DL_PROMISCOFF_REQis received or the Stream
is closed. It is possible to specify physical level promiscuous reception of all packets
on the medium or of multicast packets only.

Note - The Stream must be attached to a PPA for these promiscuous mode
primitives to be accepted.

The DL_UNITDATA_REQprimitive is used to send data in a connectionless transfer.
Because this is an unacknowledged service, there is no guarantee of delivery. The
message consists of one M_PROTOmessage block followed by one or more M_DATA
blocks containing at least one byte of data.

The DL_UNITDATA_IND type is used when a packet is received and is to be passed
upstream. The packet is put into an M_PROTOmessage with the primitive set to
DL_UNITDATA_IND.

The DL_PHYS_ADDR_REQprimitive requests the MAC address currently associated
with the PPA attached to the Stream. The address is returned by the
DL_PHYS_ADDR_ACKprimitive. When using style 2, this primitive is only valid
following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQprimitive changes the MAC address currently
associated with the PPA attached to the Stream. This primitive affects all other
current and future Streams attached to this device. Once changed, all Streams
currently or subsequently opened and attached to this device will obtain this new
physical address. The new physical address remains in effect until this primitive is
used to change the physical address again or the driver is reloaded.

Note - The superuser is allowed to change the physical address of a PPA while other
Streams are bound to the same PPA.

The DL_GET_STATISTICS_REQprimitive requests a DL_GET_STATISTICS_ACK
response containing statistics information associated with the PPA attached to the
Stream. Style 2 Streams must be attached to a particular PPA using DL_ATTACH_REQ
before this primitive can succeed.

Drivers for Network Devices 41

Implemented ioctl Functions
GLD implements the ioctl ioc_cmd function described below. If GLD receives an ioctl
command that it does not recognize, it passes it to the device-specific driver’s
gldm_ioctl() routine, as described in gld (9E).

The DLIOCRAWioctl function is used by some DLPI applications, most notably the
snoop (1M) command. The DLIOCRAWcommand puts the Stream into a raw mode,
which causes the driver to pass full MAC-level incoming packets upstream in
M_DATAmessages instead of transforming them into the DL_UNITDATA_IND form
that is normally used for reporting incoming packets. Packet SAP filtering is still
performed on Streams that are in raw mode. If a Stream user wants to receive all
incoming packets, it must also select the appropriate promiscuous mode or modes.
After successfully selecting raw mode, the application is also allowed to send fully
formatted packets to the driver as M_DATAmessages for transmission. DLIOCRAW
takes no arguments. Once enabled, the Stream remains in this mode until closed.

GLD Driver Requirements
GLD-based drivers must include the header file <sys/gld.h> .

GLD-based drivers must also include the following declaration:

char _depends_on[] = "misc/gld";

GLD implements the open (9E) and close (9E) functions and the required
STREAMS put (9E) and srv (9E) functions on behalf of the device-specific driver.
GLD also implements the getinfo (9E) function for the driver.

The mi_idname element of the module_info (9S) structure is a string specifying
the name of the driver. This must exactly match the name of the driver module as it
exists in the file system.

The read-side qinit (9S) structure should specify the following elements:

qi_putp NULL

qi_srvp gld_rsrv

qi_qopen gld_open

qi_qclose gld_close

The write-side qinit (9S) structure should specify these elements:

qi_putp gld_wput

qi_srvp gld_wsrv

42 Solaris 8 Software Developer Supplement ♦ April 2001

qi_qopen NULL

qi_qclose NULL

The devo_getinfo element of the dev_ops (9S) structure should specify
gld_getinfo as the getinfo (9E) routine.

The driver’s attach (9E) function does all the work of associating the
hardware-specific device driver with the GLD facility and preparing the device and
driver for use.

The attach (9E) function allocates a gld_mac_info (9S) (‘‘macinfo’’) structure
using gld_mac_alloc() . The driver usually needs to save more information per
device than is defined in the macinfo structure. It should allocate the additional
required data structure and save a pointer to it in the gldm_private member of the
gld_mac_info (9S) structure.

The attach (9E) routine must initialize the macinfo structure as described in
gld_mac_info (9S) and then call gld_register() to link the driver with the GLD
module. The driver should map registers if necessary and be fully initialized and
prepared to accept interrupts before calling gld_register() . The attach (9E)
function should add interrupts but not enable the device to generate them. The
driver should reset the hardware before calling gld_register() to ensure it is
quiescent. The device must not be started or put into a state where it might generate
an interrupt before gld_register() is called. That will be done later when GLD
calls the driver’s gldm_start() entry point, described in gld (9E). After
gld_register() succeeds, the gld (9E) entry points might be called by GLD at
any time.

The attach (9E) routine should return DDI_SUCCESSif gld_register()
succeeds. If gld_register() fails, it returns DDI_FAILURE , and the attach (9E)
routine should deallocate any resources it allocated before calling gld_register()
and then also return DDI_FAILURE . Under no circumstances should a failed macinfo
structure be reused; it should be deallocated using gld_mac_free() .

The detach (9E) function should attempt to unregister the driver from GLD. This is
done by calling gld_unregister() described in gld (9F). The detach (9E)
routine can get a pointer to the needed gld_mac_info (9S) structure from the
device’s private data using ddi_get_driver_private (9F). gld_unregister()
checks certain conditions that could require that the driver not be detached. If the
checks fail, gld_unregister() returns DDI_FAILURE , in which case the driver’s
detach (9E) routine must leave the device operational and return DDI_FAILURE .

If the checks succeed, gld_unregister() ensures that the device interrupts are
stopped (calling the driver’s gldm_stop() routine if necessary), unlinks the driver
from the GLD framework, and returns DDI_SUCCESS. In this case, the detach (9E)
routine should remove interrupts, deallocate any data structures allocated in the
attach (9E) routine (using gld_mac_free() to deallocate the macinfo structure),
and return DDI_SUCCESS. It is important to remove the interrupt before calling
gld_mac_free() .

Drivers for Network Devices 43

Network Statistics
Solaris network drivers must implement statistics variables. GLD itself tallies some
network statistics, but other statistics must be counted by each GLD-based driver.
GLD provides support for GLD-based drivers to report a standard set of network
driver statistics. Statistics are reported by GLD using the kstat (7D) and kstat (9S)
mechanisms. The DL_GET_STATISTICS_REQDLPI command can also be used to
retrieve the current statistics counters. All statistics are maintained as unsigned, and
all are 32 bits unless otherwise noted.

GLD maintains and reports the following statistics.

rbytes64 Total bytes successfully received on the interface
(64 bits).

rbytes Total bytes successfully received on the interface.

obytes64 Total bytes requested to be transmitted on the
interface (64 bits).

obytes Total bytes requested to be transmitted on the
interface.

ipackets64 Total packets successfully received on the
interface (64 bits).

ipackets Total packets successfully received on the
interface.

opackets64 Total packets requested to be transmitted on the
interface (64 bits).

opackets Total packets requested to be transmitted on the
interface.

multircv Multicast packets successfully received, including
group and functional addresses (long).

multixmt Multicast packets requested to be transmitted,
including group and functional addresses (long).

brdcstrcv Broadcast packets successfully received (long).

brdcstxmt Broadcast packets requested to be transmitted
(long).

unknowns Valid received packets not accepted by any
Stream (long).

44 Solaris 8 Software Developer Supplement ♦ April 2001

noxmtbuf Packets discarded on output because transmit
buffer was busy, or no buffer could be allocated
for transmit (long).

blocked Number of times a received packet could not be
put up a Stream because the queue was
flow-controlled (long).

xmtretry Times transmit was retried after having been
delayed due to lack of resources (long).

promisc Current ‘‘promiscuous’’ state of the interface
(string).

The device-dependent driver counts the following statistics, keeping track of them in
a private per-instance structure. When GLD is asked to report statistics, it calls the
driver’s gldm_get_stats() entry point, as described in gld (9E), to update the
device-specific statistics in the gld_stats (9S) structure. GLD then reports the
updated statistics using the named statistics variables shown below.

ifspeed Current estimated bandwidth of the interface in
bits per second (64 bits).

media Current media type in use by the device (string).

intr Times interrupt handler was called and claimed
the interrupt (long).

norcvbuf Number of times a valid incoming packet was
known to have been discarded because no buffer
could be allocated for receive (long).

ierrors Total packets received that could not be
processed because they contained errors (long).

oerrors Total packets that were not successfully
transmitted because of errors (long).

missed Packets known to have been dropped by the
hardware on receive (long).

uflo Times FIFO underflowed on transmit (long).

oflo Times receiver overflowed during receive (long).

The following group of statistics applies to networks of type DL_ETHER. These
statistics are maintained by device-specific drivers of that type, as shown previously.

Drivers for Network Devices 45

align_errors Packets received with framing errors (not an
integral number of octets) (long).

fcs_errors Packets received with CRC errors (long).

duplex Current duplex mode of the interface (string).

carrier_errors Number of times carrier was lost or never
detected on a transmission attempt (long).

collisions Ethernet collisions during transmit (long).

ex_collisions Frames where excess collisions occurred on
transmit, causing transmit failure (long).

tx_late_collisions Number of times a transmit collision occurred
late (after 512 bit times) (long).

defer_xmts Packets without collisions where first transmit
attempt was delayed because the medium was
busy (long).

first_collisions Packets successfully transmitted with exactly one
collision.

multi_collisions Packets successfully transmitted with multiple
collisions.

sqe_errors Number of times SQE test error was reported.

macxmt_errors Packets encountering transmit MAC failures,
except carrier and collision failures.

macrcv_errors Packets received with MAC errors, except
align_errors , fcs_errors , and
toolong_errors .

toolong_errors Packets received larger than the maximum
permitted length.

runt_errors Packets received smaller than the minimum
permitted length (long).

The following group of statistics applies to networks of type DL_TPR; these are
maintained by device-specific drivers of that type, as shown above.

line_errors Packets received with non-data bits or FCS errors.

46 Solaris 8 Software Developer Supplement ♦ April 2001

burst_errors Number of times an absence of transitions for
five half-bit timers was detected.

signal_losses Number of times loss of signal condition on the
ring was detected.

ace_errors Number of times an AMP or SMP frame, in
which A is equal to C is equal to 0, was followed
by another such SMP frame without an
intervening AMP frame.

internal_errors Number of times the station recognized an
internal error.

lost_frame_errors Number of times the TRR timer expired during
transmit.

frame_copied_errors Number of times a frame addressed to this
station was received with the FS field ‘A’ bit set
to 1.

token_errors Number of times the station acting as the active
monitor recognized an error condition that
needed a token transmitted.

freq_errors Number of times the frequency of the incoming
signal differed from the expected frequency.

The following group of statistics applies to networks of type DL_FDDI; these are
maintained by device-specific drivers of that type, as shown above.

mac_errors Frames detected in error by this MAC that had
not been detected in error by another MAC.

mac_lost_errors Frames received with format errors such that the
frame was stripped.

mac_tokens Number of tokens received (total of
non-restricted and restricted).

mac_tvx_expired Number of times that TVX has expired.

mac_late Number of TRT expirations since this MAC was
reset or a token was received.

Drivers for Network Devices 47

mac_ring_ops Number of times the ring has entered the ‘‘Ring
Operational’’ state from the ‘‘Ring Not
Operational’’ state.

Declarations and Data Structures
gld_mac_info Structure
The GLD MAC information (gld_mac_info) structure is the main data interface
between the device-specific driver and GLD. It contains data required by GLD and a
pointer to an optional additional driver-specific information structure.

Allocate the gld_mac_info structure using gld_mac_alloc() and deallocate it
using gld_mac_free() . Drivers must not make any assumptions about the length
of this structure, which might vary in different releases of Solaris, GLD, or both.
Structure members private to GLD, not documented here, should not be set or read
by the device-specific driver.

The gld_mac_info (9S) structure contains the following fields.

caddr_t gldm_private; /* Driver private data */
int (*gldm_reset)(); /* Reset device */
int (*gldm_start)(); /* Start device */
int (*gldm_stop)(); /* Stop device */
int (*gldm_set_mac_addr)(); /* Set device phys addr */
int (*gldm_set_multicast)(); /* Set/delete multicast addr */
int (*gldm_set_promiscuous)(); /* Set/reset promiscuous mode */
int (*gldm_send)(); /* Transmit routine */
uint_t (*gldm_intr)(); /* Interrupt handler */
int (*gldm_get_stats)(); /* Get device statistics */
int (*gldm_ioctl)(); /* Driver-specific ioctls */
char *gldm_ident; /* Driver identity string */
uint32_t gldm_type; /* Device type */
uint32_t gldm_minpkt; /* Minimum packet size */

/* accepted by driver */
uint32_t gldm_maxpkt; /* Maximum packet size */

/* accepted by driver */
uint32_t gldm_addrlen; /* Physical address length */
int32_t gldm_saplen; /* SAP length for DL_INFO_ACK */
unsigned char *gldm_broadcast_addr; /* Physical broadcast addr */
unsigned char *gldm_vendor_addr; /* Factory MAC address */
t_uscalar_t gldm_ppa; /* Physical Point of */

/* Attachment (PPA) number */
dev_info_t *gldm_devinfo; /* Pointer to device’s */

/* dev_info node */
ddi_iblock_cookie_t gldm_cookie; /* Device’s interrupt */

/* block cookie */

These members of the gld_mac_info structure are visible to the device driver.

48 Solaris 8 Software Developer Supplement ♦ April 2001

gldm_private This structure member is private to the
device-specific driver and is not used or modified
by GLD. Conventionally this is used as a pointer
to private data, pointing to a driver-defined and
driver-allocated per-instance data structure.

The following group of structure members must be set by the driver before calling
gld_register() , and should not thereafter be modified by the driver. Because
gld_register() might use or cache the values of some of these structure
members, changes made by the driver after calling gld_register() might cause
unpredictable results.

gldm_reset Pointer to driver entry point; see gld (9E).

gldm_start Pointer to driver entry point; see gld (9E).

gldm_stop Pointer to driver entry point; see gld (9E).

gldm_set_mac_addr Pointer to driver entry point; see gld (9E).

gldm_set_multicast Pointer to driver entry point; see gld (9E).

gldm_set_promiscuous Pointer to driver entry point; see gld (9E).

gldm_send Pointer to driver entry point; see gld (9E).

gldm_intr Pointer to driver entry point; see gld (9E).

gldm_get_stats Pointer to driver entry point; see gld (9E).

gldm_ioctl Pointer to driver entry point; is allowed to be
NULL; see gld (9E).

gldm_ident Pointer to a string containing a short description
of the device. It is used to identify the device in
system messages.

gldm_type Type of device the driver handles. The values
currently supported by GLD are DL_ETHER(ISO
8802-3 (IEEE 802.3) and Ethernet Bus), DL_TPR
(IEEE 802.5 Token Passing Ring), and DL_FDDI
(ISO 9314-2 Fibre Distributed Data Interface).
This structure member must be correctly set for
GLD to function properly.

gldm_minpkt Minimum Service Data Unit size—the minimum
packet size, not including the MAC header, that

Drivers for Network Devices 49

the device will transmit. This size is allowed to
be zero if the device-specific driver handles any
required padding.

gldm_maxpkt Maximum Service Data Unit size — the maximum
size of packet, not including the MAC header,
that can be transmitted by the device. For
Ethernet, this number is 1500.

gldm_addrlen The length in bytes of physical addresses
handled by the device. For Ethernet, Token Ring,
and FDDI, the value of this structure member
should be 6.

gldm_saplen The length in bytes of the SAP address used by
the driver. For GLD-based drivers, this should
always be set to -2 , to indicate that 2-byte SAP
values are supported and that the SAP appears
after the physical address in a DLSAP address.
See ‘‘Message DL_INFO_ACK’’ in the DLPI
specification for more details.

gldm_broadcast_addr Pointer to an array of bytes of length
gldm_addrlen containing the broadcast address
to be used for transmit. The driver must provide
space to hold the broadcast address, fill it in with
the appropriate value, and set
gldm_broadcast_addr to point to it. For
Ethernet, Token Ring, and FDDI, the broadcast
address is normally 0xFF-FF-FF-FF-FF-FF.

gldm_vendor_addr Pointer to an array of bytes of length
gldm_addrlen containing the vendor-provided
network physical address of the device. The
driver must provide space to hold the address,
fill it in with information read from the device,
and set gldm_vendor_addr to point to it.

gldm_ppa PPA number for this instance of the device.
Normally this should be set to the instance
number, returned from
ddi_get_instance (9F).

gldm_devinfo Pointer to the dev_info node for this device.

gldm_cookie Interrupt block cookie returned by
ddi_get_iblock_cookie (9F),

50 Solaris 8 Software Developer Supplement ♦ April 2001

ddi_add_intr (9F),
ddi_get_soft_iblock_cookie (9F), or
ddi_add_softintr (9F). This must correspond
to the device’s receive-interrupt, from which
gld_recv() is called.

gld_stats Structure
The GLD statistics (gld_stats) structure is used to communicate statistics and state
information from a GLD-based driver to GLD when returning from a driver’s
gldm_get_stats() routine, as discussed in gld (9E) and gld (7D). The members
of this structure, filled in by the GLD-based driver, are used when GLD reports the
statistics. In the tables below, the name of the statistics variable reported by GLD is
noted in the comments. See gld (7D) for a more detailed description of the meaning
of each statistic.

Drivers must not make any assumptions about the length of this structure, which
might vary in different releases of Solaris, GLD, or both. Structure members private
to GLD, not documented here, should not be set or read by the device-specific driver.

The following structure members are defined for all media types:

uint64_t glds_speed; /* ifspeed */
uint32_t glds_media; /* media */
uint32_t glds_intr; /* intr */
uint32_t glds_norcvbuf; /* norcvbuf */
uint32_t glds_errrcv; /* ierrors */
uint32_t glds_errxmt; /* oerrors */
uint32_t glds_missed; /* missed */
uint32_t glds_underflow; /* uflo */
uint32_t glds_overflow; /* oflo */

The following structure members are defined for media type DL_ETHER:

uint32_t glds_frame; /* align_errors */
uint32_t glds_crc; /* fcs_errors */
uint32_t glds_duplex; /* duplex */
uint32_t glds_nocarrier; /* carrier_errors */
uint32_t glds_collisions; /* collisions */
uint32_t glds_excoll; /* ex_collisions */
uint32_t glds_xmtlatecoll; /* tx_late_collisions */
uint32_t glds_defer; /* defer_xmts */
uint32_t glds_dot3_first_coll; /* first_collisions */
uint32_t glds_dot3_multi_coll; /* multi_collisions */
uint32_t glds_dot3_sqe_error; /* sqe_errors */
uint32_t glds_dot3_mac_xmt_error; /* macxmt_errors */
uint32_t glds_dot3_mac_rcv_error; /* macrcv_errors */
uint32_t glds_dot3_frame_too_long; /* toolong_errors */
uint32_t glds_short; /* runt_errors */

The following structure members are defined for media type DL_TPR:

Drivers for Network Devices 51

uint32_t glds_dot5_line_error /* line_errors */
uint32_t glds_dot5_burst_error /* burst_errors */
uint32_t glds_dot5_signal_loss /* signal_losses */
uint32_t glds_dot5_ace_error /* ace_errors */
uint32_t glds_dot5_internal_error /* internal_errors */
uint32_t glds_dot5_lost_frame_error /* lost_frame_errors */
uint32_t glds_dot5_frame_copied_error /* frame_copied_errors */
uint32_t glds_dot5_token_error /* token_errors */
uint32_t glds_dot5_freq_error /* freq_errors */

The following structure members are defined for media type DL_FDDI:

uint32_t glds_fddi_mac_error; /* mac_errors */
uint32_t glds_fddi_mac_lost; /* mac_lost_errors */
uint32_t glds_fddi_mac_token; /* mac_tokens */
uint32_t glds_fddi_mac_tvx_expired; /* mac_tvx_expired */
uint32_t glds_fddi_mac_late; /* mac_late */
uint32_t glds_fddi_mac_ring_op; /* mac_ring_ops */

Most of the above statistics variables are counters denoting the number of times the
particular event was observed. Exceptions are:

glds_speed Estimate of the interface’s current bandwidth in
bits per second. For interfaces that do not vary in
bandwidth or for those where no accurate
estimation can be made, this object should
contain the nominal bandwidth.

glds_media Type of media (wiring) or connector used by the
hardware. Currently supported media names
include GLDM_AUI, GLDM_BNC, GLDM_TP,
GLDM_10BT, GLDM_100BT, GLDM_100BTX,
GLDM_100BT4, GLDM_RING4, GLDM_RING16,
GLDM_FIBER, and GLDM_PHYMII.
GLDM_UNKNOWNis also permitted.

glds_duplex Current duplex state of the interface. Supported
values are GLD_DUPLEX_HALFand
GLD_DUPLEX_FULL. GLD_DUPLEX_UNKNOWNis
also permitted.

Entry Point and Service Routines
Arguments Used by GLD Routines

macinfo Pointer to a gld_mac_info (9S) structure.

52 Solaris 8 Software Developer Supplement ♦ April 2001

macaddr Pointer to the beginning of a character array containing a
valid MAC address. The array will be of the length
specified by the driver in the gldm_addrlen element of
the gld_mac_info (9S) structure.

multicastaddr Pointer to the beginning of a character array containing a
multicast, group, or functional address. The array will be
of the length specified by the driver in the
gldm_addrlen element of the gld_mac_info (9S)
structure.

multiflag Flag indicating whether reception of the multicast address
is to be enabled or disabled. This argument is specified as
GLD_MULTI_ENABLEor GLD_MULTI_DISABLE.

promiscflag Flag indicating what type of promiscuous mode, if any, is
to be enabled. This argument is specified as
GLD_MAC_PROMISC_PHYS, GLD_MAC_PROMISC_MULTI,
or GLD_MAC_PROMISC_NONE.

mp gld_ioctl() uses mp as a pointer to a STREAMS
message block containing the ioctl to be executed.
gld_send() uses it as a pointer to a STREAMS message
block containing the packet to be transmitted.
gld_recv() uses it as a pointer to a message block
containing a received packet.

stats Pointer to a gld_stats (9S) structure to be filled in with
the current values of statistics counters.

q Pointer to the queue (9S) structure to be used in the reply
to the ioctl.

dip Pointer to the device’s dev_info structure.

name Device interface name.

Entry Points
These entry points must be implemented by a device-specific network driver
designed to interface with GLD.

As described in gld (7D), the main data structure for communication between the
device-specific driver and the GLD module is the gld_mac_info (9S) structure.
Some of the elements in that structure are function pointers to the entry points

Drivers for Network Devices 53

described here. The device-specific driver must, in its attach (9E) routine, initialize
these function pointers before calling gld_register() .

int prefix_reset(gld_mac_info_t * macinfo);

gldm_reset() resets the hardware to its initial state.

int prefix_start(gld_mac_info_t * macinfo);

gldm_start() enables the device to generate interrupts and prepares the driver to
call gld_recv() for delivering received data packets to GLD.

int prefix_stop(gld_mac_info_t * macinfo);

gldm_stop() disables the device from generating any interrupts and stops the
driver from calling gld_recv() for delivering data packets to GLD. GLD depends
on the gldm_stop() routine to ensure that the device will no longer interrupt, and
it must do so without fail. This function should always return GLD_SUCCESS.

int prefix_set_mac_addr(gld_mac_info_t * macinfo, unsigned char * macaddr);

gldm_set_mac_addr() sets the physical address that the hardware is to use for
receiving data. This function should program the device to the passed MAC address
macaddr. If sufficient resources are currently not available to carry out the request,
return GLD_NORESOURCES. Return GLD_NOTSUPPORTEDto indicate that the
requested function is not supported.

int prefix_set_multicast(gld_mac_info_t * macinfo, unsigned char * multicastaddr,
int multiflag);

gldm_set_multicast() enables and disables device-level reception of specific
multicast addresses. If the third argument multiflag is set to GLD_MULTI_ENABLE,
then the function sets the interface to receive packets with the multicast address
pointed to by the second argument. If multiflag is set to GLD_MULTI_DISABLE, the
driver is allowed to disable reception of the specified multicast address.

This function is called whenever GLD wants to enable or disable reception of a
multicast, group, or functional address. GLD makes no assumptions about how the
device does multicast support and calls this function to enable or disable a specific
multicast address. Some devices might use a hash algorithm and a bitmask to enable
collections of multicast addresses; this procedure is allowed, and GLD filters out any
superfluous packets. If disabling an address could result in disabling more than one
address at the device level, it is the responsibility of the device driver to keep
whatever information it needs in order to avoid disabling an address that GLD has
enabled but not disabled.

54 Solaris 8 Software Developer Supplement ♦ April 2001

gldm_set_multicast() will not be called to enable a particular multicast address
that is already enabled, nor will it be called to disable an address that is not
currently enabled. GLD keeps track of multiple requests for the same multicast
address and only calls the driver’s entry point when the first request to enable, or the
last request to disable, a particular multicast address is made. If sufficient resources
are currently not available to carry out the request, return GLD_NORESOURCES.
Return GLD_NOTSUPPORTEDto indicate that the requested function is not supported.

int prefix_set_promiscuous(gld_mac_info_t * macinfo, int promiscflag);

gldm_set_promiscuous() enables and disables promiscuous mode. This function
is called whenever GLD wants to enable or disable the reception of all packets on the
medium, or of all multicast packets on the medium. If the second argument
promiscflag is set to the value of GLD_MAC_PROMISC_PHYS, then the function enables
physical-level promiscuous mode, resulting in the reception of all packets on the
medium. If promiscflag is set to GLD_MAC_PROMISC_MULTI, then reception of all
multicast packets will be enabled. If promiscflag is set to GLD_MAC_PROMISC_NONE,
then promiscuous mode is disabled.

In the case of a request for promiscuous multicast mode, drivers for devices that
have no multicast-only promiscuous mode must set the device to physical
promiscuous mode to ensure that all multicast packets are received. In this case the
routine should return GLD_SUCCESS. The GLD software filters out any superfluous
packets. If sufficient resources are currently not available to carry out the request,
return GLD_NORESOURCES. Return GLD_NOTSUPPORTEDto indicate that the
requested function is not supported.

For forward compatibility, gldm_set_promiscuous() routines should treat any
unrecognized values for promiscflag as though they were GLD_MAC_PROMISC_PHYS.

int prefix_send(gld_mac_info_t * macinfo, mblk_t * mp);

gldm_send() queues a packet to the device for transmission. This routine is passed
a STREAMS message containing the packet to be sent. The message might include
multiple message blocks, and the send routine must traverse all the message blocks
in the message to access the entire packet to be sent. The driver should be prepared
to handle and skip over any zero-length message continuation blocks in the chain.
The driver should check that the packet does not exceed the maximum allowable
packet size, and it must pad the packet, if necessary, to the minimum allowable
packet size. If the send routine successfully transmits or queues the packet, it should
return GLD_SUCCESS.

The send routine should return GLD_NORESOURCESif it cannot immediately accept
the packet for transmission; in this case GLD will retry it later. If gldm_send() ever
returns GLD_NORESOURCES, the driver must, at a later time when resources have
become available, call gld_sched() . This call to gld_sched() informs GLD that
it should retry packets that the driver previously failed to queue for transmission. (If
the driver’s gldm_stop() routine is called, the driver is absolved from this

Drivers for Network Devices 55

obligation until it later again returns GLD_NORESOURCESfrom its gldm_send()
routine. However, extra calls to gld_sched() will not cause incorrect operation.)

If the driver’s send routine returns GLD_SUCCESS, then the driver is responsible for
freeing the message when the driver and the hardware no longer need it. If the send
routine copied the message into the device, or into a private buffer, then the send
routine is permitted to free the message after the copy is made. If the hardware uses
DMA to read the data directly out of the message data blocks, then the driver must
not free the message until the hardware has completed reading the data. In this case
the driver will probably free the message in the interrupt routine, or in a buffer
reclaim operation at the beginning of a future send operation. If the send routine
returns anything other than GLD_SUCCESS, then the driver must not free the
message. Return GLD_NOLINKif gldm_send() is called when there is no physical
connection to the network or link partner.

int prefix_intr(gld_mac_info_t * macinfo);

gldm_intr() is called when the device might have interrupted. Because it is
possible to share interrupts with other devices, the driver must check the device
status to determine whether it actually caused an interrupt. If the device that the
driver controls did not cause the interrupt, then this routine must return
DDI_INTR_UNCLAIMED. Otherwise, it must service the interrupt and should return
DDI_INTR_CLAIMED. If the interrupt was caused by successful receipt of a packet,
this routine should put the received packet into a STREAMS message of type
M_DATAand pass that message to gld_recv() .

gld_recv() will pass the inbound packet upstream to the appropriate next layer of
the network protocol stack. It is important to correctly set the b_rptr and b_wptr
members of the STREAMS message before calling gld_recv() .

The driver should avoid holding mutex or other locks during the call to
gld_recv() . In particular, locks that could be taken by a transmit thread must not
be held during a call to gld_recv() : the interrupt thread that calls gld_recv()
will in some cases carry out processing that includes sending an outgoing packet,
resulting in a call to the driver’s gldm_send() routine. If the gldm_send() routine
were to try to acquire a mutex being held by the gldm_intr() routine at the time it
calls gld_recv() , this would result in a panic due to recursive mutex entry. If other
driver entry points attempt to acquire a mutex that the driver holds across a call to
gld_recv() , deadlock can result.

The interrupt code should increment statistics counters for any errors. This includes
failure to allocate a buffer needed for the received data and any hardware-specific
errors, such as CRC errors or framing errors.

int prefix_get_stats(gld_mac_info_t * macinfo, struct gld_stats * stats);

gldm_get_stats() gathers statistics from the hardware, driver private counters, or
both, and updates the gld_stats (9S) structure pointed to by stats. This routine is

56 Solaris 8 Software Developer Supplement ♦ April 2001

called by GLD when it gets a request for statistics, and provides the mechanism by
which GLD acquires device-dependent statistics from the driver before composing its
reply to the statistics request. See gld_stats (9S) and gld (7D) for a description of
the defined statistics counters.

int prefix_ioctl(gld_mac_info_t * macinfo, queue_t * q, mblk_t * mp);

gldm_ioctl() implements any device-specific ioctl commands. This element is
allowed to be NULL if the driver does not implement any ioctl functions. The driver
is responsible for converting the message block into an ioctl reply message and
calling the qreply (9F) function before returning GLD_SUCCESS. This function
should always return GLD_SUCCESS; any errors the driver might want to report
should be returned by the message passed to qreply (9F). If the gldm_ioctl
element is specified as NULL, GLD returns a message of type M_IOCNAKwith an
error of EINVAL.

Return Values
In addition to the return values described above, and subject to the restrictions above,
it is permitted for some of the GLD entry point functions to return these values:

GLD_BADARG If the function detected an unsuitable argument,
for example, a bad multicast address, a bad MAC
address, or a bad packet or packet length

GLD_FAILURE On hardware failure

GLD_SUCCESS On success

Service Routines

gld_mac_info_t * gld_mac_alloc(dev_info_t * dip);

gld_mac_alloc() allocates a new gld_mac_info (9S) structure and returns a
pointer to it. Some of the GLD-private elements of the structure might be initialized
before gld_mac_alloc() returns; all other elements are initialized to zero. The
device driver must initialize some structure members, as described in
gld_mac_info (9S), before passing the pointer to the mac_info structure to
gld_register() .

void gld_mac_free(gld_mac_info_t * macinfo);

Drivers for Network Devices 57

gld_mac_free() frees a gld_mac_info (9S) structure previously allocated by
gld_mac_alloc() .

int gld_register(dev_info_t * dip, char * name, gld_mac_info_t * macinfo);

gld_register() is called from the device driver’s attach (9E) routine and is
used to link the GLD-based device driver with the GLD framework. Before calling
gld_register() , the device driver’s attach (9E) routine must first use
gld_mac_alloc() to allocate a gld_mac_info (9S) structure, and initialize several
of its structure elements. See gld_mac_info (9S) for more information. A successful
call to gld_register() performs the following actions:

� Links the device-specific driver with the GLD system

� Sets the device-specific driver’s private data pointer (using
ddi_set_driver_private (9F)) to point to the macinfo structure

� Creates the minor device node

� Returns DDI_SUCCESS

The device interface name passed to gld_register() must exactly match the
name of the driver module as it exists in the file system.

The driver’s attach (9E) routine should return DDI_SUCCESSif gld_register()
succeeds. If gld_register() does not return DDI_SUCCESS, the attach (9E)
routine should deallocate any resources it allocated before calling gld_register() ,
and then return DDI_FAILURE .

int gld_unregister(gld_mac_info_t * macinfo);

gld_unregister() is called by the device driver’s detach (9E) function, and if
successful, performs the following tasks:

� Ensures that the device’s interrupts are stopped, calling the driver’s
gldm_stop() routine if necessary

� Removes the minor device node

� Unlinks the device-specific driver from the GLD system

� Returns DDI_SUCCESS

If gld_unregister() returns DDI_SUCCESS, the detach (9E) routine should
deallocate any data structures allocated in the attach (9E) routine, using
gld_mac_free() to deallocate the macinfo structure, and return DDI_SUCCESS. If
gld_unregister() does not return DDI_SUCCESS, the driver’s detach (9E)
routine must leave the device operational and return DDI_FAILURE .

void gld_recv(gld_mac_info_t * macinfo, mblk_t * mp);

58 Solaris 8 Software Developer Supplement ♦ April 2001

gld_recv() is called by the driver’s interrupt handler to pass a received packet
upstream. The driver must construct and pass a STREAMS M_DATAmessage
containing the raw packet. gld_recv() determines which STREAMS queues, if any,
should receive a copy of the packet, duplicating it if necessary. It then formats a
DL_UNITDATA_IND message, if required, and passes the data up all appropriate
Streams.

The driver should avoid holding mutex or other locks during the call to
gld_recv() . In particular, locks that could be taken by a transmit thread must not
be held during a call to gld_recv() : the interrupt thread that calls gld_recv()
will in some cases carry out processing that includes sending an outgoing packet,
resulting in a call to the driver’s gldm_send() routine. If the gldm_send() routine
were to try to acquire a mutex being held by the gldm_intr() routine at the time it
calls gld_recv() , this would result in a panic caused by a recursive mutex entry. If
other driver entry points attempt to acquire a mutex that the driver holds across a
call to gld_recv() , deadlock can result.

void gld_sched(gld_mac_info_t * macinfo);

gld_sched() is called by the device driver to reschedule stalled outbound packets.
Whenever the driver’s gldm_send() routine has returned GLD_NORESOURCES, the
driver must later call gld_sched() to inform the GLD framework that it should
retry the packets that previously could not be sent. gld_sched() should be called
as soon as possible after resources are again available, to ensure that GLD resumes
passing outbound packets to the driver’s gldm_send() routine in a timely way. (If
the driver’s gldm_stop() routine is called, the driver is absolved from this
obligation until it later again returns GLD_NORESOURCESfrom its gldm_send()
routine; however, extra calls to gld_sched() will not cause incorrect operation.)

uint_t gld_intr(caddr_t);

gld_intr() is GLD’s main interrupt handler. Normally, gld_intr() is specified
as the interrupt routine in the device driver’s call to ddi_add_intr (9F). The
argument to the interrupt handler (specified as int_handler_arg in the call to
ddi_add_intr (9F)) must be a pointer to the gld_mac_info (9S) structure.
gld_intr() will, when appropriate, call the device driver’s gldm_intr() function,
passing that pointer to the gld_mac_info (9S) structure. However, if the driver uses
a high-level interrupt, it must provide its own high-level interrupt handler and
trigger a soft interrupt from within that. In this case, gld_intr() would normally
be specified as the soft interrupt handler in the call to ddi_add_softintr() .
gld_intr() will return a value appropriate for an interrupt handler.

Drivers for Network Devices 59

60 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 6

Language Support Topics

This section provides instructions for language support in the Solaris environment.
This section contains these chapters.

“Additional Partial Locales for
European Solaris Software” on
page 63

Lists new partial locales

Chapter 8 Describes how to customize the behavior of mp print filter
and provides troubleshooting information

61

62 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 7

Additional Partial Locales

Additional partial locales are new in the Solaris 8 10/00 release and the Eastern
European locale is updated for Solaris 8 4/01 release. For more information on
language support in Solaris software, see International Language Environments Guide.

Note - For the most current man pages, use the man command. The Solaris 8 Update
release man pages include new feature information that is not in the Solaris 8
Reference Manual Collection.

Additional Partial Locales for European
Solaris Software
The 10/00 release features are the addition of UTF-8 locales for Russian and Polish
and two new locales for Catalan. The locale names are as follows.

� ru_RU.UTF-8

� pl_PL.UTF-8

� ca_ES.ISO8859–1

� ca_ES.ISO8859–15

The 4/01 release includes the addition of UTF-8 locales for Turkish and other locales.

The additional locales are partial locales because of the lack of language support
(translation of messages and GUI).

63

Localization in the Base and Multilingual Solaris
Product

Central Europe

TABLE 7–1 Central Europe

Locale User
Interface

Territory Codeset Language Support

cs_CZ.ISO8859-2 English Czech Republic ISO8859-2 Czech (Czech Republic)

de_AT.ISO8859-1 German Austria ISO8859-1 German (Austria)

de_AT.ISO8859-15 German Austria ISO8859-15 German (Austria, ISO8859-15 - Euro)

de_CH.ISO8859-1 German Switzerland ISO8859-1 German (Switzerland)

de_DE.UTF-8 German Germany UTF-8 German (Germany, Unicode 3.0)

de_DE.ISO8859-1 German Germany ISO8859-1 German (Germany)

de_DE.ISO8859-15 German Germany ISO8859-15 German (Germany, ISO8859-15 - Euro)

fr_CH.ISO8859-1 French Switzerland ISO8859-1 French (Switzerland)

hu_HU.ISO8859-2 English Hungary ISO8859-2 Hungarian (Hungary)

pl_PL.ISO8859-2 English Poland ISO8859-2 Polish (Poland)

pl_PL.UTF-8 English Poland UTF-8 Polish (Poland, Unicode 3.0)

sk_SK.ISO8859-2 English Slovakia ISO8859-2 Slovak (Slovakia)

Eastern European Additions

64 Solaris 8 Software Developer Supplement ♦ April 2001

TABLE 7–2 Eastern Europe

Locale User
Interface

Territory Codeset Language Support

bg_BG.ISO8859-5 English Bulgaria ISO8859-5 Bulgarian (Bulgaria)

et_EE.ISO8859-15 English Estonia ISO8859-15 Estonian (Estonia)

hr_HR.ISO8859-2 English Croatia ISO8859-2 Croatian (Croatia)

lt_LT.ISO8859-13 English Lithuania ISO8859-13 Lithuanian (Lithuania)

lv_LV.ISO8859-13 English Latvia ISO8859-13 Latvian (Latvia)

mk_MK.ISO8859-5 English Macedonia ISO8859-5 Macedonian (Macedonia)

ro_RO.ISO8859-2 English Romania ISO8859-2 Romanian (Romania)

ru_RU.KOI8-R English Russia KOI8-R Russian (Russia, KOI8-R)

ru_RU.ANSI1251 English Russia ansi-1251 Russian (Russia, ANSI 1251)

ru_RU.ISO8859-5 English Russia ISO8859-5 Russian (Russia)

ru_RU.UTF-8 (Unicode 3.0) English Russia UTF-8 Russian (Russia, Unicode 3.0)

sh_BA.ISO8859-2@bosnia English Bosnia ISO8859-2 Bosnian (Bosnia)

sl_SI.ISO8859-2 English Slovenia ISO8859-2 Slovenian (Slovenia)

sq_AL.ISO8859-2 English Albania ISO8859-2 Albanian (Albania)

sr_YU.ISO8859-5 English Serbia ISO8859-5 Serbian (Serbia)

tr_TR.ISO8859-9 English Turkey ISO8859-9 Turkish (Turkey)

tr_TR.UTF-8 English Turkey UTF-8 Turkish (Turkey, Unicode 3.0)

South Europe

Additional Partial Locales 65

TABLE 7–3 South Europe

Locale User
Interface

Territory Codeset Language Support

ca_ES.ISO8859-1 English Spain ISO8859-1 Catalan (Spain)

ca_ES.ISO8859-15 English Spain ISO8859-15 Catalan (Spain, ISO8859-15 - Euro)

el_GR.ISO8859-7 English Greece ISO8859-7 Greek (Greece)

es_ES.ISO8859-1 Spanish Spain ISO8859-1 Spanish (Spain)

es_ES.ISO8859-15 Spanish Spain ISO8859-15 Spanish (Spain, ISO8859-15 - Euro)

es_ES.UTF-8 Spanish Spain UTF-8 Spanish (Spain, Unicode 3.0)

it_IT.ISO8859-1 Italian Italy ISO8859-1 Italian (Italy)

it_IT.ISO8859-15 Italian Italy ISO8859-15 Italian (Italy, ISO8859-15 - Euro)

it_IT.UTF-8 Italian Italy UTF-8 Italian (Italy, Unicode 3.0)

pt_PT.ISO8859-1 English Portugal ISO8859-1 Portuguese (Portugal)

pt_PT.ISO8859-15 English Portugal ISO8859-15 Portuguese (Portugal, ISO8859-15 - Euro)

European Localization
Solaris 8 software supports the euro currency. Local currency symbols are still
available for backward compatibility.

TABLE 7–4 User Locales to Support the Euro Currency

Region Locale Name ISO Codeset

Austria de_AT.ISO8859-15 8859-15

Belgium (French) fr_BE.ISO8859-15 8859-15

66 Solaris 8 Software Developer Supplement ♦ April 2001

TABLE 7–4 User Locales to Support the Euro Currency (continued)

Region Locale Name ISO Codeset

Belgium (Dutch) nl_BE.ISO8859-15 8859-15

Denmark da_DK.ISO8859-15 8859-15

Finland fi_FI.ISO8859-15 8859-15

France fr_FR.ISO8859-15 8859-15

Germany de_DE.ISO8859-15 8859-15

Ireland en_IE.ISO8859-15 8859-15

Italy it_IT.ISO8859-15 8859-15

Netherlands nl_NL.ISO8859-15 8859-15

Portugal pt_PT.ISO8859-15 8859-15

Spain ca_ES.ISO8859-15 8859–15

Spain es_ES.ISO8859-15 8859-15

Sweden sv_SE.ISO8859-15 8859-15

Great Britain en_GB.ISO8859-15 8859-15

U.S.A. en_US.ISO8859-15 8859-15

Additional Partial Locales 67

68 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 8

Print Filter Enhancement mp(1)

The mp print filter is new in the Solaris 8 1 4/01 release. For more information on
language support in Solaris software, see International Language Environments Guide.

Note - For the most current man pages, use the man command. The Solaris 8 Update
release man pages include new feature information that is not in the Solaris 8
Reference Manual Collection.

mp(1) Print Filter Enhancement
Overview
The mp(1) print filter is enhanced with the ability to work as an X Print Server client
in the 2.5.11 version. This section describes how to customize the behavior of mp(1) .

Customization can be divided into

� Changes to enable mp(1) to print the correct output

� Changes to enable the mp(1) output to appear differently

The following information outlines what to do if mp(1) is not printing the correct
output. The new enhancements done to the mpversion 2.5.11 permit it to work as an
X Print Server client.

If a correctly configured X Print Server is running, then mp(1) prints correctly in the
target locale without changing any of the configuration files described below. If you
do not have a working X Print Server, localize /usr/lib/lp/locale/$LANG/mp/
mp.conf as described in the next section. mp.conf file effectively achieves the same

69

functionality as the prolog.ps file available in some locales under /usr/openwin/
lib/locale/$LANG/print/ . The prolog.ps file can also be customized.

/usr/lib/lp/locale/$LANG/mp/ directory can also contain the prolog.ps file.
This file is provided for backward compatibility purposes only, and users are
encouraged to use either the direct X Print Server client mode, when giving −P or −D
options, or by configuring the mp.conf file. For changing the appearance of the
output, customize the existing prolog files.

The following guidelines describe how the choice of a configuration file is made by
mp(1)

� If ’−D <target printer name>’ or ’− P <target printer name>’ is given, then .xpr
prolong files are read. No other file is read.

� If ’−D’ or ’−P’ is not given in the command line, and if /usr/openwin/lib/
locale/$LANG/print/prolog.ps exists, then it is prepended to the output.
Depending on the print style, one of the .ps prolog page layout files is also
prepended to the output. If MP_LANGis defined in the environment, it is used
instead of LANG. LANGis a locale environment variable.

� If the prolog.ps file is not in/usr/openwin/lib/locale/$LANG/print/ ,
then that file is searched in /usr/lib/lp/locale/$LANG/mp/ . $MP_LANGis
substituted for $LANG if it is defined. If prolog.ps file is not in that directory,
and the mp.conf file is present, then the mp.conf file is scanned. Depending on
the print style, one of the ps prolog layout files is also prepended to the output. If
neither the prolog.ps nor the mp.conf file is present, then mpprints ASCII only
as in C locale.

The following guidelines describe how a PostScript (.ps) or X Print client page (.xpr)
formatting file is selected.

� If −D <target printer name> or −P <target printer name> is given, then the .xpr
prolog files in /usr/lib/lp/locale/C/mp are used. To set up your own
directory for output prolog files, set the MP_PROLOGUEvariable to point to that
directory.

� When printing in the normal output mode, use the ps files in the/usr/lib/lp/
locale/C/mp directory. The MP_PROLOGUEvariable is also applicable here.

Localization of the Configuration File
The idea behind configuration files is to capture the flexibility they provide when
adding or changing font entries, or font group entries, as the need arises.

The system default configuration file that is used is /usr/lib/lp/locale/$LANG/
mp/mp.conf where $LANG is a locale environment variable in the locale in which

70 Solaris 8 Software Developer Supplement ♦ April 2001

printing occurs. Users can have a personal configuration file that can be specified by
the ’−u <config.file path>’ option.

The mp.conf file is used mainly for mapping the intermediate code points in a
locale to the presentation forms in the encoding of the font that is used to print that
code point.

Note - A ligature or variant glyph that has been encoded as a character for
compatibility is called presentation forms.

Intermediate code points can either be Wide Characters or output of the Portable
Layout Services (PLS) layer. Complex Text Layout printing requires that the
intermediate code points be PLS output. The default intermediate code generated by
mp(1) is PLS output.

Font formats currently supported are Portable Compiled Format (PCF), TrueType, and
Type1 format. Both system-resident and printer-resident Type1 fonts are supported.

mp.conf configuration file localization is for configuring mp to print according to the
needs of a specific locale. The following describes the format and contents of the
mp.conf configuration file for mp(1) .

� Lines must begin with a valid keyword (directive).

� Arguments to a keyword must appear on the same line as the keyword.

� Lines that begin with a “#” character are treated as comments until the end of the
line.

� Numeric arguments that begin with 0x are interpreted as a hexadecimal number.

The following list describes different sections in the mp.conf file.

� Font Aliasing

� Font Group definition

� Mapping from the intermediate code ranges to the Font Group in a locale

� Associating each font with the shared object that maps the intermediate code
points to the presentation forms in the font encoding

Font Aliasing
This section is used to define alias names for each font used for printing. Each line in
this section is of the form

keyword font alias name font type font path

<keyword> The keyword for this section is FontNameAlias.

 The usual convention for aliasing a font name is to specify the
encoding/script name of the font followed by a letter that

Print Filter Enhancement mp(1) 71

indicates whether the font is Roman, Bold, Italic, or BoldItalic (R,
B, I or BI). For example /usr/openwin/lib/X11/fonts/
75dpi/courR18.pcf.Z , since it is an iso88591 Roman font, can
be given the alias name iso88591R.

 Specify PCF for .pcf fonts, Type1 for Adobe Type1 fonts, and
TrueType for truetype fonts. Only these three kinds of fonts can be
configured in this config. file.

 Give the absolute path name for the font files here. For type1
printer-resident fonts, just specify the font name. See the following
example.

FontNameAlias prnHelveticaR Type1 Helvetica

Font Group Definition
You can combine same-type fonts to form a font group. The format of the font group
is as follows.

� <keyword> for this section is FontGroup.

� <fontgroupname> is the group name for the fonts.

� <GroupType> is the font type. Create font groups for the same type of fonts only
(PCF, Type1, TrueType).

� <Roman> is the Roman Font name in the font group.

� <Bold> is the Bold Font name in the font group.

� <Italic> is the Italic Font name in the font group.

� <BoldItalic> is the BoldItalic Font name in the font group.

Note - For creating a group, only a Roman font entry is required. The Bold, Italic,
and BoldItalic fonts are optional. The different types of fonts are used to display the
header lines for mail/news articles. If only the Roman font is defined, it is used in
place of other fonts.

Mapping From the Intermediate Code Ranges to the Font
Group in a Locale
� <keyword> for this section is MapCode2. Font for this section is MapCode2Font.

� <range_start> is a 4–byte hex value that starts with 0x, which indicates the start of
the code range to map to one or more font group.

� <range_end> indicates the end of the code range to map. It can be a ’-’ in which
case only a single intermediate code point is mapped to the target font.

72 Solaris 8 Software Developer Supplement ♦ April 2001

� <group> is a Type1, PCF, or TrueType font group, with which the presentation
forms are to be printed.

Associating Each Font With the Shared Object That Maps the
Intermediate Code Points to the Presentation Forms in the
Fonts Encoding
� <keyword> is CnvCode2Font.

� is the alias name defined for the font.

� <mapping function> takes in the intermediate code and returns presentation forms
in fonts encoding, which is in turn used to get the glyph index, and draw the
glyph.

� <file path having mapping function> is the .so file name that contains the
mapping function. You can use the utility in dumpcs to find out the intermediate
codeset for EUC locales.

Note - The Current TrueType Engine employed by mp(1) is capable of dealing only
with format 4 and PlatformID 3 cmap. That is, you can only configure Microsoft
.ttf files. Additionally, the character map encoding has to be Unicode or Symbol
for the TrueType font engine to work correctly. Because most of the .ttf fonts in the
Solaris environment are obeying these restrictions, you can map all TrueType fonts in
Solaris software within the mp.conf file.

When you create a shared object for mapping a font that corresponds to an X Logical
Fonts Description (XLFD) , consider the following. If you are mapping a pcf/type1
font, then create the shared object that maps from the intermediate code range to the
encoding specified by XLFD. For example:

-monotype-arial-bold-r-normal-bitmap-10-100-75-75-p-54-iso8859-8

The corresponding pcf font is:

/usr/openwin/lib/locale/iso_8859_8/X11/fonts/75dpi/ariabd10.pcf.Z

This font is encoded in iso8859-8, so shared objects have to map between
intermediate code and corresponding iso8859-8 code points.

But if a TrueType font with XLFD:

-monotype-arial-medium-r-normal--0-0-0-0-p-0-iso8859-8

has the corresponding font:

/usr/openwin/lib/locale/iso_8859_8/X11/fonts/TrueType/arial__h.ttf

In this situation, map between the intermediate code and Unicode, because the cmap
encoding for the previous TrueType font is in Unicode. In the example of this
TrueType font, if a sample intermediate code in the en_US.UTF-8 locale that

Print Filter Enhancement mp(1) 73

corresponds to a Hebrew character (produced by the PLS layer) is 0xe50000e9, you
need to consider the following. Because the font is Unicode encoded, design the
function within the corresponding .so module in such a way that when you are
passing 0xe50000e9, the output corresponds to presentation form in Unicode. The
example here is 0x000005d9.

The function prototype for the <mapping function> should be:

unsigned int function(unsigned int inter_code_pt)

The following are optional keyword/value pairs that you can use in mp.conf:

PresentationForm WC/PLSOutput

The default value is PLSOutput. If the user is specifying "WC", then the intermediate
code points that are generated are Wide Characters. For CTL printing, this default
value should be used.

If the locale is non-CTL locale and has the value for the keyword is PLSOutput, it is
ignored and the mp(1) generates wide-character codes instead.

You can use the following optional keyword/value pairs if the locale supports CTL.
These variables can assume any of the possible values given on the right side of the
table.

Orientation ORIENTATION_LTR/
ORIENTATION_RTL/
ORIENTATION_CONTEXTUAL

Default is ORIENTATION_LTR

Numerals NUMERALS_NOMINAL/
NUMERALS_NATIONAL/
NUMERALS_CONTEXTUAL

Default is
NUMERALS_NOMINAL

TextShaping TEXT_SHAPED/
TEXT_NOMINAL/
TEXT_SHFORM1/
TEXT_SHFORM2/
TEXT_SHFORM3/
TEXT_SHFORM4

Default is TEXT_SHAPED

The following example illustrates the steps that you need to follow when you add a
new PCF, TrueType, or Type1 printer-resident font to the configuration file.

Replace the font for displaying characters in the range 0x00000021 - 0x0000007f with
a TrueType font instead of the currently configured PCF font.

Before adding a new font, look at various components in the configuration file that
correspond to the currently configured font, as shown next.

FontNameAlias iso88591R PCF /usr/openwin/lib/X11/fonts/75dpi/courR18PCF.Z
FontNameAlias iso88591B PCF /usr/openwin/lib/X11/fonts/75dpi/courB18PCF.Z
.
.

74 Solaris 8 Software Developer Supplement ♦ April 2001

.
FontGroup iso88591 PCF iso88591R iso88591B
.
.
.
MapCode2Font 0x00000020 0x0000007f iso88591
.
.
.
CnvCode2Font iso88591R _xuiso88591 /usr/lib/lp/locale/$LANG/mp/xuiso88591.so
CnvCode2Font iso88591B _xuiso88591 /usr/lib/lp/locale/$LANG/mp/xuiso88591.so

Suppose you selected /usr/openwin/lib/locale/ja/X11/fonts/TT/
HG-MinchoL.ttf as your candidate for doing the mapping in the en_US.UTF-8
locale. Because this is a Unicode character-mapped TrueType font file, in the
mapping function within the .so module you only need to have a function that
directly returns the incoming ucs-2 code points.

unsigned short _ttfjis0201(unsigned short ucs2) {
return(ucs2);

}

Save this in a ttfjis0201.c file. Create a shared object as follows.

cc -G -Kpic -o ttfjis0201.so ttfjis0201.c

But if you are mapping a PCF file, such as /usr/openwin/lib/locale/ja/X11/
fonts/75dpi/gotmrk20.pcf.Z , then look in the fonts.dir file in the /usr/
openwin/lib/locale/ja/X11/fonts/75dpi/ directory. Become familiar with
the encoding, corresponding to XLFD, which is:

-sun-gothic-medium-r-normal--22-200-75-75-c-100-jisx0201.1976-0

If jisx0201 is the encoding, prepare a shared object that maps from ucs-2 to
jisx0201. You need to obtain the mapping table for creating the .so module (if one is
not already provided). For a Unicode locale, find the mappings from the many
charsets to Unicode under ftp.unicode.org/pub/MAPPINGS/ . Follow these
mappings, in order to write a xu2jis0201.c file:

unsigned short _xu2jis0201(unsigned short ucs2) {
if(ucs2 >= 0x20 && ucs2 <= 0x7d)

return (ucs2);
if(ucs2==0x203e)

return (0x7e);
if(ucs2 >= 0xff61 && ucs2 <= 0xff9f)

return (ucs2 - 0xff60 + 0xa0);
return(0);

}

When you create a mapping file, include all the UCS-2 to jisx0201 cases.

cc -G -o xu2jis0201.so xu2jis0201.c

This example creates a shared object file.

Print Filter Enhancement mp(1) 75

Add this font by adding the following lines to the corresponding sections of
mp.conf . The following example shows how to add the TrueType font. The PCF
font follows the same pattern except that you change the keyword to PCF instead of
TrueType.

FontNameAlias jis0201R TrueType
/home/fn/HG-Minchol.ttf
FontGroup jus0201 TrueType jis0201R
MapCode2Font 0x0020 0x007f jis0201
CnvCode2Font jis0201R _ttfjis0201 <.so path>

this line needs to be deleted from mp.conf before adding.

MapCode2Font 0x0020 0x007f jis0201 CnvCode2Font
jis0201R _ttfjis0201 <.so path>

where the .so path points to the xu2jis0201.so file.

Invoking mp(1) with the changed mp.conf file causes the range 0x0020-0x007f to be
printed in the new font. Map the other Japanese character ranges too with the same
.so file, for example, the range 0x0000FF61 0x0000FF9F.

To maintain backward compatibility, the /usr/openwin/lib/locale/$LANG/
print/prolog.ps file, if it exists, is used to create output in the current locale,
where $LANGis one of the locale components. In that situation, no configuration file
mechanism is used.

Refer to /usr/lib/lp/locale/en_US.UTF-8/mp/mp.conf , which is a sample
mp.conf file.

Customizing Existing prolog Files and Adding
New prolog Files
The prolog files can be divided into two main categories:

� PostScriptTM prolog files (.ps)

� X print server client prolog files (.xpr).

The customization of PostScript files is discussed first:

� Common prolog file

� Print layout prolog files

� Locale dependent prolog files

Customization of each category of prolog files is discussed next.

76 Solaris 8 Software Developer Supplement ♦ April 2001

Common prolog Files
The common prolog files are:

� mp.pro.ps

� mp.common.ps

� mp.pro.alt.ps

� mp.pro.fp.ps

� mp.pro.ps

� mp.pro.ts.ps

� mp.pro.altl.ps

� mp.pro.ff.ps

� mp.pro.l.ps

� mp.pro.tm.ps

These files are the print layout prolog files, of which mp.common.ps is the
common prolog file that is prepended before other prolog files.

The common prolog file, mp.common.ps , which resides in the /usr/lib/lp/
locale/C/mp/ directory, contains a PostScript routine to re-encode a font from the
StandardEncoding to ISOLatin1 Encoding. The .reencodeISO routine is called from
the print layout prolog files to change encoding of the fonts. Usually this prolog
file does not need any customization. If the users are creating their own prolog
files, set the environment variable MP_PROLOGUEto point to the directory that
contains the modified prolog files.

Print Layout prolog Files
The print layout prolog files, mp.*.ps files, contain routines for controlling the
page layout for printing. In addition to giving a header and a footer for a print page
with user name, print date, and page number, these prolog files can provide other
information. For example, the prolog files can give effective print area dimensions
and landscape and portrait mode of printing to be used.

A set of standard functions needs to be defined in every prolog file. These functions
are called when a new print page starts, print page ends, or a new column ends. The
implementations of these functions define the print attributes of the printout.

The following PostScript variables are defined at runtime by the mp(1) binary. All
the print layout files can use these variables for printing dynamic information such
as user name , subject , print time . This information taken from the variables
normally appears in the header or footer of the print page.

User The name of the user who is running mp, obtained from the
system passwd file.

Print Filter Enhancement mp(1) 77

MailFor Variable used to hold the name of the type of article to print. The
possible values for this variable are:

� “Listing for” - When the input is a text file

� “Mail for” - When the input is a mail file

� “Article from” - When the input is an article from a news group

Subject The subject taken from the mail and news headers. You can use
the ’−s ’ option to force a subject to the mail and news files as well
as to normal text files.

Timenow The time of print that appears in the header and footer. This
information is taken from the localtime() function.

Following are the functions implemented in print layout prolog files. All these
functions can use subfunctions.

endpage usage : page_number endpage

Called when the bottom of a printed page is reached. This
function restores the graphic context of the page and issues a
“showpage.” In some prolog files the header and footer
information is displayed in only a page-by-page mode rather than
in a column-by-column mode. You can implement this function to
call subfunctions that display the header and footer gray scale
lozenges.

newpage usage : page_number newpage

Routines or commands to be executed when a new page begins.
Setting landscape print mode, saving the print graphic context,
and translating the page coordinates are some of the functions for
routine.

endcol usage : page_number col_number endcol

Display header and footer information. Move to the new print
position, and so forth.

For adding new print layout prolog files, you need to define the following variables
explicitly within the print layout prolog file.

NumCols <number of columns in a print page>

PrintWidth <width of print area in inches>

PrintHeight <height of print area in inches>

78 Solaris 8 Software Developer Supplement ♦ April 2001

� /NumCols 2 def

� /PrintWidth 6 def

� /PrintHeight 9 def

Locale-Dependent Prolog File
The locale-dependent prolog file is /usr/openwin/lib/locale/$LANG/print/
prolog.ps and it usually is a PostScript file. This file can contain included Type1
fonts that define PostScript prolog information with some additional PostScript
routines. One of the main goals of the prolog file is to set the locale’s fonts in an
alias for a set of font names that are pre-defined and used in the mp(1) .

Support for this file is provided to conform with the prolog.ps file that is used by
/usr/bin/mp . If this file exists, then it is given preference and mp.conf file is not
scanned for backward compatibility.

The sections about mp.conf file that follow are reprinted from the OpenWindowsTM

Localization Guide.

What Is prolog.ps

The purpose of the prolog.ps file is to set up non-generic fonts. Applications use
these pre-defined PostScript font names for printing. The prolog file must define at
least the following font names for Desk Set Calendar manager and mp.

� LC_Times-Roman

� LC_Times-Bold

� LC_Helvetica

� LC_Helvetica-Bold

� LC_Courier

� LC_Helvetica-BoldOblique

� LC_Times-Italic

These fonts need to be able to print the local character set in the following example
usage of those fonts:

� 100 100 moveto

� /LC_Times-Roman findfont 24 scale font setfont

� (Any text string in your locale) show

Print Filter Enhancement mp(1) 79

Example of the prolog.ps File
The localization kit provides a sample prolog.ps for the Japanese environment.
Alternatively, this file is found in the /usr/openwin/lib/locale/ja/print/
directory.

How to Add or Change Composite Fonts in an existing prolog.ps File
For example, the following defines a composite font called LC_Base-Font:

%
(Foo-Fine) makecodeset12
(Base-Font) makeEUCfont
%

LC_Base-Font is a composite font of Foo-Fine and a base font called Base-Font.
Foo-Fine is a font that contains the local character set. You do not need any in-depth
PostScript knowledge to add or change a font.

How to Create a prolog.ps File
The best way is to study the example version. In the example prolog.ps , two
routines need to be written, makecodeset12 and makeEUCfont . Makecodeset12
sets up local font encoding information. This routine might differ from locale to
locale. MakeEUCfont combines the base font and the locale font to form a composite
font. The creator of the prolog file should have good knowledge of PostScript in
order to write makecodeset12 and makeEUCfont .

prolog.ps file support is kept for backward compatibility only. Do not create a new
prolog.ps file for the printing needs of a locale. Use mp.conf instead.

Where Is prolog.ps ?
The path is:

/usr/openwin/lib/locale/$LANG/print/prolog.ps

.xpr File Customization
These files are located, by default, at /usr/lib/lp/locale/C/mp/ . A .xpr file
corresponds to each PostScript prolog layout file, except for mp.common.ps. You
can define an alternate prolog directory by defining the MP_PROLOGUE
environment variable.

These files work as keyword/values pairs. Lines that start with "#" are considered
comments. Spaces separate different tokens unless explicitly stated in the following
description. Three main sections for each .xpr file are bound by the following
keyword pairs:

80 Solaris 8 Software Developer Supplement ♦ April 2001

� STARTCOMMON/ENDCOMMON

� STARTPAGE/ENDPAGE

� STARTCOLUMN/ENDCOLUMN
Certain keyword/value pairs can be used in these three areas. Each area is described
next.

STARTCOMMON/ENDCOMMON Keywords
All the keyword/value pairs that appear after the STARTCOMMON keyword and
before the ENDCOMMON keyword define general properties of the print page.
Different valid values for a keyword are separated by using "/".

ORIENTATION 0/1

"0" means the printing occurs in portrait and "1" means in landscape.

PAGELENGTH <unsigned integer>

A value that indicates the number of lines per logical page.

LINELENGTH <unsigned integer>

A value that indicates the number of single column characters per line.

NUMCOLS <unsigned integer>

The number of logical pages per physical page.

HDNGFONTSIZE <unsigned integer>

The heading font point size in decipoints.

BODYFONTSIZE <unsigned integer>

The body font point size in decipoints.

PROLOGDPI <unsigned integer>

The dots-per-inch scale in which the current .xpr file is created.

YTEXTBOUNDARY <unsigned integer>

This y-coordinate establishes the boundary for text printing in a page or logical page
(column). This boundary is used as an additional check to see whether text printing
is occurring within the expected area. This boundary is needed for Complex Text

Print Filter Enhancement mp(1) 81

Layout and EUC printing, as character height information obtained from
corresponding fonts can be wrong.

STARTTEXT <unsigned integer> <unsigned integer>

The decipoint x/y points where the actual text printing starts in the first logical page
in a physical page.

PAGESTRING 0/1

The 1 indicates that a "Page" string needs to be appended before the page number in
the heading.

0 indicates that only the page number is displayed.

EXTRAHDNGFONT "font string 1, font string 2, ... font string n”

The ’font string 1’ to ’font string n’ are X Logical Font Descriptions. The Token which
separates the keyword EXTRAHDNGFONT from the comma separated font name list
is ’"’, not spaces or tabs. These fonts are given preference over the built-in fonts when
printing of the heading occurs. Usually, EXTRABODYFONT is used to assign
printer-resident fonts that are configured in /usr/openwin/server/etc/
XpConfig/C/print/models/<model name>/fonts directory. The fonts.dir
contains the XLFD of the printer-resident fonts.

Usually a font is specified like

"-monotype-Gill Sans-Regular-r-normal- -*-%d-*-*-p-0-iso8859-2"

in the .xpr file. "%d", if present, is replaced by the mp(1) to the point size of the
current heading fonts in the .xpr file. The x resolution and y resolution are specified
"*" and the average width field is set as "0" to indicate selection of scalable font, if
possible. You can give more specific font names also.

EXTRABODYFONT “font string 1, font string 2, ... font string n”

This is the same as EXTRAHDNGFONT, except that these fonts are used to print the
page body.

XDISPLACEMENT <signed/unsigned int>

Gives the x coordinate displacement to be applied to the page for shifting the
contents of the page in the x direction. This displacement can be a +ve or -ve value.

YDISPLACEMENT <signed/unsigned int>

This parameter is the same as x displacement except that the shifting happens in the
y direction.

82 Solaris 8 Software Developer Supplement ♦ April 2001

These two keywords are useful when you find that some printers have nonstandard
margin widths and you need to shift the printed contents in a page.

STARTPAGE/ENDPAGE
The keyword value pairs in this section are bound by STARTPAGE and ENDPAGE
keywords. This section contains drawings and heading information that is to be
applied for a physical page. A physical page can contain many logical pages, but all
the drawing routines that are contained between these keywords are applied only
once to a physical page.

The valid drawing entities are LINE and ARC. XDrawLine and XDrawArc functions
are executed on values of these keywords.

The dimensions within this section are mapped in PROLOGDPI units. Angles are in
degrees.

LINE x1 y1 x2 y2

The /y unsigned coordinates define a pair of points for connecting a line.

ARC x y width height angle1 angle2

x and y are both unsigned integers that represent the arc origin. Width and height are
unsigned ints that represent the width and height of the arc.

USERSTRINGPOS x y

Unsigned coordinates represent the position in which the user information is printed
on the heading.

TIMESTRINGPOS x y

Unsigned coordinates represent the position in which the time for printing is printed
on the heading.

PAGESTRINGPOS x y

Unsigned coordinates represent the position to print the page string for each printed
page.

SUBJECTSTRINGPOS x y

Unsigned coordinates represent the position to print the subject in the page.

Print Filter Enhancement mp(1) 83

STARTCOLUMN/ENDCOLUMN
All keywords are the same as the previous STARTPAGE/ENDPAGE section except
that the entries in this section are applied to NUMCOLS times to a physical page.

If NUMCOLS is 3, then the printable area of the physical page is divided into three,
and lines, arcs, or heading decorations are three times per page.

Creating a New .xpr File
The following are the mp(1) program defaults for different keyword values if these
values are not specified in the .xpr file for the STARTCOMMON/ENDCOMMON
section.

� ORIENTATION 0

� PAGELENGTH 60

� LINELENGTH 80

� YTEXTBOUNDARY 3005

� NUMCOLS 01

� HDNGFONTSIZE 120

� BODYFONTSIZE 90

� PROLOGDPI 300

� STARTTEXT 135 280

� PAGESTRING 0

No default values are needed for the other two sections bound by STARTPAGE/
ENDPAGE and STARTCOLUMN/ENDCOLUMN.

When you create a new .xpr prolog file, you need to specify only the values that
differ from the default.

To create a page with no decoration, use four logical pages per physical page, in
portrait format.

� STARTCOMMON

� NUMCOLS 04

� LINELENGTH 20

� ENDCOMMON

In this situation, you do not need the other two sections:

– STARTPAGE/ENDPAGE

– STARTCOLUMN/ENDCOLUMN

84 Solaris 8 Software Developer Supplement ♦ April 2001

These parameters are not needed if you are not putting decorations on the printed
page. All the coordinates are in 300 dpi default unless you are not specifying the
PROLOGDPI keyword. If target printer resolution is different, the .xpr file is scaled
to fit into that resolution by the program.

When you create a .xpr file, you must know the paper dimensions beforehand. For
U.S. paper, 8.5x11 inches, for a printer of resolution 300 dpi, 2550X3300 are the total
dimensions. Most printers cannot print from the top left corner of the paper. Instead,
they put some margin around the physical paper. That means that even if you try to
print from 0,0 the printing won’t be in the top left corner of the page. You need to
consider this limitation when you create a new .xpr file.

Print Filter Enhancement mp(1) 85

86 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 9

Development Tools Topics

This section describes development tools in the Solaris environment. This section
contains these chapters.

Chapter 10 Provides instructions for using appcert , correcting
problems that are reported by appcert , and writing
appcert -compliant code

Chapter 11 Describes Sun WBEM software developer’s toolkit (SDK)

Chapter 12 Describes new features in linkers and libraries

Chapter 13 Describes new information in Solaris Modular Debugger
Guide

Chapter 14 Describes new information in Multithreaded Programming
Guide

87

88 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 10

Using appcert

appcert is new in the Solaris 4/01 release. For more information see, System
Interface Guide.

This chapter discusses:

� Purpose of the appcert utility

� Running and using appcert

� Correcting problems appcert reports

� Writing appcert -compliant code

Note - For the most current man pages, use the man command. The Solaris 8 Update
release man pages include new feature information that is not in the Solaris 8
Reference Manual Collection.

Purpose of the appcert Utility
As new Solaris releases become available, some library interfaces might change their
behavior or disappear entirely. Applications that rely on those interfaces would then
stop functioning. The Solaris Application Binary Interface (ABI) defines runtime
library interfaces that are safe and stable for application use. Applications that are
written to conform with the Solaris ABI will remain stable under future releases of
Solaris. The appcert utility is designed to help developers verify an application’s
compliance with the Solaris ABI.

89

What appcert Checks
The appcert utility examines your applications for:

� Private symbol usage

� Static linking

� Unbound symbols

Private Symbol Usage
Private symbols are functions or data that is used by Solaris libraries to call one
another. The semantic behavior of private symbols might change, and symbols may
sometimes be removed (such symbols are called demoted symbols.) The mutable
nature of private symbols introduces the potential for instability in applications that
depend on them.

Static Linking
Because the semantics of private symbol calls from one Solaris library to another
might change between releases, the creation of static links to archives degrades the
binary stability of an application. Dynamic links to the archive’s corresponding
shared object file avoid this problem.

Unbound Symbols
The appcert utility uses the dynamic linker to resolve the library symbols that are
used by the application being examined. Symbols the dynamic linker cannot resolve
are called unbound symbols. Unbound symbols might be caused by environment
problems, such as an incorrectly set LD_LIBRARY_PATHvariable, or build problems,
such as omitting the definitions of the -l lib or -z switches at compile time. While
these examples are minor, unbound symbols that are reported by appcert might
indicate a more serious problem.

90 Solaris 8 Software Developer Supplement ♦ April 2001

What appcert Does Not Check
If the object file you want appcert to examine depends on libraries, those
dependencies must be recorded in the object. To do so, be sure to use the compiler’s
-l switch when compiling the code. If the object file depends on other shared
libraries, those libraries must be accessible through LD_LIBRARY_PATHor RPATHat
the time you run appcert .

The appcert application cannot check 64–bit applications unless the machine is
running the 64–bit Solaris kernel. Static linking checks are not performed by
appcert when it is checking 64–bit applications.

The appcert utility cannot examine:

� Object files that are completely or partially statically linked. A completely
statically linked object is reported as unstable.

� Executable files that do not have the execute permission set. The appcert utility
skips such executables. Shared objects without the execute permission set are
examined normally.

� Object files whose user ID is set to root .

� Non-ELF executables, such as shell scripts.

� Solaris interfaces in languages other than C. The code itself need not be in C, but
the call to the Solaris library must be.

Working with appcert
To check your application with appcert , type:

appcert object|directory

replacing object|directory with either:

� The complete list of objects you want appcert to examine and/or

� The complete list of directories that contain such objects.

Note - If appcert is run in an environment different from the one in which the
application being checked would be run, the utility may not be able to resolve
references to Solaris library interfaces correctly.

Using appcert 91

The appcert utility uses the Solaris runtime linker to construct a profile of interface
dependencies for each executable or shared object file. This profile is used to
determine the Solaris system interfaces upon which the application depends. The
dependencies outlined in the profile are compared to the Solaris ABI to verify
conformance (no private interfaces should be found).

The appcert utility recursively searches directories for object files, ignoring non-ELF
object files. After appcert has finished checking the application, it prints a rollup
report to the standard output (stdout , usually the screen). A copy of this report is
written in the working directory, which is usually /tmp/appcert. pid/Report , in a
file named Report . In the subdirectory name, pid represents the 1– to 6–digit process
ID of that particular instantiation of appcert . See “appcert Results” on page 93 for
more on the directory structure to which appcert writes output files.

appcert Options
The following options modify the behavior of the appcert utility. You can type any
of these options at the command line, after the appcert command but before the
object|directory operand.

-B Runs appcert in batch mode.

In batch mode, the report produced by appcert
will contain one line for each binary checked.

A line that begins with PASS indicates the binary
named in that line did not trigger any appcert
warnings.

A line that begins with FAIL indicates problems
were found in that binary.

A line that begins with INC indicates the binary
named in that line could not be completely
checked.

-f infile The file infile should contain a list of files to
check, with one file name per line. These files are
added to any files already specified at the
command line. If you use this switch, you do not
need to specify an object or directory at the
command line.

-h Prints usage information for appcert .

92 Solaris 8 Software Developer Supplement ♦ April 2001

-L By default, appcert notes any shared objects in
an application and appends the directories they
reside in to LD_LIBRARY_PATH. The -L switch
disables this behavior.

-n By default, appcert follows symbolic links
when it searches directories for binaries to check.
The -n switch disables this behavior.

-S Appends the Solaris library directories /usr/
openwin/lib and /usr/dt/lib to
LD_LIBRARY_PATH.

-w working_dir Specifies a directory in which to run the library
components and create temporary files. If this
switch is not specified, appcert uses the /tmp
directory.

appcert Results
The results of the appcert utility’s analysis of an application’s object files are
written to several files that are located in the appcert utility’s working directory
(typically /tmp) The main subdirectory under the working directory is appcert. pid,
where pid is the process ID for that instantiation of appcert .

Index Contains the mapping between checked binaries
and the subdirectory in which appcert output
specific to that binary is located.

Report Contains a copy of the rollup report displayed on
stdout when appcert is run.

Skipped Contains a list of binaries that appcert was
asked to check but was forced to skip, along with
the reason each binary was skipped. These
reasons are:

� File is not a binary object

� File cannot be read by the user

� File contains metacharacters

� File does not have the execute bit set

Using appcert 93

objects/ object_name A separate subdirectory is under the objects
subdirectory for each object examined by
appcert . Each of these subdirectories contains
the following files:

check.demoted.symbols

Contains a list of symbols appcert suspects
are demoted Solaris symbols.

check.dynamic.private

Contains a list of private Solaris symbols to
which the object is directly bound.

check.dynamic.public

Contains a list of public Solaris symbols to
which the object is directly bound.

check.dynamic.unbound

Contains a list of symbols not bound by the
dynamic linker when running ldd -r . Lines
returned by ldd containing “file not
found ” are also included.

summary.dynamic

Contains a printer-formatted summary of
dynamic bindings in the objects appcert
examined, including tables of public and
private symbols used from each Solaris library.

When appcert exits, it returns one of four exit values.

0 No potential sources of binary instability were
found by appcert .

1 The appcert utility did not run successfully.

2 Some of the objects checked by appcert have
potential binary stability problems.

3 The appcert utility did not find any binary
objects to check.

94 Solaris 8 Software Developer Supplement ♦ April 2001

Correcting Problems Reported by appcert
� Private Symbol Use. Because private symbols might change their behavior or

disappear from one Solaris release to another, an application that depends on
private symbols might not run on a Solaris release different from the one it was
developed in. If appcert reports private symbol usage in your application,
rewrite the application to avoid the use of private symbols.

� Demoted Symbols. Demoted symbols are functions or data variables in a Solaris
library that have been removed or scoped locally in a later Solaris release. An
application that directly calls such a symbol will fail to run on a release whose
libraries do not export that symbol.

� Unbound Symbols. Unbound symbols are library symbols that are referenced by the
application that the dynamic linker was unable to resolve when called by
appcert . While unbound symbols are not always an indicator of poor binary
stability, they might indicate a more serious problem, such as dependencies on
demoted symbols.

� Obsolete Library. An obsolete library might be removed from Solaris in a future
release. The appcert utility flags any use of such a library, because applications
that depend on them will not function in a future release that does not feature the
library. To avoid this problem, do not use interfaces from obsolete libraries.

� Use of sys_errlist or sys_nerr. The use of the sys_errlist and sys_nerr symbols
might degrade binary stability, as a reference might be made past the end of the
sys_errlist array. To avoid this risk, use strerror instead.

� Use of strong and weak symbols. The strong symbols that are associated with weak
symbols are reserved as private because their behavior might change in future
releases of Solaris. Applications should only directly reference weak symbols. An
example of a strong symbol is _socket , which is associated with the weak
symbol socket .

Using appcert 95

96 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 11

WBEM SDK

The WBEM SDK is new in the Solaris 8 4/01 release. For more information on the
WBEM SDK, see Sun WBEM SDK Developer’s Guide.

Note - For the most current man pages, use the man command. The Solaris 8 Update
release man pages include new feature information that is not in the Solaris 8
Reference Manual Collection.

Web-Based Enterprise Management
(WBEM)
Web-Based Enterprise Management (WBEM) includes standards for web-based
management of systems, networks, and devices on multiple platforms. The Sun
WBEM Software Developer’s Toolkit (SDK) allows software developers to create
standards-based applications that manage resources in the Solaris operating
environment. Developers can also use this toolkit to write providers, programs that
communicate with managed resources to access data. The Sun WBEM SDK includes
Client Application Programming Interfaces (APIs) for describing and managing
resources in Common Information Model (CIM) , and Provider APIs for getting and
setting dynamic data on the managed resource. The Sun WBEM SDK also provides
CIM WorkShop, a Java application for creating and viewing the managed resources
on a system, and a set of example WBEM client and provider programs.

97

98 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 12

Linkers and Libraries Guide Revisions

The Linkers and Libraries Guide is revised in 1/01 and 10/00 releases. The following
tables list the changes. To view the book, see Linker and Libraries Guide.

Note - For the most current man pages, use the man command. The Solaris 8 Update
release man pages include new feature information that is not in the Solaris 8
Reference Manual Collection.

Changes to Linkers and Libraries Guide

99

TABLE 12–1 What’s New for Linkers and Libraries Guide

For Solaris 8 1/01
release, Linker and
Libraries Guide has been
updated with the
following information.

� The symbolic information available from dladdr(3DL) has been enhanced
with the introduction of dladdr1() .

� The $ORIGIN of a dynamic object can be obtained from dlinfo(3DL) .

� The maintenance of runtime configuration files, created with crle(1) , has been
simplified with the display of the command-line options that were used to create
the configuration file. Also available is an update capability (see the −u option).

� The runtime linker and its debugger interface have been extended to detect
procedure-linkage-table entry resolution. This update is identified by a new
version number. See the section “Agent Manipulation.” This update extends the
rd_plt_info_t structure. See the section “Procedure Linkage Table Skipping.”

� An applications stack can be defined non-executable by using the new mapfile
segment descriptor STACK. See the section “Segment Declarations.”

For the Solaris 8 10/00
release, Linker and
Libraries Guide has been
updated with the
following information.

� The environment variable LD_BREADTH is ignored by the runtime linker. See
the section, “Initialization and Termination Routines.”

� The runtime linker and its debugger interface have been extended for better
runtime and core file analysis. This update is identified by a new version
number. See the section “Agent Manipulation.” This update expands the
rl_flags, rl_bend , and rl_dynamic fields of the rd_loadobj_t structure.
See the section “Scanning Loadable Objects.”

� The validation of displacement-relocated data in regard to its use, or possible
use, with copy relocations is now provided. See the section “Displacement
Relocations.”

� 64-bit filters can be built solely from a mapfile by using the link-editors -64
option. See the section “Generating a Standard Filter.”

� Some explanatory notes are provided on why $ORIGIN dynamic string token
expansion is restricted within secure applications. See the section “Security.”

� The search paths that are used to locate the dependencies of dynamic objects can
be inspected by using dlinfo(3DL) .

� dlsym(3DL) and dlinfo(3DL) look-up semantics have been expanded with a
new handle, RTLD_SELF.

� The runtime symbol look-up mechanism that is used to relocate dynamic objects
can be significantly reduced by establishing direct binding information within
each dynamic object. See the sections “External Bindings” or “Direct Binding.”

100 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 13

Solaris Modular Debugger Guide
Revisions

The Solaris Modular Debugger Guide is revised for the Solaris 8 10/00 release. To
view the book, see Solaris Modular Debugger Guide.

Note - For the most current man pages, use the man command. The Solaris 8 Update
release man pages include new feature information that is not in the Solaris 8
Reference Manual Collection.

Changes to Solaris Modular Debugger
Guide
� The “Arithmetic Expansion” section of Chapter 3 has been updated to include

unary operators.

� Minor technical errors have been corrected.

101

102 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 14

Multithreaded Programming Guide
Revisions

The Multithreaded Programming Guide is revised for the Solaris 8 1/01 release. To
view the book, see Multithreaded Programming Guide.

Note - For the most current man pages, use the man command. The Solaris 8 Update
release man pages include new feature information that is not in the Solaris 8
Reference Manual Collection.

SPARC: Changes to Multithreaded
Programming Guide
The Multithreaded Programming Guide has been revised to incorporate bug fixes:
4308968, 4356675, 4356690.

103

104 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 15

Interface Development Topics

This section provides instructions for interface development in the Solaris operating
environment. This section contains these chapters.

Chapter 16 Describes changes to the System Interface Guide

105

106 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 16

System Interface Guide Revisions

The System Interface Guide is revised for the Solaris 8 6/00 release. To view the book,
see System Interface Guide.

Note - For the most current man pages, use the man command. The Solaris 8 Update
release man pages include new feature information that is not in the Solaris 8
Reference Manual Collection.

Changes to System Interface Guide
The System Interface Guide is updated to incorporate bug fixes. This release corrects
several typographical errors in text and source code examples.

107

108 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 17

Java 2 Standard Edition and JDK Topics

This section provides Java 2 Standard Edition and Java Developer Kit (JDK) feature
descriptions. This section contains this chapter.

Chapter 18 Provides detailed feature descriptions for each Java 2 SDK
and JDK release in Update releases

109

110 Solaris 8 Software Developer Supplement ♦ April 2001

CHAPTER 18

Java 2 Standard Edition and JDK New
Feature Information

The Solaris 8 4/01 release includes the Java 2 SDK Standard Edition v. 1.3.0, also
known as J2SETM 1.3.0. Below are new feature descriptions. Also included are
descriptions of J2SE and JDK releases in previous Update releases. The information
in this section supplements that found in The Java 2 SDK for Solaris Developer’s
Guide. The following describes new features in each Update release.

Note - For the most current man pages, use the man command. The Solaris 8 Update
release man pages include new feature information that is not in the Solaris 8
Reference Manual Collection.

Java 2 SDK, Standard Edition, version
1.3.0
J2SE 1.3.0 is an upgrade release for Java 2 SDK. The software includes the following
new features and enhancements.

� Performance improvements

Java HotSpotTM technology and performance-tuned runtime libraries make J2SE
1.3.0 faster in many functional areas than previous versions of the Java 2 SDK.

� Easier web deployment

New features such as applet caching and automatic installation of optional
packages by J2SE 1.3.0’s Java Plug-in component enhance the speed and flexibility
with which programs can be deployed on the web.

111

� Enterprise interoperability

The addition of RMI/IIOP and the Java Naming and Directory InterfaceTM in J2SE
1.3.0 enhance the interoperability of the Java 2 Platform.

� Security advances

New support for RSA electronic signing, dynamic trust management, X.509
certificates, and verification of Netscape-signed files mean more ways for
developers to protect their electronic data.

� Java Sound

J2SE 1.3.0 includes a powerful new sound API. Previous releases of the platform
limited audio support to basic playback of audio clips. With this release, the Java 2
Platform for the first time defines a set of standard classes and interfaces for
low-level audio support.

� Enhanced APIs and improved ease of development

In response to requests from the development community, J2SE 1.3.0 adds new
features to various areas of the Java 2 Platform. These features expand the
functionality of the platform to enable development of more powerful
applications. In addition, many of the new features make the development process
itself faster and more efficient.

Each of these features is described more fully below. For detailed information about
the new features in J2SE 1.3.0, see the Java 2 Platform documentation at http://
java.sun.com/j2se/1.3/docs . The Java 2 Platform documentation includes the
API specification for J2SE 1.3.0.

Performance Enhancements
Many enhancements have been made to improve the performance of the Java 2 SDK
in version 1.3.0 These changes include the addition of the Java HotSpotTM Client
Virtual Machine (VM) and the Java HotSpot Server VM, both of which implement
high-performance Java HotSpot technology. The Java HotSpot Client VM is tuned to
maximize performance on client systems, improving performance in areas of startup
time and memory footprint. The Java HotSpot Server VM is tuned to maximize
performance of program execution speed and is aimed at server applications that are
less concerned with startup and memory footprint.

J2SE 1.3.0 also includes newly tuned class libraries for improved runtime
performance.

112 Solaris 8 Software Developer Supplement ♦ April 2001

Easier Web Deployment

Applet Caching
J2SE 1.3.0’s new applet-caching feature ensures that often-used applets are always
available for rapid loading and fast startup by keeping copies of the applets in a
local cache. When an applet has been downloaded more than once, it can be stored
in the local applet cache. This storage eliminates the need for a browser to download
an applet over the network every subsequent time that the applet is needed. The
local, cached copy can be used instead.

This feature is valuable for large, high-use applets. Many enterprise applets, for
example, are in the megabyte-size range, and applets that large can take tens of
minutes to load over a network. The new applet-caching feature eliminates the
download time, enabling businesses to use a larger array of more powerful applets
than ever before.

Automatic Deployment of Optional Packages
J2SE 1.3.0 also supports automatic deployment of optional packages. Optional
packages are sets of features and APIs that, while not part of the Java 2 Platform,
Standard Edition, are available separately for developers to use for specialized
programming needs. Examples are Java Media Framework technology and the
JavaHelpTM optional packages.

Before J2SE 1.3.0, an applet that used one or more optional packages had to trust that
up-to-date versions of the optional packages were installed on every client that
might want to run the applet. Without the proper optional package installed on the
client, the applet could exhibit unintended behavior or not run at all.

With J2SE 1.3.0, applets can specify version and vendor information for any optional
packages that they require. Developers can have their applets specify a URL at which
the latest version of a required optional package can be downloaded if any of the
following conditions are met.

� The optional package is not already installed locally.

� The optional package is installed but has an out-of-date version number.

� The optional package is installed but is not from a specified vendor.

J2SE 1.3.0 supports any native and Java language installer programs that an optional
package might have, automatically launching the installer program when a new
version of an optional package is retrieved from the network.

Java 2 Standard Edition and JDK New Feature Information 113

Enterprise Interoperability

Java IDL and RMI-IIOP
J2SE 1.3.0 includes two significant enhancements to support for CORBA technologies:
a production CORBA IDL compiler written in the Java language and the RMI over
IIOP (RMI-IIOP) API. CORBA Interface Definition Language (IDL) is a language that
defines only the interfaces for distributed systems. By using a neutral language to
define interfaces, CORBA can support multiple languages. For the first time, the Java
2 SDK, Standard Edition includes an IDL compiler to compile language-neutral
CORBA IDL into standard Java language bindings. These language bindings work
with the Java IDL Object Request Broker (ORB) to support traditional CORBA
programming in the Java programming language.

Since version 1.1 of the Java platform, the Remote Method Interface (RMI) has
allowed programmers to write interfaces for distributed computing directly in the
Java language. Because RMI used its own wire protocol, programmers had to give
up the ability to communicate with objects written in other languages when they
used RMI. RMI-IIOP uses the Java IDL ORB to enable the standard CORBA wire
protocol, Internet InterORB Protocol (IIOP), to be used with RMI. Since IIOP is used
for all communication, objects written in other languages such as C++ can
communicate with RMI over IIOP distributed objects. Further, RMI has been
accepted as the CORBA standard for mapping interfaces in the Java programming
language to CORBA IDL. To facilitate programming in other languages, CORBA
standard IDL can be generated from RMI-enabled classes. Existing RMI programs
can be converted to use the IIOP protocol, typically with very limited changes.

RMI-IIOP combines the programming ease of RMI with JavaIDL’s CORBA-compliant
interaction with software written in other languages. By adhering to a few
restrictions, RMI programmers can now use CORBA’s IIOP communications to
protocol to communicate with clients of any type, whether written entirely in the
Java programming language or made up of components written in other
CORBA-compliant languages.

Java Naming and Directory Interface (JNDI) API
J2SE 1.3.0’s new Java Naming and Directory InterfaceTM (JNDI) API enables
developers to add naming and directory functionality to applications written in the
Java programming language. JNDI is designed to be independent of any specific
naming or directory service implementation to enable seamless connectivity to
heterogeneous enterprise naming and directory services. Thus a variety of services —
new, emerging, and already deployed ones—can be accessed in a common way.
Developers can use J2SE 1.3.0 to build powerful and portable directory-enabled
applications by using this industry-standard interface.

The JNDI architecture consists of an API and a Service Provider Interface (SPI). Java
applications use this API to access a variety of naming and directory services. The

114 Solaris 8 Software Developer Supplement ♦ April 2001

SPI enables a variety of naming and directory services to be plugged in
transparently, allowing the Java application to access their services. JNDI in the J2SE
1.3.0 release comes with service providers for accessing the following services:

� Lightweight Directory Access Protocol (LDAP) — An Internet standard for
accessing directory services

� Common Object Services (COS) Name Server — The name server for storing
CORBA object references

� The RMI registry service provider — The name server for storing RMI remote
objects

Security Advances
With the security enhancements available in J2SE 1.3.0, developers have more tools at
their disposal for protecting their technology investments. New support for RSA
signatures and J2SE 1.3.0’s enhanced dynamic trust management facilities also
greatly increase the ease of web-based deployment.

Support for RSA Signatures
J2SE 1.3.0 includes a cryptographic service provider to support the widely used RSA
signatures for electronically signing software that is delivered over the Web.
Standard RSA certificates are supported, including those from VeriSign and Thawte.

Prior to J2SE 1.3.0, Java platform users who wanted to use RSA certificates needed to
write their own RSA service providers or purchase an RSA service provider from a
third party. Now an RSA provider is included as a standard part of J2SE 1.3.0.

Dynamic Trust Management
New dynamic trust management facilities in J2SE 1.3.0 provide pop-up dialogs to let
users validate applet signers, eliminating the need to deploy security key files to
each client that runs the signed applet.

Previously, if a user wanted to give an applet from a trusted source extra security
permissions to allow the applet to perform normally forbidden operations, the user
needed to preconfigure his or her local cache of trusted signer certificates to
recognize the certificate of the applet’s trusted source. This would need to be done
for every client machine on which the applet might potentially be run.

J2SE 1.3.0 provides a better solution by providing facilities to extract the applet’s
signers from the applet’s codesource and pass them to the browser. The browser then
verifies the certificate chain all the way up to its root certificate, and checks if that
root certificate is contained in the browser’s database of trusted root certificates. If so,

Java 2 Standard Edition and JDK New Feature Information 115

the browser displays the chain of the authenticated signer and give the user the
option to remove all security restrictions on the applet.

Improved Support for Public-Key Certificates
J2SE 1.3.0 provides enhanced support for X.509 public-key certificates. J2SE 1.3.0 now
supports all X.520 attributes that are either mandated or recommended by the most
recent proposed standard protocol (RFC 2459). In addition, J2SE 1.3.0 can handle
multiple Attribute/Value Assertions within a Relative Distinguished Name.

Java Sound
The Java Sound API enables Java programs to capture, process, and play audio and
Musical Instrument Digital Interface (MIDI) data. These new capabilities enable
developers to create new types of applications, including:

� Communication frameworks, including conferencing and telephony applications.

� End-user content delivery systems. These systems range from simple desktop
media players to streamed music delivery systems or broadcast audio applications
for live events.

� Interactive applications, such as games and web sites, that generate sound
dynamically in response to user interaction.

� Tools and toolkits for creating and editing original audio or musical content.

The Java Sound API is supported by an efficient sound engine that guarantees
high-quality audio mixing and MIDI synthesis capabilities for the platform. More
specifically, the implementation that is included with J2SE 1.3.0 supports the
following features:

� Audio file formats: AIFF, AU and WAV

� Music file formats: MIDI type 0 and type 1 and Rich Music Format

� Audio codecs: u-law and a-law

� Audio data formats: 8- and 16-bit audio samples, in mono and stereo, with sample
rates from 8 kHz to 48 kHz

� MIDI wavetable synthesis and sequencing in software, and access to hardware
MIDI devices

� An all-software mixer that can mix and render up to 64 total channels of digital
audio and synthesized MIDI music.

Additionally, the API defines a set of service provider interfaces that developers can
use to extend the capabilities of the current implementation. Users can install

116 Solaris 8 Software Developer Supplement ♦ April 2001

modules that provide support for additional file formats, codecs, and devices. The
API includes methods for querying and accessing the resources currently available
on the system.

Enhanced APIs and Improved Ease of
Development

AWT Enhancements
J2SE 1.3.0 has a new Robot API that is designed to make automated Abstract
Window Toolkit (AWT) and Swing testing possible. The Robot API enables code that
is written in the Java programming language to generate low-level native mouse and
keyboard input events. Because the events are generated at the operating system
level, they are indistinguishable from real user input to the rest of the AWT.

Though designed primarily to improve testability, the Robot API also provides other
benefits:

� Accessibility-enabled applications can give more feedback. For example, if the user
acts on a screen object by using voice commands, the mouse pointer can be moved
to indicate the object being manipulated.

� The Robot API enables creation of computer-based training (CBT) and other
demo-type applications.

J2SE 1.3.0 also has an improved API for printing. The new printing API gives
developers an easy mechanism to print the AWT components by using native
platform facilities. By using the new API, developers can control properties of a print
job such as destination, number of copies, page ranges, page size, orientation, print
quality, and more.

Java 2D Technology Enhancements
J2SE 1.3.0 introduces support for rendering on multiple monitors the GUI Frames
and Windows that belong to the same application. The Java 2DTM API supports three
multi-screen configurations:

� Two or more independent screens

� Two or more screens where one screen is the primary screen and the other screens
display copies of what appears on the primary screen

� Two or more screens that form a virtual desktop

With J2SE 1.3.0’s new dynamic font-loading API, a developer can create and load
TrueType fonts during runtime. Developers can use the Java 2D API to give their

Java 2 Standard Edition and JDK New Feature Information 117

dynamically loaded fonts the desired features such as size, style, transforms, and
others.

The Java 2D API in J2SE 1.3.0 now supports the Portable Graphics Network (PGN)
format, a flexible, extensive, non-proprietary file format that represents lossless and
portable storage of raster images. PGN supports gray scale, indexed-color, and
truecolor images, with an optional alpha channel.

Java Platform Debugger Architecture (JPDA)
JPDA technology is a multi-tiered debugging architecture that enables tool
developers to easily create debugger applications that run portably across platforms,
virtual-machine implementations, and J2SE versions.

JPDA consists of three layers:

� JVMDI - Java Virtual Machine Debug Interface

Defines the debugging services a VM must provide for debugging.

� JDWP - Java Debug Wire Protocol

Defines the format of information and requests transferred between the process
being debugged and the debugger front end, which implements the Java Debug
Interface.

� JDI - Java Debug Interface

Defines a high-level Java programming language interface that tool developers can
easily use to write remote debugger applications.

Internationalization
The internationalization enhancements in the J2SE 1.3.0 release give developers even
more flexibility in localizing their applications for international users. Two new
features are described here.

Input methods are software components that interpret user operations such as typing
keys or speaking to generate text input for applications, and they play an important
role in enabling entry of text in international locales. Unlike English text which can
be entered by directly typing it in from the keyboard, entering text in languages such
as Japanese or Chinese requires a more sophisticated input method framework, and
J2SE 1.3.0 provides a powerful set of the tools that developers need to handle the job.

Modern text-editing components permit the display of entered text inside the context
of the document in which the text will finally appear. This is called the on-the-spot
input, and it has always been supported by the Java 2 Platform.

J2SE 1.3.0 adds support for a second style of input, called below-the-spot, that is
popular is such countries such as China. In below-the-spot text editing, composed

118 Solaris 8 Software Developer Supplement ♦ April 2001

text is shown in a separate composition window that is automatically positioned
close to the insertion point where text will be inserted.

It might be that a developer would want to change and customize the windows that
appear as part of his or her input method framework. J2SE 1.3.0 gives developers full
flexibility to do so by providing a new API for an input method engine Service
Provider Interface (SPI). The SPI enables developers to construct their own custom
input method engines to meet the needs their software.

A further example of new international locale support is that J2SE 1.3.0 can render
application frames and dialog boxes to have toolbars and menu bars with a
right-to-left orientation for locales such as Arabic and Hebrew.

Other Enhancements to Platform Libraries and Tools.
J2SE 1.3.0 contains select new functionality that Sun has added to the platform and
Java 2 SDK tools suite in consultation with business partners and in response to
input from developers. A sampling of the enhancements include:

� New javac Compiler

The javac compiler has been re-implemented from scratch in J2SE 1.3 making it
faster for many applications than the compilers in previous versions of the Java 2
SDK.

� Dynamic Proxy Classes

J2SE 1.3 contains a new API for dynamic proxy classes. A dynamic proxy class is a
class that implements a list of interfaces specified at runtime such that a method
invocation through one of the interfaces on an instance of the class is encoded and
dispatched to another object through a uniform interface. Thus, you can use a
dynamic proxy class can be used to create a type-safe proxy object for a list of
interfaces without requiring pre-generation of the proxy class, such as with
compile-time tools. Dynamic proxy classes are useful to developers who need to
provide the type-safe reflective dispatch of invocations to objects that present
interface APIs.

For example, you can use a dynamic proxy class to create an object that
implements multiple arbitrary event listener interfaces to process a variety of
events of different types in a uniform fashion, such as by logging all such events
to a file.

� Expanded API for Collections

The J2SE 1.3 version of the popular Collections API has been made even easier for
you to use. The 1.3 Collections API includes new convenience methods and copy
constructors for Lists and Maps.

� Expanded Java Foundation Classes/Swing Functionality

A large part of the J2SE 1.3.0 engineering effort has been directed into tuning and
enhancing the Swing components of the Java Foundation Classes API. In addition

Java 2 Standard Edition and JDK New Feature Information 119

to performance tuning of the Swing libraries, new JFC/Swing functionality has
been added to the Swing libraries in several areas. One example is the new
support for variable-height rows in lightweight table components.

� Improved Math and Utility Libraries

J2SE 1.3.0 includes two math-related classes that have the same API: Math and
StrictMath . StrictMath is defined to return bit-for-bit reproducible results for
numeric operations in all implementations for developers who need that
guarantee. Implementations of class Math , on the other hand, can vary within
specified constraints to enable flexibility for better performance. Developers who
want best performance but don’t require bit-for-bit reproducible results on
different platforms will want to use Math rather than StrictMath for their
numeric code.

The J2SE API for arbitrary precision math, classes BigInteger and BigDecimal ,
enables arithmetic operations that never overflow or lose precision, features
necessary for many types of computations such as financial calculations. Class
BigInteger has been reimplemented in pure Java programming-language code.
Previously, the implementation of the BigInteger class was based on an
underlying C library. The new implementation performs many standard
operations faster than the old implementation. The new API also includes new
convenience features that make it easier for you to use.

A new Timer API has been added to the Java 2 Platform to support animations,
human interaction timeouts, on-screen clocks and calendars, work-scheduling
routines, reminder facilities, and more.

An API for virtual machine shutdown hooks has been added to class
java.lang.Runtime that provides a simple, portable interface to the underlying
operating system’s process-shutdown notification so that an application written in
the Java programming language can initiate shutdown actions such as closing
down network connections, saving session state, and deleting temporary files.

New delete-on-close mode for opening Zip and Jar files has been added so that
long-running server applications can delete no-longer-needed JarFile objects
and data to keep disk space free.

Java 2 SDK, Standard Edition, version
1.2.2_07a and Previous Releases
The following describes new features in J2SE releases.

120 Solaris 8 Software Developer Supplement ♦ April 2001

TABLE 18–1 Previous Java 2 Standard Edition (J2SE) Releases

Java Release Update Release

J2SE 1.2.2_07a contains fixes for bugs identified in previous releases in the J2SE 1.2.2 series.
An important bug fix in J2SE 1.2.2_07a is a fix for a performance regression that was
introduced in J2SE 1.2.2_05. For more information about bug fixes in J2SE 1.2.2_07a, see this
URL: http://java.sun.com/j2se/1.2/ReleaseNotes.html .

4/01

The J2SE 1.2.2_06 is improved with bug fixes since the last release. 1/01

The J2SE v. 1.2.2_05a is a bug-fix release of v. 1.2.2_05 (without the "a") of the same product
and includes the following new features and enhancements.
� Scalability improvements to over 20 CPUs

Improved handling of concurrency primitives and threads has increased the
performance of multithreaded programs and significantly reduced garbage-collection
pause times for programs that use many threads.

� Improved JIT compiler optimizations

The JIT compiler performs the following new optimizations: inlining of virtual and
non-virtual methods, CSE within extended basic blocks, loop analysis to eliminate array
bounds checking, and fast type checks.

� Text-rendering performance improvements

Several graphics optimizations have significantly improved text-rendering performance
for Java 2 Standard Edition on Solaris software platforms without direct graphics access
(DGA) support. These platforms include Ultra 5 and Ultra 10, the Solaris (Intel Platform
Edition) Operating Environment, and all remote display systems.

� poller class demo package

Provides Java applications with the ability to efficiently access the functions of the C
poll(2) routine and is provided as a demo package with a sample usage server.

� Swing improvements

Significant improvements in quality and performance have been made to the Swing
classes. For additional information on these improvements, see the following URLs:
� http://Java.sun.com/products/jdk/1.2/changes.html
� http://java.sun.com/products/jdk/1.2/fixedbugs/index.html

10/00

JDK Releases
The following are JDK releases that have been included in Update releases.

Java 2 Standard Edition and JDK New Feature Information 121

TABLE 18–2 JDK Releases

JDK Releases Update
Release

JDK 1.1.8_12 is improved with bug fixes since the last release. 1/01

The JDK 1.1.8_10 is improved with bug fixes. 10/00

Java Servlet Support in Apache Web
Server
In the Solaris 8 10/00 release, with the addition of mod_jserv module and related
files, the Apache web server software now supports Java servlets. The following
configuration files are now stored in /etc/apache :

� zone.properties

� jserv.properties

� jserv.conf

The mod_jserv module, like the rest of Apache software, is open source code that is
maintained by a group external to Sun. This group seeks to maintain compatibility
with previous releases of Apache and mod_jserv .

122 Solaris 8 Software Developer Supplement ♦ April 2001

