
Solaris DHCP Service Developer’s
Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 806–5928–10
July 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, JavaBeans and Solaris are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks
are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution,
et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit,
sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la
technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, JavaBeans et Solaris sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres
pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

010423@1882

Contents

Preface 9

1 Overview of Solaris DHCP Data Access Architecture 13

Modular Framework 13

DHCP Server Multithreading 14

Data Access Layers 14

The Framework Configuration Layer 15

The Service Provider Layer API 16

Data Store Containers 17

2 Architecture Features for Module Writers 19

Function Categories 19

Considerations for Multithreading 20

Synchronizing Access to File-System-Based Containers 20

Avoiding Update Collisions 21

Naming the Public Module and Data Store Containers 23

Public Module Name 23

Container Name 23

Container Record Formats 24

Passing Data Store Configuration Data 25

Upgrading Container Versions 25

Data Service Configuration and DHCP Management Tools 26

Public Module Management Bean API Functions 26

Public Module Management Bean Packaging Requirements 28

3

3 Service Provider Layer API 29

General Data Store Functions 29

configure() 30

mklocation() 30

status() 31

version() 32

dhcptab Functions 32

list_dt() 32

open_dt() 33

lookup_dt() 34

add_dt() 36

modify_dt() 36

delete_dt() 37

close_dt() 38

remove_dt() 38

DHCP Network Container Functions 39

list_dn() 39

open_dn() 40

lookup_dn() 40

add_dn() 41

modify_dn() 42

delete_dn() 43

close_dn() 43

remove_dn() 44

Generic Error Codes 44

4 Code Samples and Testing 47

Code Templates 47

General API Functions 47

dhcptab API Functions 49

DHCP Network Container API Functions 51

Testing the Public Module 54

Index 55

4 Solaris DHCP Service Developer’s Guide • July 2001

Tables

TABLE 1–1 Service Provider Layer API Functions 16

5

6 Solaris DHCP Service Developer’s Guide • July 2001

Figures

FIGURE 1–1 Architecture of Data Store Access in DHCP Service 15

7

8 Solaris DHCP Service Developer’s Guide • July 2001

Preface

This Solaris DHCP Service Developer’s Guide provides information for developers who
want to use a data storage facility not currently supported by the Solaris™ DHCP
service. The manual gives an overview of the data access framework used by Solaris
DHCP, general guidelines for developers, and a listing of the API functions you use to
write a module to support the new data store.

Who Should Use This Book
This book is intended for Solaris programmers interested in extending the data storage
choices available to the Solaris DHCP service.

How This Book Is Organized
This book consists of the following chapters:

Chapter 1 provides an overview of the architecture used for data access in the DHCP
service.

Chapter 2 discusses what the architecture requires of you.

Chapter 3 describes the API functions you will export.

9

Chapter 4 provides sample code templates and pointers to locations on Sun’s web site
where you can find additional aids for writing and debugging code for the public
module.

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product documentation
from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on
Fatbrain.com at http://www1.fatbrain.com/documentation/sun.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

10 Solaris DHCP Service Developer’s Guide • July 2001

TABLE P–1 Typographic Conventions (Continued)
Typeface or Symbol Meaning Example

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface 11

12 Solaris DHCP Service Developer’s Guide • July 2001

CHAPTER 1

Overview of Solaris DHCP Data
Access Architecture

This chapter presents an overview of the architecture of the Solaris Dynamic Host
Configuration Protocol (DHCP) service introduced in the Solaris 8 7/01 operating
environment. This overview can help you see where your work will fit into the
architecture.

For general information about the Solaris DHCP service, see “Overview of DHCP” in
Solaris DHCP Administration Guide.

The following topics are included:

� “Modular Framework” on page 13
� “DHCP Server Multithreading” on page 14
� “Data Access Layers” on page 14
� “The Framework Configuration Layer” on page 15
� “The Service Provider Layer API” on page 16
� “Data Store Containers” on page 17

Modular Framework
The Solaris DHCP service includes the DHCP daemon, administrative tools, and
separate data access modules (called public modules) for different data storage facilities.
Solaris DHCP provides an API that enables you to write your own public modules,
implemented as shared objects, to support any data storage facility you want. When
you integrate your public module into the Solaris DHCP framework, the DHCP
service stores its data in your database using your public module. Public modules can
be delivered independently of the Solaris DHCP service, enabling anyone to develop
and deliver modules to support any data storage facility.

13

The first release of Solaris DHCP using this architecture provides public modules for
ASCII files, NIS+, and file-system-based binary data stores. This manual provides
information that enables developers to create their own public modules for any
database.

DHCP Server Multithreading
The DHCP server implements multithreading, enabling it to service many clients
simultaneously. Public modules are required to be MT-SAFE to support
multithreading by the DHCP server, and this in itself allows the DHCP service to
handle a larger number of clients. However, the capacity of the DHCP server is largely
dependent on the capabilities of the data storage facility and the efficiency of the
public module used to access the data. You can potentially increase the performance
and capacity of your Solaris DHCP service by creating a public module for using a
fast, high-capacity data storage facility.

Data Access Layers
The Solaris DHCP modular framework implementation employs the following data
access layers:

� Application/Service Layer, consisting of all consumers of DHCP service data such
as the DHCP daemon (in.dhcpd), command line management utilities (pntadm,
dhtadm, dhcpconfig), the DHCP Manager tool, and report generators. These
data consumers interface with the DHCP service using calls to API functions
implemented by the Framework Configuration Layer of the architecture.

� Framework Configuration Layer, consisting of the shared library libdhcpsvc.so
and the /etc/inet/dhcpsvc.conf configuration file. The Framework
Configuration Layer connects the Application/Service Layer and the Service
Provider Layer. See “The Framework Configuration Layer” on page 15 for more
information about the Framework Configuration Layer.

� Service Provider Layer, consisting of public modules that implement the Service
Provider API functions, which are used by the Application/Service Layer through
the Framework Configuration Layer to manipulate the data store containers and
the records within them. The data store containers are the dhcptab and DHCP
network tables.

14 Solaris DHCP Service Developer’s Guide • July 2001

The following figure shows the interaction of the architecture layers.

FIGURE 1–1 Architecture of Data Store Access in DHCP Service

The Framework Configuration Layer
Functions implemented in libdhcpsvc.so are used by the Application/Service
Layer to:

� locate, load, and unload public modules
� manage data container version changes
� access the data store containers
� manipulate data store records in the containers

The /etc/inet/dhcpsvc.conf contains a number of configuration parameters for
the DHCP service, including the following keywords relevant to the public module
developer:

RESOURCE Public module to load. The value of RESOURCE matches the
public module name. For example, the
RESOURCE=SUNWfiles refers to public module

Overview of Solaris DHCP Data Access Architecture 15

ds_SUNWfiles.so. “Naming the Public Module and Data
Store Containers” on page 23 explains the rules for naming
public modules.

PATH Location of DHCP containers within the data service that the
public module exports. The value of PATH is specific to the
data service. For example, a UNIX™ path name would be
assigned to PATH for the SUNWfiles resource.

RESOURCE_CONFIG Configuration information specific to the public module. This
is an optional keyword that you can use if the data service
requires configuration information, such as authentication
from the user. If you use this keyword, you must provide a
public module management bean to prompt the user for
information to set the keyword value. See “Data Service
Configuration and DHCP Management Tools” on page 26.
The module must also export the configure() function to
receive the value of this keyword during module load time.
See “configure()” on page 30() for more information.

The Framework Configuration Layer also provides to the Service Provider Layer an
optional API synchronization service, described in “Synchronizing Access to
File-System-Based Containers” on page 20.

The Service Provider Layer API
The Service Provider Layer API consists of functions, data structures, and manifest
constants contained in the /usr/include/dhcp_svc_public.h file.

The functions are summarized in the following table, with links to sections with more
detail about each function.

TABLE 1–1 Service Provider Layer API Functions

API Function Use

General functions for all data store containers

“configure()” on page 30 Pass a configuration string to the data store. Optional
function.

“mklocation()” on page 30 Create the location in which the data store will reside.

“status()” on page 31 Return general status information for the data store.

16 Solaris DHCP Service Developer’s Guide • July 2001

TABLE 1–1 Service Provider Layer API Functions (Continued)
API Function Use

“version()” on page 32 Return the version of the Service Provider Layer API
implemented by the data store container.

Functions for dhcptab containers

“list_dt()” on page 32 Return the dhcptab container name.

“open_dt()” on page 33 Open or create the dhcptab container.

“lookup_dt()” on page 34 Perform a query for records in the dhcptab container.

“add_dt()” on page 36 Add a record to the dhcptab container.

“modify_dt()” on page 36 Modify an existing record in the dhcptab container.

“delete_dt()” on page 37 Delete a record from the dhcptab container.

“close_dt()” on page 38 Close the dhcptab container.

“remove_dt()” on page 38 Remove the dhcptab container from the data store.

Functions for DHCP network containers

“list_dn()” on page 39 Return a list of DHCP network container names.

“open_dn()” on page 40 Open or create a DHCP network container.

“lookup_dn()” on page 40 Perform a query for records in a DHCP network container.

“add_dn()” on page 41 Add a record to a DHCP network container.

“modify_dn()” on page 42 Modify an existing record in a DHCP network container.

“delete_dn()” on page 43 Delete a record from a DHCP network container.

“close_dn()” on page 43 Close a DHCP network container.

“remove_dn()” on page 44 Remove a DHCP network container from the data store.

Data Store Containers
The dhcptab and DHCP network tables are referred to generically as data store
containers. By default, Solaris DHCP provides support for the container formats shown
in the following table.

Overview of Solaris DHCP Data Access Architecture 17

Data Service Supported Public Module

File-system-based, ASCII format ds_SUNWfiles.so

NIS+ service ds_SUNWnisplus.so

File-system-based, binary format ds_SUNWbinfiles.so

18 Solaris DHCP Service Developer’s Guide • July 2001

CHAPTER 2

Architecture Features for Module
Writers

This chapter discusses architectural details you should keep in mind when creating a
public module for a data service.

The following topics are included:

� “Function Categories” on page 19
� “Considerations for Multithreading” on page 20
� “Synchronizing Access to File-System-Based Containers” on page 20
� “Avoiding Update Collisions” on page 21
� “Naming the Public Module and Data Store Containers” on page 23
� “Container Record Formats” on page 24
� “Upgrading Container Versions” on page 25
� “Data Service Configuration and DHCP Management Tools” on page 26

Function Categories
The Service Provider Layer API functions can be divided into three categories:

� Data store functions, which facilitate activities related to the public module and
underlying data service themselves. These functions include configure(),
mklocation(), status(), and version().

� dhcptab container functions, which facilitate the creation of the dhcptab
container, the writing of records to the dhcptab container, and the query of
records in the dhcptab container. The open_dt() function creates a handle for
the container, and the other functions take a pointer to that handle. The
close_dt() function destroys the handle when it closes the container.

� Network container functions, which facilitate the creation of DHCP network
containers, the writing of records to the network containers, and the query of

19

records in the network containers. The open_dn() function creates a handle for
the container, and the other functions take a pointer to that handle. The
close_dn() function destroys the handle when it closes the container.

The functions are described in more detail in Chapter 3.

Considerations for Multithreading
The DHCP server implements multithreading, which enables it to service many clients
simultaneously. Public modules are required to be MT-SAFE to support
multithreading by the DHCP server.

To make your module MT-SAFE, you must synchronize calls to add_d?(),
delete_d?(), and modify_d?() so that they are called serially. For example, if one
thread is inside add_dn() for a given DHCP network container, no other thread may
be inside add_dn(), delete_dn(), modify_dn(), or lookup_dn() for that same
container. If your public module supports a local file-system-based data service, you
can use the synchronization service to take care of this for you. See “Synchronizing
Access to File-System-Based Containers” on page 20 for more information.

Synchronizing Access to File-System-
Based Containers
When you write a public module that provides access to containers in a local
file-system-based data service (the data service runs on the same machine as the
DHCP server), it can be difficult to synchronize access to the underlying data service
between multiple processes and threads.

The Solaris DHCP synchronization service simplifies the design of public modules
using local file-system-based data services by pushing synchronization up into the
Framework Configuration Layer. When you design your module to use this
framework, your code becomes simpler and your design cleaner.

The synchronization service provides public modules with per-container exclusive
synchronization of all callers of the add_d?(), delete_d?(), and modify_d?()
Service Provider Layer API calls. This means that if one thread is inside add_dn() for
a given DHCP network container, no other thread may be inside add_dn(),

20 Solaris DHCP Service Developer’s Guide • July 2001

delete_dn(), modify_dn() or lookup_dn() for that same container. However,
other threads may be within routines that provide no synchronization guarantees,
such as close_dn().

Per-container shared synchronization of all callers of lookup_d?() is also provided.
Thus, there may be many threads performing a lookup on the same container, but only
one thread may perform an add, delete, or modify operation.

The synchronization service is implemented as a daemon
(/usr/lib/inet/dsvclockd). Lock manager requests are made on the public
module’s behalf through Framework Configuration Layer API calls. The interface
between the Framework Configuration layer and the lock manager daemon uses the
Solaris doors interprocess communication mechanism. See, for example,
door_create(3DOOR) and door_call(3DOOR).

The Framework Configuration layer starts the dsvclockd daemon if a public module
requests synchronization and the daemon is not already running. The daemon
automatically exits if it manages no locks for 15 minutes. To change this interval, you
can create a /etc/default/dsvclockd file and set the IDLE default to the number
of idle minutes before the daemon terminates.

A public module notifies the Framework Configuration Layer that it requires
synchronization services by providing the following global variable in one of the
module’s source files:

dsvc_synchtype_t dsvc_synchtype = DSVC_SYNCH_DSVCD;

A public module notifies the Framework Configuration Layer that it does not require
synchronization services by including the following global variable in one of the
module’s source files:

dsvc_synchtype_t dsvc_synchtype = DSVC_SYNCH_NONE;

DSVC_SYNCH_DSVCD and DSVC_SYNCH_NONE are the only two synchronization types
that exist currently.

Avoiding Update Collisions
The architecture provides a facility that helps a files-based module avoid record
update collisions. The Service Provider API facilitates the maintenance of data
consistency through the use of a per-record update signature, an unsigned 64–bit
integer. The update signature is the d?_sig element of the d?_rec_t container
record data structure, defined in /usr/include/dhcp_svc_public.h. All layers of
the architecture use d?_rec_t records, from the Application/Service Layer through

Architecture Features for Module Writers 21

the Framework Configuration Layer API and on through to the Service Provider Layer
API. Above the Service Provider Layer, the update signature is an opaque object which
is not manipulated by users of the Framework Configuration Layer API.

When a module receives a d?_rec_t record through a Service Provider Layer API
function call, it should perform a lookup in the data service to find a record that
matches the key fields of the d?_rec_t, and compare the signature of the internal
record against the d?_rec_t passed by the call. If the signature of the internal record
does not match that of the passed record, then the record has been changed since the
consumer acquired it from the public module. In this case, the module should return
DSVC_COLLISION, which informs the caller that the record has been changed since it
was acquired. If the signatures match, the module should increment the update
signature of the argument record before it stores the record.

When a module receives a new d?_rec_t record through the Service Provider Layer
API, the module must assign a value to the update signature before it adds the record
to the container. The simplest way is to set the value to 1.

However, in certain rare situations a collision might not be detected if the signature
always has the same initial value. Consider the following scenario. Thread A adds a
record with a signature of 1, and Thread B looks up that record. Thread A deletes the
record and creates a new record with the same key fields and a signature of 1 since it
has just been created. Thread B then modifies the record it looked up, but that has
already been deleted. The module compares the key fields and signatures of the record
looked up by Thread B and the record in the data store, finds them to be the same, and
makes the modification. Such a modification attempt should have been a collision
because the records are, in fact, not the same.

The ds_SUNWfiles.so and ds_SUNWbinfiles.so modules provided with Solaris
DHCP address such a possibility. They divide the update signature into two fields to
ensure the uniqueness of each record’s signature. The first 16 bit field of the update
signature is set to a randomly generated number. This field never changes in the
record after it is set. The lower 48 bit field of the signature is set to 1 and then
incremented each time the record is updated.

22 Solaris DHCP Service Developer’s Guide • July 2001

Note – The modules provided with Solaris DHCP illustrate one approach you can use
to avoid record update collisions. You can devise your own method or use a similar
one.

Naming the Public Module and Data
Store Containers
The public module and containers must both contain version numbers to enable the
architecture’s upgrading mechanism to work.

Public Module Name
You must use the following name format for your public module:

ds_name.so.ver

where name is the name of the module and ver is the container format version number.
The name must use a prefix that is an internationally known identifier associated with
your organization. For example, the public modules that Sun Microsystems provides
have names prefixed with SUNW, the stock ticker symbol for Sun. For example, the
NIS+ public module is named ds_SUNWnisplus.so.1. By including such an
identifier in the module name, you avoid public module name collisions in the
/usr/lib/inet/dhcp/svc public module directory.

If your company name is Inet DataBase, for example, you might call your module
ds_IDBtrees.so.1

Container Name
The container names presented to the administrator through the administrative
interface must always be dhcptab and the dotted IP network address for the DHCP
network tables, such as 10.0.0.0.

Internally, the data store container names must contain the version number to enable
you to produce revisions of your container formats whenever necessary. This naming
scheme allows the coexistence of multiple versions of a container, which is a
requirement for the architecture’s container version upgrade mechanism to work.

Architecture Features for Module Writers 23

The names used for the containers should include a globally recognizable token to
ensure that the names are unique.

For example, the NIS+ public module provided with Solaris DHCP would create the
dhcptab container internally as SUNWnisplus1_dhcptab. The container for the
178.148.174.0 network table would be SUNWnisplus1_178.148.174.0.

If your company name is Inet DataBase, and your public module is
ds_IDBtrees.so.1, you would name your containers IDBtrees1_dhcptab and
IDBtrees1_178.148.174.0.

Container Record Formats
The Solaris DHCP service uses two types of DHCP containers: the dhcptab container
and the DHCP network container.

The dhcptab container holds DHCP configuration data, described in the dhcptab
man page. Only one instance of a dhcptab container is maintained in the DHCP
service.

dhcptab records are passed between the Framework Configuration Layer and the
Service Provider Layer by way of an internal structure, dt_rec_t. The include file
/usr/include/dhcp_svc_public.h shows the structure.

Your public module must ensure that there are no duplicate dhcptab records. No two
records can have identical key field values.

DHCP network containers contain IP address records, described in the
dhcp_network man page. These containers are named to indicate the data store and
the dotted IP address of the network to which the IP addresses belong, such as
10.0.0.0. Any number of DHCP network containers may exist, one for each network
supported by the DHCP service.

DHCP network records are passed between the Framework Configuration Layer and
the Service Provider Layer by way of an internal structure, dn_rec_t. The include file
/usr/include/dhcp_svc_public.h shows the structure.

Your public module must ensure that there are no duplicate network container
records. No two records can have identical key field values.

24 Solaris DHCP Service Developer’s Guide • July 2001

Passing Data Store Configuration Data
The Solaris DHCP data access architecture provides an optional feature for passing
data-store-specific configuration data to the public module (and thus the data store).
This feature is implemented as an ASCII string which is passed through the DHCP
service management interface (dhcpconfig or dhcpmgr) and stored by the
Framework Configuration Layer on the DHCP server machine. See the
dhcpsvc.conf(4) man page for more information. You determine what kind of
information is passed in the string, and the DHCP administrator provides the value of
the string through the administration tool. The string might, for example, contain a
user name and password needed to log in to a database.

To obtain the information from the DHCP administrator, you must write a
JavaBeans™ component to present an appropriate dialog. The information is then
passed to the management interface as a single ASCII string. You should document the
format of the ASCII string token to facilitate debugging. To support this feature, the
public module must implement and export the configure() function, described in
Chapter 3.

Note – The architecture does not encrypt the ASCII string. It is saved in clear text in
the /etc/inet/dhcpsvc.conf file. If you require encrypted information, the bean
must encrypt the information before passing it to the Framework Configuration Layer.

Upgrading Container Versions
You do not need to be concerned with container version upgrades, because the
architecture facilitates the coexistence of different container versions when you follow
the naming guidelines described in “Naming the Public Module and Data Store
Containers” on page 23. The administrative tools use this feature of the architecture to
enable DHCP administrators to automatically upgrade from one container version to
another.

The container format version is set in the Framework Configuration Layer
configuration file automatically, either by the installation (when upgrading Solaris
DHCP) or through the administrative interface during initial DHCP service
configuration. If you install a new version of a public module that includes a new
container version, the administrative interface automatically detects the new version,
and asks the administrator to decide whether to upgrade the public module version.

Architecture Features for Module Writers 25

The upgrade can be deferred. The DHCP service will continue to run with the original
version of the public module until the administrator upgrades the module.

Data Service Configuration and DHCP
Management Tools
The dhcpmgr and dhcpconfig management tools provide DHCP service
configuration capabilities to system administrators. If you want your module to be
available to users of the tools so they can configure the underlying data service, you
must provide a JavaBeans™ component, known as a bean, for the public module.

The bean provides the public module with the context necessary to set the PATH
variable, and optionally the RESOURCE_CONFIG variable, in dhcpsvc.conf.

Public Module Management Bean API Functions
The dhcpmgr tool provides an interface, com/sun/dhcpmgr/client/DSModule,
which defines the API functions that the public module management bean must
implement.

The DSModule interface is contained in the dhcpmgr.jar file. In order to compile the
bean against this interface, you must add
/usr/sadm/admin/dhcpmgr/dhcpmgr.jar to the javac class path. For example,
for your bean named myModule.java, type

javac -classpath /usr/sadm/admin/dhcpmgr/dhcpmgr.jar
myModule.java

getComponent()

Synopsis

abstract java.awt.Component getComponent()

26 Solaris DHCP Service Developer’s Guide • July 2001

Description

Returns a component that is displayed as one of the wizard steps for the DHCP
Configuration Wizard. The returned component should be a panel containing GUI
components to be used to obtain data-store-specific data from the user during
configuration. The configuration data itself will be returned to the wizard as a result of
calls to the getPath() and getAdditional() methods. See “getPath()”
on page 27 and “getAdditional()” on page 28 for more information.

getDescription()

Synopsis

abstract java.lang.String getDescription()

Description

Returns a description that is used by the DHCP Configuration Wizard when it adds
the data store to the list of data store selections. For example, the management bean
for the ds_SUNWfiles.so public module returns “Text files” as the description.

getPath()

Synopsis

abstract java.lang.String getPath()

Description

Returns the path/location that is used by the data store (the PATH value in the
Framework Configuration Layer configuration file /etc/inet/dhcpsvc.conf), or
null if not set. The path/location value should be supplied by the user by interaction
with the management bean’s component. See “Passing Data Store Configuration Data”
on page 25.

Architecture Features for Module Writers 27

getAdditional()

Synopsis

abstract java.lang.String getAdditional()

Description

Returns additional data-store-specific information, such as the RESOURCE_CONFIG
value in the Framework Configuration Layer configuration file
/etc/inet/dhcpsvc.conf. The value returned by this method is most likely
supplied by the user by interaction with the management bean’s component. See
“Passing Data Store Configuration Data” on page 25.

Public Module Management Bean Packaging
Requirements
Public module management beans must meet the following packaging requirements.

� The public module management bean must be archived as a JAR file. The name of
the JAR file must consist of the name of the public module and a .jar suffix. For
example, the name of the public module management bean for the
ds_SUNWfiles.so public module is SUNWfiles.jar.

� The JAR file must contain a manifest that identifies the bean class. For example, the
manifest for the SUNWfiles.jar JAR file contains:

Name: com/sun/dhcpmgr/client/SUNWfiles/SUNWfiles.class

Java-Bean: True

The com/sun/dhcpmgr/client/SUNWfiles/SUNWfiles.class class is the
Java class that implements the com/sun/dhcpmgr/client/DSModule interface.

28 Solaris DHCP Service Developer’s Guide • July 2001

CHAPTER 3

Service Provider Layer API

This chapter lists and describes the API functions exported by public modules and
consumed by the Framework Configuration Layer. The functions are grouped in
sections according to their purpose. Within each section, functions are listed in an
order in which you might use them.

The following topics are included:

� “General Data Store Functions” on page 29
� “dhcptab Functions” on page 32
� “DHCP Network Container Functions” on page 39
� “Generic Error Codes” on page 44

All implementations that match a certain Service Provider Layer API version must
follow this specification for the API functions they implement. Later versions of the
API must be backward-compatible with earlier versions. This means that additional
API calls may be added, but existing ones cannot be changed or deleted.

See the include file /usr/include/dhcp_svc_public.h for more details about the
functions.

General Data Store Functions
This section lists functions related to general data store activities.

29

configure()

Purpose
To pass a configuration string to the data store.

Synopsis
int configure(const char *configp);

Description
The configure() function is optional. If it is provided together with the required
public module management bean (see “Data Service Configuration and DHCP
Management Tools” on page 26), the Framework Configuration Layer calls this
function when the public module loads, and passes in the public-module-specific
configuration string, which is cached by the Framework Configuration Layer on the
DHCP server for the data store module.

Returns
DSVC_SUCCESS, DSVC_MODULE_CFG_ERR

The configure() function returns DSVC_SUCCESS if the module wants the
Framework Configuration Layer to continue to load the module, or
DSVC_MODULE_CFG_ERR if the module wants the Framework Configuration Layer to
fail the loading of the module. An example of such a situation is a configuration string
so malformed that the required configuration of the module cannot take place.

mklocation()

Purpose
To create the directory where the data store containers are to reside.

30 Solaris DHCP Service Developer’s Guide • July 2001

Synopsis
int mklocation(const char *location);

Description
Creates the directory pointed to by location (if the directory does not exist) for data
store containers to reside.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_EXISTS, DSVC_BUSY, DSVC_INTERNAL,
DSVC_UNSUPPORTED.

status()

Purpose
To obtain the general status of the data store.

Synopsis
int status(const char *location);

Description
The status() function instructs the data store to return its general status, and if
location is non-NULL, further validates the location of the data store container by
determining if the container does in fact exist, is accessible, and is formed correctly for
the data store type. The data store must return the appropriate error codes if the
facilities it needs are unavailable or it is otherwise not ready.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NO_LOCATION, DSVC_BUSY,
DSVC_INTERNAL.

Service Provider Layer API 31

version()

Purpose
To obtain the version number of the API implemented by the data store.

Synopsis
int version(int *versionp);

Description
Data stores that support the Service Provider Layer API described in this manual are
version 1 (one). The version is returned in the int pointed to by versionp.

Returns
DSVC_SUCCESS, DSVC_INTERNAL, DSVC_MODULE_ERR.

dhcptab Functions
The API functions described in this section are used with the dhcptab container.

list_dt()

Purpose
To list the name of the dhcptab container.

32 Solaris DHCP Service Developer’s Guide • July 2001

Synopsis
int list_dt(const char *location, char ***listppp, uint_t
*count);

Description
Produces a dynamically allocated list of dhcptab container objects (listppp) found
at location and stores the number of list items in count. If no dhcptab container
objects exist, then DSVC_SUCCESS is returned, listppp is set to NULL, and count is
set to 0.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NO_LOCATION.

open_dt()

Purpose
To open a dhcptab container or create a new one.

Synopsis
int open_dt(void **handpp, const char *location, uint_t flags);

Description
Opens an existing dhcptab container or creates a new container at location and
initializes handp to point to the instance handle. Performs any initialization needed by
the data store. When creating a new dhcptab, the caller’s identity is used for
owner/permissions. Valid flags include DSVC_CREATE, DSVC_READ, DSVC_WRITE,
DSVC_NONBLOCK. Note that the creation of a dhcptab container as read-only
(DSVC_CREATE | DSVC_READ) is invalid.

Service Provider Layer API 33

Returns
DSVC_SUCCESS, DSVC_EXISTS, DSVC_ACCESS, DSVC_NOENT,
DSVC_NO_LOCATION, DSVC_BUSY, DSVC_INTERNAL.

lookup_dt()

Purpose
To perform a lookup query for records in the dhcptab container.

Synopsis
int lookup_dt(void *handp, boolean_t partial, uint_t query, int
count, const dt_rec_t *targetp, dt_rec_list_t **resultp, uint_t
*records);

Description
Searches the dhcptab container for instances that match the query described by the
combination of query and targetp. If the partial argument is B_TRUE, then
partial query results are acceptable to the caller. Thus, when partial is B_TRUE, any
query that returns at least one matching record is considered successful. When
partial is B_FALSE, the query returns DSVC_SUCCESS only if it has been applied to
the entire container.

The query argument consists of 2 fields, each 16 bits long. The lower 16 bits select
which fields {key, type} of targetp are to be considered in the query. The upper 16
bits identify whether a particular field value selected in the lower 16 bits must match
(bit set) or not match (bit clear). Bits 2 through 15 in both 16-bit fields are currently
unused, and must be set to 0. Useful macros for constructing queries can be found in
Example 3–1.

The count field specifies the maximum number of matching records to return. A
count value of -1 requests the return of all records that match, regardless of the
number. A count value of 0 causes lookup_dt to return immediately with no data.

resultp is set to point to the returned list of records. If resultp is NULL, then the
caller is simply interested in knowing how many records match the query. Note that
these records are dynamically allocated, and therefore the caller is responsible for
freeing them. lookup_dt() returns the number of matching records in the records
argument. A records value of 0 means that no records matched the query.

34 Solaris DHCP Service Developer’s Guide • July 2001

The following example includes macros you might find useful for constructing and
manipulating lookup queries for the DHCP network and dhcptab containers.

EXAMPLE 3–1 Useful Macros for Lookup Queries

/*
* Query macros - used for initializing query fields (lookup_d?)
*/
/* dhcp network container */
#define DN_QCID 0x0001
#define DN_QCIP 0x0002
#define DN_QSIP 0x0004
#define DN_QLEASE 0x0008
#define DN_QMACRO 0x0010
#define DN_QFDYNAMIC 0x0020
#define DN_QFAUTOMATIC 0x0040
#define DN_QFMANUAL 0x0080
#define DN_QFUNUSABLE 0x0100
#define DN_QFBOOTP_ONLY 0x0200
#define DN_QALL (DN_QCID | DN_QCIP | DN_QSIP | DN_QLEASE | \
DN_QMACRO | DN_QFDYNAMIC DN_QFAUTOMATIC |\
DN_QFMANUAL | DN_QFUNUSABLE | \
DN_QFBOOTP_ONLY)

/* dhcptab */
#define DT_DHCPTAB "dhcptab" /* default name of container */
#define DT_QKEY 0x01
#define DT_QTYPE 0x02
#define DT_QALL (DT_QKEY | DT_QTYPE)

/* general query macros */
#define DSVC_QINIT(q) ((q) = 0)
#define DSVC_QEQ(q, v) ((q) = ((q) | (v) | ((v) << 16)))
#define DSVC_QNEQ(q, v) ((q) = ((~(v << 16)) & (q)) | (v)))
#define DSVC_QISEQ(q, v) (((q) & (v)) && ((q) & ((v) << 16)))
#define DSVC_QISNEQ(q, v) (((q) & (v)) && (!((q) & ((v) << 16))))

/* Examples */
uint_t query;
/* search for dhcptab record with key value, but not flags value */
DSVC_QINIT(query);
DSVC_QEQ(query, DT_QKEY);
DSVC_QNEQ(query, DT_QTYPE);
/* search for dhcp network record that matches cid, client ip, server ip.
*/
DSVC_QINIT(query);

DSVC_QEQ(query, (DN_QCID | DN_QCIP | DN_QSIP));

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_BUSY, DSVC_INTERNAL.

Service Provider Layer API 35

add_dt()

Purpose
To add a record to the dhcptab container.

Synopsis
int add_dt(void *handp, dt_rec_t *newp);

Description
Adds the record newp to the dhcptab container referred to by handp. The signature
associated with newp is updated by the underlying public module. If an update
collision occurs, the data store is not updated. The caller is responsible for freeing any
dynamically allocated arguments.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_BUSY, DSVC_INTERNAL, DSVC_EXISTS.

modify_dt()

Purpose
To modify a record in the dhcptab container.

Synopsis
int modify_dt(void *handp, const dt_rec_t *origp, dt_rec_t
*newp);

36 Solaris DHCP Service Developer’s Guide • July 2001

Description
Atomically modifies the record origp with the record newp in the dhcptab container
referred to by handp. The signature associated with newp is updated by the
underlying public module. If an update collision occurs, the data store is not updated.
The caller is responsible for freeing any dynamically allocated arguments.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_BUSY, DSVC_COLLISION,
DSVC_INTERNAL, DSVC_NOENT.

delete_dt()

Purpose
To delete a record from the dhcptab container.

Synopsis
int delete_dt(void *handp, const dt_rec_t *dtp);

Description
Deletes the record identified by the key, type and dt_sig fields of dtp from the
dhcptab container referred to by the handle handp. If an update collision occurs, the
matching record is not deleted from the data store, and DSVC_COLLISION is returned.
The caller is responsible for freeing any dynamically allocated arguments.

If the dtp signature (dt_sig) is 0, the matching record is simply deleted with no
detection of update collisions.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NOENT, DSVC_BUSY, DSVC_INTERNAL,
DSVC_COLLISION.

Service Provider Layer API 37

close_dt()

Purpose
To close the dhcptab container.

Synopsis
int close_dt(void **handpp);

Description
Frees the instance handle and cleans up per-instance state.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_INTERNAL.

remove_dt()

Purpose
To delete the dhcptab container from the data store location.

Synopsis
int remove_dt(const char *location);

Description
Removes the dhcptab container in location from the data store.

38 Solaris DHCP Service Developer’s Guide • July 2001

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NOENT, DSVC_NO_LOCATION,
DSVC_BUSY, DSVC_INTERNAL.

DHCP Network Container Functions
The API functions described in this section are used to manipulate the DHCP network
containers and the IP address records within them.

list_dn()

Purpose
To return a list of network containers.

Synopsis
int list_dn(const char *location, char ***listppp, uint_t
*count);

Description
Produces a dynamically allocated list of network container objects (listppp) found at
location and stores the number of list items in count. If no network container
objects exist, then DSVC_SUCCESS is returned, listppp is set to NULL, and count is
set to 0.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NO_LOCATION.

Service Provider Layer API 39

open_dn()

Purpose
To open a network container or create a new one.

Synopsis
int open_dn(void **handpp, const char *location, uint_t flags,
const struct in_addr *netp, const struct in_addr *maskp);

Description
Opens an existing DHCP network container or creates a new container specified by
netp and maskp (both host order) in location and initializes handpp to point to the
instance handle. Performs any initialization needed by the data store. When creating a
new DHCP network container, the caller’s identity is used for owner/permissions.
Valid flags include DSVC_CREATE, DSVC_READ, DSVC_WRITE, DSVC_NONBLOCK.
Note that the creation of a DHCP network container as read-only (DSVC_CREATE |
DSVC_READ) is invalid.

Returns
DSVC_SUCCESS, DSVC_EXISTS, DSVC_ACCESS, DSVC_NOENT,
DSVC_NO_LOCATION, DSVC_BUSY, DSVC_INTERNAL, DSVC_UNSUPPORTED.

lookup_dn()

Purpose
To perform a lookup query for records in a DHCP network container.

40 Solaris DHCP Service Developer’s Guide • July 2001

Synopsis
int lookup_dn(void *handp, boolean_t partial, uint_t query, int
count, const dn_rec_t *targetp, dn_rec_list_t **resultp, uint_t
*records);

Description
Searches a DHCP network container for instances that match the query described by
the combination of query and targetp. If the partial argument is B_TRUE, then
partial query results are acceptable to the caller. Thus, when partial is B_TRUE, any
query that returns at least one matching record is considered successful. When
partial is B_FALSE, the query returns DSVC_SUCCESS only if it has been applied to
the entire container.

The query argument consists of 2 fields, each 16 bits long. The lower 16 bits select
which fields {client id, flags, client IP, server IP, expiration, macro, or comment} of
targetp are to be considered in the query. The upper 16 bits identify whether a
particular field value selected in the lower 16 bits must match (bit set) or not match
(bit clear). Bits 7 through 15 in both 16-bit fields are currently unused, and must be set
to 0. Useful macros for constructing queries can be found in Example 3–1.

The count field specifies the maximum number of matching records to return. A
count value of -1 requests the return of all records that match, regardless of the
number. A count value of 0 causes lookup_dn to return immediately with no data.

resultp is set to point to the returned list of records. If resultp is NULL, then the
caller is simply interested in knowing how many records match the query. Note that
these records are dynamically allocated, and therefore the caller is responsible for
freeing them. lookup_dn() returns the number of matching records in the records
argument. A records value of 0 means that no records matched the query.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_BUSY, DSVC_INTERNAL.

add_dn()

Purpose
To add a record to the DHCP network container.

Service Provider Layer API 41

Synopsis
int add_dn(void *handp, dn_rec_t *newp);

Description
Adds the record newp to the DHCP network container referred to by the handle
handp. The signature associated with newp is updated by the underlying public
module. If an update collision occurs, the data store is not updated.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_BUSY, DSVC_INTERNAL, DSVC_EXISTS.

modify_dn()

Purpose
To modify a record in a DHCP network container.

Synopsis
int modify_dn(void *handp, const dn_rec_t *origp, dn_rec_t
*newp);

Description
Atomically modifies the record origp with the record newp in the DHCP network
container referred to by the handle handp. The signature associated with newp is
updated by the underlying public module. If an update collision occurs, the data store
is not updated.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_BUSY, DSVC_COLLISION,
DSVC_INTERNAL, DSVC_NOENT.

42 Solaris DHCP Service Developer’s Guide • July 2001

delete_dn()

Purpose
To delete a record from a DHCP network container.

Synopsis
int delete_dn(void *handp, const dn_rec_t *pnp);

Description
Deletes the record identified by the dn_cip and dn_sig elements of pnp from the
DHCP network container referred to by the handle handp. If an update collision
occurs, the matching record is not deleted from the data store and DSVC_COLLISION
is returned.

If the dn_sig signature of pnp is 0, the matching record is simply deleted with no
detection of update collisions.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NOENT, DSVC_BUSY, DSVC_INTERNAL,
DSVC_COLLISION.

close_dn()

Purpose
To close the network container.

Synopsis
int close_dn(void **handpp);

Service Provider Layer API 43

Description
Frees the instance handle and cleans up per-instance state.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_INTERNAL.

remove_dn()

Purpose
To delete the DHCP network container from the data store location.

Synopsis
int remove_dn(const char *location, const struct in_addr *netp);

Description
Removes DHCP network container netp (host order) in location.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NOENT, DSVC_NO_LOCATION,
DSVC_BUSY, DSVC_INTERNAL.

Generic Error Codes
The Framework Configuration Layer and Service Provider Layer API functions will
return the following integer error values. Note that the file
/usr/include/dhcp_svc_public.h is the definitive source for these codes.

* Standard interface errors
*/

44 Solaris DHCP Service Developer’s Guide • July 2001

#define DSVC_SUCCESS 0 /* success */
#define DSVC_EXISTS 1 /* object already exists */
#define DSVC_ACCESS 2 /* access denied */
#define DSVC_NO_CRED 3 /* No underlying credential */
#define DSVC_NOENT 4 /* object doesn’t exist */
#define DSVC_BUSY 5 /* object temporarily busy (again) */
#define DSVC_INVAL 6 /* invalid argument(s) */
#define DSVC_INTERNAL 7 /* internal data store error */
#define DSVC_UNAVAILABLE 8 /* underlying service required by */

/* public module unavailable */
#define DSVC_COLLISION 9 /* update collision */
#define DSVC_UNSUPPORTED 10 /* operation not supported */
#define DSVC_NO_MEMORY 11 /* operation ran out of memory */
#define DSVC_NO_RESOURCES 12 /* non-memory resources unavailable */
#define DSVC_BAD_RESOURCE 13 /* malformed/missing RESOURCE setting */
#define DSVC_BAD_PATH 14 /* malformed/missing PATH setting */
#define DSVC_MODULE_VERSION 15 /* public module version mismatch */
#define DSVC_MODULE_ERR 16 /* internal public module error */
#define DSVC_MODULE_LOAD_ERR 17 /* error loading public module */
#define DSVC_MODULE_UNLOAD_ERR 18 /* error unloading public module */
#define DSVC_MODULE_CFG_ERR 19 /* module configuration failure */
#define DSVC_SYNCH_ERR 20 /* error in synchronization protocol */
#define DSVC_NO_LOCKMGR 21 /* cannot contact lock manager */
#define DSVC_NO_LOCATION 22 /* location nonexistent */
#define DSVC_BAD_CONVER 23 /* malformed/missing CONVER setting */
#define DSVC_NO_TABLE 24 /* table does not exist */
#define DSVC_TABLE_EXISTS 25 /* table already exists */

#define DSVC_NERR (DSVC_TABLE_EXISTS + 1)

Service Provider Layer API 45

46 Solaris DHCP Service Developer’s Guide • July 2001

CHAPTER 4

Code Samples and Testing

This chapter includes some segments of code that illustrate proper use of the API
functions.

The following topics are included:

� “General API Functions” on page 47
� “dhcptab API Functions” on page 49
� “DHCP Network Container API Functions” on page 51
� “Testing the Public Module” on page 54

Code Templates
This section provides templates that show in general how you might use the API
functions.

Note – Download the source code for Sun’s ASCII files data store (ds_SUNWfiles) in
the developer pages on Sun’s web site (http://www.sun.com/developer). The
source code for the module may prove invaluable in writing your own module.

General API Functions
This template uses the general API functions status(), version(), and
mklocation().

47

EXAMPLE 4–1 general.c

* Copyright (c) 2000 by Sun Microsystems, Inc. /*
* Copyright (c) 2000 by Sun Microsystems, Inc.
* All rights reserved.
*/

#pragma ident "@(#)general.c 1.15 00/08/16 SMI"

/*
* This module contains the public APIs for status, version, and mklocation.
*/

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <dhcp_svc_public.h>

/*
* This API function instructs the underlying datastore to return its
* general status. If the "location" argument is non-NULL, the function
* validates the location for the data store containers (is it formed
* correctly for the data store, and does it exist).
*/
int
status(const char *location)
{

return (DSVC_UNSUPPORTED);
}

/*
* Return the data store API version supported by this module. This version
* was implemented to support version 1 of the API.
*/
int
version(int *vp)
{

*vp = DSVC_PUBLIC_VERSION;
return (DSVC_SUCCESS);

}

/*
* Create the datastore-specific "location" if it doesn’t already exist.
* Containers will ultimately be created there.
*/
int
mklocation(const char *location)
{

return (DSVC_UNSUPPORTED);

}

48 Solaris DHCP Service Developer’s Guide • July 2001

dhcptab API Functions
This template illustrates functions that are used with the dhcptab container.

EXAMPLE 4–2 dhcptab.c

/*
* Copyright (c) 1998-2000 by Sun Microsystems, Inc.
* All rights reserved.
*/

#pragma ident "@(#)dhcptab.c 1.12 00/08/16 SMI"

/*
* This module contains the public API functions for managing the dhcptab
* container.
*/

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <dhcp_svc_public.h>

/*
* List the current number of dhcptab container objects located at
* "location" in "listppp". Return number of list elements in "count".
* If no objects exist, then "count" is set to 0 and DSVC_SUCCESS is
* returned.
*
* This function will block waiting for a result, if the underlying
* data store is busy.
*/
int
list_dt(const char *location, char ***listppp, uint32_t *count)
{

return (DSVC_UNSUPPORTED);
}

/*
* Creates or opens the dhcptab container in "location" and initializes
* "handlep" to point to the instance handle. When creating a new dhcptab,
* the caller’s identity is used for owner/permissions. Performs any
* initialization needed by data store.
*/
int
open_dt(void **handlep, const char *location, uint32_t flags)
{

return (DSVC_UNSUPPORTED);
}

/*
* Frees instance handle, cleans up per instance state.
*/

Code Samples and Testing 49

EXAMPLE 4–2 dhcptab.c (Continued)

int
close_dt(void **handlep)
{

return (DSVC_UNSUPPORTED);
}

/*
* Remove dhcptab container in "location" from data store. If the underlying
* data store is busy, this function will block.
*/
int
remove_dt(const char *location)
{

return (DSVC_UNSUPPORTED);
}

/*
* Searches the dhcptab container for instances that match the query
* described by the combination of query and targetp. If the partial
* argument is true, then lookup operations that are unable to
* complete entirely are allowed (and considered successful). The
* query argument consists of 2 fields, each 16 bits long. The lower
* 16 bits selects which fields {key, flags} of targetp are to be
* considered in the query. The upper 16 bits identifies whether a
* particular field value must match (bit set) or not match (bit
* clear). Bits 2-15 in both 16 bit fields are currently unused, and
* must be set to 0. The count field specifies the maximum number of
* matching records to return, or -1 if any number of records may be
* returned. The recordsp argument is set to point to the resulting
* list of records; if recordsp is passed in as NULL then no records
* are actually returned. Note that these records are dynamically
* allocated, thus the caller is responsible for freeing them. The
* number of records found is returned in nrecordsp; a value of 0
* means that no records matched the query.
*/
int
lookup_dt(void *handle, boolean_t partial, uint32_t query, int32_t count,

const dt_rec_t *targetp, dt_rec_list_t **recordsp, uint32_t *nrecordsp)
{

return (DSVC_UNSUPPORTED);
}

/*
* Add the record pointed to by "addp" to from the dhcptab container
* referred to by the handle. The underlying public module will set
* "addp’s" signature as part of the data store operation.
*/
int
add_dt(void *handle, dt_rec_t *addp)
{

return (DSVC_UNSUPPORTED);
}

50 Solaris DHCP Service Developer’s Guide • July 2001

EXAMPLE 4–2 dhcptab.c (Continued)

/*
* Atomically modify the record "origp" with the record "newp" in the
* dhcptab container referred to by the handle. "newp’s" signature will
* be set by the underlying public module. If an update collision
* occurs, either because "origp’s" signature in the data store has changed
* or "newp" would overwrite an existing record, DSVC_COLLISION is
* returned and no update of the data store occurs.
*/
int
modify_dt(void *handle, const dt_rec_t *origp, dt_rec_t *newp)
{

return (DSVC_UNSUPPORTED);
}

/*
* Delete the record referred to by dtp from the dhcptab container
* referred to by the handle. If "dtp’s" signature is zero, the
* caller is not interested in checking for collisions, and the record
* should simply be deleted if it exists. If the signature is non-zero,
* and the signature of the data store version of this record do not match,
* an update collision occurs, no deletion of matching record in data store
* is done, and DSVC_COLLISION is returned.
*/
int
delete_dt(void *handle, const dt_rec_t *dtp)
{

return (DSVC_UNSUPPORTED);

}

DHCP Network Container API Functions
This template illustrates functions used with the the DHCP network containers.

EXAMPLE 4–3 dhcp_network.c

/*
* Copyright (c) 1998-2000 by Sun Microsystems, Inc.
* All rights reserved.
*/

#pragma ident "@(#)dhcp_network.c 1.12 00/08/16 SMI"

/*
* This module contains public API functions for managing dhcp network
* containers.
*/

#include <unistd.h>

Code Samples and Testing 51

EXAMPLE 4–3 dhcp_network.c (Continued)

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <dhcp_svc_public.h>

/*
* List the current number of dhcp network container objects located at
* "location" in "listppp". Return number of list elements in "count".
* If no objects exist, then "count" is set to 0 and DSVC_SUCCESS is
* returned.
*
* This function will block if the underlying data service is busy or is
* otherwise unvailable.
*/
int
list_dn(const char *location, char ***listppp, uint32_t *count)
{

return (DSVC_UNSUPPORTED);
}

/*
* Creates or opens the dhcp network container "netp" (host order) in
* "location" and initializes "handlep" to point to the instance handle.
* Performs any initialization needed by data store. New containers are
* created with the identity of the caller.
*/
int
open_dn(void **handlep, const char *location, uint32_t flags,

const struct in_addr *netp)
{

return (DSVC_UNSUPPORTED);
}

/*
* Frees instance handle, cleans up per instance state.
*/
int
close_dn(void **handlep)
{

return (DSVC_UNSUPPORTED);
}

/*
* Remove DHCP network container "netp" (host order) in location.
* This function will block if the underlying data service is busy or
* otherwise unavailable.
*/
int
remove_dn(const char *location, const struct in_addr *netp)
{

return (DSVC_UNSUPPORTED);
}

52 Solaris DHCP Service Developer’s Guide • July 2001

EXAMPLE 4–3 dhcp_network.c (Continued)

/*
* Searches DHCP network container for instances that match the query
* described by the combination of query and targetp. If the partial
* argument is true, then lookup operations that are unable to
* complete entirely are allowed (and considered successful). The
* query argument consists of 2 fields, each 16 bits long. The lower
* 16 bits selects which fields {client_id, flags, client_ip,
* server_ip, expiration, macro, or comment} of targetp are to be
* considered in the query. The upper 16 bits identifies whether a
* particular field value must match (bit set) or not match (bit
* clear). Bits 7-15 in both 16 bit fields are currently unused, and
* must be set to 0. The count field specifies the maximum number of
* matching records to return, or -1 if any number of records may be
* returned. The recordsp argument is set to point to the resulting
* list of records; if recordsp is passed in as NULL then no records
* are actually returned. Note that these records are dynamically
* allocated, thus the caller is responsible for freeing them. The
* number of records found is returned in nrecordsp; a value of 0 means
* that no records matched the query.
*/
int
lookup_dn(void *handle, boolean_t partial, uint32_t query, int32_t count,

const dn_rec_t *targetp, dn_rec_list_t **recordsp, uint32_t *nrecordsp)
{

return (DSVC_UNSUPPORTED);
}

/*
* Add the record pointed to by "addp" to from the dhcp network container
* referred to by the handle. The underlying public module will set
* "addp’s" signature as part of the data store operation.
*/
int
add_dn(void *handle, dn_rec_t *addp)
{

return (DSVC_UNSUPPORTED);
}

/*
* Atomically modify the record "origp" with the record "newp" in the dhcp
* network container referred to by the handle. "newp’s" signature will
* be set by the underlying public module. If an update collision
* occurs, either because "origp’s" signature in the data store has changed
* or "newp" would overwrite an preexisting record, DSVC_COLLISION is
* returned and no update of the data store occurs.
*/
int
modify_dn(void *handle, const dn_rec_t *origp, dn_rec_t *newp)
{

return (DSVC_UNSUPPORTED);
}

Code Samples and Testing 53

EXAMPLE 4–3 dhcp_network.c (Continued)

/*
* Delete the record pointed to by "pnp" from the dhcp network container
* referred to by the handle. If "pnp’s" signature is zero, the caller
* is not interested in checking for collisions, and the record should
* simply be deleted if it exists. If the signature is non-zero, and the
* signature of the data store version of this record do not match, an
* update collision occurs, no deletion of any record is done, and
* DSVC_COLLISION is returned.
*/
int
delete_dn(void *handle, const dn_rec_t *pnp)
{

return (DSVC_UNSUPPORTED);

}

Testing the Public Module
See http://www.sun.com/developer for some downloadable test suites that may
help you in testing your public module.

54 Solaris DHCP Service Developer’s Guide • July 2001

Index

A
access to data store containers

synchronizing, 20
Application/Service Layer, 14

D
data access layers

definition of, 14
diagram, 15

data store container
name, 23
provided with Solaris DHCP, 17
record formats, 24
upgrading, 25

dhcpmgr
integrating new data store with, 26

dhcpsvc.conf configuration file, 14
dhcptab container

functions, 32
internal form, 24
name, 23

dn_rec_t and dt_rec_t data structures, 21
dn_sig and dt_sig update signatures, 21
dsvclockd daemon, 21
dsvclockd file, 21
dsvc_synchtype variable, 21
duplicate container records, 24

F
Framework Configuration Layer, 15

G
getAdditional() function, 28
getComponent() function, 26
getDescription() function, 27
getPath() function, 27

H
handles, 19

J
JavaBeans

for public module, 26

L
libdhcpsvc.so library, 14

M
management bean

functions, 26

55

management bean (continued)
packaging requirements, 28

modular framework, 13

N
name

public module, 23
network container

functions, 39
internal form, 24
name, 23

P
public module

name format, 23

R
record update collisions, 21

S
Service Provider Layer

list of API functions, 16
synchronizing access to data store

containers, 20

U
upgrading

containers, 25

56 Solaris DHCP Service Developer’s Guide • July 2001

