
Oracle® Database
Advanced Application Developer's Guide

11g Release 1 (11.1)

B28424-01

July 2007

Oracle Database Advanced Application Developer's Guide, 11g Release 1 (11.1)

B28424-01

Copyright © 1996, 2007, Oracle. All rights reserved.

Primary Author: Sheila Moore

Contributing Authors: D. Adams, L. Ashdown, M. Cowan, J. Melnick, R. Moran, E. Paapanen, J. Russell, R.
Strohm, R. Ward

Contributors: D. Alpern, G. Arora, C. Barclay, D. Bronnikov, T. Chang, L. Chen, M. Davidson, R. Day, R.
Decker, G. Doherty, D. Elson, A. Ganesh, M. Hartstein, Y. Hu, J. Huang, C. Iyer, N. Jain, R. Jenkins Jr., S.
Kotsovolos, S. Kumar, C. Lei, B. Llewellyn, D. Lorentz, V. Moore, K. Muthukkaruppan, V. Moore, J. Muller,
R. Murthy, R. Pang, B. Sinha, S. Vemuri, W. Wang, D. Wong, A. Yalamanchi, Q. Yu

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xix

Audience... xix
Documentation Accessibility ... xix
Related Documents ... xx
Conventions ... xx

What's New in Application Development? .. xxiii

Oracle Database 11g Release 1 (11.1) New Features... xxiii

1 Introduction to Oracle Programmatic Environments

Overview of Oracle Application Development ... 1-1
Client/Server Model.. 1-1
Server-Side Coding .. 1-2
Two-Tier and Three-Tier Models... 1-2
User Interface.. 1-2
Stateful and Stateless User Interfaces.. 1-2

Overview of PL/SQL.. 1-2
What Is PL/SQL? ... 1-3
Advantages of PL/SQL... 1-4

Integration with Oracle Database... 1-4
High Performance... 1-4
High Productivity ... 1-5
Scalability ... 1-5
Manageability .. 1-5
Object-Oriented Programming Support .. 1-5
Portability... 1-6
Security ... 1-6
Packages ... 1-6

PL/SQL Web Development Tools... 1-6
Overview of Java Support Built into the Database ... 1-6

Overview of Oracle JVM ... 1-7
Overview of Oracle Extensions to JDBC... 1-7

JDBC Thin Driver.. 1-8
JDBC OCI Driver... 1-8
JDBC Server-Side Internal Driver... 1-9

iv

Oracle Database Extensions to JDBC Standards .. 1-9
Sample JDBC 2.0 Program ... 1-9
Sample Pre-2.0 JDBC Program... 1-10
JDBC in SQLJ Applications... 1-11

Overview of Oracle SQLJ ... 1-11
Benefits of SQLJ.. 1-12
Comparing SQLJ to JDBC ... 1-12
SQLJ Stored Subprograms in the Server... 1-13

Overview of Oracle JPublisher.. 1-13
Overview of Java Stored Subprograms.. 1-14
Overview of Oracle Database Web Services ... 1-14
Overview of Writing Subprograms in Java... 1-15

Overview of Writing Database Triggers in Java ... 1-15
Why Use Java for Stored Subprograms and Triggers?... 1-15

Overview of Pro*C/C++ ... 1-16
Implementing a Pro*C/C++ Application.. 1-16
Highlights of Pro*C/C++ Features... 1-17

Overview of Pro*COBOL .. 1-18
Implementing a Pro*COBOL Application... 1-18
Highlights of Pro*COBOL Features ... 1-19

Overview of OCI and OCCI.. 1-20
Advantages of OCI and OCCI... 1-20
OCI and OCCI Functions ... 1-21
Procedural and Nonprocedural Elements of OCI and OCCI Applications 1-21
Building an OCI or OCCI Application... 1-22

Overview of Oracle Data Provider for .NET (ODP.NET) .. 1-23
Overview of Oracle Objects for OLE (OO4O) ... 1-24

OO4O Automation Server ... 1-25
OO4O Object Model ... 1-25

OraSession... 1-27
OraServer .. 1-27
OraDatabase.. 1-27
OraDynaset ... 1-28
OraField... 1-28
OraMetaData and OraMDAttribute.. 1-28
OraParameter and OraParameters .. 1-28
OraParamArray.. 1-28
OraSQLStmt.. 1-29
OraAQ ... 1-29
OraAQMsg.. 1-29
OraAQAgent... 1-29

Support for Oracle LOB and Object Datatypes... 1-29
OraBLOB and OraCLOB... 1-30
OraBFILE... 1-30

Oracle Data Control .. 1-31
Oracle Objects for OLE C++ Class Library.. 1-31
Additional Sources of Information... 1-31

v

Choosing a Programming Environment ... 1-31
Choosing a Precompiler or OCI .. 1-32
Choosing PL/SQL or Java ... 1-32

Part I SQL for Application Developers

2 SQL Processing for Application Developers

Grouping Operations into Transactions .. 2-1
Deciding How to Group Operations in Transactions... 2-1
Improving Transaction Performance .. 2-2
Committing Transactions.. 2-2
Managing Commit Redo Action .. 2-3
Rolling Back Transactions... 2-5
Defining Transaction Savepoints ... 2-5

Ensuring Repeatable Reads with Read-Only Transactions ... 2-6
Using Cursors.. 2-7

How Many Cursors Can a Session Have? .. 2-7
Using a Cursor to Re-Execute a Statement ... 2-7
Closing a Cursor... 2-8
Canceling a Cursor... 2-8

Locking Tables Explicitly.. 2-8
Privileges Required.. 2-9
Choosing a Locking Strategy... 2-10

When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE 2-10
When to Lock with SHARE MODE... 2-11
When to Lock with SHARE ROW EXCLUSIVE MODE .. 2-12
When to Lock with EXCLUSIVE MODE.. 2-12

Letting Oracle Database Control Table Locking... 2-13
Explicitly Acquiring Row Locks ... 2-13

Using Oracle Lock Management Services .. 2-14
When to Use User Locks .. 2-14
Example of a User Lock.. 2-15
Viewing and Monitoring Locks .. 2-15

Using Serializable Transactions for Concurrency Control.. 2-16
How Serializable Transactions Interact ... 2-17
Setting the Isolation Level of a Serializable Transaction ... 2-19
Referential Integrity and Serializable Transactions .. 2-19
READ COMMITTED and SERIALIZABLE Isolation .. 2-21

Transaction Set Consistency... 2-21
Comparison of READ COMMITTED and SERIALIZABLE Transactions....................... 2-22
Choosing an Isolation Level for Transactions.. 2-22

Application Tips for Transactions .. 2-23
Autonomous Transactions ... 2-23

Examples of Autonomous Transactions .. 2-26
Ordering a Product .. 2-26
Withdrawing Money from a Bank Account... 2-27

vi

Defining Autonomous Transactions .. 2-29
Restrictions on Autonomous Transactions.. 2-30

Resuming Execution After Storage Allocation Error ... 2-30
What Operations Can Be Resumed After an Error Condition?.. 2-31
Handling Suspended Storage Allocation .. 2-31

3 Using SQL Datatypes in Database Applications

Overview of SQL Datatypes .. 3-1
Representing Character Data ... 3-2

Overview of Character Datatypes ... 3-2
Specifying Column Lengths as Bytes or Characters ... 3-3
Choosing Between CHAR and VARCHAR2 Datatypes .. 3-3
Using Character Literals in SQL Statements .. 3-4

Representing Numeric Data... 3-5
Overview of Numeric Datatypes ... 3-5
Floating-Point Number Formats.. 3-6

Using a Floating-Point Binary Format ... 3-7
Representing Special Values with Native Floating-Point Formats 3-8

Comparison Operators for Native Floating-Point Datatypes... 3-10
Arithmetic Operations with Native Floating-Point Datatypes .. 3-10
Conversion Functions for Native Floating-Point Datatypes .. 3-11
Client Interfaces for Native Floating-Point Datatypes .. 3-11

OCI Native Floating-Point Datatypes SQLT_BFLOAT and SQLT_BDOUBLE.............. 3-12
Native Floating-Point Datatypes Supported in Oracle OBJECT Types 3-12
Pro*C/C++ Support for Native Floating-Point Datatypes .. 3-12

Representing Date and Time Data ... 3-12
Overview of Date and Time Datatypes ... 3-12
Displaying Current Date and Time .. 3-13
Changing the Default Date Format .. 3-14
Changing the Default Time Format.. 3-14
Arithmetic Operations with Date and Time Datatypes... 3-14
Converting Between Date and Time Types... 3-15
Importing and Exporting Date and Time Types .. 3-15

Representing Specialized Data... 3-16
Representing Geographic Data ... 3-16
Representing Multimedia Data ... 3-16
Representing Large Amounts of Data.. 3-16
Representing Searchable Text.. 3-18
Representing XML .. 3-18
Representing Dynamically Typed Data... 3-19
Representing Data with ANSI/ISO, DB2, and SQL/DS Datatypes .. 3-21

Representing Conditional Expressions as Data .. 3-22
Identifying Rows by Address ... 3-23

Querying the ROWID Pseudocolumn ... 3-24
Accessing the ROWID Datatype... 3-24

Restricted ROWID ... 3-24
Extended ROWID .. 3-24

vii

External Binary ROWID.. 3-25
Accessing the UROWID Datatype.. 3-25

How Oracle Database Converts Datatypes .. 3-25
Datatype Conversion During Assignments .. 3-26
Datatype Conversion During Expression Evaluation ... 3-27

Metadata for SQL Built-In Functions.. 3-27

4 Using Regular Expressions in Database Applications

Overview of Regular Expressions ... 4-1
What Are Regular Expressions?... 4-1
How Are Regular Expressions Useful?... 4-2
Oracle Database Implementation of Regular Expressions... 4-2
Oracle Database Support for the POSIX Regular Expression Standard..................................... 4-4

Metacharacters in Regular Expressions ... 4-4
POSIX Metacharacters in Oracle Database Regular Expressions.. 4-4
Multilingual Extensions to POSIX Regular Expression Standard .. 4-7
Perl-Influenced Extensions to POSIX Regular Expression Standard ... 4-8

Using Regular Expressions in SQL Statements: Scenarios ... 4-10
Using a Constraint to Enforce a Phone Number Format .. 4-10
Using Back References to Reposition Characters ... 4-11

5 Using Indexes in Database Applications

Privileges Needed to Create Indexes .. 5-1
Guidelines for Application-Specific Indexes ... 5-1

Which Come First, Data or Indexes? ... 5-2
Create a New Temporary Table Space Before Creating Indexes .. 5-2
Index the Correct Tables and Columns .. 5-3
Limit the Number of Indexes for Each Table ... 5-4
Choose Column Order in Composite Indexes ... 5-4
Gather Index Statistics ... 5-5
Drop Unused Indexes.. 5-5

Examples of Creating Basic Indexes ... 5-5
When to Use Domain Indexes ... 5-6
When to Use Function-Based Indexes .. 5-6

Advantages of Function-Based Indexes.. 5-7
Restrictions on Function-Based Indexes ... 5-8
Examples of Function-Based Indexes.. 5-9

Function-Based Index for Case-Insensitive Searches... 5-9
Precomputing Arithmetic Expressions with a Function-Based Index 5-10
Function-Based Index for Language-Dependent Sorting .. 5-10

6 Maintaining Data Integrity in Database Applications

Overview of Constraints ... 6-1
Enforcing Business Rules with Constraints.. 6-2
Enforcing Business Rules with Application Logic .. 6-2
Creating Indexes for Use with Constraints .. 6-2

viii

When to Use NOT NULL Constraints .. 6-2
When to Use Default Column Values ... 6-3
Setting Default Column Values.. 6-4
Choosing a Primary Key for a Table ... 6-4
When to Use UNIQUE Constraints ... 6-5
When to Use Constraints On Views .. 6-6

Enforcing Referential Integrity with Constraints .. 6-6
FOREIGN KEY Constraints and NULL Values... 6-8
Defining Relationships Between Parent and Child Tables .. 6-8
Rules for Multiple FOREIGN KEY Constraints .. 6-9
Deferring Constraint Checks .. 6-9

Minimizing Space and Time Overhead for Indexes Associated with Constraints 6-11
Guidelines for Indexing Foreign Keys.. 6-11
Referential Integrity in a Distributed Database ... 6-12
When to Use CHECK Constraints.. 6-12

Restrictions on CHECK Constraints .. 6-12
Designing CHECK Constraints... 6-13
Rules for Multiple CHECK Constraints... 6-13
Choosing Between CHECK and NOT NULL Constraints.. 6-13

Examples of Defining Constraints... 6-14
Example: Defining Constraints with the CREATE TABLE Statement 6-14
Example: Defining Constraints with the ALTER TABLE Statement....................................... 6-14
Privileges Needed to Define Constraints... 6-15
Naming Constraints ... 6-15

Enabling and Disabling Constraints ... 6-15
Why Disable Constraints?.. 6-16
Creating Enabling Constraints (Default) ... 6-16
Creating Disabled Constraints .. 6-16
Enabling Existing Constraints ... 6-17
Disabling Existing Constraints.. 6-17
Guidelines for Enabling and Disabling Key Constraints .. 6-17
Fixing Constraint Exceptions... 6-17

Altering Constraints ... 6-18
Renaming Constraints .. 6-18

Dropping Constraints... 6-19
Managing FOREIGN KEY Constraints .. 6-20

Datatypes and Names for Foreign Key Columns... 6-20
Limit on Columns in Composite Foreign Keys .. 6-20
Foreign Key References Primary Key by Default... 6-20
Privileges Required to Create FOREIGN KEY Constraints .. 6-20
Choosing How Foreign Keys Enforce Referential Integrity ... 6-21

Viewing Definitions of Constraints ... 6-21
Examples of Defining and Viewing Constraints .. 6-21

Example 1: Listing All of Your Accessible Constraints ... 6-22
Example 2: Distinguishing NOT NULL Constraints from CHECK Constraints................... 6-23
Example 3: Listing Column Names that Constitute an Integrity Constraint 6-23

ix

Part II PL/SQL for Application Developers

7 Coding PL/SQL Subprograms and Packages

Overview of PL/SQL Program Units .. 7-1
Anonymous Blocks .. 7-2
Stored PL/SQL Program Units .. 7-4

Naming Subprograms.. 7-4
Subprogram Parameters .. 7-4
Creating Subprograms ... 7-8
Altering Subprograms.. 7-9
Dropping Subprograms and Packages .. 7-9
External Subprograms... 7-10
Cross-Session PL/SQL Function Result Cache ... 7-10
PL/SQL Packages .. 7-10
PL/SQL Object Size Limits... 7-12
Creating Packages.. 7-12
Naming Packages and Package Objects ... 7-13
Package Invalidations and Session State .. 7-13
Packages Supplied with Oracle Database .. 7-13
Overview of Bulk Binding .. 7-14
When to Use Bulk Binds ... 7-14
Triggers.. 7-16

Compiling PL/SQL Subprograms for Native Execution.. 7-16
Cursor Variables .. 7-17

Declaring and Opening Cursor Variables ... 7-17
Examples of Cursor Variables .. 7-17

Handling PL/SQL Compile-Time Errors .. 7-19
Handling Run-Time PL/SQL Errors .. 7-20

Declaring Exceptions and Exception Handling Routines ... 7-21
Unhandled Exceptions ... 7-23
Handling Errors in Distributed Queries .. 7-23
Handling Errors in Remote Subprograms... 7-23

Debugging Stored Subprograms.. 7-24
PL/Scope .. 7-25
PL/SQL Hierarchical Profiler.. 7-25
Oracle JDeveloper ... 7-25
DBMS_OUTPUT Package .. 7-25
Privileges for Debugging PL/SQL and Java Stored Subprograms ... 7-25
Writing Low-Level Debugging Code... 7-26
DBMS_DEBUG_JDWP Package.. 7-26
DBMS_DEBUG Package... 7-26

Invoking Stored Subprograms ... 7-27
Privileges Required to Execute a Subprogram ... 7-28
Invoking a Subprogram from a Trigger or Another Subprogram... 7-28
Invoking a Subprogram Interactively from Oracle Database Tools .. 7-29
Invoking a Subprogram from a 3GL Application .. 7-29

x

Invoking Remote Subprograms ... 7-30
Remote Subprogram Invocations and Parameter Values ... 7-30
Referencing Remote Objects .. 7-30
Synonyms for Subprograms and Packages ... 7-32

Invoking Stored PL/SQL Functions from SQL Statements .. 7-32
Why Invoke Stored PL/SQL Subprograms from SQL Statements? .. 7-33
Where PL/SQL Functions Can Appear in SQL Statements ... 7-33
When PL/SQL Functions Can Appear in SQL Expressions... 7-33
Controlling Side Effects.. 7-35

Restrictions.. 7-35
Declaring a Function.. 7-36
Parallel Query and Parallel DML .. 7-37
PRAGMA RESTRICT_REFERENCES for Backward Compatibility 7-38

Serially Reusable PL/SQL Packages .. 7-41
Package States... 7-41
Why Serially Reusable Packages?.. 7-42
Syntax of Serially Reusable Packages ... 7-42
Semantics of Serially Reusable Packages.. 7-42
Examples of Serially Reusable Packages .. 7-43

Returning Large Amounts of Data from a Function... 7-46
Coding Your Own Aggregate Functions ... 7-47

8 Using PL/Scope

Specifying Identifier Collection.. 8-1
How Much Space is PL/Scope Data Using? .. 8-2
Viewing PL/Scope Data... 8-2

Static Data Dictionary Views.. 8-2
Unique Keys... 8-2
Context.. 8-3
Signature .. 8-4

Demo Tool ... 8-5
SQL Developer.. 8-5

Identifier Types that PL/Scope Collects ... 8-5
Usages that PL/Scope Reports.. 8-6
Sample PL/Scope Session ... 8-7

9 Using the PL/SQL Hierarchical Profiler

Overview of PL/SQL Hierarchical Profiler ... 9-1
Collecting Profile Data .. 9-2
Understanding Raw Profiler Output.. 9-3

Namespaces of Tracked Subprograms.. 9-6
Special Function Names .. 9-6

Analyzing Profile Data.. 9-7
Creating Hierarchical Profiler Tables.. 9-7
Understanding Hierarchical Profiler Tables .. 9-8

Hierarchical Profiler Database Table Columns .. 9-8
Distinguishing Between Overloaded Subprograms ... 9-10

xi

Hierarchical Profiler Tables for Sample PL/SQL Procedure... 9-11
Examples of Calls to DBMS_HPROF.analyze with Options ... 9-11

plshprof Utility .. 9-13
plshprof Options ... 9-13
HTML Report from a Single Raw Profiler Output File ... 9-14

First Page of Report ... 9-14
Function-Level Reports ... 9-15
Module-Level Reports... 9-16
Namespace-Level Reports .. 9-16
Parents and Children Report for a Function.. 9-17

HTML Difference Report from Two Raw Profiler Output Files .. 9-18
Difference Report Conventions.. 9-19
First Page of Difference Report .. 9-19
Function-Level Difference Reports.. 9-20
Module-Level Difference Reports ... 9-21
Namespace-Level Difference Reports... 9-22
Parents and Children Difference Report for a Function .. 9-22

10 Developing PL/SQL Web Applications

Overview of PL/SQL Web Applications ... 10-1
Implementing PL/SQL Web Applications.. 10-2

PL/SQL Gateway.. 10-2
mod_plsql.. 10-2
Embedded PL/SQL Gateway .. 10-3

PL/SQL Web Toolkit .. 10-3
Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application 10-4
Using Embedded PL/SQL Gateway... 10-5

How Embedded PL/SQL Gateway Processes Client Requests ... 10-5
Installing Embedded PL/SQL Gateway.. 10-7
Configuring Embedded PL/SQL Gateway... 10-7

Configuring Embedded PL/SQL Gateway: Overview.. 10-7
Configuring User Authentication for Embedded PL/SQL Gateway............................... 10-9

Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL Gateway............... 10-18
Securing Application Access with Embedded PL/SQL Gateway... 10-18
Restrictions in Embedded PL/SQL Gateway ... 10-18
Using Embedded PL/SQL Gateway: Scenario ... 10-18

Generating HTML Output with PL/SQL.. 10-20
Passing Parameters to PL/SQL Web Applications .. 10-21

Passing List and Dropdown-List Parameters from an HTML Form..................................... 10-22
Passing Radio Button and Checkbox Parameters from an HTML Form.............................. 10-22
Passing Entry-Field Parameters from an HTML Form.. 10-23
Passing Hidden Parameters from an HTML Form .. 10-24
Uploading a File from an HTML Form.. 10-25
Submitting a Completed HTML Form... 10-25
Handling Missing Input from an HTML Form .. 10-25
Maintaining State Information Between Web Pages ... 10-26

Performing Network Operations in PL/SQL Stored Subprograms... 10-26

xii

Sending E-Mail from PL/SQL... 10-26
Getting a Host Name or Address from PL/SQL.. 10-27
Using TCP/IP Connections from PL/SQL.. 10-27
Retrieving HTTP URL Contents from PL/SQL... 10-27
Using Tables, Image Maps, Cookies, and CGI Variables from PL/SQL 10-29

11 Developing PL/SQL Server Pages

What Are PL/SQL Server Pages and Why Use Them? ... 11-1
Prerequisites for Developing and Deploying PL/SQL Server Pages .. 11-2
PL/SQL Server Pages and the HTP Package .. 11-3
PL/SQL Server Pages and Other Scripting Solutions .. 11-3
Developing PL/SQL Server Pages .. 11-4

Specifying Basic Server Page Characteristics .. 11-5
Specifying the Scripting Language.. 11-6
Returning Data to the Client Browser... 11-6
Handling Script Errors .. 11-7

Accepting User Input.. 11-8
Naming the PL/SQL Stored Procedure... 11-8
Including the Contents of Other Files .. 11-9
Declaring Global Variables in a PSP Script ... 11-9
Specifying Executable Statements in a PSP Script.. 11-10
Substituting Expression Values in a PSP Script.. 11-11
Quoting and Escaping Strings in a PSP Script .. 11-11
Including Comments in a PSP Script ... 11-12

Loading PL/SQL Server Pages into the Database ... 11-13
Querying PL/SQL Server Pages Source Code .. 11-13
Executing PL/SQL Server Pages Through URLs ... 11-15
Examples of PL/SQL Server Pages ... 11-15

Setup for PL/SQL Server Pages Examples.. 11-16
Printing the Sample Table with a Loop ... 11-17
Allowing a User Selection.. 11-17
Using an HTML Form to Invoke a PL/SQL Server Page.. 11-19
Including JavaScript in a PSP File... 11-19

Debugging PL/SQL Server Pages... 11-20
Putting PL/SQL Server Pages into Production .. 11-22

12 Using Continuous Query Notification

Object Change Notification (OCN) ... 12-2
Query Result Change Notification (QRCN) .. 12-2

Guaranteed Mode ... 12-3
Best-Effort Mode ... 12-3

Events that Generate Notifications .. 12-4
Committed DML Transactions.. 12-5
Committed DDL Statements ... 12-5
Deregistration .. 12-6
Global Events ... 12-6

Notification Contents ... 12-7

xiii

Good Candidates for CQN .. 12-7
Creating CQN Registrations ... 12-10

PL/SQL CQN Registration Interface ... 12-10
CQN Registration Options... 12-11

Notification Type Option.. 12-11
QRCN Mode (QRCN Notification Type Only) ... 12-11
ROWID Option... 12-12
Operations Filter Option (OCN Notification Type Only).. 12-12
Transaction Lag Option (OCN Notification Type Only) ... 12-13
Notification Grouping Options.. 12-13
Reliable Option... 12-14
Purge-on-Notify and Timeout Options .. 12-14

Prerequisites for Creating CQN Registrations.. 12-14
Queries that Can Be Registered for Object Change Notification (OCN) 12-15
Queries that Can Be Registered for Query Result Change Notification (QRCN)................ 12-15

Queries that Can Be Registered for QRCN in Guaranteed Mode................................... 12-15
Queries that Can Be Registered for QRCN Only in Best-Effort Mode........................... 12-16
Queries that Cannot Be Registered for QRCN in Either Mode....................................... 12-17

Using PL/SQL to Register Queries for CQN.. 12-18
Creating a PL/SQL Notification Handler .. 12-18
Creating a CQ_NOTIFICATION$_REG_INFO Object... 12-19
Identifying Individual Queries in a Notification .. 12-22
Adding Queries to an Existing Registration .. 12-22

Best Practices for CQN Registrations ... 12-23
Troubleshooting CQN Registrations.. 12-23

Querying CQN Registrations.. 12-24
Interpreting Notifications.. 12-25

Interpreting a CQ_NOTIFICATION$_DESCRIPTOR Object... 12-25
Interpreting a CQ_NOTIFICATION$_TABLE Object ... 12-26
Interpreting a CQ_NOTIFICATION$_QUERY Object .. 12-26
Interpreting a CQ_NOTIFICATION$_ROW Object .. 12-27

Deleting Registrations.. 12-27
Configuring CQN: Scenario .. 12-27

Creating a PL/SQL Notification Handler ... 12-28
Registering the Queries .. 12-30

Part III Advanced Topics for Application Developers

13 Using Flashback Technology

Overview of Flashback Technology... 13-1
Application Development Features.. 13-2
Database Administration Features ... 13-3

Configuring Your Database for Flashback Technology ... 13-3
Configuring Your Database for Automatic Undo Management.. 13-4
Configuring Your Database for Flashback Transaction Query .. 13-4
Configuring Your Database for Flashback Transaction Backout ... 13-4

xiv

Enabling Flashback Operations on Specific LOB Columns .. 13-5
Granting Necessary Privileges .. 13-5

Using Flashback Query (SELECT AS OF) .. 13-5
Example of Examining and Restoring Past Data.. 13-6
Guidelines for Flashback Query ... 13-7

Using Flashback Version Query ... 13-7
Using Flashback Transaction Query .. 13-9
Using Flashback Transaction Query with Flashback Version Query ... 13-9
Using ORA_ROWSCN ... 13-11
Using DBMS_FLASHBACK Package ... 13-12
Using Flashback Transaction Backout... 13-13

TRANSACTION_BACKOUT Parameters... 13-13
TRANSACTION_BACKOUT Reports ... 13-14

*_FLASHBACK_TXN_STATE ... 13-14
*_FLASHBACK_TXN_REPORT .. 13-14

Using Flashback Data Archives.. 13-15
Creating a Flashback Data Archive .. 13-15
Altering a Flashback Data Archive... 13-16
Dropping a Flashback Data Archive .. 13-17
Specifying the Default Flashback Data Archive ... 13-17
Enabling and Disabling Flashback Data Archive... 13-18
DDL Statements Not Allowed on Tables Enabled for Flashback Data Archive.................. 13-18
Viewing Flashback Data Archive Data .. 13-19
Flashback Data Archive Scenarios.. 13-19

Scenario: Using Flashback Data Archive to Enforce Digital Shredding 13-19
Scenario: Using Flashback Data Archive to Access Historical Data............................... 13-19
Scenario: Using Flashback Data Archive to Generate Reports 13-20
Scenario: Using Flashback Data Archive for Auditing .. 13-20
Scenario: Using Flashback Data Archive to Recover Data... 13-21

General Guidelines for Flashback Technology ... 13-21
Performance Guidelines for Flashback Technology .. 13-22

14 Developing Applications Using Multiple Programming Languages

Overview of Multilanguage Programs.. 14-1
What Is an External Procedure? .. 14-2
Overview of Call Specification for External Procedures ... 14-3
Loading External Procedures .. 14-3

Loading Java Class Methods ... 14-4
Loading External C Procedures .. 14-4

Define the C Procedures ... 14-5
Set Up the Environment.. 14-5
Identify the DLL... 14-7
Publish the External Procedures.. 14-8

Publishing External Procedures ... 14-8
AS LANGUAGE Clause for Java Class Methods ... 14-10
AS LANGUAGE Clause for External C Procedures .. 14-10

LIBRARY .. 14-10

xv

NAME ... 14-10
LANGUAGE .. 14-10
CALLING STANDARD.. 14-10
WITH CONTEXT .. 14-11
PARAMETERS .. 14-11
AGENT IN .. 14-11

Publishing Java Class Methods .. 14-11
Publishing External C Procedures ... 14-12
Locations of Call Specifications ... 14-12

Example: Locating a Call Specification in a PL/SQL Package... 14-13
Example: Locating a Call Specification in a PL/SQL Package Body..................................... 14-13
Example: Locating a Call Specification in an Object Type Specification 14-13
Example: Locating a Call Specification in an Object Type Body.. 14-14
Example: Java with AUTHID.. 14-14
Example: C with Optional AUTHID .. 14-14
Example: Mixing Call Specifications in a Package... 14-14

Passing Parameters to External C Procedures with Call Specifications 14-15
Specifying Datatypes .. 14-16
External Datatype Mappings... 14-17
Passing Parameters BY VALUE or BY REFERENCE... 14-19
Declaring Formal Parameters.. 14-19
Overriding Default Datatype Mapping ... 14-20
Specifying Properties .. 14-20

INDICATOR ... 14-22
LENGTH and MAXLEN... 14-22
CHARSETID and CHARSETFORM.. 14-23
Repositioning Parameters... 14-23
SELF ... 14-23
BY REFERENCE... 14-26
WITH CONTEXT ... 14-26
Interlanguage Parameter Mode Mappings .. 14-27

Executing External Procedures with CALL Statements ... 14-27
Preconditions for External Procedures .. 14-28

Privileges of External Procedures.. 14-28
Managing Permissions .. 14-28
Creating Synonyms for External Procedures... 14-29

CALL Statement Syntax ... 14-29
Calling Java Class Methods ... 14-30
Calling External C Procedures .. 14-30

Handling Errors and Exceptions in Multilanguage Programs ... 14-31
Using Service Routines with External C Procedures.. 14-31

OCIExtProcAllocCallMemory... 14-31
OCIExtProcRaiseExcp .. 14-36
OCIExtProcRaiseExcpWithMsg.. 14-37

Doing Callbacks with External C Procedures.. 14-37
OCIExtProcGetEnv ... 14-38
Object Support for OCI Callbacks .. 14-39

xvi

Restrictions on Callbacks ... 14-39
Debugging External Procedures ... 14-40
Example: Calling an External Procedure... 14-41
Global Variables in External C Procedures ... 14-41
Static Variables in External C Procedures ... 14-41
Restrictions on External C Procedures... 14-42

15 Developing Applications with Oracle XA

X/Open Distributed Transaction Processing (DTP).. 15-1
DTP Terminology.. 15-2
Required Public Information... 15-4

Oracle XA Library Subroutines .. 15-5
Oracle XA Library Subroutines... 15-5
Oracle XA Interface Extensions... 15-6

Developing and Installing XA Applications ... 15-6
DBA or System Administrator Responsibilities ... 15-7
Application Developer Responsibilities .. 15-8
Defining the xa_open String .. 15-8

Syntax of the xa_open String.. 15-8
Required Fields for the xa_open String .. 15-9
Optional Fields for the xa_open String... 15-9

Using Oracle XA with Precompilers .. 15-11
Using Precompilers with the Default Database .. 15-11
Using Precompilers with a Named Database .. 15-11

Using Oracle XA with OCI .. 15-12
Managing Transaction Control with Oracle XA... 15-13
Examples of Precompiler Applications.. 15-14
Migrating Precompiler or OCI Applications to TPM Applications....................................... 15-14
Managing Oracle XA Library Thread Safety .. 15-15

Specifying Threading in the Open String... 15-16
Restrictions on Threading in Oracle XA... 15-16

Using the DBMS_XA Package... 15-16
Troubleshooting XA Applications ... 15-19

Accessing Oracle XA Trace Files... 15-19
xa_open String DbgFl .. 15-20
Trace File Locations ... 15-20

Managing In-Doubt or Pending Oracle XA Transactions ... 15-20
Using SYS Account Tables to Monitor Oracle XA Transactions .. 15-21

Oracle XA Issues and Restrictions ... 15-21
Using Database Links in Oracle XA Applications.. 15-21
Managing Transaction Branches in Oracle XA Applications ... 15-22
Using Oracle XA with Oracle Real Application Clusters (Oracle RAC)............................... 15-22

GLOBAL_TXN_PROCESSES Initialization Parameter .. 15-23
Managing Transaction Branches on Oracle RAC.. 15-23
Managing Instance Recovery in Oracle RAC with DTP Services (10.2) 15-24
Global Uniqueness of XIDs in Oracle RAC.. 15-25
Tight and Loose Coupling .. 15-25

xvii

SQL-Based Oracle XA Restrictions ... 15-25
Rollbacks and Commits .. 15-25
DDL Statements ... 15-26
Session State.. 15-26
EXEC SQL ... 15-26

Miscellaneous Restrictions... 15-26

16 Developing Applications on the Publish-Subscribe Model

Introduction to the Publish-Subscribe Model... 16-1
Publish-Subscribe Architecture ... 16-2

Database Events .. 16-2
Oracle Advanced Queuing .. 16-3
Client Notification... 16-3

Publish-Subscribe Concepts ... 16-3
Examples of a Publish-Subscribe Mechanism .. 16-5

17 Using the Identity Code Package

Identity Concepts .. 17-1
What is the Identity Code Package? .. 17-5
Using the Identity Code Package ... 17-6

Storing RFID Tags in Oracle Database Using MGD_ID Object Type...................................... 17-6
Creating a Table with MGD_ID Column Type and Storing EPC Tag Encodings in the
Column 17-7
Constructing MGD_ID Objects to Represent RFID Tags ... 17-7
Inserting an MGD_ID Object into a Database Table... 17-9
Querying MGD_ID Column Type... 17-10

Creating Indexes on the MGD_ID Column Type... 17-10
Building a Function-Based Index Using the Member Functions of the MGD_ID Column
Type 17-10

Using MGD_ID Object Type Functions ... 17-11
Using the get_component Function with the MGD_ID Object 17-11
Parsing Tag Data from Standard Representations.. 17-12
Reconstructing Tag Representations from Fields ... 17-13
Translating Between Tag Representations ... 17-13

Defining a New Category of Identity Codes and Adding Encoding Schemes to an Existing
Category 17-13

Creating a New Category of Identity Codes.. 17-14
Adding Two New Metadata Schemes to a Newly Created Category 17-14

Identity Code Package Types .. 17-18
DBMS_MGD_ID_UTL Package... 17-19
Identity Code Metadata Tables and Views... 17-20

Metadata View Definitions .. 17-21
Electronic Product Code (EPC) Concepts.. 17-22

RFID Technology and EPC v1.1 Coding Schemes ... 17-22
Product Code Concepts and Their Current Use... 17-23

Electronic Product Code (EPC) .. 17-23

xviii

Global Trade Identification Number (GTIN) and Serializable Global Trade Identification
Number (SGTIN) 17-24
Serial Shipping Container Code (SSCC)... 17-24
Global Location Number (GLN) and Serializable Global Location Number (SGLN) . 17-24
Global Returnable Asset Identifier (GRAI) .. 17-25
Global Individual Asset Identifier (GIAI) .. 17-25
RFID EPC Network.. 17-25

Oracle Tag Data Translation Schema ... 17-25

A Multithreaded extproc Agent

Why Use the Multithreaded extproc Agent?.. A-1
The Challenge of Dedicated Agent Architecture ... A-1
The Advantage of Multithreading.. A-1

Multithreaded extproc Agent Architecture .. A-2
Monitor Thread ... A-4
Dispatcher Threads ... A-4
Task Threads.. A-4

Administering the Multithreaded extproc Agent ... A-4
Agent Control Utility (agtctl) Commands... A-5
Using agtctl in Single-Line Command Mode.. A-5

Setting Configuration Parameters for a Multithreaded extproc Agent A-5
Starting a Multithreaded extproc Agent... A-6
Shutting Down a Multithreaded extproc Agent ... A-6
Examining the Value of Configuration Parameters.. A-7
Resetting a Configuration Parameter to Its Default Value .. A-7
Deleting an Entry for a Specific SID from the Control File.. A-7
Requesting Help... A-7

Using Shell Mode Commands... A-8
Example: Setting a Configuration Parameter .. A-8
Example: Starting a Multithreaded extproc Agent ... A-8

Configuration Parameters for Multithreaded extproc Agent Control A-8

Index

xix

Preface

Oracle Database Advanced Application Developer's Guide explains topics that experienced
application developers reference repeatedly. Information in this guide applies to
features that work the same on all supported platforms, and does not include
system-specific information.

Preface topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle Database Advanced Application Developer's Guide is intended for application
developers who are either developing new applications or converting existing
applications to run in the Oracle Database environment. This guide is also valuable to
anyone who is interested in the development of database applications, such as systems
analysts and project managers.

To use this document effectively, you need a working knowledge of:

■ Application programming

■ Structured Query Language (SQL)

■ Object-oriented programming

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

xx

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following documents in the Oracle Database 11g Release
1 (11.1) documentation set:

■ Oracle Database PL/SQL Language Reference

■ Oracle Call Interface Programmer's Guide

■ Oracle Database Security Guide

■ Pro*C/C++ Programmer's Guide

■ Oracle Database SQL Language Reference

■ Oracle Database Administrator's Guide

■ Oracle Database Concepts

■ Oracle XML Developer's Kit Programmer's Guide

■ Oracle XML DB Developer's Guide

■ Oracle Database Globalization Support Guide

■ Oracle Database Sample Schemas

See also:

■ Oracle PL/SQL Tips and Techniques by Joseph C. Trezzo. Oracle Press, 1999.

■ Oracle PL/SQL Programming by Steven Feuerstein. 3rd Edition. O'Reilly &
Associates, 2002.

■ Oracle PL/SQL Developer's Workbook by Steven Feuerstein. O'Reilly & Associates,
2000.

■ Oracle PL/SQL Best Practices by Steven Feuerstein. O'Reilly & Associates, 2001.

Conventions
The following text conventions are used in this document:

xxi

*_view means all static data dictionary views whose names end with view. For
example, *_ERRORS means ALL_ERRORS, DBA_ERRORS, and USER_ERRORS. For
more information about any static data dictionary view, or about static dictionary
views in general, see Oracle Database Reference.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxii

xxiii

What's New in Application Development?

What's New in Application Development? briefly describes new features of Oracle
Database 11g Release 1 (11.1) and provides links to additional information.

Oracle Database 11g Release 1 (11.1) New Features
The new application development features for Release 11.1 are:

■ WAIT Option for Data Definition Language (DDL) Statements

■ Binary XML Support for Oracle XML Database

■ Metadata for SQL Built-In Functions

■ Enhancements to Regular Expression Built-in Functions

■ Invisible Indexes

■ Cross-Session PL/SQL Function Result Cache

■ Sequences in PL/SQL Expressions

■ PL/Scope

■ PL/SQL Hierarchical Profiler

■ Query Result Change Notification

■ Flashback Transaction Backout

■ Flashback Data Archives

■ XA API Available Within PL/SQL

■ Support for XA/JTA in Oracle Real Application Clusters (Oracle RAC)
Environment

■ Identity Code Package

■ Enhanced Online Index Creation and Rebuilding

■ Embedded PL/SQL Gateway

■ Oracle Database Spawns Multithreaded extproc Agent Directly by Default

WAIT Option for Data Definition Language (DDL) Statements
DDL statements require exclusive locks on internal structures. If these locks are
unavailable when a DDL statement is issued, the DDL statement fails, though it might
have succeeded if it had been issued subseconds later. The WAIT option of the SQL
statement LOCK TABLE allows a DDL statement to wait for its locks for a specified
period of time before failing.

xxiv

For more information, see "Choosing a Locking Strategy" on page 2-10.

Binary XML Support for Oracle XML Database
Binary XML is a third way to represent an XML document. Binary XML complements,
rather than replaces, the existing object-relational storage and CLOB storage
representations. Binary XML has two significant benefits:

■ XML operations can be significantly optimized, whether or not an XML schema is
available.

■ The internal representation of XML is the same on disk, in memory, and on wire.

As with other storage mechanisms, the details of binary XML storage are transparent
to you. You continue to use XMLType and its associated methods and operators.

For more information, see "Representing XML" on page 3-18.

Metadata for SQL Built-In Functions
Metadata for SQL built-in functions is accessible through dynamic performance (V$)
views. Third-party tools can leverage built-in SQL functions without maintaining their
metadata in the application layer.

For more information, see "Metadata for SQL Built-In Functions" on page 3-27.

Enhancements to Regular Expression Built-in Functions
The regular expression built-in functions REGEXP_INSTR and REGEXP_SUBSTR have
increased functionality. A new regular expression built-in function, REGEXP_COUNT,
returns the number of times a pattern appears in a string. These functions act the same
in SQL and PL/SQL.

For more information, see "Oracle Database Implementation of Regular Expressions"
on page 4-2.

Invisible Indexes
An invisible index is maintained by Oracle Database for every Data Manipulation
Language (DML) statement, but is ignored by the optimizer unless you explicitly set
the parameter OPTIMIZER_USE_INVISIBLE_INDEXES to TRUE on a session or
system level.

Making an index invisible is an alternative to making it unusable or dropping it. Using
invisible indexes, you can do the following:

■ Test the removal of an index before dropping it

■ Create invisible indexes temporarily for specialized, nonstandard operations, such
as online application upgrades, without affecting the behavior of existing
applications

For more information, see "Drop Unused Indexes" on page 5-5.

Cross-Session PL/SQL Function Result Cache
Before Release 11.1, if you wanted your PL/SQL application to cache the results of a
function, you had to design and code the cache and cache-management subprograms.
If multiple sessions ran your application, each session had to have its own copy of the

See Also: Oracle XML DB Developer's Guide

See Also: Oracle Database SQL Language Reference

xxv

cache and cache-management subprograms. Sometimes each session had to perform
the same expensive computations.

As of Release 11.1, PL/SQL provides a cross-session function result cache. Because the
function result cache is stored in a shared global area (SGA), it is available to any
session that runs your application.

For more information, see "Cross-Session PL/SQL Function Result Cache" on
page 7-10.

Sequences in PL/SQL Expressions
The pseudocolumns CURRVAL and NEXTVAL make writing PL/SQL source code easier
for you and improve run-time performance and scalability. You can use sequence_
name.CURRVAL and sequence_name.NEXTVAL wherever you can use a NUMBER
expression.

For an example, see "Example of a PL/SQL Package Specification and Body" on
page 7-10.

PL/Scope
PL/Scope is a compiler-driven tool that collects and organizes data about user-defined
identifiers from PL/SQL source code. Because PL/Scope is a compiler-driven tool, you
use it through interactive development environments (such as SQL Developer and
JDeveloper), rather than directly.

PL/Scope enables the development of powerful and effective PL/Scope source code
browsers that increase PL/SQL developer productivity by minimizing time spent
browsing and understanding source code.

For a detailed description of PL/Scope, see Chapter 8, "Using PL/Scope".

PL/SQL Hierarchical Profiler
Nonhierarchical (flat) profilers record the time that a program spends within each
subprogram—the function time or self time of each subprogram. Function time is
helpful, but often inadequate. For example, it is helpful to know that a program
spends 40% of its time in the subprogram INSERT_ORDER, but it is more helpful to
know which subprograms call INSERT_ORDER often and the total time the program
spends under INSERT_ORDER (including its descendent subprograms). Hierarchical
profilers provide such information.

The PL/SQL hierarchical profiler does the following:

■ Reports the dynamic execution profile of your PL/SQL program, organized by
subprogram calls

■ Accounts for SQL and PL/SQL execution times separately

■ Requires no special source or compile-time preparation

■ Stores results in database tables (hierarchical profiler tables) for custom report
generation by integrated development environment (IDE) tools (such as SQL
Developer and third-party tools)

To generate simple HTML reports from raw profiler output, you can use the
plshprof command-line utility.

See Also: Oracle Database PL/SQL Language Reference

See Also: Oracle Database PL/SQL Language Reference

xxvi

Each subprogram-level summary in the dynamic execution profile includes
information such as:

■ Number of calls to the subprogram

■ Time spent in the subprogram itself (function time or self time)

■ Time spent in the subprogram itself and in its descendent subprograms (subtree
time)

■ Detailed parent-children information, for example:

– All callers of a given subprogram (parents)

– All subprograms that a given subprogram called (children)

– How much time was spent in subprogram x when called from y

– How many calls to subprogram x were from y

You can browse the generated HTML reports in any browser. The browser's
navigational capabilities, combined with well chosen links, provide a powerful way to
analyze performance of large applications, improve application performance, and
lower development costs.

For a detailed description of PL/SQL hierarchical profiler, see Chapter 9, "Using the
PL/SQL Hierarchical Profiler".

Query Result Change Notification
Before Release 11.1, Continuous Query Notification (CQN) published only object
change notifications, which result from DML or DDL changes to the objects associated
with registered the queries.

As of Release 11.1, CQN can also publish query result change notifications, which
result from DML or DDL changes to the result set associated with the registered
queries. New static data dictionary views enable you to see which queries are
registered for result-set-change notifications (see "Querying CQN Registrations" on
page 12-24).

For more information, see Chapter 12, "Using Continuous Query Notification".

Flashback Transaction Backout
The DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure rolls back a transaction
and its dependent transactions while the database remains online. This recovery
operation uses undo data to create and execute the compensating transactions that
return the affected data to its original state.

For more information, see "Using Flashback Transaction Backout" on page 13-13.

Flashback Data Archives
A Flashback Data Archive provides the ability to store and track all transactional
changes to a record over its lifetime. It is no longer necessary to build this intelligence
into the application. A Flashback Data Archive is useful for compliance with record
stage policies and audit reports.

For more information, see "Using Flashback Data Archives" on page 13-15.

XA API Available Within PL/SQL
The XA interface functionality that supports transactions involving multiple resource
managers, such as databases and queues, is now available within PL/SQL. You can

xxvii

use PL/SQL to switch and share transactions across SQL*Plus sessions and across
processes.

For more information, see "Using the DBMS_XA Package" on page 15-16.

Support for XA/JTA in Oracle Real Application Clusters (Oracle RAC)
Environment
An XA transaction now spans Oracle RAC instances by default, allowing any
application that uses XA to take full advantage of the Oracle RAC environment,
enhancing the availability and scalability of the application.

For more information, see "Using Oracle XA with Oracle Real Application Clusters
(Oracle RAC)" on page 15-22.

Identity Code Package
The Identity Code Package provides tools to store, retrieve, encode, decode, and
translate between various product or identity codes, including Electronic Product
Code (EPC), in an Oracle Database. The Identity Code Package provides new data
types, metadata tables and views, and PL/SQL packages for storing EPC standard
RFID tags or new types of RFID tags in a user table.

The Identity Code Package allows the Oracle Database to recognize EPC coding
schemes, to support efficient storage and component-level retrieval of EPC data, and
to comply with the EPCglobal Tag Data Translation 1.0 (TDT) standard that defines
how to decode, encode, and translate between various EPC RFID tag representations.

The Identity Code Package also provides an extensible framework that enables you to
use pre-existing coding schemes with applications that are not included in the EPC
standard and adapt the Oracle Database both to these older systems and to evolving
identity codes that might become part of a future EPC standard.

The Identity Code Package also lets you create your own identity codes by first
registering the new encoding category, registering the new encoding type, and then
registering the new components associated with each new encoding type.

For more information, see Chapter 17, "Using the Identity Code Package".

Enhanced Online Index Creation and Rebuilding
Online index creation and rebuilding no longer requires a DML-blocking lock.

Before Release 11.1, online index creation and rebuilding required a very short-term
DML-blocking lock at the end of the rebuilding. The DML-blocking lock could cause a
spike in the number of waiting DML operations, and therefore a short drop and spike
of system usage. This system usage anomaly could trigger operating system alarm
levels.

Embedded PL/SQL Gateway
The PL/SQL gateway enables a user-written PL/SQL subprogram to be invoked in
response to a URL with parameters derived from an HTTP request. mod_plsql is a
form of the gateway that exists as a plug-in to the Oracle HTTP Server. Now the
PL/SQL gateway is also embedded in the database itself. The embedded PL/SQL
gateway uses the internal Oracle XML Database Listener and does not depend on the
Oracle HTTP Server. You configure the embedded version of the gateway with the
DBMS_EPG package.

For more information, see "Using Embedded PL/SQL Gateway" on page 10-5.

xxviii

Oracle Database Spawns Multithreaded extproc Agent Directly by Default
When an application calls an external C procedure, either Oracle Database or Oracle
Listener starts the external procedure agent, extproc.

Before Release 11.1, Oracle Listener spawned the multithreaded extproc agent, and
you defined environment variables for extproc in the file listener.ora.

As of Release 11.1, by default, Oracle Database spawns extproc directly, eliminating
the risk that Oracle Listener might spawn extproc unexpectedly. This default
configuration is recommended for maximum security. If you use it, you define
environment variables for extproc in the file extproc.ora.

For more information, including situations in which you cannot use the default
configuration, see "Loading External Procedures" on page 14-3.

Introduction to Oracle Programmatic Environments 1-1

1
Introduction to Oracle Programmatic

Environments

Topics:

■ Overview of Oracle Application Development

■ Overview of PL/SQL

■ Overview of Java Support Built into the Database

■ Overview of Pro*C/C++

■ Overview of Pro*COBOL

■ Overview of OCI and OCCI

■ Overview of Oracle Data Provider for .NET (ODP.NET)

■ Overview of Oracle Objects for OLE (OO4O)

■ Choosing a Programming Environment

Overview of Oracle Application Development
As an application developer, you have many choices when writing a program to
interact with Oracle database:

■ Client/Server Model

■ Server-Side Coding

■ Two-Tier and Three-Tier Models

■ User Interface

■ Stateful and Stateless User Interfaces

Client/Server Model
In a traditional client/server program, your application code runs on a client system;
that is, a system other than the database server. Database calls are transmitted from the
client system to the database server. Data is transmitted from the client to the server
for insert and update operations and returned from the server to the client for query
operations. The data is processed on the client system. Client/server programs are
typically written by using precompilers, whereas SQL statements are embedded
within the code of another language such as C, C++, or COBOL.

Overview of PL/SQL

1-2 Oracle Database Advanced Application Developer's Guide

Server-Side Coding
You can develop application logic that resides entirely inside the database by using
triggers that are executed automatically when changes occur in the database or stored
subprograms (procedures and functions) that are invoked explicitly. Off-loading the
work from your application lets you reuse code that performs verification and cleanup
and control database operations from a variety of clients. For example, by making
stored subprograms invocable through a Web server, you can construct a Web-based
user interface that performs the same functions as a client/server application.

Two-Tier and Three-Tier Models
Client/server computing is often referred to as a two-tier model: your application
communicates directly with the database server. In the three-tier model, a separate
application server processes the requests. The application server might be a basic Web
server, or might perform advanced functions like caching and load-balancing.
Increasing the processing power of this middle tier lets you lessen the resources
needed by client systems, resulting in a thin client configuration in which the client
system might need only a Web browser or other means of sending requests over the
TCP/IP or HTTP protocols.

User Interface
The user interface is what your application displays to end users. It depends on the
technology behind the application as well as the needs of the users themselves.
Experienced users can enter SQL statements that are passed on to the database. Novice
users can be shown a graphical user interface that uses the graphics libraries of the
client system (such as Windows or X-Windows). Any of these traditional user
interfaces can also be provided in a Web browser through HTML and Java.

Stateful and Stateless User Interfaces
In traditional client/server applications, the application can keep a record of user
actions and use this information over the course of one or more sessions. For example,
past choices can be presented in a menu so that they do not have to be entered again.
When the application is able to save information in this way, the application is
considered stateful.

Web or thin-client applications that are stateless are easier to develop. Stateless
applications gather all the required information, process it using the database, and
then start over with the next user. This is a popular way to process single-screen
requests such as customer registration.

There are many ways to add stateful action to Web applications that are stateless by
default. For example, an entry form on one Web page can pass information to
subsequent Web pages, allowing you to construct a wizard-like interface that
remembers the user's choices through several different steps. Cookies can be used to
store small items of information on the client system, and retrieve them when the user
returns to a Web site. Servlets can be used to keep a database session open and store
variables between requests from the same client.

Overview of PL/SQL
This section contains the following topics:

■ What Is PL/SQL?

Overview of PL/SQL

Introduction to Oracle Programmatic Environments 1-3

■ Advantages of PL/SQL

■ PL/SQL Web Development Tools

What Is PL/SQL?
PL/SQL is Oracle's procedural extension to SQL, the standard database access
language. It is an advanced 4GL (fourth-generation programming language), which
means that it is an application-specific language. PL/SQL and SQL have built-in
treatment of the relational database domain.

In PL/SQL, you can manipulate data with SQL statements and control program flow
with procedural constructs such as loops. You can also do the following:

■ Declare constants and variables

■ Define subprograms

■ Use collections and object types

■ Trap run-time errors

Applications written in any of the Oracle programmatic interfaces can invoke PL/SQL
stored subprograms and send blocks of PL/SQL code to Oracle Database for
execution. 3GL applications can access PL/SQL scalar and composite datatypes
through host variables and implicit datatype conversion. A 3GL language is easier
than assembler language for a human to understand and includes features such as
named variables. Unlike 4GL, it is not specific to an application domain.

Example 1–1 provides an example of a simple PL/SQL subprogram. The procedure
debit_account withdraws money from a bank account. It accepts an account
number and an amount of money as parameters. It uses the account number to
retrieve the account balance from the database, then computes the new balance. If this
new balance is less than zero, then the procedure jumps to an error routine; otherwise,
it updates the bank account.

Example 1–1 Simple PL/SQL Example

PROCEDURE debit_account (p_acct_id INTEGER, p_debit_amount REAL)
IS
 v_old_balance REAL;
 v_new_balance REAL;
 e_overdrawn EXCEPTION;
BEGIN
 SELECT bal
 INTO v_old_balance
 FROM accts
 WHERE acct_no = p_acct_id;
 v_new_balance := v_old_balance - p_debit_amount;
 IF v_new_balance < 0 THEN
 RAISE e_overdrawn;
 ELSE
 UPDATE accts SET bal = v_new_balance
 WHERE acct_no = p_acct_id;
 END IF;
 COMMIT;
EXCEPTION
 WHEN e_overdrawn THEN
 -- handle the error
END debit_account;

Overview of PL/SQL

1-4 Oracle Database Advanced Application Developer's Guide

Advantages of PL/SQL
PL/SQL is a portable, high-performance transaction processing language with the
following advantages:

■ Integration with Oracle Database

■ High Performance

■ High Productivity

■ Scalability

■ Manageability

■ Object-Oriented Programming Support

■ Portability

■ Security

■ Packages

Integration with Oracle Database
PL/SQL enables you use all of the Oracle Database SQL data manipulation, cursor
control, and transaction control statements. PL/SQL also supports the SQL functions,
operators, and pseudocolumns. You can manipulate data in Oracle Database flexibly
and safely.

PL/SQL supports all SQL datatypes. Combined with the direct access that SQL
provides, these shared datatypes integrate PL/SQL with the Oracle Database data
dictionary.

PL/SQL supports Dynamic SQL, which is a programming technique that enables you
to build and process SQL statements "on the fly" at run time. It gives PL/SQL
flexibility comparable to scripting languages such as Perl, Korn shell, and Tcl.

The %TYPE and %ROWTYPE attributes enable your code to adapt as table definitions
change. For example, the %TYPE attribute declares a variable based on the type of a
database column. If the column datatype changes, then the variable uses the correct
type at run time. This provides data independence and reduces maintenance costs.

High Performance
If your application is database intensive, then you can use PL/SQL blocks to group
SQL statements before sending them to Oracle Database for execution. This coding
strategy can drastically reduce the communication overhead between your application
and Oracle Database.

PL/SQL stored subprograms are compiled once and stored in executable form, so
subprogram calls are quick and efficient. A single call can start a compute-intensive
stored subprogram, reducing network traffic and improving round-trip response
times. Executable code is automatically cached and shared among users, lowering
memory requirements and call overhead.

See Also:

■ Oracle Database PL/SQL Language Reference

■ Oracle Database SQL Language Reference

Overview of PL/SQL

Introduction to Oracle Programmatic Environments 1-5

High Productivity
PL/SQL adds procedural capabilities such as Oracle Forms and Oracle Reports. For
example, you can use an entire PL/SQL block in an Oracle Forms trigger instead of
multiple trigger steps, macros, or user exits.

PL/SQL is the same in all environments. When you master PL/SQL with one Oracle
tool, you can transfer your knowledge to Oracle tools, multiplying your productivity
gains. For example, scripts written with one tool can be used by other tools.

Scalability
PL/SQL stored subprograms increase scalability by centralizing application
processing on the server. Automatic dependency tracking helps you develop scalable
applications.

The shared memory facilities of the shared server enable Oracle Database to support
many thousands of concurrent users on a single node. For more scalability, you can
use the Oracle Connection Manager to multiplex network connections.

Manageability
After being validated, you can use a PL/SQL stored subprogram in any number of
applications. If its definition changes, then only the subprogram is affected, not the
applications that invoke it. This simplifies maintenance and enhancement. Also,
maintaining a subprogram on the Oracle Database is easier than maintaining copies on
various client systems.

Object-Oriented Programming Support
PL/SQL supports object-oriented programming with:

■ Object Types

■ Collections

Object Types An object type is a user-defined composite datatype that encapsulates a
data structure along with the subprograms needed to manipulate the data. The
variables that form the data structure are called attributes. The subprograms that
characterize the action of the object type are called methods, which you can implement
in PL/SQL.

Object types are an ideal object-oriented modeling tool, which you can use to reduce
the cost and time required to build complex applications. Besides allowing you to
create software components that are modular, maintainable, and reusable, object types
allow different teams of programmers to develop software components concurrently.

Collections A collection is an ordered group of elements, all of the same type (for
example, the grades for a class of students). Each element has a unique subscript that
determines its position in the collection. PL/SQL offers two kinds of collections:
nested tables and varrays (variable-size arrays).

Collections work like the set, queue, stack, and hash table data structures found in
most third-generation programming languages. Collections can store instances of an
object type and can also be attributes of an object type. Collections can be passed as
parameters. You can use collections to move columns of data into and out of database
tables or between client-side applications and stored subprograms. You can define
collection types in a PL/SQL package, then use the same types across many
applications.

Overview of Java Support Built into the Database

1-6 Oracle Database Advanced Application Developer's Guide

Portability
Applications written in PL/SQL can run on any operating system and hardware
platform on which Oracle Database runs. You can write portable program libraries and
reuse them in different environments.

Security
PL/SQL stored subprograms enable you to divide application logic between the client
and the server, which prevents client applications from manipulating sensitive Oracle
Database data. Database triggers written in PL/SQL can prevent applications from
making specified updates and can audit user queries.

You can restrict access to Oracle Database data by allowing users to manipulate it only
through stored subprograms that have a restricted set of privileges. For example, you
can grant users access to a subprogram that updates a table but not grant them access
to the table itself.

Packages
A package is an encapsulated collection of related program objects stored together in
the database. Program objects are subprograms, variables, constants, cursors, and
exceptions. For information about built-in packages, see Oracle Database PL/SQL
Packages and Types Reference.

PL/SQL Web Development Tools
Oracle Database provides built-in tools and technologies that enable you to deploy
PL/SQL applications over the Web. Thus, PL/SQL serves as an alternative to Web
application frameworks such as CGI.

The PL/SQL Web Toolkit is a set of PL/SQL packages that you can use to develop
stored subprograms that can be invoked by a Web client. The PL/SQL Gateway
enables an HTTP client to invoke a PL/SQL stored subprogram through mod_plsql,
which is a plug-in to Oracle HTTP Server. This module performs the following actions:

1. Translates a URL passed by a browser client

2. Invokes an Oracle Database stored subprogram with the parameters in the URL

3. Returns output (typically HTML) to the client

Overview of Java Support Built into the Database
This section provides an overview of built-in database features that support Java
applications. The database includes the core JDK libraries such as java.lang,
java.io, and so on. The database supports client-side Java standards such as JDBC
and SQLJ, and provides server-side JDBC and SQLJ drivers that allow data-intensive
Java code to run within the database.

This section contains the following topics:

■ Overview of Oracle JVM

See Also: Oracle Database Security Guide for details on database
security features

See Also: Chapter 10, "Developing PL/SQL Web Applications" to
learn how to use PL/SQL in Web development

Overview of Java Support Built into the Database

Introduction to Oracle Programmatic Environments 1-7

■ Overview of Oracle Extensions to JDBC

■ Overview of Oracle SQLJ

■ Overview of Oracle JPublisher

■ Overview of Java Stored Subprograms

■ Overview of Oracle Database Web Services

■ Overview of Writing Subprograms in Java

Overview of Oracle JVM
Oracle JVM, the Java Virtual Machine provided with the Oracle Database, is compliant
with the J2SE version 1.4.x specification and supports the database session
architecture.

Any database session can activate a dedicated JVM. All sessions share the same JVM
code and statics; however, private states for any given session are held, and
subsequently garbage collected, in an individual session space.

This design provides the following benefits:

■ Java applications have the same session isolation and data integrity as SQL
operations.

■ There is no need to run Java in a separate process for data integrity.

■ Oracle JVM is a robust JVM with a small memory footprint.

■ The JVM has the same linear Symmetric Multiprocessing (SMP) scalability as the
database and can support thousands of concurrent Java sessions.

Oracle JVM works consistently with every platform supported by Oracle Database.
Java applications that you develop with Oracle JVM can easily be ported to any
supported platform.

Oracle JVM includes a deployment-time native compiler that enables Java code to be
compiled once, stored in executable form, shared among users, and invoked more
quickly and efficiently.

Security features of the database are also available with Oracle JVM. Java classes must
be loaded in a database schema (by using Oracle JDeveloper, a third-party IDE,
SQL*Plus, or the loadjava utility) before they can be called. Java class calls are secured
and controlled through database authentication and authorization, Java 2 security, and
invoker's rights (IR) or definer's rights (DR).

Overview of Oracle Extensions to JDBC
JDBC (Java Database Connectivity) is an API (Applications Programming Interface)
that allows Java to send SQL statements to an object-relational database such as Oracle
Database.

The JDBC standard defines four types of JDBC drivers:

See Also:

■ Oracle Database Java Developer's Guide

■ Oracle Database JDBC Developer's Guide and Reference

■ Oracle Database JPublisher User's Guide

Overview of Java Support Built into the Database

1-8 Oracle Database Advanced Application Developer's Guide

JDBC is based on the X/Open SQL Call Level Interface, and complies with the SQL92
Entry Level standard.

You can use JDBC to do dynamic SQL. In dynamic SQL, the embedded SQL statement
to be executed is not known before the application is run and requires input to build
the statement.

The drivers that are implemented by Oracle have extensions to the capabilities in the
JDBC standard that was defined by Sun Microsystems. Oracle's implementations of
JDBC drivers are described in the following sections. Oracle Database support of and
extensions to various levels of the JDBC standard are described in "Oracle Database
Extensions to JDBC Standards" on page 1-9.

Topics:

■ JDBC Thin Driver

■ JDBC OCI Driver

■ JDBC Server-Side Internal Driver

■ Oracle Database Extensions to JDBC Standards

■ Sample JDBC 2.0 Program

■ Sample Pre-2.0 JDBC Program

■ JDBC in SQLJ Applications

JDBC Thin Driver
The JDBC thin driver is a Type 4 (100% pure Java) driver that uses Java sockets to
connect directly to a database server. It has its own implementation of a Two-Task
Common (TTC), a lightweight implementation of TCP/IP from Oracle Net. It is
written entirely in Java and is therefore platform-independent.

The thin driver does not require Oracle software on the client side. It does need a
TCP/IP listener on the server side. Use this driver in Java applets that are downloaded
into a Web browser or in applications for which you do not want to install Oracle
client software. The thin driver is self-contained, but it opens a Java socket, and thus
can only run in a browser that supports sockets.

JDBC OCI Driver
The JDBC OCI driver is a Type 2 JDBC driver. It makes calls to the OCI (Oracle Call
Interface) written in C to interact with Oracle Database, thus using native and Java
methods.

The OCI driver allows access to more features than the thin driver, such as Transparent
Application Fail-Over, advanced security, and advanced LOB manipulation.

Type Description

1 A JDBC-ODBC bridge. Software must be installed on client systems.

2 Native methods (calls C or C++) and Java methods. Software must be installed on the
client.

3 Pure Java. The client uses sockets to call middleware on the server.

4 The most pure Java solution. Talks directly to the database by using Java sockets.

Overview of Java Support Built into the Database

Introduction to Oracle Programmatic Environments 1-9

The OCI driver provides the highest compatibility between different Oracle Database
versions. It also supports all installed Oracle Net adapters, including IPC, named
pipes, TCP/IP, and IPX/SPX.

Because it uses native methods (a combination of Java and C) the OCI driver is
platform-specific. It requires a client installation of version Oracle8i or later including
Oracle Net, OCI libraries, CORE libraries, and all other dependent files. The OCI
driver usually executes faster than the thin driver.

The OCI driver is not appropriate for Java applets, because it uses a C library that is
platform-specific and cannot be downloaded into a Web browser. It is usable in J2EE
components running in middle-tier application servers, such as Oracle Application
Server. Oracle Application Server provides middleware services and tools that support
access between applications and browsers.

JDBC Server-Side Internal Driver
The JDBC server-side internal driver is a Type 2 driver that runs inside the database
server, reducing the number of round-trips needed to access large amounts of data.
The driver, the Java server VM, the database, the Java native compiler (which speeds
execution by as much as 10 times), and the SQL engine all run within the same address
space.

This driver provides server-side support for any Java program used in the database:
SQLJ stored subprograms, triggers, and Java stored subprograms. You can also call
PL/SQL stored subprograms and triggers.

The server driver fully supports the same features and extensions as the client-side
drivers.

Oracle Database Extensions to JDBC Standards
Oracle Database includes the following extensions to the JDBC 1.22 standard:

■ Support for Oracle datatypes

■ Performance enhancement by row prefetching

■ Performance enhancement by execution batching

■ Specification of query column types to save round-trips

■ Control of DatabaseMetaData calls

Oracle Database supports all APIs from the JDBC 2.0 standard, including the core
APIs, optional packages, and numerous extensions. Some of the highlights include
datasources, JTA, and distributed transactions.

Oracle Database supports the following features from the JDBC 3.0 standard:

■ Support for JDK 1.4.

■ Toggling between local and global transactions.

■ Transaction savepoints.

■ Reuse of prepared statements by connection pools.

Sample JDBC 2.0 Program
The following example shows the recommended technique for looking up a data
source using JNDI in JDBC 2.0:

// import the JDBC packages
import java.sql.*;

Overview of Java Support Built into the Database

1-10 Oracle Database Advanced Application Developer's Guide

import javax.sql.*;
import oracle.jdbc.pool.*;
...
 InitialContext ictx = new InitialContext();
 DataSource ds = (DataSource)ictx.lookup("jdbc/OracleDS");
 Connection conn = ds.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT last_name FROM employees");
 while (rs.next()) {
 out.println(rs.getString("ename") + "
");
 }
conn.close();

Sample Pre-2.0 JDBC Program
The following source code registers an Oracle JDBC thin driver, connects to the
database, creates a Statement object, executes a query, and processes the result set.

The SELECT statement retrieves and lists the contents of the last_name column of
the hr.employees table.

import java.sql.*
import java.math.*
import java.io.*
import java.awt.*

class JdbcTest {
 public static void main (String args []) throws SQLException {
 // Load Oracle driver
 DriverManager.registerDriver (new oracle.jdbc.OracleDriver());

 // Connect to the local database
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:thin:@myhost:1521:orcl",
 "hr", "hr");

 // Query the employee names
 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("SELECT last_name FROM employees");

 // Print the name out
 while (rset.next ())
 System.out.println (rset.getString (1));
 // Close the result set, statement, and the connection
 rset.close();
 stmt.close();
 conn.close();
 }
}

One Oracle Database extension to the JDBC drivers is a form of the
getConnection() method that uses a Properties object. The Properties object
lets you specify user, password, and database information as well as row prefetching
and execution batching.

To use the OCI driver in this code, replace the Connection statement with the
following, where MyHostString is an entry in the tnsnames.ora file:

Connection conn = DriverManager.getConnection ("jdbc:oracle:oci8:@MyHostString",
 "hr", "hr");

Overview of Java Support Built into the Database

Introduction to Oracle Programmatic Environments 1-11

If you are creating an applet, then the getConnection() and registerDriver()
strings are different.

JDBC in SQLJ Applications
JDBC code and SQLJ code (see "Overview of Oracle SQLJ" on page 1-11) interoperate,
allowing dynamic SQL statements in JDBC to be used with both static and dynamic
SQL statements in SQLJ. A SQLJ iterator class corresponds to the JDBC result set.

Overview of Oracle SQLJ
SQLJ is an ANSI SQL-1999 standard for embedding SQL statements in Java source
code. SQLJ provides a simpler alternative to JDBC for both client-side and server-side
SQL data access from Java.

A SQLJ source file contains Java source with embedded SQL statements. Oracle SQLJ
supports dynamic as well as static SQL. Support for dynamic SQL is an Oracle
extension to the SQLJ standard.

Oracle Database provides a translator and a run time driver to support SQLJ. The SQLJ
translator is 100% pure Java and is portable to any JVM that is compliant with JDK
version 1.1 or higher.

The Oracle SQLJ translator performs the following tasks:

■ Translates SQLJ source to Java code with calls to the SQLJ run time driver. The
SQLJ translator converts the source code to pure Java source code and can check
the syntax and semantics of static SQL statements against a database schema and
verify the type compatibility of host variables with SQL types.

■ Compiles the generated Java code with the Java compiler.

■ (Optional) Creates profiles for the target database. SQLJ generates "profile" files
with customization specific to Oracle Database.

Oracle Database supports SQLJ stored subprograms and triggers that execute in the
Oracle JVM. SQLJ is integrated with JDeveloper. Source-level debugging support for
SQLJ is available in JDeveloper.

The following is an example of a simple SQLJ executable statement, which returns one
value because employee_id is unique in the employee table:

String name;
#sql { SELECT first_name INTO :name FROM employees WHERE employee_id=112 };
System.out.println("Name is " + name + ", employee number = " + employee_id);

Each host variable (or qualified name or complex Java host expression) included in a
SQL expression is preceded by a colon (:). Other SQLJ statements declare Java types.
For example, you can declare an iterator (a construct related to a database cursor) for
queries that retrieve many values, as follows:

#sql iterator EmpIter (String EmpNam, int EmpNumb);

See Also: Oracle Database JDBC Developer's Guide and Reference for
more information on JDBC

Note: This document uses the term SQLJ to refer to the Oracle SQLJ
implementation, including Oracle SQLJ extensions.

Overview of Java Support Built into the Database

1-12 Oracle Database Advanced Application Developer's Guide

Topics:

■ Benefits of SQLJ

■ Comparing SQLJ to JDBC

■ SQLJ Stored Subprograms in the Server

Benefits of SQLJ
Oracle SQLJ extensions to Java allow rapid development and easy maintenance of
applications that perform database operations through embedded SQL.

In particular, Oracle SQLJ does the following:

■ Provides a concise, legible mechanism for database access from static SQL. Most
SQL in applications is static. SQLJ provides more concise and less error-prone
static SQL constructs than JDBC does.

■ Provides an SQL Checker module for verification of syntax and semantics at
translate time.

■ Provides flexible deployment configurations, which makes it possible to
implement SQLJ on the client, server, or middle tier.

■ Supports a software standard. SQLJ is an effort of a group of vendors and is
supported by all of them. Applications can access multiple database vendors.

■ Provides source code portability. Executables can be used with all of the vendor
DBMSs if the code does not rely on any vendor-specific features.

■ Enforces a uniform programming style for the clients and the servers.

■ Integrates the SQLJ translator with Oracle JDeveloper, a graphical IDE that
provides SQLJ translation, Java compilation, profile customizing, and debugging
at the source code level, all in one step.

■ Includes Oracle type extensions. Datatypes supported include: LOB datatypes,
ROWID, REF CURSOR, VARRAY, nested table, user-defined object types, RAW, and
NUMBER.

Comparing SQLJ to JDBC
JDBC provides a complete dynamic SQL interface from Java to databases. It gives
developers full control over database operations. SQLJ simplifies Java database
programming to improve development productivity.

JDBC provides fine-grained control of the execution of dynamic SQL from Java,
whereas SQLJ provides a higher-level binding to SQL operations in a specific database
schema. Following are some differences between JDBC and SQLJ:

■ SQLJ source code is more concise than equivalent JDBC source code.

■ SQLJ uses database connections to type-check static SQL code. JDBC, being a
completely dynamic API, does not.

See Also: For more examples and details on Oracle SQLJ syntax:

■ Oracle Database JPublisher User's Guide

■ Sample SQLJ code available on the Oracle Technology Network
Web site: http://www.oracle.com/technology/

Overview of Java Support Built into the Database

Introduction to Oracle Programmatic Environments 1-13

■ SQLJ provides strong typing of query outputs and return parameters and allows
type-checking on calls. JDBC passes values to and from SQL without compile-time
type checking.

■ SQLJ programs allow direct embedding of Java bind expressions within SQL
statements. JDBC requires a separate get or set statement for each bind variable
and specifies the binding by position number.

■ SQLJ provides simplified rules for calling SQL stored subprograms. For example,
the following JDBC excerpt requires a generic call to a stored subprogram, in this
case fun, to have the following syntax. (This example shows SQL92 and Oracle
JDBC syntaxes. Both are allowed.)

prepStmt.prepareCall("{call fun(?,?)}"); //stored procedure SQL92
prepStmt.prepareCall("{? = call fun(?,?)}"); //stored function SQL92
prepStmt.prepareCall("begin fun(:1,:2);end;"); //stored procedure Oracle
prepStmt.prepareCall("begin :1 := fun(:2,:3);end;");//stored func Oracle

Following is the SQLJ equivalent:

#sql {call fun(param_list) }; //Stored procedure
// Declare x
...
#sql x = {VALUES(fun(param_list)) }; // Stored function
// where VALUES is the SQL construct

The following benefits are common to SQLJ and JDBC:

■ SQLJ source files can contain JDBC calls. SQLJ and JDBC are interoperable.

■ Oracle JPublisher generates custom Java classes to be used in your SQLJ or JDBC
application for mappings to Oracle object types and collections.

■ Java and PL/SQL stored subprograms can be used interchangeably.

SQLJ Stored Subprograms in the Server
SQLJ applications can be stored and executed in the server by using the following
techniques:

■ Translate, compile, and customize the SQLJ source code on a client and load the
generated classes and resources into the server with the loadjava utility. The
classes are typically stored in a Java archive (.jar) file.

■ Load the SQLJ source code into the server, also using loadjava, where it is
translated and compiled by the server's embedded translator.

Overview of Oracle JPublisher
Oracle JPublisher is a code generator that automates the process of creating
database-centric Java classes by hand. Oracle JPublisher is a client-side utility and is
built into the database system. You can run Oracle JPublisher from the command line
or directly from the Oracle JDeveloper IDE.

Oracle JPublisher inspects PL/SQL packages and database object types such as SQL
object types, VARRAY types, and nested table types, and then generates a Java class
that is a wrapper around the PL/SQL package with corresponding fields and
methods.

See Also: Oracle Database JPublisher User's Guide for more
information on using stored subprograms with Oracle SQLJ

Overview of Java Support Built into the Database

1-14 Oracle Database Advanced Application Developer's Guide

The generated Java class can be incorporated and used by Java clients or J2EE
components to exchange and transfer object type instances to and from the database
transparently.

Overview of Java Stored Subprograms
Java stored subprograms enable you to implement programs that run in the database
server and are independent of programs that run in the middle tier. Structuring
applications in this way reduces complexity and increases reuse, security,
performance, and scalability.

For example, you can create a Java stored subprogram that performs operations that
require data persistence and a separate program to perform presentation or business
logic operations.

Java stored subprograms interface with SQL by using a similar execution model as
PL/SQL.

Overview of Oracle Database Web Services
Web services represent a distributed computing paradigm for Java application
development that is an alternative to earlier Java protocols such as JDBC. It allows
application-to-application interaction through the XML and Web protocols. For
example, an electronics parts vendor can provide a Web-based programmatic interface
to its suppliers for inventory management. The vendor can invoke a Web service as
part of a program and automatically order new stock based on the data returned.

The key technologies used in Web services are:

■ Web Services Description Language (WSDL), which is a standard format for
creating an XML document. WSDL describes what a web service can do, where it
resides, and how to invoke it. Specifically, it describes the operations and
parameters, including parameter types, provided by a Web service. In addition, a
WSDL document describes the location, the transport protocol, and the invocation
style for the Web service.

■ Simple Object Access Protocol (SOAP) messaging, which is an XML-based
message protocol used by Web services. SOAP does not prescribe a specific
transport mechanism such as HTTP, FTP, SMTP, or JMS; however, most Web
services accept messages that use HTTP or HTTPS.

■ Universal Description, Discovery, and Integration (UDDI) business registry, which
is a directory that lists Web services on the internet. The UDDI registry is often
compared to a telephone directory, listing unique identifiers (white pages),
business categories (yellow pages), and instructions for binding to a service
protocol (green pages).

Web services can use a variety of techniques and protocols. For example:

■ Dispatching can occur in a synchronous (typical) or asynchronous manner.

■ You can invoke a Web service in an RPC-style operation in which arguments are
sent and a response returned, or in a message style such as a one-way SOAP
document exchange.

■ You can use different encoding rules: literal or encoded.

See Also: Oracle Database JPublisher User's Guide

See Also: Oracle Database Java Developer's Guide

Overview of Java Support Built into the Database

Introduction to Oracle Programmatic Environments 1-15

You can invoke a Web service statically, when you might know everything about it
beforehand, or dynamically, in which case you can discover its operations and
transport endpoints while using it.

Oracle Database can function as either a Web service provider or as a Web service
consumer. When used as a provider, the database enables sharing and disconnected
access to stored subprograms, data, metadata, and other database resources such as
the queuing and messaging systems.

As a Web service provider, Oracle Database provides a disconnected and
heterogeneous environment that:

■ Exposes stored subprograms independently of the language in which the
subprograms are written

■ Exposes SQL Queries and XQuery

Overview of Writing Subprograms in Java
Subprograms (procedures and functions) are named blocks that encapsulate a
sequence of statements. They are like building blocks that you can use to construct
modular, maintainable applications. Write these named blocks and then define them
with the loadjava command or SQL CREATE FUNCTION, CREATE PROCEDURE, or
CREATE PACKAGE statements. These Java methods can accept arguments and can be
called from the following:

■ SQL CALL statements

■ Embedded SQL CALL statements

■ PL/SQL blocks, subprograms, and packages

■ DML statements (INSERT, UPDATE, DELETE, and SELECT)

■ Oracle development tools such as OCI, Pro*C/C++, and Oracle Developer

■ Oracle Java interfaces such as JDBC, SQLJ statements, CORBA, and Enterprise
Java Beans

■ Method calls from object types

Topics:

■ Overview of Writing Database Triggers in Java

■ Why Use Java for Stored Subprograms and Triggers?

Overview of Writing Database Triggers in Java
A database trigger is a stored procedure that Oracle Database invokes ("fires")
automatically when certain events occur, for example, when a DML operation
modifies a certain table. Triggers enforce business rules, prevent incorrect values from
being stored, and reduce the need to perform checking and cleanup operations in each
application.

Why Use Java for Stored Subprograms and Triggers?
■ Stored subprograms and triggers are compiled once, are easy to use and maintain,

and require less memory and computing overhead.

■ Network bottlenecks are avoided, and response time is improved. Distributed
applications are easier to build and use.

■ Computation-bound subprograms run faster in the server.

Overview of Pro*C/C++

1-16 Oracle Database Advanced Application Developer's Guide

■ Data access can be controlled by letting users have only stored subprograms and
triggers that execute with DR instead of IR.

■ PL/SQL and Java stored subprograms can invoke each other.

■ Java in the server follows the Java language specification and can use the SQLJ
standard, so that databases other than Oracle Database are also supported.

■ Stored subprograms and triggers can be reused in different applications as well as
different geographic sites.

Overview of Pro*C/C++
The Pro*C/C++ precompiler is a software tool that allows the programmer to embed
SQL statements in a C or C++ source file. Pro*C/C++ reads the source file as input and
outputs a C or C++ source file that replaces the embedded SQL statements with Oracle
run-time library calls and is then compiled by the C or C++ compiler.

When there are errors found during the precompilation or the subsequent compilation,
modify your precompiler input file and rerun the two steps.

Topics:

■ Implementing a Pro*C/C++ Application

■ Highlights of Pro*C/C++ Features

Implementing a Pro*C/C++ Application
The following is a simple code fragment from a C source file that queries the table
employees in the schema hr:

...
#define UNAME_LEN 10
...
int emp_number;
/* Define a host structure for the output values of a SELECT statement. */
/* No declare section needed if precompiler option MODE=ORACLE */
struct {
 VARCHAR last_name[UNAME_LEN];
 float salary;
 float commission_pct;
} emprec;
/* Define an indicator structure to correspond to the host output structure. */
struct {
 short emp_name_ind;
 short sal_ind;
 short comm_ind;
} emprec_ind;
...
/* Select columns last_name, salary, and commission_pct given the user's input
/* for employee_id. */
 EXEC SQL SELECT last_name, salary, commission_pct
 INTO :emprec INDICATOR :emprec_ind
 FROM employees
 WHERE employee_id = :emp_number;
...

The embedded SELECT statement differs slightly from the interactive (SQL*Plus)
SELECT statement. Every embedded SQL statement begins with EXEC SQL. The colon
(:) precedes every host (C) variable. The returned values of data and indicators (set

Overview of Pro*C/C++

Introduction to Oracle Programmatic Environments 1-17

when the data value is NULL or character columns were truncated) can be stored in
structs (such as in the preceding code fragment), in arrays, or in arrays of structs.
Multiple result set values are handled very simply in a manner that resembles the case
shown, where there is only one result, because of the unique employee number. Use
the actual names of columns and tables in embedded SQL.

Either use the default precompiler option values or enter values that give you control
over the use of resources, how errors are reported, the formatting of output, and how
cursors (which correspond to a particular connection or SQL statement) are managed.
Cursors are used when there are multiple result set values.

Enter the options either in a configuration file, on the command line, or in-line inside
your source code with a special statement that begins with EXEC ORACLE. If there are
no errors found, you can compile, link, and execute the output source file, like any
other C program that you write.

Use the precompiler to create server database access from clients that can be on many
different platforms. Pro*C/C++ gives you the freedom to design your own user
interfaces and to add database access to existing applications.

Before writing your embedded SQL statements, you can test interactive versions of the
SQL in SQL*Plus and then make minor changes to start testing your embedded SQL
application.

Highlights of Pro*C/C++ Features
The following is a short subset of the capabilities of Pro*C/C++. For complete details,
see Pro*C/C++ Precompiler Programmer's Guide.

■ You can write your application in either C or C++.

■ You can write multithreaded programs if your platform supports a threads
package. Concurrent connections are supported in either single-threaded or
multithreaded applications.

■ You can improve performance by embedding PL/SQL blocks. These blocks can
invoke subprograms in Java or PL/SQL that are written by you or provided in
Oracle Database packages.

■ Using precompiler options, you can check the syntax and semantics of your SQL
or PL/SQL statements during precompilation, as well as at run time.

■ You can invoke stored PL/SQL and Java subprograms. Modules written in
COBOL or in C can be invoked from Pro*C/C++. External C subprograms in
shared libraries can be invoked by your program.

■ You can conditionally precompile sections of your code so that they can execute in
different environments.

■ You can use arrays, or structures, or arrays of structures as host and indicator
variables in your code to improve performance.

■ You can deal with errors and warnings so that data integrity is guaranteed. As a
programmer, you control how errors are handled.

■ Your program can convert between internal datatypes and C language datatypes.

■ The Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI), lower-level
C and C++ interfaces, are available for use in your precompiler source.

■ Pro*C/C++ supports dynamic SQL, a technique that allows users to input variable
values and statement syntax.

Overview of Pro*COBOL

1-18 Oracle Database Advanced Application Developer's Guide

■ Pro*C/C++ can use special SQL statements to manipulate tables containing
user-defined object types. An Object Type Translator (OTT) maps the object types
and named collection types in your database to structures and headers that you
include in your source.

■ Two kinds of collection types, nested tables and VARRAY, are supported with a set
of SQL statements that allow a high degree of control over data.

■ Large Objects are accessed by another set of SQL statements.

■ A new ANSI SQL standard for dynamic SQL is supported for new applications, so
that you can execute SQL statements with a varying number of host variables. An
older technique for dynamic SQL is still usable by pre-existing applications.

■ Globalization support lets you use multibyte characters and UCS2 Unicode data.

■ Using scrollable cursors, you can move backward and forward through a result
set. For example, you can fetch the last row of the result set, or jump forward or
backward to an absolute or relative position within the result set.

■ A connection pool is a group of physical connections to a database that can be
shared by several named connections. Enabling the connection pool option can
help to optimize the performance of Pro*C/C++ application. The connection pool
option is not enabled by default.

Overview of Pro*COBOL
The Pro*COBOL precompiler is a software tool that allows the programmer to embed
SQL statements in a COBOL source code file. Pro*COBOL reads the source file as
input and outputs a COBOL source file that replaces the embedded SQL statements
with Oracle Database run-time library calls, and is then compiled by the COBOL
compiler.

When there are errors found during the precompilation or the subsequent compilation,
modify your precompiler input file and rerun the two steps.

Topics:

■ Implementing a Pro*COBOL Application

■ Highlights of Pro*COBOL Features

Implementing a Pro*COBOL Application
Here is a simple code fragment from a source file that queries the table employees in
the schema hr:

...
 WORKING-STORAGE SECTION.
*
* DEFINE HOST INPUT AND OUTPUT HOST AND INDICATOR VARIABLES.
* NO DECLARE SECTION NEEDED IF MODE=ORACLE.
*
 01 EMP-REC-VARS.
 05 EMP-NAME PIC X(10) VARYING.
 05 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
 05 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
 05 COMMISSION PIC S9(5)V99 COMP-3 VALUE ZERO.
 05 COMM-IND PIC S9(4) COMP VALUE ZERO.
...
 PROCEDURE DIVISION.
...

Overview of Pro*COBOL

Introduction to Oracle Programmatic Environments 1-19

 EXEC SQL
 SELECT last_name, salary, commission_pct
 INTO :EMP-NAME, :SALARY, :COMMISSION:COMM-IND
 FROM employees
 WHERE employee_id = :EMP-NUMBER
 END-EXEC.
...

The embedded SELECT statement is only slightly different from an interactive
(SQL*Plus) SELECT statement. Every embedded SQL statement begins with EXEC
SQL. The colon (:) precedes every host (COBOL) variable. The SQL statement is
terminated by END-EXEC. The returned values of data and indicators (set when the
data value is NULL or character columns were truncated) can be stored in group items
(such as in the preceding code fragment), in tables, or in tables of group items.
Multiple result set values are handled very simply in a manner that resembles the case
shown, where there is only one result, given the unique employee number. Use the
actual names of columns and tables in embedded SQL.

Use the default precompiler option values, or enter values that give you control over
the use of resources, how errors are reported, the formatting of output, and how
cursors are managed (cursors correspond to a particular connection or SQL statement).

Enter the options in a configuration file, on the command line, or in-line inside your
source code with a special statement that begins with EXEC ORACLE. If there are no
errors found, you can compile, link, and execute the output source file, like any other
COBOL program that you write.

Use the precompiler to create server database access from clients that can be on many
different platforms. Pro*COBOL gives you the freedom to design your own user
interfaces and to add database access to existing COBOL applications.

The embedded SQL statements available conform to an ANSI standard, so that you
can access data from many databases in a program, including remote servers
networked through Oracle Net.

Before writing your embedded SQL statements, you can test interactive versions of the
SQL in SQL*Plus and then make minor changes to start testing your embedded SQL
application.

Highlights of Pro*COBOL Features
The following is a short subset of the capabilities of Pro*COBOL.

■ You can invoke stored PL/SQL or Java subprograms. You can improve
performance by embedding PL/SQL blocks. These blocks can invoke PL/SQL
subprograms written by you or provided in Oracle Database packages.

■ Precompiler options enable you to define how cursors, errors, syntax-checking, file
formats, and so on, are handled.

■ Using precompiler options, you can check the syntax and semantics of your SQL
or PL/SQL statements during precompilation, as well as at run time.

■ You can conditionally precompile sections of your code so that they can execute in
different environments.

■ Use tables, or group items, or tables of group items as host and indicator variables
in your code to improve performance.

■ You can program how errors and warnings are handled, so that data integrity is
guaranteed.

Overview of OCI and OCCI

1-20 Oracle Database Advanced Application Developer's Guide

■ Pro*COBOL supports dynamic SQL, a technique that allows users to input
variable values and statement syntax.

Overview of OCI and OCCI
The Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI) are application
programming interfaces (APIs) that enable you to create applications that use native
subprogram invocations of a third-generation language to access Oracle Database and
control all phases of SQL statement execution. These APIs provide:

■ Improved performance and scalability through the efficient use of system memory
and network connectivity

■ Consistent interfaces for dynamic session and transaction management in a
two-tier client/server or multitier environment

■ N-tiered authentication

■ Comprehensive support for application development using Oracle objects

■ Access to external databases

■ Ability to develop applications that service an increasing number of users and
requests without additional hardware investments

OCI lets you manipulate data and schemas in a database using a host programming
language, such as C. OCCI is an object-oriented interface suitable for use with C++.
These APIs provide a library of standard database access and retrieval functions in the
form of a dynamic run-time library (OCILIB) that can be linked in an application at
run time. This eliminates the need to embed SQL or PL/SQL within 3GL programs.

Topics:

■ Advantages of OCI and OCCI

■ OCI and OCCI Functions

■ Procedural and Nonprocedural Elements of OCI and OCCI Applications

■ Building an OCI or OCCI Application

Advantages of OCI and OCCI
OCI and OCCI provide significant advantages over other methods of accessing Oracle
Database:

■ More fine-grained control over all aspects of the application design.

■ High degree of control over program execution.

See Also: Pro*COBOL Programmer's Guide for complete details

See Also: For more information about OCI and OCCI calls:

■ Oracle Call Interface Programmer's Guide

■ Oracle C++ Call Interface Programmer's Guide

■ Oracle Streams Advanced Queuing User's Guide

■ Oracle Database Globalization Support Guide

■ Oracle Database Data Cartridge Developer's Guide

Overview of OCI and OCCI

Introduction to Oracle Programmatic Environments 1-21

■ Use of familiar 3GL programming techniques and application development tools
such as browsers and debuggers.

■ Support of dynamic SQL, method 4.

■ Availability on the broadest range of platforms of all the Oracle programmatic
interfaces.

■ Dynamic bind and define using callbacks.

■ Describe functionality to expose layers of server metadata.

■ Asynchronous event notification for registered client applications.

■ Enhanced array data manipulation language (DML) capability for array INSERTs,
UPDATEs, and DELETEs.

■ Ability to associate a commit request with an execute to reduce round-trips.

■ Optimization for queries using transparent prefetch buffers to reduce round-trips.

■ Thread safety, so you do not have to implement mutual exclusion (mutex) locks on
OCI and OCCI handles.

■ The server connection in nonblocking mode means that control returns to the OCI
or OCCI code when a call is still executing or cannot complete.

OCI and OCCI Functions
Both OCI and OCCI have four kinds of functions:

Procedural and Nonprocedural Elements of OCI and OCCI Applications
OCI and OCCI enable you to develop applications that combine the nonprocedural
data access power of SQL with the procedural capabilities of most programming
languages, including C and C++. procedural and nonprocedural languages have these
characteristics:

■ In a nonprocedural language program, the set of data to be operated on is
specified, but what operations are performed and how the operations are to be
carried out is not specified. The nonprocedural nature of SQL makes it an easy
language to learn and to use to perform database transactions. It is also the
standard language used to access and manipulate data in modern relational and
object-relational database systems.

■ In a procedural language program, the execution of most statements depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, which are not available in SQL. The procedural nature of
these languages makes them more complex than SQL, but it also makes them very
flexible and powerful.

Kind of Function Purpose

Relational To manage database access and process SQL
statements

Navigational To manipulate objects retrieved from the database

Database mapping and manipulation To manipulate data attributes of Oracle types

External subprogram To write C callbacks from PL/SQL

Overview of OCI and OCCI

1-22 Oracle Database Advanced Application Developer's Guide

The combination of both nonprocedural and procedural language elements in an OCI
or OCCI program provides easy access to Oracle Database in a structured
programming environment.

OCI and OCCI support all SQL data definition, data manipulation, query, and
transaction control facilities that are available through Oracle Database. For example,
an OCI or OCCI program can run a query against Oracle Database. The queries can
require the program to supply data to the database using input (bind) variables, as
follows:

SELECT name FROM employees WHERE empno = :empnumber

In the preceding SQL statement, :empnumber is a placeholder for a value to be
supplied by the application.

Alternatively, you can use PL/SQL, Oracle's procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications written
in SQL alone. OCI and OCCI also provide facilities for accessing and manipulating
objects in Oracle Database.

Building an OCI or OCCI Application
As Figure 1–1 shows, you compile and link an OCI or OCCI program in the same way
that you compile and link a nondatabase application. There is no need for a separate
preprocessing or precompilation step.

Figure 1–1 The OCI or OCCI Development Process

Note: To properly link your OCI and OCCI programs, it might be
necessary on some platforms to include other libraries, in addition to
the OCI and OCCI libraries. Check your Oracle platform-specific
documentation for further information about extra libraries that might
be required.

Host Language Compiler

Source Files

Host Linker

Application

Object Files OCI Library

Object
Server

Overview of Oracle Objects for OLE (OO4O)

Introduction to Oracle Programmatic Environments 1-23

Overview of Oracle Data Provider for .NET (ODP.NET)
Oracle Data Provider for .NET (ODP.NET) is an implementation of a data provider for
Oracle Database.

ODP.NET uses APIs native to Oracle Database to offer fast and reliable access from
any .NET application to database features and data. It also uses and inherits classes
and interfaces available in the Microsoft .NET Framework Class Library.

For programmers using Oracle Provider for OLE DB, ADO (ActiveX Data Objects)
provides an automation layer that exposes an easy programming model. ADO.NET
provides a similar programming model, but without the automation layer, for better
performance. More importantly, the ADO.NET model allows native providers such as
ODP.NET to expose specific features and datatypes specific to Oracle Database.

The following is a simple C# application that connects to Oracle Database and displays
its version number before disconnecting.

using System;
using Oracle.DataAccess.Client;

class Example
{
 OracleConnection con;

 void Connect()
 {
 con = new OracleConnection();
 con.ConnectionString = "User Id=hr;Password=hr;Data Source=oracle";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);
 }

 void Close()
 {
 con.Close();
 con.Dispose();
 }

 static void Main()
 {
 Example example = new Example();
 example.Connect();
 example.Close();
 }
}

Overview of Oracle Objects for OLE (OO4O)
Oracle Objects for OLE (OO4O) is a product designed to allow easy access to data
stored in Oracle Database with any programming or scripting language that supports
the Microsoft COM Automation and ActiveX technology. This includes Visual Basic,

See Also: Oracle Data Provider for .NET Developer's Guide

Note: Additional samples are provided in directory ORACLE_
BASE\ORACLE_HOME\ODP.NET\Samples.

Overview of Oracle Objects for OLE (OO4O)

1-24 Oracle Database Advanced Application Developer's Guide

Visual C++, Visual Basic For Applications (VBA), IIS Active Server Pages (VBScript
and JavaScript), and others.

See the OO4O online help for detailed information about using OO4O.

Oracle Objects for OLE consists of the following software layers:

■ OO4O "In-Process" Automation Server

■ Oracle Data Control

■ Oracle Objects for OLE C++ Class Library

Figure 1–2 illustrates the OO4O software components.

Figure 1–2 Software Layers

This illustration shows the OO4O software components (layers).

The first layer contains the Data Aware ActiveX Controls.

 The second layer consists of C++ Class Libraries and Oracle Data Control Automation
Controllers (VB< Excel, ASP).

The third layer contains the COM/DCOM.

The fourth layer contains the OO40 In-Process Automation Server.

The fifth layer contains the Oracle Client Libraries (OCI, CORE, NLS).

The last layer contains the Oracle Database.

Topics:

■ OO4O Automation Server

■ OO4O Object Model

■ Support for Oracle LOB and Object Datatypes

Data Aware
ActiveX
Controls

Oracle Data
Control

Oracle Client
Libraries

(OCI, CORE,
NLS)

Oracle
Database

OO4O
In-Process
Automation

Server

COM/DCOM

Automation
Controllers

(VB, Excel, ASP)
C++ Class
Libraries

Overview of Oracle Objects for OLE (OO4O)

Introduction to Oracle Programmatic Environments 1-25

■ Oracle Data Control

■ Oracle Objects for OLE C++ Class Library

■ Additional Sources of Information

OO4O Automation Server
The OO4O Automation Server is a set of COM Automation objects for connecting to
Oracle Database, executing SQL statements and PL/SQL blocks, and accessing the
results.

Unlike other COM-based database connectivity APIs, such as Microsoft ADO, the
OO4O Automation Server was developed specifically for use with Oracle Database.

It provides an optimized API for accessing features that are unique to Oracle Database
and are otherwise cumbersome or inefficient to use from ODBC or OLE
database-specific components.

OO4O provides key features for accessing Oracle Database efficiently and easily in
environments ranging from the typical two-tier client/server applications, such as
those developed in Visual Basic or Excel, to application servers deployed in
multitiered application server environments such as Web server applications in
Microsoft Internet Information Server (IIS) or Microsoft Transaction Server (MTS).

Features include:

■ Support for execution of PL/SQL and Java stored subprograms, and PL/SQL
anonymous blocks. This includes support for Oracle datatypes used as parameters
to stored subprograms, including PL/SQL cursors. See "Support for Oracle LOB
and Object Datatypes" on page 1-29.

■ Support for scrollable and updatable cursors for easy and efficient access to result
sets of queries.

■ Thread-safe objects and Connection Pool Management Facility for developing
efficient Web server applications.

■ Full support for Oracle object-relational and LOB datatypes.

■ Full support for Advanced Queuing.

■ Support for array inserts and updates.

■ Support for Microsoft Transaction Server (MTS).

OO4O Object Model
The Oracle Objects for OLE object model is illustrated in Figure 1–3.

Overview of Oracle Objects for OLE (OO4O)

1-26 Oracle Database Advanced Application Developer's Guide

Figure 1–3 Objects and Their Relations

This figure shows OO4O objects and their relations. The relations are as follows:

■ From OraServer to OraSession

■ From OraDatabase to both OraServer and OraSession

■ From each of OraDynaset, OraMetaData, OraParameters, OraSQLStmt, and
OraAQ to OraDatabase

■ From multiple OraField objects to OraDynaset

■ From multiple OraMDAttribute objects to OraMetaData

■ From multiple OraParameter and OraParamArray objects to OraParameters

■ from OraAQMsg to OraAQ

Topics:

■ OraSession

■ OraServer

■ OraDatabase

■ OraDynaset

■ OraField

■ OraMetaData and OraMDAttribute

■ OraParameter and OraParameters

■ OraParamArray

■ OraSQLStmt

■ OraAQ

■ OraAQMsg

■ OraAQAgent

OraParameter

OraParameters

OraParamArray

OraSession

OraDatabase

OraField

OraMDAttribute

OraSQLStmt

OraDynaset

OraMetaData

OraAQ OraAQMsg

OraServer

Overview of Oracle Objects for OLE (OO4O)

Introduction to Oracle Programmatic Environments 1-27

OraSession
An OraSession object manages collections of OraDatabase, OraConnection, and
OraDynaset objects used within an application.

Typically, a single OraSession object is created for each application, but you can create
named OraSession objects for shared use within and between applications.

The OraSession object is the top-most object for an application. It is the only object
created by the CreateObject VB/VBA API and not by an Oracle Objects for OLE
method. The following code fragment shows how to create an OraSession object:

Dim OraSession as Object
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

OraServer
OraServer represents a physical network connection to Oracle Database.

The OraServer interface is introduced to expose the connection-multiplexing feature
provided in the Oracle Call Interface. After an OraServer object is created, multiple
user sessions (OraDatabase) can be attached to it by calling the OpenDatabase
method. This feature is particularly useful for application components, such as
Internet Information Server (IIS), that use Oracle Objects for OLE in n-tier distributed
environments.

The use of connection multiplexing when accessing Oracle Database with a large
number of user sessions active can help reduce server processing and resource
requirements while improving server scalability.

OraServer is used to share a single connection across multiple OraDatabase objects
(multiplexing), whereas each OraDatabase obtained from an OraSession has its own
physical connection.

OraDatabase
An OraDatabase interface adds additional methods for controlling transactions and
creating interfaces representing of Oracle object types. Attributes of schema objects can
be retrieved using the Describe method of the OraDatabase interface.

In releases prior to Oracle8i, an OraDatabase object is created by calling the
OpenDatabase method of an OraSession interface. The Oracle Net alias, user
name, and password are passed as arguments to this method. In Oracle8i and later,
calling this method results in implicit creation of an OraServer object.

An OraDatabase object can also be created using the OpenDatabase method of the
OraServer interface.

Transaction control methods are available at the OraDatabase (user session) level.
Transactions might be started as Read-Write (default), Serializable, or
Read-only. Transaction control methods include:

■ BeginTrans

■ CommitTrans

■ RollbackTrans

For example:

UserSession.BeginTrans(OO4O_TXN_READ_WRITE)
UserSession.ExecuteSQL("delete emp where empno = 1234")
UserSession.CommitTrans

Overview of Oracle Objects for OLE (OO4O)

1-28 Oracle Database Advanced Application Developer's Guide

OraDynaset
An OraDynaset object permits browsing and updating of data created from a SQL
SELECT statement.

The OraDynaset object can be thought of as a cursor, although in actuality several
real cursors might be used to implement the semantics of OraDynaset. An
OraDynaset object automatically maintains a local cache of data fetched from the
server and transparently implements scrollable cursors within the browse data. Large
queries might require significant local disk space; application developers are
encouraged to refine queries to limit disk usage.

OraField
An OraField object represents a single column or data item within a row of a
dynaset.

If the current row is being updated, then the OraField object represents the currently
updated value, although the value might not have been committed to the database.

Assignment to the Value property of a field is permitted only if a record is being
edited (using Edit) or a new record is being added (using AddNew). Other attempts to
assign data to a field's Value property results in an error.

OraMetaData and OraMDAttribute
An OraMetaData object is a collection of OraMDAttribute objects that represent the
description information about a particular schema object in the database.

The OraMetaData object can be visualized as a table with three columns:

■ Metadata Attribute Name

■ Metadata Attribute Value

■ Flag specifying whether the Value is another OraMetaData object

The OraMDAttribute objects contained in the OraMetaData object can be accessed
by subscripting using ordinal integers or by using the name of the property.
Referencing a subscript that is not in the collection results in the return of a NULL
OraMDAttribute object.

OraParameter and OraParameters
An OraParameter object represents a bind variable in a SQL statement or PL/SQL
block.

OraParameter objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each parameter has an
identifying name and an associated value. You can automatically bind a parameter to
SQL and PL/SQL statements of other objects (as noted in the object descriptions), by
using the parameter name as a placeholder in the SQL or PL/SQL statement. Such use
of parameters can simplify dynamic queries and increase program performance.

OraParamArray
An OraParamArray object represents an array-type bind variable in a SQL statement
or PL/SQL block, as opposed to a scalar-type bind variable represented by the
OraParameter object.

OraParamArray objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each OraParamArray object
has an identifying name and an associated value.

Overview of Oracle Objects for OLE (OO4O)

Introduction to Oracle Programmatic Environments 1-29

OraSQLStmt
An OraSQLStmt object represents a single SQL statement. Use the CreateSQL
method to create an OraSQLStmt object from an OraDatabase object.

During create and refresh, OraSQLStmt objects automatically bind all relevant,
enabled input parameters to the specified SQL statement, using the parameter names
as placeholders in the SQL statement. This can improve the performance of SQL
statement execution without reparsing the SQL statement.

The OraSQLStmt object can be used later to execute the same query using a different
value for the :SALARY placeholder. This is done as follows (updateStmt is the
OraSQLStmt object here):

OraDatabase.Parameters("SALARY").value = 200000
updateStmt.Parameters("ENAME").value = "KING"
updateStmt.Refresh

OraAQ
An OraAQ object is instantiated by calling the CreateAQ method of the
OraDatabase interface. It represents a queue that is present in the database.

Oracle Objects for OLE provides interfaces for accessing Oracle Advanced Queuing
(AQ) feature. It makes AQ accessible from popular COM-based development
environments such as Visual Basic. For a detailed description of Oracle Advanced
Queuing, see Oracle Streams Advanced Queuing User's Guide.

OraAQMsg
The OraAQMsg object encapsulates the message to be enqueued or dequeued. The
message can be of any user-defined or raw type.

For a detailed description of Oracle Advanced Queuing, see Oracle Streams Advanced
Queuing User's Guide.

OraAQAgent
The OraAQAgent object represents a message recipient and is only valid for queues
that allow multiple consumers. It is a child of OraAQMsg.

An OraAQAgent object can be instantiated by calling the AQAgent method. For
example:

Set agent = qMsg.AQAgent(name)

An OraAQAgent object can also be instantiated by calling the AddRecipient
method. For example:

Set agent = qMsg.AddRecipient(name, address, protocol).

Support for Oracle LOB and Object Datatypes
Oracle Objects for OLE (OO4O) provides full support for accessing and manipulating
instances of object datatypes and LOBs in Oracle Database. Figure 1–4 illustrates the
datatypes supported by OO4O.

Instances of these types can be fetched from the database or passed as input or output
variables to SQL statements and PL/SQL blocks, including stored subprograms. All
instances are mapped to COM Automation Interfaces that provide methods for
dynamic attribute access and manipulation.

Overview of Oracle Objects for OLE (OO4O)

1-30 Oracle Database Advanced Application Developer's Guide

Figure 1–4 Supported Oracle Datatypes

Topics:

■ OraBLOB and OraCLOB

■ OraBFILE

OraBLOB and OraCLOB
The OraBlob and OraClob interfaces in Oracle Objects for OLE provide methods for
performing operations on large database objects of datatype BLOB, CLOB, and NCLOB.
BLOB, CLOB, and NCLOB datatypes are also referred to here as LOB datatypes.

LOB data is accessed using Read and the CopyToFile methods.

LOB data is modified using Write, Append, Erase, Trim, Copy, CopyFromFile,
and CopyFromBFile methods. Before modifying the content of a LOB column in a
row, a row lock must be obtained. If the LOB column is a field of an OraDynaset,
object, then the lock is obtained by calling the Edit method.

OraBFILE
The OraBFile interface in Oracle Objects for OLE provides methods for performing
operations on large database objects of datatype BFILE.

BFILE objects are large binary data objects stored in operating system files outside of
the database tablespaces.

Oracle Data Control
Oracle Data Control (ODC) is an ActiveX Control that is designed to simplify the
exchange of data between Oracle Database and visual controls such edit, text, list, and
grid controls in Visual Basic and other development tools that support custom
controls.

ODC acts as an agent to handle the flow of information from Oracle Database and a
visual data-aware control, such as a grid control, that is bound to it. The data control
manages various user interface (UI) tasks such as displaying and editing data. It also
executes and manages the results of database queries.

OraAttribute

OraAttribute

Element Values

OraObject

OraRef

OraCollection

OraField

OraParameter

OraBLOB

OraCLOB

OraBFILE

Value of all other scalar types

OraParamArray

Choosing a Programming Environment

Introduction to Oracle Programmatic Environments 1-31

Oracle Data Control is compatible with the Microsoft data control included with
Visual Basic. If you are familiar with the Visual Basic data control, learning to use
Oracle Data Control is quick and easy. Communication between data-aware controls
and a Data Control is governed by a protocol that Microsoft specified.

Oracle Objects for OLE C++ Class Library
Oracle Objects for OLE (OO4O) C++ Class Library is a collection of C++ classes that
provide programmatic access to the Oracle Object Server. Although the class library is
implemented using OLE Automation, neither the OLE development kit nor any OLE
development knowledge is necessary to use it. This library helps C++ developers
avoid the chore of writing COM client code for accessing the OO4O interfaces.

Additional Sources of Information
For detailed information about Oracle Objects for OLE see the online help provided
with the OO4O product:

■ Oracle Objects for OLE Help

■ Oracle Objects for OLE C++ Class Library Help

For examples of how to use Oracle Objects for OLE, see the samples in the ORACLE_
HOME\OO4O directory of the Oracle Database installation and in the following:

■ Oracle Database SecureFiles and Large Objects Developer's Guide

■ Oracle Streams Advanced Queuing User's Guide

Choosing a Programming Environment
To choose a programming environment for a new development project:

■ Review the preceding overviews and the manuals for each environment.

■ Read the platform-specific manual that explains which compilers are approved for
use with your platforms.

■ If a particular language does not provide a feature you need, remember that
PL/SQL and Java stored subprograms can both be invoked from code written in
any of the languages in this chapter. Stored subprograms include triggers and
object type methods.

■ External subprograms written in C can be invoked from OCI, Java, PL/SQL or
SQL. The external subprogram itself can call back into the database using either
SQL, OCI, or Pro*C (but not C++).

The following examples illustrate easy choices:

■ Pro*COBOL does not support object types or collection types, while Pro*C/C++
does.

■ SQLJ does not support dynamic SQL the way that JDBC does.

Topics:

■ Choosing a Precompiler or OCI

■ Choosing PL/SQL or Java

Choosing a Programming Environment

1-32 Oracle Database Advanced Application Developer's Guide

Choosing a Precompiler or OCI
Precompiler applications typically contain less code than equivalent OCI applications,
which can help productivity.

Some situations require detailed control of the database and are suited for OCI
applications (either pure OCI or a precompiler application with embedded OCI calls):

■ OCI provides more detailed control over multiplexing and migrating sessions.

■ OCI provides dynamic bind and define using callbacks that can be used for any
arbitrary structure, including lists.

■ OCI has many calls to handle metadata.

■ OCI allows asynchronous event notifications to be received by a client application.
It provides a means for clients to generate notifications for propagation to other
clients.

■ OCI allows DML statements to use arrays to complete as many iterations as
possible before returning any error messages.

■ OCI calls for special purposes include Advanced Queuing, globalization support,
Data Cartridges, and support of the date and time datatypes.

■ OCI calls can be embedded in a Pro*C/C++ application.

Choosing PL/SQL or Java
Both Java and PL/SQL have built-in packages and libraries.

PL/SQL and Java interoperate in the server. You can execute a PL/SQL package from
Java or wrap a PL/SQL class with a Java wrapper so that it can be invoked from
distributed CORBA and EJB clients. Table 1–1 shows PL/SQL packages and their Java
equivalents.

Table 1–1 PL/SQL and Java Equivalent Software

PL/SQL Package Java Equivalent

DBMS_ALERT Call package with SQLJ or JDBC.

DBMS_DDL JDBC has this functionality.

DBMS_JOB Schedule a job that has a Java stored subprogram.

DBMS_LOCK Call with SQLJ or JDBC.

DBMS_MAIL Use JavaMail.

DBMS_OUTPUT Use subclass
oracle.aurora.rdbms.OracleDBMSOutputStream or Java
stored subprogram DBMS_JAVA.SET_STREAMS.

DBMS_PIPE Call with SQLJ or JDBC.

DBMS_SESSION Use JDBC to execute an ALTER SESSION statement.

DBMS_SNAPSHOT Call with SQLJ or JDBC.

DBMS_SQL Use JDBC.

DBMS_TRANSACTION Use JDBC to execute an ALTER SESSION statement.

DBMS_UTILITY Call with SQLJ or JDBC.

UTL_FILE Grant the JAVAUSERPRIV privilege and then use Java I/O entry
points.

Choosing a Programming Environment

Introduction to Oracle Programmatic Environments 1-33

Both Java and PL/SQL can be used to build applications in the database. Here are
some guidelines for their use:

■ PL/SQL is optimized for database access

PL/SQL uses the same datatypes as SQL. SQL datatypes are thus easier to use and
SQL operations are faster than with Java, especially when a large amount of data is
involved, when mostly database access is done, or when bulk operations are used.

■ PL/SQL is integrated with the database

PL/SQL is an extension to SQL offering data encapsulation, information hiding,
overloading, and exception-handling.

Some advanced PL/SQL capabilities are not available for Java in Oracle9i.
Examples are autonomous transactions and the dblink facility for remote
databases. Code development is usually faster in PL/SQL than in Java.

■ Both Java and PL/SQL have object-oriented features

Java has inheritance, polymorphism, and component models for developing
distributed systems. PL/SQL has inheritance and type evolution, the ability to
change methods and attributes of a type while preserving subtypes and table data
that use the type.

■ Java is used for open distributed applications

Java has a richer type system than PL/SQL and is an object-oriented language.
Java can use CORBA (which can have many different computer languages in its
clients) and EJB. PL/SQL packages can be invoked from CORBA or EJB clients.

You can run XML tools, the Internet File System, or JavaMail from Java.

Many Java-based development tools are available throughout the industry.

Choosing a Programming Environment

1-34 Oracle Database Advanced Application Developer's Guide

Part I
SQL for Application Developers

This part presents information that application developers need about Structured
Query Language (SQL), which is used to manage information in an Oracle Database.

Chapters:

■ Chapter 2, "SQL Processing for Application Developers"

■ Chapter 3, "Using SQL Datatypes in Database Applications"

■ Chapter 4, "Using Regular Expressions in Database Applications"

■ Chapter 5, "Using Indexes in Database Applications"

■ Chapter 6, "Maintaining Data Integrity in Database Applications"

See Also: Oracle Database SQL Language Reference for a complete
description of SQL

SQL Processing for Application Developers 2-1

2
SQL Processing for Application Developers

This chapter explains what application developers must know about how Oracle
Database processes SQL statements. Before reading this chapter, read the basic
information about SQL processing in Oracle Database Concepts.

Topics:

■ Grouping Operations into Transactions

■ Ensuring Repeatable Reads with Read-Only Transactions

■ Using Cursors

■ Locking Tables Explicitly

■ Using Oracle Lock Management Services

■ Using Serializable Transactions for Concurrency Control

■ Autonomous Transactions

■ Resuming Execution After Storage Allocation Error

Grouping Operations into Transactions
Topics:

■ Deciding How to Group Operations in Transactions

■ Improving Transaction Performance

■ Committing Transactions

■ Managing Commit Redo Action

■ Rolling Back Transactions

■ Defining Transaction Savepoints

Deciding How to Group Operations in Transactions
In general, deciding how to group operations in transactions is the concern of
application designers who use the programming interfaces to Oracle Database. When
deciding how to group transactions:

■ Define transactions such that work is accomplished in logical units and data
remains consistent.

■ Ensure that data in all referenced tables is in a consistent state before the
transaction begins and after it ends.

Grouping Operations into Transactions

2-2 Oracle Database Advanced Application Developer's Guide

■ Ensure that each transaction consists only of the SQL statements or PL/SQL blocks
that comprise one consistent change to the data.

For example, suppose that you write a Web application that enables users to transfer
funds between accounts. The transaction must include the debit to one account, which
is executed by one SQL statement, and the credit to another account, which is executed
by a second SQL statement. Both statements must fail or succeed together as a unit of
work; the credit must not be committed without the debit. Other unrelated actions,
such as a new deposit to one account, must not be included in the same transaction.

Improving Transaction Performance
As an application developer, you must consider whether you can improve
performance. Consider the following performance enhancements when designing and
writing your application:

■ Use the SET TRANSACTION statement with the USE ROLLBACK SEGMENT clause to
explicitly assign a transaction to a rollback segment. This technique can eliminate
the need to allocate additional extents dynamically, which can reduce system
performance. This clause is valid only if you use rollback segments for undo. If
you use automatic undo management, then Oracle Database ignores this clause.

■ Establish standards for writing SQL statements so that you can take advantage of
shared SQL areas. Oracle Database recognizes identical SQL statements and allows
them to share memory areas. This reduces memory usage on the database server
and increases system throughput.

■ Use the ANALYZE statement to collect statistics that can be used by Oracle
Database to implement a cost-based approach to SQL statement optimization. You
can supply additional "hints" to the optimizer as needed.

■ Invoke the DBMS_APPLICATION_INFO.SET_ACTION procedure before beginning
a transaction to register and name a transaction for later use when measuring
performance across an application. Specify which type of activity a transaction
performs so that the system tuners can later see which transactions are taking up
the most system resources.

■ Increase user productivity and query efficiency by including user-written PL/SQL
functions in SQL expressions as described in "Invoking Stored PL/SQL Functions
from SQL Statements" on page 7-32.

■ Create explicit cursors when writing a PL/SQL application.

■ Reduce frequency of parsing and improve performance in precompiler programs
by increasing the number of cursors with MAX_OPEN_CURSORS.

■ Use the SET TRANSACTION statement with the ISOLATION LEVEL set to
SERIALIZABLE to get ANSI/ISO serializable transactions.

Committing Transactions
To commit a transaction, use the COMMIT statement. The following two statements are
equivalent and commit the current transaction:

See Also:

■ "How Serializable Transactions Interact" on page 2-17

■ "Using Cursors" on page 2-7

■ Oracle Database Concepts for more information about transaction
management

Grouping Operations into Transactions

SQL Processing for Application Developers 2-3

COMMIT WORK;
COMMIT;

The COMMIT statements lets you include the COMMENT parameter along with a
comment that provides information about the transaction being committed. This
option is useful for including information about the origin of the transaction when you
commit distributed transactions:

COMMIT COMMENT 'Dallas/Accts_pay/Trans_type 10B';

Managing Commit Redo Action
When a transaction updates the database, it generates a redo entry corresponding to
this update. Oracle Database buffers this redo in memory until the completion of the
transaction. When the transaction commits, the log writer process (LGWR) writes redo
for the commit, along with the accumulated redo of all changes in the transaction, to
disk. By default, Oracle Database writes the redo to disk before the call returns to the
client. This action introduces a latency in the commit because the application must
wait for the redo to be persisted on disk.

Suppose that you are writing an application that requires very high transaction
throughput. If you are willing to trade commit durability for lower commit latency,
then you can change the default COMMIT options so that the application does not need
to wait for Oracle Database to write data to the online redo logs.

Oracle Database enables you to change the handling of commit redo depending on the
needs of your application. You can change the commit action in the following
locations:

■ COMMIT_WRITE initialization parameter at the system or session level

■ COMMIT statement

The options in the COMMIT statement override the current settings in the initialization
parameter. Table 2–1 describes redo persistence options that you can set in either
location.

Caution: With the NOWAIT option of COMMIT or COMMIT_WRITE, a
failure that occurs after the commit message is received, but before the
redo log record(s) are written, can falsely indicate to a transaction that
its changes are persistent.

Table 2–1 Options of COMMIT Statement and COMMIT_WRITE Initialization Parameter

Option Effect

WAIT
(default)

Ensures that the commit returns only after the corresponding redo information is
persistent in the online redo log. When the client receives a successful return
from this COMMIT statement, the transaction has been committed to durable
media.

A failure that occurs after a successful write to the log might prevent the success
message from returning to the client, in which case the client cannot tell whether
or not the transaction committed.

NOWAIT The commit returns to the client whether or not the write to the redo log has
completed. This behavior can increase transaction throughput.

Grouping Operations into Transactions

2-4 Oracle Database Advanced Application Developer's Guide

The following example shows how to set the commit action to BATCH and NOWAIT in
the initialization parameter file:

COMMIT_WRITE = BATCH, NOWAIT

You can change the commit action at the system level by executing ALTER SYSTEM as
in the following example:

ALTER SYSTEM SET COMMIT_WRITE = BATCH, NOWAIT

After the initialization parameter is set, a COMMIT statement with no options conforms
to the options specified in the parameter. Alternatively, you can override the current
initialization parameter setting by specifying options directly on the COMMIT
statement as in the following example:

COMMIT WRITE BATCH NOWAIT

In either case, your application specifies that log writer does not have to write the redo
for the commit immediately to the online redo logs and need not wait for confirmation
that the redo was written to disk.

If your application uses OCI, then you can modify redo action by setting the following
flags in the OCITransCommit function within your application:

■ OCI_TRANS_WRITEBATCH

■ OCI_TRANS_WRITENOWAIT

■ OCI_TRANS_WRITEIMMED

■ OCI_TRANS_WRITEWAIT

The specification of the NOWAIT and BATCH options allows a small window of
vulnerability in which Oracle Database can roll back a transaction that your
application view as committed. Your application must be able to tolerate the following
scenarios:

BATCH The redo information is buffered to the redo log, along with other concurrently
executing transactions. When sufficient redo information is collected, a disk
write to the redo log is initiated. This behavior is called group commit, as redo
information for multiple transactions is written to the log in a single I/O
operation.

IMMEDIATE
(default)

LGWR writes the transaction's redo information to the log. Because this
operation option forces a disk I/O, it can reduce transaction throughput.

Note: You cannot change the default IMMEDIATE and WAIT action
for distributed transactions.

Caution: There is a potential for silent transaction loss when you use
OCI_TRANS_WRITENOWAIT. Transaction loss occurs silently with
shutdown abort, startup force, and any instance or node failure. On a
RAC system asynchronously committed changes might not be
immediately available to read on other instances.

Table 2–1 (Cont.) Options of COMMIT Statement and COMMIT_WRITE Initialization

Option Effect

Grouping Operations into Transactions

SQL Processing for Application Developers 2-5

■ The database host fails, which causes the database to lose redo that was buffered
but not yet written to the online redo logs.

■ A file I/O problem prevents log writer from writing buffered redo to disk. If the
redo logs are not multiplexed, then the commit is lost.

Rolling Back Transactions
To roll back an entire transaction, or to roll back part of a transaction to a savepoint,
use the ROLLBACK statement. For example, either of the following statements rolls
back the entire current transaction:

ROLLBACK WORK;
ROLLBACK;

The WORK option of the ROLLBACK statement has no function.

To roll back to a savepoint defined in the current transaction, use the TO option of the
ROLLBACK statement. For example, either of the following statements rolls back the
current transaction to the savepoint named POINT1:

SAVEPOINT Point1;
...
ROLLBACK TO SAVEPOINT Point1;
ROLLBACK TO Point1;

Defining Transaction Savepoints
To define a savepoint in a transaction, use the SAVEPOINT statement. The following
statement creates the savepoint named ADD_EMP1 in the current transaction:

SAVEPOINT Add_emp1;

If you create a second savepoint with the same identifier as an earlier savepoint, the
earlier savepoint is erased. After creating a savepoint, you can roll back to the
savepoint.

There is no limit on the number of active savepoints for each session. An active
savepoint is one that was specified since the last commit or rollback.

Table 2–2 shows a series of SQL statements that illustrates the use of COMMIT,
SAVEPOINT, and ROLLBACK statements within a transaction.

See Also:

■ Oracle Database SQL Language Reference for information on the
COMMIT statement

■ Oracle Call Interface Programmer's Guide for information about the
OCITransCommit function

Table 2–2 Use of COMMIT, SAVEPOINT, and ROLLBACK

SQL Statement Results

SAVEPOINT a; First savepoint of this transaction

DELETE...; First DML statement of this transaction

SAVEPOINT b; Second savepoint of this transaction

INSERT INTO...; Second DML statement of this transaction

SAVEPOINT c; Third savepoint of this transaction

Ensuring Repeatable Reads with Read-Only Transactions

2-6 Oracle Database Advanced Application Developer's Guide

Ensuring Repeatable Reads with Read-Only Transactions
By default, the consistency model for Oracle Database guarantees statement-level read
consistency, but does not guarantee transaction-level read consistency (repeatable
reads). If you want transaction-level read consistency, and if your transaction does not
require updates, then you can specify a read-only transaction. After indicating that
your transaction is read-only, you can execute as many queries as you like against any
database table, knowing that the results of each query in the read-only transaction are
consistent with respect to a single point in time.

A read-only transaction does not acquire any additional data locks to provide
transaction-level read consistency. The multi-version consistency model used for
statement-level read consistency is used to provide transaction-level read consistency;
all queries return information with respect to the system change number (SCN)
determined when the read-only transaction begins. Because no data locks are acquired,
other transactions can query and update data being queried concurrently by a
read-only transaction.

Long-running queries sometimes fail because undo information required for consistent
read (CR) operations is no longer available. This happens when committed undo
blocks are overwritten by active transactions. Automatic undo management provides a
way to explicitly control when undo space can be reused; that is, how long undo
information is retained. Your database administrator can specify a retention period by
using the parameter UNDO_RETENTION.

For example, if UNDO_RETENTION is set to 30 minutes, then all committed undo
information in the system is retained for at least 30 minutes. This ensures that all
queries running for 30 minutes or less, under usual circumstances, do not encounter
the OER error "snapshot too old."

A read-only transaction is started with a SET TRANSACTION statement that includes
the READ ONLY option. For example:

SET TRANSACTION READ ONLY;

The SET TRANSACTION statement must be the first statement of a new transaction; if
any DML statements (including queries) or other non-DDL statements (such as SET
ROLE) precede a SET TRANSACTION READ ONLY statement, an error is returned. Once

UPDATE...; Third DML statement of this transaction.

ROLLBACK TO c; UPDATE statement is rolled back, savepoint C remains defined

ROLLBACK TO b; INSERT statement is rolled back, savepoint C is lost, savepoint B remains
defined

ROLLBACK TO c; ORA-01086 error; savepoint C no longer defined

INSERT INTO...; New DML statement in this transaction

COMMIT; Commits all actions performed by the first DML statement (the DELETE
statement) and the last DML statement (the second INSERT statement)

All other statements (the second and the third statements) of the
transaction were rolled back before the COMMIT. The savepoint A is no
longer active.

See Also: Oracle Database Administrator's Guide for information on
long-running queries and resumable space allocation

Table 2–2 (Cont.) Use of COMMIT, SAVEPOINT, and ROLLBACK

SQL Statement Results

Using Cursors

SQL Processing for Application Developers 2-7

a SET TRANSACTION READ ONLY statement successfully executes, only SELECT
(without a FOR UPDATE clause), COMMIT, ROLLBACK, or non-DML statements (such
as SET ROLE, ALTER SYSTEM, LOCK TABLE) are allowed in the transaction.
Otherwise, an error is returned. A COMMIT, ROLLBACK, or DDL statement terminates
the read-only transaction; a DDL statement causes an implicit commit of the read-only
transaction and commits in its own transaction.

Using Cursors
PL/SQL implicitly declares a cursor for all SQL data manipulation statements,
including queries that return only one row. For queries that return more than one row,
you can explicitly declare a cursor to process the rows individually.

A cursor is a handle to a specific private SQL area. In other words, a cursor can be
thought of as a name for a specific private SQL area. A PL/SQL cursor variable
enables the retrieval of multiple rows from a stored subprogram (procedure or
function). Cursor variables enable you to pass cursors as parameters in your 3GL
application. Cursor variables are described in Oracle Database PL/SQL Language
Reference.

Although most Oracle Database users rely on the automatic cursor handling of the
database utilities, the programmatic interfaces offer application designers more control
over cursors. In application development, a cursor is a named resource available to a
program, which can be specifically used for parsing SQL statements embedded within
the application.

Topics:

■ How Many Cursors Can a Session Have?

■ Using a Cursor to Re-Execute a Statement

■ Closing a Cursor

■ Canceling a Cursor

How Many Cursors Can a Session Have?
There is no absolute limit to the total number of cursors one session can have open at
one time, subject to two constraints:

■ Each cursor requires virtual memory, so a session's total number of cursors is
limited by the memory available to that process.

■ A systemwide limit of cursors for each session is set by the initialization parameter
named OPEN_CURSORS found in the parameter file (such as INIT.ORA).

Explicitly creating cursors for precompiler programs has advantages in tuning those
applications. For example, increasing the number of cursors can reduce the frequency
of parsing and improve performance. If you know how many cursors might be
required at a given time, you can open that many cursors simultaneously.

Using a Cursor to Re-Execute a Statement
After each stage of execution, the cursor retains enough information about the SQL
statement to re-execute the statement without starting over, as long as no other SQL

See Also: Oracle Database Reference for more information about
OPEN_CURSORS

Locking Tables Explicitly

2-8 Oracle Database Advanced Application Developer's Guide

statement was associated with that cursor. The statement can be reexecuted without
including the parse stage.

By opening several cursors, the parsed representation of several SQL statements can
be saved. Repeated execution of the same SQL statements can thus begin at the
describe, define, bind, or execute step, saving the repeated cost of opening cursors and
parsing.

To understand the performance characteristics of a cursor, a DBA can retrieve the text
of the query represented by the cursor using the V$SQL dynamic performance view.
Because the results of EXPLAIN PLAN on the original query might differ from the way
the query is actually processed, a DBA can get more precise information by examining
the following dynamic performance views:

Closing a Cursor
Closing a cursor means that the information currently in the associated private area is
lost and its memory is deallocated. Once a cursor is opened, it is not closed until one of
the following events occurs:

■ The user program terminates its connection to the server.

■ If the user program is an OCI program or precompiler application, then it
explicitly closes any open cursor during the execution of that program. (However,
when this program terminates, any cursors remaining open are implicitly closed.)

Canceling a Cursor
Cancelling a cursor frees resources from the current fetch.The information currently in
the associated private area is lost but the cursor remains open, parsed, and associated
with its bind variables.

Locking Tables Explicitly
Oracle Database always performs necessary locking to ensure data concurrency,
integrity, and statement-level read consistency. You can override these default locking

View Description

V$SQL_PLAN Execution plan information for each child cursor loaded in the
library cache.

V$SQL_STATISTICS Execution statistics at the row source level for each child cursor.

V$SQL_STATISTICS_ALL Memory usage statistics for row sources that use SQL memory
(sort or hash-join). This view concatenates information in
V$SQL_PLAN with execution statistics from V$SQL_PLAN_
STATISTICS and V$SQL_WORKAREA.

See Also: Oracle Database Reference for details of the preceding
dynamic performance views

Note: You cannot cancel cursors using Pro*C/C++ or PL/SQL.

See Also: Oracle Call Interface Programmer's Guide for information
about cancelling a cursor with the OCIStmtFetch2 statement

Locking Tables Explicitly

SQL Processing for Application Developers 2-9

mechanisms. For example, you might want to override the default locking of Oracle
Database if:

■ You want transaction-level read consistency or "repeatable reads"—where
transactions query a consistent set of data for the duration of the transaction,
knowing that the data was not changed by any other transactions. This level of
consistency can be achieved by using explicit locking, read-only transactions,
serializable transactions, or overriding default locking for the system.

■ A transaction requires exclusive access to a resource. To proceed with its
statements, the transaction with exclusive access to a resource does not have to
wait for other transactions to complete.

The automatic locking mechanisms can be overridden at the transaction level.
Transactions including the following SQL statements override Oracle Database's
default locking:

■ LOCK TABLE

■ SELECT, including the FOR UPDATE clause

■ SET TRANSACTION with the READ ONLY or ISOLATION LEVEL SERIALIZABLE
options

Locks acquired by these statements are released after the transaction is committed or
rolled back.

The following sections describe each option available for overriding the default
locking of Oracle Database. The initialization parameter DML_LOCKS determines the
maximum number of DML locks allowed.

Although the default value is usually enough, you might need to increase it if you use
additional manual locks.

Topics:

■ Privileges Required

■ Choosing a Locking Strategy

■ Letting Oracle Database Control Table Locking

■ Explicitly Acquiring Row Locks

Privileges Required
You can automatically acquire any type of table lock on tables in your schema. To
acquire a table lock on a table in another schema, you must have the LOCK ANY TABLE
system privilege or any object privilege (for example, SELECT or UPDATE) for the
table.

See Also: Oracle Database Reference for more information about DML_
LOCKS

Caution: If you override the default locking of Oracle Database at
any level, be sure that the overriding locking subprograms operate
correctly: Ensure that data integrity is guaranteed, data concurrency is
acceptable, and deadlocks are either impossible or appropriately
handled.

Locking Tables Explicitly

2-10 Oracle Database Advanced Application Developer's Guide

Choosing a Locking Strategy
A transaction explicitly acquires the specified table locks when a LOCK TABLE
statement is executed. A LOCK TABLE statement manually overrides default locking.
When a LOCK TABLE statement is issued on a view, the underlying base tables are
locked. The following statement acquires exclusive table locks for the EMP_TAB and
DEPT_TAB tables on behalf of the containing transaction:

LOCK TABLE Emp_tab, Dept_tab
 IN EXCLUSIVE MODE NOWAIT;

You can specify several tables or views to lock in the same mode; however, only a
single lock mode can be specified for each LOCK TABLE statement.

In the LOCK TABLE statement, you can also indicate how long you want to wait for the
table lock:

■ If you do not want to wait, specify either NOWAIT or WAIT 0.

You acquire the table lock only if it is immediately available; otherwise, an error
notifies you that the lock is not available at this time.

■ If you want to wait up to n seconds to acquire the table lock, specify WAIT n,
where n is greater than 0 and less than or equal to 100000.

If the table lock is still unavailable after n seconds, an error notifies you that the
lock is not available at this time.

■ If you want to wait indefinitely to acquire the lock, specify neither NOWAIT nor
WAIT.

The database waits indefinitely until the table is available, locks it, and returns
control to you. When the database is executing DDL statements concurrently with
DML statements, a timeout or deadlock can sometimes result. The database
detects such timeouts and deadlocks and returns an error.

For the syntax of the LOCK TABLE statement, see Oracle Database SQL Language
Reference.

Topics:

■ When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE

■ When to Lock with SHARE MODE

■ When to Lock with SHARE ROW EXCLUSIVE MODE

■ When to Lock with EXCLUSIVE MODE

When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE
LOCK TABLE Emp_tab IN ROW SHARE MODE;
LOCK TABLE Emp_tab IN ROW EXCLUSIVE MODE;

ROW SHARE and ROW EXCLUSIVE table locks offer the highest degree of concurrency.
You might use these locks if:

■ Your transaction needs to prevent another transaction from acquiring an
intervening share, share row, or exclusive table lock for a table before the table can

Note: When a table is locked, all rows of the table are locked. No
other user can modify the table.

Locking Tables Explicitly

SQL Processing for Application Developers 2-11

be updated in your transaction. If another transaction acquires an intervening
share, share row, or exclusive table lock, no other transactions can update the table
until the locking transaction commits or rolls back.

■ Your transaction needs to prevent a table from being altered or dropped before the
table can be modified later in your transaction.

When to Lock with SHARE MODE
LOCK TABLE Emp_tab IN SHARE MODE;

SHARE table locks are rather restrictive data locks. You might use these locks if:

■ Your transaction only queries the table, and requires a consistent set of the table
data for the duration of the transaction.

■ You can hold up other transactions that try to update the locked table, until all
transactions that hold SHARE locks on the table either commit or roll back.

■ Other transactions might acquire concurrent SHARE table locks on the same table,
also allowing them the option of transaction-level read consistency.

For example, assume that two tables, EMP_TAB and BUDGET_TAB, require a consistent
set of data in a third table, DEPT_TAB. For a given department number, you want to
update the information in both of these tables, and ensure that no new members are
added to the department between these two transactions.

Although this scenario is quite rare, it can be accommodated by locking the DEPT_TAB
table in SHARE MODE, as shown in the following example. Because the DEPT_TAB table
is rarely updated, locking it probably does not cause many other transactions to wait
long.

Caution: Your transaction might or might not update the table later
in the same transaction. However, if multiple transactions
concurrently hold share table locks for the same table, no transaction
can update the table (even if row locks are held as the result of a
SELECT FOR UPDATE statement). Therefore, if concurrent share table
locks on the same table are common, updates cannot proceed and
deadlocks are common. In this case, use share row exclusive or
exclusive table locks instead.

Locking Tables Explicitly

2-12 Oracle Database Advanced Application Developer's Guide

LOCK TABLE Dept_tab IN SHARE MODE;
UPDATE Emp_tab
 SET sal = sal * 1.1
 WHERE deptno IN
 (SELECT deptno FROM Dept_tab WHERE loc = 'DALLAS');
UPDATE Budget_tab
 SET Totsal = Totsal * 1.1
 WHERE Deptno IN
 (SELECT Deptno FROM Dept_tab WHERE Loc = 'DALLAS');

COMMIT; /* This releases the lock */

When to Lock with SHARE ROW EXCLUSIVE MODE
LOCK TABLE Emp_tab IN SHARE ROW EXCLUSIVE MODE;

You might use a SHARE ROW EXCLUSIVE table lock if:

■ Your transaction requires both transaction-level read consistency for the specified
table and the ability to update the locked table.

■ You do not care if other transactions acquire explicit row locks (using SELECT FOR
UPDATE), which might make UPDATE and INSERT statements in the locking
transaction wait and might cause deadlocks.

■ You only want a single transaction to have this action.

When to Lock with EXCLUSIVE MODE
LOCK TABLE Emp_tab IN EXCLUSIVE MODE;

You might use an EXCLUSIVE table if:

■ Your transaction requires immediate update access to the locked table. When your
transaction holds an exclusive table lock, other transactions cannot lock specific
rows in the locked table.

Note: You might need to set up data structures similar to the
following for certain examples to work:

CREATE TABLE dept_tab(
 deptno NUMBER(2) NOT NULL,
 dname VARCHAR2(14),
 loc VARCHAR2(13));

CREATE TABLE emp_tab (
 empno NUMBER(4) NOT NULL,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2));

CREATE TABLE Budget_tab (
 totsal NUMBER(7,2),
 deptno NUMBER(2) NOT NULL);

Locking Tables Explicitly

SQL Processing for Application Developers 2-13

■ Your transaction also ensures transaction-level read consistency for the locked
table until the transaction is committed or rolled back.

■ You are not concerned about low levels of data concurrency, making transactions
that request exclusive table locks wait in line to update the table sequentially.

Letting Oracle Database Control Table Locking
Letting Oracle Database control table locking means your application needs less
programming logic, but also has less control, than if you manage the table locks
yourself.

Issuing the statement SET TRANSACTION ISOLATION LEVEL SERIALIZABLE or
ALTER SESSION ISOLATION LEVEL SERIALIZABLE preserves ANSI serializability
without changing the underlying locking protocol. This technique allows concurrent
access to the table while providing ANSI serializability. Getting table locks greatly
reduces concurrency.

Change the settings for these parameters only when an instance is shut down. If
multiple instances are accessing a single database, then all instances must use the same
setting for these parameters.

Explicitly Acquiring Row Locks
You can override default locking with a SELECT statement that includes the FOR
UPDATE clause. This statement acquires exclusive row locks for selected rows (as an
UPDATE statement does), in anticipation of updating the selected rows in a subsequent
statement.

You can use a SELECT FOR UPDATE statement to lock a row without actually changing
it. For example, several triggers in Oracle Database PL/SQL Language Reference show
how to implement referential integrity. In the EMP_DEPT_CHECK trigger, the row that
contains the referenced parent key value is locked to guarantee that it remains for the
duration of the transaction; if the parent key is updated or deleted, referential integrity
is violated.

SELECT FOR UPDATE statements are often used by interactive programs that allow a
user to modify fields of one or more specific rows (which might take some time); row
locks are acquired so that only a single interactive program user is updating the rows
at any given time.

If a SELECT FOR UPDATE statement is used when defining a cursor, the rows in the
return set are locked when the cursor is opened (before the first fetch) rather than
being locked as they are fetched from the cursor. Locks are only released when the
transaction that opened the cursor is committed or rolled back, not when the cursor is
closed.

Each row in the return set of a SELECT FOR UPDATE statement is locked individually;
the SELECT FOR UPDATE statement waits until the other transaction releases the
conflicting row lock. If a SELECT FOR UPDATE statement locks many rows in a table,

See Also:

■ Oracle Database SQL Language Reference for information on the SET
TRANSACTION statement

■ Oracle Database SQL Language Reference for information on the
ALTER SESSION statements

Using Oracle Lock Management Services

2-14 Oracle Database Advanced Application Developer's Guide

and if the table experiences a lot of update activity, it might be faster to acquire an
EXCLUSIVE table lock instead.

By default, the transaction waits until the requested row lock is acquired. If you are not
willing to wait to acquire the row lock, use either the NOWAIT clause of the LOCK
TABLE statement (see "Choosing a Locking Strategy" on page 2-10) or the SKIP
LOCKED clause of the SELECT FOR UPDATE statement.

If you can lock some of the requested rows, but not all of them, the SKIP LOCKED
option skips the rows that you cannot lock and locks the rows that you can lock.

Using Oracle Lock Management Services
You can use Oracle Lock Management services (user locks) for your applications by
invoking subprograms the DBMS_LOCK package. It is possible to request a lock of a
specific mode, give it a unique name recognizable in another subprogram in the same
or another instance, change the lock mode, and release it. Because a reserved user lock
is the same as an Oracle Database lock, it has all the features of a database lock, such as
deadlock detection. Be certain that any user locks used in distributed transactions are
released upon COMMIT, or an undetected deadlock can occur.

Topics:

■ When to Use User Locks

■ Example of a User Lock

■ Viewing and Monitoring Locks

When to Use User Locks
User locks can help to:

■ Provide exclusive access to a device, such as a terminal

■ Provide application-level enforcement of read locks

Note: The return set for a SELECT FOR UPDATE might change while
the query is running; for example, if columns selected by the query are
updated or rows are deleted after the query started. When this
happens, SELECT FOR UPDATE acquires locks on the rows that did not
change, gets a new read-consistent snapshot of the table using these
locks, and then restarts the query to acquire the remaining locks.

This can cause a deadlock between sessions querying the table
concurrently with DML operations when rows are locked in a
nonsequential order. To prevent such deadlocks, design your
application so that any concurrent DML on the table does not affect
the return set of the query. If this is not feasible, you might want to
serialize queries in your application.

See Also: Oracle Database SQL Language Reference for information on
the SELECT FOR UPDATE statement and an example of the SKIP
LOCKED clause

See Also: Oracle Database PL/SQL Packages and Types Reference for
detailed information on the DBMS_LOCK package

Using Oracle Lock Management Services

SQL Processing for Application Developers 2-15

■ Detect when a lock is released and cleanup after the application

■ Synchronize applications and enforce sequential processing

Example of a User Lock
The following Pro*COBOL precompiler example shows how locks can be used to
ensure that there are no conflicts when multiple people need to access a single device.

**
* Print Check *
* Any cashier may issue a refund to a customer returning goods. *
* Refunds under $50 are given in cash, more than $50 by check. *
* This code prints the check. The one printer is opened by all *
* the cashiers to avoid the overhead of opening and closing it *
* for every check. This means that lines of output from multiple *
* cashiers can become interleaved if we do not ensure exclusive *
* access to the printer. The DBMS_LOCK package is used to *
* ensure exclusive access. *
**
CHECK-PRINT
* Get the lock "handle" for the printer lock.
 MOVE "CHECKPRINT" TO LOCKNAME-ARR.
 MOVE 10 TO LOCKNAME-LEN.
 EXEC SQL EXECUTE
 BEGIN DBMS_LOCK.ALLOCATE_UNIQUE (:LOCKNAME, :LOCKHANDLE);
 END; END-EXEC.
* Lock the printer in exclusive mode (default mode).
 EXEC SQL EXECUTE
 BEGIN DBMS_LOCK.REQUEST (:LOCKHANDLE);
 END; END-EXEC.
* We now have exclusive use of the printer, print the check.
 ...
* Unlock the printer so other people can use it
EXEC SQL EXECUTE
 BEGIN DBMS_LOCK.RELEASE (:LOCKHANDLE);
 END; END-EXEC.

Viewing and Monitoring Locks
Table 2–5 describes the Oracle Database facilities that display locking information for
ongoing transactions within an instance.

Table 2–3 Ways to Display Locking Information

Tool Description

Oracle Enterprise
Manager 10g Database
Control

From the Additional Monitoring Links section of the Database
Performance page, click Database Locks to display user blocks,
blocking locks, or the complete list of all database locks. See Oracle
Database 2 Day DBA for more information.

UTLLOCKT.SQL The UTLLOCKT.SQL script displays a simple character lock wait-for
graph in tree structured fashion. Using any ad hoc SQL tool (such as
SQL*Plus) to execute the script, it prints the sessions in the system
that are waiting for locks and the corresponding blocking locks. The
location of this script file is operating system dependent. (You must
have run the CATBLOCK.SQL script before using UTLLOCKT.SQL.)

Using Serializable Transactions for Concurrency Control

2-16 Oracle Database Advanced Application Developer's Guide

Using Serializable Transactions for Concurrency Control
By default, Oracle Database permits concurrently executing transactions to modify,
add, or delete rows in the same table, and in the same data block. Changes made by
one transaction are not seen by another concurrent transaction until the transaction
that made the changes commits.

If a transaction A attempts to update or delete a row that has been locked by another
transaction B (by way of a DML or SELECT FOR UPDATE statement), then A's DML
statement blocks until B commits or rolls back. Once B commits, transaction A can see
changes that B has made to the database.

For most applications, this concurrency model is the appropriate one, because it
provides higher concurrency and thus better performance. But some rare cases require
transactions to be serializable. Serializable transactions must execute in such a way
that they appear to be executing one at a time (serially), rather than concurrently.
Concurrent transactions executing in serialized mode can make only the database
changes that they could make if the transactions ran one after the other.

Figure 2–1 shows a serializable transaction (B) interacting with another transaction
(A).

The ANSI/ISO SQL standard SQL92 defines three possible kinds of transaction
interaction, and four levels of isolation that provide increasing protection against these
interactions. These interactions and isolation levels are summarized in Table 2–4.

The action of Oracle Database with respect to these isolation levels is summarized in
Table 2–5.

Table 2–4 Summary of ANSI Isolation Levels

Isolation Level Dirty Read1

1 A transaction can read uncommitted data changed by another transaction.

Unrepeatable Read2

2 A transaction rereads data committed by another transaction and sees the new data.

Phantom Read3

3 A transaction can execute a query again, and discover new rows inserted by another
committed transaction.

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Not possible Possible Possible

REPEATABLE READ Not possible Not possible Possible

SERIALIZABLE Not possible Not possible Not possible

Table 2–5 ANSI Isolation Levels and Oracle Database

Isolation Level Description

READ UNCOMMITTED Oracle Database never permits "dirty reads." Although some other
database products use this undesirable technique to improve
thoughput, it is not required for high throughput with Oracle Database.

READ COMMITTED Oracle Database meets the READ COMMITTED isolation standard. This is
the default mode for all Oracle Database applications. Because an
Oracle Database query only sees data that was committed at the
beginning of the query (the snapshot time), Oracle Database actually
offers more consistency than is required by the ANSI/ISO SQL92
standards for READ COMMITTED isolation.

REPEATABLE READ Oracle Database does not normally support this isolation level, except
as provided by SERIALIZABLE.

Using Serializable Transactions for Concurrency Control

SQL Processing for Application Developers 2-17

Topics:

■ How Serializable Transactions Interact

■ Setting the Isolation Level of a Serializable Transaction

■ Referential Integrity and Serializable Transactions

■ READ COMMITTED and SERIALIZABLE Isolation

■ Application Tips for Transactions

How Serializable Transactions Interact
Figure 2–1 on page 2-18 shows how a serializable transaction (Transaction B) interacts
with another transaction (A, which can be either SERIALIZABLE or READ
COMMITTED).

When a serializable transaction fails with an ORA-08177 error ("cannot serialize
access"), the application can take any of several actions:

■ Commit the work executed to that point

■ Execute additional, different, statements, perhaps after rolling back to a prior
savepoint in the transaction

■ Roll back the entire transaction and try it again

Oracle Database stores control information in each data block to manage access by
concurrent transactions. To use the SERIALIZABLE isolation level, you must use the
INITRANS clause of the CREATE TABLE or ALTER TABLE statement to set aside
storage for this control information. To use serializable mode, INITRANS must be set
to at least 3.

SERIALIZABLE Oracle Database does not normally support this isolation level, except
as provided by SERIALIZABLE.

Table 2–5 (Cont.) ANSI Isolation Levels and Oracle Database

Isolation Level Description

Using Serializable Transactions for Concurrency Control

2-18 Oracle Database Advanced Application Developer's Guide

Figure 2–1 Time Line for Two Transactions

Setting the Isolation Level of a Serializable Transaction
You can change the isolation level of a transaction using the ISOLATION LEVEL clause
of the SET TRANSACTION statement, which must be the first statement issued in a
transaction.

Use the ALTER SESSION statement to set the transaction isolation level on a
session-wide basis.

See Also:

■ Oracle Database SQL Language Reference for the syntax of the ALTER
SESSION statement

■ Oracle Database SQL Language Reference for the syntax of the SET
TRANSACTION statement

TRANSACTION A
(arbitrary)

begin work
update row 2
in block 1

Issue update "too recent"
for B to see

TIME

TRANSACTION B
(serializable)

SET TRANSACTION
ISOLATION LEVEL
SERIALIZABLE
read row 1 in block 1

Change other row in
same block, see own
changes

update row 1 in block 1
read updated row 1 in
block 1

insert row 4
Create possible
"phantom" row

Uncommitted changes
invisible

read old row 2 in block 1
search for row 4
(notfound)

commit
Make changes visible
to transactions that
begin later

Make changes
after A commits update row 3 in block 1

B can see its own changes
but not the committed
changes of transaction A.

re-read updated row 1
in block 1
search for row 4 (not found)
read old row 2 in block 1

Failure on attempt to update
row updated and committed
since transaction B began

update row 2 in block 1
FAILS; rollback and retry

Using Serializable Transactions for Concurrency Control

SQL Processing for Application Developers 2-19

Oracle Database stores control information in each data block to manage access by
concurrent transactions. Therefore, if you set the transaction isolation level to
SERIALIZABLE, then you must use the ALTER TABLE statement to set INITRANS to
at least 3. This parameter causes Oracle Database to allocate sufficient storage in each
block to record the history of recent transactions that accessed the block. Use higher
values for tables that will undergo many transactions updating the same blocks.

Referential Integrity and Serializable Transactions
Because Oracle Database does not use read locks, even in SERIALIZABLE
transactions, data read by one transaction can be overwritten by another. Transactions
that perform database consistency checks at the application level must not assume that
the data they read will not change during the execution of the transaction (even
though such changes are not visible to the transaction). Database inconsistencies can
result unless such application-level consistency checks are coded carefully, even when
using SERIALIZABLE transactions.

Figure 2–2 on page 2-20 shows two different transactions that perform
application-level checks to maintain the referential integrity parent/child relationship
between two tables. One transaction checks that a row with a specific primary key
value exists in the parent table before inserting corresponding child rows. The other
transaction checks to see that no corresponding detail rows exist before deleting a
parent row. In this case, both transactions assume (but do not ensure) that data they
read will not change before the transaction completes.

Figure 2–2 Referential Integrity Check

The read issued by transaction A does not prevent transaction B from deleting the
parent row, and transaction B's query for child rows does not prevent transaction A

Note: Examples in this section apply to both READ COMMITTED and
SERIALIZABLE transactions.

TRANSACTION A TRANSACTION B

read parent (it exists) read child rows (not found)

insert child row(s) delete parent

commit work commit work

A's query does
not prevent this
delete

B's query does
not prevent this
insert

Using Serializable Transactions for Concurrency Control

2-20 Oracle Database Advanced Application Developer's Guide

from inserting child rows. This scenario leaves a child row in the database with no
corresponding parent row. This result occurs even if both A and B are SERIALIZABLE
transactions, because neither transaction prevents the other from making changes in
the data it reads to check consistency.

As this example shows, sometimes you must take steps to ensure that the data read by
one transaction is not concurrently written by another. This requires a greater degree
of transaction isolation than defined by SQL92 SERIALIZABLE mode.

Fortunately, it is straightforward in Oracle Database to prevent the anomaly described:

■ Transaction A can use SELECT FOR UPDATE to query and lock the parent row and
thereby prevent transaction B from deleting the row.

■ Transaction B can prevent Transaction A from gaining access to the parent row by
reversing the order of its processing steps. Transaction B first deletes the parent
row, and then rolls back if its subsequent query detects the presence of
corresponding rows in the child table.

Referential integrity can also be enforced in Oracle Database using database triggers,
instead of a separate query as in Transaction A. For example, an INSERT into the child
table can fire a BEFORE INSERT row-level trigger to check for the corresponding
parent row. The trigger queries the parent table using SELECT FOR UPDATE, ensuring
that parent row (if it exists) remains in the database for the duration of the transaction
inserting the child row. If the corresponding parent row does not exist, the trigger
rejects the insert of the child row.

SQL statements issued by a database trigger execute in the context of the SQL
statement that caused the trigger to fire. All SQL statements executed within a trigger
see the database in the same state as the triggering statement. Thus, in a READ
COMMITTED transaction, the SQL statements in a trigger see the database as of the
beginning of the triggering statement execution, and in a transaction executing in
SERIALIZABLE mode, the SQL statements see the database as of the beginning of the
transaction. In either case, the use of SELECT FOR UPDATE by the trigger correctly
enforces referential integrity.

READ COMMITTED and SERIALIZABLE Isolation
Oracle Database gives you a choice of two transaction isolation levels with different
characteristics. Both the READ COMMITTED and SERIALIZABLE isolation levels
provide a high degree of consistency and concurrency. Both levels reduce contention,
and are designed for deploying real-world applications. The rest of this section
compares the two isolation modes and provides information helpful in choosing
between them.

Topics:

■ Transaction Set Consistency

■ Comparison of READ COMMITTED and SERIALIZABLE Transactions

■ Choosing an Isolation Level for Transactions

Transaction Set Consistency
A useful way to describe the READ COMMITTED and SERIALIZABLE isolation levels in
Oracle Database is to consider:

■ A collection of database tables (or any set of data)

■ A sequence of reads of rows in those tables

Using Serializable Transactions for Concurrency Control

SQL Processing for Application Developers 2-21

■ The set of transactions committed at any moment

An operation (a query or a transaction) is transaction set consistent if its read
operations all return data written by the same set of committed transactions. When an
operation is not transaction set consistent, some reads reflect the changes of one set of
transactions, and other reads reflect changes made by other transactions. Such an
operation sees the database in a state that reflects no single set of committed
transactions.

Oracle Database transactions executing in READ COMMITTED mode are transaction-set
consistent on an individual-statement basis, because all rows read by a query must be
committed before the query begins.

Oracle Database transactions executing in SERIALIZABLE mode are transaction set
consistent on an individual-transaction basis, because all statements in a
SERIALIZABLE transaction execute on an image of the database as of the beginning of
the transaction.

In other database systems, a single query run in READ COMMITTED mode provides
results that are not transaction set consistent. The query is not transaction set
consistent, because it might see only a subset of the changes made by another
transaction. For example, a join of a master table with a detail table can see a master
record inserted by another transaction, but not the corresponding details inserted by
that transaction, or vice versa. The READ COMMITTED mode avoids this problem, and
so provides a greater degree of consistency than read-locking systems.

In read-locking systems, at the cost of preventing concurrent updates, SQL92
REPEATABLE READ isolation provides transaction set consistency at the statement
level, but not at the transaction level. The absence of phantom protection means two
queries issued by the same transaction can see data committed by different sets of
other transactions. Only the throughput-limiting and deadlock-susceptible
SERIALIZABLE mode in these systems provides transaction set consistency at the
transaction level.

Comparison of READ COMMITTED and SERIALIZABLE Transactions
Table 2–6 summarizes key similarities and differences between READ COMMITTED and
SERIALIZABLE transactions.

Table 2–6 Read Committed and Serializable Transactions

Operation Read Committed Serializable

Dirty write Not Possible Not Possible

Dirty read Not Possible Not Possible

Unrepeatable read Possible Not Possible

Phantoms Possible Not Possible

Compliant with ANSI/ISO SQL 92 Yes Yes

Read snapshot time Statement Transaction

Transaction set consistency Statement level Transaction level

Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No

Different-row writers block writers No No

Same-row writers block writers Yes Yes

Using Serializable Transactions for Concurrency Control

2-22 Oracle Database Advanced Application Developer's Guide

Choosing an Isolation Level for Transactions
Choose an isolation level that is appropriate to the specific application and workload.
You might choose different isolation levels for different transactions. The choice
depends on performance and consistency needs, and consideration of application
coding requirements.

For environments with many concurrent users rapidly submitting transactions, you
must assess transaction performance against the expected transaction arrival rate and
response time demands, and choose an isolation level that provides the required
degree of consistency while performing well. Frequently, for high performance
environments, you must trade-off between consistency and concurrency (transaction
throughput).

Both Oracle Database isolation modes provide high levels of consistency and
concurrency (and performance) through the combination of row-level locking and
Oracle Database's multi-version concurrency control system. Because readers and
writers do not block one another in Oracle Database, while queries still see consistent
data, both READ COMMITTED and SERIALIZABLE isolation provide a high level of
concurrency for high performance, without the need for reading uncommitted ("dirty")
data.

READ COMMITTED isolation can provide considerably more concurrency with a
somewhat increased risk of inconsistent results (due to phantoms and unrepeatable
reads) for some transactions. The SERIALIZABLE isolation level provides somewhat
more consistency by protecting against phantoms and unrepeatable reads, and might
be important where a read/write transaction executes a query more than once.
However, SERIALIZABLE mode requires applications to check for the "can't serialize
access" error, and can significantly reduce throughput in an environment with many
concurrent transactions accessing the same data for update. Application logic that
checks database consistency must take into account the fact that reads do not block
writes in either mode.

Application Tips for Transactions
When a transaction runs in serializable mode, any attempt to change data that was
changed by another transaction since the beginning of the serializable transaction
causes an error:

ORA-08177: Can't serialize access for this transaction.

When you get this error, roll back the current transaction and execute it again. The
transaction gets a new transaction snapshot, and the operation is likely to succeed.

To minimize the performance overhead of rolling back transactions and executing
them again, try to put DML statements that might conflict with other concurrent
transactions near the beginning of your transaction.

Waits for blocking transaction Yes Yes

Subject to "can't serialize access" error No Yes

Error after blocking transaction aborts No No

Error after blocking transaction commits No Yes

Table 2–6 (Cont.) Read Committed and Serializable Transactions

Operation Read Committed Serializable

Autonomous Transactions

SQL Processing for Application Developers 2-23

Autonomous Transactions
This section gives a brief overview of autonomous transactions and what you can do
with them.

At times, you might want to commit or roll back some changes to a table
independently of a primary transaction's final outcome. For example, in a stock
purchase transaction, you might want to commit a customer's information regardless
of whether the overall stock purchase actually goes through. Or, while running that
same transaction, you might want to log error messages to a debug table even if the
overall transaction rolls back. Autonomous transactions enable you to do such tasks.

An autonomous transaction (AT) is an independent transaction started by another
transaction, the main transaction (MT). It lets you suspend the main transaction, do
SQL operations, commit or roll back those operations, then resume the main
transaction.

An autonomous transaction executes within an autonomous scope. An autonomous
scope is a routine you mark with the pragma (compiler directive) AUTONOMOUS_
TRANSACTION. The pragma instructs the PL/SQL compiler to mark a routine as
autonomous (independent). In this context, the term routine includes:

■ Top-level (not nested) anonymous PL/SQL blocks

■ Local, standalone, and packaged subprograms

■ Methods of a SQL object type

■ PL/SQL triggers

Figure 2–3 shows how control flows from the main routine (MT) to an autonomous
routine (AT) and back again. As you can see, the autonomous routine can commit
more than one transaction (AT1 and AT2) before control returns to the main routine.

Figure 2–3 Transaction Control Flow

When you enter the executable section of an autonomous routine, the main routine
suspends. When you exit the routine, the main routine resumes. COMMIT and
ROLLBACK end the active autonomous transaction but do not exit the autonomous
routine. As Figure 2–3 shows, when one transaction ends, the next SQL statement
begins another transaction.

See Also: Oracle Database PL/SQL Language Reference for detailed
information on autonomous transactions.

PROCEDURE proc1 IS
 emp_id NUMBER;
BEGIN
 emp_id := 7788;
 INSERT ...
SELECT ...
 proc2;
 DELETE ...
 COMMIT;
END;

PROCEDURE proc2 IS
 PRAGMA AUTON...
 dept_id NUMBER;
BEGIN
 dept_id := 20;
 UPDATE ...
 INSERT ...
 UPDATE ...
 COMMIT;
 INSERT ...
 INSERT ...
 COMMIT;
END;

Main Routine Autonomous Routine

MT ends

MT begins
MT suspends

AT1 begins

AT1 ends
AT2 begins

AT2 ends
MT resumes

Autonomous Transactions

2-24 Oracle Database Advanced Application Developer's Guide

A few more characteristics of autonomous transactions:

■ The changes autonomous transactions effect do not depend on the state or the
eventual disposition of the main transaction. For example:

– An autonomous transaction does not see any changes made by the main
transaction.

– When an autonomous transaction commits or rolls back, it does not affect the
outcome of the main transaction.

■ The changes an autonomous transaction effects are visible to other transactions as
soon as that autonomous transaction commits. This means that users can access
the updated information without having to wait for the main transaction to
commit.

■ Autonomous transactions can start other autonomous transactions.

Figure 2–4 illustrates some of the possible sequences autonomous transactions can
follow.

Autonomous Transactions

SQL Processing for Application Developers 2-25

Figure 2–4 Possible Sequences of Autonomous Transactions

Examples of Autonomous Transactions
■ Ordering a Product

■ Withdrawing Money from a Bank Account

As these examples illustrate, there are four possible outcomes when you use
autonomous and main transactions (see Table 2–7). There is no dependency between
the outcome of an autonomous transaction and that of a main transaction.

Table 2–7 Possible Transaction Outcomes

Autonomous Transaction Main Transaction

Commits Commits

Commits Rolls back

Rolls back Commits

AT Scope 1 AT Scope 2 AT Scope 3 AT Scope 4MT Scope
A main transaction scope
(MT Scope) begins the main
transaction, MTx. MTx
invokes the first autonomous
transaction scope (AT
Scope1). MTx suspends. AT
Scope 1 begins the
transaction Tx1.1.

At Scope 1 commits or rolls
back Tx1.1, than ends. MTx
resumes.

MTx invokes AT Scope 2. MT
suspends, passing control to
AT Scope 2 which, initially, is
performing queries.

AT Scope 2 then begins
Tx2.1 by, say, doing an
update. AT Scope 2 commits
or rolls back Tx2.1.

Later, AT Scope 2 begins a
second transaction, Tx2.2,
then commits or rolls it back.

AT Scope 2 performs a few
queries, then ends, passing
control back to MTx.

MTx invokes AT Scope 3.
MTx suspends, AT Scope 3
begins.

AT Scope 3 begins Tx3.1
which, in turn, invokes AT
Scope 4. Tx3.1 suspends, AT
Scope 4 begins.

AT Scope 4 begins Tx4.1,
commits or rolls it back, then
ends. AT Scope 3 resumes.

AT Scope 3 commits or rolls
back Tx3.1, then ends. MTx
resumes.

Finally, MT Scope commits or
rolls back MTx, then ends.

MTx

Tx1.1

MTx

Tx2.1

Tx2.2

MTx

Tx3.1

Tx4.1

Tx3.1

MTx

Autonomous Transactions

2-26 Oracle Database Advanced Application Developer's Guide

Ordering a Product
In the example illustrated by Figure 2–5, a customer orders a product. The customer's
information (such as name, address, phone) is committed to a customer information
table—even though the sale does not go through.

Figure 2–5 Example: A Buy Order

Withdrawing Money from a Bank Account
In this example, a customer tries to withdraw money from a bank account. In the
process, a main transaction invokes one of two autonomous transaction scopes (AT
Scope 1 or AT Scope 2).

The possible scenarios for this transaction are:

■ Scenario 1: Sufficient Funds

■ Scenario 2: Insufficient Funds with Overdraft Protection

■ Scenario 3: Insufficient Funds Without Overdraft Protection

Scenario 1: Sufficient Funds There are sufficient funds to cover the withdrawal, so the
bank releases the funds (see Figure 2–6).

Rolls back Rolls back

Table 2–7 (Cont.) Possible Transaction Outcomes

Autonomous Transaction Main Transaction

AT Scope MT Scope
MT Scope begins the main
transaction, MTx inserts the
buy order into a table.

MTx invokes the autonomous
transaction scope (AT
Scope). When AT Scope
begins, MT Scope suspends.

ATx, updates the audit table
with customer information.

MTx seeks to validate the
order, finds that the selected
item is unavailable, and
therefore rolls back the main
transaction.

ATx

MTx

Autonomous Transactions

SQL Processing for Application Developers 2-27

Figure 2–6 Bank Withdrawal—Sufficient Funds

Scenario 2: Insufficient Funds with Overdraft Protection There are insufficient funds to cover
the withdrawal, but the customer has overdraft protection, so the bank releases the
funds (see Figure 2–7).

AT Scope 1 AT Scope 2MT Scope
MTx generates a
transaction ID.

Tx1.1 inserts the transaction
ID into the audit table and
commits.

MTx validates the balance on
the account.

Tx2.1, updates the audit table
using the transaction ID
generated above, then
commits.

MTx releases the funds. MT
Scope ends.

MTx

Tx1.1

MTx

Tx2.1

MTx

Autonomous Transactions

2-28 Oracle Database Advanced Application Developer's Guide

Figure 2–7 Bank Withdrawal—Insufficient Funds with Overdraft Protection

Scenario 3: Insufficient Funds Without Overdraft Protection There are insufficient funds to
cover the withdrawal and the customer does not have overdraft protection, so the
bank withholds the requested funds (see Figure 2–8).

AT Scope 1 AT Scope 2MT Scope

MTx discovers that there are
insufficient funds to cover the
withdrawal. It finds that the
customer has overdraft
protection and sets a flag to
the appropriate value.

Tx2.1, updates the
audit table.

MTx, releases the funds. MT
Scope ends.

MTx

Tx1.1

MTx

Tx2.1

MTx

Autonomous Transactions

SQL Processing for Application Developers 2-29

Figure 2–8 Bank Withdrawal—Insufficient Funds Without Overdraft Protection

Defining Autonomous Transactions

To define autonomous transactions, you use the pragma (compiler directive)
AUTONOMOUS_TRANSACTION. The pragma instructs the PL/SQL compiler to mark the
subprogram or PL/SQL block as autonomous (independent).

You can code the pragma anywhere in the declarative section of a subprogram or
PL/SQL block. But, for readability, code the pragma at the top of the section. The
syntax follows:

PRAGMA AUTONOMOUS_TRANSACTION;

In the following example, you mark a packaged function as autonomous:

CREATE OR REPLACE PACKAGE Banking AS
 FUNCTION Balance (Acct_id INTEGER) RETURN REAL;
 -- add additional functions and packages
END Banking;

CREATE OR REPLACE PACKAGE BODY Banking AS
 FUNCTION Balance (Acct_id INTEGER) RETURN REAL IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 My_bal REAL;

Note: This section is provided here to round out your general
understanding of autonomous transactions. For a more thorough
understanding of autonomous transactions, see Oracle Database
PL/SQL Language Reference.

AT Scope 1 AT Scope 2MT Scope

MTx discovers that there are
insufficient funds to cover the
withdrawal. It finds that the
customer does not have
overdraft protection and sets
a flag to the appropriate
value.

Tx2.1, updates the
audit table.

MTx Scope rolls back MTx,
denying the release of funds.
MT Scope ends.

MTx

Tx1.1

MTx

Tx2.1

MTx

Resuming Execution After Storage Allocation Error

2-30 Oracle Database Advanced Application Developer's Guide

 BEGIN
 --add appropriate code
 END;
 -- add additional functions and packages...
END Banking;

Restrictions on Autonomous Transactions
Autonomous transactions have the following restrictions:

■ You cannot use the pragma to mark all subprograms in a package (or all methods
in an object type) as autonomous. Only individual routines can be marked
autonomous. For example, the following pragma is illegal:

CREATE OR REPLACE PACKAGE Banking AS
 PRAGMA AUTONOMOUS_TRANSACTION; -- illegal
 FUNCTION Balance (Acct_id INTEGER) RETURN REAL;
 END Banking;

■ You cannot execute a PIPE ROW statement in your autonomous routine while your
autonomous transaction is open. You must close the autonomous transaction
before executing the PIPE ROW statement. This is normally accomplished by
committing or rolling back the autonomous transaction before executing the PIPE
ROW statement.

Resuming Execution After Storage Allocation Error
When a long-running transaction is interrupted by an out-of-space error condition,
your application can suspend the statement that encountered the problem and resume
it after the space problem is corrected. This capability is known as resumable storage
allocation. It lets you avoid time-consuming rollbacks, without the need to split the
operation into smaller pieces and write your own code to track its progress.

Topics:

■ What Operations Can Be Resumed After an Error Condition?

■ Handling Suspended Storage Allocation

What Operations Can Be Resumed After an Error Condition?
Queries, DML operations, and certain DDL operations can all be resumed if they
encounter an out-of-space error. The capability applies if the operation is performed
directly by a SQL statement, or if it is performed within a stored subprogram,
anonymous PL/SQL block, SQL*Loader, or an OCI call such as OCIStmtExecute.

Operations can be resumed after these kinds of error conditions:

■ Out of space errors, such as ORA-01653.

See Also: Oracle Database PL/SQL Language Reference

See Also:

■ Oracle Database Concepts for more information about resumable
storage allocation

■ Oracle Database Administrator's Guide for more information about
resumable storage allocation

Resuming Execution After Storage Allocation Error

SQL Processing for Application Developers 2-31

■ Space limit errors, such as ORA-01628.

■ Space quota errors, such as ORA-01536.

Certain storage errors cannot be handled using this technique. In dictionary-managed
tablespaces, you cannot resume an operation if you run into the limit for rollback
segments, or the maximum number of extents while creating an index or a table. Use
locally managed tablespaces and automatic undo management in combination with
this feature.

Handling Suspended Storage Allocation
When an operation is suspended, your application does not receive the usual error
code. Instead, perform any logging or notification by coding a trigger to detect the
AFTER SUSPEND event and invoke the functions in the DBMS_RESUMABLE package to
get information about the problem. Using this package, you can:

■ Parse the error message with the DBMS_RESUMABLE.SPACE_ERROR_INFO
function. For details about this function, see Oracle Database PL/SQL Packages and
Types Reference.

■ Set a new timeout value with the SET_TIMEOUT procedure.

Within the body of the trigger, you can perform any notifications, such as sending a
mail message to alert an operator to the space problem.

Alternatively, the DBA can periodically check for suspended statements using the
static data dictionary views DBA_RESUMABLE and USER_RESUMABLE (described in
Oracle Database Reference) and the dynamic performance view V$_SESSION_WAIT
(described in Oracle Database Reference).

When the space condition is corrected (usually by the DBA), the suspended statement
automatically resumes execution. If it is not corrected before the timeout period
expires, the operation causes a SERVERERROR exception.

To reduce the chance of out-of-space errors within the trigger itself, you must declare it
as an autonomous transaction so that it uses a rollback segment in the SYSTEM
tablespace. If the trigger encounters a deadlock condition because of locks held by the
suspended statement, the trigger is aborted and your application receives the original
error condition, as if it was never suspended. If the trigger encounters an out-of-space
condition, the trigger and the suspended statement are rolled back. You can prevent
the rollback through an exception handler in the trigger, and just wait for the
statement to be resumed.

In Example 2–1, a trigger handles applicable storage errors within the database. For
some kinds of errors, it aborts the statement and alerts the DBA that this has happened
through a mail message. For other errors that might be temporary, it specifies that the
statement waits for eight hours before resuming, with the expectation that the storage
problem will be fixed by then.

Example 2–1 Resumable Storage Allocation

CREATE OR REPLACE TRIGGER suspend_example
 AFTER SUSPEND
 ON DATABASE
 DECLARE
 cur_sid NUMBER;
 cur_inst NUMBER;
 err_type VARCHAR2(64);
 object_owner VARCHAR2(64);
 object_type VARCHAR2(64);

Resuming Execution After Storage Allocation Error

2-32 Oracle Database Advanced Application Developer's Guide

 table_space_name VARCHAR2(64);
 object_name VARCHAR2(64);
 sub_object_name VARCHAR2(64);
 msg_body VARCHAR2(64);
 ret_value boolean;
 error_txt varchar2(64);
 mail_conn utl_smtp.connection;
 BEGIN
 SELECT DISTINCT(sid) INTO cur_sid FROM v$mystat;
 cur_inst := userenv('instance');
 ret_value := dbms_resumable.space_error_info(err_type, object_owner,
 object_type, table_space_name, object_name, sub_object_name);
 IF object_type = 'ROLLBACK SEGMENT' THEN
 INSERT INTO sys.rbs_error (SELECT sql_text, error_msg, suspend_time
 FROM dba_resumable WHERE session_id = cur_sid AND instance_id = cur_inst);
 SELECT error_msg into error_txt FROM dba_resumable WHERE session_id = cur_sid
AND instance_id = cur_inst;
 msg_body := 'Subject: Space error occurred: Space limit reached for rollback
 segment '|| object_name || ' on ' || to_char(SYSDATE, 'Month dd, YYYY, HH:MIam')
 || '. Error message was: ' || error_txt;
 mail_conn := utl_smtp.open_connection('localhost', 25);
 utl_smtp.helo(mail_conn, 'localhost');
 utl_smtp.mail(mail_conn, 'sender@localhost');
 utl_smtp.rcpt(mail_conn, 'recipient@localhost');
 utl_smtp.data(mail_conn, msg_body);
 utl_smtp.quit(mail_conn);
 dbms_resumable.abort(cur_sid);
 ELSE
 dbms_resumable.set_timeout(3600*8);
 END IF;
 COMMIT;
 END;

Using SQL Datatypes in Database Applications 3-1

3
Using SQL Datatypes in Database

Applications

This chapter explains how to use SQL datatypes in database applications.

Topics:

■ Overview of SQL Datatypes

■ Representing Character Data

■ Representing Numeric Data

■ Representing Date and Time Data

■ Representing Specialized Data

■ Representing Conditional Expressions as Data

■ Identifying Rows by Address

■ How Oracle Database Converts Datatypes

■ Metadata for SQL Built-In Functions

Overview of SQL Datatypes
A datatype associates a fixed set of properties with the values that can be used in a
column of a table or in an argument of a subprogram. These properties cause Oracle
Database to treat values of one datatype differently from values of another datatype.
For example, Oracle Database can add values of NUMBER datatype, but not values of
RAW datatype.

Oracle Database provides a number of built-in datatypes as well as several categories
for user-defined types that can be used as datatypes. The datatypes supported by
Oracle Database can be divided into the following categories:

See Also:

■ Oracle Database Object-Relational Developer's Guide for information
about more complex types, such as object types, varrays, and
nested tables

■ Oracle Database SecureFiles and Large Objects Developer's Guide for
information about LOB datatypes

■ Oracle Database PL/SQL Language Reference to learn about the
PL/SQL datatypes. Many SQL datatypes are the same or similar
in PL/SQL.

Representing Character Data

3-2 Oracle Database Advanced Application Developer's Guide

■ Oracle built-in datatypes, which include datatypes for characters, numbers, dates
and times (known as datetime datatypes), raw data, large objects (LOBs), and row
addresses (ROWIDs).

■ ANSI datatypes and datatypes from the IBM products SQL/DS and DB2, which
are usable in SQL statements that create tables and clusters

■ User-defined types, which use Oracle built-in datatypes and other user-defined
datatypes as the building blocks of object types that model the structure and action
of data in applications

■ Oracle supplied types, which are SQL-based interfaces for defining new types

The Oracle precompilers recognize other datatypes in embedded SQL programs. These
datatypes are called external datatypes and are associated with host variables. Do not
confuse Oracle Database built-in datatypes and user-defined types with external
datatypes.

Representing Character Data
This section contains the following topics:

■ Overview of Character Datatypes

■ Specifying Column Lengths as Bytes or Characters

■ Choosing Between CHAR and VARCHAR2 Datatypes

■ Using Character Literals in SQL Statements

Overview of Character Datatypes
You can use the following SQL datatypes to store alphanumeric data:

■ CHAR and NCHAR datatypes store fixed-length character literals.

■ VARCHAR2 and NVARCHAR2 datatypes store variable-length character literals.

■ NCHAR and NVARCHAR2 datatypes store Unicode character data only.

■ CLOB and NCLOB datatypes store single-byte and multibyte character strings of up
to (4 gigabytes - 1) * (the value obtained from DBMS_LOB.GETCHUNKSIZE).

■ The LONG datatype stores variable-length character strings containing up to two
gigabytes, but with many restrictions. This datatype is provided only for
backward compatibility with existing applications. In general in new applications,
use CLOB and NCLOB datatypes to store large amounts of character data, and BLOB
and BFILE to store large amounts of binary data.

■ The LONG RAW datatype is similar to the RAW datatype, except that it stores raw
data with a length up to two gigabytes (2^31-1 bytes). The LONG RAW datatype is
provided only for backward compatibility with existing applications.

See Also:

■ Oracle Database SQL Language Reference for complete reference
information on the SQL datatypes

■ Pro*COBOL Programmer's Guide and Pro*C/C++ Programmer's
Guide for information on external datatypes, including how Oracle
converts between them and built-in or user-defined types

■ Oracle Database Concepts to learn about Oracle built-in datatypes

Representing Character Data

Using SQL Datatypes in Database Applications 3-3

Specifying Column Lengths as Bytes or Characters
You can specify the lengths of CHAR and VARCHAR2 columns as either bytes or
characters. The lengths of NCHAR and NVARCHAR2 columns are always specified in
characters, making them ideal for storing Unicode data, where a character might
consist of multiple bytes.

Consider the following list of column length specifications:

■ id VARCHAR2(32 BYTE)

The id column contains only single-byte data, up to 32 bytes.

■ name VARCHAR2(32 CHAR)

The name column contains data in the database character set. If the database
character set allows multibyte characters, then the 32 characters can be stored as
more than 32 bytes.

■ biography NVARCHAR2(2000)

The biography column can represent 2000 characters in any
Unicode-representable language. The encoding depends on the national character
set, but the column can contain multibyte values even if the database character set
is single-byte.

■ comment VARCHAR2(2000)

The representation of comment as 2000 bytes or characters depends on the
initialization parameter NLS_LENGTH_SEMANTICS.

When using a multibyte database character encoding scheme, consider carefully the
space required for tables with character columns. If the database character encoding
scheme is single-byte, then the number of bytes and the number of characters in a
column is the same. If it is multibyte, however, then there generally is no such
correspondence. A character might consist of one or more bytes, depending upon the
specific multibyte encoding scheme and whether shift-in/shift-out control codes are
present. To avoid overflowing buffers, specify data as NCHAR or NVARCHAR2 if it might
use a Unicode encoding that is different from the database character set.

Choosing Between CHAR and VARCHAR2 Datatypes
When deciding which datatype to use for a column that stores alphanumeric data in a
table, consider the following points of distinction:

■ Space usage

See Also:

■ Oracle Database SecureFiles and Large Objects Developer's Guide for
information on LOB datatypes (including CLOB and NCLOB
datatypes) and migration from LONG to LOB datatypes

■ Oracle Database SQL Language Reference for restrictions on LONG
datatypes

See Also:

■ Oracle Database Globalization Support Guide for more information
about SQL datatypes NCHAR and NVARCHAR2

■ Oracle Database SQL Language Reference for more information about
SQL datatypes NCHAR and NVARCHAR2

Representing Character Data

3-4 Oracle Database Advanced Application Developer's Guide

To store data more efficiently, use the VARCHAR2 datatype. The CHAR datatype
blank-pads and stores trailing blanks up to a fixed column length for all column
values, whereas the VARCHAR2 datatype does not add extra blanks.

■ Comparison semantics

Use the CHAR datatype when you require ANSI compatibility in comparison
semantics (when trailing blanks are not important in string comparisons). Use the
VARCHAR2 when trailing blanks are important in string comparisons.

■ Future compatibility

The CHAR and VARCHAR2 datatypes are fully supported. At this time, the
VARCHAR datatype automatically corresponds to the VARCHAR2 datatype and is
reserved for future use.

When an application interfaces with Oracle Database, there is a character set on the
client and server side. Oracle Database uses the NLS_LANGUAGE parameter to
automatically convert CHAR, VARCHAR2, and LONG data from the database character
set to the character set defined for the user session, if these are different.

Oracle Database SQL Language Reference explains the comparison semantics that Oracle
Database uses to compare character data. Because Oracle Database blank-pads values
stored in CHAR columns but not in VARCHAR2 columns, a value stored in a VARCHAR2
column can take up less space than the same value in a CHAR column. For this reason,
a full table scan on a large table containing VARCHAR2 columns may read fewer data
blocks than a full table scan on a table containing the same data stored in CHAR
columns. If your application often performs full table scans on large tables containing
character data, then you may be able to improve performance by storing data in
VARCHAR2 rather than in CHAR columns.

Performance is not the only factor to consider when deciding which datatype to use.
Oracle Database uses different semantics to compare values of each datatype. You
might choose one datatype over the other if your application is sensitive to the
differences between these semantics. For example, if you want Oracle Database to
ignore trailing blanks when comparing character values, then you must store these
values in CHAR columns.

Using Character Literals in SQL Statements
Many SQL statements, functions, expressions, and conditions require you to specify
character literal values. You can specify character literals with the following notations:

■ Character literals with the 'text' notation, as in the literals 'users01.dbf'
and 'Muthu''s computer'.

■ National character literals with the N'text' or n'text' notation, where N or n
specifies the literal using the national character set. For example, N'résumé' is a
National character literal.

Oracle Database translates N-quoted text into the national character set by way of
the database character set. If client-side characters do not have corresponding
encoding in the database character set, then Oracle Database converts them into
question marks. To avoid the potential loss of data during the text literal
conversion, set the environment variable $ORA_NCHAR_LITERAL_REPLACE to
TRUE. This setting transparently replaces the N'text' internally and preserves
the text literal for SQL processing.

See Also: Oracle Database SQL Language Reference for more
information on comparison semantics for these datatypes

Representing Numeric Data

Using SQL Datatypes in Database Applications 3-5

The UNISTR function provides support for Unicode character literals by enabling you
to specify the Unicode encoding value of characters in the string, as in
UNISTR('\1234'). This technique is useful, for example, when inserting data into
NCHAR columns. Because every character has a corresponding Unicode encoding, the
client application can safely send character data to the server without data loss.

By default you must quote character literals in single-quotes, as in 'Hello'. This
technique can sometimes be inconvenient if the text itself contains single quotes. In
such cases, you can also use the Q-quote mechanism, which enables you to specify q
or Q followed by a single quote and then another character to be used as the quote
delimiter. For example, the literal q'#it's the "final" deadline#' uses the
pound sign (#) as a quote delimiter for the string it's the "final" deadline.

The Q-quote delimiter can be any single- or multibyte character except space, tab, and
return. If the opening quote delimiter is a [, {, <, or (character, then the closing quote
delimiter must be the corresponding], }, >, or) character. In all other cases, the
opening and closing delimiter must be the identical character.

The following character literals use the alternative quoting mechanism:

q'(name LIKE '%DBMS_%%')'
q'<'Data,' he said, 'Make it so.'>'
q'"name like '['"'
nq'ïŸ1234ï'

Representing Numeric Data
This section contains the following topics:

■ Overview of Numeric Datatypes

■ Floating-Point Number Formats

■ Comparison Operators for Native Floating-Point Datatypes

■ Arithmetic Operations with Native Floating-Point Datatypes

■ Conversion Functions for Native Floating-Point Datatypes

■ Client Interfaces for Native Floating-Point Datatypes

Overview of Numeric Datatypes
The SQL datatypes NUMBER, BINARY_FLOAT, and BINARY_DOUBLE store numeric
data.

Use the NUMBER datatype to store real numbers in a fixed-point or floating-point
format. Numbers using this datatype are guaranteed to be portable among different
Oracle Database platforms, and offer up to 38 decimal digits of precision. You can store
positive and negative numbers of magnitude 1 x 10-130 through 9.99 x10125, as well as 0,
in a NUMBER column.

The BINARY_FLOAT and BINARY_DOUBLE datatypes store floating-point data in the
32-bit IEEE 754 format and the double precision 64-bit IEEE 754 format respectively.
Compared to the Oracle NUMBER datatype, arithmetic operations on floating-point

See Also:

■ Oracle Database Globalization Support Guide for information about
national character sets

■ Oracle Database SQL Language Reference for information about
character literals

Representing Numeric Data

3-6 Oracle Database Advanced Application Developer's Guide

data are usually faster for BINARY_FLOAT and BINARY_DOUBLE. Also, high-precision
values require less space when stored as BINARY_FLOAT and BINARY_DOUBLE.

In client interfaces supported by Oracle Database, the native instruction set supplied
by the hardware vendor performs arithmetic operations on BINARY_FLOAT and
BINARY_DOUBLE datatypes. The term native floating-point datatypes refers to
datatypes including BINARY_FLOAT and BINARY_DOUBLE and to all implementations
of these types in supported client interfaces.

The floating-point number system is a common way of representing and manipulating
numeric values in computer systems. A floating-point number is characterized by the
following components:

■ Binary-valued sign

■ Signed exponent

■ Significand

■ Base

A floating-point value is the signed product of its significand and the base raised to
the power of its exponent, as in the following formula:

(-1)sign . significand . base exponent

For example, the number 4.31 is represented as follows:

(-1)0 . 431 . 10 -2

The components of the preceding representation are as follows:

Floating-Point Number Formats
A floating-point number format specifies how components of a floating-point number
are represented. The choice of representation determines the range and precision of the
values the format can represent. By definition, the range is the interval bounded by the
smallest and the largest values the format can represent and the precision is the
number of digits in the significand.

Formats for floating-point values support neither infinite precision nor infinite range.
There are a finite number of bits to represent a number and only a finite number of

Component Name Component Value

Sign 0

Significand 431

Base 10

Exponent -2

See Also:

■ Oracle Database Concepts for information about the internal format
for the NUMBER datatype

■ Oracle Database SQL Language Reference for more information about
the NUMBER datatype

■ Oracle Database SQL Language Reference for more information about
the BINARY_FLOAT and BINARY_DOUBLE datatypes

Representing Numeric Data

Using SQL Datatypes in Database Applications 3-7

values that a format can represent. A floating-point number that uses more precision
than available with a given format is rounded.

A floating-point number can be represented in a binary system (one that uses base 2),
as in the IEEE 754 standard, or in a decimal system (one that uses base 10), such as
Oracle NUMBER. The base affects many properties of the format, including how a
numeric value is rounded.

For a decimal floating-point number format like Oracle NUMBER, rounding is done to
the nearest decimal place (for example. 1000, 10, or 0.01). The IEEE 754 formats use a
binary format for floating-point values and round numbers to the nearest binary place
(for example: 1024, 512, or 1/64).

The native floating-point datatypes supported by the database round to the nearest
binary place, so they are not satisfactory for applications that require decimal
rounding. Use the Oracle NUMBER datatype for applications in which decimal
rounding is required on floating-point data.

Topics:

■ Using a Floating-Point Binary Format

■ Representing Special Values with Native Floating-Point Formats

Using a Floating-Point Binary Format
The value of a floating-point number that uses a binary format is determined by the
following formula:

(-1)s 2E (b0 b1 b2 ... bp-1)

Table 3–1 describes the components of the formula.

The leading bit of the significand, b0, must be set (1), except for subnormal numbers
(explained later). Therefore, the leading bit is not actually stored, so the formats
provide n bits of precision although only n-1 bits are stored.

The parameters for these formats are described in Table 3–2.

Table 3–1 Components of the Binary Format for Floating-Point Numbers

Component Specifies . . .

s 0 or 1

E Any integer between Emin and Emax, inclusive (see Table 3–2)

bi 0 or 1, where the sequence of bits represents a number in base 2 (see Table 3–2)

Note: The IEEE 754 specification also defines extended
single-precision and extended double-precision formats, which are not
supported by Oracle Database.

Table 3–2 Summary of Binary Format Parameters

Parameter Single-precision (32-bit) Double-precision (64-bit)

p 24 53

Emin -126 -1022

Emax +127 +1023

Representing Numeric Data

3-8 Oracle Database Advanced Application Developer's Guide

The storage parameters for the formats are described in Table 3–3. The in-memory
formats for single-precision and double-precision datatypes are specified by IEEE 754.

A significand is normalized when the leading bit of the significand is set. IEEE 754
defines denormal or subnormal values as numbers that are too small to be
represented with an implied leading set bit in the significand. The number is too small
because its exponent would be too large if its significand were normalized to have an
implied leading bit set. IEEE 754 formats support subnormal values. Subnormal values
preserve the following property:

if: x - y == 0.0 (using floating-point subtraction)

then: x == y

Table 3–4 shows the range and precision of the required formats in the IEEE 754
standard and those of Oracle NUMBER. Range limits are expressed here in terms of
positive numbers; they also apply to the absolute value of a negative number. (The
notation "number e exponent" used here stands for number multiplied by 10 raised to the
exponent power: number . 10 exponent.)

Representing Special Values with Native Floating-Point Formats
Table 3–5 shows the special values that IEEE 754 allows to be represented.

Table 3–3 Summary of Binary Format Storage Parameters

Datatype Sign bits Exponent bits Significand bits Total bits

Single-precision 1 8 24 (23 stored) 32

Double-precision 1 11 53 (52 stored) 64

Table 3–4 Range and Precision of IEEE 754 formats

Range and
Precision

Single-precision
32-bit1

1 These numbers are quoted from the IEEE Numerical Computation Guide.

Double-precision
64-bit1

Oracle NUMBER
Datatype

Max positive normal
number

3.40282347e+38 1.7976931348623157e+308 < 1.0e126

Min positive normal
number

1.17549435e-38 2.2250738585072014e-308 1.0e-130

Max positive
subnormal number

1.17549421e-38 2.2250738585072009e-308 not applicable

Min positive
subnormal number

1.40129846e-45 4.9406564584124654e-324 not applicable

Precision (decimal
digits)

6 - 9 15 - 17 38 - 40

See Also:

■ Oracle Database SQL Language Reference, section "Numeric Literals",
for information about literal representation of numeric values

■ Oracle Database SQL Language Reference for more information about
floating-point formats

Representing Numeric Data

Using SQL Datatypes in Database Applications 3-9

NaN represent results of operations that are undefined. Many bit patterns in IEEE 754
represent NaN. Bit patterns can represent NaN with and without the sign bit set. IEEE
754 distinguishes between signalling NaNs and quiet NaNs.

IEEE 754 specifies action for when exceptions are enabled and disabled. Oracle
Database does not allow exceptions to be enabled; the database action is that specified
by IEEE 754 for when exceptions are disabled. In particular, Oracle Database makes no
distinction between signalling and quiet NaNs. Programmers who use OCI can retrieve
NaN values from Oracle Database; whether a retrieved NaN value is signalling or quiet
depends on the client platform and beyond the control of Oracle Database.

IEEE 754 does not define the bit pattern for either type of NaN. Positive infinity,
negative infinity, positive zero, and negative zero are each represented by a specific bit
pattern.

Ignoring signs, there are the following classes of values, with each of the classes except
for NaN greater than the one preceding it in the list:

■ Zero

■ Subnormal

■ Normal

■ Infinity

■ NaN

In IEEE 754, NaN is unordered with other classes of special values and with itself.

When used with the database, special values of native floating-point datatypes act as
follows:

■ All NaNs are quiet.

■ IEEE 754 exceptions are not raised.

■ NaN is ordered as follows:

All non-NaN < NaN

Any NaN == any other NaN

■ -0 is converted to +0.

■ All NaNs are converted to the same bit pattern.

Table 3–5 Special Values for Negative Floating-Point Formats

Value Meaning

+INF Positive infinity

-INF Negative infinity

NaN Not a number

+0 Positive zero

-0 Negative zero

See Also: "Comparison Operators for Native Floating-Point
Datatypes" on page 3-10 for more information on NaN compared to
other values

Representing Numeric Data

3-10 Oracle Database Advanced Application Developer's Guide

Comparison Operators for Native Floating-Point Datatypes
Oracle Database defines the following comparison operators for operations involving
floating-point datatypes:

■ Equal to

■ Not equal to

■ Greater than

■ Greater than or equal to

■ Less than

■ Less than or equal to

■ Unordered

Note the following special cases:

■ Comparisons ignore the sign of zero (-0 is equal to, not less than, +0).

■ In Oracle Database, NaN is equal to itself. NaN is greater than everything except
itself. That is, NaN == NaN and NaN > x, unless x is NaN.

Arithmetic Operations with Native Floating-Point Datatypes
Oracle Database defines operators for the following arithmetic operations:

■ Multiplication

■ Division

■ Addition

■ Subtraction

■ Remainder

■ Square root

You can define the mode used to round the result of the operation. Exceptions can be
raised when operations are performed. Exceptions can also be disabled.

Formerly, Java required floating-point arithmetic to be exactly reproducible. IEEE 754
does not require such action. The standard allows for the result of operations,
including arithmetic, to be delivered to a destination that uses a range greater than
that used by the operands to the operation.

You can compute the result of a double-precision multiplication at an extended
double-precision destination. When this is done, the result must be rounded as if the
destination were single-precision or double-precision. The range of the result, that is,
the number of bits used for the exponent, can use the range supported by the wider
(extended double-precision) destination. This occurrence may result in a
double-rounding error in which the least significant bit of the result is incorrect.

This situation can occur only for double-precision multiplication and division on
hardware that implements the IA-32 and IA-64 instruction set architecture. Thus, with
the exception of this case, arithmetic for these datatypes is reproducible across
platforms. When the result of a computation is NaN, all platforms produce a value for
which IS NAN is true. However, all platforms do not have to use the same bit pattern.

See Also: "Representing Special Values with Native Floating-Point
Formats" on page 3-8 for more information on comparison results,
ordering, and other actions of special values.

Representing Numeric Data

Using SQL Datatypes in Database Applications 3-11

Conversion Functions for Native Floating-Point Datatypes
Oracle Database defines functions that convert between floating-point and other
formats, including string formats that use decimal precision (precision may be lost
during the conversion). For example, you can use the following functions:

■ TO_BINARY_DOUBLE, which converts float to double, decimal (string) to double,
and float or double to integer-valued double

■ TO_BINARY_FLOAT, which converts double to float, decimal (string) to float, and
float or double to integer-valued float

■ TO_CHAR, which converts float or double to decimal (string)

■ TO_NUMBER, which converts a float, double, or string to a number

Oracle Database can raise exceptions during conversion. The IEEE 754 specification
defines the following exceptions:

■ Invalid

■ Inexact

■ Divide by zero

■ Underflow

■ Overflow

Oracle Database does not raise these exceptions for native floating-point datatypes.
Generally, situations that raise exceptions produce the values described in Table 3–6.

Client Interfaces for Native Floating-Point Datatypes
Oracle Database has implemented support for native floating-point datatypes in the
following client interfaces:

■ SQL

■ PL/SQL

■ OCI and OCCI

■ Pro*C/C++

■ JDBC

Topics:

■ OCI Native Floating-Point Datatypes SQLT_BFLOAT and SQLT_BDOUBLE

■ Native Floating-Point Datatypes Supported in Oracle OBJECT Types

■ Pro*C/C++ Support for Native Floating-Point Datatypes

Table 3–6 Values Resulting from Exceptions

Exception Value

Underflow 0

Overflow -INF, +INF

Invalid Operation NaN

Divide by Zero -INF, +INF, NaN

Inexact Any value – rounding was performed

Representing Date and Time Data

3-12 Oracle Database Advanced Application Developer's Guide

OCI Native Floating-Point Datatypes SQLT_BFLOAT and SQLT_BDOUBLE
The OCI API implements the IEEE 754 single precision and double precision native
floating-point datatypes with the datatypes SQLT_BFLOAT and SQLT_BDOUBLE
respectively. Conversions between these types and the SQL types BINARY_FLOAT and
BINARY_DOUBLE are exact on platforms that implement the IEEE 754 standard for the
C datatypes FLOAT and DOUBLE.

Native Floating-Point Datatypes Supported in Oracle OBJECT Types
Oracle Database supports the SQL datatypes BINARY_FLOAT and BINARY_DOUBLE as
attributes of Oracle OBJECT types.

Pro*C/C++ Support for Native Floating-Point Datatypes
Pro*C/C++ supports the native FLOAT and DOUBLE datatypes using the column
datatypes BINARY_FLOAT and BINARY_DOUBLE. You can use these datatypes in the
same way that Oracle NUMBER datatype is used. You can bind the native C/C++
datatypes FLOAT and DOUBLE to BINARY_FLOAT and BINARY_DOUBLE types
respectively by setting the Pro*C/C++ precompiler command line option NATIVE_
TYPES to Y (yes) when you compile your application.

Representing Date and Time Data
This section contains the following topics:

■ Overview of Date and Time Datatypes

■ Changing the Default Date Format

■ Changing the Default Time Format

■ Arithmetic Operations with Date and Time Datatypes

■ Converting Between Date and Time Types

■ Importing and Exporting Date and Time Types

Overview of Date and Time Datatypes
Oracle Database supports the following date and time datatypes:

■ DATE

Use the DATE datatype to store point-in-time values (dates and times) in a table.
The DATE datatype stores the century, year, month, day, hours, minutes, and
seconds.

■ TIMESTAMP

Use the TIMESTAMP datatype to store values that are precise to fractional seconds.
For example, an application that must decide which of two events occurred first
might use TIMESTAMP. An application that specifies the time for a job might use
DATE.

■ TIMESTAMP WITH TIME ZONE

Because TIMESTAMP WITH TIME ZONE can also store time zone information, it is
particularly suited for recording date information that must be gathered or
coordinated across geographic regions.

See Also: Oracle Call Interface Programmer's Guide

Representing Date and Time Data

Using SQL Datatypes in Database Applications 3-13

■ TIMESTAMP WITH LOCAL TIME ZONE

Use TIMESTAMP WITH LOCAL TIME ZONE when the time zone is not significant.
For example, you might use it in an application that schedules teleconferences,
where participants each see the start and end times for their own time zone.

The TIMESTAMP WITH LOCAL TIME ZONE type is appropriate for two-tier
applications in which you want to display dates and times that use the time zone
of the client system. It is generally inappropriate in three-tier applications because
data displayed in a Web browser is formatted according to the time zone of the
Web server, not the time zone of the browser. The Web server is the database client,
so its local time is used.

■ INTERVAL DAY TO SECOND

Use the INTERVAL DAY TO SECOND datatype to represent the precise difference
between two datetime values. For example, you might use this value to set a
reminder for a time 36 hours in the future or to record the time between the start
and end of a race. To represent long spans of time with high precision, you can use
a large value for the days portion.

■ INTERVAL YEAR TO MONTH

Use the INTERVAL YEAR TO MONTH datatype to represent the difference between
two datetime values, where the only significant portions are the year and the
month. For example, you might use this value to set a reminder for a date 18
months in the future, or check whether 6 months have elapsed since a particular
date.

Oracle Database stores dates in its own internal format. Date data is stored in
fixed-length fields of seven bytes each, corresponding to century, year, month, day,
hour, minute, and second.

Displaying Current Date and Time
Use the SQL function SYSDATE to return the system date and time. You can use the
FIXED_DATE initialization parameter to set SYSDATE to a constant, which can be
useful for testing.

By default, SYSDATE is printed without any BC or AD qualifier. You can add BC to the
format string to print the date with BC or AD as appropriate:

SELECT TO_CHAR(SYSDATE, 'DD-MON-YYYY BC')
FROM DUAL;

TO_CHAR(SYSDAT

24-JAN-2004 AD

For input and output of dates, the standard Oracle Database default date format is
DD-MON-RR. The RR datetime format element enables you store 20th century dates in
the 21st century by specifying only the last two digits of the year.

As explained in Oracle Database SQL Language Reference, the century of the return value
varies according to the specified two-digit year and the last two digits of the current
year. For example, the following format refers to the year 1954 in a query issued
between 1950 and 2049, but to the year 2054 in a query issued between 2050 and 2099:

'13-NOV-54'

See Also: Oracle Call Interface Programmer's Guide for a complete
description of the Oracle Database internal date format

Representing Date and Time Data

3-14 Oracle Database Advanced Application Developer's Guide

Changing the Default Date Format
Use the following techniques to change the default date format:

■ To change on an instance-wide basis, use the NLS_DATE_FORMAT parameter.

■ To change during a session, use the ALTER SESSION statement.

To enter dates that are not in the current default date format, use the TO_DATE
function with a format mask. For example:

SELECT TO_CHAR(TO_DATE('27-OCT-98', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Be careful when using a date format such as DD-MON-YY. The YY indicates the year in
the current century. For example, 31-DEC-92 is December 31, 2092, not 1992 as you
might expect. If you want to indicate years in any century other than the current one,
use a different format mask, such as the default RR.

Changing the Default Time Format
Time is stored in the following 24-hour format:

HH24:MI:SS

By default, the time in a DATE column is 12:00:00 A.M. (midnight) if no time portion is
entered or if the DATE is truncated.

In a time-only entry, the date portion defaults to the first day of the current month. To
enter the time portion of a date, use the TO_DATE function with a format mask
indicating the time portion, as shown in Example 3–1.

Example 3–1 Indicating Time with the TO_DATE Function

-- create test table
CREATE TABLE birthdays
(Bname VARCHAR2(20),
 Bday DATE
);

-- insert a row
INSERT INTO birthdays (bname, bday)
VALUES
('ANNIE',
 TO_DATE('13-NOV-92 10:56 A.M.','DD-MON-YY HH:MI A.M.')
);

Arithmetic Operations with Date and Time Datatypes
Oracle Database provides a number of features to help with date arithmetic, so that
you do not need to perform your own calculations on the number of seconds in a day,
the number of days in each month, and so on. Some useful features include the
following:

■ ADD_MONTHS function, which returns the date plus the specified number of
months.

See Also: Oracle Database Concepts for information about Julian
dates. Oracle Database Julian dates might not be compatible with
Julian dates generated by other date algorithms.

Representing Date and Time Data

Using SQL Datatypes in Database Applications 3-15

■ SYSDATE function, which returns the current date and time set for the operating
system on which the database resides.

■ SYSTIMESTAMP function, which returns the system date, including fractional
seconds and time zone, of the system on which the database resides.

■ TRUNC function, which when applied to a DATE value, trims off the time portion
so that it represents the very beginning of the day (the stroke of midnight). By
truncating two DATE values and comparing them, you can determine whether
they refer to the same day. You can also use TRUNC along with a GROUP BY clause
to produce daily totals.

■ Arithmetic operators such as + and -. For example, SYSDATE-7 refers to 7 days
before the current system date.

■ INTERVAL datatypes, which enable you to represent constants when performing
date arithmetic rather than performing your own calculations. For example, you
can add or subtract INTERVAL constants from DATE values or subtract two DATE
values and compare the result to an INTERVAL.

■ Comparison operators such as >, <, =, and BETWEEN.

Converting Between Date and Time Types
Oracle Database provides several useful functions that enable you to convert to a from
datetime datatypes. Some useful functions include:

■ EXTRACT, which extracts and returns the value of a specified datetime field from a
datetime or interval value expression

■ NUMTODSINTERVAL, which converts a NUMBER or expression that can be implicitly
converted to a NUMBER value to an INTERVAL DAY TO SECOND literal

■ NUMTOYMINTERVAL, which converts a NUMBER or expression that can be implicitly
converted to a NUMBER value to an INTERVAL YEAR TO MONTH literal

■ TO_DATE, which converts character data to a DATE datatype

■ TO_CHAR, which converts DATE data to character data

■ TO_DSINTERVAL, which converts a character string to an INTERVAL DAY TO
SECOND value

■ TO_TIMESTAMP, which converts character data to a value of TIMESTAMP datatype

■ TO_TIMESTAMP_TZ, which converts character data to a value of TIMESTAMP
WITH TIME ZONE datatype

■ TO_YMINTERVAL, which converts a character string to an INTERVAL YEAR TO
MONTH type

Importing and Exporting Date and Time Types
TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE values are
always stored in normalized format, so that you can export, import, and compare
them without worrying about time zone offsets. DATE and TIMESTAMP values do not
store an associated time zone, and you must adjust them to account for any time zone
differences between source and target databases.

See Also: Oracle Database SQL Language Reference for details about
each function

Representing Specialized Data

3-16 Oracle Database Advanced Application Developer's Guide

Representing Specialized Data
This section contains the following topics:

■ Representing Geographic Data

■ Representing Multimedia Data

■ Representing Large Amounts of Data

■ Representing Searchable Text

■ Representing XML

■ Representing Dynamically Typed Data

■ Representing Data with ANSI/ISO, DB2, and SQL/DS Datatypes

Representing Geographic Data
To represent Geographic Information System (GIS) or spatial data in the database, you
can use Oracle Spatial features, including the type MDSYS.SDO_GEOMETRY. You can
store the data in the database by using either an object-relational or a relational model.
You can use a set of PL/SQL packages to query and manipulate the data.

Representing Multimedia Data
Oracle Multimedia enables Oracle Database to store, manage, and retrieve images,
audio, video, or other heterogeneous media data in an integrated fashion with other
enterprise information. Oracle Multimedia extends Oracle Database reliability,
availability, and data management to multimedia content in traditional, Internet,
electronic commerce, and media-rich applications.

Whether you store such multimedia data inside the database as BLOB or BFILE
values, or store it externally on a Web server or other kind of server, you can use
Oracle Multimedia to access the data using either an object-relational or a relational
model, and manipulate and query the data using a set of object types.

Oracle Multimedia provides the ORDAudio, ORDDoc, ORDImage,
ORDImageSignature, ORDVideo, and SI_StillImage object types and methods
for the following purposes:

■ Extracting metadata and attributes from multimedia data

■ Retrieving and managing multimedia data from Oracle Multimedia, Web servers,
file systems, and other servers

■ Performing manipulation operations on image data

Representing Large Amounts of Data
Oracle Database provides several datatypes for representing large amounts of data.
These datatypes are grouped under the general category of Large Objects (LOBs).
Table 3–7 describes the different LOBs.

See Also: Oracle Spatial Developer's Guide to learn how to use
MDSYS.SDO_GEOMETRY

See Also: Oracle Multimedia Reference for information about Oracle
Multimedia types

Representing Specialized Data

Using SQL Datatypes in Database Applications 3-17

An instance of type BLOB, CLOB, or NCLOB can exist as either a persistent LOB instance
or a temporary LOB instance. Persistent and temporary instances differ as follows:

■ A temporary LOB instance is declared in the scope of your application.

■ A persistent LOB instance is created and stored in the database.

With the exception of declaring, freeing, creating, and committing, operations on
persistent and temporary LOB instances are performed the same way.

The RAW and LONG RAW datatypes store data that is not interpreted by Oracle
Database, that is, it is not converted when moving data between different systems.
These datatypes are intended for binary data and byte strings. For example, LONG RAW
can store graphics, sound, documents, and arrays of binary data; the interpretation is
dependent on the use.

Oracle Net and the Export and Import utilities do not perform character conversion
when transmitting RAW or LONG RAW data. When Oracle Database automatically
converts RAW or LONG RAW data to and from CHAR data, as is the case when entering
RAW data as a literal in an INSERT statement, the database represents the data as one
hexadecimal character representing the bit pattern for every four bits of RAW data. For
example, one byte of RAW data with bits 11001011 is displayed and entered as CB.

You cannot index LONG RAW data, but you can index RAW data. In earlier releases, the
LONG and LONG RAW datatypes were typically used to store large amounts of data. Use
of these types is no longer recommended for new development. If your existing
application still uses these types, migrate your application to use LOB types. Oracle
recommends that you convert LONG RAW columns to binary LOB (BLOB) columns and
convert LONG columns to character LOB (CLOB or NCLOB) columns. LOB columns are
subject to far fewer restrictions than LONG and LONG RAW columns.

Table 3–7 Large Object Datatypes

Datatype Name Description

BLOB Binary large object Represents large amounts of binary data such as images,
video, or other multimedia data.

CLOB Character large object Represents large amounts of character data. CLOB types are
stored by using the database character set. Oracle database
stores a CLOB up to 4,000 bytes inline as a VARCHAR2. If the
CLOB exceeds this length, then Oracle database moves the
CLOB out of line.

NCLOB National character
large objects

Represents large amounts of character data in National
Character Set format.

BFILE External large object Stores objects in the operating system's file system, outside
of the database files or tablespace. The BFILE type is
read-only; other LOB types are read/write. BFILE objects
are also sometimes referred to as external LOBs.

See Also:

■ See Oracle Database SecureFiles and Large Objects Developer's Guide
for more information about LOBs

■ See Oracle Database SQL Language Reference for restrictions on
LONG and LONG RAW datatypes

Representing Specialized Data

3-18 Oracle Database Advanced Application Developer's Guide

Representing Searchable Text
Rather than writing low-level code to do full-text searches, you can use Oracle Text. It
stores the search data in a special kind of index, and lets you query the data with
operators and PL/SQL packages. This technology enables you to create your own
search engine using data from tables, files, or URLs, and combine the search logic with
relational queries. You can also search XML data this way with the XPath notation.

Representing XML
If you have information stored as files in XML format, or if you want to take an object
type and store it as XML, then you can use the XMLType built-in type.

XMLType columns store their data as either CLOB or binary XML. The XMLType
constructor can turn an existing object of any datatype into an XML object.

When an XML object is inside the database, you can use queries to traverse it (using
the XML XPath notation) and extract all or part of its data.

You can also produce XML output from existing relational data and split XML
documents across relational tables and columns. You can use the following packages
to transfer XML data into and out of relational tables:

■ DBMS_XMLQUERY, which provides database-to-XMLType functionality

■ DBMS_XMLGEN, which converts the results of a SQL query to a canonical XML
format

■ DBMS_XMLSAVE, which provides XML to database-type functionality

You can use the following SQL functions to process XML:

■ EXTRACT, which applies a VARCHAR2 XPath string and returns an XMLType
instance containing an XML fragment

■ SYS_XMLAGG, which aggregates all of the XML documents or fragments
represented by an expression and produces a single XML document

■ SYS_XMLGEN, which takes an expression that evaluates to a particular row and
column of the database, and returns an instance of type XMLType containing an
XML document

■ UPDATEXML, which takes as arguments an XMLType instance and an XPath-value
pair and returns an XMLType instance with the updated value

■ XMLAGG, which takes a collection of XML fragments and returns an aggregated
XML document

■ XMLCOLATTVAL, which creates an XML fragment and then expands the resulting
XML so that each XML fragment has the name column with the attribute name

■ XMLCONCAT, which takes as input a series of XMLType instances, concatenates the
series of elements for each row, and returns the concatenated series

■ XMLELEMENT, which takes an element name for identifier, an optional collection of
attributes for the element, and arguments that make up the content of the element

■ XMLFOREST, which converts each of its argument parameters to XML, and then
returns an XML fragment that is the concatenation of these converted arguments

■ XMLSEQUENCE, which either takes as input an XMLType instance and returns a
varray of the top-level nodes in the XMLType, or takes as input a REFCURSOR

See Also: Oracle Text Application Developer's Guide for more
information

Representing Specialized Data

Using SQL Datatypes in Database Applications 3-19

instance, with an optional instance of the XMLFormat object, and returns as an
XMLSequence type an XML document for each row of the cursor

XMLTRANSFORM, which takes as arguments an XMLType instance and an XSL style
sheet, applies the style sheet to the instance, and returns an XMLType

Representing Dynamically Typed Data
Some languages allow datatypes to change at run time or let a program check the type
of a variable. For example, C has the union keyword and the void * pointer, while
Java has the typeof operator and wrapper types such as Number. Oracle Database
includes features that enable you to create variables and columns that can hold data of
any type and test such data values to determine their underlying representation. For
example, you can use these features to have a single table column represent a numeric
value in one row, a string value in another row, and an object in another row.

You can use the built-in type SYS.ANYDATA to represent values of any scalar or object
type. This type is an object type with methods to bring in a scalar value of any type,
and turn the value back into a scalar or object. In the same way, you can use the
built-in type SYS.ANYDATASET to represent values of any collection type.

To manipulate and check type information, you can use SYS.ANYTYPE in combination
with the DBMS_TYPES package. The program in Example 3–2 represents data of
different underlying types in a table, then interprets the underlying type of each row
and processes each value appropriately.

Example 3–2 Accessing Information in a SYS.ANYDATA Column

-- This example defines and executes a PL/SQL procedure that
-- uses methods built into SYS.ANYDATA to access information about
-- data stored in a SYS.ANYDATA table column.
DROP TYPE Employee_type FORCE;
DROP TABLE mytab;
CREATE OR REPLACE TYPE Employee_type AS OBJECT (empno NUMBER,
 ename VARCHAR2(10));
/
CREATE TABLE mytab (id NUMBER, data SYS.ANYDATA);
INSERT INTO mytab VALUES (1, SYS.ANYDATA.ConvertNumber(5));
INSERT INTO mytab VALUES (2,
 SYS.ANYDATA.ConvertObject(Employee_type(5555, 'john')));
COMMIT;
CREATE OR REPLACE PROCEDURE p
IS
 CURSOR cur IS SELECT id, data FROM mytab;
 v_id mytab.id%TYPE;
 v_data mytab.data%TYPE;
 v_type SYS.ANYTYPE;
 v_typecode PLS_INTEGER;
 v_typename VARCHAR2(60);
 v_dummy PLS_INTEGER;

See Also:

■ Oracle XML DB Developer's Guide for details about the XMLType
datatype

■ Oracle XML Developer's Kit Programmer's Guide for information
about client-side programming with XML

■ Oracle Database SQL Language Reference for information about XML
functions

Representing Specialized Data

3-20 Oracle Database Advanced Application Developer's Guide

 v_n NUMBER;
 v_employee Employee_type;
 non_null_anytype_for_NUMBER exception;
 unknown_typename exception;
BEGIN
 OPEN cur;
 LOOP
 FETCH cur INTO v_id, v_data;
 EXIT WHEN cur%NOTFOUND;

/* The typecode is a number that signifies what type is represented by v_data.
 GetType also produces a value of type SYS.AnyType with methods you can call
 to find precision and scale of a number, length of a string, and so on. */

 v_typecode := v_data.GetType (v_type /* OUT */);

/* Now we compare the typecode against constants from DBMS_TYPES to see what
 kind of data we have, and decide how to display it. */

 CASE v_typecode
 WHEN DBMS_TYPES.TYPECODE_NUMBER THEN
 IF v_type IS NOT NULL
-- This condition should never happen, but check just in case.
 THEN RAISE non_null_anytype_for_NUMBER; END IF;
-- For each type, there is a Get method.
 v_dummy := v_data.GetNUMBER (v_n /* OUT */);
 DBMS_OUTPUT.PUT_LINE (
 TO_CHAR(v_id) || ': NUMBER = ' || To_Char(v_n));
 WHEN DBMS_TYPES.TYPECODE_OBJECT THEN
 v_typename := v_data.GetTypeName();
-- An object type's name is qualified with the schema name.
 IF v_typename NOT IN ('HR.EMPLOYEE_TYPE')
-- If we encounter any object type besides EMPLOYEE_TYPE, raise an exception.
 THEN RAISE unknown_typename; END IF;
 v_dummy := v_data.GetObject (v_employee /* OUT */);
 DBMS_OUTPUT.PUT_LINE (
 To_Char(v_id) || ': user-defined type = ' || v_typename ||
 ' (' || v_employee.empno || ', ' || v_employee.ename || ')');
 END CASE;
 END LOOP;
 CLOSE cur;
EXCEPTION
 WHEN non_null_anytype_for_NUMBER THEN
 RAISE_Application_Error (-20000,
 'Paradox: the return AnyType instance FROM GetType ' ||
 'should be NULL for all but user-defined types');
 WHEN unknown_typename THEN
 RAISE_Application_Error (-20000, 'Unknown user-defined type ' ||
 v_typename || ' - program written to handle only HR.EMPLOYEE_TYPE');
END;
/

The query and procedure in Example 3–2 produce output like that shown in
Example 3–3.

Example 3–3 Sample Output for Example 3–2

SQL> SELECT t.data.gettypename() AS "Type Name" FROM mytab t;

Type Name

Representing Specialized Data

Using SQL Datatypes in Database Applications 3-21

--
SYS.NUMBER
HR.EMPLOYEE_TYPE

SQL> EXEC p;
1: NUMBER = 5
2: user-defined type = HR.EMPLOYEE_TYPE (5555, john)

You can access the same features through the OCI interface by using the OCIType,
OCIAnyData, and OCIAnyDataSet interfaces.

Representing Data with ANSI/ISO, DB2, and SQL/DS Datatypes
You can define columns of tables in Oracle Database through ANSI/ISO, DB2, and
SQL/DS datatypes. Oracle Database internally converts such datatypes to Oracle
datatypes.

The ANSI datatype conversions are shown in Table 3–8. The ANSI/ISO datatypes
NUMERIC, DECIMAL, and DEC can specify only fixed-point numbers. For these
datatypes, s defaults to 0.

Table 3–9 shows the SQL/DS and DB2 conversions.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for details
about the DBMS_TYPES package

■ Oracle Database Object-Relational Developer's Guide for information
and examples using the ANYDATA, ANYDATASET, and ANYTYPE
types

■ Oracle Call Interface Programmer's Guide for details about the OCI
interfaces

Table 3–8 ANSI Datatype Conversions to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype

CHARACTER (n)

CHAR (n)

CHAR (n)

NUMERIC (p,s)

DECIMAL (p,s)

DEC (p,s)

NUMBER (p,s)

INTEGER

INT

SMALLINT

NUMBER (38)

FLOAT (p) FLOAT (p)

REAL FLOAT (63)

DOUBLE PRECISION FLOAT (126)

CHARACTER VARYING(n)

CHAR VARYING(n)

VARCHAR2 (n)

TIMESTAMP TIMESTAMP

TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE

Representing Conditional Expressions as Data

3-22 Oracle Database Advanced Application Developer's Guide

The datatypes TIME, GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC of IBM
products SQL/DS and DB2 have no corresponding Oracle datatype, and they cannot
be used.

Representing Conditional Expressions as Data
The Oracle Expression Filter feature enables you to store conditional expressions as
data in the database. The Oracle Expression Filter provides a mechanism that you can
use to place a constraint on a VARCHAR2 column to ensure that the values stored are
valid SQL WHERE clause expressions. This mechanism also identifies the set of
attributes that are legal to reference in the conditional expressions.

For example, suppose you create a traders table in which row holds data for a stock
trading account holder. You want to define a column that stores information about
stocks each trader is interested in as a conditional expression. You follow these steps:

1. Create a table traders holds data for a stock trading account holder:

CREATE TABLE traders
(name VARCHAR2(50),
 email VARCHAR2(50),
 interest VARCHAR2(50)
);

2. Create the user-defined datatype ticker with attributes for the trading symbol,
limit price, and amount of change in the stock price:

CREATE OR REPLACE TYPE ticker
AS OBJECT
(symbol VARCHAR2(20),
 price NUMBER,
 change NUMBER
);

3. Use the following PL/SQL block to create an attribute set ticker based on the
ticker datatype:

BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'ticker',
 from_type => 'YES');
END;

Table 3–9 SQL/DS, DB2 Datatype Conversions to Oracle Datatypes

DB2 or SQL/DS Datatype Oracle Datatype

CHARACTER (n) CHAR (n)

VARCHAR (n) VARCHAR2 (n)

LONG VARCHAR LONG

DECIMAL (p,s) NUMBER (p,s)

INTEGER

SMALLINT

NUMBER (38)

FLOAT (p) FLOAT (p)

DATE DATE

TIMESTAMP TIMESTAMP

Identifying Rows by Address

Using SQL Datatypes in Database Applications 3-23

4. Associate the attribute set with the expression set stored in the database column
trader.interest as follows:

BEGIN
 DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET (attr_set => 'ticker',
 expr_tab => 'traders',
 expr_col => 'interest');
END;

The preceding code places a constraint on the interest column that ensures the
column stores valid conditional expressions.

5. Populate the table with trader names, email addresses and conditional expressions
that represents a stock the trader is interested in at a particular price:

INSERT INTO traders (name, email, interest)
 VALUES ('Vishu', 'vishu@abc.com', 'symbol = ''ABC'' AND price > 25');

6. Use the EVALUATE operator to identify the conditional expressions that evaluate
to TRUE for a given data item. For example, the following query returns traders
who are interested in a given stock quote (symbol='ABC', price=31,
change=5.2):

SELECT Name, Email
FROM Traders
WHERE EVALUATE (interest,
 'symbol=>''ABC'',
 price=>31,
 change=>5.2'
) = 1;

To speed up this type of query, you can optionally create an Oracle Expression Filter
index on the interest column.

Identifying Rows by Address
Each row in a database table has an address called a rowid. You can examine a row
address by querying the pseudocolumn ROWID, whose values are strings representing
the address of each row. These strings have the datatype ROWID or UROWID. You can
also create tables and clusters that contain actual columns having the ROWID datatype.
Oracle Database does not guarantee that the values of such columns are valid rowids.

Rowid values are important for application development for the following reasons:

■ They are the fastest way to access a single row.

■ They can show you how the rows in a table are stored.

■ They are unique identifiers for rows in a table.

Topics:

See Also: Oracle Database Rules Manager and Expression Filter
Developer's Guide for details on Oracle Expression Filter

See Also:

■ Oracle Database Concepts for general information about the ROWID
pseudocolumn and the ROWID datatype

■ Oracle Database SQL Language Reference to learn about the ROWID
pseudocolumn

Identifying Rows by Address

3-24 Oracle Database Advanced Application Developer's Guide

■ Querying the ROWID Pseudocolumn

■ Accessing the ROWID Datatype

■ Accessing the UROWID Datatype

Querying the ROWID Pseudocolumn
Each table in Oracle Database has a pseudocolumn named ROWID. If the row is too
large to fit within a single data block, then ROWID identifies the initial row piece.
Although rowids are usually unique, different rows can have the same rowid if they
are in the same data block but in different clustered tables.

The following SQL statements return the ROWID pseudocolumn of the row of the
hr.employees table that satisfies the query, and inserts it into the t_tab table:

CREATE TABLE t_tab (col1 ROWID);
INSERT INTO t_tab
 SELECT ROWID
 FROM hr.employees
 WHERE employee_id = 7499;

Accessing the ROWID Datatype
In tables that are not index-organized and foreign tables, the values of the ROWID
pseudocolumn have the datatype ROWID. The format of this datatype is either
extended or restricted.

Topics:

■ Restricted ROWID

■ Extended ROWID

■ External Binary ROWID

Restricted ROWID
Internally, the ROWID is a structure that holds information that the database server
needs to access a row. The restricted internal ROWID is 6 bytes on most platforms. Each
restricted rowid includes the following data:

■ Datafile identifier

■ Block identifier

■ Row identifier

The restricted ROWID pseudocolumn is returned to client applications in the form of an
18-character string with a hexadecimal encoding of the datablock, row, and datafile
components of the ROWID.

Extended ROWID
The extended ROWID datatype includes the data in the restricted rowid plus a data
object number. The data object number is an identification number assigned to every
database segment. The extended internal ROWID is 10 bytes on most platforms.

Note: Although you can use the ROWID pseudocolumn in the
SELECT and WHERE clause of a query, these pseudocolumn values are
not actually stored in the database. You cannot insert, update, or
delete a value of the ROWID pseudocolumn.

How Oracle Database Converts Datatypes

Using SQL Datatypes in Database Applications 3-25

Data in an extended ROWID pseudocolumn is returned to the client application in the
form of an 18-character string (for example, "AAAA8mAALAAAAQkAAA"), which
represents a base 64 encoding of the components of the extended ROWID in a
four-piece format, OOOOOOFFFBBBBBBRRR. Extended rowids are not available directly.
You can use a supplied package, DBMS_ROWID, to interpret extended rowid contents.
The package functions extract and provide information that is available directly from a
restricted rowid as well as information specific to extended rowids.

External Binary ROWID
Some client applications use a binary form of the ROWID. For example, OCI and some
precompiler applications can map the ROWID datatype to a 3GL structure on bind or
define calls. The size of the binary ROWID is the same for extended and restricted
ROWIDs. The information for the extended ROWID is included in an unused field of the
restricted ROWID structure.

The format of the extended binary ROWID, expressed as a C struct, is as follows:

struct riddef {
 ub4 ridobjnum; /* data obj#--this field is
 unused in restricted ROWIDs */
 ub2 ridfilenum;
 ub1 filler;
 ub4 ridblocknum;
 ub2 ridslotnum;
}

Accessing the UROWID Datatype
The rows of some tables have addresses that are not physical or permanent or were not
generated by Oracle Database. For example, the row addresses of index-organized
tables are stored in index leaves, which can move. Oracle provides these tables with
logical row identifiers, called logical rowids. Rowids of foreign tables, such as DB2
tables accessed through a gateway, are not standard Oracle Database rowids. Oracle
provides foreign tables with identifiers called foreign rowids.

Oracle Database uses universal rowids (urowids) to store the addresses of
index-organized and foreign tables. Both types of urowid are stored in the ROWID
pseudocolumn, as are the physical rowids of heap-organized tables.

Oracle creates logical rowids based on the primary key of the table. The logical rowids
do not change as long as the primary key does not change. The ROWID pseudocolumn
of an index-organized table has a datatype of UROWID. You can access this
pseudocolumn as you would access the ROWID pseudocolumn of a heap-organized
table (that is, using a SELECT ROWID statement). To store the rowids of an
index-organized table, define a column of type UROWID for the table and retrieve the
value of the ROWID pseudocolumn into that column.

How Oracle Database Converts Datatypes
In some cases, Oracle Database allows data of one datatype where it expects data of a
different datatype. Generally, an expression cannot contain values with different
datatypes. However, Oracle Database can use various SQL functions to automatically
convert data to the expected datatype.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_ROWID package

How Oracle Database Converts Datatypes

3-26 Oracle Database Advanced Application Developer's Guide

Topics:

■ Datatype Conversion During Assignments

■ Datatype Conversion During Expression Evaluation

Datatype Conversion During Assignments
The datatype conversion for an assignment succeeds if Oracle Database can convert
the datatype of the value used in the assignment to that of the assignment target.

For the examples in the following list, assume a package with a public variable and a
table declared as in the following statements:

CREATE PACKAGE Test_Pack AS var1 CHAR(5); END;
CREATE TABLE Table1_tab (col1 NUMBER);

■ variable := expression

The datatype of expression must be either the same as, or convertible to, the
datatype of variable. For example, Oracle Database automatically converts the
data provided in the following assignment within the body of a stored
subprogram:

VAR1 := 0;

■ INSERT INTO Table1_tab VALUES (expression1, expression2, ...)

The datatypes of expression1, expression2, and so on, must be either the
same as, or convertible to, the datatypes of the corresponding columns in
Table1_tab. For example, Oracle Database automatically converts the data
provided in the following INSERT statement for Table1_tab:

INSERT INTO Table1_tab VALUES (
'
19
'
);

■ UPDATE Table1_tab SET column = expression

The datatype of expression must be either the same as, or convertible to, the
datatype of column. For example, Oracle Database automatically converts the
data provided in the following UPDATE statement issued against Table1_tab:

UPDATE Table1_tab SET col1 =
'
30
'
;

■ SELECT column INTO variable FROM Table1_tab

The datatype of column must be either the same as, or convertible to, the datatype
of variable. For example, Oracle Database automatically converts data selected
from the table before assigning it to the variable in the following statement:

SELECT Col1 INTO Var1 FROM Table1_tab WHERE Col1 = 30;

See Also: Oracle Database SQL Language Reference for details about
datatype conversion

Metadata for SQL Built-In Functions

Using SQL Datatypes in Database Applications 3-27

Datatype Conversion During Expression Evaluation
For expression evaluation, Oracle Database can automatically perform the same
conversions as for assignments. An expression is converted to a type based on its
context. For example, operands to arithmetic operators are converted to NUMBER, and
operands to string functions are converted to VARCHAR2.

Oracle Database can automatically convert the following:

■ VARCHAR2 or CHAR to NUMBER

■ VARCHAR2 or CHAR to DATE

Character to NUMBER conversions succeed only if the character string represents a
valid number. Character to DATE conversions succeed only if the character string
satisfies the session default format, which is specified by the initialization parameter
NLS_DATE_FORMAT.

Some common types of expressions follow:

■ Simple expressions, such as:

commission + '500'

■ Boolean expressions, such as:

bonus > salary / '10'

■ Subprogram calls, such as:

MOD (counter, '2')

■ WHERE clause conditions, such as:

WHERE hiredate = TO_DATE('1997-01-01','yyyy-mm-dd')

■ WHERE clause conditions, such as:

WHERE rowid = 'AAAAaoAATAAAADAAA'

In general, Oracle Database uses the rule for expression evaluation when a datatype
conversion is needed in places not covered by the rule for assignment conversions.

In assignments of the form:

variable := expression

Oracle Database first evaluates expression using the conversion rules for expressions;
expression can be as simple or complex as desired. If it succeeds, then the evaluation of
expression results in a single value and datatype. Then, Oracle Database tries to assign
this value to the target variable using the conversion rules for assignments.

Metadata for SQL Built-In Functions
You can see metadata for SQL built-in functions with the dynamic performance views
V$SQLFN_METADATA (which has general metadata) and V$SQLFN_ARG_METADATA
(which has metadata about arguments). You can join these views on the column
FUNCID. For functions with unlimited arguments, such as LEAST and GREATEST,
V$SQLFN_ARG_METADATA has only one row for each repeating argument.

These views allow third-party tools to leverage SQL built-in functions without
maintaining their metadata in the application layer.

Metadata for SQL Built-In Functions

3-28 Oracle Database Advanced Application Developer's Guide

Often, an argument for a SQL built-in function can have any datatype in a datatype
family. Table 3–10 shows which datatypes belong to which families.

ARGn Datatype
In the view V$SQLFN_METADATA, ARGn is the datatype of a function whose return
value has the same datatype as its nth argument. For example:

■ The MAX function returns a value that has the datatype of its first argument, so the
MAX function has datatype ARG1.

■ The DECODE function returns a value that has the datatype of its third argument,
so the DECODE function has datatype ARG3.

EXPR Datatype
In the view V$SQLFN_ARG_METADATA, EXPR is the datatype of an argument that can
be any expression. An expression is either a single value or a combination of values
and SQL functions that has a single value.

See Also: Oracle Database Reference for detailed information about
the dynamic performance views V$SQLFN_METADATA and V$SQLFN_
ARG_METADATA

Table 3–10 Datatype Families

Family Datatypes

STRING CHARACTER

VARCHAR2

CLOB

NCHAR

NVARCHAR2

NCLOB

NUMERIC NUMBER

BINARY_FLOAT

BINARY_DOUBLE

DATETYPE DATE

TIMESTAMP

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE

INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

BINARY BLOB

RAW

LONGRAW

Table 3–11 Display Types of SQL Built-In Functions

Display Type Description Example

NORMAL FUNC(A,B,...) LEAST(A,B,C)

Metadata for SQL Built-In Functions

Using SQL Datatypes in Database Applications 3-29

ARITHMETIC A FUNC B) A+B

PARENTHESIS FUNC() SYS_GUID()

RELOP A FUNC B) A IN B

CASE_LIKE CASE statement or DECODE decode

NOPAREN FUNC SYSDATE

Table 3–11 (Cont.) Display Types of SQL Built-In Functions

Display Type Description Example

Metadata for SQL Built-In Functions

3-30 Oracle Database Advanced Application Developer's Guide

Using Regular Expressions in Database Applications 4-1

4
Using Regular Expressions in Database

Applications

This chapter explains how to use regular expressions in database applications.

Topics:

■ Overview of Regular Expressions

■ Metacharacters in Regular Expressions

■ Using Regular Expressions in SQL Statements: Scenarios

Overview of Regular Expressions
Topics:

■ What Are Regular Expressions?

■ How Are Regular Expressions Useful?

■ Oracle Database Implementation of Regular Expressions

■ Oracle Database Support for the POSIX Regular Expression Standard

What Are Regular Expressions?
Regular expressions enable you to search for patterns in string data by using
standardized syntax conventions. You specify a regular expression through the
following types of characters:

■ Metacharacters, which are operators that specify search algorithms

■ Literals, which are the characters for which you are searching

See Also:

■ Oracle Database SQL Language Reference for information about
Oracle Database SQL functions for regular expressions

■ Oracle Database Globalization Support Guide for details on using
SQL regular expression functions in a multilingual environment

■ Oracle Regular Expressions Pocket Reference by Jonathan Gennick,
O'Reilly & Associates

■ Mastering Regular Expressions by Jeffrey E. F. Friedl, O'Reilly &
Associates

Overview of Regular Expressions

4-2 Oracle Database Advanced Application Developer's Guide

A regular expression can specify complex patterns of character sequences. For
example, the following regular expression searches for the literals f or ht, the t literal,
the p literal optionally followed by the s literal, and finally the colon (:) literal:

(f|ht)tps?:

The parentheses are metacharacters that group a series of pattern elements to a single
element; the pipe symbol (|) matches one of the alternatives in the group. The
question mark (?) is a metacharacter indicating that the preceding pattern, in this case
the s character, is optional. Thus, the preceding regular expression matches the http:,
https:, ftp:, and ftps: strings.

How Are Regular Expressions Useful?
Regular expressions are a powerful text processing component of programming
languages such as Perl and Java. For example, a Perl script can process each HTML file
in a directory, read its contents into a scalar variable as a single string, and then use
regular expressions to search for URLs in the string. One reason that many developers
write in Perl is for its robust pattern matching functionality.

Oracle's support of regular expressions enables developers to implement complex
match logic in the database. This technique is useful for the following reasons:

■ By centralizing match logic in Oracle Database, you avoid intensive string
processing of SQL results sets by middle-tier applications. For example, life
science customers often rely on Perl to do pattern analysis on bioinformatics data
stored in huge databases of DNAs and proteins. Previously, finding a match for a
protein sequence such as [AG].{4}GK[ST] was handled in the middle tier. The
SQL regular expression functions move the processing logic closer to the data,
thereby providing a more efficient solution.

■ Prior to Oracle Database 10g, developers often coded data validation logic on the
client, requiring the same validation logic to be duplicated for multiple clients.
Using server-side regular expressions to enforce constraints solves this problem.

■ The built-in SQL and PL/SQL regular expression functions and conditions make
string manipulations more powerful and less cumbersome than in previous
releases of Oracle Database.

Oracle Database Implementation of Regular Expressions
Oracle Database implements regular expression support with a set of Oracle Database
SQL functions and conditions that enable you to search and manipulate string data.
You can use these functions in any environment that supports Oracle Database SQL.
You can use these functions on a text literal, bind variable, or any column that holds
character data such as CHAR, NCHAR, CLOB, NCLOB, NVARCHAR2, and VARCHAR2 (but
not LONG).

Table 4–1 describes the regular expression functions and conditions.

Overview of Regular Expressions

Using Regular Expressions in Database Applications 4-3

A string literal in a REGEXP function or condition conforms to the rules of SQL text
literals. By default, regular expressions must be enclosed in single quotes. If your
regular expression includes the single quote character, then enter two single quotation
marks to represent one single quotation mark within the expression. This technique
ensures that the entire expression is interpreted by the SQL function and improves the
readability of your code. You can also use the q-quote syntax to define your own
character to terminate a text literal. For example, you can delimit your regular
expression with the pound sign (#) and then use a single quote within the expression.

Table 4–1 SQL Regular Expression Functions and Conditions

SQL Element Category Description

REGEXP_LIKE Condition Searches a character column for a pattern. Use this function in
the WHERE clause of a query to return rows matching a regular
expression. The condition is also valid in a constraint or as a
PL/SQL function returning a boolean.

The following WHERE clause filters employees with a first name
of Steven or Stephen:

WHERE REGEXP_LIKE(first_name, '^Ste(v|ph)en$')

REGEXP_REPLACE Function Searches for a pattern in a character column and replaces each
occurrence of that pattern with the specified string.

The following function call puts a space after each character in
the country_name column:

REGEXP_REPLACE(country_name, '(.)', '\1 ')

REGEXP_INSTR Function Searches a string or substring for a given occurrence of a regular
expression pattern (a substring) and returns an integer
indicating the position in the string or substring where the
match is found. You specify which occurrence you want to find
and the start position.

The following function call performs a boolean test for a valid
email address in the email column:

REGEXP_INSTR(email, '\w+@\w+(\.\w+)+') > 0

REGEXP_SUBSTR Function Searches a string or substring for a given occurrence of a regular
expression pattern (a substring) and returns the substring itself.
You specify which occurrence you want to find and the start
position.

The following function call uses the x flag to match the first
string by ignoring spaces in the regular expression:

REGEXP_SUBSTR('oracle', 'o r a c l e', 1, 1, 'x')

REGEXP_COUNT Function Returns the number of times a pattern appears in a string. You
specify the string and the pattern. You can also specify the start
position and matching options (for example, c for case
sensitivity).

The following function call returns the number of times that e
(but not E) appears in the string 'Albert Einstein', starting
at character position 7 (that is, one):

REGEXP_COUNT('Albert Einstein', 'e', 7, 'c')

Note: If your expression comes from a column or a bind variable,
then the same rules for quoting do not apply.

Metacharacters in Regular Expressions

4-4 Oracle Database Advanced Application Developer's Guide

Oracle Database Support for the POSIX Regular Expression Standard
Oracle's implementation of regular expressions conforms to the following standards:

■ IEEE Portable Operating System Interface (POSIX) standard draft 1003.2/D11.2

■ Unicode Regular Expression Guidelines of the Unicode Consortium

Oracle Database follows the exact syntax and matching semantics for these operators
as defined in the POSIX standard for matching ASCII (English language) data. You can
find the POSIX standard draft at the following URL:

http://www.opengroup.org/onlinepubs/007908799/xbd/re.html

Oracle Database enhances regular expression support in the following ways:

■ Extends the matching capabilities for multilingual data beyond what is specified
in the POSIX standard.

■ Adds support for the common Perl regular expression extensions that are not
included in the POSIX standard but do not conflict with it. Oracle Database
provides built-in support for some of the most heavily used Perl regular
expression operators, for example, character class shortcuts, the non-greedy
modifier, and so on.

Oracle Database supports a set of common metacharacters used in regular expressions.
The action of supported metacharacters and related features is described in
"Metacharacters in Regular Expressions" on page 4-4.

Metacharacters in Regular Expressions
This section contains the following topics:

■ POSIX Metacharacters in Oracle Database Regular Expressions

■ Multilingual Extensions to POSIX Regular Expression Standard

■ Perl-Influenced Extensions to POSIX Regular Expression Standard

POSIX Metacharacters in Oracle Database Regular Expressions
Table 4–2 lists the list of metacharacters supported for use in regular expressions
passed to SQL regular expression functions and conditions. These metacharacters
conform to the POSIX standard; any differences in action from the standard are noted
in the "Description" column.

See Also:

■ Oracle Database SQL Language Reference for syntax, descriptions,
and examples of the REGEXP functions and conditions

■ Oracle Database SQL Language Reference for information about
character literals

Note: The interpretation of metacharacters differs between tools that
support regular expressions. If you are porting regular expressions
from another environment to Oracle Database, ensure that the regular
expression syntax is supported and the action is what you expect.

Metacharacters in Regular Expressions

Using Regular Expressions in Database Applications 4-5

Table 4–2 POSIX Metacharacters in Oracle Database Regular Expressions

Syntax Operator Name Description Example

. Any Character —
Dot

Matches any character in the database character set.
If the n flag is set, it matches the newline character.
The newline is recognized as the linefeed character
(\x0a) on Linux, UNIX, and Windows or the
carriage return character (\x0d) on Macintosh
platforms.

Note: In the POSIX standard, this operator matches
any English character except NULL and the
newline character.

The expression a.b matches the
strings abb, acb, and adb, but does
not match acc.

+ One or More —
Plus Quantifier

Matches one or more occurrences of the preceding
subexpression.

The expression a+ matches the
strings a, aa, and aaa, but does not
match bbb.

? Zero or One —
Question Mark
Quantifier

Matches zero or one occurrence of the preceding
subexpression.

The expression ab?c matches the
strings abc and ac, but does not
match abbc.

* Zero or More —
Star Quantifier

Matches zero or more occurrences of the preceding
subexpression. By default, a quantifier match is
greedy because it matches as many times as
possible while still allowing the rest of the match to
succeed.

The expression ab*c matches the
strings ac, abc, and abbc, but does
not match abb.

{m} Interval—Exact
Count

Matches exactly m occurrences of the preceding
subexpression.

The expression a{3} matches the
strings aaa, but does not match aa.

{m,} Interval—At
Least Count

Matches at least m occurrences of the preceding
subexpression.

The expression a{3,} matches the
strings aaa and aaaa, but does not
match aa.

{m,n} Interval—Betwee
n Count

Matches at least m, but not more than n occurrences
of the preceding subexpression.

The expression a{3,5} matches
the strings aaa, aaaa, and aaaaa,
but does not match aa.

[...] Matching
Character List

Matches any single character in the list within the
brackets. The following operators are allowed
within the list, but other metacharacters included
are treated as literals:

■ Range operator: -

■ POSIX character class: [: :]

■ POSIX collation element: [. .]

■ POSIX character equivalence class: [= =]

A dash (-) is a literal when it occurs first or last in
the list, or as an ending range point in a range
expression, as in [#--]. A right bracket (]) is
treated as a literal if it occurs first in the list.

Note: In the POSIX standard, a range includes all
collation elements between the start and end of the
range in the linguistic definition of the current
locale. Thus, ranges are linguistic rather than byte
values ranges; the semantics of the range
expression are independent of character set. In
Oracle Database, the linguistic range is determined
by the NLS_SORT initialization parameter.

The expression [abc] matches the
first character in the strings all,
bill, and cold, but does not
match any characters in doll.

[^ ...] Nonmatching
Character List

Matches any single character not in the list within
the brackets. Characters not in the nonmatching
character list are returned as a match. See the
description of the Matching Character List operator
for an account of metacharacters allowed in the
character list.

The expression [^abc] matches
the character d in the string
abcdef, but not the character a, b,
or c. The expression [^abc]+
matches the sequence def in the
string abcdef, but not a, b, or c.

The expression [^a-i] excludes
any character between a and i
from the search result. This
expression matches the character j
in the string hij, but does not
match any characters in the string
abcdefghi.

Metacharacters in Regular Expressions

4-6 Oracle Database Advanced Application Developer's Guide

| Or Matches one of the alternatives. The expression a|b matches
character a or character b.

(...) Subexpression or
Grouping

Treats the expression within parentheses as a unit.
The subexpression can be a string of literals or a
complex expression containing operators.

The expression (abc)?def
matches the optional string abc,
followed by def. Thus, the
expression matches abcdefghi
and def, but does not match ghi.

\n Backreference Matches the nth preceding subexpression, that is,
whatever is grouped within parentheses, where n is
an integer from 1 to 9. The parentheses cause an
expression to be remembered; a backreference
refers to it. A backreference counts subexpressions
from left to right, starting with the opening
parenthesis of each preceding subexpression. The
expression is invalid if the source string contains
fewer than n subexpressions preceding the \n.

Oracle supports the backreference expression in the
regular expression pattern and the replacement
string of the REGEXP_REPLACE function.

The expression (abc|def)xy\1
matches the strings abcxyabc and
defxydef, but does not match
abcxydef or abcxy.

A backreference enables you to
search for a repeated string without
knowing the actual string ahead of
time. For example, the expression
^(.*)\1$ matches a line
consisting of two adjacent instances
of the same string.

\ Escape Character Treats the subsequent metacharacter in the
expression as a literal. Use a backslash (\) to search
for a character that is normally treated as a
metacharacter. Use consecutive backslashes (\\) to
match the backslash literal itself.

The expression \+ searches for the
plus character (+). It matches the
plus character in the string
abc+def, but does not match
abcdef.

^ Beginning of Line
Anchor

Matches the beginning of a string (default). In
multiline mode, it matches the beginning of any
line within the source string.

The expression ^def matches def
in the string defghi but does not
match def in abcdef.

$ End of Line
Anchor

Matches the end of a string (default). In multiline
mode, it matches the beginning of any line within
the source string.

The expression def$ matches def
in the string abcdef but does not
match def in the string defghi.

Table 4–2 (Cont.) POSIX Metacharacters in Oracle Database Regular Expressions

Syntax Operator Name Description Example

Metacharacters in Regular Expressions

Using Regular Expressions in Database Applications 4-7

Multilingual Extensions to POSIX Regular Expression Standard
When applied to multilingual data, Oracle's implementation of the POSIX operators
extends beyond the matching capabilities specified in the POSIX standard. Table 4–3
shows the relationship of the operators in the context of the POSIX standard.

■ The first column lists the supported operators.

■ The second column indicates whether the POSIX standard for Basic Regular
Expression (BRE) defines the operator.

■ The third column indicates whether the POSIX standard for Extended Regular
Expression (ERE) defines the operator.

■ The fourth column indicates whether the Oracle Database implementation extends
the operator's semantics for handling multilingual data.

[:class:] POSIX Character
Class

Matches any character belonging to the specified
POSIX character class. You can use this operator
to search for characters with specific formatting
such as uppercase characters, or you can search for
special characters such as digits or punctuation
characters. The full set of POSIX character classes is
supported.

Note: In English regular expressions, range
expressions often indicate a character class. For
example, [a-z] indicates any lowercase character.
This convention is not useful in multilingual
environments, where the first and last character of a
given character class might not be the same in all
languages. Oracle supports the character classes in
Table 4–3 based on character class definitions in
Globalization classification data.

The expression [[:upper:]]+
searches for one or more
consecutive uppercase characters.
This expression matches DEF in the
string abcDEFghi but does not
match the string abcdefghi.

[.element.] POSIX Collating
Element Operator

Specifies a collating element to use in the regular
expression. The element must be a defined
collating element in the current locale. Use any
collating element defined in the locale, including
single-character and multicharacter elements. The
NLS_SORT initialization parameter determines
supported collation elements.

This operator lets you use a multicharacter collating
element in cases where only one character is
otherwise allowed. For example, you can ensure
that the collating element ch, when defined in a
locale such as Traditional Spanish, is treated as one
character in operations that depend on the ordering
of characters.

The expression [[.ch.]] searches
for the collating element ch and
matches ch in string chabc, but
does not match cdefg. The
expression [a-[.ch.]] specifies
the range a to ch.

[=character=] POSIX Character
Equivalence
Class

Matches all characters that are members of the same
character equivalence class in the current locale as
the specified character.

The character equivalence class must occur within a
character list, so the character equivalence class is
always nested within the brackets for the character
list in the regular expression.

Usage of character equivalents depends on how
canonical rules are defined for your database locale.
See Oracle Database Globalization Support Guide for
more information on linguistic sorting and string
searching.

The expression [[=n=]] searches
for characters equivalent to n in a
Spanish locale. It matches both N
and ñ in the string El Niño.

See Also: Oracle Database SQL Language Reference for syntax,
descriptions, and examples of the REGEXP functions and conditions

Table 4–2 (Cont.) POSIX Metacharacters in Oracle Database Regular Expressions

Syntax Operator Name Description Example

Metacharacters in Regular Expressions

4-8 Oracle Database Advanced Application Developer's Guide

Oracle Database lets you enter multibyte characters directly, if you have a direct input
method, or use functions to compose the multibyte characters. You cannot use the
Unicode hexadecimal encoding value of the form \xxxx. Oracle evaluates the
characters based on the byte values used to encode the character, not the graphical
representation of the character.

Perl-Influenced Extensions to POSIX Regular Expression Standard
Table 4–4 describes Perl-influenced metacharacters supported in Oracle Database
regular expression functions and conditions. These metacharacters are not in the
POSIX standard, but are common at least partly due to the popularity of Perl. Perl
character class matching is based on the locale model of the operating system, whereas
Oracle Database regular expressions are based on the language-specific data of the
database. In general, a regular expression involving locale data cannot be expected to
produce the same results between Perl and Oracle Database.

Table 4–3 POSIX and Multilingual Operator Relationships

Operator POSIX BRE syntax POSIX ERE Syntax
Multilingual
Enhancement

\ Yes Yes --

* Yes Yes --

+ -- Yes --

? -- Yes --

| -- Yes --

^ Yes Yes Yes

$ Yes Yes Yes

. Yes Yes Yes

[] Yes Yes Yes

() Yes Yes --

{m} Yes Yes --

{m,} Yes Yes --

{m,n} Yes Yes --

\n Yes Yes Yes

[..] Yes Yes Yes

[::] Yes Yes Yes

[==] Yes Yes Yes

Metacharacters in Regular Expressions

Using Regular Expressions in Database Applications 4-9

Table 4–4 Perl-Influenced Extensions in Oracle Regular Expressions

Reg. Exp. Matches . . . Example

\d A digit character. It is equivalent to the
POSIX class [[:digit:]].

The expression ^\(\d{3}\) \d{3}-\d{4}$ matches
(650) 555-1212 but does not match
650-555-1212.

\D A nondigit character. It is equivalent to the
POSIX class [^[:digit:]].

The expression \w\d\D matches b2b and b2_ but does
not match b22.

\w A word character, which is defined as an
alphanumeric or underscore (_) character. It
is equivalent to the POSIX class
[[:alnum:]_]. If you do not want to
include the underscore character, you can
use the POSIX class [[:alnum:]].

The expression \w+@\w+(\.\w+)+ matches the string
jdoe@company.co.uk but not the string
jdoe@company.

\W A nonword character. It is equivalent to the
POSIX class [^[:alnum:]_].

The expression \w+\W\s\w+ matches the string to:
bill but not the string to bill.

\s A whitespace character. It is equivalent to
the POSIX class [[:space:]].

The expression \(\w\s\w\s\) matches the string (a
b) but not the string (ab).

\S A nonwhitespace character. It is equivalent
to the POSIX class [^[:space:]].

The expression \(\w\S\w\S\) matches the string
(abde) but not the string (a b d e).

\A Only at the beginning of a string. In
multi-line mode, that is, when embedded
newline characters in a string are considered
the termination of a line, \A does not match
the beginning of each line.

The expression \AL matches only the first L character
in the string Line1\nLine2\n, regardless of whether
the search is in single-line or multi-line mode.

\Z Only at the end of string or before a newline
ending a string. In multi-line mode, that is,
when embedded newline characters in a
string are considered the termination of a
line, \Z does not match the end of each line.

In the expression \s\Z, the \s matches the last space
in the string L i n e \n, regardless of whether the
search is in single-line or multi-line mode.

\z Only at the end of a string. In the expression \s\z, the \s matches the newline in
the string L i n e \n, regardless of whether the
search is in single-line or multi-line mode.

*? The preceding pattern element 0 or more
times (non-greedy). This quantifier matches
the empty string whenever possible.

The expression \w*?x\w is "non-greedy" and so
matches abxc in the string abxcxd. The expression
\w*x\w is "greedy" and so matches abxcxd in the
string abxcxd. The expression \w*?x\w also
matches the string xa.

+? The preceding pattern element 1 or more
times (non-greedy).

The expression \w+?x\w is "non-greedy" and so
matches abxc in the string abxcxd. The expression
\w+x\w is "greedy" and so matches abxcxd in the
string abxcxd. The expression \w+?x\w does not
match the string xa, but does match the string axa.

?? The preceding pattern element 0 or 1 time
(non-greedy). This quantifier matches the
empty string whenever possible.

The expression a??aa is "non-greedy" and matches aa
in the string aaaa. The expression a?aa is "greedy"
and so matches aaa in the string aaaa.

{n}? The preceding pattern element exactly n
times (non-greedy). In this case {n}? is
equivalent to {n}.

The expression (a|aa){2}? matches aa in the string
aaaa.

{n,}? The preceding pattern element at least n
times (non-greedy).

The expression a{2,}? is "non-greedy" and matches
aa in the string aaaaa. The expression a{2,} is
"greedy" and so matches aaaaa.

{n,m}? At least n but not more than m times
(non-greedy). {0,m}? matches the empty
string whenever possible.

The expression a{2,4}? is "non-greedy" and matches
aa in the string aaaaa. The expression a{2,4} is
"greedy" and so matches aaaa.

Using Regular Expressions in SQL Statements: Scenarios

4-10 Oracle Database Advanced Application Developer's Guide

The Oracle Database regular expression functions and conditions support the pattern
matching modifiers described in Table 4–5.

Using Regular Expressions in SQL Statements: Scenarios
This section contains the following scenarios:

■ Using a Constraint to Enforce a Phone Number Format

■ Using Back References to Reposition Characters

Using a Constraint to Enforce a Phone Number Format
Regular expressions are a useful way to enforce constraints. For example, suppose that
you want to ensure that phone numbers are entered into the database in a standard
format. Example 4–1 creates a contacts table and adds a CHECK constraint to the p_
number column to enforce the following format mask:

(XXX) XXX-XXXX

Example 4–1 Enforcing a Phone Number Format with Regular Expressions

CREATE TABLE contacts (
 l_name VARCHAR2(30),
 p_number VARCHAR2(30)
 CONSTRAINT c_contacts_pnf
 CHECK (REGEXP_LIKE (p_number, '^\(\d{3}\) \d{3}-\d{4}$'))
);

Table 4–6 explains the elements of the regular expression.

Table 4–5 Pattern Matching Modifiers

Mod. Description Example

i Specifies case-insensitive matching. The following regular expression returns AbCd:

REGEXP_SUBSTR('AbCd', 'abcd', 1, 1, 'i')

c Specifies case-sensitive matching. The following regular expression fails to match:

REGEXP_SUBSTR('AbCd', 'abcd', 1, 1, 'c')

n Allows the period (.), which by default does
not match newlines, to match the newline
character.

The following regular expression matches the string only
because the n flag is specified:

REGEXP_SUBSTR('a'||CHR(10)||'d', 'a.d', 1, 1, 'n')

m Performs the search in multi-line mode. The
metacharacter ^ and $ signify the start and
end, respectively, of any line anywhere in
the source string, rather than only at the
start or end of the entire source string.

The following regular expression returns ac:

REGEXP_SUBSTR('ab'||CHR(10)||'ac', '^a.', 1, 2, 'm')

x Ignores whitespace characters in the regular
expression. By default, whitespace
characters match themselves.

The following regular expression returns abcd:

REGEXP_SUBSTR('abcd', 'a b c d', 1, 1, 'x')

Table 4–6 Explanation of the Regular Expression Elements in Example 4–1

Regular Expression
Element Matches . . .

^ The beginning of the string.

Using Regular Expressions in SQL Statements: Scenarios

Using Regular Expressions in Database Applications 4-11

Example 4–2 shows a SQL script that attempts to insert seven phone numbers into the
contacts table. Only the first two INSERT statements use a format that conforms to
the c_contacts_pnf constraint; the remaining statements generate CHECK constraint
errors.

Example 4–2 insert_contacts.sql

-- first two statements use valid phone number format
INSERT INTO contacts (p_number)
 VALUES('(650) 555-5555');
INSERT INTO contacts (p_number)
 VALUES('(215) 555-3427');
-- remaining statements generate check contraint errors
INSERT INTO contacts (p_number)
 VALUES('650 555-5555');
INSERT INTO contacts (p_number)
 VALUES('650 555 5555');
INSERT INTO contacts (p_number)
 VALUES('650-555-5555');
INSERT INTO contacts (p_number)
 VALUES('(650)555-5555');
INSERT INTO contacts (p_number)
 VALUES(' (650) 555-5555');
/

Using Back References to Reposition Characters
As explained in Table 4–2, back references store matched subexpressions in a
temporary buffer, thereby enabling you to reposition characters. You access buffers
with the \n notation, where n is a number between 1 and 9. Each subexpression is
contained in parentheses and is numbered from left to right.

Example 4–3 creates a famous_people table and populates the famous_
people.names column with names in different formats.

Example 4–3 Using Back References to Reposition Characters

CREATE TABLE famous_people
 (names VARCHAR2(30));

\(A left parenthesis. The backward slash (\) is an escape character that
indicates that the left parenthesis following it is a literal rather than a
grouping expression.

\d{3} Exactly three digits.

\) A right parenthesis. The backward slash (\) is an escape character that
indicates that the right parenthesis following it is a literal rather than a
grouping expression.

 (space character) A space character.

\d{3} Exactly three digits.

- A hyphen.

\d{4} Exactly four digits.

$ The end of the string.

Table 4–6 (Cont.) Explanation of the Regular Expression Elements in Example 4–1

Regular Expression
Element Matches . . .

Using Regular Expressions in SQL Statements: Scenarios

4-12 Oracle Database Advanced Application Developer's Guide

-- populate table with data
INSERT INTO famous_people
 VALUES ('John Quincy Adams');
INSERT INTO famous_people
 VALUES ('Harry S. Truman');
INSERT INTO famous_people
 VALUES ('John Adams');
INSERT INTO famous_people
 VALUES (' John Quincy Adams');
INSERT INTO famous_people
 VALUES ('John_Quincy_Adams');
COMMIT;

Example 4–4 shows a query that repositions names in the format "first middle last" to
the format "last, first middle". It ignores names not in the format "first middle last".

Example 4–4 Using Back References to Reposition Characters

SELECT names "names",
 REGEXP_REPLACE(names,
 '^(\S+)\s(\S+)\s(\S+)$',
 '\3, \1 \2')
 AS "names after regexp"
FROM famous_people;

Table 4–7 explains the elements of the regular expression.

Example 4–5 shows the result set of the query in Example 4–4. The regular expression
matched only the first two rows.

Example 4–5 Result Set of Regular Expression Query

names

names after regexp

John Quincy Adams
Adams, John Quincy

Table 4–7 Explanation of the Regular Expression Elements in Example 4–4

Regular Expression
Element Description

^ Matches the beginning of the string.

$ Matches the end of the string.

(\S+) Matches one or more nonspace characters. The parentheses are not
escaped so they function as a grouping expression.

\s Matches a whitespace character.

\1 Substitutes the first subexpression, that is, the first group of
parentheses in the matching pattern.

\2 Substitutes the second subexpression, that is, the second group of
parentheses in the matching pattern.

\3 Substitutes the third subexpression, that is, the third group of
parentheses in the matching pattern.

, Inserts a comma character.

Using Regular Expressions in SQL Statements: Scenarios

Using Regular Expressions in Database Applications 4-13

Harry S. Truman
Truman, Harry S.

John Adams
John Adams

 John Quincy Adams
 John Quincy Adams

John_Quincy_Adams
John_Quincy_Adams

Using Regular Expressions in SQL Statements: Scenarios

4-14 Oracle Database Advanced Application Developer's Guide

Using Indexes in Database Applications 5-1

5
Using Indexes in Database Applications

This chapter explains how to use indexes in database applications.

Topics:

■ Privileges Needed to Create Indexes

■ Guidelines for Application-Specific Indexes

■ Examples of Creating Basic Indexes

■ When to Use Domain Indexes

■ When to Use Function-Based Indexes

Privileges Needed to Create Indexes
When using indexes in an application, you might need to request that the DBA grant
privileges or make changes to initialization parameters.

To create a new index, you must own, or have the INDEX object privilege for, the
corresponding table. The schema that contains the index must also have a quota for
the tablespace intended to contain the index, or the UNLIMITED TABLESPACE system
privilege. To create an index in another user's schema, you must have the CREATE ANY
INDEX system privilege.

Guidelines for Application-Specific Indexes
You can create indexes on columns to speed up queries. Indexes provide faster access
to data for operations that return a small portion of a table's rows.

In general, create an index on a column in any of the following situations:

■ The column is queried frequently.

See Also:

■ Oracle Database Administrator's Guide for information about
creating and managing indexes

■ Oracle Database Performance Tuning Guide for detailed information
about using indexes

■ Oracle Database SQL Language Reference for the syntax of
statements to work with indexes

■ Oracle Database Administrator's Guide for information on creating
hash clusters to improve performance, as an alternative to
indexing

Guidelines for Application-Specific Indexes

5-2 Oracle Database Advanced Application Developer's Guide

■ A referential constraint exists on the column.

■ A UNIQUE key constraint exists on the column.

You can create an index on any column; however, if the column is not used in any of
these situations, creating an index on the column does not increase performance and
the index takes up resources unnecessarily.

Although the database creates an index for you on a column with a constraint,
explicitly creating an index on such a column is recommended.

You can use the following techniques to determine which columns are best candidates
for indexing:

■ Use the EXPLAIN PLAN feature to show a theoretical execution plan of a given
query statement.

■ Use the dynamic performance view V$SQL_PLAN to determine the actual
execution plan used for a given query statement.

Sometimes, if an index is not being used by default and it would be more efficient to
use that index, you can use a query hint so that the index is used.

The following sections explain how to create, alter, and drop indexes using SQL
statements, and give guidelines for managing indexes.

Topics:

■ Which Come First, Data or Indexes?

■ Create a New Temporary Table Space Before Creating Indexes

■ Index the Correct Tables and Columns

■ Limit the Number of Indexes for Each Table

■ Choose Column Order in Composite Indexes

■ Gather Index Statistics

■ Drop Unused Indexes

Which Come First, Data or Indexes?
Typically, you insert or load data into a table (using SQL*Loader or Import) before
creating indexes. Otherwise, the overhead of updating the index slows down the insert
or load operation. The exception to this rule is that you must create an index for a
cluster before you insert any data into the cluster.

Create a New Temporary Table Space Before Creating Indexes
When you create an index on a table that already has data, Oracle Database must use
sort space to create the index. The database uses the sort space in memory allocated for
the creator of the index (the amount for each user is determined by the initialization
parameter SORT_AREA_SIZE), but the database must also swap sort information to

See Also:

■ Oracle Database Performance Tuning Guide for information on using
the V$SQL_PLAN view, the EXPLAIN PLAN statement, query hints,
and measuring the performance benefits of indexes

■ Oracle Database Reference for general information about the
V$SQL_PLAN view

Guidelines for Application-Specific Indexes

Using Indexes in Database Applications 5-3

and from temporary segments allocated on behalf of the index creation. If the index is
extremely large, it can be beneficial to complete the following steps:

1. Create a new temporary tablespace using the CREATE TABLESPACE statement.

2. Use the TEMPORARY TABLESPACE option of the ALTER USER statement to make
this your new temporary tablespace.

3. Create the index using the CREATE INDEX statement.

4. Drop this tablespace using the DROP TABLESPACE statement. Then use the ALTER
USER statement to reset your temporary tablespace to your original temporary
tablespace.

Under certain conditions, you can load data into a table with the SQL*Loader "direct
path load", and an index can be created as data is loaded.

Index the Correct Tables and Columns
Use the following guidelines for determining when to create an index:

■ Create an index if you frequently want to retrieve less than about 15% of the rows
in a large table. This threshold percentage varies greatly, however, according to the
relative speed of a table scan and how clustered the row data is about the index
key. The faster the table scan, the lower the percentage; the more clustered the row
data, the higher the percentage.

■ Index columns that are used for joins to improve join performance.

■ Primary and unique keys automatically have indexes, but you might want to
create an index on a foreign key; see Chapter 6, "Maintaining Data Integrity in
Database Applications" for more information.

■ Small tables do not require indexes; if a query is taking too long, then the table
might have grown from small to large.

Some columns are strong candidates for indexing. Columns with one or more of the
following characteristics are good candidates for indexing:

■ Values are unique in the column, or there are few duplicates.

■ There is a wide range of values (good for regular indexes).

■ There is a small range of values (good for bitmap indexes).

■ The column contains many nulls, but queries often select all rows having a value.
In this case, a comparison that matches all the non-null values, such as:

WHERE COL_X >= -9.99 *power(10,125)

is preferable to

WHERE COL_X IS NOT NULL

This is because the first uses an index on COL_X (assuming that COL_X is a
numeric column).

Columns with the following characteristics are less suitable for indexing:

■ There are many nulls in the column and you do not search on the non-null values.

LONG and LONG RAW columns cannot be indexed.

See Also: Oracle Database Utilities for information on direct path load

Guidelines for Application-Specific Indexes

5-4 Oracle Database Advanced Application Developer's Guide

The size of a single index entry cannot exceed roughly one-half (minus some
overhead) of the available space in the data block. Consult with the database
administrator for assistance in determining the space required by an index.

Limit the Number of Indexes for Each Table
The more indexes, the more overhead is incurred as the table is altered. When rows are
inserted or deleted, all indexes on the table must be updated. When a column is
updated, all indexes on the column must be updated.

You must weigh the performance benefit of indexes for queries against the
performance overhead of updates. For example, if a table is primarily read-only, you
might use more indexes; but, if a table is heavily updated, you might use fewer
indexes.

Choose Column Order in Composite Indexes
Although you can specify columns in any order in the CREATE INDEX statement, the
order of columns in the CREATE INDEX statement can affect query performance. In
general, put the column expected to be used most often first in the index. You can
create a composite index (using several columns), and the same index can be used for
queries that reference all of these columns, or just some of them.

For example, assume the columns of the VENDOR_PARTS table are as shown in
Example 5–1.

Example 5–1 VENDOR_PARTS Table

VEND ID PART NO UNIT COST
------- ------- ---------
1012 10-440 .25
1012 10-441 .39
1012 457 4.95
1010 10-440 .27
1010 457 5.10
1220 8-300 1.33
1012 8-300 1.19
1292 457 5.28

Assume that there are five vendors, and each vendor has about 1000 parts.

Suppose that the VENDOR_PARTS table is commonly queried by SQL statements such
as the following:

SELECT * FROM vendor_parts
 WHERE part_no = 457 AND vendor_id = 1012;

To increase the performance of such queries, you might create a composite index
putting the most selective column first; that is, the column with the most values:

CREATE INDEX ind_vendor_id
 ON vendor_parts (part_no, vendor_id);

Composite indexes speed up queries that use the leading portion of the index. So in
this example, the performance of queries with WHERE clauses using only the PART_NO
column improve also. Because there are only five distinct values, placing a separate
index on VENDOR_ID serves no purpose.

Examples of Creating Basic Indexes

Using Indexes in Database Applications 5-5

Gather Index Statistics
The database can use indexes more effectively when it has statistical information about
the tables involved in the queries. You or the DBA can periodically gather statistics by
invoking procedures such as DBMS_STATS.GATHER_TABLE_STATISTICS and DBMS_
STATS.GATHER_SCHEMA_STATISTICS. For information about these procedures, see
Oracle Database PL/SQL Packages and Types Reference.

Drop Unused Indexes
You might drop an index if:

■ It does not speed up queries. The table might be very small, or there might be
many rows in the table but very few index entries.

■ The queries in your applications do not use the index.

To find out if an index is being used, you can monitor it. If you see that the index is
never used, rarely used, or used in a way that seems to provide no benefit, you can
either drop it immediately or you can make it invisible until you are sure that you do
not need it, and then drop it. If you discover that you do need the invisible index, you
can make it visible again.

When you drop an index, all extents of the index's segment are returned to the
containing tablespace and become available for other objects in the tablespace.

To drop an index, use the SQL statement DROP INDEX. For example, the following
statement drops the index named Emp_name:

DROP INDEX Emp_ename;

If you drop a table, then all associated indexes are dropped.

To drop an index, the index must be contained in your schema or you must have the
DROP ANY INDEX system privilege.

Examples of Creating Basic Indexes
You can create an index for a table to improve the performance of queries issued
against the corresponding table. You can also create an index for a cluster. You can
create a composite index on multiple columns up to a maximum of 32 columns. A
composite index key cannot exceed roughly one-half (minus some overhead) of the
available space in the data block.

Oracle Database automatically creates an index to enforce a UNIQUE or PRIMARY KEY
constraint. In general, it is better to create such constraints to enforce uniqueness,
instead of using the obsolete CREATE UNIQUE INDEX syntax.

Use the SQL statement CREATE INDEX to create an index.

See Also:

■ Oracle Database Administrator's Guide for information about
monitoring index usage

■ Oracle Database Administrator's Guide for information about
making indexes invisible

■ Oracle Database SQL Language Reference for information about the
DROP INDEX statement

When to Use Domain Indexes

5-6 Oracle Database Advanced Application Developer's Guide

In this example, an index is created for a single column, to speed up queries that test
that column:

CREATE INDEX emp_ename ON emp_tab(ename);

In this example, several storage settings are explicitly specified for the index:

 CREATE INDEX emp_ename ON emp_tab(ename)
 TABLESPACE users
 STORAGE (INITIAL 20K
 NEXT 20k
 PCTINCREASE 75)
 PCTFREE 0;

In this example, the index applies to two columns, to speed up queries that test either
the first column or both columns:

CREATE INDEX emp_ename ON emp_tab(ename, empno);

In this example, the query is going to sort on the function UPPER(ENAME). An index
on the ENAME column itself does not speed up this operation, and it might be slow to
invoke the function for each result row. A function-based index precomputes the result
of the function for each column value, speeding up queries that use the function for
searching or sorting:

CREATE INDEX emp_upper_ename ON emp_tab(UPPER(ename));

When to Use Domain Indexes
Domain indexes are appropriate for special-purpose applications implemented using
data cartridges. The domain index helps to manipulate complex data, such as spatial,
audio, or video data. If you need to develop such an application, see Oracle Database
Data Cartridge Developer's Guide.

Oracle Database supplies a number of specialized data cartridges to help manage
these kinds of complex data. So, if you need to create a search engine, or a geographic
information system, you can do much of the work simply by creating the right kind of
index.

When to Use Function-Based Indexes
A function-based index is an index built on an expression. It extends your indexing
capabilities beyond indexing on a column. A function-based index increases the
variety of ways in which you can access data.

The expression indexed by a function-based index can be an arithmetic expression or
an expression that contains a PL/SQL function, package function, C callout, or SQL

Note:

■ The index is more effective if you gather statistics for the table or
schema, using the procedures in the DBMS_STATS package.

■ The index cannot contain any null values. Either ensure that the
appropriate columns contain no null values, or use the NVL
function in the index expression to substitute some other value for
nulls.

When to Use Function-Based Indexes

Using Indexes in Database Applications 5-7

function. Function-based indexes also support linguistic sorts based on collation keys,
efficient linguistic collation of SQL statements, and case-insensitive sorts.

Like other indexes, function-based indexes improve query performance. For example,
if you need to access a computationally complex expression often, then you can store it
in an index. Then when you need to access the expression, it is already computed. You
can find a detailed description of the advantages of function-based indexes in
"Advantages of Function-Based Indexes" on page 5-7.

Function-based indexes have all of the same properties as indexes on columns. Unlike
indexes on columns that can be used by both cost-based and rule-based optimization,
however, function-based indexes can be used by only by cost-based optimization.
Other restrictions on function-based indexes are described in "Restrictions on
Function-Based Indexes" on page 5-8.

Topics:

■ Advantages of Function-Based Indexes

■ Restrictions on Function-Based Indexes

■ Examples of Function-Based Indexes

Advantages of Function-Based Indexes
Function-based indexes:

■ Increase the number of situations where the optimizer can perform a range scan
instead of a full table scan.

For example, consider the expression in this WHERE clause:

CREATE INDEX Idx ON Example_tab(Column_a + Column_b);
SELECT * FROM Example_tab WHERE Column_a + Column_b < 10;

The optimizer can use a range scan for this query because the index is built on
(column_a + column_b). Range scans typically produce fast response times if the
predicate selects less than 15% of the rows of a large table. The optimizer can
estimate how many rows are selected by expressions more accurately if the
expressions are materialized in a function-based index. (Expressions of
function-based indexes are represented as virtual columns and ANALYZE can build
histograms on such columns.)

■ Precompute the value of a computationally intensive function and store it in the
index.

An index can store computationally intensive expression that you access often.
When you need to access a value, it is already computed, greatly improving query
execution performance.

■ Create indexes on object columns and REF columns.

See Also:

■ Oracle Database Concepts for general information about
function-based indexes

■ Oracle Database Administrator's Guide for information about
creating function-based indexes

When to Use Function-Based Indexes

5-8 Oracle Database Advanced Application Developer's Guide

Methods that describe objects can be used as functions on which to build indexes.
For example, you can use the MAP method to build indexes on an object type
column.

■ Create more powerful sorts.

You can perform case-insensitive sorts with the UPPER and LOWER functions,
descending order sorts with the DESC keyword, and linguistic-based sorts with the
NLSSORT function.

Another function-based index calls the object method distance_from_equator for
each city in the table. The method is applied to the object column Reg_Obj. A query
can use this index to quickly find cities that are more than 1000 miles from the equator:

CREATE INDEX Distance_index
ON Weatherdata_tab (Distance_from_equator (Reg_obj));

SELECT * FROM Weatherdata_tab
WHERE (Distance_from_equator (Reg_Obj)) > '1000';

Another index stores the temperature delta and the maximum temperature. The result
of the delta is sorted in descending order. A query can use this index to quickly find
table rows where the temperature delta is less than 20 and the maximum temperature
is greater than 75.

CREATE INDEX compare_index
ON Weatherdata_tab ((Maxtemp - Mintemp) DESC, Maxtemp);

SELECT * FROM Weatherdata_tab
WHERE ((Maxtemp - Mintemp) < '20' AND Maxtemp > '75');

Restrictions on Function-Based Indexes
Function-based indexes have the following restrictions:

■ Only cost-based optimization can use function-based indexes. Remember to
invoke DBMS_STATS.GATHER_TABLE_STATISTICS or DBMS_STATS.GATHER_
SCHEMA_STATISTICS, for the function-based index to be effective.

■ Any top-level or package-level PL/SQL functions that are used in the index
expression must be declared as DETERMINISTIC. That is, they always return the
same result given the same input, for example, the UPPER function. You must
ensure that the subprogram really is deterministic, because Oracle Database does
not check that the assertion is true.

The following semantic rules demonstrate how to use the keyword
DETERMINISTIC:

■ You can declare a top level subprogram as DETERMINISTIC.

Note: Oracle Database sorts columns with the DESC keyword in
descending order. Such indexes are treated as function-based indexes.
Descending indexes cannot be bitmapped or reverse, and cannot be
used in bitmapped optimizations. To get the DESC functionality prior
to Oracle Database version 8, remove the DESC keyword from the
CREATE INDEX statement.

When to Use Function-Based Indexes

Using Indexes in Database Applications 5-9

■ You can declare a PACKAGE level subprogram as DETERMINISTIC in the
PACKAGE specification but not in the PACKAGE BODY. Errors are raised if
DETERMINISTIC is used inside a PACKAGE BODY.

■ You can declare a private subprogram (declared inside another subprogram or
a PACKAGE BODY) as DETERMINISTIC.

■ A DETERMINISTIC subprogram can invoke another subprogram whether the
invoked subprogram is declared as DETERMINISTIC or not.

■ If you change the semantics of a DETERMINISTIC function and recompile it, then
existing function-based indexes and materialized views report results for the prior
version of the function. Thus, if you change the semantics of a function, you must
manually rebuild any dependent function-based indexes and materialized views.

■ Expressions in a function-based index cannot contain any aggregate functions. The
expressions must reference only columns in a row in the table.

■ You must analyze the table or index before the index is used.

■ Bitmap optimizations cannot use descending indexes.

■ Function-based indexes are not used when OR-expansion is done.

■ The index function cannot be marked NOT NULL. To avoid a full table scan, you
must ensure that the query cannot fetch null values.

■ Function-based indexes cannot use expressions that return VARCHAR2 or RAW data
types of unknown length from PL/SQL functions. A workaround is to limit the
size of the function's output by indexing a substring of known length:

-- INITIALS() might return 1 letter, 2 letters, 3 letters, and so on.
-- We limit the return value to 10 characters for purposes of the index.
CREATE INDEX func_substr_index ON
 emp_tab(substr(initials(ename),1,10);

-- Invoke SUBSTR both when creating the index and when referencing
-- the function in queries.
SELECT SUBSTR(initials(ename),1,10) FROM emp_tab;

Examples of Function-Based Indexes
■ Function-Based Index for Case-Insensitive Searches

■ Precomputing Arithmetic Expressions with a Function-Based Index

■ Function-Based Index for Language-Dependent Sorting

Function-Based Index for Case-Insensitive Searches
The following statement allows faster case-insensitive searches in table EMP_TAB.

CREATE INDEX Idx ON Emp_tab (UPPER(Ename));

The SELECT statement uses the function-based index on UPPER(e_name) to return all
of the employees with name like :KEYCOL.

SELECT * FROM Emp_tab WHERE UPPER(Ename) like :KEYCOL;

See Also: Oracle Database SQL Language Reference for an account of
CREATE FUNCTION restrictions.

When to Use Function-Based Indexes

5-10 Oracle Database Advanced Application Developer's Guide

Precomputing Arithmetic Expressions with a Function-Based Index
The following statement computes a value for each row using columns A, B, and C,
and stores the results in the index.

CREATE INDEX Idx ON Fbi_tab (A + B * (C - 1), A, B);

The SELECT statement can either use index range scan (because the expression is a
prefix of index IDX) or index fast full scan (which might be preferable if the index has
specified a high parallel degree).

SELECT a FROM Fbi_tab WHERE A + B * (C - 1) < 100;

Function-Based Index for Language-Dependent Sorting
This example demonstrates how a function-based index can be used to sort based on
the collation order for a national language. The NLSSORT function returns a sort key
for each name, using the collation sequence GERMAN.

CREATE INDEX Nls_index
 ON Nls_tab (NLSSORT(Name, 'NLS_SORT = German'));

The SELECT statement selects all of the contents of the table and orders it by NAME.
The rows are ordered using the German collation sequence. The Globalization Support
parameters are not needed in the SELECT statement, because in a German session,
NLS_SORT is set to German and NLS_COMP is set to ANSI.

SELECT * FROM Nls_tab WHERE Name IS NOT NULL
 ORDER BY Name;

Maintaining Data Integrity in Database Applications 6-1

6
Maintaining Data Integrity in Database

Applications

This chapter explains how to use constraints to enforce the business rules associated
with your database and prevent the entry of invalid information into tables.

Topics:

■ Overview of Constraints

■ Enforcing Referential Integrity with Constraints

■ Minimizing Space and Time Overhead for Indexes Associated with Constraints

■ Guidelines for Indexing Foreign Keys

■ Referential Integrity in a Distributed Database

■ When to Use CHECK Constraints

■ Examples of Defining Constraints

■ Enabling and Disabling Constraints

■ Altering Constraints

■ Dropping Constraints

■ Managing FOREIGN KEY Constraints

■ Viewing Definitions of Constraints

Overview of Constraints
You can define constraints to enforce business rules on data in your tables. Business
rules specify conditions and relationships that must always be true, or must always be
false. Because each company defines its own policies about things like salaries,
employee numbers, inventory tracking, and so on, you can specify a different set of
rules for each database table.

When an integrity constraint applies to a table, all data in the table must conform to
the corresponding rule. When you issue a SQL statement that modifies data in the
table, Oracle Database ensures that the new data satisfies the integrity constraint,
without the need to do any checking within your program.

Overview of Constraints

6-2 Oracle Database Advanced Application Developer's Guide

Enforcing Business Rules with Constraints
You can enforce rules by defining constraints more reliably than by adding logic to
your application. Oracle Database can check that all the data in a table obeys an
integrity constraint faster than an application can.

For example, to ensure that each employee works for a valid department:

1. Create a rule that all values in the department table are unique:

ALTER TABLE Dept_tab ADD PRIMARY KEY (Deptno);

2. Create a rule that every department listed in the employee table must match one
of the values in the department table:

ALTER TABLE Emp_tab
 ADD FOREIGN KEY (Deptno) REFERENCES Dept_tab(Deptno);

When you add a new employee record to the table, Oracle Database automatically
checks that its department number appears in the department table.

To enforce this rule without constraints, you can use a trigger to query the department
table and test that each new employee's department is valid. This method is less
reliable than using constraints, because SELECT in Oracle Database uses consistent
read (CR), so the query might miss uncommitted changes from other transactions.

Enforcing Business Rules with Application Logic
You might enforce business rules through application logic as well as through
constraints, if you can filter out bad data before attempting an insert or update. This
might let you provide instant feedback to the user, and reduce the load on the
database. This technique is appropriate when you can determine that data values are
wrong or out of range without checking against any data already in the table.

Creating Indexes for Use with Constraints
All enabled unique and primary keys require corresponding indexes. Create these
indexes by hand, rather than letting the database create them. Note that:

■ Constraints use existing indexes where possible, rather than creating new ones.

■ Unique and primary keys can use non-unique as well as unique indexes. They can
even use only the first few columns of non-unique indexes.

■ At most one unique or primary key can use each non-unique index.

■ The column orders in the index and the constraint do not need to match.

■ If you need to check whether an index is used by a constraint, for example when
you want to drop the index, the object number of the index used by a unique or
primary key constraint is stored in CDEF$.ENABLED for that constraint. It is not
shown in any static data dictionary view or dynamic performance view.

■ Oracle Database does not automatically index foreign keys.

When to Use NOT NULL Constraints
By default, all columns can contain nulls. Only define NOT NULL constraints for
columns of a table that absolutely require values at all times.

For example, a new employee's manager or hire date might be temporarily omitted.
Some employees might not have a commission. Columns like these must not have NOT

Overview of Constraints

Maintaining Data Integrity in Database Applications 6-3

NULL constraints. However, an employee name might be required from the very
beginning, and you can enforce this rule with a NOT NULL integrity constraint.

NOT NULL constraints are often combined with other types of constraints to further
restrict the values that can exist in specific columns of a table. Use the combination of
NOT NULL and UNIQUE key constraints to force the input of values in the UNIQUE key;
this combination of data integrity rules eliminates the possibility that a new row's data
conflicts with an existing row's data.

Because Oracle Database indexes do not store keys that are all null, if you want to
allow index-only scans of the table or some other operation that requires indexing all
rows, you must put a NOT NULL constraint on at least one indexed column.

A NOT NULL constraint is specified like this:

ALTER TABLE emp MODIFY ename NOT NULL;

Example 6–1 shows an example of a table with NOT NULL constraints. The JOB column
has a NOT NULL constraint, so no row can have the value NULL in the JOB column. The
COMM column does not have a NOT NULL constraint, so any row can have the value
NULL in the COMM column.

Example 6–1 EMPLOYEES Table

ID LNAME JOB MGR HIREDATE SAL COMM DEPTNO
--- ------- ------- --- -------- ----- ---- ------
100 King AD_PRES 17-JUN-87 24000 90
101 Kochhar AD_VP 100 21-SEP-89 17000 90
102 De Hann AD_VP 100 13-JAN-93 17000 90
103 Hunold IT_PROG 102 03-JAN-90 9000 60

When to Use Default Column Values
Assign default values to columns that contain a typical value. For example, in the
DEPT_TAB table, if most departments are located at one site, then the default value for
the LOC column can be set to this value (such as NEW YORK).

Default values can help avoid errors where there is a number, such as zero, that
applies to a column that has no entry. For example, a default value of zero can simplify
testing, by changing a test like this:

IF sal IS NOT NULL AND sal < 50000

to the simpler form:

IF sal < 50000

Depending upon your business rules, you might use default values to represent zero
or false, or leave the default values as NULL to signify an unknown value.

Defaults are also useful when you use a view to make a subset of a table's columns
visible. For example, you might allow users to insert rows through a view. The base
table might also have a column named INSERTER, not included in the definition of the
view, to log the user that inserts each row. To record the user name automatically,
define a default value that invokes the USER function:

CREATE TABLE audit_trail
(

See Also: "Defining Relationships Between Parent and Child Tables"
on page 6-8

Overview of Constraints

6-4 Oracle Database Advanced Application Developer's Guide

 value1 NUMBER,
 value2 VARCHAR2(32),
 inserter VARCHAR2(30) DEFAULT USER
);

Setting Default Column Values
Default values can be defined using any literal, or almost any expression, including
calls to the following:

■ SYSDATE

■ SYS_CONTEXT

■ USER

■ USERENV

■ UID

Default values cannot include expressions that refer to a sequence, PL/SQL function,
column, LEVEL, ROWNUM, or PRIOR. The datatype of a default literal or expression
must match or be convertible to the column datatype.

Sometimes the default value is the result of a SQL function. For example, a call to
SYS_CONTEXT can set a different default value depending on conditions such as the
user name. To be used as a default value, a SQL function must have parameters that
are all literals, cannot reference any columns, and cannot invoke any other functions.

If you do not explicitly define a default value for a column, the default for the column
is implicitly set to NULL.

You can use the keyword DEFAULT within an INSERT statement instead of a literal
value, and the corresponding default value is inserted.

Choosing a Primary Key for a Table
Each table can have one primary key, which uniquely identifies each row in a table
and ensures that no duplicate rows exist. When selecting a primary key, use these
guidelines:

■ Whenever practical, use a column containing a sequence number. This satisfies all
the other guidelines.

■ Choose a column whose data values are unique, because the purpose of a primary
key is to uniquely identify each row of the table.

■ Choose a column whose data values never change. A primary key value is only
used to identify a row in the table, and its data must never be used for any other
purpose.

■ Choose a column that does not contain any nulls. A PRIMARY KEY constraint, by
definition, does not allow any row to contain a null in any column that is part of
the primary key.

■ Choose a column that is short and numeric. Short primary keys are easy to type.
You can use sequence numbers to easily generate numeric primary keys.

■ Minimize your use of composite primary keys. Although composite primary keys
are allowed, they do not satisfy all of the other recommendations. For example,
composite primary key values are long and cannot be assigned by sequence
numbers.

Overview of Constraints

Maintaining Data Integrity in Database Applications 6-5

When to Use UNIQUE Constraints
Choose columns for unique keys carefully. The purpose of these constraints is different
from that of primary keys. Unique key constraints are appropriate for any column
where duplicate values are not allowed. Primary keys identify each row of the table
uniquely, and typically contain values that have no significance other than being
unique. Figure 6–1 shows an example of a table with a unique key constraint.

Figure 6–1 Table with a UNIQUE Constraint

Some examples of good unique keys include:

■ An employee social security number (the primary key might be the employee
number)

■ A truck license plate number (the primary key might be the truck number)

■ A customer phone number, consisting of the two columns AREA_CODE and
LOCAL_PHONE (the primary key might be the customer number)

■ A department name and location (the primary key might be the department
number)

When to Use Constraints On Views
The constraints in this chapter apply to tables, not views.

Although you can declare constraints on views, such constraints do not help maintain
data integrity. Instead, they are used to enable query rewrites on queries involving
views, which helps performance with materialized views and other data warehousing
features. Such constraints are always declared with the DISABLE keyword, and you
cannot use the VALIDATE keyword. The constraints are never enforced, and there is no
associated index.

Note: You cannot have identical values in the non-null columns of a
composite UNIQUE key constraint (UNIQUE key constraints allow
NULL values).

INSERT
INTO

Table DEPARTMENTS
DEPID DNAME LOC

UNIQUE Key Constraint
(no row may duplicate a
value in the constraint's
column)

This row violates the UNIQUE key constraint,
because "MARKETING" is already present in another
row; therefore, it is not allowed in the table.

This row is allowed because a null value is
 entered for the DNAME column; however, if a
NOT NULL constraint is also defined on the
DNAME column, this row is not allowed.

10
20
30
40

Administration
Marketing
Purchasing
Human Resources

1700
1800
1700
2400

50

60

MARKETING 1700

2400

Enforcing Referential Integrity with Constraints

6-6 Oracle Database Advanced Application Developer's Guide

Enforcing Referential Integrity with Constraints
Whenever two tables contain one or more common columns, Oracle Database can
enforce the relationship between the two tables through a referential integrity
constraint. Define a PRIMARY or UNIQUE key constraint on the column in the parent
table (the one that has the complete set of column values). Define a FOREIGN KEY
constraint on the column in the child table (the one whose values must refer to existing
values in the other table).

Figure 6–2 shows a foreign key defined on the department number. It guarantees that
every value in this column must match a value in the primary key of the department
table. This constraint prevents erroneous department numbers from getting into the
employee table.

Foreign keys can be comprised of multiple columns. Such acomposite foreign key
must reference a composite primary or unique key of the exact same structure, with
the same number of columns and the same datatypes. Because composite primary and
unique keys are limited to 32 columns, a composite foreign key is also limited to 32
columns.

See Also: Oracle Database Data Warehousing Guide for information
about using constraints in data warehousing

See Also: "Defining Relationships Between Parent and Child Tables"
on page 6-8 for information on defining additional constraints,
including the foreign key

Enforcing Referential Integrity with Constraints

Maintaining Data Integrity in Database Applications 6-7

Figure 6–2 Tables with FOREIGN KEY Constraints

FOREIGN KEY Constraints and NULL Values
Foreign keys allow key values that are all NULL, even if there are no matching
PRIMARY or UNIQUE keys.

■ By default (without any NOT NULL or CHECK clauses), the FOREIGN KEY constraint
enforces the match none rule for composite foreign keys in the ANSI/ISO
standard.

■ To enforce the match full rule for NULL values in composite foreign keys, which
requires that all components of the key be NULL or all be non-null, define a CHECK
constraint that allows only all nulls or all non-nulls in the composite foreign key.
For example, with a composite key comprised of columns A, B, and C:

CHECK ((A IS NULL AND B IS NULL AND C IS NULL) OR
 (A IS NOT NULL AND B IS NOT NULL AND C IS NOT NULL))

■ In general, it is not possible to use declarative referential integrity to enforce the
match partial rule for NULL values in composite foreign keys, which requires the

Table DEPARTMENTS
DEPID DNAME LOC

10
20
30
40

Administration
Marketing
Purchasing
Human Resources

1700
1800
1700
2400

INSERT
INTO

Parent Key
Primary key of
referenced table

Referenced or

Dependent or Child Table

Parent Table

Foreign Key
(values in dependent
table must match a value
in unique key or primary
key of referenced table)

This row violates
the referential
constraint
because "50"
is not present
in the referenced
table's primary
key; therefore,
the row is not
allowed in
the table.

This row is
allowed in the
table because a
null value is
entered in the
DEPTNO column;
however, if a not
null constraint is
also defined for
this column, this
row is not allowed.

556

556

CRICKET

CRICKET

PU_CLERK

PU_CLERK

31–OCT–96

31–OCT–96

5000

5000

25

ID JOB MGR HIREDATE SAL COMM DEPTNO

Table EMPLOYEES

100
101
102
103

AD_PRES
AD_VP
AD_VP
IT_PROG

LNAME

King
Kochhar
De Hann
Hunold

100
100
102

17–JUN–87
21–SEP–89
13–JAN–93
03–JAN–90

24000
17000
17000
9000

90
90
90
60

Enforcing Referential Integrity with Constraints

6-8 Oracle Database Advanced Application Developer's Guide

non-null portions of the key to appear in the corresponding portions in the
primary or unique key of a single row in the referenced table. You can often use
triggers to handle this case, as described in Oracle Database PL/SQL Language
Reference.

Defining Relationships Between Parent and Child Tables
Several relationships between parent and child tables can be determined by the other
types of constraints defined on the foreign key in the child table.

No Constraints on the Foreign Key When no other constraints are defined on the
foreign key, any number of rows in the child table can reference the same parent key
value. This model allows nulls in the foreign key.

This model establishes a one-to-many relationship between the parent and foreign
keys that allows undetermined values (nulls) in the foreign key. An example of such a
relationship is shown in Figure 6–2 between the employee and department tables.
Each department (parent key) has many employees (foreign key), and some employees
might not be in a department (nulls in the foreign key).

NOT NULL Constraint on the Foreign Key When nulls are not allowed in a foreign
key, each row in the child table must explicitly reference a value in the parent key
because nulls are not allowed in the foreign key.

Any number of rows in the child table can reference the same parent key value, so this
model establishes a one-to-many relationship between the parent and foreign keys.
However, each row in the child table must have a reference to a parent key value; the
absence of a value (a null) in the foreign key is not allowed. The same example in the
previous section can be used to illustrate such a relationship. However, in this case,
employees must have a reference to a specific department.

UNIQUE Constraint on the Foreign Key When a UNIQUE constraint is defined on the
foreign key, only one row in the child table can reference a given parent key value.
This model allows nulls in the foreign key.

This model establishes a one-to-one relationship between the parent and foreign keys
that allows undetermined values (nulls) in the foreign key. For example, assume that
the employee table had a column named MEMBERNO, referring to an employee
membership number in the company insurance plan. Also, a table named INSURANCE
has a primary key named MEMBERNO, and other columns of the table keep respective
information relating to an employee insurance policy. The MEMBERNO in the employee
table must be both a foreign key and a unique key:

■ To enforce referential integrity rules between the EMP_TAB and INSURANCE tables
(the FOREIGN KEY constraint)

■ To guarantee that each employee has a unique membership number (the UNIQUE
key constraint)

UNIQUE and NOT NULL Constraints on the Foreign Key When both UNIQUE and
NOT NULL constraints are defined on the foreign key, only one row in the child table
can reference a given parent key value, and because NULL values are not allowed in
the foreign key, each row in the child table must explicitly reference a value in the
parent key.

This model establishes a one-to-one relationship between the parent and foreign keys
that does not allow undetermined values (nulls) in the foreign key. If you expand the
previous example by adding a NOT NULL constraint on the MEMBERNO column of the

Enforcing Referential Integrity with Constraints

Maintaining Data Integrity in Database Applications 6-9

employee table, in addition to guaranteeing that each employee has a unique
membership number, you also ensure that no undetermined values (nulls) are allowed
in the MEMBERNO column of the employee table.

Rules for Multiple FOREIGN KEY Constraints
Oracle Database allows a column to be referenced by multiple FOREIGN KEY
constraints; there is no limit on the number of dependent keys. This situation might be
present if a single column is part of two different composite foreign keys.

Deferring Constraint Checks
When Oracle Database checks a constraint, it signals an error if the constraint is not
satisfied. You can use the SET CONSTRAINTS statement to defer checking the validity
of constraints until the end of a transaction.

The SET CONSTRAINTS setting lasts for the duration of the transaction, or until
another SET CONSTRAINTS statement resets the mode.

Consider the following guidelines when deferring constraint checks:

■ Select appropriate data.

You may wish to defer constraint checks on UNIQUE and FOREIGN keys if the data
you are working with has any of the following characteristics:

– Tables are snapshots.

– Some tables contain a large amount of data being manipulated by another
application, which may or may not return the data in the same order.

■ Update cascade operations on foreign keys.

■ Ensure that constraints are deferrable.

After you have identified and selected the appropriate tables, ensure that their
FOREIGN, UNIQUE and PRIMARY key constraints are created deferrable. You can
do so by issuing statements similar to the following:

CREATE TABLE dept (
 deptno NUMBER PRIMARY KEY,
 dname VARCHAR2 (30)
);
CREATE TABLE emp (
 empno NUMBER,
 ename VARCHAR2 (30),
 deptno NUMBER REFERENCES (dept),
 CONSTRAINT pk_emp_empno PRIMARY KEY (empno) DEFERRABLE,
 CONSTRAINT fk_emp_deptno FOREIGN KEY (deptno)
 REFERENCES (dept.deptno) DEFERRABLE);
INSERT INTO dept VALUES (10, 'Accounting');
INSERT INTO dept VALUES (20, 'SALES');
INSERT INTO emp VALUES (1, 'Corleone', 10);

Note: You cannot issue a SET CONSTRAINTS statement inside a
trigger.

See Also: Oracle Database SQL Language Reference for more
information about the SET CONSTRAINTS statement

Minimizing Space and Time Overhead for Indexes Associated with Constraints

6-10 Oracle Database Advanced Application Developer's Guide

INSERT INTO emp VALUES (2, 'Costanza', 20);
COMMIT;

SET CONSTRAINT fk_emp_deptno DEFERRED;
UPDATE dept SET deptno = deptno + 10
 WHERE deptno = 20;

SELECT * from emp ORDER BY deptno;
EMPNO ENAME DEPTNO
----- -------------- -------
 1 Corleone 10
 2 Costanza 20
UPDATE emp SET deptno = deptno + 10
 WHERE deptno = 20;
SELECT * FROM emp ORDER BY deptno;

EMPNO ENAME DEPTNO
----- -------------- -------
 1 Corleone 10
 2 Costanza 30
COMMIT;

■ Set all constraints deferred.

Within the application that manipulates the data, you must set all constraints
deferred before you begin processing any data. Use the following DML statement
to set all constraints deferred:

SET CONSTRAINTS ALL DEFERRED;

■ Check the COMMIT (optional)

You can check for constraint violations before committing by issuing the SET
CONSTRAINTS ALL IMMEDIATE statement just before issuing the COMMIT. If there
are any problems with a constraint, this statement fails and the constraint causing
the error is identified. If you commit while constraints are violated, the transaction
rolls back and you receive an error message.

Minimizing Space and Time Overhead for Indexes Associated with
Constraints

When you create a UNIQUE or PRIMARY key, Oracle Database checks to see if an
existing index can be used to enforce uniqueness for the constraint. If there is no such
index, the database creates one.

When Oracle Database uses a unique index to enforce a constraint, and constraints
associated with the unique index are dropped or disabled, the index is dropped. To
preserve the statistics associated with the index (which would take a long time to
re-create), specify the KEEP INDEX clause on the DROP statement for the constraint.

While enabled foreign keys reference a PRIMARY or UNIQUE key, you cannot disable or
drop the PRIMARY or UNIQUE key constraint or the index.

Note: The SET CONSTRAINTS statement applies only to the current
transaction. The defaults specified when you create a constraint
remain as long as the constraint exists. The ALTER SESSION SET
CONSTRAINTS statement applies for the current session only.

When to Use CHECK Constraints

Maintaining Data Integrity in Database Applications 6-11

To reuse existing indexes when creating unique and primary key constraints, you can
include USING INDEX in the constraint clause. For example:

CREATE TABLE b
(
 b1 INTEGER,
 b2 INTEGER,
 CONSTRAINT u_b_1 (b1, b2) USING INDEX (CREATE UNIQUE INDEX b_index on b(b1,
b2),
 CONSTRAINT u_b_2 (b1, b2) USING INDEX b_index
);

Guidelines for Indexing Foreign Keys
Index foreign keys unless the matching unique or primary key is never updated or
deleted.

Referential Integrity in a Distributed Database
The declaration of a referential constraint cannot specify a foreign key that references a
primary or unique key of a remote table.

However, you can maintain parent/child table relationships across nodes using
triggers.

When to Use CHECK Constraints
Use CHECK constraints when you need to enforce integrity rules based on logical
expressions, such as comparisons. Never use CHECK constraints when any of the other
types of constraints can provide the necessary checking.

Note: UNIQUE and PRIMARY keys with deferrable constraints must
all use non-unique indexes.

See Also: Oracle Database Concepts for more information about
indexing foreign keys

See Also: Oracle Database PL/SQL Language Reference for more
information about triggers that enforce referential integrity

Note: If you decide to define referential integrity across the nodes of
a distributed database using triggers, be aware that network failures
can make both the parent table and the child table inaccessible.

For example, assume that the child table is in the SALES database, and
the parent table is in the HQ database.

If the network connection between the two databases fails, then some
DML statements against the child table (those that insert rows or
update a foreign key value) cannot proceed, because the referential
integrity triggers must have access to the parent table in the HQ
database.

See Also: "Choosing Between CHECK and NOT NULL Constraints"
on page 6-13

When to Use CHECK Constraints

6-12 Oracle Database Advanced Application Developer's Guide

Examples of CHECK constraints include the following:

■ A CHECK constraint on employee salaries so that no salary value is greater than
10000.

■ A CHECK constraint on department locations so that only the locations "BOSTON",
"NEW YORK", and "DALLAS" are allowed.

■ A CHECK constraint on the salary and commissions columns to prevent the
commission from being larger than the salary.

Restrictions on CHECK Constraints
A CHECK constraint requires that a condition be true or unknown for every row of the
table. If a statement causes the condition to evaluate to false, then the statement is
rolled back. The condition of a CHECK constraint has the following limitations:

■ The condition must be a boolean expression that can be evaluated using the values
in the row being inserted or updated.

■ The condition cannot contain subqueries or sequences.

■ The condition cannot include the SYSDATE, UID, USER, or USERENV SQL
functions.

■ The condition cannot contain the pseudocolumns LEVEL or ROWNUM.

■ The condition cannot contain the PRIOR operator.

■ The condition cannot contain a user-defined SQL function.

Designing CHECK Constraints
When using CHECK constraints, remember that a CHECK constraint is violated only if
the condition evaluates to false; true and unknown values (such as comparisons with
nulls) do not violate a check condition. Ensure that any CHECK constraint that you
define is specific enough to enforce the rule.

For example, consider the following CHECK constraint:

CHECK (Sal > 0 OR Comm >= 0)

At first glance, this rule may be interpreted as "do not allow a row in the employee
table unless the employee salary is greater than zero or the employee commission is
greater than or equal to zero." But if a row is inserted with a null salary, that row does
not violate the CHECK constraint, regardless of whether or not the commission value is
valid, because the entire check condition is evaluated as unknown. In this case, you
can prevent such violations by placing NOT NULL constraints on both the SAL and
COMM columns.

See Also:

■ Oracle Database SQL Language Reference for information about the
LEVEL pseudocolumn

■ Oracle Database SQL Language Reference for information about the
ROWNUM pseudocolumn

■ Oracle Database SQL Language Reference for information about the
PRIOR operator (used in hierarchical queries)

Examples of Defining Constraints

Maintaining Data Integrity in Database Applications 6-13

Rules for Multiple CHECK Constraints
A single column can have multiple CHECK constraints that reference the column in its
definition. There is no limit to the number of CHECK constraints that can be defined
that reference a column.

The order in which the constraints are evaluated is not defined, so be careful not to
rely on the order or to define multiple constraints that conflict with each other.

Choosing Between CHECK and NOT NULL Constraints
According to the ANSI/ISO standard, a NOT NULL constraint is an example of a CHECK
constraint, where the condition is:

CHECK (Column_name IS NOT NULL)

Therefore, you can write NOT NULL constraints for a single column using either a NOT
NULL constraint or a CHECK constraint. The NOT NULL constraint is easier to use than
the CHECK constraint.

In the case where a composite key can allow only all nulls or all values, you must use a
CHECK integrity constraint. For example, the following expression of a CHECK integrity
constraint allows a key value in the composite key made up of columns C1 and C2 to
contain either all nulls or all values:

CHECK ((C1 IS NULL AND C2 IS NULL) OR
 (C1 IS NOT NULL AND C2 IS NOT NULL))

Examples of Defining Constraints
Here are some examples showing how to create simple constraints during the
prototype phase of your database design.

Each constraint is given a name in these examples. Naming the constraints prevents
the database from creating multiple copies of the same constraint, with different
system-generated names, if the DDL is run multiple times.

Example: Defining Constraints with the CREATE TABLE Statement
The following examples of CREATE TABLE statements show the definition of several
constraints:

CREATE TABLE DeptTab (
 Deptno NUMBER(3) CONSTRAINT pk_DeptTab_Deptno PRIMARY KEY,
 Dname VARCHAR2(15),
 Loc VARCHAR2(15),
 CONSTRAINT u_DeptTab_Dname_Loc UNIQUE (Dname, Loc),
 CONSTRAINT c_DeptTab_Loc
 CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO')));

CREATE TABLE EmpTab (

Note: If you are not sure when unknown values result in NULL
conditions, review the truth tables for the logical conditions in Oracle
Database SQL Language Reference

See Also: Oracle Database Administrator's Guide for information on
creating and maintaining constraints for a large production database

Examples of Defining Constraints

6-14 Oracle Database Advanced Application Developer's Guide

 Empno NUMBER(5) CONSTRAINT pk_EmpTab_Empno PRIMARY KEY,
 Ename VARCHAR2(15) NOT NULL,
 Job VARCHAR2(10),
 Mgr NUMBER(5) CONSTRAINT r_EmpTab_Mgr REFERENCES EmpTab,
 Hiredate DATE,
 Sal NUMBER(7,2),
 Comm NUMBER(5,2),
 Deptno NUMBER(3) NOT NULL
 CONSTRAINT r_EmpTab_DeptTab REFERENCES DeptTab ON DELETE CASCADE);

Example: Defining Constraints with the ALTER TABLE Statement
You can also define constraints using the constraint clause of the ALTER TABLE
statement. For example:

CREATE UNIQUE INDEX u_DeptTab_Deptno ON DeptTab(Deptno);
ALTER TABLE DepTab
 ADD CONSTRAINT pk_DeptTab_Deptno PRIMARY KEY (Deptno);

ALTER TABLE EmpTab
 ADD CONSTRAINT fk_DeptTab_Deptno FOREIGN KEY (Deptno) REFERENCES DeptTab;
ALTER TABLE EmpTab MODIFY (Ename VARCHAR2(15) NOT NULL);

You cannot create a validated constraint on a table if the table already contains rows
that violate the constraint.

Privileges Needed to Define Constraints
The creator of a constraint must have the ability to create tables (the CREATE TABLE or
CREATE ANY TABLE system privilege), or the ability to alter the table (the ALTER object
privilege for the table or the ALTER ANY TABLE system privilege) with the constraint.
Additionally, UNIQUE and PRIMARY KEY constraints require that the owner of the
table have either a quota for the tablespace that contains the associated index or the
UNLIMITED TABLESPACE system privilege. FOREIGN KEY constraints also require
some additional privileges.

Naming Constraints
Assign names to constraints NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, and
CHECK using the CONSTRAINT option of the constraint clause. This name must be
unique with respect to other constraints that you own. If you do not specify a
constraint name, one is assigned automatically by Oracle Database.

Choosing your own name makes error messages for constraint violations more
understandable, and prevents the creation of duplicate constraints with different
names if the SQL statements are run more than once.

See the previous examples of the CREATE TABLE and ALTER TABLE statements for
examples of the CONSTRAINT option of the constraint clause. The name of each
constraint is included with other information about the constraint in the data
dictionary.

See Also: "Privileges Required to Create FOREIGN KEY
Constraints" on page 6-20

See Also: "Viewing Definitions of Constraints" on page 6-21 for
examples of static data dictionary views

Enabling and Disabling Constraints

Maintaining Data Integrity in Database Applications 6-15

Enabling and Disabling Constraints
This section explains the mechanisms and procedures for manually enabling and
disabling constraints.

enabled constraint. When a constraint is enabled, the corresponding rule is enforced
on the data values in the associated columns. The definition of the constraint is stored
in the data dictionary.

disabled constraint. When a constraint is disabled, the corresponding rule is not
enforced. The definition of the constraint is still stored in the data dictionary.

An integrity constraint represents an assertion about the data in a database. This
assertion is always true when the constraint is enabled. The assertion may or may not
be true when the constraint is disabled, because data that violates the integrity
constraint can be in the database.

Topics:

■ Why Disable Constraints?

■ Creating Enabling Constraints (Default)

■ Creating Disabled Constraints

■ Enabling Existing Constraints

■ Disabling Existing Constraints

■ Guidelines for Enabling and Disabling Key Constraints

■ Fixing Constraint Exceptions

Why Disable Constraints?
During day-to-day operations, keep constraints enabled. In certain situations,
temporarily disabling the constraints of a table makes sense for performance reasons.
For example:

■ When loading large amounts of data into a table using SQL*Loader

■ When performing batch operations that make massive changes to a table (such as
changing each employee number by adding 1000 to the existing number)

■ When importing or exporting one table at a time

Temporarily turning off constraints can speed up these operations.

Creating Enabling Constraints (Default)
When you define an integrity constraint in a CREATE TABLE or ALTER TABLE
statement, Oracle Database automatically enables the constraint by default. For code
clarity, you can explicitly enable the constraint by including the ENABLE clause in its
definition.

Use this technique when creating tables that start off empty, and are populated a row
at a time by individual transactions. In such cases, you want to ensure that data is
consistent at all times, and the performance overhead of each DML operation is small.

The following CREATE TABLE and ALTER TABLE statements both define and enable
constraints:

CREATE TABLE Emp_tab (
 Empno NUMBER(5) PRIMARY KEY);
 ALTER TABLE Emp_tab

Enabling and Disabling Constraints

6-16 Oracle Database Advanced Application Developer's Guide

 ADD PRIMARY KEY (Empno);

An ALTER TABLE statement that tries to enable an integrity constraint fails if any
existing row of the table violates the integrity constraint. The statement rolls back and
the constraint definition is neither stored nor enabled.

Creating Disabled Constraints
The following CREATE TABLE and ALTER TABLE statements both define and disable
constraints:

CREATE TABLE Emp_tab (
 Empno NUMBER(5) PRIMARY KEY DISABLE);

ALTER TABLE Emp_tab
 ADD PRIMARY KEY (Empno) DISABLE;

Use this technique when creating tables that will be loaded with large amounts of data
before anybody else accesses them, particularly if you need to cleanse data after
loading it, or need to fill empty columns with sequence numbers or parent/child
relationships.

An ALTER TABLE statement that defines and disables an constraints never fails,
because its rule is not enforced.

Enabling Existing Constraints
To enable an existing constraint, use the ALTER TABLE statement with the ENABLE
clause.

Once you have finished cleansing data and filling empty columns, you can enable
constraints that were disabled during data loading.

The following statements are examples of statements that enable disabled constraints:

ALTER TABLE DeptTab
 ENABLE CONSTRAINT uk_DeptTab_Dname_Loc;

ALTER TABLE DeptTab
 ENABLE PRIMARY KEY
 ENABLE UNIQUE (Dname)
 ENABLE UNIQUE (Loc);

An ALTER TABLE statement that attempts to enable an integrity constraint fails if any
of the table rows violate the integrity constraint. The statement is rolled back and the
constraint is not enabled.

Disabling Existing Constraints
To disable an existing constraint, use the ALTER TABLE statement with the DISABLE
clause.

If you need to perform a large load or update when a table already contains data, you
can temporarily disable constraints to improve performance of the bulk operation.

See Also: "Fixing Constraint Exceptions" on page 6-17 for more
information about rows that violate constraints

See Also: "Fixing Constraint Exceptions" on page 6-17 for more
information about rows that violate constraints

Altering Constraints

Maintaining Data Integrity in Database Applications 6-17

The following statements are examples of statements that disable enabled constraints:

ALTER TABLE DeptTab
 DISABLE CONSTRAINT uk_DeptTab_Dname_Loc;

ALTER TABLE DeptTab
 DISABLE PRIMARY KEY
 DISABLE UNIQUE (Dname)
 DISABLE UNIQUE (Loc);

Guidelines for Enabling and Disabling Key Constraints
When enabling or disabling UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints, be
aware of several important issues and prerequisites. UNIQUE key and PRIMARY KEY
constraints are usually managed by the database administrator.

Fixing Constraint Exceptions
If a row of a table disobeys an integrity constraint, then this row is in violation of the
constraint and is called an exception to the constraint. If any exceptions exist, then the
constraint cannot be enabled. The rows that violate the constraint must be updated or
deleted before the constraint can be enabled.

You can identify exceptions for a specific integrity constraint as you try to enable the
constraint.

When you try to create or enable a constraint, and the statement fails because integrity
constraint exceptions exist, the statement is rolled back. You cannot enable the
constraint until all exceptions are either updated or deleted. To determine which rows
violate the integrity constraint, include the EXCEPTIONS option in the ENABLE clause
of a CREATE TABLE or ALTER TABLE statement.

Altering Constraints
Starting with Oracle8i, you can alter the state of an existing constraint with the
MODIFY CONSTRAINT clause.

The following statements show several alternatives for whether the CHECK constraint
is enforced, and when the constraint checking is done:

CREATE TABLE X1Tab (a1 NUMBER CONSTRAINT c_X1Tab_a1 CHECK (a1>3)
 DEFERRABLE DISABLE);
ALTER TABLE X1Tab MODIFY CONSTRAINT c_X1Tab_a1 ENABLE;
ALTER TABLE X1Tab MODIFY CONSTRAINT c_X1Tab_a1 RELY;
ALTER TABLE X1Tab MODIFY CONSTRAINT c_X1Tab_a1 INITIALLY DEFERRED;
ALTER TABLE X1Tab MODIFY CONSTRAINT c_X1Tab_a1 ENABLE NOVALIDATE;

See Also: Oracle Database Administrator's Guide and "Managing
FOREIGN KEY Constraints" on page 6-20

See Also: "Fixing Constraint Exceptions" on page 6-17 for more
information on this procedure

See Also: Oracle Database Administrator's Guide for more information
about responding to constraint exceptions

See Also: Oracle Database SQL Language Reference for information on
the parameters you can modify

Altering Constraints

6-18 Oracle Database Advanced Application Developer's Guide

The following statements show several alternatives for whether the NOT NULL
constraint is enforced, and when the checking is done:

CREATE TABLE X1Tab (a1 NUMBER CONSTRAINT c_X1Tab_a1
NOT NULL DEFERRABLE INITIALLY DEFERRED NORELY DISABLE);

ALTER TABLE X1Tab ADD CONSTRAINT One_cnstrt UNIQUE(a1)
DEFERRABLE INITIALLY IMMEDIATE RELY USING INDEX PCTFREE = 30
ENABLE VALIDATE;

ALTER TABLE X1Tab MODIFY UNIQUE(a1)
INITIALLY DEFERRED NORELY USING INDEX PCTFREE = 40
ENABLE NOVALIDATE;

The following statements show several alternatives for whether the primary key
constraint is enforced, and when the checking is done:

CREATE TABLE t1 (a1 INT, b1 INT);
ALTER TABLE t1 ADD CONSTRAINT pk_t1_a1 PRIMARY KEY(a1) DISABLE;
ALTER TABLE t1 MODIFY PRIMARY KEY INITIALLY IMMEDIATE
 USING INDEX PCTFREE = 30 ENABLE NOVALIDATE;
ALTER TABLE t1 MODIFY PRIMARY KEY
 USING INDEX PCTFREE = 35 ENABLE;
ALTER TABLE t1 MODIFY PRIMARY KEY ENABLE NOVALIDATE;

Renaming Constraints
Because constraint names must be unique, even across multiple schemas, you can
encounter problems when you want to clone a table and all its constraints, because the
constraint name for the new table conflicts with the one for the original table. Or, you
might create a constraint with a default system-generated name, and later realize that
you want to give the constraint a name that is easy to remember, so that you can easily
enable and disable it.

One of the properties you can alter for a constraint is its name. The following SQL*Plus
script finds the system-generated name for a constraint and changes it:

prompt Enter table name to find its primary key:
accept table_name
select constraint_name from user_constraints
 where table_name = upper('&table_name.')
 and constraint_type = 'P';

prompt Enter new name for its primary key:
accept new_constraint

set serveroutput on

declare
-- USER_CONSTRAINTS.CONSTRAINT_NAME is declared as VARCHAR2(30).
-- Using %TYPE here protects us if the length changes in a future release.
 constraint_name user_constraints.constraint_name%type;
begin
 select constraint_name into constraint_name from user_constraints
 where table_name = upper('&table_name.')
 and constraint_type = 'P';

 dbms_output.put_line('The primary key for ' || upper('&table_name.') || ' is: '
 || constraint_name);

Managing FOREIGN KEY Constraints

Maintaining Data Integrity in Database Applications 6-19

 execute immediate
 'alter table &table_name. rename constraint ' || constraint_name ||
 ' to &new_constraint.';
end;
/

Dropping Constraints
Drop an integrity constraint if the rule that it enforces is no longer true or if the
constraint is no longer needed. Drop an integrity constraint using the ALTER TABLE
statement and the DROP clause. For example, the following statements drop
constraints:

ALTER TABLE DeptTab DROP UNIQUE (Dname);
ALTER TABLE DeptTab DROP UNIQUE (Loc);
ALTER TABLE EmpTab DROP PRIMARY KEY, DROP CONSTRAINT fk_EmpTab_Dname;
DROP TABLE EmpTab CASCADE CONSTRAINTS;

When dropping UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints, be aware of
several important issues and prerequisites. UNIQUE and PRIMARY KEY constraints are
usually managed by the database administrator.

Managing FOREIGN KEY Constraints
General information about defining, enabling, disabling, and dropping all types of
constraints is given in section "Dropping Constraints" on page 6-19. The present
section supplements this information, focusing specifically on issues regarding
FOREIGN KEY constraints, which enforce relationships between columns in different
tables.

Datatypes and Names for Foreign Key Columns
You must use the same datatype for corresponding columns in the dependent and
referenced tables. The column names do not need to match.

Limit on Columns in Composite Foreign Keys
Because foreign keys reference primary and unique keys of the parent table, and
PRIMARY KEY and UNIQUE key constraints are enforced using indexes, composite
foreign keys are limited to 32 columns.

Foreign Key References Primary Key by Default
If the column list is not included in the REFERENCES option when defining a FOREIGN
KEY constraint (single column or composite), then Oracle Database assumes that you
intend to reference the primary key of the specified table. Alternatively, you can
explicitly specify the column(s) to reference in the parent table within parentheses.
Oracle Database automatically checks to verify that this column list references a

See Also: Oracle Database Administrator's Guide and "Managing
FOREIGN KEY Constraints" on page 6-20

Note: FOREIGN KEY constraints cannot be enabled if the constraint
of the referenced primary or unique key is not present or not enabled.

Managing FOREIGN KEY Constraints

6-20 Oracle Database Advanced Application Developer's Guide

primary or unique key of the parent table. If it does not, then an informative error is
returned.

Privileges Required to Create FOREIGN KEY Constraints
To create a FOREIGN KEY constraint, the creator of the constraint must have privileged
access to the parent and child tables.

■ Parent Table The creator of the referential integrity constraint must own the
parent table or have REFERENCES object privileges on the columns that constitute
the parent key of the parent table.

■ Child Table The creator of the referential integrity constraint must have the ability
to create tables (that is, the CREATE TABLE or CREATE ANY TABLE system
privilege) or the ability to alter the child table (that is, the ALTER object privilege
for the child table or the ALTER ANY TABLE system privilege).

In both cases, necessary privileges cannot be obtained through a role; they must be
explicitly granted to the creator of the constraint.

These restrictions allow:

■ The owner of the child table to explicitly decide which constraints are enforced
and which other users can create constraints

■ The owner of the parent table to explicitly decide if foreign keys can depend on the
primary and unique keys in her tables

Choosing How Foreign Keys Enforce Referential Integrity
Oracle Database allows different types of referential integrity actions to be enforced, as
specified with the definition of a FOREIGN KEY constraint:

■ Prevent Delete or Update of Parent Key The default setting prevents the deletion
or update of a parent key if there is a row in the child table that references the key.
For example:

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept_tab);

■ Delete Child Rows When Parent Key Deleted The ON DELETE CASCADE action
allows parent key data that is referenced from the child table to be deleted, but not
updated. When data in the parent key is deleted, all rows in the child table that
depend on the deleted parent key values are also deleted. To specify this
referential action, include the ON DELETE CASCADE option in the definition of the
FOREIGN KEY constraint. For example:

CREATE TABLE Emp_tab (
 FOREIGN KEY (Deptno) REFERENCES Dept_tab
 ON DELETE CASCADE);

■ Set Foreign Keys to Null When Parent Key Deleted The ON DELETE SET NULL
action allows data that references the parent key to be deleted, but not updated.
When referenced data in the parent key is deleted, all rows in the child table that
depend on those parent key values have their foreign keys set to null. To specify
this referential action, include the ON DELETE SET NULL option in the definition of
the FOREIGN KEY constraint. For example:

CREATE TABLE Emp_tab (
 FOREIGN KEY (Deptno) REFERENCES Dept_tab
 ON DELETE SET NULL);

Examples of Defining and Viewing Constraints

Maintaining Data Integrity in Database Applications 6-21

Viewing Definitions of Constraints
To find the names of constraints, what columns they affect, and other information to
help you manage them, query the static data dictionary views *_CONSTRAINTS and
*_CONS_COLUMNS.

Examples of Defining and Viewing Constraints
The following CREATE TABLE statements define a number of constraints:

CREATE TABLE DeptTab (
 Deptno NUMBER(3) PRIMARY KEY,
 Dname VARCHAR2(15),
 Loc VARCHAR2(15),
 CONSTRAINT uk_DeptTab_Dname_Loc UNIQUE (Dname, Loc),
 CONSTRAINT c_DeptTab_Loc
 CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO'))
);

CREATE TABLE EmpTab (
 Empno NUMBER(5) PRIMARY KEY,
 Ename VARCHAR2(15) NOT NULL,
 Job VARCHAR2(10),
 Mgr NUMBER(5) CONSTRAINT r_EmpTab_Mgr
 REFERENCES Emp_tab ON DELETE CASCADE,
 Hiredate DATE,
 Sal NUMBER(7,2),
 Comm NUMBER(5,2),
 Deptno NUMBER(3) NOT NULL
 CONSTRAINT r_EmpTab_Deptno REFERENCES DeptTab
);

Examples:

■ Example 1: Listing All of Your Accessible Constraints

■ Example 2: Distinguishing NOT NULL Constraints from CHECK Constraints

■ Example 3: Listing Column Names that Constitute an Integrity Constraint

Example 1: Listing All of Your Accessible Constraints
The following query lists all constraints defined on all tables accessible to the user:

SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE, TABLE_NAME, R_CONSTRAINT_NAME
 FROM USER_CONSTRAINTS;

Considering the example statements at the beginning of this section, a list similar to
this is returned:

CONSTRAINT_NAME C TABLE_NAME R_CONSTRAINT_NAME
--------------- - ---------- -----------------
SYS_C00275 P DEPTTAB
UK_DEPTTAB_DNAME U DEPTTAB
C_DEPTTAB_LOC C DEPTTAB
SYS_C00278 C EMPTAB
SYS_C00279 C EMPTAB
SYS_C00280 P EMPTAB

See Also: Oracle Database Reference for information on *_
CONSTRAINTS and *_CONS_COLUMNS

Examples of Defining and Viewing Constraints

6-22 Oracle Database Advanced Application Developer's Guide

FK_EMPTAB_MGR R EMPTAB SYS_C00280
R_EMPTAB_DEPT R EMPTAB SYS_C00275

Notice the following:

■ Some constraint names are user specified (such as UK_DEPTTAB_DNAME), while
others are system specified (such as SYS_C00275).

■ Each constraint type is denoted with a different character in the CONSTRAINT_
TYPE column. The following table summarizes the characters used for each
constraint type.

Example 2: Distinguishing NOT NULL Constraints from CHECK Constraints
In the previous example, several constraints are listed with a constraint type of C. To
distinguish which constraints are NOT NULL constraints and which are CHECK
constraints in the EMPTAB and DEPTTAB tables, submit the following query:

SELECT CONSTRAINT_NAME, SEARCH_CONDITION
 FROM USER_CONSTRAINTS
 WHERE (TABLE_NAME = 'DEPTTAB' OR TABLE_NAME = 'EMPTAB') AND
 CONSTRAINT_TYPE = 'C';

Considering the example CREATE TABLE statements at the beginning of this section, a
list similar to this is returned:

CONSTRAINT_NAME SEARCH_CONDITION
--------------- --
C_DEPTTAB_LOC LOC IN ('NEW YORK', 'BOSTON', 'CHICAGO')
SYS_C00278 ENAME IS NOT NULL
SYS_C00279 DEPTNO IS NOT NULL

Notice that the following are explicitly listed in the SEARCH_CONDITION column:

■ NOT NULL constraints

■ The conditions for user-defined CHECK constraints

Example 3: Listing Column Names that Constitute an Integrity Constraint
The following query lists all columns that constitute the constraints defined on all
tables accessible to you, the user:

SELECT CONSTRAINT_NAME, TABLE_NAME, COLUMN_NAME
 FROM USER_CONS_COLUMNS;

Constraint Type Character

PRIMARY KEY P

UNIQUE KEY U

FOREIGN KEY R

CHECK, NOT NULL C

Note: An additional constraint type is indicated by the character "V"
in the CONSTRAINT_TYPE column. This constraint type corresponds
to constraints created using the WITH CHECK OPTION for views.

Examples of Defining and Viewing Constraints

Maintaining Data Integrity in Database Applications 6-23

Considering the example statements at the beginning of this section, a list similar to
this is returned:

CONSTRAINT_NAME TABLE_NAME COLUMN_NAME
--------------- ----------- ---------------
FK_EMPTAB_DEPT EMPTAB DEPTNO
UK_DEPTTAB_DNAME DEPTTAB DNAME
UK_DEPTTAB_LOC DEPTTAB LOC
C_DEPTTAB_LOC DEPTTAB LOC
FK_EMPTAB_MGR EMPTAB MGR
SYS_C00275 DEPTTAB DEPTNO
SYS_C00278 EMPTAB ENAME
SYS_C00279 EMPTAB DEPTNO
SYS_C00280 EMPTAB EMPNO

Examples of Defining and Viewing Constraints

6-24 Oracle Database Advanced Application Developer's Guide

Part II
PL/SQL for Application Developers

This part presents information that application developers need about PL/SQL, the
Oracle procedural extension of SQL.

Chapters:

■ Chapter 7, "Coding PL/SQL Subprograms and Packages"

■ Chapter 8, "Using PL/Scope"

■ Chapter 9, "Using the PL/SQL Hierarchical Profiler"

■ Chapter 10, "Developing PL/SQL Web Applications"

■ Chapter 11, "Developing PL/SQL Server Pages"

■ Chapter 12, "Using Continuous Query Notification"

See Also: Oracle Database PL/SQL Language Reference for a complete
description of PL/SQL

Coding PL/SQL Subprograms and Packages 7-1

7
Coding PL/SQL Subprograms and Packages

This chapter describes some of the procedural capabilities of Oracle Database for
application development, including:

■ Overview of PL/SQL Program Units

■ Compiling PL/SQL Subprograms for Native Execution

■ Cursor Variables

■ Handling PL/SQL Compile-Time Errors

■ Handling Run-Time PL/SQL Errors

■ Debugging Stored Subprograms

■ Invoking Stored Subprograms

■ Invoking Remote Subprograms

■ Invoking Stored PL/SQL Functions from SQL Statements

■ Returning Large Amounts of Data from a Function

■ Coding Your Own Aggregate Functions

Overview of PL/SQL Program Units
PL/SQL is a modern, block-structured programming language. It provides several
features that make developing powerful database applications very convenient. For
example, PL/SQL provides procedural constructs, such as loops and conditional
statements, that are not available in standard SQL.

You can directly enter SQL data manipulation language (DML) statements inside
PL/SQL blocks, and you can use subprograms supplied by Oracle to perform data
definition language (DDL) statements.

PL/SQL code runs on the server, so using PL/SQL lets you centralize significant parts
of your database applications for increased maintainability and security. It also enables
you to achieve a significant reduction of network overhead in client/server
applications.

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about PL/SQL subprograms

■ Oracle Database PL/SQL Language Reference for more information
about PL/SQL packages

Overview of PL/SQL Program Units

7-2 Oracle Database Advanced Application Developer's Guide

You can even use PL/SQL for some database applications in place of 3GL programs
that use embedded SQL or Oracle Call Interface (OCI).

PL/SQL program units include:

■ Anonymous Blocks

■ Stored PL/SQL Program Units

■ Triggers

Anonymous Blocks
An anonymous block is a PL/SQL program unit that has no name. An anonymous
block consists of an optional declarative part, an executable part, and one or more
optional exception handlers.

The declarative part declares PL/SQL variables, exceptions, and cursors. The
executable part contains PL/SQL code and SQL statements, and can contain nested
blocks. Exception handlers contain code that is invoked when the exception is raised,
either as a predefined PL/SQL exception (such as NO_DATA_FOUND or ZERO_DIVIDE)
or as an exception that you define.

The following example of a PL/SQL anonymous block prints the names of all
employees in department 20 in the hr.employees table by using the DBMS_OUTPUT
package:

DECLARE
 Last_name VARCHAR2(10);
 Cursor c1 IS SELECT last_name
 FROM employees
 WHERE department_id = 20;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO Last_name;
 EXIT WHEN c1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(Last_name);
 END LOOP;
END;
/

Note: Some Oracle tools, such as Oracle Forms, contain a PL/SQL
engine that lets you run PL/SQL locally.

See Also:

■ Oracle Database PL/SQL Language Reference for syntax and
examples of operations on PL/SQL packages

■ Oracle Database PL/SQL Packages and Types Reference for
information about the PL/SQL packages that come with Oracle
Database

■ Oracle Database Concepts for information about dependencies
among stored PL/SQL program units

Overview of PL/SQL Program Units

Coding PL/SQL Subprograms and Packages 7-3

Exceptions let you handle Oracle Database error conditions with PL/SQL program
logic. This enables your application to prevent the server from issuing an error that can
cause the client application to end. The following anonymous block handles the
predefined Oracle Database exception NO_DATA_FOUND (which results in an
ORA-01403 error if not handled):

DECLARE
 Emp_number INTEGER := 9999;
 Emp_name VARCHAR2(10);
BEGIN
 SELECT Ename INTO Emp_name FROM Emp_tab
 WHERE Empno = Emp_number; -- no such number
 DBMS_OUTPUT.PUT_LINE('Employee name is ' || Emp_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No such employee: ' || Emp_number);
END;

You can also define your own exceptions, declare them in the declaration part of a
block, and define them in the exception part of the block. An example follows:

DECLARE
 Emp_name VARCHAR2(10);
 Emp_number INTEGER;
 Empno_out_of_range EXCEPTION;
BEGIN
 Emp_number := 10001;
 IF Emp_number > 9999 OR Emp_number < 1000 THEN
 RAISE Empno_out_of_range;
 ELSE
 SELECT Ename INTO Emp_name FROM Emp_tab
 WHERE Empno = Emp_number;
 DBMS_OUTPUT.PUT_LINE('Employee name is ' || Emp_name);
END IF;
EXCEPTION
 WHEN Empno_out_of_range THEN
 DBMS_OUTPUT.PUT_LINE('Employee number ' || Emp_number ||
 ' is out of range.');
END;

Anonymous blocks are usually used interactively from a tool, such as SQL*Plus, or in
a precompiler, OCI, or SQL*Module application. They are usually used to invoke
stored subprograms or to open cursor variables.

Note: If you test this block using SQL*Plus, then enter the statement
SET SERVEROUTPUT ON so that output using the DBMS_OUTPUT
procedures (for example, PUT_LINE) is activated. Also, end the
example with a slash (/) to activate it.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for complete
information about the DBMS_OUTPUT package

■ Oracle Database PL/SQL Language Reference and "Handling
Run-Time PL/SQL Errors" on page 7-20

■ "Cursor Variables" on page 7-17

Overview of PL/SQL Program Units

7-4 Oracle Database Advanced Application Developer's Guide

Stored PL/SQL Program Units
A stored PL/SQL program unit is a subprogram (procedure or function) or package
that:

■ Has a name.

■ Can take parameters, and can return values.

■ Is stored in the data dictionary.

■ Can be invoked by many users.

If a subprogram belongs to a package, it is called a package subprogram; if not, it is
called a standalone subprogram.

Topics:

■ Naming Subprograms

■ Subprogram Parameters

■ Creating Subprograms

■ Altering Subprograms

■ Dropping Subprograms and Packages

■ External Subprograms

■ Cross-Session PL/SQL Function Result Cache

■ PL/SQL Packages

■ PL/SQL Object Size Limits

■ Creating Packages

■ Naming Packages and Package Objects

■ Package Invalidations and Session State

■ Packages Supplied with Oracle Database

■ Overview of Bulk Binding

■ When to Use Bulk Binds

Naming Subprograms
Because a subprogram is stored in the database, it must be named. This distinguishes
it from other stored subprograms and makes it possible for applications to invoke it.
Each publicly-visible subprogram in a schema must have a unique name, and the
name must be a legal PL/SQL identifier.

Subprogram Parameters
Stored subprograms can take parameters. The following example shows a stored
subprogram that is similar to the anonymous block in "Anonymous Blocks" on
page 7-2.

Note: If you plan to invoke a stored subprogram using a stub
generated by SQL*Module, then the stored subprogram name must
also be a legal identifier in the invoking host 3GL language, such as
Ada or C.

Overview of PL/SQL Program Units

Coding PL/SQL Subprograms and Packages 7-5

PROCEDURE Get_emp_names (Dept_num IN NUMBER) IS
 Emp_name VARCHAR2(10);
 CURSOR c1 (Depno NUMBER) IS
 SELECT Ename FROM Emp_tab
 WHERE deptno = Depno;
BEGIN
 OPEN c1(Dept_num);
 LOOP
 FETCH c1 INTO Emp_name;
 EXIT WHEN C1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(Emp_name);
 END LOOP;
 CLOSE c1;
END;

In the procedure Get_emp_names, the department number is an input parameter that
is used when the parameterized cursor c1 is opened.

The formal parameters of a subprogram have three major attributes, described in
Table 7–1.

Topics:

■ Parameter Modes

■ Parameter Datatypes

■ %TYPE and %ROWTYPE Attributes

■ Tables and Records

■ Default Parameter Values

Parameter Modes Parameter modes define the action of formal parameters. You can use
the three parameter modes, IN (the default), OUT, and IN OUT, with any subprogram.
Avoid using the OUT and IN OUT modes with functions. Good programming practice
dictates that a function returns a single value and does not change the values of
variables that are not local to the subprogram.

Table 7–2 summarizes the information about parameter modes.

Caution: To execute the following, use CREATE OR REPLACE
PROCEDURE.

Table 7–1 Attributes of Subprogram Parameters

Parameter Attribute Description

Name This must be a legal PL/SQL identifier.

Mode This indicates whether the parameter is an input-only parameter (IN),
an output-only parameter (OUT), or is both an input and an output
parameter (IN OUT). If the mode is not specified, then IN is assumed.

Datatype This is a standard PL/SQL datatype.

Table 7–2 Parameter Modes

IN OUT IN OUT

The default. Must be specified. Must be specified.

Overview of PL/SQL Program Units

7-6 Oracle Database Advanced Application Developer's Guide

Parameter Datatypes The datatype of a formal parameter consists of one of the
following:

■ An unconstrained type name, such as NUMBER or VARCHAR2.

■ A type that is constrained using the %TYPE or %ROWTYPE attributes.

%TYPE and %ROWTYPE Attributes Use the type attributes %TYPE and %ROWTYPE to
constrain the parameter. For example, the Get_emp_names procedure specification in
"Subprogram Parameters" on page 7-4 can be written as the following:

PROCEDURE Get_emp_names(Dept_num IN Emp_tab.Deptno%TYPE)

This has the Dept_num parameter take the same datatype as the Deptno column in
the Emp_tab table. The column and table must be available when a declaration using
%TYPE (or %ROWTYPE) is elaborated.

Using %TYPE is recommended, because if the type of the column in the table changes,
then it is not necessary to change the application code.

If the Get_emp_names procedure is part of a package, then you can use
previously-declared public (package) variables to constrain a parameter datatype. For
example:

Dept_number number(2);
...
PROCEDURE Get_emp_names(Dept_num IN Dept_number%TYPE);

Use the %ROWTYPE attribute to create a record that contains all the columns of the
specified table. The following example defines the Get_emp_rec procedure, which
returns all the columns of the Emp_tab table in a PL/SQL record for the given empno:

Passes values to a
subprogram.

Returns values to the caller. Passes initial values to a
subprogram; returns updated
values to the caller.

Formal parameter acts like a
constant.

Formal parameter acts like an
uninitialized variable.

Formal parameter acts like an
initialized variable.

Formal parameter cannot be
assigned a value.

Formal parameter cannot be
used in an expression; must be
assigned a value.

Formal parameter must be
assigned a value.

Actual parameter can be a
constant, initialized variable,
literal, or expression.

Actual parameter must be a
variable.

Actual parameter must be a
variable.

See Also: Oracle Database PL/SQL Language Reference for details
about parameter modes

Note: Numerically constrained types such as NUMBER(2) or
VARCHAR2(20) are not allowed in a parameter list.

Caution: To execute the following, use the statement CREATE OR
REPLACE PROCEDURE.

Table 7–2 (Cont.) Parameter Modes

IN OUT IN OUT

Overview of PL/SQL Program Units

Coding PL/SQL Subprograms and Packages 7-7

PROCEDURE Get_emp_rec (Emp_number IN Emp_tab.Empno%TYPE,
 Emp_ret OUT Emp_tab%ROWTYPE) IS
BEGIN
 SELECT Empno, Ename, Job, Mgr, Hiredate, Sal, Comm, Deptno
 INTO Emp_ret
 FROM Emp_tab
 WHERE Empno = Emp_number;
END;

You can invoke this procedure from a PL/SQL block as follows:

DECLARE
 Emp_row Emp_tab%ROWTYPE; -- declare a record matching a
 -- row in the Emp_tab table
BEGIN
 Get_emp_rec(7499, Emp_row); -- invoke for Emp_tab# 7499
 DBMS_OUTPUT.PUT(Emp_row.Ename || ' ' || Emp_row.Empno);
 DBMS_OUTPUT.PUT(' ' || Emp_row.Job || ' ' || Emp_row.Mgr);
 DBMS_OUTPUT.PUT(' ' || Emp_row.Hiredate || ' ' || Emp_row.Sal);
 DBMS_OUTPUT.PUT(' ' || Emp_row.Comm || ' '|| Emp_row.Deptno);
 DBMS_OUTPUT.NEW_LINE;
END;

Stored functions can also return values that are declared using %ROWTYPE. For
example:

FUNCTION Get_emp_rec (Dept_num IN Emp_tab.Deptno%TYPE)
 RETURN Emp_tab%ROWTYPE IS ...

Tables and Records You can pass PL/SQL tables as parameters to stored subprograms.
You can also pass tables of records as parameters.

Default Parameter Values Parameters can take default values. Use the DEFAULT keyword
or the assignment operator to give a parameter a default value. For example, the
specification for the Get_emp_names procedure can be written as the following:

PROCEDURE Get_emp_names (Dept_num IN NUMBER DEFAULT 20) IS ...

or

PROCEDURE Get_emp_names (Dept_num IN NUMBER := 20) IS ...

When a parameter takes a default value, it can be omitted from the actual parameter
list when you invoke the subprogram. When you do specify the parameter value on
the invocation, it overrides the default value.

Note: When passing a user defined type, such as a PL/SQL table or
record to a remote subprogram, to make PL/SQL use the same
definition so that the type checker can verify the source, you must
create a redundant loop back DBLINK so that when the PL/SQL
compiles, both sources pull from the same location.

Note: Unlike in an anonymous PL/SQL block, you do not use the
keyword DECLARE before the declarations of variables, cursors, and
exceptions in a stored subprogram. In fact, it is an error to use it.

Overview of PL/SQL Program Units

7-8 Oracle Database Advanced Application Developer's Guide

Creating Subprograms
Use a text editor to write the subprogram. At the beginning of the subprogram, place
the following statement:

CREATE PROCEDURE Procedure_name AS ...

For example, to use the example in "%TYPE and %ROWTYPE Attributes" on page 7-6,
create a text (source) file called get_emp.sql containing the following code:

CREATE PROCEDURE Get_emp_rec (Emp_number IN Emp_tab.Empno%TYPE,
 Emp_ret OUT Emp_tab%ROWTYPE) AS
BEGIN
 SELECT Empno, Ename, Job, Mgr, Hiredate, Sal, Comm, Deptno
 INTO Emp_ret
 FROM Emp_tab
 WHERE Empno = Emp_number;
END;
/

Then, using an interactive tool such as SQL*Plus, load the text file containing the
procedure by entering the following statement:

SQL> @get_emp

This loads the procedure into the current schema from the get_emp.sql file (.sql is
the default file extension). The slash (/) at the end of the code is not part of the code, it
only activates the loading of the procedure.

You can use either the keyword IS or AS after the subprogram parameter list.

Privileges Needed
To create a subprogram, a package specification, or a package body, you must meet the
following prerequisites:

■ You must have the CREATE PROCEDURE system privilege to create a subprogram
or package in your schema, or the CREATE ANY PROCEDURE system privilege to
create a subprogram or package in another user's schema. In either case, the
package body must be created in the same schema as the package.

Caution: When developing a new subprogram, it is usually
preferable to use the statement CREATE OR REPLACE PROCEDURE or
CREATE OR REPLACE FUNCTION. This statement replaces any
previous version of that subprogram in the same schema with the
newer version, but without warning.

See Also:

■ Oracle Database SQL Language Reference for the syntax of the
CREATE FUNCTION statement

■ Oracle Database SQL Language Reference for the syntax of the
CREATE PROCEDURE statement

Overview of PL/SQL Program Units

Coding PL/SQL Subprograms and Packages 7-9

If the privileges of the owner of a subprogram or package change, then the
subprogram must be reauthenticated before it is run. If a necessary privilege to a
referenced object is revoked from the owner of the subprogram or package, then the
subprogram cannot be run.

The EXECUTE privilege on a subprogram gives a user the right to run a subprogram
owned by another user. Privileged users run the subprogram under the security
domain of the owner of the subprogram. Therefore, users never need to be granted the
privileges to the objects referenced by a subprogram. This allows for more disciplined
and efficient security strategies with database applications and their users.
Furthermore, all subprograms and packages are stored in the data dictionary (in the
SYSTEM tablespace). No quota controls the amount of space available to a user who
creates subprograms and packages.

Altering Subprograms
To alter a subprogram, you must first drop it using the DROP PROCEDURE or DROP
FUNCTION statement, then re-create it using the CREATE PROCEDURE or CREATE
FUNCTION statement. Alternatively, use the CREATE OR REPLACE PROCEDURE or
CREATE OR REPLACE FUNCTION statement, which first drops the subprogram if it
exists, then re-creates it as specified.

Dropping Subprograms and Packages
A standalone subprogram, a standalone function, a package body, or an entire package
can be dropped using the SQL statements DROP PROCEDURE, DROP FUNCTION, DROP
PACKAGE BODY, and DROP PACKAGE, respectively. A DROP PACKAGE statement drops
both the specification and body of a package.

The following statement drops the Old_sal_raise procedure in your schema:

DROP PROCEDURE Old_sal_raise;

Privileges Needed
To drop a subprogram or package, the subprogram or package must be in your
schema, or you must have the DROP ANY PROCEDURE privilege. An individual
subprogram within a package cannot be dropped; the containing package specification
and body must be re-created without the subprograms to be dropped.

Note: To create without errors (to compile the subprogram or
package successfully) requires the following additional privileges:

■ The owner of the subprogram or package must be explicitly
granted the necessary object privileges for all objects referenced
within the body of the code.

■ The owner cannot obtain required privileges through roles.

Note: Package creation requires a sort. The user creating the package
must be able to create a sort segment in the temporary tablespace with
which the user is associated.

Caution: The subprogram is dropped without warning.

Overview of PL/SQL Program Units

7-10 Oracle Database Advanced Application Developer's Guide

External Subprograms
A PL/SQL subprogram executing on an Oracle Database instance can invoke an
external subprogram written in a third-generation language (3GL). The 3GL
subprogram runs in a separate address space from that of the database.

Cross-Session PL/SQL Function Result Cache
Using the PL/SQL cross-session function result cache can save significant space and
time. Each time a result-cached PL/SQL function is invoked with different parameter
values, those parameters and their result are stored in the cache. Subsequently, when
the same function is invoked with the same parameter values, the result is retrieved
from the cache, instead of being recomputed. Because the cache is stored in a shared
global area (SGA), it is available to any session that runs your application.

If a database object that was used to compute a cached result is updated, the cached
result becomes invalid and must be recomputed.

The best candidates for result-caching are functions that are invoked frequently but
depend on information that changes infrequently or never.

For more information about the PL/SQL cross-session function result cache, see Oracle
Database PL/SQL Language Reference.

PL/SQL Packages
A package is a collection of related program objects (for example, subprogram,
variables, constants, cursors, and exceptions) stored together in the database.

Using packages is an alternative to creating subprograms as standalone schema
objects. Packages have many advantages over standalone subprograms. For example,
they:

■ Let you organize your application development more efficiently.

■ Let you grant privileges more efficiently.

■ Let you modify package objects without recompiling dependent schema objects.

■ Enable Oracle Database to read multiple package objects into memory at once.

■ Can contain global variables and cursors that are available to all subprograms in
the package.

■ Let you overload subprograms. Overloading a subprogram means creating
multiple subprograms with the same name in the same package, each taking
arguments of different number or datatype.

The specification part of a package declares the public types, variables, constants, and
subprograms that are visible outside the immediate scope of the package. The body of
a package defines the objects declared in the specification, as well as private objects
that are not visible to applications outside the package.

Example of a PL/SQL Package Specification and Body The following example shows a
package specification for a package named Employee_management. The package

See Also: Chapter 14, "Developing Applications Using Multiple
Programming Languages" for information about external
subprograms

See Also: Oracle Database PL/SQL Language Reference for more
information about subprogram name overloading

Overview of PL/SQL Program Units

Coding PL/SQL Subprograms and Packages 7-11

contains one stored function and two stored procedures. The body for this package
defines the function and the procedures:

CREATE PACKAGE BODY Employee_management AS
 FUNCTION Hire_emp (ename VARCHAR2, Job VARCHAR2,
 Mgr NUMBER, Hiredate DATE, Sal NUMBER, Comm NUMBER,
 Deptno NUMBER) RETURN NUMBER IS
 New_empno NUMBER(10);

-- This function accepts all arguments for the fields in
-- the employee table except for the employee number.
-- A value for this field is supplied by a sequence.
-- The function returns the sequence number generated
-- by the invocation of this function.

 BEGIN
 New_empno := Emp_sequence.NEXTVAL;
 INSERT INTO emp VALUES (New_empno, ename, Job, Mgr,
 Hiredate, Sal, Comm, Deptno);
 RETURN (New_empno);
 END Hire_emp;

 PROCEDURE fire_emp(emp_id IN NUMBER) AS

-- This procedure deletes the employee with an employee
-- number that corresponds to the argument Emp_id. If
-- no employee is found, then an exception is raised.

 BEGIN
 DELETE FROM emp WHERE Empno = Emp_id;
 IF SQL%NOTFOUND THEN
 Raise_application_error(-20011, 'Invalid Employee
 Number: ' || TO_CHAR(Emp_id));
 END IF;
END fire_emp;

PROCEDURE Sal_raise (Emp_id IN NUMBER, Sal_incr IN NUMBER) AS

-- This procedure accepts two arguments. Emp_id is a
-- number that corresponds to an employee number.
-- SAL_INCR is the amount by which to increase the
-- employee's salary. If employee exists, then update
-- salary with increase.

 BEGIN
 UPDATE emp
 SET Sal = Sal + Sal_incr
 WHERE Empno = Emp_id;
 IF SQL%NOTFOUND THEN
 Raise_application_error(-20011, 'Invalid Employee
 Number: ' || TO_CHAR(Emp_id));
 END IF;
 END Sal_raise;
END Employee_management;

Overview of PL/SQL Program Units

7-12 Oracle Database Advanced Application Developer's Guide

PL/SQL Object Size Limits
The size limit for PL/SQL stored database objects such as subprograms, triggers, and
packages is the size of the Descriptive Intermediate Attributed Notation for Ada
(DIANA) code in the shared pool in bytes. The Linux and UNIX limit on the size of
the flattened DIANA/code size is 64K but the limit might be 32K on desktop
platforms.

The most closely related number that a user can access is the PARSED_SIZE in the
static data dictionary view *_OBJECT_SIZE. That gives the size of the DIANA in
bytes as stored in the SYS.IDL_xxx$ tables. This is not the size in the shared pool.
The size of the DIANA part of PL/SQL code (used during compilation) is significantly
larger in the shared pool than it is in the system table.

Creating Packages
Each part of a package is created with a different statement. Create the package
specification using the CREATE PACKAGE statement. The CREATE PACKAGE statement
declares public package objects.

To create a package body, use the CREATE PACKAGE BODY statement. The CREATE
PACKAGE BODY statement defines the procedural code of the public subprograms
declared in the package specification.

You can also define private, or local, package subprograms, and variables in a package
body. These objects can only be accessed by other subprograms in the body of the
same package. They are not visible to external users, regardless of the privileges they
hold.

It is often more convenient to add the OR REPLACE clause in the CREATE PACKAGE or
CREATE PACKAGE BODY statements when you are first developing your application.
The effect of this option is to drop the package or the package body without warning.
The CREATE statements are:

CREATE OR REPLACE PACKAGE Package_name AS ...

and

CREATE OR REPLACE PACKAGE BODY Package_name AS ...

Creating Packaged Objects The body of a package can contain:

■ Subprograms declared in the package specification.

■ Definitions of cursors declared in the package specification.

■ Local subprograms, not declared in the package specification.

■ Local variables.

Subprograms, cursors, and variables that are declared in the package specification are
global. They can be invoked, or used, by external users that have EXECUTE permission
for the package or that have EXECUTE ANY PROCEDURE privileges.

Note: If you want to try this example, then first create the sequence
number Emp_sequence. Do this with the following SQL*Plus
statement:

SQL> CREATE SEQUENCE Emp_sequence
 > START WITH 8000 INCREMENT BY 10;

Overview of PL/SQL Program Units

Coding PL/SQL Subprograms and Packages 7-13

When you create the package body, ensure that each subprogram that you define in
the body has the same parameters, by name, datatype, and mode, as the declaration in
the package specification. For functions in the package body, the parameters and the
return type must agree in name and type.

Privileges to Needed to Create or Drop Packages The privileges required to create or drop a
package specification or package body are the same as those required to create or drop
a standalone subprogram. See "Creating Subprograms" on page 7-8 and "Dropping
Subprograms and Packages" on page 7-9.

Naming Packages and Package Objects
The names of a package and all public objects in the package must be unique within a
given schema. The package specification and its body must have the same name. All
package constructs must have unique names within the scope of the package, unless
overloading of subprogram names is desired.

Package Invalidations and Session State
Each session that references a package object has its own instance of the corresponding
package, including persistent state for any public and private variables, cursors, and
constants. If any of the session's instantiated packages (specification or body) are
invalidated, then all package instances in the session are invalidated and recompiled.
As a result, the session state is lost for all package instances in the session.

When a package in a given session is invalidated, the session receives the following
error the first time it attempts to use any object of the invalid package instance:

ORA-04068: existing state of packages has been discarded

The second time a session makes such a package call, the package is reinstantiated for
the session without error.

In most production environments, DDL operations that can cause invalidations are
usually performed during inactive working hours; therefore, this situation might not
be a problem for end-user applications. However, if package invalidations are
common in your system during working hours, then you might want to code your
applications to handle this error when package calls are made.

Packages Supplied with Oracle Database
There are many packages provided with Oracle Database, either to extend the
functionality of the database or to give PL/SQL access to SQL features. You can invoke
these packages from your application.

Note: For optimal performance, Oracle Database returns this error
message only once—each time the package state is discarded.

If you handle this error in your application, ensure that your error
handling strategy can accurately handle this error. For example, when
a subprogram in one package invokes a subprogram in another
package, your application must be aware that the session state is lost
for both packages.

See Also: Oracle Database PL/SQL Packages and Types Reference for an
overview of these Oracle Database packages

Overview of PL/SQL Program Units

7-14 Oracle Database Advanced Application Developer's Guide

Overview of Bulk Binding
Oracle Database uses two engines to run PL/SQL blocks and subprograms. The
PL/SQL engine runs procedural statements, while the SQL engine runs SQL
statements. During execution, every SQL statement causes a context switch between
the two engines, resulting in performance overhead.

Performance can be improved substantially by minimizing the number of context
switches required to run a particular block or subprogram. When a SQL statement
runs inside a loop that uses collection elements as bind variables, the large number of
context switches required by the block can cause poor performance. Collections
include the following:

■ Varrays

■ Nested tables

■ Index-by tables

■ Host arrays

Binding is the assignment of values to PL/SQL variables in SQL statements. Bulk
binding is binding an entire collection at once. Bulk binds pass the entire collection
back and forth between the two engines in a single operation.

Typically, using bulk binds improves performance for SQL statements that affect four
or more database rows. The more rows affected by a SQL statement, the greater the
performance gain from bulk binds.

When to Use Bulk Binds
Consider using bulk binds to improve the performance of the following:

■ DML Statements that Reference Collections

■ SELECT Statements that Reference Collections

■ FOR Loops that Reference Collections and Return DML

DML Statements that Reference Collections The FORALL keyword can improve the
performance of INSERT, UPDATE, or DELETE statements that reference collection
elements.

For example, the following PL/SQL block increases the salary for employees whose
manager's ID number is 7902, 7698, or 7839, both with and without using bulk binds:

DECLARE
 TYPE Numlist IS VARRAY (100) OF NUMBER;
 Id NUMLIST := NUMLIST(7902, 7698, 7839);
BEGIN

-- Efficient method, using a bulk bind
 FORALL i IN Id.FIRST..Id.LAST -- bulk-bind the VARRAY
 UPDATE Emp_tab SET Sal = 1.1 * Sal
 WHERE Mgr = Id(i);

Note: This section provides an overview of bulk binds to help you
decide whether to use them in your PL/SQL applications. For detailed
information about using bulk binds, including ways to handle
exceptions that occur in the middle of a bulk bind operation, see
Oracle Database PL/SQL Language Reference.

Parallel DML is disabled with bulk binds.

Overview of PL/SQL Program Units

Coding PL/SQL Subprograms and Packages 7-15

-- Slower method, running the UPDATE statements within a regular loop
 FOR i IN Id.FIRST..Id.LAST LOOP
 UPDATE Emp_tab SET Sal = 1.1 * Sal
 WHERE Mgr = Id(i);
 END LOOP;
END;

Without the bulk bind, PL/SQL sends a SQL statement to the SQL engine for each
employee that is updated, leading to context switches that hurt performance.

If you have a set of rows prepared in a PL/SQL table, you can bulk-insert or
bulk-update the data using a loop like:

FORALL i in Emp_Data.FIRST..Emp_Data.LAST
 INSERT INTO Emp_tab VALUES(Emp_Data(i));

SELECT Statements that Reference Collections The BULK COLLECT INTO clause can
improve the performance of queries that reference collections.

For example, the following PL/SQL block queries multiple values into PL/SQL tables,
both with and without bulk binds:

-- Find all employees whose manager's ID number is 7698.
DECLARE
 TYPE Var_tab IS TABLE OF VARCHAR2(20) INDEX BY PLS_INTEGER;
 Empno VAR_TAB;
 Ename VAR_TAB;
 Counter NUMBER;
 CURSOR C IS
 SELECT Empno, Ename FROM Emp_tab WHERE Mgr = 7698;
BEGIN

-- Efficient method, using a bulk bind
 SELECT Empno, Ename BULK COLLECT INTO Empno, Ename
 FROM Emp_Tab WHERE Mgr = 7698;

-- Slower method, assigning each collection element within a loop.

 counter := 1;
 FOR rec IN C LOOP
 Empno(Counter) := rec.Empno;
 Ename(Counter) := rec.Ename;
 Counter := Counter + 1;
 END LOOP;
END;

You can use BULK COLLECT INTO with tables of scalar values, or tables of %TYPE
values.

Without the bulk bind, PL/SQL sends a SQL statement to the SQL engine for each
employee that is selected, leading to context switches that hurt performance.

FOR Loops that Reference Collections and Return DML You can use the FORALL keyword
along with the BULK COLLECT INTO keywords to improve the performance of FOR
loops that reference collections and return DML.

For example, the following PL/SQL block updates the Emp_tab table by computing
bonuses for a collection of employees; then it returns the bonuses in a column called
Bonlist. The actions are performed both with and without using bulk binds:

Compiling PL/SQL Subprograms for Native Execution

7-16 Oracle Database Advanced Application Developer's Guide

DECLARE
 TYPE Emplist IS VARRAY(100) OF NUMBER;
 Empids EMPLIST := EMPLIST(7369, 7499, 7521, 7566, 7654, 7698);
 TYPE Bonlist IS TABLE OF Emp_tab.sal%TYPE;
 Bonlist_inst BONLIST;
BEGIN
 Bonlist_inst := BONLIST(1,2,3,4,5);

 FORALL i IN Empids.FIRST..empIDs.LAST
 UPDATE Emp_tab SET Bonus = 0.1 * Sal
 WHERE Empno = Empids(i)
 RETURNING Sal BULK COLLECT INTO Bonlist;

 FOR i IN Empids.FIRST..Empids.LAST LOOP
 UPDATE Emp_tab Set Bonus = 0.1 * sal
 WHERE Empno = Empids(i)
 RETURNING Sal INTO BONLIST(i);
 END LOOP;
END;

Without the bulk bind, PL/SQL sends a SQL statement to the SQL engine for each
employee that is updated, leading to context switches that hurt performance.

Triggers
A trigger is a special kind of PL/SQL anonymous block. You can define triggers to fire
before or after SQL statements, either on a statement level or for each row that is
affected. You can also define INSTEAD OF triggers or system triggers (triggers on
DATABASE and SCHEMA).

Compiling PL/SQL Subprograms for Native Execution
You can speed up PL/SQL subprograms by compiling them into native code residing
in shared libraries.

You can use native compilation with both the supplied Oracle packages and
subprograms you write yourself. Subprograms compiled this way work in all server
environments, such as the shared server configuration (formerly known as
multithreaded server) and Oracle Real Application Clusters (Oracle RAC).

This technique is most effective for computation-intensive subprograms that do not
spend much time executing SQL, because it can do little to speed up SQL statements
invoked from these subprograms.

With Java, you can use the ncomp tool to compile your own packages and classes.

See Also: Oracle Database PL/SQL Language Referencefor more
information about triggers

See Also:

■ Oracle Database PL/SQL Language Reference for details on PL/SQL
native compilation

■ Oracle Database Java Developer's Guide for details on Java native
compilation

Cursor Variables

Coding PL/SQL Subprograms and Packages 7-17

Cursor Variables
A cursor is a static object; a cursor variable is a pointer to a cursor. Because cursor
variables are pointers, they can be passed and returned as parameters to subprograms.
A cursor variable can also refer to different cursors in its lifetime.

Additional advantages of cursor variables include the following:

■ Encapsulation

Queries are centralized in the stored subprogram that opens the cursor variable.

■ Easy maintenance

If you need to change the cursor, then you only need to make the change in one
place: the stored subprogram. There is no need to change each application.

■ Convenient security

The user of the application is the username used when the application connects to
the server. The user must have EXECUTE permission on the stored subprogram
that opens the cursor. But, the user does not need to have READ permission on the
tables used in the query. This capability can be used to limit access to the columns
in the table, as well as access to other stored subprograms.

Topics:

■ Declaring and Opening Cursor Variables

■ Examples of Cursor Variables

Declaring and Opening Cursor Variables
Memory is usually allocated for a cursor variable in the client application using the
appropriate ALLOCATE statement. In Pro*C, use the EXEC SQL ALLOCATE cursor_
name statement. In OCI, use the Cursor Data Area.

You can also use cursor variables in applications that run entirely in a single server
session. You can declare cursor variables in PL/SQL subprograms, open them, and use
them as parameters for other PL/SQL subprograms.

Examples of Cursor Variables
This section includes several examples of cursor variable usage in PL/SQL. For
additional cursor variable examples that use the programmatic interfaces, see the
following:

■ Pro*C/C++ Programmer's Guide

■ Pro*COBOL Programmer's Guide

■ Oracle Call Interface Programmer's Guide

Example 7–1 creates a package, Emp_data, that defines a PL/SQL cursor variable
type, Emp_val_cv_type, and two procedures. The first procedure, Open_emp_cv,
opens the cursor variable using a bind variable in the WHERE clause. The second
procedure, Fetch_emp_data, fetches rows from the Emp_tab table using the cursor
variable. Example 7–2 invokes the Emp_data package procedures from a PL/SQL
block.

See Also: Oracle Database PL/SQL Language Reference for more
information about cursor variables

Cursor Variables

7-18 Oracle Database Advanced Application Developer's Guide

Example 7–1 Package for Fetching Data with Cursor Variable

CREATE OR REPLACE PACKAGE Emp_data AS
 TYPE Emp_val_cv_type IS REF CURSOR RETURN Emp_tab%ROWTYPE;
 PROCEDURE Open_emp_cv (Emp_cv IN OUT Emp_val_cv_type,
 Dept_number IN INTEGER);
 PROCEDURE Fetch_emp_data (emp_cv IN Emp_val_cv_type,
 emp_row OUT Emp_tab%ROWTYPE);
END Emp_data;

CREATE OR REPLACE PACKAGE BODY Emp_data AS
 PROCEDURE Open_emp_cv (Emp_cv IN OUT Emp_val_cv_type,
 Dept_number IN INTEGER) IS
 BEGIN
 OPEN emp_cv FOR SELECT * FROM Emp_tab WHERE deptno = dept_number;
 END open_emp_cv;
 PROCEDURE Fetch_emp_data (Emp_cv IN Emp_val_cv_type,
 Emp_row OUT Emp_tab%ROWTYPE) IS
 BEGIN
 FETCH Emp_cv INTO Emp_row;
 END Fetch_emp_data;
END Emp_data;

Example 7–2 Invoking Package Procedures from a PL/SQL Block

DECLARE
-- declare a cursor variable
 Emp_curs Emp_data.Emp_val_cv_type;
 Dept_number Dept_tab.Deptno%TYPE;
 Emp_row Emp_tab%ROWTYPE;

BEGIN
 Dept_number := 20;
-- open the cursor using a variable
 Emp_data.Open_emp_cv(Emp_curs, Dept_number);
-- fetch the data and display it
 LOOP
 Emp_data.Fetch_emp_data(Emp_curs, Emp_row);
 EXIT WHEN Emp_curs%NOTFOUND;
 DBMS_OUTPUT.PUT(Emp_row.Ename || ' ');
 DBMS_OUTPUT.PUT_LINE(Emp_row.Sal);
 END LOOP;
END;

The power of cursor variables comes from their ability to point to different cursors.
Example 7–3 uses a discriminant to open a cursor variable to point to one of two
different cursors.

Example 7–3 Cursor Variable with Discriminator

CREATE OR REPLACE PACKAGE Emp_dept_data AS
 TYPE Cv_type IS REF CURSOR;
 PROCEDURE Open_cv (Cv IN OUT cv_type,
 Discrim IN POSITIVE);
END Emp_dept_data;

CREATE OR REPLACE PACKAGE BODY Emp_dept_data AS
 PROCEDURE Open_cv (Cv IN OUT cv_type,
 Discrim IN POSITIVE) IS
 BEGIN
 IF Discrim = 1 THEN

Handling PL/SQL Compile-Time Errors

Coding PL/SQL Subprograms and Packages 7-19

 OPEN Cv FOR SELECT * FROM Emp_tab WHERE Sal > 2000;
 ELSIF Discrim = 2 THEN
 OPEN Cv FOR SELECT * FROM Dept_tab;
 END IF;
 END Open_cv;
END Emp_dept_data;

You can invoke the Open_cv procedure in Example 7–3 to open the cursor variable
and point it to a query on either the Emp_tab table or the Dept_tab table.
Example 7–4 uses the cursor variable to fetch data and then uses the ROWTYPE_
MISMATCH predefined exception to handle either fetch.

Example 7–4 ROWTYPE_MISMATCH Predefined Exception

DECLARE
 Emp_rec Emp_tab%ROWTYPE;
 Dept_rec Dept_tab%ROWTYPE;
 Cv Emp_dept_data.CV_TYPE;

BEGIN
 Emp_dept_data.open_cv(Cv, 1); -- Open Cv For Emp_tab Fetch
 Fetch cv INTO Dept_rec; -- but fetch into Dept_tab record
 -- which raises ROWTYPE_MISMATCH
 DBMS_OUTPUT.PUT(Dept_rec.Deptno);
 DBMS_OUTPUT.PUT_LINE(' ' || Dept_rec.Loc);

EXCEPTION
 WHEN ROWTYPE_MISMATCH THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE
 ('Row type mismatch, fetching Emp_tab data...');
 FETCH Cv INTO Emp_rec;
 DBMS_OUTPUT.PUT(Emp_rec.Deptno);
 DBMS_OUTPUT.PUT_LINE(' ' || Emp_rec.Ename);
 END;

Handling PL/SQL Compile-Time Errors
To list compile-time errors, query the static data dictionary view *_ERRORS. From
these views, you can retrieve original source code. The error text associated with the
compilation of a subprogram is updated when the subprogram is replaced, and it is
deleted when the subprogram is dropped.

When you use SQL*Plus to submit PL/SQL code, and when the code contains errors,
you receive notification that compilation errors have occurred, but there is no
immediate indication of what the errors are. For example, if you submit a standalone
(or stored) procedure PROC1 in the file proc1.sql as follows:

SQL> @proc1

If there are one or more errors in the code, then you receive a notice such as the
following:

MGR-00072: Warning: Procedure proc1 created with compilation errors

In this case, use the SHOW ERRORS statement in SQL*Plus to get a list of the errors that
were found. SHOW ERRORS with no argument lists the errors from the most recent
compilation. You can qualify SHOW ERRORS using the name of a subprogram, package,
or package body:

Handling Run-Time PL/SQL Errors

7-20 Oracle Database Advanced Application Developer's Guide

SQL> SHOW ERRORS PROC1
SQL> SHOW ERRORS PROCEDURE PROC1

Assume that you want to create a simple procedure that deletes records from the
employee table using SQL*Plus:

CREATE OR REPLACE PROCEDURE Fire_emp(Emp_id NUMBER) AS
 BEGIN
 DELETE FROM Emp_tab WHER Empno = Emp_id;
 END
/
Notice that the CREATE PROCEDURE statement has two errors: the DELETE statement
has an error (the E is absent from WHERE), and the semicolon is missing after END.

After the CREATE PROCEDURE statement is entered and an error is returned, a SHOW
ERRORS statement returns the following lines:

SHOW ERRORS;

ERRORS FOR PROCEDURE Fire_emp:
LINE/COL ERROR
-------------- --
3/27 PL/SQL-00103: Encountered the symbol "EMPNO" wh. . .
5/0 PL/SQL-00103: Encountered the symbol "END" when . . .
2 rows selected.

Notice that each line and column number where errors were found is listed by the
SHOW ERRORS statement.

Handling Run-Time PL/SQL Errors
Oracle Database allows user-defined errors in PL/SQL code to be handled so that
user-specified error numbers and messages are returned to the client application. After
received, the client application can handle the error based on the user-specified error
number and message returned by Oracle Database.

User-specified error messages are returned using the RAISE_APPLICATION_ERROR
procedure. For example:

RAISE_APPLICATION_ERROR(Error_number, 'text', Keep_error_stack)

This procedure stops subprogram execution, rolls back any effects of the subprogram,
and returns a user-specified error number and message (unless the error is trapped by
an exception handler). ERROR_NUMBER must be in the range of -20000 to -20999.

Note: Before issuing the SHOW ERRORS statement, use the SET
LINESIZE statement to get long lines on output. The value 132 is
usually a good choice. For example:

SET LINESIZE 132

See Also:

■ Oracle Database Reference for more information about the static
data dictionary view *_SOURCE.

■ SQL*Plus User's Guide and Reference for more information about
the SHOW ERRORS statement

Handling Run-Time PL/SQL Errors

Coding PL/SQL Subprograms and Packages 7-21

Use error number -20000 as a generic number for messages where it is important to
relay information to the user, but having a unique error number is not required. Text
must be a character expression, 2 Kbytes or less (longer messages are ignored). Keep_
error_stack can be TRUE if you want to add the error to any already on the stack, or
FALSE if you want to replace the existing errors. By default, this option is FALSE.

The RAISE_APPLICATION_ERROR procedure is often used in exception handlers or in
the logic of PL/SQL code. For example, the following exception handler selects the
string for the associated user-defined error message and invokes the RAISE_
APPLICATION_ERROR procedure:

...
WHEN NO_DATA_FOUND THEN
 SELECT Error_string INTO Message
 FROM Error_table,
 V$NLS_PARAMETERS V
 WHERE Error_number = -20101 AND Lang = v.value AND
 v.parameter = "NLS_LANGUAGE";
 Raise_application_error(-20101, Message);
...

Topics:

■ Declaring Exceptions and Exception Handling Routines

■ Unhandled Exceptions

■ Handling Errors in Distributed Queries

■ Handling Errors in Remote Subprograms

Declaring Exceptions and Exception Handling Routines
User-defined exceptions are explicitly defined and signaled within the PL/SQL block
to control processing of errors specific to the application. When an exception is raised
(signaled), the usual execution of the PL/SQL block stops, and a routine called an
exception handler is invoked. Specific exception handlers can be written to handle any
internal or user-defined exception.

Application code can check for a condition that requires special attention using an IF
statement. If there is an error condition, then two options are available:

■ Enter a RAISE statement that names the appropriate exception. A RAISE
statement stops the execution of the subprogram, and control passes to an
exception handler (if any).

■ Invoke the RAISE_APPLICATION_ERROR procedure to return a user-specified
error number and message.

Note: Some of the Oracle Database packages, such as DBMS_
OUTPUT, DBMS_DESCRIBE, and DBMS_ALERT, use application error
numbers in the range -20000 to -20005. See the descriptions of these
packages for more information.

See Also: "Handling Errors in Remote Subprograms" on
page 7-23 for information on exception handling when invoking
remote subprograms

Handling Run-Time PL/SQL Errors

7-22 Oracle Database Advanced Application Developer's Guide

You can also define an exception handler to handle user-specified error messages. For
example, Figure 7–1 shows the following:

■ An exception and associated exception handler in a subprogram

■ A conditional statement that checks for an error (such as transferring funds not
available) and enters a user-specified error number and message within a trigger

■ How user-specified error numbers are returned to the invoking environment (in
this case, a subprogram), and how that application can define an exception that
corresponds to the user-specified error number

Declare a user-defined exception in a subprogram or package body (private
exceptions), or in the specification of a package (public exceptions). Define an
exception handler in the body of a subprogram (standalone or package).

Figure 7–1 Exceptions and User-Defined Errors

Unhandled Exceptions
In database PL/SQL program units, an unhandled user-error condition or internal
error condition that is not trapped by an appropriate exception handler causes the
implicit rollback of the program unit. If the program unit includes a COMMIT statement
before the point at which the unhandled exception is observed, then the implicit
rollback of the program unit can only be completed back to the previous COMMIT.

Additionally, unhandled exceptions in database-stored PL/SQL program units
propagate back to client-side applications that invoke the containing program unit. In
such an application, only the application program unit invocation is rolled back (not
the entire application program unit), because it is submitted to the database as a SQL
statement.

If unhandled exceptions in database PL/SQL program units are propagated back to
database applications, modify the database PL/SQL code to handle the exceptions.
Your application can also trap for unhandled exceptions when invoking database
program units and handle such errors appropriately.

Procedure fire_emp(empid NUMBER) IS

Table EMP

 invalid_empid EXCEPTION;
 PRAGMA EXCEPTION_INIT(invalid_empid, –20101);
BEGIN
 DELETE FROM emp WHERE empno = empid;
EXCEPTION
 WHEN invlid_empid THEN
 INSERT INTO emp_audit
 VALUES (empid, ’Fired before probation ended’);
END;

TRIGGER emp_probation
BEFORE DELETE ON emp
FOR EACH ROW
BEGIN
 IF (sysdate–:old.hiredate)<30 THEN
 raise_application_error(20101,
 ’Employee’||old.ename||’ on probation’)
 END IF;
END;

Error number
returned to
calling
environment

Handling Run-Time PL/SQL Errors

Coding PL/SQL Subprograms and Packages 7-23

Handling Errors in Distributed Queries
You can use a trigger or a stored subprogram to create a distributed query. This
distributed query is decomposed by the local Oracle Database instance into a
corresponding number of remote queries, which are sent to the remote nodes for
execution. The remote nodes run the queries and send the results back to the local
node. The local node then performs any necessary post-processing and returns the
results to the user or application.

If a portion of a distributed statement fails, possibly due to a constraint violation, then
Oracle Database returns error number ORA-02055. Subsequent statements, or
subprogram invocations, return error number ORA-02067 until a rollback or a
rollback to savepoint is entered.

Design your application to check for any returned error messages that indicates that a
portion of the distributed update has failed. If you detect a failure, rollback the entire
transaction (or rollback to a savepoint) before allowing the application to proceed.

Handling Errors in Remote Subprograms
When a subprogram is run locally or at a remote location, four types of exceptions can
occur:

■ PL/SQL user-defined exceptions, which must be declared using the keyword
EXCEPTION.

■ PL/SQL predefined exceptions, such as NO_DATA_FOUND.

■ SQL errors, such as ORA-00900 and ORA-02015.

■ Application exceptions, which are generated using the RAISE_APPLICATION_
ERROR procedure.

When using local subprograms, all of these messages can be trapped by writing an
exception handler, such as shown in the following example:

EXCEPTION
 WHEN ZERO_DIVIDE THEN
 /* Handle the exception */

Notice that the WHEN clause requires an exception name. If the exception that is raised
does not have a name, such as those generated with RAISE_APPLICATION_ERROR,
then one can be assigned using PRAGMA_EXCEPTION_INIT, as shown in the
following example:

DECLARE
 ...
 Null_salary EXCEPTION;
 PRAGMA EXCEPTION_INIT(Null_salary, -20101);
BEGIN
 ...
 RAISE_APPLICATION_ERROR(-20101, 'salary is missing');
 ...
EXCEPTION
 WHEN Null_salary THEN
 ...

When invoking a remote subprogram, exceptions are also handled by creating a local
exception handler. The remote subprogram must return an error number to the local
invoking subprogram, which then handles the exception, as shown in the previous
example. Because PL/SQL user-defined exceptions always return ORA-06510 to the

Debugging Stored Subprograms

7-24 Oracle Database Advanced Application Developer's Guide

local subprogram, these exceptions cannot be handled. All other remote exceptions can
be handled in the same manner as local exceptions.

Debugging Stored Subprograms
Compiling a stored subprogram involves fixing any syntax errors in the code. You
might need to do additional debugging to ensure that the subprogram works correctly,
performs well, and recovers from errors. Such debugging might involve:

■ Adding extra output statements to verify execution progress and check data
values at certain points within the subprogram.

■ Running a separate debugger to analyze execution in greater detail.

Topics:

■ PL/Scope

■ PL/SQL Hierarchical Profiler

■ Oracle JDeveloper

■ DBMS_OUTPUT Package

■ Privileges for Debugging PL/SQL and Java Stored Subprograms

■ Writing Low-Level Debugging Code

■ DBMS_DEBUG_JDWP Package

■ DBMS_DEBUG Package

PL/Scope
PL/Scope is a compiler-driven tool that collects and organizes data about user-defined
identifiers from PL/SQL source code. Because PL/Scope is a compiler-driven tool, you
use it through interactive development environments (such as SQL Developer and
JDeveloper), rather than directly.

PL/Scope enables the development of powerful and effective PL/Scope source code
browsers that increase PL/SQL developer productivity by minimizing time spent
browsing and understanding source code.

For more information about PL/Scope, see Chapter 8, "Using PL/Scope".

PL/SQL Hierarchical Profiler
The PL/SQL hierarchical profiler reports the dynamic execution profile of your
PL/SQL program, organized by subprogram calls. It accounts for SQL and PL/SQL
execution times separately. Each subprogram-level summary in the dynamic execution
profile includes information such as number of calls to the subprogram, time spent in
the subprogram itself, time spent in the subprogram's subtree (that is, in its descendent
subprograms), and detailed parent-children information.

You can browse the generated HTML reports in any browser. The browser's
navigational capabilities, combined with well chosen links, provide a powerful way to
analyze performance of large applications, improve application performance, and
lower development costs.

For a detailed description of PL/SQL hierarchical profiler, see Chapter 9, "Using the
PL/SQL Hierarchical Profiler".

Debugging Stored Subprograms

Coding PL/SQL Subprograms and Packages 7-25

Oracle JDeveloper
Recent releases of Oracle JDeveloper have extensive features for debugging PL/SQL,
Java, and multi-language programs. You can get Oracle JDeveloper as part of various
Oracle product suites. Often, a more recent release is available as a download at
http://www.oracle.com/technology/.

DBMS_OUTPUT Package
You can also debug stored subprograms and triggers using the Oracle Database
package DBMS_OUTPUT. Put PUT and PUT_LINE statements in your code to output the
value of variables and expressions to your terminal.

Privileges for Debugging PL/SQL and Java Stored Subprograms
Starting with Oracle Database 10g, a new privilege model applies to debugging
PL/SQL and Java code running within the database. This model applies whether you
are using Oracle JDeveloper, Oracle Developer, or any of the various third-party
PL/SQL or Java development environments, and it affects both the DBMS_DEBUG and
DBMS_DEBUG_JDWP APIs.

For a session to connect to a debugger, the effective user at the time of the connect
operation must have the DEBUG CONNECT SESSION system privilege. This effective
user might be the owner of a DR routine involved in making the connect call.

When a debugger becomes connected to a session, the session login user and the
currently enabled session-level roles are fixed as the privilege environment for that
debugging connection. Any DEBUG or EXECUTE privileges needed for debugging must
be granted to that combination of user and roles.

■ To be able to display and change Java public variables or variables declared in a
PL/SQL package specification, the debugging connection must be granted either
EXECUTE or DEBUG privilege on the relevant code.

■ To be able to either display and change private variables or breakpoint and
execute code lines step by step, the debugging connection must be granted DEBUG
privilege on the relevant code

In addition to these privilege requirements, the ability to stop on individual code lines
and debugger access to variables are allowed only in code compiled with debug
information generated. Use the PLSQL_DEBUG parameter and the DEBUG keyword on
statements such as ALTER PACKAGE to control whether the PL/SQL compiler includes
debug information in its results. If not, variables are not accessible, and neither
stepping nor breakpoints stop on code lines. The PL/SQL compiler never generates
debug information for code hidden with the PL/SQL wrap utility.

The DEBUG ANY PROCEDURE system privilege is equivalent to the DEBUG privilege
granted on all objects in the database. Objects owned by SYS are included if the value
of the O7_DICTIONARY_ACCESSIBILITY parameter is TRUE.

Caution: The DEBUG privilege allows a debugging session to do
anything that the subprogram being debugged could have done if
that action had been included in its code.

See Also: Oracle Database PL/SQL Language Reference, for
information about the wrap utility

Debugging Stored Subprograms

7-26 Oracle Database Advanced Application Developer's Guide

A debug role mechanism is available to carry privileges needed for debugging that are
not normally enabled in the session. See the documentation on the DBMS_DEBUG and
DBMS_DEBUG_JDWP packages for details on how to specify a debug role and any
necessary related password.

The JAVADEBUGPRIV role carries the DEBUG CONNECT SESSION and DEBUG ANY
PROCEDURE privileges. Grant it only with the care those privileges warrant.

Writing Low-Level Debugging Code
If you are writing code for part of a debugger, you might need to use packages such as
DBMS_DEBUG_JDWP or DBMS_DEBUG.

DBMS_DEBUG_JDWP Package
The DBMS_DEBUG_JDWP package, provided starting with Oracle9i Release 2, provides
a framework for multi-language debugging that is expected to supersede the DBMS_
DEBUG package over time. It is especially useful for programs that combine PL/SQL
and Java.

DBMS_DEBUG Package
The DBMS_DEBUG package, provided starting with Oracle8i, implements server-side
debuggers and provides a way to debug server-side PL/SQL program units. Several of
the debuggers available, such as Oracle Procedure Builder and various third-party
vendor solutions, use this API.

Caution: Granting DEBUG ANY PROCEDURE privilege, or granting
DEBUG privilege on any object owned by SYS, means granting
complete rights to the database.

See Also:

■ Oracle Procedure Builder Developer's Guide

■ Oracle Database PL/SQL Packages and Types Reference for more
information about theDBMS_DEBUG package and associated
privileges

■ Oracle Database PL/SQL Packages and Types Reference for more
information about theDBMS_OUTPUT package and associated
privileges

■ The Oracle JDeveloper documentation for information on using
package DBMS_DEBUG_JDWP

■ Oracle Database SQL Language Reference for more details on
privileges

■ The PL/SQL page at
http://www.oracle.com/technology/ for information
about writing low-level debug code

Invoking Stored Subprograms

Coding PL/SQL Subprograms and Packages 7-27

Invoking Stored Subprograms

PL/SQL subprograms can be invoked from many different environments. For
example:

■ From the body of another subprogram

■ From the body of a trigger

■ Interactively, using an Oracle Database tool

■ From within an application (such as a SQL*Forms or a precompiler application)

■ From a SQL statement

The following topics include common examples of invoking subprograms from within
these environments (except from an SQL statement, which is covered in "Invoking
Stored PL/SQL Functions from SQL Statements" on page 7-32). For more information
about invoking PL/SQL subprograms, including passing parameters, see Oracle
Database PL/SQL Language Reference.

Topics:

■ Privileges Required to Execute a Subprogram

■ Invoking a Subprogram from a Trigger or Another Subprogram

■ Invoking a Subprogram Interactively from Oracle Database Tools

■ Invoking a Subprogram from a 3GL Application

Privileges Required to Execute a Subprogram
If you are the owner of a standalone subprogram or package, then you can run the
standalone subprogram or packaged subprogram, or any public subprogram or
packaged subprogram at any time, as described in the previous sections. If you want
to run a standalone or packaged subprogram owned by another user, then the
following conditions apply:

■ You must have the EXECUTE privilege for the standalone subprogram or package
containing the subprogram, or you must have the EXECUTE ANY PROCEDURE

Note: You might need to set up data structures, similar to the
following, for certain examples to work:

CREATE TABLE Emp_tab (
 Empno NUMBER(4) NOT NULL,
 Ename VARCHAR2(10),
 Job VARCHAR2(9),
 Mgr NUMBER(4),
 Hiredate DATE,
 Sal NUMBER(7,2),
 Comm NUMBER(7,2),
 Deptno NUMBER(2));

CREATE OR REPLACE PROCEDURE fire_emp1(Emp_id NUMBER) AS
 BEGIN
 DELETE FROM Emp_tab WHERE Empno = Emp_id;
 END;
VARIABLE Empnum NUMBER;

Invoking Stored Subprograms

7-28 Oracle Database Advanced Application Developer's Guide

system privilege. If you are executing a remote subprogram, then you must be
granted the EXECUTE privilege or EXECUTE ANY PROCEDURE system privilege
directly, not through a role.

■ You must include the name of the owner in the invocation. For example:

EXECUTE Jward.Fire_emp (1043);
EXECUTE Jward.Hire_fire.Fire_emp (1043);

■ If the subprogram is a definer's-rights (DR) subprogram, then it runs with the
privileges of the subprogram owner. The owner must have all the necessary object
privileges for any referenced objects.

■ If the subprogram is an invoker's-rights (IR) subprogram, then it runs with your
privileges (as the invoker). In this case, you also need privileges on all referenced
objects; that is, all objects accessed by the subprogram through external references
that are resolved in your schema. You might hold these privileges directly or
through a role. Roles are enabled unless an IR subprogram is invoked directly or
indirectly by a DR subprogram.

Invoking a Subprogram from a Trigger or Another Subprogram
A subprogram or trigger can invoke another stored subprogram. For example,
included in the body of one subprogram might be the following line:

. . .
Sal_raise(Emp_id, 200);
. . .

This line invokes the Sal_raise procedure. Emp_id is a variable within the context
of the procedure. Recursive subprogram invocations are allowed within PL/SQL: A
subprogram can invoke itself.

Invoking a Subprogram Interactively from Oracle Database Tools
A subprogram can be invoked interactively from an Oracle Database tool, such as
SQL*Plus. For example, to invoke a procedure named SAL_RAISE, owned by you, you
can use an anonymous PL/SQL block, as follows:

BEGIN
 Sal_raise(7369, 200);
END;

An easier way to run a block is to use the SQL*Plus statement EXECUTE, which wraps
BEGIN and END statements around the code you enter. For example:

Note: You might need to set up the following data structures for
certain examples to work:

CONNECT SYS/password AS SYSDBA;
CREATE USER Jward IDENTIFIED BY Jward;
GRANT CREATE ANY PACKAGE TO Jward;
GRANT CREATE ANY SESSION TO Jward;
GRANT EXECUTE ANY PROCEDURE TO Jward;
CONNECT SCOTT/password AS SYSDBA;

Note: Interactive tools, such as SQL*Plus, require you to follow
these lines with a slash (/) to run the PL/SQL block.

Invoking Remote Subprograms

Coding PL/SQL Subprograms and Packages 7-29

EXECUTE Sal_raise(7369, 200);

Some interactive tools allow session variables to be created. For example, when using
SQL*Plus, the following statement creates a session variable:

VARIABLE Assigned_empno NUMBER

After defined, any session variable can be used for the duration of the session. For
example, you might run a function and capture the return value using a session
variable:

EXECUTE :Assigned_empno := Hire_emp('JSMITH', 'President',
 1032, SYSDATE, 5000, NULL, 10);
PRINT Assigned_empno;
ASSIGNED_EMPNO

 2893

Invoking a Subprogram from a 3GL Application
A 3GL database application, such as a precompiler or an OCI application, can include
an invocation to a subprogram within the code of the application.

To run a subprogram within a PL/SQL block in an application, simply invoke the
subprogram. The following line within a PL/SQL block invokes the Fire_emp
procedure:

Fire_emp1(:Empnun);

In this case, :Empno is a host (bind) variable within the context of the application.

To run a subprogram within the code of a precompiler application, you must use the
EXEC call interface. For example, the following statement invokes the Fire_emp
procedure in the code of a precompiler application:

EXEC SQL EXECUTE
 BEGIN
 Fire_emp1(:Empnum);
 END;
END-EXEC;

Invoking Remote Subprograms
Invoke remote subprograms using an appropriate database link and the subprogram
name. The following SQL*Plus statement runs the procedure Fire_emp located in the
database and pointed to by the local database link named BOSTON_SERVER:

EXECUTE fire_emp1@boston_server(1043);

See Also:

■ SQL*Plus User's Guide and Reference for information about the
EXECUTE command

■ Your tools documentation for information about performing
similar operations using your development tool

See Also: For information about invoking PL/SQL subprograms
from within 3GL applications:

■ Oracle Call Interface Programmer's Guide

■ Pro*C/C++ Programmer's Guide

Invoking Remote Subprograms

7-30 Oracle Database Advanced Application Developer's Guide

Topics:

■ Remote Subprogram Invocations and Parameter Values

■ Referencing Remote Objects

■ Synonyms for Subprograms and Packages

Remote Subprogram Invocations and Parameter Values
You must explicitly pass values to all remote subprogram parameters, even if there are
defaults. You cannot access remote package variables and constants.

Referencing Remote Objects
Remote objects can be referenced within the body of a locally defined subprogram.
The following procedure deletes a row from the remote employee table:

CREATE OR REPLACE PROCEDURE fire_emp(emp_id NUMBER) IS
BEGIN
 DELETE FROM emp@boston_server WHERE empno = emp_id;
END;

The following list explains how to properly invoke remote subprograms, depending
on the invoking environment.

■ Remote subprograms (standalone and packaged) can be invoked from within a
subprogram, an OCI application, or a precompiler application by specifying the
remote subprogram name, a database link, and the arguments for the remote
subprogram.

CREATE OR REPLACE PROCEDURE local_procedure(arg IN NUMBER) AS
BEGIN
 fire_emp1@boston_server(arg);
END;

■ In the previous example, you can create a synonym for FIRE_EMP1@BOSTON_
SERVER. This enables you to invoke the remote subprogram from an Oracle
Database tool application, such as a SQL*Forms application, as well from within a
subprogram, OCI application, or precompiler application.

CREATE SYNONYM synonym1 for fire_emp1@boston_server;
CREATE OR REPLACE PROCEDURE local_procedure(arg IN NUMBER) AS
BEGIN
 synonym1(arg);
END;

■ If you do not want to use a synonym, then you can write a local cover subprogram
to invoke the remote subprogram.

DECLARE
 arg NUMBER;
BEGIN
 local_procedure(arg);
END;

Here, local_procedure is defined as in the first item of this list.

See Also: "Handling Errors in Remote Subprograms" on
page 7-23 for information on exception handling when invoking
remote subprograms

Invoking Remote Subprograms

Coding PL/SQL Subprograms and Packages 7-31

All invocations to remotely stored subprograms are assumed to perform updates;
therefore, this type of referencing always requires two-phase commit of that
transaction (even if the remote subprogram is read-only). Furthermore, if a transaction
that includes a remote subprogram invocation is rolled back, then the work done by
the remote subprogram is also rolled back.

A subprogram invoked remotely can usually execute a COMMIT, ROLLBACK, or
SAVEPOINT statement, the same as a local subprogram. However, there are some
differences in action:

■ If the transaction was originated by a database that is not an Oracle database, as
might be the case in XA applications, these operations are not allowed in the
remote subprogram.

■ After doing one of these operations, the remote subprogram cannot start any
distributed transactions of its own.

■ If the remote subprogram does not commit or roll back its work, the commit is
done implicitly when the database link is closed. In the meantime, further
invocations to the remote subprogram are not allowed because it is still considered
to be performing a transaction.

A distributed update modifies data on two or more databases. A distributed update is
possible using a subprogram that includes two or more remote updates that access
data on different databases. Statements in the construct are sent to the remote
databases, and the execution of the construct succeeds or fails as a unit. If part of a
distributed update fails and part succeeds, then a rollback (of the entire transaction or
to a savepoint) is required to proceed. Consider this when creating subprograms that
perform distributed updates.

Pay special attention when using a local subprogram that invokes a remote
subprogram. If a timestamp mismatch is found during execution of the local
subprogram, then the remote subprogram is not run, and the local subprogram is
invalidated.

Synonyms for Subprograms and Packages
Synonyms can be created for standalone subprograms and packages to do the
following:

■ Hide the identity of the name and owner of a subprogram or package.

■ Provide location transparency for remotely stored subprograms (standalone or
within a package).

When a privileged user needs to invoke a subprogram, an associated synonym can be
used. Because the subprograms defined within a package are not individual objects
(the package is the object), synonyms cannot be created for individual subprograms
within a package.

See Also: "Synonyms for Subprograms and Packages" on
page 7-32

Caution: Unlike stored subprograms, which use compile-time
binding, run-time binding is used when referencing remote
subprograms. The user account to which you connect depends on
the database link.

Invoking Stored PL/SQL Functions from SQL Statements

7-32 Oracle Database Advanced Application Developer's Guide

For more information about synonyms, see Oracle Database Concepts.

Invoking Stored PL/SQL Functions from SQL Statements
To be invoked from a SQL statement, a stored PL/SQL function must be declared
either at schema level or in a package specification.

The following SQL statements can invoke stored PL/SQL functions:

■ INSERT

■ UPDATE

■ DELETE

■ SELECT

■ CALL

(CALL can also invoke a stored PL/SQL procedure.)

To invoke a PL/SQL subprogram from SQL, you must either own or have EXECUTE
privileges on the subprogram. To select from a view defined with a PL/SQL function,
you must have SELECT privileges on the view. No separate EXECUTE privileges are
necessary to select from the view.

For general information about invoking subprograms, including passing parameters,
see Oracle Database PL/SQL Language Reference.

Topics:

■ Why Invoke Stored PL/SQL Subprograms from SQL Statements?

■ Where PL/SQL Functions Can Appear in SQL Statements

■ When PL/SQL Functions Can Appear in SQL Expressions

■ Controlling Side Effects

■ Serially Reusable PL/SQL Packages

Why Invoke Stored PL/SQL Subprograms from SQL Statements?
Invoking PL/SQL subprograms in SQL statements enables you to do the following:

■ Increase user productivity by extending SQL.

Expressiveness of the SQL statement increases where activities are too complex,
too awkward, or unavailable with SQL.

■ Increase query efficiency.

Functions used in the WHERE clause of a query can filter data using criteria that
must otherwise be evaluated by the application.

■ Manipulate character strings to represent special datatypes (for example, latitude,
longitude, or temperature).

■ Provide parallel query execution.

If the query is parallelized, then SQL statements in your PL/SQL subprogram
might also be run in parallel (using the parallel query option).

Invoking Stored PL/SQL Functions from SQL Statements

Coding PL/SQL Subprograms and Packages 7-33

Where PL/SQL Functions Can Appear in SQL Statements
A PL/SQL function can appear in a SQL statement wherever a built-in SQL function
or an expression can appear in a SQL statement. For example, a PL/SQL function can
appear in the following:

■ Select list of the SELECT statement

■ Condition of the WHERE or HAVING clause

■ CONNECT BY, START WITH, ORDER BY, or GROUP BY clause

■ VALUES clause of the INSERT statement

■ SET clause of the UPDATE statement

A PL/SQL table function (which returns a collection of rows) can appear in a SELECT
statement in place of the following:

■ Column name in the SELECT list

■ Table name in the FROM clause

A PL/SQL function cannot appear in the following contexts, which require
unchanging definitions:

■ CHECK constraint clause of a CREATE or ALTER TABLE statement

■ Default value specification for a column

When PL/SQL Functions Can Appear in SQL Expressions
To be invoked from a SQL expression, a PL/SQL function must satisfy the following
additional requirements:

■ It must be a row function, not a column (group) function; that is, its argument
cannot be an entire column.

■ Its formal parameters must be IN parameters, not OUT or IN OUT parameters.

■ Its formal parameters and its result value (if any) must have Oracle built-in
datatypes (such as CHAR, DATE, or NUMBER), not PL/SQL datatypes (such as
BOOLEAN, RECORD, or TABLE).

There is an exception to this rule: A formal parameter can have a PL/SQL
datatype if the corresponding actual parameter is implicitly converted to the
datatype of the formal parameter (as in Example 7–6).

The function in Example 7–5 satisfies the preceding requirements. It uses the table
payroll:

CREATE TABLE payroll (srate NUMBER,
 orate NUMBER,
 acctno NUMBER);

Example 7–5 PL/SQL Function that Can Appear in a SQL Expression

CREATE FUNCTION gross_pay (emp_id IN NUMBER,
 st_hrs IN NUMBER DEFAULT 40,
 ot_hrs IN NUMBER DEFAULT 0)
 RETURN NUMBER IS
 st_rate NUMBER;
 ot_rate NUMBER;

BEGIN
 SELECT srate, orate INTO st_rate, ot_rate FROM payroll

Invoking Stored PL/SQL Functions from SQL Statements

7-34 Oracle Database Advanced Application Developer's Guide

 WHERE acctno = emp_id;
 RETURN st_hrs * st_rate + ot_hrs * ot_rate;
END gross_pay;

In the SQL*Plus script in Example 7–6, the SQL statement CALL invokes the PL/SQL
function f1, whose formal parameter has PL/SQL datatype PLS_INTEGER. The CALL
statement succeeds because the actual parameter, 2, is implicitly converted to the
datatype PLS_INTEGER. If the actual parameter had a value outside the range of PLS_
INTEGER, the CALL statement would fail.

Example 7–6 PL/SQL Function with Formal Parameter of PL/SQL Datatype, Invoked from
a SQL Expression

CREATE OR REPLACE FUNCTION f1 (b IN PLS_INTEGER)
 RETURN PLS_INTEGER IS
BEGIN
 RETURN
 CASE
 WHEN b > 0 THEN 1
 WHEN b <= 0 THEN -1
 ELSE NULL
 END;
END f1;
/
VARIABLE x NUMBER
CALL f1(b=>2) INTO :x
/
PRINT x
1

Controlling Side Effects
The purity of a stored subprogram refers to the side effects of that subprogram on
database tables or package variables. Side effects can prevent the parallelization of a
query, yield order-dependent (and therefore, indeterminate) results, or require that
package state be maintained across user sessions. Various side effects are not allowed
when a function is invoked from a SQL query or DML statement.

In releases prior to Oracle8i, Oracle Database leveraged the PL/SQL compiler to
enforce restrictions during the compilation of a stored subprogram or a SQL statement.
Starting with Oracle8i, the compile-time restrictions were relaxed, and a smaller set of
restrictions are enforced during execution.

This change provides uniform support for stored subprograms written in PL/SQL,
Java, and C, and it allows programmers the most flexibility possible.

Topics:

■ Restrictions

■ Declaring a Function

■ Parallel Query and Parallel DML

■ PRAGMA RESTRICT_REFERENCES for Backward Compatibility

Restrictions
When a SQL statement is run, checks are made to see if it is logically embedded within
the execution of an already running SQL statement. This occurs if the statement is run

Invoking Stored PL/SQL Functions from SQL Statements

Coding PL/SQL Subprograms and Packages 7-35

from a trigger or from a subprogram that was in turn invoked from the already
running SQL statement. In these cases, further checks occur to determine if the new
SQL statement is safe in the specific context.

The following restrictions are enforced on subprograms:

■ A subprogram invoked from a query or DML statement might not end the current
transaction, create or rollback to a savepoint, or ALTER the system or session.

■ A subprogram invoked from a query (SELECT) statement or from a parallelized
DML statement might not execute a DML statement or otherwise modify the
database.

■ A subprogram invoked from a DML statement might not read or modify the
particular table being modified by that DML statement.

These restrictions apply regardless of what mechanism is used to run the SQL
statement inside the subprogram or trigger. For example:

■ They apply to a SQL statement invoked from PL/SQL, whether embedded
directly in a subprogram or trigger body, run using the native dynamic
mechanism (EXECUTE IMMEDIATE), or run using the DBMS_SQL package.

■ They apply to statements embedded in Java with SQLJ syntax or run using JDBC.

■ They apply to statements run with OCI using the callback context from within an
"external" C function.

You can avoid these restrictions if the execution of the new SQL statement is not
logically embedded in the context of the already running statement. PL/SQL's
autonomous transactions provide one escape (see "Autonomous Transactions" on
page 2-23). Another escape is available using Oracle Call Interface (OCI) from an
external C function, if you create a new connection rather than using the handle
available from the OCIExtProcContext argument.

Declaring a Function
You can use the keywords DETERMINISTIC and PARALLEL_ENABLE in the syntax for
declaring a function. These are optimization hints that inform the query optimizer and
other software components about the following:

■ Functions that need not be invoked redundantly

■ Functions permitted within a parallelized query or parallelized DML statement

Only functions that are DETERMINISTIC are allowed in function-based indexes and in
certain snapshots and materialized views.

A deterministic function depends solely on the values passed into it as arguments and
does not reference or modify the contents of package variables or the database or have
other side-effects. Such a function produces the same result value for any combination
of argument values passed into it.

You place the DETERMINISTIC keyword after the return value type in a declaration of
the function. For example:

CREATE FUNCTION F1 (P1 NUMBER) RETURN NUMBER DETERMINISTIC IS
BEGIN
 RETURN P1 * 2;
END;

You might place this keyword in the following places:

■ On a function defined in a CREATE FUNCTION statement

Invoking Stored PL/SQL Functions from SQL Statements

7-36 Oracle Database Advanced Application Developer's Guide

■ In a function declaration in a CREATE PACKAGE statement

■ On a method declaration in a CREATE TYPE statement

Do not repeat the keyword on the function or method body in a CREATE PACKAGE
BODY or CREATE TYPE BODY statement.

Certain performance optimizations occur on invocations of functions that are marked
DETERMINISTIC without any other action being required. The following features
require that any function used with them be declared DETERMINISTIC:

■ Any user-defined function used in a function-based index.

■ Any function used in a materialized view, if that view is to qualify for Fast Refresh
or is marked ENABLE QUERY REWRITE.

The preceding functions features attempt to use previously calculated results rather
than invoking the function when it is possible to do so.

It is good programming practice to make functions that fall in the following categories
DETERMINISTIC:

■ Functions used in a WHERE, ORDER BY, or GROUP BY clause

■ Functions that MAP or ORDER methods of a SQL type

■ Functions that help determine whether or where a row appears in a result set

Keep the following points in mind when you create DETERMINISTIC functions:

■ The database cannot recognize if the action of the function is indeed deterministic.
If the DETERMINISTIC keyword is applied to a function whose action is not truly
deterministic, then the result of queries involving that function is unpredictable.

■ If you change the semantics of a DETERMINISTIC function and recompile it, then
existing function-based indexes and materialized views report results for the prior
version of the function. Thus, if you change the semantics of a function, you must
manually rebuild any dependent function-based indexes and materialized views.

Parallel Query and Parallel DML
Oracle Database's parallel execution feature divides the work of executing a SQL
statement across multiple processes. Functions invoked from a SQL statement that is
run in parallel might have a separate copy run in each of these processes, with each
copy invoked for only the subset of rows that are handled by that process.

Each process has its own copy of package variables. When parallel execution begins,
these are initialized based on the information in the package specification and body as
if a new user is logging into the system; the values in package variables are not copied
from the original login session. And changes made to package variables are not
automatically propagated between the various sessions or back to the original session.
Java STATIC class attributes are similarly initialized and modified independently in
each process. Because a function can use package (or Java STATIC) variables to
accumulate some value across the various rows it encounters, Oracle Database cannot
assume that it is safe to parallelize the execution of all user-defined functions.

For SELECT statements in Oracle Database versions prior to 8.1.5, the parallel query
optimization allowed functions noted as both RNPS and WNPS in a PRAGMA
RESTRICT_REFERENCES declaration to run in parallel. Functions defined with
CREATE FUNCTION statements had their code implicitly examined to determine if they

See Also: Oracle Database SQL Language Reference for an account of
CREATE FUNCTION restrictions

Invoking Stored PL/SQL Functions from SQL Statements

Coding PL/SQL Subprograms and Packages 7-37

were pure enough; parallelized execution might occur even though a pragma cannot
be specified on these functions.

For DML statements in Oracle Database versions prior to 8.1.5, the parallelization
optimization looked to see if a function was noted as having all four of RNDS, WNDS,
RNPS and WNPS specified in a PRAGMA RESTRICT_REFERENCES declaration; those
functions that were marked as neither reading nor writing to either the database or
package variables could run in parallel. Again, those functions defined with a CREATE
FUNCTION statement had their code implicitly examined to determine if they were
actually pure enough; parallelized execution might occur even though a pragma
cannot be specified on these functions.

Oracle Database versions 8.1.5 and later continue to parallelize those functions that
earlier versions recognize as parallelizable. The PARALLEL_ENABLE keyword is the
preferred way to mark your code as safe for parallel execution. This keyword is
syntactically similar to DETERMINISTIC as described in "Declaring a Function" on
page 7-36; it is placed after the return value type in a declaration of the function, as in:

CREATE FUNCTION F1 (P1 NUMBER) RETURN NUMBER PARALLEL_ENABLE IS
BEGIN
 RETURN P1 * 2;
END;

A PL/SQL function defined with CREATE FUNCTION might still be run in parallel
without any explicit declaration that it is safe to do so, if the system can determine that
it neither reads nor writes package variables nor invokes any function that might do
so. A Java method or C function is never seen by the system as safe to run in parallel,
unless the programmer explicitly indicates PARALLEL_ENABLE on the call
specification, or provides a PRAGMA RESTRICT_REFERENCES indicating that the
function is sufficiently pure.

An additional run-time restriction is imposed on functions run in parallel as part of a
parallelized DML statement. Such a function is not permitted to in turn execute a DML
statement; it is subject to the same restrictions that are enforced on functions that are
run inside a query (SELECT) statement.

PRAGMA RESTRICT_REFERENCES for Backward Compatibility
In Oracle Database versions prior to 8.1.5 (Oracle8i), programmers used the pragma
RESTRICT_REFERENCES to assert the purity level of a subprogram. In subsequent
versions, use the hints PARALLEL-ENABLE and DETERMINISTIC, instead, to
communicate subprogram purity to Oracle Database.

You can remove RESTRICT_REFERENCES from your code. However, this pragma
remains available for backward compatibility in situations where one of the following
is true:

■ It is impossible or impractical to edit existing code to remove RESTRICT_
REFERENCES completely. If you do not remove it from a subprogram S1 that
depends on another subprogram S2, then RESTRICT_REFERENCES might also be
needed in S2, so that S1 will compile.

■ Replacing RESTRICT_REFERENCES in existing code with hints
parallel-enable and deterministic would negatively affect the action of

See Also: "PRAGMA RESTRICT_REFERENCES for Backward
Compatibility" on page 7-38

See Also: "Restrictions" on page 7-35

Invoking Stored PL/SQL Functions from SQL Statements

7-38 Oracle Database Advanced Application Developer's Guide

new, dependent code. Use RESTRICT_REFERENCES to preserve the action of the
existing code.

An existing PL/SQL application can thus continue using the pragma even on new
functionality, to ease integration with the existing code. Do not use the pragma in a
wholly new application.

If you use the pragma RESTRICT_REFERENCES, place it in a package specification,
not in a package body. It must follow the declaration of a subprogram, but it need not
follow immediately. Only one pragma can reference a given subprogram declaration.

To code the pragma RESTRICT_REFERENCES, use the following syntax:

PRAGMA RESTRICT_REFERENCES (
 Function_name, WNDS [, WNPS] [, RNDS] [, RNPS] [, TRUST]);

Where:

You can pass the arguments in any order. If any SQL statement inside the subprogram
body violates a rule, then you get an error when the statement is parsed.

In the following example, the function compound neither reads nor writes database or
package state; therefore, you can assert the maximum purity level. Always assert the
highest purity level that a subprogram allows. That way, the PL/SQL compiler never
rejects the subprogram unnecessarily.

CREATE PACKAGE Finance AS -- package specification
 FUNCTION Compound
 (Years IN NUMBER,
 Amount IN NUMBER,
 Rate IN NUMBER) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES (Compound, WNDS, WNPS, RNDS, RNPS);
END Finance;

CREATE PACKAGE BODY Finance AS --package body
 FUNCTION Compound

Option Description

WNDS The subprogram writes no database state (does not modify database tables).

RNDS The subprogram reads no database state (does not query database tables).

WNPS The subprogram writes no package state (does not change the values of packaged
variables).

RNPS The subprogram reads no package state (does not reference the values of packaged
variables).

TRUST The other restrictions listed in the pragma are not enforced; they are simply
assumed to be true. This allows easy invocation from functions that have
RESTRICT_REFERENCES declarations to those that do not.

Note: You might need to set up the following data structures for
certain examples here to work:

CREATE TABLE Accts (
 Yrs NUMBER,
 Amt NUMBER,
 Acctno NUMBER,
 Rte NUMBER);

Invoking Stored PL/SQL Functions from SQL Statements

Coding PL/SQL Subprograms and Packages 7-39

 (Years IN NUMBER,
 Amount IN NUMBER,
 Rate IN NUMBER) RETURN NUMBER IS
 BEGIN
 RETURN Amount * POWER((Rate / 100) + 1, Years);
 END Compound;
 -- no pragma in package body
END Finance;

Later, you might invoke compound from a PL/SQL block, as follows:

DECLARE
 Interest NUMBER;
 Acct_id NUMBER;
BEGIN
 SELECT Finance.Compound(Yrs, Amt, Rte) -- function invocation
 INTO Interest
 FROM Accounts
 WHERE Acctno = Acct_id;

Topics:

■ Using the Keyword TRUST

■ Differences between Static and Dynamic SQL Statements

■ Overloading Packaged PL/SQL Functions

Using the Keyword TRUST The keyword TRUST in the RESTRICT_REFERENCES syntax
allows easy invocation from functions that have RESTRICT_REFERENCES
declarations to those that do not. When TRUST is present, the restrictions listed in the
pragma are not actually enforced, but rather are simply assumed to be true.

When invoking a function from a section of code that is using pragmas to one that is
not, there are two likely usage styles. One is to place a pragma on the routine to be
invoked, for example on a call specification for a Java method. Then, invocations from
PL/SQL to this method complain if the method is less restricted than the invoking
subprogram. For example:

CREATE OR REPLACE PACKAGE P1 IS
 FUNCTION F1 (P1 NUMBER) RETURN NUMBER IS
 LANGUAGE JAVA NAME 'CLASS1.METHODNAME(int) return int';
 PRAGMA RESTRICT_REFERENCES(F1,WNDS,TRUST);
 FUNCTION F2 (P1 NUMBER) RETURN NUMBER;

 PRAGMA RESTRICT_REFERENCES(F2,WNDS);
END;

CREATE OR REPLACE PACKAGE BODY P1 IS
 FUNCTION F2 (P1 NUMBER) RETURN NUMBER IS
 BEGIN
 RETURN F1(P1);
 END;
END;

Here, F2 can invoke F1, as F1 was declared to be WNDS.

The other approach is to mark only the invoker, which might then invoke any
subprogram without complaint. For example:

CREATE OR REPLACE PACKAGE P1a IS
 FUNCTION F1 (P1 NUMBER) RETURN NUMBER IS

Invoking Stored PL/SQL Functions from SQL Statements

7-40 Oracle Database Advanced Application Developer's Guide

 LANGUAGE JAVA NAME 'CLASS1.METHODNAME(int) return int';
 FUNCTION F2 (P1 NUMBER) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES(F2,WNDS,TRUST);
END;

CREATE OR REPLACE PACKAGE BODY P1a IS
 FUNCTION F2 (P1 NUMBER) RETURN NUMBER IS
 BEGIN
 RETURN F1(P1);
 END;
END;

Here, F2 can invoke F1 because while F2 is promised to be WNDS (because TRUST is
specified), the body of F2 is not actually examined to determine if it truly satisfies the
WNDS restriction. Because F2 is not examined, its invocation of F1 is allowed, even
though there is no PRAGMA RESTRICT_REFERENCES for F1.

Differences between Static and Dynamic SQL Statements Static INSERT, UPDATE, and
DELETE statements do not violate RNDS if these statements do not explicitly read any
database states, such as columns of a table. However, dynamic INSERT, UPDATE, and
DELETE statements always violate RNDS, regardless of whether or not the statements
explicitly read database states.

The following INSERT violates RNDS if it is executed dynamically, but it does not
violate RNDS if it is executed statically.

INSERT INTO my_table values(3, 'SCOTT');

The following UPDATE always violates RNDS statically and dynamically, because it
explicitly reads the column name of my_table.

UPDATE my_table SET id=777 WHERE name='SCOTT';

Overloading Packaged PL/SQL Functions PL/SQL lets you overload packaged (but not
standalone) functions: You can use the same name for different functions if their
formal parameters differ in number, order, or datatype family.

However, a RESTRICT_REFERENCES pragma can apply to only one function
declaration. Therefore, a pragma that references the name of overloaded functions
always applies to the nearest preceding function declaration.

In this example, the pragma applies to the second declaration of valid:

CREATE PACKAGE Tests AS
 FUNCTION Valid (x NUMBER) RETURN CHAR;
 FUNCTION Valid (x DATE) RETURN CHAR;
 PRAGMA RESTRICT_REFERENCES (valid, WNDS);
 END;

Serially Reusable PL/SQL Packages
PL/SQL packages usually consume user global area (UGA) memory corresponding to
the number of package variables and cursors in the package. This limits scalability,
because the memory increases linearly with the number of users. The solution is to
allow some packages to be marked as SERIALLY_REUSABLE (using pragma syntax).

For serially reusable packages, the package global memory is not kept in the UGA for
each user; rather, it is kept in a small pool and reused for different users. This means
that the global memory for such a package is only used within a unit of work. At the

Invoking Stored PL/SQL Functions from SQL Statements

Coding PL/SQL Subprograms and Packages 7-41

end of that unit of work, the memory can therefore be released to the pool to be reused
by another user (after running the initialization code for all the global variables).

The unit of work for serially reusable packages is implicitly a call to the server; for
example, an OCI call to the server, or a PL/SQL RPC call from a client to a server, or an
RPC call from a server to another server.

Topics:

■ Package States

■ Why Serially Reusable Packages?

■ Syntax of Serially Reusable Packages

■ Semantics of Serially Reusable Packages

■ Examples of Serially Reusable Packages

Package States
The state of a nonreusable package (one not marked SERIALLY_REUSABLE) persists
for the lifetime of a session. A package state includes global variables, cursors, and so
on.

The state of a serially reusable package persists only for the lifetime of a call to the
server. On a subsequent call to the server, if a reference is made to the serially reusable
package, then Oracle Database creates a new instantiation of the serially reusable
package and initializes all the global variables to NULL or to the default values
provided. Any changes made to the serially reusable package state in the previous
calls to the server are not visible.

Why Serially Reusable Packages?
Because the state of a nonreusable package persists for the lifetime of the session, this
locks up UGA memory for the whole session. In some applications, such as Oracle
Office, a log-on session typically exists for days. Applications often need to use certain
packages only for short periods of the session. Ideally, such applications could
de-instantiate the package state in after they finish using the package (the middle of
the session).

SERIALLY_REUSABLE packages enable you to design applications that manage
memory better for scalability. Package states that matter only for the duration of a call
to the server can be captured in SERIALLY_REUSABLE packages.

Syntax of Serially Reusable Packages
A package can be marked serially reusable by a pragma. The syntax of the pragma is:

Note: Creating a new instantiation of a serially reusable package
on a call to the server does not necessarily imply that Oracle
Database allocates memory or configures the instantiation object.
Oracle Database looks for an available instantiation work area
(which is allocated and configured) for this package in a
least-recently used (LRU) pool in the SGA.

At the end of the call to the server, this work area is returned back
to the LRU pool. The reason for keeping the pool in the SGA is that
the work area can be reused across users who have requests for the
same package.

Invoking Stored PL/SQL Functions from SQL Statements

7-42 Oracle Database Advanced Application Developer's Guide

PRAGMA SERIALLY_REUSABLE;

A package specification can be marked serially reusable, whether or not it has a
corresponding package body. If the package has a body, then the body must have the
serially reusable pragma, if its corresponding specification has the pragma; it cannot
have the serially reusable pragma unless the specification also has the pragma.

Semantics of Serially Reusable Packages
A package that is marked SERIALLY_REUSABLE has the following properties:

■ Its package variables are meant for use only within the work boundaries, which
correspond to calls to the server (either OCI call boundaries or PL/SQL RPC calls
to the server).

■ A pool of package instantiations is kept, and whenever a "unit of work" needs this
package, one of the instantiations is "reused", as follows:

– The package variables are reinitialized (for example, if the package variables
have default values, then those values are reinitialized).

– The initialization code in the package body is run again.

■ At the "end work" boundary, cleanup is done.

– If any cursors were left open, then they are silently closed.

– Some nonreusable secondary memory is freed (such as memory for collection
variables or long VARCHAR2s).

– This package instantiation is returned back to the pool of reusable
instantiations kept for this package.

■ Serially reusable packages cannot be accessed from database triggers or other
PL/SQL subprograms that are invoked from SQL statements. If you try, then
Oracle Database generates an error.

Examples of Serially Reusable Packages
■ Example 1: How Package Variables Act Across Call Boundaries

■ Example 2: How Package Variables Act Across Call Boundaries

■ Example 3: Open Cursors in Serially Reusable Packages at Call Boundaries

Example 1: How Package Variables Act Across Call Boundaries This example has a serially
reusable package specification (there is no body).

CONNECT SCOTT/password

CREATE OR REPLACE PACKAGE Sr_pkg IS
 PRAGMA SERIALLY_REUSABLE;
 N NUMBER := 5; -- default initialization
END Sr_pkg;

Suppose your Enterprise Manager (or SQL*Plus) application issues the following:

Note: If the application programmer makes a mistake and
depends on a package variable that is set in a previous unit of
work, then the application program can fail. PL/SQL cannot check
for such cases.

Invoking Stored PL/SQL Functions from SQL Statements

Coding PL/SQL Subprograms and Packages 7-43

CONNECT SCOTT/password

first CALL to server
BEGIN
 Sr_pkg.N := 10;
END;

second CALL to server
BEGIN
 DBMS_OUTPUT.PUT_LINE(Sr_pkg.N);
END;

This program prints:

5

Example 2: How Package Variables Act Across Call Boundaries This example has both a
package specification and package body, which are serially reusable.

CONNECT SCOTT/password

DROP PACKAGE Sr_pkg;
CREATE OR REPLACE PACKAGE Sr_pkg IS
 PRAGMA SERIALLY_REUSABLE;
 TYPE Str_table_type IS TABLE OF VARCHAR2(200) INDEX BY PLS_INTEGER;
 Num NUMBER := 10;
 Str VARCHAR2(200) := 'default-init-str';
 Str_tab STR_TABLE_TYPE;

 PROCEDURE Print_pkg;
 PROCEDURE Init_and_print_pkg(N NUMBER, V VARCHAR2);
END Sr_pkg;
CREATE OR REPLACE PACKAGE BODY Sr_pkg IS
 -- the body is required to have the pragma because the
 -- specification of this package has the pragma
 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE Print_pkg IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('num: ' || Sr_pkg.Num);
 DBMS_OUTPUT.PUT_LINE('str: ' || Sr_pkg.Str);
 DBMS_OUTPUT.PUT_LINE('number of table elems: ' || Sr_pkg.Str_tab.Count);
 FOR i IN 1..Sr_pkg.Str_tab.Count LOOP
 DBMS_OUTPUT.PUT_LINE(Sr_pkg.Str_tab(i));
 END LOOP;
 END;
 PROCEDURE Init_and_print_pkg(N NUMBER, V VARCHAR2) IS
 BEGIN
 -- init the package globals
 Sr_pkg.Num := N;
 Sr_pkg.Str := V;
 FOR i IN 1..n LOOP
 Sr_pkg.Str_tab(i) := V || ' ' || i;
 END LOOP;
 -- print the package
 Print_pkg;
 END;

Note: If the package had not had the pragma SERIALLY_
REUSABLE, the program would have printed '10'.

Invoking Stored PL/SQL Functions from SQL Statements

7-44 Oracle Database Advanced Application Developer's Guide

 END Sr_pkg;

SET SERVEROUTPUT ON;

Rem SR package access in a CALL:

BEGIN
 -- initialize and print the package
 DBMS_OUTPUT.PUT_LINE('Initing and printing pkg state..');
 Sr_pkg.Init_and_print_pkg(4, 'abracadabra');
 -- print it in the same call to the server.
 -- we should see the initialized values.
 DBMS_OUTPUT.PUT_LINE('Printing package state in the same CALL...');
 Sr_pkg.Print_pkg;
END;

Initing and printing pkg state..
num: 4
str: abracadabra
number of table elems: 4
abracadabra 1
abracadabra 2
abracadabra 3
abracadabra 4
Printing package state in the same CALL...
num: 4
str: abracadabra
number of table elems: 4
abracadabra 1
abracadabra 2
abracadabra 3
abracadabra 4

REM SR package access in subsequent CALL:
BEGIN
 -- print the package in the next call to the server.
 -- The package state should be reset to the initial (default) values.
 DBMS_OUTPUT.PUT_LINE('Printing package state in the next CALL...');
 Sr_pkg.Print_pkg;
END;
Statement processed.
Printing package state in the next CALL...
num: 10
str: default-init-str
number of table elems: 0

Example 3: Open Cursors in Serially Reusable Packages at Call Boundaries This example
demonstrates that any open cursors in serially reusable packages get closed
automatically at the end of a work boundary (which is a call). Also, in a new call, these
cursors need to be opened again.

REM For serially reusable pkg: At the end work boundaries
REM (which is currently the OCI call boundary) all open
REM cursors will be closed.
REM
REM Because the cursor is closed - every time we fetch we
REM will start at the first row again.

CONNECT SCOTT/password
DROP PACKAGE Sr_pkg;

Returning Large Amounts of Data from a Function

Coding PL/SQL Subprograms and Packages 7-45

DROP TABLE People;
CREATE TABLE People (Name VARCHAR2(20));
INSERT INTO People VALUES ('ET');
INSERT INTO People VALUES ('RAMBO');
CREATE OR REPLACE PACKAGE Sr_pkg IS
 PRAGMA SERIALLY_REUSABLE;
 CURSOR C IS SELECT Name FROM People;
END Sr_pkg;
SQL> SET SERVEROUTPUT ON;
SQL>
CREATE OR REPLACE PROCEDURE Fetch_from_cursor IS
Name VARCHAR2(200);
BEGIN
 IF (Sr_pkg.C%ISOPEN) THEN
 DBMS_OUTPUT.PUT_LINE('cursor is already open.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('cursor is closed; opening now.');
 OPEN Sr_pkg.C;
 END IF;
 -- fetching from cursor.
 FETCH sr_pkg.C INTO name;
 DBMS_OUTPUT.PUT_LINE('fetched: ' || Name);
 FETCH Sr_pkg.C INTO name;
 DBMS_OUTPUT.PUT_LINE('fetched: ' || Name);
 -- Oops forgot to close the cursor (Sr_pkg.C).
 -- But, because it is a Serially Reusable pkg's cursor,
 -- it will be closed at the end of this CALL to the server.
END;
EXECUTE fetch_from_cursor;
cursor is closed; opening now.
fetched: ET
fetched: RAMBO

Returning Large Amounts of Data from a Function
In a data warehousing environment, you might use a PL/SQL function to transform
large amounts of data. Perhaps the data is passed through a series of transformations,
each performed by a different function. PL/SQL table functions let you perform such
transformations without significant memory overhead or the need to store the data in
tables between each transformation stage. These functions can accept and return
multiple rows, can return rows as they are ready rather than all at once, and can be
parallelized.

In this technique:

■ The producer function uses the PIPELINED keyword in its declaration.

■ The producer function uses an OUT parameter that is a record, corresponding to a
row in the result set.

■ As each output record is completed, it is sent to the consumer function using PIPE
ROW.

■ The producer function ends with a RETURN statement that does not specify any
return value.

■ The consumer function or SQL statement uses the TABLE keyword to treat the
resulting rows like a regular table.

For example:

Coding Your Own Aggregate Functions

7-46 Oracle Database Advanced Application Developer's Guide

CREATE FUNCTION StockPivot(p refcur_pkg.refcur_t) RETURN TickerTypeSet PIPELINED
IS
 out_rec TickerType := TickerType(NULL,NULL,NULL);
 in_rec p%ROWTYPE;
BEGIN
 LOOP
-- Function accepts multiple rows through a REF CURSOR argument.
 FETCH p INTO in_rec;
 EXIT WHEN p%NOTFOUND;
-- Return value is a record type that matches the table definition.
 out_rec.ticker := in_rec.Ticker;
 out_rec.PriceType := 'O';
 out_rec.price := in_rec.OpenPrice;
-- Once a result row is ready, we send it back to the calling program,
-- and continue processing.
 PIPE ROW(out_rec);
-- This function outputs twice as many rows as it receives as input.
 out_rec.PriceType := 'C';
 out_rec.Price := in_rec.ClosePrice;
 PIPE ROW(out_rec);
 END LOOP;
 CLOSE p;
-- The function ends with a RETURN statement that does not specify any value.
 RETURN;
END;
/

-- Here we use the result of this function in a SQL query.
SELECT * FROM TABLE(StockPivot(CURSOR(SELECT * FROM StockTable)));

-- Here we use the result of this function in a PL/SQL block.
DECLARE
 total NUMBER := 0;
 price_type VARCHAR2(1);
BEGIN
 FOR item IN (SELECT * FROM TABLE(StockPivot(CURSOR(SELECT * FROM StockTable))))
 LOOP
-- Access the values of each output row.
-- We know the column names based on the declaration of the output type.
-- This computation is just for illustration.
 total := total + item.price;
 price_type := item.price_type;
 END LOOP;
END;
/

Coding Your Own Aggregate Functions
To analyze a set of rows and compute a result value, you can code your own aggregate
function that works the same as a built-in aggregate like SUM:

■ Define a SQL object type that defines these member functions:

■ ODCIAggregateInitialize

■ ODCIAggregateIterate

■ ODCIAggregateMerge

■ ODCIAggregateTerminate

Coding Your Own Aggregate Functions

Coding PL/SQL Subprograms and Packages 7-47

■ Code the member functions. In particular, ODCIAggregateIterate
accumulates the result as it is invoked once for each row that is processed. Store
any intermediate results using the attributes of the object type.

■ Create the aggregate function, and associate it with the new object type.

■ Call the aggregate function from SQL queries, DML statements, or other places
that you might use the built-in aggregates. You can include typical options such as
DISTINCT and ALL in the invocation of the aggregate function.

See Also: Oracle Database Data Cartridge Developer's Guide for
more information about user-defined aggregate functions

Coding Your Own Aggregate Functions

7-48 Oracle Database Advanced Application Developer's Guide

Using PL/Scope 8-1

8
Using PL/Scope

PL/Scope is a compiler-driven tool that collects data about user-defined identifiers
from PL/SQL source code at program-unit compilation time and makes it available in
static data dictionary views. The collected data includes information about identifier
types, usages (declaration, definition, reference, call, assigment) and the location of
each usage in the source code.

PL/Scope enables the development of powerful and effective PL/Scope source code
browsers that increase PL/SQL developer productivity by minimizing time spent
browsing and understanding source code.

Topics:

■ Specifying Identifier Collection

■ How Much Space is PL/Scope Data Using?

■ Viewing PL/Scope Data

■ Identifier Types that PL/Scope Collects

■ Usages that PL/Scope Reports

■ Sample PL/Scope Session

Specifying Identifier Collection
By default, PL/Scope does not collect data for identifiers in the PL/SQL source
program. To have PL/Scope collect data for all identifiers in the PL/SQL source
program, including identifiers in package bodies, use the following SQL statement:

ALTER SESSION SET PLSCOPE_SETTINGS='IDENTIFIERS:ALL'

PLSCOPE_SETTINGS='IDENTIFIERS:ALL' affects only the PL/SQL code compiled
after you specify it. If you compile a PL/SQL program unit with PLSCOPE_
SETTINGS='IDENTIFIERS:NONE' (the default), PL/Scope does not collect its
identifiers, and drops any identifiers that it previously collected for that unit. To have

Note: PL/Scope cannot collect data for a PL/SQL program unit
whose source code is wrapped. For information about wrapping
PL/SQL source code, see Oracle Database PL/SQL Language Reference.

Note: Collecting all identifiers might generate large amounts of data
and slow compile time.

How Much Space is PL/Scope Data Using?

8-2 Oracle Database Advanced Application Developer's Guide

PL/Scope collect its identifiers, recompile the program unit with PLSCOPE_
SETTINGS='IDENTIFIERS:ALL'. To see the value that IDENTIFIERS had when a
compilation unit was compiled, see the static data dictionary view
*_PLSQL_OBJECT_SETTINGS.

PL/Scope stores the data that it collects in the SYSAUX tablespace. If the SYSAUX
tablespace is unavailable, and you compile a program unit with PLSCOPE_
SETTINGS='IDENTIFIERS:ALL', PL/Scope does not collect data for the compiled
object. The compiler does not issue a warning, but it saves a warning in USER_
ERRORS.

How Much Space is PL/Scope Data Using?
Because PL/Scope stores its data in the SYSAUX tablespace, you can use the following
query to display the amount of space that the data is using:

SELECT SPACE_USAGE_KBYTES FROM V$SYSAUX_OCCUPANTS
 WHERE OCCUPANT_NAME='PL/SCOPE';

For information about managing the SYSAUX tablespace and monitoring its occupants,
see Oracle Database Administrator's Guide.

Viewing PL/Scope Data
To view the data that PL/Scope has collected, you can use any of the following:

■ Static Data Dictionary Views

■ Demo Tool

■ SQL Developer

Static Data Dictionary Views
The static data dictionary views *_IDENTIFIERS display information about
PL/Scope identifiers, including their types and usages. For general information about
these views, see Oracle Database Reference.

Topics:

■ Unique Keys

■ Context

■ Signature

Unique Keys
Each row of a *_IDENTIFIERS view represents a unique usage of an identifier in the
PL/SQL program unit. In each of these views, the following are equivalent unique
keys within a compilation unit:

■ LINE, COL, and USAGE

■ USAGE_ID

For the usages in the *_IDENTIFIERS views, see "Usages that PL/Scope Reports" on
page 8-6.

Viewing PL/Scope Data

Using PL/Scope 8-3

Context
Context is useful for discovering relationships between usages. Except for top-level
schema object declarations and definitions, every usage of an identifier happens
within the context of another usage. For example:

■ A local variable declaration happens within the context of a top-level procedure
declaration.

■ If an identifier is declared as a variable, such as x VARCHAR2(10), the USAGE_
CONTEXT_ID of the VARCHAR2 type reference contains the USAGE_ID of the x
declaration, allowing you to associate the variable declaration with its type.

In other words, USAGE_CONTEXT_ID is a reflexive foreign key to USAGE_ID, as
Example 8–1 shows.

Example 8–1 USAGE_CONTEXT_ID and USAGE_ID

CONNECT USR/password
ALTER SESSION SET PLSCOPE_SETTINGS = 'IDENTIFIERS:ALL';
/
CREATE PROCEDURE a (p1 IN BOOLEAN) IS
 v PLS_INTEGER;
BEGIN
 v := 42;
 DBMS_OUTPUT.PUT_LINE(v);
 RAISE_APPLICATION_ERROR (-20000, 'Bad');
EXCEPTION
 WHEN Program_Error THEN NULL;
END a;
/
CREATE PROCEDURE b (p2 OUT PLS_INTEGER, p3 IN OUT VARCHAR2) IS
 n NUMBER;
 q BOOLEAN := TRUE;
BEGIN
 FOR j IN 1..5 LOOP
 a(q); a(TRUE); a(TRUE);
 IF j > 2 THEN
 GOTO z;
 END IF;
 END LOOP;
<<z>> DECLARE
 d CONSTANT CHAR(1) := 'X';
 BEGIN
 SELECT COUNT(*) INTO n FROM Dual WHERE Dummy = d;
 END z;
END b;
/
WITH v AS (
 SELECT Line,
 Col,
 INITCAP(NAME) Name,
 LOWER(TYPE) Type,
 LOWER(USAGE) Usage,

Note: An identifier that is passed to a subprogram in IN OUT mode
has two rows in *_IDENTIFIERS: a REFERENCE usage
(corresponding to IN) and an ASSIGNMENT usage (corresponding to
OUT).

Viewing PL/Scope Data

8-4 Oracle Database Advanced Application Developer's Guide

 USAGE_ID,
 USAGE_CONTEXT_ID
 FROM USER_IDENTIFIERS
 WHERE Object_Name = 'B'
 AND Object_Type = 'PROCEDURE'
)
SELECT RPAD(LPAD(' ', 2*(Level-1)) ||
 Name, 20, '.')||' '||
 RPAD(Type, 20)||
 RPAD(Usage, 20)
 IDENTIFIER_USAGE_CONTEXTS
 FROM v
 START WITH USAGE_CONTEXT_ID = 0
 CONNECT BY PRIOR USAGE_ID = USAGE_CONTEXT_ID
 ORDER SIBLINGS BY Line, Col
/

IDENTIFIER_USAGE_CONTEXTS

B.................. procedure declaration
 B................. procedure definition
 P2.............. formal out declaration
 P3.............. formal in out declaration
 N............... variable declaration
 Q............... variable declaration
 Q............. variable assignment
 J............... iterator declaration
 A............. procedure call
 Q........... variable reference
 A............. procedure call
 A............. procedure call
 J............. iterator reference
 Z............. label reference
 Z............... label declaration
 D............. constant declaration
 D........... constant assignment
 N............. variable assignment
 D............. constant reference

Signature
The signature of an identifier is unique, within and across program units. That is, the
signature distinguishes the identifier from other identifiers with the same name,
whether they are defined in the same program unit or different program units.

For the program unit in Example 8–2, which has two identifiers named p, the static
data dictionary view USER_IDENTIFIERS has several rows in which NAME is p, but in
these rows, SIGNATURE varies. The rows associated with the outer procedure p have
one signature, and the rows associated with the inner procedure p have another
signature. If program unit q calls procedure p, the USER_IDENTIFIERS view for q has
a row in which NAME is p and SIGNATURE is the signature of the outer procedure p.

Example 8–2 Program Unit with Two Identifiers Named p

CREATE OR REPLACE PROCEDURE p IS
 PROCEDURE p IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Inner p');
 END p;
BEGIN

Identifier Types that PL/Scope Collects

Using PL/Scope 8-5

 DBMS_OUTPUT.PUT_LINE('Outer p');
 p();
END p;

Demo Tool
$ORACLE_HOME/plsql/demo/plscopedemo.sql is an HTML-based demo
implemented as a PL/SQL Web Application using the PL/SQL Web Toolkit. For more
information about PL/SQL Web Applications, see "Implementing PL/SQL Web
Applications" on page 10-2.

SQL Developer
PL/Scope is a feature of SQL Developer. For information about using PL/Scope from
SQL Developer, see the SQL Developer online documentation.

Identifier Types that PL/Scope Collects
Table 8–1 shows the identifier types that PL/Scope collects, in alphabetical order. The
identifier types in Table 8–1 appear in the TYPE column of the *_IDENTIFIER static
data dictionary views, which are described in Oracle Database Reference.

Note: Identifiers declared in compilation units that were not
compiled with PLSCOPE_SETTINGS='IDENTIFIERS:ALL' do not
appear in *_IDENTIFIER static data dictionary views.

Table 8–1 Identifier Types that PL/Scope Collects

TYPE Column Value Comment

ASSOCIATIVE ARRAY

CONSTANT

CURSOR

BFILE DATATYPE
BLOB DATATYPE
BOOLEAN DATATYPE
CHARACTER DATATYPE
CLOB DATATYPE
DATE DATATYPE
INTERVAL DATATYPE
NUMBER DATATYPE
TIME DATATYPE
TIMESTAMP DATATYPE

Each DATATYPE is a base type declared in package STANDARD. In
order to collect and view these identifiers, package STANDARD must
be compiled with PLSCOPE_SETTINGS='IDENTIFIERS:ALL'.

EXCEPTION

FORMAL IN
FORMAL IN OUT
FORMAL OUT

FUNCTION

INDEX TABLE

ITERATOR An iterator is the index of a FOR loop.

LABEL A label declaration also acts as a context.

LIBRARY

Usages that PL/Scope Reports

8-6 Oracle Database Advanced Application Developer's Guide

Usages that PL/Scope Reports
Table 8–2 shows the usages that PL/Scope reports, in alphabetical order. The identifier
types in Table 8–2 appear in the USAGE column of the *_IDENTIFIER static data
dictionary views, which are described in Oracle Database Reference.

NESTED TABLE

OBJECT

OPAQUE Examples of internal opaque types are ANYDATA and XMLType.

PACKAGE

PROCEDURE

RECORD

REFCURSOR

SUBTYPE

SYNONYM PL/Scope does not resolve the base object name of a synonym. To
find the base object name of a synonym, query *_SYNONYMS.

TRIGGER

UROWID

VARRAY

VARIABLE Can be object attribute, local variable, package variable, or record
field.

Table 8–2 Usages that PL/Scope Reports

USAGE Column
Value Description

ASSIGNMENT An assignment can be made only to an identifier that can have a value,
such as a VARIABLE. Examples of assignments are:

■ Using an identifier to the left of an assignment operator

■ Using an identifier in the INTO clause of a FETCH statement

■ Passing an identifier to a subprogram by reference (OUT mode)

■ Using an identifier as the bind argument in the USING clause of an
EXECUTE IMMEDIATE statement in either OUT or IN OUT mode

An identifier that is passed to a subprogram in IN OUT mode has both a
REFERENCE usage (corresponding to IN) and an ASSIGNMENT usage
(corresponding to OUT).

CALL In the context of PL/Scope, a CALL is an operation that pushes a new call
stack; that is:

■ A call to a FUNCTION or PROCEDURE

■ Executing or fetching a cursor identifier (a logical call to SQL)

A GOTO statement or raise of an exception is not a CALL, because neither
pushes a new call stack.

Table 8–1 (Cont.) Identifier Types that PL/Scope Collects

TYPE Column Value Comment

Sample PL/Scope Session

Using PL/Scope 8-7

Sample PL/Scope Session
The sample PL/Scope session uses the following PL/SQL procedure, example.sql:

CREATE OR REPLACE PACKAGE PACK1 IS
 TYPE r1 is RECORD (rf1 VARCHAR2(10));
 FUNCTION F1(fp1 NUMBER) RETURN NUMBER;
 PROCEDURE P1(pp1 VARCHAR2);
END PACK1;

CREATE OR REPLACE PACKAGE BODY PACK1 IS
 FUNCTION F1(fp1 NUMBER) RETURN NUMBER IS
 a NUMBER := 10;
 BEGIN
 RETURN a;

DECLARATION A DECLARATION tells the compiler that an identifier exists, and each
identifier has exactly one DECLARATION. Each DECLARATION can have an
associated datatype.

For a loop index declaration, LINE and COL (in *_IDENTIFIERS views)
are the line and column of the FOR clause that implicitly declares the loop
index.

For a label declaration, LINE and COL are the line and column on which the
label appears (and is implicitly declared) within the delimiters << and >>.

DEFINITION A DEFINITION tells the compiler how to implement or use a previously
declared identifier.

Each of the following types of identifiers has a DEFINITION:

■ EXCEPTION (can have multiple definitions)

■ FUNCTION

■ OBJECT

■ PACKAGE

■ PROCEDURE

■ TRIGGER

For a top-level identifier only, the DEFINITION and DECLARATION are in
the same place.

REFERENCE A REFERENCE uses an identifier without changing its value. Examples of
references are:

■ Raising an exception identifier

■ Using a type identifier in the declaration of a variable or formal
parameter

■ Using a variable identifier whose type contains fields to access a field.
For example, in myrecordvar.myfield := 1, a reference is made to
myrecordvar, and an assignment is made to myfield.

■ Using a cursor for any purpose except FETCH

■ Passing an identifier to a subprogram by value (IN mode)

■ Using an identifier as the bind argument in the USING clause of an
EXECUTE IMMEDIATE statement in either IN or IN OUT mode

An identifier that is passed to a subprogram in IN OUT mode has both a
REFERENCE usage (corresponding to IN) and an ASSIGNMENT usage
(corresponding to OUT).

Table 8–2 (Cont.) Usages that PL/Scope Reports

USAGE Column
Value Description

Sample PL/Scope Session

8-8 Oracle Database Advanced Application Developer's Guide

 END F1;
 PROCEDURE P1(pp1 VARCHAR2) IS
 pr1 r1;
 BEGIN
 pr1.rf1 := pp1;
 END;
END PACK1;

In the following sample session, assume that you are logged in as HR:

1. Set the session parameter:

SQL> ALTER SESSION SET PLSCOPE_SETTINGS='IDENTIFIERS:ALL';

2. Compile the PL/SQL procedure example.sql:

SQL> @example.sql

3. Verify that PL/Scope collected all identifiers for the package body:

SQL> SELECT PLSCOPE_SETTINGS
 FROM USER_PLSQL_OBJECT_SETTINGS
 WHERE NAME='PACK1' AND TYPE='PACKAGE BODY'

PLSCOPE_SETTINGS

IDENTIFIERS:ALL

4. Display unique identifiers in HR by querying for all DECLARATION usages. For
example, to see all unique identifiers with name like %1, use the following query:

SQL> SELECT NAME, SIGNATURE, TYPE
 FROM USER_IDENTIFIERS
 WHERE NAME LIKE '%1' AND USAGE='DECLARATION'
 ORDER BY OBJECT_TYPE, USAGE_ID;

NAME SIGNATURE TYPE

PACK1 41820FA4D5EF6BE707895178D0C5C4EF PACKAGE

R1 EEBB6849DEE31BC77BF186EBAE5D4E2D RECORD

RF1 41D70040337349634A7F547BC83517C7 VARIABLE

F1 EEFCF8352A41F4F264B4EF20D7F63A74 FUNCTION

FP1 70648EC9E1C3C7FA10C0AE6415FAEC3B FORMAL IN

P1 0BE2106B9EFA719D49AF60965EBD69AE PROCEDURE

PP1 85B6C0F3BBA39185B00465082322444B FORMAL IN

FP1 771368AE41084ADD477DE62A7B1D4278 FORMAL IN

PP1 D98482491487F39B4CBC8B776130B739 FORMAL IN

PR1 174C2528B929953F4FE2A43DEBA2B5D0 VARIABLE

P1 3D1CA191D63523E40E25A72D89424324 FORMAL IN

Sample PL/Scope Session

Using PL/Scope 8-9

The *_IDENTIFIERS static data dictionary views display only basic type names;
for example, the TYPE of a local variable or record field is VARIABLE. To
determine the exact type of a VARIABLE, you must use its USAGE_CONTEXT_ID.

5. Find all local variables:

SQL> SELECT a.NAME variable_name,
 b.NAME context_name,
 a.SIGNATURE
 FROM USER_IDENTIFIERS a, USER_IDENTIFIERS b
 WHERE a.USAGE_CONTEXT_ID = b.USAGE_ID
 AND a.TYPE = 'VARIABLE'
 AND a.USAGE = 'DECLARATION'
 AND a.OBJECT_NAME = 'PACK1'
 AND a.OBJECT_NAME = b.OBJECT_NAME
 AND a.OBJECT_TYPE = b.OBJECT_TYPE
 AND (b.TYPE = 'FUNCTION' or b.TYPE = 'PROCEDURE')
 ORDER BY a.OBJECT_TYPE, a.USAGE_ID;

VARIABLE_NAME CONTEXT_NAME SIGNATURE

A F1 2268998957D20FACD63493B7A77BC55B
PR1 P1 174C2528B929953F4FE2A43DEBA2B5D0

6. Find all usages performed on the local variable A:

SQL> SELECT USAGE, USAGE_ID, OBJECT_NAME, OBJECT_TYPE
 FROM USER_IDENTIFIERS
 WHERE SIGNATURE='2268998957D20FACD63493B7A77BC55B'
 ORDER BY OBJECT_TYPE, USAGE_ID;

USAGE USAGE_ID OBJECT_NAME OBJECT_TYPE
--
DECLARATION 4 PACK1 PACKAGE BODY
ASSIGNMENT 5 PACK1 PACKAGE BODY
REFERENCE 6 PACK1 PACKAGE BODY

The usages performed on the local identifier A are the identifier declaration
(USAGE_ID 6), an assignment (USAGE_ID 8), and a reference
(USAGE_ID 9).

7. From the declaration of the local identifier A, find its type:

SQL> SELECT a.NAME, a.TYPE
 FROM USER_IDENTIFIERS a, USER_IDENTIFIERS b
 WHERE a.USAGE = 'REFERENCE'
 AND a.USAGE_CONTEXT_ID = b.USAGE_ID
 AND b.USAGE = 'DECLARATION'
 AND b.SIGNATURE = '2268998957D20FACD63493B7A77BC55B'
 AND a.OBJECT_TYPE = b.OBJECT_TYPE
 AND a.OBJECT_NAME = b.OBJECT_NAME;

NAME TYPE

NUMBER DATATYPE STANDARD

Sample PL/Scope Session

8-10 Oracle Database Advanced Application Developer's Guide

8. Find out where the assignment to local identifier A occurred:

SQL> SELECT LINE, COL, OBJECT_NAME, OBJECT_TYPE
 FROM USER_IDENTIFIERS
 WHERE SIGNATURE='666CEC3A2180DF4013CEBE330A8CE747'
 AND USAGE='ASSIGNMENT';

LINE COL OBJECT_NAME OBJECT_TYPE
--
3 7 PACK1 PACKAGE BODY

Note: This query produces this output only if package STANDARD
was compiled with PLSCOPE_SETTINGS='IDENTIFIERS:ALL'. By
default, this query returns no identifier data. Please see the 11gR1
release notes for more information on how to compile package
STANDARD for PL/Scope.

Using the PL/SQL Hierarchical Profiler 9-1

9
Using the PL/SQL Hierarchical Profiler

You can use the PL/SQL hierarchical profiler to identify bottlenecks and
performance-tuning opportunities in PL/SQL applications.

The profiler reports the dynamic execution profile of a PL/SQL program organized by
function calls, and accounts for SQL and PL/SQL execution times separately. No
special source or compile-time preparation is required; any PL/SQL program can be
profiled.

This chapter describes the PL/SQL hierarchical profiler and explains how to use it to
collect and analyze profile data for a PL/SQL program.

Topics:

■ Overview of PL/SQL Hierarchical Profiler

■ Collecting Profile Data

■ Understanding Raw Profiler Output

■ Analyzing Profile Data

■ plshprof Utility

Overview of PL/SQL Hierarchical Profiler
Nonhierarchical (flat) profilers record the time that a program spends within each
subprogram—the function time or self time of each subprogram. Function time is
helpful, but often inadequate. For example, it is helpful to know that a program
spends 40% of its time in the subprogram INSERT_ORDER, but it is more helpful to
know which subprograms call INSERT_ORDER often and the total time the program
spends under INSERT_ORDER (including its descendant subprograms). Hierarchical
profilers provide such information.

The PL/SQL hierarchical profiler does the following:

■ Reports the dynamic execution profile of your PL/SQL program, organized by
subprogram calls

■ Accounts for SQL and PL/SQL execution times separately

■ Requires no special source or compile-time preparation

■ Stores results in database tables (hierarchical profiler tables) for custom report
generation by integrated development environment (IDE) tools (such as SQL
Developer and third-party tools)

■ Provides subprogram-level execution summary information, such as:

■ Number of calls to the subprogram

Collecting Profile Data

9-2 Oracle Database Advanced Application Developer's Guide

■ Time spent in the subprogram itself (function time or self time)

■ Time spent in the subprogram itself and in its descendent subprograms
(subtree time)

■ Detailed parent-children information, for example:

– All callers of a given subprogram (parents)

– All subprograms that a given subprogram called (children)

– How much time was spent in subprogram x when called from y

– How many calls to subprogram x were from y

The PL/SQL hierarchical profiler is implemented by the DBMS_HPROF package and
has two components:

■ Data collection

The data collection component is an intrinsic part of the PL/SQL Virtual Machine.
The DBMS_HPROF package provides APIs to turn hierarchical profiling on and off.
The raw profiler output is written to a file.

■ Analyzer

The analyzer component processes the raw profiler output and stores the results in
hierarchical profiler tables.

Collecting Profile Data
To collect profile data from your PL/SQL program for the PL/SQL hierarchical
profiler, follow these steps:

1. Ensure that you have the following privileges:

■ EXECUTE privilege on the DBMS_HPROF package

■ WRITE privilege on the directory that you specify when you call DBMS_
HPROF.START_PROFILING

2. Use the DBMS_HPROF.START_PROFILING PL/SQL API to start hierarchical
profiler data collection in a session.

3. Run your PL/SQL program long enough to get adequate code coverage.

To get the most accurate measurements of elapsed time, avoid unrelated activity
on the system on which your PL/SQL program is running.

4. Use the DBMS_HPROF.STOP_PROFILING PL/SQL API to stop hierarchical profiler
data collection.

For more information about DBMS_HPROF.START_PROFILING and DBMS_
HPROF.STOP_PROFILING, see Oracle Database PL/SQL Packages and Types Reference.

Consider the following PL/SQL procedure, test:

CREATE OR REPLACE PROCEDURE test IS
 n NUMBER;

 PROCEDURE foo IS

Note: To generate simple HTML reports directly from raw profiler
output, without using the Analyzer, you can use the plshprof
command-line utility.

Understanding Raw Profiler Output

Using the PL/SQL Hierarchical Profiler 9-3

 BEGIN
 SELECT COUNT(*) INTO n FROM EMPLOYEES;
 END foo;

BEGIN -- test
 FOR i IN 1..3 LOOP
 foo;
 END LOOP;
END test;
/
SHOW ERRORS;

The SQL script fragment in Example 9–1 profiles the execution of the PL/SQL
procedure test. The parameters to DBMS_HPROF.START_PROFILING specify that
raw profiler output is written to the file test.trc in the OS directory, which is
mapped to the directory object PLSHPROF_DIR (see note following example).

Example 9–1 Profiling a PL/SQL Procedure

BEGIN
 -- Start profiling:
 DBMS_HPROF.START_PROFILING('PLSHPROF_DIR', 'test.trc');
END;
/
-- Execute procedure to be profiled:
BEGIN
 test;
END;
/
BEGIN
 -- Stop profiling:
 DBMS_HPROF.STOP_PROFILING;
END;
/

Understanding Raw Profiler Output
Raw profiler output is intended to be processed by the analyzer component of the
PL/SQL hierarchical profiler. However, even without such processing, it provides a
simple function-level trace of the program. This topic explains how to understand raw
profiler output.

Note: A directory object is an alias for a file system pathname. For
example, the following CREATE DIRECTORY statement creates the
directory object PLSHPROF_DIR and maps it to the file system
directory /private/plshprof/results:

CONNECT / AS SYSDBA;
CREATE DIRECTORY PLSHPROF_DIR as '/private/plshprof/results';

To execute the SQL script fragment in Example 9–1, you must have
READ and WRITE privileges on PLSHPROF_DIR. The following GRANT
statement grants READ and WRITE privileges on PLSHPROF_DIR to
HR:

CONNECT / AS SYSDBA;
GRANT READ, WRITE ON DIRECTORY PLSHPROF_DIR TO HR;

For more information about using directory objects, see Oracle
Database SecureFiles and Large Objects Developer's Guide.

Understanding Raw Profiler Output

9-4 Oracle Database Advanced Application Developer's Guide

The SQL script fragment in Example 9–1 wrote the following raw profiler output to the
file test.trc:

P#V PLSHPROF Internal Version 1.0
P#! PL/SQL Timer Started
P#C PLSQL."".""."__plsql_vm"
P#X 3
P#C PLSQL."".""."__anonymous_block"
P#X 54
P#C PLSQL."SYS"."DBMS_OUTPUT"::11."GET_LINES"#660bd56a1b1640db #180
P#X 15
P#R
P#X 155
P#R
P#X 2
P#R
P#C PLSQL."".""."__plsql_vm"
P#X 3
P#C PLSQL."".""."__anonymous_block"
P#X 33
P#C PLSQL."HR"."TEST"::7."TEST"#980980e97e42f8ec #1
P#X 4
P#C PLSQL."HR"."TEST"::7."TEST.FOO"#980980e97e42f8ec #4
P#X 37
P#C SQL."HR"."TEST"::7."__static_sql_exec_line6" #6
P#X 182
P#R
P#X 19
P#R
P#X 2
P#C PLSQL."HR"."TEST"::7."TEST.FOO"#980980e97e42f8ec #4
P#X 5
P#C SQL."HR"."TEST"::7."__static_sql_exec_line5" #6
P#X 81
P#R
P#X 3
P#R
P#X 1
P#C PLSQL."HR"."TEST"::7."TEST.FOO"#980980e97e42f8ec #4
P#X 3
P#C SQL."HR"."TEST"::7."__static_sql_exec_line6" #6
P#X 78
P#R
P#X 2
P#R
P#X 1
P#R
P#X 1
P#R
P#X 3
P#R
P#C PLSQL."".""."__plsql_vm"
P#X 3
P#C PLSQL."".""."__anonymous_block"

Note: The raw profiler format shown in this chapter is intended only
to illustrate conceptual features of raw profiler output. Format
specifics are subject to change at each Oracle Database release.

Understanding Raw Profiler Output

Using the PL/SQL Hierarchical Profiler 9-5

P#X 54
P#C PLSQL."SYS"."DBMS_OUTPUT"::11."GET_LINES"#660bd56a1b1640db #180
P#X 14
P#R
P#X 55
P#R
P#X 2
P#R
P#C PLSQL."".""."__plsql_vm"
P#X 3
P#C PLSQL."".""."__anonymous_block"
P#X 29
P#C PLSQL."SYS"."DBMS_HPROF"::11."STOP_PROFILING"#980980e97e42f8ec #53
P#R
P#R
P#R
P#! PL/SQL Timer Stopped

PL/SQL procedure successfully completed.

Call events (P#C) and return events (P#R) are always properly nested (like matched
parentheses). If a called subprogram is exited due to an unhandled exception, the
profiler still reports a matching return event.

Each call event (P#C) entry in the raw profiler output includes the following
information:

■ Namespace to which the called subprogram belongs

See "Namespaces of Tracked Subprograms" on page 9-6.

■ Name of the PL/SQL module in which the called subprogram is defined

■ Type of the PL/SQL module in which the called subprogram is defined

■ Name of the called subprogram

This name might be one of the "Special Function Names" on page 9-6.

■ Hexadecimal value that represents an MD5 hash of the signature of the called
subprogram

The DBMS_HPROF.analyze PL/SQL API (described in "Analyzing Profile Data"
on page 9-7) stores the hash value in a hierarchical profiler table, which allows
both you and DBMS_HPROF.analyze to distinguish between overloaded
subprograms (subprograms with the same name).

■ Line number at which the called subprogram is defined in the PL/SQL module

PL/SQL hierarchical profiler does not measure time spent at individual lines
within modules, but you can use line numbers to identify the source locations of

Table 9–1 Raw Profiler Output File Indicators

Indicator Meaning

P#V PLSHPROF banner with version number

P#C Call to a subprogram (call event)

P#R Return from a subprogram (return event)

P#X Elapsed time between preceding and following events

P#! Comment

Understanding Raw Profiler Output

9-6 Oracle Database Advanced Application Developer's Guide

subprograms in the module (as IDE/Tools do) and to distinguish between
overloaded subprograms.

For example, consider the following entry in the preceding example of raw profiler
output:

P#C PLSQL."HR"."TEST"::7."TEST.FOO"#980980e97e42f8ec #4

The components of the preceding entry have the following meanings:

Namespaces of Tracked Subprograms
The subprograms that the PL/SQL hierarchical profiler tracks are classified into the
namespaces PLSQL and SQL, as follows:

■ Namespace PLSQL includes:

– PL/SQL subprogram calls

– PL/SQL triggers

– PL/SQL anonymous blocks

– Remote subprogram calls

– Package-initialization blocks

■ Namespace SQL includes SQL statements executed from PL/SQL, such as queries,
DML statements, DDL statements, and native dynamic SQL statements

Special Function Names
PL/SQL hierarchical profiler tracks certain operations as if they were functions with
the names and namespaces shown in Table 9–2.

Component Meaning

PLSQL PLSQL is the namespace to which the called subprogram belongs.

"HR"."TEST" HR.TEST is the name of the PL/SQL module in which the called
subprogram is defined.

7 7 is the internal enumerator for the module type of HR.TEST.
Examples of module types are procedure, package, and package
body.

"TEST.FOO" TEST.FOO is the name of the called subprogram.

#980980e97e42f8ec #980980e97e42f8ec is a hexadecimal value that represents an
MD5 hash of the signature of TEST.FOO.

#3 3 is the line number in the PL/SQL module HR.TEST at which
TEST.FOO is defined.

Table 9–2 Function Names of Operations that the PL/SQL Hierarchical Profiler Tracks

Tracked Operation Function Name Namespace

Call to PL/SQL Virtual Machine __plsql_vm PL/SQL

PL/SQL anonymous block __anonymous_block PL/SQL

Initialization code in package
specification or package body

__pkg_init PL/SQL

Static SQL statement at line line# __static_sql_exec_lineline# SQL

Analyzing Profile Data

Using the PL/SQL Hierarchical Profiler 9-7

Analyzing Profile Data
The analyzer component of the PL/SQL hierarchical profiler, DBMS_HPROF.analyze,
processes the raw profiler output and stores the results in the hierarchical database
tables described in Table 9–3.

Topics:

■ Creating Hierarchical Profiler Tables

■ Understanding Hierarchical Profiler Tables

Creating Hierarchical Profiler Tables
To create the hierarchical profiler tables in Table 9–3 and the other data structures
required for persistently storing profile data, follow these steps:

1. Run the script dbmshptab.sql (located in the directory rdbms/admin).

This script creates both the hierarchical profiler tables in Table 9–3 and the other
data structures required for persistently storing profile data.

2. Ensure that you have the following privileges:

■ EXECUTE privilege on the DBMS_HPROF package

■ READ privilege on the directory that DBMS_HPROF.analyze specifies

3. Use the PL/SQL API DBMS_HPROF.analyze to analyze a single raw profiler
output file and store the results in hierarchical profiler tables.

Dynamic SQL statement at line line# __dyn_sql_exec_lineline# SQL

SQL FETCH statement at line line# __sql_fetch_lineline# SQL

Table 9–3 PL/SQL Hierarchical Profiler Database Tables

Table Description

DBMSHP_RUNS Top-level information for this run of DBMS_
HPROF.analyze. For column descriptions, see Table 9–4
on page 9-8.

DBMSHP_FUNCTION_INFO Information for each subprogram profiled in this run of
DBMS_HPROF.analyze. For column descriptions, see
Table 9–5 on page 9-9.

DBMSHP_PARENT_CHILD_INFO Parent-child information for each subprogram profiled in
this run of DBMS_HPROF.analyze. For column
descriptions, see Table 9–6 on page 9-8.

Note: To generate simple HTML reports directly from raw profiler
output, without using the Analyzer, you can use the plshprof
command-line utility. For details, see "plshprof Utility" on page 9-13.

Note: Running the script dbmshptab.sql drops any previously
created hierarchical profiler tables.

Table 9–2 (Cont.) Function Names of Operations that the PL/SQL Hierarchical Profiler

Tracked Operation Function Name Namespace

Analyzing Profile Data

9-8 Oracle Database Advanced Application Developer's Guide

(For an example of a raw profiler output file, see test.trc in "Collecting Profile
Data" on page 9-2.)

For more information about DBMS_HPROF.analyze, see Oracle Database PL/SQL
Packages and Types Reference.

4. Use the hierarchical profiler tables to generate custom reports.

The call to DBMS_HPROF.analyze in Example 9–2 does the following:

■ Analyzes the profile data in the raw profiler output file test.trc (from
"Collecting Profile Data" on page 2), which is in the directory that is mapped to the
directory object PLSHPROF_DIR, and stores the data in the hierarchical profiler
tables in Table 9–3 on page 9-7.

■ Returns in the variable runid a unique identifier that you can use to query the
hierarchical profiler tables in Table 9–3 on page 9-7. (By querying these hierarchical
profiler tables, you can produce customized reports.)

Example 9–2 Call to DBMS_HPROF.analyze

CONNECT HR/password;
VARIABLE runid NUMBER;
BEGIN
:runid := DBMS_HPROF.analyze(LOCATION=>'PLSHPROF_DIR',
 FILENAME=>'test.trc'
 RUN_COMMENT=>'First run of TEST');
END;
/
PRINT :runid;

Understanding Hierarchical Profiler Tables
The following topics explain how to use the hierarchical profiler tables in Table 9–3:

■ Hierarchical Profiler Database Table Columns

■ Distinguishing Between Overloaded Subprograms

■ Hierarchical Profiler Tables for Sample PL/SQL Procedure

■ Examples of Calls to DBMS_HPROF.analyze with Options

Hierarchical Profiler Database Table Columns
Table 9–4 describes the columns of the hierarchical profiler table DBMSHP_RUNS, which
contains one row of top-level information for each run of DBMS_HPROF.analyze.

The primary key for the hierarchical profiler table DBMSHP_RUNS is RUNID.

Table 9–4 DBMSHP_RUNS Table Columns

Column Name Column Datatype Column Contents

RUNID NUMBER PRIMARY KEY Unique identifier for this run of
DBMS_HPROF.analyze, generated
from DBMSHP_RUNNUMBER sequence.

RUN_TIMESTAMP TIMESTAMP Timestamp for this run of DBMS_
HPROF.analyze.

RUN_COMMENT VARCHAR2(2047) Comment that you provided for this
run of DBMS_HPROF.analyze.

Analyzing Profile Data

Using the PL/SQL Hierarchical Profiler 9-9

Table 9–5 describes the columns of the hierarchical profiler table DBMSHP_FUNCTION_
INFO, which contains one row of information for each subprogram profiled in this run
of DBMS_HPROF.analyze. If a subprogram is overloaded, Table 9–5 has a row for each
variation of that subprogram. Each variation has its own LINE# and HASH (see
"Distinguishing Between Overloaded Subprograms" on page 9-10).

The primary key for the hierarchical profiler table DBMSHP_FUNCTION_INFO is
RUNID, SYMBOLID.

TOTAL_ELAPSED_TIME INTEGER Total elapsed timefor this run of
DBMS_HPROF.analyze.

Table 9–5 DBMSHP_FUNCTION_INFO Table Columns

Column Name Column Datatype Column Contents

RUNID NUMBER References RUNID column of DBMSHP_
RUNS table. For a description of that
column, see Table 9–4.

SYMBOLID NUMBER Symbol identifier for subprogram
(unique for this run of DBMS_
HPROF.analyze).

OWNER VARCHAR2(32) Owner of module in which each
subprogram is defined (for example,
SYS or HR).

MODULE VARCHAR2(2047) Module in which subprogram is defined
(for example, DBMS_LOB, UTL_HTTP, or
MY_PACKAGE).

TYPE VARCHAR2(32) Type of module in which subprogram is
defined (for example, PACKAGE,
PACKAGE_BODY, or PROCEDURE).

FUNCTION VARCHAR2(4000) Name of subprogram (not necessarily a
function) (for example, INSERT_ORDER,
PROCESS_ITEMS, or TEST).

This name might be one of the "Special
Function Names" on page 9-6.

For subprogram B defined within
subprogram A, this name is A.B.

A recursive call to function X is denoted
X@n, where n is the recursion depth. For
example, X@1 is the first recursive call to
X.

LINE# NUMBER Line number in OWNER.MODULE at
which FUNCTION is defined.

HASH RAW(32) Hash code for signature of subprogram
(unique for this run of DBMS_
HPROF.analyze).

NAMESPACE VARCHAR2(32) Namespace of subprogram. For details,
see "Namespaces of Tracked
Subprograms" on page 9-6.

SUBTREE_ELAPSED_TIME INTEGER Elapsed time, in microseconds, for
subprogram, including time spent in
descendant subprograms.

Table 9–4 (Cont.) DBMSHP_RUNS Table Columns

Column Name Column Datatype Column Contents

Analyzing Profile Data

9-10 Oracle Database Advanced Application Developer's Guide

Table 9–6 describes the columns of the hierarchical profiler table DBMSHP_PARENT_
CHILD_INFO, which contains one row of parent-child information for each unique
parent-child subprogram combination profiled in this run of DBMS_HPROF.analyze.

Distinguishing Between Overloaded Subprograms
Overloaded subprograms are different subprograms with the same name (see Oracle
Database PL/SQL Language Reference).

Suppose that a program declares three subprograms named compute—the first at line
50, the second at line 76, and the third at line 100. In the DBMSHP_FUNCTION_INFO
table, each of these subprograms has compute in the FUNCTION column. To
distinguish between the three subprograms, use either the LINE# column (which has
50 for the first subprogram, 76 for the second, and 100 for the third) or the HASH
column (which has a unique value for each subprogram).

In the profile data for two different runs, the LINE# and HASH values for a function
might differ. The LINE# value of a function changes if you insert or delete lines before
the function definition. The HASH value changes only if the signature of the function
changes; for example, if you change the parameter list.

FUNCTION_ELAPSED_TIME INTEGER Elapsed time, in microseconds, for
subprogram, excluding time spent in
descendant subprograms.

CALLS INTEGER Number of calls to subprogram.

Table 9–6 DBMSHP_PARENT_CHILD_INFO_RUNS Table Columns

Column Name Column Datatype Column Contents

RUNID NUMBER References RUNID column of
DBMSHP_FUNCTION_INFO table. For
a description of that column, see
Table 9–5.

PARENTSYMID NUMBER Parent symbol ID.

RUNID, PARENTSYMID references
DBMSHP_FUNCTION_INFO(RUNID,
SYMBOLID).

CHILDSYMID VARCHAR2(32) Child symbol ID.

RUNID, CHILDSYMID references
DBMSHP_FUNCTION_INFO(RUNID,
SYMBOLID).

SUBTREE_ELAPSED_
TIME

INTEGER Elapsed time, in microseconds, for
RUNID, CHILDSYMID when called
from RUNID, PARENTSYMID,
including time spent in descendant
subprograms.

FUNCTION_ELAPSED_
TIME

INTEGER Elapsed time, in microseconds, for
RUNID, CHILDSYMID when called
from RUNID, PARENTSYMID,
excluding time spent in descendant
subprograms.

CALLS INTEGER Number of calls to RUNID,
CHILDSYMID from RUNID,
PARENTSYMID.

Table 9–5 (Cont.) DBMSHP_FUNCTION_INFO Table Columns

Column Name Column Datatype Column Contents

Analyzing Profile Data

Using the PL/SQL Hierarchical Profiler 9-11

Hierarchical Profiler Tables for Sample PL/SQL Procedure
The hierarchical profiler tables for the PL/SQL procedure test in "Collecting Profile
Data" on page 9-2 are shown in Example 9–3 through Example 9–5.

Example 9–3 DBMSHP_RUNS Table for Sample PL/SQL Procedure

RUNID RUN_TIMESTAMP TOTAL_ELAPSED_TIME RUN_COMMENT
1 10-APR-06 12.01.56.766743 PM 2637 First run of TEST

Example 9–4 DBMSHP_FUNCTION_INFO Table for Sample PL/SQL Procedure

RUNID SYMBOLID OWNER MODULE TYPE NAMESPACE FUNCTION
1 1 PLSQL __anonymous_block
1 2 PLSQL __plsql_vm
1 3 HR TEST PROCEDURE PLSQL TEST
1 4 HR TEST PROCEDURE PLSQL TEST.FOO
1 5 SYS DBMS_HPROF PACKAGE_BODY PLSQL STOP_PROFILING
1 6 HR TEST PROCEDURE SQL __static_sql_exec_line5

LINE# CALLS HASH SUBTREE_ELAPSED_TIME FUNCTION_ELAPSED_TIME
0 2 980980E97E42F8EC 2554 342
0 2 980980E97E42F8EC 2637 83
1 1 980980E97E42F8EC 2212 28
3 3 980980E97E42F8EC 2184 126
57 1 980980E97E42F8EC 0 0
5 3 980980E97E42F8EC 1998 1998

Example 9–5 DBMSHP_PARENT_CHILD_INFO Table for Sample PL/SQL Procedure

RUNID PARENTSYMID CHILDSYMID SUBTREE_ELAPSED_TIME FUNCTION_ELAPSED_TIME CALLS
1 2 1 2554 342 2
1 1 3 2212 28 1
1 3 4 2184 126 3
1 1 5 0 0 1
1 4 6 1998 1998 3

Consider the third row of the table DBMSHP_PARENT_CHILD_INFO (Example 9–5).
The RUNID column shows that this row corresponds to the first run. The columns
PARENTSYMID and CHILDSYMID show that the symbol IDs of the parent (caller) and
child (called subprogram) are 3 and 4, respectively. The table DBMSHP_FUNCTION_
INFO (Example 9–4) shows that for the first run, the symbol IDs 3 and 4 correspond to
procedures TEST and TEST.FOO, respectively. Therefore, the information in this row is
about calls from the procedure TEST to the procedure FOO (defined within TEST) in
the module HR.TEST. This row shows that, when called from the procedure TEST, the
function time for the procedure FOO is 126 microseconds, and the time spent in the
FOO subtree (including descendants) is 2184 microseconds.

Examples of Calls to DBMS_HPROF.analyze with Options
For an example of a call to DBMS_HPROF.analyze without options, see Example 9–2
on page 9-8.

The examples in this topic use the following sample package:

CREATE OR REPLACE PACKAGE pkg IS
 PROCEDURE myproc (in IN out NUMBER);
 FUNCTION myfunc (v VARCHAR2) RETURN VARCHAR2;
 FUNCTION myfunc (n PLS_INTEGER) RETURN PLS_INTEGER;
END PACKAGE;
/

Analyzing Profile Data

9-12 Oracle Database Advanced Application Developer's Guide

CREATE OR REPLACE PACKAGE BODY pkg IS
 PROCEDURE myproc (in IN out NUMBER) IS
 BEGIN
 n := n + 5;
 END;

 FUNCTION myfunc (v VARCHAR2) RETURN VARCHAR2 IS
 n NUMBER;
 BEGIN
 n := LENGTH(v);
 myproc(n);
 IF n > 20 THEN
 RETURN SUBSTR(v, 1, 20);
 ELSE
 RETURN v || '...';
 END IF;
 END;

 FUNCTION myfunc (n PLS_INTEGER) RETURN PLS_INTEGER IS
 i PLS_INTEGER;
 PROCEDURE myproc (in IN out PLS_INTEGER) IS
 BEGIN
 n := n + 1;
 END;
 BEGIN
 i := n;
 myproc(i);
 RETURN i;
 END;
END pkg;
/

In each of the following calls to DBMS_HRPROF.analyze, the raw profiler output file,
test.trc, is in the directory corresponding to the PLSHPROF_DIR directory object.

■ The following call analyzes only the subtrees rooted at the trace entry
"HR"."PKG"."MYPROC":

VARIABLE runid NUMBER;
BEGIN
 :runid := DBMS_HRPROF.analyze('PLSHPROF_DIR', 'test.trc',
 trace => '"HR"."PKG"."MYPROC"');
END;

■ The following call analyzes up to 20 calls to the subtrees rooted at the trace entry
"HR"."PKG"."MYFUNC". Because "HR"."PKG"."MYFUNC" is an overloaded
subprogram, both of its overloads are considered for analysis.

VARIABLE runid NUMBER;
BEGIN
 :runid := DBMS_HRPROF.analyze('PLSHPROF_DIR', 'test.trc',
 collect => 20,
 trace => '"HR"."PKG"."MYFUNC"');
END;

■ The following call analyzes the second call to the PL/SQL virtual machine:

VARIABLE runid NUMBER;
BEGIN
 :runid := DBMS_HRPROF.analyze('PLSHPROF_DIR', 'test.trc',
 skip => 1, collect => 1,

plshprof Utility

Using the PL/SQL Hierarchical Profiler 9-13

 trace => '"."".""__plsql_vm"');
END;

plshprof Utility
The plshprof command-line utility (located in the directory $ORACLE_HOME/bin/)
generates simple HTML reports from either one or two raw profiler output files. (For
an example of a raw profiler output file, see test.trc in "Collecting Profile Data" on
page 9-2.)

You can browse the generated HTML reports in any browser. The browser's
navigational capabilities, combined with well chosen links, provide a powerful way to
analyze performance of large applications, improve application performance, and
lower development costs.

Topics:

■ plshprof Options

■ HTML Report from a Single Raw Profiler Output File

■ HTML Difference Report from Two Raw Profiler Output Files

plshprof Options
The command to run the plshprof utility is:

plshprof [option...] profiler_output_filename_1 profiler_output_filename_2

Each option is one of the following:

Suppose that your raw profiler output file, test.trc, is in the current directory. You
want to analyze and generate HTML reports, and you want the root file of the HTML
report to be named report.html. Use the following command (% is the prompt):

% plshprof -output report test.trc

HTML Report from a Single Raw Profiler Output File
To generate a PL/SQL hierarchical profiler HTML report from a single raw profiler
output file, use these commands:

% cd target_directory
% plshprof -output html_root_filename profiler_output_filename

target_directory is the directory in which you want the HTML files to be created.

Option Description Default

-trace symbol Specifies function name of tree root Not applicable

-skip count Skips first count calls. Use only with
-trace symbol.

0

-collect count Collects information for count calls. Use
only with -trace symbol.

1

-output filename Specifies name of output file symbol.html or
tracefile1.html

-summary Prints only elapsed time None

-trace symbol Specifies function name of tree root Not applicable

plshprof Utility

9-14 Oracle Database Advanced Application Developer's Guide

html_root_filename is the name of the root HTML file to be created.

profiler_output_filename is the name of a raw profiler output file.

The preceding plshprof command generates a set of HTML files. Start browsing
them from html_root_filename.html.

Topics:

■ First Page of Report

■ Function-Level Reports

■ Module-Level Reports

■ Namespace-Level Reports

■ Parents and Children Report for a Function

First Page of Report
The first page of an HTML report from a single raw profiler output file includes
summary information and hyperlinks to other pages of the report.

Sample First Page
PL/SQL Elapsed Time (microsecs) Analysis

2831 microsecs (elapsed time) & 12 function calls

The PL/SQL Hierarchical Profiler produces a collection of reports that present
information derived from the profiler's output log in a variety of formats. The
following reports have been found to be the most generally useful as starting points
for browsing:

■ Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed Time
(microsecs)

■ Function Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

In addition, the following reports are also available:

■ Function Elapsed Time (microsecs) Data sorted by Function Name

■ Function Elapsed Time (microsecs) Data sorted by Total Descendants Elapsed
Time (microsecs)

■ Function Elapsed Time (microsecs) Data sorted by Total Function Call Count

■ Function Elapsed Time (microsecs) Data sorted by Mean Subtree Elapsed Time
(microsecs)

■ Function Elapsed Time (microsecs) Data sorted by Mean Function Elapsed Time
(microsecs)

■ Function Elapsed Time (microsecs) Data sorted by Mean Descendants Elapsed
Time (microsecs)

■ Module Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

■ Module Elapsed Time (microsecs) Data sorted by Module Name

■ Module Elapsed Time (microsecs) Data sorted by Total Function Call Count

■ Namespace Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

plshprof Utility

Using the PL/SQL Hierarchical Profiler 9-15

■ Namespace Elapsed Time (microsecs) Data sorted by Namespace

■ Namespace Elapsed Time (microsecs) Data sorted by Total Function Call Count

■ Parents and Children Elapsed Time (microsecs) Data

Function-Level Reports
The function-level reports provide a flat view of the profile information. Each
function-level report includes the following information for each function:

■ Function time (time spent in the function itself, also called "self time")

■ Descendants time (time spent in the descendants of the function)

■ Subtree time (time spent in the subtree of the function—function time plus
descendants time)

■ Number of calls to the function

■ Function name

The function name is hyperlinked to the Parents and Children Report for the
function.

Each function-level report is sorted on a particular attribute; for example, function
time or subtree time.

The following sample report is sorted in descending order of the total subtree elapsed
time for the function, which is why information in the Subtree and Ind% columns is in
bold type.

Sample Report
Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed Time
(microsecs)

2831 microsecs (elapsed time) & 12 function calls

Module-Level Reports
Each module-level report includes the following information for each module (for
example, package or type):

■ Module time (time spent in the module—sum of the function times of all functions
in the module)

■ Number of calls to functions in the module

Each module-level report is sorted on a particular attribute; for example, module time
or module name.

Subtree Ind% Function Descendant Ind% Calls Ind% Function Name

2831 100% 93 2738 96.7% 2 16.7% __plsq_vm

2738 96.7% 310 2428 85.8% 2 16.7% __anonymous_block

2428 85.8% 15 2413 85.2% 1 8.3% HR.TEST.TEST (Line 1)

2413 85.2% 435 1978 69.9% 3 25.0% HR.TEST.TEST.FOO (Line 3)

1978 69.9% 1978 0 0.0% 3 25.0% HR.TEST.__static_sql_exec_
line5 (Line 5)

0 0.0% 0 0 0.0% 1 8.3% SYS.DBMS_HPROF.STOP_
PROFILING (Line 53)

plshprof Utility

9-16 Oracle Database Advanced Application Developer's Guide

The following sample report is sorted by module time, which is why information in
the Module, Ind%, and Cum% columns is in bold type.

Sample Report
Module Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

166878 microsecs (elapsed time) & 1099 function calls

Namespace-Level Reports
Each namespace-level report includes the following information for each namespace:

■ Namespace time (time spent in the namespace—sum of the function times of all
functions in the namespace)

■ Number of calls to functions in the namespace

Each namespace-level report is sorted on a particular attribute; for example,
namespace time or number of calls to functions in the namespace.

The following sample report is sorted by function time, which is why information in
the Function, Ind%, and Cum% columns is in bold type.

Sample Report
Namespace Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

166878 microsecs (elapsed time) & 1099 function calls

Parents and Children Report for a Function
For each function tracked by the profiler, the Parents and Children Report provides
information about parents (functions that call it) and children (functions that it calls).
For each parent, the report gives the function's execution profile (subtree time,
function time, descendants time, and number of calls). For each child, the report gives
the execution profile for the child when called from this function (but not when called
from other functions).

The execution profile for a function includes the same information for that function as
a function-level report includes for each function (for details, see "Function-Level
Reports" on page 9-15).

Module Ind% Cum% Calls Ind% Module Name

84932 50.9% 50.9% 6 0.5% HR.P

67749 40.6% 91.5% 216 19.7% SYS.DBMS_LOB

13340 8.0% 99.5% 660 60.1% SYS.UTL_FILE

839 0.5% 100% 214 19.5% SYS.UTL_RAW

18 0.0% 100% 2 0.2% HR.UTILS

0 0.0% 100% 1 0.1% SYS.DBMS_HPROF

Function Ind% Cum% Calls Ind% Namespace

93659 56.1% 56.1% 1095 99.6% PLSQL

73219 43.9% 100% 4 0.4% SQL

plshprof Utility

Using the PL/SQL Hierarchical Profiler 9-17

The following Sample Report is a fragment of a Parents and Children Report that
corresponds to a function named HR.P.UPLOAD. The first row has the following
summary information:

■ There are two calls to the function HR.P.UPLOAD.

■ The total subtree time for the function is 166,860 microseconds—11,713
microseconds (7.0%) in the function itself and 155,147 microseconds (93.0%) in its
descendants.

After the row "Parents" are the execution profile rows for the two parents of
HR.P.UPLOAD, which are HR.UTILS.COPY_IMAGE and HR.UTILS.COPY_FILE.

The first parent execution profile row, for HR.UTILS.COPY_IMAGE, shows the
following:

■ HR.UTILS.COPY_IMAGE calls HR.P.UPLOAD once, which is 50% of the number of
calls to HR.P.UPLOAD.

■ The subtree time for HR.P.UPLOAD when called from HR.UTILS.COPY_IMAGE is
106,325 microseconds, which is 63.7% of the total subtree time for HR.P.UPLOAD.

■ The function time for HR.P.UPLOAD when called from HR.UTILS.COPY_IMAGE is
6,434 microseconds, which is 54.9% of the total subtree time for HR.P.UPLOAD.

After the row "Children" are the execution profile rows for the children of
HR.P.UPLOAD when called from HR.P.UPLOAD.

The third child execution profile row, for SYS.UTL_FILE.GET_RAW, shows the
following:

■ HR.P.UPLOAD calls SYS.UTL_FILE.GET_RAW 216 times.

■ The subtree time, function time and descendants time for SYS.UTL_FILE.GET_
RAW when called from HR.P.UPLOAD are 12,487 microseconds, 3,969 microseconds,
and 8,518 microseconds, respectively.

■ Of the total descendants time for HR.P.UPLOAD (155,147 microseconds), the child
SYS.UTL_FILE.GET_RAW is responsible for 12,487 microsecs (8.0%).

Sample Report
HR.P.UPLOAD (Line 3)

Subtree Ind% Function Ind% Descendant Ind% Calls Ind% Function Name

166860 100% 11713 7.0% 155147 93.0% 2 0.2% HR.P.UPLOAD
(Line 3)

Parents:

106325 63.7% 6434 54.9% 99891 64.4% 1 50.0% HR.UTILS.COPY_
IMAGE (Line 3)

60535 36.3% 5279 45.1% 55256 35.6% 1 50.0% HR.UTILS.COPY_
FILE (Line 8))

Children:

71818 46.3% 71818 100% 0 N/A 2 100% HR.P.__static_sql_
exec_line38 (Line 38)

67649 43.6% 67649 100% 0 N/A 214 100% SYS.DBMS_
LOB.WRITEAPPEN
D (Line 926)

plshprof Utility

9-18 Oracle Database Advanced Application Developer's Guide

HTML Difference Report from Two Raw Profiler Output Files
To generate a PL/SQL hierarchical profiler HTML difference report from two raw
profiler output files, use these commands:

% cd target_directory
% plshprof -output html_root_filename profiler_output_filename_1 profiler_output_filename_2

target_directory is the directory in which you want the HTML files to be created.

html_root_filename is the name of the root HTML file to be created.

profiler_output_filename_1 and profiler_output_filename_2 are the
names of raw profiler output files.

The preceding plshprof command generates a set of HTML files. Start browsing
them from html_root_filename.html.

Topics:

■ Difference Report Conventions

■ First Page of Difference Report

■ Function-Level Difference Reports

■ Module-Level Difference Reports

■ Namespace-Level Difference Reports

■ Parents and Children Difference Report for a Function

Difference Report Conventions
Difference reports use the following conventions:

■ In a report title, Delta means difference, or change.

■ A positive value indicates that the number increased (regressed) from the first run
to the second run.

■ A negative value for a difference indicates that the number decreased (improved)
from the first run to the second run.

12487 8.0% 3969 100% 8518 100% 216 100% SYS.UTL_FILE.GET_
RAW (Line 1089)

1401 0.9% 1401 100% 0 N/A 2 100% HR.P.__static_sql_
exec_line39 (Line 39)

839 0.5% 839 100% 0 N/A 214 100% SYS.UTL_FILE.GET_
RAW (Line 246)

740 0.5% 73 100% 667 100% 2 100% SYS.UTL_
FILE.FOPEN (Line
422)

113 0.1% 11 100% 102 100% 2 100% SYS.UTL_
FILE.FCLOSE (Line
585)

100 0.1% 100 100% 0 N/A 2 100% SYS.DBMS_
LOB.CREATETEMP
ORARY (Line 536)

Subtree Ind% Function Ind% Descendant Ind% Calls Ind% Function Name

plshprof Utility

Using the PL/SQL Hierarchical Profiler 9-19

■ The symbol # after a function name means that the function was called in only one
of the two runs.

First Page of Difference Report
The first page of an HTML difference report from two raw profiler output files
includes summary information and hyperlinks to other pages of the report.

Sample First Page
PL/SQL Elapsed Time (microsecs) Analysis – Summary Page

This analysis finds a net regression of 2709589 microsecs (elapsed time) or 80%
(3393719 versus 6103308). Here is a summary of the 7 most important individual
function regressions and improvements:

Regressions: 3399382 microsecs (elapsed time)

Improvements: 689793 microsecs (elapsed time)

The PL/SQL Timing Analyzer produces a collection of reports that present
information derived from the profiler's output logs in a variety of formats. The
following reports have been found to be the most generally useful as starting points
for browsing:

■ Function Elapsed Time (microsecs) Data for Performance Regressions

■ Function Elapsed Time (microsecs) Data for Performance Improvements

In addition, the following reports are also available:

■ Function Elapsed Time (microsecs) Data sorted by Function Name

■ Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed Time
(microsecs) Delta

■ Function Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs) Delta

■ Function Elapsed Time (microsecs) Data sorted by Total Descendants Elapsed
Time (microsecs) Delta

■ Function Elapsed Time (microsecs) Data sorted by Total Function Call Count Delta

■ Module Elapsed Time (microsecs) Data sorted by Module Name

■ Module Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs) Delta

Function Rel% Ind% Calls Rel% Function Name

2075627 +941% 61.1% 0 HR.P.G (Line 35)

1101384 +54.6% 32.4% 5 +55.6% HR.P.H (Line 18)

222371 6.5% 1 HR.P.J (Line 10)

Function Rel% Ind% Calls Rel% Function Name

-467051 -50.0% 67.7% -2 -50.0% HR.P.F (Line 25)

-222737 32.3% -1 HR.P.I (Line 2)#

-5 -21.7% 0.0% 0 HR.P.TEST (Line 46)

plshprof Utility

9-20 Oracle Database Advanced Application Developer's Guide

■ Module Elapsed Time (microsecs) Data sorted by Total Function Call Count Delta

■ Namespace Elapsed Time (microsecs) Data sorted by Namespace

■ Namespace Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

■ Namespace Elapsed Time (microsecs) Data sorted by Total Function Call Count

■ File Elapsed Time (microsecs) Data Comparison with Parents and Children

Function-Level Difference Reports
Each function-level difference report includes, for each function, the change in the
following from the first run to the second run:

■ Function time (time spent in the function itself, also called "self time")

■ Descendants time (time spent in the descendants of the function)

■ Subtree time (time spent in the subtree of the function—function time plus
descendants time)

■ Number of calls to the function

■ Mean function time

The mean function time is the function time divided by number of calls to the
function.

■ Function name

The function name is hyperlinked to the Parents and Children Difference Report
for the function.

The report in Sample Report 1 shows the difference information for all functions that
performed better in the first run than they did in the second run. Note the following:

■ For HR.P.G, the function time increased by 2,075,627 microseconds (941%), which
accounts for 61.1% of all regressions.

■ For HR.P.H, the function time and number of calls increased by 1,101,384
microseconds (54.6%) and 5 (55.6%), respectively, but the mean function time
improved by 1,346 microseconds (-0.6%).

■ HR.P.J was called in only one of the two runs.

Sample Report 1
Function Elapsed Time (microsecs) Data for Performance Regressions

The report in Sample Report 2 shows the difference information for all functions that
performed better in the second run than they did in the first run.

Sample Report 2
Function Elapsed Time (microsecs) Data for Performance Improvements

Subtree Function Rel% Ind% Cum% Descendant Calls Rel% Mean Function Rel% Function Name

4075787 2075627 +941% 61.1% 61.1% 2000160 0 2075627 +941% HR.P.G (Line 35)

1101384 1101384 +54.6% 32.4% 93.5% 0 5 +55.6% -1346 -0.6% HR.P.H (Line 18)

222371 222371 6.5% 100% 0 1 HR.P.J (Line 10)#

plshprof Utility

Using the PL/SQL Hierarchical Profiler 9-21

The report in Sample Report 3 summarizes the difference information for all functions.

Sample Report 3
Function Elapsed Time (microsecs) Data sorted by Total Function Call Count Delta

Module-Level Difference Reports
Each module-level report includes, for each module, the change in the following from
the first run to the second run:

■ Module time (time spent in the module—sum of the function times of all functions
in the module)

■ Number of calls to functions in the module

Sample Report
Module Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs) Delta

Namespace-Level Difference Reports
Each namespace-level report includes, for each namespace, the change in the following
from the first run to the second run:

■ Namespace time (time spent in the namespace—sum of the function times of all
functions in the namespace)

■ Number of calls to functions in the namespace

Sample Report
Namespace Elapsed Time (microsecs) Data sorted by Namespace

Subtree Function Rel% Ind% Cum% Descendant Calls Rel% Mean Function Rel% Function Name

-1365827 -467051 -50.0% 67.7% 67.7% -898776 -2 -50.0% -32 0.0% HR.P.F (Line 25)

-222737 -222737 32.3% 100% 0 -1 HR.P.I (Line 2)

2709589 -5 -21.7% 0.0% 100% 2709594 0 -5 -20.8 HR.P.TEST (Line 46)#

Subtree Function Rel% Ind% Descendant Calls Rel% Mean Function Rel% Function Name

1101384 1101384 +54.6% 32.4% 0 5 +55.6% -1346 -0.6% HR.P.H (Line 18)

-1365827 -467051 +50.0% 67.7% -898776 -2 -50.0% -32 -0.0% HR.P.F (Line 25)

-222377 -222377 32.3% 0 -1 HR.P.I (Line 2)#

222371 222371 6.5% 0 1 HR.P.J(Line 10)#

4075787 2075627 +941% 61.1% 2000160 0 2075627 +941% HR.P.G (Line 35)

2709589 -5 -21.7% 0.0% 2709594 0 -5 -20.8% HR.P.TEST (Line 46)

0 0 0 0 SYS.DBMS_HPROF.STOP_
PROFILING (Line 53)

Module Calls Module Name

2709589 3 HR.P

0 0 SYS.DBMS_HPROF

plshprof Utility

9-22 Oracle Database Advanced Application Developer's Guide

Parents and Children Difference Report for a Function
The Parents and Children Difference Report for a function shows changes in the
execution profiles of the following from the first run to the second run:

■ Parents (functions that call the function)

■ Children (functions that the function calls)

Execution profiles for children include only information from when this function
calls them, not for when other functions call them.

The execution profile for a function includes the following information:

■ Function time (time spent in the function itself, also called "self time")

■ Descendants time (time spent in the descendants of the function)

■ Subtree time (time spent in the subtree of the function—function time plus
descendants time)

■ Number of calls to the function

■ Function name

The following example is a fragment of a Parents and Children Difference Report that
corresponds to a function named HR.P.X.

The first row, a summary of the difference between the first and second runs, shows
regression: function time increased by 1,094,099 microseconds (probably because the
function was called five more times).

The "Parents" rows show that HR.P.G called HR.P.X nine more times in the second run
than it did in the first run, while HR.P.F called it four fewer times.

The "Children" rows show that HR.P.X called each child five more times in the second
run than it did in the first run.

Sample Report
HR.P.X (Line 11)

The Parents and Children Difference Report for a function is accompanied by a
Function Comparison Report, which shows the execution profile of the function for the
first and second runs and the difference between them. The following example is the
Function Comparison Report for the function HR.P.X.

Function Calls Namespace

2709589 3 PLSQL

Subtree Function Descendant Calls Function Name

3322196 1094099 2228097 5 HR.P.X (Line 11)

Parents:

6037490 1993169 4044321 9 HR.P.G (Line 38)

-2715294 -899070 -1816224 -4 HR.P.F (Line 28)

Children:

1125489 1125489 0 5 HR.P.J (Line 10)

1102608 1102608 0 5 HR.P.I (Line 2)

plshprof Utility

Using the PL/SQL Hierarchical Profiler 9-23

Sample Report
Elapsed Time (microsecs) for HR.P.X (Line 11) (20.1% of total regression)

HR.P.X (Line 11)
First
Trace Ind%

Second
Trace Ind% Diff Diff%

Function Elapsed Time (microsecs) 1999509 26.9% 3093608 24.9% 1094099 +54.7%

Descendants Elapsed Time
(microsecs)

4095943 55.1% 6324040 50.9% 2228097 +54.4%

Subtree Elapsed Time (microsecs) 6095452 81.9% 9417648 75.7% 3322196 +54.5%

Function Calls 9 25.0% 14 28.6% 5 +55.6%

Mean Function Elapsed Time
(microsecs)

222167.7 220972.0 -1195.7 -0.5%

Mean Descendants Elapsed Time
(microsecs)

455104.8 451717.1 -3387.6 -0.7%

Mean Subtree Elapsed Time
(microsecs)

677272.4 672689.1 -4583.3 -0.7%

plshprof Utility

9-24 Oracle Database Advanced Application Developer's Guide

Developing PL/SQL Web Applications 10-1

10
Developing PL/SQL Web Applications

This chapter explains how to develop PL/SQL Web applications, which let you make
your database available on the intranet.

Topics:

■ Overview of PL/SQL Web Applications

■ Implementing PL/SQL Web Applications

■ Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application

■ Using Embedded PL/SQL Gateway

■ Generating HTML Output with PL/SQL

■ Passing Parameters to PL/SQL Web Applications

■ Performing Network Operations in PL/SQL Stored Subprograms

Overview of PL/SQL Web Applications
Typically, a Web application written in PL/SQL is a set of stored subprograms that
interact with Web browsers through HTTP. A set of interlinked, dynamically generated
HTML pages forms the user interface of a web application.

The program flow of a PL/SQL Web application is similar to that in a CGI Perl script.
Developers often use CGI scripts to produce Web pages dynamically, but such scripts
are often not optimal for accessing Oracle Database. Delivering Web content with
PL/SQL stored subprograms provides the power and flexibility of database
processing. For example, you can use DML, dynamic SQL, and cursors. You also
eliminate the process overhead of forking a new CGI process to handle each HTTP
request.

Figure 10–1 illustrates the generic process for a PL/SQL Web application.

Implementing PL/SQL Web Applications

10-2 Oracle Database Advanced Application Developer's Guide

Figure 10–1 PL/SQL Web Application

The process includes the following steps:

1. A user visits a Web page, follows a hypertext link, or submits data in a form,
which causes the browser to send a HTTP request for a URL to an HTTP server.

2. The HTTP server calls a stored subprogram on an Oracle database according to
the data encoded in the URL. The data in the URL takes the form of parameters to
be passed to the stored subprogram.

3. The stored subprogram invokes subprograms in the PL/SQL Web Toolkit.
Typically, subprograms such as HTP.Print generate Web pages dynamically. A
generated Web page varies depending on the database contents and the input
parameters.

4. The subprograms pass the dynamically generated page to the Web server.

5. The Web server delivers the page to the client.

Implementing PL/SQL Web Applications
You can implement a Web browser-based application entirely in PL/SQL with the
following Oracle Database components:

■ PL/SQL Gateway

■ PL/SQL Web Toolkit

PL/SQL Gateway
The PL/SQL gateway enables a Web browser to invoke a PL/SQL stored subprogram
through an HTTP listener. The gateway is a platform on which PL/SQL users develop
and deploy PL/SQL Web applications.

mod_plsql
mod_plsql is one implementation of the PL/SQL gateway. The module is a plug-in of
Oracle HTTP Server and enables Web browsers to invoke PL/SQL stored
subprograms. Oracle HTTP Server is a component of both Oracle Application Server
and Oracle Database.

Web
Server

Stored
Procedure

Web
Browser

PL/SQL
Web

Toolkit

324

5

1

Implementing PL/SQL Web Applications

Developing PL/SQL Web Applications 10-3

The mod_plsql plug-in enables you to use PL/SQL stored subprograms to process
HTTP requests and generate responses. In this context, an HTTP request is a URL that
includes parameter values to be passed to a stored subprogram. PL/SQL gateway
translates the URL, invokes the stored subprogram with the parameters, and returns
output (typically HTML) to the client.

Some of the advantages of using mod_plsql over the embedded form of the PL/SQL
gateway are as follows:

■ You can run it in a firewall environment in which the Oracle HTTP Server runs on
a firewall-facing host while the database is hosted behind a firewall. You cannot
use this configuration with the embedded gateway.

■ The embedded gateway does not support mod_plsql features such as dynamic
HTML caching, system monitoring, and logging in the Common Log Format.

Embedded PL/SQL Gateway
You can use an embedded version of the PL/SQL gateway that runs in the XML DB
HTTP Listener in the Oracle database. It provides the core features of mod_plsql in
the database but does not require the Oracle HTTP Server. You configure the
embedded PL/SQL gateway with the DBMS_EPG package in the PL/SQL Web Toolkit.

Some of the advantages of using the embedded gateway over mod_plsql are as
follows:

■ You can invoke PL/SQL Web applications such as Application Express without
the need to install Oracle HTTP Server, thereby simplifying installation,
configuration, and administration of PL/SQL based Web applications.

■ You use the same configuration approach that is currently used to deliver content
from Oracle XML DB in response to FTP and HTTP requests.

PL/SQL Web Toolkit
This set of PL/SQL packages is a generic interface that enables you to use stored
subprograms invoked by mod_plsql at run time.

In response to a browser request, a PL/SQL subprogram updates or retrieves data
from Oracle Database according to the user input. It then generates an HTTP response
to the browser, typically in the form of a file download or HTML to be displayed. The
Web Toolkit API enables stored subprograms to perform actions such as the following:

■ Obtain information about an HTTP request

■ Generate HTTP headers such as content-type and mime-type

■ Set browser cookies

■ Generate HTML pages

Table 10–1 describes commonly used PL/SQL Web Toolkit packages.

Table 10–1 Commonly Used Packages in the PL/SQL Web Toolkit

Package Description of Contents

HTF Function versions of the subprograms in the htp package. The function
versions do not directly generate output in a Web page. Instead, they pass
their output as return values to the statements that invoke them. Use these
functions when you need to nest function calls.

HTP Subprograms that generate HTML tags. For example, the procedure
htp.anchor generates the HTML anchor tag, <A>.

Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application

10-4 Oracle Database Advanced Application Developer's Guide

Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web
Application

As explained in detail in the Oracle HTTP Server mod_plsql User's Guide, mod_plsql
maps Web client requests to PL/SQL stored subprograms over HTTP. See this
documentation for instructions.

OWA_CACHE Subprograms that enable the PL/SQL gateway cache feature to improve
performance of your PL/SQL Web application.

You can use this package to enable expires-based and validation-based
caching with the PL/SQL gateway file system.

OWA_COOKIE Subprograms that send and retrieve HTTP cookies to and from a client Web
browser. Cookies are strings a browser uses to maintain state between HTTP
calls. State can be maintained throughout a client session or longer if a cookie
expiration date is included.

OWA_CUSTOM The authorize function used by cookies.

OWA_IMAGE Subprograms that obtain the coordinates where a user clicked an image. Use
this package when you have an image map whose destination links invoke a
PL/SQL gateway.

OWA_OPT_LOCK Subprograms that impose database optimistic locking strategies to prevent
lost updates. Lost updates can otherwise occur if a user selects, and then
attempts to update, a row whose values were changed in the meantime by
another user.

OWA_PATTERN Subprograms that perform string matching and string manipulation with
regular expressions.

OWA_SEC Subprograms used by the PL/SQL gateway for authenticating requests.

OWA_TEXT Subprograms used by package OWA_PATTERN for manipulating strings. You
can also use them directly.

OWA_UTIL The following types of utility subprograms:

■ Dynamic SQL utilities to produce pages with dynamically generated
SQL code.

■ HTML utilities to retrieve the values of CGI environment variables and
perform URL redirects.

■ Date utilities for correct date-handling. Date values are simple strings in
HTML, but must be properly treated as an Oracle Database datatype.

WPG_DOCLOAD Subprograms that download documents from a document repository that
you define using the DAD configuration.

See Also: Oracle Database PL/SQL Packages and Types Reference for
syntax, descriptions, and examples for the PL/SQL Web Toolkit
packages

See Also:

■ Oracle HTTP Server mod_plsql User's Guide to learn how to
configure and use mod_plsql

■ Oracle Fusion Middleware Administrator's Guide for Oracle HTTP
Server to obtain mod_plsql reference material

Table 10–1 (Cont.) Commonly Used Packages in the PL/SQL Web Toolkit

Package Description of Contents

Using Embedded PL/SQL Gateway

Developing PL/SQL Web Applications 10-5

Using Embedded PL/SQL Gateway
The embedded gateway functions very similar to the mod_plsql gateway. Before
using the embedded version of the gateway, familiarize yourself with the Oracle HTTP
Server mod_plsql User's Guide. Much of the information is the same or similar.

Topics:

■ How Embedded PL/SQL Gateway Processes Client Requests

■ Installing Embedded PL/SQL Gateway

■ Configuring Embedded PL/SQL Gateway

■ Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL Gateway

■ Securing Application Access with Embedded PL/SQL Gateway

■ Restrictions in Embedded PL/SQL Gateway

■ Using Embedded PL/SQL Gateway: Scenario

How Embedded PL/SQL Gateway Processes Client Requests
Figure 10–2 illustrates the process by which the embedded gateway handles client
HTTP requests.

Figure 10–2 Processing Client Requests with Embedded PL/SQL Gateway

The explanation of the steps in Figure 10–2 is as follows:

1. The Oracle XML DB HTTP Listener receives a request from a client browser to
request to invoke a PL/SQL subprogram. The subprogram can either be written

Web
Server

Embedded
PL/SQL
Gateway

Authentication

Web
Browser

Web
Browser

Web
Browser

4

PL/SQL
Web

Toolkit

5

327

8

1

Oracle
XDB
HTTP
Listener

User-level
caching in
browser

PL/SQL
Application

6

Using Embedded PL/SQL Gateway

10-6 Oracle Database Advanced Application Developer's Guide

directly in PL/SQL or indirectly generated when a PL/SQL Server Page is
uploaded to the database and compiled.

2. The XML DB HTTP Listener routes the request to the embedded PL/SQL gateway
as specified in its virtual-path mapping configuration.

3. The embedded gateway uses the HTTP request information and the gateway
configuration to determine which database account to use for authentication.

4. The embedded gateway prepares the call parameters and invokes the PL/SQL
subprogram in the application.

5. The PL/SQL subprogram generates an HTML page out of relational data and the
PL/SQL Web Toolkit accessed from the database.

6. The application sends the page to the embedded gateway.

7. The embedded gateway sends the page to the XML DB HTTP Listener.

8. The XML DB HTTP Listener sends the page to the client browser.

Unlike mod_plsql, the embedded gateway processes HTTP requests with the Oracle
XML DB Listener. This listener is the same server-side process as the Oracle Net
Listener and supports Oracle Net Services, HTTP, and FTP.

Configure general HTTP listener settings through the XML DB interface, which is
described in Oracle XML DB Developer's Guide. Configure the HTTP listener either by
using Oracle Enterprise Manager or by editing the xdbconfig.xml file. Use the
DBMS_EPG package for all embedded PL/SQL gateway configuration, for example,
creating or setting attributes for a DAD.

Installing Embedded PL/SQL Gateway
The embedded gateway requires the following components:

■ XML DB HTTP Listener

■ PL/SQL Web Toolkit

The embedded PL/SQL gateway is installed as part of Oracle XML DB. If you are
using a preconfigured database created during an installation or by the Database
Configuration Assistant (DBCA), then Oracle XML DB is already installed and
configured. For information about manually adding Oracle XML DB to an existing
database, see Oracle XML DB Developer's Guide.

The PL/SQL Web Toolkit is part of the standard installation of Oracle Database, so no
supplementary installation is necessary.

Configuring Embedded PL/SQL Gateway
You configure mod_plsql by editing the Oracle HTTP Server configuration files.
Because the embedded gateway is installed as part of the Oracle XML DB HTTP
Listener, you manage the embedded gateway as a servlet through the Oracle XML DB
servlet management interface.

The configuration interface to the embedded gateway is the PL/SQL package DBMS_
EPG. This package modifies the underlying xdbconfig.xml configuration file that
XML DB uses. The default values of the embedded gateway configuration parameters
are sufficient for most users.

This section contains the following topics:

■ Configuring Embedded PL/SQL Gateway: Overview

Using Embedded PL/SQL Gateway

Developing PL/SQL Web Applications 10-7

■ Configuring User Authentication for Embedded PL/SQL Gateway

Configuring Embedded PL/SQL Gateway: Overview
As in mod_plsql, each request for a PL/SQL stored subprogram is associated with a
Database Access Descriptor (DAD). A DAD is a set of configuration values used for
database access. A DAD specifies information such as:

■ The database account to use for authentication

■ The subprogram to use for uploading and downloading documents

In the embedded PL/SQL gateway, a DAD is represented as a servlet in the XML DB
HTTP Listener configuration. Each DAD attribute maps to an XML element in the
configuration file xdbconfig.xml. The value of the DAD attribute corresponds to the
element content. For example, the database-username DAD attribute corresponds
to the <database-username> XML element; if the value of the DAD attribute is HR
it corresponds to <database-username>HR<database-username>. Note that
DAD attribute names are case-sensitive.

Use the DBMS_EPG package to perform the following embedded PL/SQL gateway
configurations:

1. Create a new DAD with the DBMS_EPG.CREATE_DAD procedure.

2. Set DAD attributes with the DBMS_EPG.SET_DAD_ATTRIBUTE procedure. Note
that all DAD attributes are optional. If you do not specify an attribute, then the
default value is used.

Table 10–2 lists the embedded PL/SQL gateway attributes and the corresponding
mod_plsql DAD parameters. Note that all enumeration values in the "Legal Values"
column are case-sensitive.

Table 10–2 Mapping Between mod_plsql and Embedded PL/SQL Gateway DAD Attributes

mod_plsql DAD Attribute
Embedded PL/SQL Gateway
DAD Attribute

Multiple
Occurr. Legal Values

PlsqlAfterProcedure after-procedure No String

PlsqlAlwaysDescribeProcedure always-describe-procedure No Enumeration of On, Off

PlsqlAuthenticationMode authentication-mode No Enumeration of Basic, SingleSignOn,
GlobalOwa, CustomOwa,
PerPackageOwa

PlsqlBeforeProcedure before-procedure No String

PlsqlBindBucketLengths bind-bucket-lengths Yes Unsigned integer

PlsqlBindBucketWidths bind-bucket-widths Yes Unsigned integer

PlsqlCGIEnvironmentList cgi-environment-list Yes String

PlsqlCompatibilityMode compatibility-mode No Unsigned integer

PlsqlDatabaseUsername database-username No String

PlsqlDefaultPage default-page No String

PlsqlDocumentPath document-path No String

PlsqlDocumentProcedure document-procedure No String

PlsqlDocumentTablename document-table-name No String

PlsqlErrorStyle error-style No Enumeration of ApacheStyle,
ModplsqlStyle, DebugStyle

PlsqlExclusionList exclusion-list Yes String

PlsqlFetchBufferSize fetch-buffer-size No Unsigned integer

Using Embedded PL/SQL Gateway

10-8 Oracle Database Advanced Application Developer's Guide

The embedded gateway assumes default values when the attributes are not set. The
default values of the DAD attributes are sufficient for most users of the embedded
gateway. mod_plsql users do not need the following attributes:

■ PlsqlDatabasePassword

■ PlsqlDatabaseConnectString (because the embedded gateway does not
support logon to external databases)

Like the DAD attributes, the global configuration parameters are optional. Table 10–3
describes the DBMS_EPG global attributes and the corresponding mod_plsql global
parameters.

PlsqlInfoLogging info-logging No Enumeration of InfoDebug

PlsqlInputFilterEnable input-filter-enable No String

PlsqlMaxRequestsPerSession max-requests-per-session No Unsigned integer

PlsqlNLSLanguage nls-language No String

PlsqlOWADebugEnable owa-debug-enable No Enumeration of On, Off

PlsqlPathAlias path-alias No String

PlsqlPathAliasProcedure path-alias-procedure No String

PlsqlRequestValidationFuncti
on

request-validation-functi
on

No String

PlsqlSessionCookieName session-cookie-name No String

PlsqlSessionStateManagement session-state-management No Enumeration of
StatelessWithResetPackageState,
StatelessWithFastRestPackageState,
StatelessWithPreservePackageState

PlsqlTransferMode transfer-mode No Enumeration of Char, Raw

PlsqlUploadAsLongRaw upload-as-long-raw No String

Table 10–3 Mapping Between mod_plsql and Embedded PL/SQL Gateway Global Attributes

mod_plsql DAD Attribute
Embedded PL/SQL Gateway
DAD Attribute

Multiple
Occurr. Legal Values

PlsqlLogLevel log-level No Unsigned integer

PlsqlMaxParameters max-parameters No Unsigned integer

See Also:

■ Oracle Fusion Middleware Administrator's Guide for Oracle HTTP
Server for detailed descriptions of the mod_plsql DAD attributes.
See this documentation for default values and usage notes.

■ Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_EPG package

■ Oracle XML DB Developer's Guide for an account of the
xdbconfig.xml file

Table 10–2 (Cont.) Mapping Between mod_plsql and Embedded PL/SQL Gateway DAD Attributes

mod_plsql DAD Attribute
Embedded PL/SQL Gateway
DAD Attribute

Multiple
Occurr. Legal Values

Using Embedded PL/SQL Gateway

Developing PL/SQL Web Applications 10-9

Configuring User Authentication for Embedded PL/SQL Gateway
Because it uses the XML DB authentication schemes, the embedded gateway handles
database authentication differently from mod_plsql. In particular, it does not store
database passwords in a DAD.

Use the DBMS_EPG package to configure database authentication. This section contains
the following topics:

■ Configuring Static Authentication with DBMS_EPG

■ Configuring Dynamic Authentication with DBMS_EPG

■ Configuring Anonymous Authentication with DBMS_EPG

■ Determining the Authentication Mode of a DAD

■ Creating and Configuring DADs: Example

■ Determining the Authentication Mode for a DAD: Example

■ Determining the Authentication Mode for All DADs: Example

■ Showing DAD Authorizations that Are Not in Effect: Example

■ Examining Embedded PL/SQL Gateway Configuration

Configuring Static Authentication with DBMS_EPG Static authentication is for the mod_
plsql user who stores database usernames and passwords in the DAD so that the
browser user is not required to enter database authentication information.

To set up static authentication, follow these steps:

1. Log on to the database as an XML DB administrator, that is, a user with the
XDBADMIN role assigned. For example:

CONNECT SYSTEM/password

2. Create the DAD. For example, the following procedure creates a DAD invoked
HR_DAD and maps the virtual path to /hrweb/:

EXEC DBMS_EPG.CREATE_DAD('HR_DAD', '/hrweb/*');

3. For this step, you need the ALTER ANY USER system privilege. Set the DAD
attribute database-username to the database account whose privileges must be
used by the DAD. For example, the following procedure specifies that the DAD
named HR_DAD has the privileges of the HR account:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('HR_DAD', 'database-username', 'HR');

Note that the DAD attribute database-username is case sensitive.

4. Assign the DAD the privileges of the database user specified in the previous step.
This authorization enables end users to invoke procedures and access document
tables through the embedded PL/SQL gateway with the privileges of the
authorized account. For example:

EXEC DBMS_EPG.AUTHORIZE_DAD('HR_DAD', 'HR');

Note: If you want to serve a PL/SQL Web application on the Internet
but maintain Oracle Database behind a firewall, then you cannot use
the embedded PL/SQL gateway to run the application. You must use
mod_plsql instead.

Using Embedded PL/SQL Gateway

10-10 Oracle Database Advanced Application Developer's Guide

Alternatively, you can log off as the user with XDBADMIN privileges, log on as the
database user whose privileges must be used by the DAD, and then assign these
privileges to the DAD. For example:

CONNECT HR/password
EXEC DBMS_EPG.AUTHORIZE_DAD('HR_DAD');

Note that multiple users can authorize the same DAD. The database-username
attribute setting of the DAD determines which user's privileges to use.

Unlike mod_plsql, the embedded gateway connects to the database as the special
user ANONYMOUS, but accesses database objects with the user privileges assigned to the
DAD. The database rejects access if the browser user attempts to connect explicitly
with the HTTP Authorization header.

Configuring Dynamic Authentication with DBMS_EPG Dynamic authentication is for the
mod_plsql user who does not store database usernames and passwords in the DAD.

In dynamic authentication, a database user does not have to authorize the embedded
gateway to use its privileges to access database objects. Instead, browser users must
supply the database authentication information through the HTTP Basic
Authentication scheme.

The action of the embedded gateway depends on whether the database-username
attribute is set for the DAD. If the attribute is not set, then the embedded gateway
connects to the database as the user supplied by the browser client. If the attribute is
set, then the database restricts access to the user specified in the
database-username attribute.

To set up dynamic authentication, follow these steps:

1. Log on to the database as a an XML DB administrator, that is, a user with the
XDBADMIN role. For example:

CONNECT SYSTEM/password

2. Create the DAD. For example, the following procedure creates a DAD invoked
DYNAMIC_DAD and maps the virtual path to /hrweb/:

EXEC DBMS_EPG.CREATE_DAD('DYNAMIC_DAD', '/hrweb/*');

3. Optionally, set the DAD attribute database-username to the database account
whose privileges must be used by the DAD. The browser user will be prompted to
enter the username and password for this account when accessing the DAD. For
example, the following procedure specifies that the DAD named DYNAMIC_DAD
has the privileges of the HR account:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('DYNAMIC_DAD', 'database-username', 'HR');

Note that the attribute database-username is case sensitive.

Note: The account ANONYMOUS is locked after XML DB installation.
If you want to use static authentication with the embedded PL/SQL
gateway, then you must first unlock this account.

Using Embedded PL/SQL Gateway

Developing PL/SQL Web Applications 10-11

Configuring Anonymous Authentication with DBMS_EPG Anonymous authentication is for
the mod_plsql user who creates a special DAD database user for database logon, but
stores the application procedures and document tables in a different schema and
grants access to the procedures and document tables to PUBLIC.

To set up anonymous authentication, follow these steps:

1. Log on to the database as an XML DB administrator, that is, a user with the
XDBADMIN role assigned. For example:

CONNECT SYSTEM/password

2. Create the DAD. For example, the following procedure creates a DAD invoked
HR_DAD and maps the virtual path to /hrweb/:

EXEC DBMS_EPG.CREATE_DAD('HR_DAD', '/hrweb/*');

3. Set the DAD attribute database-username to ANONYMOUS. For example:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('HR_DAD', 'database-username', 'ANONYMOUS');

Note that both database-username and ANONYMOUS are case sensitive.

There is no need to authorize the embedded gateway to use ANONYMOUS privileges
to access database objects, because ANONYMOUS has no system privileges and owns
no database objects.

Determining the Authentication Mode of a DAD If you know the name of a DAD, then the
authentication mode for this DAD depends on the following factors:

■ Does the DAD exist?

■ Is the database-username attribute for the DAD set?

■ Is the DAD authorized to use the privilege of the database-username user?

■ Is the database-username attribute the same as one of the user authorized to
use the DAD?

Authentication for the DAD is static only if each of the preceding questions is
answered in the affirmative. Table 10–4 shows how the answers to the preceding
questions determine the authentication mode.

WARNING: Passwords sent through the HTTP Basic
Authentication scheme are not encrypted. Configure the embedded
gateway to use the HTTPS protocol to protect the passwords sent by
the browser clients.

Table 10–4 Authentication Possibilities for a DAD

DAD Exists? database-username set? User authorized? Mode

Yes Yes Yes Static

Yes Yes No Dynamic restricted

Yes No Does not matter Dynamic

Yes Yes (to ANONYMOUS) Does not matter Anonymous

No N/A

Using Embedded PL/SQL Gateway

10-12 Oracle Database Advanced Application Developer's Guide

For example, assume that you create a DAD named MY_DAD. If the
database-username attribute for MY_DAD is set to HR, but the HR user does not
authorize MY_DAD, then the authentication mode for MY_DAD is dynamic and
restricted. A browser user who attempts to execute a PL/SQL subprogram through
MY_DAD is prompted to enter the HR database username and password.

The DBA_EPG_DAD_AUTHORIZATION view shows which users have authorized use of
a DAD. The DAD_NAME column displays the name of the DAD; the USERNAME column
displays the user whose privileges are assigned to the DAD. Note that the DAD
authorized may or may not exist.

Creating and Configuring DADs: Example You can use the sample SQL script in
Example 10–1 to create and configure different DADs for testing purposes. The script
does the following:

■ Creates a DAD invoked Static_Auth_DAD for database user HR and assigns it
the privileges of the HR account.

■ Creates a DAD invoked Static_Auth_DAD_2 for database user HR but
accidentally (for illustration) assigns Static_Auth_DAD_Typo the privileges of
the HR account. Note that the Static_Auth_DAD_Typo DAD does not exist.

■ Creates a DAD invoked Dynamic_Auth_DAD that is not restricted to any user.

■ Creates a DAD invoked Dynamic_Auth_DAD_Restricted that is restricted to
the HR account.

■ Accidentally (for illustration) assigns Static_Auth_DAD the privileges of the
database user OE, even though the database-user attribute for this DAD is set
to HR.

Example 10–1 Configuring Authentication Modes

rem ---
rem Create DAD with static auth
rem ---

CONNECT SYSTEM/password
EXEC DBMS_EPG.CREATE_DAD('Static_Auth_DAD', '/static/*')
EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('Static_Auth_DAD', 'database-username', 'HR')

CONNECT HR/password
EXEC DBMS_EPG.AUTHORIZE_DAD('Static_Auth_DAD')

rem ---
rem Create DAD with static auth typo
rem ---

CONNECT SYSTEM/password
EXEC DBMS_EPG.CREATE_DAD('Static_Auth_DAD_2', '/static2/*')
EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('Static_Auth_DAD_2', 'database-username', 'HR')

CONNECT HR/password
EXEC DBMS_EPG.AUTHORIZE_DAD('Static_Auth_DAD_Typo')

rem ---
rem Create DAD with dynamic auth
rem ---

CONNECT SYSTEM/password
EXEC DBMS_EPG.CREATE_DAD('Dynamic_Auth_DAD', '/dynamic/*')

Using Embedded PL/SQL Gateway

Developing PL/SQL Web Applications 10-13

rem ---
rem Create DAD with dynamic auth restricted
rem ---

CONNECT SYSTEM/password
EXEC DBMS_EPG.CREATE_DAD('Dynamic_Auth_DAD_Restricted', '/dynamic/*')
EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('Dynamic_Auth_DAD_Restricted',
 'database-username', 'HR')

rem ---
rem Authorize DAD by a non-DAD user (DAD database-username is 'HR')
rem ---

CONNECT OE/password
EXEC DBMS_EPG.AUTHORIZE_DAD('Static_Auth_DAD')
EXIT

Determining the Authentication Mode for a DAD: Example Example 10–2 creates a PL/SQL
procedure named show_dad_auth_status that shows the privileges of a specified
DAD. You execute the procedure by passing it the name of a DAD. Note that the
procedure exits with an error if the specified DAD does not exist.

The procedure queries DBA_EPG_DAD_AUTHORIZATION to determine whether the
specified DAD is set up for static authentication. If no row is found for the DAD, then
authentication is dynamic. The procedure also executes the DBMS_EPG.GET_DAD_
ATTRIBUTE procedure to determine whether the database-username attribute is
set for the specified DAD. If it is set, and if the DAD uses dynamic authentication, then
this DAD is restricted to the specified user. Otherwise, the DAD is set up for dynamic
authentication for any user.

Example 10–2 Determining the Authentication Mode for a DAD

-- This procedure shows the DAD authorization status for the given DAD

CREATE OR REPLACE PROCEDURE show_dad_auth_status(p_dadname VARCHAR2)
IS
 v_daduser VARCHAR2(32);
 v_cnt PLS_INTEGER;
BEGIN
 -- Get DAD's database-username attribute
 v_daduser := DBMS_EPG.GET_DAD_ATTRIBUTE(p_dadname, 'database-username');

 -- Determine whether DAD authorization exists for the DAD user
 SELECT COUNT(*)
 INTO v_cnt
 FROM DBA_EPG_DAD_AUTHORIZATION da
 WHERE da.DAD_NAME = p_dadname
 AND da.USERNAME = v_daduser;

 -- If DAD authorization exists for the DAD user it is static authentication
 IF (v_cnt > 0) THEN
 DBMS_OUTPUT.PUT_LINE('''' || p_dadname ||
 ''' is set up for static auth for user ''' ||
 v_daduser || '''.');
 RETURN;
 END IF;

 -- Is dynamic authentication restricted to a particular user?

Using Embedded PL/SQL Gateway

10-14 Oracle Database Advanced Application Developer's Guide

 IF (v_daduser IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('''' || p_dadname ||
 ''' is set up for dynamic auth for user ''' ||
 v_daduser || ''' only.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('''' || p_dadname ||
 ''' is set up for dynamic auth for any user.');
 END IF;
END;
/

Assume that you have run the script in Example 10–1 to create and configure various
DADs. The following example queries the authorization status of Static_Auth_DAD
and shows sample output:

SET SERVEROUTPUT ON
EXEC show_dad_auth_status('Static_Auth_DAD')

'Static_Auth_DAD' is set up for static auth for user 'HR'.

Determining the Authentication Mode for All DADs: Example Example 10–3 shows an
anonymous PL/SQL block that determines the authentication mode for all registered
DADs, that is, all DADs returned by executing the DBMS_EPG.GET_DAD_LIST
procedure. The block executes the show_dad_auth_status procedure to find the
authentication mode for each DAD.

Example 10–3 Showing the Authentication Mode for All DADs

DECLARE
 v_dad_names DBMS_EPG.VARCHAR2_TABLE;
BEGIN
 -- Show the DAD authorization status for all the DADs
 DBMS_OUTPUT.PUT_LINE('---------- authorization status for all DADs ----------');
 DBMS_EPG.GET_DAD_LIST(v_dad_names);

 -- loop through DAD names and display authorization status for each DAD
 FOR i IN 1..v_dad_names.count LOOP
 show_dad_auth_status(v_dad_names(i));
 END LOOP;
END;
/

If you ran the script in Example 10–1 to create and configure various DADs, the output
is:

---------- authorization status for all DADs ----------
'Static_Auth_DAD' is set up for static auth for user 'HR'.
'Static_Auth_DAD_2' is set up for dynamic auth for user 'HR' only.
'Dynamic_Auth_DAD' is set up for dynamic auth for any user.
'Dynamic_Auth_DAD_Restricted' is set up for dynamic auth for user 'HR' only.

Showing DAD Authorizations that Are Not in Effect: Example Example 10–4 shows an
anonymous PL/SQL block that shows DAD authorizations that are not in effect. This
situation can occur in either of the following situations:

■ A database user who authorizes a DAD is not the same user specified by the
database-username attribute of the DAD

■ A database user authorizes a DAD that does not exist

Using Embedded PL/SQL Gateway

Developing PL/SQL Web Applications 10-15

Example 10–4 Showing DAD Authorizations that Are Not in Effect

DECLARE
 v_dad_names DBMS_EPG.VARCHAR2_TABLE;
 v_dad_user VARCHAR2(32);
 v_dad_found BOOLEAN;
BEGIN
 -- Show the DAD authorizations that are not in effect
 DBMS_OUTPUT.PUT_LINE('---------- DAD authorizations not in effect ----------');

 -- Get the DAD list for later use
 DBMS_EPG.GET_DAD_LIST(v_dad_names);

 -- Go through each DAD authorization and look for the DAD database-name
 -- attribute setting
 FOR r IN (SELECT * FROM DBA_EPG_DAD_AUTHORIZATION) LOOP
 v_dad_found := FALSE;

 FOR i IN 1..v_dad_names.count LOOP
 IF (r.DAD_NAME = v_dad_names(i)) THEN
 v_dad_user := DBMS_EPG.GET_DAD_ATTRIBUTE(r.DAD_NAME, 'database-username');

 -- Does the DAD database-username attribute match the user the
 -- the DAD is authorized for?
 IF (r.USERNAME <> v_dad_user) THEN
 DBMS_OUTPUT.PUT_LINE('DAD authorization of ''' || r.dad_name ||
 ''' by user ''' || r.username || '''' ||
 ' is not in effect because the DAD user is ' ||
 '''' || v_dad_user || '''.');
 END IF;
 v_dad_found := TRUE;
 EXIT;
 END IF;
 END LOOP;

 -- Does the DAD exist?
 IF (NOT v_dad_found) THEN
 DBMS_OUTPUT.PUT_LINE('DAD authorization of ''' || r.dad_name ||
 ''' by user ''' || r.username ||
 ''' is not in effect because the DAD does not exist.');
 END IF;
 END LOOP;
END;
/

If you run the script in Example 10–1 to create and configure DADs, output
(reformatted to fit on the page) is:

---------- DAD authorizations not in effect ----------
DAD authorization of 'Static_Auth_DAD' by user 'OE' is not in effect because the
 DAD user is 'HR'.
DAD authorization of 'Static_Auth_DAD_Typo' by user 'HR' is not in effect
 because the DAD does not exist.

Examining Embedded PL/SQL Gateway Configuration The following script helps you
examine the configuration of the embedded PL/SQL gateway:

$ORACLE_HOME/rdbms/admin/epgstat.sql

Example 10–5 shows the output of the epgstat.sql script for Example 10–1.

Using Embedded PL/SQL Gateway

10-16 Oracle Database Advanced Application Developer's Guide

Example 10–5 epgstat.sql Script Output for Example 10–1

SQL> @epgstat.sql
+--------------------------------------+
| XDB protocol ports: |
| XDB is listening for the protocol |
| when the protocol port is nonzero. |
+--------------------------------------+

HTTP Port FTP Port
--------- --------
 8080 0

1 row selected.

+---------------------------+
| DAD virtual-path mappings |
+---------------------------+

Virtual Path DAD Name
-------------------------------- --------------------------------
/dynamic/* Dynamic_Auth_DAD_Restricted
/static/* Static_Auth_DAD
/static2/* Static_Auth_DAD_2

3 rows selected.

+----------------+
| DAD attributes |
+----------------+

DAD Name DAD Param DAD Value
------------ --------------------- --
Dynamic_Auth database-username HR
_DAD_Restric
ted

Static_Auth_ database-username HR
DAD

Static_Auth_ database-username HR
DAD2

3 rows selected.

+---+
| DAD authorization: |
| To use static authentication of a user in a DAD, |
| the DAD must be authorized for the user. |
+---+

DAD Name User Name
-------------------------------- --------------------------------
Static_Auth_DAD HR
 OE
Static_Auth_DAD_Typo HR

3 rows selected.

+----------------------------+
| DAD authentication schemes |

Using Embedded PL/SQL Gateway

Developing PL/SQL Web Applications 10-17

+----------------------------+

DAD Name User Name Auth Scheme
-------------------- -------------------------------- ------------------
Dynamic_Auth_DAD Dynamic
Dynamic_Auth_DAD_Res HR Dynamic Restricted
tricted

Static_Auth_DAD HR Static
Static_Auth_DAD_2 HR Dynamic Restricted

4 rows selected.

+--+
| ANONYMOUS user status: |
| To use static or anonymous authentication in any DAD, |
| the ANONYMOUS account must be unlocked. |
+--+

Database User Status
--------------- --------------------
ANONYMOUS EXPIRED

1 row selected.

+---+
| ANONYMOUS access to XDB repository: |
| To allow public access to XDB repository without authentication, |
| ANONYMOUS access to the repository must be allowed. |
+---+

Allow repository anonymous access?

true

1 row selected.

Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL Gateway
The basic steps for invoking PL/SQL subprograms through the embedded PL/SQL
gateway are the same as for the mod_plsql gateway. See Oracle HTTP Server mod_
plsql User's Guide for instructions. You need to adapt the mod_plsql instructions
slightly for use with the embedded gateway. For example, invoke the embedded
gateway in a browser by entering the URL in the following format:

protocol://hostname[:port]/virt-path/[[!][schema.][package.]proc_name[?query_str]]

The placeholder virt-path stands for the virtual path that you configured in DBMS_
EPG.CREATE_DAD. The mod_plsql documentation uses DAD_location instead of
virt-path.

The following topics documented in the first chapter of Oracle HTTP Server mod_plsql
User's Guide apply equally to the embedded gateway:

■ Transaction mode

■ Supported data types

■ Parameter-passing scheme

■ File upload and download support

Using Embedded PL/SQL Gateway

10-18 Oracle Database Advanced Application Developer's Guide

■ Path-aliasing

■ Common Gateway Interface (CGI) environment variables

Securing Application Access with Embedded PL/SQL Gateway
The embedded gateway shares the same protection mechanism with mod_plsql. See
Oracle HTTP Server mod_plsql User's Guide for instructions.

Restrictions in Embedded PL/SQL Gateway
The mod_plsql restrictions documented in the first chapter of Oracle HTTP Server
mod_plsql User's Guide apply equally to the embedded gateway. In addition, the
embedded version of the gateway does not support the following features:

■ Dynamic HTML caching

■ System monitoring

■ Single sign-on (SSO)

Using Embedded PL/SQL Gateway: Scenario
This section illustrates how to write a simple application that queries the
hr.employees table and delivers HTML output to a Web browser through the
PL/SQL gateway. It assumes that you have both XML DB and the sample schemas
installed.

To write and execute the program follows these steps:

1. Log on to the database as a user with ALTER USER privileges and make sure that
the database account ANONYMOUS is unlocked. The ANONYMOUS account, which is
locked by default, is required for static authentication. If the account is locked,
then use the following SQL statement to unlock it:

ALTER USER anonymous ACCOUNT UNLOCK;

2. Log on to the database as an XML DB administrator, that is, a user with the
XDBADMIN role. For example:

CONNECT SYSTEM/password

Note that you can determine which users and roles were granted the XDADMIN
role by querying the data dictionary as follows:

SELECT *
FROM DBA_ROLE_PRIVS
WHERE GRANTED_ROLE = 'XDBADMIN';

3. Create the DAD. For example, the following procedure creates a DAD invoked
HR_DAD and maps the virtual path to /hrweb/:

EXEC DBMS_EPG.CREATE_DAD('HR_DAD', '/plsql/*');

4. Set the DAD attribute database-username to the database user whose
privileges must be used by the DAD. For example, the following procedure
specifies that the DAD HR_DAD accesses database objects with the privileges of
user HR:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('HR_DAD', 'database-username', 'HR');

Note that the attribute database-username is case sensitive.

Using Embedded PL/SQL Gateway

Developing PL/SQL Web Applications 10-19

5. Log off as the XML DB administrator and log on to the database as the database
user whose privileges must be used by the DAD. For example:

CONNECT HR/password

6. Authorize the embedded PL/SQL gateway to invoke procedures and access
document tables through the DAD. For example:

EXEC DBMS_EPG.AUTHORIZE_DAD('HR_DAD');

7. Create a sample PL/SQL stored procedure invoked print_employees. The
following program creates an HTML page that includes the result set of a query of
hr.employees:

CREATE OR REPLACE PROCEDURE print_employees
IS
 CURSOR emp_cursor IS
 SELECT last_name, first_name
 FROM hr.employees
 ORDER BY last_name;
BEGIN
 HTP.PRINT('<html>');
 HTP.PRINT('<head>');
 HTP.PRINT('<meta http-equiv="Content-Type" content="text/html">');
 HTP.PRINT('<title>List of Employees</title>');
 HTP.PRINT('</head>');
 HTP.PRINT('<body TEXT="#000000" BGCOLOR="#FFFFFF">');
 HTP.PRINT('<h1>List of Employees</h1>');
 HTP.PRINT('<table width="40%" border="1">');
 HTP.PRINT('<tr>');
 HTP.PRINT('<th align="left">Last Name</th>');
 HTP.PRINT('<th align="left">First Name</th>');
 HTP.PRINT('</tr>');
 FOR emp_record IN emp_cursor LOOP
 HTP.PRINT('<tr>');
 HTP.PRINT('<td>' || emp_record.last_name || '</td>');
 HTP.PRINT('<td>' || emp_record.first_name || '</td>');
 END LOOP;
 HTP.PRINT('</table>');
 HTP.PRINT('</body>');
 HTP.PRINT('</html>');
END;
/

8. Ensure that the Oracle Net listener can accept HTTP requests. You can determine
the status of the listener on Linux and UNIX by running the following command
at the system prompt:

lsnrctl status | grep HTTP

Output (reformatted from a single line to multiple lines due to page size
constraints):

(DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=test.com)(PORT=8080))
 (Presentation=HTTP)
 (Session=RAW)
)

Generating HTML Output with PL/SQL

10-20 Oracle Database Advanced Application Developer's Guide

If you do not see the HTTP service started, then you can set following in you
initialization parameter file (replacing listener_name with the name of your
Oracle Net local listener), then restart the database and the listener:

dispatchers="(PROTOCOL=TCP)"
local_listener=listener_name

9. Run the print_employees program from your Web browser. For example, you
can use the following URL, replacing host with the name of your host computer
and port with the value of the PORT parameter in the previous step:

http://host:port/plsql/print_employees

For example, if your host is test.com and your HTTP port is 8080, then enter:

http://test.com:8080/plsql/print_employees

The Web browser returns an HTML page with a table that includes the first and
last name of every employee in the hr.employees table.

Generating HTML Output with PL/SQL
Traditionally, PL/SQL Web applications use function calls to generate each HTML tag
for output. These functions are part of the PL/SQL Web Toolkit packages that come
with Oracle Database. Example 10–6 illustrates how to generate a simple HTML page
by calling the HTP functions that correspond to each HTML tag.

Example 10–6 Displaying HTML Tags with HTP Functions

CREATE OR REPLACE PROCEDURE html_page
IS
BEGIN
 HTP.HTMLOPEN; -- generates <HTML>
 HTP.HEADOPEN; -- generates <HEAD>
 HTP.TITLE('Title'); -- generates <TITLE>Hello</TITLE>
 HTP.HEADCLOSE; -- generates </HTML>

 -- generates <BODY TEXT="#000000" BGCOLOR="#FFFFFF">
 HTP.BODYOPEN(cattributes => 'TEXT="#000000" BGCOLOR="#FFFFFF"');

 -- generates <H1>Heading in the HTML File</H1>
 HTP.HEADER(1, 'Heading in the HTML File');

 HTP.PARA; -- generates <P>
 HTP.PRINT('Some text in the HTML file.');
 HTP.BODYCLOSE; -- generates </BODY>
 HTP.HTMLCLOSE; -- generates </HTML>
END;

An alternative to making function calls that correspond to each tag is to use the
HTP.PRINT function to print the text and tags together. Example 10–7 illustrates this
technique.

Example 10–7 Displaying HTML Tags with HTP.PRINT

CREATE OR REPLACE PROCEDURE html_page2
IS
BEGIN
 HTP.PRINT('<html>');
 HTP.PRINT('<head>');

Passing Parameters to PL/SQL Web Applications

Developing PL/SQL Web Applications 10-21

 HTP.PRINT('<meta http-equiv="Content-Type" content="text/html">');
 HTP.PRINT('<title>Title of the HTML File</title>');
 HTP.PRINT('</head>');

 HTP.PRINT('<body TEXT="#000000" BGCOLOR="#FFFFFF">');
 HTP.PRINT('<h1>Heading in the HTML File</h1>');
 HTP.PRINT('<p>Some text in the HTML file.');
 HTP.PRINT('</body>');

 HTP.PRINT('</html>');
END;

Chapter 11, "Developing PL/SQL Server Pages" describes an additional method for
delivering using PL/SQL to generate HTML content. PL/SQL server pages enables
you to build on your knowledge of HTML tags and avoid learning a new set of
function calls. In an application written as a set of PL/SQL server pages, you can still
use functions from the PL/SQL Web toolkit to do the following:

■ Simplify the processing involved in displaying tables

■ Store persistent data (cookies)

■ Work with CGI protocol internals

Passing Parameters to PL/SQL Web Applications
To be useful in a wide variety of situations, a Web application must be interactive
enough to allow user choices. To keep the attention of impatient Web surfers,
streamline the interaction so that users can specify these choices very simply, without
excessive decision-making or data entry.

The main methods of passing parameters to PL/SQL Web applications are:

■ Using HTML form tags. The user fills in a form on one Web page, and all the data
and choices are transmitted to a stored subprogram when the user clicks the
Submit button on the page.

■ Hard-coded in the URL. The user clicks on a link, and a set of predefined
parameters are transmitted to a stored subprogram. Typically, you include
separate links on your Web page for all the choices that the user might want.

Topics:

■ Passing List and Dropdown-List Parameters from an HTML Form

■ Passing Radio Button and Checkbox Parameters from an HTML Form

■ Passing Entry-Field Parameters from an HTML Form

■ Passing Hidden Parameters from an HTML Form

■ Uploading a File from an HTML Form

■ Submitting a Completed HTML Form

■ Handling Missing Input from an HTML Form

■ Maintaining State Information Between Web Pages

Passing List and Dropdown-List Parameters from an HTML Form
List boxes and drop-down lists are implemented with the HTML tag <SELECT>.

Passing Parameters to PL/SQL Web Applications

10-22 Oracle Database Advanced Application Developer's Guide

Use a list box for a large number of choices or to allow multiple selections. List boxes
are good for showing items in alphabetical order so that users can find an item quickly
without reading all the choices.

Use a drop-down list in the following situations:

■ There are a small number of choices

■ Screen space is limited.

■ Choices are in an unusual order.

The drop-down captures the attention of first-time users and makes them read the
items. If you keep the choices and order consistent, then users can memorize the
motion of selecting an item from the drop-down list, allowing them to make selections
quickly as they gain experience. Example 10–8 shows a simple drop-down list.

Example 10–8 HTML Drop-Down List

<form>
<select name="seasons">
<option value="winter">Winter
<option value="spring">Spring
<option value="summer">Summer
<option value="fall">Fall
</select>

Passing Radio Button and Checkbox Parameters from an HTML Form
Radio buttons pass either a null value (if none of the radio buttons in a group is
checked), or the value specified on the radio button that is checked.

To specify a default value for a set of radio buttons, you can include the CHECKED
attribute in one of the INPUT tags, or include a DEFAULT clause on the parameter
within the stored subprogram. When setting up a group of radio buttons, be sure to
include a choice that indicates "no preference", because once the user selects a radio
button, they can still select a different one, but they cannot clear the selection
completely. For example, include a "Don't Care" or "Don't Know" selection along with
"Yes" and "No" choices, in case someone makes a selection and then realizes it was
wrong.

Checkboxes need special handling, because your stored subprogram might receive a
null value, a single value, or multiple values:

All the checkboxes with the same NAME attribute make up a checkbox group. If none of
the checkboxes in a group is checked, the stored subprogram receives a null value for
the corresponding parameter.

If one checkbox in a group is checked, the stored subprogram receives a single
VARCHAR2 parameter.

If more than one checkbox in a group is checked, the stored subprogram receives a
parameter with the PL/SQL type TABLE OF VARCHAR2. You must declare a type like
this, or use a predefined one like OWA_UTIL.IDENT_ARR. To retrieve the values, use a
loop:

CREATE OR REPLACE PROCEDURE handle_checkboxes (checkboxes owa_util.ident_arr)
AS
BEGIN
 ...
 FOR i IN 1..checkboxes.count
 LOOP

Passing Parameters to PL/SQL Web Applications

Developing PL/SQL Web Applications 10-23

 htp.print('<p>Checkbox value: ' || checkboxes(i));
 END LOOP;
 ...
END;
/
SHOW ERRORS;

Passing Entry-Field Parameters from an HTML Form
Entry fields require the most validation, because a user might enter data in the wrong
format, out of range, and so on. If possible, validate the data on the client side using
client-side Javascript, and format it correctly for the user or prompt them to enter it
again.

For example:

■ You might prevent the user from entering alphabetic characters in a numeric entry
field, or from entering characters once a length limit is reached.

■ You might silently remove spaces and dashes from a credit card number if the
stored subprogram expects the value in that format.

■ You might inform the user immediately when they type a number that is too large,
so that they can retype it.

Because you cannot always rely on such validation to succeed, code the stored
subprograms to deal with these cases anyway. Rather than forcing the user to use the
Back button when they enter wrong data, display a single page with an error message
and the original form with all the other values filled in.

For sensitive information such as passwords, a special form of the entry field, <INPUT
TYPE=PASSWORD>, hides the text as it is typed in.

For example, the following procedure accepts two strings as input. The first time it is
invoked, the user sees a simple form prompting for the input values. When the user
submits the information, the same procedure is invoked again to check if the input is
correct. If the input is OK, the procedure processes it. If not, the procedure prompts for
new input, filling in the original values for the user.

-- Store a name and associated zip code in the database.
CREATE OR REPLACE PROCEDURE associate_name_with_zipcode
(
 name VARCHAR2 DEFAULT NULL,
 zip VARCHAR2 DEFAULT NULL
)
AS
 booktitle VARCHAR2(256);
BEGIN
-- Both entry fields must contain a value. The zip code must be 6 characters.
-- (In a real program you perform more extensive checking.)
 IF name IS NOT NULL AND zip IS NOT NULL AND length(zip) = 6 THEN
 store_name_and_zipcode(name, zip);
 htp.print('<p>The person ' || name || ' has the zip code ' || zip || '.');
-- If the input was OK, we stop here and the user does not see the form again.
 RETURN;
 END IF;

-- If some data was entered, but it is not correct, show the error message.
 IF (name IS NULL AND zip IS NOT NULL)
 OR (name IS NOT NULL AND zip IS NULL)
 OR (zip IS NOT NULL AND length(zip) != 6)
 THEN

Passing Parameters to PL/SQL Web Applications

10-24 Oracle Database Advanced Application Developer's Guide

 htp.print('<p>Please re-enter the data. Fill in all fields, and use a
 6-digit zip code.');
 END IF;

-- If the user has not entered any data, or entered bad data, prompt for
-- input values.

-- Make the form invoke the same procedure to check the input values.
 htp.formOpen('scott.associate_name_with_zipcode', 'GET');
 htp.print('<p>Enter your name:</td>');
 htp.print('<td valign=center><input type=text name=name value="' || name ||
 '">');
 htp.print('<p>Enter your zip code:</td>');
 htp.print('<td valign=center><input type=text name=zip value="' || zip || '">');
 htp.formSubmit(NULL, 'Submit');
 htp.formClose;
END;
/
SHOW ERRORS;

Passing Hidden Parameters from an HTML Form
One technique for passing information through a sequence of stored subprograms,
without requiring the user to specify the same choices each time, is to include hidden
parameters in the form that invokes a stored subprogram. The first stored subprogram
places information, such as a user name, into the HTML form that it generates. The
value of the hidden parameter is passed to the next stored subprogram, as if the user
had entered it through a radio button or entry field.

Other techniques for passing information from one stored subprogram to another
include:

■ Sending a "cookie" containing the persistent information to the browser. The
browser then sends this same information back to the server when accessing other
Web pages from the same site. Cookies are set and retrieved through the HTTP
headers that are transferred between the browser and the Web server before the
HTML text of each Web page.

■ Storing the information in the database itself, where later stored subprograms can
retrieve it. This technique involves some extra overhead on the database server,
and you must still find a way to keep track of each user as multiple users access
the server at the same time.

Uploading a File from an HTML Form
You can use an HTML form to choose a file on a client system, and transfer it to the
server. A stored subprogram can insert the file into the database as a CLOB, BLOB, or
other type that can hold large amounts of data.

The PL/SQL Web toolkit and the PL/SQL gateway have the notion of a "document
table" that holds uploaded files.

Submitting a Completed HTML Form
By default, an HTML form must have a Submit button, which transmits the data from
the form to a stored subprogram or CGI program. You can label this button with text
of your choice, such as "Search", "Register", and so on.

See Also: mod_plsql User's Guide

Passing Parameters to PL/SQL Web Applications

Developing PL/SQL Web Applications 10-25

You can have multiple forms on the same page, each with its own form elements and
Submit button. You can even have forms consisting entirely of hidden parameters,
where the user makes no choice other than clicking the button.

Using JavaScript or other scripting languages, you can do away with the Submit
button and have the form submitted in response to some other action, such as selecting
from a drop-down list. This technique is best when the user only makes a single
selection, and the confirmation step of the Submit button is not essential.

Handling Missing Input from an HTML Form
When an HTML form is submitted, your stored subprogram receives null parameters
for any form elements that are not filled in. For example, null parameters can result
from an empty entry field, a set of checkboxes, radio buttons, or list items with none
checked, or a VALUE parameter of "" (empty quotation marks).

Regardless of any validation you do on the client side, always code stored
subprograms to handle the possibility that some parameters are null:

■ Use a DEFAULT clause in all parameter declarations, to prevent an exception when
the stored subprogram is invoked with a missing form parameter. You can set the
default to zero for numeric values (when that makes sense), and use DEFAULT
NULL when you want to check whether or not the user actually specifies a value.

■ Before using an input parameter value that has a DEFAULT NULL declaration,
check if it is null.

■ Make the subprogram generate sensible results even when not all input
parameters are specified. You might leave some sections out of a report, or display
a text string or image in a report to indicate where parameters were not specified.

■ Provide a way to fill in the missing values and run the stored subprogram again,
directly from the results page. For example, include a link that invokes the same
stored subprogram with an additional parameter, or display the original form with
its values filled in as part of the output.

Maintaining State Information Between Web Pages
Web applications are particularly concerned with the idea of state, the set of data that
is current at a particular moment in time. It is easy to lose state information when
switching from one Web page to another, which might result in asking the user to
make the same choices over and over.

You can pass state information between dynamic Web pages using HTML forms. The
information is passed as a set of name-value pairs, which are turned into stored
subprogram parameters for you.

If the user has to make multiple selections, or one selection from many choices, or it is
important to avoid an accidental selection, use an HTML form. After the user makes
and reviews all the choices, they confirm the choices with the Submit button.
Subsequent pages can use forms with hidden parameters (<INPUT TYPE=HIDDEN>
tags) to pass these choices from one page to the next.

If the user is only considering one or two choices, or the decision points are scattered
throughout the Web page, you can save the user from hunting around for the Submit
button by representing actions as hyperlinks and including any necessary name-value
pairs in the query string (the part following the ? within a URL).

Performing Network Operations in PL/SQL Stored Subprograms

10-26 Oracle Database Advanced Application Developer's Guide

An alternative way to main state information is to use Oracle Application Server and
its mod_ose module. This approach lets you store state information in package
variables that remain available as a user moves around a Web site.

Performing Network Operations in PL/SQL Stored Subprograms
While built-in PL/SQL features are focused on traditional database operations and
programming logic, Oracle Database provides packages that open up Internet
computing to PL/SQL programmers.

This section contains the following topics:

■ Sending E-Mail from PL/SQL

■ Getting a Host Name or Address from PL/SQL

■ Using TCP/IP Connections from PL/SQL

■ Retrieving HTTP URL Contents from PL/SQL

■ Using Tables, Image Maps, Cookies, and CGI Variables from PL/SQL

Sending E-Mail from PL/SQL
You can send e-mail from a PL/SQL program or stored subprogram with the UTL_
SMTP package. You can read about this package in the Oracle Database PL/SQL Packages
and Types Reference.

The following code example illustrates how the SMTP package might be used by an
application to send e-mail. The application connects to an SMTP server at port 25 and
sends a simple text message.

PROCEDURE send_test_message
IS
 mailhost VARCHAR2(64) := 'mailhost.fictional-domain.com';
 sender VARCHAR2(64) := 'me@fictional-domain.com';
 recipient VARCHAR2(64) := 'you@fictional-domain.com';
 mail_conn utl_smtp.connection;
BEGIN
 mail_conn := utl_smtp.open_connection(mailhost, 25);
 utl_smtp.helo(mail_conn, mailhost);
 utl_smtp.mail(mail_conn, sender);
 utl_smtp.rcpt(mail_conn, recipient);
-- If message were in single string, open_data(), write_data(), and close_data()
-- could be in a single call to data().
 utl_smtp.open_data(mail_conn);
 utl_smtp.write_data(mail_conn, 'This is a test message.' || chr(13));
 utl_smtp.write_data(mail_conn, 'This is line 2.' || chr(13));
 utl_smtp.close_data(mail_conn);
 utl_smtp.quit(mail_conn);
 EXCEPTION
 WHEN OTHERS THEN
 -- Insert error-handling code here
 NULL;
END;

See Also: The Oracle Application Server documentation set at
http://www.oracle.com/technology/documentation

Performing Network Operations in PL/SQL Stored Subprograms

Developing PL/SQL Web Applications 10-27

Getting a Host Name or Address from PL/SQL
You can determine the host name of the local system, or the IP address of a given host
name from a PL/SQL program or stored subprogram using the UTL_INADDR package.
You can find details about this package in the Oracle Database PL/SQL Packages and
Types Reference. You use the results in calls to the UTL_TCP package.

Using TCP/IP Connections from PL/SQL
You can open TCP/IP connections to systems on the network, and read or write to the
corresponding sockets, using the UTL_TCP package. You can find details about this
package in the Oracle Database PL/SQL Packages and Types Reference.

Retrieving HTTP URL Contents from PL/SQL
You can retrieve the contents of an HTTP URL using the UTL_HTTP package. The
contents are typically in the form of HTML-tagged text, but might be plain text, a JPEG
image, or any sort of file that is downloadable from a Web server. You can find details
about this package in the Oracle Database PL/SQL Packages and Types Reference.

The UTL_HTTP package lets you:

■ Control the details of the HTTP session, including header lines, cookies, redirects,
proxy servers, IDs and passwords for protected sites, and CGI parameters through
the GET or POST methods.

■ Speed up multiple accesses to the same Web site using HTTP 1.1 persistent
connections.

■ Construct and interpret URLs for use with UTL_HTTP through the ESCAPE and
UNESCAPE functions in the UTL_URL package.

Typically, developers have used Java or Perl to perform these operations; this package
lets you do them with PL/SQL.

CREATE OR REPLACE PROCEDURE show_url
(
 url IN VARCHAR2,
 username IN VARCHAR2 DEFAULT NULL,
 password IN VARCHAR2 DEFAULT NULL
) AS
 req utl_http.req;
 resp utl_http.resp;
 name VARCHAR2(256);
 value VARCHAR2(1024);
 data VARCHAR2(255);
 my_scheme VARCHAR2(256);
 my_realm VARCHAR2(256);
 my_proxy BOOLEAN;
BEGIN
-- When going through a firewall, pass requests through this host.
-- Specify sites inside the firewall that don't need the proxy host.
 utl_http.set_proxy('proxy.my-company.com', 'corp.my-company.com');

-- Ask UTL_HTTP not to raise an exception for 4xx and 5xx status codes,
-- rather than just returning the text of the error page.
 utl_http.set_response_error_check(FALSE);

-- Begin retrieving this Web page.
 req := utl_http.begin_request(url);

Performing Network Operations in PL/SQL Stored Subprograms

10-28 Oracle Database Advanced Application Developer's Guide

-- Identify ourselves. Some sites serve special pages for particular browsers.
 utl_http.set_header(req, 'User-Agent', 'Mozilla/4.0');

-- Specify a user ID and password for pages that require them.
 IF (username IS NOT NULL) THEN
 utl_http.set_authentication(req, username, password);
 END IF;

 BEGIN
-- Start receiving the HTML text.
 resp := utl_http.get_response(req);

-- Show the status codes and reason phrase of the response.
 dbms_output.put_line('HTTP response status code: ' || resp.status_code);
 dbms_output.put_line('HTTP response reason phrase: ' || resp.reason_phrase);

-- Look for client-side error and report it.
 IF (resp.status_code >= 400) AND (resp.status_code <= 499) THEN

-- Detect whether the page is password protected, and we didn't supply
-- the right authorization.
 IF (resp.status_code = utl_http.HTTP_UNAUTHORIZED) THEN
 utl_http.get_authentication(resp, my_scheme, my_realm, my_proxy);
 IF (my_proxy) THEN
 dbms_output.put_line('Web proxy server is protected.');
 dbms_output.put('Please supply the required ' || my_scheme ||
 ' authentication username/password for realm ' || my_realm ||
 ' for the proxy server.');
 ELSE
 dbms_output.put_line('Web page ' || url || ' is protected.');
 dbms_output.put('Please supplied the required ' || my_scheme ||
 ' authentication username/password for realm ' || my_realm ||
 ' for the Web page.');
 END IF;
 ELSE
 dbms_output.put_line('Check the URL.');
 END IF;

 utl_http.end_response(resp);
 RETURN;

-- Look for server-side error and report it.
 ELSIF (resp.status_code >= 500) AND (resp.status_code <= 599) THEN

 dbms_output.put_line('Check if the Web site is up.');
 utl_http.end_response(resp);
 RETURN;

 END IF;

-- The HTTP header lines contain information about cookies, character sets,
-- and other data that client and server can use to customize each session.
 FOR i IN 1..utl_http.get_header_count(resp) LOOP
 utl_http.get_header(resp, i, name, value);
 dbms_output.put_line(name || ': ' || value);
 END LOOP;

-- Keep reading lines until no more are left and an exception is raised.
 LOOP
 utl_http.read_line(resp, value);

Performing Network Operations in PL/SQL Stored Subprograms

Developing PL/SQL Web Applications 10-29

 dbms_output.put_line(value);
 END LOOP;
 EXCEPTION
 WHEN utl_http.end_of_body THEN
 utl_http.end_response(resp);
 END;

END;
/
SET serveroutput ON
-- The following URLs illustrate the use of this procedure,
-- but these pages do not actually exist. To test, substitute
-- URLs from your own Web server.
exec show_url('http://www.oracle.com/no-such-page.html')
exec show_url('http://www.oracle.com/protected-page.html')
exec show_url('http://www.oracle.com/protected-page.html', 'scott', 'tiger')

Using Tables, Image Maps, Cookies, and CGI Variables from PL/SQL
Packages for all of these functions are supplied with Oracle8i and higher. You use
these packages in combination with the mod_plsql plug-in of Oracle HTTP Server
(OHS). You can format the results of a query in an HTML table, produce an image
map, set and get HTTP cookies, check the values of CGI variables, and combine other
typical Web operations with a PL/SQL program.

Documentation for these packages is not part of the database documentation library.
The location of the documentation depends on the particular application server you
are running. To get started with these packages, look at their subprogram names and
parameters using the SQL*Plus DESCRIBE statement:

DESCRIBE HTP;
DESCRIBE HTF;
DESCRIBE OWA_UTIL;

Performing Network Operations in PL/SQL Stored Subprograms

10-30 Oracle Database Advanced Application Developer's Guide

Developing PL/SQL Server Pages 11-1

11
Developing PL/SQL Server Pages

This chapter explains how to develop PL/SQL Server Pages (PSP), which let you
include dynamic content in web pages.

Topics:

■ What Are PL/SQL Server Pages and Why Use Them?

■ Prerequisites for Developing and Deploying PL/SQL Server Pages

■ PL/SQL Server Pages and the HTP Package

■ PL/SQL Server Pages and Other Scripting Solutions

■ Developing PL/SQL Server Pages

■ Loading PL/SQL Server Pages into the Database

■ Querying PL/SQL Server Pages Source Code

■ Executing PL/SQL Server Pages Through URLs

■ Examples of PL/SQL Server Pages

■ Debugging PL/SQL Server Pages

■ Putting PL/SQL Server Pages into Production

What Are PL/SQL Server Pages and Why Use Them?
PL/SQL Server Pages (PSP) are server-side scripts that include dynamic content,
including the results of SQL queries, inside web pages. You can author the web pages
in an HTML authoring tool and insert blocks of PL/SQL code.

Example 11–1 shows a simple PL/SQL server page called simple.psp.

Example 11–1 simple.psp

<%@ page language="PL/SQL" %>
<%@ page contentType="text/html" %>
<%@ plsql procedure="show_employees" %>
<%-- This example displays the last name and first name of every
 employee in the hr.employees table. --%>
<%!
 CURSOR emp_cursor IS
 SELECT last_name, first_name
 FROM hr.employees
 ORDER BY last_name;
%>
<html>

Prerequisites for Developing and Deploying PL/SQL Server Pages

11-2 Oracle Database Advanced Application Developer's Guide

<head>
<meta http-equiv="Content-Type" content="text/html">
<title>List of Employees</title>
</head>
<body TEXT="#000000" BGCOLOR="#FFFFFF">
<h1>List of Employees</h1>
<table width="40%" border="1">
<tr>
<th align="left">Last Name</th>
<th align="left">First Name</th>
</tr>
<% FOR emp_record IN emp_cursor LOOP %>
 <tr>
 <td> <%= emp_record.last_name %> </td>
 <td> <%= emp_record.first_name %> </td>
 </tr>
<% END LOOP; %>
</table>
</body>
</html>

You can compile and load this script into an Oracle database with the loadpsp
command-line utility. The following example loads this server page into the hr
schema, replacing the show_employees procedure if it already exists:

loadpsp -replace -user hr/hr simple.psp

Browser users can execute the show_employees procedure through a URL. An
HTML page that displays the last and first names of employees in the hr.employees
table is returned to the browser through the PL/SQL gateway.

Deploying content through PL/SQL Server Pages has the following advantages:

■ For developers familiar with PL/SQL, the server pages are the easiest way to
create professional web pages that included database-generated content. You can
develop web pages as normal and then embed PL/SQL code in the HTML.

■ PL/SQL Server Pages can be more convenient than using the HTP and HTF
packages to write out HTML content line by line.

■ Because processing is performed on the database server, the client browser
receives a plain HTML page with no special script tags. You can support all
browsers and browser levels equally.

■ Network traffic is efficient because use of PL/SQL Server Pages minimizes the
number of database round-trips.

■ You can write content quickly and follow a rapid, iterative development process.
You maintain central control of the software, with only a web browser required on
the client system.

Prerequisites for Developing and Deploying PL/SQL Server Pages
To develop and deploy PL/SQL server pages, you must meet the following
prerequisites:

■ To write a PL/SQL server page you need access to a text editor or HTML
authoring tool for writing the script. No other development tool is required.

■ To load a PL/SQL server page you need:

– An account on an Oracle database in which to load the server pages.

PL/SQL Server Pages and Other Scripting Solutions

Developing PL/SQL Server Pages 11-3

– Execution rights to the loadpsp command-line utility, which is located in
$ORACLE_HOME/bin.

■ To deploy the server pages you must use mod_plsql. As explained in "Using mod_
plsql Gateway to Map Client Requests to a PL/SQL Web Application" on
page 10-4, the gateway makes use of the PL/SQL Web Toolkit.

PL/SQL Server Pages and the HTP Package
You can enable browser users to execute PL/SQL program units through HTTP in the
following ways:

■ By writing an HTML page with embedded PL/SQL code and compiling it as a
PL/SQL server page. You might invoke subprograms from the PL/SQL Web
Toolkit, but not to generate every line of HTML output.

■ By writing a complete stored subprogram that produces HTML by invoking the
HTP and OWA_* packages in the PL/SQL Web Toolkit. This technique is described
in "Generating HTML Output with PL/SQL" on page 10-20.

Thus, you must choose which technique to use when writing your web application.
The key factors in choosing between these techniques are:

■ What source are you using as a starting point?

– If you have a large body of HTML, and if you want to include dynamic
content or make it the front end of a database application, then use PL/SQL
Server Pages.

– If you have a large body of PL/SQL code that produces formatted output,
then you might find it more convenient to produce HTML tags by changing
your print statements to invoke the HTP package of the PL/SQL Web Toolkit.

■ What is the fastest and most convenient authoring environment for your group?

– If most work is done using HTML authoring tools, then use PL/SQL Server
Pages.

– If you use authoring tools that produce PL/SQL code, then it might be less
convenient to use PL/SQL Server Pages.

PL/SQL Server Pages and Other Scripting Solutions
Scripting solutions can be client-side or server-side. JavaScript is one of the most
popular client-side scripting language. PL/SQL Server Pages fully support JavaScript.
Because any kind of tags can be passed unchanged to the browser through a PL/SQL
server page, you can include JavaScript or other client-side script code in a PL/SQL
server page.

Java Server Pages (JSP) and Active Server Pages (ASP) are two of the most popular
server-side scripting solutions. Compared to PL/SQL Server Pages:

■ Java server pages are loosely analogous to PL/SQL Server Pages pages; Java
servlets are analogous to PL/SQL packages. PL/SQL Server Pages use the same
script tag syntax as JSP to make it easy to switch back and forth.

See Also:

■ "Using mod_plsql Gateway to Map Client Requests to a PL/SQL
Web Application" on page 10-4

Developing PL/SQL Server Pages

11-4 Oracle Database Advanced Application Developer's Guide

■ PL/SQL Server Pages use syntax that is similar to ASP, although not identical.
Typically, you must translate from VBScript or JScript to PL/SQL. The best
candidates for migration are pages that use the Active Data Object (ADO) interface
to perform database operations.

Developing PL/SQL Server Pages
To develop a PL/SQL server page, you can start with an existing web page or with an
existing stored subprogram. Either way, with a few additions and changes you can
create dynamic web pages that perform database operations and display the results.

The file for a PL/SQL server page must have the extension .psp. It can contain
whatever content you choose, with text and tags interspersed with PL/SQL Server
Pages directives, declarations, and scriptlets. A server page can take the following
forms:

■ In the simplest case, it is an HTML file. Compiling it as a PL/SQL server page
produces a stored subprogram that outputs exactly the same HTML file.

■ In the most complex case, it is a PL/SQL subprogram that generates all the content
of the web page, including the tags for title, body, and headings.

■ In the typical case, it is a mixture of HTML (providing the static parts of the page)
and PL/SQL (providing the dynamic content).

The order and placement of the PL/SQL Server Pages directives and declarations is
usually not significant. It becomes significant only when another file is included. For
ease of maintenance, it is recommended that you place the directives and declarations
together near the beginning of the file.

Table 11–1 lists the PL/SQL Server Pages elements and directs you to the section that
explains how to use them. The section "Quoting and Escaping Strings in a PSP Script"
on page 11-11 describes how to quote strings that are used in various PL/SQL Server
Pages elements.

Note: You cannot mix PL/SQL server pages with other server-side
script features, such as server-side includes. In many cases, you can
get the same results by using the corresponding PL/SQL Server Pages
features.

Table 11–1 PSP Elements

PSP Element Name Specifies . . . Section

<%@ page ... %> Page Directive Characteristics of the PL/SQL server
page.

"Specifying Basic Server Page
Characteristics" on page 11-5

<%@ parameter ... %> Parameter Directive The name, and optionally the type and
default, for each parameter expected
by the PSP stored procedure.

"Accepting User Input" on page 11-8

<%@ plsql ... %> Procedure Directive The name of the stored procedure
produced by the PSP file.

"Naming the PL/SQL Stored
Procedure" on page 11-8

<%@ include ... %> Include Directive The name of a file to be included at a
specific point in the PSP file.

"Including the Contents of Other
Files" on page 11-9

<%! ... %> Declaration Block The declaration for a set of PL/SQL
variables that are visible throughout
the page, not just within the next
BEGIN/END block.

"Declaring Global Variables in a PSP
Script" on page 11-9

Developing PL/SQL Server Pages

Developing PL/SQL Server Pages 11-5

Topics:

■ Specifying Basic Server Page Characteristics

■ Accepting User Input

■ Naming the PL/SQL Stored Procedure

■ Including the Contents of Other Files

■ Declaring Global Variables in a PSP Script

■ Specifying Executable Statements in a PSP Script

■ Substituting Expression Values in a PSP Script

■ Quoting and Escaping Strings in a PSP Script

■ Including Comments in a PSP Script

Specifying Basic Server Page Characteristics
Use the <%@ page ... %> directive to specify characteristics of the PL/SQL server page
such as the following:

■ What scripting language it uses.

■ What type of information (MIME type) it produces.

■ What code to run to handle all uncaught exceptions. This might be an HTML file
with a friendly message, renamed to a .psp file. You must specify this same file
name in the loadpsp command that compiles the main PSP file. You must specify
exactly the same name in both the errorPage directive and in the loadpsp
command, including any relative path name such as ../include/.

The following code shows the syntax of the page directive (the attribute names
contentType and errorPage are case-sensitive):

<%@ page [language="PL/SQL"] [contentType="content type string"] charset="encoding" [errorPage="file.psp"] %>

Topics:

■ Specifying the Scripting Language

■ Returning Data to the Client Browser

■ Handling Script Errors

<% ... %> Code Block A set of PL/SQL statements to be
executed when the procedure is run.

"Specifying Executable Statements in
a PSP Script" on page 11-10

<%= ... %> Expression Block A single PL/SQL expression, such as a
string, arithmetic expression, function
call, or combination of these.

"Substituting Expression Values in a
PSP Script" on page 11-11

<%-- ... --%> Comment A comment in a PSP script. "Including Comments in a PSP
Script" on page 11-12

Note: If you are already familiar with dynamic HTML, you can go
directly to"Examples of PL/SQL Server Pages" on page 11-15.

Table 11–1 (Cont.) PSP Elements

PSP Element Name Specifies . . . Section

Developing PL/SQL Server Pages

11-6 Oracle Database Advanced Application Developer's Guide

Specifying the Scripting Language
To identify a file as a PL/SQL server page, include the following directive somewhere
in the file:

<%@ page language="PL/SQL" %>

This directive is for compatibility with other scripting environments. Example 11–1
shows an example of a simple PL/SQL server page that includes the language
directive.

Returning Data to the Client Browser
Options:

■ Returning HTML

■ Returning XML, Text, and Other Document Types

■ Returning Pages Containing Different Character Sets

Returning HTML The PL/SQL parts of a PL/SQL server page are enclosed within special
delimiters. All other content is passed verbatim—including any whitespace—to the
browser. To display text or HTML tags, write it as you would write a typical web page.
You do not need to invoke any output functions. As illustration, the server page in
Example 11–1 returns the HTML page shown in Example 11–2, except that it includes
the table rows for the queried employees.

Example 11–2 Sample Returned HTML Page

<html>
<head>
<meta http-equiv="Content-Type" content="text/html">
<title>List of Employees</title>
</head>
<body TEXT="#000000" BGCOLOR="#FFFFFF">
<h1>List of Employees</h1>
<table width="40%" border="1">
<tr>
<th align="left">Last Name</th>
<th align="left">First Name</th>
</tr>

 <!-- result set of query of hr.employees inserted here -->

</table>
</body>
</html>

Sometimes you might want to display one line of output or another, or change the
value of an attribute, based on a condition. You can include control structures and
variable substitution inside the PSP delimiters, as shown in the following code
fragment from Example 11–1:

<% FOR emp_record IN emp_cursor LOOP %>
 <tr>
 <td> <%= emp_record.last_name %> </td>
 <td> <%= emp_record.first_name %> </td>
 </tr>
<% END LOOP; %>

Developing PL/SQL Server Pages

Developing PL/SQL Server Pages 11-7

Returning XML, Text, and Other Document Types By default, the PL/SQL gateway transmits
files as HTML documents so that the browser interprets the HTML tags. If you want
the browser to interpret the document as XML, plain text (with no formatting), or
some other document type, then include the following directive:

<%@ page contentType="MIMEtype" %>

The attribute name is case-sensitive, so be sure to capitalize it as contentType. Insert
text/html, text/xml, text/plain, image/jpeg, or some other MIME type that
the browser or other client program recognizes. Users might have to configure their
browsers to recognize some MIME types. The following shows an example of a
directive for an Excel spreadsheet:

<%@ page contentType="application/vnd.ms-excel" %>

Typically, a PL/SQL server page is intended to be displayed in a web browser. It can
also be retrieved and interpreted by a program that can make HTTP requests, such as a
a Java or Perl client.

Returning Pages Containing Different Character Sets By default, the PL/SQL gateway
transmits files with the character set defined by the PL/SQL gateway. To convert the
data to a different character set for browser display, include the following directive:

<%@ page charset="encoding" %>

Specify Shift_JIS, Big5, UTF-8, or another encoding that the client program
recognizes.

You must also configure the character set setting in the database accessor descriptor
(DAD) of the PL/SQL gateway. Users might have to select the same encoding in their
browsers to see the data displayed properly. For example, a database in Japan might
have a database character set that uses the EUC encoding, but the web browsers are
configured to display Shift_JIS encoding.

Handling Script Errors
When writing PL/SQL server pages, be mindful of the following types of errors:

■ HTML syntax errors. Any errors in HTML markup are handled by the browser.
The loadpsp utility does not check for them.

■ PL/SQL syntax errors. If you make a syntax error in the PL/SQL code, the
loadpsp utility stops and displays the line number, column number, and a brief
message. You must fix the error before continuing. Any previous version of the
stored subprogram can be erased when you attempt to replace it with a script that
contains a syntax error. You might want to use one database for prototyping and
debugging, then load the final stored subprogram into a different database for
production. You can switch databases using a command-line flag without
changing any source code.

■ Run-time errors. To handle database errors that occur when the script runs, you
can include PL/SQL exception-handling code within a PSP file and have any
unhandled exceptions bring up a special PL/SQL server page. Use the
errorPage attribute (the name is case-sensitive) of the <%@ page ... %> directive
to specify the page name.

The page for unhandled exceptions is a PL/SQL server page with extension .psp.
The error subprogram does not receive any parameters, so to determine the cause
of the error, it can invoke the SQLCODE and SQLERRM functions. You can also
display a standard HTML page without any scripting when an error occurs, but

Developing PL/SQL Server Pages

11-8 Oracle Database Advanced Application Developer's Guide

you must still give it the extension .psp and load it into the database as a stored
subprogram.

The following example shows a directive that specifies errors.psp as the page to run
when errors are encountered:

<%@ page language="PL/SQL" contentType="text/html" errorPage="errors.psp" %>

Accepting User Input
To set up parameter passing for a PL/SQL server page, include a directive with the
following syntax:

<%@ plsql parameter="parameter name" [type="PL/SQL type"] [default="value"] %>

Example 11–9 shows an example of a script that includes the parameter directive.

By default, parameters are of type VARCHAR2. To use a different type, include a
type="PL/SQL type" attribute within the directive, as in the following example:

<%@ plsql parameter="p_employee_id" type="NUMBER" %>

To set a default value, so that the parameter becomes optional, include a
default="expression" attribute in the directive. The values for this attribute are
substituted directly into a PL/SQL statement, so any strings must be single-quoted,
and you can use special values such as null, as in the following example:

<%@ plsql parameter="p_last_name" default="null" %>

User input comes encoded in the URL that retrieves the HTML page. You can generate
the URL by hard-coding it in an HTML link, or by invoking your page as the action of
an HTML form. Your page receives the input as parameters to a PL/SQL stored
subprogram. For example, assume that you change the first few lines of Example 11–1
to include a parameter directive as follows, and then load it into the database:

<%@ page language="PL/SQL" %>
<%@ page contentType="text/html" %>
<%@ plsql parameter="p_employee_id" default="null" type="NUMBER" %>
<%@ plsql procedure="show_employees" %>
<%!
 CURSOR emp_cursor IS
 SELECT last_name, first_name
 FROM hr.employees
 WHERE employee_id = p_employee_id
 ORDER BY last_name;
%>

If the PL/SQL gateway is configured so that you can execute procedures by invoking
http://www.host.com/pls/proc_name, where proc_name is the name of a
procedure, then you can pass 200 for parameter p_employee_id as follows:

http://www.host.com/pls/show_employees?p_employee_id=200

Naming the PL/SQL Stored Procedure
Each top-level PL/SQL server page corresponds to a stored procedure within the
server. When you load the page with loadpsp, the utility creates a PL/SQL stored
procedure. By default, the procedure is given the same name as the PSP script, except
with the .psp extension removed. Thus, if your script is named hello_world.psp,
then by default the utility creates a procedure named hello_world.

Developing PL/SQL Server Pages

Developing PL/SQL Server Pages 11-9

To give the procedure a name that is different from the script name, include the
following directive, where procname is the name of a procedure:

<%@ plsql procedure="procname" %>

Example 11–1 includes the following directive, which gives the stored procedure the
name show_employees:

<%@ plsql procedure="show_employees" %>

Thus, you can name the file empnames.psp or anything else that ends with *.psp, but
the procedure is created as show_employees. It is the name of the procedure, not the
name of the PSP script, that you include in the URL.

Including the Contents of Other Files
You can set up an include mechanism to pull in the contents of other files, typically
containing either static HTML content or more PL/SQL scripting code. Insert the
following directive at the point where the content of the other file is to appear,
replacing filename with the name of the file to be included:

<%@ include file="filename" %>

The included file must have an extension other than .psp. You must specify exactly the
same name in both the include directive and in the loadpsp command, including
any relative path name such as ../include/.

Because the files are processed when you load the stored procedure into the database,
the substitution is performed only once, not whenever the page is served. Therefore,
changes to the included files that occur after the page is loaded into the database are
not displayed when the procedure is executed.

You can use the include feature to pull in libraries of code, such as a navigation
banners, footers, tables of contents, and so forth into multiple files. Alternatively, you
can use this feature as a macro capability to include the same section of script code in
more than one place in a page. The following example includes an HTML footer:

<%@ include file="footer.htm" %>

The following characteristics of included files:

■ You can use any names and extensions for the included files. For example, you can
include a file called products.txt.

■ If the included files contain PL/SQL scripting code, then they do not need their
own set of directives to identify the procedure name, character set, and so on.

■ When specifying the names of files to the loadpsp utility, you must include the
names of all included files also. Specify the names of included files before the
names of any .psp files.

Declaring Global Variables in a PSP Script
You can use the <%! ... %> directive to define a set of PL/SQL variables that are visible
throughout the page, not just within the next BEGIN/END block. This element typically
spans multiple lines, with individual PL/SQL variable declarations ended by
semicolons. The syntax for this directive is as follows:

<%! PL/SQL declaration;
 [PL/SQL declaration;] ... %>

Developing PL/SQL Server Pages

11-10 Oracle Database Advanced Application Developer's Guide

The usual PL/SQL syntax is allowed within the block. The delimiters server as
shorthand, enabling you to omit the DECLARE keyword. All declarations are available
to the code later in the file. Example 11–1 includes the following cursor declaration:

<%!
 CURSOR emp_cursor IS
 SELECT last_name, first_name
 FROM hr.employees
 ORDER BY last_name;
%>

You can specify multiple declaration blocks; internally, they are all merged into a
single block when the PSP file is created as a stored procedure.

You can also use explicit DECLARE blocks within the <% ... %> delimiters that are
explained in "Specifying Executable Statements in a PSP Script" on page 11-10. These
declarations are only visible to the following BEGIN/END block.

Specifying Executable Statements in a PSP Script
You can use the <% ... %> code block directive to execute a set of PL/SQL statements
when the stored procedure is run. The following code shows the syntax for executable
statements:

<% PL/SQL statement;
 [PL/SQL statement;] ... %>

This element typically spans multiple lines, with individual PL/SQL statements ended
by semicolons. The statements can include complete blocks, as in the following
example, which invokes the OWA_UTIL.TABLEPRINT procedure:

<% OWA_UTIL.TABLEPRINT(CTABLE => 'hr.employees', CATTRIBUTES => 'border=2',
 CCOLUMNS => 'last_name,first_name', CCLAUSES => 'WHERE employee_id > 100'); %>

The statements can also be the bracketing parts of IF/THEN/ELSE or BEGIN/END
blocks. When a code block is split into multiple directives, you can put HTML or other
directives in the middle, and the middle pieces are conditionally executed when the
stored procedure is run. The following code from Example 11–10 provides an
illustration of this technique:

 <% FOR ITEM IN (SELECT product_name, list_price, catalog_url
 FROM product_information
 WHERE list_price IS NOT NULL
 ORDER BY list_price DESC) LOOP
 IF item.list_price > p_minprice THEN
 v_color := '#CCCCFF';
 ELSE
 v_color := '#CCCCCC';
 END IF;
 %>
 <TR BGCOLOR="<%= v_color %>">
 <TD><A HREF="<%= item.catalog_url %>"><%= item.product_name %></TD>
 <TD><BIG><%= item.list_price %></BIG></TD>
 </TR>
 <% END LOOP; %>

Note: To make things easier to maintain, keep all your directives and
declarations together near the beginning of a PL/SQL server page.

Developing PL/SQL Server Pages

Developing PL/SQL Server Pages 11-11

All the usual PL/SQL syntax is allowed within the block. The delimiters server as
shorthand, letting you omit the DECLARE keyword. All the declarations are available
to the code later on in the file.

Substituting Expression Values in a PSP Script
An expression directive outputs a single PL/SQL expression, such as a string,
arithmetic expression, function call, or combination of these things. The result is
substituted as a string at that spot in the HTML page that is produced by the stored
procedure. The expression result must be a string value or be able to be cast to a string.
For any types that cannot be implicitly cast, such as DATE, pass the value to the
PL/SQL TO_CHAR function.

The syntax of an expression directive is as follows, where the expression
placeholder is replaced by the desired expression:

<%= expression %>

You do not need to end the PL/SQL expression with a semicolon.

Example 11–1 includes a directive to print the value of a variable in a row of a cursor:

<%= emp_record.last_name %>

Compare the preceding example to the equivalent htp.print call in the following
example (note especially the semicolon that ends the statement):

<% HTP.PRN (emp_record.last_name); %>

The content within the <%= ... %> delimiters is processed by the HTP.PRN function,
which trims leading or trailing whitespace and requires that you quote literal strings.

You can use concatenation by using the twin pipe symbol (||) as in PL/SQL. The
following directive shows an example of concatenation:

<%= 'The employee last name is ' || emp_record.last_name %>

Quoting and Escaping Strings in a PSP Script
PSP attributes use double quotes to delimit data. When values specified in PSP
attributes are used for PL/SQL operations, they are passed exactly as you specify them
in the PSP file. Thus, if PL/SQL requires a single-quoted string, then you must specify
the string with the single quotes around it—and surround the whole thing with
double quotes.

For example, your PL/SQL procedure might use the string Babe Ruth as the default
value for a variable. For the string to be used in PL/SQL, you must enclose it in single
quotes as 'Babe Ruth'. If you specify this single-quoted string in the default
attribute of a PSP directive, you must enclose it in double quotes as in the following
example:

<%@ plsql parameter="in_players" default="'Babe Ruth'" %>

Note: To share procedures, constants, and types across different
PL/SQL server pages, compile them into a package in the database by
using a plain PL/SQL source file. Although you can reference
packaged procedures, constants, and types from PSP scripts, the PSP
scripts can only produce standalone procedures, not packages.

Developing PL/SQL Server Pages

11-12 Oracle Database Advanced Application Developer's Guide

You can also nest single-quoted strings inside single quotes. In this case, you must
escape the nested single quotes by specifying the sequence \'. For example:

<%@ plsql parameter="in_players" default="'Walter \'Big Train\' Johnson'" %>

You can include most characters and character sequences in a PSP file without having
them changed by the PSP loader. To include the sequence %>, specify the escape
sequence %\>. To include the sequence <%, specify the escape sequence <\%. For
example:

<%= 'The %\> sequence is used in scripting language: ' || lang_name %>
<%= 'The <\% sequence is used in scripting language: ' || lang_name %>

Including Comments in a PSP Script
To put a comment in the HTML portion of a PL/SQL server page for the benefit of
those reading the PSP source code, use the following syntax:

<%-- PSP comment text --%>

Comments in the preceding form do not appear in the HTML output from the PSP and
also do not appear when you query the PL/SQL source code in USER_OBJECTS.

To create a comment that is visible in the HTML output and in the USER_OBJECTS
source, place the comment in the HTML and use the normal HTML comment syntax:

<!-- HTML comment text -->

To include a comment inside a PL/SQL block within a PSP, and to make the comment
invisible in the HTML output but visible in USER_OBJECTS, use the normal PL/SQL
comment syntax, as in the following example:

-- Comment in PL/SQL code

Example 11–3 shows a fragment of a PSP file with the three types of comments.

Example 11–3 Sample Comments in a PSP File

<p>Today we introduce our new model XP-10.
<%--
 This is the project with code name "Secret Project".
 Users viewing the HTML page will not see this PSP script comment.
 The comment is not visible in the USER_OBJECTS source code.
--%>
<!--
 Some pictures of the XP-10.
 Users viewing the HTML page source will see this comment.
 The comment is also visible in the USER_OBJECTS source code.
-->
<%
FOR image_file IN (SELECT pathname, width, height, description
 FROM image_library WHERE model_num = 'XP-10')
-- Comments interspersed with PL/SQL statements.
-- Users viewing the HTML page source will not see these PL/SQL comments.
-- These comments are visible in the USER_OBJECTS source code.
LOOP
%>
<img src="<%= image_file.pathname %>" width=<% image_file.width %>
height=<% image_file.height %> alt="<% image_file.description %>">

<% END LOOP; %>

Querying PL/SQL Server Pages Source Code

Developing PL/SQL Server Pages 11-13

Loading PL/SQL Server Pages into the Database
Use the loadpsp utility, which is located in $ORACLE_HOME/bin, to load one or more
PSP files into the database as stored procedures. Each .psp file corresponds to one
stored procedure. The pages are compiled and loaded in one step, to speed up the
development cycle. The syntax of the loadpsp utility as follows:

loadpsp [-replace] -user username/password[@connect_string]
 [include_file_name ...] [error_file_name] psp_file_name ...

To create procedures with CREATE OR REPLACE syntax, use the -replace flag.

When you load a PSP file, the loader performs the following actions:

1. Logs on to the database with the specified user name, password, and net service
name

2. Creates the stored procedures in the user schema

Include the names of all the include files before the names of the PL/SQL server pages.
Also include the name of the file specified in the errorPage attribute of the page
directive. These filenames on the loadpsp command line must match exactly the
names specified within the PSP include and page directives, including any relative
path name such as ../include/. Example 11–4 shows a sample PSP load command.

Example 11–4 Loading PL/SQL Server Pages

loadpsp -replace -user hr/hr@orcl banner.inc error.psp display_order.psp

Example 11–4 has the following characteristics:

■ The stored procedure is created in the database orcl. The database is accessed as
user hr with password hr, both to create the stored procedure and when the
stored procedure is executed.

■ banner.inc is a file containing boilerplate text and script code that is included by
the .psp file. The inclusion occurs when the PSP is loaded into the database, not
when the stored procedure is executed.

■ error.psp is a file containing code, text, or both that is processed when an
unhandled exception occurs, to present a friendly page rather than an internal
error message.

■ display_order.psp contains the main code and text for the web page. By
default, the corresponding stored procedure is named display_order.

Querying PL/SQL Server Pages Source Code
After you have loaded a PSP file, you can see the source code by querying the static
data dictionary views *_SOURCE. For example, suppose that you load the script in
Example 11–1 with the following command:

loadpsp -replace -user hr/hr simple.psp

If you log on to the database as user hr, then you can execute the following query in
SQL*Plus to view the source code of the PSP:

SET HEADING OFF

SELECT TEXT
FROM USER_SOURCE
WHERE NAME = 'SHOW_EMPLOYEES'

Querying PL/SQL Server Pages Source Code

11-14 Oracle Database Advanced Application Developer's Guide

ORDER BY LINE;

Sample output is shown in Example 11–5. The code generated by loadpsp is different
from the code in the source file. The loadpsp utility has added extra code, mainly
calls to the HTP package, to the PSP code. The HTP package generates the HTML tags
for the web page.

Example 11–5 Output from Query of USER_SOURCE

PROCEDURE show_employees AS

 CURSOR emp_cursor IS
 SELECT last_name, first_name
 FROM hr.employees
 ORDER BY last_name;

 BEGIN NULL;
owa_util.mime_header('text/html'); htp.prn('
');
htp.prn('
');
htp.prn('

');
htp.prn('
<html>
<head>
<meta http-equiv="Content-Type" content="text/html">
<title>List of Employees</title>
</head>
<body TEXT="#000000" BGCOLOR="#FFFFFF">
<h1>List of Employees</h1>
<table width="40%" border="1">
<tr>
<th align="left">Last Name</th>
<th align="left">First Name</th>

</tr>
');
 FOR emp_record IN emp_cursor LOOP
htp.prn('
 <tr>
 <td> ');
htp.prn(emp_record.last_name);
htp.prn(' </td>
 <td> ');
htp.prn(emp_record.first_name);
htp.prn(' </td>
 </tr>
');
 END LOOP;
htp.prn('
</table>
</body>
</html>
');
 END;

Examples of PL/SQL Server Pages

Developing PL/SQL Server Pages 11-15

Executing PL/SQL Server Pages Through URLs
After the PL/SQL server page is turned into a stored procedure, you can run the
procedure by retrieving an HTTP URL through a web browser or other Internet-aware
client program. The virtual path in the URL depends on the way the PL/SQL gateway
is configured.

The parameters to the stored procedure are passed through either the POST method or
the GET method of the HTTP protocol. With the POST method, the parameters are
passed directly from an HTML form and are not visible in the URL. With the GET
method, the parameters are passed as name-value pairs in the query string of the URL,
separated by & characters, with most nonalphanumeric characters in encoded format
(such as %20 for a space). You can use the GET method to invoke a PSP page from an
HTML form, or you can use a hard-coded HTML link to invoke the stored procedure
with a given set of parameters.

Using METHOD=GET, the syntax of the URL looks something like the following:

http://sitename/schemaname/procname?parmname1=value1&parmname2=value2

For example, the following URL includes a p_lname and p_fname parameter:

http://www.host.com/pls/show_employees?p_lname=Ashdown&p_fname=Lance

Using METHOD=POST, the syntax of the URL does not show the parameters:

http://sitename/schemaname/procname

For example, the following URL specifies a procedure name but does not pass
parameters:

http://www.host.com/pls/show_employees

The METHOD=GET format is more convenient for debugging and allows visitors to pass
exactly the same parameters when they return to the page through a bookmark.

The METHOD=POST format allows a larger volume of parameter data, and is suitable
for passing sensitive information that must not be displayed in the URL. (URLs linger
on in the browser's history list and in the HTTP headers that are passed to the
next-visited page.) It is not practical to bookmark pages that are invoked this way.

Examples of PL/SQL Server Pages
This section shows how you might start with a very simple PL/SQL server page, and
produce progressively more complicated versions as you gain more confidence.

As you go through each step, you can follow the instructions in "Loading PL/SQL
Server Pages into the Database" on page 11-13 and "Executing PL/SQL Server Pages
Through URLs" on page 11-15 to test the examples.

Topics:

■ Setup for PL/SQL Server Pages Examples

■ Printing the Sample Table with a Loop

■ Allowing a User Selection

■ Using an HTML Form to Invoke a PL/SQL Server Page

■ Including JavaScript in a PSP File

Examples of PL/SQL Server Pages

11-16 Oracle Database Advanced Application Developer's Guide

Setup for PL/SQL Server Pages Examples
These examples use the product_information table in the oe schema, which is
described as follows:

Table PRODUCT_INFORMATION
 Name Null? Type
 --- -------- ----------------------------
 PRODUCT_ID NOT NULL NUMBER(6)
 PRODUCT_NAME VARCHAR2(50)
 PRODUCT_DESCRIPTION VARCHAR2(2000)
 CATEGORY_ID NUMBER(2)
 WEIGHT_CLASS NUMBER(1)
 WARRANTY_PERIOD INTERVAL YEAR(2) TO MONTH
 SUPPLIER_ID NUMBER(6)
 PRODUCT_STATUS VARCHAR2(20)
 LIST_PRICE NUMBER(8,2)
 MIN_PRICE NUMBER(8,2)
 CATALOG_URL VARCHAR2(50)

The examples assume the following:

■ Youn have set up mod_plsql as described in "Using mod_plsql Gateway to Map
Client Requests to a PL/SQL Web Application" on page 10-4.

■ You have created a DAD for static authentication of the oe user.

■ You can access PL/SQL stored procedures created in the oe schema through the
following URL, where proc_name is the name of a stored
procedure:http://www.host.com/pls/proc_name

For debugging purposes, you can display the complete contents of an SQL table. You
can do this with a single call to OWA_UTIL.TABLEPRINT as illustrated in
Example 11–6. In subsequent iterations, we use other techniques to gain more control
over the presentation.

Example 11–6 show_prod_simple.psp

<%@ plsql procedure="show_prod_simple" %>
<HTML>
<HEAD><TITLE>Show Contents of product_information (Complete Dump)</TITLE></HEAD>
<BODY>
<%
DECLARE
 dummy BOOLEAN;
BEGIN
 dummy := OWA_UTIL.TABLEPRINT('oe.product_information','border');
END;
%>
</BODY>
</HTML>

Load the PSP in Example 11–6 at the command line as follows:

loadpsp -replace -user oe/oe show_prod_simple.psp

Access the PSP through the following URL:

http://www.host.com/pls/show_prod_simple

Examples of PL/SQL Server Pages

Developing PL/SQL Server Pages 11-17

Printing the Sample Table with a Loop
Example 11–6 loops through the items in the product_information table and
adjusts the SELECT statement to retrieve only a subset of the rows or columns. In this
example, we pick a very simple presentation, a set of list items, to avoid any problems
from mismatched or unclosed table tags.

Example 11–7 show_catalog_raw.psp

<%@ plsql procedure="show_prod_raw" %>
<HTML>
<HEAD><TITLE>Show Products (Raw Form)</TITLE></HEAD>
<BODY>

<% FOR item IN (SELECT product_name, list_price, catalog_url
 FROM product_information
 WHERE list_price IS NOT NULL
 ORDER BY list_price DESC) LOOP %>

Item = <%= item.product_name %>

Price = <%= item.list_price %>

URL = <%= item.catalog_url %>

<% END LOOP; %>

</BODY>
</HTML>

Example 11–8 shows a more sophisticated variation of Example 11–7 in which
formatting is added to the HTML to improve the presentation.

Example 11–8 show_catalog_pretty.psp

<%@ plsql procedure="show_prod_pretty" %>
<HTML>
<HEAD><TITLE>Show Products (Better Form)</TITLE></HEAD>
<BODY>

<% FOR item IN (SELECT product_name, list_price, catalog_url
 FROM product_information
 WHERE list_price IS NOT NULL
 ORDER BY list_price DESC) LOOP %>

Item = <A HREF=<%= item.catalog_url %>><%= item.product_name %>

Price = <BIG><%= item.list_price %></BIG>

<% END LOOP; %>

</BODY>
</HTML>

Allowing a User Selection
In the previous examples, the HTML page remains the same unless the product_
information table is updated. Example 11–9 livens up the page by:

■ Making it accept a minimum price, and present only the items that are more
expensive. (Your customers' buying criteria might vary.)

■ Setting the default minimum price to 100 units of the appropriate currency. Later,
we see how to allow the user to pick a minimum price.

Examples of PL/SQL Server Pages

11-18 Oracle Database Advanced Application Developer's Guide

Example 11–9 show_product_partial.psp

<%@ plsql procedure="show_product_partial" %>
<%@ plsql parameter="p_minprice" default="100" %>
<HTML>
<HEAD><TITLE>Show Items Greater Than Specified Price</TITLE></HEAD>
<BODY>
<P>This report shows the items whose price is greater than <%= p_minprice %>.

<% FOR ITEM IN (SELECT product_name, list_price, catalog_url
 FROM product_information
 WHERE list_price > p_minprice
 ORDER BY list_price DESC)
 LOOP %>

Item = <A HREF="<%= item.catalog_url %>"><%= item.product_name %>

Price = <BIG><%= item.list_price %></BIG>

<% END LOOP; %>

</BODY>
</HTML>

After loading Example 11–9 into the database, you can pass a parameter to the show_
product_partial procedure through a URL. The following example specifies a
minimum price of 250:

http://www.host.com/pls/show_product_partial?p_minprice=250

Filtering results is appropriate for applications such as search results, where users
might be overwhelmed by choices. But in a retail situation, you might want to use the
alternative technique illustrated in Example 11–10, so that customers can still choose to
purchase other items:

■ Instead of filtering the results through a WHERE clause, retrieve the entire result set
and then take different actions for different returned rows.

■ Change the HTML to highlight the output that meets their criteria. Example 11–10
uses the background color for an HTML table row. You can also insert a special
icon, increase the font size, or use another technique to call attention to the most
important rows.

■ Present the results in an HTML table.

Example 11–10 show_product_highlighed.psp

<%@ plsql procedure="show_product_highlighted" %>
<%@ plsql parameter="p_minprice" default="100" %>
<%! v_color VARCHAR2(7); %>

<HTML>
<HEAD><TITLE>Show Items Greater Than Specified Price</TITLE></HEAD>
<BODY>
<P>This report shows all items, highlighting those whose price is
 greater than <%= p_minprice %>.
<P>
<TABLE BORDER>
 <TR>
 <TH>Product</TH>
 <TH>Price</TH>
 </TR>
 <% FOR ITEM IN (SELECT product_name, list_price, catalog_url
 FROM product_information

Examples of PL/SQL Server Pages

Developing PL/SQL Server Pages 11-19

 WHERE list_price IS NOT NULL
 ORDER BY list_price DESC) LOOP
 IF item.list_price > p_minprice THEN
 v_color := '#CCCCFF';
 ELSE
 v_color := '#CCCCCC';
 END IF;
 %>
 <TR BGCOLOR="<%= v_color %>">
 <TD><A HREF="<%= item.catalog_url %>"><%= item.product_name %></TD>
 <TD><BIG><%= item.list_price %></BIG></TD>
 </TR>
 <% END LOOP; %>
</TABLE>
</BODY>
</HTML>

Using an HTML Form to Invoke a PL/SQL Server Page
Example 11–11 shows a bare-bones HTML form that allows the user to enter a price.
The form invokes the show_product_partial stored procedure illustrated in
Example 11–9 and passes it the entered value as the p_minprice parameter.

To avoid coding the entire URL of the stored procedure in the ACTION= attribute of the
form, we can make the form a PSP file so that it resides in the same directory as the
PSP file that it invokes. Even though this HTML file contains no PL/SQL code, we can
give it a .psp extension and load it as a stored procedure into the database. When the
product_form stored procedure is executed through a URL, it displays the HTML
exactly as it appears in the file.

Example 11–11 product_form.psp

<HTML>
<BODY>
<FORM method="POST" action="show_product_partial">
 <P>Enter the minimum price you want to pay:
 <INPUT type="text" name="p_minprice">
 <INPUT type="submit" value="Submit">
</FORM>
</BODY>
</HTML>

Including JavaScript in a PSP File
To produce an elaborate HTML file, perhaps including dynamic content such as
JavaScript, you can simplify the source code by implementing it as a PSP. This
technique avoids having to deal with nested quotation marks, escape characters,
concatenated literals and variables, and indentation of the embedded content.

Example 11–12 shows a version of Example 11–9 that uses JavaScript to display the
order status in the browser status bar when the user moves his or her mouse over the
product URL.

Example 11–12 show_product_javascript.psp

<%@ plsql procedure="show_product_javascript" %>
<%@ plsql parameter="p_minprice" default="100" %>
<HTML>
<HEAD>
 <TITLE>Show Items Greater Than Specified Price</TITLE>

Debugging PL/SQL Server Pages

11-20 Oracle Database Advanced Application Developer's Guide

<SCRIPT language="JavaScript">
<!--hide

var text=" ";

function overlink (text)
{
 window.status=text;
}
function offlink (text)
{
 window.status=text;
}

//-->
</SCRIPT>

</HEAD>
<BODY>
<P>This report shows the items whose price is greater than <%= p_minprice %>.
<P>

<% FOR ITEM IN (SELECT product_name, list_price, catalog_url, product_status
 FROM product_information
 WHERE list_price > p_minprice
 ORDER BY list_price DESC)
 LOOP %>

Item =
 <A HREF="<%= item.catalog_url %>"
 onMouseover="overlink('PRODUCT STATUS: <%= item.product_status %>');return true"
 onMouseout="offlink(' ');return true">
 <%= item.product_name %>

Price = <BIG><%= item.list_price %></BIG>

<% END LOOP; %>

</BODY>
</HTML>

Debugging PL/SQL Server Pages
As you begin experimenting with PL/SQL Server Pages, and as you adapt your first
simple pages into more elaborate ones, keep these guidelines in mind when you
encounter problems:

■ The first step is to get all the PL/SQL syntax and PSP directive syntax right. If you
make a mistake here, the file does not compile.

– Use semicolons to terminate lines where required.

– If a value must be quoted, quote it. You might need to enclose a single-quoted
value (needed by PL/SQL) inside double quotes (needed by PSP).

– Mistakes in the PSP directives are usually reported through PL/SQL syntax
messages. Check that your directives use the right syntax, that directives are
closed properly, and that you are using the right element (declaration,
expression, or code block) depending on what goes inside it.

Debugging PL/SQL Server Pages

Developing PL/SQL Server Pages 11-21

– PSP attribute names are case-sensitive. Most are specified in all lowercase;
contentType and errorPage must be specified as mixed-case.

■ When using a URL to request a PSP, you might get an error that the file is not
found. In this case:

– Be sure you are requesting the right virtual path, depending on the way the
web gateway is configured. Typically, the path includes the host name,
optionally a port number, the schema name, and the name of the stored
procedure (with no .psp extension).

– If you use the -replace option when compiling the file, the old version of
the stored procedure is erased. So, after a failed compilation, you must fix the
error or the page is not available. You might want to test new scripts in a
separate schema, then load them into the production schema.

– If you copied the file from another file, remember to change any procedure
name directives in the source to match the new file name.

– When you get one file-not-found error, request the latest version of the page
the next time. The error page might be cached by the browser. You might need
to force a page reload in the browser to bypass the cache.

■ When the PSP script is run, and the results come back to the browser, use standard
debugging techniques to check for and correct wrong output. The difficult part is
to configure the interface between different HTML forms, scripts, and CGI
programs so that the right values are passed into your page. The page might
return an error because of a parameter mismatch.

Guidelines:

– To determine exactly what is being passed to your page, use METHOD=GET in
the invoking form so that the parameters are visible in the URL.

– Ensure that the form or CGI program that invokes your page passes the
correct number of parameters, and that the names specified by the NAME=
attributes on the form match the parameter names in the PSP file. If the form
includes any hidden input fields, or uses the NAME= attribute on the Submit
or Reset buttons, then the PSP file must declare equivalent parameters.

– Ensure that the parameters can be cast from string into the correct PL/SQL
types. For example, do not include alphabetic characters if the parameter in
the PSP file is declared as a NUMBER.

– Ensure that the query string of the URL consists of name-value pairs,
separated by equals signs, especially if you are passing parameters by
constructing a hard-coded link to the page.

– If you are passing a lot of parameter data, such as large strings, you might
exceed the volume that can be passed with METHOD=GET. You can switch to
METHOD=POST in the invoking form without changing your PSP file.

– Although the loadpsp command reports line numbers correctly when there is
a syntax error in your source file, line numbers reported for run-time errors
refer to a transformed version of the source and do not match the line numbers
in the original source. When you encounter errors that produce an error trace
instead of the expected web page, you must locate the error through exception
handlers and by printing debug output.

Putting PL/SQL Server Pages into Production

11-22 Oracle Database Advanced Application Developer's Guide

Putting PL/SQL Server Pages into Production
Before putting your PSP application into production, consider issues such as usability
and download speed:

■ Pages can be rendered faster in the browser if the HEIGHT= and WIDTH= attributes
are specified for all images. You might standardize on picture sizes, or store the
height and width of images in the database along with the data or URL.

■ For viewers who turn off graphics, or who use alternative browsers that read the
text out loud, include a description of significant images using the ALT= attribute.
You might store the description in the database along with the image.

■ Although an HTML table provides a good way to display data, a large table can
make your application seem slow. Often, the reader sees a blank page until the
entire table is downloaded. If the amount of data in an HTML table is large,
consider splitting the output into multiple tables.

■ If you set text, font, or background colors, test your application with different
combinations of browser color settings:

– Test what happens if you override just the foreground color in the browser, or
just the background color, or both.

– If you set one color (such as the foreground text color), set all the colors
through the <BODY> tag, to avoid hard-to-read combinations like white text on
a white background.

– If you use a background image, specify a similar background color to provide
proper contrast for viewers who do not load graphics.

– If the information conveyed by different colors is crucial, consider using an
alternative technique. For example, you might put an icon next to special
items in a table. Some users might see your page on a monochrome screen or
on browsers that cannot represent different colors.

■ Providing context information prevents users from getting lost. Include a
descriptive <TITLE> tag for your page. If the user is partway through a
procedure, indicate which step is represented by your page. Provide links to
logical points to continue with the procedure, return to a previous step, or cancel
the procedure completely. Many pages might use a standard set of links that you
embed using the include directive.

■ In any entry fields, users might enter incorrect values. Where possible, use
SELECT lists to present a set of choices. Validate any text entered in a field before
passing it to SQL. The earlier you can validate, the better; a JavaScript routine can
detect incorrect data and prompt the user to correct it before they press the
Submit button and call the database.

■ Browsers tend to be lenient when displaying incorrect HTML. What looks OK in
one browser might look bad or might not display at all in another browser.

Guidelines:

– Pay attention to HTML rules for quotation marks, closing tags, and especially
for anything to do with tables.

– Minimize the dependence on tags that are only supported by a single browser.
Sometimes you can provide an extra bonus using such tags, but your
application must still be usable with other browsers.

– You can check the validity, and even in some cases the usability, of your
HTML for free at many sites on the World Wide Web.

Using Continuous Query Notification 12-1

12
Using Continuous Query Notification

Continuous Query Notification (CQN) allows an application to register queries with
the database for either object change notification (the default) or query result change
notification. An object referenced by a registered query is a registered object.

If a query is registered for object change notification (OCN), the database notifies the
application whenever a transaction changes an object that the query references and
commits, whether or not the query result changed.

If a query is registered for query result change notification (QRCN), the database
notifies the application whenever a transaction changes the result of the query and
commits.

A CQN registration associates a list of one or more queries with a notification type
(OCN or QRCN) and a notification handler. To create a CQN registration, you can use
either the PL/SQL interface or the OCI interface. If you use the PL/SQL interface, the
notification handler is a server-side PL/SQL stored procedure; if you use the OCI
interface, the notification handler is a client-side C callback procedure.

This chapter explains general CQN concepts and explains how to use the PL/SQL
CQN interface. For information about using OCI for CQN, see Oracle Call Interface
Programmer's Guide.

Topics:

■ Object Change Notification (OCN)

■ Query Result Change Notification (QRCN)

■ Events that Generate Notifications

■ Notification Contents

■ Good Candidates for CQN

■ Creating CQN Registrations

■ Querying CQN Registrations

■ Interpreting Notifications

■ Deleting Registrations

■ Configuring CQN: Scenario

Object Change Notification (OCN)

12-2 Oracle Database Advanced Application Developer's Guide

Object Change Notification (OCN)
If an application registers a query for object change notification (OCN), the database
sends the application an OCN whenever a transaction changes an object associated
with the query and commits, whether or not the result of the query changed.

For example, if an application registers the query in Example 12–1 for OCN, and a user
commits a transaction that changes the EMPLOYEES table, the database sends the
application an OCN, even if the changed row or rows did not satisfy the query
predicate (for example, if DEPARTMENT_ID = 5).

Example 12–1 Query to be Registered for Change Notification

SELECT EMPLOYEE_ID, SALARY FROM EMPLOYEES
 WHERE DEPARTMENT_ID = 10;

Query Result Change Notification (QRCN)

If an application registers a query for query result change notification (QRCN), the
database sends the application a QRCN whenever a transaction changes the result of
the query and commits.

For example, if an application registers the query in Example 12–1 for QRCN, the
database sends the application a QRCN only if the query result set changes; that is, if
one of the following DML statements commits:

■ An INSERT or DELETE of a row that satisfies the query predicate (DEPARTMENT_
ID = 10).

■ An UPDATE to the EMPLOYEE_ID or SALARY column of a row that already
satisfied the query predicate (DEPARTMENT_ID = 10).

■ An UPDATE to the DEPARTMENT_ID column of a row that changed its value from
10 to a value other than 10, causing the row to be deleted from the result set.

■ An UPDATE to the DEPARTMENT_ID column of a row that changed its value to 10
from a value other than 10, causing the row to be added to the result set.

The default notification type is OCN. For QRCN, specify QOS_QUERY in the
QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

With QRCN, you have a choice of guaranteed mode (the default) or best-effort mode.

Note: The terms OCN and QRCN refer to both the notification type
and the notification itself: An application registers a query for OCN,
and the database sends the application an OCN; an application
registers a query for QRCN, and the database sends the application a
QRCN.

Note: For QRCN support, the COMPATIBLE initialization parameter
of the database must be at least 11.0.0, and Automatic Undo
Management (AUM) must be enabled (as it is by default).

For information about the COMPATIBLE initialization parameter, see
Oracle Database Administrator's Guide.

For information about AUM, see Oracle Database Administrator's Guide.

Query Result Change Notification (QRCN)

Using Continuous Query Notification 12-3

Topics:

■ Guaranteed Mode

■ Best-Effort Mode

Guaranteed Mode
In guaranteed mode, there are no false positives: the database sends the application a
QRCN only when the query result set is guaranteed to have changed.

For example, suppose that an application registered the query in Example 12–1 for
QRCN, that employee 201 is in department 10, and that the following statements are
executed:

UPDATE EMPLOYEES SET SALARY = SALARY + 10 WHERE EMPLOYEE_ID = 201;
UPDATE EMPLOYEES SET SALARY = SALARY - 10 WHERE EMPLOYEE_ID = 201;
COMMIT;

Each UPDATE statement in the preceding transaction changes the query result set, but
together they have no effect on the query result set; therefore, the database does not
send the application a QRCN for the transaction.

For guaranteed mode, specify QOS_QUERY, but not QOS_BEST_EFFORT, in the
QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

Some queries are too complex for QRCN in guaranteed mode. For the characteristics of
queries that can be registered in guaranteed mode, see "Queries that Can Be Registered
for QRCN in Guaranteed Mode" on page 12-15.

Best-Effort Mode
Some queries that are too complex for guaranteed mode can be registered for QRCN in
best-effort mode, in which CQN creates and registers simpler versions of them.

For example, the query in Example 12–2 is too complex for QRCN in guaranteed mode
because it contains the aggregate function SUM.

Example 12–2 Query Too Complex for QRCN in Guaranteed Mode

SELECT SUM(SALARY) FROM EMPLOYEES
 WHERE DEPARTMENT_ID = 20;

In best-effort mode, CQN registers the following simpler version of the query in
Example 12–2:

SELECT SALARY FROM EMPLOYEES
 WHERE DEPARTMENT_ID = 20;

Whenever the result of the original query changes, the result of its simpler version also
changes; therefore, no notifications are lost due to the simplification. However, the
simplification might cause false positives, because the result of the simpler version can
change when the result of the original query does not.

In best-effort mode, the database does the following:

■ Minimizes the OLTP response overhead that is due to notification-related
processing, as follows:

– For a single-table query, the database determines whether the query result has
changed by which columns changed and which predicates the changed rows
satisfied.

Events that Generate Notifications

12-4 Oracle Database Advanced Application Developer's Guide

– For a multiple-table query (a join), the database uses the
primary-key/foreign-key constraint relationships between the tables to
determine whether the query result has changed.

■ Sends the application a QRCN whenever a DML statement changes the query
result set, even if a subsequent DML statement nullifies the change made by the
first DML statement.

As a result of its overhead minimization, best-effort mode infrequently causes false
positives, even for queries that CQN does not simplify. For example, consider the
query in Example 12–1 and the transaction in "Guaranteed Mode" on page 12-3. In
best-effort mode, CQN does not simplify the query, but the transaction generates a
false positive.

Some types of queries are so simplified that invalidations are generated at object level;
that is, whenever any object referenced in those queries changes. Examples of such
queries are those that use unsupported column types or include subqueries. The
solution to this problem is to rewrite the original queries.

For example, the query in Example 12–3 is too complex for QRCN in guaranteed mode
because it includes a subquery.

Example 12–3 Query Whose Simplified Version Invalidates Objects

SELECT SALARY FROM EMPLOYEES
 WHERE DEPARTMENT_ID IN
 (SELECT DEPARTMENT_ID FROM DEPARTMENTS
 WHERE LOCATION_ID = 1700
);

In best-effort mode, CQN simplifies the query in Example 12–3 to this:

SELECT * FROM EMPLOYEES, DEPARTMENTS;

The simplified query can cause objects to be invalidated. However, if you rewrite the
original query as follows, you can register it in either guaranteed mode or best-effort
mode:

SELECT SALARY FROM EMPLOYEES, DEPARTMENTS
 WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID
 AND DEPARTMENTS.LOCATION_ID = 1700;

Queries that can be registered only in best-effort mode are described in "Queries that
Can Be Registered for QRCN Only in Best-Effort Mode" on page 12-16.

The default for QRCN mode is guaranteed mode. For best-effort mode, specify QOS_
BEST_EFFORT in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO
object.

Events that Generate Notifications
The following events generate notifications:

■ Committed DML Transactions

■ Committed DDL Statements

■ Deregistration

■ Global Events

Events that Generate Notifications

Using Continuous Query Notification 12-5

Committed DML Transactions
When the notification type is OCN, any DML transaction that changes one or more
registered objects generates one notification for each object when it commits.

When the notification type is QRCN, any DML transaction that changes the result of
one or more registered queries generates a notification when it commits. The
notification includes the query IDs of the queries whose results changed.

For either notification type, the notification includes:

■ Name of each changed table

■ Operation type (INSERT, UPDATE, or DELETE)

■ ROWID of each changed row, if the registration was created with the ROWID option
and the number of modified rows was not too large. For more information, see
"ROWID Option" on page 12-12.

Committed DDL Statements
For both OCN and QRCN, the following DDL statements, when committed, generate
notifications:

■ ALTER TABLE

■ TRUNCATE TABLE

■ FLASHBACK TABLE

■ DROP TABLE

When the notification type is QRCN:

■ The notification includes the following:

– Query IDs of the queries whose results have changed

– Name of the modified table

– Type of DDL operation

Note: When the notification type is OCN, a committed DROP TABLE
statement generates a DROP NOTIFICATION.

Any OCN registrations of queries on the dropped table become
disassociated from that table (which no longer exists), but the
registrations themselves continue to exist. If any of these registrations
are associated with objects other than the dropped table, committed
changes to those other objects continue to generate notifications.
Registrations associated only with the dropped table also continue to
exist, and their creator can add queries (and their referenced objects)
to them.

An OCN registration is based on the version and definition of an
object at the time the query was registered. If an object is dropped,
registrations on that object are disassociated from it forever. If a new
object is created with the same name, and in the same schema, as the
dropped object, the new object is not associated with OCN
registrations that were associated with the dropped object.

Events that Generate Notifications

12-6 Oracle Database Advanced Application Developer's Guide

■ Some DDL operations that invalidate registered queries can cause those queries to
be deregisted.

For example, suppose that the following query is registered for QRCN:

SELECT COL1 FROM TEST_TABLE
 WHERE COL2 = 1;

Suppose that TEST_TABLE has the following schema:

(COL1 NUMBER, COL2 NUMBER, COL3 NUMBER)

The following DDL statement, when committed, invalidates the query and causes
it to be removed from the registration:

ALTER TABLE DROP COLUMN COL2;

Deregistration
For both OCN and QRCN, deregistration—removal of a registration from the
database—generates a notification. The reasons that the database removes a
registration are:

■ Timeout

If TIMEOUT is specified with a nonzero value when the queries are registered, the
database purges the registration after the specified time interval.

If QOS_DEREG_NFY is specified when the queries are registered, the database
purges the registration after it generates its first notification.

■ Loss of privileges

If privileges are lost on an object associated with a registered query, and the
notification type is OCN, the database purges the registration. (When the
notification type is QRCN, the database removes that query from the registration,
but does not purge the registration.)

For privileges needed to register queries, see "Prerequisites for Creating CQN
Registrations" on page 12-14.

A notification is not generated when a client application performs an explicit
deregistration.

Global Events
The global events EVENT_STARTUP and EVENT_SHUTDOWN generate notifications.

In an Oracle RAC environment, the following events generate notifications:

■ EVENT_STARTUP when the first instance of the database starts up

■ EVENT_SHUTDOWN when the last instance of the database shuts down

■ EVENT_SHUTDOWN_ANY when any instance of the database shuts down

The preceding global events are constants defined in the DBMS_CQ_NOTIFICATION
package.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the DBMS_CQ_NOTIFICATION package

Good Candidates for CQN

Using Continuous Query Notification 12-7

Notification Contents
A notification contains some or all of the following information:

■ Type of event, which is one of the following:

– Startup

– Object change

– Query result change

– Deregistration

– Shutdown

■ Registration ID of affected registration

■ Names of changed objects

■ If ROWID option was specified, ROWIDs of changed rows

■ If the notification type is QRCN: Query IDs of queries whose results changed

■ If notification resulted from a DML or DDL statement:

– Array of names of modified tables

– Operation type (for example, INSERT or UPDATE)

A notification does not contain the changed data itself. For example, the notification
does not say that a monthly salary increased from 5000 to 6000. To obtain more recent
values for the changed objects or rows or query results, the application must query the
database.

Good Candidates for CQN
Good candidates for CQN are applications that cache the result sets of queries on
infrequently changed objects in the middle tier, to avoid network round trips to the
database. These applications can use CQN to register the queries to be cached. When
such an application receives a notification, it can refresh its cache by re-executing the
registered queries.

An example of such an application is a web forum. Because its users do not need to
view new content as soon as it is inserted into the database, this application can cache
information in the middle tier and have CQN tell it when it when to refresh the cache.

Figure 12–1 illustrates a typical scenario in which an Oracle Database serves data that
is cached in the middle tier and then accessed over the Internet.

Good Candidates for CQN

12-8 Oracle Database Advanced Application Developer's Guide

Figure 12–1 Middle-Tier Caching

Applications in the middle tier require rapid access to cached copies of database
objects while keeping the cache as current as possible in relation to the database.
Cached data becomes obsolete when a transaction modifies the data and commits,
thereby putting the application at risk of accessing incorrect results. If the application
uses CQN, Oracle Database can publish a notification when a change occurs to
registered objects with details on what changed. In response to the notification, the
application can refresh cached data by fetching it from the back-end database.

Figure 12–2 illustrates the process by which middle-tier Web clients receive and
process notifications.

Oracle
Database

Application
Web Servers

OracleAS
Web

Cache

HTTP
and

HTTPs

HTTP
and

HTTPS

Internet
Oracle

Net

OracleAS

Internet

Good Candidates for CQN

Using Continuous Query Notification 12-9

Figure 12–2 Basic Process of Continuous Query Notification (CQN)

Explanation of steps in Figure 12–2 (assuming that registrations are created using
PL/SQL and that the application has cached the result set of a query on
HR.EMPLOYEES):

1. The developer uses PL/SQL to create a CQN registration for the query, which
consists of creating a stored PL/SQL procedure to process notifications and then
using the PL/SQL CQN interface to create a registration for the query, specifying
the PL/SQL procedure as the notification handler.

2. The database populates the registration information in the data dictionary.

3. A user updates a row in the HR.EMPLOYEES table in the back-end database and
commits the update, causing the query result to change. The data for
HR.EMPLOYEES cached in the middle tier is now outdated.

4. Oracle Database adds a message that describes the change to an internal queue.

5. Oracle Database notifies a JOBQ background process of a new notification
message.

6. The JOBQ process executes the stored procedure specified by the client
application. In this example, JOBQ passes the data to a server-side PL/SQL
procedure. The implementation of the PL/SQL notification handler determines
how the notification is handled.

7. Inside the server-side PL/SQL procedure, the developer can implement logic to
notify the middle-tier client application of the changes to the registered objects.
For example, it notifies the application of the ROWID of the changed row in
HR.EMPLOYEES.

8. The client application in the middle tier queries the back-end database to retrieve
the data in the changed row.

9. The client application updates the cache with the new data.

Client
Application

User
Objects

Data
Dictionary

3

1
2

Invalidation
Queue

Oracle
Database

user

user

DML

Web
Cache

Middle Tier

Client notification

Registration
through OCI
or PL/SQL

5

4

6

9

JOBQ
Process

7 PL/SQL

8

Creating CQN Registrations

12-10 Oracle Database Advanced Application Developer's Guide

Creating CQN Registrations
A CQN registration associates a list of one or more queries with a notification type
and a notification handler.

The notification type is either OCN or QRCN. For information about these types, see
"Object Change Notification (OCN)" on page 12-2 and "Query Result Change
Notification (QRCN)" on page 12-2.

To create a CQN registration, you can use either the PL/SQL interface or the OCI
interface. If you use the PL/SQL interface, the notification handler is a server-side
PL/SQL stored procedure; if you use the OCI interface, the notification handler is a
client-side C callback procedure. (This topic explains only the PL/SQL interface. For
information about the OCI interface, see Oracle Call Interface Programmer's Guide.)

Once created, a registration is stored in the Oracle Database. In an Oracle RAC
environment, it is visible to all database instances. Transactions that change the query
results in any database instance generate notifications.

By default, a registration survives until the application that created it explicitly
deregisters it or until the database implicitly purges it (due to loss of privileges, for
example).

Topics:

■ PL/SQL CQN Registration Interface

■ CQN Registration Options

■ Prerequisites for Creating CQN Registrations

■ Queries that Can Be Registered for Object Change Notification (OCN)

■ Queries that Can Be Registered for Query Result Change Notification (QRCN)

■ Using PL/SQL to Register Queries for CQN

■ Best Practices for CQN Registrations

■ Troubleshooting CQN Registrations

PL/SQL CQN Registration Interface
The PL/SQL CQN registration interface is implemented with the DBMS_CQ_
NOTIFICATION package. You use the DBMS_CQ_NOTIFICATION.NEW_REG_START
function to open a registration block. You specify the registration details, including the
notification type and notification handler, as part of the CQ_NOTIFICATION$_REG_
INFO object, which is passed as an argument to the NEW_REG_START procedure.
Every query that you execute while the registration block is open is registered with
CQN. If you specified notification type QRCN, the database assigns a query ID to each
query. You can retrieve these query IDs with the DBMS_CQ_NOTIFICATION.CQ_
NOTIFICATION_QUERYID function. To close the registration block, you use the
DBMS_CQ_NOTIFICATION.REG_END function.

For step-by-step instructions, see "Using PL/SQL to Register Queries for CQN" on
page 12-18.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the DBMS_CQ_NOTIFICATION package

Creating CQN Registrations

Using Continuous Query Notification 12-11

CQN Registration Options
You can change the CQN registration defaults with the options summarized in
Table 12–1.

Topics:

■ Notification Type Option

■ QRCN Mode (QRCN Notification Type Only)

■ ROWID Option

■ Operations Filter Option (OCN Notification Type Only)

■ Transaction Lag Option (OCN Notification Type Only)

■ Notification Grouping Options

■ Reliable Option

■ Purge-on-Notify and Timeout Options

Notification Type Option
The notification types are OCN (described in "Object Change Notification (OCN)" on
page 12-2) and QRCN (described in "Query Result Change Notification (QRCN)" on
page 12-2).

QRCN Mode (QRCN Notification Type Only)
The QRCN mode option applies only when the notification type is QRCN. Instructions
for setting the notification type to QRCN are in "Notification Type Option" on
page 12-11.

The QRCN modes are guaranteed (described in "Guaranteed Mode" on page 12-3) and
best-effort (described in "Best-Effort Mode" on page 12-3).

The default is guaranteed mode. For best-effort mode, specify QOS_BEST_EFFORT in
the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

Table 12–1 Continuous Query Notification Registration Options

Option Description

Notification Type Specifies QRCN (the default is OCN).

QRCN Mode1

1 Applies only when notification type is QRCN.

Specifies best-effort mode (the default is guaranteed mode).

ROWID Includes the ROWID of each changed row in the notification.

Operations Filter2

2 Applies only when notification type is OCN.

Publishes the notification only if the operation type matches the
specified filter condition.

Transaction Lag2 Deprecated. Use Notification Grouping instead.

Notification Grouping Specifies how notifications are grouped.

Reliable Stores notifications in a persistent database queue (instead of in
shared memory, the default).

Purge on Notify Purges the registration after the first notification.

Timeout Purges the registration after a specified time interval.

Creating CQN Registrations

12-12 Oracle Database Advanced Application Developer's Guide

ROWID Option
To include the ROWID option of each changed row in the notification, specify QOS_
ROWIDS in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

From the ROWID information in the notification, the application can retrieve the
contents of the changed rows by performing queries of the following form:

SELECT * FROM table_name_from_notification
 WHERE ROWID = rowid_from_notification;

ROWIDs are published in the external string format. For a regular heap table, the length
of a ROWID is 18 character bytes. For an Index Organized Table (IOT), the length of the
ROWID depends on the size of the primary key, and might exceed 18 bytes.

If the server does not have enough memory for the ROWIDs, the notification might be
"rolled up" into a FULL-TABLE-NOTIFICATION, indicated by a special flag in the
notification descriptor. Possible reasons for a FULL-TABLE-NOTIFICATION are:

■ Total shared memory consumption due to ROWIDs exceeds 1% of the dynamic
shared pool size.

■ Too many rows were changed in a single registered object within a transaction (the
upper limit is approximately 80).

■ Total length of the logical ROWIDs of modified rows for an IOT is too large (the
upper limit is approximately 1800 bytes).

■ You specified the Notification Grouping option NTFN_GROUPING_TYPE with the
value DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_SUMMARY, described in
"Notification Grouping Options" on page 12-13.

Because a FULL-TABLE-NOTIFICATION does not include ROWIDs, the application
that receives it must assume that the entire table (that is, all rows) might have changed.

Operations Filter Option (OCN Notification Type Only)
The Operations Filter option applies only when the notification type is OCN.

The Operations Filter option allows you to specify the types of operations that
generate notifications.

The default is all operations. To specify that only some operations generate
notifications, use the OPERATIONS_FILTER attribute of the CQ_NOTIFICATION$_
REG_INFO object. With the OPERATIONS_FILTER attribute, specify the type of
operation with the constant that represents it, which is defined in the DBMS_CQ_
NOTIFICATIONS package, as follows:

To specify multiple operations, use bitwise OR. For example:

Operation Constant

INSERT DBMS_CQ_NOTIFICATIONS.INSERTOP

UPDATE DBMS_CQ_NOTIFICATIONS.UPDATEOP

DELETE DBMS_CQ_NOTIFICATIONS.DELETEOP

ALTEROP DBMS_CQ_NOTIFICATIONS.ALTEROP

DROPOP DBMS_CQ_NOTIFICATIONS.DROPOP

UNKNOWNOP DBMS_CQ_NOTIFICATIONS.UNKNOWNOP

All (default) DBMS_CQ_NOTIFICATIONS.ALL_OPERATIONS

Creating CQN Registrations

Using Continuous Query Notification 12-13

DBMS_CQ_NOTIFICATIONS.INSERTOP + DBMS_CQ_NOTIFICATIONS.DELETEOP

OPERATIONS_FILTER has no effect if you also specify QOS_QUERY in the QOSFLAGS
attribute, because QOS_QUERY specifies notification type QRCN.

Transaction Lag Option (OCN Notification Type Only)
The Transaction Lag option applies only when the notification type is OCN.

The Transaction Lag option specifies the number of transactions by which the client
application can lag behind the database. If the number is 0, every transaction that
changes a registered object results in a notification. If the number is 5, every fifth
transaction that changes a registered object results in a notification. The database
tracks intervening changes at object granularity and includes them in the notification,
so that the client does not lose them.

A transaction lag greater than 0 is useful only if an application implements
flow-of-control notifications. Ensure that the application generates notifications
frequently enough to satisfy the lag, so that they are not deferred indefinitely.

If you specify TRANSACTION_LAG, then notifications do not include ROWIDs, even if
you also specified QOS_ROWIDS.

Notification Grouping Options
By default, notifications are generated immediately after the event that causes them.

Notification Grouping options, which are attributes of the CQ_NOTIFICATION$_REG_
INFO object, are the following:

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the DBMS_CQ_NOTIFICATION package

Note: This option is deprecated. To implement flow-of-control
notifications, use "Notification Grouping Options" on page 12-13.

Attribute Description

NTFN_GROUPING_CLASS Specifies the class by which to group notifications.
Currently, the only allowed values are DBMS_CQ_
NOTIFICATION.NTFN_GROUPING_CLASS_TIME,
which groups notifications by time, and zero, which is
the default (notifications are generated immediately
after the event that causes them).

NTFN_GROUPING_VALUE Specifies the time interval that defines the group, in
seconds. For example, if this value is 900, notifications
generated in the same 15-minute interval are grouped
together.

NTFN_GROUPING_TYPE Specifies the type of grouping, which is either of the
following:

■ DBMS_CQ_NOTIFICATION.NTFN_GROUPING_
TYPE_SUMMARY: All notifications in the group are
summarized into a single notification.

Note: The single notification does not include
ROWIDs, even if you specified the ROWID option.

■ DBMS_CQ_NOTIFICATION.NTFN_GROUPING_
TYPE_LAST: Only the last notification in the group
is published and the earlier ones discarded.

Creating CQN Registrations

12-14 Oracle Database Advanced Application Developer's Guide

Reliable Option
By default, a CQN registration is stored in shared memory. To store it in a persistent
database queue instead—that is, to generate reliable notifications—specify QOS_
RELIABLE in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

The advantage of reliable notifications is that if the database fails after generating
them, it can still deliver them after it restarts. In an Oracle RAC environment, a
surviving database instance can deliver them.

The disadvantage of reliable notifications is that they have higher CPU and I/O costs
than default notifications do.

Purge-on-Notify and Timeout Options
By default, a CQN registration survives until the application that created it explicitly
unregisters it or until the database implicitly purges it (due to loss of privileges, for
example).

To purge the registration after it generates its first notification, specify QOS_DEREG_
NFY in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

To purge the registration after n seconds, specify n in the TIMEOUT attribute of the CQ_
NOTIFICATION$_REG_INFO object.

You can use the Purge-on-Notify and Timeout options together.

Prerequisites for Creating CQN Registrations
The following are prerequistes for creating CQN registrations:

■ You must have the following privileges:

– EXECUTE privilege on the DBMS_CQ_NOTIFICATION package, whose
subprograms you use to create a registration

– CHANGE NOTIFICATION system privilege

– SELECT privileges on all objects to be registered

Loss of privileges on an object associated with a registered query generates a
notification—see "Deregistration" on page 12-6.

■ You must be connected as a non-SYS user.

NTFN_GROUPING_START_TIME Specifies when to start generating notifications. If
specified as NULL, it defaults to the current
system-generated time.

NTFN_GROUPING_REPEAT_COUNT Specifies how many times to repeat the notification. Set
to DBMS_CQ_NOTIFICATION.NTFN_GROUPING_
FOREVER to receive notifications for the life of the
registration. To receive at most n notifications during
the life of the registration, set to n.

Note: Notifications generated by timeouts, loss of privileges, and
global events might be published before the specified grouping
interval expires. If they are, any pending grouped notifications are
also published before the interval expires.

Attribute Description

Creating CQN Registrations

Using Continuous Query Notification 12-15

■ You must not be in the middle of an uncommitted transaction.

■ The dml_locks init.ora parameter must have a nonzero value (as its default
value does).

(This is also a prerequisite for receiving notifications.)

Queries that Can Be Registered for Object Change Notification (OCN)
Most queries can be registered for OCN, including those executed as part of stored
procedures and REF cursors.

Queries that cannot be registered for OCN are the following:

■ Queries on fixed tables or fixed views

■ Queries on user views

■ Queries that contain database links (dblinks)

■ Queries over materialized views

Queries that Can Be Registered for Query Result Change Notification (QRCN)
Some queries can be registered for QRCN in guaranteed mode, some can be registered
for QRCN only in best-effort mode, and some cannot be registered for QRCN in either
mode. (For information about modes, see "Guaranteed Mode" on page 12-3 and
"Best-Effort Mode" on page 12-3.)

Topics:

■ Queries that Can Be Registered for QRCN in Guaranteed Mode

■ Queries that Can Be Registered for QRCN Only in Best-Effort Mode

■ Queries that Cannot Be Registered for QRCN in Either Mode

Queries that Can Be Registered for QRCN in Guaranteed Mode
To be registered for QRCN in guaranteed mode, a query must conform to the
following rules:

■ Every column that it references is either a NUMBER data type or a VARCHAR2
datatype.

■ Arithmetic operators in column expressions are limited to the following binary
operators, and their operands are columns with numeric datatypes:

– + (addition)

– - (subtraction, not unary minus)

– * (multiplication)

– / (division)

■ Comparison operators in the predicate are limited to the following:

Note: For QRCN support, the COMPATIBLE setting of the database
must be at least 11.0.0.

Note: You can use synonyms in OCN registrations, but not in QRCN
registrations.

Creating CQN Registrations

12-16 Oracle Database Advanced Application Developer's Guide

– < (less than)

– <= (less than or equal to)

– = (equal to)

– >= (greater than or equal to)

– > (greater than)

– <> or != (not equal to)

– IS NULL

– IS NOT NULL

■ Boolean operators in the predicate are limited to AND, OR, and NOT.

■ The query contains no aggregate functions (such as SUM, COUNT, AVERAGE, MIN,
and MAX).

For a list of built-in SQL aggregate functions, see Oracle Database SQL Language
Reference.

Guaranteed mode supports most queries on single tables and some inner equijoins,
such as:

SELECT SALARY FROM EMPLOYEES, DEPARTMENTS
 WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID
 AND DEPARTMENTS.LOCATION_ID = 1700;

Queries that Can Be Registered for QRCN Only in Best-Effort Mode
A query that does any of the following can be registered for QRCN only in best-effort
mode, and its simplified version will generated notifications at object granularity:

■ Refers to columns that have encryption enabled

■ Has more than 10 items of the same type in the SELECT list

■ Has expressions that include any of the following:

– String functions (such as SUBSTR, LTRIM, and RTRIM)

– Arithmetic functions (such as TRUNC, ABS, and SQRT)

For a list of built-in SQL functions, see Oracle Database SQL Language Reference.

– Pattern-matching conditions LIKE and REGEXP_LIKE

– EXISTS or NOT EXISTS condition

Notes:

■ Sometimes the query optimizer uses an execution plan that makes
a query incompatible for guaranteed mode (for example,
OR-expansion). For information about the query optimizer, see
Oracle Database Performance Tuning Guide.

■ Queries that can be registered in guaranteed mode can also be
registered in best-effort mode, but results might differ, because
best-effort mode can cause false positives even for queries that
CQN does not simplify. For details, see "Best-Effort Mode" on
page 12-3.

Creating CQN Registrations

Using Continuous Query Notification 12-17

■ Has disjunctions involving predicates defined on columns from different tables.
For example:

SELECT EMPLOYEE_ID, DEPARTMENT_ID
 FROM EMPLOYEES, DEPARTMENTS
 WHERE EMPLOYEES.EMPLOYEE_ID = 10
 OR DEPARTMENTS.DEPARTMENT_ID = 'IT';

■ Has user rowid access. For example:

SELECT DEPARTMENT_ID
 FROM DEPARTMENTS
 WHERE ROWID = 'AAANkdAABAAALinAAF';

■ Has any join other than an inner join

■ Has an execution plan that involves any of the following:

– Bitmap join, domain, or functional indexes

– UNION ALL or CONCATENATION

(Either in the query itself, or as the result of an OR-expansion execution plan
chosen by the query optimizer.)

– ORDER BY or GROUP BY

(Either in the query itself, or as the result of a SORT operation with an ORDER
BY option in the execution plan chosen by the query optimizer.)

– Partitioned index-organized table (IOT) with overflow segment

– Clustered objects

– Parallel execution

Queries that Cannot Be Registered for QRCN in Either Mode
A query that refers to any of the following cannot be registered for QRCN in either
guaranteed or best-effort mode:

■ Views

■ Tables that are fixed, remote, or have Virtual Private Database (VPD) policies
enabled

■ DUAL (in the SELECT list)

■ Synonyms

■ Calls to user-defined PL/SQL subprograms

■ Operators not listed in "Queries that Can Be Registered for QRCN in Guaranteed
Mode" on page 12-15

■ The aggregate function COUNT

(Other aggregate functions are allowed in best-effort mode, but not in guaranteed
mode.)

■ Application contexts; for example:

SELECT SALARY FROM EMPLOYEES
 WHERE USER = SYS_CONTEXT('USERENV', 'SESSION_USER');

■ SYSDATE, SYSTIMESTAMP, or CURRENT TIMESTAMP

Creating CQN Registrations

12-18 Oracle Database Advanced Application Developer's Guide

Also, a query that the query optimizer has rewritten using a materialized view cannot
be registered for QRCN. For information about the query optimizer, see Oracle
Database Performance Tuning Guide.

Using PL/SQL to Register Queries for CQN
To use PL/SQL to create a CQN registration, follow these steps:

1. Create a stored PL/SQL procedure to serve as the notification handler.

2. Create a CQ_NOTIFICATION$_REG_INFO object that specifies the name of the
notification handler, the notification type, and other attributes of the registration.

3. In your client application, use the DBMS_CQ_NOTIFICATION.NEW_REG_START
function to open a registration block.

4. Execute the queries that you want to register. (Do not execute DML or DDL
operations.)

5. Close the registration block, using the DBMS_CQ_NOTIFICATION.REG_END
function.

Topics:

■ Creating a PL/SQL Notification Handler

■ Creating a CQ_NOTIFICATION$_REG_INFO Object

■ Identifying Individual Queries in a Notification

■ Adding Queries to an Existing Registration

Creating a PL/SQL Notification Handler
The PL/SQL stored procedure that you create to serve as the notification handler must
have the following signature:

PROCEDURE schema_name.proc_name(ntfnds IN CQ_NOTIFICATION$_DESCRIPTOR)

In the preceding signature, schema_name is the name of the database schema, proc_
name is the name of the stored procedure, and ntfnds is the notification descriptor.

The notification descriptor is a CQ_NOTIFICATION$_DESCRIPTOR object, whose
attributes describe the details of the change (transaction ID, type of change, queries
affected, tables modified, and so on).

The JOBQ process passes the notification descriptor, ntfnds, to the notification
handler, proc_name, which handles the notification according to its application
requirements. (This is step 6 in Figure 12–2.)

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the CQ_NOTIFICATION$_REG_INFO object
and the functions NEW_REG_START and REG_END, all of which are
defined in the DBMS_CQ_NOTIFICATION package

Note: The notification handler executes inside a job queue process.
The JOB_QUEUE_PROCESSES initialization parameter specifies the
maximum number of processes that can be created for the execution of
jobs. You must set JOB_QUEUE_PROCESSES to a nonzero value to
receive PL/SQL notifications.

Creating CQN Registrations

Using Continuous Query Notification 12-19

Creating a CQ_NOTIFICATION$_REG_INFO Object
An object of type CQ_NOTIFICATION$_REG_INFO specifies the notification handler
that the database executes when a registered objects changes. In SQL*Plus, you can
view its type attributes by executing the following statement:

DESC CQ_NOTIFICATION$_REG_INFO

Table 12–2 describes the attributes of SYS.CQ_NOTIFICATION$_REG_INFO.

Table 12–2 Attributes of CQ_NOTIFICATION$_REG_INFO

Attribute Description

CALLBACK Specifies the name of the PL/SQL procedure to be
executed when a notification is generated (a notification
handler). You must specify the name in the form
schema_name.procedure_name, for example, hr.dcn_
callback.

QOSFLAGS Specifies one or more quality-of-service flags, which are
constants in the DBMS_CQ_NOTIFICATION package. For
their names and descriptions, see Table 12–3.

To specify more than one quality-of-service flag, use
bitwise OR. For example: DBMS_CQ_
NOTIFICATION.QOS_RELIABLE + DBMS_CQ_
NOTIFICATION.QOS_ROWIDS

TIMEOUT Specifies the timeout period for registrations. If set to a
nonzero value, it specifies the time in seconds after which
the database purges the registration. If 0 or NULL, then the
registration persists until the client explicitly unregisters
it.

Can be combined with the QOSFLAGS attribute with its
QOS_DEREG_NFY flag.

OPERATIONS_FILTER Applies only to OCN (described in "Object Change
Notification (OCN)" on page 12-2). Has no effect if you
specify the QOS_FLAGS attribute with its QOS_QUERY
flag.

Filters messages based on types of SQL statement. You
can specify the following constants in the DBMS_CQ_
NOTIFICATION package:

■ ALL_OPERATIONS notifies on all changes

■ INSERTOP notifies on inserts

■ UPDATEOP notifies on updates

■ DELETEOP notifies on deletes

■ ALTEROP notifies on ALTER TABLE operations

■ DROPOP notifies on DROP TABLE operations

■ UNKNOWNOP notifies on unknown operations

You can specify a combination of operations with a
bitwise OR. For example: DBMS_CQ_
NOTIFICATION.INSERTOP + DBMS_CQ_
NOTIFICATION.DELETEOP.

Creating CQN Registrations

12-20 Oracle Database Advanced Application Developer's Guide

The quality-of-service flags in Table 12–3 are constants in the DBMS_CQ_
NOTIFICATION package. You can specify them with the QOS_FLAGS attribute of CQ_
NOTIFICATION$_REG_INFO (see Table 12–2).

TRANSACTION_LAG Deprecated. To implement flow-of-control notifications,
use the NTFN_GROUPING_* attributes.

Applies only to OCN (described in "Object Change
Notification (OCN)" on page 12-2). Has no effect if you
specify the QOS_FLAGS attribute with its QOS_QUERY
flag.

Specifies the number of transactions or database changes
by which the client can lag behind the database. If 0, then
the client receives an invalidation message as soon as it is
generated. If 5, then every fifth transaction that changes a
registered object results in a notification. Oracle Database
tracks intervening changes at an object granularity and
bundles the changes along with the notification. Thus, the
client does not lose intervening changes.

Most applications that must be notified of changes to an
object on transaction commit without further deferral are
expected to chose 0 transaction lag. A nonzero transaction
lag is useful only if an application implements flow
control on notifications. When using nonzero transaction
lag, it is recommended that the application workload has
the property that notifications are generated at a
reasonable frequency. Otherwise, notifications might be
deferred indefinitely till the lag is satisfied.

If you specify TRANSACTION_LAG, then the ROWID level
granularity is not available in the notification messages
even if you specified QOS_ROWIDS during registration.

NTFN_GROUPING_CLASS Specifies the class by which to group notifications.
Currently, the only allowed value is DBMS_CQ_
NOTIFICATION.NTFN_GROUPING_CLASS_TIME, which
groups notifications by time.

NTFN_GROUPING_VALUE Specifies the time interval that defines the group, in
seconds. For example, if this value is 900, notifications
generated in the same 15-minute interval are grouped
together.

NTFN_GROUPING_TYPE Specifies either of the following types of grouping:

■ DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_
SUMMARY: All notifications in the group are
summarized into a single notification.

■ DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_
LAST: Only the last notification in the group is
published and the earlier ones discarded.

NTFN_GROUPING_START_TIME Specifies when to start generating notifications. If
specified as NULL, it defaults to the current
system-generated time.

NTFN_GROUPING_REPEAT_COUNT Specifies how many times to repeat the notification. Set to
DBMS_CQ_NOTIFICATION.NTFN_GROUPING_FOREVER
to receive notifications for the life of the registration. To
receive at most n notifications during the life of the
registration, set to n.

Table 12–2 (Cont.) Attributes of CQ_NOTIFICATION$_REG_INFO

Attribute Description

Creating CQN Registrations

Using Continuous Query Notification 12-21

Suppose that you want to invoke the procedure HR.dcn_callback whenever a
registered object changes. In Example 12–4, you create a CQ_NOTIFICATION$_REG_
INFO object that specifies that HR.dcn_callback receives notifications. To create the
object you must have EXECUTE privileges on the DBMS_CQ_NOTIFICATION package.

Example 12–4 Creating a CQ_NOTIFICATION$_REG_INFO Object

DECLARE
 v_cn_addr CQ_NOTIFICATION$_REG_INFO;

BEGIN
 -- Create object:

 v_cn_addr := CQ_NOTIFICATION$_REG_INFO (
 'HR.dcn_callback', -- PL/SQL notification handler
 DBMS_CQ_NOTIFICATION.QOS_QUERY -- notification type QRCN
 + DBMS_CQ_NOTIFICATION.QOS_ROWIDS, -- include rowids of changed objects
 0, -- registration persists until unregistered
 0, -- notify on all operations
 0 -- notify immediately
);

 -- Register queries:
 ...
END;
/

Table 12–3 Quality-of-Service Flags

Flag Description

QOS_DEREG_NFY Purges the registration after the first notification.

QOS_RELIABLE Stores notifications in a persistent database queue.

In an Oracle RAC environment, if a database instance fails, surviving
database instances can deliver any queued notification messages.

Default: Notifications are stored in shared memory, which performs
more efficiently.

QOS_ROWIDS Includes the ROWID of each changed row in the notification.

QOS_QUERY Registers queries for QRCN, described in "Query Result Change
Notification (QRCN)" on page 12-2.

If a query cannot be registered for QRCN, an error is generated at
registration time, unless you also specify QOS_BEST_EFFORT.

Default: Queries are registered for OCN, described in "Object Change
Notification (OCN)" on page 12-2

QOS_BEST_EFFORT Used with QOS_QUERY. Registers simplified versions of queries that are
too complex for query result change evaluation; in other words,
registers queries for QRCN in best-effort mode, described in "Best-Effort
Mode" on page 12-3.

To see which queries were simplified, query the static data dictionary
view DBA_CQ_NOTIFICATION_QUERIES or USER_CQ_
NOTIFICATION_QUERIES. These views give the QUERYID and the text
of each registered query.

Default: Queries are registered for QRCN in guaranteed mode,
described in "Guaranteed Mode" on page 12-3

Creating CQN Registrations

12-22 Oracle Database Advanced Application Developer's Guide

Identifying Individual Queries in a Notification
Any query in a registered list of queries can cause a continuous query notification. If
you want to know when a certain query causes a notification, use the DBMS_CQ_
NOTIFICATION.CQ_NOTIFICATION_QUERYID function in the SELECT list of that
query. For example:

SELECT EMPLOYEE_ID, SALARY, DBMS_CQ_NOTIFICATION.CQ_NOTIFICATION_QUERYID
 FROM EMPLOYEES
 WHERE DEPARTMENT_ID = 10;

When that query causes a notification, the notification includes the query ID.

Adding Queries to an Existing Registration
To add queries to an existing registration, follow these steps:

1. Retrieve the registration ID of the existing registration.

You can retrieve it from either saved SQL*Plus output or a query of *_CHANGE_
NOTIFICATION_REGS.

2. Open the existing registration by calling the procedure DBMS_CQ_
NOTIFICATION.ENABLE_REG with the registration ID as the parameter.

3. Execute the queries that you want to register. (Do not execute DML or DDL
operations.)

4. Close the registration, using the DBMS_CQ_NOTIFICATION.REG_END function.

Example 12–5 adds a query to an existing registration whose registration ID is 21.

Example 12–5 Adding a Query to an Existing Registration

DECLARE
 v_cursor SYS_REFCURSOR;

BEGIN
 -- Open existing registration
 DBMS_CQ_NOTIFICATION.ENABLE_REG(21);
 OPEN v_cursor FOR
 -- Execute query to be registered
 SELECT DEPARTMENT_ID
 FROM HR.DEPARTMENTS; -- register this query
 CLOSE v_cursor;
 -- Close registration
 DBMS_CQ_NOTIFICATION.REG_END;
END;
/

Best Practices for CQN Registrations
For best CQN performance, follow these registration guidelines:

■ Register few queries—preferably those that reference objects that rarely change.

Extremely volatile registered objects cause numerous notifications, whose
overhead slows OLTP throughput.

■ Minimize the number of duplicate registrations of any given object, in order to
avoid replicating a notification message for multiple recipients.

Creating CQN Registrations

Using Continuous Query Notification 12-23

Troubleshooting CQN Registrations
If you are unable to create a registration, or if you have created a registration but are
not receiving the notifications that you expected, the problem might be one of the
following:

■ The JOB_QUEUE_PROCESSES parameter is not set to a nonzero value.

This prevents you from receiving PL/SQL notifications through the notification
handler.

■ You were connected as a SYS user when you created the registrations.

You must be connected as a non-SYS user in order to create CQN registrations.

■ You changed a registered object, but did not commit the transaction.

Notifications are generated only when the transaction commits.

■ The registrations were not successfully created in the database.

To check, query the static data dictionary view *_CHANGE_NOTIFICATION_REGS.
For example, the following statement displays all registrations and registered
objects for the current user:

SELECT REGID, TABLE_NAME FROM USER_CHANGE_NOTIFICATION_REGS;

■ Run-time errors occurred during the execution of the notification handler.

If so, they were logged to the trace file of the JOBQ process that tried to execute the
procedure. The name of the trace file usually has the following form:

ORACLE_SID_jnumber_PID.trc

For example, if the ORACLE_SID is dbs1 and the process ID (PID) of the JOBQ
process is 12483, the name of the trace file is usually dbs1_j000_12483.trc.

Suppose that a registration is created with 'chnf_callback' as the notification
handler and registration ID 100. Suppose that 'chnf_callback' was not defined
in the database. Then the JOBQ trace file might contain a message of the form:

**
 Run-time error during execution of PL/SQL cbk chnf_callback for reg CHNF100.
 Error in PLSQL notification of msgid:
 Queue :
 Consumer Name :
 PLSQL function :chnf_callback
 Exception Occured, Error msg:
 ORA-00604: error occurred at recursive SQL level 2
 ORA-06550: line 1, column 7:
 PLS-00201: identifier 'CHNF_CALLBACK' must be declared
 ORA-06550: line 1, column 7:
 PL/SQL: Statement ignored
**

If run-time errors occurred during the execution of the notification handler, create
a very simple version of the notification handler to verify that you are actually
receiving notifications, and then gradually add application logic.

An example of a very simple notification handler is:

REM Create table in HR schema to hold count of notifications received.
CREATE TABLE nfcount(cnt NUMBER);
INSERT INTO nfcount VALUES(0);
COMMIT;

Querying CQN Registrations

12-24 Oracle Database Advanced Application Developer's Guide

CREATE OR REPLACE PROCEDURE chnf_callback
 (ntfnds IN CQ_NOTIFICATION$_DESCRIPTOR)
IS
BEGIN
 UPDATE nfcount SET cnt = cnt+1;
 COMMIT;
END;
/

■ There is a time lag between the commit of a transaction and the notification
received by the end user.

Querying CQN Registrations
To see top-level information about all registrations, including their QOS options, query
one of the static data dictionary views *_CHANGE_NOTIFICATION_REGS.

For example, you can obtain the registration ID for a client and the list of objects for
which it receives notifications. To view registration IDs and table names for HR, you
can do the following from SQL*Plus:

CONNECT HR/password;
SELECT regid, table_name FROM USER_CHANGE_NOTIFICATION_REGS;

To see which queries are registered for QRCN, query the static data dictionary view
USER_CQ_NOTIFICATION_QUERIES or DBA_CQ_NOTIFICATION_QUERIES. These
views include information about any bind values that the queries use. In these views,
bind values in the original query are included in the query text as constants. The query
text is equivalent, but maybe not identical, to the original query that was registered.

Interpreting Notifications
When a transaction commits, Oracle Database determines whether registered objects
were modified in the transaction. If so, it executes the notification handler specified in
the registration.

Topics:

■ Interpreting a CQ_NOTIFICATION$_DESCRIPTOR Object

■ Interpreting a CQ_NOTIFICATION$_TABLE Object

■ Interpreting a CQ_NOTIFICATION$_QUERY Object

■ Interpreting a CQ_NOTIFICATION$_ROW Object

Interpreting a CQ_NOTIFICATION$_DESCRIPTOR Object
When a CQN registration generates a notification, Oracle Database passes a CQ_
NOTIFICATION$_DESCRIPTOR object to the notification handler. The notification
handler can find the details of the database change in the attributes of the CQ_
NOTIFICATION$_DESCRIPTOR object.

In SQL*Plus, you can list these attributes by connecting as SYS and executing the
following statement:

See Also: Oracle Database Reference for more information about the
static data dictionary views USER_CHANGE_NOTIFICATION_REGS
and DBA_CQ_NOTIFICATION_QUERIES

Interpreting Notifications

Using Continuous Query Notification 12-25

DESC CQ_NOTIFICATION$_DESCRIPTOR

Table 12–4 summarizes the attributes of CQ_NOTIFICATION$_DESCRIPTOR.

Interpreting a CQ_NOTIFICATION$_TABLE Object
The CQ_NOTIFICATION$_DESCRIPTOR type contains an attribute called TABLE_
DESC_ARRAY, which holds a VARRAY of table descriptors of type CQ_
NOTIFICATION$_TABLE.

In SQL*Plus, you can list these attributes by connecting as SYS and executing the
following statement:

DESC CQ_NOTIFICATION$_TABLE

Table 12–5 summarizes the attributes of CQ_NOTIFICATION$_TABLE.

Table 12–4 Attributes of CQ_NOTIFICATION$_DESCRIPTOR

Attribute Description

REGISTRATION_ID The registration ID that was returned during registration.

TRANSACTION_ID The ID for the transaction that made the change.

DBNAME The name of the database in which the notification was generated.

EVENT_TYPE The database event that triggers a notification. For example, the
attribute can contain the following constants, which correspond to
different database events:

■ EVENT_NONE

■ EVENT_STARTUP (Instance startup)

■ EVENT_SHUTDOWN (Instance shutdown - last instance shutdown in
the case of Oracle RAC)

■ EVENT_SHUTDOWN_ANY (Any instance shutdown in the case of
Oracle RAC)

■ EVENT_DEREG (Registration was removed)

■ EVENT_OBJCHANGE (Change to a registered table)

■ EVENT_QUERYCHANGE (Change to a registered result set)

NUMTABLES The number of tables that were modified.

TABLE_DESC_ARRAY This field is present only for OCN registrations. For QRCN
registrations, it is NULL.

If EVENT_TYPE is EVENT_OBJCHANGE]: a VARRAY of table change
descriptors of type CQ_NOTIFICATION$_TABLE, each of which
corresponds to a changed table. For attributes of CQ_NOTIFICATION$_
TABLE, see Table 12–5.

Otherwise: NULL.

QUERY_DESC_ARRAY This field is present only for QRCN registrations. For OCN
registrations, it is NULL.

If EVENT_TYPE is EVENT_QUERYCHANGE]: a VARRAY of result set
change descriptors of type CQ_NOTIFICATION$_QUERY, each of which
corresponds to a changed result set. For attributes of CQ_
NOTIFICATION$_QUERY, see Table 12–6.

Otherwise: NULL.

Interpreting Notifications

12-26 Oracle Database Advanced Application Developer's Guide

Interpreting a CQ_NOTIFICATION$_QUERY Object
The CQ_NOTIFICATION$_DESCRIPTOR type contains an attribute called QUERY_
DESC_ARRAY, which holds a VARRAY of result set change descriptors of type CQ_
NOTIFICATION$_QUERY.

In SQL*Plus, you can list these attributes by connecting as SYS and executing the
following statement:

DESC CQ_NOTIFICATION$_QUERY

Table 12–6 summarizes the attributes of CQ_NOTIFICATION$_QUERY.

Interpreting a CQ_NOTIFICATION$_ROW Object
If the ROWID option was specified during registration, the CQ_NOTIFICATION$_
TABLE type has a ROW_DESC_ARRAY attribute, a VARRAY of type CQ_
NOTIFICATION$_ROW that contains the ROWIDs for the changed rows. If ALL_ROWS
was set in the OPFLAGS field of the CQ_NOTIFICATION$_TABLE object, then ROWID
information is not available.

Table 12–7 summarizes the attributes of CQ_NOTIFICATION$_ROW.

Table 12–5 Attributes of CQ_NOTIFICATION$_TABLE

Attribute Specifies . . .

OPFLAGS The type of operation performed on the modified table. For example, the
attribute can contain the following constants, which correspond to
different database operations:

■ ALL_ROWS signifies that either the entire table is modified, as in a
DELETE *, or row-level granularity of information is not requested or
not available in the notification, and the recipient must assume that
the entire table has changed

■ UPDATEOP signifies an update

■ DELETEOP signifies a deletion

■ ALTEROP signifies an ALTER TABLE

■ DROPOP signifies a DROP TABLE

■ UNKNOWNOP signifies an unknown operation

TABLE_NAME The name of the modified table.

NUMROWS The number of modified rows.

ROW_DESC_ARRAY A VARRAY of row descriptors of type CQ_NOTIFICATION$_ROW, which is
described in Table 12–7. If ALL_ROWS was set in the opflags, then the
ROW_DESC_ARRAY member is NULL.

Table 12–6 Attributes of CQ_NOTIFICATION$_QUERY

Attribute Specifies . . .

QUERYID Query ID of the changed query.

QUERYOP Operation that changed the query (either EVENT_QUERYCHANGE or
EVENT_DEREG).

TABLE_DESC_ARRAY A VARRAY of table change descriptors of type CQ_NOTIFICATION$_
TABLE, each of which corresponds to a changed table that caused a
change in the result set. For attributes of CQ_NOTIFICATION$_
TABLE, see Table 12–5.

Configuring CQN: Scenario

Using Continuous Query Notification 12-27

Deleting Registrations
To delete a registration, call the procedure DBMS_CQ_NOTIFICATION.DEREGISTER
with the registration ID as the parameter. For example, the following statement
deregisters the registration whose registration ID is 21:

DBMS_CQ_NOTIFICATION.DEREGISTER(21);

Only the user who created the registration or the SYS user can deregister it.

Configuring CQN: Scenario
In this scenario, you are a developer who manages a Web application that provides
employee data: name, location, phone number, and so on. The application, which runs
on Oracle Application Server, is heavily used and processes frequent queries of the
HR.EMPLOYEES and HR.DEPARTMENTS tables in the back-end database. Because these
tables change relatively infrequently, the application can improve performance by
caching the query results. Caching avoids a round trip to the back-end database as
well as server-side execution latency.

You can use the DBMS_CQ_NOTIFICATION package to register queries based on
HR.EMPLOYEES and HR.DEPARTMENTS tables. To configure CQN, you follow these
steps:

1. Create a server-side PL/SQL stored procedure to process the notifications, as
instructed in "Creating a PL/SQL Notification Handler" on page 12-28.

2. Register the queries on the HR.EMPLOYEES and HR.DEPARTMENTS tables for
QRCN, as instructed in "Registering the Queries" on page 12-30.

After you complete these steps, any committed change to the result of a query
registered in step 2 causes the notification handler created in step 1 to notify the Web
application of the change, whereupon the Web application refreshes the cache by
querying the back-end database.

Topics:

■ Creating a PL/SQL Notification Handler

■ Registering the Queries

Creating a PL/SQL Notification Handler
You create a a server-side stored PL/SQL procedure to process notifications as follows:

1. You connect to the database as a user with DBA privileges:

CONNECT / AS SYSDBA;

2. You grant the required privileges to HR:

GRANT EXECUTE ON DBMS_CQ_NOTIFICATION TO HR;
GRANT CHANGE NOTIFICATION TO HR;

Table 12–7 Attributes of CQ_NOTIFICATION$_ROW

Attribute Specifies . . .

OPFLAGS The type of operation performed on the modified table. See the
description of OPFLAGS in Table 12–5.

ROW_ID The ROWID of the changed row.

Configuring CQN: Scenario

12-28 Oracle Database Advanced Application Developer's Guide

3. You enable the JOB_QUEUE_PROCESSES parameter to receive notifications:

ALTER SYSTEM SET "JOB_QUEUE_PROCESSES"=4;

4. You connect to the database as a non-SYS user:

CONNECT HR/password;

5. You create database tables to hold records of notification events received:

REM Create a table to record notification events.
CREATE TABLE nfevents (
 regid NUMBER,
 event_type NUMBER);

REM Create a table to record notification queries.
CREATE TABLE nfqueries (
 qid NUMBER,
 qop NUMBER);

REM Create a table to record changes to registered tables.
CREATE TABLE nftablechanges (
 qid NUMBER,
 table_name VARCHAR2(100),
 table_operation NUMBER);

REM Create a table to record ROWIDs of changed rows.
CREATE TABLE nfrowchanges (
 qid NUMBER,
 table_name VARCHAR2(100),
 row_id VARCHAR2(2000));

6. You create the procedure HR.chnf_callback, as shown in Example 12–6.

Example 12–6 Creating Server-Side PL/SQL Notification Handler

CREATE OR REPLACE PROCEDURE chnf_callback (
 ntfnds IN CQ_NOTIFICATION$_DESCRIPTOR)
IS
 regid NUMBER;
 tbname VARCHAR2(60);
 event_type NUMBER;
 numtables NUMBER;
 operation_type NUMBER;
 numrows NUMBER;
 row_id VARCHAR2(2000);
 numqueries NUMBER;
 qid NUMBER;
 qop NUMBER;

BEGIN
 regid := ntfnds.registration_id;
 event_type := ntfnds.event_type;
 INSERT INTO nfevents VALUES(regid, event_type);
 numqueries :=0;

 IF (event_type = DBMS_CQ_NOTIFICATION.EVENT_QUERYCHANGE) THEN
 numqueries := ntfnds.query_desc_array.count;
 FOR i IN 1..numqueries LOOP
 qid := ntfnds.query_desc_array(i).queryid;

Configuring CQN: Scenario

Using Continuous Query Notification 12-29

 qop := ntfnds.query_desc_array(i).queryop;
 INSERT INTO nfqueries VALUES(qid, qop);
 numtables := 0;
 numtables := ntfnds.query_desc_array(i).table_desc_array.count;
 FOR j IN 1..numtables LOOP
 tbname :=
 ntfnds.query_desc_array(i).table_desc_array(j).table_name;
 operation_type :=
 ntfnds.query_desc_array(i).table_desc_array(j).Opflags;
 INSERT INTO nftablechanges VALUES(qid, tbname, operation_type);
 IF (bitand(operation_type, DBMS_CQ_NOTIFICATION.ALL_ROWS) = 0)
 THEN
 numrows := ntfnds.query_desc_array(i).table_desc_array(j).numrows;
 ELSE
 numrows :=0; -- ROWID info not available
 END IF;

 /* Body of loop does not execute when numrows is zero */
 FOR k IN 1..numrows LOOP
 Row_id :=
 ntfnds.query_desc_array(i).table_desc_array(j).row_desc_array(k).row_id;
 INSERT INTO nfrowchanges VALUES(qid, tbname, Row_id);
 END LOOP; -- loop over rows
 END LOOP; -- loop over tables
 END LOOP; -- loop over queries
 END IF;
 COMMIT;
END;
/

Registering the Queries
After creating the notification handler, you register the queries for which you want to
receive notifications, specifying HR.chnf_callback as the notification handler, as in
Example 12–7.

Example 12–7 Registering a Query

DECLARE
 reginfo CQ_NOTIFICATION$_REG_INFO;
 mgr_id NUMBER;
 dept_id NUMBER;
 v_cursor SYS_REFCURSOR;
 regid NUMBER;

BEGIN
 /* Register two queries for QRNC: */
 /* 1. Construct registration information.
 chnf_callback is name of notification handler.
 QOS_QUERY specifies result-set-change notifications. */

 reginfo := cq_notification$_reg_info (
 'chnf_callback',
 DBMS_CQ_NOTIFICATION.QOS_QUERY,
 0, 0, 0);

 /* 2. Create registration. */

 regid := DBMS_CQ_NOTIFICATION.new_reg_start(reginfo);

Configuring CQN: Scenario

12-30 Oracle Database Advanced Application Developer's Guide

 OPEN v_cursor FOR
 SELECT dbms_cq_notification.CQ_NOTIFICATION_QUERYID, manager_id
 FROM HR.EMPLOYEES
 WHERE employee_id = 7902;
 CLOSE v_cursor;

 OPEN v_cursor FOR
 SELECT dbms_cq_notification.CQ_NOTIFICATION_QUERYID, department_id
 FROM HR.departments
 WHERE department_name = 'IT';
 CLOSE v_cursor;
END;
/

You can view the newly created registration by issuing the following query:

SELECT queryid, regid, TO_CHAR(querytext)
 FROM user_cq_notification_queries;

The result of the preceding query has the following information:

QUERYID REGID TO_CHAR(QUERYTEXT)
------- ----- --
 22 41 SELECT HR.DEPARTMENTS.DEPARTMENT_ID
 FROM HR.DEPARTMENTS
 WHERE HR.DEPARTMENTS.DEPARTMENT_NAME = 'IT'

 21 41 SELECT HR.EMPLOYEES.MANAGER_ID
 FROM HR.EMPLOYEES
 WHERE HR.EMPLOYEES.EMPLOYEE_ID = 7902

Execute the following transaction, which changes the result of the query with
QUERYID 22:

UPDATE DEPARTMENTS SET DEPARTMENT_NAME = 'FINANCE'
 WHERE department_name = 'IT';
COMMIT;

The notification procedure chnf_callback (which you created in Example 12–6)
executes.

Now query the table in which notification events are recorded:

SQL> SELECT * FROM nfevents;

The result of the preceding query has the following information:

REGID EVENT_TYPE
----- ----------
 61 7

EVENT_TYPE 7 corresponds to EVENT_QUERYCHANGE (query result change).

Query the table in which changes to registered tables are recorded:

SELECT * FROM nftablechanges;

The result of the preceding query has the following information:

REGID TABLE_NAME TABLE_OPERATION
----- -------------- ---------------
 42 HR.DEPARTMENTS 4

Configuring CQN: Scenario

Using Continuous Query Notification 12-31

TABLE_OPERATION 4 corresponds to UPDATEOP (update operation).

Query the table in which ROWIDs of changed rows are recorded:

SELECT * FROM nfrowchanges;

The result of the preceding query has the following information:

REGID TABLE_NAME ROWID
----- -------------- ------------------
 61 HR.DEPARTMENTS AAANkdAABAAALinAAF

TABLE_OPERATION 4 corresponds to UPDATEOP (update operation).

Configuring CQN: Scenario

12-32 Oracle Database Advanced Application Developer's Guide

Part III
Advanced Topics for Application Developers

This part presents application development information that either involves
sophisticated technology or is used by a small minority of developers.

Chapters:

■ Chapter 13, "Using Flashback Technology"

■ Chapter 14, "Developing Applications Using Multiple Programming Languages"

■ Chapter 15, "Developing Applications with Oracle XA"

■ Chapter 16, "Developing Applications on the Publish-Subscribe Model"

■ Chapter 17, "Using the Identity Code Package"

See Also: Oracle Database Performance Tuning Guide for performance
issues to consider when developing applications

Using Flashback Technology 13-1

13
Using Flashback Technology

This chapter explains how to use Flashback Technology in database applications.

Topics:

■ Overview of Flashback Technology

■ Configuring Your Database for Flashback Technology

■ Using Flashback Query (SELECT AS OF)

■ Using Flashback Version Query

■ Using Flashback Transaction Query

■ Using Flashback Transaction Query with Flashback Version Query

■ Using ORA_ROWSCN

■ Using DBMS_FLASHBACK Package

■ Using Flashback Transaction Backout

■ Using Flashback Data Archives

■ General Guidelines for Flashback Technology

■ Performance Guidelines for Flashback Technology

Overview of Flashback Technology
Flashback Technology is a group of Oracle Database features that that let you view
past states of database objects or to return database objects to a previous state without
using point-in-time media recovery.

With flashback features, you can do the following:

■ Perform queries that return past data

■ Perform queries that return metadata that shows a detailed history of changes to
the database

■ Recover tables or rows to a previous point in time

■ Automatically track and archive transactional data changes

■ Roll back a transaction and its dependent transactions while the database remains
online

Flashback features use the Automatic Undo Management (AUM) system to obtain
metadata and historical data for transactions. They rely on undo data, which are
records of the effects of individual transactions. For example, if a user executes an

Overview of Flashback Technology

13-2 Oracle Database Advanced Application Developer's Guide

UPDATE statement to change a salary from 1000 to 1100, then Oracle Database stores
the value 1000 in the undo data.

Undo data is persistent and survives a database shutdown. By using flashback
features, you can employ undo data to query past data or recover from logical
corruptions. Besides using it in flashback features, Oracle Database uses undo data to
perform the following actions:

■ Roll back active transactions

■ Recover terminated transactions by using database or process recovery

■ Provide read consistency for SQL queries

Topics:

■ Application Development Features

■ Database Administration Features

For additional general information about flashback features, see Oracle Database
Concepts

Application Development Features
In application development, you can use the following flashback features to report
historical data or undo erroneous changes. (You can also use these features
interactively as a database user or administrator.)

Flashback Query
Use this feature to retrieve data for a time in the past that you specify with the AS OF
clause of the SELECT statement. For more information, see "Using Flashback Query
(SELECT AS OF)" on page 13-5.

Flashback Version Query
Use this feature to retrieve metadata and historical data for a specific time interval (for
example, to view all the rows of a table that ever existed during a given time interval).
Metadata for each row version includes start and end time, type of change operation,
and identity of the transaction that created the row version. To create a Flashback
Version Query, use the VERSIONS BETWEEN clause of the SELECT statement. For more
information, see "Using Flashback Version Query" on page 13-7.

Flashback Transaction Query
Use this feature to retrieve metadata and historical data for a given transaction or for
all transactions in a given time interval. You can also obtain the SQL code to undo the
changes to particular rows affected by a transaction. To perform a Flashback
Transaction Query, select from the static data dictionary view FLASHBACK_
TRANSACTION_QUERY. For more information, see "Using Flashback Transaction
Query" on page 13-9.

Typically, you use Flashback Transaction Query in conjunction with a Flashback
Version Query that provides the transaction IDs for the rows of interest (see "Using
Flashback Transaction Query with Flashback Version Query" on page 13-9).

DBMS_FLASHBACK Package
Use this feature to set the internal Oracle Database clock to a time in the past so that
you can examine data that was current at that time, or to roll back a transaction and its
dependent transactions while the database remains online (see "Flashback Transaction

Configuring Your Database for Flashback Technology

Using Flashback Technology 13-3

Backout"). For more information, see "Using DBMS_FLASHBACK Package" on
page 13-12.

Flashback Transaction Backout
Use Flashback Transaction Backout to roll back a transaction and its dependent
transactions while the database remains online. This recovery operation uses undo
data to create and execute the corresponding compensating transactions that return
the affected data to its original state. (Flashback Transaction Backout is part of DBMS_
FLASHBACK package.) For more information, see "Using DBMS_FLASHBACK
Package" on page 13-12.

Flashback Data Archives
Use Flashback Data Archives to automatically track and archive both regular queries
and Flashback Queries, ensuring SQL-level access to the versions of database objects
without getting a snapshot-too-old error. For more information, see "Using Flashback
Data Archives" on page 13-15.

Database Administration Features
The following flashback features are primarily for data recovery. Typically, you use
these features only as a database administrator.

This chapter focuses on the "Application Development Features" on on page 13-2. For
more information about the database administration features, see Oracle Database
Administrator's Guide and the Oracle Database Backup and Recovery User's Guide.

Flashback Table
Use this feature to restore a table to its state at a previous point in time. You can restore
a table while the database is on line, undoing changes to only the specified table.

Flashback Drop
Use this feature to recover a dropped table. This feature reverses the effects of a DROP
TABLE statement.

Flashback Database
Use this feature to quickly return the database to an earlier point in time, by undoing
all of the changes that have taken place since then. This is fast, because you do not
have to restore database backups.

Configuring Your Database for Flashback Technology
Before you can use flashback features in your application, you or your database
administrator must perform the configuration tasks described in the following topics:

■ Configuring Your Database for Automatic Undo Management

■ Configuring Your Database for Flashback Transaction Query

■ Configuring Your Database for Flashback Transaction Backout

■ Enabling Flashback Operations on Specific LOB Columns

■ Granting Necessary Privileges

Configuring Your Database for Flashback Technology

13-4 Oracle Database Advanced Application Developer's Guide

Configuring Your Database for Automatic Undo Management
To configure your database for Automatic Undo Management (AUM), you or your
database administrator must do the following:

■ Create an undo tablespace with enough space to keep the required data for
flashback operations.

The more often users update the data, the more space is required. The database
administrator usually calculates the space requirement.

■ Enable AUM, as explained in Oracle Database Administrator's Guide. Set the
following database initialization parameters:

– UNDO_MANAGEMENT

– UNDO_TABLESPACE

– UNDO_RETENTION

For a fixed-size undo tablespace, Oracle Database automatically tunes the system
to give the undo tablespace the best possible undo retention.

For an automatically extensible undo tablespace, Oracle Database retains undo
data longer than the longest query duration as well as the low threshold of undo
retention specified by the UNDO_RETENTION parameter.

Setting UNDO_RETENTION does not guarantee that unexpired undo data is not
discarded. If the system needs more space, Oracle Database can overwrite
unexpired undo with more recently generated undo data.

■ Specify the RETENTION GUARANTEE clause for the undo tablespace to ensure that
unexpired undo data is not discarded.

Configuring Your Database for Flashback Transaction Query
To configure your database for the Flashback Transaction Query feature, you or your
database administrator must do the following:

■ Ensure that Oracle Database is running with version 10.0 compatibility.

■ Enable supplemental logging:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

Configuring Your Database for Flashback Transaction Backout
To configure your database for the Flashback Transaction Backout feature, you or your
database administrator must do the following:

■ With the database mounted but not open, enable ARCHIVELOG:

ALTER DATABASE ARCHIVELOG;

■ Open at least one archive log:

Note: You can query V$UNDOSTAT.TUNED_UNDORETENTION to
determine the amount of time for which undo is retained for the
current undo tablespace.

See Also: Oracle Database Administrator's Guide for more information
about creating an undo tablespace and enabling AUM

Using Flashback Query (SELECT AS OF)

Using Flashback Technology 13-5

ALTER SYSTEM ARCHIVE LOG CURRENT;

■ If not done already, enable supplemental logging:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

Enabling Flashback Operations on Specific LOB Columns
To enable flashback operations on specific LOB columns of a table, use the ALTER
TABLE statement with the RETENTION option.

Because undo data for LOB columns can be voluminous, you must define which LOB
columns to use with flashback operations.

Granting Necessary Privileges
You or your database administrator must grant privileges to users, roles, or
applications that need to use the following flashback features. For information about
the GRANT statement, see Oracle Database SQL Language Reference.

For Flashback Query and Flashback Version Query
Do either of the following:

■ To allow access to specific objects during queries, grant FLASHBACK and SELECT
privileges on those objects.

■ To allow queries on all tables, grant the FLASHBACK ANY TABLE privilege.

For Flashback Transaction Query
Grant the SELECT ANY TRANSACTION privilege.

To allow execution of undo SQL code retrieved by a Flashback Transaction Query,
grant SELECT, UPDATE, DELETE, and INSERT privileges for specific tables.

For DBMS_FLASHBACK Package
To allow access to the features in the DBMS_FLASHBACK package, grant the EXECUTE
privilege on DBMS_FLASHBACK.

For Flashback Data Archives
To allow a specific user to use a specific Flashback Data Archive, grant the FLASHBACK
ARCHIVE object privilege on that Flashback Data Archive to that user. The user can
then enable Flashback Archive on tables, using that Flashback Data Archive.

To allow execution of the following statements, grant the ARCHIVE ADMINISTER
system privilege:

■ CREATE FLASHBACK ARCHIVE

■ ALTER FLASHBACK ARCHIVE

■ DROP FLASHBACK ARCHIVE

Using Flashback Query (SELECT AS OF)
To use Flashback Query, use a SELECT statement with an AS OF clause. Flashback
Query retrieves data as it existed at some time in the past. The query explicitly

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide to learn about LOB storage and the RETENTION parameter

Using Flashback Query (SELECT AS OF)

13-6 Oracle Database Advanced Application Developer's Guide

references a past time through a timestamp or System Change Number (SCN). It
returns committed data that was current at that point in time.

Uses of Flashback Query include:

■ Recovering lost data or undoing incorrect, committed changes.

For example, if you mistakenly delete or update rows, and then commit them, you
can immediately undo the mistake.

■ Comparing current data with the corresponding data at some time in the past.

For example, you can run a daily report that shows the change in data from
yesterday. You can compare individual rows of table data or find intersections or
unions of sets of rows.

■ Checking the state of transactional data at a particular time.

For example, you can verify the account balance of a certain day.

■ Simplifying application design by removing the need to store some kinds of
temporal data.

Flashback Query lets you retrieve past data directly from the database.

■ Applying packaged applications, such as report generation tools, to past data.

■ Providing self-service error correction for an application, thereby enabling users to
undo and correct their errors.

Topics:

■ Example of Examining and Restoring Past Data

■ Guidelines for Flashback Query

For more information about the SELECT AS OF statement, see Oracle Database SQL
Language Reference.

Example of Examining and Restoring Past Data
Suppose that you discover at 12:30 PM that the row for employee Chung was deleted
from the employees table, and you know that at 9:30AM the data for Chung was
correctly stored in the database. You can use Flashback Query to examine the contents
of the table at 9:30 AM to find out what data was lost. If appropriate, you can restore
the lost data.

Example 13–1 retrieves the state of the record for Chung at 9:30AM, April 4, 2004:

Example 13–1 Retrieving a Lost Row with Flashback Query

SELECT * FROM employees AS OF TIMESTAMP
 TO_TIMESTAMP('2004-04-04 09:30:00', 'YYYY-MM-DD HH:MI:SS')
 WHERE last_name = 'Chung';

Example 13–2 restores Chung's information to the employees table:

Example 13–2 Restoring a Lost Row After Flashback Query

INSERT INTO employees
 (SELECT * FROM employees AS OF TIMESTAMP
 TO_TIMESTAMP('2004-04-04 09:30:00', 'YYYY-MM-DD HH:MI:SS')
 WHERE last_name = 'Chung');

Using Flashback Version Query

Using Flashback Technology 13-7

Guidelines for Flashback Query
■ You can specify or omit the AS OF clause for each table and specify different times

for different tables.

■ You can use the AS OF clause in queries to perform DDL operations (such as
creating and truncating tables) or DML operations (such as inserting and deleting)
in the same session as Flashback Query.

■ To use the result of Flashback Query in a DDL or DML statement that affects the
current state of the database, use an AS OF clause inside an INSERT or CREATE
TABLE AS SELECT statement.

■ If a possible 3-second error (maximum) is important to Flashback Query in your
application, use an SCN instead of a timestamp. See "General Guidelines for
Flashback Technology" on page 13-21.

■ You can create a view that refers to past data by using the AS OF clause in the
SELECT statement that defines the view.

If you specify a relative time by subtracting from the current time on the database
host, the past time is recalculated for each query. For example:

CREATE VIEW hour_ago AS
 SELECT * FROM employees AS OF
 TIMESTAMP (SYSTIMESTAMP - INTERVAL '60' MINUTE);
-- SYSTIMESTAMP refers to the time zone of the database host environment

■ You can use the AS OF clause in self-joins, or in set operations such as INTERSECT
and MINUS, to extract or compare data from two different times.

You can store the results by preceding Flashback Query with a CREATE TABLE AS
SELECT or INSERT INTO TABLE SELECT statement. For example, the following
query reinserts into table employees the rows that existed an hour ago:

INSERT INTO employees
 (SELECT * FROM employees AS OF
 TIMESTAMP (SYSTIMESTAMP - INTERVAL '60' MINUTE))
-- SYSTIMESTAMP refers to the time zone of the database host environment
 MINUS SELECT * FROM employees);

Using Flashback Version Query
Use Flashback Version Query to retrieve the different versions of specific rows that
existed during a given time interval. A new row version is created whenever a
COMMIT statement is executed.

Specify Flashback Version Query using the VERSIONS BETWEEN clause of the SELECT
statement. The syntax is:

VERSIONS {BETWEEN {SCN | TIMESTAMP} start AND end}

where start and end are expressions representing the start and end, respectively, of
the time interval to be queried. The time interval includes (start and end).

Flashback Version Query returns a table with a row for each version of the row that
existed at any time during the specified time interval. Each row in the table includes
pseudocolumns of metadata about the row version, described in Table 13–1. This
information can reveal when and how a particular change (perhaps erroneous)
occurred to your database.

Using Flashback Version Query

13-8 Oracle Database Advanced Application Developer's Guide

A given row version is valid starting at its time VERSIONS_START* up to, but not
including, its time VERSIONS_END*. That is, it is valid for any time t such that
VERSIONS_START* <= t < VERSIONS_END*. For example, the following output
indicates that the salary was 10243 from September 9, 2002, included, to November 25,
2003, excluded.

VERSIONS_START_TIME VERSIONS_END_TIME SALARY
------------------- ----------------- ------
09-SEP-2003 25-NOV-2003 10243

Here is a typical use of Flashback Version Query:

SELECT versions_startscn, versions_starttime,
 versions_endscn, versions_endtime,
 versions_xid, versions_operation,
 name, salary
 FROM employees
 VERSIONS BETWEEN TIMESTAMP
 TO_TIMESTAMP('2003-07-18 14:00:00', 'YYYY-MM-DD HH24:MI:SS')
 AND TO_TIMESTAMP('2003-07-18 17:00:00', 'YYYY-MM-DD HH24:MI:SS')
 WHERE name = 'JOE';

You can use VERSIONS_XID with Flashback Transaction Query to locate this
transaction's metadata, including the SQL required to undo the row change and the
user responsible for the change—see "Using Flashback Transaction Query" on
page 13-9.

Table 13–1 Flashback Version Query Row Data Pseudocolumns

Pseudocolumn Name Description

VERSIONS_STARTSCN

VERSIONS_STARTTIME

Starting System Change Number (SCN) or TIMESTAMP when the
row version was created. This pseudocolumn identifies the time
when the data first had the values reflected in the row version. Use
this pseudocolumn to identify the past target time for Flashback
Table or Flashback Query.

If this pseudocolumn is NULL, then the row version was created
before start.

VERSIONS_ENDSCN

VERSIONS_ENDTIME

SCN or TIMESTAMP when the row version expired.

If this pseudocolumn is NULL, then either the row version was
current at the time of the query or the row corresponds to a DELETE
operation.

VERSIONS_XID Identifier of the transaction that created the row version.

VERSIONS_OPERATION Operation performed by the transaction: I for insertion, D for
deletion, or U for update. The version is that of the row that was
inserted, deleted, or updated; that is, the row after an INSERT
operation, the row before a DELETE operation, or the row affected by
an UPDATE operation.

For user updates of an index key, Flashback Version Query might
treat an UPDATE operation as two operations, DELETE plus INSERT,
represented as two version rows with a Dfollowed by an I
VERSIONS_OPERATION.

See Also: Oracle Database SQL Language Reference for information on
Flashback Version Query pseudocolumns and the syntax of the
VERSIONS clause.

Using Flashback Transaction Query with Flashback Version Query

Using Flashback Technology 13-9

Using Flashback Transaction Query
Flashback Transaction Query queries the static data dictionary view FLASHBACK_
TRANSACTION_QUERY. Use Flashback Transaction Query to obtain transaction
information, including SQL code that you can use to undo each change that the
transaction made.

The following statement queries the FLASHBACK_TRANSACTION_QUERY view for
transaction information, including the transaction ID, the operation, the operation start
and end SCNs, the user responsible for the operation, and the SQL code to undo the
operation:

SELECT xid, operation, start_scn,commit_scn, logon_user, undo_sql
 FROM flashback_transaction_query
 WHERE xid = HEXTORAW('000200030000002D');

The following statement uses Flashback Version Query as a subquery to associate each
row version with the LOGON_USER responsible for the row data change.

SELECT xid, logon_user FROM flashback_transaction_query
 WHERE xid IN
 (SELECT versions_xid FROM employees VERSIONS BETWEEN TIMESTAMP
 TO_TIMESTAMP('2003-07-18 14:00:00', 'YYYY-MM-DD HH24:MI:SS') AND
 TO_TIMESTAMP('2003-07-18 17:00:00', 'YYYY-MM-DD HH24:MI:SS'));

Using Flashback Transaction Query with Flashback Version Query
This example uses simple versions of the employees and departments tables in the
sample HR schema.

In this example, a database administrator uses SQL*Plus to do the following:

CONNECT HR/password
CREATE TABLE emp
 (empno NUMBER PRIMARY KEY,
 empname VARCHAR2(16)
 salary NUMBER);
INSERT INTO emp VALUES (111, 'Mike', 555);
COMMIT;

CREATE TABLE dept
 (deptno NUMBER,
 deptname VARCHAR2(32));
INSERT INTO dept VALUES (10, 'Accounting');
COMMIT;

See Also:

■ Oracle Database Backup and Recovery User's Guide. for information
on how a database administrator can use Flashback Table to
restore an entire table, rather than individual rows

■ Oracle Database Administrator's Guide for information on how a
database administrator can use Flashback Table to restore an
entire table, rather than individual rows

■ Oracle Database Reference for more information about the static
data dictionary view FLASHBACK_TRANSACTION_QUERY

Using Flashback Transaction Query with Flashback Version Query

13-10 Oracle Database Advanced Application Developer's Guide

Now emp and dept have one row each. In terms of row versions, each table has one
version of one row. Suppose that an erroneous transaction deletes empno 111 from
table emp:

UPDATE emp SET salary = salary + 100 WHERE empno = 111;
INSERT INTO dept VALUES (20, 'Finance');
DELETE FROM emp WHERE empno = 111;
COMMIT;

Next, a transaction reinserts empno 111 into the emp table with a new employee name:

INSERT INTO emp VALUES (111, 'Tom', 777);
UPDATE emp SET salary = salary + 100 WHERE empno = 111;
UPDATE emp SET salary = salary + 50 WHERE empno = 111;
COMMIT;

The database administrator detects the application error and needs to diagnose the
problem. The database administrator issues the following query to retrieve versions of
the rows in the emp table that correspond to empno 111. The query uses Flashback
Version Query pseudocolumns:

CONNECT dba_name/password
SELECT versions_xid XID, versions_startscn START_SCN,
 versions_endscn END_SCN, versions_operation OPERATION,
 empname, salary FROM hr.emp
 VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE
 where empno = 111;

XID START_SCN END_SCN OPERATION EMPNAME SALARY
---------------- ---------- --------- ---------- ---------- ----------
0004000700000058 113855 I Tom 927
000200030000002D 113564 D Mike 555
000200030000002E 112670 113564 I Mike 555
3 rows selected

The results table rows are in descending chronological order. The third row
corresponds to the version of the row in the table emp that was inserted in the table
when the table was created. The second row corresponds to the row in emp that the
erroneous transaction deleted. The first row corresponds to the version of the row in
emp that was reinserted with a new employee name.

The database administrator identifies transaction 000200030000002D as the
erroneous transaction and uses Flashback Transaction Query to audit all changes made
by this transaction:

SELECT xid, start_scn START, commit_scn COMMIT,
 operation OP, logon_user USER,
 undo_sql FROM flashback_transaction_query
 WHERE xid = HEXTORAW('000200030000002D');

XID START COMMIT OP USER UNDO_SQL
---------------- ----- ------ -- ---- ---------------------------
000200030000002D 195243 195244 DELETE HR insert into "HR"."EMP"
("EMPNO","EMPNAME","SALARY") values ('111','Mike','655');

000200030000002D 195243 195244 INSERT HR delete from "HR"."DEPT"
where ROWID = 'AAAKD4AABAAAJ3BAAB';

000200030000002D 195243 195244 UPDATE HR update "HR"."EMP"
set "SALARY" = '555' where ROWID = 'AAAKD2AABAAAJ29AAA';

Using ORA_ROWSCN

Using Flashback Technology 13-11

000200030000002D 195243 113565 BEGIN HR

4 rows selected

The (UNDO_SQL) column contains the SQL code that the database administrator can
execute to undo the changes made by that transaction. The USER column (logon_
user) shows the user responsible for the transaction.

To see the details of the erroneous transaction and all subsequent transactions, the
database administrator performs the following query:

SELECT xid, start_scn, commit_scn, operation, table_name, table_owner
 FROM flashback_transaction_query
 WHERE table_owner = 'HR' AND
 start_timestamp >=
 TO_TIMESTAMP ('2002-04-16 11:00:00','YYYY-MM-DD HH:MI:SS');

XID START_SCN COMMIT_SCN OPERATION TABLE_NAME TABLE_OWNER
---------------- --------- ---------- --------- ---------- -----------
0004000700000058 195245 195246 UPDATE EMP HR
0004000700000058 195245 195246 UPDATE EMP HR
0004000700000058 195245 195246 INSERT EMP HR
000200030000002D 195243 195244 DELETE EMP HR
000200030000002D 195243 195244 INSERT DEPT HR
000200030000002D 195243 195244 UPDATE EMP HR

6 rows selected

Using ORA_ROWSCN
ORA_ROWSCN is a pseudocolumn of any table that is not fixed or external. It represents
the SCN of the most recent change to a given row; that is, the latest COMMIT operation
for the row. For example:

SELECT ora_rowscn, last_name, salary
 FROM employees
 WHERE employee_id = 7788;

ORA_ROWSCN NAME SALARY
---------- ---- ------
 202553 Fudd 3000

The latest COMMIT operation for the row took place at approximately SCN 202553. To
convert an SCN to the corresponding TIMESTAMP value, use the function SCN_TO_
TIMESTAMP.

ORA_ROWSCN is a conservative upper bound of the latest commit time—the actual
commit SCN can be somewhat earlier. ORA_ROWSCN is more precise (closer to the
actual commit SCN) for a row-dependent table (created using CREATE TABLE with
the ROWDEPENDENCIES clause).

Uses of ORA_ROWSCN in application development include concurrency control and
client cache invalidation.

Scenario: Concurrency Control

Your application examines a row of data and records the corresponding ORA_ROWSCN
as 202553. Later, the application needs to update the row, but only if the row has not
changed. The operation is made conditional on the ORA_ROWSCN being still 202553.
An equivalent interactive statement is:

Using DBMS_FLASHBACK Package

13-12 Oracle Database Advanced Application Developer's Guide

UPDATE employees
 SET salary = salary + 100
 WHERE employee_id = 7788
 AND ora_rowscn = 202553;

0 rows updated.

The conditional update fails in this case, because the ORA_ROWSCN is no longer
202553. This means that a user or another application changed the row and
performed a COMMIT more recently than the recorded ORA_ROWSCN.

Your application queries again to obtain the new row data and ORA_ROWSCN. Suppose
that the ORA_ROWSCN is now 415639. The application tries the conditional update
again, using the new ORA_ROWSCN. This time, the update succeeds, and it is
committed. An interactive equivalent is:

SQL> UPDATE employees SET salary = salary + 100
 WHERE empno = 7788 AND ora_rowscn = 415639;

1 row updated.

SQL> COMMIT;

Commit complete.

SQL> SELECT ora_rowscn, name, salary FROM employees WHERE empno = 7788;

ORA_ROWSCN NAME SALARY
---------- ---- ------
 465461 Fudd 3100

The SCN corresponding to the new COMMIT is 465461.

Besides using ORA_ROWSCN in an UPDATE statement WHERE clause, you can use it in a
DELETE statement WHERE clause or the AS OF clause of Flashback Query.

Using DBMS_FLASHBACK Package
The DBMS_FLASHBACK package provides the same functionality as Flashback Query,
but Flashback Query is sometimes more convenient.

The DBMS_FLASHBACK package acts as a time machine: you can turn back the clock,
carry out normal queries as if you were at that time in the past, and then return to the
present. Because you can use the DBMS_FLASHBACK package to perform queries on
past data without special clauses such as AS OF or VERSIONS BETWEEN, you can reuse
existing PL/SQL code to query the database at times in the past.

You must have the EXECUTE privilege on the DBMS_FLASHBACKpackage.

To use the DBMS_FLASHBACK package in your PL/SQL code:

1. Specify a past time by invoking either DBMS_FLASHBACK.ENABLE_AT_TIME or
DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER.

2. Perform regular queries (that is, queries without special flashback-feature syntax
such as AS OF). Do not perform DDL or DML operations.

The database is queried at the specified past time.

3. Return to the present time by invoking DBMS_FLASHBACK.DISABLE.

Using Flashback Transaction Backout

Using Flashback Technology 13-13

You must invoke DBMS_FLASHBACK.DISABLE before invoking DBMS_
FLASHBACK.ENABLE_AT_TIME or DBMS_FLASHBACK.ENABLE_AT_SYSTEM_
CHANGE_NUMBER again. You cannot nest enable/disable pairs.

You can use a cursor to store the results of queries. To do this, open the cursor before
invoking DBMS_FLASHBACK.DISABLE. After storing the results and invoking DBMS_
FLASHBACK.DISABLE, you can do the following:

■ Perform INSERT or UPDATE operations to modify the current database state by
using the stored results from the past.

■ Compare current data with the past data. After invoking DBMS_
FLASHBACK.DISABLE, open a second cursor. Fetch from the first cursor to retrieve
past data; fetch from the second cursor to retrieve current data. You can store the
past data in a temporary table and then use set operators such as MINUS or UNION
to contrast or combine the past and current data.

You can invoke DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER at any time to get
the current System Change Number (SCN). DBMS_FLASHBACK.GET_SYSTEM_
CHANGE_NUMBER always returns the current SCN regardless of previous invocations
of DBMS_FLASHBACK.ENABLE.

Using Flashback Transaction Backout
The DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure ("TRANSACTION_
BACKOUT") rolls back a transaction and its dependent transactions while the database
remains online. This recovery operation uses undo data to create and execute the
compensating transactions that return the affected data to its original state.

Topics:

■ TRANSACTION_BACKOUT Parameters

■ TRANSACTION_BACKOUT Reports

TRANSACTION_BACKOUT Parameters
The parameters of the TRANSACTION_BACKOUT procedure are:

■ Number of transactions to be backed out

■ List of transactions to be backed out, identified either by name or by XID

■ Time hint, if you identify transactions by name

Specify a time that is earlier than any transaction started.

■ Backout option from Table 13–2

For the syntax of the TRANSACTION_BACKOUT procedure and detailed parameter
descriptions, see Oracle Database PL/SQL Packages and Types Reference.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for details of
the DBMS_FLASHBACK package

Using Flashback Transaction Backout

13-14 Oracle Database Advanced Application Developer's Guide

TRANSACTION_BACKOUT analyzes the transactional dependencies, performs DML
operations, and generates reports. TRANSACTION_BACKOUT does not commit the
DML operations that it performs as part of transaction backout, but it holds all the
required locks on rows and tables in the right form, preventing other dependencies
from entering the system. To make the transaction backout permanent, you must
explicitly commit the transaction.

TRANSACTION_BACKOUT Reports
To see the reports that TRANSACTION_BACKOUT generates, query the static data
dictionary views *_FLASHBACK_TXN_STATE and *_FLASHBACK_TXN_REPORT.

*_FLASHBACK_TXN_STATE
The static data dictionary view *_FLASHBACK_TXN_STATE shows whether a
transaction is active or backed out. If a transaction appears in this view, it is backed
out.

*_FLASHBACK_TXN_STATE is maintained atomically with respect to compensating
transactions. If a compensating transaction is backed out, all changes that it made are
also backed out, and *_FLASHBACK_TXN_STATE reflects this. For example, if
compensating transaction ct backs out transactions t1 and t2, then t1 and t2 appear
in *_FLASHBACK_TXN_STATE. If ct itself is later backed out, the effects of t1 and t2
are reinstated, and t1 and t2 disappear from *_FLASHBACK_TXN_STATE.

*_FLASHBACK_TXN_REPORT
The static data dictionary view *_FLASHBACK_TXN_REPORT provides a detailed
report for each backed-out transaction.

Table 13–2 Flashback TRANSACTION_BACKOUT Options

Option Description

CASCADE Backs out specified transactions and all dependent transactions in a
post-order fashion (that is, children are backed out before parents are
backed out).

Without CASCADE, if any dependent transaction is not specified, an
error occurs.

NOCASCADE Default. Backs out specified transactions, which are expected to have
no dependent transactions. First dependent transactions causes an
error and appears in *_FLASHBACK_TRANSACTION_REPORT.

NOCASCADE_FORCE Backs out specified transactions, ignoring dependent transactions.
Server executes undo SQL statements for specified transactions in
reverse order of commit times.

If no constraints break and you are satisfied with the result, you can
commit the changes; otherwise, you can roll them back.

NONCONFLICT_ONLY Backs out changes to nonconflicting rows of the specified
transactions. Database remains consistent, but transaction atomicity
is lost.

See Also: Oracle Database Reference for more information about *_
FLASHBACK_TXN_STATE.

See Also: Oracle Database Reference for more information about *_
FLASHBACK_TXN_STATE.

Using Flashback Data Archives

Using Flashback Technology 13-15

Using Flashback Data Archives
A Flashback Data Archive provides the ability to track and store all transactional
changes to a table over its lifetime. It is no longer necessary to build this intelligence
into your application. A Flashback Data Archive is useful for compliance with record
stage policies and audit reports.

A Flashback Data Archive consists of one or more tablespaces or parts thereof. You can
have multiple Flashback Data Archives. You can specify a default Flashback Data
Archive for the system. A Flashback Data Archive is configured with retention time.
Data archived in the Flashback Data Archive is retained for the retention time.

By default, flashback archiving is off for any table. You can enable flashback archiving
(and then disable it again) for a table. While flashback archiving is enabled for a table,
some DDL statements are not allowed on that table.

When choosing a Flashback Data Archive for a specific table, consider the data
retention requirements for the table and the retention times of the Flashback Data
Archives on which you have the FLASHBACK ARCHIVE object privilege.

Topics:

■ Creating a Flashback Data Archive

■ Altering a Flashback Data Archive

■ Dropping a Flashback Data Archive

■ Specifying the Default Flashback Data Archive

■ Enabling and Disabling Flashback Data Archive

■ DDL Statements Not Allowed on Tables Enabled for Flashback Data Archive

■ Viewing Flashback Data Archive Data

■ Flashback Data Archive Scenarios

Creating a Flashback Data Archive
Create a Flashback Data Archive with the CREATE FLASHBACK ARCHIVE statement,
specifying the following:

■ (Optional) This is the default Flashback Data Archive for the system.

If you omit this option, you can still make this Flashback Data Archive the default
later (see "Specifying the Default Flashback Data Archive" on page 13-17).

■ Name of the Flashback Data Archive

■ Name of the first tablespace of the Flashback Data Archive

■ (Optional) Maximum amount of space that the Flashback Data Archive can use in
the first tablespace

The default is unlimited. Unless your space quota on the first tablespace is also
unlimited, you must specify this value; otherwise, you will get error ORA-55621.

■ Retention time (number of days that Flashback Data Archive data for the table is
guaranteed to be stored)

Examples
■ Create a default Flashback Data Archive named fla1 that uses up to 10 G of

tablespace tbs1, whose data will be retained for one year:

Using Flashback Data Archives

13-16 Oracle Database Advanced Application Developer's Guide

CREATE FLASHBACK ARCHIVE DEFAULT fla1 TABLESPACE tbs1
 QUOTA 10G RETENTION 1 YEAR;

■ Create a Flashback Data Archive named fla2 that uses tablespace tbs2, whose
data will be retained for two years:

CREATE FLASHBACK ARCHIVE fla2 TABLESPACE tbs2 RETENTION 2 YEAR;

For more information about the CREATE FLASHBACK ARCHIVE statement, see Oracle
Database SQL Language Reference.

Altering a Flashback Data Archive
With the ALTER FLASHBACK ARCHIVE statement, you can:

■ Make a specific Flashback Data Archive the default Flashback Data Archive

■ Change the retention time of a Flashback Data Archive

■ Purge some or all of its data

■ Add, modify, and remove tablespaces

Examples
■ Make Flashback Data Archive fla1 the default Flashback Data Archive:

ALTER FLASHBACK ARCHIVE fla1 SET DEFAULT;

■ To Flashback Data Archive fla1, add up to 5 G of tablespace tbs3:

ALTER FLASHBACK ARCHIVE fla1 ADD TABLESPACE tbs3 QUOTA 5G;

■ To Flashback Data Archive fla1, add as much of tablespace tbs4 as needed:

ALTER FLASHBACK ARCHIVE fla1 ADD TABLESPACE tbs4;

■ Change the maximum space that Flashback Data Archive fla1 can use in
tablespace tbs3 to 20 G:

ALTER FLASHBACK ARCHIVE fla1 MODIFY TABLESPACE tbs3 QUOTA 20G;

■ Allow Flashback Data Archive fla1 to use as much of tablespace tbs1 as needed:

ALTER FLASHBACK ARCHIVE fla1 MODIFY TABLESPACE tbs1;

■ Change the retention time for Flashback Data Archive fla1 to two years:

ALTER FLASHBACK ARCHIVE fla1 MODIFY RETENTION 2 YEAR;

■ Remove tablespace tbs2 from Flashback Data Archive fla1:

ALTER FLASHBACK ARCHIVE fla1 REMOVE TABLESPACE tbs2;

(Tablespace tbs2 is not dropped.)

■ Purge all historical data from Flashback Data Archive fla1:

ALTER FLASHBACK ARCHIVE fla1 PURGE ALL;

■ Purge all historical data older than one day from Flashback Data Archive fla1:

Note: Removing all tablespaces of a Flashback Data Archive causes
an error.

Using Flashback Data Archives

Using Flashback Technology 13-17

ALTER FLASHBACK ARCHIVE fla1
 PURGE BEFORE TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY);

■ Purge all historical data older than SCN 728969 from Flashback Data Archive
fla1:

ALTER FLASHBACK ARCHIVE fla1 PURGE BEFORE SCN 728969;

For more information about the ALTER FLASHBACK ARCHIVE statement, see Oracle
Database SQL Language Reference.

Dropping a Flashback Data Archive
Drop a Flashback Data Archive with the DROP FLASHBACK ARCHIVE statement.
Dropping a Flashback Data Archive deletes its historical data, but does not drop its
tablespaces.

Example
Remove Flashback Data Archive fla1 and all its historical data, but not its
tablespaces:

DROP FLASHBACK ARCHIVE fla1;

For more information about the DROP FLASHBACK ARCHIVE statement, see Oracle
Database SQL Language Reference.

Specifying the Default Flashback Data Archive
By default, the system has no default Flashback Data Archive. You can specify one in
one of the following ways:

■ Specify the name of an existing Flashback Data Archive in the SET DEFAULT
clause of the ALTER FLASHBACK ARCHIVE statement. For example:

ALTER FLASHBACK ARCHIVE fla1 SET DEFAULT;

If fla1 does not exist, an error occurs.

■ Include DEFAULT in the CREATE FLASHBACK ARCHIVE statement when you create
a Flashback Data Archive. For example:

CREATE FLASHBACK ARCHIVE DEFAULT fla2 TABLESPACE tbs1
 QUOTA 10G RETENTION 1 YEAR;

The default Flashback Data Archive for the system is the default Flashback Data
Archive for every user who does not have his or her own default Flashback Data
Archive.

See Also:

■ Oracle Database SQL Language Reference for more information about
the CREATE FLASHBACK ARCHIVE statement

■ Oracle Database SQL Language Reference for more information about
the ALTER DATABASE statement

Using Flashback Data Archives

13-18 Oracle Database Advanced Application Developer's Guide

Enabling and Disabling Flashback Data Archive
By default, flashback archiving is disabled. At any time, you can enable flashback
archiving for a table. However, if you enable flashback archiving for a table, but AUM
is disabled, you will get error ORA-55614 when you try to modify the table.

To enable flashback archiving for a table, include the FLASHBACK ARCHIVE clause in
either the CREATE TABLE or ALTER TABLE statement.

In the FLASHBACK ARCHIVE clause, you can specify the Flashback Data Archive where
the historical data for the table will be stored. The default is the default Flashback Data
Archive for the system. If you specify a nonexistent Flashback Data Archive, an error
occurs.

If a table already has flashback archiving enabled, and you try to enable it again with a
different Flashback Data Archive, an error occurs.

To disable flashback archiving for a table, specify NO FLASHBACK ARCHIVE in the
ALTER TABLE statement. (It is unnecessary to specify NO FLASHBACK ARCHIVE in the
CREATE TABLE statement, because that is the default.)

Examples
■ Create table employee and store the historical data in the default Flashback Data

Archive:

CREATE TABLE employee (EMPNO NUMBER(4) NOT NULL, ENAME VARCHAR2(10),
 JOB VARCHAR2(9), MGR NUMBER(4)) FLASHBACK ARCHIVE;

■ Create table employee and store the historical data in the Flashback Data Archive
fla1:

CREATE TABLE employee (EMPNO NUMBER(4) NOT NULL, ENAME VARCHAR2(10),
 JOB VARCHAR2(9), MGR NUMBER(4)) FLASHBACK ARCHIVE fla1;

■ Enable flashback archiving for the table employee and store the historical data in
the default Flashback Data Archive:

ALTER TABLE employee FLASHBACK ARCHIVE;

■ Enable flashback archiving for the table employee and store the historical data in
the Flashback Data Archive fla1:

ALTER TABLE employee FLASHBACK ARCHIVE fla1;

■ Disable flashback archiving for the table employee:

ALTER TABLE employee NO FLASHBACK ARCHIVE;

DDL Statements Not Allowed on Tables Enabled for Flashback Data Archive
Using any of the following DDL statements on a table enabled for Flashback Data
Archive causes error ORA-55610:

■ ALTER TABLE statement that does any of the following:

See Also:

■ Oracle Database SQL Language Reference for more information about
the CREATE TABLE statement

■ Oracle Database SQL Language Reference for more information about
the ALTER TABLE statement

Using Flashback Data Archives

Using Flashback Technology 13-19

– Drops, renames, or modifies a column

– Performs partition or subpartition operations

– Converts a LONG column to a LOB column

– Includes an UPGRADE TABLE clause, with or without an INCLUDING DATA
clause

■ DROP TABLE statement

■ RENAME TABLE statement

■ TRUNCATE TABLE statement

Viewing Flashback Data Archive Data
Table 13–3 lists and briefly describes the static data dictionary views that you can
query for information about Flashback Data Archives. For detailed information about
these views, see Oracle Database Reference.

Flashback Data Archive Scenarios
■ Scenario: Using Flashback Data Archive to Enforce Digital Shredding

■ Scenario: Using Flashback Data Archive to Access Historical Data

■ Scenario: Using Flashback Data Archive to Generate Reports

■ Scenario: Using Flashback Data Archive for Auditing

■ Scenario: Using Flashback Data Archive to Recover Data

Scenario: Using Flashback Data Archive to Enforce Digital Shredding
Your company wants to "shred" (delete) historical data changes to the Taxes table
after ten years. When you create the Flashback Data Archive for Taxes, you specify a
retention time of ten years:

CREATE FLASHBACK ARCHIVE taxes_archive TABLESPACE tbs1 RETENTION 10 YEAR;

When history data from transactions on Taxes exceeds the age of ten years, it is
purged. (The Taxes table itself, and history data from transactions less than ten years
old, are not purged.)

Scenario: Using Flashback Data Archive to Access Historical Data
You want to be able to retrieve the inventory of all items at the beginning of the year
from the table inventory, and to be able to retrieve the stock price for each symbol in
your portfolio at the close of business on any specified day of the year from the table
stock_data.

See Also: Oracle Database SQL Language Reference for information
about these DDL statements

Table 13–3 Static Data Dictionary Views for Flashback Data Archives

View Description

*_FLASHBACK_ARCHIVE Displays information about Flashback Data Archives.

*_FLASHBACK_ARCHIVE_TS Displays tablespaces of Flashback Data Archives.

*_FLASHBACK_ARCHIVE_TABLES Displays information about tables that are enabled for
flashback archiving.

Using Flashback Data Archives

13-20 Oracle Database Advanced Application Developer's Guide

Create a default Flashback Data Archive named fla1 that uses up to 10 G of
tablespace tbs1, whose data will be retained for five years:

CREATE FLASHBACK ARCHIVE DEFAULT fla1 TABLESPACE tbs1
 QUOTA 10G RETENTION 5 YEAR;

Enable Flashback Data Archive for the tables inventory and stock_data, and store
the historical data in the default Flashback Data Archive:

ALTER TABLE inventory FLASHBACK ARCHIVE;
ALTER TABLE stock_data FLASHBACK ARCHIVE;

To retrieve the inventory of all items at the beginning of the year 2007, use the
following query:

SELECT product_number, product_name, count FROM inventory AS OF
 TIMESTAMP TO_TIMESTAMP ('2007-01-01 00:00:00', 'YYYY-MM-DD HH24:MI:SS');

To retrieve the stock price for each symbol in your portfolio at the close of business on
July 23, 2007, use the following query:

SELECT symbol, stock_price FROM stock_data AS OF
 TIMESTAMP TO_TIMESTAMP ('2007-07-23 16:00:00', 'YYYY-MM-DD HH24:MI:SS')
 WHERE symbol IN my_portfolio;

Scenario: Using Flashback Data Archive to Generate Reports
You want users to be able to generate reports from the table investments, for data
stored in the past five years.

Create a default Flashback Data Archive named fla2 that uses up to 20 G of
tablespace tbs1, whose data will be retained for five years:

CREATE FLASHBACK ARCHIVE DEFAULT fla2 TABLESPACE tbs1
 QUOTA 20G RETENTION 5 YEAR;

Enable Flashback Data Archive for the table investments, and store the historical
data in the default Flashback Data Archive:

ALTER TABLE investments FLASHBACK ARCHIVE;

Lisa wants a report on the performance of her investments at the close of business on
December 31, 2006. She uses the following query:

SELECT * FROM investments AS OF
 TIMESTAMP TO_TIMESTAMP ('2006-12-31 16:00:00', 'YYYY-MM-DD HH24:MI:SS')
 WHERE name = 'LISA';

Scenario: Using Flashback Data Archive for Auditing
A medical insurance company needs to audit a medical clinic. The medical insurance
company has its claims in the table Billings, and creates a default Flashback Data
Archive named fla4 that uses up to 100 G of tablespace tbs1, whose data will be
retained for 10 years:

CREATE FLASHBACK ARCHIVE DEFAULT fla4 TABLESPACE tbs1
 QUOTA 100G RETENTION 10 YEAR;

The company enables Flashback Data Archive for the table Billings, and stores the
historical data in the default Flashback Data Archive:

ALTER TABLE Billings FLASHBACK ARCHIVE;

General Guidelines for Flashback Technology

Using Flashback Technology 13-21

On May 1, 2007, clients were charged the wrong amounts for some diagnoses and
tests. To see the records as of May 1, 2007, the company uses the following query:

SELECT date_billed, amount_billed, patient_name, claim_Id,
 test_costs, diagnosis FROM Billings AS OF
 TO_TIMESTAMP('2007-05-01 00:00:00', 'YYYY-MM-DD HH24:MI:SS');

Scenario: Using Flashback Data Archive to Recover Data
An end user recovers from erroneous transactions that were previously committed in
the database. The undo data for the erroneous transactions is no longer available, but
because the required historical information is available in the Flashback Data Archive,
Flashback Query works seamlessly.

Lisa manages a software development group whose product sales are doing well. On
November 3, 2007, she decides to give all her level-three employees who have more
than two years of experience a salary increase of 10% and a promotion to level four.
Lisa asks her HR representative, Bob, to make the changes.

Using the HR web application, Bob updates the employee table to give Lisa's
level-three employees a 10% raise and a promotion to level four. Then Bob finishes his
work for the day and leaves for home, unaware that he omitted the requirement of two
years of experience in his transaction. A few days later, Lisa checks to see if Bob has
done the updates and finds that everyone in the group was given a raise! She calls Bob
immediately and asks him to correct the error.

First, he verifies that no other transaction modified the employee table after his: The
commit timestamp from the transaction query corresponds to Bob's transaction, two
days ago.

Next, Bob uses the following statement to return the employee table to the state it had
before his erroneous change:

FLASHBACK TABLE employee TO TIMESTAMP (SYSTIMESTAMP - INTERVAL '2' DAY);

After Bob fixes the error, at 5 PM on November 5, Lisa decides to give her star
performer, Joe, an additional raise of 5%. She asks Bob to do the update. Bob finds that
the record for Joe is missing.

At first, Bob thinks he cannot find Joe's record without going to the backups. Then he
remembers that the employee table has Flashback Data Archive enabled.

Bob knows that Joe's record was present at 1 PM on November 3, 2007. He recovers
Joe's record with the following Flashback Query:

INSERT INTO employee SELECT * FROM employee AS OF TIMESTAMP
 TO_TIMESTAMP('2007-11-2 23:00:00', 'YYYY-MM-DD HH24:MI:SS')
 WHERE name = 'JOE';

Bob then re-executes the two updates that Lisa requested.

General Guidelines for Flashback Technology
■ Use the DBMS_FLASHBACK.ENABLE and DBMS_FLASHBACK.DISABLE procedures

around SQL code that you do not control, or when you want to use the same past
time for several consecutive queries.

■ Use Flashback Query, Flashback Version Query, or Flashback Transaction Query
for SQL code that you write, for convenience. A Flashback Query, for example, is
flexible enough to do comparisons and store results in a single query.

Performance Guidelines for Flashback Technology

13-22 Oracle Database Advanced Application Developer's Guide

■ To obtain an SCN to use later with a flashback feature, use DBMS_
FLASHBACK.GET_SYSTEM_CHANGE_NUMBER.

■ To compute or retrieve a past time to use in a query, use a function return value as
a timestamp or SCN argument. For example, add or subtract an INTERVAL value
to the value of the SYSTIMESTAMP function.

■ Use Flashback Query, Flashback Version Query, and Flashback Transaction Query
locally or remotely. An example of a remote Flashback Query is:

(SELECT * FROM employees@some_remote_host AS OF
 TIMESTAMP (SYSTIMESTAMP - INTERVAL '60' MINUTE);

■ To ensure database consistency, always perform a COMMIT or ROLLBACK operation
before querying past data.

■ Remember that all flashback processing uses the current session settings, such as
national language and character set, not the settings that were in effect at the time
being queried.

■ Remember that DDLs that alter the structure of a table (such as drop/modify
column, move table, drop partition, truncate table/partition, and add constraint)
invalidate any existing undo data for the table. If you try to retrieve data from a
time before such a DDL executed, you will get error ORA-1466. DDL operations
that alter the storage attributes of a table (such as PCTFREE, INITRANS, and
MAXTRANS) do not invalidate undo data.

■ To query past data at a precise time, use an SCN. If you use a timestamp, the
actual time queried might be up to 3 seconds earlier than the time you specify.
Oracle Database uses SCNs internally and maps them to timestamps at a
granularity of 3 seconds.

For example, suppose that the SCN values 1000 and 1005 are mapped to the
timestamps 8:41 AM and 8:46 AM, respectively. A query for a time between 8:41:00
and 8:45:59 AM is mapped to SCN 1000; a Flashback Query for 8:46 AM is mapped
to SCN 1005.

Due to this time-to-SCN mapping, if you specify a time that is slightly after a DDL
operation (such as a table creation) Oracle Database might use an SCN that is just
before the DDL operation, causing error ORA-1466.

■ You cannot retrieve past data from a dynamic performance (V$) view. A query on
such a view always returns current data.

■ You can perform queries on past data in static data dictionary views, such as *_
TABLES.

Performance Guidelines for Flashback Technology
■ Use the DBMS_STATS package to generate statistics for all tables involved in a

Flashback Query. Keep the statistics current. Flashback Query uses the cost-based
optimizer, which relies on these statistics.

■ Minimize the amount of undo data that must be accessed. Use queries to select
small sets of past data using indexes, not to scan entire tables. If you must scan a
full table, add a parallel hint to the query.

The performance cost in I/O is the cost of paging in data and undo blocks that are
not already in the buffer cache. The performance cost in CPU use is the cost of
applying undo information to affected data blocks. When operating on changes in
the recent past, flashback features essentially CPU bound.

Performance Guidelines for Flashback Technology

Using Flashback Technology 13-23

■ For Flashback Version Query, use index structures. Oracle Database keeps undo
data for index changes as well as data changes. Performance of index
lookup-based Flashback Version Query is an order of magnitude faster than the
full table scans that are otherwise needed.

■ In a Flashback Transaction Query, the xid column is of the type RAW(8). To take
advantage of the index built on the xid column, use the HEXTORAW conversion
function: HEXTORAW(xid).

■ A Flashback Query against a materialized view does not take advantage of query
rewrite optimization.

Performance Guidelines for Flashback Technology

13-24 Oracle Database Advanced Application Developer's Guide

Developing Applications Using Multiple Programming Languages 14-1

14
Developing Applications Using Multiple

Programming Languages

This chapter explains how you can develop database applications that call external
procedures written in other programming languages.

Topics:

■ Overview of Multilanguage Programs

■ What Is an External Procedure?

■ Overview of Call Specification for External Procedures

■ Loading External Procedures

■ Publishing External Procedures

■ Publishing Java Class Methods

■ Publishing External C Procedures

■ Locations of Call Specifications

■ Passing Parameters to External C Procedures with Call Specifications

■ Executing External Procedures with CALL Statements

■ Handling Errors and Exceptions in Multilanguage Programs

■ Using Service Routines with External C Procedures

■ Doing Callbacks with External C Procedures

Overview of Multilanguage Programs
Oracle Database lets you work in different languages:

■ PL/SQL, as described in the Oracle Database PL/SQL Language Reference

■ C, through the Oracle Call Interface (OCI), as described in the Oracle Call Interface
Programmer's Guide

■ C or C++, through the Pro*C/C++ precompiler, as described in the Pro*C/C++
Programmer's Guide

■ COBOL, through the Pro*COBOL precompiler, as described in the Pro*COBOL
Programmer's Guide

■ Visual Basic, through Oracle Objects for OLE (OO4O), as described in Oracle
Objects for OLE Developer's Guide.

What Is an External Procedure?

14-2 Oracle Database Advanced Application Developer's Guide

■ Java, through the JDBC Application Programmers Interface (API). See Oracle
Database Java Developer's Guide.

How can you choose between these different implementation possibilities? Each of
these languages offers different advantages: ease of use, the availability of
programmers with specific expertise, the need for portability, and the existence of
legacy code are powerful determinants.

The choice might narrow depending on how your application needs to work with
Oracle Database:

■ PL/SQL is a powerful development tool, specialized for SQL transaction
processing.

■ Some computation-intensive tasks are executed most efficiently in a lower level
language, such as C.

■ The need for portability, together with the need for security, might influence you
to select Java.

Most significantly, from the point of view of performance, only PL/SQL and Java
methods run within the address space of the server. C/C++ methods are dispatched as
external procedures, and run on the server system but outside the address space of the
database server. Pro*COBOL and Pro*C/C++ are precompilers, and Visual Basic
accesses Oracle Database through the OCI, which is implemented in C.

Taking all these factors into account suggests that there might be a number of
situations in which you might need to implement your application in more than one
language. For example, the introduction of Java running within the address space of
the server suggest that you might want to import existing Java applications into the
database, and then leverage this technology by calling Java functions from PL/SQL
and SQL.

PL/SQL external procedures enable you to write C procedure calls as PL/SQL bodies.
These C procedures are callable directly from PL/SQL, and from SQL through
PL/SQL procedure calls. The database provides a special-purpose interface, the call
specification, that lets you call external procedures from other languages. While this
service is designed for intercommunication between SQL, PL/SQL, C, and Java, it is
accessible from any base language that can call these languages. For example, your
procedure can be written in a language other than Java or C and still be usable by SQL
or PL/SQL, as long as your procedure is callable by C. Therefore, if you have a
candidate C++ procedure, use a C++ extern "C" statement in that procedure to make
it callable by C.

This means that the strengths and capabilities of different languages are available to
you, regardless of your programmatic environment. You are not restricted to one
language with its inherent limitations. External procedures promote reusability and
modularity because you can deploy specific languages for specific purposes.

What Is an External Procedure?
An external procedure is a procedure stored in a dynamic link library (DLL), or libunit
in the case of a Java class method. You register the procedure with the base language,
and then call it to perform special-purpose processing.

For example, when you work in PL/SQL, the language loads the library dynamically
at run time, and then calls the procedure as if it were a PL/SQL procedure. These
procedures participate fully in the current transaction and can call back to the database
to perform SQL operations.

Loading External Procedures

Developing Applications Using Multiple Programming Languages 14-3

The procedures are loaded only when necessary, so memory is conserved. Because the
decoupling of the call specification from its implementation body means that the
procedures can be enhanced without affecting the calling programs.

External procedures let you:

■ Isolate execution of client applications and processes from the database instance to
ensure that any problems on the client side do not adversely impact the database.

■ Move computation-bound programs from client to server where they execute
faster (because they avoid the round-trips of network communication)

■ Interface the database server with external systems and data sources

■ Extend the functionality of the database server itself

Overview of Call Specification for External Procedures
You publish external procedures through call specifications, which provide a superset
of the AS EXTERNAL function through the AS LANGUAGE clause. AS LANGUAGE call
specifications allow the publishing of external C procedures, but also Java class
methods.

In general, call specifications enable:

■ Dispatching the appropriate C or Java target procedure

■ Datatype conversions

■ Parameter mode mappings

■ Automatic memory allocation and cleanup

■ Purity constraints to be specified, where necessary, for packaged functions called
from SQL.

■ Calling Java methods or C procedures from database triggers

■ Location flexibility: you can put AS LANGUAGE call specifications in package or
type specifications, or package (or type) bodies to optimize performance and hide
implementation details

To use an already-existing program as an external procedure, load, publish, and then
call it.

Loading External Procedures
To make your external C procedures or Java methods available to PL/SQL, you must
first load them. The manner of doing this depends upon whether the procedure is
written in C or Java.

Topics:

■ Loading Java Class Methods

■ Loading External C Procedures

Note: To support legacy applications, call specifications also enable
you to publish with the AS EXTERNAL clause. For new application
development, however, using the AS LANGUAGE clause is
recommended.

Loading External Procedures

14-4 Oracle Database Advanced Application Developer's Guide

Loading Java Class Methods
One way to load Java programs is to use the CREATE JAVA statement, which you can
execute interactively from SQL*Plus. When implicitly called by the CREATE JAVA
statement, the Java Virtual Machine (JVM)] library manager loads Java binaries
(.class files) and resources from local BFILEs or LOB columns into RDBMS libunits.

Suppose a compiled Java class is stored in the following operating system file:

/home/java/bin/Agent.class

Creating a class libunit in schema scott from file Agent.class requires two steps:
First, create a directory object on the server's file system. The name of the directory
object is an alias for the directory path leading to Agent.class.

To create the directory object, you must grant user scott the CREATE ANY
DIRECTORY privilege, then execute the CREATE DIRECTORY statement, as follows:

CONNECT SYSTEM/password
GRANT CREATE ANY DIRECTORY TO Scott IDENTIFIED BY Tiger;
CONNECT SCOTT/password
CREATE DIRECTORY Bfile_dir AS '/home/java/bin';

You are ready to create the class libunit, as follows:

CREATE JAVA CLASS USING BFILE (Bfile_dir, 'Agent.class');

The name of the libunit is derived from the name of the class.

Alternatively, you can use the command-line utility LoadJava. This uploads Java
binaries and resources into a system-generated database table, then uses the CREATE
JAVA statement to load the Java files into RDBMS libunits. You can upload Java files
from file systems, Java IDEs, intranets, or the Internet.

Loading External C Procedures

When an application calls an external C procedure, Oracle Database or Oracle Listener
starts the external procedure agent, extproc. Using the network connection
established by Oracle Database or Oracle Listener, the application passes the following
information to extproc:

■ Name of DLL or shared library

■ Name of external procedure

■ Any parameters for the external procedure

Then extproc loads the DLL or the shared library, runs the external procedure, and
passes any values that the external procedure returns back to the application. The
application and extproc must reside on the same computer.

extproc can call procedures in any library that complies with the calling standard
used. For more information about the calling standard, see "CALLING STANDARD"
on page 14-10.

Note: You can load external C procedures only on platforms that
support either DLLs or dynamically loadable shared libraries (such as
Solaris .so libraries).

Loading External Procedures

Developing Applications Using Multiple Programming Languages 14-5

To configure your database to use external procedures that are written in C, or that can
be called from C applications, you or your database administrator must take the
following steps:

1. Define the C Procedures

2. Set Up the Environment

3. Identify the DLL

4. Publish the External Procedures

Define the C Procedures
Define the C procedures using one of the following prototypes:

■ Kernighan & Ritchie style prototypes; for example:

void C_findRoot(x)
 float x;
...

■ ISO/ANSI prototypes other than numeric datatypes that are less than full width
(such as float, short, char); for example:

void C_findRoot(double x)
...

■ Other datatypes that do not change size under default argument promotions.

The following example changes size under default argument promotions:

void C_findRoot(float x)
...

Set Up the Environment
When you use the default configuration for external procedures, Oracle Database
spawns extproc directly. You do not need to make configuration changes for
listener.ora and tnsnames.ora. Define the environment variables to be used by
external procedures in the file extproc.ora (located at $ORACLE_HOME/hs/admin

Note: The default configuration for external procedures no longer
requires a network listener to work with Oracle Database and
extproc. Oracle Database now spawns extproc directly,
eliminating the risk that Oracle Listener might spawn extproc
unexpectedly. This default configuration is recommended for
maximum security.

You must change this default configuration, so that Oracle Listener
spawns extproc, if you use any of the following:

■ A multithreaded extproc agent

■ Oracle Database in MTS mode on Windows

■ An AGENT clause in the LIBRARY specification or an AGENT IN
clause in the PROCEDURE specification that redirects external
procedures to a different extproc agent

Changing the default configuration requires additional network
configuration steps.

Loading External Procedures

14-6 Oracle Database Advanced Application Developer's Guide

on UNIX operating sytems and at ORACLE_HOME\hs\admin on Windows), using the
following syntax:

SET name=value (environment_variable_name value)

Set the EXTPROC_DLLS environment variable, which restricts the DLLs that extproc
can load, to one of the following values:

■ NULL; for example:

SET EXTPROC_DLLS=

This setting, the default, allows extproc to load only the DLLs that are in
directory $ORACLE_HOME/bin or $ORACLE_HOME/lib.

■ ONLY followed by a colon-separated list of DLLs; for example:

SET EXTPROC_DLLS=ONLY:DLL1:DLL2

This setting allows extproc to load only the DLLs named DLL1 and DLL2. , This
setting provides maximum security.

■ A colon-separated list of DLLs; for example:

SET EXTPROC_DLLS=DLL1:DLL2

This setting allows extproc to load the DLLs named DLL1 and DLL2 and the
DLLs that are in directory $ORACLE_HOME/bin or $ORACLE_HOME/lib.

■ ANY; for example:

SET EXTPROC_DLLS=ANY

This setting allows extproc to load any DLL.

To change the default configuration for external procedures and have your extproc
agent spawned by Oracle Listener, configure your database to use external procedures
that are written in C, or can be called from C applications, as follows:

1. Set configuration parameters for the agent, named extproc by default, in the
configuration files tnsnames.ora and listener.ora. This establishes the
connection for the external procedure agent, extproc, when the database is
started.

2. Start a listener process exclusively for external procedures.

The Listener sets a few required environment variables (such as ORACLE_HOME,
ORACLE_SID, and LD_LIBRARY_PATH) for extproc. It can also define specific
environment variables in the ENVS section of its listener.ora entry, and these
variables are passed to the agent process. Otherwise, it provides the agent with a
"clean" environment. The environment variables set for the agent are independent
of those set for the client and server. Therefore, external procedures, which run in
the agent process, cannot read environment variables set for the client or server
processes.

Note: It is possible for you to set and read environment variables
themselves by using the standard C procedures setenv and getenv,
respectively. Environment variables, set this way, are specific to the agent
process, which means that they can be read by all functions executed in
that process, but not by any other process running on the same host.

Loading External Procedures

Developing Applications Using Multiple Programming Languages 14-7

3. Determine whether the agent for your external procedure will run in dedicated
mode (the default) or multithreaded mode. In dedicated mode, one "dedicated"
agent is launched for each session. In multithreaded mode, a single multithreaded
extproc agent is launched. The multithreaded extproc agent handles calls
using different threads for different users. In a configuration where many users
can call the external procedures, using a multithreaded extproc agent is
recommended to conserve system resources.

If the agent will run in dedicated mode, additional configuration of the agent
process is not necessary.

If the agent will run in multithreaded mode, your database administrator must
configure the database system to start the agent in multithreaded mode (as a
multithreaded extproc agent). To do this, use the agent control utility, agtctl.
For example, start extproc using the following command:

agtctl startup extproc agent_sid

where agent_sid is the system identifier that this extproc agent will service.
An entry for this system identifier is typically added as an entry in the file
tnsnames.ora. For more information about using agtctl for extproc
administration, see "Administering the Multithreaded extproc Agent" on page A-4.

Figure A–1 on page A-3 illustrates the architecture of the multithreaded extproc
agent.

Identify the DLL
In this context, a DLL is any dynamically loadable operating-system file that stores
external procedures.

For security reasons, your DBA controls access to the DLL. Using the CREATE
LIBRARY statement, the DBA creates a schema object called an alias library, which
represents the DLL. Then, if you are an authorized user, the DBA grants you EXECUTE
privileges on the alias library. Alternatively, the DBA might grant you CREATE ANY
LIBRARY privileges, in which case you can create your own alias libraries using the
following syntax:

CREATE LIBRARY [schema_name.]library_name
 {IS | AS} 'file_path'
 [AGENT 'agent_link'];

Note:

■ If you use a multithreaded extproc agent, the library you call must
be thread safe—to avoid errors such as a corrupt call stack.

■ The database server, the agent process, and the listener process that
spawns the agent process must all reside on the same host.

■ By default, the agent process runs on the same database instance as
your main application. In situations where reliability is critical, you
might want to run the agent process for the external procedure on a
separate database instance (still on the same host), so that any
problems in the agent do not affect the primary database server. To
do so, specify the separate database instance using a database link.

Publishing External Procedures

14-8 Oracle Database Advanced Application Developer's Guide

It is recommended that you specify the full path to the DLL, rather than just the DLL
name. In the following example, you create alias library c_utils, which represents
DLL utils.so:

CREATE LIBRARY C_utils AS '/DLLs/utils.so';

To allow flexibility in specifying the DLLs, you can specify the root part of the path as
an environment variable using the notation ${VAR_NAME}, and set up that variable in
the ENVS section of the listener.ora entry.

In the following example, the agent specified by the name agent_link is used to run
any external procedure in the library C_Utils. The environment variable EP_LIB_
HOME is expanded by the agent to the appropriate path for that instance, such as
/usr/bin/dll. Variable EP_LIB_HOME must be set in the file listener.ora, for the
agent to be able to access it.

create or replace database link agent_link using 'agent_tns_alias';
create or replace library C_utils is
 '${EP_LIB_HOME}/utils.so' agent 'agent_link';

For security reasons, extproc, by default, loads only DLLs that are in directory
$ORACLE_HOME/bin or $ORACLE_HOME/lib. Also, only local sessions—that is,
Oracle Database client processes that are running on the same system—are allowed to
connect to extproc.

To load DLLs from other directories, set the environment variable EXTPROC_DLLS.
The value for this environment variable is a colon-separated list of DLL names
qualified with the complete path. For example:

EXTPROC_DLLS=/private1/home/scott/dll/myDll.so:/private1/home/scott/dll/newDll.so

While you can set up environment variables for extproc through the ENVS parameter
in the file listener.ora, you can also set up environment varilables in the extproc
initialization file extproc.ora in directory $ORACLE_HOME/hs/admin. When both
extproc.ora and ENVS parameter in listener.ora are used, the environment
variables defined in extproc.ora take precedence. See the Oracle Net manual for
more information on the EXTPROC feature.

Publish the External Procedures
You find or write a new external C procedure, then add it to the DLL. When the
procedure is in the DLL, you publish it using the call specification mechanism
described in the following section.

Publishing External Procedures
Oracle Database can only use external procedures that are published through a call
specification, which maps names, parameter types, and return types for your Java
class method or C external procedure to their SQL counterparts. It is written like any

Note:

■ On a Windows system, specify the path using a drive letter and
backslash characters (\) in the path.

■ This technique does not apply to VMS systems, where the ENVS
section of listener.ora is not supported.

Publishing External Procedures

Developing Applications Using Multiple Programming Languages 14-9

other PL/SQL stored procedure except that, in its body, instead of declarations and a
BEGIN-END block, you code the AS LANGUAGE clause.

The AS LANGUAGE clause specifies:

■ Which language the procedure is written in.

■ For a Java method:

■ The signature of the Java method.

■ For a C procedure:

■ The alias library corresponding to the DLL for a C procedure.

■ The name of the C procedure in a DLL.

■ Various options for specifying how parameters are passed.

■ Which parameter (if any) holds the name of the external procedure agent,
extproc, for running the procedure on a different system.

You begin the declaration using the normal CREATE OR REPLACE syntax for a
procedure, function, package specification, package body, type specification, or type
body.

The call specification follows the name and parameter declarations. Its syntax is:

{IS | AS} LANGUAGE {C | JAVA}

This is then followed by either:

NAME java_string_literal_name

Where java_string_literal_name is the signature of your Java method, or by:

LIBRARY library_name
[NAME c_string_literal_name]
[WITH CONTEXT]
[PARAMETERS (external_parameter[, external_parameter]...)];

Where library_name is the name of your alias library, c_string_literal_name
is the name of your external C procedure, and external_parameter stands for:

{ CONTEXT
 | SELF [{TDO | property}]
 | {parameter_name | RETURN} [property] [BY REFERENCE] [external_datatype]}

property stands for:

{INDICATOR [{STRUCT | TDO}] | LENGTH | DURATION | MAXLEN | CHARSETID |
CHARSETFORM}

Topics:

Note: Oracle Database uses a PL/SQL variant of the ANSI SQL92
External Procedure, which replaces the ANSI clause AS EXTERNAL
with this call specification syntax.

Note: Unlike Java, C does not understand SQL types; therefore, the
syntax is more intricate

Publishing External Procedures

14-10 Oracle Database Advanced Application Developer's Guide

■ AS LANGUAGE Clause for Java Class Methods

■ AS LANGUAGE Clause for External C Procedures

AS LANGUAGE Clause for Java Class Methods
The AS LANGUAGE clause is the interface between PL/SQL and a Java class method.

AS LANGUAGE Clause for External C Procedures
The following subclauses tell PL/SQL where to locate the external C procedure, how
to call it, and what to pass to it. Only the LIBRARY subclause is required.

Topics:

■ LIBRARY

■ NAME

■ LANGUAGE

■ CALLING STANDARD

■ WITH CONTEXT

■ PARAMETERS

■ AGENT IN

LIBRARY
Specifies a local alias library. (You cannot use a database link to specify a remote
library.) The library name is a PL/SQL identifier. Therefore, if you enclose the name in
double quotes, then it becomes case sensitive. (By default, the name is stored in upper
case.) You must have EXECUTE privileges on the alias library.

NAME
Specifies the external C procedure to be called. If you enclose the procedure name in
double quotes, then it becomes case sensitive. (By default, the name is stored in upper
case.) If you omit this subclause, then the procedure name defaults to the upper-case
name of the PL/SQL procedure.

LANGUAGE
Specifies the third-generation language in which the external procedure was written. If
you omit this subclause, then the language name defaults to C.

CALLING STANDARD
Specifies the calling standard under which the external procedure was compiled. The
supported calling standard is C. If you omit this subclause, then the calling standard
defaults to C.

Note: The terms LANGUAGE and CALLING STANDARD apply only
to the superseded AS EXTERNAL clause.

Publishing Java Class Methods

Developing Applications Using Multiple Programming Languages 14-11

WITH CONTEXT
Specifies that a context pointer is passed to the external procedure. The context data
structure is opaque to the external procedure but is available to service procedures
called by the external procedure.

PARAMETERS
Specifies the positions and datatypes of parameters passed to the external procedure.
It can also specify parameter properties, such as current length and maximum length,
and the preferred parameter passing method (by value or by reference).

AGENT IN
Specifies which parameter holds the name of the agent process that runs this
procedure. This is intended for situations where the external procedure agent,
extproc, runs using multiple agent processes, to ensure robustness if the agent
process of one external procedure fails. You can pass the name of the agent process
(corresponding to the name of a database link), and if tnsnames.ora and
listener.ora are set up properly across both instances, the external procedure is
called on the other instance. Both instances must be on the same host.

This is similar to the AGENT clause of the CREATE LIBRARY statement; specifying the
value at run time through AGENT IN allows greater flexibility.

When the agent name is specified this way, it overrides any agent name declared in the
alias library. If no agent name is specified, the default is the extproc agent on the
same instance as the calling program.

Publishing Java Class Methods
Java classes and their methods are stored in RDBMS libunits in which you can load
Java sources, binaries and resources using the LOADJAVA utility or the CREATEJAVA
SQL statements. Libunits can be considered analogous to DLLs written, for example,
in C—although they map one-to-one with Java classes, whereas DLLs can contain
more than one procedure.

The NAME-clause string uniquely identifies the Java method. The PL/SQL function or
procedure and Java must correspond with regard to parameters. If the Java method
takes no parameters, then you must code an empty parameter list for it.

When you load Java classes into the RDBMS, they are not published to SQL
automatically. This is because the methods of many Java classes are called only from
other Java classes, or take parameters for which there is no appropriate SQL type.

Suppose you want to publish the following Java method named J_calcFactorial,
which returns the factorial of its argument:

package myRoutines.math;
public class Factorial {
 public static int J_calcFactorial (int n) {
 if (n == 1) return 1;
 else return n * J_calcFactorial(n - 1);
 }
}

The following call specification publishes Java method J_calcFactorial as
PL/SQL stored function plsToJavaFac_func, using SQL*Plus:

CREATE OR REPLACE FUNCTION Plstojavafac_func (N NUMBER) RETURN NUMBER AS
 LANGUAGE JAVA

Publishing External C Procedures

14-12 Oracle Database Advanced Application Developer's Guide

 NAME 'myRoutines.math.Factorial.J_calcFactorial(int) return int';

Publishing External C Procedures
In the following example, you write a PL/SQL standalone function named
plsCallsCdivisor_func that publishes C function Cdivisor_func as an external
function:

CREATE OR REPLACE FUNCTION Plscallscdivisor_func (
/* Find greatest common divisor of x and y: */
 x PLS_INTEGER,
 y PLS_INTEGER)
RETURN PLS_INTEGER
AS LANGUAGE C
 LIBRARY C_utils
 NAME "Cdivisor_func"; /* Quotation marks preserve case. */

Locations of Call Specifications
For both Java class methods and external C procedures, call specifications can be
specified in any of the following locations:

■ Standalone PL/SQL procedures

■ PL/SQL Package Specifications

■ PL/SQL Package Bodies

■ Object Type Specifications

■ Object Type Bodies

Examples:

■ Example: Locating a Call Specification in a PL/SQL Package

■ Example: Locating a Call Specification in a PL/SQL Package

■ Example: Locating a Call Specification in a PL/SQL Package

■ Example: Locating a Call Specification in a PL/SQL Package

■ Example: Locating a Call Specification in a PL/SQL Package

Note: Oracle Database version 8.0, AS EXTERNAL did not allow call
specifications in package or type bodies.

Note: In the following examples, the AUTHID and SQL_NAME_RESOLVE
clauses might or might not be required to fully stipulate a call
specification.

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about calling external procedures from PL/SQL

■ Oracle Database SQL Language Reference for more information about
the SQL CALL statement

Locations of Call Specifications

Developing Applications Using Multiple Programming Languages 14-13

■ Example: Locating a Call Specification in a PL/SQL Package

■ Example: Locating a Call Specification in a PL/SQL Package

Example: Locating a Call Specification in a PL/SQL Package
CREATE OR REPLACE PACKAGE Demo_pack
AUTHID DEFINER
AS
 PROCEDURE plsToC_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);
END;

Example: Locating a Call Specification in a PL/SQL Package Body
CREATE OR REPLACE PACKAGE Demo_pack
 AUTHID CURRENT_USER
AS
 PROCEDURE plsToC_demoExternal_proc(x PLS_INTEGER, y VARCHAR2, z DATE);
END;

CREATE OR REPLACE PACKAGE BODY Demo_pack
 SQL_NAME_RESOLVE CURRENT_USER
AS
 PROCEDURE plsToC_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE JAVA
 NAME 'pkg1.class4.methodProc1(int,java.lang.String,java.sql.Date)';
END;

Example: Locating a Call Specification in an Object Type Specification

CREATE OR REPLACE TYPE Demo_typ
AUTHID DEFINER
AS OBJECT
 (Attribute1 VARCHAR2(2000), SomeLib varchar2(20),
 MEMBER PROCEDURE plsToC_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 -- PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE)
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE, SELF)
);

Note: You might need to set up the following data structures for
certain examples to work:

CONN SYS/CHANGE_ON_INSTALL AS SYSDBA;
GRANT CREATE ANY LIBRARY TO scott;
CONNECT SCOTT/password
CREATE OR REPLACE LIBRARY SOMELIB AS '/tmp/lib.so';

Locations of Call Specifications

14-14 Oracle Database Advanced Application Developer's Guide

Example: Locating a Call Specification in an Object Type Body
CREATE OR REPLACE TYPE Demo_typ
AUTHID CURRENT_USER
AS OBJECT
 (attribute1 NUMBER,
 MEMBER PROCEDURE plsToJ_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
);

CREATE OR REPLACE TYPE BODY Demo_typ
AS
 MEMBER PROCEDURE plsToJ_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE JAVA
 NAME 'pkg1.class4.J_demoExternal(int,java.lang.String,java.sql.Date)';
END;

Example: Java with AUTHID
Here is an example of a publishing a Java class method in a standalone PL/SQL
procedure.

CREATE OR REPLACE PROCEDURE plsToJ_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z
DATE)
 AUTHID CURRENT_USER
AS LANGUAGE JAVA
 NAME 'pkg1.class4.methodProc1(int,java.lang.String,java.sql.Date)';

Example: C with Optional AUTHID
Here is an example of AS EXTERNAL publishing a C procedure in a standalone
PL/SQL program, in which the AUTHID clause is optional. This maintains
compatibility with the external procedures of Oracle Database version 8.0.

CREATE OR REPLACE PROCEDURE plsToC_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z
DATE)
AS
 EXTERNAL
 LANGUAGE C
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);

Example: Mixing Call Specifications in a Package
CREATE OR REPLACE PACKAGE Demo_pack
AUTHID DEFINER
AS
 PROCEDURE plsToC_InBodyOld_proc (x PLS_INTEGER, y VARCHAR2, z DATE);
 PROCEDURE plsToC_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE);
 PROCEDURE plsToC_InBody_proc (x PLS_INTEGER, y VARCHAR2, z DATE);
 PROCEDURE plsToJ_InBody_proc (x PLS_INTEGER, y VARCHAR2, z DATE);

 PROCEDURE plsToJ_InSpec_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 IS LANGUAGE JAVA
 NAME 'pkg1.class4.J_InSpec_meth(int,java.lang.String,java.sql.Date)';

PROCEDURE C_InSpec_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_demoExternal"

Passing Parameters to External C Procedures with Call Specifications

Developing Applications Using Multiple Programming Languages 14-15

 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);
END;

CREATE OR REPLACE PACKAGE BODY Demo_pack
AS
PROCEDURE plsToC_InBodyOld_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS EXTERNAL
 LANGUAGE C
 NAME "C_InBodyOld"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);
PROCEDURE plsToC_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);

PROCEDURE plsToC_InBody_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_InBody"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);
PROCEDURE plsToJ_InBody_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 IS LANGUAGE JAVA
 NAME 'pkg1.class4.J_InBody_meth(int,java.lang.String,java.sql.Date)';
END;

Passing Parameters to External C Procedures with Call Specifications
Call specifications allows a mapping between PL/SQL and C datatypes. See
"Specifying Datatypes" for datatype mappings.

Passing parameters to an external C procedure is complicated by several
circumstances:

■ The available set of PL/SQL datatypes does not correspond one-to-one with the
set of C datatypes.

■ Unlike C, PL/SQL includes the RDBMS concept of nullity. Therefore, PL/SQL
parameters can be NULL, whereas C parameters cannot.

■ The external procedure might need the current length or maximum length of
CHAR, LONG RAW, RAW, and VARCHAR2 parameters.

■ The external procedure might need character set information about CHAR,
VARCHAR2, and CLOB parameters.

■ PL/SQL might need the current length, maximum length, or null status of values
returned by the external procedure.

In the following sections, you learn how to specify a parameter list that deals with
these circumstances.

Passing Parameters to External C Procedures with Call Specifications

14-16 Oracle Database Advanced Application Developer's Guide

Topics:

■ Specifying Datatypes

■ External Datatype Mappings

■ Passing Parameters BY VALUE or BY REFERENCE

■ Declaring Formal Parameters

■ Overriding Default Datatype Mapping

■ Specifying Properties

Specifying Datatypes
Do not pass parameters to an external procedure directly. Instead, pass them to the
PL/SQL procedure that published the external procedure, specifying PL/SQL
datatypes for the parameters. PL/SQL datatypes map to default external datatypes, as
shown in Table 14–1.

Note: The maximum number of parameters that you can pass to a C
external procedure is 128. However, if you pass float or double
parameters by value, then the maximum is less than 128. How much less
depends on the number of such parameters and your operating system.
To get a rough estimate, count each float or double passed by value as
two parameters.

Note: The PL/SQL datatypes BINARY_INTEGER and PLS_INTEGER
are identical. For simplicity, this document uses "PLS_INTEGER" to
mean both BINARY_INTEGER and PLS_INTEGER.

Table 14–1 Parameter Datatype Mappings

PL/SQL Datatype Supported External Types Default External Type

BINARY_INTEGER
BOOLEAN
PLS_INTEGER

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG
SB1, SB2, SB4
UB1, UB2, UB4
SIZE_T

INT

NATURAL1

NATURALN1

POSITIVE1

POSITIVEN1

SIGNTYPE1

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG
SB1, SB2, SB4
UB1, UB2, UB4
SIZE_T

UNSIGNED INT

FLOAT
REAL

FLOAT FLOAT

DOUBLE PRECISION DOUBLE DOUBLE

Passing Parameters to External C Procedures with Call Specifications

Developing Applications Using Multiple Programming Languages 14-17

External Datatype Mappings
Each external datatype maps to a C datatype, and the datatype conversions are
performed implicitly. To avoid errors when declaring C prototype parameters, see
Table 14–2, which shows the C datatype to specify for a given external datatype and
PL/SQL parameter mode. For example, if the external datatype of an OUT parameter is
STRING, then specify the datatype char * in your C prototype.

CHAR
CHARACTER
LONG
NCHAR
NVARCHAR2
ROWID
VARCHAR
VARCHAR2

STRING
OCISTRING

STRING

LONG RAW
RAW

RAW
OCIRAW

RAW

BFILE
BLOB
CLOB
NCLOB

OCILOBLOCATOR OCILOBLOCATOR

NUMBER
DEC1

DECIMAL1

INT1

INTEGER1

NUMERIC1

SMALLINT1

OCINUMBER OCINUMBER

DATE OCIDATE OCIDATE

TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE

OCIDateTime OCIDateTime

INTERVAL DAY TO SECOND
INTERVAL YEAR TO MONTH

OCIInterval OCIInterval

composite object types: ADTs dvoid dvoid

composite object types: collections
(varrays, nested tables)

OCICOLL OCICOLL

1 This PL/SQL type compiles only if you use AS EXTERNAL in your callspec.

Table 14–2 External Datatype Mappings

External Datatype
Corresponding to
PL/SL Type

If Mode is IN or
RETURN, Specify in
C Prototype...

If Mode is IN by Reference
or RETURN by Reference,
Specify in C Prototype...

If Mode is IN OUT
or OUT, Specify
in C Prototype...

CHAR char char * char *

UNSIGNED CHAR unsigned char unsigned char * unsigned char *

SHORT short short * short *

UNSIGNED SHORT unsigned short unsigned short * unsigned short *

Table 14–1 (Cont.) Parameter Datatype Mappings

PL/SQL Datatype Supported External Types Default External Type

Passing Parameters to External C Procedures with Call Specifications

14-18 Oracle Database Advanced Application Developer's Guide

INT int int * int *

UNSIGNED INT unsigned int unsigned int * unsigned int *

LONG long long * long *

UNSIGNED LONG unsigned long unsigned long * unsigned long *

CHAR char char * char *

UNSIGNED CHAR unsigned char unsigned char * unsigned char *

SHORT short short * short *

UNSIGNED SHORT unsigned short unsigned short * unsigned short *

INT int int * int *

UNSIGNED INT unsigned int unsigned int * unsigned int *

LONG long long * long *

UNSIGNED LONG unsigned long unsigned long * unsigned long *

SIZE_T size_t size_t * size_t *

SB1 sb1 sb1 * sb1 *

UB1 ub1 ub1 * ub1 *

SB2 sb2 sb2 * sb2 *

UB2 ub2 ub2 * ub2 *

SB4 sb4 sb4 * sb4 *

UB4 ub4 ub4 * ub4 *

FLOAT float float * float *

DOUBLE double double * double *

STRING char * char * char *

RAW unsigned char * unsigned char * unsigned char *

OCILOBLOCATOR OCILobLocator * OCILobLocator ** OCILobLocator **

OCINUMBER OCINumber * OCINumber * OCINumber *

OCISTRING OCIString * OCIString * OCIString *

OCIRAW OCIRaw * OCIRaw * OCIRaw *

OCIDATE OCIDate * OCIDate * OCIDate *

OCICOLL OCIColl * or
OCIArray * or
OCITable *

OCIColl **
or OCIArray **
or OCITable **

OCIColl ** or
OCIArray ** or
OCITable **

OCITYPE OCIType * OCIType * OCIType *

TDO OCIType * OCIType * OCIType *

ADT
(final types)

dvoid* dvoid* dvoid*

ADT (nonfinal
types)

dvoid* dvoid* dvoid**

Table 14–2 (Cont.) External Datatype Mappings

External Datatype
Corresponding to
PL/SL Type

If Mode is IN or
RETURN, Specify in
C Prototype...

If Mode is IN by Reference
or RETURN by Reference,
Specify in C Prototype...

If Mode is IN OUT
or OUT, Specify
in C Prototype...

Passing Parameters to External C Procedures with Call Specifications

Developing Applications Using Multiple Programming Languages 14-19

Composite object types are not self describing. Their description is stored in a Type
Descriptor Object (TDO). Objects and indicator structs for objects have no predefined
OCI datatype, but must use the datatypes generated by Oracle Database's Object Type
Translator (OTT). The optional TDO argument for INDICATOR, and for composite
objects, in general, has the C datatype, OCIType *.

OCICOLL for REF and collection arguments is optional and only exists for the sake of
completeness. You cannot map REFs or collections onto any other datatype and vice
versa.

Passing Parameters BY VALUE or BY REFERENCE
If you specify BY VALUE, then scalar IN and RETURN arguments are passed by value
(which is also the default). Alternatively, you might have them passed by reference by
specifying BY REFERENCE.

By default, or if you specify BY REFERENCE, then scalar IN OUT, and OUT arguments
are passed by reference. Specifying BY VALUE for IN OUT, and OUT arguments is not
supported for C. The usefulness of the BY REFERENCE/VALUE clause is restricted to
external datatypes that are, by default, passed by value. This is true for IN, and
RETURN arguments of the following external types:

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG
SIZE_T
SB1
SB2
SB4
UB1
UB2
UB4
FLOAT
DOUBLE

All IN and RETURN arguments of external types not on this list, all IN OUT arguments,
and all OUT arguments are passed by reference.

Declaring Formal Parameters
Generally, the PL/SQL procedure that publishes an external procedure declares a list
of formal parameters, as the following example shows:

CREATE OR REPLACE FUNCTION Interp_func (
/* Find the value of y at x degrees using Lagrange interpolation: */
 x IN FLOAT,
 y IN FLOAT)
RETURN FLOAT AS
 LANGUAGE C
 NAME "Interp_func"
 LIBRARY MathLib;

Note: You might need to set up the following data structures for
certain examples to work:

CREATE LIBRARY MathLib AS '/tmp/math.so';

Passing Parameters to External C Procedures with Call Specifications

14-20 Oracle Database Advanced Application Developer's Guide

Each formal parameter declaration specifies a name, parameter mode, and PL/SQL
datatype (which maps to the default external datatype). That might be all the
information the external procedure needs. If not, then you can provide more
information using the PARAMETERS clause, which lets you specify the following:

■ Nondefault external datatypes

■ The current or maximum length of a parameter

■ NULL/NOT NULL indicators for parameters

■ Character set IDs and forms

■ The position of parameters in the list

■ How IN parameters are passed (by value or by reference)

If you decide to use the PARAMETERS clause, keep in mind:

■ For every formal parameter, there must be a corresponding parameter in the
PARAMETERS clause.

■ If you include the WITH CONTEXT clause, then you must specify the parameter
CONTEXT, which shows the position of the context pointer in the parameter list.

■ If the external procedure is a function, then you might specify the RETURN
parameter, but it must be in the last position. If RETURN is not specified, the
default external type is used.

Overriding Default Datatype Mapping
In some cases, you can use the PARAMETERS clause to override the default datatype
mappings. For example, you can remap the PL/SQL datatype BOOLEAN from external
datatype INT to external datatype CHAR.

Specifying Properties
You can also use the PARAMETERS clause to pass additional information about
PL/SQL formal parameters and function results to an external procedure. Do this by
specifying one or more of the following properties:

INDICATOR [{STRUCT | TDO}]
LENGTH
DURATION
MAXLEN
CHARSETID
CHARSETFORM
SELF

Table 14–3 shows the allowed and the default external datatypes, PL/SQL datatypes,
and PL/SQL parameter modes allowed for a given property. Notice that MAXLEN
(used to specify data returned from C back to PL/SQL) cannot be applied to an IN
parameter.

Passing Parameters to External C Procedures with Call Specifications

Developing Applications Using Multiple Programming Languages 14-21

In the following example, the PARAMETERS clause specifies properties for the PL/SQL
formal parameters and function result:

CREATE OR REPLACE FUNCTION plsToCparse_func (
 x IN PLS_INTEGER,
 Y IN OUT CHAR)
RETURN CHAR AS LANGUAGE C
 LIBRARY c_utils
 NAME "C_parse"
 PARAMETERS (
 x, -- stores value of x
 x INDICATOR, -- stores null status of x
 y, -- stores value of y
 y LENGTH, -- stores current length of y
 y MAXLEN, -- stores maximum length of y
 RETURN INDICATOR,
 RETURN);

With this PARAMETERS clause, the C prototype becomes:

char *C_parse(x, x_ind, y, y_len, y_maxlen, retind)
int x;
short x_ind;
char *y;
int *y_len;
int *y_maxlen;
short *retind;

A K&R prototype is needed because the indicator variable x_ind must be of datatype
short and short must not be used in ISO/ANSI prototypes.

The additional parameters in the C prototype correspond to the INDICATOR (for x),
LENGTH (of y), and MAXLEN (of y), as well as the INDICATOR for the function result in
the PARAMETERS clause. The parameter RETURN corresponds to the C function
identifier, which stores the result value.

Topics:

Table 14–3 Properties and Datatypes

Property
Allowed External
Types (C)

Default External
Type (C)

Allowed
PL/SQL Types

Allowed
PL/SQL Modes

Default PL/SQL
Passing Method

INDICATOR SHORT SHORT all scalars IN
IN OUT
OUT
RETURN

BY VALUE
BY REFERENCE
BY REFERENCE
BY REFERENCE

LENGTH [UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG

INT CHAR
LONG RAW
RAW
VARCHAR2

IN
IN OUT
OUT
RETURN

BY VALUE
BY REFERENCE
BY REFERENCE
BY REFERENCE

MAXLEN [UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG

INT CHAR
LONG RAW
RAW
VARCHAR2

IN OUT
OUT
RETURN

BY REFERENCE
BY REFERENCE
BY REFERENCE

CHARSETID
CHARSETFORM

UNSIGNED SHORT
UNSIGNED INT
UNSIGNED LONG

UNSIGNED INT CHAR
CLOB
VARCHAR2

IN
IN OUT
OUT
RETURN

BY VALUE
BY REFERENCE
BY REFERENCE
BY REFERENCE

Passing Parameters to External C Procedures with Call Specifications

14-22 Oracle Database Advanced Application Developer's Guide

■ INDICATOR

■ LENGTH and MAXLEN

■ CHARSETID and CHARSETFORM

■ Repositioning Parameters

■ SELF

■ BY REFERENCE

■ WITH CONTEXT

■ Interlanguage Parameter Mode Mappings

INDICATOR
An INDICATOR is a parameter whose value indicates whether or not another
parameter is NULL. PL/SQL does not need indicators, because the RDBMS concept of
nullity is built into the language. However, an external procedure might need to know
if a parameter or function result is NULL. Also, an external procedure might need to
signal the server that a returned value is actually a NULL, and must be treated
accordingly.

In such cases, you can use the property INDICATOR to associate an indicator with a
formal parameter. If the PL/SQL procedure is a function, then you can also associate
an indicator with the function result, as shown earlier.

To check the value of an indicator, you can use the constants OCI_IND_NULL and
OCI_IND_NOTNULL. If the indicator equals OCI_IND_NULL, then the associated
parameter or function result is NULL. If the indicator equals OCI_IND_NOTNULL, then
the parameter or function result is not NULL.

For IN parameters, which are inherently read-only, INDICATOR is passed by value
(unless you specify BY REFERENCE) and is read-only (even if you specify BY
REFERENCE). For OUT, IN OUT, and RETURN parameters, INDICATOR is passed by
reference by default.

The INDICATOR can also have a STRUCT or TDO option. Because specifying
INDICATOR as a property of an object is not supported, and because arguments of
objects have complete indicator structs instead of INDICATOR scalars, you must
specify this by using the STRUCT option. You must use the type descriptor object
(TDO) option for composite objects and collections,

LENGTH and MAXLEN
In PL/SQL, there is no standard way to indicate the length of a RAW or string
parameter. However, in many cases, you want to pass the length of such a parameter
to and from an external procedure. Using the properties LENGTH and MAXLEN, you can
specify parameters that store the current length and maximum length of a formal
parameter.

Note: With a parameter of type RAW or LONG RAW, you must use
the property LENGTH. Also, if that parameter is IN OUT and NULL
or OUT and NULL, then you must set the length of the
corresponding C parameter to zero.

Passing Parameters to External C Procedures with Call Specifications

Developing Applications Using Multiple Programming Languages 14-23

For IN parameters, LENGTH is passed by value (unless you specify BY REFERENCE)
and is read-only. For OUT, IN OUT, and RETURN parameters, LENGTH is passed by
reference.

As mentioned earlier, MAXLEN does not apply to IN parameters. For OUT, IN OUT, and
RETURN parameters, MAXLEN is passed by reference and is read-only.

CHARSETID and CHARSETFORM
Oracle Database provides globalization support, which lets you process single-byte
and multibyte character data and convert between character sets. It also lets your
applications run in different language environments.

By default, if the server and agent use the exact same $ORACLE_HOME value, the agent
uses the same globalization support settings as the server (including any settings that
were specified with ALTER SESSION statements).

If the agent is running in a separate $ORACLE_HOME (even if the same location is
specified by two different aliases or symbolic links), the agent uses the same
globalization support settings as the server except for the character set; the default
character set for the agent is defined by the NLS_LANG and NLS_NCHAR environment
settings for the agent.

The properties CHARSETID and CHARSETFORM identify the nondefault character set
from which the character data being passed was formed. With CHAR, CLOB, and
VARCHAR2 parameters, you can use CHARSETID and CHARSETFORM to pass the
character set ID and form to the external procedure.

For IN parameters, CHARSETID and CHARSETFORM are passed by value (unless you
specify BY REFERENCE) and are read-only (even if you specify BY REFERENCE). For
OUT, IN OUT, and RETURN parameters, CHARSETID and CHARSETFORM are passed by
reference and are read-only.

The OCI attribute names for these properties are OCI_ATTR_CHARSET_ID and OCI_
ATTR_CHARSET_FORM.

Repositioning Parameters
Remember, each formal parameter of the external procedure must have a
corresponding parameter in the PARAMETERS clause. Their positions can differ,
because PL/SQL associates them by name, not by position. However, the
PARAMETERS clause and the C prototype for the external procedure must have the
same number of parameters, and they must be in the same order.

SELF
SELF is the always-present argument of an object type's member procedure, namely
the object instance itself. In most cases, this argument is implicit and is not listed in the
argument list of the PL/SQL procedure. However, SELF must be explicitly specified as
an argument of the PARAMETERS clause.

See Also:

■ Oracle Call Interface Programmer's Guide for more information
about OCI_ATTR_CHARSET_ID and OCI_ATTR_CHARSET_
FORM

■ Oracle Database Globalization Support Guide for more information
about using national language data with the OCI

Passing Parameters to External C Procedures with Call Specifications

14-24 Oracle Database Advanced Application Developer's Guide

For example, assume that a user wants to create a Person object, consisting of a
person's name and date of birth, and then create a table of this object type. The user
eventually wants to determine the age of each Person object in this table.

In SQL*Plus, the Person object type can be created by:

CREATE OR REPLACE TYPE Person1_typ AS OBJECT
(Name VARCHAR2(30),
 B_date DATE,
 MEMBER FUNCTION calcAge_func RETURN NUMBER)
);

Typically, the member function is implemented in PL/SQL, but in this example it is an
external procedure. The body of the member function is declared as follows:

CREATE OR REPLACE TYPE BODY Person1_typ AS
 MEMBER FUNCTION calcAge_func RETURN NUMBER
 AS LANGUAGE C
 NAME "age"
 LIBRARY agelib
 WITH CONTEXT
 PARAMETERS
 (CONTEXT,
 SELF,
 SELF INDICATOR STRUCT,
 SELF TDO,
 RETURN INDICATOR
);
END;

Notice that the calcAge_func member function does not take any arguments, but
only returns a number. A member function is always called on an instance of the
associated object type. The object instance itself always is an implicit argument of the
member function. To refer to the implicit argument, the SELF keyword is used. This is
incorporated into the external procedure syntax by supporting references to SELF in
the parameters clause.

The matching table is created and populated.

CREATE TABLE Person_tab OF Person1_typ;

INSERT INTO Person_tab VALUES
 ('SCOTT', TO_DATE('14-MAY-85'));

INSERT INTO Person_tab VALUES
 ('TIGER', TO_DATE('22-DEC-71'));

Note: You might need to set up data structures similar to the
following for certain examples to work:

CONNECT SYSTEM/password
GRANT CONNECT,RESOURCE,CREATE LIBRARY TO SCOTT IDENTIFIED BY
password;
CONNECT SCOTT/password
CREATE OR REPLACE LIBRARY agelib UNTRUSTED IS
 '/tmp/scott1.so';.

This example is only for Solaris; other libraries and include paths
might be needed for other platforms.

Passing Parameters to External C Procedures with Call Specifications

Developing Applications Using Multiple Programming Languages 14-25

Finally, we retrieve the information of interest from the table.

SELECT p.name, p.b_date, p.calcAge_func() FROM Person_tab p;

NAME B_DATE P.CALCAGE_
------------------------------ --------- ----------
SCOTT 14-MAY-85 0
TIGER 22-DEC-71 0

The following is sample C code that implements the external member function and
the Object-Type-Translator (OTT)-generated struct definitions:

#include <oci.h>

struct PERSON
{
 OCIString *NAME;
 OCIDate B_DATE;
};
typedef struct PERSON PERSON;

struct PERSON_ind
{
 OCIInd _atomic;
 OCIInd NAME;
 OCIInd B_DATE;
};
typedef struct PERSON_ind PERSON_ind;

OCINumber *age (ctx, person_obj, person_obj_ind, tdo, ret_ind)
OCIExtProcContext *ctx;
PERSON *person_obj;
PERSON_ind *person_obj_ind;
OCIType *tdo;
OCIInd *ret_ind;
{
 sword err;
 text errbuf[512];
 OCIEnv *envh;
 OCISvcCtx *svch;
 OCIError *errh;
 OCINumber *age;
 int inum = 0;
 sword status;

 /* get OCI Environment */
 err = OCIExtProcGetEnv(ctx, &envh, &svch, &errh);

 /* initialize return age to 0 */
 age = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));
 status = OCINumberFromInt(errh, &inum, sizeof(inum), OCI_NUMBER_SIGNED,
 age);
 if (status != OCI_SUCCESS)
 {
 OCIExtProcRaiseExcp(ctx, (int)1476);
 return (age);
 }

 /* return NULL if the person object is null or the birthdate is null */
 if (person_obj_ind->_atomic == OCI_IND_NULL ||
 person_obj_ind->B_DATE == OCI_IND_NULL)

Passing Parameters to External C Procedures with Call Specifications

14-26 Oracle Database Advanced Application Developer's Guide

 {
 *ret_ind = OCI_IND_NULL;
 return (age);
 }

 /* The actual implementation to calculate the age is left to the reader,
 but an easy way of doing this is a callback of the form:
 select trunc(months_between(sysdate, person_obj->b_date) / 12)
 from DUAL;
 */
 *ret_ind = OCI_IND_NOTNULL;
 return (age);
}

BY REFERENCE
In C, you can pass IN scalar parameters by value (the value of the parameter is passed)
or by reference (a pointer to the value is passed). When an external procedure expects
a pointer to a scalar, specify BY REFERENCE phrase to pass the parameter by reference:

CREATE OR REPLACE PROCEDURE findRoot_proc (
 x IN DOUBLE PRECISION)
AS LANGUAGE C
 LIBRARY c_utils
 NAME "C_findRoot"
 PARAMETERS (
 x BY REFERENCE);

In this case, the C prototype is:

void C_findRoot(double *x);

The default (used when there is no PARAMETERS clause) is:

void C_findRoot(double x);

WITH CONTEXT
By including the WITH CONTEXT clause, you can give an external procedure access to
information about parameters, exceptions, memory allocation, and the user
environment. The WITH CONTEXT clause specifies that a context pointer is passed to
the external procedure. For example, if you write the following PL/SQL function:

CREATE OR REPLACE FUNCTION getNum_func (
 x IN REAL)
RETURN PLS_INTEGER AS LANGUAGE C
 LIBRARY c_utils
 NAME "C_getNum"
 WITH CONTEXT
 PARAMETERS (
 CONTEXT,
 x BY REFERENCE,
 RETURN INDICATOR);

The C prototype is:

int C_getNum(
 OCIExtProcContext *with_context,
 float *x,
 short *retind);

Executing External Procedures with CALL Statements

Developing Applications Using Multiple Programming Languages 14-27

The context data structure is opaque to the external procedure; but, is available to
service procedures called by the external procedure.

If you also include the PARAMETERS clause, then you must specify the parameter
CONTEXT, which shows the position of the context pointer in the parameter list. If you
omit the PARAMETERS clause, then the context pointer is the first parameter passed to
the external procedure.

Interlanguage Parameter Mode Mappings
PL/SQL supports the IN, IN OUT, and OUT parameter modes, as well as the RETURN
clause for procedures returning values.

Executing External Procedures with CALL Statements
Now that you have published your Java class method or external C procedure, you are
ready to call it.

Do not call an external procedure directly. Instead, use the CALL statement to call the
PL/SQL procedure that published the external procedure. See "CALL Statement
Syntax" on page 14-29.

Such calls, which you code in the same manner as a call to a regular PL/SQL
procedure, can appear in the following:

■ Anonymous blocks

■ Standalone and packaged procedures

■ Methods of an object type

■ Database triggers

■ SQL statements (calls to packaged functions only).

Any PL/SQL block or procedure executing on the server side, or on the client side, (for
example, in a tool such as Oracle Forms) can call an external procedure. On the server
side, the external procedure runs in a separate process address space, which
safeguards your database. Figure 14–1 shows how Oracle Database and external
procedures interact.

Figure 14–1 Oracle Database and External Procedures

Topics:

■ Preconditions for External Procedures

■ CALL Statement Syntax

Oracle Server
Process Execution

External Process
Execution

PL/SQL
Interpreter

Java Virtual
Machine

SQL
Engine

DLL

External C
Process

Oracle Database
Disk Storage

PL/SQL Subprogram

Java Method

Executing External Procedures with CALL Statements

14-28 Oracle Database Advanced Application Developer's Guide

■ Calling Java Class Methods

■ Calling External C Procedures

Preconditions for External Procedures
Before calling external procedures, consider the privileges, permissions, and synonyms
that exist in the execution environment.

Topics:

■ Privileges of External Procedures

■ Managing Permissions

■ Creating Synonyms for External Procedures

Privileges of External Procedures
When external procedures are called through CALL specifications, they execute with
definer's privileges, rather than invoker privileges.

A program executing with invoker privileges is not bound to a particular schema. It
executes at the calling site and accesses database items (such as tables and views) with
the caller's visibility and permissions. However, a program executing with definer's
privileges is bound to the schema in which it is defined. It executes at the defining site,
in the definer's schema, and accesses database items with the definer's visibility and
permissions.

Managing Permissions

To call external procedures, a user must have the EXECUTE privilege on the call
specification and on any resources used by the procedure.

In SQL*Plus, you can use the GRANT and REVOKE data control statements to manage
permissions. For example:

GRANT EXECUTE ON plsToJ_demoExternal_proc TO Public;
REVOKE EXECUTE ON plsToJ_demoExternal_proc FROM Public;
GRANT EXECUTE ON JAVA RESOURCE "appImages" TO Public;
GRANT EXECUTE ON plsToJ_demoExternal_proc TO Scott;
REVOKE EXECUTE ON plsToJ_demoExternal_proc FROM Scott;

Note: You might need to set up the following data structures for
certain examples to work:

CONNECT SYSTEM/password
GRANT CREATE ANY DIRECTORY TO SCOTT;
CONNECT SCOTT/password
CREATE OR REPLACE DIRECTORY bfile_dir AS '/tmp';
CREATE OR REPLACE JAVA RESOURCE NAMED "appImages" USING BFILE
(bfile_dir,'bfile_audio');

See Also:

■ Oracle Database SQL Language Reference for more information
about the GRANTstatement

■ Oracle Database SQL Language Reference for more information
about the REVOKE statement

Executing External Procedures with CALL Statements

Developing Applications Using Multiple Programming Languages 14-29

Creating Synonyms for External Procedures
For convenience, you or your DBA can create synonyms for external procedures using
the CREATE PUBLIC SYNONYM statement. In the following example, your DBA creates
a public synonym, which is accessible to all users. If PUBLIC is not specified, then the
synonym is private and accessible only within its schema.

CREATE PUBLIC SYNONYM Rfac FOR Scott.RecursiveFactorial;

CALL Statement Syntax
Call the external procedure through the SQL CALL statement. You can execute the
CALL statement interactively from SQL*Plus. The syntax is:

CALL [schema.][{object_type_name | package_name}]procedure_name[@dblink_name]
 [(parameter_list)] [INTO :host_variable][INDICATOR][:indicator_variable];

This is equivalent to executing a procedure myproc using a SQL statement of the form
"SELECT myproc(...) FROM DUAL," except that the overhead associated with
performing the SELECT is not incurred.

For example, here is an anonymous PL/SQL block that uses dynamic SQL to call
plsToC_demoExternal_proc, which we published. PL/SQL passes three
parameters to the external C procedure C_demoExternal_proc.

DECLARE
 xx NUMBER(4);
 yy VARCHAR2(10);
 zz DATE;
 BEGIN
 EXECUTE IMMEDIATE
 'CALL plsToC_demoExternal_proc(:xxx, :yyy, :zzz)' USING xx,yy,zz;
 END;

The semantics of the CALL statement is identical to the that of an equivalent
BEGIN-END block.

Calling Java Class Methods
To call the J_calcFactorial class method published earlier:

1. Declare and initialize two SQL*Plus host variables:

VARIABLE x NUMBER
VARIABLE y NUMBER
EXECUTE :x := 5;

2. Call J_calcFactorial:

CALL
J_calcFactorial
(:x) INTO :y;
PRINT y

Result:

Y

Note: CALL is the only SQL statement that cannot be put, by itself, in a
PL/SQL BEGIN-END block. It can be part of an EXECUTE IMMEDIATE
statement within a BEGIN-END block.

Handling Errors and Exceptions in Multilanguage Programs

14-30 Oracle Database Advanced Application Developer's Guide

 120

Calling External C Procedures
To call an external C procedure, PL/SQL must find the path of the appropriate DLL.
The PL/SQL engine retrieves the path from the data dictionary, based on the library
alias from the AS LANGUAGE clause of the procedure declaration.

Next, PL/SQL alerts a Listener process which, in turn, spawns a session-specific agent.
By default, this agent is named extproc, although you can specify other names in the
listener.ora file. The Listener hands over the connection to the agent, and PL/SQL
passes to the agent the name of the DLL, the name of the external procedure, and any
parameters.

Then, the agent loads the DLL and runs the external procedure. Also, the agent
handles service calls (such as raising an exception) and callbacks to Oracle Database.
Finally, the agent passes to PL/SQL any values returned by the external procedure.

After the external procedure completes, the agent remains active throughout your
Oracle Database session; when you log off, the agent is killed. Consequently, you incur
the cost of launching the agent only once, no matter how many calls you make. Still,
call an external procedure only when the computational benefits outweigh the cost.

Here, we call PL/SQL function plsCallsCdivisor_func, which we published
previously, from an anonymous block. PL/SQL passes the two integer parameters to
external function Cdivisor_func, which returns their greatest common divisor.

DECLARE
 g PLS_INTEGER;
 a PLS_INTEGER;
 b PLS_INTEGER;
CALL plsCallsCdivisor_func(a, b);
IF g IN (2,4,8) THEN ...

Handling Errors and Exceptions in Multilanguage Programs
The PL/SQL compiler raises compile time errors if an AS EXTERNAL call specification
is found in a TYPE or PACKAGE specification.

C programs can raise exceptions through the OCIExtproc functions.

Using Service Routines with External C Procedures
When called from an external procedure, a service routine can raise exceptions,
allocate memory, and call OCI handles for callbacks to the server. To use a service
routine, you must specify the WITH CONTEXT clause, which lets you pass a context
structure to the external procedure. The context structure is declared in header file
ociextp.h as follows:

typedef struct OCIExtProcContext OCIExtProcContext;

Note: Although some DLL caching takes place, there is no
guarantee that your DLL will remain in the cache; therefore, do not
store global variables in your DLL.

Using Service Routines with External C Procedures

Developing Applications Using Multiple Programming Languages 14-31

Service procedures:

■ OCIExtProcAllocCallMemory

■ OCIExtProcRaiseExcp

■ OCIExtProcRaiseExcpWithMsg

OCIExtProcAllocCallMemory
This service routine allocates n bytes of memory for the duration of the external
procedure call. Any memory allocated by the function is freed automatically as soon as
control returns to PL/SQL.

The C prototype for this function is as follows:

dvoid *OCIExtProcAllocCallMemory(
 OCIExtProcContext *with_context,
 size_t amount);

The parameters with_context and amount are the context pointer and number of
bytes to allocate, respectively. The function returns an untyped pointer to the allocated
memory. A return value of zero indicates failure.

In SQL*Plus, suppose you publish external function plsToC_concat_func, as
follows:

CREATE OR REPLACE FUNCTION plsToC_concat_func (
 str1 IN VARCHAR2,
 str2 IN VARCHAR2)
RETURN VARCHAR2 AS LANGUAGE C
NAME "concat"
LIBRARY stringlib
WITH CONTEXT
PARAMETERS (
CONTEXT,
str1 STRING,
str1 INDICATOR short,

Note: ociextp.h is located in $ORACLE_HOME/plsql/public
on Linux and UNIX.

Note: Do not have the external procedure call the C function free
to free memory allocated by this service routine, as this is handled
automatically.

Note: You might need to set up data structures similar to the
following for certain examples to work:

CONNECT SYSTEM/password
DROP USER y CASCADE;
GRANT CONNECT,RESOURCE,CREATE LIBRARY TO y IDENTIFIED BY
password;
CONNECT y/password
CREATE LIBRARY stringlib AS
'/private/varora/ilmswork/Cexamples/john2.so';

Using Service Routines with External C Procedures

14-32 Oracle Database Advanced Application Developer's Guide

str2 STRING,
str2 INDICATOR short,
RETURN INDICATOR short,
RETURN LENGTH short,
RETURN STRING);

When called, C_concat concatenates two strings, then returns the result:

select plsToC_concat_func('hello ', 'world') from DUAL;
PLSTOC_CONCAT_FUNC('HELLO','WORLD')

hello world

If either string is NULL, the result is also NULL. As the following example shows, C_
concat uses OCIExtProcAllocCallMemory to allocate memory for the result
string:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>
#include <ociextp.h>

char *concat(ctx, str1, str1_i, str2, str2_i, ret_i, ret_l)
OCIExtProcContext *ctx;
char *str1;
short str1_i;
char *str2;
short str2_i;
short *ret_i;
short *ret_l;
{
 char *tmp;
 short len;
 /* Check for null inputs. */
 if ((str1_i == OCI_IND_NULL) || (str2_i == OCI_IND_NULL))
 {
 *ret_i = (short)OCI_IND_NULL;
 /* PL/SQL has no notion of a NULL ptr, so return a zero-byte string. */
 tmp = OCIExtProcAllocCallMemory(ctx, 1);
 tmp[0] = '\0';
 return(tmp);
 }
 /* Allocate memory for result string, including NULL terminator. */
 len = strlen(str1) + strlen(str2);
 tmp = OCIExtProcAllocCallMemory(ctx, len + 1);

 strcpy(tmp, str1);
 strcat(tmp, str2);

 /* Set NULL indicator and length. */
 *ret_i = (short)OCI_IND_NOTNULL;
 *ret_l = len;
 /* Return pointer, which PL/SQL frees later. */
 return(tmp);
}

#ifdef LATER
static void checkerr (/*_ OCIError *errhp, sword status _*/);

void checkerr(errhp, status)

Using Service Routines with External C Procedures

Developing Applications Using Multiple Programming Languages 14-33

OCIError *errhp;
sword status;
{
 text errbuf[512];
 sb4 errcode = 0;

 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %.*s\n", 512, errbuf);
 break;
 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");
 break;
 case OCI_CONTINUE:
 (void) printf("Error - OCI_CONTINUE\n");
 break;
 default:
 break;
 }
}

char *concat(ctx, str1, str1_i, str2, str2_i, ret_i, ret_l)
OCIExtProcContext *ctx;
char *str1;
short str1_i;
char *str2;
short str2_i;
short *ret_i;
short *ret_l;
{
 char *tmp;
 short len;
 /* Check for null inputs. */
 if ((str1_i == OCI_IND_NULL) || (str2_i == OCI_IND_NULL))
 {
 *ret_i = (short)OCI_IND_NULL;
 /* PL/SQL has no notion of a NULL ptr, so return a zero-byte string. */
 tmp = OCIExtProcAllocCallMemory(ctx, 1);
 tmp[0] = '\0';
 return(tmp);
 }
 /* Allocate memory for result string, including NULL terminator. */
 len = strlen(str1) + strlen(str2);

Using Service Routines with External C Procedures

14-34 Oracle Database Advanced Application Developer's Guide

 tmp = OCIExtProcAllocCallMemory(ctx, len + 1);

 strcpy(tmp, str1);
 strcat(tmp, str2);

 /* Set NULL indicator and length. */
 *ret_i = (short)OCI_IND_NOTNULL;
 *ret_l = len;
 /* Return pointer, which PL/SQL frees later. */
 return(tmp);
}

/*==*/
int main(char *argv, int argc)
{
 OCIExtProcContext *ctx;
 char *str1;
 short str1_i;
 char *str2;
 short str2_i;
 short *ret_i;
 short *ret_l;
 /* OCI Handles */
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 OCISession *authp;
 OCIStmt *stmthp;
 OCILobLocator *clob, *blob;
 OCILobLocator *Lob_loc;

 /* Initialize and Logon */
 (void) OCIInitialize((ub4) OCI_DEFAULT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0);

 (void) OCIEnvInit((OCIEnv **) &envhp,
 OCI_DEFAULT, (size_t) 0,
 (dvoid **) 0);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);

 /* Server contexts */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0);

 /* Service context */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0);

 /* Attach to Oracle Database */
 (void) OCIServerAttach(srvhp, errhp, (text *)"", strlen(""), 0);

 /* Set attribute server context in the service context */
 (void) OCIAttrSet ((dvoid *) svchp, OCI_HTYPE_SVCCTX,
 (dvoid *)srvhp, (ub4) 0,
 OCI_ATTR_SERVER, (OCIError *) errhp);

Using Service Routines with External C Procedures

Developing Applications Using Multiple Programming Languages 14-35

 (void) OCIHandleAlloc((dvoid *) envhp,
 (dvoid **)&authp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "samp", (ub4)4,
 (ub4) OCI_ATTR_USERNAME, errhp);

 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "samp", (ub4) 4,
 (ub4) OCI_ATTR_PASSWORD, errhp);

 /* Begin a User Session */
 checkerr(errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,
 (ub4) OCI_DEFAULT));

 (void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) authp, (ub4) 0,
 (ub4) OCI_ATTR_SESSION, errhp);

 /* -----------------------User Logged In------------------------------*/
 printf ("user logged in \n");

 /* allocate a statement handle */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 checkerr(errhp, OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &Lob_loc,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0));

 /* ------- subroutine called here-----------------------*/
 printf ("calling concat...\n");
 concat(ctx, str1, str1_i, str2, str2_i, ret_i, ret_l);

 return 0;
}

#endif

OCIExtProcRaiseExcp
This service routine raises a predefined exception, which must have a valid Oracle
Database error number in the range 1..32,767. After doing any necessary cleanup, your
external procedure must return immediately. (No values are assigned to OUT or IN
OUT parameters.) The C prototype for this function follows:

int OCIExtProcRaiseExcp(
 OCIExtProcContext *with_context,
 size_t errnum);

The parameters with_context and error_number are the context pointer and
Oracle Database error number. The return values OCIEXTPROC_SUCCESS and
OCIEXTPROC_ERROR indicate success or failure.

In SQL*Plus, suppose you publish external procedure plsTo_divide_proc, as
follows:

CREATE OR REPLACE PROCEDURE plsTo_divide_proc (
 dividend IN PLS_INTEGER,

Using Service Routines with External C Procedures

14-36 Oracle Database Advanced Application Developer's Guide

 divisor IN PLS_INTEGER,
 result OUT FLOAT)
AS LANGUAGE C
 NAME "C_divide"
 LIBRARY MathLib
 WITH CONTEXT
 PARAMETERS (
 CONTEXT,
 dividend INT,
 divisor INT,
 result FLOAT);

When called, C_divide finds the quotient of two numbers. As the following example
shows, if the divisor is zero, C_divide uses OCIExtProcRaiseExcp to raise the
predefined exception ZERO_DIVIDE:

void C_divide (ctx, dividend, divisor, result)
OCIExtProcContext *ctx;
int dividend;
int divisor;
float *result;
{
 /* Check for zero divisor. */
 if (divisor == (int)0)
 {
 /* Raise exception ZERO_DIVIDE, which is Oracle error 1476. */
 if (OCIExtProcRaiseExcp(ctx, (int)1476) == OCIEXTPROC_SUCCESS)
 {
 return;
 }
 else
 {
 /* Incorrect parameters were passed. */
 assert(0);
 }
 }
 *result = (float)dividend / (float)divisor;
}

OCIExtProcRaiseExcpWithMsg
This service routine raises a user-defined exception and returns a user-defined error
message. The C prototype for this function follows:

int OCIExtProcRaiseExcpWithMsg(
 OCIExtProcContext *with_context,
 size_t error_number,
 text *error_message,
 size_t len);

The parameters with_context, error_number, and error_message are the
context pointer, Oracle Database error number, and error message text. The parameter
len stores the length of the error message. If the message is a null-terminated string,
then len is zero. The return values OCIEXTPROC_SUCCESS and OCIEXTPROC_ERROR
indicate success or failure.

In the previous example, we published external procedure plsTo_divide_proc. In
the following example, you use a different implementation. With this version, if the
divisor is zero, then C_divide uses OCIExtProcRaiseExcpWithMsg to raise a
user-defined exception:

Doing Callbacks with External C Procedures

Developing Applications Using Multiple Programming Languages 14-37

void C_divide (ctx, dividend, divisor, result)
OCIExtProcContext *ctx;
int dividend;
int divisor;
float *result;
 /* Check for zero divisor. */
 if (divisor == (int)0)
 {
 /* Raise a user-defined exception, which is Oracle error 20100,
 and return a null-terminated error message. */
 if (OCIExtProcRaiseExcpWithMsg(ctx, (int)20100,
 "divisor is zero", 0) == OCIEXTPROC_SUCCESS)
 {
 return;
 }
 else
 {
 /* Incorrect parameters were passed. */
 assert(0);
 }
 }
 *result = dividend / divisor;

}

Doing Callbacks with External C Procedures
To enable callbacks, use the function OCIExtProcGetEnv.

Topics:

■ OCIExtProcGetEnv

■ Object Support for OCI Callbacks

■ Restrictions on Callbacks

■ Debugging External Procedures

■ Example: Calling an External Procedure

■ Global Variables in External C Procedures

■ Static Variables in External C Procedures

■ Restrictions on External C Procedures

OCIExtProcGetEnv
This service routine enables OCI callbacks to the database during an external
procedure call. The environment handles obtained by using this function reuse the
existing connection to go back to the database. If you need to establish a new
connection to the database, you cannot use these handles; instead, you must create
your own.

The C prototype for this function follows:

sword OCIExtProcGetEnv (OCIExtProcContext *with_context,
 OCIEnv envh,
 OCISvcCtx svch,
 OCIError errh)

Doing Callbacks with External C Procedures

14-38 Oracle Database Advanced Application Developer's Guide

The parameter with_context is the context pointer, and the parameters envh, svch,
and errh are the OCI environment, service, and error handles, respectively. The
return values OCIEXTPROC_SUCCESS and OCIEXTPROC_ERROR indicate success or
failure.

Both external C procedures and Java class methods can call-back to the database to do
SQL operations. For a working example, see "Example: Calling an External Procedure"
on page 14-41.

An external C procedure executing on Oracle Database can call a service routine to
obtain OCI environment and service handles. With the OCI, you can use callbacks to
execute SQL statements and PL/SQL subprograms, fetch data, and manipulate LOBs.
Callbacks and external procedures operate in the same user session and transaction
context, and so have the same user privileges.

In SQL*Plus, suppose you run the following script:

CREATE TABLE Emp_tab (empno NUMBER(10))

CREATE PROCEDURE plsToC_insertIntoEmpTab_proc (
 empno PLS_INTEGER)
AS LANGUAGE C
 NAME "C_insertEmpTab"
 LIBRARY insert_lib
 WITH CONTEXT
 PARAMETERS (
 CONTEXT,
 empno LONG);

Later, you might call service routine OCIExtProcGetEnv from external procedure
plsToC_insertIntoEmpTab_proc, as follows:

#include <stdio.h>
#include <stdlib.h>
#include <oratypes.h>
#include <oci.h> /* includes ociextp.h */
...
void C_insertIntoEmpTab (ctx, empno)
OCIExtProcContext *ctx;
long empno;
{
 OCIEnv *envhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 int err;
 ...
 err = OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp);
 ...
}

If you do not use callbacks, you do not need to include oci.h; instead, just include
ociextp.h.

Note: Callbacks are not necessarily a same-session phenomenon; you
might execute an SQL statement in a different session through
OCIlogon.

Doing Callbacks with External C Procedures

Developing Applications Using Multiple Programming Languages 14-39

Object Support for OCI Callbacks
To execute object-related callbacks from your external procedures, the OCI
environment in the extproc agent is fully initialized in object mode. You retrieve
handles to this environment with the OCIExtProcGetEnv procedure.

The object run-time environment lets you use static, as well as dynamic, object support
provided by OCI. To utilize static support, use the OTT to generate C structs for the
appropriate object types, and then use conventional C code to access the object
attributes.

For those objects whose types are unknown at external procedure creation time, an
alternative, dynamic, way of accessing objects is first to call OCIDescribeAny to
obtain attribute and method information about the type. Then, OCIObjectGetAttr
and OCIObjectSetAttr can be called to retrieve and set attribute values.

Because the current external procedure model is stateless, OCIExtProcGetEnv must
be called in every external procedure that wants to execute callbacks, or call
OCIExtProc. service routines. After every external procedure call, the callback
mechanism is cleaned up and all OCI handles are freed.

Restrictions on Callbacks
With callbacks, the following SQL statements and OCI subprograms are not
supported:

■ Transaction control statements such as COMMIT

■ Data definition statements such as CREATE

■ The following object-oriented OCI subprograms:

OCIObjectNew
OCIObjectPin
OCIObjectUnpin
OCIObjectPinCountReset
OCIObjectLock
OCIObjectMarkUpdate
OCIObjectUnmark
OCIObjectUnmarkByRef
OCIObjectAlwaysLatest
OCIObjectNotAlwaysLatest
OCIObjectMarkDeleteByRef
OCIObjectMarkDelete
OCIObjectFlush
OCIObjectFlushRefresh
OCIObjectGetTypeRef
OCIObjectGetObjectRef
OCIObjectExists
OCIObjectIsLocked
OCIObjectIsDirtied
OCIObjectIsLoaded
OCIObjectRefresh
OCIObjectPinTable
OCIObjectArrayPin
OCICacheFlush,
OCICacheFlushRefresh,
OCICacheRefresh
OCICacheUnpin
OCICacheFree
OCICacheUnmark
OCICacheGetObjects

Doing Callbacks with External C Procedures

14-40 Oracle Database Advanced Application Developer's Guide

OCICacheRegister

■ Polling-mode OCI subprograms such as OCIGetPieceInfo

■ The following OCI subprograms:

OCIEnvInit
OCIInitialize
OCIPasswordChange
OCIServerAttach
OCIServerDetach
OCISessionBegin
OCISessionEnd
OCISvcCtxToLda
OCITransCommit
OCITransDetach
OCITransRollback
OCITransStart

Also, with OCI subprogram OCIHandleAlloc, the following handle types are not
supported:

OCI_HTYPE_SERVER
OCI_HTYPE_SESSION
OCI_HTYPE_SVCCTX
OCI_HTYPE_TRANS

Debugging External Procedures
Usually, when an external procedure fails, its prototype is faulty. In other words, the
prototype does not match the one generated internally by PL/SQL. This can happen if
you specify an incompatible C datatype. For example, to pass an OUT parameter of
type REAL, you must specify float *. Specifying float, double *, or any other C
datatype results in a mismatch.

In such cases, you might get:

lost RPC connection to external routine agent

This error, which means that extproc terminated abnormally because the external
procedure caused a core dump. To avoid errors when declaring C prototype
parameters, see the preceding tables.

To help you debug external procedures, PL/SQL provides the utility package DEBUG_
EXTPROC. To install the package, run the script dbgextp.sql, which you can find in
the PL/SQL demo directory. (For the location of the directory, see your Oracle
Database Installation or User's Guide.)

To use the package, follow the instructions in dbgextp.sql. Your Oracle Database
account must have EXECUTE privileges on the package and CREATE LIBRARY
privileges.

Example: Calling an External Procedure
Also in the PL/SQL demo directory is the script extproc.sql, which demonstrates
the calling of an external procedure. The companion file extproc.c contains the C
source code for the external procedure.

Note: DEBUG_EXTPROC works only on platforms with debuggers that
can attach to a running process.

Doing Callbacks with External C Procedures

Developing Applications Using Multiple Programming Languages 14-41

To run the demo, follow the instructions in extproc.sql. You must use the
SCOTT/TIGER account, which must have CREATE LIBRARY privileges.

Global Variables in External C Procedures
A global variable is declared outside of a function, and its value is shared by all
functions of a program. In case of external procedures, this means that all functions in
a DLL share the value of the global. The usage of global variables is discouraged for
two reasons:

■ Threading

In the nonthreaded configuration of the agent process, only one function is active
at a time. In the case of the multithreaded extproc agent, multiple functions can
be active at the same time, and two or more functions might try to access the
global variable concurrently, with unsuccessful results.

■ DLL caching

Global variables are also used to store data that is intended to persist beyond the
lifetime of a function. For example, suppose that functions func1 and func2 try
to pass data to each other. Because of the DLL caching feature, it is possible that
after func1 completes, the DLL will be unloaded, causing all global variables to
lose their values. When func2 executes, the DLL is reloaded, and all global
variables are initialized to 0, which is inconsistent with their values at the
completion of func1.

Static Variables in External C Procedures
There are two types of static variables: external and internal. An external static
variable is a special case of a global variable, so its usage is discouraged. Internal static
variables are local to a particular function, but remain in existence rather than coming
and going each time the function is activated. Therefore, they provide private,
permanent storage within a single function. These variables are used to pass on data to
subsequent calls to the same function. But, because of the DLL caching feature
mentioned previously, the DLL might be unloaded and reloaded between calls, which
means that the internal static variable loses its value.

When calling external procedures:

■ Never write to IN parameters or overflow the capacity of OUT parameters.
(PL/SQL does no run time checks for these error conditions.)

■ Never read an OUT parameter or a function result.

■ Always assign a value to IN OUT and OUT parameters and to function results.
Otherwise, your external procedure will not return successfully.

■ If you include the WITH CONTEXT and PARAMETERS clauses, then you must
specify the parameter CONTEXT, which shows the position of the context pointer
in the parameter list.

■ If you include the PARAMETERS clause, and if the external procedure is a function,
then you must specify the parameter RETURN in the last position.

■ For every formal parameter, there must be a corresponding parameter in the
PARAMETERS clause. Also, ensure that the datatypes of parameters in the

See Also: Template makefile in the RDBMS subdirectory
/public for help creating a dynamic link library

Doing Callbacks with External C Procedures

14-42 Oracle Database Advanced Application Developer's Guide

PARAMETERS clause are compatible with those in the C prototype, because no
implicit conversions are done.

■ With a parameter of type RAW or LONG RAW, you must use the property LENGTH.
Also, if that parameter is IN OUT or OUT and null, then you must set the length of
the corresponding C parameter to zero.

Restrictions on External C Procedures
The following restrictions apply to external procedures:

■ This feature is available only on platforms that support DLLs.

■ Only C procedures and procedures callable from C code are supported.

■ You cannot pass PL/SQL cursor variables or records to an external procedure. For
records, use instances of object types instead.

■ In the LIBRARY subclause, you cannot use a database link to specify a remote
library.

■ The maximum number of parameters that you can pass to a external procedure is
128. However, if you pass float or double parameters by value, then the maximum
is less than 128. How much less depends on the number of such parameters and
your operating system. To get a rough estimate, count each float or double passed
by value as two parameters.

Developing Applications with Oracle XA 15-1

15
Developing Applications with Oracle XA

This chapter explains how to use the Oracle XA library. Typically, you use this library
in applications that work with transaction monitors. The XA features are most useful
in applications in which transactions interact with more than one database.

Topics:

■ X/Open Distributed Transaction Processing (DTP)

■ Oracle XA Library Subroutines

■ Developing and Installing XA Applications

■ Troubleshooting XA Applications

■ Oracle XA Issues and Restrictions

X/Open Distributed Transaction Processing (DTP)
The X/Open Distributed Transaction Processing (DTP) architecture defines a standard
architecture or interface that enables multiple application programs (APs) to share
resources provided by multiple, and possibly different, resource managers (RMs). It
coordinates the work between APs and RMs into global transactions.

The Oracle XA library conforms to the X/Open software architecture's XA interface
specification. The Oracle XA library is an external interface that enables a client-side
transaction manager (TM) that is not an Oracle client-side TM to coordinate global
transactions, thereby allowing inclusion of database RMs that are not Oracle Database
RMs in distributed transactions. For example, a client application can manage an
Oracle Database transaction and a transaction in an NTFS file system as a single,
global transaction.

Figure 15–1 illustrates a possible X/Open DTP model.

See Also:

■ X/Open CAE Specification - Distributed Transaction Processing: The
XA Specification, X/Open Document Number XO/CAE/91/300,
for an overview of XA, including basic architecture. Access at
http://www.opengroup.org/pubs/catalog/c193.htm.

■ Oracle Call Interface Programmer's Guide for background and
reference information about the Oracle XA library.

■ The Oracle Database platform-specific documentation for
information on library linking filenames.

■ README for changes, bugs, and restrictions in the Oracle XA
library for your platform.

X/Open Distributed Transaction Processing (DTP)

15-2 Oracle Database Advanced Application Developer's Guide

Figure 15–1 Possible DTP Model

Topics:

■ DTP Terminology

■ Required Public Information

DTP Terminology
■ Resource Manager (RM)

■ Distributed Transaction

■ Branch

■ Transaction Manager (TM)

■ Transaction Processing Monitor (TPM)

■ Two-Phase Commit Protocol

■ Application Program (AP)

■ TX Interface

■ Tight and Loose Coupling

■ Dynamic and Static Registration

Resource Manager (RM)
A resource manager controls a shared, recoverable resource that can be returned to a
consistent state after a failure. Examples are relational databases, transactional queues,

Transaction
Manager (TM)

Application Program (AP)

XA Interface

TX Interface

XA Interface

Native
Interface

Manager

Resources

Resource
Manager (RM)

Other
Resources

Resource
Manager (RM)

Oracle
Database

X/Open Distributed Transaction Processing (DTP)

Developing Applications with Oracle XA 15-3

and transactional file systems. Oracle Database is an RM and uses its online redo log
and undo segments to return to a consistent state after a failure.

Distributed Transaction
A distributed transaction, also called a global transaction, is a client transaction that
involves updates to multiple distributed resources and requires "all-or-none"
semantics across distributed RMs.

Branch
A branch is a unit of work contained within one RM. Multiple branches make up one
global transaction. In the case of Oracle Database, each branch maps to a local
transaction inside the database server.

Transaction Manager (TM)
A transaction manager provides an API for specifying the boundaries of the
transaction and manages commit and recovery. The TM implements a two-phase
commit engine to provide "all-or-none" semantics across distributed RMs.

An external TM is a middle-tier component that resides outside Oracle Database.
Normally, the database is its own internal TM. Using a standards-based TM enables
Oracle Database to cooperate with other heterogeneous RMs in a single transaction.

Transaction Processing Monitor (TPM)
A TM is usually provided by a transaction processing monitor (TPM) vendor. A TPM
coordinates the flow of transaction requests between the client processes that issue
requests and the back-end servers that process them. Basically, a TPM coordinates
transactions that require the services of several different types of back-end processes,
such as application servers and RMs distributed over a network.

The TPM synchronizes any commits or rollbacks required to complete a distributed
transaction. The TM portion of the TPM is responsible for controlling when distributed
commits and rollbacks take place. Thus, if a distributed application program takes
advantage of a TPM, then the TM portion of the TPM is responsible for controlling the
two-phase commit protocol. The RMs enable the TMs to perform this task.

Because the TM controls distributed commits or rollbacks, it must communicate
directly with Oracle Database (or any other RM) through the XA interface. It uses
Oracle XA library subroutines, which are described in "Oracle XA Library
Subroutines" on page 15-5, to tell Oracle Database how to process the transaction,
based on its knowledge of all RMs in the transaction.

Two-Phase Commit Protocol
The Oracle XA library interface follows the two-phase commit protocol. The sequence
of events is as follows:

1. In the prepare phase, the TM asks each RM to guarantee that it can commit any
part of the transaction. If this is possible, then the RM records its prepared state
and replies affirmatively to the TM. If it is not possible, then the RM might roll
back any work, reply negatively to the TM, and forget about the transaction. The
protocol allows the application, or any RM, to roll back the transaction unilaterally
until the prepare phase completes.

2. In phase two, the TM records the commit decision and issues a commit or rollback
to all RMs participating in the transaction. TM can issue a commit for an RM only
if all RMs have replied affirmatively to phase one.

X/Open Distributed Transaction Processing (DTP)

15-4 Oracle Database Advanced Application Developer's Guide

Application Program (AP)
An application program defines transaction boundaries and specifies actions that
constitute a transaction. For example, an AP can be a precompiler or OCI program.
The AP operates on the RM's resource through its native interface, for example, SQL.

TX Interface
An application program starts and completes all transaction control operations
through the TM through an interface called TX. The AP does not directly use the XA
interface. APs are not aware of branches that fork in the middle-tier: application
threads do not explicitly join, leave, suspend, and resume branch work, instead the TM
portion of the transaction processing monitor manages the branches of a global
transaction for APs. Ultimately, APs call the TM to commit all-or-none.

Tight and Loose Coupling
Application threads are tightly coupled if the RM considers them as a single entity for
all isolation semantic purposes. Tightly coupled branches must see changes in each
other. Furthermore, an external client must either see all changes of a tightly coupled
set or none of the changes. If application threads are not tightly coupled, then they are
loosely coupled.

Dynamic and Static Registration
Oracle Database supports both dynamic and static registration. In dynamic
registration, the RM executes an application callback before starting any work. In
static registration, you must call xa_start for each RM before starting any work,
even if some RMs are not involved.

Required Public Information
As a resource manager, Oracle Database must publish the information described in
Table 15–1.

Note: The naming conventions for the TX interface and associated
subroutines are vendor-specific. For example, the tx_open call might
be referred to as tp_open on your system. In some cases, the calls
might be implicit, for example, at the entry to a transactional RPC. See
the documentation supplied with the transaction processing monitor
for details.

Table 15–1 Required XA Features Published by Oracle Database

XA Feature Oracle Database Details

xa_switch_t structures The Oracle Database xa_switch_t structure name is xaosw for
static registration and xaoswd for dynamic registration. These
structures contain entry points and other information for the
resource manager.

xa_switch_t resource
manager

The Oracle Database resource manager name within the xa_
switch_t structure is Oracle_XA.

Close string The close string used by xa_close is ignored and can be null.

Open string The format of the open string used by xa_open is described in
detail in "Defining the xa_open String" on page 15-8.

Oracle XA Library Subroutines

Developing Applications with Oracle XA 15-5

Oracle XA Library Subroutines
The Oracle XA library subroutines enable a TM to tell Oracle Database how to process
transactions. Generally, the TM must open the resource by using xa_open. Typically,
the opening of the resource results from the AP's call to tx_open. Some TMs might
call xa_open implicitly when the application begins.

Similarly, there is a close (using xa_close) that occurs when the application is
finished with the resource. The close might occur when the AP calls tx_close or
when the application terminates.

The TM instructs the RMs to perform several other tasks, which include the following:

■ Starting a new transaction and associating it with an ID

■ Rolling back a transaction

■ Preparing and committing a transaction

Topics:

■ Oracle XA Library Subroutines

■ Oracle XA Interface Extensions

Oracle XA Library Subroutines
XA Library subroutines are described in Table 15–2.

Libraries Libraries needed to link applications using Oracle XA have
platform-specific names. The procedure is similar to linking an
ordinary precompiler or OCI program except that you might have
to link any TPM-specific libraries.

If you are not using sqllib, then link with $ORACLE_
HOME/rdbms/lib/xaonsl.o or $ORACLE_
HOME/rdbms/lib32/xaonsl.o (for 32 bit application on 64 bit
platforms).

Requirements None. The functionality to support XA is part of both Standard
Edition and Enterprise Edition.

Table 15–2 XA Library Subroutines

XA Subroutine Description

xa_open Connects to the RM.

xa_close Disconnects from the RM.

xa_start Starts a new transaction and associates it with the given transaction ID (XID),
or associates the process with an existing transaction.

xa_end Disassociates the process from the given XID.

xa_rollback Rolls back the transaction associated with the given XID.

xa_prepare Prepares the transaction associated with the given XID. This is the first phase
of the two-phase commit protocol.

xa_commit Commits the transaction associated with the given XID. This is the second
phase of the two-phase commit protocol.

Table 15–1 (Cont.) Required XA Features Published by Oracle Database

XA Feature Oracle Database Details

Developing and Installing XA Applications

15-6 Oracle Database Advanced Application Developer's Guide

In general, the AP does not need to worry about the subroutines in Table 15–2 except
to understand the role played by the xa_open string.

Oracle XA Interface Extensions
Oracle Database's XA interface includes some additional functions, which are
described in Table 15–3.

Developing and Installing XA Applications
This section explains how to develop and install Oracle XA applications:

■ DBA or System Administrator Responsibilities

■ Application Developer Responsibilities

■ Defining the xa_open String

■ Developing and Installing XA Applications

■ Managing Transaction Control with Oracle XA

■ Migrating Precompiler or OCI Applications to TPM Applications

■ Managing Oracle XA Library Thread Safety

xa_recover Retrieves a list of prepared, heuristically committed, or heuristically rolled
back transactions.

xa_forget Forgets the heuristically completed transaction associated with the given
XID.

Table 15–3 Additional Functions in the XA Interface for Oracle Database

Function Description

OCISvcCtx *xaoSvcCtx(text *dbname) Returns the OCI service handle for a given XA
connection. The dbname parameter must be the same as
the DB parameter passed in the xa_open string. OCI
applications can use this routing instead of the sqlld2
calls to obtain the connection handle. Hence, OCI
applications need not link with the sqllib library. The
service handle can be converted to the Version 7 OCI
logon data area (LDA) by using OCISvcCtxToLda
[Version 8 OCI]. Client applications must remember to
convert the Version 7 LDA to a service handle by using
OCILdaToSvcCtx after completing the OCI calls.

OCIEnv *xaoEnv(text *dbname) Returns the OCI environment handle for a given XA
connection. The dbname parameter must be the same as
the DB parameter passed in the xa_open string.

int xaosterr(OCISvcCtx *SvcCtx,sb4 error) Converts an Oracle Database error code to an XA error
code (only applicable to dynamic registration). The first
parameter is the service handle used to execute the work
in the database. The second parameter is the error code
that was returned from Oracle Database. Use this
function to determine if the error returned from an OCI
statement was caused because the xa_start failed. The
function returns XA_OK if the error was not generated
by the XA module or a valid XA error if the error was
generated by the XA module.

Table 15–2 (Cont.) XA Library Subroutines

XA Subroutine Description

Developing and Installing XA Applications

Developing Applications with Oracle XA 15-7

■ Using the DBMS_XA Package

DBA or System Administrator Responsibilities
The responsibilities of the DBA or system administrator are as follows:

1. Define the open string, with help from the application developer. This task is
described in "Defining the xa_open String" on page 15-8.

2. Ensure that the static data dictionary view DBA_PENDING_TRANSACTIONS exists
and grant the SELECT privilege to the view for all Oracle users specified in the
xa_open string.

Grant FORCE TRANSACTION privilege to the Oracle user who might commit or roll
back pending (in-doubt) transactions that he or she created, using the command
COMMIT FORCE local_tran_id or ROLLBACK FORCE local_tran_id.

Grant FORCE ANY TRANSACTION privilege to the Oracle user who might commit
or roll back XA transactions created by other users. For example, if user A might
commit or roll back a transaction that was created by user B, user A must have
FORCE ANY TRANSACTION privilege.

In Oracle Database version 7 client applications, all Oracle Database accounts used
by Oracle XA library must have the SELECT privilege on the dynamic
performance view V$XATRANS$. This view must have been created during the XA
library installation. If necessary, you can manually create the view by running the
SQL script xaview.sql as Oracle Database user SYS.

3. Using the open string information, install the RM into the TPM configuration.
Follow the TPM vendor instructions.

The DBA or system administrator must be aware that a TPM system starts the
process that connects to Oracle Database. See your TPM documentation to
determine what environment exists for the process and what user ID it will have.
Be sure that correct values are set for $ORACLE_HOME and $ORACLE_SID in this
environment.

4. Grant the user ID write permission to the directory in which the system will write
the XA trace file.

5. Start the relevant database instances to bring Oracle XA applications on-line.
Perform this task before starting any TPM servers.

Application Developer Responsibilities
The responsibilities of the application developer are as follows:

1. Define the open string with help from the DBA or system administrator, as
explained in "Defining the xa_open String" on page 15-8.

2. Develop the applications.

See Also: Your Oracle Database platform-specific documentation for
the location of the catxpend.sql script

See Also: "Defining the xa_open String" on page 15-8 for
information on how to specify an Oracle System Identifier (SID) or a
trace directory that is different from the defaults

Developing and Installing XA Applications

15-8 Oracle Database Advanced Application Developer's Guide

Observe special restrictions on transaction-oriented SQL statements for
precompilers.

3. Link the application according to TPM vendor instructions.

Defining the xa_open String
The open string is used by the transaction monitor to open the database. The
maximum number of characters in an open string is 256.

Topics:

■ Syntax of the xa_open String

■ Required Fields for the xa_open String

■ Optional Fields for the xa_open String

Syntax of the xa_open String
You can define an open string with the syntax shown in Example 15–1.

Example 15–1 xa_open String

ORACLE_XA{+required_fields...} [+optional_fields...]

The following strings shows sample parameter settings:

ORACLE_XA+DB=MANAGERS+SqlNet=SID1+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+DB=PAYROLL+SqlNet=SID2+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+SqlNet=SID3+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/xalog

The following sections describe valid parameters for the required_fields and
optional_fields placeholders.

Required Fields for the xa_open String
The required_fields placeholder in Example 15–1 refers to any of the following
name-value pairs described in Table 15–4.

See Also: "Developing and Installing XA Applications" on page 15-6

Note:

■ You can enter the required fields and optional fields in any order
when constructing the open string.

■ All field names are case insensitive. Their values might or might
not be case-sensitive depending on the platform.

■ There is no way to use the plus character (+) as part of the actual
information string.

Developing and Installing XA Applications

Developing Applications with Oracle XA 15-9

Optional Fields for the xa_open String
The optional_fields placeholder in Example 15–1 refers to any of the following
name-value pairs described in Table 15–5.

Table 15–4 Required Fields of xa_open string

Syntax Element Description

Acc=P// Specifies that no explicit user or password information is
provided and that the operating system authentication form
is used. For more information see Oracle Database
Administrator's Guide.

Acc=P/user/password Specifies the username and password for a valid Oracle
Database account. For example, Acc=P/hr/hr indicates
that the user is hr and the password is hr. As described in
"DBA or System Administrator Responsibilities" on
page 15-7, ensure that hr has the SELECT privilege on the
DBA_PENDING_TRANSACTIONS table.

SesTm=session_time_limit Specifies the maximum number of seconds allowed in a
transaction between one service and the next, or between a
service and the commit or rollback of the transaction, before
the system aborts the transaction. For example, SesTM=15
indicates that the session idle time limit is 15 seconds.

For example, if the TPM uses remote subprogram calls
between the client and the servers, then SesTM applies to
the time between the completion of one RPC and the
initiation of the next RPC, or the tx_commit, or the tx_
rollback.

The value of 0 indicates no limit. Entering a value of 0 is
strongly discouraged. It might tie up resources for a long
time if something goes wrong. Also, if a child process has
SesTM=0, then the SesTM setting is not effective after the
parent process is terminated.

Table 15–5 Optional Fields in the xa_open String

Syntax Element Description

NoLocal= true | false Specifies whether local transactions are allowed. The default
value is false. If the application needs to disallow local
transactions, then set the value to true.

Developing and Installing XA Applications

15-10 Oracle Database Advanced Application Developer's Guide

DB=db_name Specifies the name used by Oracle Database precompilers to
identify the database. For example, DB=payroll specifies that
the database name is payroll and that the application server
program uses that name in AT clauses.

Application programs that use only the default database for the
Oracle Database precompiler (that is, they do not use the AT
clause in their SQL statements) must omit the DB=db_name
clause in the open string. Applications that use explicitly named
databases must indicate that database name in their DB=db_
name field. Oracle Database Version 7 OCI programs need to call
the sqlld2 function to obtain the correct context for logon data
area (Lda_Def), which is the equivalent of an OCI service
context. Version 8 and higher OCI programs need to call the
xaoSvcCtx function to get the OCISvcCtx service context.

The db_name is not the sid and is not used to locate the
database to be opened. Rather, it correlates the database opened
by this open string with the name used in the application
program to execute SQL statements. The sid is set from either
the environment variable ORACLE_SID of the TPM application
server or the sid given in the Oracle Net clause in the open
string. The Oracle Net clause is described later in this section.

Some TPM vendors provide a way to name a group of servers
that use the same open string. You might find it convenient to
choose the same name both for that purpose and for db_name.

LogDir=log_dir Specifies the path name on the local system where the Oracle XA
library error and tracing information is tomust be logged. The
default is $ORACLE_HOME/rdbms/log if ORACLE_HOME is set;
otherwise, it specifies the current directory. For example,
LogDir=/xa_trace indicates that the logging information is
located under the /xa_trace directory. Ensure that the
directory exists and the application server can write to it.

Objects= true | false Specifies whether the application is initialized in object mode.
The default value is false. If the application needs to use certain
API calls that require object mode, such as
OCIRawAssignBytes, then set the value to true.

MaxCur=maximum_#_of_
open_cursors

Specifies the number of cursors to be allocated when the
database is opened. It serves the same purpose as the
precompiler option maxopencursors. For example, MaxCur=5
indicates that the precompiler tries to keep five open cursors
cached. This parameter overrides the precompiler option
maxopencursors that you might have specified in your source
code or at compile time.

SqlNet=db_link Specifies the Oracle Net database link to use to log on to the
system. This string must be an entry in tnsnames.ora. For
example, the string SqlNet=inst1_disp might connect to a
shared server at instance 1 if so defined in tnsnames.ora.

You can use the SqlNet parameter to specify the ORACLE_SID
in cases where you cannot control the server environment
variable. You must also use it when the server needs to access
more than one Oracle Database instance. To use the Oracle Net
string without actually accessing a remote database, use the Pipe
driver. For example, specify SqlNet=localsid1, where
localsid1 is an alias defined in the tnsnames.ora file.

Table 15–5 (Cont.) Optional Fields in the xa_open String

Syntax Element Description

Developing and Installing XA Applications

Developing Applications with Oracle XA 15-11

Using Oracle XA with Precompilers
When used in an Oracle XA application, cursors are valid only for the duration of the
transaction. Explicit cursors must be opened after the transaction begins, and closed
before the commit or rollback.

You have the following options when interfacing with precompilers:

■ Using Precompilers with the Default Database

■ Using Precompilers with a Named Database

The following examples use the precompiler Pro*C/C++.

Using Precompilers with the Default Database
To interface to a precompiler with the default database, make certain that the DB=db_
name field used in the open string is not present. The absence of this field indicates the
default connection. Only one default connection is allowed for each process.

The following is an example of an open string identifying a default Pro*C/C++
connection.

ORACLE_XA+SqlNet=maildb+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/logs

The DB=db_name is absent, indicating an empty database ID string.

The syntax of a SQL statement is:

EXEC SQL UPDATE Emp_tab SET Sal = Sal*1.5;

Using Precompilers with a Named Database
To interface to a precompiler with a named database, include the DB=db_name field in
the open string. Any database you refer to must reference the same db_name you
specified in the corresponding open string.

An application might include the default database as well as one or more named
databases. For example, suppose you want to update an employee's salary in one
database, his department number (DEPTNO) in another, and his manager in a third
database. Configure the following open strings in the transaction manager:

Loose_Coupling=true |
false

Specifies whether locks are shared. Oracle Database transaction
branches within the same global transaction can be coupled
tightly or loosely. If branches are loosely coupled, then they do
not share locks. Set the value to true for loosely coupled
branches. If branches are tightly coupled, then they share locks.
Set the value to false for tightly coupled branches. The default
value is false.

SesWt=session_wait_
limit

Specifies the number of seconds Oracle Database waits for a
transaction branch that is being used by another session before
XA_RETRY is returned. The default value is 60 seconds.

Threads=true | false Specifies whether the application is multithreaded. The default
value is false. If the application is multithreaded, then the
setting is true.

Table 15–5 (Cont.) Optional Fields in the xa_open String

Syntax Element Description

Developing and Installing XA Applications

15-12 Oracle Database Advanced Application Developer's Guide

Example 15–2 Sample Open String Configuration

ORACLE_XA+DB=MANAGERS+SqlNet=SID1+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+DB=PAYROLL+SqlNet=SID2+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+SqlNet=SID3+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/xalog

There is no DB=db_name field in the last open string in Example 15–2.

In the application server program, enter declarations such as:

EXEC SQL DECLARE PAYROLL DATABASE;
EXEC SQL DECLARE MANAGERS DATABASE;

Again, the default connection (corresponding to the third open string that does not
contain the DB field) needs no declaration.

When doing the update, enter statements similar to the following:

EXEC SQL AT PAYROLL UPDATE Emp_Tab SET Sal=4500 WHERE Empno=7788;
EXEC SQL AT MANAGERS UPDATE Emp_Tab SET Mgr=7566 WHERE Empno=7788;
EXEC SQL UPDATE Emp_Tab SET Deptno=30 WHERE Empno=7788;

There is no AT clause in the last statement because it is referring to the default
database.

In Oracle Database precompilers release 1.5.3 or later, you can use a character host
variable in the AT clause, as the following example shows:

EXEC SQL BEGIN DECLARE SECTION;
 DB_NAME1 CHARACTER(10);
 DB_NAME2 CHARACTER(10);
EXEC SQL END DECLARE SECTION;
 ...
SET DB_NAME1 = 'PAYROLL'
SET DB_NAME2 = 'MANAGERS'
 ...
EXEC SQL AT :DB_NAME1 UPDATE...
EXEC SQL AT :DB_NAME2 UPDATE...

Using Oracle XA with OCI
Oracle Call Interface applications that use the Oracle XA library must not call
OCISessionBegin to log on to the resource manager. Rather, the logon must be done
through the TPM. The applications can execute the function xaoSvcCtx to obtain the
service context structure when they need to access the resource manager.

In applications that need to pass the environment handle to OCI functions, you can
also call xaoEnv to find that handle.

Because an application server can have multiple concurrent open Oracle Database
resource managers, it must call the function xaoSvcCtx with the correct arguments to
obtain the correct service context.

Caution: Do not have XA applications create connections other than
those created through xa_open. Work performed on non-XA
connections is outside the global transaction and must be committed
separately.

Developing and Installing XA Applications

Developing Applications with Oracle XA 15-13

Managing Transaction Control with Oracle XA
When you use the XA library, transactions are not controlled by the SQL statements
that commit or roll back transactions. Rather, they are controlled by an API accepted
by the TM that starts and stops transactions. You call the API that is provided by the
transaction manager, including the TX interface listed in Table 15–6, but not the XA
Library Subroutines listed in Table 15–2.

The TMs typically control the transactions through the XA interface. This interface
includes the functions described in Table 15–2.

Most TPM applications use a client/server architecture in which an application client
requests services and an application server provides them. The examples shown in
"Examples of Precompiler Applications" on page 15-14 use such a client/server model.
A service is a logical unit of work, which in the case of Oracle Database as the resource
manager, comprises a set of SQL statements that perform a related unit of work.

For example, when a service named "credit" receives an account number and the
amount to be credited, it executes SQL statements to update information in certain
tables in the database. In addition, a service might request other services. For example,
a "transfer fund" service might request services from a "credit" and "debit" service.

Typically, application clients request services from the application servers to perform
tasks within a transaction. For some TPM systems, however, the application client
itself can offer its own local services. As shown in "Examples of Precompiler
Applications" on page 15-14, you can encode transaction control statements within
either the client or the server.

To have more than one process participating in the same transaction, the TPM
provides a communication API that enables transaction information to flow between
the participating processes. Examples of communications APIs include RPC,
pseudo-RPC functions, and send/receive functions.

Because the leading vendors support different communication functions, the examples
that follow use the communication pseudo-function tpm_service to generalize the
communications API.

X/Open includes several alternative methods for providing communication functions
in their preliminary specification. At least one of these alternatives is supported by
each of the leading TPM vendors.

See Also: Oracle Call Interface Programmer's Guide

Table 15–6 TX Interface Functions

TX Function Description

tx_open Logs into the resource manager(s)

tx_close Logs out of the resource manager(s)

tx_begin Starts a new transaction

tx_commit Commits a transaction

tx_rollback Rolls back the transaction

Developing and Installing XA Applications

15-14 Oracle Database Advanced Application Developer's Guide

Examples of Precompiler Applications
The following examples illustrate precompiler applications. Assume that the
application server has already logged onto the RMs system, in a TPM-specific manner.
Example 15–3 shows a transaction started by an application server.

Example 15–3 Transaction Started by an Application Server

/***** Client: *****/
tpm_service("ServiceName"); /*Request Service*/

/***** Server: *****/
ServiceName()
{
 <get service specific data>
 tx_begin(); /* Begin transaction boundary */
 EXEC SQL UPDATE ...;

 /* This application server temporarily becomes */
 /* a client and requests another service. */

 tpm_service("AnotherService");
 tx_commit(); /* Commit the transaction */
 <return service status back to the client>
}

Example 15–4 shows a transaction started by an application client.

Example 15–4 Transaction Started by an Application Client

/***** Client: *****/
tx_begin(); /* Begin transaction boundary */
tpm_service("Service1");
tpm_service("Service2");
tx_commit(); /* Commit the transaction */

/***** Server: *****/
Service1()
{
 <get service specific data>
 EXEC SQL UPDATE ...;
 <return service status back to the client>
}
Service2()
{
 <get service specific data>
 EXEC SQL UPDATE ...;
 ...
 <return service status back to client>
}

Migrating Precompiler or OCI Applications to TPM Applications
To migrate existing precompiler or OCI applications to a TPM application that uses the
Oracle XA library, you must do the following:

1. Reorganize the application into a framework of "services" so that application
clients request services from application servers. Some TPMs require the
application to use the tx_open and tx_close functions, whereas other TPMs do
the logon and logoff implicitly.

Developing and Installing XA Applications

Developing Applications with Oracle XA 15-15

If you do not specify the SqlNet parameter in your open string, then the
application uses the default Oracle Net driver. Thus, be sure that the application
server is brought up with the ORACLE_HOME and ORACLE_SID environment
variables properly defined. This is accomplished in a TPM-specific fashion. See
your TPM vendor documentation for instructions on how to accomplish this.

2. Ensure that the application replaces the regular connect and disconnect
statements. For example, replace the connect statements EXEC SQL CONNECT (for
precompilers) or OCISessionBegin, OCIServerAttach, and OCIEnvCreate
(for OCI) with tx_open. Replace the disconnect statements EXEC SQL
COMMIT/ROLLBACK WORK RELEASE (for precompilers) or
OCISessionEnd/OCIServerDetach (for OCI) with tx_close.

3. Ensure that the application replaces the regular commit or rollback statements for
any global transactions and begins the transaction explicitly.

For example, replace the COMMIT/ROLLBACK statements EXEC SQL
COMMIT/ROLLBACK WORK (for precompilers), or
OCITransCommit/OCITransRollback (for OCI) with tx_commit/tx_
rollback and start the transaction by calling tx_begin.

4. Ensure that the application resets the fetch state before ending a transaction. In
general, use release_cursor=no. Use release_cursor=yes only when you
are certain that a statement will execute only once.

Table 15–7 lists the TPM functions that replace regular Oracle Database statements
when migrating precompiler or OCI applications to TPM applications.

Managing Oracle XA Library Thread Safety
If you use a transaction monitor that supports threads, then the Oracle XA library
enables you to write applications that are thread-safe. Nevertheless, keep certain
issues in mind.

A thread of control (or thread) refers to the set of connections to resource managers. In
an nonthreaded system, each process is considered a thread of control because each
process has its own set of connections to RMs and maintains its own independent
resource manager table. In a threaded system, each thread has an autonomous set of
connections to RMs and each thread maintains a private RM table. This private table
must be allocated for each new thread and de-allocated when the thread terminates,
even if the termination is abnormal.

Note: The preceding is only true for global rather than local
transactions. Commit or roll back local transactions with the Oracle
API.

Table 15–7 TPM Replacement Statements

Regular Oracle Database Statements TPM Functions

CONNECTuser/password tx_open (possibly implicit)

implicit start of transaction tx_begin

SQL Service that executes the SQL

COMMIT tx_commit

ROLLBACK tx_rollback

disconnect tx_close (possibly implicit)

Developing and Installing XA Applications

15-16 Oracle Database Advanced Application Developer's Guide

Topics:

■ Specifying Threading in the Open String

■ Restrictions on Threading in Oracle XA

Specifying Threading in the Open String
The xa_open string provides the clause Threads=. You must specify this clause as
true to enable the use of threads by the TM. The default is false. In most cases, the
TM creates the threads; the application does not know when a new thread is created.
Therefore, it is advisable to allocate a service context on the stack within each service
that is written for a TM application. Before doing any Oracle Database-related calls in
that service, you must call the xaoSvcCtx function to retrieve the initialized OCI
service context. You can then use this context for OCI calls within the service.

Restrictions on Threading in Oracle XA
The following restrictions apply when using threads:

■ Any Pro* or OCI code that executes as part of the application server process on the
transaction monitor cannot be threaded unless the transaction monitor is explicitly
told when each new application thread is started. This is typically accomplished
by using a special C compiler provided by the TM vendor.

■ The Pro* statements EXEC SQL ALLOCATE and EXEC SQL USE are not supported.
Therefore, when threading is enabled, you cannot use embedded SQL statements
across non-XA connections.

■ If one thread in a process connects to Oracle Database through XA, then all other
threads in the process that connect to Oracle Database must also connect through
XA. You cannot connect through EXEC SQL CONNECT in one thread and through
xa_open in another thread.

Using the DBMS_XA Package
PL/SQL applications can use the Oracle XA library by means of the DBMS_XA
package, which is described in Oracle Database PL/SQL Packages and Types Reference.

In Example 15–5, one PL/SQL session starts a transaction but does not commit it, a
second session resumes the transaction, and a third session commits the transaction.

Example 15–5 Using the DBMS_XA Package

REM Session 1 starts a transaction and does some work.
CONNECT HR/password
SET SERVEROUTPUT ON
DECLARE
 rc PLS_INTEGER;
 oer PLS_INTEGER;
 xae EXCEPTION;
BEGIN
 rc := DBMS_XA.XA_START(DBMS_XA_XID(123), DBMS_XA.TMNOFLAGS);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();

Note: In Oracle Database, each thread that accesses the database
must have its own connection.

Developing and Installing XA Applications

Developing Applications with Oracle XA 15-17

 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, XA_START failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_START(new xid=123) OK');
 END IF;

 UPDATE employees SET salary=salary*1.1 WHERE employee_id = 100;
 rc := DBMS_XA.XA_END(DBMS_XA_XID(123), DBMS_XA.TMSUSPEND);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, XA_END failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_END(suspend xid=123) OK');
 END IF;

 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE
 ('XA error('||rc||') occurred, rolling back the transaction ...');
 rc := DBMS_XA.XA_END(DBMS_XA_XID(123), DBMS_XA.TMSUCCESS);
 rc := DBMS_XA.XA_ROLLBACK(DBMS_XA_XID(123));

 IF rc != DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('XA-'||rc||', ORA-' || oer ||
 ' XA_ROLLBACK does not return XA_OK');
 raise_application_error(-20001, 'ORA-'||oer||
 ' error in rolling back a failed transaction');
 END IF;

 raise_application_error(-20002, 'ORA-'||oer||
 ' error in transaction processing, transaction rolled back');
END;
/
SHOW ERRORS
DISCONNECT

REM Session 2 resumes the transaction and does some work.
CONNECT HR/password
SET SERVEROUTPUT ON
DECLARE
 rc PLS_INTEGER;
 oer PLS_INTEGER;
 s NUMBER;
 xae EXCEPTION;
BEGIN
 rc := DBMS_XA.XA_START(DBMS_XA_XID(123), DBMS_XA.TMRESUME);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, xa_start failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_START(resume xid=123) OK');
 END IF;

 SELECT salary INTO s FROM employees WHERE employee_id = 100;
 DBMS_OUTPUT.PUT_LINE('employee_id = 100, salary = ' || s);
 rc := DBMS_XA.XA_END(DBMS_XA_XID(123), DBMS_XA.TMSUCCESS);

 IF rc!=DBMS_XA.XA_OK THEN

Developing and Installing XA Applications

15-18 Oracle Database Advanced Application Developer's Guide

 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, XA_END failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_END(detach xid=123) OK');
 END IF;

 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE
 ('XA error('||rc||') occurred, rolling back the transaction ...');
 rc := DBMS_XA.XA_END(DBMS_XA_XID(123), DBMS_XA.TMSUCCESS);
 rc := DBMS_XA.XA_ROLLBACK(DBMS_XA_XID(123));

 IF rc != DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('XA-'||rc||', ORA-' || oer ||
 ' XA_ROLLBACK does not return XA_OK');
 raise_application_error(-20001, 'ORA-'||oer||
 ' error in rolling back a failed transaction');
 END IF;

 raise_application_error(-20002, 'ORA-'||oer||
 ' error in transaction processing, transaction rolled back');
END;
/
SHOW ERRORS
DISCONNECT

REM Session 3 commits the transaction.
CONNECT HR/password
SET SERVEROUTPUT ON
DECLARE
 rc PLS_INTEGER;
 oer PLS_INTEGER;
 xae EXCEPTION;
BEGIN
 rc := DBMS_XA.XA_COMMIT(DBMS_XA_XID(123), TRUE);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, XA_COMMIT failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_COMMIT(commit xid=123) OK');
 END IF;

 EXCEPTION
 WHEN xae THEN
 DBMS_OUTPUT.PUT_LINE
 ('XA error('||rc||') occurred, rolling back the transaction ...');
 rc := DBMS_XA.XA_ROLLBACK(DBMS_XA_XID(123));

 IF rc != DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('XA-'||rc||', ORA-' || oer ||
 ' XA_ROLLBACK does not return XA_OK');
 raise_application_error(-20001, 'ORA-'||oer||
 ' error in rolling back a failed transaction');
 END IF;

 raise_application_error(-20002, 'ORA-'||oer||

Troubleshooting XA Applications

Developing Applications with Oracle XA 15-19

 ' error in transaction processing, transaction rolled back');
END;
/
SHOW ERRORS
DISCONNECT
QUIT

Troubleshooting XA Applications
Topics:

■ Accessing Oracle XA Trace Files

■ Managing In-Doubt or Pending Oracle XA Transactions

■ Using SYS Account Tables to Monitor Oracle XA Transactions

Accessing Oracle XA Trace Files
The Oracle XA library logs any error and tracing information to its trace file. This
information is useful in supplementing the XA error codes. For example, it can
indicate whether an xa_open failure is caused by an incorrect open string, failure to
find the Oracle Database instance, or a logon authorization failure.

The name of the trace file is xa_db_namedate.trc, where db_name is the database
name specified in the open string field DB=db_name, and date is the date when the
information is logged to the trace file. If you do not specify DB=db_name in the open
string, then it automatically defaults to NULL.

For example, xa_NULL06022005.trc indicates a trace file that was created on June 2,
2005. Its DB field was not specified in the open string when the resource manager was
opened. The filename xa_Finance12152004.trc indicates a trace file was created
on December 15, 2004. Its DB field was specified as "Finance" in the open string when
the resource manager was opened.

Suppose that a trace file contains the following contents:

1032.12345.2: ORA-01017: invalid username/password; logon denied
1032.12345.2: xaolgn: XAER_INVAL; logon denied

Table 15–8 explains the meaning of each element.

Note: Multiple Oracle XA library resource managers with the same
DB field and LogDir field in their open strings log all trace
information that occurs on the same day to the same trace file.

Table 15–8 Sample Trace File Contents

String Description

1032 The time when the information is logged.

12345 The process ID (PID).

2 The resource manager ID.

xaolgn The name of the module.

XAER_INVAL The error returned as specified in the XA standard.

ORA-01017 The Oracle Database information that was returned.

Troubleshooting XA Applications

15-20 Oracle Database Advanced Application Developer's Guide

Topics:

■ xa_open String DbgFl

■ Trace File Locations

xa_open String DbgFl
Normally, the XA trace file is opened only if an error is detected. The xa_open string
DbgFl provides a tracing facility to record additional detail about the XA library. By
default, its value is zero. You can set it to any combination of the following values:

■ 0x1, which enables you to trace the entry and exit to each subprogram in the XA
interface. This value can be useful in seeing exactly which XA calls the TP Monitor
is making and which transaction identifier it is generating.

■ 0x2, which enables you to trace the entry to and exit from other nonpublic XA
library routines. This is generally of use only to Oracle Database developers.

■ 0x4, which enables you to trace various other "interesting" calls made by the XA
library, such as specific calls to the OCI. This is generally of use only to Oracle
Database developers.

Trace File Locations
The XA application determines a location for the trace file according to the following
algorithm:

1. The LogDir directory specified in the open string.

2. If you do not specify LogDir in the open string, then the Oracle XA application
attempts to create the trace file in the following directory (if the Oracle home is
accessible):

■ %ORACLE_HOME%\rdbms\trace on Windows

■ $ORACLE_HOME/rdbms/log on Linux and UNIX

3. If the Oracle XA application cannot determine where the Oracle home is located,
then the application creates the trace file in the current working directory.

Managing In-Doubt or Pending Oracle XA Transactions
In-doubt or pending transactions are transactions that were prepared but not
committed to the database. In general, the TM provided by the TPM system resolves
any failure and recovery of in-doubt or pending transactions. The DBA might have to
override an in-doubt transaction if the following situations occur:

■ It is locking data that is required by other transactions.

■ It is not resolved in a reasonable amount of time.

See the TPM documentation for more information about overriding in-doubt
transactions in such circumstances and about how to decide whether to commit or roll
back the in-doubt transaction.

Note: The flags are independent bits of an ub4, so to obtain printout
from two or more flags, you must set a combined value of the flags.

Oracle XA Issues and Restrictions

Developing Applications with Oracle XA 15-21

Using SYS Account Tables to Monitor Oracle XA Transactions
The following views under the Oracle Database SYS account contain transactions
generated by regular Oracle Database applications and Oracle XA applications:

■ DBA_PENDING_TRANSACTIONS

■ V$GLOBAL_TRANSACTION

■ DBA_2PC_PENDING

■ DBA_2PC_NEIGHBORS

For transactions generated by Oracle XA applications, the following column
information applies specifically to the DBA_2PC_NEIGHBORS table:

■ The DBID column is always xa_orcl

■ The DBUSER_OWNER column is always db_namexa.oracle.com

Remember that the db_name is always specified as DB=db_name in the open string. If
you do not specify this field in the open string, then the value of this column is
NULLxa.oracle.com for transactions generated by Oracle XA applications.

For example, the following SQL statement provide more information about in-doubt
transactions generated by Oracle XA applications:

SELECT *
FROM DBA_2PC_PENDING p, DBA_2PC_NEIGHBORS n
WHERE p.LOCAL_TRAN_ID = n.LOCAL_TRAN_ID
AND n.DBID = 'xa_orcl';

Alternatively, if you know the format ID used by the transaction processing monitor,
then you can use DBA_PENDING_TRANSACTIONS or V$GLOBAL_TRANSACTION.
Whereas DBA_PENDING_TRANSACTIONS gives a list of prepared transactions,
V$GLOBAL_TRANSACTION provides a list of all active global transactions.

Oracle XA Issues and Restrictions
This section contains the following topics:

■ Using Database Links in Oracle XA Applications

■ Managing Transaction Branches in Oracle XA Applications

■ Using Oracle XA with Oracle Real Application Clusters (Oracle RAC)

■ SQL-Based Oracle XA Restrictions

■ Miscellaneous Restrictions

Using Database Links in Oracle XA Applications
Oracle XA applications can access other Oracle Database instances through database
links with the following restrictions:

■ They must use the shared server configuration.

The transaction processing monitors (TPMs) use shared servers to open the
connection to an Oracle Database A. Then the operating system network
connection required for the database link is opened by the dispatcher instead of a
dedicated server process. This allows different services or threads to operate on
the transaction.

Oracle XA Issues and Restrictions

15-22 Oracle Database Advanced Application Developer's Guide

If this restriction is not satisfied, then when you use database links within an XA
transaction, it creates an operating system network connection between the
dedicated server process and the other Oracle Database B. Because this network
connection cannot be moved from one dedicated server process to another, you
cannot detach from this dedicated server process of database A. Then when you
access the database B through a database link, you receive an ORA-24777 error.

■ The other database being accessed must be another Oracle Database.

Assuming that these restrictions are satisfied, Oracle Database allows such links and
propagates the transaction protocol (prepare, rollback, and commit) to the other Oracle
Database instances.

If using the shared server configuration is not possible, then access the remote
database through the Pro*C/C++ application by using EXEC SQL AT syntax.

The init.ora parameter OPEN_LINKS_PER_INSTANCE specifies the number of
open database link connections that can be migrated. These dblink connections are
used by XA transactions so that the connections are cached after a transaction is
committed. Another transaction is free to use the database link connection provided
the user that created the connection is the same as the user who created the
transaction. This parameter is different from the init.ora parameter OPEN_LINKS,
which specifies the maximum number of concurrent open connections (including
database links) to remote databases in one session. The OPEN_LINKS parameter does
not apply to XA applications.

Managing Transaction Branches in Oracle XA Applications
Oracle Database transaction branches within the same global transaction can be
coupled tightly or loosely. If the transaction branches are tightly coupled, then they
share locks. Consequently, pre-COMMIT updates in one transaction branch are visible in
other branches that belong to the same global transaction. In loosely coupled
transaction branches, the branches do not share locks and do not see updates in other
branches.

In a tightly coupled branch, Oracle Database obtains the DX lock before executing any
statement. Because the system does not obtain a lock before executing the statement,
loosely coupled transaction branches result in greater concurrency. The disadvantage
is that all transaction branches must go through the two phases of commit, that is, the
system cannot use XA one-phase optimization.

Table 15–9 summarizes the trade-offs between tightly coupled branches and loosely
coupled branches.

Using Oracle XA with Oracle Real Application Clusters (Oracle RAC)
As of Release 11.1, an XA transaction can span Oracle RAC instances, allowing any
application that uses XA to take full advantage of the Oracle RAC environment,
enhancing the availability and scalability of the application.

Table 15–9 Tightly and Loosely Coupled Transaction Branches

Attribute Tightly Coupled Branches Loosely Coupled Branches

Two Phase Commit Read-only optimization

[prepare for all branches, commit
for last branch]

Two phases

[prepare and commit for all
branches]

Serialization Database call None

Oracle XA Issues and Restrictions

Developing Applications with Oracle XA 15-23

GLOBAL_TXN_PROCESSES Initialization Parameter
The initialization parameter GLOBAL_TXN_PROCESSES specifies the initial number of
GTXn background processes for each Oracle RAC instance. Its default value is 1.

Leave this parameter at its default value cluster-wide if distributed transactions might
span more than one Oracle RAC instance. This allows the units of work performed
across these Oracle RAC instances to share resources and act as a single transaction
(that is, the units of work are tightly coupled). It also allows 2PC requests to be sent to
any node in the cluster.

Managing Transaction Branches on Oracle RAC
Oracle Database permits different instances to operate on different transaction
branches in Oracle RAC. For example, Node 1 can operate on branch A while Node 2
operates on branch B. Before Release 11.1, if transaction branches were on different
instances, then they were loosely coupled and did not share locks. In this case, Oracle
Database treated different units of work in different application threads as separate
entities that did not share resources.

A different case is when multiple instances operate on a single transaction branch. For
example, assume that a single transaction lands on Node 1 and Node 2 as follows:

Node 1
1. xa_start

2. SQL operations

3. xa_end (SUSPEND)

Node 2
1. xa_start (RESUME)

2. xa_prepare

3. xa_commit

4. xa_end

In the immediately preceding sequence, Oracle Database returns an error because
Node 2 must not resume a branch that is physically located on a different node (Node
1).

See Also: Oracle Database Reference for more information about
GLOBAL_TXN_PROCESSES.

Note: If you leave the initialization parameter GLOBAL_TXN_
PROCESSES at its default setting in the initialization file of every
Oracle RAC instance, you do not need to read the following topics,
which apply only to the Distributed Transaction Processing (DTP)
services introduced in release 10.2:

■ Managing Transaction Branches on Oracle RAC

■ Managing Instance Recovery in Oracle RAC with DTP Services
(10.2)

■ Global Uniqueness of XIDs in Oracle RAC

■ Tight and Loose Coupling

Oracle XA Issues and Restrictions

15-24 Oracle Database Advanced Application Developer's Guide

Before Release 11.1, the way to achieve tight coupling in Oracle RAC was to use
Distributed Transaction Processing (DTP) services, that is, services whose cardinality
(one) ensured that all tightly-coupled branches landed on the same instance—whether
or not load balancing was enabled. Middle-tier components addressed Oracle
Database through a common logical database service name that mapped to a single
Oracle RAC instance at any point in time. An intermediate name resolver for the
database service hid the physical characteristics of the database instance. DTP services
enabled all participants of a tightly-coupled global transaction to create branches on
one instance.

As of Release 11.1, the DTP service is no longer required to support XA transactions
with tightly coupled branches. By default, tightly coupled branches that land on
different RAC instances remain tightly coupled; that is, they share locks and resources
across RAC instances.

For example, when you use a DTP service, the following sequence of actions occurs on
the same instance:

1. xa_start

2. SQL operations

3. xa_end (SUSPEND)

4. xa_start (RESUME)

5. SQL operations

6. xa_prepare

7. xa_commit or xa_rollback

Moreover, multiple tightly-coupled branches land on the same instance if each
addresses the Oracle RM with the same DTP service.

To leverage all instances in the cluster, create multiple DTP services, with one or more
on each node that hosts distributed transactions. All branches of a global distributed
transaction exist on the same instance. Thus, you can leverage all instances and nodes
of an Oracle RAC cluster to balance the load of many distributed XA transactions,
thereby maximizing application throughput.

Managing Instance Recovery in Oracle RAC with DTP Services (10.2)
Prior to Oracle Database 10g Release 2 (10.2), TM was responsible for detecting failure
and triggering failover and failback in Oracle RAC. To ensure that information about
in-doubt transactions was propagated to DBA_2PC_PENDING, TM had to call xa_
recover before resolving the in-doubt transactions. If an instance failed, then the XA
client library could not fail over to another instance until it had run the
SYS.DBMS_XA.DIST_TXN_SYNC procedure to ensure that the undo segments of the
failed instance were recovered. As of Release 10.2, there is no such requirement to call
xa_recover in cases where the TM has enough information about in-flight
transactions.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide to learn how to manage distributed transactions in a
Real Application Clusters configuration.

Note: In releases subsequent to Oracle Database 9i Release 2, xa_
recover is required to wait for distributed DML to complete on
remote sites.

Oracle XA Issues and Restrictions

Developing Applications with Oracle XA 15-25

Using DTP services in Oracle RAC has the following benefits:

■ Automates instance failure detection.

■ Automates instance failover and failback. When an instance fails, the DTP service
hosted on this instance fails over to another instance. The failover forces clients to
reconnect; nevertheless, the logical names for the service remain the same. Failover
is automatic and does not require an administrator intervention. The administrator
can induce failback by a service relocate statement, but all failback-related
recovery is automatically handled within the database server.

■ Enables Oracle Database rather than the client to drive instance recovery. The
database does not require middle-tier TM involvement to determine the state of
transactions prepared by other instances.

Global Uniqueness of XIDs in Oracle RAC
Before Release 11.1, Oracle RAC database cannot determine whether a given XID is
unique for XA transactions throughout the cluster.

For example, suppose that there is an XID Fmt(x).Tx(1).Br(1) on Oracle RAC
instance 1 and another XID Fmt(x).Tx(1).Br(1) on Oracle RAC instance 2. Each of
these can start a branch and execute SQL even though the XID is not unique across
Oracle RAC instances.

As of Release 11.1, Oracle RAC database detects the duplicate XIDs across RAC
instances and prevents a branch with a duplicate XID from starting.

Tight and Loose Coupling
Oracle Database transaction branches within the same global transaction can be
coupled either tightly or loosely (for details, see "Managing Transaction Branches in
Oracle XA Applications" on page 15-22). Ordinarily, coupling type is determined by
the value of the Loose_Coupling field of the xa_open string (see Table 15–5 on
page 15-9). However, if branches are landed on different Oracle RAC instances when
running Oracle Real Application Clusters, they are loosely coupled even if Loose_
Coupling=false.

SQL-Based Oracle XA Restrictions
This section describes restrictions concerning the following SQL operations:

■ Rollbacks and Commits

■ DDL Statements

■ Session State

■ EXEC SQL

Rollbacks and Commits
Because the transaction manager is responsible for coordinating and monitoring the
progress of the global transaction, the application must not contain any Oracle
Database-specific statement that independently rolls back or commits a global
transaction. However, you can use rollbacks and commits in a local transaction.

Do not use EXEC SQL ROLLBACK WORK for precompiler applications when you are in
the middle of a global transaction. Similarly, an OCI application must not execute

See Also: Oracle Real Application Clusters Administration and
Deployment Guide to learn how to manage instance recovery

Oracle XA Issues and Restrictions

15-26 Oracle Database Advanced Application Developer's Guide

OCITransRollback, or the Version 7 equivalent orol. You can roll back a global
transaction by calling tx_rollback.

Similarly, a precompiler application must not have the EXEC SQL COMMIT WORK
statement in the middle of a global transaction. An OCI application must not execute
OCITransCommit or the Version 7 equivalent ocom. For example, use tx_commit or
tx_rollback to end a global transaction.

DDL Statements
Because a DDL SQL statement, such as CREATE TABLE, implies an implicit commit,
the Oracle XA application cannot execute any DDL SQL statements.

Session State
Oracle Database does not guarantee that session state will be valid between TPM
services. For example, if a TPM service updates a session variable (such as a global
package variable), then another TPM service that executes as part of the same global
transaction might not see the change. Use savepoints only within a TPM service. The
application must not refer to a savepoint that was created in another TPM service.
Similarly, an application must not attempt to fetch from a cursor that was executed in
another TPM service.

EXEC SQL
Do not use the EXEC SQL statement to connect or disconnect. That is, do not use EXEC
SQL CONNECT, EXEC SQL COMMIT WORK RELEASE or EXEC SQL ROLLBACK WORK
RELEASE.

Miscellaneous Restrictions
■ Oracle Database does not support association migration (a means whereby a

transaction manager might resume a suspended branch association in another
branch).

■ The optional XA feature asynchronous XA calls is not supported.

■ Set the TRANSACTIONS initialization parameter to the expected number of
concurrent global transactions. The initialization parameter OPEN_LINKS_PER_
INSTANCE specifies the number of open database link connections that can be
migrated. These database link connections are used by XA transactions so that the
connections are cached after a transaction is committed.

■ The maximum number of xa_open calls for each thread is 32.

■ When building an XA application based on TP-monitor, ensure that the
TP-monitors libraries (that define the symbols ax_reg and ax_unreg) are placed
in the link line before Oracle Database's client shared library. If your platform does
not support shared libraries or if your linker is not sensitive to ordering of libraries
in the link line, use Oracle Database's nonshared client library. These link
restrictions are applicable only when using XA's dynamic registration (Oracle XA
switch xaoswd).

See Also: "Using Database Links in Oracle XA Applications" on
page 15-21

Developing Applications on the Publish-Subscribe Model 16-1

16
Developing Applications on the

Publish-Subscribe Model

This chapter explains how to develop applications on the publish-subscribe model.

Topics:

■ Introduction to the Publish-Subscribe Model

■ Publish-Subscribe Architecture

■ Publish-Subscribe Concepts

■ Examples of a Publish-Subscribe Mechanism

Introduction to the Publish-Subscribe Model
Because the database is the most significant resource of information within the
enterprise, Oracle created a publish-subscribe solution for enterprise information
delivery and messaging to complement this role.

Networking technologies and products enable a high degree of connectivity across a
large number of computers, applications, and users. In these environments, it is
important to provide asynchronous communications for the class of distributed
systems that operate in a loosely-coupled and autonomous fashion, and which require
operational immunity from network failures. This requirement is filled by various
middleware products that are characterized as messaging, message-oriented
middleware (MOM), message queuing, or publish-subscribe.

Applications that communicate through a publish and subscribe paradigm require the
sending applications (publishers) to publish messages without explicitly specifying
recipients or having knowledge of intended recipients. Similarly, receiving
applications (subscribers) must receive only those messages that the subscriber has
registered an interest in.

This decoupling between senders and recipients is usually accomplished by an
intervening entity between the publisher and the subscriber, which serves as a level of
indirection. This intervening entity is a queue that represents a subject or channel.
Figure 16–1 illustrates publish and subscribe functionality.

Publish-Subscribe Architecture

16-2 Oracle Database Advanced Application Developer's Guide

Figure 16–1 Oracle Publish-Subscribe Functionality

A subscriber subscribes to a queue by expressing interest in messages enqueued to
that queue and by using a subject- or content-based rule as a filter. This results in a set
of rule-based subscriptions associated with a given queue.

At run time, publishers post messages to various queues. The queue (in other words,
the delivery mechanisms of the underlying infrastructure) then delivers messages that
match the various subscriptions to the appropriate subscribers.

Publish-Subscribe Architecture
Oracle Database includes the following features to support database-enabled
publish-subscribe messaging:

■ Database Events

■ Oracle Advanced Queuing

■ Client Notification

Database Events
Database events support declarative definitions for publishing database events,
detection, and run-time publication of such events. This feature enables active
publication of information to end-users in an event-driven manner, to complement the
traditional pull-oriented approaches to accessing information.

Oracle Advanced Queuing
Oracle Advanced Queuing (AQ) supports a queue-based publish-subscribe paradigm.
Database queues serve as a durable store for messages, along with capabilities to allow
publish and subscribe based on queues. A rules-engine and subscription service
dynamically route messages to recipients based on expressed interest. This allows
decoupling of addressing between senders and receivers to complement the existing
explicit sender-receiver message addressing.

Client Notification
Client notifications support asynchronous delivery of messages to interested
subscribers. This enables database clients to register interest in certain queues, and it
enables these clients to receive notifications when publications on such queues occur.

See Also: Oracle Database PL/SQL Language Reference

See Also: Oracle Streams Advanced Queuing User's Guide

Subject, Channel Agent

Subscriber

Publisher

Agent

Subscriptions

Rules

Topic subscribe

register

receive notification/
message

Publish-Subscribe Concepts

Developing Applications on the Publish-Subscribe Model 16-3

Asynchronous delivery of messages to database clients is in contrast to the traditional
polling techniques used to retrieve information.

Publish-Subscribe Concepts

queue
A queue is an entity that supports the notion of named subjects of interest. Queues can
be characterized as persistent or nonpersistent (lightweight).

A persistent queue serves as a durable container for messages. Messages are delivered
in a deferred and reliable mode.

The underlying infrastructure of a nonpersistent, or lightweight, queue pushes the
messages published to connected clients in a lightweight, at-best-once, manner.

agent
Publishers and subscribers are internally represented as agents.

An agent is a persistent logical subscribing entity that expresses interest in a queue
through a subscription. An agent has properties, such as an associated subscription, an
address, and a delivery mode for messages. In this context, an agent is an electronic
proxy for a publisher or subscriber.

client
A client is a transient physical entity. The attributes of a client include the physical
process where the client programs run, the node name, and the client application logic.
Several clients can act on behalf of a single agent. The same client, if authorized, can
act on behalf of multiple agents.

rule on a queue
A rule on a queue is specified as a conditional expression using a predefined set of
operators on the message format attributes or on the message header attributes. Each
queue has an associated message content format that describes the structure of the
messages represented by that queue. The message format may be unstructured (RAW)
or it may have a well-defined structure (ADT). This allows both subject- or
content-based subscriptions.

subscriber
Subscribers (agents) may specify subscriptions on a queue using a rule. Subscribers are
durable and are stored in a catalog.

database event publication framework
The database represents a significant source for publishing information. An event
framework is proposed to allow declarative definition of database event publication.
As these pre-defined events occur, the framework detects and publishes such events.
This allows active delivery of information to end-users in an event-driven manner as
part of the publish-subscribe capability.

registration
Registration is the process of associated delivery information by a given client, acting
on behalf of an agent. There is an important distinction between the subscription and
registration related to the agent/client separation.

See Also: Oracle Call Interface Programmer's Guide

Publish-Subscribe Concepts

16-4 Oracle Database Advanced Application Developer's Guide

Subscription indicates an interest in a particular queue by an agent. It does not specify
where and how delivery must occur. Delivery information is a physical property that
is associated with a client, and it is a transient manifestation of the logical agent (the
subscriber). A specific client process acting on behalf of an agent registers delivery
information by associating a host and port, indicating where the delivery is to be done,
and a callback, indicating how there delivery is to be done.

publishing a message
Publishers publish messages to queues by using the appropriate queuing interfaces.
The interfaces may depend on which model the queue is implemented on. For
example, an enqueue call represents the publishing of a message.

rules engine
When a message is posted or published to a given queue, a rules engine extracts the
set of candidate rules from all rules defined on that queue that match the published
message.

subscription services
Corresponding to the list of candidate rules on a given queue, the set of subscribers
that match the candidate rules can be evaluated. In turn, the set of agents
corresponding to this subscription list can be determined and notified.

posting
The queue notifies all registered clients of the appropriate published messages. This
concept is called posting. When the queue needs to notify all interested clients, it posts
the message to all registered clients.

receiving a message
A subscriber may receive messages through any of the following mechanisms:

■ A client process acting on behalf of the subscriber specifies a callback using the
registration mechanism. The posting mechanism then asynchronously invokes the
callback when a message matches the subscriber's subscription. The message
content may be passed to the callback function (nonpersistent queues only).

■ A client process acting on behalf of the subscriber specifies a callback using the
registration mechanism. The posting mechanism then asynchronously invokes the
callback function, but without the full message content. This serves as a
notification to the client, which subsequently retrieves the message content in a
pull fashion (persistent queues only).

■ A client process acting on behalf of the subscriber simply retrieves messages from
the queue in a periodic, or some other appropriate, manner. While the messages
are deferred, there is no asynchronous delivery to the end-client.

Examples of a Publish-Subscribe Mechanism

Developing Applications on the Publish-Subscribe Model 16-5

Examples of a Publish-Subscribe Mechanism

Scenario: This example shows how database events, client notification, and AQ work
together to implement publish-subscribe.

■ Create under the user schema, pubsub, with all objects necessary to support a
publish-subscribe mechanism. In this particular code, the Agent snoop subscribe
to messages that are published at logon events. User pubsub needs AQ_
ADMINISTRATOR_ROLE privileges to use AQ functionality.

Rem --
REM create queue table for persistent multiple consumers:
Rem --

CONNECT pubsub/password;

Rem Create or replace a queue table
BEGIN
DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => 'Pubsub.Raw_msg_table',
 Multiple_consumers => TRUE,
 Queue_payload_type => 'RAW',
 Compatible => '8.1');
END;
/
Rem --
Rem Create a persistent queue for publishing messages:
Rem --

Rem Create a queue for logon events
begin
BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 Queue_name => 'Pubsub.Logon',
 Queue_table => 'Pubsub.Raw_msg_table',
 Comment => 'Q for error triggers');
END;
/

Rem --
Rem Start the queue:
Rem --

BEGIN
 DBMS_AQADM.START_QUEUE('pubsub.logon');
END;

Note: You may need to set up data structures, similar to the
following, for certain examples to work:

CONNECT SYSTEM/password
DROP USER pubsub CASCADE;
CREATE USER pubsub IDENTIFIED BY password;
GRANT CONNECT, RESOURCE TO pubsub;
GRANT EXECUTE ON DBMS_AQ to pubsub;
GRANT EXECUTE ON DBMS_AQADM to pubsub;
GRANT AQ_ADMINISTRATOR_ROLE TO pubsub;
CONNECT pubsub/password

Examples of a Publish-Subscribe Mechanism

16-6 Oracle Database Advanced Application Developer's Guide

/

Rem --
Rem define new_enqueue for convenience:
Rem --

CREATE OR REPLACE PROCEDURE New_enqueue(
 Queue_name IN VARCHAR2,
 Payload IN RAW ,
 Correlation IN VARCHAR2 := NULL,
 Exception_queue IN VARCHAR2 := NULL)
AS

Enq_ct DBMS_AQ.Enqueue_options_t;
Msg_prop DBMS_AQ.Message_properties_t;
Enq_msgid RAW(16);
Userdata RAW(1000);

BEGIN
 Msg_prop.Exception_queue := Exception_queue;
 Msg_prop.Correlation := Correlation;
 Userdata := Payload;

DBMS_AQ.ENQUEUE(Queue_name, Enq_ct, Msg_prop, Userdata, Enq_msgid);
END;
/

Rem --
Rem add subscriber with rule based on current user name,
Rem using correlation_id
Rem --

DECLARE
Subscriber Sys.Aq$_agent;
BEGIN
 Subscriber := sys.aq$_agent('SNOOP', NULL, NULL);
DBMS_AQADM.ADD_SUBSCRIBER(
 Queue_name => 'Pubsub.logon',
 Subscriber => subscriber,
 Rule => 'CORRID = ''SCOTT'' ');
END;
/

Rem --
Rem create a trigger on logon on database:
Rem --

Rem create trigger on after logon:
CREATE OR REPLACE TRIGGER pubsub.Systrig2
 AFTER LOGON
 ON DATABASE
 BEGIN
 New_enqueue('Pubsub.Logon', HEXTORAW('9999'), Dbms_standard.login_user);
 END;
/

■ After subscriptions are created, the next step is for the client to register for
notification using callback functions. This is done using the Oracle Call Interface

Examples of a Publish-Subscribe Mechanism

Developing Applications on the Publish-Subscribe Model 16-7

(OCI). The following code performs necessary steps for registration. The initial
steps of allocating and initializing session handles are omitted here for sake of
clarity.

ub4 namespace = OCI_SUBSCR_NAMESPACE_AQ;

/* callback function for notification of logon of user 'scott' on database: */

ub4 notifySnoop(ctx, subscrhp, pay, payl, desc, mode)
dvoid *ctx;
OCISubscription *subscrhp;
dvoid *pay;
ub4 payl;
dvoid *desc;
ub4 mode;
{
 printf("Notification : User Scott Logged on\n");
}

int main()
{
 OCISession *authp = (OCISession *) 0;
 OCISubscription *subscrhpSnoop = (OCISubscription *)0;

 /***
 Initialize OCI Process/Environment
 Initialize Server Contexts
 Connect to Server
 Set Service Context
 **/

 /* Registration Code Begins */

 /* Each call to initSubscriptionHn allocates
 and Initialises a Registration Handle */

 initSubscriptionHn(&subscrhpSnoop, /* subscription handle */
 "ADMIN:PUBSUB.SNOOP", /* subscription name */
 /* <agent_name>:<queue_name> */
 (dvoid*)notifySnoop); /* callback function */

 /***
 The Client Process does not need a live Session for Callbacks
 End Session and Detach from Server
 **/

 OCISessionEnd (svchp, errhp, authp, (ub4) OCI_DEFAULT);

 /* detach from server */
 OCIServerDetach(srvhp, errhp, OCI_DEFAULT);

 while (1) /* wait for callback */
 sleep(1);

}

void initSubscriptionHn (subscrhp,
subscriptionName,
func)

Examples of a Publish-Subscribe Mechanism

16-8 Oracle Database Advanced Application Developer's Guide

OCISubscription **subscrhp;
char* subscriptionName;
dvoid * func;
{

 /* allocate subscription handle: */

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)subscrhp,
 (ub4) OCI_HTYPE_SUBSCRIPTION,
 (size_t) 0, (dvoid **) 0);

 /* set subscription name in handle: */

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) subscriptionName,
 (ub4) strlen((char *)subscriptionName),
 (ub4) OCI_ATTR_SUBSCR_NAME, errhp);

 /* set callback function in handle: */

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) func, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) 0, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CTX, errhp);

 /* set namespace in handle: */

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &namespace, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

 checkerr(errhp, OCISubscriptionRegister(svchp, subscrhp, 1, errhp,

 OCI_DEFAULT));
}

If user SCOTT logs on to the database, the client is notified, and the call back function
notifySnoop is invoked.

Using the Identity Code Package 17-1

17
Using the Identity Code Package

The Identity Code Package is a feature in the Oracle Database that offers tools and
techniques to store, retrieve, encode, decode, and translate between various product or
identity codes, including Electronic Product Code (EPC), in an Oracle Database. The
Identity Code Package provides new data types, metadata tables and views, and
PL/SQL packages for storing EPC standard RFID tags or new types of RFID tags in a
user table.

The Identity Code Package empowers the Oracle Database with the knowledge to
recognize EPC coding schemes, support efficient storage and component level
retrieval of EPC data, and complies with the EPCglobal Tag Data Translation 1.0 (TDT)
standard that defines how to decode, encode, and translate between various EPC RFID
tag representations.

The Identity Code Package also provides an extensible framework that allows
developers to utilize pre-existing coding schemes with their applications that are not
included in the EPC standard and make the Oracle Database adaptable to these older
systems as well as to any evolving identity codes that may some day be part of a
future EPC standard.

The Identity Code Package also lets developers create their own identity codes by first
registering the new encoding category, registering the new encoding type, and then
registering the new components associated with each new encoding type.

Topics.

■ Identity Concepts

■ What is the Identity Code Package?

■ Using the Identity Code Package

■ Identity Code Package Types

■ DBMS_MGD_ID_UTL Package

■ Identity Code Metadata Tables and Views

■ Electronic Product Code (EPC) Concepts

■ Oracle Tag Data Translation Schema

Identity Concepts
A new database object MGD_ID is defined that lets users use EPC standard identity
codes as well as use their own existing identity codes. See "Electronic Product Code
(EPC) Concepts" on page 17-22 for a brief description of EPC concepts. The MGD_ID
object serves as the base code object to which belong certain categories, or types of the

Identity Concepts

17-2 Oracle Database Advanced Application Developer's Guide

RFID tag, such as the EPC category, NASA category, and many other categories. Each
category has a set of tag schemes or documents that define tag representation
structures and their components. For the EPC category, the metadata needed to define
encoding schemes (SGTIN-64, SGTIN-96, GID-96, and so forth) representing different
encoding types (defined in the EPC standard v1.1) is preloaded by default into the
database. Users can define encoding their own categories and schemes as shown in
Figure 17–1 and load these into the database as well.

Figure 17–1 RFID Code Categories and Their Schemes

An MGD_ID object contains two attributes, a category_id and a list of components
consisting of name-value pairs. When MGD_ID objects are stored, the tag
representation must be parsed into these component name-value pairs upon object
creation.

EPC standard version 1.1 defines one General Identifier type (GID) that is independent
of any known, existing code schemes, five Domain Identifier types that are based on
EAN.UCC specifications, and the identity type United States Department of Defense
(USDOD). The five EAN.UCC based identity types are the serialized global trade
identification number (SGTIN), the serial shipping container code (SSCC), the
serialized global location number (SGLN), the global returnable asset identifier (GRAI)
and the global individual asset identifier (GIAI).

Except GID, which has only one bit-level encoding, all the other identity types each
have two encodings depending on their length: 64-bit and 96-bit. So in total there are
thirteen different standard encodings for EPC tags. In addition, tags can be encoded in
representations other than binary, such as the tag URI and pure identity
representations.

Each EPC encoding has its own structure and organization, see Table 17–1. Note that
the EPC encoding structure field names relate to the names in the parameter_list
parameter name-value pairs in the Identity Code Package API. For example, for
SGTIN-64, the structure field names are Filter Value, Company Prefix Index, Item
Reference, and Serial Number.

Table 17–1 General Structure of EPC Encodings

Encoding
Name

Header
Length in
bits

Field Names (parameter_list name-value pairs) and (length in
bits)

GID-96 8 General Manager Number (8), Object Class (24), Serial Number (36)

SGTIN-64
<xml>

...
</xml>

SGTIN-96
<xml>

...
</xml>

GID-96
<xml>

...
</xml>

EPC

NASA-T1
<xml>

...
</xml>

NASA-T2
<xml>

...
</xml>

NASA others

MGD_ID

The Code's
Category

Base Code
Object

The Code's
Scheme

Identity Concepts

Using the Identity Code Package 17-3

EPCglobal defines eleven tag schemes (GID-96, SGTIN-64, SGTIN-96, and so forth).
Each of these schemes has various representations; at this time, the most often used are
BINARY, TAG_URI, and PURE_IDENTITY. For example, information in an SGTIN-64
can be represented in the following ways:

BINARY: 1001100000000000001000001110110001000010000011111110011000110010
PURE_IDENTITY: urn:epc:id:sgtin:0037000.030241.1041970
TAG_URI: urn:epc:tag:sgtin-64:3.0037000.030241.1041970
LEGACY: gtin=00037000302414;serial=1041970
ONS_HOSTNAME: 030241.0037000.sgtin.id.onsepc.com

Note that some of these representations contain all information about the tag (BINARY
and TAG_URI), while other representations contain only partial information (PURE_
IDENTITY). It is therefore possible to translate a tag from its TAG_URI to its PURE_
IDENTITY representation, but it is not possible to translate in the other direction
without additional information being provided, namely the filter value must be
supplied.

EPCglobal released a Tag Data Translation 1.0 (TDT) standard that defines how to
decode, encode, and translate between various EPC RFID tag representations.
Decoding refers to parsing a given representation into field/value pairs, and encoding
refers to reconstructing representations from these fields. Translating refers to
decoding one representation and instantly encoding it into another.

SGTIN-64 2 Filter Value (3), Company Prefix Index (14), Item Reference 20), Serial
Number (25)

SGTIN-96 8 Filter Value (3), Partition (3), Company Prefix (20-40), Item Reference
(24-4), Serial Number (38)

SSCC-64 8 Filter Value (3), Company Prefix Index (14), Serial Reference (39)

SSCC-96 8 Filter Value (3), Partition (3), Company Prefix (20-40), Serial Reference
(38-18), Unallocated (24)

SGLN-64 8 Filter Value (3), Company Prefix Index (14), Location Reference (20),
Serial Number (19)

SGLN-96 8 Filter Value (3), Partition (3), Company Prefix (20-40), Location
Reference (21-1), Serial Number (41)

GRAI-64 8 Filter Value (3), Company Prefix Index (14), Asset Type (20), Serial
Number (19)

GRAI-96 8 Filter Value (3), Partition (3), Company Prefix (20-40), Asset Type
(24-4), Serial Number (38)

GIAI-64 8 Filter Value (3), Company Prefix Index (14), Individual Asset
Reference (39)

GIAI-96 8 Filter Value (3), Partition (3), Company Prefix (20-40), Individual
Asset Reference (62-42)

USDOD-6
4

8 Filter Value (2), Government Managed Identifier (30), Serial Number
(24)

USDOD-9
6

8 Filter Value (4), Government Managed Identifier (48), Serial Number
(36)

Table 17–1 (Cont.) General Structure of EPC Encodings

Encoding
Name

Header
Length in
bits

Field Names (parameter_list name-value pairs) and (length in
bits)

Identity Concepts

17-4 Oracle Database Advanced Application Developer's Guide

TDT defines this information using a set of XML files, each referred to as a scheme. For
example, the SGTIN-64 scheme defines how to decode, encode, and translate between
various SGTIN-64 representations, such as binary and pure identity. For details about
the EPCglobal TDT schema, see the EPCglobal Tag Data Translation specification.

A key feature of the TDT specification is its ability to define any EPC scheme using the
same XML schema. This approach creates a standard way of defining EPC metadata
that RFID applications can then use to write their parsers, encoders, and translators.
When the application is written according to the TDT specification, it must be able to
update its set of EPC tag schemes and modify its action according to the new
metadata.

The Oracle metadata structure is similar, but not identical to the TDT standard. In
order for Oracle to comply with the EPCglobal TDT specification, the Oracle RFID
package must be able to ingest any TDT compatible scheme and seamlessly translate it
into the generic Oracle defined metadata. See the EPC_TO_ORACLE Function in
Table 17–4 for more information.

Reconstructing tag representation from fields, or in other words, encoding tag data
into predefined representations is easily accomplished using the MGD_ID.format
function. Likewise, the decoding of tag representations into MGD_ID objects and then
encoding these objects into tag representations is also easily accomplished using the
MGDID.translate function. See the FORMAT Member Function and the TRANSLATE
Static Function in Table 17–3 for more information.

Because the EPCglobal TDT standard is powerful and highly extensible, the Oracle
RFID standard metadata is a close relative of the TDT specification. See "Oracle Tag
Data Translation Schema" on page 17-25 for the actual Oracle TDT XML schema.
Developers can refer to this Oracle TDT XML schema to define their own tag
structures.

Figure 17–2 shows the Oracle Tag Data Translation Markup Language Schema
diagram.

Figure 17–2 Oracle Tag Data Translation Markup Language Schema

The top level element in a tag data translation xml is 'scheme'. Each scheme defines
various tag encoding representations, or levels. SGTIN-64 and GID-96 are examples of
tag encoding schemes, and BINARY or PURE_IDENTITY are examples of levels
within these schemes. Each level has a set of options that define how to parse various
representations into fields, and rules that define how to derive values for fields that
require additional work, such as an external table lookup or the concatenation of other

Level

Scheme

Option Rule

Field

1

1 1

1

*

* *

*

What is the Identity Code Package?

Using the Identity Code Package 17-5

parsed out fields. See the EPCGlobal Tag Translator Specification for more
information.

What is the Identity Code Package?
The Identity Code Package provides an extensible framework that supports the
current RFID tags with the standard family of EPC bit encodings for the supported
encoding types as well as new and evolving tag encodings that are not included in the
current EPC standard.

The Identity Code Package defines the following object types:

■ MGD_ID -- defines the following (see MGD_ID Object Type in Table 17–2 for more
information):

– Two attributes, category_id and components.

– Four MGD_ID constructor functions for constructing identity code type objects
to represent RFID tags.

– A set of member subprograms for operating on these object types.

"Using the Identity Code Package" on page 17-6 describes how to use these object
types and member functions.

"Identity Code Package Types" on page 17-18 and "DBMS_MGD_ID_UTL
Package" on page 17-19 briefly describe the reference information for these object
types along with a set of utility subprograms. See Oracle Database PL/SQL Packages
and Types Reference for detailed reference information.

■ MGD_ID_COMPONENT — defines two attributes, comp_name, which identifies the
name of the component and comp_value, which identifies the components value.

■ MGD_ID_COMPONENT_VARRAY — defines an array type that can store up to 128
elements of MGD_IDCOMPONENT type, which is used in two constructor functions
for creating an identity code type object with a list of components.

The Identity Code Package supports EPC spec v1.1 by supplying the predefined EPC_
ENCODING_CATEGORY encoding_category attribute definition with its bit-encoding
structures for the supported encoding types. This information is stored as meta
information in the supplied encoding metadata views, MGD_USR_ID_CATEGORY,
MGD_USR_ID_SCHEME, the read-only views MGD_ID_CATEGORY, MGD_ID_SCHEME,
and their underlying tables: MGD_ID_CATEGORY_TAB, MGD_ID_SCHEME_TAB, MGD_
ID_XML_VALIDATOR. See the following sections and files for more information:

■ "Electronic Product Code (EPC) Concepts" on page 17-22 describes the EPC spec
v1.1 product code and its family of coding schemes.

■ "Identity Code Metadata Tables and Views" on page 17-20 describes the structure
of the identity code meta tables and views and how metadata are used by the
Identity Code Package to interpret the various RFID tags.

■ The mgdmeta.sql file describes the meta table data for the EPC_ENCODING_
CATEGORY categories and each of its specific encoding schemes.

After storing many thousands of RFID tags into the column of MGD_ID column type of
your user table, you can improve query performance by creating an index on this
column. See the following sections for more information:

■ "Building a Function-Based Index Using the Member Functions of the MGD_ID
Column Type" on page 17-10 describes how to create a function based index or

Using the Identity Code Package

17-6 Oracle Database Advanced Application Developer's Guide

bitmap function based index using the member functions of the MGD_ID object
type.

The Identity Code Package provides a utility package that consists of various utility
subprograms. See the following section for more information:

■ "Identity Code Package Types" on page 17-18 and "DBMS_MGD_ID_UTL
Package" on page 17-19 describes each of the member subprograms. A proxy
utility is used to set and remove proxy information. A metadata utility can be used
to get a category ID, refresh a tag scheme for a category, remove a tag scheme for a
category, and validate a tag scheme. A conversion utility is used to translate
standard EPCglobal Tag Data Translation (TDT) files into Oracle TDT files.

The Identity Code Package is extensible and lets you create your own identity code
types for any new or evolving RFID tags that you want to create. You can define your
identity code types, catagory_id attribute values, and components structures for
your own encoding types. See the following sections for more information:

■ "Creating a New Category of Identity Codes" on page 17-14 describes how to
create your own identity codes by first registering the new encoding category, and
then registering the new schemes associated to the new encoding category.

■ "Identity Code Metadata Tables and Views" on page 17-20 describes the structure
of the identity code meta tables and views and how to register meta information
by storing it in the supplied metadata tables and views.

Using the Identity Code Package
Topics:

■ Storing RFID Tags in Oracle Database Using MGD_ID Object Type

■ Creating Indexes on the MGD_ID Column Type

■ Using MGD_ID Object Type Functions

■ Defining a New Category of Identity Codes and Adding Encoding Schemes to an
Existing Category

The examples in this chapter assume that the user has run the following set of
statements before running the contents of each script:

CONNECT / AS SYSDBA;
CREATE USER MGDUSER IDENTIFIED BY MGDUSER;
GRANT CONNECT, RESOURCE TO MGDUSER;
CONNECT MGDUSER/MGDUSER;
SET SERVEROUTPUT ON;

Storing RFID Tags in Oracle Database Using MGD_ID Object Type
Topics:

■ Creating a Table with MGD_ID Column Type and Storing EPC Tag Encodings in
the Column

■ Constructing MGD_ID Objects to Represent RFID Tags

■ Inserting an MGD_ID Object into a Database Table

■ Querying MGD_ID Column Type

Using the Identity Code Package

Using the Identity Code Package 17-7

Creating a Table with MGD_ID Column Type and Storing EPC Tag Encodings in the
Column
You can create tables using MGD_ID as the column type to represent RFID tags, for
example:

Example 1. Using the MGD_ID column type:

CREATE TABLE Warehouse_info (
 Code MGD_ID,
 Arrival_time TIMESTAMP,
 Location VARCHAR2(256);
 ...);

SQL> describe warehouse_info;
Name Null? Type
--- -------- ----------------------------
CODE NOT NULL MGDSYS.MGD_ID
ARRIVAL_TIME TIMESTAMP(6)
LOCATION VARCHAR2(256)

Constructing MGD_ID Objects to Represent RFID Tags
There are several ways to construct MGD_ID objects:

■ Constructing an MGD_ID Object (SGTIN-64) Passing in the Category ID and a List
of Components

■ Constructing an MGD_ID object (SGTIN-64) and Passing in the Category ID, the
Tag Identifier, and the List of Additional Required Parameters

■ Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name,
Category Version (if null, then the latest version will be used), and a List of
Components

■ Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name
and Category Version, the Tag Identifier, and the List of Additional Required
Parameters

Constructing an MGD_ID Object (SGTIN-64) Passing in the Category ID and a List of Components
If a RFID tag complies to the EPC standard, an MGD_ID object can be created using its
category ID and a list of components. For example:

call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
call DBMS_MGD_ID_UTL.refresh_category('1');
select MGD_ID ('1',
 MGD_ID_COMPONENT_VARRAY(
 MGD_ID_COMPONENT('companyprefix','0037000'),
 MGD_ID_COMPONENT('itemref','030241'),
 MGD_ID_COMPONENT('serial','1041970'),
 MGD_ID_COMPONENT('schemes','SGTIN-64')
)
) from DUAL;
call DBMS_MGD_ID_UTL.remove_proxy();

SQL> @constructor11.sql
.
.
.
MGD_ID ('1', MGD_ID_COMPONENT_VARRAY
 (MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('itemref', '030241'),

Using the Identity Code Package

17-8 Oracle Database Advanced Application Developer's Guide

 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64')))
.
.
.

Constructing an MGD_ID object (SGTIN-64) and Passing in the Category ID, the Tag Identifier, and
the List of Additional Required Parameters Use this constructor when there is a list of
additional parameters required to create the MGD_ID object. For example:

call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
call DBMS_MGD_ID_UTL.refresh_category('1');
select MGD_ID('1',
 'urn:epc:id:sgtin:0037000.030241.1041970',
 'filter=3;scheme=SGTIN-64') from DUAL;
call DBMS_MGD_ID_UTL.remove_proxy();

SQL> @constructor22.sql
.
.
.
MGD_ID('1', MGD_ID_COMPONENT_VARRAY(MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),
 MGD_ID_COMPONENT('companyprefixlength', '7'),
 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('scheme', 'SGTIN-64'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')))
.
.
.

Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name, Category Version
(if null, then the latest version will be used), and a List of Components Use this constructor
when a category version must be specified along with a category ID and a list of
components. For example:

call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
call DBMS_MGD_ID_UTL.refresh_category
 (DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));
select MGD_ID('EPC', NULL,
 MGD_ID_COMPONENT_VARRAY(
 MGD_ID_COMPONENT('companyprefix','0037000'),
 MGD_ID_COMPONENT('itemref','030241'),
 MGD_ID_COMPONENT('serial','1041970'),
 MGD_ID_COMPONENT('schemes','SGTIN-64')
)
) from DUAL;
call DBMS_MGD_ID_UTL.remove_proxy();

SQL> @constructor33.sql
.
.
.
MGD_ID('1', MGD_ID_COMPONENT_VARRAY
 (MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('itemref', '030241'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64')

Using the Identity Code Package

Using the Identity Code Package 17-9

)
)
.
.
.

Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name and Category
Version, the Tag Identifier, and the List of Additional Required Parameters Use this constructor
when the category version and an additional list of parameters is required.

call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
call DBMS_MGD_ID_UTL.refresh_category
 (DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));
select MGD_ID('EPC', NULL,
 'urn:epc:id:sgtin:0037000.030241.1041970',
 'filter=3;scheme=SGTIN-64') from DUAL;
call DBMS_MGD_ID_UTL.remove_proxy();

SQL> @constructor44.sql
.
.
.
MGD_ID('1', MGD_ID_COMPONENT_VARRAY
 (MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),
 MGD_ID_COMPONENT('companyprefixlength', '7'),
 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('scheme', 'SGTIN-64'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')
)
)
.
.
.

Inserting an MGD_ID Object into a Database Table
The following example shows how to populate the WAREHOUSE_INFO table by
inserting each MGD_ID object into the table along with the additional column values.

call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');

call DBMS_MGD_ID_UTL.refresh_category
 (DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));

INSERT INTO WAREHOUSE_INFO (code, arrival_time, location)
 values (MGDSYS.MGD_ID ('EPC',
 NULL,
 'urn:epc:id:sgtin:0037000.030241.1041970',
 null
),
 SYSDATE,
 'SHELF_123');

INSERT INTO WAREHOUSE_INFO (code, arrival_time, location)
 values (MGDSYS.MGD_ID ('EPC',
 NULL,
 'urn:epc:id:sgtin:0037000.053021.1012353',
 null
),

Using the Identity Code Package

17-10 Oracle Database Advanced Application Developer's Guide

 SYSDATE,
 'SHELF_456');
INSERT INTO WAREHOUSE_INFO (code, arrival_time, location)
 values (MGDSYS.MGD_ID ('EPC',
 NULL,
 'urn:epc:id:sgtin:0037000.020140.10174832',
 null
),
 SYSDATE,
 'SHELF_1034');

COMMITT;
call DBMS_MGD_ID_UTL.remove_proxy();

Querying MGD_ID Column Type
There are three ways to query on MGD_ID column type.

■ Query the MGD_ID column type. Find all items with item reference 030241.

SELECT location, wi.code.get_component('itemref') as itemref,
 wi.code.get_component('serial') as serial
FROM warehouse_info wi WHERE wi.code.get_component('itemref') = '030241';

LOCATION	ITEMREF	SERIAL
SHELF_123 |030241 |1041970

■ Query using the member functions of the MGD_ID object type. Select the pure
identity representations of all RFID tags in the table.

SELECT wi.code.format(null,'PURE_IDENTITY')
 as PURE_IDENTITY FROM warehouse_info wi;

PURE_IDENTITY

urn:epc:id:sgtin:0037000.030241.1041970
urn:epc:id:gid:0037000.053021.1012353
urn:epc:id:sgtin:0037000.020140.10174832

See "Using the get_component Function with the MGD_ID Object" on page 17-11
for more information and see Table 17–3 for a list of member functions.

Creating Indexes on the MGD_ID Column Type
This section contains the following section:

■ Building a Function-Based Index Using the Member Functions of the MGD_ID
Column Type

Building a Function-Based Index Using the Member Functions of the MGD_ID
Column Type
You can improve the performance of queries based on a certain component of the
RFID tags by creating a function-based index that uses the get_component member
function or its variation convenience functions. For example:

CREATE INDEX warehouseinfo_idx2
 on warehouse_info(code.get_component('itemref'));

Using the Identity Code Package

Using the Identity Code Package 17-11

You can also improve the performance of queries based on a certain component of the
RFID tags by creating a bitmap function based index that uses the get_component
member function or its variation convenience functions. For example:

CREATE BITMAP INDEX warehouseinfo_idx3
 on warehouse_info(code.get_component('serial'));

Using MGD_ID Object Type Functions
The MGD_ID object type contain member subprograms that operate on these object
types. See Table 17–2 for MGD_ID_COMPONENT, MGD_ID_COMPONENT_VARRAY, MGD_
ID object type reference information. See the mgdtyp.sql file for the MGD_ID object
type definition and its member subprograms. This section contains the following
sections:

■ Using the get_component Function with the MGD_ID Object

■ Parsing Tag Data from Standard Representations

■ Reconstructing Tag Representations from Fields

■ Translating Between Tag Representations

Using the get_component Function with the MGD_ID Object
The get_component function is defined as follows:

MEMBER FUNCTION get_component(component_name IN VARCHAR2)
 RETURN VARCHAR2 DETERMINISTIC,

Each component in a identity code has a name. It is defined when the code type is
registered. See "Defining a New Category of Identity Codes and Adding Encoding
Schemes to an Existing Category" on page 17-13 for more information on how to create
a new identity code type.

The get_component function takes the name of the component, component_name
as a parameter, uses the metadata registered in the metadata table to analyze the
identity code, and returns the component with the name component_name.

The get_component function can be used in a SQL query. For example, find the
current location of the coded item for the component named itemref; or, in other
words find all items with the item reference of 03024. Because the code tag has
encoded the "itemref" as one of the components, you can use the following SQL query:

SELECT location,
 w.code.get_component('itemref') as itemref,
 w.code.get_component('serial') as serial
FROM warehouse_info w
 WHERE w.code.get_component('itemref') = '030241';

LOCATION	ITEMREF	SERIAL
SHELF_123 |030241 |1041970

See Table 17–3 for a list of other member functions.

Parsing Tag Data from Standard Representations
RFID readers read the bit strings stored in the tags. The tag data together with other
information such as the reader ID and the timestamp, first go through an edge server
to be processed, normalized, and preliminarily filtered. Then, in many application
scenarios, the information needs to be persistently stored and later on be retrieved.

Using the Identity Code Package

17-12 Oracle Database Advanced Application Developer's Guide

The Oracle Database is capable of understanding the code structures representations of
various EPC tags as described in Table 17–1 because these code representation schemes
defined in the EPC Standard are pre-registered. This gives the Oracle Database the
ability to understand all the EPC code schemes and parse various tag representations
into fields. Users can also register their own coding structures for the identity codes
that use other encoding technologies. In this way the system is extensible.

As mentioned in "Identity Concepts" on page 17-1, each of the EPCGlobal tag schemes
(GID-96, SGTIN-64, SGTIN-96, and so forth) has various representations with the most
often used ones being BINARY, TAG_URI, and PURE_IDENTITY.

Some of these representations contain all the information about the tag (BINARY and
TAG_URI), while representations contain only partial information (PURE_IDENTITY).
It is therefore possible to translate a tag from it's TAG_URI to it's PURE_IDENTITY
representation, but it is not possible to translate in the other direction (PURE_
IDENTITY to TAG_URI) without supplying additional information, namely the filter
value.

One of the MGD_ID constructors takes in four fields, the category name (such as EPC),
the category version, the tag identifier (for EPC, the identifier must be in one of the
representations previously described), and a parameter list for any additional
parameters that may be required in order to parse the tag representation. For example,
the following code creates an MGD_ID object from its BINARY representation.

SELECT MGD_ID
 ('EPC',
 null,
 '1001100000000000001000001110110001000010000011111110011000110010',
 null
)
 AS NEW_RFID_CODE FROM DUAL;

NEW_RFID_CODE(CATEGORY_ID, COMPONENTS(NAME, VALUE))
--
MGD_ID ('1',
 MGD_ID_COMPONENT_VARRAY(MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),
 MGD_ID_COMPONENT('companyprefixlength', '7'),
 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('companyprefixindex', '1'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')
)
)

For example, an identical object can be created if the call is done with the TAG_URI
representation of the tag as follows with the addition of the value of the filter value:

SELECT MGD_ID ('EPC',
 null,
 'urn:epc:tag:sgtin-64:3.0037000.030241.1041970',
 null
)
 as NEW_RFID_CODE FROM DUAL;

NEW_RFID_CODE(CATEGORY_ID, COMPONENTS(NAME, VALUE))
--
MGD_ID ('1',
 MGD_ID_COMPONENT_VARRAY (
 (MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),

Using the Identity Code Package

Using the Identity Code Package 17-13

 MGD_ID_COMPONENT('companyprefixlength', '7'),
 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')
)
)

Reconstructing Tag Representations from Fields
Another useful feature of the Identity Code package is the ability to encode tag data
into predefined representations. For example, a warehouse wants to send certain
inventory to a retailer, but first it wants to send an invoice that tells the retailer what
inventory to expect. The invoice can be a list of pure identity URIs that the warehouse
intends to send. If all the inventory in the WAREHOUSE_INFO table is to be sent, the
following example constructs the desired URIs.

SELECT wi.code.format (null,'PURE_IDENTITY')
 as PURE_IDENTITY FROM warehouse_info wi;

PURE_IDENTITY
--
urn:epc:id:sgtin:0037000.030241.1041970
urn:epc:id:gid:0037000.053021.1012353
urn:epc:id:sgtin:0037000.020140.10174832

Translating Between Tag Representations
The Identity Code package can decode tag representations into MGD_ID objects and
encode these objects into tag representations. These two steps can be combined into
one step using the MGD_ID.translate function. Static translation allows for the
conversion of an RFID tag from one representation to another. For example:

SELECT MGD_ID.translate ('EPC',
 null,
 'urn:epc:id:sgtin:0037000.030241.1041970',
 'filter=3;scheme=SGTIN-64',
 'BINARY'
)
 as BINARY FROM DUAL;

BINARY
--
1001100000000000001000001110110001000010000011111110011000110010

In this example, the binary representation contains more information than the pure
identity representation. Specifically, it also contains the filter value and in this case the
scheme value must also be specified to distinguish SGTIN-64 from SGTIN-96. Thus,
the function call must provide the missing filter parameter information and specify the
scheme name in order for translation call to succeed.

Defining a New Category of Identity Codes and Adding Encoding Schemes to an
Existing Category

This section describes the following:

■ Creating a New Category of Identity Codes

■ Adding Two New Metadata Schemes to a Newly Created Category

Using the Identity Code Package

17-14 Oracle Database Advanced Application Developer's Guide

Creating a New Category of Identity Codes
Because the EPCglobal TDT standard is powerful and highly extensible, the Oracle
RFID standard metadata is a close relative of the TDT specification. Thus, the Identity
Code package is extensible and lets you create your own categories and tag structures
using generic metadata. To do this, use the DBMS_MGD_ID_UTIL.create_category
function to create a new category of identity codes.

For example, suppose you want to create a category called MGD_SAMPLE_
CATEGORY, which will have two types of tags, a CONTRACTOR_TAG and an
EMPLOYEE_TAG. This new category and its two new metadata schemes might be
used within a company that needs to grant different access privileges to people who
are full time employees from those who are contractors, and thus require that their
security software be able to identify quickly between the two badge types at an RFID
reader. The following script creates a new category named 'MGD_SAMPLE_
CATEGORY', with a 1.0 category version, having an agency name as Oracle, with a
URI as http://www.oracle.com/mgd/sample. See "Adding Two New Metadata
Schemes to a Newly Created Category" on page 17-14 for an example.

Adding Two New Metadata Schemes to a Newly Created Category
Next, create an CONTRACTOR_TAG metadata scheme such as the following:

<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">
 <scheme name="CONTRACTOR_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="mycompany.contractor.">
 <option optionKey="1" pattern="mycompany.contractor.([0-9]*).([0-9]*)"
 grammar="''mycompany.contractor.'' contractorID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="contractorID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="11">
 <option optionKey="1" pattern="11([01]{7})([01]{6})"
 grammar="''11'' contractorID divisionID ">
 <field seq="1" characterSet="[01]*" name="contractorID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>
</TagDataTranslation>

The CONTRACTOR_TAG scheme contains two encoding levels, or ways in which the tag
can be represented. The first level is URI and the second level is BINARY. The URI
representation starts with the prefix "mycompany.contractor." and is then followed
by two numeric fields separated by a period. The names of the two fields are
contractorID and divisionID. The pattern field in the option tag defines the
parsing structure of the tag URI representation, and the grammar field defines how to
reconstruct the URI representation. The BINARY representation can be understood in
a similar fashion. This representation starts with the prefix "01" and is then followed
by the same two fields, contractorID and divisionID, this time, in their
respective binary formats. Given this XML metadata structure, contractor tags can now
be decoded from their URI and BINARY representations and the resulting fields can be
re-encoded into one of these representations.

The EMPLOYEE_TAG scheme is defined in a similar fashion and is shown as follows.

Using the Identity Code Package

Using the Identity Code Package 17-15

<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">
 <scheme name="EMPLOYEE_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="mycompany.employee.">
 <option optionKey="1" pattern="mycompany.employee.([0-9]*).([0-9]*)"
 grammar="''mycompany.employee.'' employeeID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="employeeID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="01">
 <option optionKey="1" pattern="01([01]{7})([01]{6})"
 grammar="''01'' employeeID divisionID ">
 <field seq="1" characterSet="[01]*" name="employeeID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>
</TagDataTranslation>;

To add these schemes to the category ID previously created, use the DBMS_MGD_ID_
UTIL.add_scheme function.

The following script creates the MGD_SAMPLE_CATEGORY category, adds a contractor
scheme and an employee scheme to the MGD_SAMPLE_CATEGORY category, validates
the MGD_SAMPLE_CATEGORY scheme, tests the tag translation of the contractor scheme
and the employee scheme, then removes the contractor scheme, tests the tag
translation of the contractor scheme and this returns the expected exception for the
removed contractor scheme, tests the tag translation of the employee scheme and this
returns the expected values, then removes the MGD_SAMPLE_CATEGORY category

--contents of add_scheme2.sql
SET LINESIZE 160
CALL DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');

---CREATE CATEGORY, ADD_SCHEME, REMOVE_SCHEME, REMOVE_CATEGORY-------

DECLARE
 amt NUMBER;
 buf VARCHAR2(32767);
 pos NUMBER;
 tdt_xml CLOB;
 validate_tdtxml VARCHAR2(1042);
 category_id VARCHAR2(256);
BEGIN
 -- remove the testing category if already existed
 DBMS_MGD_ID_UTL.remove_category('MGD_SAMPLE_CATEGORY', '1.0');
 -- create the testing category 'MGD_SAMPLE_CATEGORY', version 1.0
 category_id := DBMS_MGD_ID_UTL.CREATE_CATEGORY('MGD_SAMPLE_CATEGORY', '1.0', 'Oracle',
'http://www.oracle.com/mgd/sample');
 -- add contractor scheme to the category
 DBMS_LOB.CREATETEMPORARY(tdt_xml, true);
 DBMS_LOB.OPEN(tdt_xml, DBMS_LOB.LOB_READWRITE);

 buf := '<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">

Using the Identity Code Package

17-16 Oracle Database Advanced Application Developer's Guide

 <scheme name="CONTRACTOR_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="mycompany.contractor.">
 <option optionKey="1" pattern="mycompany.contractor.([0-9]*).([0-9]*)"
 grammar="''mycompany.contractor.'' contractorID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="contractorID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="11">
 <option optionKey="1" pattern="11([01]{7})([01]{6})"
 grammar="''11'' contractorID divisionID ">
 <field seq="1" characterSet="[01]*" name="contractorID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>
</TagDataTranslation>';

 amt := length(buf);
 pos := 1;
 DBMS_LOB.WRITE(tdt_xml, amt, pos, buf);
 DBMS_LOB.CLOSE(tdt_xml);

 DBMS_MGD_ID_UTL.ADD_SCHEME(category_id, tdt_xml);

 -- add employee scheme to the category
 DBMS_LOB.CREATETEMPORARY(tdt_xml, true);
 DBMS_LOB.OPEN(tdt_xml, DBMS_LOB.LOB_READWRITE);

 buf := '<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">
 <scheme name="EMPLOYEE_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="mycompany.employee.">
 <option optionKey="1" pattern="mycompany.employee.([0-9]*).([0-9]*)"
 grammar="''mycompany.employee.'' employeeID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="employeeID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="01">
 <option optionKey="1" pattern="01([01]{7})([01]{6})"
 grammar="''01'' employeeID divisionID ">
 <field seq="1" characterSet="[01]*" name="employeeID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>
</TagDataTranslation>';

 amt := length(buf);
 pos := 1;
 DBMS_LOB.WRITE(tdt_xml, amt, pos, buf);
 DBMS_LOB.CLOSE(tdt_xml);
 DBMS_MGD_ID_UTL.ADD_SCHEME(category_id, tdt_xml);

 -- validate the scheme
 dbms_output.put_line('Validate the MGD_SAMPLE_CATEGORY Scheme');
 validate_tdtxml := DBMS_MGD_ID_UTL.validate_scheme(tdt_xml);

Using the Identity Code Package

Using the Identity Code Package 17-17

 dbms_output.put_line(validate_tdtxml);
 dbms_output.put_line('Length of scheme xml is: '||DBMS_LOB.GETLENGTH(tdt_xml));

 -- test tag translation of contractor scheme
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'mycompany.contractor.123.45',
 NULL, 'BINARY'));

 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '111111011101101',
 NULL, 'URI'));

 -- test tag translation of employee scheme
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'mycompany.employee.123.45',
 NULL, 'BINARY'));

 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '011111011101101',
 NULL, 'URI'));

 DBMS_MGD_ID_UTL.REMOVE_SCHEME(category_id, 'CONTRACTOR_TAG');

 -- Test tag translation of contractor scheme. Doesn't work any more.
 BEGIN
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'mycompany.contractor.123.45',
 NULL, 'BINARY'));

 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '111111011101101',
 NULL, 'URI'));
 EXCEPTION
 WHEN others THEN
 dbms_output.put_line('Contractor tag translation failed: '||SQLERRM);
 END;

 -- Test tag translation of employee scheme. Still works.
 BEGIN
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'mycompany.employee.123.45',
 NULL, 'BINARY'));
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '011111011101101',
 NULL, 'URI'));
 EXCEPTION
 WHEN others THEN
 dbms_output.put_line('Employee tag translation failed: '||SQLERRM);
 END;

 -- remove the testing category, which also removes all the associated schemes
 DBMS_MGD_ID_UTL.remove_category('MGD_SAMPLE_CATEGORY', '1.0');

Identity Code Package Types

17-18 Oracle Database Advanced Application Developer's Guide

END;
/
SHOW ERRORS;
call DBMS_MGD_ID_UTL.remove_proxy();

SQL> @add_scheme3.sql
.
.
.
Validate the MGD_SAMPLE_CATEGORY Scheme
EMPLOYEE_TAG;URI,BINARY;divisionID,employeeID
Length of scheme xml is: 933
111111011101101
mycompany.contractor.123.45
011111011101101
mycompany.employee.123.45
Contractor tag translation failed: ORA-55203: Tag data translation level not found
ORA-06512: at "MGDSYS.DBMS_MGD_ID_UTL", line 54
ORA-06512: at "MGDSYS.MGD_ID", line 242
ORA-29532: Java call terminated by uncaught Java
exception: oracle.mgd.idcode.exceptions.TDTLevelNotFound: Matching level not
found for any configured scheme
011111011101101
mycompany.employee.123.45
.
.
.

Identity Code Package Types
Table 17–2 describes the Identity Code Package object types.

Table 17–3 describes the subprograms in the MGD_ID object type.

All the values and names passed to the subprograms defined in the MGD_ID object
type are case-insensitive unless otherwise noted. To preserve case, enclose values in
double quotation marks.

Table 17–2 Identity Code Package Object Types

Object Type Name Description

MGD_ID_COMPONENT Object Type A datatype that specifies the name and value pair
attributes that define a component.

MGD_ID_COMPONENT_VARRAY Object Type A datatype that specifies a list of up to 128
components as name-value attribute pairs used
in two constructor functions for creating an
identity code type object.

MGD_ID Object Type Represents an identity code type that specifies
the category identifier for the code category for
this identity code and its list of components.

Table 17–3 MGD_ID Object Type Subprograms

Subprogram Description

MGD_ID Constructor Function Creates an identity code type object, MGD_ID, and
returns self as a result.

DBMS_MGD_ID_UTL Package

Using the Identity Code Package 17-19

DBMS_MGD_ID_UTL Package
Table 17–4 describes the Utility subprograms in the DBMS_MGD_ID_UTL package.

All the values and names passed to the subprograms defined in the MGD_ID object
type are case-insensitive unless otherwise noted. To preserve case, enclose values in
double quotation marks.

FORMAT Member Function Returns a representation of an identity code given
an MGD_ID component.

GET_COMPONENT Member Function Returns the value of an MGD_ID component.

TO_STRING Member Function Concatenates the category_id parameter value
with the components name-value attribute pair.

TRANSLATE Static Function Translates one MGD_ID representation of an identity
code into a different MGD_ID representation.

Table 17–4 DBMS_MGD_ID_UTL Package Utility Subprograms

Subprogram Description

ADD_SCHEME Procedure Adds a tag data translation scheme to an existing
category.

CREATE_CATEGORY Function Creates a new category or a new version of a
category.

EPC_TO_ORACLE Function Converts the EPCglobal tag data translation (TDT)
XML to Oracle tag data translation XML.

GET_CATEGORY_ID Function Returns the category ID given the category name
and the category version.

GET_COMPONENTS Function Returns all relevant separated component names
separated by semicolon (';') for the specified scheme.

GET_ENCODINGS Function Returns a list of semicolon (';') separated encodings
(formats) for the specified scheme.

GET_JAVA_LOGGING_LEVEL Function Returns an integer representing the current Java
trace logging level.

GET_PLSQL_LOGGING_LEVEL Function Returns an integer representing the current PL/SQL
trace logging level.

GET_SCHEME_NAMES Function Returns a list of semicolon (';') separated scheme
names for the specified category.

GET_TDT_XML Function Returns the Oracle tag data translation XML for the
specified scheme.

GET_VALIDATOR Function Returns the Oracle tag data translation schema.

REFRESH_CATEGORY Function Refreshes the metadata information on the Java
stack for the specified category.

REMOVE_CATEORY Function Removes a category including all the related TDT
XML.

REMOVE_PROXY Procedure Unsets the host and port of the proxy server.

REMOVE_SCHEME Procedure Removes the tag scheme for a category.

SET_JAVA_LOGGING_LEVEL Procedure Sets the Java logging level.

Table 17–3 (Cont.) MGD_ID Object Type Subprograms

Subprogram Description

Identity Code Metadata Tables and Views

17-20 Oracle Database Advanced Application Developer's Guide

Identity Code Metadata Tables and Views
This section describes the structure of identity code metadata tables and views and
explains how the metadata are used by the Identity Code Package to interpret the
various RFID tags. The creation of these meta tables, views, and triggers will be done
automatically during the Identity Code Package installation.

Encoding metadata views are used to store encoding categories and schemes.
Application developers can insert the meta information of their own identity codes
into these views. The MGD_ID object type is designed to understand the new
encodings as long as the metadata for the new encodings are stored in the meta tables.
If an application developer only uses the encodings defined in the EPC specification
v1.1, the developer does not have to worry about the meta tables because product
codes specified in EPC spec v1.1 are predefined.

There are two encoding metadata views.

■ user_mgd_id_category — this view is used to store the encoding category
information defined by the session user.

■ user_mgd_id_scheme — this view is used to store the encoding type
information defined by the session user.

In addition, the following read-only views are defined for a user to query the system
predefined encoding metadata as well as the metadata defined by the user.

■ mgd_id_category — this view is used to query the encoding category
information defined by the system or the session user

■ mgd_id_scheme — this view is used to query the encoding type information
defined by the system or the session user.

The underlying metadata tables for the preceding views are:

■ mgd_id_xml_validator

■ mgd_id_category_tab

■ mgd_id_scheme_tab

Users other than the Identity Code Package system users cannot operate on these
tables. Users must not use the metadata tables directly. They must use the read only
views and the metadata functions described in the DBMS_MGD_ID_UTL package.

SET_PLSQL_LOGGING_LEVEL
Procedure

Sets the PL/SQL tracing logging level.

SET_PROXY Procedure Sets the host and port of the proxy server for
Internet access.

VALIDATE_SCHEME Function Validates the input tag data translation XML against
the Oracle tag data translation schema.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_MGD_ID_UTL package

Table 17–4 (Cont.) DBMS_MGD_ID_UTL Package Utility Subprograms

Subprogram Description

Identity Code Metadata Tables and Views

Using the Identity Code Package 17-21

Metadata View Definitions
Table 17–5, Table 17–6, Table 17–7, and Table 17–8 describe the metadata view
definitions for the MGD_ID_CATEGORY, USER_ID_CATEGORY, MGD_ID_SCHME,
and USER_MGD_ID_SCHME respectively as defined in the mgdview.sql file.

Table 17–5 Definition and Description of the MGD_ID_CATEGORY Metadata View

Column Name Data Type Description

CATEGORY_ID NUMBER(4) Category identifier

CATEGORY_NAME VARCHAR2(256) Category name

AGENCY VARCHAR2(256) Organization that defined the category

VERSION VARCHAR2(256) Category version

URI VARCHAR2(256) URI that describes the category

Table 17–6 Definition and Description of the USER_MGD_ID_CATEGORY Metadata View

Column Name Data Type Description

CATEGORY_ID NUMBER(4) Category identifier

CATEGORY_NAME VARCHAR2(256) Category name

AGENCY VARCHAR2(256) Organization that defined the category

VERSION VARCHAR2(256) Category version

URI VARCHAR2(256) URI that describes the category

Table 17–7 Definition and Description of the MGD_ID_SCHEME Metadata View

Column Name Data Type Description

CATEGORY_ID NUMBER(4) Category identifier

TYPE_NAME VARCHAR2(256) Encoding scheme name, for example,
SGTIN-96, GID-96, and so forth

TDT_XML CLOB Tag data translation XML for this encoding
scheme

ENCODINGS VARCHAR2(256) Encodings separated by a comma (,), for
example, LEGACY, TAG_ENCODING, PURE_
IDENTITY, BINARY (for SGTIN-96)

COMPONENTS VARCHAR2(1024) Relevant component names, extracted from
each level and then combined. Each is
separated by a comma (,). For example,
objectclass, generalmanager, serial (for
GID-96)

Table 17–8 Definition and Description of the USER_MGD_ID_SCHEME Metadata View

Column Name Data Type Description

CATEGORY_ID NUMBER(4) Category identifier

TYPE_NAME VARCHAR2(256) Encoding scheme name, for example,
SGTIN-96, GID-96, and so forth

TDT_XML CLOB Tag data translation XML for this encoding
scheme

Electronic Product Code (EPC) Concepts

17-22 Oracle Database Advanced Application Developer's Guide

Electronic Product Code (EPC) Concepts
This section describes the following topics:

■ RFID Technology and EPC v1.1 Coding Schemes

■ Product Code Concepts and Their Current Use

RFID Technology and EPC v1.1 Coding Schemes
Radio Frequency Identification (RFID) technology continues to gain momentum with
suppliers, distributors, manufacturers, and retailers for its ability to eliminate
line-of-site processes and automate critical supply chain transactions. Electronic
Product Code (EPC), an identification scheme for universally identifying objects using
RFID tags and other means, is gaining widespread acceptance as an emerging
standard. Its capabilities will enable companies to reduce warehouse and distribution
costs through improved inventory control and extended supply chain visibility.

The standardized EPC Identifier is a metacoding scheme designed to support the
needs of various industries. As a result, the EPC represents a family of coding schemes
and a means to make them unique across all possible EPC-compliant tags. EPC
Version 1.1 includes the following specific coding schemes:

■ General Identifier (GID)

■ Serialized version of the EAN.UCC Global Trade Item Number (GTIN)

■ EAN.UCC Serial Shipping Container Code (SSCC)

■ EAN.UCC Global Location Number (GLN)

■ EAN.UCC Global Returnable Asset Identifier (GRAI)

■ EAN.UCC Global Individual Asset Identifier (GIAI)

RFID applications require the storage of a large volume of EPC data into a database.
The efficient use of EPC data also requires that the database recognizes the different
coding schemes of EPC data.

EPC is an emerging standard. It does not cover all the numbering schemes used in the
various industries and is itself still evolving (the changes from EPC version 1.0 to EPC
version 1.1 are significant).

Identity Code Package empowers the Oracle Database with the knowledge to
recognize EPC coding schemes. It makes the Oracle Database a database system that
not only provides efficient storage and component level retrieval for EPC data, but
also has the built-in features to support EPC data encoding and decoding, as well as
conversion between bit encoding and URI encoding.

ENCODINGS VARCHAR2(256) Encodings separated by a comma (,), for
example, LEGACY, TAG_ENCODING, PURE_
IDENTITY, BINARY (for SGTIN-96)

COMPONENTS VARCHAR2(1024) Relevant component names, extracted from
each level and then combined. Each is
separated by a comma (,). For example,
objectclass, generalmanager, serial (for
GID-96)

Table 17–8 (Cont.) Definition and Description of the USER_MGD_ID_SCHEME Metadata

Column Name Data Type Description

Electronic Product Code (EPC) Concepts

Using the Identity Code Package 17-23

Identity Code Package provides an extensible framework that allows developers to
define their own coding schemes that are not included in the EPC standard. This
extensibility feature also makes the Oracle Database adaptable to the evolving future
EPC standard.

This chapter describes the requirement of storing, retrieving, encoding and decoding
various product codes, including EPC, in an Oracle Database and shows how the
Identity Code Package solution meets all these requirements by providing new data
types, metadata tables, and PL/SQL packages for these purposes.

Product Code Concepts and Their Current Use
This section describes the following product codes:

■ Electronic Product Code (EPC)

■ Global Trade Identification Number (GTIN) and Serializable Global Trade
Identification Number (SGTIN)

■ Serial Shipping Container Code (SSCC)

■ Global Location Number (GLN) and Serializable Global Location Number (SGLN)

■ Global Returnable Asset Identifier (GRAI)

■ Global Individual Asset Identifier (GIAI)

■ RFID EPC Network

Electronic Product Code (EPC)
The Electronic Product Code™ (EPC™) is an identification scheme for universally
identifying physical objects using Radio Frequency Identification (RFID) tags and
other means. The standardized EPC data consists of an EPC (or EPC Identifier) that
uniquely identifies an individual object, as well as an optional Filter Value when
judged to be necessary to enable effective and efficient reading of the EPC tags. In
addition to this standardized data, certain classes of EPC tags will allow user-defined
data.

The EPC Identifier is a meta-coding scheme designed to support the needs of various
industries by accommodating both existing coding schemes where possible and
defining new schemes where necessary. The various coding schemes are referred to as
Domain Identifiers, to indicate that they provide object identification within certain
domains such as a particular industry or group of industries. As such, EPC represents
a family of coding schemes (or "namespaces") and a means to make them unique
across all possible EPC-compliant tags.

The EPCGlobal EPC Data Standards Version 1.1 defines the abstract content of the
Electronic Product Code, and its concrete realization in the form of RFID tags, Internet
URIs, and other representations. In EPC Version 1.1, the specific coding schemes
include a General Identifier (GID), a serialized version of the EAN.UCC Global Trade
Item Number (GTIN®), the EAN.UCC Serial Shipping Container Code (SSCC®), the
EAN.UCC Global Location Number (GLN®), the EAN.UCC Global Returnable Asset
Identifier (GRAI®), and the EAN.UCC Global Individual Asset Identifier (GIAI®).

EPC Pure Identity The EPC pure identity is the identity associated with a specific
physical or logical entity, independent of any particular encoding vehicle such as an
RF tag, bar code or database field. As such, a pure identity is an abstract name or
number used to identify an entity. A pure identity consists of the information required
to uniquely identify a specific entity, and no more.

Electronic Product Code (EPC) Concepts

17-24 Oracle Database Advanced Application Developer's Guide

EPC Encoding EPC encoding is a pure identity, together with additional information
such as filter value, rendered into a specific syntax (typically consisting of value fields
of specific sizes). A given pure identity may have a number of possible encodings,
such as a Barcode Encoding, various Tag Encodings, and various URI Encodings.
Encodings may also incorporate additional data besides the identity (such as the Filter
Value used in some encodings), in which case the encoding scheme specifies what
additional data it can hold.

For example, the Serial Shipping Container Code (SSCC) format as defined by the
EAN.UCC System is an example of a pure identity. An SSCC encoded into the EPC-
SSCC 96-bit format is an example of an encoding.

EPC Tag Bit-Level Encoding EPC encoding on a tag is a string of bits, consisting of a
tiered, variable length header followed by a series of numeric fields whose overall
length, structure, and function are completely determined by the header value.

EPC Identity URI The EPC identity URI is a representation of a pure identity as a
Uniform Resource Identifier (URI).

EPC Tag URI Encoding The EPC tag URI encoding represents a specific EPC tag bit-level
encoding, for example, urn:epc:tag:sgtin-64:3.0652642.800031.400.

EPC Encoding Procedure The EPC encoding procedure is used to generate an EPC tag
bit-level encoding using various information.

EPC Decoding Procedure The EPC decoding procedure is used to convert an EPC tag
bit-level encoding to an EAN.UCC code.

Global Trade Identification Number (GTIN) and Serializable Global Trade
Identification Number (SGTIN)
A Global Trade Identification Number (GTIN) is used for the unique identification of
trade items worldwide within the EAN.UCC system. The Serialized Global Trade
Identification Number (SGTIN) is a new identity type in EPC standard version1.1. It is
based on the EAN.UCC GTIN code defined in the General EAN.UCC Specifications
[GenSpec5.0]. A GTIN identifies a particular class of object, such as a particular kind of
product or SKU. The combination of GTIN and a unique serial number is called a
Serialized GTIN (SGTIN).

Serial Shipping Container Code (SSCC)
The Serial Shipping Container Code (SSCC) is defined by the General EAN.UCC
Specifications [GenSpec5.0]. The unique identification of logistics units is achieved in
the EAN.UCC system by the use of the SSCC. The SSCC is intended for assignment to
individual objects.

Global Location Number (GLN) and Serializable Global Location Number (SGLN)
The Global Location Number (GLN) is defined by the General EAN.UCC
Specifications [GenSpec5.0]. A GLN can represent either a discrete, unique physical
location such as a dock door or a warehouse slot, or an aggregate physical location
such as an entire warehouse. In addition, a GLN can represent a logical entity such as
an organization that performs a business function (for example, placing an order). The
combination of GLN and a unique serial number is called a Serialized GLN (SGLN).
However, until the EAN.UCC community determines the appropriate way to extend
GLN, the serial number field is reserved and must not be used.

Oracle Tag Data Translation Schema

Using the Identity Code Package 17-25

Global Returnable Asset Identifier (GRAI)
A returnable asset is a reusable package or transport equipment of a certain value.
Global Returnable Asset Identifier is (GRAI) is defined by the General EAN.UCC
Specifications [GenSpec5.0] for the unique identification of a returnable asset.

Global Individual Asset Identifier (GIAI)
The Global Individual Asset Identifier (GIAI) is defined by the General EAN.UCC
Specifications [GenSpec5.0]. Unlike the GTIN, the GIAI is already intended for
assignment to individual objects. Global Individual Asset Identifier (GIAI) is used to
uniquely identify an entity that is part of the fixed inventory of a company. The GIAI
can be used to identify any fixed asset of an organization.

RFID EPC Network
The RFID EPC network is used to identify, track and locate assets. Physical objects are
identified by a unique RFID enabled EPC.

Oracle Tag Data Translation Schema
The Oracle Tag Data Translation Schema is closely related to the EPCglobal TDT
schema, however it is not exact. The Oracle TDT is shown as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="oracle.mgd.idcode"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tdt="oracle.mgd.idcode" elementFormDefault="qualified"
 attributeFormDefault="unqualified" version="1.0">

 <xsd:simpleType name="InputFormatList">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="BINARY"/>
 <xsd:enumeration value="STRING"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="LevelTypeList">
 <xsd:restriction base="xsd:string">
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="SchemeNameList">
 <xsd:restriction base="xsd:string">
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="ModeList">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="EXTRACT"/>
 <xsd:enumeration value="FORMAT"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="CompactionMethodList">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="32-bit"/>
 <xsd:enumeration value="16-bit"/>
 <xsd:enumeration value="8-bit"/>
 <xsd:enumeration value="7-bit"/>
 <xsd:enumeration value="6-bit"/>

Oracle Tag Data Translation Schema

17-26 Oracle Database Advanced Application Developer's Guide

 <xsd:enumeration value="5-bit"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="PadDirectionList">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="LEFT"/>
 <xsd:enumeration value="RIGHT"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="Field">
 <xsd:attribute name="seq" type="xsd:integer" use="required"/>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="bitLength" type="xsd:integer"/>
 <xsd:attribute name="characterSet" type="xsd:string" use="required"/>
 <xsd:attribute name="compaction" type="tdt:CompactionMethodList"/>
 <xsd:attribute name="compression" type="xsd:string"/>
 <xsd:attribute name="padChar" type="xsd:string"/>
 <xsd:attribute name="padDir" type="tdt:PadDirectionList"/>
 <xsd:attribute name="decimalMinimum" type="xsd:long"/>
 <xsd:attribute name="decimalMaximum" type="xsd:long"/>
 <xsd:attribute name="length" type="xsd:integer"/>
 </xsd:complexType>

 <xsd:complexType name="Option">
 <xsd:sequence>
 <xsd:element name="field" type="tdt:Field" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="optionKey" type="xsd:string" use="required"/>
 <xsd:attribute name="pattern" type="xsd:string"/>
 <xsd:attribute name="grammar" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="Rule">
 <xsd:attribute name="type" type="tdt:ModeList" use="required"/>
 <xsd:attribute name="inputFormat" type="tdt:InputFormatList" use="required"/>
 <xsd:attribute name="seq" type="xsd:integer" use="required"/>
 <xsd:attribute name="newFieldName" type="xsd:string" use="required"/>
 <xsd:attribute name="characterSet" type="xsd:string" use="required"/>
 <xsd:attribute name="padChar" type="xsd:string"/>
 <xsd:attribute name="padDir" type="tdt:PadDirectionList"/>
 <xsd:attribute name="decimalMinimum" type="xsd:long"/>
 <xsd:attribute name="decimalMaximum" type="xsd:long"/>
 <xsd:attribute name="length" type="xsd:string"/>
 <xsd:attribute name="function" type="xsd:string" use="required"/>
 <xsd:attribute name="tableURI" type="xsd:string"/>
 <xsd:attribute name="tableParams" type="xsd:string"/>
 <xsd:attribute name="tableXPath" type="xsd:string"/>
 <xsd:attribute name="tableSQL" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="Level">
 <xsd:sequence>
 <xsd:element name="option" type="tdt:Option" minOccurs="1"
 maxOccurs="unbounded"/>
 <xsd:element name="rule" type="tdt:Rule" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="tdt:LevelTypeList" use="required"/>

Oracle Tag Data Translation Schema

Using the Identity Code Package 17-27

 <xsd:attribute name="prefixMatch" type="xsd:string"/>
 <xsd:attribute name="requiredParsingParameters" type="xsd:string"/>
 <xsd:attribute name="requiredFormattingParameters" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="Scheme">
 <xsd:sequence>
 <xsd:element name="level" type="tdt:Level" minOccurs="4" maxOccurs="5"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="tdt:SchemeNameList" use="required"/>
 <xsd:attribute name="optionKey" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="TagDataTranslation">
 <xsd:sequence>
 <xsd:element name="scheme" type="tdt:Scheme" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="version" type="xsd:string" use="required"/>
 <xsd:attribute name="date" type="xsd:dateTime" use="required"/>
 </xsd:complexType>
 <xsd:element name="TagDataTranslation" type="tdt:TagDataTranslation"/>
</xsd:schema>

Oracle Tag Data Translation Schema

17-28 Oracle Database Advanced Application Developer's Guide

Multithreaded extproc Agent A-1

A
Multithreaded extproc Agent

This appendix explains what the multithreaded extproc agent is, how it contributes
to the overall efficiency of a distributed database system, and how to administer it.

Topics:

■ Why Use the Multithreaded extproc Agent?

■ Multithreaded extproc Agent Architecture

■ Administering the Multithreaded extproc Agent

Why Use the Multithreaded extproc Agent?
This section explains how the multithreaded extproc agent contributes to the
efficiency of external procedures.

Topics:

■ The Challenge of Dedicated Agent Architecture

■ The Advantage of Multithreading

The Challenge of Dedicated Agent Architecture
By default, an extproc agent is started for each user session and the extproc agent
process terminates only when the user session ends.

This architecture can consume an unnecessarily large amount of system resources. For
example, suppose that several thousand user sessions simultaneously spawn extproc
agent processes. Because an extproc agent process is started for each session, several
thousand extproc agent processes are running concurrently. The extproc agent
processes operate regardless of whether each individual extproc agent process is
active at the moment. Thus extproc agent processes and open connections can
consume a disproportionate amount of system resources. When sessions connect to the
Oracle database server, this problem is addressed by starting the server in shared
server mode. Shared server mode allows database connections to be shared by a small
number of server processes.

The Advantage of Multithreading
The Oracle shared server architecture assumes that even when several thousand user
sessions are open, only a small percentage of these connections are active at any given
time. In shared server mode, there is a pool of shared server processes. User sessions
connect to dispatcher processes that place the requested tasks in a queue. The tasks are

Multithreaded extproc Agent Architecture

A-2 Oracle Database Advanced Application Developer's Guide

picked up by the first available shared server processes. The number of shared server
processes is usually less that the number of user sessions.

The multithreaded extproc agent provides similar functionality for connections to
external procedures. The multithreaded extproc agent architecture uses a pool of
shared agent threads. The tasks requested by the user sessions are put in a queue and
are picked up by the first available multithreaded extproc agent thread. Because only
a small percentage of user connections are active at a given moment, using a
multithreaded extproc architecture allows more efficient use of system resources.

Multithreaded extproc Agent Architecture
One multithreaded extproc agent must be started for each system identifier (SID)
before attempting to connect to the external procedure. This is done using the agent
control utility agtctl. This utility is also used to configure the agent and to shut
down the agent.

Each Oracle Net listener that is running on a system listens for incoming connection
requests for a set of SIDs. If the SID in an incoming Oracle Net connect string is one of
the SIDs for which the listener is listening, then that listener processes the connection.
Further, if a multithreaded extproc agent was started for the SID, then the listener
passes the request to that extproc agent.

In the architecture for multithreaded extproc agents, each incoming connection
request is processed by different kinds of threads:

■ A single monitor thread. The monitor thread is responsible for the following:

– Maintaining communication with the listener

– Monitoring the load on the process

– Starting and stopping threads when required

■ Several dispatcher threads. The dispatcher threads are responsible for the
following:

– Handling communication with the Oracle server

– Passing task requests to the task threads

■ Several task threads. The task threads handle requests from the Oracle processes.

Figure A–1 illustrates the architecture of the multithreaded extproc agent. User
sessions 1 and 2 issue requests for callouts to functions in some DLLs. These requests
get serviced through heterogeneous services to the multithreaded extproc agent.
These requests get handled by the agent's dispatcher threads, which then pass them on
to the task threads. The task thread that is actually handling a request is responsible
for loading the respective DLL and calling the function therein.

■ All requests from a user session get handled by the same dispatcher thread. For
example, dispatcher 1 handles communication with user session 1, and
dispatcher 2 handles communication with user session 2. This is the case for the
lifetime of the session.

■ The individual requests can, however, be serviced by different task threads. For
example, task thread 1 can handle the request from user session 1 at one time, and
handle the request from user session 2 at another time.

See Also: Oracle Database Administrator's Guide. for details on
managing processes for external procedures

Multithreaded extproc Agent Architecture

Multithreaded extproc Agent A-3

Figure A–1 Multithreaded extproc Agent Architecture

These three thread types roughly correspond to the Oracle multithreaded server
PMON, dispatcher, and shared server processes, respectively.

The following sections explain each type of thread in more detail:

■ Monitor Thread

■ Dispatcher Threads

■ Task Threads

Monitor Thread
When the agent control utility agtctl starts a multithreaded extproc agent for a
SID, agtctl creates the monitor thread. The monitor thread performs the following
functions:

■ Creates the dispatcher and task threads.

■ Registers the dispatcher threads with all the listeners that are handling
connections to this extproc agent. While the dispatcher for this SID is running,

Note: All requests from a user session go through the same
dispatcher thread, but can be serviced by different task threads.
Also, several task threads can use the same connection to the
external procedure.

See Also: "Administering the Multithreaded extproc Agent" on
page A-4 for more information about starting and stopping the
multithreaded exproc agent by using the agent control utility
agtctl

HS

Dispatcher
Thread 1

Task
Thread 2

Oracle
Server

User-Session
1

HS

Dispatcher
Thread 2

Task
Thread 3

Oracle
Server

User-Session
2

Agent
Process

Task
Thread 1

DLLs

Administering the Multithreaded extproc Agent

A-4 Oracle Database Advanced Application Developer's Guide

the listener does not start a new process when it gets an incoming connection.
Instead, the listener gives the connection to this same dispatcher.

■ Monitors the other threads and sends load information about the dispatcher
threads to all the listener processes handling connections to this extproc agent.
This enables the listeners to give incoming connections to the least loaded
dispatcher.

■ Continues to monitor each of the threads it has created.

Dispatcher Threads
Dispatcher threads perform the following functions:

■ Accept incoming connections and task requests from Oracle servers.

■ Place incoming requests on a queue for a task thread to pick up.

■ Send results of a request back to the server that issued the request.

Task Threads
Task threads perform the following functions:

■ Pick up requests from a queue.

■ Perform the necessary operations.

■ Place the results on a queue for a dispatcher to pick up.

Administering the Multithreaded extproc Agent
One multithreaded extproc agent must be started for each system identifier (SID)
before attempting to connect to the external procedure.

A multithreaded extproc agent is started, stopped, and configured by an agent
control utility called agtctl, which works like lsnrctl. However, unlike lsnrctl,
which reads a configuration file (listener.ora), agtctl takes configuration
information from the command line and writes it to a control file.

Topics:

■ Agent Control Utility (agtctl) Commands

■ Using agtctl in Single-Line Command Mode

■ Using Shell Mode Commands

■ Configuration Parameters for Multithreaded extproc Agent Control

Agent Control Utility (agtctl) Commands
You can start and stop agtctl and create and maintain its control file by using the
commands shown in Table A–1.

Note: After a user session establishes a connection with a
dispatcher, all requests from that user session go to the same
dispatcher until the end of the user session.

Administering the Multithreaded extproc Agent

Multithreaded extproc Agent A-5

These commands can be issued in one of two ways:

■ You can issue commands from the UNIX or DOS shell. This mode is called
single-line command mode.

■ You can enter agtctl and an AGTCTL> prompt appears. You then can enter
commands from within the agtctl shell. This mode is called shell mode.

The syntax and parameters for agtctl commands depend on the mode in which they
are issued.

Using agtctl in Single-Line Command Mode
This section describes the use of agtctl commands. They are presented in single-line
command mode.

Setting Configuration Parameters for a Multithreaded extproc Agent
Set the configuration parameters for a multithreaded extproc agent before you start
the agent. If a configuration parameter is not specifically set, a default value is used.
Configuration parameters and their default values are shown in Table A–2.

Use the set command to set multithreaded extproc agent configuration parameters.

Syntax
agtctl set parameter parameter_value agent_sid

Table A–1 Agent Control Utility (agtctl) Commands

Command Description

startup Starts a multithreaded extproc agent

shutdown Stops a multithreaded extproc agent

set Sets a configuration parameter for a multithreaded extproc agent

unset Causes a parameter to revert to its default value

show Displays the value of a configuration parameter

delete Deletes the entry for a particular SID from the control file

exit Exits shell mode

help Lists available commands

Note:

■ All commands are case-sensitive.

■ The agent control utility puts its control file in either the
directory pointed to by the AGTCTL_ADMIN environment
variable or in the directory pointed to by the TNS_ADMIN
environment variable. Ensure that at least one of these
environment variables is set and that it points to a directory to
which the agent has access.

■ If the multithreaded extproc agent requires an environment
variable to be set, or if the ENVS parameter was used when
configuring the listener.ora entry for the agent working in
dedicated mode, then all required environment variables must
be set in the UNIX or DOS shell that runs the agtctl utility.

Administering the Multithreaded extproc Agent

A-6 Oracle Database Advanced Application Developer's Guide

parameter is the parameter that you are setting.

parameter_value is the value being assigned to that parameter.

agent_sid is the SID that this agent will service. This must be specified for
single-line command mode.

Example
agtctl set max_dispatchers 5 salesDB

Starting a Multithreaded extproc Agent
Use the startup command to start a multithreaded extproc agent.

Syntax
agtctl startup extproc agent_sid

agent_sid is the SID that this multithreaded extproc agent will service. This must
be specified for single-line command mode.

Example
agtctl startup extproc salesDB

Shutting Down a Multithreaded extproc Agent
Use the shutdown command to stop a multithreaded extproc agent. There are three
forms of shutdown:

■ Normal (default)

agtctl asks the multithreaded extproc agent to terminate itself gracefully. All
sessions complete their current operations and then shut down.

■ Immediate

agtctl tells the multithreaded extproc agent to terminate immediately. The
agent exits immediately regardless of the state of current sessions.

■ Abort

Without talking to the multithreaded extproc agent, agtctl issues a system call
to kill it.

Syntax
agtctl shutdown [immediate|abort] agent_sid

agent_sid is the SID that the multithreaded extproc agent services. It must be
specified for single-line command mode.

Example
agtctl shutdown immediate salesDB

Examining the Value of Configuration Parameters
To examine the value of a configuration parameter, use the show command.

Syntax
agtctl show parameter agent_sid

Administering the Multithreaded extproc Agent

Multithreaded extproc Agent A-7

parameter is the parameter that you are examining.

agent_sid is the SID that this multithreaded extproc agent will service. This must
be specified for single-line command mode.

Example
agtctl show max_dispatchers salesDB

Resetting a Configuration Parameter to Its Default Value
You can reset a configuration parameter to its default value using the unset
command.

Syntax
agtctl unset parameter agent_sid

parameter is the parameter that you are resetting (or changing).

agent_sid is the SID that this multithreaded extproc agent services. It must be
specified for single-line command mode.

Example
agtctl unset max_dispatchers salesDB

Deleting an Entry for a Specific SID from the Control File
The delete command deletes the entry for the specified SID from the control file.

Syntax
agtctl delete agent_sid

agent_sid is the SID entry to delete.

Example
agtctl delete salesDB

Requesting Help
Use the help command to view a list of available commands for agtctl or to see the
syntax for a particular command.

Syntax
agtctl help [command]

command is the name of the command whose syntax you want to view. The default is
all agtctl commands.

Example
agtctl help set

Using Shell Mode Commands
In shell mode, start agtctl by entering the following:

agtctl

Administering the Multithreaded extproc Agent

A-8 Oracle Database Advanced Application Developer's Guide

This results in the prompt AGTCTL>. Thereafter, because you are issuing commands
from within the agtctl shell, you do not need to prefix the command string with
agtctl.

Set the name of the agent SID by entering the following:

AGTCTL> set agent_sid agent_sid

All subsequent commands are assumed to be for the specified SID until the agent_
sid value is changed. Unlike single-line command mode, you do not specify agent_
sid in the command string.

You can set the language for error messages as follows:

AGTCTL> set language language

The commands themselves are the same as those for the single-line command mode.
To exit shell mode, enter exit.

The following are examples of shell mode commands.

Example: Setting a Configuration Parameter
This example sets a new value for the shutdown_address configuration parameter.

AGTCTL> set shutdown_address (address=(protocol=ipc)(key=oraDBsalesDB))

Example: Starting a Multithreaded extproc Agent
This example starts a multithreaded extproc agent.

AGTCTL> startup extproc

Configuration Parameters for Multithreaded extproc Agent Control
Table A–2 lists the configuration parameters for the agent control utility.

Table A–2 Initialization Parameters for agtctl

Parameter Description Default Value

max_dispatchers Maximum number of
dispatchers

1

tcp_dispatchers Number of dispatchers listening
on TCP (the rest are using IPC)

0

max_task_threads Number of task threads 2

Administering the Multithreaded extproc Agent

Multithreaded extproc Agent A-9

max_sessions Maximum number of sessions 5

listener_address Address on which the listener is
listening (needed for
registration)

(ADDRESS_LIST=
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=PNPKEY))
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=listener_sid))
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=127.0.0.1)
 (PORT=1521)))

Note: listener_sid is the IPC key of the address, on
the Oracle database, on which the listener is listening.

shutdown_address Address the agent uses to
communicate with the listener.
This is the address on which the
agent listens for all
communication, including
shutdown messages from
agtctl.

(ADDRESS=
 (PROTOCOL=IPC)
 (KEY=listener_sid || agent_sid))
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=127.0.0.1)
 (PORT=1521))

Notes:

■ agent_sid is the SID of the multithreaded
extproc agent.

■ || indicates that listener_sid and agent_sid
are concatenated into one string.

Table A–2 (Cont.) Initialization Parameters for agtctl

Parameter Description Default Value

Administering the Multithreaded extproc Agent

A-10 Oracle Database Advanced Application Developer's Guide

Index-1

Index

Symbols
%ROWTYPE attribute, 7-6
%TYPE attribute, 7-6

Numerics
32-bit IEEE 754 format, 3-5
64-bit IEEE 754 format, 3-5

A
Active Server Pages (ASP), 11-3
addresses of rows, 3-23
Advanced Queuing (AQ), publish-subscribe model

and, 16-3
advantages of PL/SQL, 1-4
agent, definition of, in publish-subscribe model, 16-3
aggregate functions, 7-47
agtctl, A-2, A-4

commands, A-5
shell mode commands, A-8
single-line command mode, A-5

altering constraints, 6-18
altering subprograms, 7-9
anonymous blocks, 7-2
AnyData datatype, 3-19
AnyDataSet datatype, 3-19
AnyType datatype, 3-19
AP (application program), 15-4
application program (AP), 15-4
AQ (Oracle Advanced Queuing), publish-subscribe

model and, 16-3
archives, 13-15
ARGn datatype, 3-28
arithmetic operations

with date and time datatypes, 3-14
with native floating-point datatypes, 3-10

ASP (Active Server Pages), 11-3
assignments

datatype conversion during, 3-26
reported by PL/Scope, 8-6

attributes
Java STATIC class, 7-37
type, 7-6

Automatic Undo Management system, 13-1

autonomous routines, 2-23
autonomous transactions, 2-23
AUTONOMOUS_TRANSACTION pragma, 2-23

B
backward compatibility

LONG and LONG RAW datatypes for, 3-2
RESTRICT_REFERENCES pragma for, 7-38

base-10 numbers, 3-7
base-2 numbers, 3-7
BATCH option for redo information, 2-4
BFILE datatype, 3-17
binary large objects, 3-17
binary numbers, 3-7
binary ROWID datatype, 3-25
BINARY_DOUBLE datatype, 3-5, 3-12
BINARY_FLOAT datatype, 3-5, 3-12
binding, bulk

overview of, 7-14
when to use, 7-14

BLOB datatype, 3-17
blocks, anonymous, 7-2
bodies of packages, 7-10
branches, 15-3
built-in functions

display types of, 3-28
in regular expressions, 4-2
metadata for, 3-27

bulk binding
overview of, 7-14
when to use, 7-14

C
C external subprograms

global variables in, 14-41
interface between PL/SQL and, 14-10
invoking, 14-30
loading, 14-4
passing parameters to, 14-15
service routines and, 14-31

call specifications
for external subprograms, 14-3
locations of, 14-12

CALL statement, 14-27

Index-2

callback procedures
C, 14-37

calling subprograms
from subprograms, 7-28
see invoking subprograms
through embedded PL/SQL gateway, 10-18

canceling cursors, 2-8
century in date format, 3-14
changing

see altering
CHAR datatype

columns, specifying length of, 3-3
compared to VARCHAR2 datatype, 3-3

character datatypes, 3-2
character large objects, 3-17
character literals

delimiters for, 3-5
in SQL statements, 3-4
national, 3-4
Unicode, 3-5

character sets, PL/SQL Server Pages and, 11-7
CHECK constraints

compared to NOT NULL constraints, 6-13
designing, 6-13
multiple, 6-13
naming, 6-15
restrictions on, 6-12
when to use, 6-12

child tables, 6-8
class attributes, Java STATIC, 7-37
client in publish-subscribe model

definition of, 16-3
notifying, 16-3

client/server model, 1-1
CLOB datatype, 3-17
clusters, creating indexes for, 5-2
collections, 1-5

DML statements that reference, 7-14
FOR loops that reference, 7-15
SELECT statements that reference, 7-15

columns
default values for

setting, 6-4
when to use, 6-3

multiple foreign key constraints on, 6-9
specifying length of, 3-3

comments in PL/SQL Server Pages, 11-12
COMMIT statement, 2-2, 2-5
COMMIT_WRITE initialization parameter, 2-3
comparison operators for native floating-point

datatypes, 3-10
compile-time errors, 7-19
composite FOREIGN KEY constraints, 6-6

matching rules for, 6-8
composite indexes, column order in, 5-4
concurrency, 2-16
conditional expressions, representing as data, 3-22
conditions in regular expressions, 4-2
configuring database for Flashback Technology, 13-3
connection pools, 1-18

consistent reads, 2-6, 2-9
constraints, 6-1

altering, 6-18
CHECK

see CHECK constraints
deferring checking of, 6-9
defining

privileges needed for, 6-15
with ALTER TABLE statement, 6-14
with CREATE TABLE statement, 6-14

disabled, definition of, 6-15
disabling

existing, 6-17
new, 6-16
reasons for, 6-16

dropping, 6-19
enabled, definition of, 6-15
enforcing business rules with, 6-2
exceptions to, 6-17
existing

disabling, 6-17
enabling, 6-17

FOREIGN KEY
see FOREIGN KEY constraints

minimizing overhead of, 6-11
naming, 6-15
new

disabling, 6-16
enabling, 6-16

NOT NULL
see NOT NULL constraints

on views, 6-6
PRIMARY KEY

see PRIMARY KEY constraints
renaming, 6-18
UNIQUE

see UNIQUE constraints
viewing definitions of, 6-21
violating, 6-17

Continuous Query Notification (CQN), 12-1
controlling side effects of functions, 7-35
conversion of datatypes

see datatype conversion
converting datatypes

see datatype conversion
coupling, 15-4
CQ_NOTIFICATION$_DESCRIPTOR objects, 12-25,

12-26
CQ_NOTIFICATION$_REG_INFO objects, 12-19
CQ_NOTIFICATION$_ROW objects, 12-27
CQN (Continuous Query Notification), 12-1
creating indexes

examples of, 5-5
for clusters, 5-2
for tables, 5-2
privileges needed for, 5-1
temporary table space for, 5-2
with SQL*Loader, 5-3

creating packages, 7-12
creating subprograms, 7-8

Index-3

cross-session PL/SQL function result cache, 7-10
current date and time, displaying, 3-13
cursor variables, 7-17

declaring, 7-17
examples of, 7-17
opening, 7-17

cursors, 2-7
canceling, 2-8
closing, 2-8
maximum number for session, 2-7
pointers to, 7-17
scrollable, 1-18
with Oracle XA applications, 15-11
see also cursor variables

D
data integrity

see constraints
database event publication framework

definition of, in publish-subscribe model, 16-4
database events

publish-subscribe model and, 16-2
database links

Oracle XA and, 15-21
datatype conversion, 3-25

ANSI datatypes, 3-21
ANSI/ISO datatypes, 3-21
date and time datatypes, 3-15
DB2 datatypes, 3-21
during assignments, 3-26
during expression evaluation, 3-27
LONG RAW datatype, 3-17
native floating-point datatypes, 3-11
RAW datatype, 3-17
SQL/DS datatypes, 3-21

datatypes, 3-1
ANSI/ISO, 3-21
character, 3-2
conversion of

see datatype conversion
converting

see datatype conversion
date and time, 3-12
DB2, 3-21
families of, 3-28
floating-point, 3-5, 3-6
native floating point, 3-6

representing special values, 3-8
rounding, 3-7, 3-10

numeric, 3-5
of formal subprogram parameters, 7-6
overview of, 3-1
rowid, 3-23
SQL/DS, 3-21

date
changing default format of, 3-14

date and time
displaying current, 3-13

date and time datatypes, 3-12

arithmetic operations with, 3-14
converting, 3-15

DATE datatype, 3-12
DBMS_DEBUG package, 7-26
DBMS_DEBUG_JDWP package, 7-26
DBMS_FLASHBACK package, 13-12
DBMS_FLASHBACK.TRANSACTION_BACKOUT

procedure, 13-13
DBMS_HPROF.START_PROFILING procedure, 9-2
DBMS_HPROF.STOP_PROFILING procedure, 9-2
DBMS_LOCK package, 2-14
DBMS_OUTPUT package

using to debug subprograms, 7-25
DBMS_STATS package and Flashback Query, 13-22
DBMS_TYPES package, 3-19
DBMS_XA package, 15-16
deadlocks

undetected, 2-14
debugging

subprograms, 7-24
debugging external subprograms, 14-40
debugging PL/SQL Server Pages, 11-20
decimal numbers, 3-7
default column values

setting, 6-4
when to use, 6-3

default values
of subprogram parameters, 7-7

remote subprograms and, 7-30
deferring constraint checks, 6-9
definer’s-rights subprograms, 7-28
denormal floating-point numbers, 3-8
DESC keyword, 5-8
DETERMINISTIC functions, 7-36

indexes and, 5-8
disabled constraints, 6-15
disabling constraints

existing, 6-17
new, 6-16
reasons for, 6-16

dispatcher threads
multithreaded Heterogeneous Services

agents, A-2
Display types of built-In functions, 3-28
distributed databases

FOREIGN KEY constraints and, 6-12
distributed queries

flashback features, 13-22
run-time errors in, 7-23

distributed transaction, 15-3
distributed updates, 7-31
DML statements

bulk binding for, 7-14
parallel, 7-37
that reference collections, 7-14

DML_LOCKS initialization parameter, 2-9
domain indexes, 5-6
DOUBLE datatype, 3-12
DROP INDEX statement, 5-5
dropping constraints, 6-19

Index-4

dropping indexes, 5-5
dropping packages, 7-9
dropping subprograms, 7-9
DTP

see X/Open Distributed Transaction Architecture
dynamic registration, 15-4
dynamic SQL statements

RNDS option and, 7-40
dynamically typed data

representing, 3-19

E
Electronic Product Code (EPC), 17-23
embedded PL/SQL gateway, 10-3, 10-5
enabled constraints

, definition of, 6-15
enabling constraints

existing, 6-17
new, 6-16

encoding schemes
adding, 17-13

enforcing business rules
with application logic, 6-2
with constraints, 6-2

environments, programmatic, 1-1
EPC (Electronic Product Code), 17-23
errors

compile-time
see compile-time errors, 7-19

in multilanguage programs, 14-31
run-time

see run-time errors
script, 11-7

events
database

see database events
exceptions

IEEE 754
not raised, 3-9
raised during conversion, 3-11

in multilanguage programs, 14-31
to constraints, 6-17
unhandled, 7-23
user-defined

see user-defined exceptions
exclusive locks

LOCK TABLE statement, 2-12
EXCLUSIVE MODE option of LOCK TABLE

statement, 2-12
executing external subprograms, 14-27
execution

native
see native execution

resuming
after storage allocation error, 2-30

exporting date and time datatypes, 3-15
EXPR datatype, 3-28
expressions

conditional

representing as data, 3-22
evaluation of

datatype conversion during, 3-27
indexes built on

see function-based indexes
PL/SQL Server Pages and, 11-11
regular

see regular expressions
extended ROWID datatype, 3-24
external binary ROWID datatype, 3-25
external large objects, 3-17
external subprograms, 14-1

call specifications for, 14-3
debugging, 14-40
definition of, 14-2
executing, 14-27
loading, 14-3
publishing, 14-8

external transaction manager, 15-3
extproc agent, A-1

F
families of datatypes, 3-28
features, new, xxiii
FIXED_DATE initialization parameter, 3-13
Flashback Data Archive, 13-15
Flashback Query, 13-5

DBMS_STATS package, 13-22
Flashback Technology, 13-1

application development features, 13-2
configuring database for, 13-3
database administration features, 13-3
overview of, 13-1
performance guidelines for, 13-22

Flashback transaction backout, 13-13
Flashback Transaction Query, 13-9
Flashback Version Query, 13-7
FLASHBACK_TRANSACTION_QUERY view, 13-9
FLOAT datatype, 3-12
floating-point datatypes, 3-5, 3-6
FOR loops

bulk binding for, 7-15
that reference collections, 7-15

FOR UPDATE clause of SELECT statement
see SELECT FOR UPDATE statement

FOREIGN KEY constraints, 6-20
composite, 6-6

matching rules for, 6-8
distributed databases and, 6-12
dropping, 6-19
indexing, 6-11
multiple, 6-9
naming, 6-15
NOT NULL constraints on, 6-8, 6-9
NULL values and, 6-8
privileges needed to create, 6-20
types of referential integrity enforced by, 6-21
UNIQUE constraints on, 6-9
without other constraints, 6-8

Index-5

foreign key constraints
enabling, 6-20

foreign keys
see FOREIGN KEY constraints

foreign rowids, 3-25
formal subprogram parameters

datatypes of, 7-6
function result cache, 7-10
function-based indexes, 5-6

examples of, 5-9
functions

aggregate, 7-47
built-in

metadata for, 3-27
see built-in functions

controlling side effects of, 7-35
DETERMINISTIC, 7-36
invoking from SQL statements, 7-32
OCI and OCCI, 1-21
overloading packaged, 7-41
PARALLEL_ENABLE, 7-36
purity of, 7-35
result-cached, 7-10
returning large amounts of data from, 7-46
SQL

see built-in functions
see also subprograms

G
gateway

PL/SQL, 10-2
embedded, 10-3, 10-5

Geographic Information System (GIS) data, 3-16
GIS data, 3-16
global transaction, 15-3
global variables

in C external subprograms, 14-41

H
hierarchical profiler, 9-1
HTML, 11-3

I
IA-32 and IA-64 instruction set architecture, 3-10
identifiers

collecting data about, 8-1
Identity Code Package, 17-1
identity codes

defining, 17-13
IEEE 754

exceptions
not raised, 3-9
raised during conversion, 3-11

OCI support for, 3-12
representing special values, 3-8

IEEE 754 format, 3-5
IMMEDIATE option for redo information, 2-4
importing date and time datatypes, 3-15

IN OUT subprogram parameter mode, 7-5
IN subprogram parameter mode, 7-5
indexes, 5-1

application-specific, 5-1
composite

column order in, 5-4
creating

examples of, 5-5
for clusters, 5-2
for tables, 5-2
privileges needed for, 5-1
temporary table space for, 5-2
with SQL*Loader, 5-3

domain, 5-6
dropping, 5-5
function-based, 5-6

examples of, 5-9
overhead for, 5-4
statistics for, 5-5
where to put, 5-3

indexing
MGD_ID columns, 17-10

indexing foreign keys, 6-11
infinity, 3-9
initialization parameters

DML_LOCKS, 2-9
FIXED_DATE, 3-13
OPEN_CURSORS, 2-7

integration of PL/SQL with Oracle Database, 1-4
integrity of data

see constraints
interfaces, user, 1-2

stateful and stateless, 1-2
INTERVAL DAY TO SECOND datatype, 3-13
INTERVAL YEAR TO MONTH datatype, 3-13
invoker’s-rights subprograms, 7-28
invoking subprograms, 7-27

from 3GL applications, 7-29
from triggers, 7-28
interactively from Oracle Database tools, 7-29

isolation level of serializable transaction, 2-19

J
Java

compared to PL/SQL, 1-32
Java class methods

calling, 14-30
interface between PL/SQL and, 14-10
loading, 14-4
publishing, 14-11

Java Database Connectivity (JDBC), 1-7
Java Server Pages (JSP), 11-3
Java STATIC class attributes, 7-37
Java support, 1-6
Java Virtual Machine (JVM), 1-7
JavaScript, 11-3, 11-19
JDBC

compared to SQLJ, 1-12
stored subprograms and triggers, 1-15

Index-6

JDBC (Java Database Connectivity), 1-7
JDBC 2.0 sample program, 1-9
JDBC in SQLJ applications, 1-11
JDBC OCI driver, 1-8
JDBC pre-2.0 sample program, 1-10
JDBC server-side internal driver, 1-9
JDBC standards, Oracle Database extensions to, 1-9
JDBC thin driver, 1-8
JPublisher

overview of, 1-13
JVM (Java Virtual Machine), 1-7

K
KEEP INDEX clause, 6-11
keys

foreign, 6-20
see FOREIGN KEY constraints

primary
see PRIMARY KEY constraints

referential integrity
see FOREIGN KEY constraints

unique
see UNIQUE constraints

L
large objects, 3-16
LGWR (log writer process), 2-3
lightweight queue

definition of, in publish-subscribe model, 16-3
literals

character
delimiters for, 3-5
in SQL statements, 3-4
national, 3-4
Unicode, 3-5

loading external subprograms, 14-3
C, 14-4
Java class methods, 14-4

loading PL/SQL Server Pages, 11-13
loadpsp utility, 11-13
LOB datatypes, 3-16

OO40 support for, 1-29
LOCK TABLE statement, 2-10
locking rows explicitly, 2-13
locking tables

explicitly, 2-8
implicitly, 2-13

log writer process (LGWR), 2-3
logical rowids, 3-25
LONG RAW Datatype, 3-17
LONG RAW datatype

converting, 3-17
loops

FOR
see FOR loops

loose coupling, 15-4
LOWER function, 5-8

M
main transaction, 2-23
manageability, 1-5
matching rules

for composite FOREIGN KEY constraints, 6-8
metacharacters

in regular expressions, 4-4
POSIX, 4-4

metadata for built-in functions, 3-27
MGD_ID database object type, 17-1, 17-5
MGD_ID database object type functions, 17-11
mod_plsql module, 10-2
MODIFY CONSTRAINT clause, 6-18
modifying

see altering
monitor thread

multithreaded Heterogeneous Services
agents, A-2

multilanguage programs, 14-1
errors and exceptions in, 14-31

multilingual extensions to POSIX standard, 4-7
multimedia data, 3-16
multithreaded extproc agent, A-1
multithreaded Heterogeneous Services agents

dispatcher threads, A-2
monitor thread, A-2
task threads, A-2

N
naming packages, 7-13
naming subprograms, 7-4
NaN (not a number), 3-9
national character large objects, 3-17
national character literals, 3-4
native execution

compiling subprograms for, 7-16
native floating-point datatypes, 3-6

arithmetic operations with, 3-10
converting, 3-11
representing special values, 3-8
rounding, 3-7, 3-10

NCLOB datatype, 3-17
negative infinity, 3-9
negative zero, 3-9
new features, xxiii
NLSSORT function, 5-8
NO WAIT option of LOCK TABLE statement, 2-10
nonpersistent queue

definition of, in publish-subscribe model, 16-3
normalized floating-point numbers, 3-8
NOT NULL constraint

when to use, 6-2
NOT NULL constraints

compared to CHECK constraints, 6-13
naming, 6-15
on FOREIGN KEY constraints, 6-8, 6-9

notifications, client
publish-subscribe model and, 16-3

NOWAIT option of COMMIT statement and

Index-7

COMMIT_WRITE initialization parameter, 2-3
NULL values

FOREIGN KEY constraints and, 6-8
NUMBER datatype, 3-5
numbers

binary (base 2), 3-7
decimal (base 10), 3-7
rounding, 3-7

numeric datatypes, 3-5

O
object change notification, 12-2
object types, 1-5
object-oriented programming support, 1-5
objects

CQ_NOTIFICATION$_DESCRIPTOR, 12-25
CQ_NOTIFICATION$_REG_INFO, 12-19
CQ_NOTIFICATION$_ROW, 12-27
large, 3-16
remote, 7-30
size limits for PL/SQL stored, 7-12

OCCI
application building, 1-22
kinds of functions in, 1-21
overview of, 1-20
procedural and nonprocedural elements of, 1-21

OCI
application building, 1-22
closing cursors, 2-8
compared to precompilers, 1-32
kinds of functions in, 1-21
native floating-point datatypes in, 3-12
overview of, 1-20
procedural and nonprocedural elements of, 1-21
with Oracle XA, 15-12

OCITransCommit function, 2-4
ODC (Oracle Data Control), 1-31
ODP.NET

overview of, 1-23
OO4O

automation server, 1-25
object datatype and LOB support, 1-29
object model, 1-25
overview of, 1-24

OO4O C++ Class Library, 1-31
OPEN_CURSORS initialization parameter, 2-7
operators

comparison
for native floating-point datatypes, 3-10

relational
see comparison operators

optimizer
function-based indexes and, 5-7

ORA_ROWSCN pseudocolumn, 13-11, 13-12
OraAQ object, 1-29
OraAQAgent object, 1-29
OraAQMsg object, 1-29
OraBFILE objects, 1-30
OraBLOB objects, 1-30

Oracle Advanced Queuing (AQ), publish-subscribe
model and, 16-3

Oracle C++ Call Interface
see OCCI

Oracle Call Interface
see OCI

Oracle Data Control (ODC), 1-31
Oracle Data Provider for .NET

overview of, 1-23
Oracle Database

integration of PL/SQL with, 1-4
Oracle Database packages, 7-13

for writing low-level debugging code, 7-26
run-time errors raised by, 7-21

Oracle Expression Filter, 3-22
Oracle JDBC, 1-7

compared to Oracle SQLJ, 1-12
stored subprograms and triggers, 1-15

Oracle JDBC in SQLJ applications, 1-11
Oracle JDBC OCI driver, 1-8
Oracle JDBC server-side internal driver, 1-9
Oracle JDBC thin driver, 1-8
Oracle JDeveloper, 7-25

definition of, 1-12
Oracle JPublisher

overview of, 1-13
Oracle JVM, 1-7
Oracle Lock Management services, 2-14
Oracle Multimedia, 3-16
Oracle OBJECT

native floating-point datatypes in, 3-12
Oracle Objects for OLE

see OO4O
Oracle programmatic environments, 1-1
Oracle RAC

Oracle XA and, 15-22
Oracle SQLJ

benefits of, 1-12
compared to Oracle JDBC, 1-12
overview of, 1-11
server subprograms, 1-13

Oracle Text, 3-18
Oracle XA, 15-1
Oracle XA library, 15-5
OraCLOB objects, 1-30
OraDatabase object, 1-27
OraDynaset object, 1-28
OraField object, 1-28
OraMDAttribute object, 1-28
OraMetaData object, 1-28
OraParamArray object, 1-28
OraParameter object, 1-28
OraParameters collection, 1-28
OraServer object, 1-27
OraSession object, 1-27
OraSQLStmt object, 1-29
OUT subprogram parameter mode, 7-5
overloading packaged functions, 7-41
overloading subprogram names, 7-10

Index-8

P
package

definition of, 7-10
package subprogram

definition of, 7-4
packages, 1-6, 7-1, 7-10

advantages of, 7-10
bodies of, 7-10
creating, 7-12
dropping, 7-9
invalidation of, 7-13
naming, 7-13
Oracle Database

see see Oracle Database packages
privileges needed to create, 7-13
privileges needed to drop, 7-13
serially reusable, 7-41
session state and, 7-13
size limits for, 7-12
specifications of, 7-10
states of, 7-41
synonyms for, 7-32

parallel DML statements, 7-37
parallel queries, 7-37
PARALLEL_ENABLE functions, 7-36
parameter modes, 7-5
parameters

initialization
see initialization parameters

subprogram
see subprogram parameters

parent and child tables, 6-20, 6-21
parent tables, 6-8
performance, 1-4
Perl-influenced extensions to POSIX standard, 4-8
persistent and temporary LOB instances, 3-17
persistent queue

definition of, in publish-subscribe model, 16-3
PL/Scope tool, 7-25, 8-1
plshprof utility, 9-13
PL/SQL

canceling cursors with, 2-8
PL/SQL function result cache, 7-10
PL/SQL gateway, 10-2

embedded, 10-3, 10-5
PL/SQL hierarchical profiler, 7-25, 9-1
PL/SQL Server Pages

characteristics of, 11-5
developing, 11-1
elements of, 11-4

PL/SQL Web Toolkit, 1-6, 10-3
pools, connection, 1-18
portability, 1-6
positive infinity, 3-9
positive zero, 3-9
POSIX standard

extensions to
multilingual, 4-7
Perl-influenced, 4-8

in regular expressions, 4-4

metacharacters, 4-4
posting

definition of, in publish-subscribe model, 16-4
pragmas

AUTONOMOUS_TRANSACTION, 2-23
RESTRICT_REFERENCES, 7-38

overloaded package functions and, 7-41
SERIALLY_REUSABLE, 7-41, 7-42

precompilers
compared to OCI, 1-32
with Oracle XA applications, 15-11

PRIMARY KEY constraints, 6-4
dropping, 6-19
naming, 6-15

primary keys
see PRIMARY KEY constraints

privileges
for creating FOREIGN KEY constraints, 6-20
for creating indexes, 5-1
for creating packages, 7-8, 7-13
for creating subprograms, 7-8
for debugging subprograms, 7-25
for defining constraints, 6-15
for dropping packages, 7-9, 7-13
for dropping subprograms, 7-9
for executing subprograms, 7-28

Pro*C/C++
canceling cursors with, 2-8
native floating-point datatypes in, 3-12
overview of, 1-16

Pro*COBOL
overview of, 1-18

procedures
callback

C, 14-37
PL/SQL Server Pages and, 11-8
see also subprograms

product codes, 17-23
productivity, 1-5
profiler, hierarchical, 9-1
program units

overview of, 7-1
stored, 7-4

programmatic environments, 1-1
PSP

see PL/SQL Server Pages
public information, required, 15-4
publishing a message

definition of, in publish-subscribe model, 16-4
publishing C external subprograms, 14-12
publishing external subprograms, 14-8

C, 14-12
Java, 14-11

publish-subscribe model, 16-1
purity of functions, 7-35

Q
Q or q for specifying character-literal delimiter, 3-5
quality-of-service flags, 12-21

Index-9

queries
distributed

run-time errors in, 7-23
parallel, 7-37
registering for Continuous Query

Notification, 12-10
query result change notification, 12-2
queue

definition of, in publish-subscribe model, 16-3
quotation mark

single (’), as character-literal delimiter, 3-5

R
Radio Frequency Identification (RFID)

technology, 17-22
RAISE statement, 7-21
RAISE_APPLICATION_ERROR procedure, 7-20,

7-21
RAW datatype, 3-17

converting, 3-17
read-only transactions, 2-6, 2-9
receiving a message

definition of, in publish-subscribe model, 16-4
redo information, 2-4
redo information for transactions, 2-3
referential integrity keys

see FOREIGN KEY constraints
REGEXP_COUNT function

description, 4-3
REGEXP_INSTR function

description, 4-3
REGEXP_LIKE condition

description, 4-3
REGEXP_REPLACE function

description, 4-3
REGEXP_SUBSTR function

description, 4-3
registering queries for Continuous Query

Notification, 12-10
registration

definition of, in publish-subscribe model, 16-4
dynamic, 15-4
static, 15-4

regular expressions, 4-1
built-in functions in, 4-2
conditions in, 4-2
in SQL statements, 4-10
metacharacters in, 4-4
Oracle implementation of, 4-2
overview of, 4-1
POSIX standard support in, 4-4

relational operators
see comparison operators

remote objects, 7-30
remote queries

flashback features, 13-22
remote subprograms

invoking, 7-30
run-time errors in, 7-23

renaming constraints, 6-18
repeatable reads, 2-6, 2-9
required public information, 15-4
resource manager (RM), 15-3
RESTRICT_REFERENCES pragma, 7-38

overloaded package functions and, 7-41
restricted ROWID datatype, 3-24
result cache, 7-10
resumable storage allocation, 2-30
resuming execution

after storage allocation error, 2-30
RETENTION GUARANTEE clause for undo

tablespace, 13-4
RETENTION option of ALTER TABLE

statement, 13-5
retention period, 2-6
reusable packages, 7-41
RFID (Radio Frequency Identification)

technology, 17-22
RM (resource manager), 15-3
RNDS option of RESTRICT_REFERENCES

pragma, 7-38
static and dynamic SQL statements and, 7-40

RNPS option of RESTRICT_REFERENCES
pragma, 7-38

ROLLBACK statement, 2-5
rolling back transactions, 2-5
rounding numbers, 3-7
routine

autonomous scope
definition, 2-23

routines
see subprograms

ROW EXCLUSIVE MODE option of LOCK TABLE
statement, 2-10

ROW EXCLUSIVE MODE table lock, 2-10
ROW SHARE EXCLUSIVE MODE option of LOCK

TABLE statement, 2-12
ROW SHARE MODE option of LOCK TABLE

statement, 2-10
ROW SHARE MODE table lock, 2-10
ROWID datatype

accessing, 3-24
ROWID pseudocolumn

querying, 3-24
rowids

datatypes of, 3-23
foreign, 3-25
logical, 3-25
universal, 3-25

rows
identifying by address, 3-23
locking explicitly, 2-13

ROWTYPE_MISMATCH exception, 7-19
rule on a queue

definition of, in publish-subscribe model, 16-3
rules engine

definition of, in publish-subscribe model, 16-4
run-time errors, 7-20

in distributed queries, 7-23

Index-10

in remote subprograms, 7-23
raised by Oracle Database packages, 7-21
user-defined

see user-defined exceptions

S
SAVEPOINT statement, 2-5
savepoints, 2-5
scalability, 1-5
scope

autonomous, 2-23
script errors, 11-7
scrollable cursors, 1-18
searchable text, 3-18
security, 1-6
SELECT FOR UPDATE statement, 2-13
SELECT statement

VERSIONS BETWEEN...AND clause, 13-7
with AS OF clause, 13-5

SELECT statements
bulk binding for, 7-15
that reference collections, 7-15

serializable transactions, 2-16
isolation level of, 2-19

serially reusable packages, 7-41
SERIALLY_REUSABLE pragma, 7-41, 7-42
server-side coding, 1-2
service routines

C external subprograms and, 14-31
sessions

packages and, 7-13
SET CONSTRAINTS statement, 6-9
SET TRANSACTION statement, 2-6
SHARE MODE option of LOCK TABLE

statement, 2-11
share row exclusive locks (SRX)

LOCK TABLE statement, 2-12
side effects of functions, controlling, 7-35
single quotation mark (’) as character-literal

delimiter, 3-5
size limits

for PL/SQL stored database objects, 7-12
SKIP LOCKED clause of SELECT FOR UPDATE

statement, 2-14
sorting

with function-based indexes, 5-8
spatial data, 3-16
specifications of packages, 7-10
SQL datatypes

see datatypes
SQL functions

see built-in functions
SQL statements

dynamic
see dynamic SQL statements

invoking PL/SQL functions from, 7-32
static

RNDS option and, 7-40
SQL*Loader

creating indexes with, 5-3
SQL*Plus

compile-time errors and, 7-19
SQLJ

benefits of, 1-12
compared to JDBC, 1-12
overview of, 1-11
server subprograms, 1-13

SQLJ applications, Oracle JDBC in, 1-11
SQLT_BDOUBLE datatype, 3-12
SQLT_BFLOAT datatype, 3-12
SRX locks

LOCK Table statement, 2-12
standalone subprogram

definition of, 7-4
state

web applications and, 10-26
stateful and stateless user interfaces, 1-2
statements

SQL
see SQL statements

states
of packages, 7-41

static registration registration, 15-4
static variables

in C external subprograms, 14-41
statics

for indexes, 5-5
storage allocation

suspended, handling, 2-31
storage allocation errors

resuming execution after, 2-30
stored program units, 7-4

see subprograms and packages
stored subprograms

see subprograms
strings

PL/SQL Server Pages and, 11-11
subnormal floating-point numbers, 3-8
subprogram parameters, 7-4

datatypes of formal, 7-6
default values of, 7-7

remote subprograms and, 7-30
modes of, 7-5
user-defined types as, 7-7

subprograms, 7-1
altering, 7-9
calling

through embedded PL/SQL gateway, 10-18
compiling for native execution, 7-16
creating, 7-8
debugging, 7-24
definer’s-rights, 7-28
dropping, 7-9
exception-handling, 7-21
external

see external subprograms
invoker’s-rights, 7-28
invoking

see invoking subprograms

Index-11

names of, 7-4
overloading, 7-10

Oracle XA, 15-5
package, 7-4
parameters of

see subprogram parameters
privileged needed to execute, 7-28
privileges needed to debug, 7-25
remote

see remote subprograms
size limits for, 7-12
standalone, 7-4
stored

using Java for, 1-15
synonyms for, 7-32
see also functions and procedures

subscriber
definition of, in publish-subscribe model, 16-4

subscription services
definition of, in publish-subscribe model, 16-4

suspended storage allocation, handling, 2-31
synonyms

for packages, 7-32
for subprograms, 7-32

SYSDATE function, 3-13

T
tables

child, 6-20, 6-21
columns of

see columns
locking, 2-10
parent, 6-20, 6-21
parent and child, 6-8
rows of

see rows
task threads

multithreaded Heterogeneous Services
agents, A-2

temporary and persistent LOB instances, 3-17
temporary table space for creating indexes, 5-2
text

searchable, 3-18
The, 10-7
thin client configuration, 1-2
third-generation language

see 3GL
threads

Oracle XA and, 15-15
three-tier model, 1-2
tight coupling, 15-4
time

changing default format of, 3-14
time datatypes

see date and time datatypes
TIMESTAMP datatype, 3-12
TIMESTAMP WITH LOCAL TIME ZONE

datatype, 3-13
TIMESTAMP WITH TIME ZONE datatype, 3-12

TM (transaction manager), 15-3
TPM (transaction processing monitor), 15-3
transaction manager (TM), 15-3
transaction processing monitor (TPM), 15-3
transactions

autonomous, 2-23
committing, 2-2
grouping operations into, 2-1
improving performance of, 2-2
main, 2-23
read-only, 2-6, 2-9
redo information for, 2-3
rolling back, 2-5
savepoints for, 2-5
serializable, 2-16

isolation level of, 2-19
SET TRANSACTION statement, 2-6

trigger
definition of, 7-16

triggers
invoking subprograms from, 7-28
size limits for, 7-12
using Java for, 1-15

TRUST keyword in RESTRICT_REFERENCES
pragma, 7-39

two-phase commit protocol, 15-4
two-tier model, 1-2
TX interface, 15-4
type attributes, 7-6

U
undetected deadlocks, 2-14
undo data, 13-1
UNDO_RETENTION parameter, 2-6
unhandled exceptions, 7-23
Unicode character literals, 3-5
UNINSTR function, 3-5
UNIQUE constraints

dropping, 6-19
naming, 6-15
on FOREIGN KEY constraints, 6-9

UNIQUE contraints, 6-5
unique keys

see UNIQUE constraints
universal rowids, 3-25
updates

distributed, 7-31
UPPER function, 5-8
UROWID datatype

accessing, 3-25
user interfaces, 1-2

for native floating-point datatypes, 3-11
stateful and stateless, 1-2

user locks, 2-14
user-defined exceptions, 7-20, 7-21
user-defined run-time errors

see user-defined exceptions
user-defined types

as subprogram parameters, 7-7

Index-12

UTLLOCKT.SQL script, 2-15

V
VARCHAR2 datatype

columns
specifying length of, 3-3

compared to CHAR datatype, 3-3
variables

cursor
see cursor variables

environment
see environment variables

global
in C external subprograms, 14-41

static
in C external subprograms, 14-41

VERSIONS_ENDSCN pseudocolumn, 13-8
VERSIONS_ENDTIME pseudocolumn, 13-8
VERSIONS_OPERATION pseudocolumn, 13-8
VERSIONS_STARTSCN pseudocolumn, 13-8
VERSIONS_STARTTIME pseudocolumn, 13-8
VERSIONS_XID pseudocolumn, 13-8
views

constraints on, 6-6
violating constraints, 6-17

W
WAIT option of COMMIT statement and COMMIT_

WRITE initialization parameter, 2-3
WAIT option of LOCK TABLE statement, 2-10
web applications

developing, 10-1
implementing, 10-2
overview of, 10-1

web development tools, 1-6
web pages

see also PL/SQL Server Pages
web services

overview of, 1-14
web toolkit

see PL/SQL Web Toolkit
WHERE clause expressions

see conditional expressions
WNDS option of RESTRICT_REFERENCES

pragma, 7-38
WNPS option of RESTRICT_REFERENCES

pragma, 7-38
WORK option of ROLLBACK statement, 2-5
wrap utility

debugging and, 7-26

X
X locks

LOCK TABLE statement, 2-12
xa_open string

defining, 15-8
XML data

representing, 3-18

XMLType datatype, 3-18
X/Open Distributed Transaction Processing (DTP)

architecture, 15-1

Z
zero

IEEE 754 represention of, 3-9

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Application Development?
	Oracle Database 11g Release 1 (11.1) New Features
	1 Introduction to Oracle Programmatic Environments
	Overview of Oracle Application Development
	Client/Server Model
	Server-Side Coding
	Two-Tier and Three-Tier Models
	User Interface
	Stateful and Stateless User Interfaces

	Overview of PL/SQL
	What Is PL/SQL?
	Advantages of PL/SQL
	PL/SQL Web Development Tools

	Overview of Java Support Built into the Database
	Overview of Oracle JVM
	Overview of Oracle Extensions to JDBC
	Overview of Oracle SQLJ
	Overview of Oracle JPublisher
	Overview of Java Stored Subprograms
	Overview of Oracle Database Web Services
	Overview of Writing Subprograms in Java

	Overview of Pro*C/C++
	Implementing a Pro*C/C++ Application
	Highlights of Pro*C/C++ Features

	Overview of Pro*COBOL
	Implementing a Pro*COBOL Application
	Highlights of Pro*COBOL Features

	Overview of OCI and OCCI
	Advantages of OCI and OCCI
	OCI and OCCI Functions
	Procedural and Nonprocedural Elements of OCI and OCCI Applications
	Building an OCI or OCCI Application

	Overview of Oracle Data Provider for .NET (ODP.NET)
	Overview of Oracle Objects for OLE (OO4O)
	OO4O Automation Server
	OO4O Object Model
	Support for Oracle LOB and Object Datatypes
	Oracle Data Control
	Oracle Objects for OLE C++ Class Library
	Additional Sources of Information

	Choosing a Programming Environment
	Choosing a Precompiler or OCI
	Choosing PL/SQL or Java

	Part I SQL for Application Developers
	2 SQL Processing for Application Developers
	Grouping Operations into Transactions
	Deciding How to Group Operations in Transactions
	Improving Transaction Performance
	Committing Transactions
	Managing Commit Redo Action
	Rolling Back Transactions
	Defining Transaction Savepoints

	Ensuring Repeatable Reads with Read-Only Transactions
	Using Cursors
	How Many Cursors Can a Session Have?
	Using a Cursor to Re-Execute a Statement
	Closing a Cursor
	Canceling a Cursor

	Locking Tables Explicitly
	Privileges Required
	Choosing a Locking Strategy
	Letting Oracle Database Control Table Locking
	Explicitly Acquiring Row Locks

	Using Oracle Lock Management Services
	When to Use User Locks
	Example of a User Lock
	Viewing and Monitoring Locks

	Using Serializable Transactions for Concurrency Control
	How Serializable Transactions Interact
	Setting the Isolation Level of a Serializable Transaction
	Referential Integrity and Serializable Transactions
	READ COMMITTED and SERIALIZABLE Isolation
	Application Tips for Transactions

	Autonomous Transactions
	Examples of Autonomous Transactions
	Defining Autonomous Transactions
	Restrictions on Autonomous Transactions

	Resuming Execution After Storage Allocation Error
	What Operations Can Be Resumed After an Error Condition?
	Handling Suspended Storage Allocation

	3 Using SQL Datatypes in Database Applications
	Overview of SQL Datatypes
	Representing Character Data
	Overview of Character Datatypes
	Specifying Column Lengths as Bytes or Characters
	Choosing Between CHAR and VARCHAR2 Datatypes
	Using Character Literals in SQL Statements

	Representing Numeric Data
	Overview of Numeric Datatypes
	Floating-Point Number Formats
	Comparison Operators for Native Floating-Point Datatypes
	Arithmetic Operations with Native Floating-Point Datatypes
	Conversion Functions for Native Floating-Point Datatypes
	Client Interfaces for Native Floating-Point Datatypes

	Representing Date and Time Data
	Overview of Date and Time Datatypes
	Displaying Current Date and Time
	Changing the Default Date Format
	Changing the Default Time Format
	Arithmetic Operations with Date and Time Datatypes
	Converting Between Date and Time Types
	Importing and Exporting Date and Time Types

	Representing Specialized Data
	Representing Geographic Data
	Representing Multimedia Data
	Representing Large Amounts of Data
	Representing Searchable Text
	Representing XML
	Representing Dynamically Typed Data
	Representing Data with ANSI/ISO, DB2, and SQL/DS Datatypes

	Representing Conditional Expressions as Data
	Identifying Rows by Address
	Querying the ROWID Pseudocolumn
	Accessing the ROWID Datatype
	Accessing the UROWID Datatype

	How Oracle Database Converts Datatypes
	Datatype Conversion During Assignments
	Datatype Conversion During Expression Evaluation

	Metadata for SQL Built-In Functions

	4 Using Regular Expressions in Database Applications
	Overview of Regular Expressions
	What Are Regular Expressions?
	How Are Regular Expressions Useful?
	Oracle Database Implementation of Regular Expressions
	Oracle Database Support for the POSIX Regular Expression Standard

	Metacharacters in Regular Expressions
	POSIX Metacharacters in Oracle Database Regular Expressions
	Multilingual Extensions to POSIX Regular Expression Standard
	Perl-Influenced Extensions to POSIX Regular Expression Standard

	Using Regular Expressions in SQL Statements: Scenarios
	Using a Constraint to Enforce a Phone Number Format
	Using Back References to Reposition Characters

	5 Using Indexes in Database Applications
	Privileges Needed to Create Indexes
	Guidelines for Application-Specific Indexes
	Which Come First, Data or Indexes?
	Create a New Temporary Table Space Before Creating Indexes
	Index the Correct Tables and Columns
	Limit the Number of Indexes for Each Table
	Choose Column Order in Composite Indexes
	Gather Index Statistics
	Drop Unused Indexes

	Examples of Creating Basic Indexes
	When to Use Domain Indexes
	When to Use Function-Based Indexes
	Advantages of Function-Based Indexes
	Restrictions on Function-Based Indexes
	Examples of Function-Based Indexes

	6 Maintaining Data Integrity in Database Applications
	Overview of Constraints
	Enforcing Business Rules with Constraints
	Enforcing Business Rules with Application Logic
	Creating Indexes for Use with Constraints
	When to Use NOT NULL Constraints
	When to Use Default Column Values
	Setting Default Column Values
	Choosing a Primary Key for a Table
	When to Use UNIQUE Constraints
	When to Use Constraints On Views

	Enforcing Referential Integrity with Constraints
	FOREIGN KEY Constraints and NULL Values
	Defining Relationships Between Parent and Child Tables
	Rules for Multiple FOREIGN KEY Constraints
	Deferring Constraint Checks

	Minimizing Space and Time Overhead for Indexes Associated with Constraints
	Guidelines for Indexing Foreign Keys
	Referential Integrity in a Distributed Database
	When to Use CHECK Constraints
	Restrictions on CHECK Constraints
	Designing CHECK Constraints
	Rules for Multiple CHECK Constraints
	Choosing Between CHECK and NOT NULL Constraints

	Examples of Defining Constraints
	Example: Defining Constraints with the CREATE TABLE Statement
	Example: Defining Constraints with the ALTER TABLE Statement
	Privileges Needed to Define Constraints
	Naming Constraints

	Enabling and Disabling Constraints
	Why Disable Constraints?
	Creating Enabling Constraints (Default)
	Creating Disabled Constraints
	Enabling Existing Constraints
	Disabling Existing Constraints
	Guidelines for Enabling and Disabling Key Constraints
	Fixing Constraint Exceptions

	Altering Constraints
	Renaming Constraints

	Dropping Constraints
	Managing FOREIGN KEY Constraints
	Datatypes and Names for Foreign Key Columns
	Limit on Columns in Composite Foreign Keys
	Foreign Key References Primary Key by Default
	Privileges Required to Create FOREIGN KEY Constraints
	Choosing How Foreign Keys Enforce Referential Integrity

	Viewing Definitions of Constraints
	Examples of Defining and Viewing Constraints
	Example 1: Listing All of Your Accessible Constraints
	Example 2: Distinguishing NOT NULL Constraints from CHECK Constraints
	Example 3: Listing Column Names that Constitute an Integrity Constraint

	Part II PL/SQL for Application Developers
	7 Coding PL/SQL Subprograms and Packages
	Overview of PL/SQL Program Units
	Anonymous Blocks
	Stored PL/SQL Program Units

	Compiling PL/SQL Subprograms for Native Execution
	Cursor Variables
	Declaring and Opening Cursor Variables
	Examples of Cursor Variables

	Handling PL/SQL Compile-Time Errors
	Handling Run-Time PL/SQL Errors
	Declaring Exceptions and Exception Handling Routines
	Unhandled Exceptions
	Handling Errors in Distributed Queries
	Handling Errors in Remote Subprograms

	Debugging Stored Subprograms
	PL/Scope
	PL/SQL Hierarchical Profiler
	Oracle JDeveloper
	DBMS_OUTPUT Package
	Privileges for Debugging PL/SQL and Java Stored Subprograms
	Writing Low-Level Debugging Code
	DBMS_DEBUG_JDWP Package
	DBMS_DEBUG Package

	Invoking Stored Subprograms
	Privileges Required to Execute a Subprogram
	Invoking a Subprogram from a Trigger or Another Subprogram
	Invoking a Subprogram Interactively from Oracle Database Tools
	Invoking a Subprogram from a 3GL Application

	Invoking Remote Subprograms
	Remote Subprogram Invocations and Parameter Values
	Referencing Remote Objects
	Synonyms for Subprograms and Packages

	Invoking Stored PL/SQL Functions from SQL Statements
	Why Invoke Stored PL/SQL Subprograms from SQL Statements?
	Where PL/SQL Functions Can Appear in SQL Statements
	When PL/SQL Functions Can Appear in SQL Expressions
	Controlling Side Effects
	Serially Reusable PL/SQL Packages

	Returning Large Amounts of Data from a Function
	Coding Your Own Aggregate Functions

	8 Using PL/Scope
	Specifying Identifier Collection
	How Much Space is PL/Scope Data Using?
	Viewing PL/Scope Data
	Static Data Dictionary Views
	Demo Tool
	SQL Developer

	Identifier Types that PL/Scope Collects
	Usages that PL/Scope Reports
	Sample PL/Scope Session

	9 Using the PL/SQL Hierarchical Profiler
	Overview of PL/SQL Hierarchical Profiler
	Collecting Profile Data
	Understanding Raw Profiler Output
	Namespaces of Tracked Subprograms
	Special Function Names

	Analyzing Profile Data
	Creating Hierarchical Profiler Tables
	Understanding Hierarchical Profiler Tables

	plshprof Utility
	plshprof Options
	HTML Report from a Single Raw Profiler Output File
	HTML Difference Report from Two Raw Profiler Output Files

	10 Developing PL/SQL Web Applications
	Overview of PL/SQL Web Applications
	Implementing PL/SQL Web Applications
	PL/SQL Gateway
	PL/SQL Web Toolkit

	Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application
	Using Embedded PL/SQL Gateway
	How Embedded PL/SQL Gateway Processes Client Requests
	Installing Embedded PL/SQL Gateway
	Configuring Embedded PL/SQL Gateway
	Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL Gateway
	Securing Application Access with Embedded PL/SQL Gateway
	Restrictions in Embedded PL/SQL Gateway
	Using Embedded PL/SQL Gateway: Scenario

	Generating HTML Output with PL/SQL
	Passing Parameters to PL/SQL Web Applications
	Passing List and Dropdown-List Parameters from an HTML Form
	Passing Radio Button and Checkbox Parameters from an HTML Form
	Passing Entry-Field Parameters from an HTML Form
	Passing Hidden Parameters from an HTML Form
	Uploading a File from an HTML Form
	Submitting a Completed HTML Form
	Handling Missing Input from an HTML Form
	Maintaining State Information Between Web Pages

	Performing Network Operations in PL/SQL Stored Subprograms
	Sending E-Mail from PL/SQL
	Getting a Host Name or Address from PL/SQL
	Using TCP/IP Connections from PL/SQL
	Retrieving HTTP URL Contents from PL/SQL
	Using Tables, Image Maps, Cookies, and CGI Variables from PL/SQL

	11 Developing PL/SQL Server Pages
	What Are PL/SQL Server Pages and Why Use Them?
	Prerequisites for Developing and Deploying PL/SQL Server Pages
	PL/SQL Server Pages and the HTP Package
	PL/SQL Server Pages and Other Scripting Solutions
	Developing PL/SQL Server Pages
	Specifying Basic Server Page Characteristics
	Accepting User Input
	Naming the PL/SQL Stored Procedure
	Including the Contents of Other Files
	Declaring Global Variables in a PSP Script
	Specifying Executable Statements in a PSP Script
	Substituting Expression Values in a PSP Script
	Quoting and Escaping Strings in a PSP Script
	Including Comments in a PSP Script

	Loading PL/SQL Server Pages into the Database
	Querying PL/SQL Server Pages Source Code
	Executing PL/SQL Server Pages Through URLs
	Examples of PL/SQL Server Pages
	Setup for PL/SQL Server Pages Examples
	Printing the Sample Table with a Loop
	Allowing a User Selection
	Using an HTML Form to Invoke a PL/SQL Server Page
	Including JavaScript in a PSP File

	Debugging PL/SQL Server Pages
	Putting PL/SQL Server Pages into Production

	12 Using Continuous Query Notification
	Object Change Notification (OCN)
	Query Result Change Notification (QRCN)
	Guaranteed Mode
	Best-Effort Mode

	Events that Generate Notifications
	Committed DML Transactions
	Committed DDL Statements
	Deregistration
	Global Events

	Notification Contents
	Good Candidates for CQN
	Creating CQN Registrations
	PL/SQL CQN Registration Interface
	CQN Registration Options
	Prerequisites for Creating CQN Registrations
	Queries that Can Be Registered for Object Change Notification (OCN)
	Queries that Can Be Registered for Query Result Change Notification (QRCN)
	Using PL/SQL to Register Queries for CQN
	Best Practices for CQN Registrations
	Troubleshooting CQN Registrations

	Querying CQN Registrations
	Interpreting Notifications
	Interpreting a CQ_NOTIFICATION$_DESCRIPTOR Object
	Interpreting a CQ_NOTIFICATION$_TABLE Object
	Interpreting a CQ_NOTIFICATION$_QUERY Object
	Interpreting a CQ_NOTIFICATION$_ROW Object

	Deleting Registrations
	Configuring CQN: Scenario
	Creating a PL/SQL Notification Handler
	Registering the Queries

	Part III Advanced Topics for Application Developers
	13 Using Flashback Technology
	Overview of Flashback Technology
	Application Development Features
	Database Administration Features

	Configuring Your Database for Flashback Technology
	Configuring Your Database for Automatic Undo Management
	Configuring Your Database for Flashback Transaction Query
	Configuring Your Database for Flashback Transaction Backout
	Enabling Flashback Operations on Specific LOB Columns
	Granting Necessary Privileges

	Using Flashback Query (SELECT AS OF)
	Example of Examining and Restoring Past Data
	Guidelines for Flashback Query

	Using Flashback Version Query
	Using Flashback Transaction Query
	Using Flashback Transaction Query with Flashback Version Query
	Using ORA_ROWSCN
	Using DBMS_FLASHBACK Package
	Using Flashback Transaction Backout
	TRANSACTION_BACKOUT Parameters
	TRANSACTION_BACKOUT Reports

	Using Flashback Data Archives
	Creating a Flashback Data Archive
	Altering a Flashback Data Archive
	Dropping a Flashback Data Archive
	Specifying the Default Flashback Data Archive
	Enabling and Disabling Flashback Data Archive
	DDL Statements Not Allowed on Tables Enabled for Flashback Data Archive
	Viewing Flashback Data Archive Data
	Flashback Data Archive Scenarios

	General Guidelines for Flashback Technology
	Performance Guidelines for Flashback Technology

	14 Developing Applications Using Multiple Programming Languages
	Overview of Multilanguage Programs
	What Is an External Procedure?
	Overview of Call Specification for External Procedures
	Loading External Procedures
	Loading Java Class Methods
	Loading External C Procedures

	Publishing External Procedures
	AS LANGUAGE Clause for Java Class Methods
	AS LANGUAGE Clause for External C Procedures

	Publishing Java Class Methods
	Publishing External C Procedures
	Locations of Call Specifications
	Example: Locating a Call Specification in a PL/SQL Package
	Example: Locating a Call Specification in a PL/SQL Package Body
	Example: Locating a Call Specification in an Object Type Specification
	Example: Locating a Call Specification in an Object Type Body
	Example: Java with AUTHID
	Example: C with Optional AUTHID
	Example: Mixing Call Specifications in a Package

	Passing Parameters to External C Procedures with Call Specifications
	Specifying Datatypes
	External Datatype Mappings
	Passing Parameters BY VALUE or BY REFERENCE
	Declaring Formal Parameters
	Overriding Default Datatype Mapping
	Specifying Properties

	Executing External Procedures with CALL Statements
	Preconditions for External Procedures
	CALL Statement Syntax
	Calling Java Class Methods
	Calling External C Procedures

	Handling Errors and Exceptions in Multilanguage Programs
	Using Service Routines with External C Procedures
	OCIExtProcAllocCallMemory
	OCIExtProcRaiseExcp
	OCIExtProcRaiseExcpWithMsg

	Doing Callbacks with External C Procedures
	OCIExtProcGetEnv
	Object Support for OCI Callbacks
	Restrictions on Callbacks
	Debugging External Procedures
	Example: Calling an External Procedure
	Global Variables in External C Procedures
	Static Variables in External C Procedures
	Restrictions on External C Procedures

	15 Developing Applications with Oracle XA
	X/Open Distributed Transaction Processing (DTP)
	DTP Terminology
	Required Public Information

	Oracle XA Library Subroutines
	Oracle XA Library Subroutines
	Oracle XA Interface Extensions

	Developing and Installing XA Applications
	DBA or System Administrator Responsibilities
	Application Developer Responsibilities
	Defining the xa_open String
	Using Oracle XA with Precompilers
	Using Oracle XA with OCI
	Managing Transaction Control with Oracle XA
	Examples of Precompiler Applications
	Migrating Precompiler or OCI Applications to TPM Applications
	Managing Oracle XA Library Thread Safety
	Using the DBMS_XA Package

	Troubleshooting XA Applications
	Accessing Oracle XA Trace Files
	Managing In-Doubt or Pending Oracle XA Transactions
	Using SYS Account Tables to Monitor Oracle XA Transactions

	Oracle XA Issues and Restrictions
	Using Database Links in Oracle XA Applications
	Managing Transaction Branches in Oracle XA Applications
	Using Oracle XA with Oracle Real Application Clusters (Oracle RAC)
	SQL-Based Oracle XA Restrictions
	Miscellaneous Restrictions

	16 Developing Applications on the Publish-Subscribe Model
	Introduction to the Publish-Subscribe Model
	Publish-Subscribe Architecture
	Database Events
	Oracle Advanced Queuing
	Client Notification

	Publish-Subscribe Concepts
	Examples of a Publish-Subscribe Mechanism

	17 Using the Identity Code Package
	Identity Concepts
	What is the Identity Code Package?
	Using the Identity Code Package
	Storing RFID Tags in Oracle Database Using MGD_ID Object Type
	Creating Indexes on the MGD_ID Column Type
	Using MGD_ID Object Type Functions
	Defining a New Category of Identity Codes and Adding Encoding Schemes to an Existing Category

	Identity Code Package Types
	DBMS_MGD_ID_UTL Package
	Identity Code Metadata Tables and Views
	Metadata View Definitions

	Electronic Product Code (EPC) Concepts
	RFID Technology and EPC v1.1 Coding Schemes
	Product Code Concepts and Their Current Use

	Oracle Tag Data Translation Schema

	A Multithreaded extproc Agent
	Why Use the Multithreaded extproc Agent?
	The Challenge of Dedicated Agent Architecture
	The Advantage of Multithreading

	Multithreaded extproc Agent Architecture
	Monitor Thread
	Dispatcher Threads
	Task Threads

	Administering the Multithreaded extproc Agent
	Agent Control Utility (agtctl) Commands
	Using agtctl in Single-Line Command Mode
	Using Shell Mode Commands
	Configuration Parameters for Multithreaded extproc Agent Control

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

