
Java Desktop System
Configuration Manager Release 1.1

Developer Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–7573
November, 2004

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

040914@9495

Contents

Preface 7

1 Configuration Manager Overview 11

Overview 11

Configuration Propagation 12

Configuration Management 12

2 Templates 13

The “Hello world!” Template 14

� Creating the “Hello world!” template 14

Explaining the “Hello world!” Template 16

Localization 17

The Policy Package Format 19

3 Advanced Templates 23

Sets 23

Action Handlers 29

Help 30

4 Design Recommendations 33

Guidelines 33

5 Configuration Concepts 35

Strata 35

3

Trees 36

Merging 37

User-based and Host-based Configuration 39

A Configuration Path Mapping 41

StarOffice/OpenOffice Registry (OOR) 42

Gnome Configuration (GConf) 42

Java Preferences 43

Mozilla Preferences 43

B Element Dictionary 45

Header Elements: apt:template, resImport, helpImport 45

Structure Elements: category, page, section 46

Basic Data Elements: property, value, constraints 47

Dynamic Data Elements: set 53

Interaction Elements: xmlHandler, event, action, choose, command 54

C The Template DTD 57

4 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

Figures

FIGURE 1–1 Client- and server-side components 11

FIGURE 2–1 Proxy page 15

FIGURE 2–2 HelloWorld Package 20

FIGURE 3–1 Dynamic proxy set 23

FIGURE 3–2 Proxy set sub-page 24

FIGURE 3–3 Proxy Set — “No Proxy For” 27

FIGURE 5–1 “Tree of trees” 37

FIGURE 5–2 Merge 38

5

6 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

Preface

The Java Desktop System Configuration Manager Release 1.1 Developer Guide provides
guidelines for developers who want to enable applications for the Java™ Desktop
System Configuration Manager, Release 1.1. It provides the necessary knowledge
about how to centrally manage the configuration of software applications that are not
recognized by the Java Desktop System Configuration Manager by default.

After you have read this document, you will be able to create and deploy files, called
“templates”, that contain information about where to store and how to display new
configuration settings. This document also provides design recommendations,
information about creating advanced templates, and reference information, which will
help you to build the templates that you need.

Who Should Use This Book
The Java Desktop System Configuration Manager Release 1.1 Developer Guide is aimed at
developers and advanced site administrators who want to extend the Configuration
Manager to be able to centrally configure additional applications and settings.

Before You Read This Book
It is recommended that you read at least Chapter 1, “Concepts,” in Java Desktop System
Configuration Manager Release 1.1 Administration Guide, and have some experience in
administering and using the Configuration Manager. Some knowledge of XML is
helpful, but not essential.

7

How This Book Is Organized
Chapter 1 provides an overview of the Java™ Desktop System Configuration
Manager, Release 1.1.

Chapter 2 provides an introduction to templates and how to create them.

Chapter 3 describes how to create and use more complex templates.

Chapter 4 discusses guidelines for design recommendations.

Chapter 5 provides information about configuration concepts.

Appendix A provides helpful information about configuration path mapping.

Appendix B provides a reference for template elements and attributes.

Appendix C contains the template DTD.

Related Books
The following Sun documents are related to this manual and can provide you with
additional information:

� Java Desktop System Configuration Manager Release 1.1 Administration Guide
� Java Desktop System Configuration Manager Release 1.1 Installation Guide

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

8 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

http://docs.sun.com

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

The command to remove a file
is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s
Guide.

Perform a patch analysis.

Do not save the file.

[Note that some emphasized
items appear bold online.]

9

10 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

CHAPTER 1

Configuration Manager Overview

This chapter provides an overview of the Java™ Desktop System Configuration
Manager, Release 1.1 and an introduction to the concepts needed to create templates
for the Configuration Manager.

To introduce a new application to the Configuration Manager, you need to develop
templates. You also need to register those templates with the Configuration Manager.
Templates are files that contain information about where to store and how to display
new configuration settings. The Configuration Manager uses these templates to obtain
all necessary information about configuration policies.

Overview
The Configuration Manager provides the necessary infrastructure for a centralized
configuration of the Java™ Desktop System. Currently, the Configuration Manager
consists of the following client- and server-side components:

11

FIGURE 1–1 Client- and server-side components

Configuration Propagation
All policies are stored in a central configuration repository, such as an LDAP server
(7). A policy is the term for a group of semantically coherent configuration settings. A
Configuration Agent (3), running on each client machine, is responsible for retrieving
the policy data from the LDAP server, and for caching the data locally (2). The
Configuration Agent periodically checks for any changes on the LDAP server, and
updates the cache accordingly. Furthermore, the Configuration Agent sends
notifications to all interested applications. Desktop applications, such as StarOffice,
Mozilla, Evolution or GNOME, read the policies by means of corresponding adapters
(1). These adapters encapsulate the necessary communication with the cache and the
Configuration Agent.

Configuration Management
The Configuration Manager (5) is a web-based administration tool that allows you to
view, define, and enforce configuration settings on different levels of an organization’s
hierarchy, such as an organization, group or user level with a web browser. The
Configuration Manager is a part of the Java Web Console (4), which provides the
necessary infrastructure for all of Sun’s administration tools, such as a common
web-based graphical user interface (GUI) and single sign-on authentication. The
Configuration Manager uses templates (6) to view, define, and enforce configuration
settings in the configuration repository and to render the GUI for displaying these
configuration settings.

12 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

CHAPTER 2

Templates

Configuration Manager templates provide information about the location of every
configuration setting in the configuration repository. Templates also provide
information about their visual representation in the GUI of the Configuration
Manager. Templates are XML files that conform to a document type definition (DTD)
file.

Tip – If you are not familiar with XML, the following link provides a short
introduction:
http://java.sun.com/webservices/docs/1.0/tutorial/doc/IntroXML.html

Using XML allows you to create definitions for managing configurations settings that
are independent of the GUI rendering engine, the operating system, and the
programming language. The GUI is rendered based on the semantic dependencies of
the elements specified in the template. Due to its generality, the Configuration
Manager template format does not provide solutions for every possible GUI design
request. For instance, exact positioning on the screen is not supported.

This chapter contains information about the typical development cycle for templates.
Beginning with a currently existing configuration dialog of a desktop application, you
will learn how to create a simple template for that dialog. You will also learn how to
make that file available to the Configuration Manager, so that the file is displayed in
the Content Area.

13

http://java.sun.com/webservices/docs/1.0/tutorial/doc/IntroXML.html

The “Hello world!” Template

� Creating the “Hello world!” template
Assume that you want to make the proxy configuration settings of StarOffice available
to the Configuration Manager.

The following template provides a first implementation of the GUI:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE apt:template SYSTEM "policytemplate.dtd">
<apt:template>
<category apt:name="StarOffice" apt:label="StarOffice">
<category apt:name="Internet" apt:label="Internet">
<page apt:name="Proxy" apt:label="Proxy">
<section apt:name="Settings" apt:label="Settings">
<property apt:name="ProxyServer" apt:label="Proxy Server"

apt:dataPath="org.openoffice.Inet/Settings/ooInetProxyType"
oor:type="xs:int">

<visual apt:type="radioButtons"/>
<constraints>
<enumeration oor:value="0" apt:label="None"/>
<enumeration oor:value="2" apt:label="Manual"/>

</constraints>
</property>
<property apt:name="HTTPProxy" apt:label="HTTP Proxy"

Before You
Begin

14 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

apt:dataPath="org.openoffice.Inet/Settings/ooInetHTTPProxyName"
oor:type="xs:string"/>

<property apt:name="HTTPPort" apt:label="HTTP Port"
apt:dataPath="org.openoffice.Inet/Settings/ooInetHTTPProxyPort"
oor:type="xs:int"/>

<property apt:name="FTPProxy" apt:label="FTP Proxy"
apt:dataPath="org.openoffice.Inet/Settings/ooInetFTPProxyName"
oor:type="xs:string"/>

<property apt:name="FTPPort" apt:label="FTP Port"
apt:dataPath="org.openoffice.Inet/Settings/ooInetFTPProxyPort"
oor:type="xs:int"/>

<property apt:name="NoProxyFor" apt:label="No Proxy For"
apt:dataPath="org.openoffice.Inet/Settings/ooInetNoProxy"
oor:type="xs:string"/>

</section>
</page>

</category>
</category>

</apt:template>

The following steps are necessary to announce the new template to the Configuration
Manager:

1. Login as root to the machine on which you installed the Configuration
Manager.

2. Create a directory that is called
HelloWorld/templates/StarOffice/Internet/Proxy
under/usr/share/webconsole/apoc/packages.

3. Create a file called proxy.xml with the XML template content that was listed
previously. Copy the file to the Proxy directory.

4. Grant the user “noaccess” read/execute permission to the Proxy directory.

5. Grant the user "noaccess" read access to the proxy.xml file.

6. Execute /usr/sbin/smreg add -a /usr/share/webconsole/apoc.

7. Restart the webserver with the /usr/sbin/smcwebserver restart
command.

After you log in to the Configuration Manager, you should see a new top-level
category that is called "StarOffice". Browsing down that category displays the
"Proxy" page that you defined with the template that you created.

Steps

Chapter 2 • Templates 15

FIGURE 2–1 Proxy page

Explaining the “Hello world!” Template
The first two lines of the template are initial XML definitions. The third line contains
the root element of the template called apt:template, which encloses the whole
definition of the policy made in a template file.

The next four lines contain the main template structure elements. By nesting
apt:category elements, you create the nodes of the configuration policy tree. The
configuration policy tree represents the visual hierarchy of the policies in the GUI of
the Configuration Manager (see “Trees” on page 36). If you specify an apt:name
attribute, the attribute is used to uniquely designate that element. The apt:label
attribute specifies the displayed text as a category in the GUI. If you do not specify the
apt:label attribute, the displayed text is defined by the apt:name attribute.
Therefore, always specify an apt:label element, because this element is used for
localization. See “Localization” on page 17.

16 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

Every apt:category element must contain one or more apt:category elements or
an apt:page element. The apt:page element represents a leaf in the configuration
policy tree. The “Proxy” page that was shown previously is an example of a leaf. The
Configuration Manager renders a page as a single HTML page that has to be divided
in at least one apt:section. An apt:section element renders all its child elements
in a table with a table heading. Using more than one section enables you to group
settings on one page.

The apt:section element contains apt:property elements, which represent the
configuration settings. The "Hello, world!" template contains six properties:
ProxyServer, HTTPProxy, HTTPPort, FTPProxy, FTPPort, and NoProxyFor.
Every property contains an apt:dataPath attribute. This attribute is required and
specifies the data location in the configuration tree. The configuration tree in turn
represents the hierarchy of the configuration settings as it is stored in the configuration
repository. See “Trees” on page 36 for more information.

The oor:type attribute defines the data type of the configuration setting in the
configuration repository. ProxyServer, HTTPPort, and FTPPort are of type
xs:int, the other properties are of type xs:string. Integer and string types are
displayed as edit fields by default.

The visual element is used to instruct the Configuration Manager how to display the
property. Without specifying this element, the property ProxyServer would have
been rendered using an edit field instead of a radio button group.

Tip – The GUI of the Configuration Manager deviates from the original StarOffice GUI
by rendering the two possible integer values as a radio button group instead of using
a drop-down list. For visualizing a dual value, improved usability is achieved using
radio buttons instead of a drop-down list. An example, for instance, is one click
compared with two clicks for changing a value.

The constraints element, in combination with the enumeration sub-element, is
used to specify the number of radio buttons rendered and the integer values stored in
the back end, depending on which radio button is selected. The apt:label attribute
specifies the string rendered on the GUI for every radio button.

Localization
It is important to localize all strings that are defined in a template. Localized strings
are retrieved from resource files. The resImport sub-element of the apt:template
element is used to bind one or more resource files to a template. You need to specify
the fully qualified path to the resource and its base name, for example:

Chapter 2 • Templates 17

<apt:template>
<resImport

apt:packagePath="com.sun.star.apoc.policies.resource.staroffice"/>

The resource key to be used is defined by providing the name of the key as value of
the apt:label attribute, e.g.

<property apt:name="HTTPProxy" apt:label="SO.internet.proxy.name"
apt:dataPath="org.openoffice.Inet/Settings/ooInetHTTPProxyName"

oor:type="xs:string">

The Configuration Manager searches every resource file bound to a template for the
key specified in the apt:label attribute first. If no key is found, the value of the
apt:label attribute is displayed. If a key is found, the corresponding value is
retrieved from the resource file and is displayed.

The resource file from which the string is retrieved is determined in a similar way to
the mechanism defined for Java: the package path specified in the resImport
element and the languages selected in the web browser determine the selected
resource file. For example, if en_US is the language for web pages selected in the
browser, and the package path specified in the resImport element is
com.sun.star.apoc.policies.resource.staroffice, the Configuration
Manager searches the following files in the given order for the resource key:

./res/com/sun/star/apoc/policies/resource/staroffice_en_US.properties

./res/com/sun/star/apoc/policies/resource/staroffice_en.properties

./res/com/sun/star/apoc/policies/resource/staroffice.properties

The Configuration Manager searches the files in the local policy package first (see
“The Policy Package Format” on page 19). If they are not found, all other packages are
searched. This enables strings that are already localized in other packages to be
reused, especially for category names.

See the API specification of the Java ResourceBundle for more details on resource
recovery.

Tip – All applications of the Java Web Console determine the language during the
login. To force any application to use a new language, you must log out. Then log in
again after you have changed the language for web pages in your browser.

The online help should also be localized. The Configuration Manager chooses the
HTML file according to the same rules that are applied to the resource files, except that
only the local policy package is searched for the help file. For example, if you specify
/StarOffice/Internet/Proxy as the path to the HTML file, and en_US in your
browser, the Configuration Manager displays the online help file
./web/StarOffice/Internet/Proxy_en_US.html.

18 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

http://java.sun.com/j2se/1.5.0/docs/api/java/util/PropertyResourceBundle.html

The Policy Package Format
Templates are embedded into a deployment container, which is similar to a "package"
in the Java™ programming language. A package can also contain optional files, such
as resource files for GUI localization, HTML files for online help, and arbitrary support
files.

The Configuration Manager uses a special directory and a file name format to access
the templates and all necessary optional files. This directory and file name structure is
called the policy package format.

All policy packages are located in a unique subdirectory below the
/usr/share/webconsole/apoc/packages directory. For the "Hello, world!"
example, HelloWorld was chosen, resulting in a
/usr/share/webconsole/apoc/packages/HelloWorld directory.

Tip – Use the product name and product version of the software for which you are
installing the package. This ensures a unique package directory. For instance,
HelloWorld3.1 is a better choice than HelloWorld.

Below the specific package directory, which should not be confused with the
packages directory, the following subdirectories are allowed:

templates The templates subdirectory must contain all templates of the policy package.
Files that have the postfix .xml are considered to be templates. The name of
the file must correlate with the value of the apt:name attribute of the page
element. Templates can be organized in any way, although they should be
located in the same directory hierarchy, as specified by their category hierarchy.

classes The classes subdirectory must contain all class files of the policy package.
Files that have the postfix .class are considered to be Java class files. The
name of the file has to correlate with the name of the class defined in that file.
The files have to be located in the same directory hierarchy as specified by their
package hierarchy.

web The web subdirectory must contain all HTML help files of the policy package
and must contain images referenced by the policy package. Files that have the
postfix .html are considered to be HTML files. Correlate the name of the
HTML file with the name of the template using the HTML file. Locate HTML
files in the same directory hierarchy as the template using the HTML file.

Chapter 2 • Templates 19

res The res subdirectory must contain all resource files of the policy package. Files
that have the postfix .properties are considered to be Java-compliant
resource files. You can correlate the names and paths of the resource file with
the names and paths of the template files that use them. You can also specify
one directory hierarchy containing one resource file for all templates.

lib The lib subdirectory must contain all library files of the policy package. Files
that have the postfix .jar are considered to be libraries. Libraries are
automatically loaded by the Configuration Manager’s class loader. Their
content is accessed by using the root directory in the jar file as the root
directory for absolute paths. The typical use for library files is to act as a
container for class or resource files , and for directories that are normally
located in the classes and res directories.

Other file types have no special meaning to the Configuration Manager. Nevertheless,
the files types can be placed in the classes or web directories, if they are needed by
class or HTML files.

To further illustrate the package format, Figure 2–2 shows a mature HelloWorld
package:

20 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

FIGURE 2–2 HelloWorld Package

Chapter 2 • Templates 21

The deployment of packages is completely up to the developer of the package, as long
as you follow the rules defined previously in this chapter. You can provide a collection
of files with instructions about how to copy the files to the correct locations, or you can
provide a zip file, or you can use the deployment mechanisms provided by the
operating systems, such as .pkg files for Solaris™ or .rpm files for Linux. The last
method is recommended, as the enhanced means for maintaining and removing
software offered by the corresponding operating system provide better support for the
end user.

22 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

CHAPTER 3

Advanced Templates

The chapter provides information about building and using more complex templates.

Sets
After creating the "Hello, World!" template presented in Chapter 2, you might need to
make the list of configurable proxies dynamic. A dynamic list enables users to add
proxies for additional protocols like GOPHER, SOCKS, and SSL . Sets enable you to
accomplish this task.

Note – The use of sets for the proxy page is for demonstration purposes only. Neither
StarOffice nor OpenOffice can handle this example, because their implementation
expects the original layout of the configuration tree.

Figure Figure 3–1 depicts a dynamic list of proxies instead of using a fixed number of
edit fields:

23

FIGURE 3–1 Dynamic proxy set

Proxies are added if you click on the New button. A dialog prompts for the name of
the new protocol to use a proxy for. Specify FTP the first time, then click New again
and type HTTP as the name for the second protocol. The result looks likeFigure 3–1.
The two entries are links. If you click on one of the links, the Content Area is loaded
with the content that you see in Figure 3–2:

24 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

FIGURE 3–2 Proxy set sub-page

The functionality described in the two preceding figures is implemented by modifying
the "Hello, world!" example as follows: Delete the four properties HTTPProxy,
HTTPPort, FTPProxy, and FTPPort. Then add a set element, as seen in the
annotated section in the following code example:

<?xml version="1.0" encoding="UTF-8"?>
<DOCTYPE apt:template SYSTEM "policytemplate.dtd">
<apt:template>
<category apt:name="StarOffice" apt:label="StarOffice">
<category apt:name="Internet" apt:label="Internet">
<page apt:name="Proxy" apt:label="Proxy">
<section apt:name="Settings" apt:label="Proxy Server">
<property apt:name="ProxyServer" apt:label="Proxy Server"

apt:dataPath="org.openoffice.Inet/Settings/ooInetProxyType"
oor:type="xs:int">

<visual apt:type="radioButtons"/>
<constraints>
<enumeration oor:value="0" apt:label="None"/>
<enumeration oor:value="2" apt:label="Manual"/>

</constraints>
</property>
<property apt:name="NoProxyFor" apt:label="No Proxy For"

apt:dataPath="org.openoffice.Inet/Settings/ooInetNoProxy"
oor:type="xs:string"/>

</section>
<!-- Beginning of set element to be added -->

<set apt:name="ProxyList" apt:label="Proxy List"
apt:dataPath="org.openoffice.Inet/Settings/ooInetProxyList">

<page apt:name="ProxyPage" apt:label="Proxy">
<section apt:name="Proxy" apt:label="Host and Port">
<property apt:name="HostName" apt:label="Host Name"

apt:dataPath="./$queriedId/HostName"

Chapter 3 • Advanced Templates 25

oor:type="xs:string"/>
<property apt:name="Port" apt:label="Port"

apt:dataPath="./$queriedId/Port"
oor:type="xs:string"/>

</section>
</page>

</set>
<!-- End of added set element -->

</page>
</category>

</category>

</apt:template>

The apt:dataPath attribute of the set element points to the place where the set is
stored in the back end. The set element contains a page element, which contains a
section element, which in turn contains a property element. This hierarchy
correlates to the element hierarchy below a category element. It is rendered as a page
in the same way, except that it is triggered by clicking the link in the set table.

In comparison to a category page, the set page properties HostName and Port use a
special notation for the apt:dataPath. The path begins with a dot, meaning that the
path is relative to the first path definition found ascending the element hierarchy. The
first parent element with anapt:dataPath is the set element, so the Configuration
Manager translates the relative path of, for example, the Port property to
org.openoffice.Inet/Settings/ooInetProxyList/$queriedId/Port. The
other peculiarity in this path is the $queriedId variable. Since all data in the
configuration repository needs to be uniquely identified, every element in a dynamic
data structure needs to have a unique name. The $queriedId variable instructs the
Configuration Manager to query the user for that name when the Add button is
clicked. The resulting set element is stored with the specified name at the position
determined by the position of the variable. Therefore, in the case of the FTP set
element, the path to its port property is
org.openoffice.Inet/Settings/ooInetProxyList/FTP/Port.

Another example: You can also use sets to display the NoProxyFor property. If the
string of host names becomes long, the use of an edit field for this property can be
problematic. Users then need to scroll to view the entire string in the edit field. A list of
proxy names that are implemented with a set avoids that extra scrolling.

To use a set instead of a string for the NoProxyFor property, delete the NoProxyFor
element with all its sub-elements. Then add the set element that is shown in annotated
section in the following code example:

<?xml version="1.0" encoding="UTF-8"?>
<DOCTYPE apt:template SYSTEM "policytemplate.dtd">
<apt:template>
<category apt:name="StarOffice" apt:label="StarOffice">
<category apt:name="Internet" apt:label="Internet">
<page apt:name="Proxy" apt:label="Proxy">
<section apt:name="Settings" apt:label="Proxy Server">
<property apt:name="ProxyServer" apt:label="Proxy Server"

apt:dataPath="org.openoffice.Inet/Settings/ooInetProxyType""

26 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

oor:type="xs:int">
<visual apt:type="radioButtons"/>
<constraints>
<enumeration oor:value="0" apt:label="None"/>
<enumeration oor:value="2" apt:label="Manual"/>

</constraints>
</property>

</section>
<!-- Beginning of set element to be added -->

<set apt:name="NoProxyFor" apt:label="No Proxy For"
apt:dataPath="org.openoffice.Inet/Settings/ooInetNoProxySet">

<page apt:name="HostNamePage">
<section apt:name="HostNameSection">
<property apt:name="HostNameProp"

apt:dataPath="./$queriedId/HostName" oor:type="xs:string"
apt:storeDefault="true">

<visual apt:type="hidden"/>
<value>$queriedId</value>

</property>
</section>

</page>
</set>

<!-- End of set element to be added -->
<set apt:name="ProxyList" apt:label="Proxy List"

apt:dataPath="org.openoffice.Inet/Settings/ooInetProxyList">
<page apt:name="ProxyPage" apt:label="Proxy">
<section apt:name="Proxy" apt:label="Host and Port">
<property apt:name="HostName" apt:label="Host Name"

apt:dataPath="./$queriedId/HostName"
oor:type="xs:string"/>

<property apt:name="Port" apt:label="Port"
apt:dataPath="./$queriedId/Port"
oor:type="xs:string"/>

</section>
</page>

</set>
</page>

</category>
</category>

</apt:template>

Chapter 3 • Advanced Templates 27

FIGURE 3–3 Proxy Set — “No Proxy For”

The entries in the table are no longer links, but rather the entries represent a flat list of
single-valued elements. This is achieved by using the apt:storeDefault attribute
and the visual element in combination with the value element. The value element
can define a default value for a configuration setting. A default value is not stored in
the configuration repository by default. The apt:storeDefault attribute instructs
the Configuration Manager to override that default and to automatically store the
default value in the back end. In this case, the default value is the value that the user
enters in the dialog when a new set element is added. If the apt:type attribute of the
visual element is specified as "hidden", the only section in that page is left empty. If a
set page is empty, it makes no sense to display the page, so the Configuration Manager
does not provide a link.

28 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

Action Handlers
An action handler is used to execute user-defined actions whenever an event occurs.
At the point, only one action handler is available: the XML handler, which generates
JavaScript code in the client-side browser.

The XML handler can be used to implement a feature of the StarOffice/ OpenOffice
Proxy dialog not yet covered by the templates presented so far: selecting the value
"None" for the "Proxy server" setting disables the edit fields.

The annotated areas in the following template show the necessary changes in the
original "Hello, world!" template in order to enable or disable the edit fields if the
"Proxy server" setting is set to "Manual" or "None":

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE apt:template SYSTEM "policytemplate.dtd">
<apt:template>
<category apt:name="StarOffice" apt:label="StarOffice" >
<category apt:name="Internet" apt:label="Internet">
<page apt:name="Proxy" apt:label="Proxy">
<section apt:name="Settings" apt:label="Settings">
<property apt:name="ProxyServer" apt:label="Proxy Server"

apt:dataPath="org.openoffice.Inet/Settings/ooInetProxyType"
oor:type="xs:int"

<!-- The following line should be added to original "Hello, world!" template -->
apt:xmlHandler="switchState">

<visual apt:type="radioButtons"/>
<constraints>
<enumeration oor:value="0" apt:label="None"/>
<enumeration oor:value="2" apt:label="Manual"/>

</constraints>
</property>
<property apt:name="HTTPProxy" apt:label="HTTP Proxy"

apt:dataPath="org.openoffice.Inet/Settings/ooInetHTTPProxyName"
oor:type="xs:string"/>

<property apt:name="HTTPPort" apt:label="HTTP Port"
apt:dataPath="org.openoffice.Inet/Settings/ooInetHTTPProxyPort"
oor:type="xs:int"/>

<property apt:name="FTPProxy" apt:label="FTP Proxy"
apt:dataPath="org.openoffice.Inet/Settings/ooInetFTPProxyName"
oor:type="xs:string"/>

<property apt:name="FTPPort" apt:label="FTP Port"
apt:dataPath="org.openoffice.Inet/Settings/ooInetFTPProxyPort"
oor:type="xs:int"/>

<property apt:name="NoProxyFor" apt:label="No Proxy For"
apt:dataPath="org.openoffice.Inet/Settings/ooInetNoProxy"
oor:type="xs:string"/>

</section>
<!-- Beginning of section to be added to original "Hello, world!" template -->

<xmlHandler apt:name="switchState">
<event apt:type="onChange" />

Chapter 3 • Advanced Templates 29

<action>
<choose>
<when apt:test="ProxyServer.value=0">
<command>HTTPProxy.enabled=false</command>
<command>HTTPPort.enabled=false</command>
<command>FTPProxy.enabled=false</command>
<command>FTPPort.enabled=false</command>
<command>NoProxyFor.enabled=false</command>

</when>
<otherwise>
<command>HTTPProxy.enabled=true</command>
<command>HTTPPort.enabled=true</command>
<command>FTPProxy.enabled=true</command>
<command>FTPPort.enabled=true</command>
<command>NoProxyFor.enabled=true</command>

</otherwise>
</choose>

</action>
</xmlHandler>

<!-- End of section to be added -->
</page>

</category>
</category>

</apt:template>

By adding the apt:xmlHandler attribute to the property ProxyServer, you
associate the xmlHandler element with the same name (here: "switchState") to that
property.

Action handlers are triggered by events. Which events are considered by an action
handler is defined by the apt:type attribute of the event element. At this point, there
is only one event available: the onChange event. This event is thrown when a user
enters new data for a property. In the preceding example, the event is used to trigger
the XML handler when the value of the ProxyServer property changes.

The action element contains the actions that are executed if any of the events specified
by the event element occur. In the preceding example, the first action is to check the
value of the ProxyServer property and to change the state of the other edit fields
accordingly. This is achieved by using the choose, when and otherwise elements.
All edit fields are disabled, if the ProxyServer property is set to "None". The edit
fields are enabled, if the ProxyServer property is set to "Manual".

Help
There are two different types of help: the online help and the inline help.

The online help is a detailed, context-sensitive help that is displayed in a new window
when the user clicks the Help link in the masthead. If the last action was taken in the
Content Area, the online help document defined in the template currently displayed

30 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

in the Content Area is shown. If the last action was taken somewhere else, the general
online help is shown. The apt:onlineHelp attribute of the page element is used to
bind the HTML help file to a template. You need to specify the fully qualified path to
the file and its base name, for example,

<page apt:name="Proxy">
apt:label="Proxy"

<apt:onlineHelp="/StarOffice/Internet/proxy">

references ./web/StarOffice/Internet/proxy.html.

You can use absolute and relative paths in HTML files. If you place an image in a
directory that is called images, alongside of the HTML file, any of the following
notations can be used in the HTML file:

�
�

The inline help is a brief text providing additional information for category, page and
property pages. The inline help is displayed in the "Comment" column for a
category element, below the page title for a page element and below the
configuration setting for a property element. The help text is specified by the
apt:inlineHelp attribute of any of the three elements category, page or
property. For example,

<property apt:name="HTTPProxy"
apt:label="HTTP Proxy"
apt:inlineHelp="Specify no proxy (None) or a manually defined proxy (manual)."
apt:dataPath="org.openoffice.Inet/Settings/ooInetHTTPProxyName"
oor:type="xs:string"

</property>

You should provide resource keys for the label to facilitate localization.

Chapter 3 • Advanced Templates 31

32 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

CHAPTER 4

Design Recommendations

Before you create templates for your application, you need to determine which
configuration settings are to be centrally managed by the Configuration Manager. The
most simple solution is to create templates containing every possible configuration
setting, but this approach may create an unnecessary amount of work and often
results in settings being displayed by the Configuration Manager that are never used.

Guidelines
Which settings to choose while creating templates depends heavily on the application
in question, but the following list may provide some guidelines which settings to use:

� Settings that deal with security.

� Settings that deal with lockdown.

� Settings that reference resources, such as hosts, ports, URLs, paths, and so on.

� Settings that are used to define corporate identity, such as fonts or colors

The concrete names of the categories and pages are completely up the template
developer. There are only two rules to obey:

� The names must be unique for every level in the tree so that a unique path can be
created, and

� The first category must uniquely identify the application and its version, for
example, “StarOffice 6.0” .

Choosing an apt:section element or an apt:page element should depend on the
following two requirements: You should try to avoid scrolling in the Content Area by
restricting the amount of configuration items per page to no more than six. If you are
mapping an already existing GUI to the Configuration Manager GUI, you should try
to map the application GUI to the Configuration Manager GUI as precisely as possible

33

to optimize usability by recognition. If these two requirements contradict, choose the
latter one. If you are considering a deviation in the Configuration Manager GUI from
an application GUI, it should be a small one.

Every text displayed on the GUI should present a consistent look. Apply the following
capitalization guidelines for text that appears in GUI design elements:

� Use sentence capitalization for the inline help and the online help. Capitalize only
the first word of each sentence, unless the text contains proper nouns,
abbreviations, or acronyms that are always capitalized.

� Observe proper punctuation within and at the end of full sentences.

� Avoid the use of long phrases that are not full sentences. If you must use a phrase
that is not a full sentence, no punctuation is required at the end.

� Use headline capitalization for labels, titles, checkbox text, menu and list items. To
apply headline capitalization, capitalize every word except articles ("a", "an", and
"the"), coordinating conjunctions (for example, "and", "or", "but", "so", "yet", and
"nor"), and prepositions with fewer than four letters (such as "in"). The first and last
words are always capitalized, regardless of what they are.

� A label should not be concluded with a semicolon.

� Be consistent within your application.

In general, the packages are self-contained. There are only two exceptions: You can
reuse resources of other packages (see “Localization” on page 17) and you can reuse
chooser definitions of other packages with the apt:extendsChooser attribute (see
“Basic Data Elements: property, value, constraints” on page 47). Use this kind of
references sparsely and deliberately. References to other packages introduce a
dependency to that package and you cannot guarantee that every installation of the
Configuration Manager contains the packages that you depend on.

As the Configuration Manager potentially scans every installed package for resource
recovery, every resource key should be unique - not only inside your package, but also
compared to the other packages. Either use the category hierarchy to prefix the local
resource key or create your own hierarchical prefix, for example, by using a structure
akin to the Java package structure or by using your product name.

The online help should be designed akin to the HTML files already provided in the
standard packages. Include the following lines to allow for proper browser detection
and CCS definitions:

<script type="text/javascript" src="/com_sun_web_ui/js/browserVersion.js">
</script>
<script type="text/javascript" src="/com_sun_web_ui/js/stylesheet.js">

/com_sun_web_ui/js/stylesheet.js"></script>

Use the styles "help-header-1", "help-header-2" and "help-header-3" for title layout.

34 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

CHAPTER 5

Configuration Concepts

The presentation of the different trees in this document differs from what is covered in
the administration guide. The administration guide does not mention the
configuration tree because knowledge of the two different configuration and
configuration policy trees is not necessary to use the Configuration Manager.

Strata
From the client point of view, the applications get configuration data from three
separate data sources or strata. These strata are the default stratum, the user stratum
and the policy stratum.

The user stratum and default stratum are the existing data sources that client
applications currently deal with. The default stratum is deployed with the application
and is mostly unchanged throughout its lifetime. It is stored locally alongside the
application. The user stratum stores the changes made by a given user to the
application settings. It is stored either locally or in a shared location.

The policy stratum is stored centrally in the configuration repository, which contains
configuration settings that are managed by the Configuration Manager. These settings
are associated on the server with entities such as organizations, roles, users, and hosts.
They are accessed on behalf of a given user or host and are read-only for the user or
host.

The Configuration Manager is able to read or write the configuration settings of the
policy stratum only. The content of the default or user stratum cannot be accessed by
the Configuration Manager. The client application configuration system is in charge of
the retrieval and the combination of the values gathered from all strata. See “Merging”
on page 37.

35

Trees
The Configuration Manager deals with four different hierarchical structures, also
known as trees. To understand how the Configuration Manager works, it is important
to distinguish these trees.

The first tree is the organization tree, the gray area inFigure 5–1, which represents the
relationships between organizational units. The first level of the tree represents the
organization itself. Subsequent levels can represent, for instance, departments and
sub-departments. The last level can represent the members of these departments.

The second tree is the domain tree, which represents relationships between elements of
the network such as domains or hosts. The first level of the tree represents the overall
network. Subsequent levels can represent, for instance, the various subnets, and the
last level the actual hosts in these subnets.

In the Configuration Manager, these two trees are currently obtained by interpreting
the contents of an LDAP server, which is the typical repository for corporate
structures. Each location within the tree in LDAP is called an entity. Entries in a LDAP
server are mapped to the entities recognized by the Configuration Manager, namely
"Organization", "Role", "User", "Domain" and "Host".

The third tree is the configuration tree, which are represented by the blue areas in Figure
5–1. The configuration tree hierarchically groups configuration settings in the back
end. At the highest level of the configuration tree are components. Components
comprise configuration settings that configure one software component. All elements
below a component are either nodes or properties. Nodes can contain nodes or
properties. Properties contain configuration settings. Each configuration setting can be
referred to by a path. For example,
org.openoffice.Office.Common/ExternalMailer/Program is referring to the
"Program" configuration setting, which is in the "External Mailer" node under the
"Common" component.

Each entity in the organization or domain tree can have its own configuration tree,
resulting in two "trees of trees", one being an organization tree containing
configuration trees and the other a domain tree containing configuration trees.

The fourth tree is the configuration policies tree, which is represented by the yellow area
of Figure 5–1. The configuration policies tree is used to visually organize the
configuration settings in order to conveniently browse and edit them. This is done by
defining a hierarchy that is completely independent from the hierarchy in the
configuration tree. The concrete values that are displayed in the configuration policy
tree are obtained by referencing the location of the configuration settings in the
configuration tree. See the arrows in Figure 5–1. This allows for the separation of the
different design requirements for GUI and back-end data. For example, the position of
a configuration setting changes more rapidly on the GUI than in the back end.

36 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

At the highest level of the configuration policy tree, there are applications with
subsequent levels corresponding to various modules and sub-modules of that
application, the last level being the actual configuration settings. A similar
presentation can be seen in configuration systems dealing with many settings, such as
the settings from StarOffice™ or Mozilla, where, for instance, the HomeUrl setting
would be found under Mozilla/Navigator/HomeUrl in the Preferences dialog.

Note – The presentation of the different trees in this document differs from the
presentation in the Java Desktop System Configuration Manager Release 1.1 Administration
Guide. The administration guide does not mention the configuration tree because a
knowledge of the two different configuration and configuration policy trees is not
necessary to use the Configuration Managerr.

FIGURE 5–1 “Tree of trees”

Merging
The configuration settings that are finally used for a given entity is determined by
merging the configuration settings of that entity and those of its parent entities on the
client side. For instance, the settings for a user take into account the policies assigned
to that user and those assigned to the organizations that the user belongs to. The

Chapter 5 • Configuration Concepts 37

merging works by inheritance, that is, the user inherits the settings specified in the
upper levels of the organization structure. This process is illustrated in Figure 5–2,
which shows how the settings of the "marketing" organization are inherited by one of
its members, user "jclarke". The configuration settings of user "jclarke" override some
of the inherited settings.

FIGURE 5–2 Merge

The three strata are merged to form the final set of configuration settings in the same
way that the configuration settings are merged in the policy stratum. The user stratum
takes precedence over the policy stratum, which in turn takes precedence over the
default stratum. It is possible to mark configuration settings in the policy stratum so
that configuration settings in the user stratum are no longer considered during the
merge process, so that users not allowed to override settings made by an
administrator with the Configuration Manager on their own client machines. This is
called protection.

38 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

User-based and Host-based
Configuration
The concepts for working with the organization tree and the domain tree are the same.
The main difference between the two is that the organization tree consists of users and
the domain tree consists of hosts. Having users and hosts in two separate trees enables
the Configuration Manager to provide user-based and host-based configuration.

On the client side, the user-based configuration settings are fetched from the
organization tree based on the user name. The host-based configuration settings are
fetched from the domain tree based on the IP or the host name of the host the user is
working on. The user settings are merged after the host settings, which means that the
user settings take precedence over the host settings. For example, by offering these
two types of configuration, roaming users can have one user-based configuration but
nevertheless can make use of the optimal proxy configuration, depending on the host
they are on.

Chapter 5 • Configuration Concepts 39

40 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

APPENDIX A

Configuration Path Mapping

One of the central design alignments of the Configuration Manager configuration
repository is to be as flexible as possible to be able to act as repository for
configuration data of as many other already existing configuration formats as possible.

The configuration format that is used in the repository partitions configuration data
into components. Components are collections of configuration settings. The settings that
belong to a component are typically used together and may be interrelated. Often they
are associated with a particular client application, software module or application
domain. Components are identified by their name and grouped into a hierarchy of
packages by using structured names, for example org.openoffice.Inet

Each component has a hierarchical structure. This structure is composed of nodes and
properties. A node is a structural element that serves as container for other nodes and
properties. A property is a leaf element of the hierarchy. It contains one or more
values. Nodes and properties are identified by their name, which must be unique
within their parent node. That allows it to reference any node or property by its
component and path, for example,
org.openoffice.Inet/Settings/ooInetProxyType

Other configuration systems have different configuration formats. The configuration
data of other configuration systems is stored in the configuration registry using the
APOC configuration format, but it has to be presented in the configuration format that
the applications expect. A one-to-one mapping of the APOC format to the format
expected by the applications is needed. The syntax mapping is silently done by the
according APOC adapters. The only task remaining for template developers is to use
the correct configuration path mappings when storing the configuration data in the
configuration policy tree. These mappings are necessary to separate the config
settings of the various client configuration systems in the central configuration
repository. There are concrete mappings defined and considered by the adapters for
the following configuration systems:

� StarOffice/OpenOffice Registry (OOR, used for StarOffice and OpenOffice.org)
� Gnome Configuration (GConf, used for Gnome applications)
� Java Preferences (used for Java programs)

41

� Mozilla Preferences (used for Mozilla)

StarOffice/OpenOffice Registry (OOR)
The OOR key naming scheme is the scheme used for the APOC configuration
repository, therefore, no adaptation work is necessary for this configuration system.

Gnome Configuration (GConf)
To transform a GConf configuration element into an APOC component and path, the
following mappings are performed:

� All GConf related components are prefixed with org.gnome.

� /apps/<subdir>/... is mapped to the component suffix apps.<encoded
subdir>.

� /desktop/<subdir>/... is mapped to the component suffix
desktop.<encoded subdir>.

� /system/<subdir>/... is mapped to the component suffix system.<encoded
subdir>.

� /extra/<subdir>/... is mapped to the component suffix extra.<encoded
subdir>.

� /extra/<keyname>/... is mapped to the component suffix extra.

� Keys not following the naming conventions are mapped to the component suffix
ooc.<encoded subdir> if they feature a subdir and ooc otherwise.

� /schemas/<keypath> is mapped to the component part schemas, and then the
above rules apply for the rest of the key.

� GConf key subdirs mapped to component parts are encoded to comply with
component parts restrictions.

EXAMPLE A–1 Gnome Configuration

� /apps/myapplication/sampleSub.Dir/sampleSetting becomes
org.gnome.apps.myapplication/sampleSub.Dir/sampleSetting,

� /desktop/sampleDir/sampleSub.Dir/sampleSetting becomes
org.gnome.desktop.sampleDir/sampleSub.Dir/sampleSetting,

� extra/sampleSetting becomes org.gnome.extra/sampleSetting,

� /sample.Dir/sampleSetting becomes
org.gnome.ooc.sample.Dir/sampleSetting,

42 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

EXAMPLE A–1 Gnome Configuration (Continued)

� /schemas/apps/gnome-setting/sampleSubDir/sampleSetting becomes
org.gnome.schemas.apps.gnome-setting/sampleSubDir/sampleSetting.

Java Preferences
To transform a Java Preferences node/key pair into an APOC component and path,
the first three node path elements (or all node path elements if less than three are
present) will be appended to java.prefs to form a component name and the
remainder of the node path elements and the key will form the path. Only user
preferences are considered.

EXAMPLE A–2 Java Preferences

� node /com/sun/star/configuration, key someKey becomes
java.prefs.com.sun.star/configuration/someKey,

� node /com/acme/widget, key someKey becomes
java.prefs.com.acme.widget/someKey,

� node /sample.Dir, key someKey becomes
java.prefs.sample.Dir/someKey.

Mozilla Preferences
To transform a Mozilla configuration element into an APOC component and path, the
first element (assuming the name contains more than one) is appended to
org.mozilla to form a component name, and the rest of the name is used as a node
path. Preferences with only one element are stored in org.mozilla.ooc under their
respective names.

EXAMPLE A–3 Mozilla Preferences

� mail.server.default.isSecure becomes
org.mozilla.mail/server/default/isSecure,

� sampleSetting becomes org.mozilla.ooc/sampleSetting.

Appendix A • Configuration Path Mapping 43

44 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

APPENDIX B

Element Dictionary

This appendix provides a reference description for every element and attribute
possible in a template.

Header Elements: apt:template,
resImport, helpImport
<!ELEMENT apt:template (resImport*, category)>
<!ATTLIST apt:template

xmlns:apt CDATA #FIXED "http://www.sun.com/jds/apoc/2004/template"
xmlns:oor CDATA #FIXED "http://openoffice.org/2001/registry"
xmlns:xs CDATA #FIXED "http://www.w3.org/2001/XMLSchema"
xmlns:xsi CDATA #FIXED "http://www.w3.org/2001/XMLSchema-instance"

>

<!ELEMENT resImport EMPTY><!ATTLIST resImport
apt:packagePath NMTOKEN #REQUIRED

>

The root element template has two sub-elements: resImport and category, which
are described in “Structure Elements: category, page, section” on page 46.

The resImport element is used to import resource files. All resource keys of the
imported resource bundle are announced to the template. You have to import the
resource to use its resource keys in, for example, the apt:label attributes. See
“Structure Elements: category, page, section” on page 46. The apt:packagePath
attribute specifies the location of the resource file using a path. The delimiter is a dot
("."). The file postfix (.properties) must not be specified, as well as the ISO
language code (ISO-639) and the ISO country code (ISO 3166). The root directory of
the path is the res directory located below the package directory. See also
“Localization” on page 17.

45

Structure Elements: category, page,
section
<!ELEMENT category (category | page)>
<!ATTLIST category

apt:name ID #REQUIRED
apt:scope (user | host | global) #IMPLIED
apt:label NMTOKEN #IMPLIED
apt:inlineHelp NMTOKEN #IMPLIED

>
<!ELEMENT page ((section | set)+, xmlHandler*)><!ATTLIST page

apt:name ID #REQUIRED
apt:scope (user | host | global) #IMPLIED
apt:label NMTOKEN #IMPLIED
apt:inlineHelp NMTOKEN #IMPLIED
apt:onlineHelp CDATA #IMPLIED

>
<!ELEMENT section (property+)>
<!ATTLIST section

apt:name ID #REQUIRED
apt:scope (user | host | global) #IMPLIED
apt:label NMTOKEN #IMPLIED

>

The category element is used to define the unique position of a page in the
configuration policy tree. Its first attribute is the apt:name attribute. The name
attribute is used to define a unique name for an element. It facilitates better orientation
in large templates and referencing elements.

The second attribute of the category element is apt:scope. The scope attribute
specifies to which tree the configuration setting can be applied. If the scope is "user",
the configuration setting is applied to the organization tree only. If the scope is "host",
the configuration setting is applied to the domain tree only. If the scope is "global", the
configuration setting is applied to both trees. The default setting is "global". The
elements inherit the scope from their parent elements, except if an element defines its
own scope. If an element has a "user" scope and a configuration policy tree attached to
a domain tree is displayed in the Content Area, that element is not displayed to the
user. The same holds true if an element has "host" scope and a configuration policy
tree attached to an organization tree is displayed.

The third attribute of the category element is apt:label. The label attribute
specifies the name of the element displayed to the user and supports localization. The
string specified by the label attribute is searched in the resource bundles first. If a
key matching the string is found, its value is displayed on the GUI. If the string has no
matching key in any of the resource bundles, the string itself is displayed on the GUI.
If no label attribute is specified, the string specified by the name attribute is rendered
in the GUI. If both attributes are not defined, no output is rendered.

46 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

The fourth attribute of the category element is apt:inlineHelp. The
inlineHelp attribute specifies the help text displayed on the GUI. The help is
displayed to the right of the category names in the "Comment" column. It supports
localization in the same manner as the label attribute described in the preceding
paragraph.

There is exactly one page element at the end of a category hierarchy. This element
represents one option page. It contains four attributes recognized by the category
element: name, scope, label, and inlineHelp. The value of the inlineHelp
attribute is displayed below the page title. The value of the label attribute is
displayed as the page title. The category and page names define the unique location
and name of a page in the configuration policy tree.

The apt:onlineHelp attribute is used to make the HTML file containing the online
help available to the Configuration Manager. The HTML page referred to by this
element is displayed as context-sensitive help if the user clicks the Help link in the
masthead of the Configuration Manager. The apt:filePath attribute specifies the
location of the help file using a path. The delimiter is a forward slash ("/"). The file
postfix (.html) must not be specified, as well as the ISO language code (ISO-639) and
the ISO country code (ISO 3166). The root directory of the path is the web directory
located below the package directory. See also “Localization” on page 17.

A page can contain an arbitrary number of sections or sets, followed by an optional list
of xmlHandlers. Thus the page element contains the sub-elements section, set (see
“Dynamic Data Elements: set” on page 53) and xmlHandler (see “Interaction
Elements: xmlHandler, event, action, choose, command” on page 54).

The section element creates a visual group of all its property sub-elements in a
table-like layout. It contains four attributes recognized from the category element:
name, scope, and label. The value of the label attribute is displayed as the section
title.

Basic Data Elements: property, value,
constraints
<!ELEMENT property (constraints?, value*, visual)>
<!ATTLIST property

apt:name ID #REQUIRED
apt:scope (user | host | global) #IMPLIED
apt:label NMTOKEN #IMPLIED
apt:inlineHelp NMTOKEN #IMPLIED
apt:dataPath CDATA #REQUIRED
oor:type (xs:boolean | xs:short | xs:int | xs:long | xs:double |

xs:string | xs:hexBinary |
oor:any | oor:boolean-list | oor:short-list | oor:int-list |

Appendix B • Element Dictionary 47

oor:long-list | oor:double-list | oor:string-list | oor:hexBinary-list)
#IMPLIED

apt:storeDefault (true | false) #IMPLIED
apt:xmlHandler IDREF #IMPLIED
apt:extendsProperty CDATA #IMPLIED

>
<!ELEMENT visual (checkBox | chooser)?>
<!ATTLIST visual
apt:type (textField | password | textArea | radioButtons | comboBox | stringList |

colorSelector | hidden) #IMPLIED
>

<!ELEMENT checkBox EMPTY>
<!ATTLIST checkBox
apt:labelPost NMTOKEN #IMPLIED
>

<!ELEMENT chooser EMPTY>
<!ATTLIST chooser
apt:labelPopup NMTOKEN #IMPLIED
apt:listDataPath CDATA #IMPLIED
apt:extendsChooser CDATA #IMPLIED
>
<!ELEMENT constraints (enumeration*, length?, minLength?, maxLength?, minInclusive?,

maxInclusive?, minExclusive?, maxExclusive?)>
<!ELEMENT enumeration EMPTY>
<!ATTLIST enumeration

oor:value CDATA #REQUIRED
apt:label NMTOKEN #IMPLIED

>
<!ELEMENT value (#PCDATA)>
<!ATTLIST value

xsi:nil (true | false) #IMPLIED
oor:separator CDATA #IMPLIED

>

The property element provides the visualization of configuration settings by way of
GUI elements, such as checkboxes, radio buttons, and edit fields. It contains four
attributes recognized by the category element: name, scope, label and
inlineHelp. The inline help is displayed below the input fields (or in non-editable
appearance below the value string) in the "value" column. The value of the label
attribute is displayed as the label of the GUI elements. The category, page, section and
property names define the unique location and name of a page in the configuration
policy tree.

The attribute apt:dataPath defines a path that points to the location in the data
back end that stores the value of the property. The value of the dataPath attribute is
an absolute component path, for example,
org.openoffice.Office.Common/ExternalMailer/Program. See
Appendix A. The dataPath attribute of a property element must point to a data
back-end property. Pointing to a data back-end node yields a runtime error.

The apt:type is used to specify the type of the repository configuration data. The
following types are defined:

48 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

xs:boolean Boolean value (true/false)

xs:short 16 - bit integer number

xs:int 32 - bit integer number

xs:long 64 - bit integer number

xs:double Floating point number (value range as for IEEE 64-bit double)

xs:string Plain Text (Sequence of printable Unicode characters)

xs:hexBinary Sequence of uninterpreted octets, hex encoded

oor:any Encompasses all of the types mentioned previously

oor:*-list List of any of the typed mentioned previously

These types resemble the types defined in the StarOffice/OpenOffice registry (OOR)
format. Wherever possible, the APOC templates use the syntax of the OOR format for
the sake of reusability. For more information on types, use the OpenOffice.org Registry
Format (OOR) documentation at
http://util.openoffice.org/common/configuration/oor-document-format.html

The attribute apt:storeDefault instructs the Configuration Manager to store the
default data in the data back end. The default data is defined by the value element
(see below) and used to display the default to the user. If the user doesn’t change the
value or explicitly requests storing the default data by executing the "Apply Default"
action in the Content Area, the default data is not stored in the repository. By setting
the value of the storeDefault attribute to true, the default data is stored even if the
user does not change the value or executes "Apply Default".

A property element has three sub-elements: constraints, value and visual.

The visual element defines the visual type of the property on the GUI. The following
visual types are recognized: checkBox, radioButtons, comboBox, stringList,
textField, password, textArea, chooser, colorSelector and hidden. Every
GUI element has two appearances: editable and non-editable. The non-editable
appearance is rendered if the administrator using the Configuration Manager has no
write privileges for that property. See the following table for the visual appearances of
the visual types:

Visual type Editable appearance Non-editable appearance

textField

Appendix B • Element Dictionary 49

http://util.openoffice.org/common/configuration/oor-document-format.html

password

textArea

checkBox

radioButtons

comboBox

chooser

stringList

colorSelector

The hidden property does not render a visual GUI element, but passes the value
associated with the property to the browser in a hidden field. This feature proves
useful, for example, if one value entered on the front-end has to be saved at more than
one location in the back end.

The visual type is defined by the apt:type attribute of the visual element. There
are two exceptions: checkBox and chooser. These two GUI elements need
additional information in order to be displayed correctly, so they have their own
sub-elements containing this information.

50 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

The checkbox property displays strings before and after the checkbox. It is represented
by the checkBox element. Two additional strings are needed for displaying the
checkBox GUI element in the non-editable appearance (see previous table). As a
result, a checkBox GUI element needs four strings, which are displayed as follows:

1. In front of the checkbox. This string is defined in the label attribute of the
property element.

2. After the checkbox. This string is defined in the apt:labelPost attribute of the
checkBox sub-element. If that attribute is not defined, ".post" is appended to the
string defined in the label attribute. This string is searched as key in the resource
files.

3. Instead of a checked checkbox, if the checkbox is rendered in the non-editable
appearance. The string is defined in the label attribute of the first enumeration
sub-element of the constraints element. If no constraints are given, the postfix
".checked" is appended to the string defined in the label attribute of the
property element. This string is searched as key in the resource files.

4. Instead of an unchecked checkbox, if the checkbox is rendered in the non-editable
appearance. The string is defined in the label attribute of the second
enumeration sub-element of the constraints element. If no constraints are
given, the postfix ".unchecked" is appended to the string defined in the label
attribute of the property element. This string is searched as key in the resource
files.

The chooser property enables a value from a list of entries to be set. It is represented
by the chooser element. In contrast to a combobox, the list of entries is editable. This
list is stored in the back end at the location specified by the apt:dataPath attribute
of the chooser element.

When the Edit button is clicked, a pop-up window opens, which provides a GUI for
editing the list. The title of the content of the pop-up window is defined by the
apt:labelPopup attribute of the chooser element. You can specify default values
for the list by using the enumeration sub-element of the constraints element (see
the paragraph dealing with the constraints below).

The apt:extendsChooser property of the chooser element is used to refer to
another chooser element. This eases the reuse of previously defined chooser
elements. All elements and attributes defined in that referred chooser are interpreted
as if they were defined in the referring chooser. Sub-elements and attributes that are
defined in the referring chooser overwrite elements and attributes of the chooser
referred to. A property path is used to locate the referred chooser. A property path is a
concatenation of the apt:name values of every element on the path from the root
category to a property, delimited by forwards slashes ("/"). For example:
/StarOffice/Internet/Proxy/Settings/MyChooser.

If the visual type is not specified, the GUI element used is derived from the type
attribute. If the type is xs:boolean, a checkbox is used. If the type is a list type (e.g.,
oor:short-list), xs:hexBinary or oor:any, a text area is rendered. For all other
types, an edit field is used. If neither the visual type nor the data type are specified, an
edit field is rendered and the back-end data type is assumed to be xs:string.

Appendix B • Element Dictionary 51

The constraints element provides restrictions for the input fields. For example, if
you want to allow a user to save only integer values between 1 and 5, providing an
oor:type attribute with the value "xs:int" is not sufficient. You can specify the
required restriction by specifying a minInclusive constraint of 1 and a maxInclusive
constraint of 5.

There is a second application for the enumeration constraint if used with a checkbox
property. The first enumeration constraints sub-element defines the value stored
in the back end if the checkbox is checked, the second enumeration constraints
sub-element defined the value stored in the back end if the checkbox is unchecked. If
no constraint is given, the default values stored are true and false. The default strings
displayed on the GUI in the non-editable appearance are "Enabled" and "Disabled".

The enumeration constraint has the same semantics for radiobutton and combobox
properties as for checkbox properties, except that it is mandatory. The content of
these elements is completely up to the developer. The name displayed on the GUI is
defined by the label attribute of the constraint element. It is possible to omit the
label attribute in the enumeration constraint. In that case the additional resources are
specified by postfixes appended to the string defined in the label attribute of the
property element.

For example, assume a drop-down box, whose property label is "securityList" and
whose enumeration constraints contain the values "1", "2" and "3" but the enumeration
constraint labels are not defined. The strings displayed to the user are determined by
searching the resources keys "securityList.1", "securityList.2" and "securityList.3"
respectively.

The list entries of chooser properties are not localized. As a consequence the
apt:label attribute of the enumeration constraint has no effect on these properties.

For a complete discussion of the other constraints, see the Property Constraints section
of the OpenOffice.org Registry Format (OOR) documentation.

The value element contains the default value for the property. This default value may
be the same value contained in the default stratum, or it may be introduced at this
point. It defines the value that is displayed by the Configuration Manager if no data
can be found in the data back end.

The definition of the value element is similar to the definitions given in the OOR
format. The value element has no sub-elements, but rather three attributes: nil,
separator and lang. If the xsi:nil attribute is set to true, the value of the
property is defined as "has no value". The oor:separator attribute is used to specify
the string that is used as separator for list tokens, if the value element contains list
type values.

Tip – The list entries of stringList properties are stored as value of type
oor:string-list. The default separator is a semicolon (";").

52 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

http://util.openoffice.org/common/configuration/oor-document-format.html#constraints

For the apt:xmlHandler attribute, refer to “Interaction Elements: xmlHandler, event,
action, choose, command” on page 54.

Dynamic Data Elements: set
<!ELEMENT set (page)>
<!ATTLIST set

apt:name ID #REQUIRED
apt:scope (user | host | global) #IMPLIED
apt:label NMTOKEN #IMPLIED
apt:labelPopup NMTOKEN #IMPLIED
apt:dataPath CDATA #REQUIRED
apt:elementNamePath CDATA #IMPLIED

>

Up to now, all elements handled static back-end content. The set element is used to
handle dynamic content. It is, like the section element, a sub-element of a page and
displays sets of properties in a table.

It contains three attributes recognized by the category element: name, scope and
label. The value of the label attribute is displayed as the table title.

The apt:dataPath attribute defines a path that points to the data back-end node that
contains the set of elements. The value of the dataPath attribute is an absolute path
in the form of org.openoffice.Office.Commands/Execute/Disabled (see
AppendixAppendix A) . The dataPath attribute of a set element must point to a
back-end node. Pointing to a back-end property yields an error.

The dataPath attributes of descendants of the set must contain a dynamic part. This
dynamic part specifies the location of the back-end nodes that are set members. The
name of any back-end set member must be different to allow access to that member. To
achieve this, variables are used.

Variables are prefixed with a dollar symbol: $variable_name. Valid variable names are
queriedId and silentId. If the $queriedId variable is specified, the
Configuration Manager displays an additional edit field that queries the user for a
unique id. If the $silentId variable is specified, no ID is queried form the user; the
Configuration Manager generates the unique IDby itself.

For example: The dataPath attribute of a property element has the value
org.openoffice.Office.Commands/Execute/Disabled/$queriedId/Command.
If the user creates a new set element, the user is additionally asked for the name of the
set member. The concrete question string displayed on the GUI is specified by the
apt:labelPopup attribute. If this attribute is omitted, the prompt Please enter a
name for the new entry. is displayed.

Appendix B • Element Dictionary 53

It is possible to specify a relative path as the value of the dataPath attribute of sets or
properties to minimize the length of the path strings. An example of a relative path is
./$queriedId/Command. The absolute path is constructed by ascending the
template element tree and prefixing the relative path with the dataPaths of its
ancestors, until an absolute path is constructed. Assuming the parent of a property is a
set. This set specifies the dataPath value
org.openoffice.Office.Commands/Execute/Disabled. The Configuration
Manager combines this path with the relative path ./$queriedId/Command,
resulting in the absolute path
org.openoffice.Office.Commands/Execute/Disabled/$queriedId/Command.

It is not necessary to specify a dataPath attribute for the set, if all descendants of the
set that support the dataPath attribute (set and property elements), specify an
absolute path as the value of their dataPath attribute.

Recursive set structures (sets of sets) can also be handled. This is accomplished by
having a set element containing a page element, which contains a set element again.
The dataPath attribute of the sub set can specify a path relative to the super set.

If a set member is a back-end property, the value of the oor:name attribute of the
back-end property is displayed as the label in the GUI. The value of the back-end
property is displayed as the value of the GUI element.

If a set member is a back-end node, the value of the oor:name attribute of the
back-end node is displayed as the name of the link. You can use the
apt:elementNamePath attribute to override this naming scheme. The
elementNamePath specifies a path relative to the back-end node. The path must
point to a back-end property and its value is displayed as the name of the link. If the
user clicks on such a link, the Content Area is refreshed, displaying the page specified
by the page sub-ement of the set.

Interaction Elements: xmlHandler, event,
action, choose, command
<!ELEMENT xmlHandler (event+, action+)>
<!ATTLIST xmlHandler apt:name ID #REQUIRED>

<!ELEMENT event EMPTY>
<!ATTLIST event apt:type (onChange) #IMPLIED>

<!ELEMENT action (choose|command)+>

<!ELEMENT choose (when+, otherwise?)>

<!ELEMENT when (command+)>

54 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

<!ATTLIST when apt:test CDATA #REQUIRED>

<!ELEMENT otherwise (command+)>

<!ELEMENT command (#PCDATA)>

The xmlHandler element is used to execute JavaScript code on the client side. The
code execution is triggered depending on changes in the environment. These changes
are propagated by events. Events are thrown by properties if their state changes. The
type of an event indicates the type of the change.

An XML handler is defined by specifying the xmlHandler sub-element of the
apt:template element. It requires a name defined by the apt:name attribute. An
XML handler is registered to listen for events thrown by a property by specifying the
apt:xmlHandler attribute of the property element using the name of the XML
handler as its value.

The event element is used to specify the events the xmlHandler listens to by using
its apt:type attribute. For now, only the onChange element is defined. This event is
thrown by a property if its value is changed by the user. The value of a property
changes atthe very moment the user changes its input, for example, by typing a key in
an edit field, by deselecting a checkbox, or by choosing an entry in a list box. Moving
the focus to, or removing the focus from, a GUI element does not trigger this event.

If a handler has registered for an event at one or more properties, and that event
occurs for one of these properties, the code defined in the action element is executed.
The action element contains at least one choose or command element.

A command element specifies the instructions to be executed on the client side. It can
(up to now) contain assignments only. There are no calculations allowed, either on the
left-hand side or the right-hand side of the assignment. Assignments obey the scheme:
<variable>=<value>.

Variables follow a dotted notation: <property>.<qualifier>. The <property>
must be the name of a property. The <qualifier> can have two values: “value” and
“enabled”. The value qualifier denotes the value of that property. The value of a
variable can be read and set to any value, as long that value is compatible with the
type specified for the property. The "enabled" qualifier contains "true" if the property is
enabled (can receive the focus) and "false" otherwise. It can be read and set to "true" or
"false". Example: propname.enabled=false.

The choose element is similar to the choose element defined in XSLT, and allows the
conditional execution of commands. It must contain at least one when element and
may contain one otherwise element at the end.

The when element has one or more command sub-elements and one apt:test
attribute. The test attribute must specify an expression evaluating to a Boolean
value.

An expression may consist of variables, numbers, strings, and the following tokens:

Appendix B • Element Dictionary 55

= equal

!= not equal

< less than

> greater than

<= less than or equal to

>= greater than or equal to

() parentheses

not() Boolean NOT

and Boolean AND

or Boolean OR

true Boolean positive

false Boolean negative

Example: (propname.enabled!=false) and not(propname.value=’foo’).

If the expression evaluates to "true", the commands of the when element are executed
and the choose statement is performed if it evaluates to "false" the next when element
is evaluated. If none of the when elements is true and there is an otherwise element
specified, the otherwise element commands are executed.

56 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

APPENDIX C

The Template DTD

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT apt:template (resImport*, category)>
<!ATTLIST apt:template

xmlns:apt CDATA #FIXED "http://www.sun.com/jds/apoc/2004/template"
xmlns:oor CDATA #FIXED "http://openoffice.org/2001/registry"
xmlns:xs CDATA #FIXED "http://www.w3.org/2001/XMLSchema"
xmlns:xsi CDATA #FIXED "http://www.w3.org/2001/XMLSchema-instance"

>
<!ELEMENT resImport EMPTY>
<!ATTLIST resImport

apt:packagePath NMTOKEN #REQUIRED
>

<!ELEMENT category (category | page)>
<!ATTLIST category

apt:name ID #REQUIRED
apt:scope (user | host | global) #IMPLIED
apt:label NMTOKEN #IMPLIED
apt:inlineHelp NMTOKEN #IMPLIED

>

<!ELEMENT page ((section | set)+, xmlHandler*)>
<!ATTLIST page

apt:name ID #REQUIRED
apt:scope (user | host | global) #IMPLIED
apt:label NMTOKEN #IMPLIED
apt:inlineHelp NMTOKEN #IMPLIED
apt:onlineHelp CDATA #IMPLIED

>

<!ELEMENT section (property+)>
<!ATTLIST section

apt:name ID #REQUIRED
apt:scope (user | host | global) #IMPLIED
apt:label NMTOKEN #IMPLIED

>

57

<!ELEMENT set (page)>
<!ATTLIST set

apt:name ID #REQUIRED
apt:scope (user | host | global) #IMPLIED
apt:label NMTOKEN #IMPLIED
apt:labelPopup NMTOKEN #IMPLIED
apt:dataPath CDATA #REQUIRED
apt:elementNamePath CDATA #IMPLIED

>

<!ELEMENT property (constraints?, value*, visual)>
<!ATTLIST property

apt:name ID #REQUIRED
apt:scope (user | host | global) #IMPLIED
apt:label NMTOKEN #IMPLIED
apt:inlineHelp NMTOKEN #IMPLIED
apt:dataPath CDATA #REQUIRED
oor:type (xs:boolean | xs:short | xs:int | xs:long | xs:double |

xs:string | xs:hexBinary | oor:any | oor:boolean-list |
oor:short-list | oor:int-list | oor:long-list | oor:double-list |
oor:string-list | oor:hexBinary-list) #IMPLIED

apt:storeDefault (true | false) #IMPLIED
apt:xmlHandler IDREF #IMPLIED
apt:extendsProperty CDATA #IMPLIED

>

<!ELEMENT visual (checkBox | chooser)?>
<!ATTLIST visual

apt:type (textField | password | textArea | radioButtons | comboBox |
stringList | colorSelector | hidden) #IMPLIED

>

<!ELEMENT checkBox EMPTY>
<!ATTLIST checkBox

apt:labelPost NMTOKEN #IMPLIED
>

<!ELEMENT chooser EMPTY>
<!ATTLIST chooser

apt:labelPopup NMTOKEN #IMPLIED
apt:listDataPath CDATA #IMPLIED

>

<!ELEMENT value (#PCDATA)>
<!ATTLIST value

xsi:nil (true | false) #IMPLIED
oor:separator CDATA #IMPLIED

>

<!ELEMENT constraints (enumeration*, length?, minLength?, maxLength?, minInclusive?,
maxInclusive?, minExclusive?, maxExclusive?)>

<!ELEMENT enumeration EMPTY>
<!ATTLIST enumeration

oor:value CDATA #REQUIRED

58 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

apt:label NMTOKEN #IMPLIED
>

<!ELEMENT length EMPTY>
<!ATTLIST length oor:value CDATA #REQUIRED
>
<!ELEMENT minLength EMPTY>
<!ATTLIST minLength oor:value CDATA #REQUIRED
>
<!ELEMENT maxLength EMPTY>
<!ATTLIST maxLength oor:value CDATA #REQUIRED
>
<!ELEMENT minInclusive EMPTY>
<!ATTLIST minInclusive oor:value CDATA #REQUIRED
>
<!ELEMENT maxInclusive EMPTY>
<!ATTLIST maxInclusive oor:value CDATA #REQUIRED
>
<!ELEMENT minExclusive EMPTY>
<!ATTLIST minExclusive oor:value CDATA #REQUIRED
>
<!ELEMENT maxExclusive EMPTY>
<!ATTLIST maxExclusive oor:value CDATA #REQUIRED
>
<!ELEMENT xmlHandler (event+, action+)>
<!ATTLIST xmlHandler apt:name ID #REQUIRED>

<!ELEMENT event EMPTY>
<!ATTLIST event apt:type (onChange) #IMPLIED>

<!ELEMENT action (choose|command)+>

<!ELEMENT choose (when+, otherwise?)>

<!ELEMENT when (command+)>
<!ATTLIST when apt:test CDATA #REQUIRED>

<!ELEMENT otherwise (command+)>

<!ELEMENT command (#PCDATA)>

Appendix C • The Template DTD 59

60 Java Desktop System Configuration Manager Release 1.1 Developer Guide • November, 2004

	Java Desktop System Configuration Manager Release 1.1 Developer Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	Accessing Sun Documentation Online
	Typographic Conventions

	Configuration Manager Overview
	Overview
	Configuration Propagation
	Configuration Management

	Templates
	The “Hello world!” Template
	Creating the “Hello world!” template
	Explaining the “Hello world!” Template

	Localization
	The Policy Package Format

	Advanced Templates
	Sets
	Action Handlers
	Help

	Design Recommendations
	Guidelines

	Configuration Concepts
	Strata
	Trees
	Merging
	User-based and Host-based Configuration

	Configuration Path Mapping
	StarOffice/OpenOffice Registry (OOR)
	Gnome Configuration (GConf)
	Java Preferences
	Mozilla Preferences

	Element Dictionary
	Header Elements: apt:template, resImport, helpImport
	Structure Elements: category, page, section
	Basic Data Elements: property, value, constraints
	Dynamic Data Elements: set
	Interaction Elements: xmlHandler, event, action, choose, command

	The Template DTD

