
Pro*COBOL®
Programmer's Guide

Release 9.2

A96109-03

June 2005

Pro*COBOL Programmer’s Guide, Release 9.2

A96109-03

Copyright © 1996, 2005, Oracle. All rights reserved.

Primary Authors: Syed Mujeed Ahmed, Jack Melnick, James W. Rawles, Neelam Singh

Contributing Authors: Subhranshu Banerjee, Beethoven Cheng, Michael Chiocca, Nancy Ikeda, Maura
Joglekar, Alex Keh, Thomas Kurian, Shiao-Yen Lin, Diana Lorentz, Lee Osborne, Jacqui Pons, Ajay Popat,
Chris Racicot, Pamela Rothman, Simon Slack, Gael Stevens, Eric Wan

Contributors: Phil Locke, Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xxiii

Intended Audience.. xxiii
Documentation Accessibility ... xxiii
Related Documents ... xxiv
Conventions ... xxiv

What's New in Pro*COBOL?... xxv

Oracle Database Release 9.2 New Features in Pro*COBOL.. xxv
Oracle9i Release 2 (9.2) New Features in Pro*COBOL .. xxv
Oracle9i Release 1 (9.0.1) New Features in Pro*COBOL ... xxv
Oracle8i Release 8.1.6 New Features in Pro*COBOL ... xxvi
Oracle8i Release 8.1.5 New Features in Pro*COBOL ... xxvi
Oracle8i Release 8.1.3 New Features in Pro*COBOL .. xxvii
Oracle8 Database Release 8.0 New Features in Pro*COBOL.. xxviii

1 Introduction

The Pro*COBOL Precompiler .. 1-1
Language Alternatives ... 1-2

Advantages of the Pro*COBOL Precompiler .. 1-2
The SQL Language... 1-3
The PL/SQL Language... 1-3
Pro*COBOL Features and Benefits ... 1-3

2 Precompiler Concepts

Key Concepts of Embedded SQL Programming ... 2-1
Steps in Developing an Embedded SQL Application .. 2-1
Embedded SQL Statements .. 2-2

Executable versus Declarative Statements .. 2-3
Embedded SQL Syntax ... 2-4
Static Versus Dynamic SQL Statements ... 2-5
Embedded PL/SQL Blocks .. 2-5
Host Variables and Indicator Variables ... 2-5
Oracle Datatypes ... 2-6
Tables ... 2-6
Errors and Warnings ... 2-6

iv

SQLCODE/SQLSTATE Status Variables .. 2-7
SQLCA Status Variable .. 2-7
WHENEVER Statement ... 2-8
ORACA... 2-8
Precompiler Options and Error Handling .. 2-8

Programming Guidelines ... 2-8
Abbreviations.. 2-8
Case-Insensitivity ... 2-8
COBOL Versions Supported .. 2-8
Coding Areas .. 2-8
Commas... 2-9
Comments ... 2-9
Continuation Lines.. 2-10
Copy Statements.. 2-10
Decimal-Point is Comma ... 2-10
Delimiters ... 2-10
Division Headers that are Optional.. 2-11
Embedded SQL Syntax... 2-11
Figurative Constants... 2-11
File Length.. 2-11
FILLER is Allowed.. 2-12
Host Variable Names.. 2-12
Hyphenated Names .. 2-12
Level Numbers .. 2-12
MAXLITERAL Default ... 2-12
Multibyte Datatypes ... 2-12
NULLs in SQL ... 2-13
Paragraph and Section Names .. 2-13
REDEFINES Clause... 2-13
Relational Operators ... 2-14
Sentence Terminator ... 2-14

The Declare Section .. 2-14
Contents of a Declare Section .. 2-14

An Example... 2-15
Precompiler Option DECLARE_SECTION... 2-15
Using the INCLUDE Statement .. 2-15

Filename Extensions .. 2-16
Search Paths .. 2-16

Nested Programs.. 2-16
Support for Nested Programs ... 2-17

Declaring the SQLCA .. 2-18
Nested Program Example... 2-18

Conditional Precompilations .. 2-18
An Example.. 2-19
Defining Symbols .. 2-19

Separate Precompilations ... 2-19
Guidelines .. 2-19

v

Referencing Cursors .. 2-19
Specifying MAXOPENCURSORS ... 2-20
Using a Single SQLCA .. 2-20
Using a Single DATE_FORMAT.. 2-20

Restrictions... 2-20
Compiling and Linking ... 2-21
Sample DEPT and EMP Tables ... 2-21

Sample DEPT and EMP Data .. 2-21
Sample EMP Program: SAMPLE1.PCO ... 2-22

3 Database Concepts

Connecting to Oracle ... 3-1
Default Databases and Connections .. 3-2

Concurrent Logons .. 3-3
Using Username/Password ... 3-4

Named Database Connections .. 3-4
Automatic Logons.. 3-7

The AUTO_CONNECT Precompiler Option ... 3-7
Changing Passwords at Runtime... 3-8
Connect Without Alter Authorization .. 3-8

Standard CONNECT.. 3-8
SYSDBA or SYSOPER Privileges .. 3-8

Using Links ... 3-9
Key Terms .. 3-9
How Transactions Guard a Database .. 3-10
Beginning and Ending Transactions.. 3-10
Using the COMMIT Statement .. 3-10

WITH HOLD Clause in DECLARE CURSOR Statements .. 3-11
CLOSE_ON_COMMIT Precompiler Option... 3-11

Using the ROLLBACK Statement .. 3-12
Statement-Level Rollbacks... 3-13

Using the SAVEPOINT Statement ... 3-13
Using the RELEASE Option .. 3-15
Using the SET TRANSACTION Statement ... 3-15
Overriding Default Locking.. 3-16

Using the FOR UPDATE OF Clause... 3-16
Restrictions.. 3-16

Fetching Across Commits .. 3-17
Using the LOCK TABLE Statement.. 3-17

Handling Distributed Transactions ... 3-18
Guidelines for Transaction Processing ... 3-18

Designing Applications.. 3-18
Obtaining Locks .. 3-18
Using PL/SQL ... 3-19
X/Open Applications ... 3-19

vi

4 Datatypes and Host Variables

The Oracle Database 10g Datatypes ... 4-1
Internal Datatypes.. 4-1
External Datatypes ... 4-3

CHAR.. 4-4
CHARF ... 4-4
CHARZ... 4-4
DATE .. 4-4
DECIMAL .. 4-5
DISPLAY .. 4-5
FLOAT .. 4-5
INTEGER.. 4-5
LONG.. 4-5
LONG RAW... 4-6
LONG VARCHAR.. 4-6
LONG VARRAW .. 4-6
NUMBER.. 4-6
OVER-PUNCH .. 4-6
RAW.. 4-6
ROWID ... 4-6
STRING... 4-7
UNSIGNED.. 4-7
VARCHAR... 4-7
VARCHAR2... 4-7
VARNUM... 4-8
VARRAW ... 4-8
SQL Pseudocolumns and Functions ... 4-8

Datetime and Interval Datatype Descriptors ... 4-10
Host Variables .. 4-11

Declaring Host Variables ... 4-11
Example Declarations.. 4-15
Initialization.. 4-16
Restrictions.. 4-16

Referencing Host Variables ... 4-16
Group Items as Host Variables .. 4-17
Restrictions.. 4-18

Indicator Variables .. 4-18
Using Indicator Variables ... 4-18

On Input .. 4-18
On Output ... 4-18

Declaring Indicator Variables.. 4-19
Referencing Indicator Variables.. 4-19

Use in Where Clauses.. 4-19
Avoid Error Messages ... 4-20
ANSI Requirements ... 4-20
Indicator Variables for Multibyte NCHAR Variables .. 4-20
Indicator Variables with Host Group Items... 4-20

vii

VARCHAR Variables .. 4-21
Declaring VARCHAR Variables ... 4-21
Implicit VARCHAR Group Items... 4-21
Referencing VARCHAR Variables ... 4-22

Handling Character Data ... 4-23
Default for PIC X ... 4-23
Effects of the PICX Option .. 4-23
Fixed-Length Character Variables .. 4-23

On Input .. 4-23
On Output ... 4-24

Varying-Length Variables.. 4-24
On Input .. 4-24
On Output ... 4-25

Universal ROWIDs ... 4-25
Subprogram SQLROWIDGET... 4-26

Globalization Support ... 4-27
Multibyte Globalization Support Character Sets ... 4-29

NLS_LOCAL=YES Restrictions .. 4-29
Character Strings in Embedded SQL .. 4-29
Embedded DDL... 4-30
Blank Padding ... 4-30
Indicator Variables .. 4-30
Various Combinations of PIC X/PIC N Variables and NCHAR/CHAR Columns 4-30

PIC X and NCHAR Column... 4-30
PIC N and CHAR column .. 4-31

Datatype Conversion .. 4-31
Explicit Control Over DATE String Format ... 4-33
Datatype Equivalencing... 4-33

Usefulness of Equivalencing ... 4-33
Host Variable Equivalencing... 4-34

CONVBUFSZ Clause in VAR Statement.. 4-36
An Example... 4-36

Using the CHARF Datatype Specifier.. 4-37
Guidelines .. 4-38
RAW and LONG RAW Values ... 4-38

Sample Program 4: Datatype Equivalencing ... 4-38

5 Embedded SQL

Using Host Variables ... 5-1
Output Versus Input Host Variables... 5-1

Using Indicator Variables ... 5-2
Input Variables ... 5-2
Output Variables .. 5-3
Inserting NULLs .. 5-3
Handling Returned NULLs .. 5-4
Fetching NULLs ... 5-4
Testing for NULLs ... 5-4

viii

Fetching Truncated Values ... 5-5
The Basic SQL Statements ... 5-5

Selecting Rows.. 5-6
Available Clauses ... 5-6

Inserting Rows.. 5-6
DML Returning Clause ... 5-7
Using Subqueries ... 5-7
Updating Rows... 5-8
Deleting Rows... 5-8
Using the WHERE Clause .. 5-8

Cursors.. 5-8
Declaring a Cursor ... 5-9
Opening a Cursor.. 5-10
Fetching from a Cursor .. 5-10
Closing a Cursor.. 5-11
Using the CURRENT OF Clause .. 5-12
Restrictions .. 5-12
A Typical Sequence of Statements ... 5-12
Positioned Update... 5-13
The PREFETCH Precompiler Option ... 5-13

Sample Program 2: Cursor Operations.. 5-14

6 Embedded PL/SQL

Embedding PL/SQL ... 6-1
Host Variables... 6-1
VARCHAR Variables .. 6-1
Indicator Variables ... 6-2

Handling NULLs .. 6-2
Handling Truncated Values .. 6-2

SQLCHECK... 6-2
Advantages of PL/SQL .. 6-2

Better Performance... 6-2
Integration with Oracle9i .. 6-2
Cursor FOR Loops ... 6-3
Subprograms... 6-3

Parameter Modes .. 6-3
Packages .. 6-4
PL/SQL Tables ... 6-4
User-Defined Records.. 6-5

Embedding PL/SQL Blocks .. 6-5
Host Variables and PL/SQL .. 6-6

PL/SQL Examples ... 6-6
A More Complex PL/SQL Example.. 6-7
VARCHAR Pseudotype .. 6-8

Indicator Variables and PL/SQL .. 6-9
Handling NULLs... 6-10
Handling Truncated Values .. 6-10

ix

Host Tables and PL/SQL .. 6-10
ARRAYLEN Statement... 6-12

Optional Keyword EXECUTE to ARRAYLEN Statement ... 6-13
Cursor Usage in Embedded PL/SQL ... 6-14
Stored PL/SQL and Java Subprograms ... 6-15

Creating Stored Subprograms... 6-16
Calling a Stored PL/SQL or Java Subprogram... 6-16

Anonymous PL/SQL Block.. 6-16
CALL Statement ... 6-17
CALL Example ... 6-17

Using Dynamic PL/SQL .. 6-18
Subprograms Restriction.. 6-18

Sample Program 9: Calling a Stored Procedure... 6-18
Remote Access ... 6-22

Cursor Variables .. 6-22
Declaring a Cursor Variable .. 6-23
Allocating a Cursor Variable ... 6-23
Opening a Cursor Variable .. 6-23

Opening Indirectly through a Stored PL/SQL Procedure... 6-23
Opening Directly from Your Pro*COBOL Application.. 6-24

Fetching from a Cursor Variable... 6-25
Closing a Cursor Variable.. 6-25
Freeing a Cursor Variable .. 6-26
Restrictions on Cursor Variables .. 6-26
Sample Program 11: Cursor Variables ... 6-26

SAMPLE11.SQL ... 6-26
SAMPLE11.PCO... 6-27

7 Host Tables

Host Tables .. 7-1
Advantages of Host Tables ... 7-1
Tables in Data Manipulation Statements .. 7-2

Declaring Host Tables ... 7-2
Restrictions... 7-2

Referencing Host Tables.. 7-3
Using Indicator Tables... 7-4
Host Group Item Containing Tables ... 7-4
Oracle Restrictions ... 7-5
ANSI Restriction and Requirements ... 7-5

Selecting into Tables .. 7-5
Batch Fetches... 7-5
Using SQLERRD(3) .. 7-6
Number of Rows Fetched ... 7-6
Restrictions on Using Host Tables ... 7-7
Fetching NULLs ... 7-7
Fetching Truncated Values ... 7-7
Sample Program 3: Fetching in Batches.. 7-7

x

Inserting with Tables ... 7-9
Restrictions on Host Tables ... 7-10

Updating with Tables ... 7-10
Restrictions in UPDATE... 7-11

Deleting with Tables... 7-11
Restrictions in DELETE .. 7-11

Using Indicator Tables.. 7-12
The FOR Clause ... 7-12

Restrictions... 7-13
In a SELECT Statement ... 7-13
With the CURRENT OF Clause ... 7-13

The WHERE Clause .. 7-14
Mimicking the CURRENT OF Clause .. 7-14
Tables of Group Items as Host Variables.. 7-15
Sample Program 14: Tables of Group Items... 7-16

8 Error Handling and Diagnostics

Why Error Handling is Needed ... 8-1
Error Handling Alternatives... 8-1

SQLCA ... 8-2
ORACA.. 8-2
ANSI SQLSTATE Variable.. 8-2
Declaring SQLSTATE .. 8-3

SQLSTATE Values .. 8-3
Using the SQL Communications Area ... 8-5

Contents of the SQLCA ... 8-5
Declaring the SQLCA .. 8-6
Key Components of Error Reporting .. 8-6

Status Codes... 8-6
Warning Flags.. 8-6
Rows-Processed Count... 8-6
Parse Error Offset.. 8-6
Error Message Text ... 8-7

SQLCA Structure.. 8-7
SQLCAID ... 8-7
SQLCABC... 8-7
SQLCODE .. 8-7
SQLERRM .. 8-7
SQLERRD... 8-8
SQLWARN... 8-8
SQLEXT .. 8-9

PL/SQL Considerations.. 8-9
Getting the Full Text of Error Messages ... 8-9
DSNTIAR.. 8-10
WHENEVER Directive ... 8-11

Conditions... 8-11
SQLWARNING.. 8-11

xi

SQLERROR ... 8-11
NOT FOUND or NOTFOUND .. 8-11
Actions... 8-12
CONTINUE .. 8-12
DO CALL .. 8-12
DO PERFORM.. 8-12
GOTO or GO TO .. 8-12
STOP .. 8-12

Coding the WHENEVER Statement... 8-12
DO PERFORM.. 8-13
DO CALL .. 8-14
Scope .. 8-15
Careless Usage: Examples .. 8-15

Getting the Text of SQL Statements ... 8-16
Using the Oracle Communications Area .. 8-17

Contents of the ORACA... 8-17
Declaring the ORACA .. 8-18
Enabling the ORACA ... 8-18
Choosing Runtime Options ... 8-18
ORACA Structure ... 8-19

ORACAID ... 8-19
ORACABC .. 8-19
ORACCHF .. 8-19
ORADBGF... 8-19
ORAHCHF.. 8-19
ORASTXTF.. 8-20
Diagnostics.. 8-20
ORASTXT.. 8-20
ORASFNM .. 8-20
ORASLNR ... 8-20
Cursor Cache Statistics.. 8-21
ORAHOC .. 8-21
ORAMOC.. 8-21
ORACOC... 8-21
ORANOR .. 8-21
ORANPR ... 8-21
ORANEX ... 8-21

ORACA Example Program ... 8-21
How Errors Map to SQLSTATE Codes.. 8-23

Status Variable Combinations ... 8-28

9 Oracle Dynamic SQL

Dynamic SQL .. 9-1
Advantages and Disadvantages of Dynamic SQL ... 9-2
When to Use Dynamic SQL ... 9-2
Requirements for Dynamic SQL Statements.. 9-2
How Dynamic SQL Statements Are Processed .. 9-3

xii

Methods for Using Dynamic SQL... 9-3
Method 1.. 9-3
Method 2.. 9-4
Method 3.. 9-4
Method 4.. 9-4
Guidelines ... 9-4

Avoiding Common Errors ... 9-5
Using Method 1... 9-6

The EXECUTE IMMEDIATE Statement ... 9-6
An Example... 9-7

Sample Program 6: Dynamic SQL Method 1 .. 9-8
Using Method 2.. 9-10

The USING Clause .. 9-11
Sample Program 7: Dynamic SQL Method 2 ... 9-11
 Using Method 3... 9-14

PREPARE.. 9-14
DECLARE... 9-15
OPEN .. 9-15
FETCH .. 9-15
CLOSE... 9-15

Sample Program 8: Dynamic SQL Method 3 ... 9-16
Using Oracle Method 4... 9-18

Need for the SQLDA... 9-19
The DESCRIBE Statement.. 9-19
SQLDA Contents... 9-19
Implementing Method 4... 9-20

Using the DECLARE STATEMENT Statement ... 9-21
Using Host Tables.. 9-21
Using PL/SQL... 9-22

With Method 1 ... 9-22
With Method 2 ... 9-22
With Method 3 ... 9-22
With Method 4 ... 9-23
Caution ... 9-23

10 ANSI Dynamic SQL

Basics of ANSI Dynamic SQL .. 10-1
Precompiler Options... 10-2

Overview of ANSI SQL Statements .. 10-2
Sample Code... 10-5
Oracle Extensions .. 10-6

Reference Semantics.. 10-6
Using Tables for Bulk Operations... 10-7

ANSI Dynamic SQL Precompiler Options .. 10-9
Full Syntax of the Dynamic SQL Statements .. 10-9

ALLOCATE DESCRIPTOR.. 10-10
Variables.. 10-10

xiii

 Examples .. 10-10
DEALLOCATE DESCRIPTOR.. 10-10
GET DESCRIPTOR.. 10-11
SET DESCRIPTOR .. 10-13

Example ... 10-15
Use of PREPARE ... 10-15
DESCRIBE INPUT... 10-15
DESCRIBE OUTPUT... 10-16
EXECUTE ... 10-17
Use of EXECUTE IMMEDIATE .. 10-17
Use of DYNAMIC DECLARE CURSOR.. 10-18
OPEN Cursor ... 10-18
FETCH .. 10-19
CLOSE a Dynamic Cursor ... 10-20
Differences From Oracle Dynamic Method 4 ... 10-20
Restrictions... 10-20

Sample Programs: SAMPLE12.PCO .. 10-21

11 Oracle Dynamic SQL: Method 4

Meeting the Special Requirements of Method 4 .. 11-1
Advantages of Method 4.. 11-2
Information the Database Needs .. 11-2
Where the Information is Stored... 11-2
How Information is Obtained ... 11-3

Understanding the SQL Descriptor Area (SQLDA) ... 11-3
Purpose of the SQLDA ... 11-3
Multiple SQLDAs.. 11-3
Declaring a SQLDA... 11-4

The SQLDA Variables .. 11-5
Prerequisite Knowledge... 11-10

Using SQLADR.. 11-10
Converting Data .. 11-11
Coercing Datatypes... 11-13
Handling NULL/Not NULL Datatypes.. 11-15

The Basic Steps .. 11-16
A Closer Look at Each Step ... 11-17

Declare a Host String .. 11-18
Declare the SQLDAs ... 11-18
Set the Maximum Number to DESCRIBE ... 11-19
Initialize the Descriptors .. 11-19
Store the Query Text in the Host String... 11-21
PREPARE the Query from the Host String ... 11-21
DECLARE a Cursor .. 11-22
DESCRIBE the Bind Variables... 11-22
Reset Number of Place-Holders.. 11-23
Get Values for Bind Variables ... 11-23
OPEN the Cursor... 11-25

xiv

DESCRIBE the Select List ... 11-26
Reset Number of Select-List Items.. 11-27
Reset Length/Datatype of Each Select-List Item.. 11-27
FETCH Rows from the Active Set .. 11-28
Get and Process Select-List Values ... 11-29
CLOSE the Cursor... 11-29

Using Host Tables with Method 4.. 11-29
Sample Program 10: Dynamic SQL Method 4 ... 11-33

12 Multithreaded Applications

Introduction to Threads ... 12-1
Runtime Contexts in Pro*COBOL ... 12-2
Runtime Context Usage Models... 12-3

Multiple Threads Sharing a Single Runtime Context .. 12-3
Multiple Threads Sharing Multiple Runtime Contexts ... 12-4

User Interface Features for Multithreaded Applications .. 12-5
THREADS Option ... 12-5
Embedded SQL Statements and Directives for Runtime Contexts.. 12-6

Host Tables of SQL-CONTEXT Are Not Allowed.. 12-6
EXEC SQL ENABLE THREADS .. 12-6
EXEC SQL CONTEXT ALLOCATE... 12-6
EXEC SQL CONTEXT USE .. 12-6
EXEC SQL CONTEXT FREE... 12-7

Communication with Pro*C/C++ Programs.. 12-7
Multithreading Programming Considerations ... 12-7

Restrictions on Multithreading .. 12-7
Multiple Context Examples ... 12-7

Example 1 .. 12-8
Example 2 .. 12-8
Example 3 .. 12-9
Example 4 .. 12-10
Example 5 .. 12-10

Multithreaded Example ... 12-11

13 Large Objects (LOBs)

Using LOBs... 13-1
Internal LOBs ... 13-1
External LOBs .. 13-2
Security for BFILEs.. 13-2
LOBs Compared with LONG and LONG RAW .. 13-2
LOB Locators ... 13-3
Temporary LOBs ... 13-3
LOB Buffering Subsystem.. 13-3

How to Use LOBs .. 13-4
LOB Locators in Your Application ... 13-5
Initializing a LOB .. 13-5

Internal LOBs.. 13-5

xv

External LOBs... 13-6
Temporary LOBs.. 13-6
Freeing LOBs .. 13-6

Rules for LOB Statements ... 13-6
For All LOB Statements.. 13-6
For the LOB Buffering Subsystem .. 13-7
For Host Variables... 13-7

LOB Statements ... 13-8
APPEND... 13-8
ASSIGN... 13-8
CLOSE... 13-9
COPY... 13-9
CREATE TEMPORARY ... 13-10
DISABLE BUFFERING... 13-11
ENABLE BUFFERING.. 13-11
ERASE... 13-11
FILE CLOSE ALL .. 13-12
FILE SET ... 13-12
FLUSH BUFFER .. 13-13
FREE TEMPORARY.. 13-13
LOAD FROM FILE.. 13-14
OPEN .. 13-14
READ .. 13-15
TRIM ... 13-16
WRITE... 13-17
DESCRIBE .. 13-18
READ and WRITE Using the Polling Method .. 13-20

LOB Sample Program: LOBDEMO1.PCO .. 13-21

14 Precompiler Options

The procob Command .. 14-1
Case-Sensitivity ... 14-2

Actions During Precompilation.. 14-2
About the Options... 14-2

Precedence of Option Values... 14-3
Macro and Micro Options.. 14-3
Determining Current Values ... 14-4

Entering Precompiler Options ... 14-4
On the Command Line .. 14-5
Inline ... 14-5

Advantages ... 14-5
Scope of EXEC ORACLE .. 14-5

Configuration Files ... 14-6
Scope of Precompiler Options .. 14-6
Quick Reference .. 14-7
Using Pro*COBOL Precompiler Options ... 14-9

ASACC.. 14-9

xvi

ASSUME_SQLCODE.. 14-9
AUTO_CONNECT ... 14-10
CHARSET_PICX ... 14-10
CHARSET_PICN... 14-11
CLOSE_ON_COMMIT... 14-11
CONFIG.. 14-12
DATE_FORMAT ... 14-12
DBMS .. 14-13
DECLARE_SECTION... 14-13
DEFINE... 14-14
DYNAMIC.. 14-14
END_OF_FETCH .. 14-14
ERRORS .. 14-15
FIPS.. 14-15
FORMAT .. 14-16
HOLD_CURSOR ... 14-16
HOST... 14-17
INAME.. 14-17
INCLUDE ... 14-18
IRECLEN .. 14-19
LITDELIM .. 14-19
LNAME... 14-19
LRECLEN ... 14-20
LTYPE ... 14-20
MAXLITERAL ... 14-21
MAXOPENCURSORS .. 14-21
MODE ... 14-22
NESTED.. 14-23
NLS_LOCAL.. 14-23
ONAME.. 14-24
ORACA... 14-24
ORECLEN .. 14-24
PAGELEN .. 14-25
PICX .. 14-25
PREFETCH... 14-26
RELEASE_CURSOR ... 14-26
SELECT_ERROR ... 14-27
SQLCHECK.. 14-28
THREADS .. 14-29
TYPE_CODE .. 14-29
UNSAFE_NULL .. 14-30
USERID... 14-30
VARCHAR ... 14-31
XREF.. 14-31

A Operating System Dependencies

System-Specific References in this Manual... A-1

xvii

COBOL Versions ... A-1
Host Variables.. A-1

Declaring ... A-1
Naming.. A-1

INCLUDE Statements... A-2
MAXLITERAL Default ... A-2
PIC N or Pic G Clause for Multi-byte Globalization Support Characters A-2
RETURN-CODE Special Register May Be Unpredictable. ... A-2
Byte-Order of Binary Data ... A-2

B Reserved Words, Keywords, and Namespaces

Reserved Words and Keywords.. B-1
Reserved Namespaces .. B-3

C Performance Tuning

Causes of Poor Performance.. C-1
Improving Performance ... C-2
Using Host Tables.. C-2
Using PL/SQL and Java .. C-3
Optimizing SQL Statements .. C-3

Optimizer Hints... C-4
Giving Hints ... C-4

Using Indexes... C-4
Taking Advantage of Row-Level Locking .. C-5
Eliminating Unnecessary Parsing .. C-5

Handling Explicit Cursors ... C-5
Cursor Control.. C-5

Using the Cursor Management Options.. C-7
Private SQL Areas and Cursor Cache... C-7
Resource Use... C-7
Infrequent Execution ... C-8
Frequent Execution ... C-8
Effect on the Shared SQL Area... C-8
Embedded PL/SQL Considerations ... C-9
Parameter Interactions ... C-9

 Avoiding Unnecessary Reparsing ... C-9

D Syntactic and Semantic Checking

Syntactic and Semantic Checking Basics ... D-1
Controlling the Type and Extent of Checking .. D-1
Specifying SQLCHECK=SEMANTICS .. D-2

Enabling a Semantic Check.. D-2
Connecting to Oracle ... D-2
Using DECLARE TABLE .. D-3

xviii

E Embedded SQL Statements and Precompiler Directives

Summary of Precompiler Directives and Embedded SQL Statements E-3
About the Statement Descriptions... E-4
How to Read Syntax Diagrams .. E-5

Statement Terminator ... E-5
Required Keywords and Parameters .. E-5
Optional Keywords and Parameters ... E-6
Syntax Loops.. E-6
Multi-part Diagrams .. E-7
Oracle Names... E-7

ALLOCATE (Executable Embedded SQL Extension) .. E-7
ALLOCATE DESCRIPTOR (Executable Embedded SQL).. E-8
CALL (Executable Embedded SQL)... E-9
CLOSE (Executable Embedded SQL) ... E-11
COMMIT (Executable Embedded SQL) .. E-12
CONNECT (Executable Embedded SQL Extension) ... E-13
CONTEXT ALLOCATE (Executable Embedded SQL Extension) ... E-15
CONTEXT FREE (Executable Embedded SQL Extension) ... E-15
CONTEXT USE (Oracle Embedded SQL Directive) .. E-16
DEALLOCATE DESCRIPTOR (Embedded SQL Statement) ... E-17
DECLARE CURSOR (Embedded SQL Directive) .. E-18
DECLARE DATABASE (Oracle Embedded SQL Directive)... E-20
DECLARE STATEMENT (Embedded SQL Directive) .. E-21
DECLARE TABLE (Oracle Embedded SQL Directive) ... E-22
DELETE (Executable Embedded SQL) ... E-23
DESCRIBE (Executable Embedded SQL) .. E-26
DESCRIBE DESCRIPTOR (Executable Embedded SQL) .. E-28
ENABLE THREADS (Executable Embedded SQL Extension)... E-29
EXECUTE ... END-EXEC (Executable Embedded SQL Extension) ... E-30
EXECUTE (Executable Embedded SQL)... E-31
EXECUTE DESCRIPTOR (Executable Embedded SQL .. E-32
EXECUTE IMMEDIATE (Executable Embedded SQL) ... E-34
FETCH (Executable Embedded SQL) ... E-35
FETCH DESCRIPTOR (Executable Embedded SQL) ... E-37
FREE (Executable Embedded SQL Extension) .. E-39
GET DESCRIPTOR (Executable Embedded SQL) ... E-40
INSERT (Executable Embedded SQL) ... E-42
LOB APPEND (Executable Embedded SQL Extension) .. E-44
LOB ASSIGN (Executable Embedded SQL Extension)... E-45
LOB CLOSE (Executable Embedded SQL Extension) ... E-45
LOB COPY (Executable Embedded SQL Extension).. E-46
LOB CREATE TEMPORARY (Executable Embedded SQL Extension)...................................... E-46
LOB DESCRIBE (Executable Embedded SQL Extension) .. E-47
LOB DISABLE BUFFERING (Executable Embedded SQL Extension) E-48
LOB ENABLE BUFFERING (Executable Embedded SQL Extension).. E-48
LOB ERASE (Executable Embedded SQL Extension).. E-49
LOB FILE CLOSE ALL (Executable Embedded SQL Extension)... E-49

xix

LOB FILE SET (Executable Embedded SQL Extension).. E-50
LOB FLUSH BUFFER (Executable Embedded SQL Extension) ... E-50
LOB FREE TEMPORARY (Executable Embedded SQL Extension).. E-51
LOB LOAD (Executable Embedded SQL Extension)... E-51
LOB OPEN (Executable Embedded SQL Extension) ... E-52
LOB READ (Executable Embedded SQL Extension) ... E-52
LOB TRIM (Executable Embedded SQL Extension) .. E-53
LOB WRITE (Executable Embedded SQL Extension) ... E-53
OPEN (Executable Embedded SQL) ... E-54
OPEN DESCRIPTOR (Executable Embedded SQL) ... E-56
PREPARE (Executable Embedded SQL) ... E-58
ROLLBACK (Executable Embedded SQL) .. E-59
SAVEPOINT (Executable Embedded SQL) ... E-62
SELECT (Executable Embedded SQL) .. E-63
SET DESCRIPTOR (Executable Embedded SQL) .. E-66
UPDATE (Executable Embedded SQL) .. E-67
VAR (Oracle Embedded SQL Directive) .. E-71
WHENEVER (Embedded SQL Directive) ... E-72

Index

xx

xxi

List of Figures

1–1 Embedded SQL Program Development... 1-2
1–2 Pro*COBOL Features and Benefits.. 1-4
2–1 Application Development Process .. 2-2
2–2 Updating the SQLCA .. 2-7
3–1 Connecting Through Oracle .. 3-3
6–1 Maximum Cursors in Use... 6-15
8–1 SQLSTATE Coding Scheme .. 8-3
8–2 SQLCA Variable Declarations for Pro*COBOL.. 8-5
8–3 ORACA Variable Declarations for Pro*COBOL... 8-18
9–1 Choosing the Right Method ... 9-6
11–1 Sample Pro*COBOL SQLDA Descriptors and Data Buffers ... 11-4
11–2 How Variables Are Set ... 11-5
11–3 Initialized Select Descriptor... 11-20
11–4 Initialized Bind Descriptor .. 11-21
11–5 Bind Descriptor after the DESCRIBE .. 11-23
11–6 Bind Descriptor after Assigning Values ... 11-25
11–7 Select Descriptor after the DESCR.. 11-26
11–8 Select Descriptor before the FETCH... 11-28
11–9 Select Descriptor after the FETCH... 11-29
12–1 Loosely Coupling Connections and Threads.. 12-3
12–2 Context Sharing Among Threads ... 12-4
12–3 No Context Sharing Among Threads... 12-5
C–1 PL/SQL Boosts Performance .. C-3
C–2 Cursors Linked through the Cursor Cache... C-7

xxii

List of Tables

2–1 Embedded SQL Statements .. 2-3
2–2 Relational Operators ... 2-14
4–1 Summary of Oracle Built-In Datatypes... 4-2
4–2 External Datatypes... 4-3
4–3 Date Format .. 4-5
4–4 Pseudocolumns and Internal Datatypes... 4-8
4–5 Functions and Internal Datatypes ... 4-8
4–6 Host Variable Declarations.. 4-12
4–7 Compatible Oracle Internal Datatypes .. 4-14
4–8 Globalization Support Parameters ... 4-27
4–9 Conversions Between Internal and External Datatypes.. 4-31
4–10 Formats for Date Strings .. 4-33
4–11 Host Variable Equivalencing... 4-34
4–12 Parameters for Host Variable Equivalencing.. 4-36
4–13 VARNUM Examples .. 4-38
6–1 Legal Datatype Conversions ... 6-11
7–1 Host Tables Valid in SELECT INTO... 7-7
7–2 Host Tables Valid in UPDATE.. 7-11
8–1 Predefined Classes ... 8-3
8–2 DSNTIAR Error Codes and Their Meanings .. 8-11
8–3 Parameter Datatypes .. 8-16
8–4 SQLSTATE Codes ... 8-23
8–5 Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI | ANSI14

and DECLARE_SECTION=YES 8-28
8–6 Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI | ANSI14

and DECLARE_SECTION=YES 8-29
9–1 Appropriate Method to Use ... 9-3
10–1 ANSI SQL Datatypes .. 10-3
10–2 DYNAMIC Option Settings... 10-9
10–3 TYPE_CODE Option Settings ... 10-9
10–4 Definitions of Descriptor Item Names ... 10-12
10–5 Oracle Extensions to Definitions of Descriptor Item Names.. 10-12
10–6 Descriptor Item Names for SET DESCRIPTOR.. 10-14
10–7 Extensions to Descriptor Item Names for SET DESCRIPTOR 10-14
11–1 Internal Datatypes and Related Codes .. 11-11
11–2 Oracle External and Related COBOL Datatypes .. 11-12
11–3 PL/SQL Datatype Equivalences with Internal Datatypes .. 11-13
11–4 Datatype Exceptions to the SQLPR2 Procedure... 11-15
13–1 LOB Access Methods.. 13-4
13–2 Source LOB and Precompiler Datatypes ... 13-16
13–3 LOB Attributes .. 13-18
14–1 How Macro Option Values Set Micro Option Values ... 14-4
14–2 Option List ... 14-7
14–3 Formats for Date Strings... 14-12
14–4 Types of Listings ... 14-20
14–5 Checking Done by SQLCHECK.. 14-29
B–1 Reserved Namespaces... B-4
C–1 HOLD_CURSOR and RELEASE _CURSOR Interactions ... C-9
E–1 Source/Type Column Meaning.. E-3
E–2 Precompiler Directives and Embedded SQL Statements and Clauses E-3

xxiii

Preface

This manual is a comprehensive user's guide and reference to the Oracle Pro*COBOL
Precompiler. It shows you how to develop COBOL programs that use the database
languages SQL and PL/SQL to access and manipulate Oracle data. See Oracle Database
SQL Reference and PL/SQL User’s Guide and Reference for more information on SQL and
PL/SQL.

This Preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Intended Audience
The Pro*COBOL Programmer's Guide is intended for anyone developing new COBOL
applications or converting existing applications to run in the Oracle9i environment.
Written especially for programmers, this comprehensive treatment of Pro*COBOL will
also be of value to systems analysts, project managers, and others interested in
embedded SQL applications.

To use this manual effectively, you need a working knowledge of the following
subjects:

■ Applications programming in COBOL

■ The SQL database language

■ Oracle concepts and terminology

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

xxiv

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see these Oracle resources:

■ Oracle Database SQL Reference

■ Oracle C++ Call Interface Programmer's Guide

■ Oracle Call Interface Programmer's Guide

Many of the examples in this book use the sample schemas of the seed database, which
is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas
for information on how these schemas were created and how you can use them
yourself.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxv

What's New in Pro*COBOL?

This section describes new features of Oracle9i releases and provides pointers to
additional information. New features information from previous releases is also
retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Pro*COBOL:

■ Oracle Database Release 9.2 New Features in Pro*COBOL

■ Oracle9i Release 2 (9.2) New Features in Pro*COBOL

■ Oracle9i Release 1 (9.0.1) New Features in Pro*COBOL

■ Oracle8i Release 8.1.6 New Features in Pro*COBOL

■ Oracle8i Release 8.1.5 New Features in Pro*COBOL

■ Oracle8i Release 8.1.3 New Features in Pro*COBOL

■ Oracle8 Database Release 8.0 New Features in Pro*COBOL

Oracle Database Release 9.2 New Features in Pro*COBOL
TBD

Oracle9i Release 2 (9.2) New Features in Pro*COBOL
There is no new feature added in Pro*COBOL for this release.

Oracle9i Release 1 (9.0.1) New Features in Pro*COBOL
The Oracle9i Release 1(9.0.1) Pro*COBOL features and enhancements described in this
section enables Pro*COBOL programs to use new Datetime types.

This section contains these topics:

■ Globalization Support

National Language Support (NLS) was re-named Globalization Support.

■ New Datetime Datatypes

Pro*COBOL supports five new datetime datatypes: INTERVAL DAY TO SECOND,
INTERVAL YEAR TO MONTH, TIMESTAMP, TIMESTAMP WITH TIMEZONE, and
TIMESTAMP WITH LOCAL TIMEZONE. You can select from columns of these
datatypes onto the OCIInterval and OCIDateTime host variables and into
objects where attributes are datetime types.

xxvi

Oracle8i Release 8.1.6 New Features in Pro*COBOL
The features and enhancements described in this section enable Pro*COBOL programs
to use multiple threads for better performance.

This section contains these topics:

■ Support for Pro*COBOL Multithreading application

Pro*COBOL 8.1.6 now supports multithreading applications. A context variable
can now be declared using the SQL-CONTEXT pseudo-type. Also, declarations for
host variables are now allowed in the LOCAL-STORAGE and
THREAD-LOCAL-STORAGE sections.

Oracle8i Release 8.1.5 New Features in Pro*COBOL
The Oracle8i Release 8.1.5 Pro*COBOL features and enhancements described in this
section comprise the overall effort to make Pro*COBOL application development
simpler.

This section contains these topics:

■ Enhancement to WHENEVER statement

Pro*COBOL 8.1.5 now allows the call of a subroutine as the action in the
WHENEVER statement. The new syntax is: EXEC SQL WHENEVER <condition>
DO CALL <subprogram> [USING id1 id2 ... idn] END-EXEC. This new
functionality is very useful when writing nested programs.

■ Support for COBOL in-line comments

Pro*COBOL 8.1.5 supports COBOL in-line comments that begin with two
contiguous charaters "*>" preceded by a separator space, and ends with the last
character position of the line. An in-line comment cannot be continued and can
only be used in COBOL code.

■ Support for DECIMAL-POINT IS COMMA

Pro*COBOL 8.1.5 has been enhanced to support the DECIMAL-POINT IS
COMMA clause in the ENVIRONMENT DIVISION. If the clause appears in the
source file, then the comma will be allowed as a period is in any numeric literal in
the VALUE clause.

■ Support for Optional Division Headers

Previously, IDENTIFICATION, ENVIRONMENT, and DATA DIVISION headers
were required to precede their respective division contents. As of Pro*COBOL
8.1.5, these headers are optional. Please note that the entire divisions were already
optional, this enhancement addresses only the division "headers".

See Also: Chapter 12, "Multithreaded Applications"

See Also: WHENEVER Directive on page 8-11

See Also: Comments on page 2-9

See Also: Decimal-Point is Comma on page 2-10

See Also: Division Headers that are Optional on page 2-11

xxvii

Oracle8i Release 8.1.3 New Features in Pro*COBOL
The Oracle8i Release 8.1.3 Pro*COBOL features and enhancements described in this
section includes the use of LOB in the Pro*COBOL application with other features.

This section contains these topics:

■ Large Object (LOB) support

Pro*COBOL 8.1.3 supports a way to declare LOB locators for all LOB types (BLOB,
CLOB, NCLOB, and BFILE), provides the ability to allocate and free the LOB
locators, and also provides a full set of embedded SQL statements for direct
manipulation of LOB locators and their values. The values of certain attributes of
LOBS are available through a new LOB DESCRIBE embedded SQL statement.

■ ANSI Dynamic SQL support

Pro*COBOL 8.1.3 provides support for ANSI Dynamic SQL (also known as the
SQL92 dynamic SQL) which should be used for new Method 4 applications. In
ANSI dynamic SQL, descriptors are internally maintained by Oracle, while in the
older Oracle dynamic SQL, the descriptors are defined in the user's program.

■ Support for universal rowid

Pro*COBOL 8.1.3 provides a mechanism to ALLOCATE and FREE rowid
descriptors that are compatible with both physical rowids (associated with heap
tables) and logical rowids (associated with index organized tables) Users declare
rowid descriptors using a new Pro*COBOL pseudotype SQL-ROWID.

■ Support for DML returning

Pro*COBOL 8.1.3 supports an optional RETURNING clause in the VALUES clause
of an INSERT statement, and after the optional WHERE clause of a DELETE and
UPDATE statement.

■ Support for Tables of Group Items as host variables

Pro*COBOL 8.1.3 supports tables of group items with elementary subordinate
items as host variables in embedded SQL statements. The host tables of group
items can be referenced in the INTO clause of a SELECT or a FETCH statement,
and in the VALUES list of an INSERT statement.

■ Support for SYSDBA and SYSOPER modes in the CONNECT statement

In previous versions, users could connect with sysdba privileges by specifying:

EXEC SQL CONNECT :<uid> IDENTIFIED BY :<pwd> END-EXEC where <uid>
is a host variable containing "SYS" and <pwd> is a host variable containing
"CHANGE_ON_INSTALL". The SYSDBA privileges are no longer available by
default by using the preceding, thus Pro*COBOL 8.1.3 supports an optional IN

See Also: Large Objects (LOBs) on page 13-1

See Also: ANSI Dynamic SQL on page 10-1

See Also: Universal ROWIDs on page 4-25

See Also: DML Returning Clause on page 5-7

See Also: Tables of Group Items as Host Variables on page 7-15

xxviii

MODE clause in the embedded CONNECT statement for the user to specify the
SYSDBA or SYSOPER mode.

■ Support for user specification of runtime context

Pro*COBOL 8.1.3 provides a way to declare a handle to a runtime context and use
that handle with some new CONTEXT embedded SQL statements and directives
(CONTEXT ALLOCATE, CONTEXT FREE, and CONTEXT USE). Pro*COBOL
8.1.3 does not support multithreaded applications.

■ Support for pre-fetching

Oracle supports the notion of pre-fetching a number of rows when a query is
executed. This increases performance by eliminating the need for a server
round-trip when the rows are subsequently fetched.

Oracle8 Database Release 8.0 New Features in Pro*COBOL
The Oracle8 Database Release 8.0.x Pro*COBOL features and enhancements described
in this section comprises the use of nested program structures among others.

This section contains these topics:

■ Support for Nested Programs

Pro*COBOL 2.0.2 allows nested programs with embedded SQL within a single
source file.

■ Improved error reporting

Errors will be associated with the proper line in any list file produced or in any
terminal output. "Invalid host variable" errors will clearly state why the given
COBOL variable is invalid for use in embedded SQL.

■ Support for using REDEFINES clause with group items

The REDEFINES clause is allowed to redefine group items and be used in host
variable declarations.

■ Support for FILLER

The word FILLER can be used in host variable declarations.

■ New default datatype for PIC X

See Also: Connecting to Oracle on page 3-1

See Also: Runtime Contexts in Pro*COBOL on page 12-2

See Also: The PREFETCH Precompiler Option on page 5-13

See Also: Support for Nested Programs on page 2-17

See Also: Improved Error Reporting on page A-6

See Also: REDEFINES Clause on page 2-13

See Also: FILLER is Allowed on page 2-12

xxix

The default datatype for PIC X variables has changed from VARCHAR2 (1) to
CHARF (96). A new precompiler option is provided for backward compatibility.

■ Support for NCHAR data

NCHAR data is now fully supported by the kernel. Previous releases of the
precompiler supported this datatype with the NLS_LOCAL option.

See Also: Default for PIC X on page 4-23

See Also: NLS_LOCAL on page 14-23, Multibyte Globalization
Support Character Sets on page 4-29, Multibyte Datatypes on
page 2-12

xxx

Introduction 1-1

1
Introduction

This chapter introduces you to the Pro*COBOL Precompiler. You look at its role in
developing application programs that manipulate Oracle data and find out what it
enables your applications to do. The following questions are answered:

■ The Pro*COBOL Precompiler

■ Advantages of the Pro*COBOL Precompiler

■ The SQL Language

■ The PL/SQL Language

■ Pro*COBOL Features and Benefits

The Pro*COBOL Precompiler
The Pro*COBOL Precompiler is a programming tool that enables you to embed SQL
statements in a host COBOL program. As Figure 1–1 shows, the precompiler accepts
the host program as input, translates the embedded SQL statements into standard
Oracle run-time library calls, and generates a source program that you can compile,
link, and execute in the usual way.

Advantages of the Pro*COBOL Precompiler

1-2 Pro*COBOL Programmer’s Guide

Figure 1–1 Embedded SQL Program Development

The illustration displays the embedded SQL Program development where precompiler
accepts the host program as input, translates the embedded SQL statements into
standard Oracle run-time library calls, and generates a source program.

Language Alternatives
Oracle Precompilers are available (but not on all systems) for the following high-level
languages:

■ C/C++

■ COBOL

■ FORTRAN

Pro*Pascal, Pro*ADA, and Pro*PL/I will not be released again. However, Oracle will
continue to issue patch releases for Pro*FORTRAN as bugs are reported and corrected.

Advantages of the Pro*COBOL Precompiler
The Pro*COBOL Precompiler lets you pack the power and flexibility of SQL into your
application programs. You can embed SQL statements in COBOL. A convenient, easy
to use interface lets your application access Oracle directly.

To resolve calls

With embedded SQL statements

With all SQL statements replaced by library callsSource
Program

Oracle
Precompiler

Editor

Host
Program

Compiler

Object
Program

Linker

Executable
Program

Oracle
Runtime
Library
(SQLLIB)

Pro*COBOL Features and Benefits

Introduction 1-3

Unlike many application development tools, Pro*COBOL lets you create highly
customized applications. For example, you can create user interfaces that incorporate
the latest windowing and mouse technology. You can also create applications that run
in the background without the need for user interaction.

Furthermore, with Pro*COBOL you can fine-tune your applications. It enables close
monitoring of resource usage, SQL statement execution, and various run-time
indicators. With this information, you can adjust program parameters for maximum
performance.

The SQL Language
If you want to access and manipulate Oracle data, you need SQL. Whether you use
SQL interactively or embedded in an application program depends on the job at hand.
If the job requires the procedural processing power of COBOL, or must be done on a
regular basis, use embedded SQL.

SQL has become the database language of choice because it is flexible, powerful, and
easy to learn. Being non-procedural, it lets you specify what you want done without
specifying how to do it. A few English-like statements make it easy to manipulate
Oracle data one row or many rows at a time.

You can execute any SQL (not SQL*Plus) statement from an application program. For
example, you can:

■ CREATE, ALTER, and DROP database tables dynamically.

■ SELECT, INSERT, UPDATE, and DELETE rows of data.

■ COMMIT or ROLLBACK transactions.

Before embedding SQL statements in an application program, you can test them
interactively using SQL*Plus. Usually, only minor changes are required to switch from
interactive to embedded SQL.

The PL/SQL Language
An extension to SQL, PL/SQL is a transaction processing language that supports
procedural constructs, variable declarations, and robust error handling. Within the
same PL/SQL block, you can use SQL and all the PL/SQL extensions.

The main advantage of embedded PL/SQL is better performance. Unlike SQL,
PL/SQL enables you to group SQL statements logically and send them to Oracle in a
block rather than one by one. This reduces network traffic and processing overhead.

For more information about PL/SQL including how to embed it in an application
program, see Chapter 6, "Embedded PL/SQL".

Pro*COBOL Features and Benefits
As Figure 1–2 shows, Pro*COBOL offers many features and benefits that help you to
develop effective, reliable applications.

Pro*COBOL Features and Benefits

1-4 Pro*COBOL Programmer’s Guide

Figure 1–2 Pro*COBOL Features and Benefits

The illustration displays features and benefits offered by Pro*COBOL that help you to
develop effective and reliable applications.

For example, the Pro*COBOL Precompiler enables you to:

■ Write your application in COBOL.

■ Conform to the ANSI/ISO embedded SQL standard.

■ Take advantage of ANSI Dynamic SQL Method 4, an advanced programming
technique that lets your program accept or build any valid SQL statement at
run-time in a COBOL program

■ Design and develop highly customized applications.

■ Convert automatically between Oracle9i internal datatypes and COBOL datatypes.

■ Improve performance by embedding PL/SQL transaction processing blocks in
your COBOL application program.

■ Specify useful precompiler options and change their values during
precompilation.

■ Use datatype equivalencing to control the way Oracle9i interprets input data and
formats output data.

■ Precompile several program modules separately, and then link them into one
executable program.

■ Check the syntax and semantics of embedded SQL data manipulation statements
and PL/SQL blocks.

■ Access Oracle9i databases on multiple nodes concurrently, using Oracle Net
(formerly called Net8).

Runtime
Diagnostics

Event
Handling

Language
Alternatives

ANSI/ISO SQL
Conformance

Highly
Customized
Applications

ANSI
Dynamic
SQL

Support for
PL/SQL
and Java

Host
Table
Support

Precompiler
OptionsUser Exits

Syntax
Checking

Datatype
Equivalencing

Support
for LOBs

Concurrent
Connects

Conditional
Precompilation

Separate
Precompilation

Pro*COBOL

Pro*COBOL Features and Benefits

Introduction 1-5

■ Use arrays as input and output program variables.

■ Precompile sections of code conditionally so that your host program can run in
different environments.

■ Interface with tools such as Oracle Forms and Oracle Reports through user exits
written in a high-level language.

■ Handle errors and warnings with the ANSI-approved status variables SQLSTATE
and SQLCODE, or the SQL Communications Area (SQLCA) and WHENEVER
statement. Or both SQLSTATE and SQLCODE, and the SQL Communications
Area (SQLCA) and WHENEVER statement.

■ Use an enhanced set of diagnostics provided by the Oracle Communications Area
(ORACA).

■ Access Large Object (LOB) database types.

Pro*COBOL Features and Benefits

1-6 Pro*COBOL Programmer’s Guide

Precompiler Concepts 2-1

2
Precompiler Concepts

This chapter explains how embedded SQL programs do their work. It presents
definitions of important words, explanations of basic concepts, and key rules.

Topics covered are:

■ Key Concepts of Embedded SQL Programming

■ Programming Guidelines

■ The Declare Section

■ Nested Programs

■ Conditional Precompilations

■ Separate Precompilations

■ Sample DEPT and EMP Tables

■ Sample EMP Program: SAMPLE1.PCO

Key Concepts of Embedded SQL Programming
This section lays the conceptual foundation on which later chapters build.

Steps in Developing an Embedded SQL Application
Precompiling results in a source file that can be compiled normally. Although
precompiling adds a step to the traditional development process, that step is well
worth taking because it lets you write very flexible applications.

Figure 2–1 walks you through the embedded SQL application development process:

Key Concepts of Embedded SQL Programming

2-2 Pro*COBOL Programmer’s Guide

Figure 2–1 Application Development Process

The illustration shows the embedded SQL application development process. It shows
the steps to be followed and the corresponding result in a flowchat.

Embedded SQL Statements
The term embedded SQL refers to SQL statements placed within an application
program. Because the application program houses the SQL statements, it is called a
host program, and the language in which it is written is called the host language. For
example, with Pro*COBOL you can embed SQL statements in a COBOL host program.

To manipulate and query Oracle data, you use the INSERT, UPDATE, DELETE, and
SELECT statements. INSERT adds rows of data to database tables, UPDATE modifies
rows, DELETE removes unwanted rows, and SELECT retrieves rows that meet your
search criteria.

Only SQL statements—not SQL*Plus statements—are valid in an application program.
(SQL*Plus has additional statements for setting environment parameters, editing, and
report formatting.)

Steps Results

Design

Code

Precompile

Errors?

Compile

Errors?

Link

Execute

Errors?

Stop

no

yes

yes

yes

yes

no

no

Specs

Host
Program

Source
Program

Object
Program

Linked
Program

Key Concepts of Embedded SQL Programming

Precompiler Concepts 2-3

Executable versus Declarative Statements
Embedded SQL includes all the interactive SQL statements plus others that allow you
to transfer data between Oracle and a host program. There are two types of embedded
SQL statements: executable statements and directives.

Executable SQL statements generate calls to the database. They include almost all
queries, DML (Data Manipulation Language), DDL (data definition language), and
DCL (Data Control Language) statements.

Directives, on the other hand, do not result in calls to SQLLIB and do not operate on
Oracle data.

You use directives to declare Oracle objects, communications areas, and SQL variables.
They can be placed wherever COBOL declarations can be placed.

Appendix E, "Embedded SQL Statements and Precompiler Directives" contains a
presentation of the most important statements and directives.Table 2–1 groups some
examples of embedded SQL statements (not a complete list.)

Table 2–1 Embedded SQL Statements

Directives

STATEMENT PURPOSE

ARRAYLEN* To use host tables with PL/SQL

BEGIN DECLARE
SECTION*

END DECLARE
SECTION*

To declare host variables

DECLARE* To name Oracle objects

INCLUDE* To copy in files

VAR* To equivalence variables

WHENEVER* To handle runtime errors

Executable SQL

STATEMENT PURPOSE

ALLOCATE*

ALTER

CONNECT*

CREATE

DROP

GRANT

NOAUDIT

RENAME

REVOKE

TRUNCATE

To define and control Oracle data

Key Concepts of Embedded SQL Programming

2-4 Pro*COBOL Programmer’s Guide

Embedded SQL Syntax
In your application program, you can freely intermix SQL statements with
host-language statements and use host-language variables in SQL statements. The
only special requirement for building SQL statements into your host program is that
you begin them with the words EXEC SQL and end them with the token END-EXEC.
Pro*COBOL translates all executable EXEC SQL statements into calls to the runtime
library SQLLIB.

Most embedded SQL statements differ from their interactive counterparts only
through the addition of a new clause or the use of program variables. Compare the
following interactive and embedded ROLLBACK statements:

ROLLBACK WORK; -- interactive

* embedded
 EXEC SQL
 ROLLBACK WORK
 END-EXEC.

A period or any other terminator can follow a SQL statement. Either of the following is
allowed:

 EXEC SQL ... END-EXEC,
 EXEC SQL ... END-EXEC.

CLOSE*

DELETE

EXPLAIN PLAN

FETCH*

INSERT

LOCK TABLE

OPEN*

SELECT

UPDATE

To query and manipulate Oracle data

COMMIT

ROLLBACK

SAVEPOINT

SET TRANSACTION

To process transactions

DESCRIBE*

EXECUTE*

PREPARE*

To use dynamic SQL

ALTER SESSION

SET ROLE

To control sessions

*Has no interactive counterpart

Table 2–1 (Cont.) Embedded SQL Statements

Directives

Key Concepts of Embedded SQL Programming

Precompiler Concepts 2-5

Static Versus Dynamic SQL Statements
Most application programs are designed to process static SQL statements and fixed
transactions. In this case, you know the makeup of each SQL statement and
transaction before run time. That is, you know which SQL commands will be issued,
which database tables might be changed, which columns will be updated, and so on.
See Chapter 5, "Embedded SQL".

However, some applications are required to accept and process any valid SQL
statement at run time. In this case you might not know until run time all the SQL
commands, database tables, and columns involved.

Dynamic SQL is an advanced programming technique that lets your program accept or
build SQL statements at run time and take explicit control over datatype conversion.
See Chapter 9, "Oracle Dynamic SQL", Chapter 10, "ANSI Dynamic SQL", and
Chapter 11, "Oracle Dynamic SQL: Method 4".

Embedded PL/SQL Blocks
Pro*COBOL treats a PL/SQL block like a single embedded SQL statement, so you can
place a PL/SQL block anywhere in an application program that you can place a SQL
statement. To embed PL/SQL in your host program, you simply declare the variables
to be shared with PL/SQL and bracket the PL/SQL block with the keywords EXEC
SQL EXECUTE and END-EXEC.

From embedded PL/SQL blocks, you can manipulate Oracle data flexibly and safely
because PL/SQL supports all SQL data manipulation and transaction processing
commands. For more information about PL/SQL, see Chapter 6, "Embedded
PL/SQL".

Host Variables and Indicator Variables
A host variable is a scalar or table variable or group item declared in the COBOL
language and shared with Oracle, meaning that both your program and Oracle can
reference its value. Host variables are the key to communication between Oracle and
your program.

You use input host variables to pass data to the database. You use output host variables
to pass data and status information from the database to your program.

Host variables can be used anywhere an expression can be used. In SQL statements,
host variables must be prefixed with a colon ':' to set them apart from database schema
names.

You can associate any host variable with an optional indicator variable. An indicator
variable is an integer variable that indicates the value or condition of its host variable.
A NULL is a missing, an unknown, or an inapplicable value. You use indicator
variables to assign NULLs to input host variables and to detect NULLs in output
variables or truncated values in output character host variables.

A host variable must not be:

■ prefixed with a colon in COBOL statements

■ used in data definition (DDL) statements such as ALTER and CREATE

In SQL statements, an indicator variable must be prefixed with a colon and appended
to its associated host variable (to improve readability, you can precede the indicator
variable with the optional keyword INDICATOR).

Key Concepts of Embedded SQL Programming

2-6 Pro*COBOL Programmer’s Guide

Every program variable used in a SQL statement must be declared according to the
rules of the COBOL language. Normal rules of scope apply. COBOL variable names
can be any length, but only the first 30 characters are significant for Pro*COBOL. Any
valid COBOL identifier can be used as a host variable identifier, including those
beginning with digits.

The external datatype of a host variable and the internal datatype of its source or
target database column need not be the same, but they must be compatible. Table 4–9,
" Conversions Between Internal and External Datatypes" shows the compatible
datatypes between which Oracle9i converts automatically when necessary.

Oracle Datatypes
Typically, a host program inputs data to the database, and the database outputs data to
the program. Oracle inserts input data into database tables and selects output data into
program host variables. To store a data item, Oracle must know its datatype, which
specifies a storage format and valid range of values.

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle stores data in database columns. Oracle also uses internal
datatypes to represent database pseudo-columns, which return specific data items but
are not actual columns in a table.

External datatypes specify how data is stored in host variables. When your host
program inputs data to Oracle, it does any conversion between the external datatype
of the input host variable and the internal datatype of the database column. When
Oracle outputs data to your host program, if necessary, Oracle converts between the
internal datatype of the database column and the external datatype of the output host
variable.

Tables
Pro*COBOL lets you define table host variables (called host tables) and operate on them
with a single SQL statement. Using the SELECT, FETCH, DELETE, INSERT, and
UPDATE statements, you can query and manipulate large volumes of data with ease.

For a complete discussion of host tables, see Chapter 7, "Host Tables".

Errors and Warnings
When you execute an embedded SQL statement, it either succeeds or fails, and might
result in an error or warning. You need a way to handle these results. Pro*COBOL
provides the following error handling mechanisms:

■ SQLCODE status variable

■ SQLSTATE status variable

■ SQL Communications Area (SQLCA)

■ WHENEVER statement

■ Oracle Communications Area (ORACA)

Note: You can override default datatype conversions by using
dynamic SQL Method 4 or datatype equivalencing. For information
about datatype equivalencing, see "Explicit Control Over DATE
String Format" on page 4-33.

Key Concepts of Embedded SQL Programming

Precompiler Concepts 2-7

SQLCODE/SQLSTATE Status Variables
After executing a SQL statement, the Oracle Server returns a status code to a variable
named SQLCODE or SQLSTATE. The status code indicates whether the SQL statement
executed successfully or caused an error or warning condition.

SQLCA Status Variable
The SQLCA is a data structure that defines program variables used by Oracle to pass
runtime status information to the program. With the SQLCA, you can take different
actions based on feedback from Oracle about work just attempted. For example, you
can check to see if a DELETE statement succeeded and, if so, how many rows were
deleted.

The SQLCA provides for diagnostic checking and event handling. At runtime, the
SQLCA holds status information passed to your program by Oracle9i. After executing
a SQL statement, Oracle8i sets SQLCA variables to indicate the outcome, as illustrated
in Figure 2–2.

Figure 2–2 Updating the SQLCA

This illustration shows how Oracle8i sets SQLCA variables to indicate the outcome,
after executing a SQL statement.

You can check to see if an INSERT, UPDATE, or DELETE statement succeeded and if it
did, how many rows were affected. Or, if the statement failed, you can get more
information about what happened.

When MODE={ANSI13 | ORACLE}, you must declare the SQLCA by hard-coding it
or by copying it into your program with the INCLUDE statement. The section "Using

Host Program

Error Codes

Diagnostic Test

Number of Rows

Warning Flag Settings

SQLCA

SQL

Database Server

Programming Guidelines

2-8 Pro*COBOL Programmer’s Guide

the SQL Communications Area" on page 8-5 shows you how to declare and use the
SQLCA.

WHENEVER Statement
With the WHENEVER statement, you can specify actions to be taken automatically
when Oracle detects an error or warning condition. These actions include continuing
with the next statement, calling a subprogram, branching to a labeled statement,
performing a paragraph, or stopping.

ORACA
When more information is needed about runtime errors than the SQLCA provides,
you can use the ORACA. The ORACA is a data structure that handles Oracle
communication. It contains cursor statistics, information about the current SQL
statement, option settings, and system statistics.

Precompiler Options and Error Handling
Oracle returns the success or failure of SQL statements in status variables, SQLSTATE
and SQLCODE. With precompiler option MODE=ORACLE, you use SQLCODE,
declared by including SQLCA. With MODE=ANSI, either SQLSTATE or SQLCODE
must be declared, but SQLCA is not necessary.

For more information, see Chapter 8, "Error Handling and Diagnostics".

Programming Guidelines
This section deals with embedded SQL syntax, coding conventions, and
Pro*COBOL-specific features and restrictions. Topics are arranged alphabetically for
quick reference.

Abbreviations
You can use the standard COBOL abbreviations, such as PIC for PICTURE IS and
COMP for USAGE IS COMPUTATIONAL.

Case-Insensitivity
Pro*COBOL precompiler options and values as well as all EXEC SQL statements,
inline commands, and COBOL statements are case-insensitive. The precompiler
accepts both upper- and lower-case tokens.

COBOL Versions Supported
Pro*COBOL supports the standard implementation of COBOL for your operating
system (usually COBOL-85 or COBOL-74). Some platforms may support both COBOL
implementations. For more information, see your Oracle system-specific
documentation.

Coding Areas
The precompiler option FORMAT, specifies the format of your source code. If you
specify FORMAT=ANSI (the default), you are conforming as much as possible to the
ANSI standard. In this format, columns 1 through 6 can contain an optional sequence
number, and column 7 (indicator area) can indicate comments or continuation lines.

Programming Guidelines

Precompiler Concepts 2-9

Division headers, section headers, paragraph names, FD and 01 statements begin in
columns 8 through 11 (area A). Other statements, including EXEC SQL and EXEC
ORACLE statements, must be placed in area B (columns 12 through 72). These
guidelines for source code format can be overridden by your compiler's rules.

If you specify FORMAT=TERMINAL, COBOL statements can begin in column 1 (the
left-most column), or column 1 can be the indicator area. This format is also subject to
the rules of your compiler.

Consult your COBOL compiler documentation for your own platform to determine
the actual acceptable formats for COBOL statements.

Commas
In SQL, you must use commas to separate list items, as the following example shows:

 EXEC SQL SELECT ENAME, JOB, SAL
 INTO :EMP-NAME, :JOB-TITLE, :SALARY
 FROM EMP
 WHERE EMPNO = :EMP-NUMBER
 END-EXEC.

In COBOL, you can use commas or blanks to separate list items. For example, the
following two statements are equivalent:

 ADD AMT1, AMT2, AMT3 TO TOTAL-AMT.
 ADD AMT1 AMT2 AMT3 TO TOTAL-AMT.

Comments
You can place COBOL comment lines within SQL statements. COBOL comment lines
start with an asterisk (*) in the indicator area.

You can also place ANSI SQL-style comments starting with "- - " within SQL
statements at the end of a line (but not after the last line of the SQL statement).

COBOL comments continue for the rest of the line after these two characters: "*>".

You can place C-style comments (/* ... */) in SQL statements.

The following example shows all four styles of comments:

 MOVE 12 TO DEPT-NUMBER. *> This is the software development group.
 EXEC SQL SELECT ENAME, SAL
* assign column values to output host variables
 INTO :EMP-NAME, :SALARY -- output host variables
 /* column values assigned to output host variables */
 FROM EMP
 WHERE DEPTNO = :DEPT-NUMBER
 END-EXEC. -- illegal Comment

You cannot nest comments or place them on the last line of a SQL statement after the
terminator END-EXEC.

Note: In this manual, COBOL code examples use the
FORMAT=TERMINAL setting. The online sample programs in the
demo directory use FORMAT=ANSI.

Programming Guidelines

2-10 Pro*COBOL Programmer’s Guide

Continuation Lines
You can continue SQL statements from one line to the next, according to the rules of
COBOL, as this example shows:

 EXEC SQL SELECT ENAME, SAL INTO :EMP-NAME, :SALARY FROM EMP
 WHERE DEPTNO = :DEPT-NUMBER
 END-EXEC.

No continuation indicator is needed.

To continue a string literal from one line to the next, code the literal through column
72. On the next line, code a hyphen (-) in column 7, a quote in column 12 or beyond,
and then the rest of the literal. An example follows:

 WORKING STORAGE SECTION.
 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 UPDATE-STATEMENT PIC X(80) VALUE "UPDATE EMP SET BON
- "US = 500 WHERE DEPTNO = 20".
 EXEC SQL END DECLARE SECTION END-EXEC.

Copy Statements
Copy statements are not parsed by Pro*COBOL. Therefore, files included with the
COPY command should not contain definitions of Host variables or contain
embedded SQL statements. Instead, use the INCLUDE precompiler statement which is
documented in "Using the INCLUDE Statement" on page 2-15. Be careful when using
INCLUDE and also using DECLARE_SECTION=YES. Group items should be either
placed all inside or all outside of a Declare Section.

Decimal-Point is Comma
Pro*COBOL supports the DECIMAL-POINT IS COMMA clause in the
ENVIRONMENT DIVISION. If the DECIMAL-POINT IS COMMA clause appears in
the source file, then the comma will be allowed as the symbol beginning the decimal
part of any numeric literals in the VALUE clauses.

 For example, the following is allowed:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. FOO
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 DECIMAL-POINT IS COMMA. *> <-- **
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 ...
 01 WDATA1 PIC S9V999 VALUE +,567. *> <--- **
 01 WDATA2 PIC S9V999 VALUE -,234. *> <--- **
 ...

Delimiters
The LITDELIM option specifies the delimiters for COBOL string constants and literals.
If you specify LITDELIM=APOST, Pro*COBOL uses apostrophes when generating
COBOL code. If you specify LITDELIM=QUOTE (default), quotation marks are used,
as in

Programming Guidelines

Precompiler Concepts 2-11

 CALL "SQLROL" USING SQL-TMP0.

In SQL statements, you must use quotation marks to delimit identifiers containing
special or lowercase characters, as in

 EXEC SQL CREATE TABLE "Emp2" END-EXEC.

However, you must use apostrophes to delimit string constants, as in

 EXEC SQL SELECT ENAME FROM EMP WHERE JOB = 'CLERK' END-EXEC.

Regardless of which delimiter is used in the Pro*COBOL source file, Pro*COBOL
generates the delimiter specified by the LITDELIM value.

Division Headers that are Optional
The following division headers are optional:

■ IDENTIFICATION DIVISION

■ ENVIRONMENT DIVISION

■ DATA DIVISION

Note that the PROCEDURE DIVISION header is not optional. The following source
can be precompiled:

*IDENTIFICATION DIVISION header is optional
 PROGRAM-ID. HELLO.
*ENVIRONMENT DIVISION header is optional
 CONFIGURATION SECTION.
*DATA DIVISION header is optional
 WORKING-STORAGE SECTION.
 PROCEDURE DIVISION.
 DISPLAY "Hello World!".
 STOP RUN.

Embedded SQL Syntax
To use a SQL statement in your Pro*COBOL program, precede the SQL statement with
the EXEC SQL clause, and end the statement with the END-EXEC keyword.
Embedded SQL syntax is described in the Oracle Database SQL Reference.

Figurative Constants
Figurative constants, such as HIGH-VALUE, ZERO, and SPACE, cannot be used in
SQL statements. For example, the following is invalid:

 EXEC SQL DELETE FROM EMP WHERE COMM = ZERO END-EXEC.

Instead, use the following:

 EXEC SQL DELETE FROM EMP WHERE COMM = 0 END-EXEC.

File Length
Pro*COBOL cannot process arbitrarily long source files. Some of the variables used
internally limit the size of the generated file. There is no absolute limit to the number
of lines allowed, but the following aspects of the source file are contributing factors to
the file-size constraint:

Programming Guidelines

2-12 Pro*COBOL Programmer’s Guide

■ Complexity of the embedded SQL statements (for example, the number of bind
and define variables)

■ Whether a database name is used (for example, connecting to a database with an
AT clause)

■ Number of embedded SQL statements

To prevent problems related to this limitation, use multiple program units to
sufficiently reduce the size of the source files.

FILLER is Allowed
The word FILLER is allowed in host variable declarations. The word FILLER is used to
specify an elementary item of a group that cannot be referred to explicitly. The
following declaration is valid:

 01 STOCK.
 05 DIVIDEND PIC X(5).
 05 FILLER PIC X.
 05 PRICE PIC X(6).

Host Variable Names
Any valid standard COBOL identifier can be used as a host variable. Variable names
can be any length, but only the first 30 characters are significant. The maximum
number of significant characters recognized by COBOL compilers is 30.

For SQL92 standards conformance, restrict the length of host variable names to 18 or
fewer characters.

For a list of words that have restrictions on their use in applications, see Appendix B,
"Reserved Words, Keywords, and Namespaces".

Hyphenated Names
You can use hyphenated host-variable names in static SQL statements but not in
dynamic SQL. For example, the following usage is invalid:

 MOVE "DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER" TO SQLSTMT.
 EXEC SQL PREPARE STMT1 FROM SQLSTMT END-EXEC.

Level Numbers
When declaring host variables, you can use level numbers 01 through 49, and 77.
Pro*COBOL does not allow variables containing the VARYING clause or pseudo-type
variables (these datatypes are prefixed with "SQL- ") to be declared level 49 or 77.

MAXLITERAL Default
With the MAXLITERAL option, you can specify the maximum length of string literals
generated by Pro*COBOL, so that compiler limits are not exceeded. For Pro*COBOL,
the default value is 256, but you might have to specify a lower value.

Multibyte Datatypes
ANSI standard National Character Set datatypes are supported for handling multibyte
character data. The PIC N or PIC G clause, if supported by your compiler, defines
variables that store fixed-length NCHAR strings. You can store variable-length,

Programming Guidelines

Precompiler Concepts 2-13

multibyte National Character Set strings using COBOL group items consisting of a
length field and a string field. See "VARCHAR Variables" on page 4-21.

The environmental variable NLS_NCHAR is available to specify a client-side
Globalization Support National Character Set.

NULLs in SQL
In SQL, a NULL represents a missing, unknown, or inapplicable column value; it
equates neither to zero nor to a blank. Use the NVL function to convert NULLs to
non-NULL values, use the IS [NOT] NULL comparison operator to search for NULLs,
and use indicator variables to insert and test for NULLs.

Paragraph and Section Names
You can associate standard COBOL paragraph and section names with SQL
statements, as shown in the following example:

 LOAD-DATA.
 EXEC SQL
 INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:EMP-NUMBER, :EMP-NAME, :DEPT-NUMBER)
 END-EXEC.

Also, you can reference paragraph and section names in a WHENEVER ... DO or
WHENEVER ... GOTO statement, as the next example shows:

 PROCEDURE DIVISION.
 MAIN.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 ...
 SQL-ERROR SECTION.
 ...
You must begin all paragraph names in area A.

REDEFINES Clause
You can use the COBOL REDEFINES clause to redefine group or elementary items. For
example, the following declarations are valid:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 REC-ID PIC X(4).
 01 REC-NUM REDEFINES REC-ID PIC S9(4) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

And:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 STOCK.
 05 DIVIDEND PIC X(5).
 05 PRICE PIC X(6).
 01 BOND REDEFINES STOCK.
 05 COUPON-RATE PIC X(4).
 05 PRICE PIC X(7).
 EXEC SQL END DECLARE SECTION END-EXEC.

Pro*COBOL issues no warning or error if a single INTO clause uses items from both a
group item host variable and from its re-definition.

The Declare Section

2-14 Pro*COBOL Programmer’s Guide

Relational Operators
COBOL relational operators differ from their SQL equivalents, as shown in Table 2–2.
Furthermore, COBOL enables the use of words instead of symbols, whereas SQL does
not.

Sentence Terminator
A COBOL sentence includes one or more COBOL or SQL statements, or both of them,
and ends with a period. In conditional sentences, only the last statement must end
with a period, as the following example shows.

 IF EMP-NUMBER = ZERO
 MOVE FALSE TO VALID-DATA
 PERFORM GET-EMP-NUM UNTIL VALID-DATA = TRUE
 ELSE
 EXEC SQL DELETE FROM EMP
 WHERE EMPNO = :EMP-NUMBER
 END-EXEC
 ADD 1 TO DELETE-TOTAL.
 END-IF.

SQL statements may be ended by a comma, a period, or another COBOL statement.

The Declare Section
Passing data between the database server and your application program requires host
variables and error handling. This section shows you how to meet these requirements.

Contents of a Declare Section
A Declare Section begins with the statement:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

and ends with the statement:

 EXEC SQL END DECLARE SECTION END-EXEC.

Between these two statements only the following are allowed:

■ Host-variable and indicator-variable declarations

■ Non-host COBOL variables

■ EXEC SQL DECLARE statements

Table 2–2 Relational Operators

SQL Operators COBOL Operators

= =, EQUAL TO

< >, !=, ^= NOT=, NOT EQUAL TO

> >, GREATER THAN

< <, LESS THAN

>= >=, GREATER THAN OR EQUAL TO

<= <=, LESS THAN OR EQUAL TO

The Declare Section

Precompiler Concepts 2-15

■ EXEC SQL INCLUDE statements

■ EXEC SQL VAR statements

■ EXEC ORACLE statements

■ COBOL comments

An Example
In the following example, you declare four host variables for use later in your
program.

 WORKING-STORAGE SECTION.
 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 EMP-NUMBER PIC 9(4) COMP VALUE ZERO.
 01 EMP-NAME PIC X(10) VARYING.
 01 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
 01 COMMISSION PIC S9(5)V99 COMP-3 VALUE ZERO.
 EXEC SQL END DECLARE SECTION END-EXEC.

Precompiler Option DECLARE_SECTION
The Declare Section is optional. For backward compatibility with releases prior to 8.0,
for which it was required, Pro*COBOL provides a command-line precompiler option
for explicit control over whether only declarations in the Declare Section are allowed
as host variables. This option is:

DECLARE_SECTION={YES | NO} (default is NO)

You must use the DECLARE_SECTION option on the command line or in a
configuration file.

When MODE=ORACLE and DECLARE_SECTION=YES, only variables declared
inside the Declare Section are allowed as host variables. When MODE=ANSI then
DECLARE_SECTION is implicitly set to YES. See the discussion of macro and micro
options in "Macro and Micro Options" on page 14-3.

If DECLARE_SECTION is set to YES, then you must declare all program variables
used in SQL statements inside the Declare Section. If DECLARE_SECTION is set to
NO, then it is optional to use a Declare Section. In this case, declarations of host
variables and indicator variables can be made either inside or outside a Declare
Section. This optional behavior is a change from Release 8.0 and earlier releases. See
"DECLARE_SECTION" on page 14-13 for details of the option.

Multiple Declare Sections are allowed for each precompiled unit. Furthermore, a host
program can contain several independently precompiled units.

Using the INCLUDE Statement
The INCLUDE statement lets you copy files into your host program, as the following
example shows:

* Copy in the SQL Communications Area (SQLCA)
 EXEC SQL INCLUDE SQLCA END-EXEC.
* Copy in the Oracle Communications Area (ORACA)
 EXEC SQL INCLUDE ORACA END-EXEC.

Nested Programs

2-16 Pro*COBOL Programmer’s Guide

You can INCLUDE any file. When you precompile your Pro*COBOL program, each
EXEC SQL INCLUDE statement is replaced by a copy of the file named in the
statement.

Filename Extensions
If your system uses file extensions but you do not specify one, Pro*COBOL assumes
the default extension for source files (usually COB). For more information, see your
Oracle system-specific documentation.

Search Paths
If your system uses directories, you can set a search path for included files using the
INCLUDE option, as follows:

INCLUDE=path

where path defaults to the current directory.

Pro*COBOL first searches the current directory, then the directory specified by the
INCLUDE option, and finally the directory for standard INCLUDE files. You need not
specify a path for standard files such as the SQLCA and ORACA. However, a path is
required for nonstandard files unless they are stored in the current directory.

You can also specify multiple paths on the command line, as follows:

... INCLUDE=<path1> INCLUDE=<path2> ...

When multiple paths are specified, Pro*COBOL searches the current directory first,
then the path1 directory, then the path2 directory, and so on. The directory containing
standard INCLUDE files is searched last. The path syntax is system specific. For more
information, see your Oracle system-specific documentation.

Remember that Pro*COBOL searches for a file in the current directory first even if you
specify a search path. If the file you want to INCLUDE is in another directory, make
sure no file with the same name is in the current directory or any other directory that
precedes it in the search path. If your operating system is case sensitive, be sure to
specify the same upper/lowercase filename under which the file is stored.

Nested Programs
Nesting programs in COBOL means that you place one program inside another. The
contained programs may reference some of the resources of the programs that contain
them. The names within the higher-level program and the nested program can be the
same, and describe different data items without conflict, because the names are known
only within the programs. However, names described in the Configuration Section of
the higher-level program can be referenced in the nested program.

Some compilers do not support the GLOBAL clause. Pro*COBOL supports nested
programs by generating code that contains GLOBAL clauses. To avoid generating
GLOBAL clauses unconditionally, specify the precompiler option NESTED=NO.
NESTED (=YES or NO) defaults to YES and can be used in configuration files, or on
the command line, but not inline (EXEC ORACLE statement).

See Also: "NESTED" on page 14-23.

The higher-level program can contain several nested programs. Likewise, nested
programs can have programs nested within them. You must place the nested program
directly before the END PROGRAM header of the program in which it is nested.

Nested Programs

Precompiler Concepts 2-17

You can call a nested program only by a program in which it is either directly or
indirectly nested. If you want a nested program to be called by any program, even one
on a different branch of the nested tree structure, you code the COMMON clause in
the PROGRAM-ID paragraph of the nested program. You can code COMMON only
for nested programs:

 PROGRAM-ID. <nested-program-name> COMMON.

You can code the GLOBAL phrase for File Definitions and level 01 data items (any
subordinate items automatically become global). This enables them to be referenced in
all subprograms directly or indirectly contained within them. You code GLOBAL on
the higher-level program. If the nested program defines the same name as one
declared GLOBAL in a higher-level program, COBOL uses the declaration within the
nested program. If the data item contains a REDEFINES clause, GLOBAL must follow
it.

 FD file-name GLOBAL ...
 01 data-name1 GLOBAL ...
 01 data-name2 REDEFINES data-name3 GLOBAL ...

Support for Nested Programs
Pro*COBOL allows nested programs with embedded SQL within a single source file.
All 01 level items which are marked as global in a containing program and are valid
host variables at the containing program level are usable as valid host variables in any
programs directly or indirectly contained by the containing program. Consider the
following example:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. MAINPROG.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 REC1 GLOBAL.
 05 VAR1 PIC X(10).
 05 VAR2 PIC X(10).
 01 VAR1 PIC X(10) GLOBAL.
 EXEC SQL END DECLARE SECTION END-EXEC.

 PROCEDURE DIVISION.
 ...
 <main program statements>
 ...
 IDENTIFICATION DIVISION.
 PROGRAM-ID. NESTEDPROG.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 VAR1 PIC S9(4).

 PROCEDURE DIVISION.
 ...
 EXEC SQL SELECT X, Y INTO :REC1 FROM ... END-EXEC.

 EXEC SQL SELECT X INTO :VAR1 FROM ... END-EXEC.

 EXEC SQL SELECT X INTO :REC1.VAR1 FROM ... END-EXEC.

Conditional Precompilations

2-18 Pro*COBOL Programmer’s Guide

 ...
 END PROGRAM NESTEDPROG.
 END PROGRAM MAINPROG.

The main program declares the host variable REC1 as global, and thus the nested
program can use REC1 in the first select statement without having to declare it. Since
VAR1 is declared as a global variable and also as a local variable in the nested
program, the second select statement will use the VAR1 declared as S9(4), overriding
the global declaration. In the third select statement, the global VAR1 of REC1 declared
as PIC X(10) is used.

The previous paragraph describes the results when DECLARE_SECTION=NO is used.
When DECLARE_SECTION=YES, Pro*COBOL will not recognize host variables unless
they are declared inside a Declare Section. If the preceding program is precompiled
with DECLARE_SECTION=YES, then the second select statement would result in an
ambiguous host variable error. The first and third select statements would function the
same.

Note: Recursive nested programs are not supported

Declaring the SQLCA
For information on declaring the SQLCA for nested programs, (see "SQLCA Status
Variable" on page 2-7), the included SQLCA definition provided will be declared as
global, so the declaration of SQLCA is only required in the higher-level program. The
SQLCA can change each time a new SQL statement is executed. The SQLCA provided
can always be modified to remove the global specification if you want to declare
additional SQLCA areas in the nested programs. This also applies to SQLDA and
ORACA.

Nested Program Example
See SAMPLE13.PCO in the demo directory.

Conditional Precompilations
Conditional precompilation includes (or excludes) sections of code in your host
program based on certain conditions. For example, you might want to include one
section of code when precompiling under UNIX and another section when
precompiling under VMS. Conditional precompilation lets you write programs that
can run in different environments.

Conditional sections of code are marked by statements that define the environment
and actions to take. You can code host-language statements as well as EXEC SQL
statements in these sections. The following statements let you exercise conditional
control over precompilation:

* -- define a symbol
 EXEC ORACLE DEFINE symbol END-EXEC.
* -- if symbol is defined
 EXEC ORACLE IFDEF symbol END-EXEC.
* -- if symbol is not defined
 EXEC ORACLE IFNDEF symbol END-EXEC.
* -- otherwise
 EXEC ORACLE ELSE END-EXEC.
* -- end this control block
 EXEC ORACLE ENDIF END-EXEC.

A conditional statement must be terminated with END-EXEC.

Separate Precompilations

Precompiler Concepts 2-19

An Example
In the following example, the SELECT statement is precompiled only when the symbol
SITE2 is defined:

 EXEC ORACLE IFDEF SITE2 END-EXEC.
 EXEC SQL SELECT DNAME
 INTO :DEPT-NAME
 FROM DEPT
 WHERE DEPTNO = :DEPT-NUMBER
 EXEC ORACLE ENDIF END-EXEC.

Blocks of conditions can be nested as shown in the following example:

 EXEC ORACLE IFDEF OUTER END-EXEC.
 EXEC ORACLE IFDEF INNER END-EXEC.
 ...
 EXEC ORACLE ENDIF END-EXEC.
 EXEC ORACLE ENDIF END-EXEC.

You can "Comment out" host-language or embedded SQL code by placing it between
IFDEF and ENDIF and not defining the symbol.

Defining Symbols
You can define a symbol in two ways. Either include the statement

 EXEC ORACLE DEFINE symbol END-EXEC.

in your host program or define the symbol on the command line using the syntax

... INAME=filename ... DEFINE=symbol

where symbol is not case-sensitive.

Some port-specific symbols are predefined for you when Pro*COBOL is installed on
your system. For example, predefined operating system symbols include CMS, MVS,
UNIX, and VMS.

Separate Precompilations
You can precompile several COBOL program modules separately and then link them
into one executable program. This supports modular programming, which is required
when the functional components of a program are written and debugged by different
programmers. The individual program modules need not be written in the same
language.

Guidelines
The following guidelines will help you avoid some common problems.

Referencing Cursors
Cursor names are SQL identifiers, whose scope is the precompilation unit. Hence,
cursor operations cannot span precompilation units (files). That is, you cannot declare

Note: The conditional compilation feature of your compiler may
not be supported by Pro*COBOL.

Separate Precompilations

2-20 Pro*COBOL Programmer’s Guide

a cursor in one file and open or fetch from it in another file, so when doing a separate
precompilation, make sure all definitions and references to a given cursor are in one
file.

Specifying MAXOPENCURSORS
When you precompile the program module that connects to Oracle, specify a value for
MAXOPENCURSORS that is high enough for any of the program modules. If you use
it for another program module, MAXOPENCURSORS is ignored. Only the value in
effect for the connect is used at run time.

Using a Single SQLCA
If you want to use just one memory area for the SQLCA, the process for doing so
depends on which version of Pro*COBOL you are using.

Version 1.8 and Lower You must declare the SQLCA globally. You can do this by
modifying the SQLCA.COB file, changing the line

 01 SQLCA.

to

 01 SQLCA EXTERNAL.

Alternatively, you can include a hard-coded definition for SQLCA, copied from
SQLCA.cob and make the aforementioned change. Note that you still have to include a
definition of SQLCA in each precompiled unit.

Version 2 and Later In later versions of Pro*COBOL, the SQLCA is not copied from the
file system. It is generated by the precompiler. If you need to share the SQLCA
structure in these versions, instead of this statement:

EXEC SQL INCLUDE SQLCA END-EXEC

you should use the following code:

EXEC SQL INCLUDE SQLCA.ANX END-EXEC

This causes the precompiler to generate the SQLCA structure with the EXTERNAL
keyword added automatically.

Using a Single DATE_FORMAT
You must use the same format string for DATE in each program module.

Restrictions
All references to an explicit cursor must be in the same program file. You cannot
perform operations on a cursor that was DECLAREd in a different module. See
Chapter 4 for more information about cursors.

Also, any program file that contains SQL statements must have a SQLCA that is in the
scope of the local SQL statements.

Sample DEPT and EMP Tables

Precompiler Concepts 2-21

Compiling and Linking
To get an executable program, you must compile the source file(s) produced by
Pro*COBOL, then link the resulting object module with any modules needed from
SQLLIB and system-specific Oracle libraries.

The linker resolves symbolic references in the object modules. If these references
conflict, the link fails. Such conflicts can happen when you try to link third party
software into a precompiled program. Not all third-party software is compatible with
Oracle, so you might have problems. Check with Oracle Support Services to see if the
software is supported.

Compiling and linking are system-dependent. For example, on some systems, you
must turn off compiler optimization when compiling a host language program. For
instructions, see your system-specific Oracle manual.

Sample DEPT and EMP Tables
Most of the complete program examples in this guide use two sample database tables:
DEPT and EMP. If they do not exist in your demo directory, create them before
running the sample programs. Their definitions follow:

CREATE TABLE DEPT
 (DEPTNO NUMBER(2),
 DNAME VARCHAR2(14),
 LOC VARCHAR2(13));

CREATE TABLE EMP
 (EMPNO NUMBER(4) primary key,
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2),
 DEPTNO NUMBER(2));

Sample DEPT and EMP Data
Respectively, the DEPT and EMP tables contain the following rows of data:

DEPTNO DNAME LOC
------- ---------- ---------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
----- ------- --------- ------ --------- ------ ------ -------
 7369 SMITH CLERK 7902 17-DEC-80 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
 7566 JONES MANAGER 7839 02-APR-81 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
 7782 CLARK MANAGER 7839 09-JUN-81 2450 10
 7788 SCOTT ANALYST 7566 19-APR-87 3000 20
 7839 KING PRESIDENT 17-NOV-81 5000 10
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 30

Sample EMP Program: SAMPLE1.PCO

2-22 Pro*COBOL Programmer’s Guide

 7876 ADAMS CLERK 7788 23-MAY-87 1100 20
 7900 JAMES CLERK 7698 03-DEC-81 950 30
 7902 FORD ANALYST 7566 03-DEC-81 3000 20
 7934 MILLER CLERK 7782 23-JAN-82 1300 10

Sample EMP Program: SAMPLE1.PCO
A good way to get acquainted with embedded SQL is to look at a program example.
This program is SAMPLE1.PCO in the demo directory.

The program logs on to the database, prompts the user for an employee number,
queries the database table EMP for the employee's name, salary, and commission. The
selected results are stored in host variables EMP-NAME, SALARY, and
COMMISSION. The program uses the host indicator variable, COMM-IND to detect
NULL values in column COMMISSION. See "Indicator Variables" on page 4-18.

The paragraph DISPLAY-INFO then displays the result.

The COBOL variables USERNAME, PASSWD, and EMP-NUMBER are declared using
the VARYING clause, which enables you to use a variable-length string external Oracle
datatype called VARCHAR. This datatype is explained in "VARCHAR Variables" on
page 4-21.

The SQLCA Communications Area is included to handle errors. If an error occurs,
paragraph SQL-ERROR is performed. See "Using the SQL Communications Area" on
page 8-5.

The BEGIN DECLARE SECTION and END DECLARE SECTION statements used are
optional, unless you set the precompiler option DECLARE_SECTION to YES, or
option MODE to ANSI. See "MODE" on page 14-22.

The WHENEVER statement is used to handle errors. For more details, see
"WHENEVER Directive" on page 8-11.

The program ends when the user enters a zero employee number.

 * Sample Program 1: Simple Query *
 * *
 * This program logs on to ORACLE, prompts the user for an *
 * employee number, queries the database for the employee's *
 * name, salary, and commission, then displays the result. *
 * The program terminates when the user enters a 0. *

 ID DIVISION.

 PROGRAM-ID. QUERY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VARYING.
 01 PASSWD PIC X(10) VARYING.
 01 EMP-REC-VARS.
 05 EMP-NAME PIC X(10) VARYING.
 05 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
 05 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
 05 COMMISSION PIC S9(5)V99 COMP-3 VALUE ZERO.
 05 COMM-IND PIC S9(4) COMP VALUE ZERO.

Sample EMP Program: SAMPLE1.PCO

Precompiler Concepts 2-23

 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 01 DISPLAY-VARIABLES.
 05 D-EMP-NAME PIC X(10).
 05 D-SALARY PIC Z(4)9.99.
 05 D-COMMISSION PIC Z(4)9.99.
 05 D-EMP-NUMBER PIC 9(4).

 01 D-TOTAL-QUERIED PIC 9(4) VALUE ZERO.

 PROCEDURE DIVISION.
 BEGIN-PGM.
 EXEC SQL WHENEVER SQLERROR
 DO PERFORM SQL-ERROR END-EXEC.

 PERFORM LOGON.

 QUERY-LOOP.
 DISPLAY " ".
 DISPLAY "ENTER EMP NUMBER (0 TO QUIT): "
 WITH NO ADVANCING.

 ACCEPT D-EMP-NUMBER.

 MOVE D-EMP-NUMBER TO EMP-NUMBER.
 IF (EMP-NUMBER = 0)
 PERFORM SIGN-OFF.
 MOVE SPACES TO EMP-NAME-ARR.
 EXEC SQL WHENEVER NOT FOUND GOTO NO-EMP END-EXEC.
 EXEC SQL SELECT ENAME, SAL, NVL(COMM, 0)
 INTO :EMP-NAME, :SALARY, :COMMISSION:COMM-IND
 FROM EMP
 WHERE EMPNO = :EMP-NUMBER
 END-EXEC.
 PERFORM DISPLAY-INFO.
 ADD 1 TO D-TOTAL-QUERIED.
 GO TO QUERY-LOOP.

 NO-EMP.
 DISPLAY "NOT A VALID EMPLOYEE NUMBER - TRY AGAIN.".
 GO TO QUERY-LOOP.

 LOGON.
 MOVE "SCOTT" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "TIGER" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

 DISPLAY-INFO.
 DISPLAY " ".
 DISPLAY "EMPLOYEE SALARY COMMISSION".
 DISPLAY "-------- ------ ----------".
 MOVE EMP-NAME-ARR TO D-EMP-NAME.

Sample EMP Program: SAMPLE1.PCO

2-24 Pro*COBOL Programmer’s Guide

 MOVE SALARY TO D-SALARY.
 IF COMM-IND = -1
 DISPLAY D-EMP-NAME, D-SALARY, " NULL"
 ELSE
 MOVE COMMISSION TO D-COMMISSION
 DISPLAY D-EMP-NAME, D-SALARY, " ", D-COMMISSION
 END-IF.

 SIGN-OFF.
 DISPLAY " ".
 DISPLAY "TOTAL NUMBER QUERIED WAS ",
 D-TOTAL-QUERIED, ".".
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY.".
 DISPLAY " ".
 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

Database Concepts 3-1

3
Database Concepts

This chapter explains the CONNECT statement and its options, Oracle Net, and
related network connection statements. Transaction processing is presented. You learn
the basic techniques that safeguard the consistency of your database, including how to
control whether changes to Oracle data are made permanent or undone.

■ Connecting to Oracle

■ Default Databases and Connections

■ Concurrent Logons

■ Key Terms

■ How Transactions Guard a Database

■ Beginning and Ending Transactions

■ Using the COMMIT Statement

■ Using the ROLLBACK Statement

■ Using the SAVEPOINT Statement

■ Using the RELEASE Option

■ Using the SET TRANSACTION Statement

■ Overriding Default Locking

■ Fetching Across Commits

■ Handling Distributed Transactions

■ Guidelines for Transaction Processing

Connecting to Oracle
Your Pro*COBOL program must log on to Oracle before querying or manipulating
data. To log on, you use the CONNECT statement, as in

 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.

where USERNAME and PASSWD are PIC X(n) or PIC X(n) VARYING host variables.
Alternatively, you can use the statement:

 EXEC SQL
 CONNECT :USR-PWD
 END-EXEC.

Default Databases and Connections

3-2 Pro*COBOL Programmer’s Guide

where the host variable USR-PWD contains your username and password separated
by a slash (/) followed by an optional tnsnames.ora alias (@TNSALIAS).

The syntax for the CONNECT statement has an optional ALTER AUTHORIZATION
clause. The complete syntax for CONNECT is shown here:

 EXEC SQL
 CONNECT { :user IDENTIFIED BY :oldpswd | :usr_psw }
 [[AT { dbname | :host_variable }] USING :connect_string]
 [{ALTER AUTHORIZATION :newpswd | IN {SYSDBA | SYSOPER} MODE}]
 END-EXEC.

The ALTER AUTHORIZATION clause is explained in "Changing Passwords at
Runtime" on page 3-8. The SYSDBA and SYSOPER options are explained in "SYSDBA
or SYSOPER Privileges" on page 3-8 .

The CONNECT statement must be the first SQL statement executed by the program.
That is, other executable SQL statements can positionally, but not logically, precede the
CONNECT statement. If the precompiler option AUTO_CONNECT=YES, a
CONNECT statement is not needed.)

To supply the username and password separately, you define two host variables as
character strings or VARCHAR variables. If you supply a userid containing both
username and password, only one host variable is needed.

Make sure to set the username and password variables before the CONNECT is
executed or it will fail. Your program can prompt for the values or you can hard-code
them, as follows:

 WORKING STORAGE SECTION.
 ...
 01 USERNAME PIC X(10).
 01 PASSWD PIC X(10).
 ...
 ...
 PROCEDURE DIVISION.
 LOGON.
 EXEC SQL WHENEVER SQLERROR GOTO LOGON-ERROR END-EXEC.
 MOVE "SCOTT" TO USERNAME.
 MOVE "TIGER" TO PASSWD.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.

However, you cannot hard-code a username and password into the CONNECT
statement or use quoted literals. For example, the following statements are invalid:

 EXEC SQL
 CONNECT SCOTT IDENTIFIED BY TIGER
 END-EXEC.

 EXEC SQL
 CONNECT "SCOTT" IDENTIFIED BY "TIGER"
 END-EXEC.

Default Databases and Connections
It is possible within a Pro*COBOL program to maintain more than one database
connection at the same time.

Default Databases and Connections

Database Concepts 3-3

Concurrent Logons
Pro*COBOL supports distributed processing through Oracle Net. Your application can
concurrently access any combination of local and remote databases or make multiple
connections to the same database. In Figure 3–1, an application program
communicates with one local and three remote Oracle9i databases. ORA2, ORA3, and
ORA4 are logical names used in CONNECT statements.

Figure 3–1 Connecting Through Oracle

This illustration shows how an application program communicates with one local and
three remote Oracle9i databases. ORA2, ORA3, and ORA4 are logical names used in
CONNECT statements.

By eliminating the boundaries in a network between different machines and operating
systems, Oracle Net provides a distributed processing environment for Oracle tools.
This section shows you how the Pro*COBOL supports distributed processing through
Oracle Net. You learn how your application can

■ Access other databases directly or indirectly

■ Concurrently access any combination of local and remote databases

■ Make multiple connections to the same database

Normally you would need only a single connection, achieved by EXEC SQL CONNECT
:USR-PWD END-EXEC. The database that is connected to is determined by what
USR-PWD contains. If it contains "SCOTT/TIGER", it will connect to the database
defined as the default for the session and if it contains "SCOTT/TIGER@REMDB" it
will connect through Oracle Net to the REMDB database as defined by your Oracle
Net configuration. (An alternative is to use the USING clause to specify the Oracle Net
connection string.) This is the default connection.

To make further concurrent connections to either the same or different databases you
make use of the AT clause, that is, EXEC SQL AT DB1 CONNECT :USR-PWD
END-EXEC. The name after the AT clause uniquely identifies a "nondefault"

Application
Program

ORA4

Remote
Oracle

Database

ORA3

ORA2

Oracle Net

Remote
Oracle

Database

Remote
Oracle

Database

Local
Oracle

Database

Default Databases and Connections

3-4 Pro*COBOL Programmer’s Guide

connection, and any SQL statements with the same name after the AT clause are
executed against that connection. If the AT clause is omitted in an SQL statement then
the statement is executed against the default connection.

All database names must be unique, but two or more database names can specify the
same connection. That is, you can have multiple connections to any database on any
node.

Using Username/Password
Usually, you establish a connection to Oracle as follows:

 EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD END-EXEC.

Or you can use:

 EXEC SQL CONNECT :USR-PWD END-EXEC.

where USR-PWD contains any valid Oracle connect string.

You can also log on automatically, as shown in "Automatic Logons" on page 3-7.

These are simplified subsets of the CONNECT statement. For all details, read the next
sections in this chapter and also see "CONNECT (Executable Embedded SQL
Extension)" on page E-13.

Named Database Connections
In the following example, you connect to a named database. Normally you use a
named database connection only for multiple concurrent connections. The following
example shows the syntax for a single connection:

* -- Declare necessary host variables
 WORKING-STORAGE SECTION.
 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) .
 01 PASSWORD PIC X(10) .
 01 DB-STRING PIC X(20) .
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 MOVE "scott" TO USERNAME.
 MOVE "tiger" TO PASSSWORD.
 MOVE "nyremote" TO DB-STRING.
 ...
* -- Assign a unique name to the database connection.
 EXEC SQL DECLARE DBNAME DATABASE END-EXEC.
* -- Connect to the nondefault database
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWORD
 AT DBNAME USING :DB-STRING
 END-EXEC.

The identifiers in this example serve the following purposes:

■ The host variables USERNAME and PASSWORD identify a valid user.

■ The host variable DB-STRING contains the Oracle Net syntax for logging on to a
nondefault database at a remote node.

Default Databases and Connections

Database Concepts 3-5

■ The undeclared identifier DBNAME names a nondefault connection; it is an
identifier used by Oracle, not a host or program variable.

The USING clause specifies the network, machine, and database to be associated with
DBNAME. Later, SQL statements using the AT clause (with DBNAME) are executed at
the database specified by DB-STRING.

Alternatively, you can use a character host variable in the AT clause, as the following
example shows:

* -- Declare necessary host variables
 WORKING-STORAGE SECTION.
 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10).
 01 PASSWORD PIC X(10).
 01 DB-NAME PIC X(10).
 01 DB-STRING PIC X(20).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 MOVE "scott" TO USERNAME.
 MOVE "tiger" TO PASSSWORD.
 MOVE "oracle1" TO DB-NAME.
 MOVE "nyremote" TO DB-STRING.
 ...
* -- Connect to the nondefault database
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWORD
 AT :DB-NAME USING :DB-STRING
 END-EXEC.

If DB-NAME is a host variable, the DECLARE DATABASE statement is not needed.
Only if DBNAME is an undeclared identifier must you execute a DECLARE DBNAME
DATABASE statement before executing a CONNECT ... AT DBNAME statement.

SQL Operations. If granted the privilege, you can execute any SQL data manipulation
statement at the nondefault connection. For example, you might execute the following
sequence of statements:

 EXEC SQL AT DBNAME SELECT ...
 EXEC SQL AT DBNAME INSERT ...
 EXEC SQL AT DBNAME UPDATE ...

In the next example, DB-NAME is a host variable:

 EXEC SQL AT :DB-NAME DELETE ...

Cursor Control. Cursor control statements such as OPEN, FETCH, and CLOSE are
exceptions—they never use an AT clause. If you want to associate a cursor with an
explicitly identified database, use the AT clause in the DECLARE CURSOR statement,
as follows:

 EXEC SQL AT :DB-NAME DECLARE emp_cursor CURSOR FOR ...
 EXEC SQL OPEN emp_cursor ...
 EXEC SQL FETCH emp_cursor ...
 EXEC SQL CLOSE emp_cursor END-EXEC.

If DB-NAME is a host variable, its declaration must be within the scope of all SQL
statements that refer to the declared cursor. For example, if you open the cursor in one

Default Databases and Connections

3-6 Pro*COBOL Programmer’s Guide

subprogram, then fetch from it in another, you must declare DB-NAME globally or
pass it to each subprogram.

When opening, closing, or fetching from the cursor, you do not use the AT clause. The
SQL statements are executed at the database named in the AT clause of the DECLARE
CURSOR statement or at the default database if no AT clause is used in the cursor
declaration.

The AT :host-variable clause enables you to change the connection associated with a
cursor. However, you cannot change the association while the cursor is open. Consider
the following example:

 EXEC SQL AT :DB-NAME DECLARE emp_cursor CURSOR FOR ...
 MOVE "oracle1" TO DB-NAME.
 EXEC SQL OPEN emp_cursor END-EXEC.
 EXEC SQL FETCH emp_cursor INTO ...
 MOVE "oracle2" TO DB-NAME.
* -- illegal, cursor still open
 EXEC SQL OPEN emp_cursor END-EXEC.
 EXEC SQL FETCH emp_cursor INTO ...

This is illegal because emp_cursor is still open when you try to execute the second
OPEN statement. Separate cursors are not maintained for different connections; there
is only one emp_cursor, which must be closed before it can be reopened for another
connection. To debug the last example, simply close the cursor before reopening it, as
follows:

* -- close cursor first
 EXEC SQL CLOSE emp_cursor END-EXEC.
 MOVE "oracle2" TO DB-NAME.
 EXEC SQL OPEN EMP-CUROR END-EXEC.
 EXEC SQL FETCH emp_cursor INTO ...

Dynamic SQL. Dynamic SQL statements are similar to cursor control statements in
that some never use the AT clause. For dynamic SQL Method 1, you must use the AT
clause if you want to execute the statement at a nondefault connection. An example
follows:

 EXEC SQL AT :DB-NAME EXECUTE IMMEDIATE :SQL-STMT END-EXEC.

For Methods 2, 3, and 4, you use the AT clause only in the DECLARE STATEMENT
statement if you want to execute the statement at a nondefault connection. All other
dynamic SQL statements such as PREPARE, DESCRIBE, OPEN, FETCH, and CLOSE
never use the AT clause. The next example shows Method 2:

 EXEC SQL AT :DB-NAME DECLARE SQL-STMT STATEMENT END-EXEC.
 EXEC SQL PREPARE SQL-STMT FROM :SQL-STRING END-EXEC.
 EXEC SQL EXECUTE SQL-STMT END-EXEC.

The following example shows Method 3:

 EXEC SQL AT :DB-NAME DECLARE SQL-STMT STATEMENT END-EXEC.
 EXEC SQL PREPARE SQL-STMT FROM :SQL-STRING END-EXEC.
 EXEC SQL DECLARE emp_cursor CURSOR FOR SQL-STMT END-EXEC.
 EXEC SQL OPEN emp_cursor ...
 EXEC SQL FETCH emp_cursor INTO ...
 EXEC SQL CLOSE emp_cursor END-EXEC.

You need not use the AT clause when connecting to a remote database unless you open
two or more connections simultaneously (in which case the AT clause is needed to

Default Databases and Connections

Database Concepts 3-7

identify the active connection). To make the default connection to a remote database,
use the following syntax:

 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWORD USING :DB-STRING
 END-EXEC.

Automatic Logons
You can log on to Oracle automatically with the userid:

<prefix><username>

where prefix is the value of the Oracle initialization parameter OS_AUTHENT_PREFIX
(the default value is OPS$) and username is your operating system user or task name.
For example, if the prefix is OPS$, your user name is TBARNES, and OPS$TBARNES
is a valid Oracle userid, then you log on to Oracle as user OPS$TBARNES.

To take advantage of the automatic logon feature, you simply pass a slash (/) character
to Pro*COBOL, as follows:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 ORACLEID PIC X.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 MOVE '/' TO ORACLEID.
 EXEC SQL CONNECT :ORACLEID END-EXEC.

This automatically connects you as user OPS$username. For example, if your operating
system username is RHILL, and OPS$RHILL is a valid Oracle username, connecting
with a slash (/) automatically logs you on to Oracle as user OPS$RHILL.

You can also pass a character string to Pro*COBOL. However, the string cannot contain
trailing blanks. For example, the following CONNECT statement will fail:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 ORACLEID PIC X(5).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 MOVE '/ ' TO ORACLEID.
 EXEC SQL CONNECT :ORACLEID END-EXEC.

The AUTO_CONNECT Precompiler Option
Pro*COBOL lets your program log on to the default database without using the
CONNECT statement. Simply specify the precompiler option AUTO_CONNECT on
the command line.

Assume that the default value of OS_AUTHENT_PREFIX is OPS$, your username is
TBARNES, and OPS$TBARNES is a valid Oracle userid. When AUTO_
CONNECT=YES, as soon as Pro*COBOL encounters an executable SQL statement,
your program logs on to Oracle automatically with the userid OPS$TBARNES.

When AUTO_CONNECT=NO (the default), you must use the CONNECT statement
to log on to Oracle.

Default Databases and Connections

3-8 Pro*COBOL Programmer’s Guide

Changing Passwords at Runtime
Pro*COBOL provides client applications with a convenient way to change a user
password at runtime through the optional ALTER AUTHORIZATION clause.

The syntax for the ALTER AUTHORIZATION clause is shown here:

 EXEC SQL CONNECT .. ALTER AUTHORIZATION :NEWPSWD END-EXEC.

Using this clause indicates that you want to change the account password to the value
indicated by NEWPSWD. After the change is made, an attempt is made to connect as
USER/NEWPSWD. This can have the following results:

■ The application will connect without issue.

■ The application will fail to connect. This could be due to either of the following:

■ Password verification failed for some reason. In this case the password
remains unchanged.

■ The account is locked. Changes to the password are not permitted.

Connect Without Alter Authorization
This section describes the possible outcomes of different variations of the CONNECT
statement.

Standard CONNECT
If an application issues the following statement:

 EXEC SQL CONNECT ... /* No ALTER AUTHORIZATION clause */

it performs a normal connection attempt. The possible results include the following:

■ The application will connect without issue.

■ The application will connect, but will receive a password warning. The warning
indicates that the password has expired but is in a grace period which will allow
logons. At this point, the user is encouraged to change the password before the
account becomes locked.

■ The application will fail to connect. Possible causes include the following:

■ The password is incorrect.

■ The account has expired, and is possibly in a locked state.

SYSDBA or SYSOPER Privileges
Before Oracle release 8.1 you did not have to use this clause to have the SYSOPER or
SYSDBA system privilege, but now you must.

Append the following optional string to the CONNECT statement after all other
clauses if you want to log on with either SYSDBA or SYSOPER system privileges:

IN { SYSDBA | SYSOPER } MODE

For example:

EXEC SQL CONNECT ... IN SYSDBA MODE END-EXEC.

Here are the restrictions that apply to this option:

Key Terms

Database Concepts 3-9

■ This option is not supported when using the AUTO_CONNECT=YES precompiler
option setting.

■ The option is not permitted when using the ALTER AUTHORIZATION keywords
in the CONNECT statement.

Using Links
Database links are supported through the Oracle9i distributed database option. For
example, a distributed query allows a single SELECT statement to access data on one
or more nondefault databases.

The distributed query facility depends on database links, which assign a name to a
CONNECT statement rather than to the connection itself. At runtime, the embedded
SELECT statement is executed by the specified database server, which connects
implicitly to the nondefault database(s) to get the required data.

For more information, see Oracle Net Services Administrator's Guide.

Key Terms
Before delving into the subject of transactions, you should know the terms defined in
this section.

The jobs or tasks that the database manages are called sessions. A user session is
started when you run an application program or a tool such as Oracle Forms and
connect to the database. Oracle9i enables user sessions to work simultaneously and
share computer resources. To do this, Oracle9i must control concurrence, the accessing
of the same data by many users. Without adequate concurrence controls, there might
be a loss of data integrity. That is, changes to data or structures might be made in the
wrong order.

Oracle9i uses locks to control concurrent access to data. A lock gives you temporary
ownership of a database resource such as a table or row of data. Thus, data cannot be
changed by other users until you finish with it. You need never explicitly lock a
resource, because default locking mechanisms protect table data and structures.
However, you can request data locks on tables or rows when it is to your advantage to
override default locking. You can choose from several modes of locking such as row
share and exclusive.

A deadlock can occur when two or more users try to access the same database object.
For example, two users updating the same table might wait if each tries to update a
row currently locked by the other. Because each user is waiting for resources held by
another user, neither can continue until the server breaks the deadlock. The server
signals an error to the participating transaction that had completed the least amount of
work, and the "deadlock detected while waiting for resource" error code is returned to
SQLCODE in the SQLCA.

When a table is queried by one user and updated by another at the same time, the
database generates a read consistent view of the table's data for the query. That is,
once a query begins (and proceeds), the data read by the query does not change. As
update activity continues, the database takes snapshots of the table's data and records
changes in a rollback segment. The database uses information in the rollback segment
to build read consistent query results and to undo changes if necessary.

How Transactions Guard a Database

3-10 Pro*COBOL Programmer’s Guide

How Transactions Guard a Database
The database is transaction oriented; it uses transactions to ensure data integrity. A
transaction is a series of one or more logically related SQL statements you define to
accomplish some task. The database treats the series of SQL statements as a unit so
that all the changes brought about by the statements are either committed (made
permanent) or rolled back (undone) at the same time. If your application program fails
in the middle of a transaction, the database is automatically restored to its former
(pre-transaction) state.

The coming sections show you how to define and control transactions. Specifically, it
shows how to:

■ Begin and end transactions

■ Use the COMMIT statement to make transactions permanent

■ Use the SAVEPOINT statement with the ROLLBACK TO statement to undo parts
of transactions

■ Use the ROLLBACK statement to undo whole transactions

■ Specify the RELEASE option to free resources and log off the database

■ Use the SET TRANSACTION statement to set read-only transactions

■ Use the FOR UPDATE clause or LOCK TABLE statement to override default
locking

For details about the SQL statements discussed in this chapter, see the Oracle Database
SQL Reference.

Beginning and Ending Transactions
You begin a transaction with the first executable SQL statement (other than
CONNECT) in your program. When one transaction ends, the next executable SQL
statement automatically begins another transaction. Thus, every executable statement
is part of a transaction. Because they cannot be rolled back and need not be committed,
declarative SQL statements are not considered part of a transaction.

You end a transaction in one of the following ways:

■ Code a COMMIT or ROLLBACK statement, with or without the RELEASE option.
This explicitly makes permanent or undoes changes to the database.

■ Code a data definition statement (ALTER, CREATE, or GRANT, for example) that
issues an automatic commit before and after executing. This implicitly makes
permanent changes to the database.

A transaction also ends when there is a system failure or your user session stops
unexpectedly because of software problems, hardware problems, or a forced interrupt.

If your program fails in the middle of a transaction, Oracle9i detects the error and rolls
back the transaction. If your operating system fails, Oracle9i restores the database to its
former (pre-transaction) state.

Using the COMMIT Statement
The COMMIT statement is used to make changes to the database permanent. Until
changes are committed, other users cannot access the changed data; they see it as it
was before your transaction began. The COMMIT statement has no effect on the

Using the COMMIT Statement

Database Concepts 3-11

values of host variables or on the flow of control in your program. Specifically, the
COMMIT statement:

■ Makes permanent all changes made to the database during the current transaction.

■ Makes these changes visible to other users.

■ Erases all savepoints (see the next section).

■ Releases all row and table locks, but not parse locks.

■ Closes cursors declared using the FOR UPDATE clause or referenced elsewhere in
the code with the CURRENT OF clause. If MODE=ANSI | ANSI14 or CLOSE_
ON_COMMIT=YES is used, then all explicit cursors are closed.

■ Ends the transaction.

When MODE={ANSI13 | ORACLE}, explicit cursors not referenced in a CURRENT
OF clause remain open across commits. This can boost performance. For an example,
see "Fetching Across Commits" on page 3-17.

Because they are part of normal processing, COMMIT statements should be placed
inline, on the main path through your program. Before your program terminates, it
must explicitly commit pending changes. Otherwise, Oracle9i rolls them back. In the
following example, you commit your transaction and disconnect:

 EXEC SQL COMMIT WORK RELEASE END-EXEC.

The optional keyword WORK provides ANSI compatibility. The RELEASE option
frees all resources (locks and cursors) held by your program and logs off the database.

You need not follow a data definition statement with a COMMIT statement because
data definition statements issue an automatic commit before and after executing. So,
whether they succeed or fail, the prior transaction is committed.

WITH HOLD Clause in DECLARE CURSOR Statements
Any cursor that has been declared with the clause WITH HOLD after the word
CURSOR remains open after a COMMIT or a ROLLBACK. The following example
shows how to use this clause:

 EXEC SQL
 DECLARE C1 CURSOR WITH HOLD
 FOR SELECT ENAME FROM EMP
 WHERE EMPNO BETWEEN 7600 AND 7700
 END-EXEC.

The cursor must not be declared for UPDATE. The WITH HOLD clause is used in DB2
to override the default, which is to close all cursors on commit. Pro*COBOL provides
this clause in order to ease migrations of applications from DB2 to Oracle. When
MODE=ANSI, Oracle uses the DB2 default, but all host variables must be declared in a
Declare Section. To avoid having a Declare Section, use the precompiler option
CLOSE_ON_COMMIT described next. See "DECLARE CURSOR (Embedded SQL
Directive)" on page E-18.

CLOSE_ON_COMMIT Precompiler Option
The precompiler option CLOSE_ON_COMMIT is available to override the default
behavior of MODE=ANSI (if you specify MODE=ANSI on the command line, any
cursors not declared with the WITH HOLD clause are closed on commit):

CLOSE_ON_COMMIT = {YES | NO}

Using the ROLLBACK Statement

3-12 Pro*COBOL Programmer’s Guide

The default is NO. This option must be entered only on the command line or in a
configuration file.

Using the ROLLBACK Statement
You use the ROLLBACK statement to undo pending changes made to the database.
For example, if you make a mistake, such as deleting the wrong row from a table, you
can use ROLLBACK to restore the original data. The ROLLBACK statement has no
effect on the values of host variables or on the flow of control in your program.
Specifically, the ROLLBACK statement

■ Undoes all changes made to the database during the current transaction

■ Erases all savepoints

■ Ends the transaction

■ Releases all row and table locks, but not parse locks

■ Closes cursors declared using the FOR UPDATE clause or referenced elsewhere in
the code with the CURRENT OF clause. If MODE={ANSI | ANSI14}, then all
explicit cursors are closed.

When MODE={ANSI13 | ORACLE}, explicit cursors not referenced in a CURRENT
OF clause remain open across rollbacks.

Because they are part of exception processing, ROLLBACK statements should be
placed in error handling routines, off the main path through your program. In the
following example, you roll back your transaction and disconnect:

 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.

The optional keyword WORK provides ANSI compatibility. The RELEASE option
frees all resources held by your program and logs off the database.

If a WHENEVER SQLERROR GOTO statement branches to an error handling routine
that includes a ROLLBACK statement, your program might enter an infinite loop if the
rollback fails with an error. You can avoid this by coding WHENEVER SQLERROR
CONTINUE before the ROLLBACK statement.

For example, consider the following:

 EXEC SQL
 WHENEVER SQLERROR GOTO SQL-ERROR
 END-EXEC.
 ...
 DISPLAY 'Employee number? '.
 ACCEPT EMP-NUMBER.
 DISPLAY 'Employee name? '.
 ACCEPT EMP-NAME.
 EXEC SQL INSERT INTO EMP (EMPNO, ENAME)
 VALUES (:EMP-NUMBER, :EMP-NAME)
 END-EXEC.
 ...
 SQL-ERROR.

Note: Use this option carefully; applications may be slowed if
cursors are opened and closed many times because of the need to
re-parse for each OPEN statement. See "CLOSE_ON_COMMIT" on
page 14-11.

Using the SAVEPOINT Statement

Database Concepts 3-13

 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY 'PROCESSING ERROR.'.
 DISPLAY 'ERROR CODE : ', SQLCODE.
 DISPLAY 'MESSAGE :', SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

Oracle9i rolls back transactions if your program terminates abnormally.

Statement-Level Rollbacks
Before executing any SQL statement, Oracle9i marks an implicit savepoint (not
available to you). Then, if the statement fails, Oracle9i rolls it back automatically and
returns the applicable error code to SQLCODE in the SQLCA. For example, if an
INSERT statement causes an error by trying to insert a duplicate value in a unique
index, the statement is rolled back.

Only work started by the failed SQL statement is lost; work done before that statement
in the current transaction is kept. Thus, if a data definition statement fails, the
automatic commit that precedes it is not undone.

Oracle9i can also roll back single SQL statements to break deadlocks. Oracle9i signals
an error to one of the participating transactions and rolls back the current statement in
that transaction.

Using the SAVEPOINT Statement
The SAVEPOINT embedded SQL statement marks and names the current point in
processing a transaction. Each marked point is called a savepoint. For example, the
following statement marks a savepoint named start_delete:

 EXEC SQL SAVEPOINT start_delete END-EXEC.

Savepoints let you divide long transactions, giving you more control over complex
procedures. For example, if a transaction performs several functions, you can mark a
savepoint before each function. Then, if a function fails, you can easily restore the data
to its former state, recover, and then reexecute the function.

To undo part of a transaction, you can use savepoints with the ROLLBACK statement
and its TO SAVEPOINT clause. The TO SAVEPOINT clause lets you roll back to an
intermediate statement in the current transaction. With it, you do not have to undo all
your changes. Specifically, the ROLLBACK TO SAVEPOINT statement:

■ Undoes changes made to the database since the specified savepoint was marked

■ Erases all savepoints marked after the specified savepoint

■ Releases all row and table locks acquired since the specified savepoint was marked

In the following example, you access the table MAIL_LIST to insert new listings,
update old listings, and delete (a few) inactive listings. After the delete, you check

Note: Before executing a SQL statement, Oracle9i must parse it,
that is, examine it to make sure it follows syntax rules and refers to
valid database objects. Errors detected while executing a SQL
statement cause a rollback, but errors detected while parsing the
statement do not.

Using the SAVEPOINT Statement

3-14 Pro*COBOL Programmer’s Guide

SQLERRD(3) in the SQLCA for the number of rows deleted. If the number is
unexpectedly large, you roll back to the savepoint start_delete, undoing just the delete.

* -- For each new customer
 DISPLAY 'New customer number? '.
 ACCEPT CUST-NUMBER.
 IF CUST-NUMBER = 0
 GO TO REV-STATUS
 END-IF.
 DISPLAY 'New customer name? '.
 ACCEPT CUST-NAME.
 EXEC SQL INSERT INTO MAIL-LIST (CUSTNO, CNAME, STAT)
 VALUES (:CUST-NUMBER, :CUST-NAME, 'ACTIVE').
 END-EXEC.
 ...
* -- For each revised status
 REV-STATUS.
 DISPLAY 'Customer number to revise status? '.
 ACCEPT CUST-NUMBER.
 IF CUST-NUMBER = 0
 GO TO SAVE-POINT
 END-IF.
 DISPLAY 'New status? '.
 ACCEPT NEW-STATUS.
 EXEC SQL UPDATE MAIL-LIST
 SET STAT = :NEW-STATUS WHERE CUSTNO = :CUST-NUMBER
 END-EXEC.
 ...
* -- mark savepoint
 SAVE-POINT.
 EXEC SQL SAVEPOINT START-DELETE END-EXEC.
 EXEC SQL DELETE FROM MAIL-LIST WHERE STAT = 'INACTIVE'
 END-EXEC.
 IF SQLERRD(3) < 25
* -- check number of rows deleted
 DISPLAY 'Number of rows deleted is ', SQLERRD(3)
 ELSE
 DISPLAY 'Undoing deletion of ', SQLERRD(3), ' rows'
 EXEC SQL
 WHENEVER SQLERROR GOTO SQL-ERROR
 END-EXEC
 EXEC SQL
 ROLLBACK TO SAVEPOINT START-DELETE
 END-EXEC
 END-IF.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 STOP RUN.
* -- exit program.
 ...
 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 DISPLAY 'Processing error'.
* -- exit program with an error.
 STOP RUN.

Note that you cannot specify the RELEASE option in a ROLLBACK TO SAVEPOINT
statement.

Using the SET TRANSACTION Statement

Database Concepts 3-15

Rolling back to a savepoint erases any savepoints marked after that savepoint. The
savepoint to which you roll back, however, is not erased. For example, if you mark five
savepoints, then roll back to the third, only the fourth and fifth are erased. A COMMIT
or ROLLBACK statement erases all savepoints.

Using the RELEASE Option
Oracle9i rolls back changes automatically if your program terminates abnormally.
Abnormal termination occurs when your program does not explicitly commit or roll
back work and disconnect using the RELEASE embedded SQL statement.

Normal termination occurs when your program runs its course, closes open cursors,
explicitly commits or rolls back work, disconnects, and returns control to the user.
Your program will exit gracefully if the last SQL statement it executes is either

 EXEC SQL COMMIT WORK RELEASE END-EXEC.

or

 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.

where the token WORK is optional. Otherwise, locks and cursors acquired by your
user session are held after program termination until Oracle9i recognizes that the user
session is no longer active. This might cause other users in a multiuser environment to
wait longer than necessary for the locked resources.

Using the SET TRANSACTION Statement
You can use the SET TRANSACTION statement to begin a read-only or read/write
transaction, or to assign your current transaction to a specified rollback segment. A
COMMIT, ROLLBACK, or data definition statement ends a read-only transaction.

Because they allow "repeatable reads," read-only transactions are useful for running
multiple queries against one or more tables while other users update the same tables.
During a read-only transaction, all queries refer to the same snapshot of the database,
providing a multitable, multiquery, read-consistent view. Other users can continue to
query or update data as usual. An example of the SET TRANSACTION statement
follows:

 EXEC SQL SET TRANSACTION READ ONLY END-EXEC.

The SET TRANSACTION statement must be the first SQL statement in a read-only
transaction and can appear only once in a transaction. The READ ONLY parameter is
required. Its use does not affect other transactions. Only the SELECT (without FOR
UPDATE), LOCK TABLE, SET ROLE, ALTER SESSION, ALTER SYSTEM, COMMIT,
and ROLLBACK statements are allowed in a read-only transaction.

In the following example, a store manager checks sales activity for the day, the past
week, and the past month by using a read-only transaction to generate a summary
report. The report is unaffected by other users updating the database during the
transaction.

 EXEC SQL SET TRANSACTION READ ONLY END-EXEC.
 EXEC SQL SELECT SUM(SALEAMT) INTO :DAILY FROM SALES
 WHERE SALEDATE = SYSDATE END-EXEC.
 EXEC SQL SELECT SUM(SALEAMT) INTO :WEEKLY FROM SALES
 WHERE SALEDATE > SYSDATE - 7 END-EXEC.
 EXEC SQL SELECT SUM(SALEAMT) INTO :MONTHLY FROM SALES
 WHERE SALEDATE > SYSDATE - 30 END-EXEC.

Overriding Default Locking

3-16 Pro*COBOL Programmer’s Guide

 EXEC SQL COMMIT WORK END-EXEC.
* -- simply ends the transaction since there are no changes
* -- to make permanent
* -- format and print report

Overriding Default Locking
By default, Oracle9i implicitly (automatically) locks many data structures for you.
However, you can request specific data locks on rows or tables when it is to your
advantage to override default locking. Explicit locking lets you share or deny access to
a table for the duration of a transaction or ensure multitable and multiquery read
consistency.

With the SELECT FOR UPDATE OF statement, you can explicitly lock specific rows of
a table to make sure they do not change before an update or delete is executed.
However, Oracle9i automatically obtains row-level locks at update or delete time. So,
use the FOR UPDATE OF clause only if you want to lock the rows before the update or
delete.

You can explicitly lock entire tables using the LOCK TABLE statement.

Using the FOR UPDATE OF Clause
When you DECLARE a cursor, you can meanwhile optionally specify the FOR
UPDATE clause, which has the effect of acquiring an exclusive lock on all rows
defined by the cursor. This is useful, for example, when you want to base an update on
existing rows in a table and want to ensure that they are not meanwhile changed by
anyone else.

Note that if you refer to a cursor with the CURRENT OF clause, that the precompiler
will automatically add the FOR UPDATE clause to the cursor definition and the word
OF is optional. For instance, instead of:

 EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO = 20
 FOR UPDATE OF SAL
 END-EXEC.

you can drop the OF part of the clause and simply code:

 EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO = 20
 FOR UPDATE
 END-EXEC.

For an example, see "Using the CURRENT OF Clause" on page 5-12.

Restrictions
You cannot use FOR UPDATE with multiple tables, but you must use FOR UPDATE
OF to identify a column in the table that you want locked. Row locks obtained by a
FOR UPDATE statement are cleared by a COMMIT, which explains why the cursor is
closed for you. If you try to fetch from a FOR UPDATE cursor after a commit, Oracle9i
generates a Fetch out of Sequence error.

Fetching Across Commits

Database Concepts 3-17

Fetching Across Commits
If you want to mix commits and fetches, do not use the CURRENT OF clause. Instead,
select the ROWID of each row, and then use that value to identify the current row
during the update or delete. Consider the following example:

 EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, SAL, ROWID FROM EMP WHERE JOB = 'CLERK'
 END-EXEC.
 ...
 EXEC SQL OPEN emp_cursor END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO ...
 PERFORM
 EXEC SQL
 FETCH emp_cursor INTO :EMP_NAME, :SALARY, :ROW-ID
 END-EXEC
 ...
 EXEC SQL UPDATE EMP SET SAL = :NEW-SALARY
 WHERE ROWID = :ROW-ID
 END-EXEC
 EXEC SQL COMMIT END-EXEC
 END-PERFORM.

Note, however, that the fetched rows are not locked. So, you can receive inconsistent
results if another user modifies a row after you read it but before you update or delete
it.

Using the LOCK TABLE Statement
Use the LOCK TABLE statement locks one or more tables in a specified lock mode. For
example, the following statement locks the EMP table in row share mode. Row share
locks allow concurrent access to a table They prevent other users from locking the
entire table for exclusive use.

 EXEC SQL
 LOCK TABLE EMP IN ROW SHARE MODE NOWAIT
 END-EXEC.

The lock mode determines what other locks can be placed on the table. For example,
many users can acquire row share locks on a table at the same time, but only one user
at a time can acquire an exclusive lock. While one user has an exclusive lock on a table,
no other users can insert, update, or delete rows in that table. For more information
about lock modes, see the Oracle Database Application Developer's Guide - Fundamentals

The optional keyword NOWAIT tells Oracle9i not to wait for a table if it has been
locked by another user. Control is immediately returned to your program so that it can
do other work before trying again to acquire the lock. (You can check SQLCODE in the
SQLCA to see if the table lock failed.) If you omit NOWAIT, Oracle9i waits until the
table is available; the wait has no set limit.

A table lock never keeps other users from querying a table, and a query never acquires
a table lock. Consequently, a query never blocks another query or an update, and an
update never blocks a query. Only if two different transactions try to update the same
row will one transaction wait for the other to complete. Table locks are released when
your transaction issues a COMMIT or ROLLBACK.

Handling Distributed Transactions

3-18 Pro*COBOL Programmer’s Guide

Handling Distributed Transactions
A distributed database is a single logical database comprising multiple physical
databases at different nodes. A distributed statement is any SQL statement that accesses
a remote node using a database link. A distributed transaction includes at least one
distributed statement that updates data at multiple nodes of a distributed database. If
the update affects only one node, the transaction is non-distributed.

When you issue a commit, changes to each database affected by the distributed
transaction are made permanent. If instead you issue a rollback, all the changes are
undone. However, if a network or machine fails during the commit or rollback, the
state of the distributed transaction might be unknown or in doubt. In such cases, if you
have FORCE TRANSACTION system privileges, you can manually commit or roll
back the transaction at your local database by using the FORCE clause. The transaction
must be identified by a quoted literal containing the transaction ID, which can be
found in the data dictionary view DBA_2PC_PENDING. Some examples follow:

 EXEC SQL COMMIT FORCE '22.31.83' END-EXEC.
 ...
 EXEC SQL ROLLBACK FORCE '25.33.86'END-EXEC.

FORCE commits or rolls back only the specified transaction and does not affect your
current transaction. Note that you cannot manually roll back in-doubt transactions to a
savepoint.

The COMMENT clause in the COMMIT statement lets you specify a Comment to be
associated with a distributed transaction. If ever the transaction is in doubt, the server
stores the text specified by COMMENT in the data dictionary view DBA_2PC_
PENDING along with the transaction ID. The text must be a quoted literal of no more
than 50 characters in length. An example follows:

 EXEC SQL
 COMMIT COMMENT 'In-doubt trans; notify Order Entry'
 END-EXEC.

For more information about distributed transactions, see Oracle Database Concepts.

Guidelines for Transaction Processing
The following guidelines will help you avoid some common problems.

Designing Applications
When designing your application, group logically related actions together in one
transaction. A well-designed transaction includes all the steps necessary to accomplish
a given task—no more and no less.

Data in the tables you reference must be left in a consistent state. Thus, the SQL
statements in a transaction should change the data in a consistent way. For example, a
transfer of funds between two bank accounts should include a debit to one account
and a credit to another. Both updates should either succeed or fail together. An
unrelated update, such as a new deposit to one account, should not be included in the
transaction.

Obtaining Locks
If your application programs include SQL locking statements, make sure the users
requesting locks have the privileges needed to obtain the locks. Your DBA can lock any

Guidelines for Transaction Processing

Database Concepts 3-19

table. Other users can lock tables they own or tables for which they have a privilege,
such as ALTER, SELECT, INSERT, UPDATE, or DELETE.

Using PL/SQL
If a PL/SQL block is part of a transaction, commits and rollback operations inside the
block affect the whole transaction. In the following example, the rollback operation
undoes changes made by the update and the insert:

 EXEC SQL INSERT INTO EMP ...
 EXEC SQL EXECUTE
 BEGIN UPDATE emp
 ...
 ...
 EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 ROLLBACK;
 END;
 END-EXEC.
 ...

X/Open Applications
For instructions on using the XA interface in X/Open applications, see your
Transaction Processing (TP) Monitor user's guide and Oracle Database Application
Developer's Guide - Fundamentals.

Guidelines for Transaction Processing

3-20 Pro*COBOL Programmer’s Guide

Datatypes and Host Variables 4-1

4
Datatypes and Host Variables

This chapter provides the basic information you need to write a Pro*COBOL program,
including:

■ The Oracle Database 10g Datatypes

■ Datetime and Interval Datatype Descriptors

■ Host Variables

■ Indicator Variables

■ VARCHAR Variables

■ Handling Character Data

■ Universal ROWIDs

■ Globalization Support

■ Multibyte Globalization Support Character Sets

■ Datatype Conversion

■ Explicit Control Over DATE String Format

■ Datatype Equivalencing

■ Sample Program 4: Datatype Equivalencing

The Oracle Database 10g Datatypes
Oracle Database 10g recognizes two kinds of datatypes: internal and external. Internal
datatypes specify how Oracle10g stores data in database columns.

For complete descriptions of the Oracle internal (also called built-in) datatypes, see
Oracle Database SQL Reference.

Oracle9i also uses internal datatypes to represent database pseudocolumns. An
external datatype specifies how data is stored in a host variable.

Internal Datatypes
Table 4–1 summarizes the information about each Oracle built-in datatype.

The Oracle Database 10g Datatypes

4-2 Pro*COBOL Programmer’s Guide

Table 4–1 Summary of Oracle Built-In Datatypes

Datatype Description Column Length and Default

CHAR (size) Fixed-length character
data of length size in
characters or bytes,
depending on the
national character set

Fixed for every row in the table (with trailing
blanks.) Column size is the number of
characters for a fixed-width national
character set or the number of bytes required
to store one character, with an upper limit of
2000 bytes for each row. Default size is 1
character or 1 byte for each row, depending
on the national character set. Consider the
character set (one-byte or multibyte) before
setting size.

VARCHAR2 (size) Fixed-length character
data of length size in
characters or bytes,
depending on the
national character set.
A maximum size must
be specified.

Variable for each row. Column size is the
number of characters for a fixed-width
national character set or the number of bytes
for a varying-width national character set.
Maximum size is determined by the number
of bytes required to store one character, with
an upper limit of 4000 bytes for each row.
Default size is 1 character or 1 byte,
depending on the national character set.

NCHAR (size) Fixed-length character
data of length size in
characters or bytes,
depending on national
character set.

Fixed for every row in the table (with trailing
blanks). Column size is the number of bytes
for a national character set or the number of
bytes for a varying-width national character
set. Maximum size is determined by the
number of bytes required to store one
character, with an upper limit of 2000 bytes
for each row. Default is 1 character or 1 byte,
depending on the character set.

NVARCHAR2
(size)

Variable-length
character data of length
size in characters or
bytes, depending on
national character set.
A maximum size must
be specified.

Variable for each row. Column size is the
number of bytes for a national character set.
Maximum size is determined by the number
of bytes required to store one character, with
an upper limit of 4000 bytes for each row.
Default is 1 character or 1 byte, depending
on the character set.

CLOB Single-byte character
data

Up to 2^32 - 1 bytes, or 4 gigabytes.

NCLOB Single-byte or
fixed-length multibyte
national character set
(NCHAR) data

Up to 2^32 - 1 bytes, or 4 gigabytes.

LONG Variable-length
character data

Variable for each row in the table, up to 2^31
- 1 bytes, or 2 gigabytes, for each row.
Provided for backward compatibility.

NUMBER(p,s) Variable-length
numeric data.:
Maximum precision p,
or scale s is 38, or both.

Variable for each row. The maximum space
required for a given column is 21 bytes for
each row.

DATE Fixed-length date and
time data, ranging from
Jan. 1, 4712 B.C.E. to
Dec. 31, 4712 C.E.

Fixed at 7 bytes for each row in the table.
Default format is a string (such as
DD-MON-YY) specified by NLS_DATE_FORMAT
parameter.

BLOB Unstructured binary
data

Up to 2^32 - 1 bytes, or 4 gigabytes.

The Oracle Database 10g Datatypes

Datatypes and Host Variables 4-3

External Datatypes
The external datatypes include all the internal datatypes plus several datatypes found
in other supported host languages. Use the datatype names in datatype equivalencing,
and the datatype codes in dynamic SQL Method 4. The following table lists external
datatypes.

BFILE Binary data stored in an
external file

Up to 2^32 - 1 bytes, or 4 gigabytes.

RAW (size) Variable-length raw
binary data

Variable for each row in the table, up to 2000
bytes for each row. A maximum size must be
specified. Provided for backward
compatibility.

LONG RAW Variable-length raw
binary data

Variable for each row in the table, up to 2^31
- 1 bytes, or 2 gigabytes, for each row.
Provided for backward compatibility.

ROWID Binary data
representing row
addresses

Fixed at 10 bytes (extended ROWID) or 6
bytes (restricted ROWID) for each row in the
table.

Table 4–2 External Datatypes

Name Code Description

CHAR 1

96

<= 65535-byte, variable-length character string ()

<= 65535-byte, fixed-length character string ()

CHARF 96 <= 65535-byte, fixed-length character string

CHARZ 97 <= 65535-byte, fixed-length, null-terminated string ()

DATE 12 7-byte, fixed-length date/time value

DECIMAL 7 COBOL packed decimal

DISPLAY 91 COBOL numeric character string with leading sign

DISPLAY TRAILING 152 COBOL numeric with trailing sign

FLOAT 4 4-byte or 8-byte floating-point number

INTEGER 3 2-byte, 4-byte, or 8-byte signed integer. (8-byte on 64-bit
platforms).

LONG 8 <= 2147483647-byte, fixed-length string

LONG RAW 24 <= 217483647-byte, fixed-length binary data

LONG VARCHAR 94 <= 217483643-byte, variable-length string

LONG VARRAW 95 <= 217483643-byte, variable-length binary data

NUMBER 2 Internal Oracle Format Number represented in binary
coded decimal format.

OVERPUNCH
LEADING

172 COBOL numeric character string with embedded
leading sign

OVERPUNCH
TRAILING

154 COBOL numeric character string with embedded
trailing sign (equivalent to declarations of the form PIC
S9(n)V9(m) DISPLAY)

RAW 23 <= 65535-byte, fixed-length binary data ()

Table 4–1 (Cont.) Summary of Oracle Built-In Datatypes

Datatype Description Column Length and Default

The Oracle Database 10g Datatypes

4-4 Pro*COBOL Programmer’s Guide

Notes:

CHAR is datatype 1 when PICX=VARCHAR2 and datatype 96 when PICX=CHARF.

Maximum size is 32767 (32K) on some platforms.

CHAR
CHAR behavior depends on the settings of the option PICX. See "PICX" on page 14-25.

CHARF
By default, the CHARF datatype represents all non-varying character host variables.
You use the CHARF datatype to store fixed-length character strings. On most
platforms, the maximum length of a CHARF value is 65535 (64K) bytes. See "PICX" on
page 14-25.

On Input. Oracle9i reads the number of bytes specified for the input host variable,
does not strip trailing blanks, then stores the input value in the target database column.

If the input value is longer than the defined width of the database column, Oracle9i
generates an error. If the input value is all-blank, then a string of spaces is stored.

On Output. Oracle9i returns the number of bytes specified for the output host
variable, blank-padding if necessary, then assigns the output value to the target host
variable. If a NULL is returned, then the original value of the variable is not
overwritten.

If the output value is longer than the declared length of the host variable, Oracle9i
truncates the value before assigning it to the host variable. If an indicator variable is
available, Oracle9i sets it to the original length of the output value.

CHARZ
The CHARZ datatype represents fixed-length, null-terminated character strings. On
most platforms, the maximum length of a CHARZ value is 65535 bytes. You usually
will not need this external type in Pro*COBOL.

DATE
The DATE datatype represents dates and times in 7-byte, fixed-length fields. As
Table 4–3 shows, the century, year, month, day, hour (in 24-hour format), minute, and
second are stored in that order from left to right.

ROWID 11 fixed-length binary value (system-specific)

STRING 5 <= 65535-byte, null-terminated character string ()

UNSIGNED 68 2-byte or 4-byte unsigned integer

UNSIGNED DISPLAY 153 COBOL unsigned numeric

VARCHAR 9 <= 65533-byte, variable-length character string

VARCHAR2 1 <= 65535-byte, variable-length character string ()

VARNUM 6 variable-length binary number

VARRAW 15 <= 65533-byte, variable-length binary data

Table 4–2 (Cont.) External Datatypes

Name Code Description

The Oracle Database 10g Datatypes

Datatypes and Host Variables 4-5

The century and year bytes are in excess-100 notation. The hour, minute, and second
are in excess-1 notation. Dates before the Common Era (B.C.E.) are less than 100. The
epoch is January 1, 4712 B.C.E. For this date, the century byte is 53 and the year byte is
88. The hour byte ranges from 1 to 24. The minute and second bytes range from 1 to 60.
The time defaults to midnight (1, 1, 1). Pro*COBOL also supports five additional
datetime datetypes, as described in "Datetime and Interval Datatype Descriptors" on
page 4-10 .

DECIMAL
The DECIMAL datatype represents packed decimal numbers for calculation. In
COBOL, the host variable must be a signed COMP-3 field with an implied decimal
point. If significant digits are lost during data conversion, the value is truncated to the
declared length.

DISPLAY
The DISPLAY datatype represents numeric character data. The DISPLAY datatype
refers to a COBOL "DISPLAY SIGN LEADING SEPARATE" number, which requires n
+ 1 bytes of storage for PIC S9(n), and n + d + 1 bytes of storage for PIC S9(n)V9(d).

FLOAT
The FLOAT datatype represents numbers that have a fractional part or that exceed the
capacity of the INTEGER datatype. FLOAT relates to the COBOL datatypes COMP-1
(4-byte floating point) and COMP-2 (8-byte floating point).

Oracle9i can represent numbers with greater precision than floating point
implementations because the internal format of Oracle9i numbers is decimal.

Note: In SQL statements, when comparing FLOAT values, use the SQL function
ROUND because FLOAT stores binary (not decimal) numbers; so, fractions do not
convert exactly.

INTEGER
The INTEGER datatype represents numbers that have no fractional part. An integer is
a signed, 2-byte, 4-byte, or 8-byte binary number. (8-byte on 64-bit platforms.) The
order of the bytes in a word is platform-dependent. You must specify a length for
input and output host variables. On output, if the column has a fractional part, the
digits after the decimal point are truncated.

LONG
The LONG datatype represents fixed-length character strings. The LONG datatype is
like the VARCHAR2 datatype, except that the maximum length of a LONG value is
2147483647 bytes (two gigabytes).

Table 4–3 Date Format

Byte 1 2 3 4 5 6 7

Meaning Century Year Month Day Hour Minute Second

Example

17-Oct-1994 at
1:23:12 PM

119 194 10 17 14 24 13

The Oracle Database 10g Datatypes

4-6 Pro*COBOL Programmer’s Guide

LONG RAW
The LONG RAW datatype represents fixed-length, binary data or byte strings. The
maximum length of a LONG RAW value is 2147483647 bytes (two gigabytes).

LONG RAW data is like LONG data, except that Oracle9i assumes nothing about the
meaning of LONG RAW data and does no character set conversions when you
transmit LONG RAW data from one system to another.

LONG VARCHAR
The LONG VARCHAR datatype represents variable-length character strings. LONG
VARCHAR variables have a 4-byte length field followed by a string field. The
maximum length of the string field is 2147483643 bytes. In an EXEC SQL VAR
statement, do not include the 4-byte length field.

LONG VARRAW
The LONG VARRAW datatype represents binary data or byte strings. LONG
VARRAW variables have a 4-byte length field followed by a data field. The maximum
length of the data field is 2147483643 bytes. In an EXEC SQL VAR statement, do not
include the 4-byte length field.

NUMBER
The NUMBER datatype represents the internal Oracle NUMBER format which cannot
be represented by a COBOL datatype.

OVER-PUNCH
OVER-PUNCH is the default signed numeric for the COBOL language. Digits are held
in ASCII or EBCDIC format in radix 10, with one digit for each byte of computer
storage. The sign is held in the high order nibble of one of the bytes. It is called
OVER-PUNCH because the sign is "punched-over" the digit in either the first or last
byte. The default sign position will be over the trailing byte. PIC S9(n)V9(m)
TRAILING or PIC S9(n)V9(m) LEADING is used to specify the over-punch.

RAW
The RAW datatype represents fixed-length binary data or byte strings. On most
platforms, the maximum length of a RAW value is 65535 bytes.

RAW data is like CHAR data, except that Oracle9i assumes nothing about the meaning
of RAW data and does no character set conversions when you transmit RAW data
from one system to another.

ROWID
The ROWID datatype is the database row identifier in COBOL. To support both logical
and physical ROWIDs (as well as ROWIDs of non-Oracle tables) the Universal ROWID
(UROWID) was defined. Use the SQL-ROWID pseudotype for this datatype (see
"Universal ROWIDs" on page 4-25).

You can use VARCHAR2 host variables to store ROWIDs in a readable format. When
you select or fetch a ROWID into a VARCHAR2 host variable, Oracle9i converts the
binary value to an 18-byte character string and returns it in the format:

BBBBBBBB.RRRR.FFFF

The Oracle Database 10g Datatypes

Datatypes and Host Variables 4-7

where BBBBBBBB is the block in the database file, RRRR is the row in the block (the
first row is 0), and FFFF is the database file. These numbers are hexadecimal. For
example, the ROWID:

0000000E.000A.0007

points to the 11th row in the 15th block in the 7th database file.

Typically, you fetch a ROWID into a VARCHAR2 host variable, and hen compare the
host variable to the ROWID pseudocolumn in the WHERE clause of an UPDATE or
DELETE statement. That way, you can identify the latest row fetched by a cursor. For
an example, see "Mimicking the CURRENT OF Clause" on page 7-14.

Note: If you need full portability or your application communicates with a non-Oracle
database through Transparent Gateway, specify a maximum length of 256 (not 18)
bytes when declaring the VARCHAR2 host variable. If your application communicates
with a non-Oracle data source through Oracle Open Gateway, specify a maximum
length of 256 bytes. Though you can assume nothing about its contents, the host
variable will behave normally in SQL statements.

STRING
The STRING datatype is like the VARCHAR2 datatype except that a STRING value is
always terminated by a LOW-VALUE character.This datatype is usually not used in
Pro*COBOL.

UNSIGNED
The UNSIGNED datatype represents unsigned integers.This datatype is usually not
used in Pro*COBOL.

VARCHAR
The VARCHAR datatype represents variable-length character strings. VARCHAR
variables have a 2-byte length field followed by a 65533-byte string field. However, for
VARCHAR array elements, the maximum length of the string field is 65530 bytes.
When you specify the length of a VARCHAR variable, be sure to include 2 bytes for
the length field. For longer strings, use the LONG VARCHAR datatype. In an EXEC
SQL VAR statement, do not include the 2-byte length field.

VARCHAR2
The VARCHAR2 datatype represents variable-length character strings. On most
platforms, the maximum length of a VARCHAR2 value is 65535 bytes.

Specify the maximum length of a VARCHAR2(n) value in bytes, not characters. So, if a
VARCHAR2(n) variable stores multibyte characters, its maximum length is less than n
characters.

On Input. Oracle9i reads the number of bytes specified for the input host variable,
strips any trailing blanks, and then stores the input value in the target database
column.

If the input value is longer than the defined width of the database column, Oracle9i
generates an error. If the input value is all SPACES, Oracle9i treats it like a NULL.

Oracle9i can convert a character value to a NUMBER column value if the character
value represents a valid number. Otherwise, Oracle9i generates an error.

The Oracle Database 10g Datatypes

4-8 Pro*COBOL Programmer’s Guide

On Output. Oracle9i returns the number of bytes specified for the output host
variable, blank-padding if necessary, and then assigns the output value to the target
host variable. If a NULL is returned, Oracle9i fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle9i
truncates the value before assigning it to the host variable. If an indicator variable is
available, Oracle9i sets it to the original length of the output value.

Oracle9i can convert NUMBER column values to character values. The length of the
character host variable determines precision. If the host variable is too short for the
number, scientific notation is used. For example, if you select the column value
123456789 into a host variable of length 6, Oracle9i returns the value 1.2E08 to the
host variable.

VARNUM
The VARNUM datatype is similar in format to NUMBER and is usually not used in
Pro*COBOL.

VARRAW
The VARRAW datatype represents variable-length binary data or byte strings. The
VARRAW datatype is like the RAW datatype, except that VARRAW variables have a
2-byte length field followed by a <= 65533-byte data field. For longer strings, use the
LONG VARRAW datatype. In an EXEC SQL VAR statement, do not include the 2-byte
length field. To get the length of a VARRAW variable, simply refer to its length field.

SQL Pseudocolumns and Functions
SQL recognizes the pseudocolumns listed in Table 4–4, which return specific data
items.

Pseudocolumns are not actual columns in a table. However, pseudocolumns are
treated like columns, so their values must be SELECTed from a table. Sometimes it is
convenient to select pseudocolumn values from a dummy table.

In addition, SQL recognizes the functions without parameters listed in Table 4–5,
which also return specific data items.

Table 4–4 Pseudocolumns and Internal Datatypes

Pseudocolumn Internal Datatype

CURRVAL NUMBER

LEVEL NUMBER

NEXTVAL NUMBER

ROWID ROWID

ROWNUM NUMBER

Table 4–5 Functions and Internal Datatypes

Function Internal Datatype

SYSDATE DATE

UID NUMBER

USER VARCHAR2

The Oracle Database 10g Datatypes

Datatypes and Host Variables 4-9

You can refer to SQL pseudocolumns and functions in SELECT, INSERT, UPDATE,
and DELETE statements. In the following example, you use SYSDATE to compute the
number of months since an employee was hired:

 EXEC SQL SELECT MONTHS_BETWEEN(SYSDATE, HIREDATE)
 INTO :MONTHS-OF-SERVICE
 FROM EMP
 WHERE EMPNO = :EMP-NUMBER
 END EXEC.

Brief descriptions of the SQL pseudocolumns and functions follow. For details, see the
Oracle Database SQL Reference.

CURRVAL returns the current number in a specified sequence. Before you can
reference CURRVAL, you must use NEXTVAL to generate a sequence number.

LEVEL returns the level number of a node in a tree structure. The root is level 1,
children of the root are level 2, grandchildren are level 3, and so on.

LEVEL is used in the SELECT CONNECT BY statement to incorporate some or all the
rows of a table into a tree structure. In an ORDER BY or GROUP BY clause, LEVEL
segregates the data at each level in the tree.

Specify the direction in which the query walks the tree (down from the root or up from
the branches) with the PRIOR operator. In the START WITH clause, you can specify a
condition that identifies the root of the tree.

NEXTVAL returns the next number in a specified sequence. After creating a sequence,
you can use it to generate unique sequence numbers for transaction processing. In the
following example, the sequence named partno assigns part numbers:

 EXEC SQL INSERT INTO PARTS
 VALUES (PARTNO.NEXTVAL, :DESCRIPTION, :QUANTITY, :PRICE
 END EXEC.

If a transaction generates a sequence number, the sequence is incremented when you
commit or roll back the transaction. A reference to NEXTVAL stores the current
sequence number in CURRVAL.

ROWNUM returns a number indicating the sequence in which a row was selected
from a table. The first row selected has a ROWNUM of 1, the second row has a
ROWNUM of 2, and so on. If a SELECT statement includes an ORDER BY clause,
ROWNUMs are assigned to the selected rows before the sort is done.

You can use ROWNUM to limit the number of rows returned by a SELECT statement.
Also, you can use ROWNUM in an UPDATE statement to assign unique values to each
row in a table. Using ROWNUM in the WHERE clause does not stop the processing of
a SELECT statement; it just limits the number of rows retrieved. The only meaningful
use of ROWNUM in a WHERE clause is:

 ... WHERE ROWNUM < constant END-EXEC.

because the value of ROWNUM increases only when a row is retrieved. The following
search condition can never be met because the first four rows are not retrieved:

 ... WHERE ROWNUM = 5 END-EXEC.

SYSDATE returns the current date and time.

UID returns the unique ID number assigned to an Oracle user.

USER returns the username of the current Oracle user.

Datetime and Interval Datatype Descriptors

4-10 Pro*COBOL Programmer’s Guide

Datetime and Interval Datatype Descriptors
The OCI datetime and interval datatypes supported by Pro*COBOL are briefly
summarized here.

ANSI DATE
The ANSI DATE is based on the DATE, but contains no time portion. (Therefore, it also
has no time zone.) ANSI DATE follows the ANSI specification for the DATE datatype.
When assigning an ANSI DATE to a DATE or a timestamp datatype, the time portion of
the Oracle DATE and the timestamp are set to zero. When assigning a DATE or a
timestamp to an ANSI DATE, the time portion is ignored.

You are encouraged to instead use the TIMESTAMP datatype which contains both date
and time.

TIMESTAMP
The TIMESTAMP datatype is an extension of the DATE datatype. It stores the year,
month, and day of the DATE datatype, plus the hour, minute, and second values. It has
no time zone. The TIMESTAMP datatype has the form:

TIMESTAMP(fractional_seconds_precision)

where fractional_seconds_precision (which is optional) specifies the number
of digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6.

TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of TIMESTAMP that includes an
explicit time zone displacement in its value. The time zone displacement is the
difference (in hours and minutes) between local time and UTC (Coordinated Universal
Time—formerly Greenwich Mean Time). The TIMESTAMP WITH TIME ZONE datatype
has the form:

TIMESTAMP(fractional_seconds_precision) WITH TIME ZONE

where fractional_seconds_precision optionally specifies the number of digits
in the fractional part of the SECOND datetime field and can be a number in the range 0
to 9. The default is 6.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent
the same instant in UTC, regardless of the TIME ZONE offsets stored in the data.

TIMESTAMP WITH LOCAL TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE (TSLTZ) is another variant of TIMESTAMP that
includes a time zone displacement in its value. Storage is in the same format as for
TIMESTAMP. This type differs from TIMESTAMP WITH TIME ZONE in that data stored
in the database is normalized to the database time zone, and the time zone
displacement is not stored as part of the column data. When users retrieve the data,
Oracle returns it in the users' local session time zone.

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time). The
TIMESTAMP WITH LOCAL TIME ZONE datatype has the form:

See Also: Oracle Database SQL Reference for more a more complete
discussion datetime datatype descriptors

Host Variables

Datatypes and Host Variables 4-11

TIMESTAMP(fractional_seconds_precision) WITH LOCAL TIME ZONE

where fractional_seconds_precision optionally specifies the number of digits
in the fractional part of the SECOND datetime field and can be a number in the range 0
to 9. The default is 6.

INTERVAL YEAR TO MONTH
INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH
datetime fields. The INTERVAL YEAR TO MONTH datatype has the form:

INTERVAL YEAR(year_precision) TO MONTH

where the optional year_precision is the number of digits in the YEAR datetime
field. The default value of year_precision is 2.

INTERVAL DAY TO SECOND
INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes,
and seconds. The INTERVAL DAY TO SECOND datatype has the form:

INTERVAL DAY (day_precision) TO SECOND(fractional_seconds_precision)

where:

■ day_precision is the number of digits in the DAY datetime field. It is optional.
Accepted values are 0 to 9. The default is 2.

■ fractional_seconds_precision is the number of digits in the fractional part
of the SECOND datetime field. It is optional. Accepted values are 0 to 9. The default
is 6.

Host Variables
Host variables are the key to communication between your host program and the
server. Typically, a host program inputs data to the server, and the server outputs data
to the program. The server stores input data in database columns and stores output
data in program host variables.

Declaring Host Variables
Host variables are declared according to COBOL rules, using the COBOL datatypes
that are supported by Pro*COBOL. COBOL datatypes must be compatible with the
source/target database column.

The supported COBOL variable declarations, descriptions, corresponding external
datatypes, and Oracle datatype codes are shown in Table 4–6.

Note: To avoid unexpected results in your DML operations on
datetime data, you can verify the database and session time zones
by querying the built-in SQL functions DBTIMEZONE and
SESSIONTIMEZONE. If the time zones have not been set manually,
Oracle uses the operating system time zone by default. If the
operating system time zone is not a valid Oracle time zone, Oracle
uses UTC as the default value.

Host Variables

4-12 Pro*COBOL Programmer’s Guide

Table 4–6 Host Variable Declarations

Variable Declaration Description
External
Datatype

Type
Code

PIC X...X

PIC X(n)

PIC X...X VARYING

PIC X(n) VARYING

fixed-length string of 1-byte characters (1)

n-length string of 1-byte characters

variable-length string of 1-byte characters (1,2)

variable-length (n max.) string of 1-byte characters
(2)

CHARF

VARCHAR

96

9

PIC N...N

PIC G...G

PIC N(n)

PIC G(n)

PIC N...N VARYING

PIC N(n) VARYING

PIC G...G VARYING

PIC G(n) VARYING

fixed-length string of multibyte NCHAR

 characters (1,3)

n-length string of multibyte NCHAR characters

 (3)

variable-length string of multibyte characters (2,3)

variable-length (n max.) string of multibyte

 characters (2,3)

CHARF

VARCHAR

96

9

PIC S9...9 BINARY

PIC S9(n) BINARY

PIC S9...9 COMP

PIC S9(n) COMP

PIC S9...9 COMP-4

PIC S9(n) COMP-4

integer (4,5,7) INTEGER 3

PIC S9...9 COMP-5

PIC S9(n) COMP-5

byte-swapped integer (4,5,6,7) INTEGER 3

COMP-1

COMP-2

floating-point number (5) FLOAT 4

PIC S9...9[V9...9] COMP-3

PIC S9(n)[V9(n)] COMP-3

PIC S9...9[V9...9]

 PACKED-DECIMAL

PIC S9(n)[V9(n)]

 PACKED-DECIMAL

packed-decimal (4,5) DECIMAL 7

PIC S9...9[V9...9] DISPLAY

 SIGN LEADING SEPARATE

PIC S9(n)[V9(m)] DISPLAY

 SIGN LEADING SEPARATE

PIC S9...9[V9...9] DISPLAY

 SIGN TRAILING SEPARATE

PIC S9(n)[V9(m)] DISPLAY

 SIGN TRAILING SEPARATE

display leading (8,11)

display trailing (8)

DISPLAY

DISPLAY
TRAILING

91

152

PIC 9...9 DISPLAY

PIC 9(n)[V9(m)] DISPLAY

unsigned display (9) UNSIGNED
DISPLAY

153

Host Variables

Datatypes and Host Variables 4-13

Notes:

1. X...X and 9...9 stand for a given number (n) of Xs or 9s. For variable-length strings,
n is the maximum length.

2. The keyword VARYING assigns the VARCHAR external datatype to a character
string. For more information, see "Declaring VARCHAR Variables" on page 4-21.

3. Before using the PIC N or PIC G datatype in your Pro*COBOL source files, verify
that it is supported by your COBOL compiler.

4. Only signed numbers (PIC S...) are allowed. For floating-point numbers, however,
PIC strings are not accepted.

5. Not all COBOL compilers support all of these datatypes.

6. With COMP or COMP-5, the number cannot have a fractional part; scaled binary
numbers are not supported.

7. The maximum value of the integer is n to 18. Typically it is 9 on 32-bit machines
and 18 on 64-bit machines. This may vary, depending on the operating system and
the compilers for Pro*Cobol and Cobol.

8. Both DISPLAY and SIGN are optional.

9. DISPLAY is optional

10. If TRAILING is omitted, the embedded sign position is operating-system
dependent.

11. LEADING is optional.

In Table 4–6 and Table 4–7 the symbols '[' and ']' denote that an optional entry is
contained inside. The symbols '{' and '}' denote that a choice must be made between
tokens separated by the symbol '|'.

Table 4–7 shows all the COBOL datatypes that can be converted to and from each
internal datatype.

PIC S9...9[V9...9] DISPLAY

 SIGN TRAILING

PIC S9(n)[V9(m)] DISPLAY

 SIGN TRAILING

PIC S9...9[V9...9] DISPLAY

 SIGN LEADING

PIC S9(n)[V9(m)] DISPLAY

 SIGN LEADING

over-punch trailing (9)

over-punch leading (9)

OVER-PUNCH

TRAILING

OVER-PUNCH
LEADING

154

172

SQL-CURSOR cursor variable

SQL-CONTEXT runtime context

SQL-ROWID universal ROWID UROWID 104

SQL-BFILE external binary file BFILE 112

SQL-BLOB binary LOB BLOB 113

SQL-CLOB character LOB CLOB 114

Table 4–6 (Cont.) Host Variable Declarations

Variable Declaration Description
External
Datatype

Type
Code

Host Variables

4-14 Pro*COBOL Programmer’s Guide

Table 4–7 Compatible Oracle Internal Datatypes

Internal
Datatype Notes COBOL Datatype Description

CHAR(x)
VARCHAR2(y)

(1)

(1)

PIC X(n)

PIC X...X

PIC X(n) VARYING

PIC X...X VARYING

PIC S9...9 COMP

PIC S9(n) COMP

PIC S9...9 BINARY

PIC S9(n) BINARY

PIC S9...9 COMP-5

PIC S9(n) COMP-5

COMP-1

COMP-2

PIC S9...9[V9...9] COMP-3

PIC S9(n)[V9(n)] COMP-3

PIC S9...9[V9...9] DISPLAY

PIC S9(n)[V9(n)] DISPLAY

character string

n-character string

variable-length string

integer

integer

integer

floating point number

packed decimal

display

NCHAR(u)
NVARCHAR2(v)

(2)

(2)

PIC {N...N | G...G}

 PIC { N(n) | G(n)}

national character string

n-national character string

BLOB

CLOB

NCLOB

BFILE

SQL-BLOB

SQL-CLOB

SQL-NCLOB

SQL-BFILE

binary LOB

character LOB

national character LOB

external binary file

NUMBER

NUMBER (p,s) (3)

PIC S9...9 COMP

PIC S9(n) COMP

PIC S9...9 BINARY

PIC S9(n) BINARY

PIC S9...9 COMP-5

PIC S9(n) COMP-5

COMP-1

COMP-2

PIC S9...9V9...9 COMP-3

PIC S9(n)V9(n) COMP-3

PIC S9...9V9...9 DISPLAY

PIC S9(n)V9(n) DISPLAY

PIC [X...X | N...N | G...G]

PIC [X(n) | N(n) | G(n)]

PIC X...X VARYING

PIC X(n) VARYING

integer

integer

integer

floating point number

packed decimal

display

character string (4)

n-character string (4)

variable-length string

n-byte variable-length string

Host Variables

Datatypes and Host Variables 4-15

Notes:

1. <= x < =2000 bytes, default is 1. 1<=y <=4000 bytes, default is 1.

2. 1<=u<=2000 bytes, default is 1. 1<=v<=4000 bytes, default is 1.

3. p ranges from 2 to 38. s ranges from -84 to 127.

4. Strings can be converted to NUMBERs only if they consist of convertible
characters — 0 to 9, period (.), +, -, E, e. The Globalization Support (formerly called
National Language Support or NLS) settings for your system might change the
decimal point from a period (.) to a comma (,).

5. When converted to a string type, the default size of a DATE depends on the
NCHAR settings in effect on your system. When converted to a binary value, the
length is 7 bytes.

6. When converted to a string type, a ROWID requires from 18 to 4000 bytes. ROWID
can also be converted to a character type. Oracle recommends the use of
SQL-ROWID for all new programs.

Example Declarations
The following example declares several host variables for later use:

 ...
 01 STR1 PIC X(3).
 01 STR2 PIC X(3) VARYING.
 01 NUM1 PIC S9(5) COMP.
 01 NUM2 COMP-1.
 01 NUM3 COMP-2.
 ...

You can also declare one-dimensional tables of simple COBOL types, as the next
example shows:

 ...
 01 XMP-TABLES.
 05 TAB1 PIC XXX OCCURS 3 TIMES.
 05 TAB2 PIC XXX VARYING OCCURS 3 TIMES.
 05 TAB3 PIC S999 COMP-3 OCCURS 3 TIMES.
 ...

DATE

LONG

RAW

LONG RAW

ROWID

(5)

(1)

(6)

PIC X(n)

PIC X...X

PIC X(n)

PIC X(n) VARYING

PIC X...X VARYING

SQL-ROWID

n-byte character string

character string

n-byte variable-length string

universal rowid

Table 4–7 (Cont.) Compatible Oracle Internal Datatypes

Internal
Datatype Notes COBOL Datatype Description

Host Variables

4-16 Pro*COBOL Programmer’s Guide

Initialization
You can initialize host variables, except pseudotype host variables, using the VALUE
clause, as shown in the following example:

 01 USERNAME PIC X(10) VALUE "SCOTT".
 01 MAX-SALARY PIC S9(4) COMP VALUE 5000.

If a string value assigned to a character variable is shorter than the declared length of
the variable, the string is blank-padded on the right. If the string value assigned to a
character variable is longer than the declared length, the string is truncated.

No error or warning is issued, but any VALUES clause on a pseudotype variable is
ignored and discarded.

Restrictions
You cannot use alphabetic character (PIC A) variables or edited data items as host
variables. Therefore, the following variable declarations cannot be made for host
variables:

 01 AMOUNT-OF-CHECK PIC ****9.99.
 01 FIRST-NAME PIC A(10).
 01 BIRTH-DATE PIC 99/99/99.

Referencing Host Variables
Host variables are used in SQL data manipulation statements. A host variable must be
prefixed with a colon (:) in SQL statements but must not be prefixed with a colon in
COBOL statements, as this example shows:

 WORKING-STORAGE SECTION.
 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
 01 EMP-NAME PIC X(10) VALUE SPACE.
 01 SALARY PIC S9(5)V99 COMP-3.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
 DISPLAY "Employee number? " WITH NO ADVANCING.
 ACCEPT EMP-NUMBER.
 EXEC SQL SELECT ENAME, SAL
 INTO :EMP-NAME, :SALARY FROM EMP
 WHERE EMPNO = :EMP-NUMBER
 END-EXEC.
 COMPUTE BONUS = SALARY / 10.
 ...

Though it might be confusing, you can give a host variable the same name as a table or
column, as the following example shows:

 WORKING-STORAGE SECTION.
 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMPNO PIC S9(4) COMP VALUE ZERO.
 01 ENAME PIC X(10) VALUE SPACE.
 01 COMM PIC S9(5)V99 COMP-3.

Host Variables

Datatypes and Host Variables 4-17

 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
 EXEC SQL SELECT ENAME, COMM
 INTO :ENAME, :COMM FROM EMP
 WHERE EMPNO = :EMPNO
 END-EXEC.

Group Items as Host Variables
Pro*COBOL allows the use of group items in embedded SQL statements. Group items
with elementary items (containing only one level) can be used as host variables. The
host group items (also referred to as host structures) can be referenced in the INTO
clause of a SELECT or a FETCH statement, and in the VALUES list of an INSERT
statement. When a group item is used as a host variable, only the group name is used
in the SQL statement. For example, given the following declaration

 01 DEPARTURE.
 05 HOUR PIC X(2).
 05 MINUTE PIC X(2).

the following statement is valid:

 EXEC SQL SELECT DHOUR, DMINUTE
 INTO :DEPARTURE
 FROM SCHEDULE
 WHERE ...

The order that the members are declared in the group item must match the order that
the associated columns occur in the SQL statement, or in the database table if the
column list in the INSERT statement is omitted. Using a group item as a host variable
has the semantics of substituting the group item with elementary items. In the
preceding example, it would mean substituting :DEPARTURE with
:DEPARTURE.HOUR, :DEPARTURE.MINUTE.

Group items used as host variables can contain host tables. In the following example,
the group item containing tables is used to INSERT three entries into the SCHEDULE
table:

 01 DEPARTURE.
 05 HOUR PIC X(2) OCCURS 3 TIMES.
 05 MINUTE PIC X(2) OCCURS 3 TIMES.
 ...
 EXEC SQL INSERT INTO SCHEDULE (DHOUR, DMINUTE)
 VALUES (:DEPARTURE) END-EXEC.

If VARCHAR=YES is specified, Pro*COBOL will recognize implicit VARCHARs. If the
nested group item declaration resembles a VARCHAR host variable, then the entire
group item is treated like an elementary item of VARYING type. See "VARCHAR" on
page 14-31.

When referencing elementary items instead of the group items as host variables
elementary names need not be unique because you can qualify them using the
following syntax:

group_item.elementary_item

This naming convention is allowed only in SQL statements. It is similar to the IN (or
OF) clause in COBOL, examples of which follow:

Indicator Variables

4-18 Pro*COBOL Programmer’s Guide

 MOVE MINUTE IN DEPARTURE TO MINUTE-OUT.
 DISPLAY HOUR OF DEPARTURE.

The COBOL IN (or OF) clause is not allowed in SQL statements. Qualify elementary
names to avoid ambiguity. For example:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 DEPARTURE.
 05 HOUR PIC X(2).
 05 MINUTE PIC X(2).
 01 ARRIVAL.
 05 HOUR PIC X(2).
 05 MINUTE PIC X(2).
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL SELECT DHR, DMIN INTO :DEPARTURE.HOUR, :DEPARTURE.MINUTE
 FROM TIMETABLE
 WHERE ...

Restrictions
A host variable cannot substitute for a column, table, or other object in a SQL
statement and must not be an Oracle9i reserved word. See Appendix B, "Reserved
Words, Keywords, and Namespaces" for a list of reserved words and keywords.

Indicator Variables
You can associate any host variable with an optional indicator variable. Each time the
host variable is used in a SQL statement, a result code is stored in its associated
indicator variable. Thus, indicator variables let you monitor host variables.

You use indicator variables in the VALUES or SET clause to assign NULLs to input
host variables and in the INTO clause to detect NULLs (or truncated values for
character columns) in output host variables.

Using Indicator Variables
 Here are the values indicator variables can take on.

On Input
The values your program can assign to an indicator variable have the following
meanings:

On Output
 The values Oracle can assign to an indicator variable have the following meanings:

Indicator Variables Description

-1 Oracle will assign a NULL to the column, ignoring the value of
the host variable.

>=0 Oracle will assign the value of the host variable to the column.

Indicator Variables Description

-1 The column value is NULL, so the value of the host variable is
indeterminate.

Indicator Variables

Datatypes and Host Variables 4-19

Declaring Indicator Variables
An indicator variable must be explicitly declared as PIC S9(4) COMP and must not be
a reserved word. In the following example, you declare an indicator variable named
COMM-IND (the name is arbitrary):

 WORKING-STORAGE SECTION.
 ...
 01 EMP-NAME PIC X(10) VALUE SPACE.
 01 SALARY PIC S9(5)V99 COMP-3.
 01 COMMISSION PIC S9(5)V99 COMP-3.
 01 COMM-IND PIC S9(4) COMP.
 ...

Referencing Indicator Variables
In SQL statements, an indicator variable must be prefixed with a colon and appended
to its associated host variable. In COBOL statements, an indicator variable must not be
prefixed with a colon or appended to its associated host variable. An example follows:

 EXEC SQL SELECT SAL, COMM
 INTO :SALARY, :COMMISSION:COMM-IND FROM EMP
 WHERE EMPNO = :EMP-NUMBER
 END-EXEC.
 IF COMM-IND = -1
 COMPUTE PAY = SALARY
 ELSE
 COMPUTE PAY = SALARY + COMMISSION.

To improve readability, you can precede any indicator variable with the optional
keyword INDICATOR. You must still prefix the indicator variable with a colon. The
correct syntax is

:host_variableINDICATOR:indicator_variable

and is equivalent to

:host_variable:indicator_variable

You can use both forms of expression in your host program.

Use in Where Clauses
Indicator variables cannot be used in the WHERE clause to search for NULLs. For
example, the following DELETE statement triggers an error at run time:

* Set indicator variable.
 COMM-IND = -1
 EXEC SQL

 0 Oracle assigned an intact column value to the host variable.

>0 Oracle assigned a truncated column value to the host variable.
The integer returned by the indicator variable is the original
length of the column value, and SQLCODE in SQLCA is set to
zero.

-2 Oracle assigned a truncated column variable to the host variable,
but the original column value could not be determined (a LONG
column, for example).

Indicator Variables Description

Indicator Variables

4-20 Pro*COBOL Programmer’s Guide

 DELETE FROM EMP WHERE COMM = :COMMISSION:COMM-IND
 END-EXEC.

The correct syntax follows:

 EXEC SQL
 DELETE FROM EMP WHERE COMM IS NULL
 END-EXEC.

Avoid Error Messages
If you SELECT or FETCH a NULL into a host variable that has no indicator, Oracle9i
issues an error message.

You can disable the error message by also specifying UNSAFE_NULL=YES on the
command line. For more information, see Chapter 14, "Precompiler Options".

ANSI Requirements
When MODE=ORACLE, if you SELECT or FETCH a truncated column value into a
host variable that is not associated with an indicator variable, Oracle9i issues an error
message.

However, when MODE={ANSI | ANSI14 | ANSI13}, no error is generated. Values for
indicator variables are discussed in Chapter 5, "Embedded SQL".

Indicator Variables for Multibyte NCHAR Variables
Indicator variables for multibyte NCHAR character variables can be used as with any
other host variable. However, a positive value (the result of a SELECT or FETCH was
truncated) represents the string length in multibyte characters instead of 1-byte
characters.

Indicator Variables with Host Group Items
To use indicator variables with a host group item, either setup a second group item
that contains an indicator variable for each nullable variable in the group item or use a
table of half-word integer variables. You do NOT have to have an indicator variable
for each variable in the group item, but the nullable fields which you wish to use
indicators for must be placed at the beginning of the data group item. The following
indicator group item can be used with the DEPARTURE group item:

 01 DEPARTURE-IND.
 05 HOUR-IND PIC S9(4) COMP.
 05 MINUTE-IND PIC S9(4) COMP.

If you use an indicator table, you do NOT have to declare a table of as many elements
as there are members in the host group item. The following indicator table can be used
with the DEPARTURE group item:

 01 DEPARTURE-IND PIC S9(4) COMP OCCURS 2 TIMES.

Reference the indicator group item in the SQL statement in the same way that a host
indicator variable is referenced:

 EXEC SQL SELECT DHOUR, DMINUTE
 INTO :DEPARTURE:DEPARTURE-IND
 FROM SCHEDULE
 WHERE ...

VARCHAR Variables

Datatypes and Host Variables 4-21

When the query completes, the NULL/NOT NULL status of each selected component
is available in the host indicator group item. The restrictions on indicator host
variables and the ANSI requirements also apply to host indicator group items.

VARCHAR Variables
COBOL string datatypes are fixed length. However, Pro*COBOL lets you declare a
variable-length string pseudotype called VARCHAR. A VARCHAR variable is a
pseudotype that enables you to specify the exact length of the data stored in the
database and to specify the exact length of the data to be passed to the database.

Declaring VARCHAR Variables
You define a VARCHAR host variable by adding the keyword VARYING to its
declaration, as shown in the following example:

 01 ENAME PIC X(15) VARYING.

The COBOL VARYING phrase is used in PERFORM and SEARCH statements to
increment subscripts and indexes. Do not confuse this with the Pro*COBOL VARYING
clause in the preceding example.

VARCHAR is an extended Pro*COBOL datatype or pre-declared group item. For
example, Pro*COBOL expands the VARCHAR declaration

 01 ENAME PIC X(15) VARYING.

into a group item with length and string fields, as follows:

 01 ENAME.
 05 ENAME-LEN PIC S9(4) COMP.
 05 ENAME-ARR PIC X(15).

The length field (suffixed with -LEN) holds the current length of the value stored in the
string field (suffixed with -ARR). The maximum length in the VARCHAR host-variable
declaration must be in the range of 1 to 9,999 bytes.

The advantage of using VARCHAR variables is that you can explicitly set and
reference the length field. With input host variables, Pro*COBOL reads the value of the
length field and uses that many characters of the string field. With output host
variables, Pro*COBOL sets the length value to the length of the character string stored
in the string field.

Implicit VARCHAR Group Items
Pro*COBOL implicitly recognizes some group items as VARCHAR host variables
when the precompiler option VARCHAR=YES is specified on the command line. For
variable-length single-byte character types, use the following structure (length
expressed in single-byte characters):

 nn data-name-1.
 49 data-name-2 PIC S9(4) COMP.
 49 data-name-3 PIC X(length).

Note: PIC N and PIC G are not allowed in definitions that use
VARYING. To see how to correctly use PIC N and PIC G in
VARCHAR variables, see "Implicit VARCHAR Group Items" on
page 4-21.

VARCHAR Variables

4-22 Pro*COBOL Programmer’s Guide

nn must be 01 through 48.

For variable-length multibyte NCHAR characters, use these formats (length is
expressed in double-byte characters):

 nn DATA-NAME-1.
 49 DATA-NAME-2 PIC S9(4) COMP.
 49 DATA-NAME-3 PIC N(length).

 nn DATA-NAME-1.
 49 DATA-NAME-2 PIC S9(4) COMP.
 49 DATA-NAME-3 PIC G(length).

The elementary items in these group-item structures must be declared as level 49
for Pro*COBOL to recognize them as VARCHAR host variables.

The VARCHAR=YES command line option must be specified for Pro*COBOL to
recognize the extended form of the VARCHAR group items. If VARCHAR=NO, then
any declarations that resemble the preceding formats will be interpreted as regular
group items. If VARCHAR=YES and a group item declaration format looks similar
(but not identical) to the extended VARCHAR format, then the item will be interpreted
as a regular group item rather than a VARCHAR group item. For example, if
VARCHAR=YES is specified and you write the following:

 01 LASTNAME.
 48 LASTNAME-LEN PIC S9(4) COMP.
 48 LASTNAME-TEXT PIC X(15).

then, since level 48 instead of 49 is used for the group item elements, the item is
interpreted as a regular group item rather than a VARCHAR group item.

For more information about the Pro*COBOL VARCHAR option, see Chapter 14,
"Precompiler Options"

Referencing VARCHAR Variables
In SQL statements, you reference a VARCHAR variable using the group name prefixed
with a colon, as the following example shows:

 WORKING-STORAGE SECTION.
 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 PART-NUMBER PIC X(5).
 01 PART-DESC PIC X(20) VARYING.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...

 EXEC SQL
 SELECT PDESC INTO :PART-DESC FROM PARTS
 WHERE PNUM = :PART-NUMBER
 END-EXEC.

After the query executes, PART-DESC-LEN holds the actual length of the character
string retrieved from the database and stored in PART-DESC-ARR.

Handling Character Data

Datatypes and Host Variables 4-23

Handling Character Data
This section explains how Pro*COBOL handles character host variables. There are two
kinds of single-byte character host variables and two kinds of multibyte Globalization
Support (formerly called NLS) character host variables:

■ PIC X(n) (or PIC X...X)

■ PIC X(n) VARYING (or PIC X...X VARYING)

■ PIC N(n) (or PIC N...N) or PIC G(n) (or PIC G...G)

Default for PIC X
The default datatype of PIC X variables is CHARF (was VARCHAR2 before release
8.0.) The precompiler command line option, PICX, is provided for backward
compatibility. PICX can be entered only on the command line or in a configuration file.
See "PICX" on page 14-25 for more details.

Effects of the PICX Option
The PICX option determines how Pro*COBOL treats data in character strings. The
PICX option enables your program to use ANSI fixed-length strings or to maintain
compatibility with previous versions of the database server and Pro*COBOL.

You must use PICX=VARCHAR2 (not the default) to obtain the same results as
releases of Pro*COBOL before 8.0. Or, use

 EXEC SQL varname IS VARCHAR2 END-EXEC.

for each variable.

Fixed-Length Character Variables
Fixed-length character variables are declared using the PIC X(n) and PIC G(n) and PIC
N(n) datatypes. These types of variables handle character data based on their roles as
input or output variables.

On Input
When PICX=VARCHAR2, the program interface strips trailing blanks before sending
the value to the database. If you insert into a fixed-length CHAR column, Pro*COBOL
re-appends trailing blanks up to the length of the database column. However, if you
insert into a variable-length VARCHAR2 column, Pro*COBOL never appends blanks.

When PICX=CHARF, trailing blanks are never stripped.

Host input variables for multibyte Globalization Support data are not stripped of
trailing double-byte spaces. The length component is assumed to be the length of the
data in characters, not bytes.

Make sure that the input value is not trailed by extraneous characters. Normally, this is
not a problem because when a value is ACCEPTed or MOVEd into a PIC X(n) variable,
COBOL appends blanks up to the length of the variable.

The following example illustrates the point:

Note: Before using multibyte NCHAR datatypes, verify that the
PIC N or PIC G datatype is supported by your COBOL compiler.

Handling Character Data

4-24 Pro*COBOL Programmer’s Guide

 WORKING-STORAGE SECTION.
 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMPLOYEES.
 05 EMP-NAME PIC X(10).
 05 DEPT-NUMBER PIC S9(4) VALUE 20 COMP.
 05 EMP-NUMBER PIC S9(9) VALUE 9999 COMP.
 05 JOB-NAME PIC X(8).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
 DISPLAY "Employee name? " WITH NO ADVANCING.
 ACCEPT EMP-NAME.
* Assume that the name MILLER was entered
* EMP-NAME contains "MILLER " (4 trailing blanks)
 MOVE "SALES" TO JOB-NAME.
* JOB-NAME now contains "SALES " (3 trailing blanks)
 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO, JOB)
 VALUES (:EMP-NUMBER, :EMP-NAME, :DEPT-NUMBER, :JOB-NAME
 END-EXEC.
 ...

If you precompile the last example with PICX=VARCHAR2 and the target database
columns are VARCHAR2, the program interface strips the trailing blanks on input and
inserts just the 6-character string "MILLER" and the 5-character string "SALES" into the
database. However, if the target database columns are CHAR, the strings are
blank-padded to the width of the columns.

If you precompile the last example with PICX=CHARF and the JOB column is defined
as CHAR(10), the value inserted into that column is "SALES#####" (five trailing
blanks). However, if the JOB column is defined as VARCHAR2(10), the value inserted
is "SALES###" (three trailing blanks), because the host variable is declared as PIC X(8).
This might not be what you want, so be careful.

On Output
The PICX option has no effect on output to fixed-length character variables. When you
use a PIC X(n) variable as an output host variable, Pro*COBOL blank-pads it. In our
example, when your program fetches the string "MILLER" from the database,
EMP-NAME contains the value "MILLER####" (with four trailing blanks). This
character string can be used without change as input to another SQL statement.

Varying-Length Variables
VARCHAR variables handle character data based on their roles as input or output
variables.

On Input
When you use a VARCHAR variable as an input host variable, your program must
assign values to the length and string fields of the expanded VARCHAR declaration,
as shown in the following example:

 IF ENAME-IND = -1
 MOVE "NOT AVAILABLE" TO ENAME-ARR
 MOVE 13 TO ENAME-LEN.

Universal ROWIDs

Datatypes and Host Variables 4-25

You need not blank-pad the string variable. In SQL operations, Pro*COBOL uses
exactly the number of characters given by the length field, counting any spaces.

On Output
When you use a VARCHAR variable as an output host variable, Pro*COBOL sets the
length field. An example follows:

 WORKING-STORAGE SECTION.
 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMPNO PIC S9(4) COMP.
 01 ENAME PIC X(15) VARYING.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
 EXEC SQL
 SELECT ENAME INTO :ENAME FROM EMP
 WHERE EMPNO = :EMPNO
 END-EXEC.
 IF ENAME-LEN = 0
 MOVE FALSE TO VALID-DATA.

An advantage of VARCHAR variables over fixed-length strings is that the length of
the value returned by Pro*COBOL is available right away. With fixed-length strings, to
get the length of the value, your program must count the number of characters.

Host output variables for multibyte NCHAR data are not padded at all. The length of
the buffer is set to the length in characters, not bytes.

Universal ROWIDs
There are two kinds of table organization used in the database server: heap tables and
index-organized tables.

Heap tables are the default. This is the organization used in all tables before Oracle9.
The physical row address (ROWID) is a permanent property that is used to identify a
row in a heap table. The external character format of the physical ROWID is an 18-byte
character string in base-64 encoding.

An index-organized table does not have physical row addresses as permanent
identifiers. A logical ROWID is defined for these tables. When you use a SELECT
ROWID ... statement from an index-organized table the ROWID is an opaque structure
that contains the primary key of the table, control information, and an optional
physical "guess". You can use this ROWID in a SQL statement containing a clause such
as "WHERE ROWID = ..." to retrieve values from the table.

The universal ROWID was introduced in the Oracle 8.1 Database release. Universal
ROWID can be used for both physical ROWID and logical ROWID. You can use
universal ROWIDs to access data in heap tables, or index-organized tables, since the
table organization can change with no effect on applications. The column datatype
used for ROWID is UROWID(length), where length is optional.

Use the universal ROWID in all new applications.

For more information on universal ROWIDs, see Oracle Database Concepts.

Declare a universal ROWID, which uses the pseudotype SQL-ROWID, this way:

Universal ROWIDs

4-26 Pro*COBOL Programmer’s Guide

 01 MY-ROWID SQL-ROWID.

Memory for the universal ROWID is allocated with the ALLOCATE statement:

 EXEC SQL ALLOCATE :MY-ROWID END-EXEC.

Use MY-ROWID in SQL DML statements like this:

 EXEC SQL SELECT ROWID INTO :MY-ROWID FROM MYTABLE WHERE ... END-EXEC.
...
 EXEC SQL UPDATE MYTABLE SET ... WHERE ROWID = :MY-ROWID END-EXEC.
...
Free the memory when you no longer need it with the FREE directive:

 EXEC SQL FREE :MY-ROWID END-EXEC.

You also have the option of using a character host variable of width between 18 and
4000 as the host bind variable for universal ROWID. Character-based universal
ROWIDs are supported for heap tables only for backward compatibility. Because a
universal ROWID can be variable length there can be truncation when it is selected.
For a more complete discussion of this variable see Oracle Database Concepts.

Use the character variable like this:

 01 MY-ROWID-CHAR PIC X(4000) VARYING.
...
 EXEC SQL ALLOCATE :MY-ROWID-CHAR END-EXEC.
 EXEC SQL SELECT ROWID INTO :MY-ROWID-CHAR FROM MYTABLE WHERE ... END-EXEC.
...
 EXEC SQL UPDATE MYTABLE SET ... WHERE ROWID = :MY-ROWID-CHAR END-EXEC.
...
 EXEC SQL FREE :MY-ROWID-CHAR END-EXEC.

For an example of a positioned update using the universal ROWID, see "Positioned
Update" on page 5-13.

Subprogram SQLROWIDGET
The Oracle subprogram SQLROWIDGET enables you to retrieve the ROWID of the
last row inserted, updated, or selected. SQLROWIDGET requires a context or NULL
and a ROWID as its arguments.

To use the default context, pass the figurative constant NULL as the first parameter in
the call to SQLROWIDGET.

Note that the universal ROWID must be declared and allocated before the call. The
context, if used must be declared and allocated before the call. Here is the syntax:

 CALL "SQLROWIDGET" USING NULL rowid.

or

 CALL "SQLROWIDGET" USING context rowid.

where

context (IN)

is the runtime context variable, of pseudotype SQL-CONTEXT, or the figurative
constant NULL for the default context. For a discussion of runtime contexts, see
"Embedded SQL Statements and Directives for Runtime Contexts" on page 12-6.

rowid (OUT)

Globalization Support

Datatypes and Host Variables 4-27

is a universal ROWID variable, of pseudotype SQL-ROWID. When a normal execution
finishes, this will point to a valid universal ROWID. In case of an error, rowid is
undefined.

Here is a sample showing its use with the default context:

 01 MY-ROWID SQL-ROWID.
 ...
 EXEC SQL ALLOCATE :MY-ROWID END-EXEC.

* INSERT, or UPDATE or DELETE Goes here:
 ...
 CALL "SQLROWIDGET" USING NULL MY-ROWID.
* MY-ROWID now has the universal rowid descriptor for the last row
 ...
 EXEC SQL FREE :MY-ROWID END-EXEC.
 ...

If your compiler does not allow using the figurative constant NULL in a CALL
statement, you can declare a variable with picture S9(9) COMP VALUE 0 and use that
with the BY VALUE clause in the call to SQLROWIDGET, as follows:

 01 NULL-CONTEXT PIC S9(9) COMP VALUE ZERO.
 01 MY-ROWID SQLROWID.
....
 CALL "SQLROWIDGET" USING BY VALUE NULL-CONTEXT BY REFERENCE MY-ROWID.

Globalization Support
Although the widely-used 7-bit or 8-bit ASCII and EBCDIC character sets are adequate
to represent the Roman alphabet, some Asian languages, such as Japanese, contain
thousands of characters. These languages require 16 bits or more, to represent each
character. How does Oracle9i deal with such dissimilar languages?

Oracle9i provides Globalization Support (formerly called National Language Support
or NLS), which lets you process single-byte and multibyte character data and convert
between character sets. It also lets your applications run in different language
environments. With Globalization Support, number and date formats adapt
automatically to the language conventions specified for a user session. Thus,
Globalization Support enables users around the world to interact with Oracle9i in their
native languages.

You control the operation of language-dependent features by specifying various
Globalization Support parameters. You can set default parameter values in the
initialization file. Table 4–8 shows what each Globalization Support parameter
specifies.

Table 4–8 Globalization Support Parameters

Globalization Support Parameter Specifies

NLS_LANGUAGE language-dependent conventions

NLS_TERRITORY territory-dependent conventions

NLS_DATE_FORMAT date format

NLS_DATE_LANGUAGE language for day and month names

NLS_NUMERIC_CHARACTERS decimal character and group separator

NLS_CURRENCY local currency symbol

Globalization Support

4-28 Pro*COBOL Programmer’s Guide

The main parameters are NLS_LANGUAGE and NLS_TERRITORY. NLS_
LANGUAGE specifies the default values for language-dependent features, which
include

■ language for Server messages

■ language for day and month names

■ sort sequence

NLS_TERRITORY specifies the default values for territory-dependent features, which
include

■ Date format

■ Decimal character

■ Group separator

■ Local currency symbol

■ ISO currency symbol

You can control the operation of language-dependent Globalization Support features
for a user session by specifying the parameter NLS_LANG as follows

NLS_LANG = language_territory.character set

where language specifies the value of NLS_LANGUAGE for the user session, territory
specifies the value of NLS_TERRITORY, and character set specifies the encoding
scheme used for the terminal. An encoding scheme (usually called a character set or
code page) is a range of numeric codes that corresponds to the set of characters a
terminal can display. It also includes codes that control communication with the
terminal.

You define NLS_LANG as an environment variable (or the equivalent on your
system). For example, on UNIX using the C shell, you might define NLS_LANG as
follows:

setenv NLS_LANG French_France.WE8ISO8859P1

To change the values of Globalization Support parameters during a session, you use
the ALTER SESSION statement as follows:

ALTER SESSION SET nls_parameter = value

Pro*COBOL fully supports all the Globalization Support features that allow your
applications to process multilingual data stored in an Oracle9i database. For example,
you can declare foreign-language character variables and pass them to string functions
such as INSTRB, LENGTHB, and SUBSTRB. These functions have the same syntax as
the INSTR, LENGTH, and SUBSTR functions, respectively, but operate on a per-byte
basis rather than a per-character basis.

You can use the functions NLS_INITCAP, NLS_LOWER, and NLS_UPPER to handle
special instances of case conversion. And, you can use the function NLSSORT to
specify WHERE-clause comparisons based on linguistic rather than binary ordering.

NLS_ISO_CURRENCY ISO currency symbol

NLS_SORT sort sequence

Table 4–8 (Cont.) Globalization Support Parameters

Globalization Support Parameter Specifies

Multibyte Globalization Support Character Sets

Datatypes and Host Variables 4-29

You can even pass Globalization Support parameters to the TO_CHAR, TO_DATE,
and TO_NUMBER functions. For more information about Globalization Support, see
the Oracle Database Globalization Support Guide.

Multibyte Globalization Support Character Sets
Pro*COBOL extends support for multibyte Globalization Support character sets
through

■ Recognition of multibyte character strings by Pro*COBOL in embedded SQL
statements.

■ The COBOL PIC N and PIC G datatype declaration clauses, that instruct
Pro*COBOL to interpret host character variables as strings of multibyte characters.

■ The NLS_NCHAR environment variable. Equate it to the client-side character set
used in PIC N or PIC G.

■ The NLS_LANG environment variable. Equate it to the client-side character set
used in PIC X.

NLS_LOCAL=YES Restrictions
When the precompiler option NLS_LOCAL is YES, the runtime library (SQLLIB)
performs blank-padding and blank-stripping for Globalization Support multibyte
datatypes.

When NLS_LOCAL=YES, multibyte NCHAR features are not supported within a
PL/SQL block. These features include N-quoted character literals and fixed-length
character variables.

These restrictions then apply:

Tables Disallowed. Host variables declared using the PIC N or PIC G datatype must
not be tables.

No Odd-Byte Widths. Oracle9i CHAR columns should not be used to store multibyte
NCHAR characters. A run-time error is generated if data with an odd number of bytes
is FETCHed from a single-byte column into a multibyte NCHAR host variable.

No Host Variable Equivalencing. Multibyte NCHAR character variables cannot be
equivalenced using an EXEC SQL VAR statement.

No Dynamic SQL. Dynamic SQL is not available for NCHAR multibyte character
string host variables in Pro*COBOL.

Functions should not be used on columns that store multibyte Globalization Support
data.

Character Strings in Embedded SQL
A multibyte Globalization Support character string in an embedded SQL statement
consists of the letter N, followed by the string enclosed in single quotes.

For example,

 EXEC SQL
 SELECT EMPNO INTO :EMP-NUM FROM EMP
 WHERE ENAME=N'NLS_string'
 END-EXEC.

Multibyte Globalization Support Character Sets

4-30 Pro*COBOL Programmer’s Guide

Embedded DDL
When the precompiler option, NLS_LOCAL=YES, columns storing NCHAR data
cannot be used in embedded data definition language (DDL) statements. This
restriction cannot be enforced when precompiling, so the use of extended column
types, such as NCHAR, within embedded DDL statements results in an execution
error rather than a precompile error.

For more information about these options, see their entries in Chapter 14, "Precompiler
Options".

Blank Padding
When a Pro*COBOL character variable is defined as a multibyte Globalization Support
variable, the following blank padding and blank stripping rules apply, depending on
the external datatype of the variable. See the section "Handling Character Data" on
page 4-23.

CHARF. Input data is stripped of any trailing double-byte spaces. However, if a string
consists only of multibyte spaces, a single multibyte space is left in the buffer to act as
a sentinel.

Output host variables are blank padded with multibyte spaces.

VARCHAR. On input, host variables are not stripped of trailing double-byte spaces.
The length component is assumed to be the length of the data in characters, not bytes.

On output, the host variable is not blank padded at all. The length of the buffer is set
to the length of the data in characters, not bytes.

STRING/LONG VARCHAR. These host variables are not supported for
Globalization Support data, since they can only be specified using dynamic SQL or
datatype equivalencing, neither of which is supported for Globalization Support data.

Indicator Variables
You can use indicator variables with multibyte Globalization Support character
variables as use you would with any other variable, except column length values are
expressed in characters instead of bytes. For a list of possible values, see "Using
Indicator Variables" on page 5-2.

Various Combinations of PIC X/PIC N Variables and NCHAR/CHAR Columns
Pro*Cobol supports various combinations of PIC X /PIC N variables and
NCHAR/CHAR columns for select, insert and update statements through command
line options charset_picx and charset_picn.

PIC X and NCHAR Column
By default, PIC X variables are converted to the server-side Database Character Set so
that these variables can be used with CHAR columns. Therefore, when you use the
PIC X variables with NCHAR columns, there can be some data loss. To avoid this, use
the following command to set the character set form used by PIC X variables to
NCHAR:

charset_picx=nchar_charset

Datatype Conversion

Datatypes and Host Variables 4-31

PIC N and CHAR column
By default, PIC N variables are converted to the server-side National Character Set so
that these variables can be used with NCHAR columns. Therefore, when you use the
PIC N variables with NCHAR columns, there may be some performance impact. To
avoid this, use the following command to set the character set form used by PIC N
variables to CHAR:

charset_picn=db_charset

For more information on CHARSET_PICX and CHARSET_PICN, see section Using
Pro*COBOL Precompiler Options on page 14-9.

Datatype Conversion
At precompile time, an external datatype is assigned to each host variable. For
example, Pro*COBOL assigns the INTEGER external datatype to host variables of type
PIC S9(n) COMP. At run time, the datatype code of every host variable used in a SQL
statement is passed to Oracle9i. Oracle9i uses the codes to convert between internal
and external datatypes.

Before assigning a SELECTed column value to an output host variable, Oracle9i must
convert the internal datatype of the source column to the datatype of the host variable.
Likewise, before assigning or comparing the value of an input host variable to a
column, Oracle9i must convert the external datatype of the host variable to the internal
datatype of the target column.

Conversions between internal and external datatypes follow the usual data conversion
rules. For example, you can convert a CHAR value of 1234 to a PIC S9(4) COMP value.
You cannot, however, convert a CHAR value of 123465543 (number too large) or 10F
(number not decimal) to a PIC S9(4) COMP value. Likewise, you cannot convert a PIC
X(n) value that contains alphabetic characters to a NUMBER value.

The datatype of the host variable must be compatible with that of the database
column. It is your responsibility to make sure that values are convertible. For example,
if you try to convert the string value YESTERDAY to a DATE column value, you get an
error. Conversions between internal and external datatypes follow the usual data
conversion rules. For instance, you can convert a CHAR value of 1234 to a 2-byte
integer. But, you cannot convert a CHAR value of 65543 (number too large) or 10F
(number not decimal) to a 2-byte integer. Likewise, you cannot convert a string value
that contains alphabetic characters to a NUMBER value.

Number conversion follows the conventions specified by Globalization Support
parameters in the Oracle9i initialization file. For example, your system might be
configured to recognize a comma (,) instead of a period (.) as the decimal character. For
more information about Globalization Support, see the Oracle Database Globalization
Support Guide.

The following table shows the supported conversions between internal and external
datatypes.

Table 4–9 Conversions Between Internal and External Datatypes

External Internal - - - - - - -

CHAR I/O I/O (2) I/O I(3) I/O I/O (3) I/O (1)

CHARF I/O I/O (2) I/O I (3) I/O I/O (3) I/O (1)

CHARZ I/O I/O (2) I/O I (3) I/O I/O (3) I/O (1)

Datatype Conversion

4-32 Pro*COBOL Programmer’s Guide

DATE I/O I/O I - - - --

DECIMAL I/O (4) - I - - I/O - -

DISPLAY I/O (4)) - I - - I/O - -

FLOAT I/O (4) - I - - I/O - -

INTEGER I/O (4) - I - - I/O - -

LONG I/O I/O (2) I/O I (3.5) - I/O I/O (3) I/O (1)

LONG RAW O(6) - I (5,6) I/O - - I/O -

LONG
VARCHAR

I/O I/O(2) I/O I (3,5) - I/O I/O(3)) I/O (1)

LONG
VARRAW

I/O (6) - I (5,6) I/O - - I/O -

NUMBER I/O (4) - I - - I/O - -

RAW I/O (6) - I (5,6) I/O - - I/O -

ROWID I - I - - - - I/O

STRING I/O I/O (2) I/O I (3.5) - I/O I/O (3) I/O (1)

UNSIGNED I/O (4) - I - - I/O - -

VARCHAR I/O I/O (2) I/O I (3,5) - I/O I/O (3) -

VARCHAR2 I/O I/O (2) I/O I (3) - I/O I/O (3) I/O (1)

VARNUM I/O (4) - I - - I/O - -

VARRAW I/O (6) - I (5,6) I/O - - I/O -

Notes:

1. On input, host string must be in Oracle'BBBBBBBB.RRRR.FFFF'
format.

2. On output, column value is returned in same format.

3. On input, host string must be the default DATE character format.

4. On output, column value is returned in same format

5. On input, host string must be in hex format.

6. On output, column value is returned in same format.

7. On output, column value must represent a valid number.

8. On input, length must be less than or equal to 2000.

9. On input, column value is stored in hex format.

10. On output, column value must be in hex format.

11. On input, host string must be a valid operating system label in
text format.

12. On output, column value is returned in same format.

13. On input, host string must be a valid operating system label in
raw format.

14. On output, column value is returned in same format.

Legend:

I = input only

O = output only

I/O = input or
output

Table 4–9 (Cont.) Conversions Between Internal and External Datatypes

External Internal - - - - - - -

Datatype Equivalencing

Datatypes and Host Variables 4-33

Explicit Control Over DATE String Format
When you select a DATE column value into a character host variable, Oracle9i must
convert the internal binary value to an external character value. So, Oracle9i implicitly
calls the SQL function TO_CHAR, which returns a character string in the default date
format. The default is set by the Oracle9i initialization parameter NLS_DATE_
FORMAT. To get other information such as the time or Julian date, you must explicitly
call TO_CHAR with a format mask.

A conversion is also necessary when you insert a character host value into a DATE
column. Oracle9i implicitly calls the SQL function TO_DATE, which expects the
default date format. To insert dates in other formats, you must explicitly call TO_
DATE with a format mask.

For compatibility with other versions of SQL Pro*COBOL now provides the following
precompiler option to specify date strings:

DATE_FORMAT={ISO | USA | EUR | JIS | LOCAL | 'fmt'

The DATE_FORMAT option must be used on the command line or in a configuration
file. The date strings are shown in the following table:

'fmt' is a date format model, such as 'Month dd, yyyy'. See the Oracle Database SQL
Reference for the list of date format model elements. Note that all separately compiled
units linked together must use the same DATE_FORMAT value.

Datatype Equivalencing
Datatype equivalencing lets you control the way Oracle9i interprets input data and the
way Oracle9i formats output data. You can equivalence supported COBOL datatypes
to external datatypes on a variable-by-variable basis.

Usefulness of Equivalencing
Datatype equivalencing is useful in several ways. For example, suppose you want to
use a variable-length string in a COBOL program. You can declare a PIC X host
variable, then equivalence it to the external datatype VARCHAR2.

In addition, you can use datatype equivalencing to override default datatype
conversions. Unless Globalization Support parameters in the initialization file specify
otherwise, if you select a DATE column value into a character host variable, Oracle9i
returns a 9-byte string formatted as follows:

DD-MON-YY

However, if you equivalence the character host variable to the DATE external
datatype, Oracle9i returns a 7-byte value in the internal format.

Table 4–10 Formats for Date Strings

Format Name Abbreviation Date Format

International Standards Organization ISO yyyy-mm-dd

USA standard USA mm/dd/yyyy

European standard EUR dd.mm.yyyy

Japanese Industrial Standard JIS yyyy-mm-dd

installation-defined LOCAL Any installation-defined form.

Datatype Equivalencing

4-34 Pro*COBOL Programmer’s Guide

Host Variable Equivalencing
By default, Pro*COBOL assigns a specific external datatype to every host variable. You
can override the default assignments by equivalencing host variables to external
datatypes. This is called host variable equivalencing.

The syntax of the VAR embedded SQL statement is:

 EXEC SQL
 VAR host_variable IS datatype [CONVBUFSZ [IS] (size)]
 END-EXEC

or

 EXEC SQL VAR host_variable [CONVBUFSZ [IS] (size)] END-EXEC
where datatype is:

SQL datatype [({length | precision, scale })]

There must be at least one of the two clauses, or both.

where:

Table 4–11 Host Variable Equivalencing

Variable Description

host_variable Input or output host variable or host table declared earlier.

The VARCHAR and VARRAW external datatypes have a
2-byte length field followed by an n-byte data field, where n
lies in the range 1 .. 65533. So, if type_name is VARCHAR or
VARRAW, host_variable must be at least 3 bytes long.

The LONG VARCHAR and LONG VARRAW external
datatypes have a 4-byte length field followed by an n-byte data
field, where n lies in the range 1 .. 2147483643. So, if type_name
is LONG VARCHAR or LONG VARRAW, host_variable must be
at least 5 bytes long.

SQL datatype Name of a valid external datatype such as RAW or STRING.

length Input or output host variable (or host table) declared earlier.

The VARCHAR and VARRAW external datatypes have a
2-byte length field followed by an n-byte data field, where n
lies in the range 1 .. 65533. So, if type_name is VARCHAR or
VARRAW, host_variable must be at least 3 bytes long.

The LONG VARCHAR and LONG VARRAW external
datatypes have a 4-byte length field followed by an n-byte data
field, where n lies in the range 1 .. 2147483643. So, if type_name
is LONG VARCHAR or LONG VARRAW, host_variable must be
at least 5 bytes long.

Datatype Equivalencing

Datatypes and Host Variables 4-35

Table 4–12 shows which parameters to use with each external datatype.

The CONVBUFSZ clause is explained in "CONVBUFSZ Clause in VAR Statement" on
page 4-36.

You cannot use EXEC SQL VAR with NCHAR host variables (those containing PIC G
or PIC N clauses).

If DECLARE_SECTION=TRUE then you must have a Declare Section and you must
place EXEC SQL VAR statements in the Declare Section.

For a syntax diagram of this statement, see "VAR (Oracle Embedded SQL Directive)"
on page E-71.

When ext_type_name is FLOAT, use length; when ext_type_name is DECIMAL, you must
specify precision and scale instead of length.

Host variable equivalencing is useful in several ways. For example, you can use it
when you want Oracle9i to store but not interpret data. Suppose you want to store a
host table of 4-byte integers in a RAW database column. Simply equivalence the host
table to the RAW external datatype, as follows:

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-TABLES.
 05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
 ...
* Reset default datatype (INTEGER) to RAW.
 EXEC SQL VAR EMP-NUMBER IS RAW (200) END-EXEC.
 EXEC SQL END DECLARE SECTION END-EXEC.

With host tables, the length you specify must match the buffer size required to hold
the table. In the last example, you specified a length of 200, which is the buffer size
needed to hold 50 4-byte integers.

You can also declare a group item to be used as a LONG VARCHAR:

 01 MY-LONG-VARCHAR.
 05 UC-LEN PIC S9(9) COMP.
 05 UC-ARR PIC X(6000).

precision and scale Integer literals that represent, respectively, the number of
significant digits and the point at which rounding will occur.
For example, a scale of 2 means the value is rounded to the
nearest hundredth (3.456 becomes 3.46); a scale of -3 means the
number is rounded to the nearest thousand (3456 becomes
3000).

You can specify a precision of 1 .. 99 and a scale of -84 .. 99.
However, the maximum precision and scale of a database
column are 38 and 127, respectively. So, if precision exceeds 38,
you cannot insert the value of host_variable into a database
column. On the other hand, if the scale of a column value
exceeds 99, you cannot select or fetch the value into host_
variable.

Specify precision and scale only when type_name is DECIMAL or
DISPLAY

size An integer which is the size, in bytes, of a buffer used to
perform conversion of the specified host_variable to another
character set.

Table 4–11 (Cont.) Host Variable Equivalencing

Variable Description

Datatype Equivalencing

4-36 Pro*COBOL Programmer’s Guide

 EXEC SQL VAR MY-LONG-VARCHAR IS LONG VARCHAR(6000).

CONVBUFSZ Clause in VAR Statement
The EXEC SQL VAR statement can have an optional CONVBUFSZ clause. You specify
the size, in bytes, of the buffer in the runtime library used to perform conversion of the
specified host variable between character sets.

When you have not used the CONVBUFSZ clause, the runtime automatically
determines a buffer size based on the ratio of the host variable character size
(determined by NLS_LANG) and the character size of the database character set. This
can sometimes result in the creation of a buffer of LONG size. Databases are allowed
to have only one LONG column. An error is raised if there is more than one LONG
value.

To avoid such errors, you use a length shorter than the size of a LONG. If a character
set conversion results in a value longer than the length specified by CONVBUFSZ,
then Pro*COBOL returns an error.

An Example
Suppose you want to select employee names from the EMP table, then pass them to a
C-language routine that expects null-terminated strings. You need not explicitly
null-terminate the names. Simply equivalence a host variable to the STRING external
datatype, as follows:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 EMP-NAME PIC X(11).
 EXEC SQL VAR EMP-NAME IS STRING (11) END-EXEC.
 EXEC SQL END DECLARE SECTION END-EXEC.

The width of the ENAME column is 10 characters, so you allocate the new
EMP-NAME 11 characters to accommodate the null terminator. (Here, length is
optional because it defaults to the length of the host variable.) When you select a value
from the ENAME column into EMP-NAME, Oracle9i null-terminates the value for
you.

Table 4–12 Parameters for Host Variable Equivalencing

External
Datatype Length Precision Scale Default Length

CHAR optional n/a n/a declared length of
variable

CHARZ optional n/a n/a declared length of
variable

DATE n/a n/a n/a 7 bytes

DECIMAL n/a required required none

DISPLAY n/a required required none

DISPLAY
TRAILING

n/a required required none

UNSIGNED
DISPLAY

n/a required required none

OVERPUNCH
TRAILING

n/a required required none

Datatype Equivalencing

Datatypes and Host Variables 4-37

1. If the data field exceeds 65533 bytes, pass -1.

2. This length is typical but the default is port-specific.

Using the CHARF Datatype Specifier
You can use the datatype specifier CHARF in VAR statements to equivalence COBOL
datatypes to the fixed-length ANSI datatype CHAR.s

When PICX=CHARF, specifying the datatype CHAR in a VAR statement equivalences
the host-language datatype to the fixed-length ANSI datatype CHAR (Oracle9i
external datatype code 96). However, when PICX=VARCHAR2, the host-language
datatype is equivalenced to the variable-length datatype VARCHAR2 (code 1).

However, you can always equivalence host-language datatypes to the fixed-length
ANSI datatype CHAR. Simply specify the datatype CHARF in the VAR statement. If
you use CHARF, the host-language datatype is equivalenced to the fixed-length ANSI
datatype CHAR even when PICX=VARCHAR2.

OVERPUNCH
LEADING

n/a required required none

FLOAT optional (4 or 8) n/a n/a declared length of
variable

INTEGER optional (1, 2, or 4) n/a n/a declared length of
variable

LONG optional n/a n/a declared length of
variable

LONG RAW optional n/a n/a declared length of
variable

LONG
VARCHAR

required (note 1) n/a n/a none

LONG VARRAW required (note 1) n/a n/a none

NUMBER n/a n/a n/a not available

STRING optional n/a n/a declared length of
variable

RAW optional n/a n/a declared length of
variable

ROWID n/a n/a n/a 18 bytes (see note 2)

UNSIGNED optional (1, 2, or 4) n/a n/a declared length of
variable

VARCHAR required n/a n/a none

VARCHAR2 optional n/a n/a declared length of
variable

VARNUM n/a n/a n/a 22 bytes

VARRAW optional n/a n/a none

Table 4–12 (Cont.) Parameters for Host Variable Equivalencing

External
Datatype Length Precision Scale Default Length

Sample Program 4: Datatype Equivalencing

4-38 Pro*COBOL Programmer’s Guide

Guidelines
To input VARNUM or DATE values, you must use the Oracle9i internal format. Keep
in mind that Oracle9i uses the internal format to output VARNUM and DATE values.

After selecting a column value into a VARNUM host variable, you can check the first
byte to get the length of the value. Table 4–1 gives some examples of returned
VARNUM values.

For converting DATE values, see "Explicit Control Over DATE String Format" on
page 4-33.

If no Oracle9i external datatype suits your needs exactly, use a VARCHAR2-based or
RAW-based external datatype.

RAW and LONG RAW Values
When you select a RAW or LONG RAW column value into a character host variable,
Oracle9i must convert the internal binary value to an external character value. In this
case, Oracle9i returns each binary byte of RAW or LONG RAW data as a pair of
characters. Each character represents the hexadecimal equivalent of a nibble (half a
byte). For example, Oracle9i returns the binary byte 11111111 as the pair of characters
"FF". The SQL function RAWTOHEX performs the same conversion.

A conversion is also necessary when you insert a character host value into a RAW or
LONG RAW column. Each pair of characters in the host variable must represent the
hexadecimal equivalent of a binary byte. If a character does not represent the
hexadecimal value of a nibble, Oracle9i issues an error message.

For more information about datatype conversion, see "Sample Program 4: Datatype
Equivalencing" on page 4-38.

Sample Program 4: Datatype Equivalencing
After connecting to Oracle, this program creates a database table named IMAGE in the
SCOTT account, then simulates the insertion of bitmap images of employee numbers
into the table. Datatype equivalencing lets the program use the Oracle external
datatype LONG RAW to represent the images. Later, when the user enters an
employee number, the number's "bitmap" is selected from the IMAGE table and
displayed on the terminal screen.

 * Sample Program 4: Datatype Equivalencing *
 * *
 * This program simulates the storage and retrieval of bitmap *
 * images into table IMAGE, which is created in the SCOTT *

Table 4–13 VARNUM Examples

Decimal Value Length Byte Exponent Byte Mantissa Bytes Terminator Byte

5 2 193 6 n/a

-5 3 62 96 102

2767 3 194 28, 68 n/a

-2767 4 61 74, 34 102

100000 2 195 11 n/a

1234567 5 196 2, 24, 46, 68 n/a

Sample Program 4: Datatype Equivalencing

Datatypes and Host Variables 4-39

 * account after logging on to ORACLE. Datatype equivalencing *
 * allows an ORACLE external type of LONG RAW to be specified *
 * for the programs representation of the images. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DTY-EQUIV.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VARYING.
 01 PASSWD PIC X(10) VARYING.
 01 EMP-REC-VARS.
 05 EMP-NUMBER PIC S9(4) COMP.
 05 EMP-NAME PIC X(10) VARYING.
 05 SALARY PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 05 COMMISSION PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 05 COMM-IND PIC S9(4) COMP.

 EXEC SQL VAR SALARY IS DISPLAY(8,2) END-EXEC.
 EXEC SQL VAR COMMISSION IS DISPLAY(8,2) END-EXEC.

 01 BUFFER-VAR.
 05 BUFFER PIC X(8192).
 EXEC SQL VAR BUFFER IS LONG RAW END-EXEC.

 01 INEMPNO PIC S9(4) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 01 DISPLAY-VARIABLES.
 05 D-EMP-NAME PIC X(10).
 05 D-SALARY PIC $Z(4)9.99.
 05 D-COMMISSION PIC $Z(4)9.99.
 05 D-INEMPNO PIC 9(4).
 01 REPLY PIC X(10).
 01 INDX PIC S9(9) COMP.
 01 PRT-QUOT PIC S9(9) COMP.
 01 PRT-MOD PIC S9(9) COMP.

 PROCEDURE DIVISION.

 BEGIN-PGM.
 EXEC SQL WHENEVER SQLERROR
 DO PERFORM SQL-ERROR END-EXEC.

 PERFORM LOGON.
 DISPLAY "OK TO DROP THE IMAGE TABLE? (Y/N) "
 WITH NO ADVANCING.

 ACCEPT REPLY.

 IF (REPLY NOT = "Y") AND (REPLY NOT = "y")
 GO TO SIGN-OFF-EXIT.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL DROP TABLE IMAGE END-EXEC.

Sample Program 4: Datatype Equivalencing

4-40 Pro*COBOL Programmer’s Guide

 DISPLAY " ".
 IF (SQLCODE = 0) DISPLAY
 "TABLE IMAGE DROPPED - CREATING NEW TABLE."
 ELSE IF (SQLCODE = -942) DISPLAY
 "TABLE IMAGE DOES NOT EXIST - CREATING NEW TABLE."
 ELSE PERFORM SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR
 DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CREATE TABLE IMAGE
 (EMPNO NUMBER(4) NOT NULL, BITMAP LONG RAW)
 END-EXEC.
 EXEC SQL DECLARE EMPCUR CURSOR FOR
 SELECT EMPNO, ENAME FROM EMP
 END-EXEC.
 EXEC SQL OPEN EMPCUR END-EXEC.
 DISPLAY " ".
 DISPLAY
 "INSERTING BITMAPS INTO IMAGE FOR ALL EMPLOYEES ...".
 DISPLAY " ".

 INSERT-LOOP.
 EXEC SQL WHENEVER NOT FOUND GOTO NOT-FOUND END-EXEC.
 EXEC SQL FETCH EMPCUR
 INTO :EMP-NUMBER, :EMP-NAME
 END-EXEC.
 MOVE EMP-NAME-ARR TO D-EMP-NAME.
 DISPLAY "EMPLOYEE ", D-EMP-NAME WITH NO ADVANCING.
 PERFORM GET-IMAGE.
 EXEC SQL INSERT INTO IMAGE
 VALUES (:EMP-NUMBER, :BUFFER)
 END-EXEC.
 DISPLAY " IS DONE!".
 MOVE SPACES TO EMP-NAME-ARR.
 GO TO INSERT-LOOP.

 NOT-FOUND.
 EXEC SQL CLOSE EMPCUR END-EXEC.
 EXEC SQL COMMIT WORK END-EXEC.
 DISPLAY " ".
 DISPLAY
 "DONE INSERTING BITMAPS. NEXT, LET'S DISPLAY SOME.".

 DISP-LOOP.
 MOVE 0 TO INEMPNO.
 DISPLAY " ".
 DISPLAY "ENTER EMPLOYEE NUMBER (0 TO QUIT): "
 WITH NO ADVANCING.

 ACCEPT D-INEMPNO.

 MOVE D-INEMPNO TO INEMPNO.
 IF (INEMPNO = 0)
 GO TO SIGN-OFF.
 EXEC SQL WHENEVER NOT FOUND GOTO NO-EMP END-EXEC.
 EXEC SQL SELECT EMP.EMPNO, ENAME, SAL, NVL(COMM, 0), BITMAP
 INTO :EMP-NUMBER, :EMP-NAME, :SALARY,
 :COMMISSION:COMM-IND, :BUFFER
 FROM EMP, IMAGE
 WHERE EMP.EMPNO = :INEMPNO
 AND EMP.EMPNO = IMAGE.EMPNO

Sample Program 4: Datatype Equivalencing

Datatypes and Host Variables 4-41

 END-EXEC.
 DISPLAY " ".
 PERFORM SHOW-IMAGE.
 MOVE EMP-NAME-ARR TO D-EMP-NAME.
 MOVE SALARY TO D-SALARY.
 MOVE COMMISSION TO D-COMMISSION.
 DISPLAY "EMPLOYEE ", D-EMP-NAME, " HAS SALARY ", D-SALARY
 WITH NO ADVANCING.
 IF COMM-IND = -1
 DISPLAY " AND NO COMMISSION."
 ELSE
 DISPLAY " AND COMMISSION ", D-COMMISSION, "."
 END-IF.
 MOVE SPACES TO EMP-NAME-ARR.
 GO TO DISP-LOOP.

 NO-EMP.
 DISPLAY "NOT A VALID EMPLOYEE NUMBER - TRY AGAIN.".
 GO TO DISP-LOOP.

 LOGON.
 MOVE "SCOTT" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "TIGER" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.
 DISPLAY " ".

 GET-IMAGE.
 PERFORM MOVE-IMAGE
 VARYING INDX FROM 1 BY 1 UNTIL INDX > 8192.

 MOVE-IMAGE.
 STRING '*' DELIMITED BY SIZE
 INTO BUFFER
 WITH POINTER INDX.
 DIVIDE 256 INTO INDX
 GIVING PRT-QUOT REMAINDER PRT-MOD.
 IF (PRT-MOD = 0) DISPLAY "." WITH NO ADVANCING.

 SHOW-IMAGE.
 PERFORM VARYING INDX FROM 1 BY 1 UNTIL INDX > 10
 DISPLAY " *************************"
 END-PERFORM.
 DISPLAY " ".

 SIGN-OFF.
 EXEC SQL DROP TABLE IMAGE END-EXEC.
 SIGN-OFF-EXIT.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY.".
 DISPLAY " ".
 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.

Sample Program 4: Datatype Equivalencing

4-42 Pro*COBOL Programmer’s Guide

 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED: ".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

Embedded SQL 5-1

5
Embedded SQL

This chapter describes the basic techniques of embedded SQL programming. Topics
are:

■ Using Host Variables

■ Using Indicator Variables

■ The Basic SQL Statements

■ Cursors

■ Sample Program 2: Cursor Operations

Using Host Variables
Use host variables to pass data and status information to your program from the
database, and to pass data to the database.

Output Versus Input Host Variables
Depending on how they are used, host variables are called output or input host
variables. Host variables in the INTO clause of a SELECT or FETCH statement are
called output host variables because they hold column values output by Oracle. Oracle
assigns the column values to corresponding output host variables in the INTO clause.

All other host variables in a SQL statement are called input host variables because your
program inputs their values to Oracle. For example, you use input host variables in the
VALUES clause of an INSERT statement and in the SET clause of an UPDATE
statement. They are also used in the WHERE, HAVING, and FOR clauses. In fact,
input host variables can appear in a SQL statement wherever a value or expression is
allowed.

You cannot use input host variables to supply SQL keywords or the names of database
objects. Thus, you cannot use input host variables in data definition statements
(sometimes called DDL) such as ALTER, CREATE, and DROP. In the following
example, the DROP TABLE statement is invalid:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 TABLE-NAME PIC X(30) VARYING.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 DISPLAY 'Table name? '.
 ACCEPT TABLE-NAME.
 EXEC SQL DROP TABLE :TABLE-NAME END-EXEC.
* -- host variable not allowed

Using Indicator Variables

5-2 Pro*COBOL Programmer’s Guide

Before Oracle executes a SQL statement containing input host variables, your program
must assign values to them. Consider the following example:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-NUMBER PIC S9(4) COMP.
 01 EMP-NAME PIC X(20) VARYING.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
* -- get values for input host variables
 DISPLAY 'Employee number? '.
 ACCEPT EMP-NUMBER.
 DISPLAY 'Employee name? '.
 ACCEPT EMP-NAME.
 EXEC SQL INSERT INTO EMP (EMPNO, ENAME)
 VALUES (:EMP-NUMBER, :EMP-NAME)
 END-EXEC.

Notice that the input host variables in the VALUES clause of the INSERT statement are
prefixed with colons.

Using Indicator Variables
You can associate any host variable with an optional indicator variable. Each time the
host variable is used in a SQL statement, a result code is stored in its associated
indicator variable. Thus, indicator variables let you monitor host variables.

You use indicator variables in the VALUES or SET clause to assign NULLs to input
host variables and in the INTO clause to detect NULLs or truncated values in output
host variables.

Input Variables
For input host variables, the values your program can assign to an indicator variable
have the following meanings:

Note: In an ORDER BY clause, you can use a host variable, but it
is treated as a constant or literal, and hence the contents of the host
variable have no effect. For example, the SQL statement:

 EXEC SQL SELECT ENAME, EMPNO INTO :NAME, :NUMBER
 FROM EMP
 ORDER BY :ORD
 END-EXEC.

appears to contain an input host variable, ORD. However, the host
variable in this case is treated as a constant, and regardless of the
value of ORD, no ordering is done.

Variable Meaning

-1 Oracle will assign a NULL to the column, ignoring the value of
the host variable.

>= 0 Oracle will assigns the value of the host variable to the column.

Using Indicator Variables

Embedded SQL 5-3

Output Variables
For output host variables, the values Oracle can assign to an indicator variable have
the following meanings:

Remember, an indicator variable must be declared as a 2-byte integer and, in SQL
statements, must be prefixed with a colon and appended to its host variable (unless
you use the keyword INDICATOR).

Inserting NULLs
You can use indicator variables to insert NULLs. Before the insert, for each column you
want to be NULL, set the appropriate indicator variable to -1, as shown in the
following example:

 MOVE -1 TO IND-COMM.
 EXEC SQL INSERT INTO EMP (EMPNO, COMM)
 VALUES (:EMP-NUMBER, :COMMISSION:IND-COMM)
 END-EXEC.

The indicator variable IND-COMM specifies that a NULL is to be stored in the COMM
column.

You can hard-code the NULL instead, as follows:

 EXEC SQL INSERT INTO EMP (EMPNO, COMM)
 VALUES (:EMP-NUMBER, NULL)
 END-EXEC.

But this is less flexible.

Typically, you insert NULLs conditionally, as the next example shows:

 DISPLAY 'Enter employee number or 0 if not available: '
 WITH NO ADVANCING.
 ACCEPT EMP-NUMBER.
 IF EMP-NUMBER = 0
 MOVE -1 TO IND-EMPNUM
 ELSE
 MOVE 0 TO IND-EMPNUM
 END-IF.
 EXEC SQL INSERT INTO EMP (EMPNO, SAL)
 VALUES (:EMP-NUMBER:IND-EMPNUM, :SALARY)
 END-EXEC.

Variable Meaning

-2 Oracle assigned a truncated column value to the host variable,
but could not assign the original length of the column value to
the indicator variable because the number was too large.

-1 The column value is NULL, so the value of the host variable is
indeterminate.

0 Oracle assigned an intact column value to the host variable.

> 0 Oracle assigned a truncated column value to the host variable,
assigned the original column length (expressed in characters,
instead of bytes, for multibyte Globalization Support host
variables) to the indicator variable, and set SQLCODE in the
SQLCA to zero.

Using Indicator Variables

5-4 Pro*COBOL Programmer’s Guide

Handling Returned NULLs
You can also use indicator variables to manipulate returned NULLs, as the following
example shows:

 EXEC SQL SELECT ENAME, SAL, COMM
 INTO :EMP-NAME, :SALARY, :COMMISSION:IND-COMM
 FROM EMP
 WHERE EMPNO = :EMP_NUMBER
 END-EXEC.
 IF IND-COMM = -1
 MOVE SALARY TO PAY.
* -- commission is null; ignore it
 ELSE
 ADD SALARY TO COMMISSION GIVING PAY.
 END-IF.

Fetching NULLs
Using the precompiler option UNSAFE_NULL=YES, you can select or fetch NULLs
into a host variable that lacks an indicator variable, as the following example shows:

* -- assume that commission is NULL
 EXEC SQL SELECT ENAME, SAL, COMM
 INTO :EMP-NAME, :SALARY, :COMMISSION
 FROM EMP
 WHERE EMPNO = :EMP-NUMBER
 END-EXEC.

SQLCODE in the SQLCA is set to zero indicating that Oracle executed the statement
without detecting an error or exception.

Without an indicator variable there is no way to know whether or not a NULL was
returned. The value of the host variable is undefined. If you do not use indicator
variables, set the precompiler option UNSAFE_NULL=YES. Oracle therefore advises
that UNSAFE_NULL=YES only be used to upgrade existing programs and that
indicator variables be used for all new programs.

When UNSAFE_NULL=NO, if you select or fetch NULLs into a host variable that
lacks an indicator variable, Oracle issues an error message.

For more information, see "UNSAFE_NULL" on page 14-30.

Testing for NULLs
You can use indicator variables in the WHERE clause to test for NULLs, as the
following example shows:

 EXEC SQL SELECT ENAME, SAL
 INTO :EMP-NAME, :SALARY
 FROM EMP
 WHERE :COMMISSION:IND-COMM IS NULL ...

However, you cannot use a relational operator to compare NULLs with each other or
with other values. For example, the following SELECT statement fails if the COMM
column contains one or more NULLs:

 EXEC SQL SELECT ENAME, SAL
 INTO :EMP-NAME, :SALARY
 FROM EMP
 WHERE COMM = :COMMISSION:IND-COMM
 END-EXEC.

The Basic SQL Statements

Embedded SQL 5-5

The next example shows how to compare values for equality when some of them
might be NULLs:

 EXEC SQL SELECT ENAME, SAL
 INTO :EMP_NAME, :SALARY
 FROM EMP
 WHERE (COMM = :COMMISSION) OR ((COMM IS NULL) AND
 (:COMMISSION:IND-COMM IS NULL))
 END-EXEC.

Fetching Truncated Values
If a value is truncated when fetched into a host variable, no error is generated. In all
cases a WARNING will be signalled (see "Warning Flags" on page 8-6). if an indicator
variable is used with a character string, when a value is truncated, the indicator
variable is set to the length of the value in the database. Note that no warning is
flagged if a numeric value is truncated.

The Basic SQL Statements
Executable SQL statements let you query, manipulate, and control Oracle data and
create, define, and maintain Oracle objects such as tables, views, and indexes. This
chapter focuses on statements which manipulate data in database tables (sometimes
called DML) and cursor control statements.

The following SQL statements let you query and manipulate Oracle data:

When executing a data manipulation statement such as INSERT, UPDATE, or
DELETE, you want to know how many rows have been updated as well as whether it
succeeded. To find out, you simply check the SQLCA. (Executing any SQL statement
sets the SQLCA variables.) You can check in the following two ways:

■ Implicit checking with the WHENEVER statement

■ Explicit checking of SQLCA variables

Alternatively, when MODE={ANSI | ANSI14}, you can check the status variable
SQLSTATE or SQLCODE. For more information, see "ANSI SQLSTATE Variable" on
page 8-2.

When executing a SELECT statement (query), however, you must also deal with the
rows of data it returns. Queries can be classified as follows:

■ queries that return no rows (that is, merely check for existence)

■ queries that return only one row

■ queries that return more than one row

SQL Statements Description

SELECT Returns rows from one or more tables.

INSERT Adds new rows to a table.

UPDATE Modifies rows in a table.

DELETE Removes rows from a table.

The Basic SQL Statements

5-6 Pro*COBOL Programmer’s Guide

Queries that return more than one row require an explicitly declared cursor or cursor
variable. The following embedded SQL statements let you define and control an
explicit cursor:

In the coming sections, first you learn how to code INSERT, UPDATE, DELETE, and
single-row SELECT statements. Then, you progress to multirow SELECT statements.
For a detailed discussion of each statement and its clauses, see the Oracle Database SQL
Reference.

Selecting Rows
Querying the database is a common SQL operation. To issue a query you use the
SELECT statement. In the following example, you query the EMP table:

 EXEC SQL SELECT ENAME, JOB, SAL + 2000
 INTO :emp_name, :JOB-TITLE, :SALARY
 FROM EMP
 WHERE EMPNO = :EMP-NUMBER
 END-EXEC.

The column names and expressions following the keyword SELECT make up the select
list. The select list in our example contains three items. Under the conditions specified
in the WHERE clause (and following clauses, if present), Oracle returns column values
to the host variables in the INTO clause. The number of items in the select list should
equal the number of host variables in the INTO clause, so there is a place to store every
returned value.

In the simplest case, when a query returns one row, its form is that shown in the last
example (in which EMPNO is a unique key). However, if a query can return more than
one row, you must fetch the rows using a cursor or select them into a host array.

If a query is written to return only one row but might actually return several rows, the
result depends on how you specify the option SELECT_ERROR. When SELECT_
ERROR=YES (the default), Oracle issues an message if more than one row is returned.

When SELECT_ERROR=NO, a row is returned and Oracle generates no error.

Available Clauses
You can use all of the following standard SQL clauses in your SELECT statements:
INTO, FROM, WHERE, CONNECT BY, START WITH, GROUP BY, HAVING, ORDER
BY, and FOR UPDATE OF.

Inserting Rows
You use the INSERT statement to add rows to a table or view. In the following
example, you add a row to the EMP table:

 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, SAL, DEPTNO)
 VALUES (:EMP_NUMBER, :EMP-NAME, :SALARY, :DEPT-NUMBER)

SQL Statements Description

DECLARE Names the cursor and associates it with a query.

OPEN Executes the query and identifies the active set.

FETCH Advances the cursor and retrieves each row in the active set, one
by one.

CLOSE Disables the cursor (the active set becomes undefined.)

The Basic SQL Statements

Embedded SQL 5-7

 END-EXEC.

Each column you specify in the column list must belong to the table named in the
INTO clause. The VALUES clause specifies the row of values to be inserted. The values
can be those of constants, host variables, SQL expressions, or pseudocolumns, such as
USER and SYSDATE.

The number of values in the VALUES clause must equal the number of names in the
column list. You can omit the column list if the VALUES clause contains a value for
each column in the table in the same order they were defined by CREATE TABLE, but
this is not recommended because a table's definition can change.

DML Returning Clause
The INSERT, UPDATE, and DELETE statements can have an optional DML returning
clause which returns column value expressions expr, into host variables hv, with host
indicator variables iv. The returning clause has this syntax:

{RETURNING | RETURN} {expr [,expr]}
 INTO {:hv [[INDICATOR]:iv] [, :hv [[INDICATOR]:iv]]}

The number of expressions must equal the number of host variables. This clause
eliminates the need for selecting the rows after an INSERT or UPDATE, and before a
DELETE when you need to record that information for your application. The DML
returning clause eliminates inefficient network round-trips, extra processing, and
server memory. You will also note, for example, when a trigger inserts default values
or a primary key value.

The returning_clause is not allowed with a subquery. It is only allowed after the
VALUES clause.

For example, our INSERT could have a clause at its end such as:

RETURNING EMPNO, ENAME, DEPTNO INTO :NEW-EMP-NUMBER, :NEW-EMP-NAME, :DEPT

See the DELETE, INSERT, and UPDATE entries in the appendix Appendix E,
"Embedded SQL Statements and Precompiler Directives".

Using Subqueries
A subquery is a nested SELECT statement. Subqueries let you conduct multi-part
searches. They can be used to

■ supply values for comparison in the WHERE, HAVING, and START WITH clauses
of SELECT, UPDATE, and DELETE statements

■ define the set of rows to be inserted by a CREATE TABLE or INSERT statement

■ define values for the SET clause of an UPDATE statement

For example, to copy rows from one table to another, replace the VALUES clause in an
INSERT statement with a subquery, as follows:

 EXEC SQL INSERT INTO EMP2 (EMPNO, ENAME, SAL, DEPTNO)
 SELECT EMPNO, ENAME, SAL, DEPTNO FROM EMP
 WHERE JOB = :JOB-TITLE
 END-EXEC.

Notice how the INSERT statement uses the subquery to obtain intermediate results.

Cursors

5-8 Pro*COBOL Programmer’s Guide

Updating Rows
You use the UPDATE statement to change the values of specified columns in a table or
view. In the following example, you update the SAL and COMM columns in the EMP
table:

 EXEC SQL UPDATE EMP
 SET SAL = :SALARY, COMM = :COMMISSION
 WHERE EMPNO = :EMP-NUMBER
 END-EXEC.

You can use the optional WHERE clause to specify the conditions under which rows
are updated. See "Using the WHERE Clause" on page 5-8.

The SET clause lists the names of one or more columns for which you must provide
values. You can use a subquery to provide the values, as the following example shows:

 EXEC SQL UPDATE EMP
 SET SAL = (SELECT AVG(SAL)*1.1 FROM EMP WHERE DEPTNO = 20)
 WHERE EMPNO = :EMP-NUMBER
 END-EXEC.

Deleting Rows
You use the DELETE statement to remove rows from a table or view. In the following
example, you delete all employees in a given department from the EMP table:

 EXEC SQL DELETE FROM EMP
 WHERE DEPTNO = :DEPT-NUMBER
 END-EXEC.

You can use the optional WHERE clause to specify the condition under which rows are
deleted.

Using the WHERE Clause
You use the WHERE clause to select, update, or delete only those rows in a table or
view that meet your search condition. The WHERE-clause search condition is a Boolean
expression, which can include scalar host variables, host arrays (not in SELECT
statements), and subqueries.

If you omit the WHERE clause, all rows in the table or view are processed. If you omit
the WHERE clause in an UPDATE or DELETE statement, Oracle sets SQLWARN(5) in
the SQLCA to 'W' to warn that all rows were processed.

Cursors
To process a SQL statement, Oracle opens a work area called a private SQL area. The
private SQL area stores information needed to execute the SQL statement. An
identifier called a cursor lets you name a SQL statement, access the information in its
private SQL area, and, to some extent, control its processing.

For static SQL statements, there are two types of cursors: implicit and explicit. Oracle
implicitly declares a cursor for all data definition and data manipulation statements,
including SELECT statements that use the INTO clause.

The set of rows retrieved is called the results set; its size depends on how many rows
meet the query search condition. You use an explicit cursor to identify the row
currently being processed, which is called the current row.

Cursors

Embedded SQL 5-9

When a query returns multiple rows, you can explicitly define a cursor to

■ Process beyond the first row returned by the query

■ Keep track of which row is currently being processed

A cursor identifies the current row in the set of rows returned by the query. This
allows your program to process the rows one at a time. The following statements let
you define and manipulate a cursor:

■ DECLARE

■ OPEN

■ FETCH

■ CLOSE

First you use the DECLARE statement (more precisely, a directive) to name the cursor
and associate it with a query.

The OPEN statement executes the query and identifies all the rows that meet the query
search condition. These rows form a set called the active set of the cursor. After
opening the cursor, you can use it to retrieve the rows returned by its associated query.

Rows of the active set are retrieved one by one (unless you use host arrays). You use a
FETCH statement to retrieve the current row in the active set. You can execute FETCH
repeatedly until all rows have been retrieved.

When done fetching rows from the active set, you disable the cursor with a CLOSE
statement, and the active set becomes undefined.

Declaring a Cursor
You use the DECLARE statement to define a cursor by giving it a name, as the
following example shows:

 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT ENAME, EMPNO, SAL
 FROM EMP
 WHERE DEPTNO = :DEPT_NUMBER
 END-EXEC.

The cursor name is an identifier used by the precompiler, not a host or program
variable, and should not be declared in a COBOL statement. Therefore, cursor names
cannot be passed from one precompilation unit to another. Cursor names cannot be
hyphenated. They can be any length, but only the first 31 characters are significant. For
ANSI compatibility, use cursor names no longer than 18 characters.

The precompiler option CLOSE_ON_COMMIT is provided for use in the command
line or in a configuration file. Any cursor not declared with the WITH HOLD clause is
closed after a COMMIT or ROLLBACK when CLOSE_ON_COMMIT=YES. See "WITH
HOLD Clause in DECLARE CURSOR Statements" on page 3-11, and "CLOSE_ON_
COMMIT" on page 14-11.

If MODE is specified at a higher level than CLOSE_ON_COMMIT, then MODE takes
precedence. The defaults are MODE=ORACLE and CLOSE_ON_COMMIT=NO. If
you specify MODE=ANSI then any cursors not using the WITH HOLD clause will be
closed on COMMIT. The application will run more slowly because cursors are closed
and re-opened many times. Setting CLOSE_ON_COMMIT=NO when MODE=ANSI
results in performance improvement. To see how macro options such as MODE affect
micro options such as CLOSE_ON_COMMIT, see "Precedence of Option Values" on
page 14-3.

Cursors

5-10 Pro*COBOL Programmer’s Guide

The SELECT statement associated with the cursor cannot include an INTO clause.
Rather, the INTO clause and list of output host variables are part of the FETCH
statement.

Because it is declarative, the DECLARE statement must physically (not just logically)
precede all other SQL statements referencing the cursor. That is, forward references to
the cursor are not allowed. In the following example, the OPEN statement is
misplaced:

 EXEC SQL OPEN EMPCURSOR END-EXEC.
* -- MISPLACED OPEN STATEMENT
 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT ENAME, EMPNO, SAL
 FROM EMP
 WHERE ENAME = :EMP-NAME
 END-EXEC.

The cursor control statements (DECLARE, OPEN, FETCH, CLOSE) must all occur
within the same precompiled unit. For example, you cannot declare a cursor in source
file A.PCO, then open it in source file B.PCO.

Your host program can declare as many cursors as it needs. However, in a given file,
every DECLARE statement must be unique. That is, you cannot declare two cursors
with the same name in one precompilation unit, even across blocks or procedures,
because the scope of a cursor is global within a file.

 For users of MODE=ANSI or CLOSE_ON_COMMIT=YES, the WITH HOLD clause
can be used in a DECLARE section to override the behavior defined by the two
options. With these options set, the behavior will be for all cursors to be closed when a
COMMIT is issued. This can have performance implications due to the overhead of
re-opening the cursor to continue processing. The careful use of WITH HOLD can
speed up programs that need to conform to the ANSI standard for precompilers in
most respects.

Opening a Cursor
Use the OPEN statement to execute the query and identify the active set. In the
following example, a cursor named EMPCURSOR is opened.

 EXEC SQL OPEN EMPCURSOR END-EXEC.

OPEN positions the cursor just before the first row of the active set. However, none of
the rows is actually retrieved at this point. That will be done by the FETCH statement.

Once you open a cursor, the query's input host variables are not reexamined until you
reopen the cursor. Thus, the active set does not change. To change the active set, you
must reopen the cursor.

The amount of work done by OPEN depends on the values of three precompiler
options: HOLD_CURSOR, RELEASE_CURSOR, and MAXOPENCURSORS. For more
information, see their alphabetized entries in "Using Pro*COBOL Precompiler
Options" on page 14-9.

Fetching from a Cursor
You use the FETCH statement to retrieve rows from the active set and specify the
output host variables that will contain the results. Recall that the SELECT statement
associated with the cursor cannot include an INTO clause. Rather, the INTO clause and
list of output host variables are part of the FETCH statement. In the following
example, you fetch into three host variables:

Cursors

Embedded SQL 5-11

 EXEC SQL FETCH EMPCURSOR
 INTO :EMP-NAME, :EMP-NUMBER, :SALARY
 END-EXEC.

The cursor must have been previously declared and opened. The first time you execute
FETCH, the cursor moves from before the first row in the active set to the first row.
This row becomes the current row. Each subsequent execution of FETCH advances the
cursor to the next row in the active set, changing the current row. The cursor can only
move forward in the active set. To return to a row that has already been fetched, you
must reopen the cursor, then begin again at the first row of the active set.

If you want to change the active set, you must assign new values to the input host
variables in the query associated with the cursor, then reopen the cursor. When
MODE=ANSI, you must close the cursor before reopening it.

As the next example shows, you can fetch from the same cursor using different sets of
output host variables. However, corresponding host variables in the INTO clause of
each FETCH statement must have the same datatype.

 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT ENAME, SAL FROM EMP WHERE DEPTNO = 20
 END-EXEC.
 ...
 EXEC SQL OPEN EMPCURSOR END-EXEC.
 EXEC SQL WHENEVER NOT FOUND DO ...
 LOOP.
 EXEC SQL FETCH EMPCURSOR INTO :EMP-NAME1, :SAL1 END-EXEC
 EXEC SQL FETCH EMPCURSOR INTO :EMP-NAME2, :SAL2 END-EXEC
 EXEC SQL FETCH EMPCURSOR INTO :EMP-NAME3, :SAL3 END-EXEC
 ...
 GO TO LOOP.
 ...
 END-PERFORM.

If the active set is empty or contains no more rows, FETCH returns the "no data found"
Oracle warning code to SQLCODE in the SQLCA (if MODE=ANSI then the optional
SQLSTATE variable will also be set.) The status of the output host variables is
indeterminate. (In a typical program, the WHENEVER NOT FOUND statement
detects this error.) To reuse the cursor, you must reopen it.

Closing a Cursor
When finished fetching rows from the active set, you close the cursor to free the
resources, such as storage, acquired by opening the cursor. When a cursor is closed,
parse locks are released. What resources are freed depends on how you specify the
options HOLD_CURSOR and RELEASE_CURSOR. In the following example, you
close the cursor named EMPCURSOR:

 EXEC SQL CLOSE EMPCURSOR END-EXEC.

You cannot fetch from a closed cursor because its active set becomes undefined. If
necessary, you can reopen a cursor (with new values for the input host variables, for
example).

When CLOSE_ON_COMMIT=NO (the default when MODE=ORACLE), issuing a
COMMIT or ROLLBACK will only close cursors declared using the FOR UPDATE
clause or referred to by the CURRENT OF clause. Other cursors are unaffected by a
COMMIT or ROLLBACK and if open, remain open. However, when CLOSE_ON_

Cursors

5-12 Pro*COBOL Programmer’s Guide

COMMIT=YES (the default when MODE=ANSI), issuing a COMMIT or ROLLBACK
closes all cursors. For more information, see "CLOSE_ON_COMMIT" on page 14-11.

Using the CURRENT OF Clause
You use the CURRENT OF cursor_name clause in a DELETE or UPDATE statement to
refer to the latest row fetched from the named cursor. The cursor must be open and
positioned on a row. If no fetch has been done or if the cursor is not open, the
CURRENT OF clause results in an error and processes no rows.

The FOR UPDATE OF clause is optional when you declare a cursor that is referenced
in the CURRENT OF clause of an UPDATE or DELETE statement. The CURRENT OF
clause signals the precompiler to add a FOR UPDATE clause if necessary. For more
information, see"Mimicking the CURRENT OF Clause" on page 7-14.

In the following example, you use the CURRENT OF clause to refer to the latest row
fetched from a cursor named EMPCURSOR:

 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT ENAME, SAL FROM EMP WHERE JOB = 'CLERK'
 END-EXEC.
 ...
 EXEC SQL OPEN EMPCURSOR END-EXEC.
 EXEC SQL WHENEVER NOT FOUND DO ...
 LOOP.
 EXEC SQL FETCH EMPCURSOR INTO :EMP-NAME, :SALARY
 END-EXEC.
 ...
 EXEC SQL UPDATE EMP SET SAL = :NEW-SALARY
 WHERE CURRENT OF EMPCURSOR
 END-EXEC.
 GO TO LOOP.

Restrictions
An explicit FOR UPDATE OF or an implicit FOR UPDATE acquires exclusive row
locks. All rows are locked at the open, not as they are fetched, and are released when
you commit or rollback. If you try to fetch from a FOR UPDATE cursor after a commit,
Oracle generates an error.

You cannot use the CURRENT OF clause with a cursor declared with a join since
internally, the CURRENT OF mechanism uses the ROWID pseudocolumn and there is
no way to specify which table the ROWID relates to. For an alternative, see
"Mimicking the CURRENT OF Clause" on page 7-14. Finally, you cannot use the
CURRENT OF clause in dynamic SQL.

A Typical Sequence of Statements
The following example shows the typical sequence of cursor control statements using
the CURRENT OF clause and the FOR UPDATE OF clause:

* -- Define a cursor.
 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT ENAME, JOB FROM EMP
 WHERE EMPNO = :EMP-NUMBER
 FOR UPDATE OF JOB
 END-EXEC.
* -- Open the cursor and identify the active set.
 EXEC SQL OPEN EMPCURSOR END-EXEC.
* -- Exit if the last row was already fetched.

Cursors

Embedded SQL 5-13

 EXEC SQL
 WHENEVER NOT FOUND GOTO NO-MORE
 END-EXEC.
* -- Fetch and process data in a loop.
 LOOP.
 EXEC SQL FETCH EMPCURSOR INTO :EMP-NAME, :JOB-TITLE
 END-EXEC.
* -- host-language statements that operate on the fetched data
 EXEC SQL UPDATE EMP
 SET JOB = :NEW-JOB-TITLE
 WHERE CURRENT OF EMPCURSOR
 END-EXEC.
 GO TO LOOP.
 ...
 MO-MORE.
* -- Disable the cursor.
 EXEC SQL CLOSE EMPCURSOR END-EXEC.
 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 STOP RUN.

Positioned Update
The following skeletal example demonstrates positioned update using the universal
ROWID, which is defined in "Universal ROWIDs" on page 4-25:

...
 01 MY-ROWID SQL-ROWID.
...
 EXEC SQL ALLOCATE :MY-ROWID END-EXEC.
 EXEC SQL DECLARE C CURSOR FOR
 SELECT ROWID, ... FROM MYTABLE FOR UPDATE OF ... END-EXEC.
 EXEC SQL OPEN C END-EXEC.
 EXEC SQL FETCH C INTO :MY-ROWID ... END-EXEC.
* Process retrieved data.
...
 EXEC SQL UPDATE MYTABLE SET ... WHERE ROWID = :MY-ROWID END-EXEC.
 ...
 NO-MORE-DATA:
 EXEC SQL CLOSE C END-EXEC.
 EXEC SQL FREE :MY-ROWID END-EXEC.
...

The PREFETCH Precompiler Option
The precompiler option PREFETCH allows for more efficient queries by pre-fetching
rows. This decreases the number of server round-trips needed and reduces memory
required. The number of rows set by the PREFETCH option value in a configuration
file or on the command line is used for all queries involving explicit cursors, subject to
the standard precedence rules.

When used inline, the PREFETCH option must precede any of these cursor statements:

■ EXEC SQL OPEN cursor

■ EXEC SQL OPEN cursor USING host_var_list

■ EXEC SQL OPEN cursor USING DESCRIPTOR desc_name

When an OPEN is executed, the value of PREFETCH gives the number of rows to be
pre-fetched when the query is executed. You can set the value from 0 (no pre-fetching)
to 9999. The default value is 1.

Sample Program 2: Cursor Operations

5-14 Pro*COBOL Programmer’s Guide

Sample Program 2: Cursor Operations
This program logs on to Oracle, declares and opens a cursor, fetches the names,
salaries, and commissions of all salespeople, displays the results, then closes the cursor

All fetches except the final one return a row and, if no errors were detected during the
fetch, a success status code. The final fetch fails and returns the "no data found" Oracle
warning code to SQLCODE in the SQLCA. The cumulative number of rows actually
fetched is found in SQLERRD(3) in the SQLCA.

 * Sample Program 2: Cursor Operations *
 * *
 * This program logs on to ORACLE, declares and opens a cursor, *
 * fetches the names, salaries, and commissions of all *
 * salespeople, displays the results, then closes the cursor. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CURSOR-OPS.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VARYING.
 01 PASSWD PIC X(10) VARYING.
 01 EMP-REC-VARS.
 05 EMP-NAME PIC X(10) VARYING.
 05 SALARY PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 05 COMMISSION PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 EXEC SQL VAR SALARY IS DISPLAY(8,2) END-EXEC.
 EXEC SQL VAR COMMISSION IS DISPLAY(8,2) END-EXEC.
 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 01 DISPLAY-VARIABLES.
 05 D-EMP-NAME PIC X(10).
 05 D-SALARY PIC Z(4)9.99.
 05 D-COMMISSION PIC Z(4)9.99.

 PROCEDURE DIVISION.

 BEGIN-PGM.
 EXEC SQL WHENEVER SQLERROR
 DO PERFORM SQL-ERROR END-EXEC.
 PERFORM LOGON.
 EXEC SQL DECLARE SALESPEOPLE CURSOR FOR
 SELECT ENAME, SAL, COMM
 FROM EMP

Note: The PREFETCH precompiler option is specifically designed
for enhancing the performance of single row fetches. PREFETCH
values have no effect when doing array fetches, regardless of which
value is assigned.

Sample Program 2: Cursor Operations

Embedded SQL 5-15

 WHERE JOB LIKE 'SALES%'
 END-EXEC.
 EXEC SQL OPEN SALESPEOPLE END-EXEC.
 DISPLAY " ".
 DISPLAY "SALESPERSON SALARY COMMISSION".
 DISPLAY "----------- ---------- ----------".

 FETCH-LOOP.
 EXEC SQL WHENEVER NOT FOUND
 DO PERFORM SIGN-OFF END-EXEC.
 EXEC SQL FETCH SALESPEOPLE
 INTO :EMP-NAME, :SALARY, :COMMISSION
 END-EXEC.
 MOVE EMP-NAME-ARR TO D-EMP-NAME.
 MOVE SALARY TO D-SALARY.
 MOVE COMMISSION TO D-COMMISSION.
 DISPLAY D-EMP-NAME, " ", D-SALARY, " ", D-COMMISSION.
 MOVE SPACES TO EMP-NAME-ARR.
 GO TO FETCH-LOOP.

 LOGON.
 MOVE "SCOTT" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "TIGER" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

 SIGN-OFF.
 EXEC SQL CLOSE SALESPEOPLE END-EXEC.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY.".
 DISPLAY " ".
 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

Sample Program 2: Cursor Operations

5-16 Pro*COBOL Programmer’s Guide

Embedded PL/SQL 6-1

6
Embedded PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL
transaction processing blocks in your program. This chapter has the following
sections:

■ Embedding PL/SQL

■ Advantages of PL/SQL

■ Embedding PL/SQL Blocks

■ Host Variables and PL/SQL

■ Indicator Variables and PL/SQL

■ Host Tables and PL/SQL

■ Cursor Usage in Embedded PL/SQL

■ Stored PL/SQL and Java Subprograms

■ Sample Program 9: Calling a Stored Procedure

■ Cursor Variables

Embedding PL/SQL
Pro*COBOL treats a PL/SQL block like a single embedded SQL statement. You can
place a PL/SQL block anywhere in a host program that you can place a SQL
statement.

To embed a PL/SQL block in your host program, declare the variables to be shared
with PL/SQL and bracket the PL/SQL block with the EXEC SQL EXECUTE and
END-EXEC keywords.

Host Variables
Inside a PL/SQL block, host variables are global to the entire block and can be used
anywhere a PL/SQL variable is allowed. Like host variables in a SQL statement, host
variables in a PL/SQL block must be prefixed with a colon. The colon sets host
variables apart from PL/SQL variables and database objects.

VARCHAR Variables
When entering a PL/SQL block, Oracle9i automatically checks the length fields of
VARCHAR host variables. Therefore, you must set the length fields before the block is
entered. For input variables, set the length field to the length of the value stored in the

Advantages of PL/SQL

6-2 Pro*COBOL Programmer’s Guide

string field. For output variables, set the length field to the maximum length allowed
by the string field.

Indicator Variables
In a PL/SQL block, you cannot refer to an indicator variable by itself; it must be
appended to its associated host variable. Further, if you refer to a host variable with its
indicator variable, you must always refer to it that way in the same block.

Handling NULLs
When entering a block, if an indicator variable has a value of -1, PL/SQL
automatically assigns a NULL to the host variable. When exiting the block, if a host
variable is NULL, PL/SQL automatically assigns a value of -1 to the indicator variable.

Handling Truncated Values
PL/SQL does not raise an exception when a truncated string value is assigned to a
host variable. However, if you use an indicator variable, PL/SQL sets it to the original
length of the string.

SQLCHECK
You must specify SQLCHECK=SEMANTICS when precompiling a program with an
embedded PL/SQL block. You must also use the USERID option. For more
information, see Chapter 14, "Precompiler Options".

Advantages of PL/SQL
This section looks at some of the features and benefits offered by PL/SQL, such as:

■ Better performance

■ Integration with Oracle9i

■ Cursor FOR loops

■ Procedures and functions

■ Packages

■ PL/SQL tables

■ User-defined records

For more information about PL/SQL, see PL/SQL User's Guide and Reference.

Better Performance
PL/SQL can help you reduce overhead, improve performance, and increase
productivity. For example, without PL/SQL, Oracle9i must process SQL statements
one at a time. Each SQL statement results in another call to the Server and higher
overhead. However, with PL/SQL, you can send an entire block of SQL statements to
the server. This minimizes communication between your application and the server.

Integration with Oracle9i
PL/SQL is tightly integrated with the server. For example, most PL/SQL datatypes are
native to the data dictionary. Furthermore, you can use the %TYPE attribute to base

Advantages of PL/SQL

Embedded PL/SQL 6-3

variable declarations on column definitions stored in the data dictionary, as the
following example shows:

job_title emp.job%TYPE;

That way, you need not know the exact datatype of the column. Furthermore, if a
column definition changes, the variable declaration changes accordingly and
automatically. This provides data independence, reduces maintenance costs, and
allows programs to adapt as the database changes.

Cursor FOR Loops
With PL/SQL, you need not use the DECLARE, OPEN, FETCH, and CLOSE
statements to define and manipulate a cursor. Instead, you can use a cursor FOR loop,
which implicitly declares its loop index as a record, opens the cursor associated with a
given query, repeatedly fetches data from the cursor into the record and then closes the
cursor. An example follows:

DECLARE
 ...
BEGIN
 FOR emprec IN (SELECT empno, sal, comm FROM emp) LOOP
 IF emprec.comm / emprec.sal > 0.25 THEN ...
 ...
 END LOOP;
END;

Notice that you use dot notation to reference fields in the record.

Subprograms
PL/SQL has two types of subprograms called procedures and functions, which aid
application development by letting you isolate operations. Generally, you use a
procedure to perform an action and a function to compute a value.

Procedures and functions provide extensibility. That is, they let you tailor the PL/SQL
language to suit your needs. For example, if you need a procedure that creates a new
department, you can write your own, such as follows:

PROCEDURE create_dept
 (new_dname IN CHAR(14),
 new_loc IN CHAR(13),
 new_deptno OUT NUMBER(2)) IS
BEGIN
 SELECT deptno_seq.NEXTVAL INTO new_deptno FROM dual;
 INSERT INTO dept VALUES (new_deptno, new_dname, new_loc);
END create_dept;

When called, this procedure accepts a new department name and location, selects the
next value in a department-number database sequence, inserts the new number, name,
and location into the dept table and then returns the new number to the caller.

You can store subprograms in the database (using CREATE FUNCTION and CREATE
PROCEDURE) that can be called from multiple applications without needing to be
re-compiled each time.

Parameter Modes
You use parameter modes to define the behavior of formal parameters. There are three
parameter modes: IN (the default), OUT, and IN OUT. An IN parameter lets you pass

Advantages of PL/SQL

6-4 Pro*COBOL Programmer’s Guide

values to the subprogram being called. An OUT parameter lets you return values to
the caller of a subprogram. An IN OUT parameter lets you pass initial values to the
subprogram being called and return updated values to the caller.

The datatype of each actual parameter must be convertible to the datatype of its
corresponding formal parameter. Table 6–1 on page 6-11 shows the legal conversions
between datatypes.

Packages
PL/SQL lets you bundle logically related types, program objects, and subprograms
into a package. Packages can be compiled and stored in a database, where their contents
can be shared by multiple applications.

Packages usually have two parts: a specification and a body. The specification is the
interface to your applications; it declares the types, constants, variables, exceptions,
cursors, and subprograms available for use. The body defines cursors and subprograms
and so implements the specification. The following example "packages" two
employment procedures:

PACKAGE emp_actions IS -- package specification
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...);
 PROCEDURE fire_employee (emp_id NUMBER);
END emp_actions;

PACKAGE BODY emp_actions IS -- package body
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...) IS
 BEGIN
 INSERT INTO emp VALUES (empno, ename, ...);
 END hire_employee;
 PROCEDURE fire_employee (emp_id NUMBER) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;
END emp_actions;

Only the declarations in the package specification are visible and accessible to
applications. Implementation details in the package body are hidden and inaccessible.

PL/SQL Tables
PL/SQL provides a composite datatype named TABLE. Objects of type TABLE are
called PL/SQL tables, which are modeled as (but not the same as) database tables.
PL/SQL tables have only one column and use a primary key to give you array-like
access to rows. The column can belong to any scalar type (such as CHAR, DATE, or
NUMBER), but the primary key must belong to type BINARY_INTEGER, PLS_
INTEGER or VARCHAR2.

You can declare PL/SQL table types in the declarative part of any block, procedure,
function, or package. The following example declares a TABLE type called NumTabTyp:

DECLARE
 TYPE NumTabTyp IS TABLE OF NUMBER
 INDEX BY BINARY_INTEGER;
 ...
BEGIN
 ...
END;

Embedding PL/SQL Blocks

Embedded PL/SQL 6-5

Once you define type NumTabTyp, you can declare PL/SQL tables of that type, as the
next example shows:

num_tab NumTabTyp;

The identifier num_tab represents an entire PL/SQL table.

You reference rows in a PL/SQL table using array-like syntax to specify the primary
key value. For example, you reference the ninth row in the PL/SQL table named num_
tab as follows:

num_tab(9) ...

User-Defined Records
You can use the %ROWTYPE attribute to declare a record that represents a row in a
database table or a row fetched by a cursor. However, you cannot specify the datatypes
of fields in the record or define fields of your own. The composite datatype RECORD
lifts those restrictions.

Objects of type RECORD are called records. Unlike PL/SQL tables, records have
uniquely named fields, which can belong to different datatypes. For example, suppose
you have different kinds of data about an employee such as name, salary, hire date,
and so on. This data is dissimilar in type but logically related. A record that contains
such fields as the name, salary, and hire date of an employee would let you treat the
data as a logical unit.

You can declare record types and objects in the declarative part of any block,
procedure, function, or package. The following example declares a RECORD type
called DeptRecTyp:

DECLARE
 TYPE DeptRecTyp IS RECORD
 (deptno NUMBER(4) NOT NULL := 10, -- must initialize
 dname CHAR(9),
 loc CHAR(14));

Notice that the field declarations are like variable declarations. Each field has a unique
name and specific datatype. You can add the NOT NULL option to any field
declaration and so prevent the assigning of NULLs to that field. However, you must
initialize NOT NULL fields.

Once you define type DeptRecTyp, you can declare records of that type, as the next
example shows:

dept_rec DeptRecTyp;

The identifier dept_rec represents an entire record.

You use dot notation to reference individual fields in a record. For example, you
reference the dname field in the dept_rec record as follows:

dept_rec.dname ...

Embedding PL/SQL Blocks
Pro*COBOL treats a PL/SQL block like a single embedded SQL statement. Thus, you
can place a PL/SQL block anywhere in a host program that you can place a SQL
statement.

Host Variables and PL/SQL

6-6 Pro*COBOL Programmer’s Guide

To embed a PL/SQL block in your host program, simply bracket the PL/SQL block
with the keywords EXEC SQL EXECUTE and END-EXEC as follows:

 EXEC SQL EXECUTE
 DECLARE
 ...
 BEGIN
 ...
 END;
 END-EXEC.

When your program embeds PL/SQL blocks, you must specify the precompiler option
SQLCHECK=SEMANTICS because PL/SQL must be parsed by Pro*COBOL. To
connect to the server, you must also specify the option USERID. For more information,
see "Using Pro*COBOL Precompiler Options" on page 14-9.

Host Variables and PL/SQL
Host variables are the key to communication between a host language and a PL/SQL
block. Host variables can be shared with PL/SQL, meaning that PL/SQL can set and
reference host variables.

For example, you can prompt a user for information and use host variables to pass that
information to a PL/SQL block. Then, PL/SQL can access the database and use host
variables to pass the results back to your host program.

Inside a PL/SQL block, host variables are treated as global to the entire block and can
be used anywhere a PL/SQL variable is allowed. Like host variables in a SQL
statement, host variables in a PL/SQL block must be prefixed with a colon. The colon
sets host variables apart from PL/SQL variables and database objects.

PL/SQL Examples
The following example illustrates the use of host variables with PL/SQL. The program
prompts the user for an employee number and then displays the job title, hire date,
and salary of that employee.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(20) VARYING.
 01 PASSWORD PIC X(20) VARYING.
 01 EMP-NUMBER PIC S9(4) COMP.
 01 JOB-TITLE PIC X(20) VARYING.
 01 HIRE-DATE PIC X(9) VARYING.
 01 SALARY PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 EXEC SQL END DECLARE SECTION END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 ...
 DISPLAY 'Connected to Oracle'.
 PERFORM
 DISPLAY 'Employee Number (0 to end)? 'WITH NO ADVANCING
 ACCEPT EMP-NUMBER
 IF EMP-NUMBER = 0
 EXEC SQL COMMIT WORK RELEASE END-EXEC
 DISPLAY 'Exiting program'
 STOP RUN
 END-IF.
* ---------------- begin PL/SQL block -----------------
 EXEC SQL EXECUTE

Host Variables and PL/SQL

Embedded PL/SQL 6-7

 BEGIN
 SELECT job, hiredate, sal
 INTO :JOB-TITLE, :HIRE-DATE, :SALARY
 FROM EMP
 WHERE EMPNO = :EMP-NUMBER;
 END;
 END-EXEC.
* ---------------- end PL/SQL block -----------------
 DISPLAY 'Number Job Title Hire Date Salary'.
 DISPLAY '------------------------------------'.
 DISPLAY EMP-NUMBER, JOB-TITLE, HIRE-DATE, SALARY.
 END-PERFORM.
 ...
 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 DISPLAY 'Processing error'.
 STOP RUN.

Notice that the host variable EMP-NUMBER is set before the PL/SQL block is entered,
and the host variables JOB-TITLE, HIRE-DATE, and SALARY are set inside the block.

A More Complex PL/SQL Example
In the following example the user is prompted for a bank account number, transaction
type, and transaction amount. The account is then debited or credited. If the account
does not exist, an exception is raised. When the transaction is complete its status is
displayed.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(20) VARYING.
 01 ACCT-NUM PIC S9(4) COMP.
 01 TRANS-TYPE PIC X(1).
 01 TRANS-AMT PIC PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 01 STATUS PIC X(80) VARYING.
 EXEC SQL END DECLARE SECTION END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 DISPLAY 'Username? 'WITH NO ADVANCING.
 ACCEPT USERNAME.
 DISPLAY 'Password? '.
 ACCEPT PASSWORD.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR.
 EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD.
 PERFORM
 DISPLAY 'Account Number (0 to end)? '
 WITH NO ADVANCING
 ACCEPT ACCT_NUM
 IF ACCT-NUM = 0
 EXEC SQL COMMIT WORK RELEASE END-EXEC
 DISPLAY 'Exiting program' WITH NO ADVANCING
 STOP RUN
 END-IF.
 DISPLAY 'Transaction Type - D)ebit or C)redit? '
 WITH NO ADVANCING
 ACCEPT TRANS-TYPE
 DISPLAY 'Transaction Amount? '
 ACCEPT trans_amt
* --------------------- begin PL/SQL block -------------------
 EXEC SQL EXECUTE

Host Variables and PL/SQL

6-8 Pro*COBOL Programmer’s Guide

 DECLARE
 old_bal NUMBER(9,2);
 err_msg CHAR(70);
 nonexistent EXCEPTION;
 BEGIN
 IF :TRANS-TYP-TYPE = 'C' THEN -- credit the account
 UPDATE accts SET bal = bal + :TRANS-AMT
 WHERE acctid = :acct-num;
 IF SQL%ROWCOUNT = 0 THEN -- no rows affected
 RAISE nonexistent;
 ELSE
 :STATUs := 'Credit applied';
 END IF;
 ELSIF :TRANS-TYPe = 'D' THEN -- debit the account
 SELECT bal INTO old_bal FROM accts
 WHERE acctid = :ACCT-NUM;
 IF old_bal >= :TRANS-AMT THEN -- enough funds
 UPDATE accts SET bal = bal - :TRANS-AMT
 WHERE acctid = :ACCT-NUM;
 :STATUS := 'Debit applied';
 ELSE
 :STATUS := 'Insufficient funds';
 END IF;
 ELSE
 :STATUS := 'Invalid type: ' || :TRANS-TYPE;
 END IF;
 COMMIT;
 EXCEPTION
 WHEN NO_DATA_FOUND OR nonexistent THEN
 :STATUS := 'Nonexistent account';
 WHEN OTHERS THEN
 err_msg := SUBSTR(SQLERRM, 1, 70);
 :STATUS := 'Error: ' || err_msg;
 END;
 END-EXEC.
* ------------------- end PL/SQL block -----------------------
 DISPLAY 'Status: ', STATUS
 END-PERFORM.
 ...
 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 DISPLAY 'Processing error'.
 STOP RUN.

VARCHAR Pseudotype
Recall that you can use the VARCHAR pseudotype to declare variable-length character
strings. If the VARCHAR is an input host variable, you must tell Pro*COBOL what
length to expect. Therefore, set the length field to the actual length of the value stored
in the string field.

If the VARCHAR is an output host variable, Pro*COBOL automatically sets the length
field. However, to use a VARCHAR output host variable in your PL/SQL block, you
must initialize the length field before entering the block. Therefore, set the length field
to the declared (maximum) length of the VARCHAR, as shown in the following
example:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

Indicator Variables and PL/SQL

Embedded PL/SQL 6-9

 01 EMP-NUM PIC S9(4) COMP.
 01 EMP-NAME PIC X(10) VARYING.
 01 SALARY PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 PROCEDURE DIVISION.
 ...
* -- initialize length field
 MOVE 10 TO EMP-NAME-LEN.
 EXEC SQL EXECUTE
 BEGIN
 SELECT ename, sal INTO :EMP-NAME, :SALARY
 FROM emp
 WHERE empno = :EMP-NUM;
 ...
 END;
 END-EXEC.

Indicator Variables and PL/SQL
PL/SQL does not need indicator variables because it can manipulate NULLs. For
example, within PL/SQL, you can use the IS NULL operator to test for NULLs, as
follows:

IF variable IS NULL THEN ...

You can use the assignment operator (:=) to assign NULLs, as follows:

variable := NULL;

However, host languages need indicator variables because they cannot manipulate
NULLs. Embedded PL/SQL meets this need by letting you use indicator variables to:

■ Accept NULLs input from a host program

■ Output NULLs or truncated values to a host program

When used in a PL/SQL block, indicator variables are subject to the following rule:

■ If you refer to a host variable with an indicator variable, you must always refer to
it that way in the same block.

In the following example, the indicator variable IND-COMM appears with its host
variable COMMISSION in the SELECT statement, so it must appear that way in the IF
statement:

 EXEC SQL EXECUTE
 BEGIN
 SELECT ename, comm
 INTO :EMP-NAME, :COMMISSION:IND-COMM FROM emp
 WHERE empno = :EMP-NUM;
 IF :COMMISSION:IND-COMM IS NULL THEN ...
 ...
 END;
 END-EXEC.

Notice that PL/SQL treats :COMMISSION:IND-COMM like any other simple variable.
Though you cannot refer directly to an indicator variable inside a PL/SQL block,
PL/SQL checks the value of the indicator variable when entering the block and sets
the value correctly when exiting the block.

Host Tables and PL/SQL

6-10 Pro*COBOL Programmer’s Guide

Handling NULLs
When entering a block, if an indicator variable has a value of -1, PL/SQL
automatically assigns a NULL to the host variable. When exiting the block, if a host
variable is NULL, PL/SQL automatically assigns a value of -1 to the indicator variable.
In the next example, if IND-SAL had a value of -1 before the PL/SQL block was
entered, the salary_missing exception is raised. An exception is a named error condition.

 EXEC SQL EXECUTE
 BEGIN
 IF :SALARY:IND-SAL IS NULL THEN
 RAISE salary_missing;
 END IF;
 ...
 END;
 END-EXEC.

Handling Truncated Values
PL/SQL does not raise an exception when a truncated string value is assigned to a
host variable. However, if you use an indicator variable, PL/SQL sets it to the original
length of the string. The following example the host program will be able to tell, by
checking the value of IND-NAME, if a truncated value was assigned to EMP-NAME:

 EXEC SQL EXECUTE
 DECLARE
 ...
 new_name CHAR(10);
 BEGIN
 ...
 :EMP_NAME:IND-NAME := new_name;
 ...
 END;
 END-EXEC.

Host Tables and PL/SQL
You can pass input host tables and indicator tables to a PL/SQL block. They can be
indexed by a PL/SQL variable of type BINARY_INTEGER or PLS_INTEGER;
VARCHAR2 key types are not permitted. Normally, the entire host table is passed to
PL/SQL, but you can use the ARRAYLEN statement (discussed later) to specify a
smaller table dimension.

Furthermore, you can use a subprogram call to assign all the values in a host table to
rows in a PL/SQL table. Given that the table subscript range is m .. n, the
corresponding PL/SQL table index range is always 1 .. (n - m + 1). For example, if the
table subscript range is 5 .. 10, the corresponding PL/SQL table index range is 1 .. (10 -
5 + 1) or 1 .. 6.

Note: Pro*COBOL does not check your usage of host tables. For instance, no index
range checking is done.

In the following example, you pass a host table named salary to a PL/SQL block,
which uses the host table in a function call. The function is named median because it
finds the middle value in a series of numbers. Its formal parameters include a PL/SQL
table named num_tab. The function call assigns all the values in the actual parameter
salary to rows in the formal parameter num_tab.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...

Host Tables and PL/SQL

Embedded PL/SQL 6-11

 01 SALARY OCCURS 100 TIMES PIC S9(6)V99 COMP-3.
 01 MEDIAN-SALARY PIC S9(6)V99 COMP-3.
 EXEC SQL END DECLARE SECTION END-EXEC.
* -- populate the host table
 EXEC SQL EXECUTE
 DECLARE
 TYPE NumTabTyp IS TABLE OF REAL
 INDEX BY BINARY_INTEGER;
 n BINARY_INTEGER;
 ...
 FUNCTION median (num_tab NumTabTyp, n INTEGER)
 RETURN REAL IS
 BEGIN
* -- compute median
 END;
 BEGIN
 n := 100;
 :MEDIAN-SALARY := median(:SALARY END;
 END-EXEC.

You can also use a subprogram call to assign all row values in a PL/SQL table to
corresponding elements in a host table. For an example, see "Stored PL/SQL and Java
Subprograms" on page 6-15.

The interface between Host Tables and PL/SQL strictly controls datatypes. The default
external type for PIC X is CHARF (fixed length character string) and this can only be
mapped to PL/SQL tables of type CHAR.

Table 6–1 shows the legal conversions between row values in a PL/SQL table and
elements in a host table. The most notable fact is that you cannot pass a PIC X variable
to a table of type VARCHAR2 without using datatype equivalencing to equivalence
the variable to VARCHAR2, or using PICX=VARCHAR2 on the command line.

Table 6–1 Legal Datatype Conversions

PL/SQL Table - - - - - - - -

Host Table CHAR DATE LONG LONG RAW NUMBER RAW ROWID VARCHAR2

CHARF X - - - - - - -

CHARZ X - - - - - - -

DATE - X - - - - - -

DECIMAL - - - - X - - -

DISPLAY - - - - X - - -

FLOAT - - - - X - - -

INTEGER - - - - - - - -

LONG X - X - - - - -

LONG
VARCHAR

- - X X - X - X

LONG
VARRAW

- - - X - X - -

NUMBER - - - - X - -

RAW - - - X - X - -

ROWID - - - - - - X -

Host Tables and PL/SQL

6-12 Pro*COBOL Programmer’s Guide

ARRAYLEN Statement
Suppose you must pass an input host table to a PL/SQL block for processing. By
default, when binding such a host table, Pro*COBOL use its declared dimension.
However, you might not want to process the entire table. In that case, you can use the
ARRAYLEN statement to specify a smaller table dimension. ARRAYLEN associates
the host table with a host variable, which stores the smaller dimension. The statement
syntax is:

 EXEC SQL ARRAYLEN host_array (dimension) EXECUTE END-EXEC.

where dimension is a 4-byte, integer host variable, not a literal or an expression.

The ARRAYLEN statement must appear somewhere after the declarations of host_array
and dimension. You cannot specify an offset into the host table. However, you might be
able to use COBOL features for that purpose.

The following example uses ARRAYLEN to override the default dimension of a host
table named BONUS:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 BONUS OCCURS 100 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 01 MY-DIM PIC S9(9) COMP.
 ...
 EXEC SQL ARRAYLEN BONUS (MY-DIM) END-EXEC.
 EXEC SQL END DECLARE SECTION END-EXEC.
* -- populate the host table
 ...
* -- set smaller table dimension
 MOVE 25 TO MY-DIM.
 EXEC SQL EXECUTE
 DECLARE
 TYPE NumTabTyp IS TABLE OF REAL
 INDEX BY BINARY_INTEGER;
 median_bonus REAL;
 FUNCTION median (num_tab NumTabTyp, n INTEGER)
 RETURN REAL IS
 BEGIN
* -- compute median
 END;
 BEGIN
 median_bonus := median(:BONUS, :MY-DIM);
 ...
 END;
 END-EXEC.

STRING - - X X - X - X

UNSIGNED - - - - X - - -

VARCHAR - - X X - X - X

VARCHAR2 - - X X - X - X

VARNUM - - - - X - - -

VARRAW - - - X - X - -

Table 6–1 (Cont.) Legal Datatype Conversions

PL/SQL Table - - - - - - - -

Host Tables and PL/SQL

Embedded PL/SQL 6-13

Only 25 table elements are passed to the PL/SQL block because ARRAYLEN reduces
the host table from 100 to 25 elements. As a result, when the PL/SQL block is sent to
the server for execution, a much smaller host table is sent along. This saves time and,
in a networked environment, reduces network traffic.

Optional Keyword EXECUTE to ARRAYLEN Statement
The use of host tables used in a dynamic SQL Method 2 statement (see "Using Method
2" on page 9-10) may have two different interpretations based on the presence or
absence of the keyword to EXECUTE the ARRAYLEN statement. .

If the EXECUTE keyword is absent:

■ The PL/SQL block will be executed multiple times, with the actual number
determined by the minimum dimension of ARRAYLEN used.

■ The host array cannot be bound to a PL/SQL table.

If EXECUTE is present:

■ The host table must be bound to an index table.

■ The PL/SQL block will be executed once.

■ All host variables specified in the EXEC SQL EXECUTE statement must:

■ Be specified in an ARRAYLEN ... EXECUTE statement, or

■ Be a scalar.

The following Pro*COBOL example demonstrates how host tables can be used to
determine how many times a given PL/SQL block is executed. In this case, the
PL/SQL block will be execute 3 times resulting in 3 new rows in the emp table.

 ...
 01 DYNSTMT PIC X(80) VARYING.
 01 EMPNOTAB PIC S9(4) COMPUTATIONAL OCCURS 5 TIMES.
 01 ENAMETAB PIC X(10) OCCURS 3 TIMES.
 ...
 MOVE 1111 TO EMPNOTAB(1).
 MOVE 2222 TO EMPNOTAB(2).
 MOVE 3333 TO EMPNOTAB(3).
 MOVE 4444 TO EMPNOTAB(4).
 MOVE 5555 TO EMPNOTAB(5).

 MOVE "MICKEY" TO ENAMETAB(1).
 MOVE "MINNIE" TO ENAMETAB(2).
 MOVE "GOOFY" TO ENAMETAB(3).

 MOVE "BEGIN INSERT INTO emp(empno, ename) VALUES :b1, :b2; END;"
 TO DYNSTMT-ARR.
 MOVE 57 TO DYNSTMT-LEN.

 EXEC SQL PREPARE s1 FROM :DYNSTMT END-EXEC.
 EXEC SQL EXECUTE s1 USING :EMPNOTAB, :ENAMETAB END-EXEC.
 ...

Given the following PL/SQL procedure:

 CREATE OR REPLACE PACKAGE pkg AS
 TYPE tab IS TABLE OF NUMBER(5) INDEX BY BINARY_INTEGER;
 PROCEDURE proc1 (parm1 tab, parm2 NUMBER, parm3 tab);
 END;

Cursor Usage in Embedded PL/SQL

6-14 Pro*COBOL Programmer’s Guide

The following Pro*COBOL example demonstrates how to bind a host table to a
PL/SQL index table through dynamic method 2. Note the presence of the
ARRAYLEN...EXECUTE statement for all host arrays specified in the EXEC SQL
EXECUTE statement.

 ...
 01 DYNSTMT PIC X(80) VARYING.
 01 II PIC S9(4) COMP VALUE 2.
 01 INTTAB PIC S9(9) COMP OCCURS 3 TIMES.
 01 DIM PIC S9(9) COMP VALUE 3.

 EXEC SQL ARRAYLEN INTTAB (DIM) EXECUTE END-EXEC.
 ...
 MOVE 1 TO INTTAB(1).
 MOVE 2 TO INTTAB(2).
 MOVE 3 TO INTTAB(3).

 MOVE "BEGIN pkg.proc1 (:v1, :v2, :v3); end;";
 TO DYNSTMT-ARR.
 MOVE 37 TO DYNSTMT-LEN.

 EXEC SQL PREPARE s1 FROM :DYNSTMT END-EXEC.
 EXEC SQL EXECUTE s1 USING :INTTAB, :II, :INTTAB END-EXEC.
 ...

However, the following Pro*COBOL example will result in a precompile-time error
because there is no ARRAYLEN...EXECUTE statement for INTTAB2.

 ...
 01 DYNSTMT PIC X(80) VARYING.
 01 INTTAB PIC S9(9) COMP OCCURS 3 TIMES.
 01 INTTAB2 PIC S9(9) COMP OCCURS 3 TIMES.
 01 DIM PIC S9(9) COMP VALUE 3.

 EXEC SQL ARRAYLEN INTTAB (DIM) EXECUTE END-EXEC.
 ...
 MOVE 1 TO INTTAB(1).
 MOVE 2 TO INTTAB(2).
 MOVE 3 TO INTTAB(3).

 MOVE "BEGIN pkg.proc1 (:v1, :v2, :v3); end;";
 TO DYNSTMT-ARR.
 MOVE 37 TO DYNSTMT-LEN.

 EXEC SQL PREPARE s1 FROM :DYNSTMT END-EXEC.
 EXEC SQL EXECUTE s1 USING :INTTAB, :INTTAB2, :INTTAB END-EXEC.
 ...

Cursor Usage in Embedded PL/SQL
The maximum number of cursors your program can simultaneously use is determined
by the database initialization parameter OPEN_CURSORS. Normally, to prevent
OPEN_CURSORS being exceeded, the precompiler allows management of statement
cursors. The precompiler options HOLD_CURSOR, RELEASE_CURSOR and
MAXOPENCURSORS are used. (For more details on this subject, see "Embedded
PL/SQL Considerations" on page C-9.) While executing an embedded PL/SQL block
there will be one cursor, the parent cursor, associated with the entire PL/SQL block
and a separate child cursor for each statement executed during the execution of the
PL/SQL block. Because the PL/SQL block is passed to the server for execution, only

Stored PL/SQL and Java Subprograms

Embedded PL/SQL 6-15

the parent cursor can be tracked by the precompiler runtime library. Thus, it is possible
for applications that use a lot of cursors in this way to exceed OPEN_CURSORS.
Figure 6–1 shows how to calculate the maximum number of cursors used.

Figure 6–1 Maximum Cursors in Use

This illustration shows how to calculate the maximum number of cursors used.

Developers should be aware of this situation and plan for this in the setting of OPEN_
CURSORS and MAXOPENCURSORS.

If there are problems with this, you may wish to free all child cursors after a SQL
statement is executed.

This can be achieved by setting RELEASE_CURSOR=YES and HOLD_CURSOR=NO.
Because the use of the first setting for the entire program is likely to have an impact on
performance, you can set these options in line as follows:

 EXEC ORACLE OPTION (RELEASE_CURSOR=YES) END-EXEC.
* -- first embedded PL/SQL block
 EXEC ORACLE OPTION (RELEASE_CURSOR=NO)END-EXEC.
* -- embedded SQL statements
 EXEC ORACLE OPTION (RELEASE_CURSOR=YES)END-EXEC.
* -- second embedded PL/SQL block
 EXEC ORACLE OPTION (RELEASE_CURSOR=NO)END-EXEC.
* -- embedded SQL statements

Stored PL/SQL and Java Subprograms
Unlike anonymous blocks, PL/SQL subprograms (procedures and functions) and Java
methods can be compiled separately, stored in the database, and invoked.

A subprogram explicitly created using an Oracle tool such as SQL*Plus is called a
stored subprogram. Once compiled and stored in the data dictionary, it is a database
object can be re-executed without being re-compiled.

When a subprogram within a PL/SQL block or stored subprogram is sent to the
database by your application, it is called an inline subprogram and is compiled by the
database. Pro*COBOL sends the statement to the server for execution.

Subprograms defined within a package are considered part of the package, and so are
called packaged subprograms. Stored subprograms not defined within a package are
called standalone subprograms.

SQL statement cursors
PL/SQL parent cursors
PL/SQL child cursors
6 cursors for overhead

Sum of cursors in use

Must not exceed OPEN_CURSORS

+

Stored PL/SQL and Java Subprograms

6-16 Pro*COBOL Programmer’s Guide

Creating Stored Subprograms
You can embed the SQL statements CREATE FUNCTION, CREATE PROCEDURE,
and CREATE PACKAGE in a COBOL program, as the following example shows:

 EXEC SQL CREATE
 FUNCTION sal_ok (salary REAL, title CHAR)
 RETURN BOOLEAN AS
 min_sal REAL;
 max_sal REAL;
 BEGIN
 SELECT losal, hisal INTO min_sal, max_sal
 FROM sals
 WHERE job = title;
 RETURN (salary >= min_sal) AND
 (salary <= max_sal);
 END sal_ok;
 END-EXEC.

Notice that the embedded CREATE {FUNCTION | PROCEDURE | PACKAGE}
statement is a hybrid. Like all other embedded CREATE statements, it begins with the
keywords EXEC SQL (not EXEC SQL EXECUTE).

If an embedded CREATE {FUNCTION | PROCEDURE | PACKAGE} statement fails,
Oracle9i generates a warning, not an error. For the full syntax of the CREATE
statement see the Oracle Database SQL Reference.

Calling a Stored PL/SQL or Java Subprogram
To call a stored subprogram from your host program, you can use either an
anonymous PL/SQL block or the CALL embedded SQL statement.

Anonymous PL/SQL Block
The following example calls a standalone procedure named raise_salary:

 EXEC SQL EXECUTE
 BEGIN
 raise_salary(:emp_id, :increase);
 END;
 END-EXEC.

Notice that stored subprograms can take parameters. In this example, the actual
parameters emp_id and increase are host variables.

In the next example, the procedure raise_salary is stored in a package named emp_
actions, so you must use dot notation to fully qualify the procedure call:

 EXEC SQL EXECUTE
 BEGIN
 emp_actions.raise_salary(:emp_id, :increase);
 END;
 END-EXEC.

An actual IN parameter can be a literal, host variable, host table, PL/SQL constant or
variable, PL/SQL table, PL/SQL user-defined record, subprogram call, or expression.
However, an actual OUT parameter cannot be a literal, subprogram call, or expression.

You must use precompiler option SQLCHECK=SEMANTICS with an embedded
PL/SQL block.

Stored PL/SQL and Java Subprograms

Embedded PL/SQL 6-17

CALL Statement
The concepts presented earlier for the embedded PL/SQL block holds true for the
CALL statement. The CALL embedded SQL statement has the form:

 EXEC SQL
 CALL [schema.][package.]stored_proc[@db_link](arg1, ...)
 [INTO :ret_var[[INDICATOR]:ret_ind]]
 END-EXEC.

where:

schema
the schema containing the procedure

package
the package containing the procedure

stored_proc
 is the Java or PL/SQL stored procedure to be called

db_link
is the optional remote database link

arg1...
is the list of arguments (variables, literals, or expressions) passed,

ret_var
 is the optional host variable which receives the result

ind_var
the optional indicator variable for ret_var.

You can use either SQLCHECK=SYNTAX, or SQLCHECK=SEMANTICS with the
CALL statement.

CALL Example
If you have created a PL/SQL function fact (stored in the package mathpkg) that
takes an integer as input and returns its factorial in an integer:

 EXEC SQL CREATE OR REPLACE PACKAGE BODY mathpkg as
 function fact(n IN INTEGER) RETURN INTEGER AS
 BEGIN
 IF (n <= 0) then return 1;
 ELSE return n * fact(n - 1);
 END IF;
 END fact;
 END mathpkge;
 END-EXEC.

then to use fact in a Pro*COBOL application:

 ...

 01 N PIC S9(4) COMP.
 01 FACT PIC S9(9) COMP.
...
 EXEC SQL CALL mathpkge.fact(:N) INTO :FACT END-EXEC.
...

For more information about this statement, see "CALL (Executable Embedded SQL)"
on page E-9. For a complete explanation of passing arguments and other issues, see
Oracle Database Application Developer's Guide - Fundamentals, "External Routines"
chapter.

Sample Program 9: Calling a Stored Procedure

6-18 Pro*COBOL Programmer’s Guide

Using Dynamic PL/SQL
Recall that Pro*COBOL treats an entire PL/SQL block like a single SQL statement.
Therefore, you can store a PL/SQL block in a string host variable. Then, if the block
contains no host variables, you can use dynamic SQL Method 1 to execute the PL/SQL
string. Or, if the block contains a known number of host variables, you can use
dynamic SQL Method 2 to prepare and execute the PL/SQL string. If the block
contains an unknown number of host variables, you must use dynamic SQL Method 4.
For more information, refer to Chapter 9, "Oracle Dynamic SQL", Chapter 10, "ANSI
Dynamic SQL"and Chapter 11, "Oracle Dynamic SQL: Method 4".

Subprograms Restriction
In dynamic SQL Method 4, a host table cannot be bound to a PL/SQL procedure with
a parameter of type TABLE.

Sample Program 9: Calling a Stored Procedure
Before trying the sample program, you must create a PL/SQL package named
calldemo, by running the following script, titled CALLDEMO.SQL, which is supplied
with Pro*COBOL. The script can be found in the Pro*COBOL demo library. Check
your system-specific Oracle documentation for exact spelling of the the name of the
script.

CREATE OR REPLACE PACKAGE calldemo AS

 TYPE name_array IS TABLE OF emp.ename%type
 INDEX BY BINARY_INTEGER;
 TYPE job_array IS TABLE OF emp.job%type
 INDEX BY BINARY_INTEGER;
 TYPE sal_array IS TABLE OF emp.sal%type
 INDEX BY BINARY_INTEGER;

 PROCEDURE get_employees(
 dept_number IN number, -- department to query
 batch_size IN INTEGER, -- rows at a time
 found IN OUT INTEGER, -- rows actually returned
 done_fetch OUT INTEGER, -- all done flag
 emp_name OUT name_array,
 job OUT job_array,
 sal OUT sal_array);

END calldemo;
/

CREATE OR REPLACE PACKAGE BODY calldemo AS

 CURSOR get_emp (dept_number IN number) IS
 SELECT ename, job, sal FROM emp
 WHERE deptno = dept_number;

 -- Procedure "get_employees" fetches a batch of employee
 -- rows (batch size is determined by the client/caller
 -- of the procedure). It can be called from other
 -- stored procedures or client application programs.
 -- The procedure opens the cursor if it is not
 -- already open, fetches a batch of rows, and
 -- returns the number of rows actually retrieved. At

Sample Program 9: Calling a Stored Procedure

Embedded PL/SQL 6-19

 -- end of fetch, the procedure closes the cursor.

 PROCEDURE get_employees(
 dept_number IN number,
 batch_size IN INTEGER,
 found IN OUT INTEGER,
 done_fetch OUT INTEGER,
 emp_name OUT name_array,
 job OUT job_array,
 sal OUT sal_array) IS

 BEGIN
 IF NOT get_emp%ISOPEN THEN -- open the cursor if
 OPEN get_emp(dept_number); -- not already open
 END IF;

 -- Fetch up to "batch_size" rows into PL/SQL table,
 -- tallying rows found as they are retrieved. When all
 -- rows have been fetched, close the cursor and exit
 -- the loop, returning only the last set of rows found.

 done_fetch := 0; -- set the done flag FALSE
 found := 0;

 FOR i IN 1..batch_size LOOP
 FETCH get_emp INTO emp_name(i), job(i), sal(i);
 IF get_emp%NOTFOUND THEN -- if no row was found
 CLOSE get_emp;
 done_fetch := 1; -- indicate all done
 EXIT;
 ELSE
 found := found + 1; -- count row
 END IF;
 END LOOP;
 END;
END;
/

The following sample program connects to the database, prompts the user for a
department number and then calls a PL/SQL procedure named get_employees, which is
stored in package calldemo. The procedure declares three PL/SQL tables as OUT
formal parameters and then fetches a batch of employee data into the PL/SQL tables.
The matching actual parameters are host tables. When the procedure finishes, row
values in the PL/SQL tables are automatically assigned to the corresponding elements
in the host tables. The program calls the procedure repeatedly, displaying each batch
of employee data, until no more data is found.

 * Sample Program 9: Calling a Stored Procedure
 *
 * This program connects to ORACLE, prompts the user for a
 * department number, then calls a PL/SQL stored procedure named
 * GET_EMPLOYEES, which is stored in package CALLDEMO. The
 * procedure declares three PL/SQL tables ast OUT formal
 * parameters, then fetches a batch of employee data into the
 * PL/SQL tables. The matching actual parameters are host tables.
 * When the procedure finishes, it automatically assigns all row
 * values in the PL/SQL tables to corresponding elements in the
 * host tables. The program calls the procedure repeatedly,
 * displaying each batch of employee data, until no more data

Sample Program 9: Calling a Stored Procedure

6-20 Pro*COBOL Programmer’s Guide

 * is found.
 * Use option picx=varchar2 when precompiling this sample program.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CALL-STORED-PROC.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(15) VARYING.
 01 PASSWD PIC X(15) VARYING.
 01 DEPT-NUM PIC S9(9) COMP.
 01 EMP-TABLES.
 05 EMP-NAME OCCURS 10 TIMES PIC X(10).
 05 JOB-TITLE OCCURS 10 TIMES PIC X(10).

 05 SALARY OCCURS 10 TIMES COMP-2.

 01 DONE-FLAG PIC S9(9) COMP.
 01 TABLE-SIZE PIC S9(9) COMP VALUE 10.
 01 NUM-RET PIC S9(9) COMP.
 01 SQLCODE PIC S9(9) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 01 COUNTER PIC S9(9) COMP.
 01 DISPLAY-VARIABLES.
 05 D-EMP-NAME PIC X(10).
 05 D-JOB-TITLE PIC X(10).

 05 D-SALARY PIC Z(5)9.

 05 D-DEPT-NUM PIC 9(2).

 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.

 BEGIN-PGM.
 EXEC SQL WHENEVER SQLERROR DO
 PERFORM SQL-ERROR END-EXEC.

 PERFORM LOGON.
 PERFORM INIT-TABLES VARYING COUNTER FROM 1 BY 1
 UNTIL COUNTER > 10.
 PERFORM GET-DEPT-NUM.
 PERFORM DISPLAY-HEADER.
 MOVE ZERO TO DONE-FLAG.
 MOVE ZERO TO NUM-RET.
 PERFORM FETCH-BATCH UNTIL DONE-FLAG = 1.
 PERFORM LOGOFF.

 INIT-TABLES.
 MOVE SPACE TO EMP-NAME(COUNTER).
 MOVE SPACE TO JOB-TITLE(COUNTER).
 MOVE ZERO TO SALARY(COUNTER).

 GET-DEPT-NUM.
 MOVE ZERO TO DEPT-NUM.

Sample Program 9: Calling a Stored Procedure

Embedded PL/SQL 6-21

 DISPLAY " ".
 DISPLAY "ENTER DEPARTMENT NUMBER: "
 WITH NO ADVANCING.

 ACCEPT D-DEPT-NUM.

 MOVE D-DEPT-NUM TO DEPT-NUM.

 DISPLAY-HEADER.
 DISPLAY " ".
 DISPLAY "EMPLOYEE JOB TITLE SALARY".
 DISPLAY "-------- --------- ------".

 FETCH-BATCH.
 EXEC SQL EXECUTE
 BEGIN
 CALLDEMO.GET_EMPLOYEES
 (:DEPT-NUM, :TABLE-SIZE,
 :NUM-RET, :DONE-FLAG,
 :EMP-NAME, :JOB-TITLE, :SALARY);
 END;
 END-EXEC.
 PERFORM PRINT-ROWS VARYING COUNTER FROM 1 BY 1
 UNTIL COUNTER > NUM-RET.

 PRINT-ROWS.
 MOVE EMP-NAME(COUNTER) TO D-EMP-NAME.
 MOVE JOB-TITLE(COUNTER) TO D-JOB-TITLE.
 MOVE SALARY(COUNTER) TO D-SALARY.
 DISPLAY D-EMP-NAME, " ",
 D-JOB-TITLE, " ",
 D-SALARY.

 LOGON.
 MOVE "SCOTT" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "TIGER" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

 LOGOFF.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY.".
 DISPLAY " ".
 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

Cursor Variables

6-22 Pro*COBOL Programmer’s Guide

Remember that the datatype of each actual parameter must be convertible to the
datatype of its corresponding formal parameter. Further, before a stored subprogram
exits, all OUT formal parameters must be assigned values. Otherwise, the values of
corresponding actual parameters are indeterminate.

Remote Access
PL/SQL lets you access remote databases through database links. Typically, database
links are established by your DBA and stored in the data dictionary. A database link
tells your program where the remote database is located, the path to it, and what
username and password to use. The following example uses the database link dallas to
call the raise_salary procedure:

 EXEC SQL EXECUTE
 BEGIN
 raise_salary@dallas(:emp_id, :increase);
 END;
 END-EXEC.

You can create synonyms to provide location transparency for remote subprograms, as
the following example shows:

 CREATE PUBLIC SYNONYM raise_salary FOR raise_salary@dallas;

Cursor Variables
You can use cursor variables in your Pro*COBOL programs to process multi-row
queries using static embedded SQL. A cursor variable identifies a cursor reference that
is defined and opened on the database server, using PL/SQL. See PL/SQL User's Guide
and Reference for complete information about cursor variables.

Like a cursor, a cursor variable points to the current row in the active set of a
multi-row query. Cursors differ from cursor variables the way constants differ from
variables. While a cursor is static, a cursor variable is dynamic, because it is not tied to
a specific query. You can open a cursor variable for any type-compatible query.

You can assign new values to a cursor variable and pass it as a parameter to
subprograms, including subprograms stored in a database. This gives you a
convenient way to centralize data retrieval.

First, you declare the cursor variable. After declaring the variable, you use these
statements to control a cursor variable:

■ ALLOCATE

■ OPEN ... FOR

■ FETCH

■ CLOSE

■ FREE

After you declare the cursor variable and allocate memory for it, you must pass it as
an input host variable (bind variable) to PL/SQL, OPEN it FOR a multi-row query on
the server side, FETCH from it on the client side and then CLOSE it on either side.

The advantages of cursor variables are

■ Ease of maintenance. Queries are centralized, in the stored procedure that opens
the cursor variable. If you need to change the cursor, you only need to make the

Cursor Variables

Embedded PL/SQL 6-23

change in one place: the stored procedure. There is no need to change each
application.

■ Increased Security. The user of the application (the username when the
Pro*COBOL application connected to the database) must have execute permission
on the stored procedure that opens the cursor. This user, however, does not need to
have read permission on the tables used in the query. This capability can be used
to limit access to the columns in the table.

Declaring a Cursor Variable
You declare a Pro*COBOL cursor variable using the SQL-CURSOR pseudotype. For
example:

 WORKING-STORAGE SECTION.
 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 CUR-VAR SQL-CURSOR.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.

A SQL-CURSOR variable is implemented as a COBOL group item in the code that
Pro*COBOL generates. A cursor variable is just like any other Pro*COBOL host
variable.

Allocating a Cursor Variable
Before you can OPEN or FETCH from a cursor variable, you must initialize it using the
Pro*COBOL ALLOCATE command. For example, to initialize the cursor variable
CUR-VAR that was declared in the previous section, write the following statement:

 EXEC SQL ALLOCATE :CUR-VAR END-EXEC.

Allocating a cursor variable does not require a call to the server, either at precompile
time or at runtime.

The AT clause cannot be used in an ALLOCATE statement.

Caution: Allocating a cursor variable does cause heap memory to be used. For this
reason, avoid allocating a cursor variable in a program loop.

Opening a Cursor Variable
You must use an embedded anonymous PL/SQL block to open a cursor variable on
the database server. The anonymous PL/SQL block may open the cursor either
indirectly by calling a PL/SQL stored procedure that opens the cursor (and defines it
in the same statement) or directly from the Pro*COBOL program.

Opening Indirectly through a Stored PL/SQL Procedure
Consider the following PL/SQL package stored in the database:

CREATE PACKAGE demo_cur_pkg AS
 TYPE EmpName IS RECORD (name VARCHAR2(10));
 TYPE cur_type IS REF CURSOR RETURN EmpName;
 PROCEDURE open_emp_cur (
 curs IN OUT curtype,
 dept_num IN number);
END;

Cursor Variables

6-24 Pro*COBOL Programmer’s Guide

CREATE PACKAGE BODY demo_cur_pkg AS
 CREATE PROCEDURE open_emp_cur (
 curs IN OUT curtype,
 dept_num IN number) IS
 BEGIN
 OPEN curs FOR
 SELECT ename FROM emp
 WHERE deptno = dept_num
 ORDER BY ename ASC;
 END;
END;

After this package has been stored, you can open the cursor curs by first calling the
open_emp_cur stored procedure from your Pro*COBOL program and then issuing a
FETCH from the cursor variable emp_cursor in the program. For example:

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 emp_cursor sql-cursor.
 01 DEPT-NUM PIC S9(4).
 01 EMP-NAME PIC X(10) VARYING.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...

 PROCEDURE DIVISION.
 ...
* Allocate the cursor variable.
 EXEC SQL
 ALLOCATE :emp-cursor
 END-EXEC.
 ...
 MOVE 30 TO dept_num.
* Open the cursor on the Oracle Server.
 EXEC SQL EXECUTE
 begin
 demo_cur_pkg.open_emp_cur(:emp-cursor, :dept-num);
 END;
 END-EXEC.
 EXEC SQL
 WHENEVER NOT FOUND DO PERFORM SIGN-OFF
 END-EXEC.
 FETCH-LOOP.
 EXEC SQL
 FETCH :emp_cursor INTO :EMP-NAME
 END-EXEC.
 DISPLAY "Employee Name: ",:EMP-NAME.
 GO TO FETCH-LOOP.
 ...
 SIGN-OFF.
 ...

Opening Directly from Your Pro*COBOL Application
To open a cursor using a PL/SQL anonymous block in a Pro*COBOL program, define
the cursor in the anonymous block. Consider the following example:

 PROCEDURE DIVISION.
 ...
 EXEC SQL EXECUTE
 begin

Cursor Variables

Embedded PL/SQL 6-25

 OPEN :emp_cursor FOR SELECT ename FROM emp
 WHERE deptno = :DEPT-NUM;
 end;
 END-EXEC.
 ...

Fetching from a Cursor Variable
After opening a cursor variable for a multi-row query, you use the FETCH statement
to retrieve rows as you would from a static cursor. The syntax follows:

 EXEC SQL FETCH cursor_variable_name
 INTO {record_name | variable_name[, variable_name, ...]}
 END-EXEC.

Each column value returned by the cursor variable is assigned to a corresponding field
or variable in the INTO clause, providing that their datatypes are compatible.

The FETCH statement must be executed on the client side. The following example
fetches rows into a host record named EMP-REC:

* -- exit loop when done fetching
 EXEC SQL
 WHENEVER NOT FOUND DO PERFORM NO-MORE
 END-EXEC.
 PERFORM
* -- fetch row into record
 EXEC SQL FETCH :EMP-CUR INTO :EMP-REC END-EXEC
* -- test for transfer out of loop
 ...
* -- process the data
 ...
 END-PERFORM.
 ...
 NO-MORE.
 ...

Use the embedded SQL FETCH INTO command to retrieve the rows selected when
you opened the cursor variable. For example:

 EXEC SQL
 FETCH :emp_cursor INTO :EMP-INFO:EMP-INFO-IND
 END-EXEC.

Before you can FETCH from a cursor variable, the variable must be initialized and
opened. You cannot FETCH from an unopened cursor variable.

Closing a Cursor Variable
Use the embedded SQL CLOSE statement to close a cursor variable. At this point its
active set becomes undefined. The syntax follows:

 EXEC SQL CLOSE cursor_variable_name END-EXEC.

The CLOSE statement can be executed on the client side or the server side. The
following example closes the cursor variable CUR-VAR when the last row is processed:

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
* Declare the cursor variable.
 01 CUR-VAR SQL-CURSOR.

Cursor Variables

6-26 Pro*COBOL Programmer’s Guide

 ...
 EXEC SQL END DECLARE SECTION END-EXEC.

 PROCEDURE DIVISION.
* Allocate and open the cursor variable, then
* Fetch one or more rows.
 ...
* Close the cursor variable.
 EXEC SQL
 CLOSE :CUR-VAR
 END-EXEC.

Freeing a Cursor Variable
To free memory allocated for the cursor variable, CUR-VAR, use the FREE statement
after the CLOSE:

* Free the cursor variable memory.
 EXEC SQL
 FREE :CUR-VAR
 END-EXEC.

Restrictions on Cursor Variables
The following restrictions apply to the use of cursor variables:

■ Cursor variables are not supported in dynamic SQL.

■ You can only use cursor variables with the ALLOCATE, FETCH, FREE, and
CLOSE commands. The DECLARE CURSOR command does not apply to cursor
variables.

■ You cannot use the AT clause with the ALLOCATE command.

Sample Program 11: Cursor Variables
The following sample programs—a SQL script (SAMPLE11.sql) and a Pro*COBOL
program (SAMPLE11.pco)—demonstrate how you can use cursor variables in
Pro*COBOL.

SAMPLE11.SQL
Following is the PL/SQL source code for a creating a package that declares and opens
a cursor variable:

CONNECT SCOTT/TIGER
CREATE OR REPLACE PACKAGE emp_demo_pkg AS
 TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE open_cur (
 cursor IN OUT emp_cur_type,
 dept_num IN number);
END emp_demo_pkg;
/
CREATE OR REPLACE PACKAGE BODY emp_demo_pkg AS

 PROCEDURE open_cur (
 cursor IN OUT emp_cur_type,
 dept_num IN number) IS
 BEGIN
 OPEN cursor FOR SELECT * FROM emp
 WHERE deptno = dept_num

Cursor Variables

Embedded PL/SQL 6-27

 ORDER BY ename ASC;
 END;
END emp_demo_pkg;
/

SAMPLE11.PCO
Following is a Pro*COBOL sample program, SAMPLE11.PCO, that uses the cursor
variable declared in the SAMPLE11.sql example to fetch employee names, salaries, and
commissions from the EMP table:

 * Sample Program 11: Cursor Variable Operations *
 * *
 * This program logs on to ORACLE, allocates and opens a cursor *
 * variable fetches the names, salaries, and commissions of all *
 * salespeople, displays the results, then closes the cursor. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CURSOR-VARIABLES.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(15) VARYING.
 01 PASSWD PIC X(15) VARYING.
 01 HOST PIC X(15) VARYING.
 01 EMP-CUR SQL-CURSOR.
 01 EMP-INFO.
 05 EMP-NUM PIC S9(4) COMP.
 05 EMP-NAM PIC X(10) VARYING.
 05 EMP-JOB PIC X(10) VARYING.
 05 EMP-MGR PIC S9(4) COMP.
 05 EMP-DAT PIC X(10) VARYING.
 05 EMP-SAL PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 05 EMP-COM PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 05 EMP-DEP PIC S9(4) COMP.
 01 EMP-INFO-IND.
 05 EMP-NUM-IND PIC S9(4) COMP.
 05 EMP-NAM-IND PIC S9(4) COMP.
 05 EMP-JOB-IND PIC S9(4) COMP.
 05 EMP-MGR-IND PIC S9(4) COMP.
 05 EMP-DAT-IND PIC S9(4) COMP.
 05 EMP-SAL-IND PIC S9(4) COMP.
 05 EMP-COM-IND PIC S9(4) COMP.
 05 EMP-DEP-IND PIC S9(4) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 01 DISPLAY-VARIABLES.
 05 D-DEP-NUM PIC Z(3)9.
 05 D-EMP-NAM PIC X(10).
 05 D-EMP-SAL PIC Z(4)9.99.
 05 D-EMP-COM PIC Z(4)9.99.
 05 D-EMP-DEP PIC 9(2).

Cursor Variables

6-28 Pro*COBOL Programmer’s Guide

 PROCEDURE DIVISION.

 BEGIN-PGM.
 EXEC SQL
 WHENEVER SQLERROR DO PERFORM SQL-ERROR
 END-EXEC.
 PERFORM LOGON.
 EXEC SQL
 ALLOCATE :EMP-CUR
 END-EXEC.
 DISPLAY "Enter department number (0 to exit): "
 WITH NO ADVANCING.
 ACCEPT D-EMP-DEP.
 MOVE D-EMP-DEP TO EMP-DEP.
 IF EMP-DEP <= 0
 GO TO SIGN-OFF
 END-IF.
 MOVE EMP-DEP TO D-DEP-NUM.
 EXEC SQL EXECUTE
 BEGIN
 emp_demo_pkg.open_cur(:EMP-CUR, :EMP-DEP);
 END;
 END-EXEC.
 DISPLAY " ".
 DISPLAY "For department ", D-DEP-NUM, ":".
 DISPLAY " ".
 DISPLAY "EMPLOYEE SALARY COMMISSION".
 DISPLAY "---------- ---------- ----------".

 FETCH-LOOP.
 EXEC SQL
 WHENEVER NOT FOUND GOTO CLOSE-UP
 END-EXEC.
 MOVE SPACES TO EMP-NAM-ARR.
 EXEC SQL FETCH :EMP-CUR
 INTO :EMP-NUM:EMP-NUM-IND,
 :EMP-NAM:EMP-NAM-IND,
 :EMP-JOB:EMP-JOB-IND,
 :EMP-MGR:EMP-MGR-IND,
 :EMP-DAT:EMP-DAT-IND,
 :EMP-SAL:EMP-SAL-IND,
 :EMP-COM:EMP-COM-IND,
 :EMP-DEP:EMP-DEP-IND
 END-EXEC.
 MOVE EMP-SAL TO D-EMP-SAL.
 IF EMP-COM-IND = 0
 MOVE EMP-COM TO D-EMP-COM
 DISPLAY EMP-NAM-ARR, " ", D-EMP-SAL,
 " ", D-EMP-COM
 ELSE
 DISPLAY EMP-NAM-ARR, " ", D-EMP-SAL,
 " N/A"
 END-IF.
 GO TO FETCH-LOOP.

 LOGON.
 MOVE "SCOTT" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.

Cursor Variables

Embedded PL/SQL 6-29

 MOVE "TIGER" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 MOVE "INST1_ALIAS" TO HOST-ARR.
 MOVE 11 TO HOST-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

 CLOSE-UP.
 EXEC SQL
 CLOSE :EMP-CUR
 END-EXEC.
 EXEC SQL
 FREE :EMP-CUR
 END-EXEC.
 SIGN-OFF.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY.".
 DISPLAY " ".
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Cursor Variables

6-30 Pro*COBOL Programmer’s Guide

Host Tables 7-1

7
Host Tables

This chapter looks at using host tables to simplify coding and improve program
performance. You learn how to manipulate Oracle data using host tables, how to
operate on all the elements of a host table with a single SQL statement, how to limit
the number of table elements processed, and how to use tables of group items.

The main sections are:

■ Host Tables

■ Advantages of Host Tables

■ Selecting into Tables

■ Selecting into Tables

■ Inserting with Tables

■ Updating with Tables

■ Deleting with Tables

■ Using Indicator Tables

■ The FOR Clause

■ The WHERE Clause

■ Mimicking the CURRENT OF Clause

■ Tables of Group Items as Host Variables

Host Tables
A host table (also known as an array) is a set of related data items, called elements,
associated with a single variable. An indicator variable defined as a table is called an
indicator table. An indicator table can be associated with any host table that is
NULLABLE.

Advantages of Host Tables
Host tables can ease programming and can offer greatly improved performance. When
writing an application, you are usually faced with the problem of storing and
manipulating large amounts of data. Host tables simplify the task of accessing
multiple return values.

Host tables let you manipulate multiple rows with a single SQL statement. Thus,
communications overhead is reduced markedly, especially in a networked
environment. For example, suppose you want to insert information about 300

Tables in Data Manipulation Statements

7-2 Pro*COBOL Programmer’s Guide

employees into the EMP table. Without host tables your program must do 300
individual INSERTs—one for each employee. With host tables, only one INSERT need
be done.

Tables in Data Manipulation Statements
Pro*COBOL allows the use of host tables in data manipulation statements. You can use
host tables as input variables in the INSERT, UPDATE, and DELETE statements and as
output variables in the INTO clause of SELECT and FETCH statements.

The syntax used for host tables and for simple host variables is nearly the same. One
difference is the optional FOR clause, which lets you control table processing. Also,
there are restrictions on mixing host tables and simple host variables in a SQL
statement.

Declaring Host Tables
You declare and dimension host tables in the Data Division. In the following example,
three host tables are declared, each dimensioned with 50 elements:

 01 EMP-TABLES.
 05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 EMP-NAME OCCURS 50 TIMES PIC X(10.
 05 SALARY OCCURS 50 TIMES PIC S9(5)V99 COMP-3.

You can use the INDEXED BY phrase in the OCCURS clause to specify an index, as the
next example shows:

 ...
 01 EMP-TABLES.
 05 EMP-NUMBER PIC X(10) OCCURS 50 TIMES
 INDEXED BY EMP-INDX.
 ...
 ...
The INDEXED BY phrase implicitly declares the index item EMP-INDX.

Restrictions
Multi-dimensional host tables are not allowed. Thus, the two-dimensional host table
declared in the following example is invalid:

 ...
 01 NATION.
 05 STATE OCCURS 50 TIMES.
 10 STATE-NAME PIC X(25).
 10 COUNTY OCCURS 25 TIMES.
 15 COUNTY-NAME PIX X(25).
 ...

Variable-length host tables are not allowed either. For example, the following
declaration of EMP-REC is invalid for a host variable:

 ...
 01 EMP-FILE.
 05 REC-COUNT PIC S9(3) COMP.
 05 EMP-REC OCCURS 0 TO 250 TIMES
 DEPENDING ON REC-COUNT.
 ...

Tables in Data Manipulation Statements

Host Tables 7-3

The maximum number of host table elements in a SQL statement that is accessible in
one fetch is 32K (or possibly greater, depending on your platform and the available
memory). If you try to access a number that exceeds the maximum, you get a
"parameter out of range" runtime error. If the statement is an anonymous PL/SQL
block, the number of elements accessible is limited to 32512 divided by the size of the
datatype.

Referencing Host Tables
If you use multiple host tables in a single SQL statement, their dimensions should be
the same. This is not a requirement, however, because Pro*COBOL always uses the
smallest dimension for the SQL operation. In the following example, only 25 rows are
inserted

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-TABLES.
 05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
 05 EMP-NAME PIC X(10) OCCURS 50 TIMES.
 05 DEPT-NUMBER PIC S9(4) COMP OCCURS 25 TIMES.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
* Populate host tables here.
 ...
 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:EMP-NUMBER, :EMP-NAME, :DEPT-NUMBER)
 END-EXEC.
Host tables must not be subscripted in SQL statements. For example, the following
INSERT statement is invalid:

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-TABLES.
 05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
 05 EMP-NAME PIC X(10) OCCURS 50 TIMES.
 05 DEPT-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
 PERFORM LOAD-EMP VARYING J FROM 1 BY 1 UNTIL J > 50.
 ...
 LOAD-EMP.
 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:EMP-NUMBER(J), :EMP-NAME(J),
 :DEPT-NUMBER(J))
 END-EXEC.

You need not process host tables in a PERFORM VARYING statement. Instead, use the
un-subscripted table names in your SQL statement. Pro*COBOL treats a SQL
statement containing host tables of dimension n like the same statement executed n
times with n different scalar host variables, but more efficiently.

Tables in Data Manipulation Statements

7-4 Pro*COBOL Programmer’s Guide

Using Indicator Tables
You can use indicator tables to assign NULLs to elements in input host tables and to
detect NULLs or truncated values (of character columns only) in output host tables.
The following example shows how to conduct an INSERT with indicator tables:

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-TABLES.
 05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
 05 DEPT-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
 05 COMMISSION PIC S9(5)V99 COMP-3 OCCURS 50 TIMES.
 05 COMM-IND PIC S9(4) COMP OCCURS 50 TIMES.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
* Populate the host and indicator tables.
* Set indicator table to all zeros.
 ...
 EXEC SQL INSERT INTO EMP (EMPNO, DEPTNO, COMM)
 VALUES (:EMP-NUMBER, :DEPT-NUMBER,
 :COMMISSION:COMM-IND)
 END-EXEC.

The dimension of the indicator table must be greater than or equal to the dimension of
the host table.

When using host table SELECT and FETCH, it is recommended that you use indicator
variables. That way you can test for NULLs in the associated output host table.

If a NULL is selected or fetched into a host variable that has no associated indicator
variable, your program stops processing, sets sqlca.sqlerrd(3) to the number of rows
processed, and returns an error.

NULL is selected by default, but you can switch it off by using the UNSAFE_NULL =
YES option.

When DBMS=V7 or V8, your program does not consider truncation to be an error.

Host Group Item Containing Tables
Note: If you have a host group item containing tables, then you must use a
corresponding group item of tables for an indicator. For example, if your group item is
the following:

 01 DEPARTURE.
 05 HOUR PIC X(2) OCCURS 3 TIMES.
 05 MINUTE PIC X(2) OCCURS 3 TIMES.

the following indicator variable cannot be used:

 01 DEPARTURE-IND PIC S9(4) COMP OCCURS 6 TIMES.

The indicator variable you use with the group item of tables must itself be a group
item of tables such as the following:

 01 DEPARTURE-IND.
 05 HOUR-IND PIC S9(4) COMP OCCURS 3 TIMES.
 05 MINUTE-IND PIC S9(4) COMP OCCURS 3 TIMES.

Selecting into Tables

Host Tables 7-5

Oracle Restrictions
Mixing scalar host variables with host tables in the VALUES, SET, INTO, or WHERE
clause is not allowed. If any of the host variables is a host table, all must be host tables.

You cannot use host tables with the CURRENT OF clause in an UPDATE or DELETE
statement.

ANSI Restriction and Requirements
The array interface is an Oracle extension to the ANSI/ISO embedded SQL standard.
However, when you precompile with MODE=ANSI, array SELECTs and FETCHes are
still allowed. The use of arrays can be flagged using the FIPS flagger precompiler
option, if desired.

Selecting into Tables
You can use host tables as output variables in the SELECT statement. If you know the
maximum number of rows the select will return, simply define the host tables with
that number of elements. In the following example, you select directly into three host
tables. The table was defined with 50 rows, with the knowledge that the select will
return no more than 50 rows.

 01 EMP-REC-TABLES.
 05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 EMP-NAME OCCURS 50 TIMES PIC X(10) VARYING.
 05 SALARY OCCURS 50 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 ...
 EXEC SQL SELECT ENAME, EMPNO, SAL
 INTO :EMP-NAME, :EMP-NUMBER, :SALARY
 FROM EMP
 WHERE SAL > 1000
 END-EXEC.

In this example, the SELECT statement returns up to 50 rows. If there are fewer than 50
eligible rows or you want to retrieve only 50 rows, this method will suffice. However,
if there are more than 50 eligible rows, you cannot retrieve all of them this way. If you
reexecute the SELECT statement, it just returns the first 50 rows again, even if more are
eligible. You must either define a larger table or declare a cursor for use with the
FETCH statement.

If a SELECT INTO statement returns more rows than the size of the table you defined,
Oracle9i issues an error message unless you specify SELECT_ERROR=NO. For more
information about the option, see "SELECT_ERROR" on page 14-27.

Batch Fetches
Use batch fetches when the size of data you are processing is large (greater than about
100 rows) as well as when you do not know how many rows will be returned.

 If you do not know the maximum number of rows a select will return, you can declare
and open a cursor, and then fetch from it in "batches." Batch fetches within a loop let
you retrieve a large number of rows with ease. Each fetch returns the next batch of
rows from the current active set. In the following example, you fetch in 20-row
batches:

 ...
 01 EMP-REC-TABLES.

Selecting into Tables

7-6 Pro*COBOL Programmer’s Guide

 05 EMP-NUMBER OCCURS 20 TIMES PIC S9(4) COMP.
 05 EMP-NAME OCCURS 20 TIMES PIC X(10) VARYING.
 05 SALARY OCCURS 20 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 ...
 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT EMPNO, SAL FROM EMP
 END-EXEC.
 ...
 EXEC SQL OPEN EMPCURSOR END-EXEC.
 ...
 EXEC SQL WHENEVER NOT FOUND DO PERFORM END-IT.
 LOOP.
 EXEC SQL FETCH EMPCURSOR INTO :EMP-NUMBER, :SALARY END-EXEC.
* -- process batch of rows
 ...
 GO TO LOOP.
 END-IT.
...

Do not forget to check how many rows were actually returned in the last fetch and to
process them. See "Sample Program 3: Fetching in Batches" on page 7-7 for a complete
example.

Using SQLERRD(3)
For INSERT, UPDATE, and DELETE statements, SQLERRD(3) records the number of
rows processed.

SQLERRD(3) is also useful when an error occurs during a table operation. Processing
stops at the row that caused the error, so SQLERRD(3) gives the number of rows
processed successfully.

Number of Rows Fetched
Each fetch returns, at most, the number of entries in the table. Fewer rows are returned
in the following cases:

■ The end of the active set is reached. The "no data found" warning code is returned
to SQLCODE in the SQLCA. For example, this happens if you fetch into a table of
number of entries 100, but only 20 rows are returned.

■ Fewer than a full batch of rows remain to be fetched. For example, this happens if
you fetch 70 rows into a table of number of entries 20 because after the third fetch,
only 10 rows remain to be fetched.

■ An error is detected while processing a row. The fetch fails and the applicable
error code is returned to SQLCODE.

The cumulative number of rows returned can be found in the third element of
SQLERRD in the SQLCA, called SQLERRD(3) in this guide. This applies to each open
cursor. In the following example, notice how the status of each cursor is maintained
separately:

 EXEC SQL OPEN CURSOR1 END-EXEC.
 EXEC SQL OPEN CURSOR2 END-EXEC.
 EXEC SQL FETCH CURSOR1 INTO :TABLE-OF-20 END-EXEC.
* -- now running total in SQLERRD(3) is 20
 EXEC SQL FETCH CURSOR2 INTO :TABLE-OF-30 END-EXEC.
* -- now running total in SQLERRD(3) is 30, not 50
 EXEC SQL FETCH CURSOR1 INTO :TABLE-OF-20 END-EXEC.

Selecting into Tables

Host Tables 7-7

* -- now running total in SQLERRD(3) is 40 (20 + 20)
 EXEC SQL FETCH CURSOR2 INTO :TABLE-OF-30 END-EXEC.
* -- now running total in SQLERRD(3) is 60 (30 + 30)

Restrictions on Using Host Tables
Using host tables in the WHERE clause of a SELECT statement is allowed only in a
sub-query. (For an example, see "The WHERE Clause" on page 7-14.) Also, since
Pro*COBOL always takes the smallest dimension of table, do not mix simple host
variables with host tables in the INTO clause of a SELECT or FETCH statement
because only one row will be retrieved. If any of the host variables is a table, then all
must be tables.

Table 7–1 shows which uses of host tables are valid in a SELECT INTO statement.

Fetching NULLs
When UNSAFE_NULL=YES, if you select or fetch a NULL into a host table that lacks
an indicator table, no error is generated. So, when doing table selects and fetches,
Oracle recommends that you use indicator tables. This is because this makes it NULLs
easier to find in the associated output host table. (To learn how to find NULLs and
truncated values, see "Using Indicator Variables" on page 5-2.)

When UNSAFE_NULL=NO, if you select or fetch a NULL into a host table that lacks
an indicator table, Oracle9i stops processing, sets SQLERRD(3) to the number of rows
processed, and issues an error message:

Fetching Truncated Values
If you select or fetch a truncated column value into a host table that lacks an indicator
table, Oracle9i sets SQLWARN(2).

You can check SQLERRD(3) for the number of rows processed before the truncation
occurred. The rows-processed count includes the row that caused the truncation error.

When doing table selects and fetches, you can use indicator tables. That way, if
Oracle9i assigns one or more truncated column values to an output host table, you can
find the original lengths of the column values in the associated indicator table.

Sample Program 3: Fetching in Batches
The following host table sample program can be found in the demo directory.

 * Sample Program 3: Host Tables *
 * *
 * This program logs on to ORACLE, declares and opens a cursor, *
 * fetches in batches using host tables, and prints the results. *

Table 7–1 Host Tables Valid in SELECT INTO

INTO Clause WHERE Clause Valid?

table table no

scalar scalar yes

table scalar yes

scalar table no

Selecting into Tables

7-8 Pro*COBOL Programmer’s Guide

 IDENTIFICATION DIVISION.
 PROGRAM-ID. HOST-TABLES.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(15) VARYING.
 01 PASSWD PIC X(15) VARYING.
 01 EMP-REC-TABLES.
 05 EMP-NUMBER OCCURS 5 TIMES PIC S9(4) COMP.
 05 EMP-NAME OCCURS 5 TIMES PIC X(10) VARYING.
 05 SALARY OCCURS 5 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 EXEC SQL VAR SALARY IS DISPLAY(8,2) END-EXEC.
 EXEC SQL END DECLARE SECTION END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 01 NUM-RET PIC S9(9) COMP VALUE ZERO.
 01 PRINT-NUM PIC S9(9) COMP VALUE ZERO.
 01 COUNTER PIC S9(9) COMP.
 01 DISPLAY-VARIABLES.
 05 D-EMP-NAME PIC X(10).
 05 D-EMP-NUMBER PIC 9(4).
 05 D-SALARY PIC Z(4)9.99.

 PROCEDURE DIVISION.

 BEGIN-PGM.
 EXEC SQL
 WHENEVER SQLERROR DO PERFORM SQL-ERROR
 END-EXEC.
 PERFORM LOGON.
 EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT EMPNO, SAL, ENAME
 FROM EMP
 END-EXEC.
 EXEC SQL
 OPEN C1
 END-EXEC.

 FETCH-LOOP.
 EXEC SQL
 WHENEVER NOT FOUND DO PERFORM SIGN-OFF
 END-EXEC.
 EXEC SQL
 FETCH C1
 INTO :EMP-NUMBER, :SALARY, :EMP-NAME
 END-EXEC.
 SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
 PERFORM PRINT-IT.
 MOVE SQLERRD(3) TO NUM-RET.
 GO TO FETCH-LOOP.

 LOGON.
 MOVE "SCOTT" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "TIGER" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL

Inserting with Tables

Host Tables 7-9

 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

 PRINT-IT.
 DISPLAY " ".
 DISPLAY "EMPLOYEE NUMBER SALARY EMPLOYEE NAME".
 DISPLAY "--------------- ------- -------------".
 PERFORM PRINT-ROWS
 VARYING COUNTER FROM 1 BY 1
 UNTIL COUNTER > PRINT-NUM.

 PRINT-ROWS.
 MOVE EMP-NUMBER(COUNTER) TO D-EMP-NUMBER.
 MOVE SALARY(COUNTER) TO D-SALARY.
 DISPLAY " ", D-EMP-NUMBER, " ", D-SALARY, " ",
 EMP-NAME-ARR IN EMP-NAME(COUNTER).
 MOVE SPACES TO EMP-NAME-ARR IN EMP-NAME(COUNTER).

 SIGN-OFF.
 SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
 IF (PRINT-NUM > 0) PERFORM PRINT-IT.
 EXEC SQL
 CLOSE C1
 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY.".
 DISPLAY " ".
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Inserting with Tables
You can use host tables as input variables in an INSERT statement. Just make sure
your program populates the tables with data before executing the INSERT statement.
If some elements in the tables are irrelevant, you can use the FOR clause to control the
number of rows inserted. See "The FOR Clause" on page 7-12.

An example of inserting with host tables follows:

 01 EMP-REC-TABLES.
 05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 EMP-NAME OCCURS 50 TIMES PIC X(10) VARYING.
 05 SALARY OCCURS 50 TIMES PIC S9(6)V99

Updating with Tables

7-10 Pro*COBOL Programmer’s Guide

 DISPLAY SIGN LEADING SEPARATE.
* -- populate the host tables
 EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)
 VALUES (:EMP-NAME, :EMP-NUMBER, :SALARY)
 END-EXEC.

The number of rows inserted will be available in SQLERRD(3).

Host tables must not be subscripted in SQL statements. For example the following
INSERT statement is invalid:

 PERFORM VARYING I FROM 1 BY 1 UNTIL I = TABLE-DIMENSION.
 EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)
 VALUES (:EMP-NAME(I), :EMP-NUMBER(I), :SALARY(I))
 END_EXEC
 END-PERFORM.

Restrictions on Host Tables
Mixing simple host variables with host tables in the VALUES clause of an INSERT,
UPDATE, or DELETE statement causes only the first element of any host table to be
processed because simple host variables are treated as host tables of dimension one
and Pro*COBOL always uses the smallest declared dimension. You receive a warning
when this occurs.

Updating with Tables
You can also use host tables as input variables in an UPDATE statement, as the
following example shows:

 01 EMP-REC-TABLES.
 05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 SALARY OCCURS 50 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 ...
* -- populate the host tables
 EXEC SQL
 UPDATE EMP SET SAL = :SALARY WHERE EMPNO = :EMP-NUMBER
 END-EXEC.

The number of rows updated by issuing this statement is available in SQLERRD(3).
This is not necessarily the number of rows in the host table. The number does not
include rows processed by an update cascade (which causes subsequent updates.)

If some elements in the tables are irrelevant, you can use the FOR clause to limit the
number of rows updated.

The last example showed a typical update using a unique key (EMP-NUMBER). Each
table element qualified just one row for updating. In the following example, each table
element qualifies multiple rows:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 05 JOB-TITLE OCCURS 10 TIMES PIC X(10) VARYING.
 05 COMMISSION OCCURS 50 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 EXEC SQL END DECLARE SECTION END-EXEC.
* -- populate the host tables
 EXEC SQL
 UPDATE EMP SET COMM = :COMMISSION WHERE JOB = :JOB-TITLE

Deleting with Tables

Host Tables 7-11

 END-EXEC.

Restrictions in UPDATE
You cannot use host tables with the CURRENT OF clause in an UPDATE statement.
For an alternative, see "Mimicking the CURRENT OF Clause" on page 7-14.

Table 7–2 shows which uses of host tables are valid in an UPDATE statement:

Deleting with Tables
You can also use host tables as input variables in a DELETE statement. Doing so is like
executing the DELETE statement repeatedly using successive elements of the host
table in the WHERE clause. Thus, each execution might delete zero, one, or more rows
from the table. An example of deleting with host tables follows:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.
* -- populate the host table
 EXEC SQL
 DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER
 END-EXEC.

The cumulative number of rows deleted can be found in SQLERRD(3). That number
does not include rows processed by a delete cascade.

The last example showed a typical delete using a unique key (EMP-NUMBER). Each
table element qualified just one row for deletion. In the following example, each table
element qualifies multiple rows:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 05 JOB-TITLE OCCURS 10 TIMES PIC X(10) VARYING.
 EXEC SQL END DECLARE SECTION END-EXEC.
* -- populate the host table
 EXEC SQL
 DELETE FROM EMP WHERE JOB = :JOB-TITLE
 END-EXEC.

Restrictions in DELETE
You cannot use host tables with the CURRENT OF clause in a DELETE statement. For
an alternative, see "Mimicking the CURRENT OF Clause" on page 7-14.

Table 7–2 Host Tables Valid in UPDATE

SET Clause WHERE Clause Valid?

table table yes

scalar scalar yes

table scalar no

scalar table no

Using Indicator Tables

7-12 Pro*COBOL Programmer’s Guide

Using Indicator Tables
You use indicator tables to assign NULLs to input host tables and to detect NULL or
truncated values in output host tables. The following example shows how to insert
with indicator tables:

 01 EMP-REC-VARS.
 05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 DEPT-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 COMMISSION OCCURS 50 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
* -- indicator table:
 05 COMM-IND OCCURS 50 TIMES PIC S9(4) COMP.
* -- populate the host tables
* -- populate the indicator table; to insert a NULL into
* -- the COMM column, assign -1 to the appropriate element in
* -- the indicator table
 EXEC SQL
 INSERT INTO EMP (EMPNO, DEPTNO, COMM)
 VALUES (:EMP_NUMBER, :DEPT-NUMBER, :COMMISSION:COMM-IND)
 END-EXEC.

The number of entries of the indicator table cannot be smaller than the number of
entries of the host table.

The FOR Clause
You can use the optional FOR clause to set the number of table elements processed by
any of the following SQL statements:

■ DELETE

■ EXECUTE (See information on Oracle dynamic SQL in Chapter 11, "Oracle
Dynamic SQL: Method 4".

■ FETCH

■ INSERT

■ OPEN

■ UPDATE

The FOR clause is especially useful in UPDATE, INSERT, and DELETE statements.
With these statements you might not want to use the entire table. The FOR clause lets
you limit the elements used to just the number you need, as the following example
shows:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-REC-VARS.
 05 EMP-NAME OCCURS 1000 TIMES PIC X(20) VARYING.
 05 SALARY OCCURS 100 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 01 ROWS-TO-INSERT PIC S9(4) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.
* -- populate the host tables
 MOVE 25 TO ROWS-TO-INSERT.
* -- set FOR-clause variable
* -- will process only 25 rows
 EXEC SQL FOR :ROWS-TO-INSERT
 INSERT INTO EMP (ENAME, SAL)
 VALUES (:EMP-NAME, :SALARY)

The FOR Clause

Host Tables 7-13

 END-EXEC.

The FOR clause must use an integer host variable to count table elements. For
example, the following statement is illegal:

* -- illegal
 EXEC SQL FOR 25
 INSERT INTO EMP (ENAME, EMPNO, SAL)
 VALUES (:EMP-NAME, :EMP-NUMBER, :SALARY)
 END-EXEC.

The FOR clause variable specifies the number of table elements to be processed. Make
sure the number does not exceed the smallest table dimension. Internally, the value is
treated as an unsigned quantity. An attempt to pass a negative value through the use
of a signed host variable will result in unpredictable behavior.

Restrictions
Two restrictions keep FOR clause semantics clear: you cannot use the FOR clause in a
SELECT statement or with the CURRENT OF clause.

In a SELECT Statement
If you use the FOR clause in a SELECT statement, you receive an error message.

The FOR clause is not allowed in SELECT statements because its meaning is unclear.
Does it mean "execute this SELECT statement n times"? Or, does it mean "execute this
SELECT statement once, but return n rows"? The problem in the former case is that
each execution might return multiple rows. In the latter case, it is better to declare a
cursor and use the FOR clause in a FETCH statement, as follows:

 EXEC SQL FOR :LIMIT FETCH EMPCURSOR INTO ...

With the CURRENT OF Clause
You can use the CURRENT OF clause in an UPDATE or DELETE statement to refer to
the latest row returned by a FETCH statement, as the following example shows:

 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT ENAME, SAL FROM EMP WHERE EMPNO = :EMP-NUMBER
 END-EXEC.
 ...
 EXEC SQL OPEN EMPCURSOR END-EXEC.
 ...
 EXEC SQL FETCH emp_cursor INTO :EM-NAME, :SALARY END-EXEC.
 ...
 EXEC SQL UPDATE EMP SET SAL = :NEW-SALARY
 WHERE CURRENT OF EMPCURSOR
 END-EXEC.

However, you cannot use the FOR clause with the CURRENT OF clause. The
following statements are invalid because the only logical value of LIMIT is 1 (you can
only update or delete the current row once):

 EXEC SQL FOR :LIMIT UPDA-CURSOR END-EXEC.
 ...
 EXEC SQL FOR :LIMIT DELETE FROM EMP
 WHERE CURRENT OF emp_cursor
 END-EXEC.

The WHERE Clause

7-14 Pro*COBOL Programmer’s Guide

The WHERE Clause
Pro*COBOL treats a SQL statement containing host tables of number of entries n like
the same SQL statement executed n times with n different scalar variables (the
individual table elements). The precompiler issues an error message only when such
treatment is ambiguous:

For example, assuming the declarations:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 05 MGRP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 JOB-TITLE OCCURS 50 TIMES PIC X(20) VARYING.
 01 I PIC S9(4) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

it would be ambiguous if the statement:

 EXEC SQL SELECT MGR INTO :MGR-NUMBER FROM EMP
 WHERE JOB = :JOB-TITLE
 END-EXEC.

were treated like the following statement

 PERFORM VARYING I FROM 1 BY 1 UNTIL I = 50
 SELECT MGR INTO :MGR-NUMBER(I) FROM EMP
 WHERE JOB = :JOB_TITLE(I)
 END-EXEC
 END-PERFORM.

because multiple rows might meet the WHERE-clause search condition, but only one
output variable is available to receive data. Therefore, an error message is issued.

On the other hand, it would not be ambiguous if the statement

 EXEC SQL
 UPDATE EMP SET MGR = :MGR_NUMBER
 WHERE EMPNO IN (SELECT EMPNO FROM EMP WHERE
 JOB = :JOB-TITLE)
 END-EXEC.

were treated like the following statement

 PERFORM VARYING I FROM 1 BY 1 UNTIL I = 50
 UPDATE EMP SET MGR = :MGR_NUMBER(I)
 WHERE EMPNO IN
 (SELECT EMPNO FROM EMP WHERE JOB = :JOB-TITLE(I))
 END-EXEC
 END-PERFORM.

because there is a MGR-NUMBER in the SET clause for each row matching JOB-TITLE
in the WHERE clause, even if each JOB-TITLE matches multiple rows. All rows
matching each JOB-TITLE can be SET to the same MGR-NUMBER, so no error message
is issued.

Mimicking the CURRENT OF Clause
The CURRENT OF clause enables you to do UPDATEs or DELETEs of the most recent
row in the cursor. Use of the CURRENT OF clause causes the FOR UPDATE clause to
be added to the cursor. Adding this clause has the effect of locking all rows identified
by the cursor in exclusive mode. Note that you cannot use CURRENT OF with host

Tables of Group Items as Host Variables

Host Tables 7-15

tables. Instead, append FOR UPDATE to the definition of the cursor and explicitly
select the ROWID column, then use that value to identify the current row during the
update or delete. An example follows:

 05 EMP-NAME OCCURS 25 TIMES PIC X(20) VARYING.
 05 JOB-TITLE OCCURS 25 TIMES PIC X(15) VARYING.
 05 OLD-TITLE OCCURS 25 TIMES PIC X(15) VARYING.
 05 ROW-ID OCCURS 25 TIMES PIC X(18) VARYING.
 ...
 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT ENAME, JOB, ROWID FROM EMP
 FOR UPDATE
 END-EXEC.
 ...
 EXEC SQL OPEN EMPCURSOR END-EXEC.
 ...
 EXEC SQL WHENEVER NOT FOUND GOTO ...
 ...
 PERFORM
 EXEC SQL
 FETCH EMPCURSOR
 INTO :EMP-NAME, :JOB-TITLE, :ROW-ID
 END-EXEC
 ...
 EXEC SQL
 DELETE FROM EMP
 WHERE JOB = :OLD-TITLE AND ROWID = :ROW-ID
 END-EXEC
 EXEC SQL COMMIT WORK END-EXEC
 END-PERFORM.

Tables of Group Items as Host Variables
Pro*COBOL allows the use of tables of group items (also called records) in embedded
SQL statements. The tables of group items can be referenced in the INTO clause of a
SELECT or a FETCH statement, and in the VALUES list of an INSERT statement.

For example, given the following declaration:

 01 TABLES.
 05 EMP-TABLE OCCURS 20 TIMES.
 10 EMP-NUMBER PIC S9(4) COMP.
 10 EMP-NAME PIC X(10).
 10 DEPT-NUMBER PIC S9(4) COMP.

the following statement is valid:

 EXEC SQL INSERT INTO EMP(EMPNO, ENAME, DEPTNO)
 VALUES(:EMP-TABLE)
 END-EXEC.

Assuming that the group item has been filled with data already, the statement bulk
inserts 20 rows consisting of the employee number, employee name, and department
number into the EMP table.

Make sure that the order of the group items corresponds to the order in the SQL
statement.

To use an indicator variable, set up a second table of a group item that contains an
indicator variable for each variable in the group item:

Sample Program 14: Tables of Group Items

7-16 Pro*COBOL Programmer’s Guide

 01 TABLES-IND.
 05 EMP-TABLE-IND OCCURS 20 TIMES.
 10 EMP-NUMBER-IND PIC S9(4) COMP.
 10 EMP-NAME-IND PIC S9(4) COMP.
 10 DEPT-NUMBER_IND PIC S9(4) COMP.

The host indicator table of a group item can be used as follows:

 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:EMP-TABLE:EMP-TABLE-IND)
 END-EXEC.

If the exact characteristics of the data are known, it is convenient to specify an
elementary item indicator for a group item:

 05 EMP-TABLE-IND PIC S9(4) COMP
 OCCURS 20 TIMES.

Host tables of group items cannot have group items that are tables. For example:

 01 TABLES.
 05 EMP-TABLE OCCURS 20 TIMES.
 10 EMP-NUMBER PIC S9(4) COMP OCCURS 10 TIMES.
 10 EMP-NAME PIC X(10).
 10 DEPT-NUMBER PIC S9(4) COMP.

EMP-TABLE cannot be used as a host variable because EMP-NUMBER is a table.

Host tables of nested group items are not allowed. For example:

 01 TABLES.
 05 TEAM-TABLE OCCURS 20 TIMES
 10 EMP-TABLE
 15 EMP-NUMBER PIC S9(4) COMP.
 15 EMP-NAME PIC X(10).
 10 DEPT-TABLE.
 15 DEPT-NUMBER PIC S9(4) COMP.
 15 DEPT-NAME PIC X(10).

TEAM-TABLE cannot be used as a host variable because its members (EMP-TABLE and
DEPT-TABLE) are group items themselves.

Finally, the restrictions that apply to host tables in Pro*COBOL also apply to tables of
group items:

■ Multi-dimensional and variable-length tables are not allowed.

■ If multiple tables are used in a single SQL statement, their dimensions should be
the same.

■ Host tables in SQL statements must not be subscripted.

Sample Program 14: Tables of Group Items
This program logs on, declares and opens a cursor, fetches in batches using a table of
group items. Read the initial comments for details.

 * Sample Program 14: Tables of group items *
 * *
 * This program logs on to ORACLE, declares and opens a cursor, *
 * fetches in batches using a table of group items , and prints *
 * the results. This sample is identical to sample3 except that *

Sample Program 14: Tables of Group Items

Host Tables 7-17

 * instead of using three separate host tables of five elements *
 * each, it uses a five-element table of three group items. *
 * The output should be identical. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TABLE-OF-GROUP-ITEMS.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(15) VARYING.
 01 PASSWD PIC X(15) VARYING.
 01 EMP-REC-TABLE OCCURS 5 TIMES.
 05 EMP-NUMBER PIC S9(4) COMP.
 05 SALARY PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 05 EMP-NAME PIC X(10) VARYING.
 EXEC SQL VAR SALARY IS DISPLAY(8,2) END-EXEC.
 EXEC SQL END DECLARE SECTION END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 01 NUM-RET PIC S9(9) COMP VALUE ZERO.
 01 PRINT-NUM PIC S9(9) COMP VALUE ZERO.
 01 COUNTER PIC S9(9) COMP.
 01 DISPLAY-VARIABLES.
 05 D-EMP-NAME PIC X(10).
 05 D-EMP-NUMBER PIC 9(4).
 05 D-SALARY PIC Z(4)9.99.

 PROCEDURE DIVISION.

 BEGIN-PGM.
 EXEC SQL
 WHENEVER SQLERROR DO PERFORM SQL-ERROR
 END-EXEC.
 PERFORM LOGON.
 EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT EMPNO, SAL, ENAME
 FROM EMP
 END-EXEC.
 EXEC SQL
 OPEN C1
 END-EXEC.

 FETCH-LOOP.
 EXEC SQL
 WHENEVER NOT FOUND DO PERFORM SIGN-OFF
 END-EXEC.
 EXEC SQL
 FETCH C1
 INTO :EMP-REC-TABLE
 END-EXEC.
 SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
 PERFORM PRINT-IT.
 MOVE SQLERRD(3) TO NUM-RET.
 GO TO FETCH-LOOP.

 LOGON.

Sample Program 14: Tables of Group Items

7-18 Pro*COBOL Programmer’s Guide

 MOVE "SCOTT" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "TIGER" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

 PRINT-IT.
 DISPLAY " ".
 DISPLAY "EMPLOYEE NUMBER SALARY EMPLOYEE NAME".
 DISPLAY "--------------- ------- -------------".
 PERFORM PRINT-ROWS
 VARYING COUNTER FROM 1 BY 1
 UNTIL COUNTER > PRINT-NUM.

 PRINT-ROWS.
 MOVE EMP-NUMBER(COUNTER) TO D-EMP-NUMBER.
 MOVE SALARY(COUNTER) TO D-SALARY.
 DISPLAY " ", D-EMP-NUMBER, " ", D-SALARY, " ",
 EMP-NAME-ARR IN EMP-NAME(COUNTER).
 MOVE SPACES TO EMP-NAME-ARR IN EMP-NAME(COUNTER).

 SIGN-OFF.
 SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
 IF (PRINT-NUM > 0) PERFORM PRINT-IT.
 EXEC SQL
 CLOSE C1
 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY.".
 DISPLAY " ".
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Error Handling and Diagnostics 8-1

8
Error Handling and Diagnostics

An application program must anticipate runtime errors and attempt to recover from
them. This chapter provides an in-depth discussion of error reporting and recovery.
You learn how to handle warnings and errors using the ANSI status variables
SQLCODE and SQLSTATE, or the Oracle SQLCA (SQL Communications Area)
structure. You also learn how to use the WHENEVER statement and how to diagnose
problems using the Oracle ORACA (Oracle Communications Area) structure.

The following topics are discussed:

■ Why Error Handling is Needed

■ Error Handling Alternatives

■ Using the SQL Communications Area

■ Using the Oracle Communications Area

■ How Errors Map to SQLSTATE Codes

Why Error Handling is Needed
A significant part of every application program must be devoted to error handling.
The main benefit of error handling is that it enables your program to continue
operating in the presence of errors. Errors arise from design faults, coding mistakes,
hardware failures, invalid user input, and many other sources

You cannot anticipate all possible errors, but you can plan to handle certain kinds of
errors meaningful to your program. For Pro*COBOL, error handling means detecting
and recovering from SQL statement execution errors. You must trap errors because the
precompiler will continue regardless of the errors encountered unless you halt
processing.

You can also prepare to handle warnings such as "value truncated" and status changes
such as "end of data." It is especially important to check for error and warning
conditions after every data manipulation statement because an INSERT, UPDATE, or
DELETE statement might fail before processing all eligible rows in a table.

Error Handling Alternatives
Pro*COBOL supports two general methods of error handling:

■ The Oracle-specific method with SQLCA and optional ORACA.

■ ANSI SQL92 standard method with SQLSTATE status variable.

Error Handling Alternatives

8-2 Pro*COBOL Programmer’s Guide

The precompiler MODE option governs ANSI/ISO compliance. When MODE={ANSI
| ANSI14}, you declare the SQLSTATE status variable as PIC X(5). Additionally, the
ANSI SQL89 SQLCODE status variable is still supported, but it is deprecated and not
recommended for new programs. When MODE={ORACLE | ANSI13}, you must
include the SQLCA through an EXEC SQL INCLUDE statement. It is possible to use
both methods in one program but usually not necessary.

For detailed information on mixing methods see "Status Variable Combinations" on
page 8-28.

SQLCA
The SQLCA is a record-like, host-language data structure which includes Oracle
warnings, error numbers and error text. Oracle9i updates the SQLCA after every
executable SQL or PL/SQL statement. (SQLCA values are undefined after a declarative
statement.) By checking return codes stored in the SQLCA, your program can
determine the outcome of a SQL statement. This can be done in two ways:

■ Implicit checking with the WHENEVER statement

■ Explicit checking of SQLCA variables

When you use the WHENEVER statement to implicitly check the status of your SQL
statements, Pro*COBOL automatically inserts error checking code after each
executable statement. Alternatively, you can explicitly write your own code to test the
value of the SQLCODE member of the SQLCA structure. Include SQLCA by using the
embedded SQL INCLUDE statement:

EXEC SQL INCLUDE SQLCA END-EXEC.

ORACA
When more information is needed about runtime errors than the SQLCA provides,
you can use the ORACA, which contains cursor statistics, SQL statement text, certain
option settings and system statistics. Include ORACA by using the embedded SQL
INCLUDE statement:

EXEC SQL INCLUDE ORACA END-EXEC.

The ORACA is optional and can be declared regardless of the MODE setting. For more
information about the ORACA status variable, see "Using the Oracle Communications
Area" on page 8-17.

ANSI SQLSTATE Variable
When MODE=ANSI, you can declare the ANSI SQLSTATE variable inside the Declare
Section for implicit or explicit error checking. If the option DECLARE_SECTION is set
to NO, then you can also declare it outside of the Declare Section.

Note: When MODE=ANSI, you can also declare the SQLCODE
variable with a picture S9(9) COMP. While it can be used instead
of or with the SQLSTATE variable, this is not recommended for
new programs. You can also use the SQLCA with the SQLSTATE
variable. When MODE=ANSI14, then SQLSTATE is not supported
and you must declare either SQLCODE or include SQLCA. You
cannot declare both SQLCODE and SQLCA for any setting of
mode.

Error Handling Alternatives

Error Handling and Diagnostics 8-3

Declaring SQLSTATE
This section describes how to declare SQLSTATE. SQLSTATE must be declared as a
five-character alphanumeric string as in the following example:

* Declare the SQLSTATE status variable.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 SQLSTATE PIC X(5).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.

SQLSTATE Values
SQLSTATE status codes consist of a two-character class code followed by a
three-character subclass code. Aside from class code 00 (successful completion), the
class code denotes a category of exceptions. Aside from subclass code 000 (not
applicable), the subclass code denotes a specific exception within that category. For
example, the SQLSTATE value '22012' consists of class code 22 (data exception) and
subclass code 012 (division by zero).

Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase Latin
letter (A..Z). Class codes that begin with a digit in the range 0..4 or a letter in the range
A..H are reserved for predefined conditions (those defined in SQL92). All other class
codes are reserved for implementation-defined conditions. Within predefined classes,
subclass codes that begin with a digit in the range 0..4 or a letter in the range A..H are
reserved for predefined sub-conditions. All other subclass codes are reserved for
implementation-defined sub-conditions. Figure 8–1 shows the coding scheme:

Figure 8–1 SQLSTATE Coding Scheme

This illustration shows the coding scheme.

Table 8–1 shows the classes predefined by SQL92.

Table 8–1 Predefined Classes

Class Condition

00 successful completion

01 warning

First Char in Class Code

0 . . 4 5 . . 9 A . . H I . . Z

0 . . 4

5 . . 9

A . . H

I . . Z

F
ir

st
 C

h
ar

 in
S

u
b

cl
as

s
C

o
d

e

Predefined Implementation–defined

Error Handling Alternatives

8-4 Pro*COBOL Programmer’s Guide

Table 8–4, " SQLSTATE Codes" on page 8-23 shows how errors map to SQLSTATE
status codes. In some cases, several errors map to the status code. In other cases, no
error maps to the status code (so the last column is empty). Status codes in the range
60000..99999 are implementation-defined.

02 no data

07 dynamic SQL error

08 connection exception

0A feature not supported

21 cardinality violation

22 data exception

23 integrity constraint violation

24 invalid cursor state

25 invalid transaction state

26 invalid SQL statement name

27 triggered data change violation

28 invalid authorization specification

2A direct SQL syntax error or access rule violation

2B dependent privilege descriptors still exist

2C invalid character set name

2D invalid transaction termination

2E invalid connection name

33 invalid SQL descriptor name

34 invalid cursor name

35 invalid condition number

37 dynamic SQL syntax error or access rule violation

3C ambiguous cursor name

3D invalid catalog name

3F invalid schema name

40 transaction rollback

42 syntax error or access rule violation

44 with check option violation

HZ remote database access

Note: The class code HZ is reserved for conditions defined in
International Standard ISO/IEC DIS 9579-2, Remote Database Access.

Table 8–1 (Cont.) Predefined Classes

Class Condition

Using the SQL Communications Area

Error Handling and Diagnostics 8-5

Using the SQL Communications Area
 Oracle9i uses the SQL Communications Area (SQLCA) to store status information
passed to your program at run time. The SQLCA is a record-like, COBOL data
structure that is a updated after each executable SQL statement, so it always reflects
the outcome of the most recent SQL operation. Its fields contain error, warning, and
status information updated by Oracle9i whenever a SQL statement is executed. To
determine that outcome, you can check variables in the SQLCA explicitly with your
own COBOL code or implicitly with the WHENEVER statement.

When MODE={ORACLE | ANSI13}, the SQLCA is required; if the SQLCA is not
declared, compile-time errors will occur. The SQLCA is optional when MODE={ANSI
| ANSI14}, but if you want to use the WHENEVER SQLWARNING statement, you
must declare the SQLCA. The SQLCA must also be included when using multibyte
NCHAR host variables.

Contents of the SQLCA
The SQLCA contains runtime information about the execution of SQL statements, such
as error codes, warning flags, event information, rows-processed count, and
diagnostics.

Figure 8–2 shows all the variables in the SQLCA.

Figure 8–2 SQLCA Variable Declarations for Pro*COBOL

This illustration shows all the variables in SQL CA.

Note: When your application uses Oracle Net to access a
combination of local and remote databases concurrently, all the
databases write to one SQLCA. There is not a different SQLCA for
each database. For more information, see "Concurrent Logons" on
page 3-3.

01 SQLCA.
 05 SQLCAID PIC X(8).
 05 SQLCABC PIC S9(9) COMPUTATIONAL.
 05 SQLCODE PIC S9(9) COMPUTATIONAL.
 05 SQLERRM.
 49 SQLERRML PIC S9(4) COMPUTATIONAL.
 49 SQLERRMC PIC X(70)
 05 SQLERRP PIC X(8).
 05 SQLERRD OCCURS 6 TIMES
 PIC S9(9) COMPUTATIONAL.
 05 SQLWARN.
 10 SQLWARNO PIC X(1).
 10 SQLWARN1 PIC X(1).
 10 SQLWARN2 PIC X(1).
 10 SQLWARN3 PIC X(1).
 10 SQLWARN4 PIC X(1).
 10 SQLWARN5 PIC X(1).
 10 SQLWARN6 PIC X(1).
 10 SQLWARN7 PIC X(1).
 05 SQLEXT PIC X(8).

Using the SQL Communications Area

8-6 Pro*COBOL Programmer’s Guide

Declaring the SQLCA
To declare the SQLCA, simply include it (using an EXEC SQL INCLUDE statement) in
your Pro*COBOL source file outside the Declare Section as follows:

* Include the SQL Communications Area (SQLCA).
 EXEC SQL INCLUDE SQLCA END-EXEC.

The SQLCA must be declared outside the Declare Section.

When you precompile your program, the INCLUDE SQLCA statement is replaced by
several variable declarations that allow Oracle9i to communicate with the program.

Key Components of Error Reporting
The key components of Pro*COBOL error reporting depend on several fields in the
SQLCA.

Status Codes
Every executable SQL statement returns a status code in the SQLCA variable
SQLCODE, which you can check implicitly with WHENEVER SQLERROR or
explicitly with your own COBOL code.

Warning Flags
Warning flags are returned in the SQLCA variables SQLWARN0 through SQLWARN7,
which you can check with WHENEVER SQLWARNING or with your own COBOL
code. These warning flags are useful for detecting runtime conditions that are not
considered errors.

Rows-Processed Count
The number of rows processed by the most recently executed SQL statement is
returned in the SQLCA variable SQLERRD(3). For repeated FETCHes on an OPEN
cursor, SQLERRD(3) keeps a running total of the number of rows fetched.

Parse Error Offset
Before executing a SQL statement, Oracle9i must parse it; that is, examine it to make
sure it follows syntax rules and refers to valid database objects. If Oracle9i finds an
error, an offset is stored in the SQLCA variable SQLERRD(5), which you can check
explicitly. The offset specifies the character position in the SQL statement at which the
parse error begins. The first character occupies position zero. For example, if the offset
is 9, the parse error begins at the tenth character.

If your SQL statement does not cause a parse error, Oracle9i sets SQLERRD(5) to zero.
Oracle9i also sets SQLERRD(5) to zero if a parse error begins at the first character
(which occupies position zero). So, check SQLERRD(5) only if SQLCODE is negative,
which means that an error has occurred.

Warning: Do not declare SQLCODE if SQLCA is declared.
Likewise, do not declare SQLCA if SQLCODE is declared. The
status variable declared by the SQLCA structure is also called
SQLCODE, so errors will occur if both error-reporting mechanisms
are used.

Using the SQL Communications Area

Error Handling and Diagnostics 8-7

Error Message Text
The error code and message for errors are available in the SQLCA variable
SQLERRMC. For example, you might place the following statements in an
error-handling routine:

* Handle SQL execution errors.
 MOVE SQLERRMC TO ERROR-MESSAGE.
 DISPLAY ERROR-MESSAGE.

At most, the first 70 characters of message text are stored. For messages longer than 70
characters, you must call the SQLGLM subroutine, which is discussed in "Getting the
Full Text of Error Messages" on page 8-9.

SQLCA Structure
This section describes the structure of the SQLCA, its fields, and the values they can
store.

SQLCAID
This string field is initialized to "SQLCA" to identify the SQL Communications Area.

SQLCABC
This integer field holds the length, in bytes, of the SQLCA structure.

SQLCODE
This integer field holds the status code of the most recently executed SQL statement.
The status code, which indicates the outcome of the SQL operation, can be any of the
following numbers:

SQLERRM
This sub-record contains the following two fields:

Status Code Description

0 Oracle9i executed the statement without detecting an error or
exception.

> 0 Oracle9i executed the statement but detected an exception. This
occurs when Oracle9i cannot find a row that meets your
WHERE-clause search condition or when a SELECT INTO or
FETCH returns no rows.

< 0 When MODE={ANSI | ANSI14 | ANSI113}, +100 is returned to
SQLCODE after an INSERT of no rows. This can happen when a
subquery returns no rows to process.

Oracle9i did not execute the statement because of a database,
system, network, or application error. Such errors can be fatal.
When they occur, the current transaction should, in most cases,
be rolled back.

Negative return codes correspond to error codes listed in Oracle
Database Error Messages.

Fields Description

SQLERRML This integer field holds the length of the message text stored in
SQLERRMC.

Using the SQL Communications Area

8-8 Pro*COBOL Programmer’s Guide

SQLERRP
This string field is reserved for future use.

SQLERRD
This table of binary integers has six elements. Descriptions of the fields in SQLERRD
follow:

SQLWARN
This table of single characters has eight elements. They are used as warning flags.
Oracle9i sets a flag by assigning it a 'W' (for warning) character value. The flags warn
of exceptional conditions.

For example, a warning flag is set when Oracle9i assigns a truncated column value to
an output host character variable.

SQLERRMC This string field holds the message text for the error code stored
in SQLCODE and can store up to 70 characters. For the full text
of messages longer than 70 characters, use the SQLGLM
function.

Verify SQLCODE is negative before you reference SQLERRMC.
If you reference SQLERRMC when SQLCODE is zero, you get
the message text associated with a prior SQL statement.

Fields Description

SQLERRD(1) This field is reserved for future use.

SQLERRD(2) This field is reserved for future use.

SQLERRD(3) This field holds the number of rows processed by the most
recently executed SQL statement. However, if the SQL statement
failed, the value of SQLERRD(3) is undefined, with one
exception. If the error occurred during a table operation,
processing stops at the row that caused the error, so
SQLERRD(3) gives the number of rows processed successfully.

The rows-processed count is zeroed after an OPEN statement
and incremented after a FETCH statement. For the EXECUTE,
INSERT, UPDATE, DELETE, and SELECT INTO statements, the
count reflects the number of rows processed successfully. The
count does not include rows processed by an update or delete
cascade. For example, if 20 rows are deleted because they meet
WHERE-clause criteria, and 5 more rows are deleted because
they now (after the primary delete) violate column constraints,
the count is 20 not 25.

SQLERRD(4) This field is reserved for future use.

SQLERRD(5) This field holds an offset that specifies the character position at
which a parse error begins in the most recently executed SQL
statement. The first character occupies position zero.

SQLERRD(6) This field is reserved for future use.

Fields Description

Using the SQL Communications Area

Error Handling and Diagnostics 8-9

Descriptions of the fields in SQLWARN follow:

SQLEXT
This string field is reserved for future use.

PL/SQL Considerations
When your Pro*COBOL program executes an embedded PL/SQL block, not all fields
in the SQLCA are set. For example, if the block fetches several rows, the
rows-processed count, SQLERRD(3), is set to 1, not the actual number of rows fetched.
So, you should rely only on the SQLCODE and SQLERRM fields in the SQLCA after
executing a PL/SQL block.

Getting the Full Text of Error Messages
Regardless of the setting of MODE, you can use SQLGLM to get the full text of error
messages if you have explicitly declared SQLCODE and not included SQLCA. The
SQLCA can accommodate error messages up to 70 characters long. To get the full text
of longer (or nested) error messages, you need the SQLGLM subroutine.

Note: Figure 8–2, "SQLCA Variable Declarations for Pro*COBOL"
on page 8-5 illustrates SQLWARN implementation in Pro*COBOL
as a group item with elementary PIC X items named SQLWARN0
through SQLWARN7.

Fields Description

SQLWARN0 This flag is set if another warning flag is set.

SQLWARN1 This flag is set if a truncated column value was assigned to an
output host variable. This applies only to character data.
Oracle9i truncates certain numeric data without setting a
warning or returning a negative SQLCODE value.

To find out if a column value was truncated and by how much,
check the indicator variable associated with the output host
variable. The (positive) integer returned by an indicator variable
is the original length of the column value. You can increase the
length of the host variable accordingly.

SQLWARN2 This flag is set if one or more NULLs were ignored in the
evaluation of a SQL group function such as AVG, COUNT, or
MAX. This behavior is expected because, except for COUNT(*),
all group functions ignore NULLs. If necessary, you can use the
SQL function NVL to temporarily assign values (zeros, for
example) to the NULL column entries.

SQLWARN3 This flag is set if the number of columns in a query select list
does not equal the number of host variables in the INTO clause
of the SELECT or FETCH statement. The number of items
returned is the lesser of the two.

SQLWARN4 This flag is no longer in use.

SQLWARN5 This flag is set when an EXEC SQL CREATE {PROCEDURE |
FUNCTION | PACKAGE | PACKAGE BODY} statement fails
because of a PL/SQL compilation error.

SQLWARN6 This flag is no longer in use.

SQLWARN7 This flag is no longer in use.

Using the SQL Communications Area

8-10 Pro*COBOL Programmer’s Guide

If connected to a database, you can call SQLGLM using the syntax

 CALL "SQLGLM" USING MSG-TEXT, MAX-SIZE, MSG-LENGTH

where the parameters are:

All parameters must be passed by reference. This is usually the default parameter
passing convention; you need not take special action.

The maximum length of an error message is 512 characters including the error code,
nested messages, and message inserts such as table and column names. The maximum
length of an error message returned by SQLGLM depends on the value specified for
MAX-SIZE.

The following example uses SQLGLM to get an error message of up to 200 characters
in length:

 ...
* Declare variables for the SQL-ERROR subroutine call.
 01 MSG-TEXT PIC X(200).
 01 MAX-SIZE PIC S9(9) COMP VALUE 200.
 01 MSG-LENGTH PIC S9(9) COMP.
 ...
 PROCEDURE DIVISION.
 MAIN.
 EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.
 ...
 SQL-ERROR.
* Clear the previous message text.
 MOVE SPACES TO MSG-TEXT.
* Get the full text of the error message.
 CALL "SQLGLM" USING MSG-TEXT, MAX-SIZE, MSG-LENGTH.
 DISPLAY MSG-TEXT.

In the example, SQLGLM is called only when a SQL error has occurred. Always make
sure SQLCODE is negative before calling SQLGLM. If you call SQLGLM when
SQLCODE is zero, you get the message text associated with a prior SQL statement.

DSNTIAR
DB2 provides an assembler routine called DSNTIAR to obtain a form of the SQLCA
that can be displayed. For users migrating to Oracle from DB2, Pro*COBOL provides

Parameter Datatype Parameter Definition

MSG-TEXT PIC X(n) The field in which to store the error message. (Oracle9i
blank-pads to the end of this field.)

MAX-SIZE PIC S9(9)
COMP

An integer that specifies the maximum size of the
MSG-TEXT field in bytes.

MSG-LENGTH PIC S9(9)
COMP

An integer variable in which Oracle9i stores the actual
length of the error message.

Note: If your application calls SQLGLM to get message text, the
message length must be passed. Do not use the SQLCA variable
SQLERRML. SQLERRML is a PIC S9(4) COMP integer while
SQLGLM and SQLIEM expect a PIC S9(9) COMP integer. Instead,
use another variable declared as PIC S9(9) COMP.

Using the SQL Communications Area

Error Handling and Diagnostics 8-11

DSNTIAR. The DSNTIAR implementation is a wrapper around SQLGLM. The
DSNTIAR interface is as follows

 CALL 'DSNTIAR' USING SQLCA MESSAGE LRECL

where MESSAGE is the output message area, in VARCHAR form of size greater than
or equal to 240, and LRECL is a full word containing the length of the output
messages, between 72 and 240. The first half-word of the MESSAGE argument
contains the length of the remaining area. The possible error codes returned by
DSNTIAR are listed in the following table.

WHENEVER Directive
By default, Pro*COBOL ignores error and warning conditions and continues
processing, if possible. To do automatic condition checking and error handling, you
need the WHENEVER statement.

With the WHENEVER statement you can specify actions to be taken when Oracle9i
detects an error, warning condition, or "not found" condition. These actions include
continuing with the next statement, PERFORMing a paragraph, branching to a
paragraph, or stopping.

Conditions
You can have Oracle9i automatically check the SQLCA for any of the following
conditions.

SQLWARNING
SQLWARN(0) is set because Oracle9i returned a warning (one of the warning flags,
SQLWARN(1) through SQLWARN(7), is also set) or SQLCODE has a positive value
other than +1403. For example, SQLWARN(1) is set when Oracle9 assigns a truncated
column value to an output host variable.

Declaring the SQLCA is optional when MODE={ANSI | ANSI14}. To use WHENEVER
SQLWARNING, however, you must declare the SQLCA.

SQLERROR
SQLCODE has a negative value if Oracle9i returns an error.

NOT FOUND or NOTFOUND
SQLCODE has a value of +1403 (or +100 when MODE={ANSI | ANSI14 | ANSI13} or
when END_OF_FETCH=100) when the end of fetch has been reached. This can

Table 8–2 DSNTIAR Error Codes and Their Meanings

Error Codes Description

0 Successful execution

4 More data was available than could fit into the provided
message

8 The logical record length (LRECL) was not between 72 and 240

12 The message area was not large enough (greater than 240)

Note: You have to have included SQLCA for this to work.

Using the SQL Communications Area

8-12 Pro*COBOL Programmer’s Guide

happen when all the rows that meet the search criteria have been fetched or no rows
meet that criteria.

 You may use the END_OF_FETCH option to override the value use by the MODE
macro option.

END_OF_FETCH = 100 | 1403 (default 1403)

For more details, see "END_OF_FETCH" on page 14-14.

Actions
You can use the WHENEVER statement to specify the following actions.

CONTINUE
Your program continues to run with the next statement if possible. This is the default
action, equivalent to not using the WHENEVER statement. You can use it to "turn off"
condition checking.

DO CALL
Your program calls a nested subprogram. When the end of the subprogram is reached,
control transfers to the statement that follows the failed SQL statement.

DO PERFORM
Your program transfers control to a COBOL section or paragraph. When the end of the
section is reached, control transfers to the statement that follows the failed SQL
statement.

 EXEC SQL
 WHENEVER <condition> DO PERFORM <section_name>
 END-EXEC.

GOTO or GO TO
Your program branches to the specified paragraph or section.

STOP
Your program stops running and uncommitted work is rolled back.

Be careful. The STOP action displays no messages before logging off.

Coding the WHENEVER Statement
Code the WHENEVER statement using the following syntax:

 EXEC SQL
 WHENEVER <condition> <action>
 END-EXEC.

Note: Though in the generated code EXEC SQL WHENEVER
SQLERROR STOP is converted to IF SQLCODE IN SQLCA IS
EQUAL TO 1403 THEN STOP RUN END-IF, Oracle server will take
care of rolling back uncommitted data.

Using the SQL Communications Area

Error Handling and Diagnostics 8-13

DO PERFORM
When using the WHENEVER ... DO PERFORM statement, the usual rules for
PERFORMing a paragraph or section apply. However, you cannot use the THRU,
TIMES, UNTIL, or VARYING clauses.

For example, the following WHENEVER ... DO statement is invalid:

 PROCEDURE DIVISION.
* Invalid statement
 EXEC SQL WHENEVER SQLERROR DO
 PERFORM DISPLAY-ERROR THRU LOG-OFF
 END-EXEC.
 ...
 DISPLAY-ERROR.
 ...
 LOG-OFF.
 ...

In the following example, WHENEVER SQLERROR DO PERFORM statements are
used to handle specific errors:

 PROCEDURE DIVISION.
 MAIN SECTION.
 MSTART.
 ...
 EXEC SQL
 WHENEVER SQLERROR DO PERFORM INS-ERROR
 END-EXEC.
 EXEC SQL
 INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:EMP-NUMBER, :EMP-NAME, :DEPT-NUMBER)
 END-EXEC.
 EXEC SQL
 WHENEVER SQLERROR DO PERFORM DEL-ERROR
 END-EXEC.
 EXEC SQL
 DELETE FROM DEPT
 WHERE DEPTNO = :DEPT-NUMBER
 END-EXEC.
 ...
 MEXIT.
 STOP RUN.
 INS-ERROR SECTION.
 INSSTART.
* Check for "duplicate key value" Oracle9 error
 IF SQLCA.SQLCODE = -1
 ...
* Check for "value too large" Oracle9 error
 ELSE IF SQLCA.SQLCODE = -1401
 ...
 ELSE
 ...
 END-IF.
 ...
 INSEXIT.
 EXIT.
*
 DEL-ERROR SECTION.
 DSTART.
* Check for the number of rows processed.
 IF SQLCA.SQLERRD(3) = 0

Using the SQL Communications Area

8-14 Pro*COBOL Programmer’s Guide

 ...
 ELSE
 ...
 END-IF.
 ...
 DEXIT.
 EXIT.

Notice how the paragraphs check variables in the SQLCA to determine a course of
action.

DO CALL
This clause calls an action subprogram. Here is the syntax of this clause:

 EXEC SQL
 WHENEVER <condition> DO CALL <subprogram_name>
 [USING <param1> ...]
 END-EXEC.

The following restrictions or rules apply:

■ You cannot use the RETURNING, ON_EXCEPTION, or OVER_FLOW phrases in
the USING clause.

■ You may have to enter the subprogram name followed by the keyword COMMON
in the PROGRAM-ID statement of your COBOL source code.

■ You must use a WHENEVER CONTINUE statement in the action subprogram.

■ The action subprogram name may have to be in double quotes in the DO CALL
clause of the WHENEVER directive.

Here is an example of a program that can call the error subprogram SQL-ERROR from
inside the subprogram LOGON, or inside the MAIN program, without having to
repeat code in two places, as when using the DO PERFORM clause:

IDENTIFICATION DIVISION.
 PROGRAM-ID. MAIN.
 ENVIRONMENT DIVISION.
 ...
 PROCEDURE DIVISION.
 BEGIN-PGM.
 EXEC SQL
 WHENEVER SQLERROR DO CALL "SQL-ERROR"
 END-EXEC.
 CALL "LOGON".
 ...
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOGON.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 USERNAME PIC X(15) VARYING.
 01 PASSWD PIC X(15) VARYING.
 PROCEDURE DIVISION.
 MOVE "SCOTT" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "TIGER" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.

Using the SQL Communications Area

Error Handling and Diagnostics 8-15

 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.
 END PROGRAM LOGON.
 ...
 IDENTIFICATION DIVISION.
 PROGRAM-ID. SQL-ERROR COMMON.
 PROCEDURE DIVISION.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 END PROGRAM SQL-ERROR.
 END PROGRAM MAIN.

Scope
Because WHENEVER is a declarative statement, its scope is positional, not logical. It
tests all executable SQL statements that follow it in the source file, not in the flow of
program logic. So, code the WHENEVER statement before the first executable SQL
statement you want to test.

A WHENEVER statement stays in effect until superseded by another WHENEVER
statement checking for the same condition.

Suggestion: You can place WHENEVER statements at the beginning of each program
unit that contains SQL statements. That way, SQL statements in one program unit will
not reference WHENEVER actions in another program unit, causing errors at compile
or run time.

Careless Usage: Examples
Careless use of the WHENEVER statement can cause problems. For example, the
following code enters an infinite loop if the DELETE statement sets the NOT FOUND
condition, because no rows meet the search condition:

* Improper use of WHENEVER.
 EXEC SQL
 WHENEVER NOT FOUND GOTO NO-MORE
 END-EXEC.
 PERFORM GET-ROWS UNTIL DONE = "YES".
 ...
 GET-ROWS.
 EXEC SQL
 FETCH emp_cursor INTO :EMP-NAME, :SALARY
 END-EXEC.
 ...
 NO-MORE.
 MOVE "YES" TO DONE.
 EXEC SQL
 DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER
 END-EXEC.
 ...

In the next example, the NOT FOUND condition is properly handled by resetting the
GOTO target:

* Proper use of WHENEVER.

Using the SQL Communications Area

8-16 Pro*COBOL Programmer’s Guide

 EXEC SQL WHENEVER NOT FOUND GOTO NO-MORE END-EXEC.
 PERFORM GET-ROWS UNTIL DONE = "YES".
 ...
 GET-ROWS.
 EXEC SQL
 FETCH emp_cursor INTO :EMP-NAME, :SALARY
 END-EXEC.
 ...
 NO-MORE.
 MOVE "YES" TO DONE.
 EXEC SQL WHENEVER NOT FOUND GOTO NONE-FOUND END-EXEC.
 EXEC SQL
 DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER
 END-EXEC.
 ...
 NONE-FOUND.
 ...

Getting the Text of SQL Statements
In many Pro*COBOL applications, it is convenient to know the text of the statement
being processed, its length, and the SQL command (such as INSERT or SELECT) that it
contains. This is especially true for applications that use dynamic SQL.

The routine SQLGLS, which is part of the SQLLIB runtime library, returns the
following information:

■ The text of the most recently parsed SQL statement

■ The length of the statement

■ A function code

You can call SQLGLS after issuing a static SQL statement. With dynamic SQL Method
1, you can call SQLGLS after the SQL statement is executed. With dynamic SQL
Method 2, 3, or 4, you can call SQLGLS after the statement is prepared.

To call SQLGLS, you use the following syntax:

 CALL "SQLGLS" USING SQLSTM STMLEN SQLFC.

Table 8–3 shows the host-language datatypes available for the parameters in the
SQLGLS argument list.tt

All parameters must be passed by reference. This is usually the default parameter
passing convention; you need not take special action.

The parameter SQLSTM is a blank-padded (not null-terminated) character buffer that
holds the returned text of the SQL statement. Your program must statically declare the
buffer or dynamically allocate memory for it.

The length parameter STMLEN is a four-byte integer. Before calling SQLGLS, set this
parameter to the actual size (in bytes) of the SQLSTM buffer. When SQLGLS returns,

Table 8–3 Parameter Datatypes

Parameter Datatype

SQLSTM PIC X(n)

STMLEN PIC S9(9) COMP

SQLFC PIC S9(9) COMP

Using the Oracle Communications Area

Error Handling and Diagnostics 8-17

the SQLSTM buffer contains the SQL statement text blank padded to the length of the
buffer. STMLEN returns the actual number of bytes in the returned statement text, not
counting the blank padding. However, STMLEN returns a zero if an error occurred.

Some possible errors follow:

■ No SQL statement was parsed.

■ You passed an invalid parameter (for example, a negative length value).

■ An internal exception occurred in SQLLIB.

The parameter SQLFC is a four-byte integer that returns the SQL function code for the
SQL command in the statement. A complete table of the function code for each SQL
command is found in Oracle Call Interface Programmer's Guide.

There are no SQL function codes for these statements:

■ CONNECT

■ COMMIT

■ FETCH

■ ROLLBACK

■ RELEASE

Using the Oracle Communications Area
The SQLCA handles standard SQL communications. The Oracle Communications
Area (ORACA) is a similar structure that you can include in your program to handle
Oracle9i-specific communications. When you need more runtime information than the
SQLCA provides, use the ORACA.

Besides helping you to diagnose problems, the ORACA lets you monitor your
program's use of resources such as the SQL Statement Executor and the cursor cache, an
area of memory reserved for cursor management.

Contents of the ORACA
The ORACA contains option settings, system statistics, and extended diagnostics.
Figure 8–3 shows all the variables in the ORACA:

Using the Oracle Communications Area

8-18 Pro*COBOL Programmer’s Guide

Figure 8–3 ORACA Variable Declarations for Pro*COBOL

 This illustration the shows ORACA Variable Declarations for Pro*COBOL.

Declaring the ORACA
To declare the ORACA, simply include it (using an EXEC SQL INCLUDE statement) in
your Pro*COBOL source file outside the Declare Section as follows:

* Include the Oracle Communications Area (ORACA).
 EXEC SQL INCLUDE ORACA END-EXEC.

Enabling the ORACA
To enable the ORACA, you must set the ORACA precompiler option to YES on the
command line or in a configuration file with:

ORACA=YES

or inline with:

 EXEC Oracle OPTION (ORACA=YES) END-EXEC.

Then, you must choose appropriate runtime options by setting flags in the ORACA.
Enabling the ORACA is optional because it adds to runtime overhead. The default
setting is ORACA=NO.

Choosing Runtime Options
The ORACA includes several option flags. Setting these flags by assigning them
nonzero values enables you to:

■ Save the text of SQL statements

■ Enable DEBUG operations

01 ORACA.
05 ORACAID PIC X(8).
05 ORACABC PIC S9(9) COMP.
05 ORACCHF PIC S9(9) COMP.
05 ORADBGF PIC S9(9) COMP.
05 ORAHCHF PIC S9(9) COMP.
05 ORASTXTF PIC S9(9) COMP.
05 ORASTXT.

49 ORASTXTL PIC S9(4) COMP.
49 ORASTXTL PIC X(70).

05 ORASFNM.
49 ORASFNML PIC S9(4) COMP.
49 ORASFNMC PIC X(70).

05 ORASLNR PIC X(8).
05 ORAHOC PIC S9(9) COMP.
05 ORAMOC PIC S9(9) COMP.
05 ORACOC PIC S9(9) COMP.
05 ORANOR PIC S9(9) COMP.
05 ORANPR PIC S9(9) COMP.
05 ORANEX PIC S9(9) COMP.

ORACA

Using the Oracle Communications Area

Error Handling and Diagnostics 8-19

■ Check cursor cache consistency (the cursor cache is a continuously updated area of
memory used for cursor management)

■ Check heap consistency (the heap is an area of memory reserved for dynamic
variables)

■ Gather cursor statistics

The following descriptions will help you choose the options you need.

ORACA Structure
This section describes the structure of the ORACA, its fields, and the values they can
store.

ORACAID
This string field is initialized to ORACA to identify the Oracle Communications Area.

ORACABC
This integer field holds the length, expressed in bytes, of the ORACA data structure.

ORACCHF
If the master DEBUG flag (ORADBGF) is set, this flag lets you check the cursor cache
for consistency before every cursor operation.

The runtime library does the consistency checking and can issue error messages,
which are listed in Oracle Database Error Messages.

This flag has the following settings:

ORADBGF
This master flag lets you choose all the DEBUG options. It has the following settings:

ORAHCHF
If the master DEBUG flag (ORADBGF) is set, this flag tells the runtime library to check
the heap for consistency every time Pro*COBOL dynamically allocates or frees
memory. This is useful for detecting program bugs that upset memory.

This flag must be set before the CONNECT command is issued and, once set, cannot
be cleared; subsequent change requests are ignored. It has the following settings:

Settings Description

0 Disable cache consistency checking (the default).

1 Enable cache consistency checking.

Settings Description

0 Disable all DEBUG operations (the default).

1 Allow DEBUG operations to be enabled.

Settings Description

0 Enable heap consistency checking (the default).

Using the Oracle Communications Area

8-20 Pro*COBOL Programmer’s Guide

ORASTXTF
This flag lets you specify when the text of the current SQL statement is saved. It has
the following settings:

The SQL statement text is saved in the ORACA sub-record named ORASTXT.

Diagnostics
The ORACA provides an enhanced set of diagnostics; the following variables help you
to locate errors quickly.

ORASTXT
This sub-record helps you find faulty SQL statements. It lets you save the text of the
last SQL statement parsed by Oracle9i. It contains the following two fields:

Statements parsed by Pro*COBOL, such as CONNECT, FETCH, and COMMIT, are not
saved in the ORACA.

ORASFNM
This sub-record identifies the file containing the current SQL statement and so helps
you find errors when multiple files are precompiled for one application. It contains the
following two fields:

ORASLNR
This integer field identifies the line at (or near) which the current SQL statement can
be found.

1 Disable heap consistency checking.

Settings Description

0 Never save the SQL statement text (the default).

1 Save the SQL statement text on SQLERROR only.

2 Save the SQL statement text on SQLERROR or SQLWARNING.

3 Always save the SQL statement text.

Settings Description

ORASTXTL This integer field holds the length of the current SQL statement.

ORASTXTC This string field holds the text of the current SQL statement. At
most, the first 70 characters of text are saved.

Settings Description

ORASFNML This integer field holds the length of the filename stored in
ORASFNMC.

ORASFNMC This string field holds the filename. At most, the first 70
characters are stored.

Settings Description

Using the Oracle Communications Area

Error Handling and Diagnostics 8-21

Cursor Cache Statistics
The following variables let you gather cursor cache statistics. They are automatically
set by every COMMIT or ROLLBACK statement your program issues. Internally, there
is a set of these variables for each CONNECTed database. The current values in the
ORACA pertain to the database against which the last commit or rollback was
executed.

ORAHOC
This integer field records the highest value to which MAXOPENCURSORS was set
during program execution.

ORAMOC
This integer field records the maximum number of open cursors required by your
program. This number can be higher than ORAHOC if MAXOPENCURSORS was set
too low, which forced Pro*COBOL to extend the cursor cache.

ORACOC
This integer field records the current number of open cursors required by your
program.

ORANOR
This integer field records the number of cursor cache reassignments required by your
program. This number shows the degree of "thrashing" in the cursor cache and should
be kept as low as possible.

ORANPR
This integer field records the number of SQL statement parses required by your
program.

ORANEX
This integer field records the number of SQL statement executions required by your
program. The ratio of this number to the ORANPR number should be kept as high as
possible. In other words, avoid unnecessary re-parsing. For help, see Appendix C,
"Performance Tuning".

ORACA Example Program
The following program prompts for a department number, inserts the name and salary
of each employee in that department into one of two tables, and then displays
diagnostic information from the ORACA:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. ORACAEX.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(20).

Using the Oracle Communications Area

8-22 Pro*COBOL Programmer’s Guide

 01 PASSWORD PIC X(20).
 01 EMP-NAME PIC X(10) VARYING.
 01 DEPT-NUMBER PIC S9(4) COMP.
 01 SALARY PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 EXEC SQL END DECLARE SECTION END-EXEC.

 PROCEDURE DIVISION.
 DISPLAY "Username? " WITH NO ADVANCING.
 ACCEPT USERNAME.
 DISPLAY "Password? " WITH NO ADVANCING.
 ACCEPT PASSWORD.
 EXEC SQL
 WHENEVER SQLERROR GOTO SQL-ERROR
 END-EXEC.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWORD
 END-EXEC.
 DISPLAY "Connected to Oracle".

* -- set flags in the ORACA
* -- enable debug operations
 MOVE 1 TO ORADBGF.
* -- enable cursor cache consistency check
 MOVE 1 TO ORACCHF.
* -- always save the SQL statement
 MOVE 3 TO ORASTXTF.
 DISPLAY "Department number? " WITH NO ADVANCING.
 ACCEPT DEPT-NUMBER.
 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT ENAME, SAL + NVL(COMM,0)
 FROM EMP
 WHERE DEPTNO = :DEPT-NUMBER
 END-EXEC.
 EXEC SQL OPEN EMPCURSOR END-EXEC.
 EXEC SQL
 WHENEVER NOT FOUND GOTO NO-MORE
 END-EXEC.
 LOOP.
 EXEC SQL
 FETCH EMPCURSOR INTO :EMP-NAME, :SALARY
 END-EXEC.
 IF SALARY < 2500
 EXEC SQL
 INSERT INTO PAY1 VALUES (:EMP-NAME, :SALARY)
 END-EXEC
 ELSE
 EXEC SQL
 INSERT INTO PAY2 VALUES (:EMP-NAME, :SALARY)
 END-EXEC
 END-IF.
 GO TO LOOP.

 NO-MORE.
 EXEC SQL CLOSE EMPCURSOR END-EXEC.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 DISPLAY "(NO-MORE.) Last SQL statement: ", ORASTXTC.
 DISPLAY "... at or near line number: ", ORASLNR.
 DISPLAY " ".

How Errors Map to SQLSTATE Codes

Error Handling and Diagnostics 8-23

 DISPLAY " Cursor Cache Statistics".
 DISPLAY "---".
 DISPLAY "Maximum value of MAXOPENCURSORS ", ORAHOC.
 DISPLAY "Maximum open cursors required: ", ORAMOC.
 DISPLAY "Current number of open cursors: ", ORACOC.
 DISPLAY "Number of cache reassignments: ", ORANOR.
 DISPLAY "Number of SQL statement parses: ", ORANPR.
 DISPLAY "Number of SQL statement executions: ", ORANEX.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 DISPLAY "(SQL-ERROR.) Last SQL statement: ", ORASTXTC.
 DISPLAY "... at or near line number: ", ORASLNR.
 DISPLAY " ".
 DISPLAY " Cursor Cache Statistics".
 DISPLAY "---".
 DISPLAY "MAXIMUM VALUE OF MAXOPENCURSORS ", ORAHOC.
 DISPLAY "Maximum open cursors required: ", ORAMOC.
 DISPLAY "Current number of open cursors: ", ORACOC.
 DISPLAY "Number of cache reassignments: ", ORANOR.
 DISPLAY "Number of SQL statement parses: ", ORANPR.
 DISPLAY "Number of SQL statement executions: ", ORANEX.
 STOP RUN.

How Errors Map to SQLSTATE Codes
The following table describes SQLSTATE the codes, what they signify, and the
returned errors.

Table 8–4 SQLSTATE Codes

Code Condition Oracle9i Error

00000 successful completion ORA-00000

01000 warning

01001 cursor operation conflict

01002 disconnect error

01003 null value eliminated in set function

01004 string data - right truncation

01005 insufficient item descriptor areas

01006 privilege not revoked

01007 privilege not granted

01008 implicit zero-bit padding

01009 search condition too long for info schema

0100A query expression too long for info schema

02000 no data ORA-01095

ORA-01403

07000 dynamic SQL error

07001 using clause does not match parameter specs

How Errors Map to SQLSTATE Codes

8-24 Pro*COBOL Programmer’s Guide

07002 using clause does not match target specs

07003 cursor specification cannot be executed

07004 using clause required for dynamic parameters

07005 prepared statement not a cursor specification

07006 restricted datatype attribute violation

07007 using clause required for result fields

07008 invalid descriptor count SQL-02126

07009 invalid descriptor index

08000 connection exception

08001 SQL client unable to establish SQL connection

08002 connection name in use

08003 connection does not exist SQL-02121

08004 SQL server rejected SQL connection

08006 connection failure

08007 transaction resolution unknown

0A000 feature not supported ORA-03000 .. 03099

0A001 multiple server transactions

21000 cardinality violation ORA-01427

SQL-02112

22000 data exception

22001 string data - right truncation ORA-01401

ORA-01406

22002 null value - no indicator parameter ORA-01405

SQL-02124

22003 numeric value out of range ORA-01426

ORA-01438

ORA-01455

ORA-01457

22005 error in assignment

22007 invalid datetime format

22008 datetime field overflow ORA-01800 .. 01899

22009 invalid time zone displacement value

22011 substring error

22012 division by zero ORA-01476

22015 interval field overflow

22018 invalid character value for cast

22019 invalid escape character ORA-00911

ORA-01425

Table 8–4 (Cont.) SQLSTATE Codes

Code Condition Oracle9i Error

How Errors Map to SQLSTATE Codes

Error Handling and Diagnostics 8-25

22021 character not in repertoire

22022 indicator overflow ORA-01411

22023 invalid parameter value ORA-01025

ORA-01488

ORA-04000 .. 04019

22024 unterminated C string ORA-01479 .. 01480

22025 invalid escape sequence ORA-01424

22026 string data - length mismatch

22027 trim error

23000 integrity constraint violation ORA-00001

ORA-02290 .. 02299

24000 invalid cursor state ORA-01001 .. 01003

ORA-01410

ORA-08006

SQL-02114

SQL-02117

SQL-02118

SQL-02122

25000 invalid transaction state

26000 invalid SQL statement name

27000 triggered data change violation

28000 invalid authorization specification

2A000 direct SQL syntax error or access rule violation

2B000 dependent privilege descriptors still exist

2C000 invalid character set name

2D000 invalid transaction termination

2E000 invalid connection name

33000 invalid SQL descriptor name

34000 invalid cursor name

35000 invalid condition number

37000 dynamic SQL syntax error or access rule
violation

3C000 ambiguous cursor name

3D000 invalid catalog name

3F000 invalid schema name

40000 transaction rollback ORA-02091 .. 02092

40001 serialization failure

40002 integrity constraint violation

Table 8–4 (Cont.) SQLSTATE Codes

Code Condition Oracle9i Error

How Errors Map to SQLSTATE Codes

8-26 Pro*COBOL Programmer’s Guide

40003 statement completion unknown

42000 syntax error or access rule violation ORA-00022

ORA-00251

ORA-00900 .. 00999

ORA-01031

ORA-01490 .. 01493

ORA-01700 .. 01799

ORA-01900 .. 02099

ORA-02140 .. 02289

ORA-02420 .. 02424

ORA-02450 .. 02499

ORA-03276 .. 03299

ORA-04040 .. 04059

ORA-04070 .. 04099

44000 with check option violation ORA-01402

60000 system errors ORA-00370 .. 00429

ORA-00600 .. 00899

ORA-06430 .. 06449

ORA-07200 .. 07999

ORA-09700 .. 09999

61000 resource error ORA-00018 .. 00035

ORA-00050 .. 00068

ORA-02376 .. 02399

ORA-04020 .. 04039

62000 multithreaded server and detached process
errors

ORA-00100 .. 00120

ORA-00440 .. 00569

63000 Oracle XA and two-task interface errors ORA-00150 .. 00159

SQL-02128

ORA-02700 .. 02899

ORA-03100 .. 03199

ORA-06200 .. 06249
SQL-02128

64000 control file, database file, and redo file errors;

archival and media recovery errors

ORA-00200 .. 00369

ORA-01100 .. 01250

65000 PL/SQL errors ORA-06500 .. 06599

66000 Oracle Net driver errors ORA-06000 .. 06149

ORA-06250 .. 06429

ORA-06600 .. 06999

ORA-12100 .. 12299

ORA-12500 .. 12599

67000 licensing errors ORA-00430 .. 00439

Table 8–4 (Cont.) SQLSTATE Codes

Code Condition Oracle9i Error

How Errors Map to SQLSTATE Codes

Error Handling and Diagnostics 8-27

69000 SQL*Connect errors ORA-00570 .. 00599

ORA-07000 .. 07199

72000 SQL execute phase errors ORA-01000 .. 01099

ORA-01400 .. 01489

ORA-01495 .. 01499

ORA-01500 .. 01699

ORA-02400 .. 02419

ORA-02425 .. 02449

ORA-04060 .. 04069

ORA-08000 .. 08190

ORA-12000 .. 12019

ORA-12300 .. 12499

ORA-12700 .. 21999

82100 out of memory (could not allocate) SQL-02100

82101 inconsistent cursor cache: unit cursor/global
cursor mismatch

SQL-02101

82102 inconsistent cursor cache: no global cursor
entry

SQL-02102

82103 inconsistent cursor cache: out of range cursor
cache reference

SQL-02103

82104 inconsistent host cache: no cursor cache
available

SQL-02104

82105 inconsistent cursor cache: global cursor not
found

SQL-02105

82106 inconsistent cursor cache: invalid cursor
number

SQL-02106

82107 program too old for runtime library SQL-02107

82108 invalid descriptor passed to runtime library SQL-02108

82109 inconsistent host cache: host reference is out of
range

SQL-02109

82110 inconsistent host cache: invalid host cache entry
type

SQL-02110

82111 heap consistency error SQL-02111

82112 unable to open message file SQL-02113

82113 code generation internal consistency failed SQL-02115

82114 reentrant code generator gave invalid context SQL-02116

82115 invalid hstdef argument SQL-02119

82116 first and second arguments to sqlrcn both null SQL-02120

82117 invalid OPEN or PREPARE for this connection SQL-02122

82118 application context not found SQL-02123

82119 connect error; can't get error text SQL-02125

82120 precompiler/SQLLIB version mismatch. SQL-02127

Table 8–4 (Cont.) SQLSTATE Codes

Code Condition Oracle9i Error

How Errors Map to SQLSTATE Codes

8-28 Pro*COBOL Programmer’s Guide

Status Variable Combinations
When MODE={ANSI | ANSI14}, the behavior of the status variables depends on the
following:

■ Which variables are declared.

■ Declaration placement (inside or outside the Declare Section).

■ The ASSUME_SQLCODE setting.

Table 8–5 and Table 8–6 describe the resulting behavior of each status variable
combination when ASSUME_SQLCODE=NO and when ASSUME_SQLCODE=YES,
respectively.

For both Tables: when DECLARE_SECTION=NO, any declaration of a status variable
is treated as IN as far as these tables are concerned.

Do not use ASSUME_SQLCODE=YES with DECLARE_SECTION=NO.

82121 FETCHed number of bytes is odd SQL-02129

82122 EXEC TOOLS interface is not available SQL-02130

82123 runtime context in use SQL-02131

82124 unable to allocate runtime context SQL-02131

82125 unable to initialize process for use with threads SQL-02133

82126 invalid runtime context SQL-02134

90000 debug events ORA-10000 .. 10999

99999 catch all all others

HZ000 remote database access

Table 8–5 Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI | ANSI14 and
DECLARE_SECTION=YES

Declare
Section (IN/OUT------) Behavior

SQLCODE SQLSTATE SQLCA -

OUT — — SQLCODE is declared and is presumed to be a status variable.

OUT — OUT This status variable configuration is not supported.

OUT — IN This status variable configuration is not supported.

OUT OUT — SQLCODE is declared and is presumed to be a status variable,
and SQLSTATE is declared but is not recognized as a status
variable.

OUT OUT OUT This status variable configuration is not supported.

OUT OUT IN This status variable configuration is not supported.

OUT IN — SQLSTATE is declared as a status variable, and SQLCODE is
declared but is not recognized as a status variable.

OUT IN OUT This status variable configuration is not supported.

OUT IN IN This status variable configuration is not supported.

IN — — SQLCODE is declared as a status variable.

Table 8–4 (Cont.) SQLSTATE Codes

Code Condition Oracle9i Error

How Errors Map to SQLSTATE Codes

Error Handling and Diagnostics 8-29

IN — OUT This status variable configuration is not supported.

IN — IN This status variable configuration is not supported.

IN OUT — SQLCODE is declared as a status variable, and SQLSTATE is
declared but is not recognized as a status variable.

IN OUT OUT This status variable configuration is not supported.

IN OUT IN This status variable configuration is not supported.

IN IN — SQLCODE and SQLSTATE are declared as a status variables.

IN IN OUT This status variable configuration is not supported.

IN IN IN This status variable configuration is not supported.

— — — This status variable configuration is not supported.

— — OUT SQLCA is declared as a status variable.

— — IN SQLCA is declared as a status host variable.

— OUT — This status variable configuration is not supported.

— OUT OUT SQLCA is declared as a status variable, and SQLSTATE is
declared but is not recognized as a status variable.

— OUT IN SQLCA is declared as a status host variable, and SQLSTATE is
declared but is not recognized as a status variable.

— IN — SQLSTATE is declared as a status variable.

— IN OUT SQLSTATE and SQLCA are declared as status variables.

— IN IN SQLSTATE and SQLCA are declared as status host variables.

Table 8–6 Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI | ANSI14 and
DECLARE_SECTION=YES

Declare Section (IN/OUT/ —) Behavior

SQLCODE SQLSTATE SQLCA

OUT — — SQLCODE is declared and is presumed to be a status variable.

OUT — OUT This status variable configuration is not supported.

OUT — IN This status variable configuration is not supported.

OUT OUT — SQLCODE is declared and is presumed to be a status variable,
and SQLSTATE is declared but is not recognized as a status
variable.

OUT OUT OUT This status variable configuration is not supported.

OUT OUT IN This status variable configuration is not supported.

OUT IN — SQLSTATE is declared as a status variable, and SQLCODE is
declared and is presumed to be a status variable.

OUT IN OUT This status variable configuration is not supported.

OUT IN IN This status variable configuration is not supported.

IN — — SQLCODE is declared as a status variable.

Table 8–5 (Cont.) Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI | ANSI14 and
DECLARE_SECTION=YES

Declare
Section (IN/OUT------) Behavior

SQLCODE SQLSTATE SQLCA -

How Errors Map to SQLSTATE Codes

8-30 Pro*COBOL Programmer’s Guide

IN — OUT This status variable configuration is not supported.

IN — IN This status variable configuration is not supported.

IN OUT — SQLCODE is declared as a status variable, and SQLSTATE is
declared but not as a status variable.

IN OUT OUT This status variable configuration is not supported.

IN OUT IN This status variable configuration is not supported.

IN IN — SQLCODE and SQLSTATE are declared as a status variables.

IN IN OUT This status variable configuration is not supported.

IN IN IN This status variable configuration is not supported.

—

—

—

—

—

—

—

—

—

—

—

—

OUT

OUT

OUT

IN

IN

IN

—

OUT

IN

—

OUT

IN

—

OUT

IN

These status variable configurations are not supported.
SQLCODE must be declared when ASSUME_
SQLCODE=YES.

Table 8–6 (Cont.) Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI | ANSI14 and
DECLARE_SECTION=YES

Declare Section (IN/OUT/ —) Behavior

SQLCODE SQLSTATE SQLCA

Oracle Dynamic SQL 9-1

9
Oracle Dynamic SQL

This chapter shows you how to use dynamic SQL, an advanced programming
technique that adds flexibility and functionality to your applications. After weighing
the advantages and disadvantages of dynamic SQL, you learn four methods—from
simple to complex—for writing programs that accept and process SQL statements "on
the fly" at run time. You learn the requirements and limitations of each method and
how to choose the right method for a given job.

Topics are:

■ Dynamic SQL

■ Advantages and Disadvantages of Dynamic SQL

■ When to Use Dynamic SQL

■ Requirements for Dynamic SQL Statements

■ How Dynamic SQL Statements Are Processed

■ Methods for Using Dynamic SQL

■ Using Method 1

■ Sample Program 6: Dynamic SQL Method 1

■ Using Method 2

■ Sample Program 7: Dynamic SQL Method 2

■ Using Method 3

■ Sample Program 8: Dynamic SQL Method 3

■ Using Oracle Method 4

■ Using the DECLARE STATEMENT Statement

■ Using Host Tables

■ Using PL/SQL

Dynamic SQL
Most database applications do a specific job. For example, a simple program might
prompt the user for an employee number, then update rows in the EMP and DEPT
tables. In this case, you know the makeup of the UPDATE statement at precompile
time. That is, you know which tables might be changed, the constraints defined for
each table and column, which columns might be updated, and the datatype of each
column.

Advantages and Disadvantages of Dynamic SQL

9-2 Pro*COBOL Programmer’s Guide

However, some applications must accept (or build) and process a variety of SQL
statements at run time. For example, a general-purpose report writer must build
different SELECT statements for the various reports it generates. In this case, the
statement's makeup is unknown until run time. Such statements can, and probably
will, change from execution to execution. They are aptly called dynamic SQL
statements.

Unlike static SQL statements, dynamic SQL statements are not embedded in your
source program. Instead, they are stored in character strings input to or built by the
program at run time. They can be entered interactively or read from a file.

Advantages and Disadvantages of Dynamic SQL
Host programs that accept and process dynamically defined SQL statements are more
versatile than plain embedded SQL programs. Dynamic SQL statements can be built
interactively with input from users having little or no knowledge of SQL.

For example, your program might simply prompt users for a search condition to be
used in the WHERE clause of a SELECT, UPDATE, or DELETE statement. A more
complex program might allow users to choose from menus listing SQL operations,
table and view names, column names, and so on. Thus, dynamic SQL lets you write
highly flexible applications.

However, some dynamic queries require complex coding, the use of special data
structures, and more runtime processing. While you might not notice the added
processing time, you might find the coding difficult unless you fully understand
dynamic SQL concepts and methods.

When to Use Dynamic SQL
In practice, static SQL will meet nearly all your programming needs. Use dynamic
SQL only if you need its open-ended flexibility. Its use is suggested when one or more
of the following items is unknown at precompile time:

■ Text of the SQL statement (commands, clauses, and so on)

■ The number of host variables

■ The datatypes of host variables

■ References to database objects such as columns, indexes, sequences, tables,
usernames, and views

Requirements for Dynamic SQL Statements
To represent a dynamic SQL statement, a character string must contain the text of a
valid DML or DDL SQL statement, but not contain the EXEC SQL clause,
host-language delimiter or statement terminator.

In most cases, the character string can contain dummy host variables. They hold places
in the SQL statement for actual host variables. Because dummy host variables are just
place-holders, you do not declare them and can name them anything you like
(hyphens are not allowed). For example, Oracle9i makes no distinction between the
following two strings

'DELETE FROM EMP WHERE MGR = :MGRNUMBER AND JOB = :JOBTITLE'
'DELETE FROM EMP WHERE MGR = :M AND JOB = :J'

Methods for Using Dynamic SQL

Oracle Dynamic SQL 9-3

How Dynamic SQL Statements Are Processed
Typically, an application program prompts the user for the text of a SQL statement and
the values of host variables used in the statement. Then Oracle9i parses the SQL
statement. That is, Oracle9i examines the SQL statement to make sure it follows syntax
rules and refers to valid database objects. Parsing also involves checking database
access rights, reserving needed resources, and finding the optimal access path.

Next, Oracle9i binds the host variables to the SQL statement. That is, Oracle9i gets the
addresses of the host variables so that it can read or write their values.

If the statement is a query, you define the SELECT variables and then Oracle9i
FETCHes them until all rows are retrieved. The cursor is then closed.

Then Oracle9i executes the SQL statement. That is, Oracle9i does what the SQL
statement requested, such as deleting rows from a table.

The SQL statement can be executed repeatedly using new values for the host variables.

Methods for Using Dynamic SQL
This section introduces the four methods you can use to define dynamic SQL
statements. It briefly describes the capabilities and limitations of each method, then
offers guidelines for choosing the right method. Later sections show you how to use
the methods.

The four methods are increasingly general. That is, Method 2 encompasses Method 1,
Method 3 encompasses Methods 1 and 2, and so on. However, each method is most
useful for handling a certain kind of SQL statement, as Table 9–1 shows:

The term select-list item includes column names and expressions.

Method 1
This method lets your program accept or build a dynamic SQL statement, then
immediately execute it using the EXECUTE IMMEDIATE command. The SQL
statement must not be a query (SELECT statement) and must not contain any
place-holders for input host variables. For example, the following host strings qualify:

'DELETE FROM EMP WHERE DEPTNO = 20'

'GRANT SELECT ON EMP TO SCOTT'

With Method 1, the SQL statement is parsed every time it is executed (regardless of
whether you have set HOLD_CURSOR=YES).

Table 9–1 Appropriate Method to Use

Method Kind of SQL Statement

1 Non-query without input host variables.

2 Non-query with known number of input host variables.

3 Query with known number of select-list items and input host variables.

4 Query with unknown number of select-list items or input host variables.

Methods for Using Dynamic SQL

9-4 Pro*COBOL Programmer’s Guide

Method 2
This method lets your program accept or build a dynamic SQL statement, then process
it using the PREPARE and EXECUTE commands. The SQL statement must not be a
query. The number of place-holders for input host variables and the datatypes of the
input host variables must be known at precompile time. For example, the following
host strings fall into this category:

'INSERT INTO EMP (ENAME, JOB) VALUES (:EMPNAME, :JOBTITLE)'
'DELETE FROM EMP WHERE EMPNO = :EMPNUMBER'

With Method 2, the SQL statement can be parsed just once by calling PREPARE once,
and executed many times with different values for the host variables. This is not true
when RELEASE_CURSOR=YES is also specified, because the statement has to be
prepared again before each execution.

Method 3
This method lets your program accept or build a dynamic query then process it using
the PREPARE command with the DECLARE, OPEN, FETCH, and CLOSE cursor
commands. The number of select-list items, the number of place-holders for input host
variables, and the datatypes of the input host variables must be known at precompile
time. For example, the following host strings qualify:

'SELECT DEPTNO, MIN(SAL), MAX(SAL) FROM EMP GROUP BY DEPTNO'
'SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :DEPTNUMBER'

Method 4
This method lets your program accept or build a dynamic SQL statement, then process
it using descriptors (discussed in "Using Oracle Method 4" on page 9-18). The number
of select-list items, the number of place-holders for input host variables, and the
datatypes of the input host variables can be unknown until run time. For example, the
following host strings fall into this category:

'INSERT INTO EMP (unknown) VALUES (unknown)'

'SELECT unknown FROM EMP WHERE DEPTNO = 20'

Method 4 is required for dynamic SQL statements that contain an unknown number of
select-list items or input host variables.

Guidelines
With all four methods, you must store the dynamic SQL statement in a character
string, which must be a host variable or quoted literal. When you store the SQL
statement in the string, omit the keywords EXEC SQL and the statement terminator.

With Methods 2 and 3, the number of place-holders for input host variables and the
datatypes of the input host variables must be known at precompile time.

Each succeeding method imposes fewer constraints on your application, but is more
difficult to code. As a rule, use the simplest method you can. However, if a dynamic
SQL statement will be executed repeatedly by Method 1, use Method 2 instead to
avoid re-parsing for each execution.

Note: SQL data definition statements such as CREATE are
executed once the PREPARE is completed.

Methods for Using Dynamic SQL

Oracle Dynamic SQL 9-5

Method 4 provides maximum flexibility, but requires complex coding and a full
understanding of dynamic SQL concepts. In general, use Method 4 only if you cannot
use Methods 1, 2, or 3.

The decision logic in Figure 9–1, "Choosing the Right Method" on page 9-6, will help
you choose the correct method.

Avoiding Common Errors
If you use a character array to store the dynamic SQL statement, blank-pad the array
before storing the SQL statement. That way, you clear extraneous characters. This is
especially important when you reuse the array for different SQL statements. As a rule,
always initialize (or re-initialize) the host string before storing the SQL statement.

Do not null-terminate the host string. Oracle9i does not recognize the null terminator
as an end-of-string marker. Instead, Oracle9i treats it as part of the SQL statement.

If you use a VARCHAR variable to store the dynamic SQL statement, make sure the
length of the VARCHAR is set (or reset) correctly before you execute the PREPARE or
EXECUTE IMMEDIATE statement.

EXECUTE resets the SQLWARN warning flags in the SQLCA. So, to catch mistakes
such as an unconditional update (caused by omitting a WHERE clause), check the
SQLWARN flags after executing the PREPARE statement but before executing the
EXECUTE statement.

Figure 9–1 shows how to choose the right method.

Using Method 1

9-6 Pro*COBOL Programmer’s Guide

Figure 9–1 Choosing the Right Method

This illustrates how to choose the right method about teh SQL query.

Using Method 1
The simplest kind of dynamic SQL statement results only in "success" or "failure" and
uses no host variables. Some examples follow:

'DELETE FROM table_name WHERE column_name = constant'
'CREATE TABLE table_name ...'
'DROP INDEX index_name'
'UPDATE table_name SET column_name = constant'
'GRANT SELECT ON table_name TO username'

The EXECUTE IMMEDIATE Statement
Method 1 parses, then immediately executes the SQL statement using the EXECUTE
IMMEDIATE command. The command is followed by a character string (host variable
or literal) containing the SQL statement to be executed, which cannot be a query.

Method 1 Method 2 Method 3 Method 4

no

no

no

yes

yes

yes

no

no

no

yes

yes

yes

Is it a query?

About the SQL statement...

Does its select list
contain an unknown

number of items?

Does it contain
input host
variables?

Does it
contain an

unknown number of
input host
variables?

Does it
contain an unknown

number of input
host variables?

Will it be executed
repeatedly?

Using Method 1

Oracle Dynamic SQL 9-7

The syntax of the EXECUTE IMMEDIATE statement follows:

EXEC SQL EXECUTE IMMEDIATE { :HOST-STRING | STRING-LITERAL }END-EXEC.

In the following example, you use the host variable SQL-STMT to store SQL
statements input by the user:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 SQL-STMT PIC X(120);
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 LOOP.
 DISPLAY 'Enter SQL statement: ' WITH NO ADVANCING.
 ACCEPT SQL-STMT END-EXEC.
* -- sql_stmt now contains the text of a SQL statement
 EXEC SQL EXECUTE IMMEDIATE :SQL-STMT END-EXEC.
 NEXT.
 ...

Because EXECUTE IMMEDIATE parses the input SQL statement before every
execution, Method 1 is best for statements that are executed only once. Data definition
statements usually fall into this category.

An Example
The following fragment of a program prompts the user for a search condition to be
used in the WHERE clause of an UPDATE statement, then executes the statement
using Method 1:

 ...
* THE RELEASE_CURSOR=YES OPTION INSTRUCTS PRO*COBOL TO
* RELEASE IMPLICIT CURSORS ASSOCIATED WITH EMBEDDED SQL
* STATEMENTS. THIS ENSURES THAT Oracle8 DOES NOT KEEP PARSE
* LOCKS ON TABLES, SO THAT SUBSEQUENT DATA MANIPULATION
* OPERATIONS ON THOSE TABLES DO NOT RESULT IN PARSE-LOCK
* ERRORS.

 EXEC ORACLE OPTION (RELEASE_CURSOR=YES) END-EXEC.

*
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VALUE "SCOTT".
 01 PASSWD PIC X(10) VALUE "TIGER".
 01 DYNSTMT PIC X(80).
 EXEC SQL END DECLARE SECTION END-EXEC.
 01 UPDATESTMT PIC X(40).
 01 SEARCH-COND PIC X(40).
 ...
 DISPLAY "ENTER A SEARCH CONDITION FOR STATEMENT:".
 MOVE "UPDATE EMP SET COMM = 500 WHERE " TO UPDATESTMT.
 DISPLAY UPDATESTMT.
 ACCEPT SEARCH-COND.
* Concatenate SEARCH-COND to UPDATESTMT and store result
* in DYNSTMT.
 STRING UPDATESTMT DELIMITED BY SIZE
 SEARCH-COND DELIMITED BY SIZE INTO DYNSTMT.
 EXEC SQL EXECUTE IMMEDIATE :DYNSTMT END-EXEC.

Sample Program 6: Dynamic SQL Method 1

9-8 Pro*COBOL Programmer’s Guide

Sample Program 6: Dynamic SQL Method 1
This program uses dynamic SQL Method 1 to create a table, insert a row, commit the
insert, then drop the table.

 * Sample Program 6: Dynamic SQL Method 1 *
 * *
 * This program uses dynamic SQL Method 1 to create a table, *
 * insert a row, commit the insert, then drop the table. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DYNSQL1.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * INCLUDE THE ORACLE COMMUNICATIONS AREA, A STRUCTURE
 * THROUGH WHICH ORACLE MAKES ADDITIONAL RUNTIME STATUS
 * INFORMATION AVAILABLE TO THE PROGRAM.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 * INCLUDE THE ORACLE COMMUNICATIONS AREA, A STRUCTURE
 * THROUGH WHICH ORACLE MAKES ADDITIONAL RUNTIME STATUS
 * INFORMATION AVAILABLE TO THE PROGRAM.

 EXEC SQL INCLUDE ORACA END-EXEC.

 * THE OPTION ORACA=YES MUST BE SPECIFIED TO ENABLE USE OF
 * THE ORACA.

 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

 * THE RELEASE_CURSOR=YES OPTION INSTRUCTS PRO*COBOL TO
 * RELEASE IMPLICIT CURSORS ASSOCIATED WITH EMBEDDED SQL
 * STATEMENTS. THIS ENSURES THAT ORACLE DOES NOT KEEP PARSE
 * LOCKS ON TABLES, SO THAT SUBSEQUENT DATA MANIPULATION
 * OPERATIONS ON THOSE TABLES DO NOT RESULT IN PARSE-LOCK
 * ERRORS.

 EXEC ORACLE OPTION (RELEASE_CURSOR=YES) END-EXEC.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VALUE "SCOTT".
 01 PASSWD PIC X(10) VALUE "TIGER".
 01 DYNSTMT PIC X(80) VARYING.
 EXEC SQL END DECLARE SECTION END-EXEC.

 * DECLARE VARIABLES NEEDED TO DISPLAY COMPUTATIONALS.
 01 ORASLNRD PIC 9(9).

 PROCEDURE DIVISION.

 MAIN.

 * BRANCH TO PARAGRAPH SQLERROR IF AN ORACLE ERROR OCCURS.
 EXEC SQL WHENEVER SQLERROR GOTO SQLERROR END-EXEC.

 * SAVE TEXT OF CURRENT SQL STATEMENT IN THE ORACA IF AN ERROR

Sample Program 6: Dynamic SQL Method 1

Oracle Dynamic SQL 9-9

 * OCCURS.
 MOVE 1 TO ORASTXTF.

 * CONNECT TO ORACLE.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: " WITH NO ADVANCING.
 DISPLAY USERNAME.
 DISPLAY " ".

 * EXECUTE A STRING LITERAL TO CREATE THE TABLE. HERE, YOU
 * GENERALLY USE A STRING VARIABLE INSTEAD OF A LITERAL, AS IS
 * DONE LATER IN THIS PROGRAM. BUT, YOU CAN USE A LITERAL IF
 * YOU WISH.
 DISPLAY "CREATE TABLE DYN1 (COL1 CHAR(4))".
 DISPLAY " ".
 EXEC SQL EXECUTE IMMEDIATE
 "CREATE TABLE DYN1 (COL1 CHAR(4))"
 END-EXEC.

 * ASSIGN A SQL STATEMENT TO THE VARYING STRING DYNSTMT.
 * SET THE -LEN PART TO THE LENGTH OF THE -ARR PART.
 MOVE "INSERT INTO DYN1 VALUES ('TEST')" TO DYNSTMT-ARR.
 MOVE 36 TO DYNSTMT-LEN.
 DISPLAY DYNSTMT-ARR.
 DISPLAY " ".

 * EXECUTE DYNSTMT TO INSERT A ROW. THE SQL STATEMENT IS A
 * STRING VARIABLE WHOSE CONTENTS THE PROGRAM MAY DETERMINE
 * AT RUN TIME.
 EXEC SQL EXECUTE IMMEDIATE :DYNSTMT END-EXEC.

 * COMMIT THE INSERT.
 EXEC SQL COMMIT WORK END-EXEC.

 * CHANGE DYNSTMT AND EXECUTE IT TO DROP THE TABLE.
 MOVE "DROP TABLE DYN1" TO DYNSTMT-ARR.
 MOVE 19 TO DYNSTMT-LEN.
 DISPLAY DYNSTMT-ARR.
 DISPLAY " ".
 EXEC SQL EXECUTE IMMEDIATE :DYNSTMT END-EXEC.

 * COMMIT ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
 EXEC SQL COMMIT RELEASE END-EXEC.
 DISPLAY "HAVE A GOOD DAY!".
 DISPLAY " ".
 STOP RUN.

 SQLERROR.

 * ORACLE ERROR HANDLER. PRINT DIAGNOSTIC TEXT CONTAINING
 * ERROR MESSAGE, CURRENT SQL STATEMENT, AND LOCATION OF ERROR.
 DISPLAY SQLERRMC.
 DISPLAY "IN ", ORASTXTC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY "ON LINE ", ORASLNRD, " OF ", ORASFNMC.

 * DISABLE ORACLE ERROR CHECKING TO AVOID AN INFINITE LOOP

Using Method 2

9-10 Pro*COBOL Programmer’s Guide

 * SHOULD ANOTHER ERROR OCCUR WITHIN THIS PARAGRAPH.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.

 * ROLL BACK ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
 EXEC SQL ROLLBACK RELEASE END-EXEC.
 STOP RUN.

Using Method 2
What Method 1 does in one step, Method 2 does in two. The dynamic SQL statement,
which cannot be a query, is first prepared (named and parsed), then executed.

With Method 2, the SQL statement can contain place-holders for input host variables
and indicator variables. You can PREPARE the SQL statement once, then EXECUTE it
repeatedly using different values of the host variables. Also, if you have not specified
MODE=ANSI, you need not re-prepare the SQL statement after a COMMIT or
ROLLBACK (unless you log off and reconnect).

The syntax of the PREPARE statement follows:

 EXEC SQL PREPARE STATEMENT-NAME
 FROM { :HOST-STRING | STRING-LITERAL }
 END-EXEC.

PREPARE parses the SQL statement and gives it a name.

STATEMENT-NAME is an identifier used by the precompiler, not a host or program
variable, and should not be declared in a COBOL statement. It simply designates the
prepared statement you want to EXECUTE.

The syntax of the EXECUTE statement is

 EXEC SQL
 EXECUTE STATEMENT-NAME [USING HOST-VARIABLE-LIST]
 END-EXEC.

where HOST-VARIABLE-LIST stands for the following syntax:

:HOST-VAR1[:INDICATOR1] [, HOST-VAR2[:INDICATOR2], ...]

EXECUTE executes the parsed SQL statement, using the values supplied for each
input host variable. In the following example, the input SQL statement contains the
place-holder n:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
 ...
 01 DELETE-STMT PIC X(120) VALUE SPACES.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 01 WHERE-STMT PIC X(40).
 01 SEARCH-COND PIC X(40).
 ...
 MOVE 'DELETE FROM EMP WHERE EMPNO = :N AND ' TO WHERE-STMT.
 DISPLAY 'Complete this statement's search condition:'.
 DISPLAY WHERE-STMT.
 ACCEPT SEARCH-COND.
* Concatenate SEARCH-COND to WHERE-STMT and store in DELETE-STMT
 STRING WHERE-STMT DELIMITED BY SIZE
 SEARCH-COND DELIMITED BY SIZE INTO
 DELETE-STMT.

Sample Program 7: Dynamic SQL Method 2

Oracle Dynamic SQL 9-11

 EXEC SQL PREPARE SQLSTMT FROM :DELETE-STMT END-EXEC.
 LOOP.
 DISPLAY 'Enter employee number: ' WITH NO ADVANCING.
 ACCEPT EMP-NUMBER.
 IF EMP-NUMBER = 0
 GO TO NEXT.
 EXEC SQL EXECUTE SQLSTMT USING :EMP-NUMBER END-EXEC.
 NEXT.

With Method 2, you must know the datatypes of input host variables at precompile
time. In the last example, EMP-NUMBER was declared as type PIC S9(4) COMP. It
could also have been declared as type PIC X(4) or COMP-1, because Oracle9i supports
all these datatype conversions to the NUMBER internal datatype.

The USING Clause
When the SQL statement EXECUTE is completed, input host variables in the USING
clause replace corresponding place-holders in the prepared dynamic SQL statement.

Every place-holder in the dynamic SQL statement after PREPARE must correspond to
a host variable in the USING clause. So, if the same place-holder appears two or more
times in the statement after PREPARE, each appearance must correspond to a host
variable in the USING clause. If one of the host variables in the USING clause is an
array, all must be arrays. Otherwise, only one record is then processed.

The names of the place-holders need not match the names of the host variables.
However, the order of the place-holders in the dynamic SQL statement after PREPARE
must match the order of corresponding host variables in the USING clause.

To specify NULLs, you can associate indicator variables with host variables in the
USING clause. For more information, see "Using Indicator Variables" on page 5-2.

Sample Program 7: Dynamic SQL Method 2
This program uses dynamic SQL Method 2 to insert two rows into the EMP table and
then delete them.

 * Sample Program 7: Dynamic SQL Method 2 *
 * *
 * This program uses dynamic SQL Method 2 to insert two rows *
 * into the EMP table, then delete them. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DYNSQL2.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * INCLUDE THE SQL COMMUNICATIONS AREA, A STRUCTURE THROUGH
 * WHICH ORACLE MAKES RUNTIME STATUS INFORMATION (SUCH AS ERROR
 * CODES, WARNING FLAGS, AND DIAGNOSTIC TEXT) AVAILABLE TO THE
 * PROGRAM.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 * INCLUDE THE ORACLE COMMUNICATIONS AREA, A STRUCTURE THROUGH
 * WHICH ORACLE MAKES ADDITIONAL RUNTIME STATUS INFORMATION
 * AVAILABLE TO THE PROGRAM.
 EXEC SQL INCLUDE ORACA END-EXEC.

Sample Program 7: Dynamic SQL Method 2

9-12 Pro*COBOL Programmer’s Guide

 * THE OPTION ORACA=YES MUST BE SPECIFIED TO ENABLE USE OF
 * THE ORACA.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VALUE "SCOTT".
 01 PASSWD PIC X(10) VALUE "TIGER".
 01 DYNSTMT PIC X(80) VARYING.
 01 EMPNO PIC S9(4) COMPUTATIONAL VALUE 1234.
 01 DEPTNO1 PIC S9(4) COMPUTATIONAL VALUE 10.
 01 DEPTNO2 PIC S9(4) COMPUTATIONAL VALUE 20.
 EXEC SQL END DECLARE SECTION END-EXEC.

 * DECLARE VARIABLES NEEDED TO DISPLAY COMPUTATIONALS.
 01 EMPNOD PIC 9(4).
 01 DEPTNO1D PIC 9(2).
 01 DEPTNO2D PIC 9(2).
 01 ORASLNRD PIC 9(9).

 PROCEDURE DIVISION.
 MAIN.

 * BRANCH TO PARAGRAPH SQLERROR IF AN ORACLE ERROR OCCURS.
 EXEC SQL WHENEVER SQLERROR GOTO SQLERROR END-EXEC.

 * SAVE TEXT OF CURRENT SQL STATEMENT IN THE ORACA IF AN ERROR
 * OCCURS.
 MOVE 1 TO ORASTXTF.

 * CONNECT TO ORACLE.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE.".
 DISPLAY " ".

 * ASSIGN A SQL STATEMENT TO THE VARYING STRING DYNSTMT. BOTH
 * THE ARRAY AND THE LENGTH PARTS MUST BE SET PROPERLY. NOTE
 * THAT THE STATEMENT CONTAINS TWO HOST VARIABLE PLACEHOLDERS,
 * V1 AND V2, FOR WHICH ACTUAL INPUT HOST VARIABLES MUST BE
 * SUPPLIED AT EXECUTE TIME.
 MOVE "INSERT INTO EMP (EMPNO, DEPTNO) VALUES (:V1, :V2)"
 TO DYNSTMT-ARR.
 MOVE 49 TO DYNSTMT-LEN.

 * DISPLAY THE SQL STATEMENT AND ITS CURRENT INPUT HOST
 * VARIABLES.
 DISPLAY DYNSTMT-ARR.
 MOVE EMPNO TO EMPNOD.
 MOVE DEPTNO1 TO DEPTNO1D.
 DISPLAY " V1 = ", EMPNOD, " V2 = ", DEPTNO1D.

 * THE PREPARE STATEMENT ASSOCIATES A STATEMENT NAME WITH A
 * STRING CONTAINING A SQL STATEMENT. THE STATEMENT NAME IS
 * A SQL IDENTIFIER, NOT A HOST VARIABLE, AND THEREFORE DOES
 * NOT APPEAR IN THE DECLARE SECTION.

 * A SINGLE STATEMENT NAME MAY BE PREPARED MORE THAN ONCE,

Sample Program 7: Dynamic SQL Method 2

Oracle Dynamic SQL 9-13

 * OPTIONALLY FROM A DIFFERENT STRING VARIABLE.
 EXEC SQL PREPARE S FROM :DYNSTMT END-EXEC.

 * THE EXECUTE STATEMENT EXECUTES A PREPARED SQL STATEMENT
 * USING THE SPECIFIED INPUT HOST VARIABLES, WHICH ARE
 * SUBSTITUTED POSITIONALLY FOR PLACEHOLDERS IN THE PREPARED
 * STATEMENT. FOR EACH OCCURRENCE OF A PLACEHOLDER IN THE
 * STATEMENT THERE MUST BE A VARIABLE IN THE USING CLAUSE.
 * THAT IS, IF A PLACEHOLDER OCCURS MULTIPLE TIMES IN THE
 * STATEMENT, THE CORRESPONDING VARIABLE MUST APPEAR
 * MULTIPLE TIMES IN THE USING CLAUSE. THE USING CLAUSE MAY
 * BE OMITTED ONLY IF THE STATEMENT CONTAINS NO PLACEHOLDERS.
 * A SINGLE PREPARED STATEMENT MAY BE EXECUTED MORE THAN ONCE,
 * OPTIONALLY USING DIFFERENT INPUT HOST VARIABLES.
 EXEC SQL EXECUTE S USING :EMPNO, :DEPTNO1 END-EXEC.

 * INCREMENT EMPNO AND DISPLAY NEW INPUT HOST VARIABLES.
 ADD 1 TO EMPNO.
 MOVE EMPNO TO EMPNOD.
 MOVE DEPTNO2 TO DEPTNO2D.
 DISPLAY " V1 = ", EMPNOD, " V2 = ", DEPTNO2D.

 * REEXECUTE S TO INSERT THE NEW VALUE OF EMPNO AND A
 * DIFFERENT INPUT HOST VARIABLE, DEPTNO2. A REPREPARE IS NOT
 * NECESSARY.
 EXEC SQL EXECUTE S USING :EMPNO, :DEPTNO2 END-EXEC.

 * ASSIGN A NEW VALUE TO DYNSTMT.
 MOVE "DELETE FROM EMP WHERE DEPTNO = :V1 OR DEPTNO = :V2"
 TO DYNSTMT-ARR.
 MOVE 50 TO DYNSTMT-LEN.

 * DISPLAY THE NEW SQL STATEMENT AND ITS CURRENT INPUT HOST
 * VARIABLES.
 DISPLAY DYNSTMT-ARR.
 DISPLAY " V1 = ", DEPTNO1D, " V2 = ", DEPTNO2D.

 * REPREPARE S FROM THE NEW DYNSTMT.
 EXEC SQL PREPARE S FROM :DYNSTMT END-EXEC.

 * EXECUTE THE NEW S TO DELETE THE TWO ROWS PREVIOUSLY
 * INSERTED.
 EXEC SQL EXECUTE S USING :DEPTNO1, :DEPTNO2 END-EXEC.

 * ROLLBACK ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
 EXEC SQL ROLLBACK RELEASE END-EXEC.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY!".
 DISPLAY " ".
 STOP RUN.

 SQLERROR.
 * ORACLE ERROR HANDLER. PRINT DIAGNOSTIC TEXT CONTAINING
 * ERROR MESSAGE, CURRENT SQL STATEMENT, AND LOCATION OF ERROR.
 DISPLAY SQLERRMC.
 DISPLAY "IN ", ORASTXTC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY "ON LINE ", ORASLNRD, " OF ", ORASFNMC.

 * DISABLE ORACLE ERROR CHECKING TO AVOID AN INFINITE LOOP

Using Method 3

9-14 Pro*COBOL Programmer’s Guide

 * SHOULD ANOTHER ERROR OCCUR WITHIN THIS PARAGRAPH.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.

 * ROLL BACK ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
 EXEC SQL ROLLBACK RELEASE END-EXEC.
 STOP RUN.

 Using Method 3
Method 3 is similar to Method 2 but combines the PREPARE statement with the
statements needed to define and manipulate a cursor. This allows your program to
accept and process queries. In fact, if the dynamic SQL statement is a query, you must
use Method 3 or 4.

For Method 3, the number of columns in the query select list and the number of
place-holders for input host variables must be known at precompile time. However,
the names of database objects such as tables and columns need not be specified until
run time (they cannot duplicate the names of host variables). Clauses that limit, group,
and sort query results (such as WHERE, GROUP BY, and ORDER BY) can also be
specified at run time.

With Method 3, you use the following sequence of embedded SQL statements:

 EXEC SQL
 PREPARE STATEMENTNAME FROM { :HOST-STRING | STRING-LITERAL }
 END-EXEC.
 EXEC SQL DECLARE CURSORNAME CURSOR FOR STATEMENTNAME END-EXEC.
 EXEC SQL OPEN CURSORNAME [USING HOST-VARIABLE-LIST] END-EXEC.
 EXEC SQL FETCH CURSORNAME INTO HOST-VARIABLE-LIST END-EXEC.
 EXEC SQL CLOSE CURSORNAME END-EXEC.

Now let us look at what each statement does.

PREPARE
The PREPARE statement parses the dynamic SQL statement and gives it a name. In the
following example, PREPARE parses the query stored in the character string
SELECT-STMT and gives it the name SQLSTMT:

 MOVE 'SELECT MGR, JOB FROM EMP WHERE SAL < :SALARY'
 TO SELECT-STMT.
 EXEC SQL PREPARE SQLSTMT FROM :SELECT-STMT END-EXEC.

Commonly, the query WHERE clause is input from a terminal at run time or is
generated by the application.

The identifier SQLSTMT is not a host or program variable, but must be unique. It
designates a particular dynamic SQL statement.

The following statement is correct also:

 EXEC SQL
 PREPARE SQLSTMT FROM 'SELECT MGR, JOB FROM EMP WHERE SAL < :SALARY'
 END-EXEC.

The following PREPARE statement, which uses the '%' wildcard, is also correct:

 MOVE "SELECT ENAME FROM TEST WHERE ENAME LIKE 'SMIT%'" TO MY-STMT.
 EXEC SQL
 PREPARE S FROM MY-STMT
 END-EXEC.

Using Method 3

Oracle Dynamic SQL 9-15

DECLARE
The DECLARE statement defines a cursor by giving it a name and associating it with a
specific query. The cursor declaration is local to its precompilation unit. Continuing
our example, DECLARE defines a cursor named EMPCURSOR and associates it with
SQLSTMT, as follows:

 EXEC SQL DECLARE EMPCURSOR CURSOR FOR SQLSTMT END-EXEC.

The identifiers SQLSTMT and EMPCURSOR are not host or program variables, but
must be unique. If you declare two cursors using the same statement name,
Pro*COBOL considers the two cursor names synonymous. For example, if you execute
the statements

 EXEC SQL PREPARE SQLSTMT FROM :SELECT-STMT END-EXEC.
 EXEC SQL DECLARE EMPCURSOR FOR SQLSTMT END-EXEC.
 EXEC SQL PREPARE SQLSTMT FROM :DELETE-STMT END-EXEC.
 EXEC SQL DECLARE DEPCURSOR FOR SQLSTMT END-EXEC.

when you OPEN EMPCURSOR, you will process the dynamic SQL statement stored in
DELETE-STMT, not the one stored in SELECT-STMT.

OPEN
The OPEN statement allocates a cursor, binds input host variables, and executes the
query, identifying its active set. OPEN also positions the cursor on the first row in the
active set and zeroes the rows-processed count kept by the third element of SQLERRD
in the SQLCA. Input host variables in the USING clause replace corresponding
place-holders in the PREPAREd dynamic SQL statement.

In our example, OPEN allocates EMPCURSOR and assigns the host variable SALARY
to the WHERE clause, as follows:

 EXEC SQL OPEN EMPCURSOR USING :SALARY END-EXEC.

FETCH
The FETCH statement returns a row from the active set, assigns column values in the
select list to corresponding host variables in the INTO clause, and advances the cursor
to the next row. When no more rows are found, FETCH returns the "no data found"
error code to SQLCODE in the SQLCA.

In our example, FETCH returns a row from the active set and assigns the values of
columns MGR and JOB to host variables MGR-NUMBER and JOB-TITLE, as follows:

 EXEC SQL FETCH EMPCURSOR INTO :MGR-NUMBER,:JOB-TITLE END-EXEC.

Host tables can be used with Method 3.

CLOSE
The CLOSE statement disables the cursor. Once you CLOSE a cursor, you can no
longer FETCH from it. In our example, the CLOSE statement disables EMPCURSOR,
as follows:

 EXEC SQL CLOSE EMPCURSOR END-EXEC.

Sample Program 8: Dynamic SQL Method 3

9-16 Pro*COBOL Programmer’s Guide

Sample Program 8: Dynamic SQL Method 3
This program uses dynamic SQL Method 3 to retrieve the names of all employees in a
given department from the EMP table.

 * Sample Program 8: Dynamic SQL Method 3 *
 * *
 * This program uses dynamic SQL Method 3 to retrieve the names *
 * of all employees in a given department from the EMP table. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DYNSQL3.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * INCLUDE THE SQL COMMUNICATIONS AREA, A STRUCTURE THROUGH
 * WHICH ORACLE MAKES RUNTIME STATUS INFORMATION (SUCH AS ERROR
 * CODES, WARNING FLAGS, AND DIAGNOSTIC TEXT) AVAILABLE TO THE
 * PROGRAM.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 * INCLUDE THE ORACLE COMMUNICATIONS AREA, A STRUCTURE THROUGH
 * WHICH ORACLE MAKES ADDITIONAL RUNTIME STATUS INFORMATION
 * AVAILABLE TO THE PROGRAM.
 EXEC SQL INCLUDE ORACA END-EXEC.

 * THE ORACA=YES OPTION MUST BE SPECIFIED TO ENABLE USE OF
 * THE ORACA.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VALUE "SCOTT".
 01 PASSWD PIC X(10) VALUE "TIGER".
 01 DYNSTMT PIC X(80) VARYING.
 01 ENAME PIC X(10).
 01 DEPTNO PIC S9999 COMPUTATIONAL VALUE 10.
 EXEC SQL END DECLARE SECTION END-EXEC.

 * DECLARE VARIABLES NEEDED TO DISPLAY COMPUTATIONALS.
 01 DEPTNOD PIC 9(2).
 01 ENAMED PIC X(10).
 01 SQLERRD3 PIC 9(2).
 01 ORASLNRD PIC 9(4).

 PROCEDURE DIVISION.
 MAIN.

 * BRANCH TO PARAGRAPH SQLERROR IF AN ORACLE ERROR OCCURS.
 EXEC SQL WHENEVER SQLERROR GO TO SQLERROR END-EXEC.

 * SAVE TEXT OF CURRENT SQL STATEMENT IN THE ORACA IF AN ERROR
 * OCCURS.
 MOVE 1 TO ORASTXTF.

 * CONNECT TO ORACLE.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.

Sample Program 8: Dynamic SQL Method 3

Oracle Dynamic SQL 9-17

 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE.".
 DISPLAY " ".

 * ASSIGN A SQL QUERY TO THE VARYING STRING DYNSTMT. BOTH THE
 * ARRAY AND THE LENGTH PARTS MUST BE SET PROPERLY. NOTE THAT
 * THE STATEMENT CONTAINS ONE HOST VARIABLE PLACEHOLDER, V1,
 * FOR WHICH AN ACTUAL INPUT HOST VARIABLE MUST BE SUPPLIED
 * AT OPEN TIME.
 MOVE "SELECT ENAME FROM EMP WHERE DEPTNO = :V1"
 TO DYNSTMT-ARR.
 MOVE 40 TO DYNSTMT-LEN.

 * DISPLAY THE SQL STATEMENT AND ITS CURRENT INPUT HOST
 * VARIABLE.
 DISPLAY DYNSTMT-ARR.
 MOVE DEPTNO TO DEPTNOD.
 DISPLAY " V1 = ", DEPTNOD.
 DISPLAY " ".
 DISPLAY "EMPLOYEE".
 DISPLAY "--------".

 * THE PREPARE STATEMENT ASSOCIATES A STATEMENT NAME WITH A
 * STRING CONTAINING A SELECT STATEMENT. THE STATEMENT NAME,
 * WHICH MUST BE UNIQUE, IS A SQL IDENTIFIER, NOT A HOST
 * VARIABLE, AND SO DOES NOT APPEAR IN THE DECLARE SECTION.
 EXEC SQL PREPARE S FROM :DYNSTMT END-EXEC.

 * THE DECLARE STATEMENT ASSOCIATES A CURSOR WITH A PREPARED
 * STATEMENT. THE CURSOR NAME, LIKE THE STATEMENT NAME, DOES
 * NOT APPEAR IN THE DECLARE SECTION.
 EXEC SQL DECLARE C CURSOR FOR S END-EXEC.

 * THE OPEN STATEMENT EVALUATES THE ACTIVE SET OF THE PREPARED
 * QUERY USING THE SPECIFIED INPUT HOST VARIABLES, WHICH ARE
 * SUBSTITUTED POSITIONALLY FOR PLACEHOLDERS IN THE PREPARED
 * QUERY. FOR EACH OCCURRENCE OF A PLACEHOLDER IN THE
 * STATEMENT THERE MUST BE A VARIABLE IN THE USING CLAUSE.
 * THAT IS, IF A PLACEHOLDER OCCURS MULTIPLE TIMES IN THE
 * STATEMENT, THE CORRESPONDING VARIABLE MUST APPEAR MULTIPLE
 * TIMES IN THE USING CLAUSE. THE USING CLAUSE MAY BE
 * OMITTED ONLY IF THE STATEMENT CONTAINS NO PLACEHOLDERS.
 * OPEN PLACES THE CURSOR AT THE FIRST ROW OF THE ACTIVE SET
 * IN PREPARATION FOR A FETCH.

 * A SINGLE DECLARED CURSOR MAY BE OPENED MORE THAN ONCE,
 * OPTIONALLY USING DIFFERENT INPUT HOST VARIABLES.
 EXEC SQL OPEN C USING :DEPTNO END-EXEC.

 * BRANCH TO PARAGRAPH NOTFOUND WHEN ALL ROWS HAVE BEEN
 * RETRIEVED.
 EXEC SQL WHENEVER NOT FOUND GO TO NOTFOUND END-EXEC.

 GETROWS.

 * THE FETCH STATEMENT PLACES THE SELECT LIST OF THE CURRENT
 * ROW INTO THE VARIABLES SPECIFIED BY THE INTO CLAUSE, THEN
 * ADVANCES THE CURSOR TO THE NEXT ROW. IF THERE ARE MORE
 * SELECT-LIST FIELDS THAN OUTPUT HOST VARIABLES, THE EXTRA
 * FIELDS ARE NOT RETURNED. SPECIFYING MORE OUTPUT HOST

Using Oracle Method 4

9-18 Pro*COBOL Programmer’s Guide

 * VARIABLES THAN SELECT-LIST FIELDS RESULTS IN AN ORACLE ERROR.
 EXEC SQL FETCH C INTO :ENAME END-EXEC.
 MOVE ENAME TO ENAMED.
 DISPLAY ENAMED.

 * LOOP UNTIL NOT FOUND CONDITION IS DETECTED.
 GO TO GETROWS.

 NOTFOUND.
 MOVE SQLERRD(3) TO SQLERRD3.
 DISPLAY " ".
 DISPLAY "QUERY RETURNED ", SQLERRD3, " ROW(S).".

 * THE CLOSE STATEMENT RELEASES RESOURCES ASSOCIATED WITH THE
 * CURSOR.
 EXEC SQL CLOSE C END-EXEC.

 * COMMIT ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
 EXEC SQL COMMIT RELEASE END-EXEC.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY!".
 DISPLAY " ".
 STOP RUN.

 SQLERROR.

 * ORACLE ERROR HANDLER. PRINT DIAGNOSTIC TEXT CONTAINING
 * ERROR MESSAGE, CURRENT SQL STATEMENT, AND LOCATION OF ERROR.
 DISPLAY SQLERRMC.
 DISPLAY "IN ", ORASTXTC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY "ON LINE ", ORASLNRD, " OF ", ORASFNMC.

 * DISABLE ORACLE ERROR CHECKING TO AVOID AN INFINITE LOOP
 * SHOULD ANOTHER ERROR OCCUR WITHIN THIS PARAGRAPH.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.

 * RELEASE RESOURCES ASSOCIATED WITH THE CURSOR.
 EXEC SQL CLOSE C END-EXEC.

 * ROLL BACK ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
 EXEC SQL ROLLBACK RELEASE END-EXEC.
 STOP RUN.

Using Oracle Method 4
This section gives only an overview. For details, see Chapter 11, "Oracle Dynamic SQL:
Method 4".

LOBs are not supported in Oracle Method 4. Use ANSI dynamic SQL for LOB
applications and all other new applications.

There is a kind of dynamic SQL statement that your program cannot process using
Method 3. When the number of select-list items or place-holders for input host
variables is unknown until run time, your program must use a descriptor. A descriptor
is an area of memory used by your program and Oracle9i to hold a complete
description of the variables in a dynamic SQL statement.

Using Oracle Method 4

Oracle Dynamic SQL 9-19

Recall that for a multi-row query, you FETCH selected column values INTO a list of
declared output host variables. If the select list is unknown, the host-variable list
cannot be established at precompile time by the INTO clause. For example, you know
the following query returns two column values:

 EXEC SQL
 SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :DEPT-NUMBER
 END-EXEC.

However, if you let the user define the select list, you might not know how many
column values the query will return.

Need for the SQLDA
To process this kind of dynamic query, your program must issue the DESCRIBE
SELECT LIST command and declare a data structure called the SQL Descriptor Area
(SQLDA). Because it holds descriptions of columns in the query select list, this
structure is also called a select descriptor.

Likewise, if a dynamic SQL statement contains an unknown number of place-holders
for input host variables, the host-variable list cannot be established at precompile time
by the USING clause.

To process the dynamic SQL statement, your program must issue the DESCRIBE BIND
VARIABLES command and declare another kind of SQLDA called a bind descriptor to
hold descriptions of the place-holders for the input host variables. (Input host
variables are also called bind variables.)

If your program has more than one active SQL statement (it might have used OPEN
for two or more cursors, for example), each statement must have its own SQLDAs
statement. However, non-concurrent cursors can reuse SQLDAs. There is no set limit
on the number of SQLDAs in a program.

The DESCRIBE Statement
DESCRIBE initializes a descriptor to hold descriptions of select-list items or input host
variables.

If you supply a select descriptor, the DESCRIBE SELECT LIST statement examines
each select-list item in a prepared dynamic query to determine its name, datatype,
constraints, length, scale, and precision. It then stores this information in the select
descriptor.

If you supply a bind descriptor, the DESCRIBE BIND VARIABLES statement examines
each place-holder in a prepared dynamic SQL statement to determine its name, length,
and the datatype of its associated input host variable. It then stores this information in
the bind descriptor for your use. For example, you might use place-holder names to
prompt the user for the values of input host variables.

SQLDA Contents
A SQLDA is a host-program data structure that holds descriptions of select-list items
or input host variables.

Though SQLDAs differ among host languages, a generic select SQLDA contains the
following information about a query select list:

■ Maximum number of columns that can be DESCRIBEd

■ Actual number of columns found by DESCRIBE

Using Oracle Method 4

9-20 Pro*COBOL Programmer’s Guide

■ Addresses of buffers to store column values

■ Lengths of column values

■ Datatypes of column values

■ Addresses of indicator-variable values

■ Addresses of buffers to store column names

■ Sizes of buffers to store column names

■ Current lengths of column names

A generic bind SQLDA contains the following information about the input host
variables in a SQL statement:

■ Maximum number of place-holders that can be DESCRIBEd

■ Actual number of place-holders found by DESCRIBE

■ Addresses of input host variables

■ Lengths of input host variables

■ Datatypes of input host variables

■ Addresses of indicator variables

■ Addresses of buffers to store place-holder names

■ Sizes of buffers to store place-holder names

■ Current lengths of place-holder names

■ Addresses of buffers to store indicator-variable names

■ Sizes of buffers to store indicator-variable names

■ Current lengths of indicator-variable names

Implementing Method 4
With Method 4, you generally use the following sequence of embedded SQL
statements:

 EXEC SQL
 PREPARE STATEMENT-NAME
 FROM { :HOST-STRING | STRING-LITERAL }
 END-EXE
 EXEC SQL
 DECLARE CURSOR-NAME CURSOR FOR STATEMENT-NAME
 END-EXEC.
 EXEC SQL
 DESCRIBE BIND VARIABLES FOR STATEMENT-NAME
 INTO BIND-DESCRIPTOR-NAME
 END-EXEC.
 EXEC SQL
 OPEN CURSOR-NAME
 [USING DESCRIPTOR BIND-DESCRIPTOR-NAME]
 END-EXEC.
 EXEC SQL
 DESCRIBE [SELECT LIST FOR] STATEMENT-NAME
 INTO SELECT-DESCRIPTOR-NAME
 END-EXEC.
 EXEC SQL
 FETCH CURSOR-NAME

Using Host Tables

Oracle Dynamic SQL 9-21

 USING DESCRIPTOR SELECT-DESCRIPTOR-NAME
 END-EXEC.
 EXEC SQL CLOSE CURSOR-NAME END-EXEC.

Select and bind descriptors need not work in tandem. If the number of columns in a
query select list is known, but the number of place-holders for input host variables is
unknown, you can use the Method 4 OPEN statement with the following Method 3
FETCH statement:

 EXEC SQL FETCH EMPCURSOR INTO :HOST-VARIABLE-LIST END-EXEC.

Conversely, if the number of place-holders for input host variables is known, but the
number of columns in the select list is unknown, you can use the following Method 3
OPEN statement with the Method 4 FETCH statement:

 EXEC SQL OPEN CURSORNAME [USING HOST-VARIABLE-LIST] END-EXEC.

Note that EXECUTE can be used for non-queries with Method 4.

Using the DECLARE STATEMENT Statement
With Methods 2, 3, and 4, you might need to use the statement

 EXEC SQL [AT dbname] DECLARE statementname STATEMENT END-EXEC.

where dbname and statementname are identifiers used by Pro*COBOL, not host or
program variables.

DECLARE STATEMENT declares the name of a dynamic SQL statement so that the
statement can be referenced by PREPARE, EXECUTE, DECLARE CURSOR, and
DESCRIBE. It is required if you want to execute the dynamic SQL statement at a
nondefault database. An example using Method 2 follows:

 EXEC SQL AT remotedb DECLARE sqlstmt STATEMENT END-EXEC.
 EXEC SQL PREPARE sqltmt FROM :sqlstring END-EXEC.
 EXEC SQL EXECUTE sqlstmt END-EXEC.

In the example, remotedb tells Oracle9i where to EXECUTE the SQL statement.

With Methods 3 and 4, DECLARE STATEMENT is also required if the DECLARE
CURSOR statement precedes the PREPARE statement, as shown in the following
example:

 EXEC SQL DECLARE sqlstmt STATEMENT END-EXEC.
 EXEC SQL DECLARE empcursor CURSOR FOR sqlstmt END-EXEC.
 EXEC SQL PREPARE sqlstmt FROM :sqlstring END-EXEC.

The usual sequence of statements is

 EXEC SQL PREPARE sqlstmt FROM :sqlstring END-EXEC.
 EXEC SQL DECLARE empcursor CURSOR FOR sqlstmt END-EXEC.

Using Host Tables
Usage of host tables in static and dynamic SQL is similar. For example, to use input
host tables with dynamic SQL Method 2, use the syntax

 EXEC SQL EXECUTE statementname USING :HOST-TABLE-LIST END-EXEC.

Using PL/SQL

9-22 Pro*COBOL Programmer’s Guide

where HOST-TABLE-LIST contains one or more host tables. With Method 3, use the
following syntax:

 OPEN cursorname USING :HOST-TABLE-LIST END-EXEC.

To use output host tables with Method 3, use the following syntax:

 FETCH cursorname INTO :HOST-TABLE-LIST END-EXEC.

With Method 4, you must use the optional FOR clause to tell Oracle9i the size of your
input or output host table. To learn how this is done, see your host-language
supplement.

Using PL/SQL
Pro*COBOL treats a PL/SQL block like a single SQL statement. So, like a SQL
statement, a PL/SQL block can be stored in a string host variable or literal. When you
store the PL/SQL block in the string, omit the keywords EXEC SQL EXECUTE, the
keyword END-EXEC, and the statement terminator.

However, there are two differences in the way Pro*COBOL handles SQL and PL/SQL:

■ All PL/SQL host variables should be treated in the same way as input host
variables regardless of whether they are input or output host variables (or both).

■ You cannot FETCH from a PL/SQL block because it might contain any number of
SQL statements. However, you can implement similar functionality by using
cursor variables.

With Method 1
If the PL/SQL block contains no host variables, you can use Method 1 to EXECUTE
the PL/SQL string in the usual way.

With Method 2
If the PL/SQL block contains a known number of input and output host variables, you
can use Method 2 to PREPARE and EXECUTE the PL/SQL string in the usual way.

You must put all host variables in the USING clause. Once the PL/SQL string
EXECUTE is completed, host variables in the USING clause replace corresponding
place-holders in the string after PREPARE. Though Pro*COBOL treats all PL/SQL host
variables as input host variables, values are assigned correctly. Input (program) values
are assigned to input host variables, and output (column) values are assigned to
output host variables.

Every place-holder in the PL/SQL string after PREPARE must correspond to a host
variable in the USING clause. So, if the same place-holder appears two or more times
in the PREPAREd string, each appearance must correspond to a host variable in the
USING clause.

With Method 3
Methods 2 and 3 are the same except that Method 3 allows completion of a FETCH.
Since you cannot FETCH from a PL/SQL block, use Method 2 instead.

Using PL/SQL

Oracle Dynamic SQL 9-23

With Method 4
If the PL/SQL block contains an unknown number of input or output host variables,
you must use Method 4.

To use Method 4, you set up one bind descriptor for all the input and output host
variables. Executing DESCRIBE BIND VARIABLES stores information about input and
output host variables in the bind descriptor. Because you refer to all PL/SQL host
variables with the methods associated with input host variables, executing DESCRIBE
SELECT LIST has no effect.

The use of bind descriptors with Method 4 is detailed in your host-language
supplement.

Note that in dynamic SQL Method 4, a host array cannot be bound to a PL/SQL
procedure with a parameter of type "table."

Caution
Do not use ANSI-style Comments (- - ...) in a PL/SQL block that will be processed
dynamically because end-of-line characters are ignored. As a result, ANSI-style
Comments extend to the end of the block, not just to the end of a line. Instead, use
C-style Comments (/* ... */).

Using PL/SQL

9-24 Pro*COBOL Programmer’s Guide

ANSI Dynamic SQL 10-1

10
ANSI Dynamic SQL

This chapter describes Oracle's implementation of ANSI dynamic SQL (also known as
SQL92 dynamic SQL) which should be used for new Method 4 applications. It has
enhancements over the older Oracle dynamic SQL Method 4, which is described in
Chapter 11, "Oracle Dynamic SQL: Method 4". The ANSI Method 4 supports all Oracle
types, while the older Oracle Method 4 does not support cursor variables, tables of
group items, the DML returning clause, and LOBs.

In ANSI dynamic SQL, descriptors are internally maintained by Oracle, while in the
older Oracle dynamic SQL Method 4, descriptors are defined in the user's Pro*COBOL
program. In both cases, with Method 4 your Pro*COBOL program accepts or builds
SQL statements that contain a varying number of host variables.

The main sections in this chapter are:

■ Basics of ANSI Dynamic SQL

■ Overview of ANSI SQL Statements

■ Oracle Extensions

■ ANSI Dynamic SQL Precompiler Options

■ Full Syntax of the Dynamic SQL Statements

■ Sample Programs: SAMPLE12.PCO

Basics of ANSI Dynamic SQL
Consider the SQL statement:

SELECT ename, empno FROM emp WHERE deptno = :deptno_data

The steps you follow to use ANSI dynamic SQL are:

■ Declare variables, including a string to hold the statement to be executed.

■ Allocate descriptors for input and output variables.

■ Prepare the statement.

■ Describe input for the input descriptor.

■ Set the input descriptor (in our example the one input host bind variable,
deptno_data).

■ Declare and open a dynamic cursor.

■ Set the output descriptors (in our example, the output host variables ename and
empno).

Overview of ANSI SQL Statements

10-2 Pro*COBOL Programmer’s Guide

■ Repeatedly fetch data, using GET DESCRIPTOR to retrieve the ename and empno
data fields from each row.

■ Do something with the data retrieved (output it, for instance).

■ Close the dynamic cursor and deallocate the input and output descriptors.

Precompiler Options
Normally, if you are using ANSI dynamic SQL you will be writing to the ANSI
standard for precompilers and will therefore be using the macro command line option
MODE=ANSI. If you wish to use this method and do not wish to use MODE=ANSI,
then the functionality is controlled by the micro command line option:
DYNAMIC=ANSI.

You can either set the micro precompiler option DYNAMIC to ANSI, or set the macro
option MODE to ANSI. This causes the default value of DYNAMIC to be ANSI. The
other setting of DYNAMIC is ORACLE. For more about micro options, see "Macro and
Micro Options" on page 14-3 and "DYNAMIC" on page 14-14.

In order to use ANSI type codes, set the precompiler micro option TYPE_CODE to
ANSI, or set the macro option MODE to ANSI. This changes the default setting of
TYPE_CODE to ANSI. To set TYPE_CODE to ANSI, DYNAMIC must also be ANSI.

For a list of the ANSI SQL types see Table 10–1 on page 10-3. Use the ANSI types with
precompiler option TYPE_CODE set to ANSI if you want your application to be
portable across database platforms and be as compliant to ANSI as possible.

For more details, see "MODE" on page 14-22 and "TYPE_CODE" on page 14-29.

Overview of ANSI SQL Statements
Allocate a descriptor area before using it in a dynamic SQL statement.

The ALLOCATE DESCRIPTOR statement syntax is:

 EXEC SQL ALLOCATE DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 [WITH MAX {:occurrences | numeric_literal}]
 END-EXEC.

A global descriptor can be used in any module in the program. A local descriptor can
be accessed only in the file in which it is allocated. Local is the default.

The descriptor name, desc_nam, is a host variable. A string literal can be used instead.

occurrences is the maximum number of bind variables or columns that the
descriptor can hold, with a default of 100.

When a descriptor is no longer needed, deallocate it to conserve memory. Deallocation
is done automatically when there are no more database connections.

The deallocate statement is:

 EXEC SQL DEALLOCATE DESCRIPTOR [GLOBAL | LOCAL]
 {:desc_nam | string_literal}
 END-EXEC.

Use the DESCRIBE statement to obtain information on a prepared SQL statement.
DESCRIBE INPUT describes bind variables for the dynamic statement that has been
prepared. DESCRIBE OUTPUT (the default) can give the number, type, and length of
the output columns. The simplified syntax is:

 EXEC SQL DESCRIBE [INPUT | OUTPUT] sql_statement

Overview of ANSI SQL Statements

ANSI Dynamic SQL 10-3

 USING [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 END-EXEC.

If your SQL statement has input and output values, you must allocate two descriptors:
one for input and one for output values. If there are no input values, for example:

SELECT ename, empno FROM emp

then the input descriptor is not needed.

Use the SET DESCRIPTOR statement to specify input values for INSERTS, UPDATES,
DELETES and the WHERE clauses of SELECT statements. Use SET DESCRIPTOR to
set the number of input bind variables (stored in COUNT) when you have not done a
DESCRIBE into your input descriptor:

 EXEC SQL SET DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 COUNT = {:kount | numeric_literal}
 END-EXEC.

kount can be a host variable or a numeric literal, such as 5. Use a SET DESCRIPTOR
statement for each host variable, giving at least the data value of the variable:

 EXEC SQL SET DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 VALUE item_number DATA = :hv3
 END-EXEC.

You can also set the type and length of the input host variable:

Note: If you do not set the type and length, either explicitly, through the SET
DESCRIPTOR statement, or implicitly by doing a DESCRIBE OUTPUT, when TYPE_
CODE=ORACLE, the precompiler will use values for these derived from the host
variable itself. When TYPE_CODE=ANSI, you must set the type using the values in
Table 10–1, " ANSI SQL Datatypes". You should also set the length because the ANSI
default lengths may not match those of your host variable.

 EXEC SQL SET DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 VALUE item_number TYPE = :hv1, LENGTH = :hv2, DATA = :hv3
 END-EXEC.

We use the identifiers hv1, hv2, and hv3 to remind us that the values must be
supplied by host variables. item_number is the position of the input variable in the SQL
statement. It can be a host variable or an integer number.

TYPE is the Type Code selected from the following table, if TYPE_CODE is set to
ANSI:

Table 10–1 ANSI SQL Datatypes

Datatype Type Code

CHARACTER 1

CHARACTER VARYING 12

DATE 9

DECIMAL 3

DOUBLE PRECISION 8

FLOAT 6

INTEGER 4

NUMERIC 2

Overview of ANSI SQL Statements

10-4 Pro*COBOL Programmer’s Guide

See Table 11–2, " Oracle External and Related COBOL Datatypes" on page 11-12 for the
Oracle type codes. Use the negative value of the Oracle code if the ANSI datatype is
not in the table, and TYPE_CODE = ANSI.

DATA is the host variable value which is input.

You can also set other input values such as indicator, precision and scale. See the more
complete discussion of "SET DESCRIPTOR" on page 10-13for a list of all the possible
descriptor item names.

The numeric values in the SET DESCRIPTOR statement must be declared as either PIC
S9(9) COMP or PIC S9(4) COMP except for indicator and returned length values
which you must declare as PIC S9(4)COMP.

In the following example, when you want to retrieve empno, set these values:
VALUE=2, because empno is the second output host variable in the dynamic SQL
statement. The host variable EMPNO-TYP is set to 3 (Oracle Type for integer). The
length of a host integer, EMPNO-LEN, is set to 4, which is the size of the host variable.
The DATA is equated to the host variable EMPNO-DATA which will receive the value
from the database table. The code fragment is as follows:

 ...
 01 DYN-STATEMENT PIC X(58)
 VALUE "SELECT ename, empno FROM emp WHERE deptno =:deptno_number".
 01 EMPNO-DATA PIC S9(9) COMP.
 01 EMPNO-TYP PIC S9(9) COMP VALUE 3.
 01 EMPNO-LEN PIC S9(9) COMP VALUE 4.
 ...
 EXEC SQL SET DESCRIPTOR 'out' VALUE 2 TYPE=:EMPNO-TYP, LENGTH=:EMPNO-LEN,
 DATA=:EMPNO-DATA END-EXEC.

After setting the input values, execute or open your statement using the input
descriptor. If there are output values in your statement, set them before doing a
FETCH. If you have done a DESCRIBE OUTPUT, you may have to reset the actual
types and lengths of your host variables because the DESCRIBE execution will
produce internal types and lengths which differ from your host variable external types
and length.

After the FETCH of the output descriptor, use GET DESCRIPTOR to access the
returned data. Again we show a simplified syntax with details later in this chapter:

 EXEC SQL GET DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 VALUE item_number
 :hv1 = DATA, :hv2 = INDICATOR, :hv3 = RETURNED_LENGTH
 END-EXEC.

desc_nam and item_number can be literals or host variables. A descriptor name can
be a literal such as 'out'. An item number can be a numeric literal such as 2.

hv1, hv2, and hv3 are host variables. They must be host variables, not literals.
Only three are shown in the example. See Table 10–4, " Definitions of Descriptor Item
Names" on page 10-12 for a list of all possible items of returned data that you can get.

REAL 7

SMALLINT 5

Table 10–1 (Cont.) ANSI SQL Datatypes

Datatype Type Code

Sample Code

ANSI Dynamic SQL 10-5

Use either PIC S9(n) COMP where n is the platform-dependent upper limit, PIC
S9(9)COMP or PIC S9(4)COMPfor all numeric values, except for indicator and
returned length variables, which must be PIC S9(4) COMP.

Sample Code
The following example demonstrates the use of ANSI Dynamic SQL. It allocates an
input descriptor in and an output descriptor out to execute a SELECT statement.
Input values are set through the SET DESCRIPTOR statement. The cursor is opened
and fetched from and the resulting output values are retrieved through a GET
DESCRIPTOR statement.

 ...
 01 DYN-STATEMENT PIC X(58)
 VALUE "SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO =:DEPTNO-DAT".
 01 EMPNO-DAT PIC S9(9) COMP.
 01 EMPNO-TYP PIC S9(9) COMP VALUE 3.
 01 EMPNO-LEN PIC S9(9) COMP VALUE 4.
 01 DEPTNO-TYP PIC S9(9) COMP VALUE 3.
 01 DEPTNO-LEN PIC S9(9) COMP VALUE 4.
 01 DEPTNO-DAT PIC S9(9) COMP VALUE 10.
 01 ENAME-TYP PIC S9(9) COMP VALUE 3.
 01 ENAME-LEN PIC S9(9) COMP VALUE 30.
 01 ENAME-DAT PIC X(30).
 01 SQLCODE PIC S9(9) COMP VALUE 0.
 ...
* Place preliminary code, including connection, here
...
 EXEC SQL ALLOCATE DESCRIPTOR 'in' END-EXEC.
 EXEC SQL ALLOCATE DESCRIPTOR 'out' END-EXEC.
 EXEC SQL PREPARE s FROM :DYN-STATEMENT END-EXEC.
 EXEC SQL DESCRIBE INPUT s USING DESCRIPTOR 'in' END-EXEC.
 EXEC SQL SET DESCRIPTOR 'in' VALUE 1 TYPE=:DEPTNO-TYP,
 LENGTH=:DEPTNO-LEN, DATA=:DEPTNO-DAT END-EXEC.
 EXEC SQL DECLARE c CURSOR FOR s END-EXEC.
 EXEC SQL OPEN c USING DESCRIPTOR 'in' END-EXEC.
 EXEC SQL DESCRIBE OUTPUT s USING DESCRIPTOR 'out' END-EXEC.
 EXEC SQL SET DESCRIPTOR 'out' VALUE 1 TYPE=:ENAME-TYP,
 LENGTH=:ENAME-LEN, DATA=:ENAME-DAT END-EXEC.
 EXEC SQL SET DESCRIPTOR 'out' VALUE 2 TYPE=:EMPNO-TYP,
 LENGTH=:EMPNO-LEN, DATA=:EMPNO-DAT END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO BREAK END-EXEC.
 LOOP.
 IF SQLCODE NOT = 0
 GOTO BREAK.
 EXEC SQL FETCH c INTO DESCRIPTOR 'out' END-EXEC.
 EXEC SQL GET DESCRIPTOR 'OUT' VALUE 1 :ENAME-DAT = DATA END-EXEC.
 EXEC SQL GET DESCRIPTOR 'OUT' VALUE 2 :EMPNO-DAT = DATA END-EXEC.
 DISPLAY "ENAME = " WITH NO ADVANCING
 DISPLAY ENAME-DAT WITH NO ADVANCING
 DISPLAY "EMPNO = " WITH NO ADVANCING
 DISPLAY EMPNO-DAT.
 GOTO LOOP.
 BREAK:
 EXEC SQL CLOSE c END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR 'in' END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR 'out' END-EXEC.

Oracle Extensions

10-6 Pro*COBOL Programmer’s Guide

Oracle Extensions
These extensions are described next:

■ Reference semantics for data items in SET statements.

■ Arrays for bulk operations.

■ Support for object types, NCHAR columns, and LOBs.

Reference Semantics
The ANSI standard specifies value semantics. To improve performance, Oracle has
extended this standard to include reference semantics.

Value semantics makes a copy of your host variables data. Reference semantics uses
the addresses of your host variables, avoiding a copy. Thus, reference semantics can
provide performance improvements for large amounts of data.

To help speed up fetches, use the REF keyword before the data clauses:

 EXEC SQL SET DESCRIPTOR 'out' VALUE 1 TYPE=:ENAME-TYP,
 LENGTH=:ENAME-LEN, REF DATA=:ENAME-DAT END-EXEC.
 EXEC SQL DESCRIPTOR 'out' VALUE 2 TYPE=:EMPNO-TYP,
 LENGTH=:EMPNO-LEN, REF DATA=:EMPNO-DAT END-EXEC.

Then the host variables receive the results of the retrieves. The GET statement is not
needed. The retrieved data is written directly into ename_data and empno_data
after each FETCH.

Use of the REF keyword is allowed only before DATA, INDICATOR and RETURNED_
LENGTH items (which can vary with each row fetched) as in this fragment of code:

 01 INDI PIC S9(4) COMP.
 01 RETRN-LEN PIC S9(9) COMP.
 ...
 EXEC SQL SET DESCRIPTOR 'out' VALUE 1 TYPE=:ENAME-TYP,
 LENGTH=:ENAME-LEN, REF DATA=:ENAME-DAT,
 REF INDICATOR=:INDI, REF RETURNED_LENGTH =:RETRN-LEN END-EXEC.

After each fetch, RETRN-LEN holds the actual retrieved length of the ename field,
which is useful for CHAR or VARCHAR2 data.

ENAME-LEN will not receive the returned length. It will not be changed by the FETCH
statement. Use a DESCRIBE statement, followed by a GET statement to find out the
maximum column width before fetching rows of data.

REF keyword is also used for other types of SQL statements than SELECT, to speed
them up. Note that with reference semantics, the host variable is used rather than a
value copied into the descriptor area. The host variable data at the time of execution of
the SQL statement is used, not its data at the time of the SET. Here is an example:

 ...
 MOVE 1 to VAL.
 ...
 EXEC SQL SET DESCRIPTOR 'value' VALUE 1 DATA = :VAL END-EXEC.
 EXEC SQL SET DESCRIPTOR 'reference' VALUE 1 REF DATA = :VAL END-EXEC.
 MOVE 2 to VAL.
* Will use VAL = 1
 EXEC SQL EXECUTE s USING DESCRIPTOR 'value' END-EXEC.
*Will use VAL = 2
 EXEC SQL EXECUTE s USING DESCRIPTOR 'reference' END-EXEC.

Oracle Extensions

ANSI Dynamic SQL 10-7

See "SET DESCRIPTOR" on page 10-13 for many more details on the differences.

Using Tables for Bulk Operations
Oracle extends the SQL92 ANSI dynamic standard by providing bulk operations. To
use bulk operations, use the FOR clause with an array size to specify the amount of
input data or the number of rows you want to process.

The FOR clause is used in the ALLOCATE statement to give the maximum amount of
data or number of rows. For example, to use a maximum array size of 100:

 EXEC SQL FOR 100 ALLOCATE DESCRIPTOR 'out' END-EXEC.

or:

 MOVE 100 TO INT-ARR-SIZE.
 EXEC SQL FOR :INT-ARR-SIZE ALLOCATE DESCRIPTOR 'out' END-EXEC.

The FOR clause is then used in subsequent statements that access the descriptor. In an
output descriptor the FETCH statement must have an array size equal to or less than
the array size already used in the ALLOCATE statement:

 EXEC SQL FOR 20 FETCH c1 USING DESCRIPTOR 'out' END-EXEC.

Subsequent GET statements for the same descriptor, that get DATA, INDICATOR, or
RETURNED_LENGTH values, must use the same array size as the FETCH statement.

 01 VAL-DATA OCCURS 20 TIMES PIC S9(9) COMP.
 01 VAL-INDI OCCURS 20 TIMES PIC S9(4) COMP.
...
 EXEC SQL FOR 20 GET DESCRIPTOR 'out' VALUE 1 :VAL-DATA = DATA,
 :VAL-INDI = INDICATOR
 END-EXEC.

However, GET statements that reference other items which do not vary from row to
row, such as LENGTH, TYPE and COUNT, must not use the FOR clause:

 01 CNT PIC S9(9) COMP.
 01 LEN PIC S9(9) COMP.
...
 EXEC SQL GET DESCRIPTOR 'out' :CNT = COUNT END-EXEC.
 EXEC SQL GET DESCRIPTOR 'out' VALUE 1 :LEN = LENGTH END-EXEC.

The same holds true for SET statements with reference semantics. SET statements
which precede the FETCH and employ reference semantics for DATA, INDICATOR, or
RETURNED_LENGTH must have the same array size as the FETCH:

 ...
 01 REF-DATA OCCURS 20 TIMES PIC S9(9) COMP.
 01 REF-INDI OCCURS 20 TIMES PIC S9(4) COMP.
...
 EXEC SQL FOR 20 SET DESCRIPTOR 'out' VALUE 1 REF DATA = :REF-DATA,
 REF INDICATOR = :REF-INDI END-EXEC.

Similarly, for a descriptor that is used for input, to insert a batch of rows, for instance,
the EXECUTE or OPEN statement must use an array size equal to or less than the size
used in the ALLOCATE statement. The SET statement, for both value and reference
semantics, that accesses DATA, INDICATOR, or RETURNED_LENGTH must use the
same array size as in the EXECUTE statement.

The FOR clause is never used on the DEALLOCATE or PREPARE statements.

Oracle Extensions

10-8 Pro*COBOL Programmer’s Guide

The following code sample illustrates a bulk operation with no output descriptor
(there is no output, only input to be inserted into the table emp). The value of CNT is 2
(there are two host variables, ENAME and EMPNO, in the INSERT statement). The data
table ENAME-TABLE holds three character strings: Tom, Dick and Harry, in that order.
Their employee numbers are in the table EMPNO-TABLE. The indicator table
ENAME-IND has a value of -1 for the second element; so a NULL will be inserted
instead of Dick.

 01 DYN-STATEMENT PIC X(240) value
 "INSERT INTO EMP(ENAME, EMPNO) VALUES (:ENAME,:EMPNO)".
 01 ARRAY-SIZE PIC S9(9) COMP VALUE 3.
 01 ENAME-VALUES.
 05 FILLER PIC X(6) VALUE "Tom ".
 05 FILLER PIC X(6) VALUE "Dick ".
 05 FILLER PIC X(6) VALUE "Harry ".
 01 ENAME-TABLE REDEFINES ENAME-VALUES.
 05 ENAME PIC X(6)OCCURS 3 TIMES.
 01 ENAME-IND PIC S9(4) COMPOCCURS 3 TIMES.
 01 ENAME-LEN PIC S9(9) COMP VALUE 6.
 01 ENAME-TYP PIC S9(9) COMP VALUE 96.
 01 EMPNO-VALUES.
 05 FILLER PIC S9(9) COMP VALUE 8001.
 05 FILLER PIC S9(9) COMP VALUE 8002.
 05 FILLER PIC S9(9) COMP VALUE 8003.
 01 EMPNO-TABLE REDEFINES EMPNO-VALUES.
 05 EMPNO PIC S9(9) DISPLAY SIGN LEADING OCCURS 3 TIMES.
 01 EMPNO-LEN PIC S9(9) COMP VALUE 4.
 01 EMPNO-TYP PIC S9(9) COMP VALUE 3.
 01 CNT PIC S9(9) COMP VALUE 2.
........
 EXEC SQL FOR :ARRAY-SIZE ALLOCATE DESCRIPTOR 'in' END-EXEC.
 EXEC SQL PREPARE S FROM :DYN-STATEMENT END-EXEC.
 MOVE 0 TO ENAME-IND(1).
 MOVE -1 TO ENAME-IND(2).
 MOVE 0 TO ENAME-IND(3).
 EXEC SQL SET DESCRIPTOR 'in' COUNT = :CNT END-EXEC.
 EXEC SQL SET DESCRIPTOR 'in' VALUE 1
 TYPE = :ENAME-TYP, LENGTH =:ENAME-LEN
 END-EXEC.
 EXEC SQL FOR :ARRAY-SIZE SET DESCRIPTOR 'in' VALUE 1
 DATA = :ENAME, INDICATOR = :ENAME-IND
 END-EXEC.
 EXEC SQL SET DESCRIPTOR 'in' VALUE 2
 TYPE = :EMPNO-TYP, LENGTH =:EMPNO-LEN
 END-EXEC.
 EXEC SQL FOR :ARRAY-SIZE SET DESCRIPTOR 'in' VALUE 2
 DATA = :EMPNO
 END-EXEC.
 EXEC SQL FOR :ARRAY-SIZE EXECUTE S
 USING DESCRIPTOR 'in' END-EXEC.
 ...

The preceding code inserts these values into the table:

 EMPNO ENAME
 8001 Tom
 8002
 8003 Harry

 See the discussion in "The FOR Clause" on page 7-12 for restrictions and cautions.

Full Syntax of the Dynamic SQL Statements

ANSI Dynamic SQL 10-9

ANSI Dynamic SQL Precompiler Options
The macro option MODE (See "MODE" on page 14-22) sets ANSI compatibility
characteristics and controls a number of functions. It can have the values ANSI or
ORACLE. For individual functions there are micro options that override the MODE
setting.

The precompiler micro option DYNAMIC specifies the descriptor behavior in dynamic
SQL. The precompiler micro option TYPE_CODE specifies whether ANSI or Oracle
datatype codes are to be used.

When the macro option MODE is set to ANSI, the micro option DYNAMIC becomes
ANSI automatically. When MODE is set to ORACLE, DYNAMIC becomes ORACLE.

DYNAMIC and TYPE_CODE cannot be used inline.

The following table describes how the DYNAMIC setting affects various functionality:

The micro option TYPE_CODE is set by the precompiler to the same setting as the
macro option MODE. TYPE_CODE can only equal ANSI if DYNAMIC equals ANSI.

The following table shows the functionality corresponding to the TYPE_CODE
settings.

Full Syntax of the Dynamic SQL Statements
For more details on all these statements, see the alphabetical listing in the appendix
Appendix E, "Embedded SQL Statements and Precompiler Directives".

Table 10–2 DYNAMIC Option Settings

Function DYNAMIC=ANSI DYNAMIC=ORACLE

Descriptor creation. Must use ALLOCATE
statement.

Must use an Oracle format descriptor.

Descriptor
destruction.

May use DEALLOCATE
statement.

N/A

Retrieving data. May use both FETCH and
GET statements.

Must use only FETCH statement.

Setting input data. May use DESCRIBE
INPUT statement. Must
use SET statement.

Must set descriptor values in code.
Must use DESCRIBE BIND
VARIABLES statement.

Descriptor
representation.

Single quoted literal or
host identifier which
contains the descriptor
name.

Host variable, a pointer to SQLDA.

Data types available. All ANSI types except BIT
and all Oracle types.

Oracle types except objects, LOBs, and
cursor variables.

Table 10–3 TYPE_CODE Option Settings

Function TYPE_CODE=ANSI TYPE_CODE=ORACLE

Data type code numbers
input and returned in
dynamic SQL.

Use ANSI code numbers
when ANSI type exists.
Otherwise, use the negative
of the Oracle code number.

Only valid when
DYNAMIC=ANSI.

Use Oracle code numbers.

May be used regardless of the
setting of DYNAMIC.

Full Syntax of the Dynamic SQL Statements

10-10 Pro*COBOL Programmer’s Guide

ALLOCATE DESCRIPTOR
This statement is used only for ANSI dynamic SQL.

Purpose
Use this statement to allocate a SQL descriptor area. Supply a descriptor, the
maximum number of occurrences of host bind items, and an array size.

Syntax
 EXEC SQL [FOR [:]array_size] ALLOCATE DESCRIPTOR [GLOBAL | LOCAL]
 {:desc_nam | string_literal} [WITH MAX occurrences]
 END-EXEC.

Variables
A number of variables can be used with the ALLOCATE descriptor. These include:
array_size, desc_nam, and occurrences.

array_size
The optional array_size clause (an Oracle extension) supports table processing. It tells
the precompiler that the descriptor is usable for table processing.

 GLOBAL | LOCAL
The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam
The desc_nam variable defines the local descriptors that must be unique in the
module. A runtime error is generated if the descriptor has been previously allocated,
but not deallocated. A global descriptor must be unique for the application or a
runtime error results.

occurrences
The optional occurrences clause is the maximum number of host variables possible in
the descriptor. The occurrences variable must be an integer constant between 0 and
64K, or an error is returned. The default is 100. A precompiler error results if it does
not conform to these rules.

 Examples
 EXEC SQL ALLOCATE DESCRIPTOR 'SELDES' WITH MAX 50 END-EXEC.

 EXEC SQL FOR :BATCH ALLOCATE DESCRIPTOR GLOBAL :BINDDES WITH MAX 25
 END-EXEC.

DEALLOCATE DESCRIPTOR

Purpose
To free memory, use the deallocate statement. This statement deallocates a previously
allocated SQL descriptor area.

Syntax
 EXEC SQL DEALLOCATE DESCRIPTOR [GLOBAL | LOCAL]
 {:desc_nam | string_literal}
 END-EXEC.

Full Syntax of the Dynamic SQL Statements

ANSI Dynamic SQL 10-11

Variables

desc_nam
The only variable available with the deallocate descriptor is desc_nam (for descriptor
name.) A runtime error results when a descriptor with the same name and scope has
not been allocated, or has already been allocated and deallocated.

Examples
 EXEC SQL DEALLOCATE DESCRIPTOR GLOBAL 'SELDES' END-EXEC.

 EXEC SQL DEALLOCATE DESCRIPTOR :BINDDES END-EXEC.

GET DESCRIPTOR

Purpose
Use to obtain information from a SQL descriptor area.

Syntax
 EXEC SQL [FOR [:]array_size] GET DESCRIPTOR [GLOBAL | LOCAL]
 {:desc_nam | string_literal}
 {:hv0 = COUNT | VALUE item_number :hv1 = item_name1
 [{, :hvN = item_nameN }]}
 END-EXEC.

Variables

array_size
The FOR array_size variable is an optional Oracle extension. FOR array_size
has to be equal to the array_size field in the FETCH statement.

desc_nam
The descriptor name.

GLOBAL | LOCAL
GLOBAL means that the descriptor name is known to all program files. LOCAL means
that it is known only in the file in which it is allocated. LOCAL is the default.

COUNT
The total number of bind variables.

VALUE item_number
The position of the item in the SQL statement. item_number can be a variable or a
constant. If item_number is greater than COUNT, the "no data found" condition is
returned. item_number must be greater than 0.

hv1 .. hvN
These are host variables to which values are transferred.

item_name1 .. item_nameN
The descriptor item names corresponding to the host variables. The possible ANSI
descriptor item names are listed in the following table.

Full Syntax of the Dynamic SQL Statements

10-12 Pro*COBOL Programmer’s Guide

The following table lists the Oracle extensions to the descriptor item names.

Usage Notes
Use the FOR clause in GET DESCRIPTOR statements which contain DATA,
INDICATOR, and RETURNED_LENGTH items only.

The internal type is provided by the DESCRIBE OUTPUT statement. For both input
and output, you must set the type to be the external type of your host variable. TYPE
is the Oracle or ANSI code in Table 10–1 on page 10-3 . You will receive the negative
value of the Oracle type code if the ANSI type is not in the table.

LENGTH contains the column length in characters for fields that have fixed-width
National Language character sets. It is in bytes for other character columns. It is set in
DESCRIBE OUTPUT.

RETURNED_LENGTH is the actual data length set by the FETCH statement. It is in
bytes or characters as described for LENGTH. The fields OCTET_LENGTH and
RETURNED_OCTET_LENGTH are the lengths in bytes.

NULLABLE = 1 means that the column can have NULLS; NULLABLE = 0 means it
cannot.

Table 10–4 Definitions of Descriptor Item Names

Descriptor Item Name Meaning

TYPE See Table 10–1 on page 10-3 for the ANSI type codes. See
Table 11–2 on page 11-12 for the Oracle type codes. Use the
negative value of the Oracle code if the ANSI datatype is not in
the table, and TYPE_CODE = ANSI.

LENGTH Length of data in the column. In characters for NCHAR, and
otherwise in bytes. Set by the DESCRIBE OUTPUT.

OCTET_LENGTH Length of data in bytes.

RETURNED_LENGTH The actual data length after a FETCH. It is undefined for
fixed-length character types.

RETURNED_OCTET_
LENGTH

Length of the returned data in bytes.

PRECISION The number of digits.

SCALE For exact numeric types, the number of digits to the right of the
decimal point.

NULLABLE If 1, the column can have NULL values. If 0, the column cannot
have NULL values.

INDICATOR The associated indicator value.

DATA The data value.

NAME Column name.

CHARACTER_SET_NAME Column's character set.

Table 10–5 Oracle Extensions to Definitions of Descriptor Item Names

Descriptor Item Name Meaning

NATIONAL_CHARACTER If 2, NCHAR or NVARCHAR2. If 1, character. If 0,
non-character.

INTERNAL_LENGTH The internal length, in bytes.

Full Syntax of the Dynamic SQL Statements

ANSI Dynamic SQL 10-13

CHARACTER_SET_NAME only has meaning for character columns. For other types,
it is undefined. The DESCRIBE OUTPUT statement obtains the value.

DATA and INDICATOR are the data value and the indicator status for that column. If
data = NULL, but the indicator was not requested, an error is generated at runtime
("DATA EXCEPTION, NULL VALUE, NO INDICATOR PARAMETER").

Oracle-specific Descriptor Item Names
NATIONAL_CHARACTER = 2 if the column is an NCHAR or NVARCHAR2 column.
If the column is a character (but not National Character) column, this item is set to 1. If
a non-character column, this item becomes 0 after DESCRIBE OUTPUT is executed.

INTERNAL_LENGTH is for compatibility with Oracle dynamic Method 4. It has the
same value as the length member of the Oracle descriptor area. See "Oracle Dynamic
SQL: Method 4" on page 11-1 .

Examples
 EXEC SQL GET DESCRIPTOR :BINDDES :COUNT = COUNT END-EXEC.

 EXEC SQL GET DESCRIPTOR 'SELDES' VALUE 1 :TYP = TYPE, :LEN = LENGTH
 END-EXEC.

 EXEC SQL FOR :BATCH GET DESCRIPTOR LOCAL 'SELDES'
 VALUE :SEL-ITEM-NO :IND = INDICATOR, :DAT = DATA END-EXEC.

SET DESCRIPTOR

Purpose
Use this statement to set information in the descriptor area from host variables. The
SET DESCRIPTOR statement supports only host variables for the item names.

Syntax
 EXEC SQL [FOR [:]array_size] SET DESCRIPTOR [GLOBAL | LOCAL]
 {:desc_nam | string_literal}
 {COUNT = :hv0 | VALUE item_number
 [REF] item_name1 = :hv1
 [{, [REF] item_nameN = :hvN}]}
 END-EXEC.

Variables

array_size
This optional Oracle clause permits using arrays when setting the descriptor items
DATA, INDICATOR, and RETURNED_LENGTH only. You cannot use other items in a
SET DESCRIPTOR that contains the FOR clause. All host variable table sizes must
match. Use the same array size for the SET statement that you use for the FETCH
statement.

desc_nam
The descriptor name. It follows the rules in ALLOCATE DESCRIPTOR.

COUNT
The number of bind (input) or define (output) variables.

VALUE item_number
Position in the dynamic SQL statement of a host variable.

Full Syntax of the Dynamic SQL Statements

10-14 Pro*COBOL Programmer’s Guide

hv1 .. hvN
The host variables (not constants) that you set.

item_name1 .. item_nameN
In a similar way to the GET DESCRIPTOR syntax (see "GET DESCRIPTOR" on
page 10-11), item_name can take on these values:

The Oracle extensions to the descriptor item names are listed in the following table.

Usage Notes
Reference semantics is another optional Oracle extension that speeds performance. Use
the keyword REF before these descriptor items names only: DATA, INDICATOR,
RETURNED_LENGTH. When you use the REF keyword you do not need to use a
GET statement. Complex data types and DML returning clauses require the REF form
of SET DESCRIPTOR. See "DML Returning Clause" on page 5-7.

When REF is used the associated host variable itself is used in the SET. The GET is not
needed in this case. The RETURNED_LENGTH can only be set when you use the REF
semantics, not the value semantics.

Use the same array size for the SET or GET statements that you use in the FETCH.

Set the NATIONAL_CHAR field to 2 for NCHAR host input values.

When setting an object type's characteristics, you must set USER_DEFINED_TYPE_
NAME and USER_DEFINED_TYPE_NAME_LENGTH.

If omitted, USER_DEFINED_TYPE_SCHEMA and USER_DEFINED_TYPE_
SCHEMA_LENGTH default to the current connection.

Table 10–6 Descriptor Item Names for SET DESCRIPTOR

Descriptor Item Name Meaning

TYPE See Table 10–1 on page 10-3 for the ANSI type codes. See
Table 11–2 on page 11-12 for the Oracle type codes. Use the
negative value of the Oracle type code if the Oracle type is not
in the table, and TYPE_CODE = ANSI.

LENGTH Maximum length of data in the column.

PRECISION The number of digits.

SCALE For exact numeric types, the number of bytes to the right of the
decimal point.

INDICATOR The associated indicator value. Set for reference semantics.

DATA Value of the data to be set. Set for reference semantics.

CHARACTER_SET_
NAME

Column's character set.

Table 10–7 Extensions to Descriptor Item Names for SET DESCRIPTOR

Descriptor Item Name Meaning

RETURNED_LENGTH Length returned after a FETCH. Set if reference semantics is
being used.

NATIONAL_CHARACTER Set to 2 when the input host variable is an NCHAR or
NVARCHAR2 type.

Full Syntax of the Dynamic SQL Statements

ANSI Dynamic SQL 10-15

Example
Bulk table examples are found in "Using Tables for Bulk Operations" on page 10-7.

 ...
 O1 BINDNO PIC S9(9) COMP VALUE 2.
 01 INDI PIC S9(4) COMP VALUE -1.
 01 DATA PIC X(6) COMP VALUE "ignore".
 01 BATCH PIC S9(9) COMP VALUE 1.
 ...
 EXEC SQL FOR :batch ALLOCATE DESCRIPTOR :BINDDES END-EXEC.
 EXEC SQL SET DESCRIPTOR GLOBAL :BINDDES COUNT = 3 END-EXEC.
 EXEC SQL FOR :batch SET DESCRIPTOR :BINDDES
 VALUE :BINDNO INDICATOR = :INDI, DATA = :DATA END-EXEC.
...

Use of PREPARE

Purpose
The PREPARE statement used in this method is the same as the PREPARE statement
used in the Oracle dynamic SQL methods. An Oracle extension allows a quoted string
for the SQL statement, as well as a variable.

Syntax
 EXEC SQL PREPARE statement_id FROM :sql_statement END-EXEC.

Variables

statement_id
This must not be declared; it is an undeclared SQL identifier associated with the
prepared SQL statement.

sql_statement
A character string (a constant or a variable) holding the embedded SQL statement.

Examples
 ...
 01 STATEMENT PIC X(255)
 VALUE "SELECT ENAME FROM emp WHERE deptno = :d".
 ...
 EXEC SQL PREPARE S1 FROM :STATEMENT END-EXEC.

DESCRIBE INPUT

Purpose
This statement returns information about the input bind variables.

Syntax
 EXEC SQL DESCRIBE INPUT statement_id USING [SQL] DESCRIPTOR
 [GLOBAL | LOCAL] {:desc_nam | string_literal}
 END-EXEC.

Full Syntax of the Dynamic SQL Statements

10-16 Pro*COBOL Programmer’s Guide

Variables

statement_id
The same as used in PREPARE and DESCRIBE OUTPUT. This must not be declared; it
is a SQL identifier.

GLOBAL | LOCAL
GLOBAL means that the descriptor name is known to all program files. LOCAL means
that it is known only in the file in which it is allocated. LOCAL is the default.

desc_nam
The descriptor name.

Usage Notes
Only COUNT and NAME are implemented for bind variables in this version.

Examples
 EXEC SQL DESCRIBE INPUT S1 USING SQL DESCRIPTOR GLOBAL :BINDDES END-EXEC.
 EXEC SQL DESCRIBE INPUT S2 USING DESCRIPTOR 'input' END-EXEC.

DESCRIBE OUTPUT

Purpose
The DESCRIBE INPUT statement is used to obtain information about the columns in a
PREPARE statement. The ANSI syntax differs from the older syntax. The information
which is stored in the SQL descriptor area is the number of values returned and
associated information such as type, length, and name.

Syntax
 EXEC SQL DESCRIBE [OUTPUT] statement_id USING [SQL] DESCRIPTOR
 [GLOBAL | LOCAL] {:desc_nam | string_literal}
 END-EXEC.

Variables

statement_id
The statement_id is a SQL identifier. It must not be declared.

GLOBAL | LOCAL
GLOBAL means that the descriptor name is known to all program files. LOCAL means
that it is known only in the file in which it is allocated. LOCAL is the default.

desc_nam
The descriptor name. Either a host variable preceded by a ':', or a single-quoted string.
OUTPUT is the default and can be omitted.

Examples
 ...
 01 DESNAME PIC X(10) VALUE "SELDES".
 ...
 EXEC SQL DESCRIBE S1 USING SQL DESCRIPTOR 'SELDES' END-EXEC.
* Or:
 EXEC SQL DESCRIBE OUTPUT S1 USING DESCRIPTOR :DESNAME END-EXEC.

Full Syntax of the Dynamic SQL Statements

ANSI Dynamic SQL 10-17

EXECUTE

Purpose
EXECUTE matches input and output variables in a prepared SQL statement and then
executes the statement. This ANSI version of EXECUTE differs from the older
EXECUTE statement by allowing two descriptors in one statement to support DML
RETURNING.

Syntax
 EXEC SQL [FOR [:]array_size] EXECUTE statement_id
 [USING [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}]
 [INTO [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}]
 END-EXEC.

Variables

array_size
The number of rows the statement will process.

statement_id
The same as used in PREPARE. This must not be declared; it is a SQL identifier. It can
be a literal.

GLOBAL | LOCAL
GLOBAL means that the descriptor name is known to all program files. LOCAL means
that it is known only in the file in which it is allocated. LOCAL is the default.

desc_nam
The descriptor name. Either a host variable preceded by a ':', or a single-quoted string.

Usage Notes
The INTO clause implements the RETURNING clause for INSERT, UPDATE and
DELETE (See "Inserting Rows" on page 5-6 and succeeding pages).

Examples
 EXEC SQL EXECUTE S1 USING SQL DESCRIPTOR GLOBAL :BINDDES END-EXEC.

 EXEC SQL EXECUTE S2 USING DESCRIPTOR :bv1 INTO DESCRIPTOR 'SELDES'
 END-EXEC.

Use of EXECUTE IMMEDIATE

Purpose
The EXECUTE IMMEDIATE statement executes a literal or host variable character
string containing the SQL statement.The ANSI SQL form of this statement is the same
as in the older dynamic SQL:

Syntax
 EXEC SQL EXECUTE IMMEDIATE [:]sql_statement END-EXEC.

Variables

Only one variable is available with the EXECUTE IMMEDIATE statement.

Full Syntax of the Dynamic SQL Statements

10-18 Pro*COBOL Programmer’s Guide

sql_statement
The sql_statement variable is the SQL statement or PL/SQL block in a character string.
It can be a host variable or a literal.

Examples
 EXEC SQL EXECUTE IMMEDIATE :statement END-EXEC.

Use of DYNAMIC DECLARE CURSOR

Purpose
The DYNAMIC DECLARE CURSOR statement declares a cursor that is associated
with a statement which is a query. This is a form of the generic Declare Cursor
statement.

Syntax
 EXEC SQL DECLARE cursor_name CURSOR FOR statement_id END-EXEC.

Variables

cursor_name
A cursor variable (a SQL identifier, not a host variable).

statement_id
An undeclared SQL identifier (the same as the one used in the PREPARE statement).

Examples
 EXEC SQL DECLARE C1 CURSOR FOR S1 END-EXEC.

OPEN Cursor

Purpose
The OPEN statement associates input parameters with a cursor and then opens the
cursor.

Syntax
 EXEC SQL [FOR [:]array_size] OPEN dyn_cursor
 [[USING [SQL] DESCRIPTOR [GLOBAL | LOCAL] desc_nam1]
 [INTO [SQL] DESCRIPTOR [GLOBAL | LOCAL] desc_nam2]]
 END-EXEC.

Variables

array_size
This limit is less than or equal to number specified when the descriptor was allocated.

GLOBAL | LOCAL
GLOBAL means that the descriptor name is known to all program files. LOCAL means
that it is known only in the file in which it is allocated. LOCAL is the default.

dyn_cursor
The cursor variable.

Full Syntax of the Dynamic SQL Statements

ANSI Dynamic SQL 10-19

desc_nam1, desc_nam2
The optional descriptor names.

Usage Notes
If the prepared statement associated with the cursor contains colons or question
marks, a USING clause must be specified, or an error results at runtime. The INTO
clause supports DML RETURNING (See "Inserting Rows" on page 5-6 and succeeding
sections on DELETE and UPDATE).

Examples
 EXEC SQL OPEN C1 USING SQL DESCRIPTOR :BINDDES END-EXEC.

 EXEC SQL FOR :LIMIT OPEN C2 USING DESCRIPTOR :B1, :B2
 INTO SQL DESCRIPTOR :SELDES
 END-EXEC.

FETCH

Purpose
The FETCH statement fetches a row for a cursor declared with a dynamic DECLARE
statement.

Syntax
 EXEC SQL [FOR [:]array_size] FETCH cursor INTO [SQL] DESCRIPTOR
 [GLOBAL | LOCAL] {:desc_nam | string_literal}
 END-EXEC.

Variables

array_size
The number of rows the statement will process.

cursor
The dynamic cursor that was previously declared.

GLOBAL | LOCAL
GLOBAL means that the descriptor name is known to all program files. LOCAL means
that it is known only in the file in which it is allocated. LOCAL is the default.

desc_nam
Descriptor name.

Usage Notes
The optional array_size in the FOR clause must be less than or equal to the
number specified in the ALLOCATE DESCRIPTOR statement.

RETURNED_LENGTH is undefined for fixed-length character types.

Examples
 EXEC SQL FETCH FROM C1 INTO DESCRIPTOR 'SELDES' END-EXEC.

 EXEC SQL FOR :ARSZ FETCH C2 INTO DESCRIPTOR :DESC END-EXEC.

Full Syntax of the Dynamic SQL Statements

10-20 Pro*COBOL Programmer’s Guide

CLOSE a Dynamic Cursor

Purpose
The CLOSE statement closes a dynamic cursor. Its syntax is identical to the Oracle
Method 4.

Syntax
 EXEC SQL CLOSE cursor END-EXEC.

Variables
Only one variable is available with the CLOSE statement.

cursor
The cursor variable describes the previously declared dynamic cursor.

Examples
 EXEC SQL CLOSE C1 END-EXEC.

Differences From Oracle Dynamic Method 4
The ANSI dynamic SQL interface supports all the features supported by the Oracle
dynamic Method 4, with these additions:

■ All datatypes, including cursor variables, and LOB types are supported by ANSI
Dynamic SQL.

■ The ANSI mode uses an internal SQL descriptor area which is an expansion of the
external SQLDA used in Oracle older dynamic Method 4 to store its input and
output information.

■ New embedded SQL statements are introduced: ALLOCATE DESCRIPTOR,
DEALLOCATE DESCRIPTOR, DESCRIBE, GET DESCRIPTOR, and SET
DESCRIPTOR.

■ The DESCRIBE statement does not return the names of indicator variables in ANSI
Dynamic SQL.

■ ANSI Dynamic SQL does not allow you to specify the maximum size of the
returned column name or expression. The default size is set at 128.

■ The descriptor name must be either an identifier in single-quotes or a host variable
preceded by a colon.

■ For output, the optional SELECT LIST FOR clause in the DESCRIBE is replaced by
the optional keyword OUTPUT. The INTO clause is replaced by the USING
DESCRIPTOR clause, which can contain the optional keyword SQL.

■ For input, the optional BIND VARIABLES FOR clause of the DESCRIBE can be
replaced by the keyword INPUT. The INTO clause is replaced by the USING
DESCRIPTOR clause, which can contain the optional keyword SQL.

■ The optional keyword SQL can come before the keyword DESCRIPTOR in the
USING clause of the EXECUTE, FETCH and OPEN statements.

Restrictions
Restrictions in effect on ANSI dynamic SQL are:

■ You cannot mix the two dynamic methods in the same module.

Sample Programs: SAMPLE12.PCO

ANSI Dynamic SQL 10-21

■ The precompiler option DYNAMIC must be set to ANSI. The precompiler option
TYPE_CODE can be set to ANSI only if DYNAMIC is set to ANSI.

■ The SET statement supports only host variables as item names.

Sample Programs: SAMPLE12.PCO
The following ANSI SQL dynamic Method 4 program, SAMPLE12.PCO, is found in
the demo directory. SAMPLE12 mimics SQL*Plus by prompting for SQL statements to
be input by the user. Read the comments at the beginning for details of the program
flow.

 **
 * Sample Program 12: Dynamic SQL Method 4 using ANSI Dynamic SQL *
 * *
 * This program shows the basic steps required to use dynamic *
 * SQL Method 4 with ANSI Dynamic SQL. After logging on to *
 * ORACLE, the program prompts the user for a SQL statement, *
 * PREPAREs the statement, DECLAREs a cursor, checks for any *
 * bind variables using DESCRIBE INPUT, OPENs the cursor, and *
 * DESCRIBEs any select-list variables. If the input SQL *
 * statement is a query, the program FETCHes each row of data, *
 * then CLOSEs the cursor. *
 * use option dynamic=ansi when precompiling this sample. *
 **

 IDENTIFICATION DIVISION.
 PROGRAM-ID. ANSIDYNSQL4.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERNAME PIC X(20).
 01 PASSWD PIC X(20).
 01 BDSC PIC X(6) VALUE "BNDDSC".
 01 SDSC PIC X(6) VALUE "SELDSC".
 01 BNDCNT PIC S9(9) COMP.
 01 SELCNT PIC S9(9) COMP.
 01 BNDNAME PIC X(80).
 01 BNDVAL PIC X(80).
 01 SELNAME PIC X(80) VARYING.
 01 SELDATA PIC X(80).
 01 SELTYP PIC S9(4) COMP.
 01 SELPREC PIC S9(4) COMP.
 01 SELLEN PIC S9(4) COMP.
 01 SELIND PIC S9(4) COMP.
 01 DYN-STATEMENT PIC X(80).
 01 BND-INDEX PIC S9(9) COMP.
 01 SEL-INDEX PIC S9(9) COMP.
 01 VARCHAR2-TYP PIC S9(4) COMP VALUE 1.
 01 VAR-COUNT PIC 9(2).
 01 ROW-COUNT PIC 9(4).
 01 NO-MORE-DATA PIC X(1) VALUE "N".
 01 TMPLEN PIC S9(9) COMP.
 01 MAX-LENGTH PIC S9(9) COMP VALUE 80.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 START-MAIN.

Sample Programs: SAMPLE12.PCO

10-22 Pro*COBOL Programmer’s Guide

 EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.

 DISPLAY "USERNAME: " WITH NO ADVANCING.
 ACCEPT USERNAME.
 DISPLAY "PASSWORD: " WITH NO ADVANCING.
 ACCEPT PASSWD.
 EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWD END-EXEC.
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME.

 * ALLOCATE THE BIND AND SELECT DESCRIPTORS.

 EXEC SQL ALLOCATE DESCRIPTOR :BDSC WITH MAX 20 END-EXEC.
 EXEC SQL ALLOCATE DESCRIPTOR :SDSC WITH MAX 20 END-EXEC.

 * GET A SQL STATEMENT FROM THE OPERATOR.

 DISPLAY "ENTER SQL STATEMENT WITHOUT TERMINATOR:".
 DISPLAY ">" WITH NO ADVANCING.
 ACCEPT DYN-STATEMENT.
 DISPLAY " ".

 * PREPARE THE SQL STATEMENT AND DECLARE A CURSOR.

 EXEC SQL PREPARE S1 FROM :DYN-STATEMENT END-EXEC.
 EXEC SQL DECLARE C1 CURSOR FOR S1 END-EXEC.

 * DESCRIBE BIND VARIABLES.

 EXEC SQL DESCRIBE INPUT S1 USING DESCRIPTOR :BDSC END-EXEC.

 EXEC SQL GET DESCRIPTOR :BDSC :BNDCNT = COUNT END-EXEC.

 IF BNDCNT < 0
 DISPLAY "TOO MANY BIND VARIABLES."
 GO TO END-SQL
 ELSE
 DISPLAY "NUMBER OF BIND VARIABLES: " WITH NO ADVANCING
 MOVE BNDCNT TO VAR-COUNT
 DISPLAY VAR-COUNT
 * EXEC SQL SET DESCRIPTOR :BDSC COUNT = :BNDCNT END-EXEC
 END-IF.

 IF BNDCNT = 0
 GO TO DESCRIBE-ITEMS.
 PERFORM SET-BND-DSC
 VARYING BND-INDEX FROM 1 BY 1
 UNTIL BND-INDEX > BNDCNT.

 * OPEN THE CURSOR AND DESCRIBE THE SELECT-LIST ITEMS.

 DESCRIBE-ITEMS.
 EXEC SQL OPEN C1 USING DESCRIPTOR :BDSC END-EXEC.

 EXEC SQL DESCRIBE OUTPUT S1 USING DESCRIPTOR :SDSC END-EXEC.

 EXEC SQL GET DESCRIPTOR :SDSC :SELCNT = COUNT END-EXEC.

 IF SELCNT < 0
 DISPLAY "TOO MANY SELECT-LIST ITEMS."

Sample Programs: SAMPLE12.PCO

ANSI Dynamic SQL 10-23

 GO TO END-SQL
 ELSE
 DISPLAY "NUMBER OF SELECT-LIST ITEMS: "
 WITH NO ADVANCING
 MOVE SELCNT TO VAR-COUNT
 DISPLAY VAR-COUNT
 DISPLAY " "
 * EXEC SQL SET DESCRIPTOR :SDSC COUNT = :SELCNT END-EXEC
 END-IF.

 * SET THE INPUT DESCRIPTOR

 IF SELCNT > 0
 PERFORM SET-SEL-DSC
 VARYING SEL-INDEX FROM 1 BY 1
 UNTIL SEL-INDEX > SELCNT
 DISPLAY " ".

 * FETCH EACH ROW AND PRINT EACH SELECT-LIST VALUE.

 IF SELCNT > 0
 PERFORM FETCH-ROWS UNTIL NO-MORE-DATA = "Y".

 DISPLAY " "
 DISPLAY "NUMBER OF ROWS PROCESSED: " WITH NO ADVANCING.
 MOVE SQLERRD(3) TO ROW-COUNT.
 DISPLAY ROW-COUNT.

 * CLEAN UP AND TERMINATE.

 EXEC SQL CLOSE C1 END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR :BDSC END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR :SDSC END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY!".
 DISPLAY " ".
 STOP RUN.

 * DISPLAY ORACLE ERROR MESSAGE AND CODE.

 SQL-ERROR.
 DISPLAY " ".
 DISPLAY SQLERRMC.
 END-SQL.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 * PERFORMED SUBROUTINES BEGIN HERE:

 * SET A BIND-LIST ELEMENT'S ATTRIBUTE
 * LET THE USER FILL IN THE BIND VARIABLES AND
 * REPLACE THE 0S DESCRIBED INTO THE DATATYPE FIELDS OF THE
 * BIND DESCRIPTOR WITH 1S TO AVOID AN "INVALID DATATYPE"
 * ORACLE ERROR
 SET-BND-DSC.
 EXEC SQL GET DESCRIPTOR :BDSC VALUE
 :BND-INDEX :BNDNAME = NAME END-EXEC.
 DISPLAY "ENTER VALUE FOR ", BNDNAME.

Sample Programs: SAMPLE12.PCO

10-24 Pro*COBOL Programmer’s Guide

 ACCEPT BNDVAL.
 EXEC SQL SET DESCRIPTOR :BDSC VALUE :BND-INDEX
 TYPE = :VARCHAR2-TYP, LENGTH = :MAX-LENGTH,
 DATA = :BNDVAL END-EXEC.

 * SET A SELECT-LIST ELEMENT'S ATTRIBUTES
 SET-SEL-DSC.
 MOVE SPACES TO SELNAME-ARR.
 EXEC SQL GET DESCRIPTOR :SDSC VALUE :SEL-INDEX
 :SELNAME = NAME, :SELTYP = TYPE,
 :SELPREC = PRECISION, :SELLEN = LENGTH END-EXEC.

 * IF DATATYPE IS DATE, LENGTHEN TO 9 CHARACTERS.
 IF SELTYP = 12
 MOVE 9 TO SELLEN.

 * IF DATATYPE IS NUMBER, SET LENGTH TO PRECISION.
 MOVE 0 TO TMPLEN.
 IF SELTYP = 2 AND SELPREC = 0
 MOVE 40 TO TMPLEN.
 IF SELTYP = 2 AND SELPREC > 0
 ADD 2 TO SELPREC
 MOVE SELPREC TO TMPLEN.

 IF SELTYP = 2
 IF TMPLEN > MAX-LENGTH
 DISPLAY "COLUMN VALUE TOO LARGE FOR DATA BUFFER."
 GO TO END-SQL
 ELSE
 MOVE TMPLEN TO SELLEN.

 * COERCE DATATYPES TO VARCHAR2.
 MOVE 1 TO SELTYP.

 * DISPLAY COLUMN HEADING.
 DISPLAY " ", SELNAME-ARR(1:SELLEN) WITH NO ADVANCING.

 EXEC SQL SET DESCRIPTOR :SDSC VALUE :SEL-INDEX
 TYPE = :SELTYP, LENGTH = :SELLEN END-EXEC.

 * FETCH A ROW AND PRINT THE SELECT-LIST VALUE.

 FETCH-ROWS.
 EXEC SQL FETCH C1 INTO DESCRIPTOR :SDSC END-EXEC.
 IF SQLCODE NOT = 0
 MOVE "Y" TO NO-MORE-DATA.
 IF SQLCODE = 0
 PERFORM PRINT-COLUMN-VALUES
 VARYING SEL-INDEX FROM 1 BY 1
 UNTIL SEL-INDEX > SELCNT
 DISPLAY " ".

 * PRINT A SELECT-LIST VALUE.

 PRINT-COLUMN-VALUES.
 MOVE SPACES TO SELDATA.
 * returned length is not set for blank padded types
 IF SELTYP EQUALS 1
 EXEC SQL GET DESCRIPTOR :SDSC VALUE :SEL-INDEX

Sample Programs: SAMPLE12.PCO

ANSI Dynamic SQL 10-25

 :SELDATA = DATA, :SELIND = INDICATOR,
 :SELLEN = LENGTH END-EXEC
 ELSE
 EXEC SQL GET DESCRIPTOR :SDSC VALUE :SEL-INDEX
 :SELDATA = DATA, :SELIND = INDICATOR,
 :SELLEN = RETURNED_LENGTH END-EXEC.
 IF (SELIND = -1)
 move " NULL" to SELDATA.

 DISPLAY SELDATA(1:SELLEN), " "
 WITH NO ADVANCING.

Sample Programs: SAMPLE12.PCO

10-26 Pro*COBOL Programmer’s Guide

Oracle Dynamic SQL: Method 4 11-1

11
Oracle Dynamic SQL: Method 4

This chapter shows you how to implement Oracle dynamic SQL Method 4, which lets
your program accept or build dynamic SQL statements that contain a varying number
of host variables.

New applications should be developed using the newer ANSI SQL Method 4
described in Chapter 10, "ANSI Dynamic SQL".The ANSI Method 4 supports all
Oracle types, while the older Oracle Method 4 does not support cursor variables, tables
of group items, the DML returning clause, and LOBs.

Subjects discussed include the following:

■ Meeting the Special Requirements of Method 4

■ Understanding the SQL Descriptor Area (SQLDA)

■ The SQLDA Variables

■ Prerequisite Knowledge

■ The Basic Steps

■ A Closer Look at Each Step

■ Using Host Tables with Method 4

■ Sample Program 10: Dynamic SQL Method 4

Meeting the Special Requirements of Method 4
Before looking into the requirements of Method 4, you should be familiar with the
terms select-list item and place-holder. Select-list items are the columns or expressions
following the keyword SELECT in a query. For example, the following dynamic query
contains three select-list items:

SELECT ENAME, JOB, SAL + COMM FROM EMP WHERE DEPTNO = 20

Place-holders are dummy bind (input) variables that hold places in a SQL statement
for actual bind variables. You do not declare place-holders and can name them
anything you like. Place-holders for bind variables are most often used in the SET,
VALUES, and WHERE clauses. For example, the following dynamic SQL statements
each contain two place-holders.

INSERT INTO EMP (EMPNO, DEPTNO) VALUES (:E, :D)

Note: For a discussion of dynamic SQL Methods 1, 2, and 3, and
an overview of Oracle Method 4, see Chapter 9, "Oracle Dynamic
SQL"

Meeting the Special Requirements of Method 4

11-2 Pro*COBOL Programmer’s Guide

DELETE FROM DEPT WHERE DEPTNO = :DNUM AND LOC = :DLOC

Place-holders cannot reference table or column names.

Advantages of Method 4
Unlike Methods 1, 2, and 3, dynamic SQL Method 4 lets your program:

■ Accept or build dynamic SQL statements that contain an unknown number of
select-list items or place-holders

■ Take explicit control over datatype conversion between Oracle9i and COBOL
types

To add this flexibility to your program, you must give the runtime library additional
information.

Information the Database Needs
Pro*COBOL generates calls to Oracle9 for all executable dynamic SQL statements. If a
dynamic SQL statement contains no select-list items or place-holders, the database
needs no additional information to execute the statement. The following DELETE
statement falls into this category:

* Dynamic SQL statement...
 MOVE 'DELETE FROM EMP WHERE DEPTNO = 30' TO STMT.

However, most dynamic SQL statements contain select-list items or place-holders for
bind variables, as shown in the following UPDATE statement:

* Dynamic SQL statement with place-holders...
 MOVE 'UPDATE EMP SET COMM = :C WHERE EMPNO = :E' TO STMT.

To execute a dynamic SQL statement that contains select-list items or place-holders for
bind variables, or both, the database needs information about the program variables
that will hold output or input values. Specifically, the database needs the following
information:

■ The number of select-list items and the number of bind variables

■ The length of each select-list item and bind variable

■ The datatype of each select-list item and bind variable

■ The memory address of each output variable that will store the value of a
select-list item, and the address of each bind variable

For example, to write the value of a select-list item, the database needs the address of
the corresponding output variable.

Where the Information is Stored
All the information the database needs about select-list items or place-holders for bind
variables, except their values, is stored in a program data structure called the SQL
Descriptor Area (SQLDA).

Descriptions of select-list items are stored in a select SQLDA, and descriptions of
place-holders for bind variables are stored in a bind SQLDA.

The values of select-list items are stored in output buffers; the values of bind variables
are stored in input buffers. You use the library routine SQLADR to store the addresses

Understanding the SQL Descriptor Area (SQLDA)

Oracle Dynamic SQL: Method 4 11-3

of these data buffers in a select or bind SQLDA, so that the database knows where to
write output values and read input values.

How do values get stored in these data variables? A FETCH generates output values
using a cursor, and input values are filled in by your program, typically from
information entered interactively by the user.

How Information is Obtained
You use the DESCRIBE statement to help get the information the database needs. The
DESCRIBE SELECT LIST statement examines each select-list item to determine its
name, datatype, constraints, length, scale, and precision, then stores this information
in the select SQLDA for your use. For example, you might use select-list names as
column headings in a printout. DESCRIBE also stores the total number of select-list
items in the SQLDA.

The DESCRIBE BIND VARIABLES statement examines each place-holder to determine
its name and length, then stores this information in an input buffer and bind SQLDA
for your use. For example, you might use place-holder names to prompt the user for
the values of bind variables.

Understanding the SQL Descriptor Area (SQLDA)
This section describes the SQLDA data structure in detail. You learn how to declare it,
what variables it contains, how to initialize them, and how to use them in your
program.

Purpose of the SQLDA
Method 4 is required for dynamic SQL statements that contain an unknown number of
select-list items or place-holders for bind variables. To process this kind of dynamic
SQL statement, your program must explicitly declare SQLDAs, also called descriptors.
Each descriptor corresponds to a group item in your program.

A select descriptor stores descriptions of select-list items and the addresses of output
buffers that hold the names and values of select-list items.

A bind descriptor stores descriptions of bind variables and indicator variables and the
addresses of input buffers where the names and values of bind variables and indicator
variables are stored.

Remember, some descriptor variables contain addresses, not values. Therefore, you
must declare data buffers to hold the values. You decide the sizes of the required input
and output buffers. Because COBOL does not support pointers, you must use the
library subroutine SQLADR to get the addresses of input and output buffers. You learn
how to call SQLADR in the section "Using SQLADR" on page 11-10.

Multiple SQLDAs
If your program has more than one active dynamic SQL statement, each statement
must have its own SQLDA. You can declare any number of SQLDAs with different
names. For example, you might declare three select SQLDAs named SELDSC1,

Note: The name of a select-list item can be a column name, a
column alias, or the text of an expression such as SAL + COMM.

Understanding the SQL Descriptor Area (SQLDA)

11-4 Pro*COBOL Programmer’s Guide

SELDSC2, and SELDSC3, so that you can FETCH from three concurrently open
cursors. However, non-concurrent cursors can reuse SQLDAs.

Declaring a SQLDA
To declare select and bind SQLDAs, you can code them into your program using the
sample select and bind SQLDAs shown in Figure 11–1. You can modify the table
dimensions to suit your needs.

Figure 11–1 Sample Pro*COBOL SQLDA Descriptors and Data Buffers

This illustrates the sample Pro*COBOL SQLDA descriptors and data buffers.

Note: For byte-swapped platforms, use COMP5 instead of COMP
when declaring a SQLDA.

01 SELDSC.
05 SQLDNUM PIC S9(9) COMP.
05 SQLDFND PIC S9(9) COMP.
05 SELDVAR OCCURS 20 TIMES.

10 SELDV PIC S9(9) COMP.
10 SELDFMT PIC S9(9) COMP.
10 SELDVLN PIC S9(9) COMP.
10 SELDFMTL PIC S9(4) COMP.
10 SELDVTYP PIC S9(4) COMP.
10 SELDI PIC S9(9) COMP.
10 SELDH–VNAME PIC S9(9) COMP.
10 SELDH–MAX–VNAMEL PIC S9(4) COMP.
10 SELDH–CUR–VNAMEL PIC S9(4) COMP.
10 SELDI–VNAME PIC S9(9) COMP.
10 SELDI–MAX–VNAMEL PIC S9(4) COMP.
10 SELDI–CUR–VNAMEL PIC S9(4) COMP.
10 SELDFCLP PIC S9(9) COMP.
10 SELDFCRCP PIC S9(9) COMP.

01 XSELDI.
05 SEL–DI OCCURS 20 TIMES PIC S9(4) COMP.

01 XSELDIVNAME.
05 SEL–DI–VNAME OCCURS 20 TIMES PIC X(80).

01 XSELDV.
05 SEL–DV OCCURS 20 TIMES PIC X(80).

01 XSELDHVNAME
05 SEL–DH–VNAME OCCURS 20 TIMES PIC X(80).

01 XSEL–DFMT PIC X(6).

01 BNDDSC.
05 SQLDNUM PIC S9(9) COMP.
05 SQLDFND PIC S9(9) COMP.
05 BNDDVAR OCCURS 20 TIMES.

10 BNDDV PIC S9(9) COMP.
10 BNDDFMT PIC S9(9) COMP.
10 BNDDVLN PIC S9(9) COMP.
10 BNDDFMTL PIC S9(4) COMP.
10 BNDDVTYP PIC S9(4) COMP.
10 BNDDI PIC S9(9) COMP.
10 BNDDH-VNAME PIC S9(9) COMP.
10 BNDDH–MAX–VNAMEL PIC S9(4) COMP.
10 BNDDH–CUR–VNAMEL PIC S9(4) COMP.
10 BNDDI–VNAME PIC S9(9) COMP.
10 BNDDI–MAX–VNAMEL PIC S9(4) COMP.
10 BNDDI–CUR–VNAMEL PIC S9(4) COMP.
10 BNDDFCLP PIC S9(9) COMP.
10 BNDDFCRCP PIC S9(9) COMP.

01 XBNDDI.
05 BND–DI OCCURS 20 TIMES PIC S9(4) COMP.

01 XBNDDINAME.
05 BND–DI–VNAME OCCURS 20 TIMES PIC X(80).

01 XBNDDV.
05 BND–DV OCCURS 20 TIMES PIC X(80).

01 XBNDDHVNAME
05 BND–DH–VNAME OCCURS 20 TIMES PIC X(80).

01 XBND–DFMT PIC X(6).

The SQLDA Variables

Oracle Dynamic SQL: Method 4 11-5

You can store the SQLDAs in files (named SELDSC and BNDDSC, for example), and
then copy the files into your program with the INCLUDE statement as follows:

 EXEC SQL INCLUDE SELDSC END-EXEC.
 EXEC SQL INCLUDE BNDDSC END-EXEC.

Figure 11–2 shows whether variables are set by SQLADR calls, DESCRIBE commands,
FETCH commands, or program assignments.

Figure 11–2 How Variables Are Set

This illustration shows how the variables are set.

The SQLDA Variables
This section explains the purpose and use of each variable in the SQLDA.

SQLDNUM
This variable specifies the maximum number of select-list items or place-holders that
can be included in DESCRIBE. Thus, SQLDNUM determines the number of elements
in the descriptor tables.

Select SQLDA Bind SQLDA

Output Buffers Input Buffers

Address of SLI name buffer

Address of SLI value buffer

Length of SLI name

Datatype of select-list item

Length of SLI name buffer

Length of BV value buffer

Datatype of SLI value buffer

Name of select-list item

Value of select-list item

Address of P name buffer

Address of BV value buffer

Length of P name

Length of P name buffer

Length of BV value buffer

Datatype of BV value buffer

Name of placeholder

Value of bind variable

Set by:

SQLADR

SQLADR

DESCRIBE

DESCRIBE

Program

Program

Program

DESCRIBE

FETCH

select–list item (SLI) placeholder (P) for
bind variable (BV)

'SELECT ENAME FROM EMP WHERE EMPNO=:NUM'

Dynamic SQL Statement

The SQLDA Variables

11-6 Pro*COBOL Programmer’s Guide

Before issuing a DESCRIBE command, you must set this variable to the dimension of
the descriptor tables. After the DESCRIBE, you must reset it to the actual number of
variables in the DESCRIBE, which is stored in SQLDFND.

SQLDFND
The SQLDFND variable is the actual number of select-list items or place-holders found
by the DESCRIBE command.

SQLDFND is set by DESCRIBE. If SQLDFND is negative, the DESCRIBE command
found too many select-list items or place-holders for the size of the descriptor. For
example, if you set SQLDNUM to 10 but DESCRIBE finds 11 select-list items or
place-holders, SQLDFND is set to -11. If this happens, you cannot process the SQL
statement without reallocating the descriptor.

After the DESCRIBE, you must set SQLDNUM equal to SQLDFND.

SELDV | BNDDV
The SELDV | BNDDV table contains the addresses of data buffers that store select-list
or bind-variable values.

You must set the elements of SELDV or BNDDV using SQLADR.

Select Descriptors
The following statement

 EXEC SQL FETCH ... USING DESCRIPTOR ...

directs the database to store FETCHed select-list values in the data buffers addressed
by SELDV(1) through SELDV(SQLDNUM). Thus, the database stores the Jth select-list
value in SEL-DV(J).

Bind Descriptors
You must set the bind descriptors before issuing the OPEN command. The following
statement

 EXEC SQL OPEN ... USING DESCRIPTOR ...

directs Oracle9 to execute the dynamic SQL statement using the bind-variable values
addressed by BNDDV(1) through BNDDV(SQLDNUM). (Typically, the values are
entered by the user.) The database finds the Jth bind-variable value in BND-DV(J).

SELDFMT | BNDDFMT
The SELDFMT | BNDDFMT table contains the addresses of data buffers that store
select-list or bind-variable conversion format strings. You can currently use it only for
COBOL packed decimals. The format for the conversion string is PP.+SS or PP.-SS
where PP is the precision and SS is the scale. For definitions of precision and scale, see
the section "Extracting Precision and Scale" on page 11-14.

The use of format strings is optional. If you want a conversion format for the Jth
select-list item or bind variable, set SELDFMT(J) or BNDDFMT(J) using SQLADR, then
store the packed-decimal format (07.+02 for example) in SEL-DFMT or BND-DFMT.
Otherwise, set SELDFMT(J) or BNDDFMT(J) to zero.

SELDVLN | BNDDVLN
The SELDVLN | BNDDVLN table contains the lengths of select-list variables or
bind-variable values stored in the data buffers.

The SQLDA Variables

Oracle Dynamic SQL: Method 4 11-7

Select Descriptors
DESCRIBE SELECT LIST sets the table of lengths to the maximum expected for each
select-list item. However, you might want to reset some lengths before issuing a
FETCH command. FETCH returns at most n characters, where n is the value of
SELDVLN(J) before the FETCH command.

The format of the length differs among datatypes. For CHAR select-list items,
DESCRIBE SELECT LIST sets SELDVLN(J) to the maximum length in bytes of the
select-list item. For NUMBER select-list items, scale and precision are returned
respectively in the low and next-higher bytes of the variable. You can use the library
routine SQLPRC to extract precision and scale values from SELDVLN. See the section
"Extracting Precision and Scale" on page 11-14.

You must reset SELDVLN(J) to the required length of the data buffer before the
FETCH. For example, when coercing a NUMBER to a COBOL character string, set
SELDVLN(J) to the precision of the number plus two for the sign and decimal point.
When coercing a NUMBER to a COBOL floating point number, set SELDVLN(J) to the
length of the appropriate floating point type on your system.

For more information about the lengths of coerced datatypes, see the section
"Converting Data" on page 11-11.

Bind Descriptors
You must set the Bind Descriptor lengths before issuing the OPEN command. For
example, you can use the following statements to set the lengths of bind-variable
character strings entered by the user:

 PROCEDURE DIVISION.
 ...
 PERFORM GET-INPUT-VAR
 VARYING J FROM 1 BY 1 UNTIL J > SQLDNUM IN BNDDSC.
 ...
 GET-INPUT-VAR.
 DISPLAY "Enter value of ", BND-DH-VNAME(J).
 ACCEPT INPUT-STRING.
 UNSTRING INPUT-STRING DELIMITED BY " "
 INTO BND-DV(J) COUNT IN BNDDVLN(J).

Because Oracle9i accesses a data buffer indirectly, using the address in SELDV(J) or
BNDDV(J), it does not know the length of the value in that buffer. If you want to
change the length Oracle9i uses for the Jth select-list or bind-variable value, reset
SELDVLN(J) or BNDDVLN(J) to the length you need. Each input or output buffer can
have a different length.

SELDFMTL | BNDDFMTL
This is a table containing the lengths of select-list or bind-variable conversion format
strings. Currently, you can use it only for COBOL packed decimal.

The use of format strings is optional. If you want a conversion format for the Jth
select-list item or bind variable, set SELDFMTL(J) before the FETCH or BNDDFMTL(J)
before the OPEN to the length of the packed-decimal format stored in SEL-DFMT or
BND-DFMT. Otherwise, set SELDFMTL(J) or BNDDFMTL(J) to zero.

If the value of SELDFMTL(J) or BNDDFMTL(J) is zero, SELDFMT(J) or BNDDFMT(J)
are not used.

The SQLDA Variables

11-8 Pro*COBOL Programmer’s Guide

SELDVTYP | BNDDVTYP
The SELDVTYP | BNDDVTYP table contains the datatype codes of select-list or
bind-variable values. These codes determine how Oracle9i data is converted when
stored in the data buffers addressed by elements of SELDV. The datatype descriptor
table is further described in "Converting Data" on page 11-11.

Select Descriptors
DESCRIBE SELECT LIST sets the table of datatype codes to the internal datatype (for
example, VARCHAR2, CHAR, NUMBER, or DATE) of the items in the select list.

Before a FETCH is executed, you might want to reset some datatypes because the
internal format of datatypes can be difficult to handle. For display purposes, it is
usually a good idea to coerce the datatype of select-list values to VARCHAR2. For
calculations, you might want to coerce numbers from Oracle9i to COBOL format. See
"Coercing Datatypes" on page 11-13.

The high bit of SELDVTYP(J) is set to indicate the NULL/not NULL status of the Jth
select-list column. You must always clear this bit before issuing an OPEN or FETCH
command. Use the library routine SQLNUL to retrieve the datatype code and clear the
NULL/not NULL bit. For more information, see: "Handling NULL/Not NULL
Datatypes" on page 11-15.

It is best to change the NUMBER internal datatype to an external datatype compatible
with that of the COBOL data buffer addressed by SELDV(J).

Bind Descriptors
DESCRIBE BIND VARIABLES sets the table of datatype codes to zeros. You must reset
the table of datatypes before issuing the OPEN command. The code represents the
external (COBOL) datatype of the buffer addressed by BNDDV(J). Often, bind-variable
values are stored in character strings, so the datatype table elements are set to 1 (the
VARCHAR2 datatype code).

To change the datatype of the Jth select-list or bind-variable value, reset SELDVTYP(J)
or BNDDVTYP(J) to the datatype you want.

SELDI | BNDDI
The SELDI | BNDDI table contains the addresses of data buffers that store
indicator-variable values. You must set the elements of SELDI or BNDDI using
SQLADR.

Select Descriptors
You must set this table before issuing the FETCH command. When Oracle9i executes
the statement

 EXEC SQL FETCH ... USING DESCRIPTOR ...

if the Jth returned select-list value is NULL, the buffer addressed by SELDI(J) is set to
-1. Otherwise, it is set to zero (the value is not NULL) or a positive integer (the value
was truncated).

Bind Descriptors
You must initialize this table and set the associated indicator variables before issuing
the OPEN command. When Oracle9i executes the statement

 EXEC SQL OPEN ... USING DESCRIPTOR ...

The SQLDA Variables

Oracle Dynamic SQL: Method 4 11-9

the buffer addressed by BNDDI(J) determines whether the Jth bind variable is NULL.
If the value of an indicator variable is -1, its associated bind variable is NULL.

SELDH-VNAME | BNDDH-VNAME
The SELDH-VNAME | BNDDH-VNAME table contains the addresses of data
buffers that store select-list or place-holder names as they appear in dynamic SQL
statements. You must set the elements of SELDH-VNAME or BNDDH-VNAME using
SQLADR before issuing the DESCRIBE command.

DESCRIBE directs Oracle9i to store the name of the Jth select-list item or place-holder
in the data buffer addressed by SELDH-VNAME(J) or BNDDH-VNAME(J). Thus,
Oracle9i stores the Jth select-list or place-holder name in SEL-DH-VNAME(J) or
BND-DH-VNAME(J).

SELDH-MAX-VNAMEL | BNDDH-MAX-VNAMEL
The SELDH-MAX-VNAMEL | BNDDH-MAX-VNAMEL table contains the
maximum lengths of the data buffers that store select-list or place-holder names. The
buffers are addressed by the elements of SELDH-VNAME or BNDDH-VNAME.

You must set the elements of SELDH-MAX-VNAMEL or BNDDH-MAX-VNAMEL
before issuing the DESCRIBE command. Each select-list or place-holder name buffer
can have a different length.

SELDH-CUR-VNAMEL | BNDDH-CUR-VNAMEL
The SELDH-CUR-VNAMEL | BNDDH-CUR-VNAMEL table contains the actual
lengths of the names of the select-list or place-holder. DESCRIBE sets the table of
actual lengths to the number of characters in each select-list or place-holder name.

SELDI-VNAME | BNDDI-VNAME
The SELDI-VNAME | BNDDI-VNAME table contains the addresses of data buffers
that store indicator-variable names.

You can associate indicator-variable values with select-list items and bind variables.
However, you can associate indicator-variable names only with bind variables. You
can use this table only with bind descriptors. You must set the elements of
BNDDI-VNAME using SQLADR before issuing the DESCRIBE command.

DESCRIBE BIND VARIABLES directs Oracle9i to store any indicator-variable names in
the data buffers addressed by BNDDI-VNAME(1) through
BNDDI-VNAME(SQLDNUM). Thus, Oracle9i stores the Jth indicator-variable name in
BND-DI-VNAME(J).

SELDI-MAX-VNAMEL | BNDDI-MAX-VNAMEL
The SELDI-MAX-VNAMEL | BNDDI-MAX-VNAMEL table contains the maximum
lengths of the data buffers that store indicator-variable names. The buffers are
addressed by the elements of SELDI-VNAME or BNDDI-VNAME.

Note: The SELDH-VNAME | BNDDH-VNAME table contains
only the name of the column, and not the table-qualifier.column
name, even if you provide it in your SQL statement. If, for example,
you were to do a describe of select-list in the SQL statement
select a.owner from all_tables the software will return
not a.owner, but instead, owner. If necessary, you should use
column aliases to correctly identify a column in the select list.

Prerequisite Knowledge

11-10 Pro*COBOL Programmer’s Guide

You can associate indicator-variable names only with bind variables. You can use this
table only with bind descriptors.

You must set the elements BNDDI-MAX-VNAMEL(1) through
BNDDI-MAX-VNAMEL(SQLDNUM) before issuing the DESCRIBE command. Each
indicator-variable name buffer can have a different length.

SELDI-CUR-VNAMEL | BNDDI-CUR-VNAMEL
The SELDI-CUR-VNAMEL | BNDDI-CUR-VNAMEL table contains the actual
lengths of the names of the indicator variables. You can associate indicator-variable
names only with bind variables. You can use this table only with bind descriptors.

DESCRIBE BIND VARIABLES sets the table of actual lengths to the number of
characters in each indicator-variable name.

SELDFCLP | BNDDFCLP
The SELDFCLP | BNDDFCLP table is reserved for future use. It must be present
because Oracle9i expects the group item SELDSC or BNDDSC to be a certain size. You
must currently set the elements of SELDFCLP and BNDDFCLP to zero.

SELDFCRCP | BNDDFCRCP
The SELDFCRCP | BNDDFCRCP table is reserved for future use. It must be present
because Oracle9i expects the group item SELDSC or BNDDSC to be a certain size. You
must set the elements of SELDFCRCP and BNDDFCRCP to zero.

Prerequisite Knowledge
You need a working knowledge of the following subjects to implement dynamic SQL
Method 4:

■ Using the library routine SQLADR

■ converting data

■ coercing datatypes

■ handling NULL/not NULL datatypes

Using SQLADR
You must call the library subroutine SQLADR to get the addresses of data buffers that
store input and output values. You store the addresses in a bind or select SQLDA so
that Oracle9i knows where to read bind-variable values or write select-list values.

Call SQLADR using the syntax

 CALL "SQLADR" USING BUFFER, ADDRESS.

where:

BUFFER
Is a data buffer that stores the value or name of a select-list item, bind variable, or
indicator variable.

ADDRESS
Is an integer variable that returns the address of the data buffer.

A call to SQLADR stores the address of BUFFER in ADDRESS. The next example uses
SQLADR to initialize the select descriptor tables SELDV, SELDH-VNAME, and SELDI.

Prerequisite Knowledge

Oracle Dynamic SQL: Method 4 11-11

Their elements address data buffers for select-list values, select-list names, and
indicator values.

 PROCEDURE DIVISION.
 ...
 PERFORM INIT-SELDSC
 VARYING J FROM 1 BY 1 UNTIL J > SQLDNUM IN SELDSC.
 ...
 INIT-SELDSC.
 CALL "SQLADR" USING SEL-DV(J), SELDV(J).
 CALL "SQLADR" USING SEL-DH-VNAME(J), SELDH-VNAME(J).
 CALL "SQLADR" USING SEL-DI(J), SELDI(J).

Converting Data
This section provides more detail about the datatype descriptor table. In host
programs that use neither datatype equivalencing nor dynamic SQL Method 4, the
conversion between internal and external datatypes is determined at precompile time.
By default, Pro*COBOL assigns a specific external datatype to each host variable. For
example, Pro*COBOL assigns the INTEGER external datatype to host variables of type
PIC S9(n) COMP.

However, Method 4 lets you control data conversion and formatting. You specify
conversions by setting datatype codes in the datatype descriptor table.

Internal Datatypes
Internal datatypes specify the formats used by Oracle9i to store column values in
database tables to represent pseudocolumn values.

When you issue a DESCRIBE SELECT LIST command, Oracle9i returns the internal
datatype code for each select-list item to the SELDVTYP (datatype) descriptor table.
For example, the datatype code for the Jth select-list item is returned to SELDVTYP(J).

Table 11–1 shows the internal datatypes and their codes:

External Datatypes
External datatypes specify the formats used to store values in input and output host
variables.

The DESCRIBE BIND VARIABLES command sets the BNDDVTYP table of datatype
codes to zeros. Therefore, you must reset the codes before issuing the OPEN command.
The codes tell Oracle9i which external datatypes to expect for the various bind
variables. For the Jth bind variable, reset BNDDVTYP(J) to the external datatype you
want.

Table 11–1 Internal Datatypes and Related Codes

Internal Datatype Code

VARCHAR2

NUMBER

LONG

ROWID

DATE

RAW

LONG RAW

CHAR

1

2

8

11

12

23

24

96

Prerequisite Knowledge

11-12 Pro*COBOL Programmer’s Guide

The following table shows the external datatypes and their codes, as well as the
corresponding COBOL datatypes:

Notes:

1. For use in an EXEC SQL VAR statement only.

2. Include the n-byte length field.

For more information about the datatypes and their formats, see "The Oracle Database
10g Datatypes" on page 4-1.

PL/SQL Datatypes
PL/SQL provides a variety of predefined scalar and composite datatypes. A scalar
type has no internal components. A composite type has internal components that can be

Table 11–2 Oracle External and Related COBOL Datatypes

Name Code COBOL Datatype

VARCHAR2 1 PIC X(n) when MODE=ANSI

NUMBER 2 PIC X(n)

INTEGER 3 PIC S9(n) COMP

PIC S9(n) COMP5

(COMP5 for byte-swapped platforms)

FLOAT 4 COMP-1

COMP-2

STRING (1) 5 PIC X(n)

VARNUM 6 PIC X(n)

DECIMAL 7 PIC S9(n)V9(n) COMP-3

LONG 8 PIC X(n)

VARCHAR (2) 9 PIC X(n) VARYING

PIC N(n) VARYING

ROWID 11 PIC X(n)

DATE 12 PIC X(n)

VARRAW (2) 15 PIC X(n)

RAW 23 PIC X(n)

LONG RAW 24 PIC X(n)

UNSIGNED 68 (not supported)

DISPLAY 91 PIC S9...9V9...9 DISPLAY SIGN LEADING SEPARATE

PIC S9(n)V9(n) DISPLAY SIGN LEADING SEPARATE

LONG VARCHAR (2) 94 PIC X(n)

LONG VARRAW (2) 95 PIC X(n)

CHARF 96 PIC X(n) when MODE = ANSI

PIC N(n) when MODE = ANSI

CHARZ (1) 97 PIC X(n)

CURSOR 102 SQL-CURSOR

Prerequisite Knowledge

Oracle Dynamic SQL: Method 4 11-13

manipulated individually. Table 11–3 shows the predefined PL/SQL scalar datatypes
and their internal datatype equivalence

Coercing Datatypes
For a select descriptor, DESCRIBE SELECT LIST can return any of the internal
datatypes. Often, as in the case of character data, the internal datatype corresponds
exactly to the external datatype you want to use. However, a few internal datatypes
map to external datatypes that can be difficult to handle. Thus, you might want to
reset some elements in the SELDVTYP descriptor table.

For example, you might want to reset NUMBER values to FLOAT values, which
correspond to PIC S9(n)V9(n) COMP-1 values in COBOL. Oracle9i does any necessary
conversion between internal and external datatypes at FETCH time. Be sure to reset
the datatypes after the DESCRIBE SELECT LIST but before the FETCH.

For a bind descriptor, DESCRIBE BIND VARIABLES does not return the datatypes of
bind variables, only their number and names. Therefore, you must explicitly set the
BNDDVTYP table of datatype codes to tell Oracle9i the external datatype of each bind
variable. Oracle9i does any necessary conversion between external and internal
datatypes at OPEN time.

Table 11–3 PL/SQL Datatype Equivalences with Internal Datatypes

PL/SQL Datatype Oracle Internal Datatype

VARCHAR

VARCHAR2

VARCHAR2

BINARY_INTEGER

DEC

DECIMAL

DOUBLE PRECISION

FLOAT

INT

INTEGER

NATURAL

NUMBER

NUMERIC

POSITIVE

REAL

SMALLINT

NUMBER

LONG LONG

ROWID ROWID

DATE DATE

RAW RAW

LONG RAW LONG RAW

CHAR

CHARACTER

STRING

CHAR

Prerequisite Knowledge

11-14 Pro*COBOL Programmer’s Guide

When you reset datatype codes in the SELDVTYP or BNDDVTYP descriptor table, you
are "coercing datatypes." For example, to coerce the Jth select-list value to VARCHAR2,
use the following statement:

* Coerce select-list value to VARCHAR2.
 MOVE 1 TO SELDVTYP(J).

When coercing a NUMBER select-list value to VARCHAR2 for display purposes, you
must also extract the precision and scale bytes of the value and use them to compute a
maximum display length. Then, before the FETCH, you must reset the appropriate
element of the SELDVLN (length) descriptor table to tell Oracle9i the buffer length to
use. To specify the length of the Jth select-list value, set SELDVLN(J) to the length you
need.

For example, if DESCRIBE SELECT LIST finds that the Jth select-list item is of type
NUMBER, and you want to store the returned value in a COBOL variable declared as
PIC S9(n)V9(n) COMP-1, simply set SELDVTYP(J) to 4 and SELDVLN(J) to the length
of COMP-1 numbers on your system.

Exceptions
In some cases, the internal datatypes that DESCRIBE SELECT LIST returns might not
suit your purposes. Two examples of this are DATE and NUMBER. When you
DESCRIBE a DATE select-list item, Oracle9i returns the datatype code 12 to the
SELDVTYP table. Unless you reset the code before the FETCH, the date value is
returned in its 7-byte internal format. To get the date in its default character format,
you must change the datatype code from 12 to 1 (VARCHAR2) and increase the
SELDVLN value from 7 to 9.

Similarly, when you DESCRIBE a NUMBER select-list item, Oracle9i returns the
datatype code 2 to the SELDVTYP table. Unless you reset the code before the FETCH,
the numeric value is returned in its internal format, which is probably not desired.
Therefore, change the code from 2 to 1 (VARCHAR2), 3 (INTEGER), 4 (FLOAT), or
some other appropriate datatype.

Extracting Precision and Scale
The library subroutine SQLPRC extracts precision and scale. Normally, it is used after
the DESCRIBE SELECT LIST, and its first parameter is SELDVLN(J). To call SQLPRC,
use the following syntax

 CALL "SQLPRC" USING LENGTH, PRECISION, SCALE.

where:

Syntax Description

LENGTH Is an integer variable that stores the length of a NUMBER value.
The scale and precision of the value are stored in the low and
next-higher bytes, respectively.

PRECISION Is an integer variable that returns the precision of the NUMBER
value. Precision is the number of significant digits. It is set to
zero if the select-list item refers to a NUMBER of unspecified
size. In this case, because the size is unspecified, assume the
maximum precision, 38.

SCALE Is an integer variable that returns the scale of the NUMBER
value. Scale specifies where rounding will occur. For example, a
scale of 2 means the value is rounded to the nearest hundredth
(3.456 becomes 3.46); a scale of -3 means that the number is
rounded to the nearest thousand (3.456 becomes 3000).

Prerequisite Knowledge

Oracle Dynamic SQL: Method 4 11-15

The following example shows how SQLPRC is used to compute maximum display
lengths for NUMBER values that will be coerced to VARCHAR2:

 WORKING-STORAGE SECTION.
 01 PRECISION PIC S9(9) COMP.
 01 SCALE PIC S9(9) COMP.
 01 DISPLAY-LENGTH PIC S9(9) COMP.
 01 MAX-LENGTH PIC S9(9) COMP VALUE 80.
 ...
 PROCEDURE DIVISION.
 ...
 PERFORM ADJUST-LENGTH
 VARYING J FROM 1 BY 1 UNTIL J > SQLDNUM IN SELDSC.
 ADJUST-LENGTH.
* If datatype is NUMBER, extract precision and scale.
 IF SELDVTYP(J) = 2
 CALL "SQLPRC" USING SELDVLN(J), PRECISION, SCALE.
 MOVE 0 TO DISPLAY-LENGTH.
* Precision is set to zero if the select-list item
* refers to a NUMBER of unspecified size. We allow for
* a maximum precision of 10.
 IF SELDVTYP(J) = 2 AND PRECISION = 0
 MOVE 10 TO DISPLAY-LENGTH.
* Allow for possible decimal point and sign.
 IF SELDVTYP(J) = 2 AND PRECISION > 0
 ADD 2 TO PRECISION
 MOVE PRECISION TO DISPLAY-LENGTH.
 ...

Notice that the first parameter in the subroutine call is the Jth element in the table of
select-list lengths.

The SQLPRC procedure, defined in the SQLLIB runtime library, returns zero as the
precision and scale values for certain SQL datatypes. The SQLPR2 procedure is similar
to SQLPRC in that it has the same syntax and returns the same binary values, except
for the datatypes shown in this table:

Handling NULL/Not NULL Datatypes
For every select-list column (not expression), DESCRIBE SELECT LIST returns a
NULL/not NULL indication in the datatype table of the select descriptor. If the Jth
select-list column is constrained to be not NULL, the high-order bit of SELDVTYP(J)
datatype variable is clear; otherwise, it is set.

Before using the datatype in an OPEN or FETCH statement, if the NULL status bit is
set, you must clear it. Never set the bit.

You can use the library routine SQLNUL to find out if a column allows NULL
datatypes and to clear the datatype's NULL status bit. You call SQLNUL using the
syntax

Table 11–4 Datatype Exceptions to the SQLPR2 Procedure

SQL Datatype Binary Precision Binary Scale

FLOAT 126 -127

FLOAT(n) n (range is 1 .. 126) -127

REAL 63 -127

DOUBLE PRECISION 126 -127

The Basic Steps

11-16 Pro*COBOL Programmer’s Guide

 CALL "SQLNUL" USING VALUE-TYPE, TYPE-CODE, NULL-STATUS.

where:

The following example shows how to use SQLNUL:

 WORKING-STORAGE SECTION.
 ...
* Declare variable for subroutine call.
 01 NULL-STATUS PIC S9(9) COMP.
 ...
 PROCEDURE DIVISION.
 MAIN.
 EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.
 ...
 PERFORM HANDLE-NULLS
 VARYING J FROM 1 BY 1 UNTIL J > SQLDNUM IN SELDSC.
 ...
 HANDLE-NULLS.
* Find out if column is NOT NULL, and clear high-order bit.
 CALL "SQLNUL" USING SELDVTYP(J), SELDVTYP(J), NULL-STATUS.
* If NULL-STATUS = 1, NULLs are allowed.

Notice that the first and second parameters in the subroutine call are the same.
Respectively, they are the datatype variable before and after its NULL status bit is
cleared.

The Basic Steps
Method 4 can be used to process any dynamic SQL statement. In the example in "Using
Host Tables with Method 4" on page 11-29, a query is processed so that you can see
how both input and output host variables are handled.

To process the dynamic query, our example program takes the following steps:

1. Declare a host string to hold the query text.

2. Declare select and bind descriptors.

3. Set the maximum number of select-list items and place-holders that can be
DESCRIBEd.

4. Initialize the select and bind descriptors.

5. Store the query text in the host string.

6. PREPARE the query from the host string.

7. DECLARE a cursor FOR the query.

8. DESCRIBE the bind variables INTO the bind descriptor.

Syntax Description

VALUE-TYPE Is a 2-byte integer variable that stores the datatype code of a
select-list column.

TYPE-CODE Is a 2-byte integer variable that returns the datatype code of the
select-list column with the high-order bit cleared.

NULL-STATUS Is an integer variable that returns the NULL status of the
select-list column. 1 means that the column allows NULLs; 0
means that it does not.

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 11-17

9. Reset the number of place-holders to the number actually found by DESCRIBE.

10. Get values for the bind variables found by DESCRIBE.

11. OPEN the cursor USING the bind descriptor.

12. DESCRIBE the select list INTO the select descriptor.

13. Reset the number of select-list items to the number actually found by DESCRIBE.

14. Reset the length and datatype of each select-list item for display purposes.

15. FETCH a row from the database INTO data buffers using the select descriptor.

16. Process the select-list values returned by FETCH.

17. CLOSE the cursor when there are no more rows to FETCH.

A Closer Look at Each Step
This section discusses each step in more detail. A full-length example program
illustrating Method 4 is seen at the end of this chapter. With Method 4, you use the
following sequence of embedded SQL statements:

 EXEC SQL
 PREPARE <statement_name>
 FROM {:<host_string> | <string_literal>}
 END-EXEC.
 EXEC SQL
 DECLARE <cursor_name> CURSOR FOR <statement_name>
 END-EXEC.
 EXEC SQL
 DESCRIBE BIND VARIABLES FOR <statement_name>
 INTO <bind_descriptor_name>
 END-EXEC.
 EXEC SQL
 OPEN <cursor_name>
 [USING DESCRIPTOR <bind_descriptor_name>]
 END-EXEC.
 EXEC SQL
 DESCRIBE [SELECT LIST FOR] <statement_name>
 INTO <select_descriptor_name>
 END-EXEC.
 EXEC SQL
 FETCH <cursor_name> USING DESCRIPTOR <select_descriptor_name>
 END-EXEC.
 EXEC SQL
 CLOSE <cursor_name>
 END-EXEC.

If the number of select-list items in a dynamic query is known, you can omit
DESCRIBE SELECT LIST and use the following Method 3 FETCH statement:

EXEC SQL FETCH <cursor_name> INTO <host_variable_list> END-EXEC.

Note: If the dynamic SQL statement is not a query or contains a
known number of select-list items or place-holders, then some of
the preceding steps are unnecessary.

A Closer Look at Each Step

11-18 Pro*COBOL Programmer’s Guide

Alternatively, if the number of place-holders for bind variables in a dynamic SQL
statement is known, you can omit DESCRIBE BIND VARIABLES and use the
following Method 3 OPEN statement:

 EXEC SQL OPEN <cursor_name> [USING <host_variable_list>] END-EXEC.

The next section illustrates how these statements allow your host program to accept
and process a dynamic SQL statement using descriptors.

Declare a Host String
Your program needs a host variable to store the text of the dynamic SQL statement.
The host variable (SELECTSTMT in our example) must be declared as a character
string:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 SELECTSTMT PIC X(120).
 EXEC SQL END DECLARE SECTION END-EXEC.

Declare the SQLDAs
Because the query in our example might contain an unknown number of select-list
items or place-holders, you must declare select and bind descriptors. Instead of
hard-coding the SQLDAs, you use INCLUDE to copy them into your program, as
follows:

 EXEC SQL INCLUDE SELDSC END-EXEC.
 EXEC SQL INCLUDE BNDDSC END-EXEC.

For reference, the INCLUDEd declaration of SELDSC follows:

 WORKING-STORAGE SECTION.
 ...
 01 SELDSC.
 05 SQLDNUM PIC S9(9) COMP.
 05 SQLDFND PIC S9(9) COMP.
 05 SELDVAR OCCURS 3 TIMES.
 10 SELDV PIC S9(9) COMP.
 10 SELDFMT PIC S9(9) COMP.
 10 SELDVLN PIC S9(9) COMP.
 10 SELDFMTL PIC S9(4) COMP.
 10 SELDVTYP PIC S9(4) COMP.
 10 SELDI PIC S9(9) COMP.
 10 SELDH-VNAME PIC S9(9) COMP.
 10 SELDH-MAX-VNAMEL PIC S9(4) COMP.
 10 SELDH-CUR-VNAMEL PIC S9(4) COMP.
 10 SELDI-VNAME PIC S9(9) COMP.
 10 SELDI-MAX-VNAMEL PIC S9(4) COMP.
 10 SELDI-CUR-VNAMEL PIC S9(4) COMP.
 10 SELDFCLP PIC S9(9) COMP.
 10 SELDFCRCP PIC S9(9) COMP.

Note: Several figures accompany the following discussion. To
avoid cluttering the figures, it was necessary to confine descriptor
tables to 3 elements and to limit the maximum length of names and
values to 5 and 10 characters, respectively.

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 11-19

 01 XSELDI.
 05 SEL-DI OCCURS 3 TIMES PIC S9(9) COMP.
 01 XSELDIVNAME.
 05 SEL-DI-VNAME OCCURS 3 TIMES PIC X(5).
 01 XSELDV.
 05 SEL-DV OCCURS 3 TIMES PIC X(10).
 01 XSELDHVNAME.
 05 SEL-DH-VNAME OCCURS 3 TIMES PIC X(5).

Set the Maximum Number to DESCRIBE
You next set the maximum number of select-list items or place-holders that can be
described, as follows:

 MOVE 3 TO SQLDNUM IN SELDSC.
 MOVE 3 TO SQLDNUM IN BNDDSC.

Initialize the Descriptors
You must initialize several descriptor variables. Some require the library subroutine
SQLADR.

In our example, you store the maximum lengths of name buffers in the
SELDH-MAX-VNAMEL, BNDDH-MAX-VNAMEL, and BNDDI-MAX-VNAMEL
tables, and use SQLADR to store the addresses of value and name buffers in the
SELDV, SELDI, BNDDV, BNDDI, SELDH-VNAME, BNDDH-VNAME, and
BNDDI-VNAME tables.

 PROCEDURE DIVISION.
 ...
 PERFORM INIT-SELDSC
 VARYING J FROM 1 BY 1 UNTIL J > SQLDNUM IN SELDSC.
 PERFORM INIT-BNDDSC
 VARYING J FROM 1 BY 1 UNTIL J > SQLDNUM IN BNDDSC.
 ...
 INIT-SELDSC.
 MOVE SPACES TO SEL-DV(J).
 MOVE SPACES TO SEL-DH-VNAME(J).
 MOVE 5 TO SELDH-MAX-VNAMEL(J).
 CALL "SQLADR" USING SEL-DV(J), SELDV(J).
 CALL "SQLADR" USING SEL-DH-VNAME(J), SELDH-VNAME(J).
 CALL "SQLADR" USING SEL-DI(J), SELDI(J).
 ...
 INIT-BNDDSC.
 MOVE SPACES TO BND-DV(J).
 MOVE SPACES TO BND-DH-VNAME(J).
 MOVE SPACES TO BND-DI-VNAME(J).
 MOVE 5 TO BNDDH-MAX-VNAMEL(J).
 MOVE 5 TO BNDDI-MAX-VNAMEL(J).
 CALL "SQLADR" USING BND-DV(J), BNDDV(J).
 CALL "SQLADR" USING BND-DH-VNAME(J), BNDDH-VNAME(J).
 CALL "SQLADR" USING BND-DI(J), BNDDI(J).
 CALL "SQLADR" USING BND-DI-VNAME(J), BNDDI-VNAME(J).
 ...

Figure 11–3 and Figure 11–4 represent the resulting descriptors.

A Closer Look at Each Step

11-20 Pro*COBOL Programmer’s Guide

Figure 11–3 Initialized Select Descriptor

This illustration shows the initialized select descriptor.

SQLDNUM

SQLDFND

SELDV

SELDVLN

SELDTYP

SELDI

SELDH_VNAME

SELDH_MAX_VNAMEL

SELDH_CUR_VNAMEL

address of SEL–DV(1)

address of SEL–DV(2)

address of SEL–DV(3)

address of SEL-DI(1)

address of SEL-DI(2)

address 0f SEL-DI(3)

address of SEL-DH-VNAME(1)

address of SEL-DH-VNAME(2)

address of SEL-DH-VNAME(3)

Data Buffers

For values of indicators:

For names of select-list items:

1 2 3 4 5 6 7 8 9 10

1

2

3

1

2

3

1 2 3 4 5

For values of select-list items:

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

5

5

5

1

2

3

1

2

3

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 11-21

Figure 11–4 Initialized Bind Descriptor

This illustration shows the initialized delect descriptor.

Store the Query Text in the Host String
Next, you prompt the user for a SQL statement, then store the input string in
SELECTSTMT as follows:

 DISPLAY "Enter a SELECT statement: " WITH NO ADVANCING.
 ACCEPT SELECTSTMT.

We assume the user entered the following string:

 SELECT ENAME, EMPNO, COMM FROM EMP WHERE COMM < :BONUS

PREPARE the Query from the Host String
PREPARE parses the SQL statement and gives it a name. In our example, PREPARE
parses the host string SELECTSTMT and gives it the name SQLSTMT, as follows:

 EXEC SQL PREPARE SQLSTMT FROM :SELECTSTMT END-EXEC.

SQLDNUM

SQLDFND

BNDDV

BNDDVLN

BNDDVTYP

BNDDI

BNDDH–VNAME

BNDDH–MAX–VNAMEL

BNDDH–CUR–VNAMEL

address of BND-DV(1)

address of BND-DV(2)

address of BND-DV(3)

address of BND-DI(1)

address of BND-DI(2)

address of BND-DI(3)

address of BND-DI-VNAME(1)

address of BND-DI-VNAME(2)

address of BND-DI-VNAME(3)

Data Buffers

For values of indicators:

For names of placeholders:

1 2 3 4 5 6 7 8

1

2

3

1

2

3

1 2 3 4 5

For values of bind variables:

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

5

5

5

1

2

3

1

2

3

BNDDH–VNAME

BNDDH–MAX–VNAMEL

BNDDH–CUR–VNAMEL

address of BND-DI-VNAME(1)

address of BND-DI-VNAME(2)

address of BND-DI-VNAME(3)

For names of placeholders:

1

2

3

1 2 3 4 5

1

2

3

1

2

3

5

5

5

1

2

3

A Closer Look at Each Step

11-22 Pro*COBOL Programmer’s Guide

DECLARE a Cursor
DECLARE CURSOR defines a cursor by giving it a name and associating it with a
specific SELECT statement.

To declare a cursor for static queries, use the following syntax:

 EXEC SQL DECLARE cursor_name CURSOR FOR SELECT ...

To declare a cursor for dynamic queries, the statement name given to the dynamic
query by PREPARE replaces the static query. In our example, DECLARE CURSOR
defines a cursor named EMPCURSOR and associates it with SQLSTMT, as follows:

 EXEC SQL DECLARE EMPCURSOR CURSOR FOR SQLSTMT END-EXEC.

DESCRIBE the Bind Variables
DESCRIBE BIND VARIABLES puts descriptions of bind variables into a bind
descriptor. In our example, DESCRIBE readies BNDDSC as follows:

 EXEC SQL
 DESCRIBE BIND VARIABLES FOR SQLSTMT
 INTO BNDDSC
 END-EXEC.

Note that BNDDSC must not be prefixed with a colon.

The DESCRIBE BIND VARIABLES statement must follow the PREPARE statement but
precede the OPEN statement.

Figure 11–5 shows the bind descriptor in our example after the DESCRIBE. Notice that
DESCRIBE has set SQLDFND to the actual number of place-holders found in the
processed SQL statement.

Note: You must declare a cursor for all dynamic SQL statements,
not just queries. With non-queries, OPENing the cursor executes
the dynamic SQL statement.

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 11-23

Figure 11–5 Bind Descriptor after the DESCRIBE

This illustration shows the bind descriptor in our example after the DESCRIBE.

Reset Number of Place-Holders
Next, you must reset the maximum number of place-holders to the number actually
found by DESCRIBE, as follows:

 IF SQLDFND IN BNDDSC < 0
 DISPLAY "Too many bind variables"
 GOTO ROLL-BACK
 ELSE
 MOVE SQLDFND IN BNDDSC TO SQLDNUM IN BNDDSC
 END-IF.

Get Values for Bind Variables
Your program must get values for the bind variables in the SQL statement. How the
program gets the values is up to you. For example, they can be hard-coded, read from
a file, or entered interactively.

SQLDNUM

SQLDFND

BNDDV

BNDDVLN

BNDDVTYP

BNDDI

BNDDH–VNAME

BNDDH–MAX–VNAMEL

BNDDH–CUR–VNAMEL

address of BND-DV(1)

address of BND-DV(2)

address of BND-DV(3)

address of BND-DI(1)

address of BND-DI(2)

address of BND-DI(3)

address OF BND-DH-VNAME(1)

address OF BND-DH-VNAME(2)

address OF BND-DH-VNAME(3)

Data Buffers

For values of indicators:

For names of placeholders:

1 2 3 4 5 6 7 8 9 10

1

2

3

B O N U S1

2

3

1 2 3 4 5

For values of bind variables

3

1

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

5

5

5

1

2

3

5

0

0

1

2

3

0

0

0

BNDDH–VNAME

BNDDH–MAX–VNAMEL

BNDDH–CUR–VNAMEL

address of BND-DI-VNAME(1)

address of BND-DI-VNAME(2)

address of BND-DI-VNAME(3)

For names of indicators:

1

2

3

1 2 3 4 5

1

2

3

1

2

3

5

5

5

1

2

3

0

0

0

set by DESCRIBE

set by DESCRIBE

set by DESCRIBE

set by DESCRIBE

set by DESCRIBE

A Closer Look at Each Step

11-24 Pro*COBOL Programmer’s Guide

In our example, a value must be assigned to the bind variable that replaces the
place-holder BONUS in the query WHERE clause. Prompt the user for the value, then
process it, as follows:

 PROCEDURE DIVISION.
 ...
 PERFORM GET-INPUT-VAR
 VARYING J FROM 1 BY 1 UNTIL J > SQLDNUM IN BNDDSC.
 ...
 GET-INPUT-VAR.
 ...
* Replace the 0 DESCRIBEd into the datatype table
* with a 1 to avoid an "invalid datatype" Oracle error.
 MOVE 1 TO BNDDVTYP(J).
* Get value of bind variable.
 DISPLAY "Enter value of ", BND-DH-VNAME(J).
 ACCEPT INPUT-STRING.
 UNSTRING INPUT-STRING DELIMITED BY " "
 INTO BND-DV(J) COUNT IN BNDDVLN(J).

Assuming that the user supplied a value of 625 for BONUS, the next table shows the
resulting bind descriptor.

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 11-25

Figure 11–6 Bind Descriptor after Assigning Values

This illustration shows bind descriptor after assigning values.

OPEN the Cursor
The OPEN statement for dynamic queries is similar to the one for static queries, except
the cursor is associated with a bind descriptor. Values determined at run time and
stored in buffers addressed by elements of the bind descriptor tables are used to
evaluate the SQL statement. With queries, the values are also used to identify the
active set.

In our example, OPEN associates EMPCURSOR with BNDDSC as follows:

 EXEC SQL
 OPEN EMPCUR USING DESCRIPTOR BNDDSC
 END-EXEC.

Remember, BNDDSC must not be prefixed with a colon.

SQLDNUM

SQLDFND

BNDDV

BNDDVLN

BNDDVTYP

BNDDI

BNDDH–VNAME

BNDDH–MAX–VNAMEL

BNDDH–CUR–VNAMEL

address of BND-DV(1)

address of BND-DV(2)

address of BND-DV(3)

address of BND-DI(1)

address of BND-DI(2)

address of BND-DI(3)

address of BND-DH-VNAME(1)

address of BND-DH-VNAME(2)

address of BND-DH-VNAME(3)

Data Buffers

For values of indicators:

For names of placeholders:

6 2 5

1 2 3 4 5 6 7 8 9 10

1

2

3

0

B O N U S1

2

3

1 2 3 4 5

For values of bind variables:

1

1

1

2

3

1

2

3

3

1

2

3

1

2

3

1

2

3

5

5

5

1

2

3

5

0

0

1

2

3

1

0

0

BNDDH–VNAME

BNDDH–MAX–VNAMEL

BNDDH–CUR–VNAMEL

address of BND-DI-VNAME(1)

address of BND-DI-VNAME(2)

address of BND-DI-VNAME(3)

For names of indicators:

1

2

3

1 2 3 4 5

1

2

3

1

2

3

5

5

5

1

2

3

0

0

0

reset by program

reset by program

set by program

set by program

A Closer Look at Each Step

11-26 Pro*COBOL Programmer’s Guide

Then, OPEN executes the SQL statement. With queries, OPEN also identifies the active
set and positions the cursor at the first row.

DESCRIBE the Select List
If the dynamic SQL statement is a query, the DESCRIBE SELECT LIST statement must
follow the OPEN statement but precede the FETCH statement.

DESCRIBE SELECT LIST puts descriptions of select-list items into a select descriptor.
In our example, DESCRIBE readies SELDSC as follows:

 EXEC SQL
 DESCRIBE SELECT LIST FOR SQLSTMT INTO SELDSC
 END-EXEC.

Accessing the data dictionary, DESCRIBE sets the length and datatype of each
select-list value.

Figure 11–7 shows the select descriptor in our example after the DESCRIBE. Notice
that DESCRIBE has set SQLDFND to the actual number of items found in the query
select list. If the SQL statement is not a query, SQLDFND is set to zero. Also notice that
the NUMBER lengths are not usable yet. For columns defined as NUMBER, you must
use the library subroutine SQLPRC to extract precision and scale. See the section
"Coercing Datatypes" on page 11-13.

Figure 11–7 Select Descriptor after the DESCR

This illustration shows the example of select descriptor after the DESCRIBE.

SQLDNUM

SQLDFND

SELDV

SELDVLN

SELDTYP

SELDI

SELDH_VNAME

SELDH_MAX_VNAMEL

SELDH_CUR_VNAMEL

address of SEL-DV(1)

address of SEL-DV(2)

address of SEL-DV(3)

address of SEL-DI(1)

address of SEL-DI(2)

address of SEL-DI(3)

address of SEL-DH-VNAME(1)

address of SEL-DH-VNAME(2)

address of SEL-DH-VNAME(3)

Data Buffers

For values of indicators

For names of select-list items:

1 2 3 4 5 6 7 8 9 10

1

2

3

E

E

C

N

M

O

A

P

M

M

N

M

E

O

1

2

3

1 2 3 4 5

For values of select-list items:

3

3

1

2

3

1

2

3

10

#

#

1

2

3

1

2

3

1

2

3

5

5

5

1

2

3

5

5

4

1

2

3

1

2

2

set by DESCRIBE

set by DESCRIBE

set by DESCRIBE

set by DESCRIBE

= binary number

set by DESCRIBE

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 11-27

Reset Number of Select-List Items
Next, you must reset the maximum number of select-list items to the number actually
found by DESCRIBE, as follows:

 MOVE SQLDFND IN SELDSC TO SQLDNUM IN SELDSC.

Reset Length/Datatype of Each Select-List Item
Before fetching the select-list values, the example resets some elements in the length
and datatype tables for display purposes.

 PROCEDURE DIVISION.
 ...
 PERFORM COERCE-COLUMN-TYPE
 VARYING J FROM 1 BY 1 UNTIL J > SQLDNUM IN SELDSC.
 ...
 COERCE-COLUMN-TYPE.
* Clear NULL bit.
 CALL "SQLNUL" USING SELDVTYP(J), SELDVTYP(J), NULL-STATUS.

* If datatype is DATE, lengthen to 9 characters.
 IF SELDVTYP(J) = 12
 MOVE 9 TO SELDVLN(J).

* If datatype is NUMBER, extract precision and scale.
 MOVE 0 TO DISPLAY-LENGTH.
 IF SELDVTYP(J) = 2 AND PRECISION = 0
 MOVE 10 TO DISPLAY-LENGTH.
 IF SELDVTYP(J) = 2 AND PRECISION > 0
 ADD 2 TO PRECISION
 MOVE PRECISION TO DISPLAY-LENGTH.
 IF SELDVTYP(J) = 2
 IF DISPLAY-LENGTH > MAX-LENGTH
 DISPLAY "Column value too large for data buffer."
 GO TO END-PROGRAM
 ELSE
 MOVE DISPLAY-LENGTH TO SELDVLN(J).

* Coerce datatypes to VARCHAR2.
 MOVE 1 TO SELDVTYP(J).
Figure 11–8 shows the resulting select descriptor. Notice that the NUMBER lengths are
now usable and that all the datatypes are VARCHAR2. The lengths in SELDVLN(2)
and SELDVLN(3) are 6 and 9 because we increased the DESCRIBEd lengths of 4 and 7
by 2 to allow for a possible sign and decimal point.

A Closer Look at Each Step

11-28 Pro*COBOL Programmer’s Guide

Figure 11–8 Select Descriptor before the FETCH

Thsi illustration shows thw select descriptor before the FETCH.

FETCH Rows from the Active Set
FETCH returns a row from the active set, stores select-list values in the data buffers,
and advances the cursor to the next row in the active set. If there are no more rows,
FETCH sets SQLCODE in the SQLCA, the SQLCODE variable, or the SQLSTATE
variable to the "no data found" error code. In the following example, FETCH returns
the values of columns ENAME, EMPNO, and COMM to SELDSC:

 EXEC SQL
 FETCH EMPCURSOR USING DESCRIPTOR SELDSC
 END-EXEC.

Figure 11–9 shows the select descriptor in our example after the FETCH. Notice that
Oracle9i has stored the select-list and indicator values in the data buffers addressed by
the elements of SELDV and SELDI.

For output buffers of datatype 1, Oracle9i, using the lengths stored in SELDVLN,
left-justifies CHAR or VARCHAR2 data, and right-justifies NUMBER data.

The value MARTIN was retrieved from a VARCHAR2(10) column in the EMP table.
Using the length in SELDVLN(1), Oracle9i left-justifies the value in a 10-byte field,
filling the buffer.

The value 7654 was retrieved from a NUMBER(4) column and coerced to 7654.
However, the length in SELDVLN(2) was increased by two to allow for a possible sign
and decimal point, so Oracle9i right-justifies the value in a 6-byte field.

SQLDNUM

SQLDFND

SELDV

SELDVLN

SELDTYP

SELDI

SELDH_VNAME

SELDH_MAX_VNAMEL

SELDH_CUR_VNAMEL

address of SEL-DV(1)

address of SEL-DV(2)

address of SEL-DV(3)

address of SEL-DI(1)

address of SEL-DI(2)

address of SEL-DI(3)

address of SEL-DH-VNAME(1)

address of SEL-DH-VNAME(2)

address of SEL-DH-VNAME(3)

Data Buffers

For values of indicators

For names of select-list items:

1 2 3 4 5 6 7 8 9 10

1

2

3

E

E

C

N

M

O

A

P

M

M

N

M

E

O

1

2

3

1 2 3 4 5

For values of select-list items:

3

3

1

2

3

1

2

3

10

#

#

1

2

3

1

2

3

1

2

3

5

5

5

1

2

3

5

5

4

1

2

3

1

2

2

set by DESCRIBE

set by DESCRIBE

set by DESCRIBE

set by DESCRIBE

= binary number

set by DESCRIBE

Using Host Tables with Method 4

Oracle Dynamic SQL: Method 4 11-29

The value 482.50 was retrieved from a NUMBER(7,2) column and coerced to 482.50.
Again, the length in SELDVLN(3) was increased by two, so Oracle9i right-justifies the
value in a 9-byte field.

Get and Process Select-List Values
After the FETCH, your program can process the select-list values returned by FETCH.
In our example, values for columns ENAME, EMPNO, and COMM are processed.

CLOSE the Cursor
CLOSE disables the cursor. In our example, CLOSE disables EMPCURSOR as follows:

 EXEC SQL CLOSE EMPCURSOR END-EXEC

Figure 11–9 Select Descriptor after the FETCH

This illustration shows the select descriptor after the FETCH.

Using Host Tables with Method 4
To use input or output host tables with Method 4, you must use the optional FOR
clause to tell Oracle9 the size of your host table. For more information about the FOR
clause, see Chapter 7, "Host Tables".

Set descriptor entries for the Jth select-list item or bind variable, but instead of
addressing a single data buffer, SELDVLN(J) or BNDDVLN(J) addresses a table of data

SQLDNUM

SQLDFND

SELDV

SELDVLN

SELDTYP

SELDI

SELDH_VNAME

SELDH_MAX_VNAMEL

SELDH_CUR_VNAMEL

address of SEL-DV(1)

address of SEL-DV(2)

address of SEL-DV(3)

address of SEL-DI(1)

address of SEL-DI(2)

address of SEL-DI(3)

address of SEL-DH-VNAME(1)

address of SEL-DH-VNAME(2)

address of SEL-DH-VNAME(3)

Data Buffers

For values of indicators:

For names of select-list items:

M A

7

R

6

T

5

4

I

4

8

1 2 3 4 5

N

2 . 5 0

6 7 8 9 10

1

2

3

0

0

0

E

E

C

N

M

O

A

P

M

M

N

M

E

O

1

2

3

1 2 3 4 5

For values of select-list items:

3

3

1

2

3

1

2

3

10

6

9

1

2

3

1

2

3

1

2

3

5

5

5

1

2

3

5

5

4

1

2

3

1

1

1

Set by FETCH

Set by FETCH

Using Host Tables with Method 4

11-30 Pro*COBOL Programmer’s Guide

buffers. Then use a FOR clause in the EXECUTE or FETCH statement, as appropriate,
to tell Oracle9i the number of table elements you want to process.

This procedure is necessary because Oracle9i has no other way of knowing the size of
your host table.

In the following example, two input host tables are used to insert 8 pairs of values of
EMPNO and DEPTNO into the table EMP. Note that EXECUTE can be used for
non-queries with Method 4.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DYN4INS.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 BNDDSC.
 02 SQLDNUM PIC S9(9) COMP VALUE 2.
 02 SQLDFND PIC S9(9) COMP.
 02 BNDDVAR OCCURS 2 TIMES.
 03 BNDDV PIC S9(9) COMP.
 03 BNDDFMT PIC S9(9) COMP.
 03 BNDDVLN PIC S9(9) COMP.
 03 BNDDFMTL PIC S9(4) COMP.
 03 BNDDVTYP PIC S9(4) COMP.
 03 BNDDI PIC S9(9) COMP.
 03 BNDDH-VNAME PIC S9(9) COMP.
 03 BNDDH-MAX-VNAMEL PIC S9(4) COMP.
 03 BNDDH-CUR-VNAMEL PIC S9(4) COMP.
 03 BNDDI-VNAME PIC S9(9) COMP.
 03 BNDDI-MAX-VNAMEL PIC S9(4) COMP.
 03 BNDDI-CUR-VNAMEL PIC S9(4) COMP.
 03 BNDDFCLP PIC S9(9) COMP.
 03 BNDDFCRCP PIC S9(9) COMP.
 01 XBNDDI.
 03 BND-DI OCCURS 2 TIMES PIC S9(4) COMP.
 01 XBNDDIVNAME.
 03 BND-DI-VNAME OCCURS 2 TIMES PIC X(80).
 01 XBNDDV.
* Since you know what the SQL statement will be, you can set
* up a two-dimensional table with a maximum of 2 columns and
* 8 rows. Each element can be up to 10 characters long. (You
* can alter these values according to your needs.)
 03 BND-COLUMN OCCURS 2 TIMES.
 05 BND-ELEMENT OCCURS 8 TIMES PIC X(10).
 01 XBNDDHVNAME.
 03 BND-DH-VNAME OCCURS 2 TIMES PIC X(80).
 01 COLUMN-INDEX PIC 999.
 01 ROW-INDEX PIC 999.
 01 DUMMY-INTEGER PIC 9999.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(20).
 01 PASSWD PIC X(20).
 01 DYN-STATEMENT PIC X(80).
 01 NUMBER-OF-ROWS PIC S9(4) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 START-MAIN.

Using Host Tables with Method 4

Oracle Dynamic SQL: Method 4 11-31

 EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.

 MOVE "SCOTT" TO USERNAME.
 MOVE "TIGER" TO PASSWD.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY "Connected to Oracle".

* Initialize bind and select descriptors.
 PERFORM INIT-BNDDSC THRU INIT-BNDDSC-EXIT
 VARYING COLUMN-INDEX FROM 1 BY 1
 UNTIL COLUMN-INDEX > 2.

* Set up the SQL statement.
 MOVE SPACES TO DYN-STATEMENT.
 MOVE "INSERT INTO EMP(EMPNO, DEPTNO) VALUES(:EMPNO,:DEPTNO)"
 TO DYN-STATEMENT.
 DISPLAY DYN-STATEMENT.

* Prepare the SQL statement.
 EXEC SQL
 PREPARE S1 FROM :DYN-STATEMENT
 END-EXEC.

* Describe the bind variables.
 EXEC SQL
 DESCRIBE BIND VARIABLES FOR S1 INTO BNDDSC
 END-EXEC.

 PERFORM Z-BIND-TYPE THRU Z-BIND-TYPE-EXIT
 VARYING COLUMN-INDEX FROM 1 BY 1
 UNTIL COLUMN-INDEX > 2.

 IF SQLDFND IN BNDDSC < 0
 DISPLAY "TOO MANY BIND VARIABLES."
 GO TO SQL-ERROR
 ELSE
 DISPLAY "BIND VARS = " WITH NO ADVANCING
 MOVE SQLDFND IN BNDDSC TO DUMMY-INTEGER
 DISPLAY DUMMY-INTEGER
 MOVE SQLDFND IN BNDDSC TO SQLDNUM IN BNDDSC.

 MOVE 8 TO NUMBER-OF-ROWS.
 PERFORM GET-ALL-VALUES THRU GET-ALL-VALUES-EXIT
 VARYING ROW-INDEX FROM 1 BY 1
 UNTIL ROW-INDEX > NUMBER-OF-ROWS.

* Execute the SQL statement.
 EXEC SQL FOR :NUMBER-OF-ROWS
 EXECUTE S1 USING DESCRIPTOR BNDDSC
 END-EXEC.

 DISPLAY "INSERTED " WITH NO ADVANCING.
 MOVE SQLERRD(3) TO DUMMY-INTEGER.
 DISPLAY DUMMY-INTEGER WITH NO ADVANCING.
 DISPLAY " ROWS.".
 GO TO END-SQL.

 SQL-ERROR.

Using Host Tables with Method 4

11-32 Pro*COBOL Programmer’s Guide

* Display any SQL error message and code.
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 END-SQL.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 STOP RUN.

 INIT-BNDDSC.
* Start of COBOL PERFORM procedures, initialize the bind
* descriptor.
 MOVE 80 TO BNDDH-MAX-VNAMEL(COLUMN-INDEX).
 CALL "SQLADR" USING
 BND-DH-VNAME(COLUMN-INDEX)
 BNDDH-VNAME(COLUMN-INDEX).
 MOVE 80 TO BNDDI-MAX-VNAMEL(COLUMN-INDEX).
 CALL "SQLADR" USING
 BND-DI-VNAME(COLUMN-INDEX)
 BNDDI-VNAME (COLUMN-INDEX).
 MOVE 10 TO BNDDVLN(COLUMN-INDEX).
 CALL "SQLADR" USING
 BND-ELEMENT(COLUMN-INDEX,1)
 BNDDV(COLUMN-INDEX).
 MOVE ZERO TO BNDDI(COLUMN-INDEX).
 CALL "SQLADR" USING
 BND-DI(COLUMN-INDEX)
 BNDDI(COLUMN-INDEX).
 MOVE ZERO TO BNDDFMT(COLUMN-INDEX).
 MOVE ZERO TO BNDDFMTL(COLUMN-INDEX).
 MOVE ZERO TO BNDDFCLP(COLUMN-INDEX).
 MOVE ZERO TO BNDDFCRCP(COLUMN-INDEX).
 INIT-BNDDSC-EXIT.
 EXIT.

 Z-BIND-TYPE.
* Replace the 0s DESCRIBEd into the datatype table with 1s to
* avoid an "invalid datatype" Oracle error.
 MOVE 1 TO BNDDVTYP(COLUMN-INDEX).

 Z-BIND-TYPE-EXIT.
 EXIT.

 GET-ALL-VALUES.
* Get the bind variables for each row.
 DISPLAY "ENTER VALUES FOR ROW NUMBER ",ROW-INDEX.
 PERFORM GET-BIND-VARS
 VARYING COLUMN-INDEX FROM 1 BY 1
 UNTIL COLUMN-INDEX > SQLDFND IN BNDDSC.
 GET-ALL-VALUES-EXIT.
 EXIT.

 GET-BIND-VARS.
* Get the value of each bind variable.
 DISPLAY " ENTER VALUE FOR ",BND-DH-VNAME(COLUMN-INDEX)
 WITH NO ADVANCING.
 ACCEPT BND-ELEMENT(COLUMN-INDEX,ROW-INDEX).
 GET-BIND-VARS-EXIT.
 EXIT.

Sample Program 10: Dynamic SQL Method 4

Oracle Dynamic SQL: Method 4 11-33

Sample Program 10: Dynamic SQL Method 4
This program shows the basic steps required to use dynamic SQL Method 4. After
logging on, the program prompts the user for a SQL statement, prepares statement,
declares a cursor, checks for any bind variables using DESCRIBE BIND, opens the
cursor, and describes any select-list variables. If the input SQL statement is a query, the
program fetches each row of data, then closes the cursor.

 * Sample Program 10: Dynamic SQL Method 4 *
 * *
 * This program shows the basic steps required to use dynamic *
 * SQL Method 4. After logging on to ORACLE, the program *
 * prompts the user for a SQL statement, PREPAREs the *
 * statement, DECLAREs a cursor, checks for any bind variables *
 * using DESCRIBE BIND, OPENs the cursor, and DESCRIBEs any *
 * select-list variables. If the input SQL statement is a *
 * query, the program FETCHes each row of data, then CLOSEs *
 * the cursor. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DYNSQL4.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BNDDSC.

 02 SQLDNUM PIC S9(9) COMP VALUE 20.
 02 SQLDFND PIC S9(9) COMP.
 02 BNDDVAR OCCURS 20 TIMES.
 03 BNDDV PIC S9(9) COMP.
 03 BNDDFMT PIC S9(9) COMP.
 03 BNDDVLN PIC S9(9) COMP.
 03 BNDDFMTL PIC S9(4) COMP.
 03 BNDDVTYP PIC S9(4) COMP.
 03 BNDDI PIC S9(9) COMP.
 03 BNDDH-VNAME PIC S9(9) COMP.
 03 BNDDH-MAX-VNAMEL PIC S9(4) COMP.
 03 BNDDH-CUR-VNAMEL PIC S9(4) COMP.
 03 BNDDI-VNAME PIC S9(9) COMP.
 03 BNDDI-MAX-VNAMEL PIC S9(4) COMP.
 03 BNDDI-CUR-VNAMEL PIC S9(4) COMP.
 03 BNDDFCLP PIC S9(9) COMP.
 03 BNDDFCRCP PIC S9(9) COMP.

 01 XBNDDI.

 03 BND-DI OCCURS 20 TIMES PIC S9(4) COMP.

 01 XBNDDIVNAME.
 03 BND-DI-VNAME OCCURS 20 TIMES PIC X(80).
 01 XBNDDV.
 03 BND-DV OCCURS 20 TIMES PIC X(80).
 01 XBNDDHVNAME.
 03 BND-DH-VNAME OCCURS 20 TIMES PIC X(80).

 01 SELDSC.

Sample Program 10: Dynamic SQL Method 4

11-34 Pro*COBOL Programmer’s Guide

 02 SQLDNUM PIC S9(9) COMP VALUE 20.
 02 SQLDFND PIC S9(9) COMP.
 02 SELDVAR OCCURS 20 TIMES.
 03 SELDV PIC S9(9) COMP.
 03 SELDFMT PIC S9(9) COMP.
 03 SELDVLN PIC S9(9) COMP.
 03 SELDFMTL PIC S9(4) COMP.
 03 SELDVTYP PIC S9(4) COMP.
 03 SELDI PIC S9(9) COMP.
 03 SELDH-VNAME PIC S9(9) COMP.
 03 SELDH-MAX-VNAMEL PIC S9(4) COMP.
 03 SELDH-CUR-VNAMEL PIC S9(4) COMP.
 03 SELDI-VNAME PIC S9(9) COMP.
 03 SELDI-MAX-VNAMEL PIC S9(4) COMP.
 03 SELDI-CUR-VNAMEL PIC S9(4) COMP.
 03 SELDFCLP PIC S9(9) COMP.
 03 SELDFCRCP PIC S9(9) COMP.

 01 XSELDI.

 03 SEL-DI OCCURS 20 TIMES PIC S9(4) COMP.

 01 XSELDIVNAME.
 03 SEL-DI-VNAME OCCURS 20 TIMES PIC X(80).
 01 XSELDV.
 03 SEL-DV OCCURS 20 TIMES PIC X(80).
 01 XSELDHVNAME.
 03 SEL-DH-VNAME OCCURS 20 TIMES PIC X(80).

 01 TABLE-INDEX PIC 9(3).
 01 VAR-COUNT PIC 9(2).
 01 ROW-COUNT PIC 9(4).
 01 NO-MORE-DATA PIC X(1) VALUE "N".
 01 NULLS-ALLOWED PIC S9(9) COMP.

 01 PRECISION PIC S9(9) COMP.
 01 SCALE PIC S9(9) COMP.

 01 DISPLAY-LENGTH PIC S9(9) COMP.
 01 MAX-LENGTH PIC S9(9) COMP VALUE 80.
 01 COLUMN-NAME PIC X(30).
 01 NULL-VAL PIC X(80) VALUE SPACES.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(20).
 01 PASSWD PIC X(20).
 01 DYN-STATEMENT PIC X(80).
 EXEC SQL END DECLARE SECTION END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 START-MAIN.

 EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.

 DISPLAY "USERNAME: " WITH NO ADVANCING.

 ACCEPT USERNAME.

 DISPLAY "PASSWORD: " WITH NO ADVANCING.

Sample Program 10: Dynamic SQL Method 4

Oracle Dynamic SQL: Method 4 11-35

 ACCEPT PASSWD.

 EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWD END-EXEC.
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME.

 * INITIALIZE THE BIND AND SELECT DESCRIPTORS.

 PERFORM INIT-BNDDSC
 VARYING TABLE-INDEX FROM 1 BY 1
 UNTIL TABLE-INDEX > 20.

 PERFORM INIT-SELDSC
 VARYING TABLE-INDEX FROM 1 BY 1
 UNTIL TABLE-INDEX > 20.

 * GET A SQL STATEMENT FROM THE OPERATOR.

 DISPLAY "ENTER SQL STATEMENT WITHOUT TERMINATOR:".
 DISPLAY ">" WITH NO ADVANCING.

 ACCEPT DYN-STATEMENT.

 DISPLAY " ".

 * PREPARE THE SQL STATEMENT AND DECLARE A CURSOR.

 EXEC SQL PREPARE S1 FROM :DYN-STATEMENT END-EXEC.
 EXEC SQL DECLARE C1 CURSOR FOR S1 END-EXEC.

 * DESCRIBE ANY BIND VARIABLES.

 EXEC SQL DESCRIBE BIND VARIABLES FOR S1 INTO BNDDSC
 END-EXEC.

 IF SQLDFND IN BNDDSC < 0
 DISPLAY "TOO MANY BIND VARIABLES."
 GO TO END-SQL
 ELSE
 DISPLAY "NUMBER OF BIND VARIABLES: " WITH NO ADVANCING
 MOVE SQLDFND IN BNDDSC TO VAR-COUNT
 DISPLAY VAR-COUNT
 MOVE SQLDFND IN BNDDSC TO SQLDNUM IN BNDDSC
 END-IF.

 * REPLACE THE 0S DESCRIBED INTO THE DATATYPE FIELDS OF THE
 * BIND DESCRIPTOR WITH 1S TO AVOID AN "INVALID DATATYPE"
 * ORACLE ERROR

 MOVE 1 TO TABLE-INDEX.
 FIX-BIND-TYPE.
 MOVE 1 TO BNDDVTYP(TABLE-INDEX)
 ADD 1 TO TABLE-INDEX
 IF TABLE-INDEX <= 20
 GO TO FIX-BIND-TYPE.

 * LET THE USER FILL IN THE BIND VARIABLES.

 IF SQLDFND IN BNDDSC = 0
 GO TO DESCRIBE-ITEMS.
 MOVE 1 TO TABLE-INDEX.

Sample Program 10: Dynamic SQL Method 4

11-36 Pro*COBOL Programmer’s Guide

 GET-BIND-VAR.
 DISPLAY "ENTER VALUE FOR ", BND-DH-VNAME(TABLE-INDEX).

 ACCEPT BND-DV(TABLE-INDEX).

 ADD 1 TO TABLE-INDEX
 IF TABLE-INDEX <= SQLDFND IN BNDDSC
 GO TO GET-BIND-VAR.

 * OPEN THE CURSOR AND DESCRIBE THE SELECT-LIST ITEMS.

 DESCRIBE-ITEMS.

 EXEC SQL OPEN C1 USING DESCRIPTOR BNDDSC END-EXEC.
 EXEC SQL DESCRIBE SELECT LIST FOR S1 INTO SELDSC END-EXEC.

 IF SQLDFND IN SELDSC < 0
 DISPLAY "TOO MANY SELECT-LIST ITEMS."
 GO TO END-SQL
 ELSE
 DISPLAY "NUMBER OF SELECT-LIST ITEMS: "
 WITH NO ADVANCING
 MOVE SQLDFND IN SELDSC TO VAR-COUNT
 DISPLAY VAR-COUNT
 DISPLAY " "
 MOVE SQLDFND IN SELDSC TO SQLDNUM IN SELDSC
 END-IF.

 * COERCE THE DATATYPE OF ALL SELECT-LIST ITEMS TO VARCHAR2.

 IF SQLDNUM IN SELDSC > 0
 PERFORM COERCE-COLUMN-TYPE
 VARYING TABLE-INDEX FROM 1 BY 1
 UNTIL TABLE-INDEX > SQLDNUM IN SELDSC
 DISPLAY " ".

 * FETCH EACH ROW AND PRINT EACH SELECT-LIST VALUE.

 IF SQLDNUM IN SELDSC > 0
 PERFORM FETCH-ROWS UNTIL NO-MORE-DATA = "Y".

 DISPLAY " "
 DISPLAY "NUMBER OF ROWS PROCESSED: " WITH NO ADVANCING.
 MOVE SQLERRD(3) TO ROW-COUNT.
 DISPLAY ROW-COUNT.

 * CLEAN UP AND TERMINATE.

 EXEC SQL CLOSE C1 END-EXEC.
 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY!".
 DISPLAY " ".
 STOP RUN.

 * DISPLAY ORACLE ERROR MESSAGE AND CODE.

 SQL-ERROR.
 DISPLAY " ".
 DISPLAY SQLERRMC.

Sample Program 10: Dynamic SQL Method 4

Oracle Dynamic SQL: Method 4 11-37

 END-SQL.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 * PERFORMED SUBROUTINES BEGIN HERE:

 * INIT-BNDDSC: INITIALIZE THE BIND DESCRIPTOR.

 INIT-BNDDSC.

 MOVE SPACES TO BND-DH-VNAME(TABLE-INDEX).
 MOVE 80 TO BNDDH-MAX-VNAMEL(TABLE-INDEX).
 CALL "SQLADR" USING
 BND-DH-VNAME(TABLE-INDEX)
 BNDDH-VNAME(TABLE-INDEX).

 MOVE SPACES TO BND-DI-VNAME(TABLE-INDEX).
 MOVE 80 TO BNDDI-MAX-VNAMEL(TABLE-INDEX).
 CALL "SQLADR" USING
 BND-DI-VNAME(TABLE-INDEX)
 BNDDI-VNAME (TABLE-INDEX).

 MOVE SPACES TO BND-DV(TABLE-INDEX).
 MOVE 80 TO BNDDVLN(TABLE-INDEX).
 CALL "SQLADR" USING
 BND-DV(TABLE-INDEX)
 BNDDV(TABLE-INDEX).
 MOVE ZERO TO BND-DI(TABLE-INDEX).
 CALL "SQLADR" USING
 BND-DI(TABLE-INDEX)
 BNDDI(TABLE-INDEX).

 MOVE ZERO TO BNDDFMT(TABLE-INDEX).
 MOVE ZERO TO BNDDFMTL(TABLE-INDEX).
 MOVE ZERO TO BNDDFCLP(TABLE-INDEX).
 MOVE ZERO TO BNDDFCRCP(TABLE-INDEX).

 * INIT-SELDSC: INITIALIZE THE SELECT DESCRIPTOR.

 INIT-SELDSC.

 MOVE SPACES TO SEL-DH-VNAME(TABLE-INDEX).
 MOVE 80 TO SELDH-MAX-VNAMEL(TABLE-INDEX).
 CALL "SQLADR" USING
 SEL-DH-VNAME(TABLE-INDEX)
 SELDH-VNAME(TABLE-INDEX).

 MOVE SPACES TO SEL-DI-VNAME(TABLE-INDEX).
 MOVE 80 TO SELDI-MAX-VNAMEL(TABLE-INDEX).
 CALL "SQLADR" USING
 SEL-DI-VNAME(TABLE-INDEX)
 SELDI-VNAME (TABLE-INDEX).

 MOVE SPACES TO SEL-DV(TABLE-INDEX).
 MOVE 80 TO SELDVLN(TABLE-INDEX).
 CALL "SQLADR" USING
 SEL-DV(TABLE-INDEX)
 SELDV(TABLE-INDEX).

Sample Program 10: Dynamic SQL Method 4

11-38 Pro*COBOL Programmer’s Guide

 MOVE ZERO TO SEL-DI(TABLE-INDEX).
 CALL "SQLADR" USING
 SEL-DI(TABLE-INDEX)
 SELDI(TABLE-INDEX).

 MOVE ZERO TO SELDFMT(TABLE-INDEX).
 MOVE ZERO TO SELDFMTL(TABLE-INDEX).
 MOVE ZERO TO SELDFCLP(TABLE-INDEX).
 MOVE ZERO TO SELDFCRCP(TABLE-INDEX).

 * COERCE SELECT-LIST DATATYPES TO VARCHAR2.

 COERCE-COLUMN-TYPE.
 CALL "SQLNUL" USING
 SELDVTYP(TABLE-INDEX)
 SELDVTYP(TABLE-INDEX)
 NULLS-ALLOWED.

 * IF DATATYPE IS DATE, LENGTHEN TO 9 CHARACTERS.
 IF SELDVTYP(TABLE-INDEX) = 12
 MOVE 9 TO SELDVLN(TABLE-INDEX).

 * IF DATATYPE IS NUMBER, SET LENGTH TO PRECISION.
 IF SELDVTYP(TABLE-INDEX) = 2
 CALL "SQLPRC" USING
 SELDVLN(TABLE-INDEX)
 PRECISION
 SCALE.
 MOVE 0 TO DISPLAY-LENGTH.
 IF SELDVTYP(TABLE-INDEX) = 2 AND PRECISION = 0
 MOVE 40 TO DISPLAY-LENGTH.
 IF SELDVTYP(TABLE-INDEX) = 2 AND PRECISION > 0
 ADD 2 TO PRECISION
 MOVE PRECISION TO DISPLAY-LENGTH.

 IF SELDVTYP(TABLE-INDEX) = 2
 IF DISPLAY-LENGTH > MAX-LENGTH
 DISPLAY "COLUMN VALUE TOO LARGE FOR DATA BUFFER."
 GO TO END-SQL
 ELSE
 MOVE DISPLAY-LENGTH TO SELDVLN(TABLE-INDEX).

 * COERCE DATATYPES TO VARCHAR2.
 MOVE 1 TO SELDVTYP(TABLE-INDEX).

 * DISPLAY COLUMN HEADING.
 MOVE SEL-DH-VNAME(TABLE-INDEX) TO COLUMN-NAME.
 DISPLAY COLUMN-NAME(1:SELDVLN(TABLE-INDEX)), " "
 WITH NO ADVANCING.

 *FETCH A ROW AND PRINT THE SELECT-LIST VALUE.

 FETCH-ROWS.
 EXEC SQL FETCH C1 USING DESCRIPTOR SELDSC END-EXEC.
 IF SQLCODE NOT = 0
 MOVE "Y" TO NO-MORE-DATA.
 IF SQLCODE = 0
 PERFORM PRINT-COLUMN-VALUES
 VARYING TABLE-INDEX FROM 1 BY 1
 UNTIL TABLE-INDEX > SQLDNUM IN SELDSC

Sample Program 10: Dynamic SQL Method 4

Oracle Dynamic SQL: Method 4 11-39

 DISPLAY " ".

 *PRINT A SELECT-LIST VALUE.

 PRINT-COLUMN-VALUES.
 IF SEL-DI(TABLE-INDEX) = -1
 DISPLAY NULL-VAL(1:SELDVLN(TABLE-INDEX)), " "
 WITH NO ADVANCING
 ELSE
 DISPLAY SEL-DV(TABLE-INDEX)(1:SELDVLN(TABLE-INDEX)), " "
 WITH NO ADVANCING
 END-IF.

Sample Program 10: Dynamic SQL Method 4

11-40 Pro*COBOL Programmer’s Guide

Multithreaded Applications 12-1

12
Multithreaded Applications

If your development platform does not support threads, you may ignore this chapter.

The sections of this chapter are:

■ Introduction to Threads

■ Runtime Contexts in Pro*COBOL

■ Runtime Context Usage Models

■ User Interface Features for Multithreaded Applications

■ Multithreaded Example

Introduction to Threads
Multithreaded applications have multiple threads executing in a shared address space.
Threads are "lightweight" subprocesses that execute within a process. They share code
and data segments, but have their own program counters, machine registers and stack.
Variables declared without the thread-local attribute in working storage (as opposed to
local-storage or thread-local storage) are common to all threads, and a mutual
exclusivity mechanism is often required to manage access to these variables from
multiple threads within an application. Mutexes are the synchronization mechanism to
insure that data integrity is preserved.

For further discussion of mutexes, see texts on multithreading. For more detailed
information about multithreaded applications, see the documentation of your threads
functions.

Pro*COBOL supports development of multithreaded Oracle9i Server applications (on
platforms that support multithreaded applications) using the following:

■ A command-line option to generate thread-safe code.

■ Embedded SQL statements and directives to support multithreading.

■ Thread-safe SQLLIB and other client-side Oracle9i libraries.

The chapter's topics discuss how to use the preceding features to develop
multithreaded Pro*COBOL applications:

■ Runtime contexts for multithreaded applications.

Note: While your platform may support a particular thread
package, see your platform-specific Oracle documentation to
determine whether Oracle9i supports it.

Runtime Contexts in Pro*COBOL

12-2 Pro*COBOL Programmer’s Guide

■ Two models for using runtime contexts.

■ User-interface features for multithreaded applications.

■ Programming considerations for writing multithreaded applications with
Pro*COBOL.

■ Sample multithreaded Pro*COBOL applications.

Runtime Contexts in Pro*COBOL
To loosely couple a thread and a connection, in Pro*COBOL we introduce the concept
of a runtime context. The runtime context includes the following resources and their
current states:

■ Zero or more connections to one or more Oracle servers.

■ Zero or more cursors used for the server connections.

■ Inline options, such as MODE, HOLD_CURSOR, RELEASE_CURSOR, and
SELECT_ERROR.

Rather than simply supporting a loose coupling between threads and connections,
Pro*COBOL enables you to loosely couple threads with runtime contexts. Pro*COBOL
enables your application to define a handle to a runtime context, and pass that handle
from one thread to another.

For example, an interactive application spawns a thread, T1, to execute a query and
return the first 10 rows to the application. T1 then terminates. After obtaining the
necessary user input, another thread, T2, is spawned (or an existing thread is used)
and the runtime context for T1 is passed to T2 so it can fetch the next 10 rows by
processing the same cursor.This is shown in Figure 12–1:

Runtime Context Usage Models

Multithreaded Applications 12-3

Figure 12–1 Loosely Coupling Connections and Threads

This illustration shows the loosely coupling connections and threads.

Runtime Context Usage Models
Two possible models for using runtime contexts in multithreaded applications are
shown here:

■ Multiple threads sharing a single runtime context.

■ Multiple threads using separate runtime contexts.

Regardless of the model you use for runtime contexts, you cannot share a runtime
context between multiple threads at the same time. If two or more threads attempt to
use the same runtime context simultaneously, a runtime error occurs

Multiple Threads Sharing a Single Runtime Context
Figure 12–2 shows an application running in a multithreaded environment. The
various threads share a single runtime context to process one or more SQL statements.

Server

ThreadT1

.

..

Main Program

Application

USE :ctx
Fetch...

Thread

USE :ctx
Fetch...

ThreadT2

USE :ctx
Fetch...
. ..

ENABLE THREADS
ALLOCATE :ctx
Connect...
...
FREE :ctx

Note: The syntax used in this
and subsequent figures is for
structural use only. for correct
syntax, see the section titled,
"User-interface Features for
Multi-threaded Applications."

Execution
Time

Shared runtime
context is
passed from
one thread to
the next

Tn

Runtime Context Usage Models

12-4 Pro*COBOL Programmer’s Guide

Again, runtime contexts cannot be shared by multiple threads at the same time. The
mutexes in Figure 12–2 show how to prevent concurrent usage.

Figure 12–2 Context Sharing Among Threads

This illustration shows how to prevent concurrent usage.

Multiple Threads Sharing Multiple Runtime Contexts
Figure 12–3 shows an application that executes multiple threads using multiple
runtime contexts. In this situation, the application does not require mutexes, because
each thread has a dedicated runtime context.

Application

Server

Thread1

USE :ctx

. ..

Mutex
Select...

Thread

USE :ctx
Mutex
Select...

Thread2

USE :ctx
Mutex

UnMutex UnMutexUnMutex
Update...

Main Program

ENABLE THREADS
ALLOCATE :ctx
USE :ctx
Connect...
Spawning Threads...
FREE :ctx

n

User Interface Features for Multithreaded Applications

Multithreaded Applications 12-5

Figure 12–3 No Context Sharing Among Threads

This illustration shows an application that executes multiple threads using multiple
runtime contexts.

User Interface Features for Multithreaded Applications
Pro*COBOL provides the following user-interface features to support multithreaded
applications:

■ Host variables can be declared in the LOCAL-STORAGE and the
THREAD-LOCAL-STORAGE sections.

■ The command-line option THREADS=YES | NO.

■ Embedded SQL statements and directives.

■ Thread-safe SQLLIB public functions.

THREADS Option
With THREADS=YES specified on the command line, Pro*COBOL ensures that the
generated code is thread-safe, given that you follow the guidelines described in

Application

Server

Thread1

USE :ctx1
. ..

Connect...
Select...

Thread

USE :ctxn
Connect...
Select...

Thread2

USE :ctx2
Connect...
Update...

Main Program

ENABLE THREADS
ALLOCATE :ctx1
ALLOCATE :ctx2
...
ALLOCATE :ctxn
...
Spawning Threads...
...
FREE :ctx1
FREE :ctx2
...
FREE :ctxn

n

User Interface Features for Multithreaded Applications

12-6 Pro*COBOL Programmer’s Guide

"Multithreading Programming Considerations" on page 12-7. With THREADS=YES
specified, Pro*COBOL verifies that all SQL statements execute within the scope of a
user-defined runtime context. If your program does not meet this requirement, a
precompiler error is returned. See "THREADS" on page 14-29.

Embedded SQL Statements and Directives for Runtime Contexts
The following embedded SQL statements and directives support the definition and
usage of runtime contexts and threads:

■ EXEC SQL ENABLE THREADS END-EXEC.

■ EXEC SQL CONTEXT ALLOCATE :context_var END-EXEC.

■ EXEC SQL CONTEXT USE { :context_var | DEFAULT} END-EXEC.

■ EXEC SQL CONTEXT FREE :context_var END-EXEC.

For these EXEC SQL statements, context_var is the handle to the runtime context and
must be declared of type SQL-CONTEXT as follows:

 01 SQL-CONTEXT context_var END-EXEC.

Using DEFAULT means that the default (global) runtime context will be used in all
embedded SQL statements that lexically follow until another CONTEXT USE
statement overrides it.

Examples illustrating the various uses of context statements are shown.

Host Tables of SQL-CONTEXT Are Not Allowed
You cannot declare host tables of SQL-CONTEXT. Instead, declare a host table of S9(9)
COMP variables and then pass them to the subprogram one at a time after redeclaring
them in the subprogram as SQL-CONTEXT.

EXEC SQL ENABLE THREADS
This executable SQL statement initializes a process that supports multiple threads.
This must be the first executable SQL statement in a program that contains a
multithreaded application. There can only be one ENABLE THREADS statement in all
files of an application, or an error results. For more detailed information, see "ENABLE
THREADS (Executable Embedded SQL Extension)" on page E-29.

EXEC SQL CONTEXT ALLOCATE
This executable SQL statement allocates and initializes memory for the specified
runtime context; the runtime-context variable must be declared of type SQL_
CONTEXT. For more detailed information, see "CONTEXT ALLOCATE (Executable
Embedded SQL Extension)" on page E-15.

EXEC SQL CONTEXT USE
The EXEC SQL CONTEXT USE directive instructs the precompiler to use the specified
runtime context for subsequent executable SQL statements. The runtime context
specified must be previously allocated using an EXEC SQL CONTEXT ALLOCATE
statement.

The EXEC SQL CONTEXT USE directive works similarly to the EXEC SQL
WHENEVER directive in that it affects all executable SQL statements which
positionally follow it in a given source file without regard to standard COBOL scope
rules.

User Interface Features for Multithreaded Applications

Multithreaded Applications 12-7

For more detailed information, see "CONTEXT USE (Oracle Embedded SQL
Directive)" on page E-16, and "CONTEXT ALLOCATE (Executable Embedded SQL
Extension)" on page E-15.

EXEC SQL CONTEXT FREE
The EXEC SQL CONTEXT FREE executable SQL statement frees the memory
associated with the specified runtime context and places a null pointer in the host
program variable. For more detailed information, see "CONTEXT FREE (Executable
Embedded SQL Extension)" on page E-15.

Communication with Pro*C/C++ Programs
Runtime contexts can be passed using arguments defined in the Linkage Section.
Multithreaded Pro*C/C++ programs can call Pro*COBOL subprograms and
Pro*COBOL programs can call subprograms written in Pro*C/C++.

Multithreading Programming Considerations
While Oracle9i ensures that the SQLLIB code is thread-safe, you are responsible for
ensuring that your source code is designed to work properly with threads. For
example, carefully consider the scope of the variables you use.

In addition, multithreading requires design decisions regarding the following:

■ Including one SQLCA for each runtime context.

■ Declaring the SQLDA as a thread-safe group item, like the SQLCA, typically an
auto variable, one for each runtime context.

■ Declaring host variables in a thread-safe fashion, in other words, carefully
consider your use of static and global host variables.

■ Avoiding simultaneous use of a runtime context in multiple threads.

■ Whether or not to use default database connections or to explicitly define them
using the AT clause.

No more than one executable embedded SQL statement, for example, EXEC SQL
UPDATE, may be outstanding on a runtime context at a given time.

Existing requirements for precompiled applications also apply. For example, all
references to a given cursor must appear in the same source file.

Restrictions on Multithreading
The following restrictions be in effect when using threads:

■ You cannot use an array of datatype SQL-CONTEXT.

■ Concurrent threads should each have its own SQLCA.

■ Concurrent threads should each have its own context areas.

Multiple Context Examples
The code fragments in this section show how to use multiple contexts, and
demonstrate the scope of the context use statement.

User Interface Features for Multithreaded Applications

12-8 Pro*COBOL Programmer’s Guide

Example 1
In the first example, the precompiler option setting THREADS=YES is not needed,
because we are not generating threads:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. MAIN.
 ...
* declare a context area
 01 CTX1 SQL-CONTEXT.
 01 UID1 PIC X(11) VALUE "SCOTT/TIGER".
 01 UID2 PIC X(10) VALUE "MARY/LION"

 PROCEDURE DIVISION.
...
* allocate context area
 EXEC SQL CONTEXT ALLOCATE :CTX1 END-EXEC.
 EXEC SQL CONTEXT USE :CTX1 END-EXEC.
* all statements until the next context use will use CTX1
 EXEC SQL CONNECT :UID1 END-EXEC.
 EXEC SQL SELECT
 EXEC SQL CONTEXT USE DEFAULT END-EXEC.
* all statements physically after the preceding lines will use the default context
 EXEC SQL CONNECT :UID2 END-EXEC.
 EXEC SQL INSERT ...
 ...

Example 2
This next example shows multiple contexts. One context is used by the generated
thread while the other is used by the main program. The started thread, SUBPRGM1,
will use context CTX1, which is passed to it through the LINKAGE SECTION. This
example also demonstrates the scope of the CONTEXT USE statement.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. MAIN.
 ...
* declare two context areas
 01 CTX1 SQL-CONTEXT.
 01 CTX2 SQL-CONTEXT.

 PROCEDURE DIVISION.

* enable threading
 EXEC SQL ENABLE THREADS END-EXEC.

* allocate context areas
 EXEC SQL CONTEXT ALLOCATE :CTX1 END-EXEC.
 EXEC SQL CONTEXT ALLOCATE :CTX2 END-EXEC.

* include your code to start thread "SUBPGM1" using CTX1 here.

 EXEC SQL CONTEXT USE :CTX2 END-EXEC.
* all statement physically after the preceding lines will use CTX2

Note: You must precompile the main program file, and the main
program of every subsequent example in this section, with the
option THREADS=YES.

User Interface Features for Multithreaded Applications

Multithreaded Applications 12-9

 EXEC SQL CONNECT :USERID END-EXEC.
 EXEC SQL INSERT
 ...

The thread SUBPRGM1 is in a another file:

 PROGRAM-ID. SUBPRGM1.
 ...
 01 USERID PIC X(11) VALUE "SCOTT/TIGER".
 LINKAGE SECTION.
 01 CTX1 SQL-CONTEXT.
 PROCEDURE DIVISION USING CTX1.

 EXEC SQL CONTEXT USE :CTX1 END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.
 EXEC SQL SELECT ...
 ...

Example 3
The following example uses multiple threads. Each thread has its own context. If the
threads are to be executed concurrently, each thread must have its own context.
Contexts are passed to the thread with the USING CLAUSE of the START statement
and are declared in the LINKAGE SECTION of the threaded subprogram.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. MAIN.
 ...
 DATA DIVISION.

 01 CTX1 SQL-CONTEXT.
 01 CTX2 SQL-CONTEXT.

 PROCEDURE DIVISION.
 ...
 EXEC SQL ENABLE THREADS END-EXEC.
 EXEC SQL CONTEXT ALLOCATE :CTX1 END-EXEC.
 EXEC SQL CONTEXT ALLOCATE :CTX2 END-EXEC.

* include your code to start thread "SUBPGM" using CTX1 here.
* include your code to start thread "SUBPGM" using CTX2 here.
 ...

The thread SUBPGM is placed in another file:

PROGRAM-ID. SUBPGM.
 ...
 DATA DIVISION.
 ...
 01 USERID PIC X(11) VALUE "SCOTT/TIGER".
 ...
 LINKAGE SECTION.
 01 CTX SQL-CONTEXT.
 PROCEDURE DIVISION USING CTX.
 EXEC SQL CONTEXT USE :CTX END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.
 EXEC SQL SELECT
 ...

User Interface Features for Multithreaded Applications

12-10 Pro*COBOL Programmer’s Guide

Example 4
The next example is based on the previous example, but does the connection in the top
level program and passes the connection with the context to the threaded subprogram.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. MAIN.
 ...
 DATA DIVISION.

 01 CTX1 SQL-CONTEXT.
 01 CTX2 SQL-CONTEXT.
 01 USERID PIC X(11) VALUE "SCOTT/TIGER".

 ROCEDURE DIVISION.

 EXEC SQL ENABLE THREADS END-EXEC.
 EXEC SQL CONTEXT ALLOCATE :CTX1 END-EXEC.
 EXEC SQL CONTEXT ALLOCATE :CTX2 END-EXEC.
 EXEC SQL CONTEXT USE :CTX1 END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.
 EXEC SQL CONTEXT USE :CTX2 END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

* include your code to start thread "SUBPGM" using CTX1 here.
* include your code to start thread "SUBPGM" using CTX2 here.
 ...

The thread SUBPRGM is in another file:

 PROGRAM-ID. SUBPGM.
 ...
 LINKAGE SECTION.
 01 CTX SQL-CONTEXT.
 PROCEDURE DIVISION USING CTX.
 EXEC SQL CONTEXT USE :CTX END-EXEC.
 EXEC SQL SELECT
 ...

Example 5
The following example shows multiple threads which share a context. Note that in this
case, the threads must be serialized.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. MAIN.
 ...
 DATA DIVISION.

 01 CTX1 SQL-CONTEXT.

 PROCEDURE DIVISION.

 EXEC SQL ENABLE THREADS END-EXEC.
 EXEC SQL CONTEXT ALLOCATE :CTX1 END-EXEC.

* include your code to start thread1 "SUBPGM1" using CTX1 here.
* include your code to wait for thread1 here.
* include your code to start thread2 "SUBPGM2" using CTX1 here.
 ...

There are two separate files for the two threads. First there is:

Multithreaded Example

Multithreaded Applications 12-11

 PROGRAM-ID. SUBPGM1.
 ...
 DATA DIVISION.
 ..
 01 USERID PIC X(11) VALUE "SCOTT/TIGER".
 ...
 LINKAGE SECTION.
 01 CTX SQL-CONTEXT.
 PROCEDURE DIVISION USING CTX.
 EXEC SQL CONTEXT USE :CTX END-EXEC.
 ...
 EXEC SQL CONNECT :USERID END-EXEC.

Another file contains SUBPGM2:

 PROGRAM-ID. SUBPGM2.
 ...
 DATA DIVISION.
 ...
 LINKAGE SECTION.
 01 CTX SQL-CONTEXT.
 PROCEDURE DIVISION USING CTX.
 EXEC SQL CONTEXT USE :CTX END-EXEC.
 EXEC SELECT
 ...

Multithreaded Example
This multi-file application demonstrates one way to use the SQLLIB runtime context
area (SQL-CONTEXT) to support multiple threads. Precompile with THREADS=YES.

The main program, orathrd2, declares an array of S9(9) COMP variables to be used to
hold the sqllib contexts. It enables threading through the

EXEC SQL ENABLE THREADS END-EXEC.

statement and then calls the subprogram oracon (in file oracon.pco) to allocate the
threads. oracon also establishes a connection for each allocated context.

Next, ORTHRD2 passes the context to one of the threaded entry points, THREAD-1 or
THREAD-2. THREAD-1 simply selects and displays the salary for an employee.
THREAD-2 selects and updates the salary for that employee. Since THREAD-2 issues a
commit, the update is visible to threads that do the SELECT after it has committed.
(But not those which run concurrently with the update.) Note that the output will vary
from run to run because the timing of the update and commit is non-determinant.

It is important to remember that concurrent threads must each have their own
contexts. Contexts may be passed to and used by subsequent threads, but threads may
not use the same context concurrently. This model could be used for connection
pooling, where the maximum number of connections are created initially and passed
to threads as available, to execute user's requests.

An array of S9(9) COMP variables is used because you cannot currently declare an
array of SQL-CONTEXT.

Note: This program was developed specifically for a Sun workstation running Solaris
and MicroFocus ServerExpress compiler and uses vendor-specific directives and
functionality.

See your platform-specific documentation for the specific COBOL statements that
support multithreading.

Multithreaded Example

12-12 Pro*COBOL Programmer’s Guide

The main program is in file orathrd2.pco:

 $SET REENTRANT MF
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ORATHRD2.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 78 MAX-LOOPS VALUE 10.
 01 THREAD-ID USAGE POINTER.
 01 TP-1 USAGE THREAD-POINTER OCCURS MAX-LOOPS.
 01 IDEN-4 PIC 9(4).
 01 LOOP-COUNTER PIC 9(2) COMP-X EXTERNAL.
 01 PEMPNO PIC S9(4) COMP EXTERNAL.
 01 ISAL PIC S9(4) COMP VALUE ZERO.
 EXEC SQL
 INCLUDE SQLCA
 END-EXEC.
 THREAD-LOCAL-STORAGE SECTION.
 01 CONTEXT-AREA PIC S9(9) COMP OCCURS MAX-LOOPS.
 PROCEDURE DIVISION.
 MAIN SECTION.

 PERFORM INITIALISATION
 PERFORM ORACLE-CONNECTIONS VARYING LOOP-COUNTER
 FROM 1 BY 1 UNTIL LOOP-COUNTER > MAX-LOOPS
 PERFORM VARYING LOOP-COUNTER FROM 1 BY 1
 UNTIL LOOP-COUNTER > MAX-LOOPS
 PERFORM START-THREAD
 END-PERFORM
 STOP RUN.

 *---
 * CHECK THAT WE ARE RUNNING UNDER A MULTI THREADED RTS.
 *---
 INITIALISATION SECTION.

 CALL "CBL_THREAD_SELF" USING THREAD-ID ON EXCEPTION
 DISPLAY "NO THREAD SUPPORT IN THIS RTS"
 STOP RUN
 END-CALL
 IF RETURN-CODE = 1008
 DISPLAY "CANNOT RUN THIS TEST ON SINGLE THREADED RTS"
 STOP RUN
 END-IF
 DISPLAY "MULTI-THREAD RTS"

 * ENABLING THREADS MUST BE DONE ONCE BEFORE ANY CONTEXT USEAGE
 EXEC SQL ENABLE THREADS END-EXEC.
 IF SQLCODE NOT = ZERO
 DISPLAY 'ERROR ENABLING ORACLE THREAD SUPPORT '
 ' - ABORTING : ' SQLERRMC
 STOP RUN
 END-IF

 * SET A VALUE FOR THE EMPLOYEE NUMBER. BECAUSE THIS IS AN
 * EXTERNAL VARIABLE, A COPY OF ITS VALUE IS VISIBLE TO THE
 * OTHER MODULES IN THIS APPLICATION
 MOVE 7566 TO PEMPNO
 EXIT SECTION.

Multithreaded Example

Multithreaded Applications 12-13

 *---
 * CREATE THREADS AND START WITH EITHER THREAD-1 OR THREAD-2
 *---
 START-THREAD SECTION.

 IF LOOP-COUNTER = 2 OR LOOP-COUNTER = 5
 START "THREAD-2 "
 USING CONTEXT-AREA(LOOP-COUNTER)
 IDENTIFIED BY TP-1(LOOP-COUNTER)
 STATUS IS IDEN-4
 ON EXCEPTION DISPLAY "THREAD CREATE FAILED"
 END-START
 IF IDEN-4 NOT = ZERO
 DISPLAY "THREAD CREATE FAILED RETURNED " IDEN-4
 END-IF
 ELSE
 START "THREAD-1 "
 USING CONTEXT-AREA(LOOP-COUNTER)
 IDENTIFIED BY TP-1(LOOP-COUNTER)
 STATUS IS IDEN-4
 ON EXCEPTION DISPLAY "THREAD CREATE FAILED"
 END-START
 IF IDEN-4 NOT = ZERO
 DISPLAY "THREAD CREATE FAILED RETURNED " IDEN-4
 END-IF
 END-IF.

 START-THREAD-END.
 EXIT SECTION.

 *---
 * ALLOCATE CONTEXT AREAS ESTABLISH CONNECTION WITH EACH AREA.
 *---
 ORACLE-CONNECTIONS SECTION.

 CALL "ORACON" USING CONTEXT-AREA(LOOP-COUNTER).
 ORACLE-CONNECTIONS-END.
 EXIT SECTION.

Here is the file thread-1.pco:

 * This is Thread 1. It selects and displays the data for
 * the employee. The context area upon which a connection
 * has been established is passed to the thread through the
 * linkage section. In a multi-file application, you
 * can pass the context through the linkage section.
 * Precompile with THREADS=YES.
 *
 $SET REENTRANT MF
 IDENTIFICATION DIVISION.
 PROGRAM-ID. THREAD-1.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 PEMPNO PIC S9(4) COMP EXTERNAL.

 LOCAL-STORAGE SECTION.
 01 DEMPNO PIC Z(4) VALUE ZERO.
 01 PEMP-NAME1 PIC X(15) VARYING VALUE SPACES.
 01 PSAL-VALUE1 PIC S9(7)V99 COMP-3 VALUE ZERO.

Multithreaded Example

12-14 Pro*COBOL Programmer’s Guide

 01 ISAL1 PIC S9(4) COMP VALUE ZERO.
 01 DSAL-VALUE PIC +(7).99 VALUE ZERO.
 EXEC SQL
 INCLUDE SQLCA
 END-EXEC.

 LINKAGE SECTION.
 01 CONTEXT-AREA1 SQL-CONTEXT.

 *---
 * USING THE PASSED IN CONTEXT, SELECT AND DISPLAY THE
 * DATA FOR EMPLOYEE.
 *---
 PROCEDURE DIVISION USING CONTEXT-AREA1.
 MAIN SECTION.

 EXEC SQL WHENEVER SQLERROR GOTO SELECT-ERROR END-EXEC
 EXEC SQL CONTEXT USE :CONTEXT-AREA1 END-EXEC
 EXEC SQL
 SELECT ENAME, SAL
 INTO :PEMP-NAME1, :PSAL-VALUE1:ISAL1
 FROM EMP
 WHERE EMPNO = :PEMPNO
 END-EXEC
 IF ISAL1 < ZERO
 MOVE ZERO TO PSAL-VALUE1
 END-IF
 MOVE PEMPNO TO DEMPNO
 MOVE PSAL-VALUE1 TO DSAL-VALUE
 DISPLAY "FOR EMP ", DEMPNO, " NAME ",
 PEMP-NAME1-ARR(1:PEMP-NAME1-LEN),
 " THE CURRENT SALARY IS ", DSAL-VALUE
 EXIT PROGRAM.

 *---
 * THERE HAS BEEN AN ERROR WHEN SELECTING FROM THE EMP TABLE
 *---
 SELECT-ERROR SECTION.

 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC
 DISPLAY "HIT AN ORACLE ERROR SELECTING EMPNO 7566"
 DISPLAY "SQLCODE = ", SQLCODE
 DISPLAY "ERROR TEXT ", SQLERRMC(1:SQLERRML)
 GOBACK
 EXIT SECTION.

Here is the file thread-2.pco:

 * This is Thread 2. The program will select, then update,
 * increment, and then commit the salary. It uses the passed-in
 * context upon which a connection has previously been established.
 * Precompile with THREADS=YES.
 *
 $SET REENTRANT MF
 IDENTIFICATION DIVISION.
 PROGRAM-ID. THREAD-2.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 PEMPNO PIC S9(4) COMP EXTERNAL.

Multithreaded Example

Multithreaded Applications 12-15

 LOCAL-STORAGE SECTION.
 01 DEMPNO PIC Z(4) VALUE ZERO.
 01 PEMP-NAME2 PIC X(15) VARYING VALUE SPACES.
 01 PSAL-VALUE2 PIC S9(7)V99 COMP-3 VALUE 100.
 01 ISAL2 PIC S9(4) COMP VALUE ZERO.
 01 DSAL-VALUE PIC +(7).99 VALUE ZERO.
 EXEC SQL
 INCLUDE SQLCA
 END-EXEC.

 LINKAGE SECTION.
 01 CONTEXT-AREA2 SQL-CONTEXT.

 *---
 * USING THE PASSED IN CONTEXT AREA, FIRST SELECT TO GET INITIAL
 * VALUES, INCREMENT THE SALARY, UPDATE AND COMMIT.
 *---
 PROCEDURE DIVISION USING CONTEXT-AREA2.
 MAIN SECTION.

 EXEC SQL WHENEVER SQLERROR GOTO UPDATE-ERROR END-EXEC
 EXEC SQL CONTEXT USE :CONTEXT-AREA2 END-EXEC
 EXEC SQL
 SELECT ENAME, SAL
 INTO :PEMP-NAME2, :PSAL-VALUE2:ISAL2
 FROM EMP
 WHERE EMPNO = :PEMPNO
 END-EXEC
 ADD 10 TO PSAL-VALUE2
 EXEC SQL
 UPDATE EMP
 SET SAL = :PSAL-VALUE2
 WHERE EMPNO = :PEMPNO
 END-EXEC
 MOVE PEMPNO TO DEMPNO
 MOVE PSAL-VALUE2 TO DSAL-VALUE
 DISPLAY "FOR EMP ", DEMPNO, " NAME ",
 PEMP-NAME2-ARR(1:PEMP-NAME2-LEN),
 " THE UPDATED SALARY IS ", DSAL-VALUE
 * THIS COMMIT IS REQUIRED, OTHERWISE THE DATABASE
 * WILL BLOCK SINCE THE UPDATES ARE TO THE SAME ROW
 EXEC SQL COMMIT WORK END-EXEC
 EXIT PROGRAM.

 *---
 * THERE HAS BEEN AN ERROR WHEN UPDATING THE SAL IN THE EMP TABLE
 *---
 UPDATE-ERROR SECTION.

 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC
 DISPLAY "HIT AN ORACLE ERROR UPDATING EMPNO 7566"
 DISPLAY "SQLCODE = ", SQLCODE
 DISPLAY "ERROR TEXT ", SQLERRMC(1:SQLERRML)
 GOBACK
 EXIT SECTION.

The file oracon.pco follows:

 * This program allocates SQLLIB runtime contexts, stores

Multithreaded Example

12-16 Pro*COBOL Programmer’s Guide

 * a pointer to the context in the variable which was
 * passed in from the main program through the linkage section,
 * and establishes a connection on the allocated context.
 *
 * This program is written for Merant MicroFocus COBOL and uses
 * vendor-specific directives and functionality. Precompile
 * with THREADS=YES.
 *
 $SET REENTRANT MF
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ORACON.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 LOGON-STRING PIC X(40) VALUE SPACES.
 EXEC SQL
 INCLUDE SQLCA
 END-EXEC.
 LINKAGE SECTION.
 01 CONTEXT SQL-CONTEXT.

 PROCEDURE DIVISION USING CONTEXT.
 MAIN SECTION.

 *---
 * ALLOCATE CONTEXT AREAS ESTABLISH CONNECTION WITH EACH AREA.
 *---
 ORACLE-CONNECTION SECTION.

 MOVE "SCOTT/TIGER" TO LOGON-STRING
 EXEC SQL CONTEXT ALLOCATE :CONTEXT END-EXEC
 IF SQLCODE NOT = ZERO
 DISPLAY 'ERROR ALLOCATING CONTEXT '
 '- ABORTING : ' SQLERRMC
 GOBACK
 ELSE
 DISPLAY 'CONTEXT ALLOCATED'
 END-IF

 EXEC SQL CONTEXT USE :CONTEXT END-EXEC
 EXEC SQL CONNECT :LOGON-STRING END-EXEC
 IF SQLCODE NOT = ZERO
 DISPLAY 'ERROR CONNECTING SECOND THREAD TO THE DATABASE '
 '- ABORT TEST : ' SQLERRMC
 GOBACK
 ELSE
 DISPLAY 'CONNECTION ESTABLISHED'
 END-IF
 EXIT SECTION.

Large Objects (LOBs) 13-1

13
Large Objects (LOBs)

This chapter describes the support provided by embedded SQL statements for the LOB
(Large Object) datatypes. The four types of LOBs are introduced and compared to the
older LONG and LONG RAW datatypes.

The embedded SQL interface in Pro*COBOL is shown to provide similar functionality
to that of the PL/SQL language.

The LOB statements and their options and host variables are presented.

Last, an example of Pro*COBOL programming using the LOB interface.

The main sections are:

■ Using LOBs

■ How to Use LOBs

■ Rules for LOB Statements

■ LOB Statements

■ LOB Sample Program: LOBDEMO1.PCO

Using LOBs
LOBs (large objects) are database types that are used to store large amounts of data
(maximum size is 4 Gigabytes) such as ASCII text, text in National Characters, files in
various graphics formats, and sound wave forms.

Internal LOBs
Internal LOBs (BLOBs, CLOBs, NCLOBs) are stored in database table spaces and have
transactional support of the database server. (COMMITT, ROLLBACK, and so forth
work with them.)

BLOBs (Binary LOBs) store unstructured binary (also called "raw") data, such as video
clips.

CLOBs (Character LOBs) store large blocks of character data from the database
character set.

NCLOBs (National Character LOBs) store large blocks of character data from the
national character set.

Using LOBs

13-2 Pro*COBOL Programmer’s Guide

External LOBs
External LOBs are operating system files outside the database tablespaces, that have
no transactional support from the database server.

BFILEs (Binary Files) store data in external binary files. A BFILE can be in GIF, JPEG,
MPEG, MPEG2, text, or other formats.

Security for BFILEs
The DIRECTORY object is used to access and use BFILEs. The DIRECTORY is a logical
alias name (stored in the server) for the actual physical directory in the server file
system containing the file. Users are permitted to access the file only if granted access
privilege on the DIRECTORY object.

Two kinds of SQL statements can be used with BFILEs:

■ The DDL (data definition language) SQL statements CREATE, REPLACE, ALTER,
and DROP.

■ The DML (Data Management Language) SQL statements are used to GRANT and
REVOKE the READ system and object privileges on DIRECTORY objects.

A sample CREATE DIRECTORY directive is:

 EXEC SQL CREATE OR REPLACE DIRECTORY "Mydir" AS '/usr/home/mydir' END-EXEC.

Other users or roles can read the directory only if you grant them permission with a
DML (Data Manipulation Language) statement, such as GRANT. For example, to
allow user scott to read BFILES in directory /usr/home/mydir:

 EXEC SQL GRANT READ ON DIRECTORY "Mydir" TO scott END-EXEC.

Up to 10 BFILES can be opened simultaneously in one session. This default value can
be changed by setting the SESSION_MAX_OPEN_FILES parameter.

See Oracle Database Application Developer's Guide - Fundamentals for more details on
DIRECTORY objects and BFILE security, and the the GRANT command.

LOBs Compared with LONG and LONG RAW
LOBs are different from the older LONG and LONG RAW datatypes in many ways.

■ The maximum size of a LOB is 4 Gigabytes versus 2 Gigabytes for LONG and
LONG RAW.

■ You can use random as well as sequential access methods on LOBs; you can only
use sequential access methods on LONG and LONG RAW.

■ LOBs (except NCLOBs) can be attributes of an object type that you define.

■ Tables can have multiple LOB columns, but can have only one LONG or LONG
RAW column.

Migration of existing LONG and LONG Raw attributes to LOBs is recommended by
Oracle. Oracle plans to end support of LONG and LONG RAW in future releases. See
Also: Oracle Database Upgrade Guide for more information on migration, and Oracle
Database Application Developer's Guide - Large Objects for more information on LOBs.

Using LOBs

Large Objects (LOBs) 13-3

LOB Locators
A LOB locator points to the actual LOB contents. The locator is returned when you
retrieve the LOB, not the LOB's contents. LOB locators cannot be saved in one
transaction or session and used again in a later transaction or session.

Temporary LOBs
You can create temporary LOBs to assist your use of database LOBs. Temporary LOBs
are like local variables and are not associated with any table. They are only accessible
by their creator using their locators and are deleted when a session ends.

There is no support for temporary BFILES. Temporary LOBs are only permitted to be
input variables (IN values) in the WHERE clause of an INSERT statement, in the SET
clause of an UPDATE, or in the WHERE clause of a DELETE statement. Temporary
LOBs have no transactional support from the database server, which means that you
cannot do a COMMIT or ROLLBACK on them.

Temporary LOB locators can span transactions. They are deleted when the server
abnormally terminates, and when an error is returned from a database SQL operation.

LOB Buffering Subsystem
The LBS (LOB Buffering Subsystem) is an area of user memory provided for use as a
buffer for one or more LOBs in the client's address space.

Buffering has these advantages, especially for applications on a client that does many
small reads and writes to specific regions of the LOB:

■ The LBS reduces round-trips to the server because you fill the buffer with multiple
reads/writes to the LOBs, and then write to the server when a FLUSH directive is
executed.

■ Buffering also reduces the total number of LOB updates on the server. This creates
better LOB performance and saves disk space.

Oracle provides a simple buffer subsystem, not a cache. Oracle does not guarantee that
the contents of a buffer are always synchronized with the server LOB value. Use the
FLUSH statement to actually write updates in the server LOB.

Buffered reads/writes of a LOB are performed through its locator. A locator enabled
for buffering provides a consistent read version of the LOB until you perform a write
through that locator.

After being used for a buffered WRITE, a locator becomes an updated locator and
provides access to the latest LOB version as seen through the buffering subsystem. All
further buffered WRITEs to the LOB can be done only through this updated locator.
Transactions involving buffered LOB operations cannot migrate across user sessions.

The LBS is managed by the user, who is responsible for updating server LOB values by
using FLUSH statements to update them. The LBS is single-user and single-threaded.
Use ROLLBACK and SAVEPOINT actions to guarantee correctness in the server LOBs.
Transactional support for buffered LOB operations is not guaranteed by Oracle. To
ensure transactional semantics for buffered LOB updates, you must maintain logical
savepoints to perform a rollback in the event of an error.

For more information on the LBS, see Oracle Database Application Developer's Guide -
Fundamentals.

How to Use LOBs

13-4 Pro*COBOL Programmer’s Guide

How to Use LOBs
There are two methods available to access LOBs in Pro*COBOL:

■ The DBMS_LOB package inside PL/SQL blocks.

■ Embedded SQL statements.

The imbedded SQL statements are designed to give users a functional equivalent to
the PL/SQL interface.

The following table compares LOB access in PL/SQL and embedded SQL statements
in Pro*COBOL. Dashes indicate missing functionality.

Table 13–1 LOB Access Methods

PL/SQL1 Pro*COBOL Embedded SQL

COMPARE() -

INSTR() -

SUBSTR() -

APPEND() APPEND

:= ASSIGN

CLOSE() CLOSE

COPY() COPY

CREATETEMPORARY() CREATE TEMPORARY

- DISABLE BUFFERING

- ENABLE BUFFERING

ERASE() ERASE

GETCHUNKSIZE() DESCRIBE

ISOPEN() DESCRIBE

FILECLOSE() CLOSE

FILECLOSEALL() FILE CLOSE ALL

FILEEXISTS() DESCRIBE

FILEGETNAME() DESCRIBE

FILEISOPEN() DESCRIBE

FILEOPEN() OPEN

BFILENAME() FILE SET2

- FLUSH BUFFER

FREETEMPORARY() FREE TEMPORARY

GETLENGTH() DESCRIBE

= -

ISTEMPORARY() DESCRIBE

LOADFROMFILE() LOAD FROM FILE

OPEN() OPEN

READ() READ

TRIM() TRIM

How to Use LOBs

Large Objects (LOBs) 13-5

LOB Locators in Your Application
To use LOB locators in your Pro*COBOL application use these pseudo-types:

■ SQL-BLOB

■ SQL-CLOB

■ SQL-NCLOB

■ SQL-BFILE

For example, to declare an NCLOB variable called MY-NCLOB:

 01 MY-NCLOB SQL-NCLOB.

Initializing a LOB
This section discusses how to initialize different varieties of LOBs.

Internal LOBs
To initialize a BLOB to empty, use the EMPTY_BLOB() function or use the ALLOCATE
SQL statement. For CLOBs and NCLOBs, use the EMPTY_CLOB() function. See Oracle
Database SQL Reference for more about EMPTY_BLOB() and EMPTY_CLOB(). These
functions are permitted only in the VALUES clause of an INSERT statement or as the
source of the SET clause in an UPDATE statement.

For example:

 EXEC SQL INSERT INTO lob_table (a_blob, a_clob)
 VALUES (EMPTY_BLOB(), EMPTY_CLOB()) END-EXEC.

The ALLOCATE statement allocates a LOB locator and initializes it to empty, so, the
following code is equivalent to the previous example:

...
 01 A-BLOB SQL-BLOB.
 01 A-CLOB SQL-CLOB.
...
 EXEC SQL ALLOCATE :A-BLOB END-EXEC.
 EXEC SQL ALLOCATE :A-CLOB END-EXEC.
 EXEC SQL INSERT INTO lob_table (a_blob, a_clob)
 VALUES (:A-BLOB, :A-CLOB) END-EXEC.

WRITE() WRITE

WRITEAPPEND() WRITE
1 From dbmslob.sql. All routines are prefixed with 'DBMS_LOB.'

except BFILENAME.
2 The BFILENAME() built in SQL function may also be used.

Note: You must explicitly lock the row before using any of the
new statements that modify or change a LOB in any way.
Operations that can modify a LOB value are APPEND, COPY,
ERASE, LOAD FROM FILE, TRIM, and WRITE.

Table 13–1 (Cont.) LOB Access Methods

PL/SQL1 Pro*COBOL Embedded SQL

Rules for LOB Statements

13-6 Pro*COBOL Programmer’s Guide

External LOBs
Use the LOB FILE SET statement to initialize the DIRECTORY alias of the BFILE and
FILENAME this way:

...
 01 ALIAS PIC X(14) VARYING.
 01 FILENAME PIC X(14) VARYING.
 01 A-BFILE SQL-BFILE.
 ...
 MOVE "lob_dir" TO ALIAS-ARR.
 MOVE 7 TO ALIAS-LEN.
 MOVE "image.gif" TO FILENAME-ARR
 MOVE 9 TO FILENAME-LEN..
 EXEC SQL ALLOCATE :A-BFILE END-EXEC.
 EXEC SQL LOB FILE SET :A-BFILE
 DIRECTORY = :ALIAS, FILENAME = :FILENAME END-EXEC.
 EXEC SQL INSERT INTO file_table (a_bfile) VALUES (:A-BFILE) END-EXEC.

Refer to Oracle Database Application Developer's Guide - Fundamentals for a complete
description of DIRECTORY object naming conventions and DIRECTORY object
privileges.

Alternatively, you can use the BFILENAME('directory', 'filename') function in an
INSERT or UPDATE statement to initialize a BFILE column or attribute for a particular
row, and give the name of the actual physical directory and filename:

 EXEC SQL INSERT INTO file_table (a_bfile)
 VALUES (BFILENAME('lob_dir', 'image.gif'))
 RETURNING a_bfile INTO :A-BFILE END-EXEC.

Temporary LOBs
A temporary LOB is initialized to empty when it is first created using the embedded
SQL LOB CREATE TEMPORARY statement. The EMPTY_BLOB() and EMPTY_
CLOB() functions cannot be used with temporary LOBs.

Freeing LOBs
The FREE statement is used to free the memory used by an ALLOCATE statement:

EXEC SQL FREE :A-BLOB END-EXEC.

Rules for LOB Statements
Here are the rules for using LOB statements:

For All LOB Statements
These general restrictions and limitations apply when manipulating LOBs with the
SQL LOB statements:

■ The FOR clause is not allowed in embedded SQL LOB statements. Only one LOB
locator can be used in those statement. However, the ALLOCATE and FREE
statements do allow FOR clauses.

Note: BFILENAME() does not check permissions on the directory
or filename, or whether the physical directory actually exists.
Subsequent file accesses that use the BFILE locator will do those
checks and return an error if the file is inaccessible.

Rules for LOB Statements

Large Objects (LOBs) 13-7

■ Distributed LOBs are not supported. Although you may use the AT database
clause in any of the new embedded SQL LOB statements, you cannot mix LOB
locators that were created or allocated using different database connections in the
same SQL LOB statement.

For the LOB Buffering Subsystem
For the LBS, these rules must be followed:

■ Errors in read or write accesses are reported at the next access to the server.
Therefore, error recovery has to be coded by you, the user.

■ When updating a LOB with buffered writes, do not update the same LOB with a
method that bypasses the LOB Buffering Subsystem.

■ An updated LOB locator enabled for buffering can be passed as an IN parameter
to a PL/SQL procedure, but not as an IN OUT or OUT parameter. An error is
returned. An error is also returned when there is an attempt to return an updated
locator.

■ An ASSIGN of an updated locator enabled for buffering to another locator is not
allowed.

■ You can append to the LOB value with buffered writes, but the starting offset must
be one character after the end of the LOB. The LBS does not allow APPEND
statements resulting in zero-byte fillers or spaces in LOBs in the database server.

■ The character sets of the host locator bind variable and the database server CLOB
must be the same.

■ Only ASSIGN, READ and WRITE statements work with a locator enabled for
buffering.

■ The following statements result in errors when used with a locator enabled for
buffering: APPEND, COPY, ERASE, DESCRIBE (LENGTH only), SELECT, and
TRIM. Errors are also returned when you use these statements with a locator that
is not enabled for buffering, if the LOB pointed to by the locator is being accessed
in buffered mode by another locator.

■ Committing the transaction.

■ Migrating from the current transaction to another.

■ Disabling buffer operations on a LOB.

For Host Variables
Use the following rules and notes for the LOB statements:

■ src and dst can refer to either internal or external LOB locators, but file refers only
to external locators.

■ Numeric host values (amt, src_offset, dst_offset, and so forth.) are
declared as a 4-byte integer variable, PIC S9(9) COMP. The values are restricted
between 0 and 4 Gigabytes.

Note: The FLUSH statement must be used on a LOB enabled by
the LOB Buffering Subsystem before

LOB Statements

13-8 Pro*COBOL Programmer’s Guide

■ The concept of NULL is part of a LOB locator. There is no need for indicator
variables in the LOB statements. NULL cannot be used with numeric value
variables such as amt, src_offset, and so forth and result in an error.

■ The offset values src_offset and dst_offset have default values 1.

LOB Statements
The statements are presented alphabetically. In all the statements where it appears,
database refers to a database connection

APPEND

Purpose
The APPEND statement appends a LOB value at the end of another LOB.

Syntax
 EXEC SQL [AT [:]database] LOB APPEND :src TO :dst END-EXEC.

Host Variables

src (IN)
An internal LOB locator uniquely referencing the source LOB.

dsc (IN OUT)
An internal LOB locator uniquely referencing the destination LOB.

Usage Notes
The data is copied from the source LOB to the end of the destination LOB, extending
the destination LOB up to a maximum of 4 Gigabytes. If the LOB is extended beyond 4
Gigabytes, an error will occur.

The source and destination LOBs must already exist and the destination LOB must be
initialized.

Both the source and destination LOBs must be of the same internal LOB type. It is an
error to have enabled LOB buffering for either type of locator.

ASSIGN

Purpose
Assigns a LOB or BFILE locator to another.

Syntax
 EXEC SQL [AT [:]database] LOB ASSIGN :src to :dst END-EXEC.

Note: BLOB, CLOB, and NCLOB variables need to respect the
alignment requirements of your platform. Refer to you platform
documentation on alignment restrictions of your particular
platform.

LOB Statements

Large Objects (LOBs) 13-9

Host Variables

src (IN)
LOB or BFILE locator source copied from.

dsc (IN OUT)
LOB or BFILE locator copied to.

Usage Notes
After the assignment, both locators refer to the same LOB value. The destination LOB
locator must be a valid initialized (allocated) locator.

For internal LOBs, the source locator's LOB value is copied to the destination locator's
LOB value only when the destination locator is stored in the table. For Pro*COBOL,
issuing a FLUSH of an object containing the destination locator will copy the LOB
value.

An error is returned when a BFILE locator is assigned to an internal LOB locator and
vice-versa. It is also an error if the src and dst LOBs are not of the same type.

If the source locator is for an internal LOB that was enabled for buffering, and the
source locator has been used to modify the LOB value through the LOB Buffering
Subsystem, and the buffers have not been flushed since the WRITE, then the source
locator cannot be assigned to the destination locator. This is because only one locator
for each LOB can modify the LOB value through the LOB Buffering Subsystem.

CLOSE

Purpose
Close an open LOB or BFILE.

Syntax
 EXEC SQL [AT [:]database] LOB CLOSE :src END-EXEC.

Host Variables

src (IN OUT)
The locator of the LOB or BFILE to be closed.

Usage Notes
It is an error to close the same LOB twice either with different locators or with the
same locator. For external LOBs, no error is produced if the BFILE exists but has not
been opened.

It is an error to COMMIT a transaction before closing all previously opened LOBs. At
transaction ROLLBACK time, all LOBs that are still open will be discarded without
first being closed.

COPY

Purpose
Copy all or part of a LOB value into a second LOB.

LOB Statements

13-10 Pro*COBOL Programmer’s Guide

Syntax
 EXEC SQL [AT [:]database] LOB COPY :amt FROM :src [AT :src_offset]
 TO :dst [AT :dst_offset] END-EXEC.

Host Variables

amt (IN) The maximum number of bytes for BLOBs, or characters for CLOBs and
NCLOBs, to copy.

src (IN) The locator of the source LOB.

src_offset (IN) This is the number of characters for CLOB or NCLOB, and the
number of bytes for a BLOB, starting from 1 at the beginning of the LOB.

dst (IN) The locator of the destination LOB.

dst_offset (IN) The destination offset. Same rules as for src_offset.

Usage Notes
If the data already exists at the destination's offset and beyond, it is overwritten with
the source data. If the destination's offset is beyond the end of the current data,
zero-byte fillers (BLOBs) or spaces (CLOBs) are written into the destination LOB from
the end of the current data to the beginning of the newly written data from the source.

The destination LOB is extended to accommodate the newly written data if it extends
beyond the current length of the destination LOB. It is a runtime error to extend this
LOB beyond 4 Gigabytes.

It is also an error to try to copy from a LOB that is not initialized.

Both the source and destination LOBs must be of the same type. LOB buffering must
not be enabled for either locator.

To make a temporary LOB permanent, the COPY statement must be used to explicitly
COPY the temporary LOB into a permanent one.

The amt variable indicates the maximum amount to copy. If the end of the source LOB
is reached before the specified amount is copied, the operation terminates without an
error.

CREATE TEMPORARY

Purpose
Creates a temporary LOB.

Syntax
 EXEC SQL [AT [:]database] LOB CREATE TEMPORARY :src END-EXEC.

Host Variables

src (IN OUT) Before execution, when IN, src is a LOB locator previously allocated.

After execution, when OUT, src is a LOB locator that will point to a new empty
temporary LOB.

LOB Statements

Large Objects (LOBs) 13-11

Usage Notes
After successful execution, the locator points to a newly created temporary LOB that
resides on the database server independent of a table. The temporary LOB is empty
and has zero length.

At the end of a session, all temporary LOBs are freed. Reads and Writes to temporary
LOBs never go through the buffer cache.

DISABLE BUFFERING

Purpose
Disables LOB buffering for the LOB locator.

Syntax
 EXEC SQL [AT [:]database] LOB DISABLE BUFFERING :src END-EXEC.

Host Variables

src (IN OUT) An internal LOB locator.

Usage Notes
This statement does not support BFILEs. Subsequent reads or writes will not be done
through the LBS.

Note: Use a FLUSH BUFFER command to make changes permanent, since the
DISABLE BUFFERING statement does not implicitly flush the changes made in the
LOB Buffering Subsystem.

ENABLE BUFFERING

Purpose
Enables LOB buffering for the LOB locator.

Syntax
 EXEC SQL [AT [:]database] LOB ENABLE BUFFERING :src END-EXEC.

Host Variables

src (IN OUT) An internal LOB locator.

Usage Notes
This statement does not support BFILEs. Subsequent reads and writes are done
through the LBS.

ERASE

Purpose
Erases a given amount of LOB data starting from a given offset.

Syntax
 EXEC SQL [AT [:]database] LOB ERASE :amt

LOB Statements

13-12 Pro*COBOL Programmer’s Guide

 FROM :src [AT :src_offset] END-EXEC.

Host Variables

amt (IN OUT) The input is the number of bytes or characters to erase. The returned
output is the actual number erased.

src (IN OUT) An internal LOB locator.

src_offset (IN) The offset from the beginning of the LOB, starting from 1.

Usage Notes
This statement does not support BFILEs.

After execution, amt returns the actual number of characters/bytes that were erased.
The actual number and requested number will differ if the end of the LOB value is
reached before erasing the requested number of characters/bytes. If the LOB is empty,
amt will indicate that 0 characters/bytes were erased.

For BLOBs, erasing means zero-byte fillers overwrite the existing LOB value. For
CLOBs, erasing means that spaces overwrite the existing LOB value.

FILE CLOSE ALL

Purpose
Closes all BFILES opened in the current session.

Syntax
 EXEC SQL [AT [:]database] LOB FILE CLOSE ALL END-EXEC.

Usage Notes
If there are any open files in the session whose closure has not been handled properly,
you can use the FILE CLOSE ALL statement to close all files opened in the session and
resume file operations from the beginning.

FILE SET

Purpose
Sets DIRECTORY alias and FILENAME in a BFILE locator.

Syntax
 EXEC SQL [AT [:]database] LOB FILE SET :file
 DIRECTORY = :alias, FILENAME = :filename END-EXEC.

Host Variables

file (IN OUT) BFILE locator where the DIRECTORY alias and FILENAME is set.

alias (IN) DIRECTORY alias name to set.

filename (IN) The FILENAME to set.

LOB Statements

Large Objects (LOBs) 13-13

Usage Notes
The given BFILE locator must be first ALLOCATEd prior to its use in this statement.

Both the DIRECTORY alias name and FILENAME must be provided.

The maximum length of the DIRECTORY alias is 30 bytes. The maximum length of the
FILENAME is 255 bytes.

The only external datatypes supported for use with the DIRECTORY alias name and
FILENAME attributes are VARCHAR, VARCHAR2 and CHARF.

It is an error to use this statement with anything but an external LOB locator.

FLUSH BUFFER

Purpose
Writes this LOB's buffers to the database server.

Syntax
 EXEC SQL [AT [:]database] LOB FLUSH BUFFER :src [FREE] END-EXEC.

Host Variables

src (IN OUT) Internal LOB locator.

Usage Notes
Writes the buffer data to the database LOB in the server from the LOB referenced by
the input locator.

LOB buffering must have already been enabled for the input LOB locator.

The FLUSH operation, by default, does not free the buffer resources for reallocation to
another buffered LOB operation. However, if you want to free the buffer explicitly, you
can include the optional FREE keyword to so indicate.

FREE TEMPORARY

Purpose
Free the temporary space for the LOB locator.

Syntax
 EXEC SQL [AT [:]database] LOB FREE TEMPORARY :src END-EXEC.

Host Variables

src (IN OUT) The LOB locator pointing to the temporary LOB.

Usage Notes
The input locator must point to a temporary LOB. The output locator is marked not
initialized and can be used in subsequent LOB statements.

LOB Statements

13-14 Pro*COBOL Programmer’s Guide

LOAD FROM FILE

Purpose
Copy all or a part of a BFILE into an internal LOB.

Syntax
 EXEC SQL [AT [:]database] LOB LOAD :amt
 FROM FILE :file [AT :src_offset] INTO :dst [AT :dst_offset] END-EXEC.

Host Variables

amt (IN) Maximum number of bytes to be loaded.

file (IN OUT) The source BFILE locator.

src_offset (IN) The number of bytes offset from the beginning of the file, starting
from 1.

dst (IN OUT) The destination LOB locator which can be BLOB, CLOB, be NCLOB.

dst_offset (IN) The number of bytes (for BLOBs) or characters (CLOBs and NCLOBs)
from the beginning of the destination LOB where writing will begin. It starts at 1.

Usage Notes
The data is copied from the source BFILE to the destination internal LOB. No character
set conversions are performed when copying the BFILE data to a CLOB or NCLOB.
Therefore, the BFILE data must already be in the same character set as the CLOB or
NCLOB in the database.

The source and destination LOBs must already exist. If the data already exists at the
destination's start position, it is overwritten with the source data. If the destination's
start position is beyond the end of the current data, zero-byte fillers (BLOBs) or spaces
(CLOBs and NCLOBs) are written into the destination LOB from the end of the data to
the beginning of the newly written data from the source.

The destination LOB is extended to accommodate the newly written data if it extends
beyond the current length of the destination LOB. It is an error to extend this LOB
beyond 4 Gigabytes.

It is also an error to copy from a BFILE that is not initialized.

The amount parameter indicates the maximum amount to load. If the end of the
source BFILE is reached before the specified amount is loaded, the operation
terminates without error.

OPEN

Purpose
Open a LOB or BFILE for read or read/write access.

Syntax
 EXEC SQL [AT [:]database] LOB OPEN :src
 [READ ONLY | READ WRITE] END-EXEC.

LOB Statements

Large Objects (LOBs) 13-15

Host Variables

src (IN OUT) LOB locator of the LOB or BFILE.

Usage Notes
The default mode in which a LOB or BFILE can be Opened is for READ ONLY access.

For internal LOBs, being OPEN is associated with the LOB, not with the locator.
Assigning an already Opened locator to another locator does not count as OPENing a
new LOB. Instead, both locators refer to the same LOB. For BFILEs, being OPEN is
associated with the locator.

Only 32 LOBs can be OPEN at any one time. An error will be returned when the 33rd
LOB is Opened.

There is no support for writable BFILEs. Therefore, when you OPEN a BFILE in READ
WRITE mode, an error is returned.

It is also an error to open a LOB in READ ONLY mode and then attempt to WRITE to
the LOB.

READ

Purpose
Reads all or part of a LOB or BFILE into a buffer.

Syntax
 EXEC SQL [AT [:]database] LOB READ :amt FROM :src [AT :src_offset]
 INTO :buffer [WITH LENGTH :buflen] END-EXEC.

Host Variables

amt (IN OUT) The input is the number of characters or bytes to be read. The output is
the actual number of characters or bytes that were read.

If the amount of bytes to be read is larger than the buffer length it is assumed that the
LOB is being READ in a polling mode. On input if this value is 0, then the data will be
read in a polling mode from the input offset until the end of the LOB.

The number of bytes or characters actually read is returned in amt. If the data is read
in pieces, amt will always contain the length of the last piece read.

When the end of a LOB is reached an ORA-1403: no data found error will be issued.

When reading in a polling mode, the application must invoke the LOB READ
repeatedly to read more pieces of the LOB until no more data is left. Control the use of
the polling mode with the NOT FOUND condition in a WHENEVER directive to catch
the ORA-1403 error.

src (IN) The LOB or BFILE locator.

src_offset (IN) This is the absolute offset from the beginning of the LOB value from
which to start reading. For character LOBs it is the number of characters from the
beginning of the LOB. For binary LOBs or BFILEs it is the number of bytes. The first
position is 1.

buffer (IN OUT) A buffer into which the LOB data will be read. The external datatype
of the buffer is restricted to only a few types depending on the type of the source LOB.

LOB Statements

13-16 Pro*COBOL Programmer’s Guide

The maximum length of the buffer depends on the external datatype being used to
store the LOB value. The following table summarizes the legal external datatypes and
their corresponding maximum lengths categorized by source LOB type:

buflen (IN) Specifies the length of the given buffer when it cannot be determined
otherwise.

Usage Notes
A BFILE must already exist on the database server and must have been opened using
the input locator. The database must have permission to read the file and the user
must have read permission on the directory.

It is an error to try to read from an un-initialized LOB or BFILE.

The length of the buffer is determined this way:

■ From buflen, when the WITH LENGTH clause is present.

■ In the absence of the WITH LENGTH clause, the length is determined by treating
the buffer host variable in OUT mode according to the rules in "Handling
Character Data" on page 4-23.

TRIM

Purpose
Truncates the LOB value.

Syntax
 EXEC SQL [AT [:]database] LOB TRIM :src TO :newlen END-EXEC.

Host Variables

src (IN OUT) LOB locator for internal LOB.

newlen (IN) The new length of the LOB value.

Table 13–2 Source LOB and Precompiler Datatypes

External
LOB1

1 Any of the external datatypes shown can be used with BFILES.

Internal LOB
Precompiler
External Datatype

Precompiler
Maximum
Length 2

2 Lengths are measured in bytes, not characters.

PL/SQL
Datatype

PL/SQL
Maximum
Length

BFILE

BLOB RAW

VARRAW

LONG RAW

LONG VARRAW

65535

65533

2147483647

2147483643

RAW 32767

- CLOB VARCHAR2

VARCHAR

LONG VARCHAR

65535

65533

2147483643

VARCHAR2 32767

- NCLOB NVARCHAR2 4000 NVARCHAR2 4000

LOB Statements

Large Objects (LOBs) 13-17

Usage Notes
This statement is not for BFILES. The new length cannot be greater than the current
length, or an error is returned.

WRITE

Purpose
Writes the contents of a buffer to a LOB.

Syntax
 EXEC SQL [AT [:]database] LOB WRITE [APPEND] [FIRST | NEXT | LAST | ONE]
 :amt FROM :buffer [WITH LENGTH :buflen]
 INTO :dst [AT :dst_offset] END-EXEC.

Host Variables

amt (IN OUT) The input is the number of characters or bytes to be written.

The output is the actual number of characters or bytes that is written.

When writing using a polling method, amt will return the cumulative total length
written for the execution of the WRITE statement after a WRITE LAST is executed. If
the WRITE statement is interrupted, amt will be undefined.

buffer (IN) A buffer from which the LOB data is written. See "READ" on page 13-15
for the lengths of datatypes.

dst (IN OUT) The LOB locator.

dst_offset (IN) The offset from the beginning of the LOB (counting from 1), in
characters for CLOBs and NCLOBs, in bytes for BLOBs.

buflen (IN) The buffer length when it cannot be calculated in any other way.

Usage Notes
If LOB data already exists, it is overwritten with the data stored in the buffer. If the
offset specified is beyond the end of the data currently in the LOB, zero-byte fillers or
spaces are inserted into the LOB.

Specifying the keyword APPEND in the WRITE statement causes the data to
automatically be written to the end of the LOB. When APPEND is specified, the
destination offset is assumed to be the end of the LOB. It is an error to specify the
destination offset when using the APPEND option in the WRITE statement.

The buffer can be written to the LOB in one piece (using the ONE orientation which is
the default) or it can be provided piece-wise using a standard polling method.

Polling is begun by using FIRST, then NEXT to write subsequent pieces. The LAST
keyword is used to write the final piece that terminates the write.

Using this piece-wise write mode, the buffer and the length can be different in each
call if the pieces are of different sizes and from different locations.

If the total amount of data passed to Oracle is less than the amount specified by the
amt parameter after doing all the writes, an error results.

The same rules apply for determining the buffer length as in the READ statement. See
"READ" on page 13-15.

LOB Statements

13-18 Pro*COBOL Programmer’s Guide

DESCRIBE

Purpose
This is a statement that is equivalent to several OCI and PL/SQL statements. Use the
LOB DESCRIBE SQL statement to retrieve attributes from a LOB. The LOB DESCRIBE
statement has this format:

Syntax
 EXEC SQL [AT [:]database] LOB DESCRIBE :src GET attribute1 [{, attributeN}]
 INTO :hv1 [[INDICATOR] :hv_ind1] [{, :hvN [[INDICATOR] :hv_indN] }]
 END-EXEC.

where an attribute can be any of these choices:

CHUNKSIZE | DIRECTORY | FILEEXISTS | FILENAME | ISOPEN | ISTEMPORARY | LENGTH

Host Variables

src (IN) The LOB locator of an internal or external LOB.

hv1 ... hvN (OUT) The host variables that receive the attribute values, in the order
specified in the attribute name list.

hv_ind1 ... hv_indN (OUT) Optional host variables that receive the indicator NULL
status in the order of the attribute name list.

The following table describes the attributes, which LOB it is associated with, and the
COBOL types into which they should be read:

Table 13–3 LOB Attributes

LOB Attribute Attribute Description Restrictions
COBOL
Type

CHUNKSIZE The amount (in bytes for BLOBs and characters for
CLOBs/NCLOBs) of space used in the LOB chunk to store
the LOB value. You speed up performance if you issue
READ/WRITE requests using a multiple of this chunk
size. If all writes are done on a chunk basis, no
extra/excess versioning is done nor duplicated. Users
could batch up the WRITE until they have enough for a
chunk instead of issuing several WRITE calls for the same
CHUNK.

BLOBs, CLOBs
and NCLOBs
only

PIC S9(9)
COMP

DIRECTORY The name of the DIRECTORY alias for the BFILE. The
length, n, is between 1 and 30 bytes. Use that length in the
picture.

FILE LOBs
only

PIC X(n)
[VARYING]

FILEEXISTS Determines whether or not the BFILE exists on the server's
operating system file system. FILEEXISTS is true when it is
nonzero; false when it equals 0.

FILE LOBs
only

PIC S9(9)
COMP

FILENAME The name of the BFILE. The length, n, is between 1 and 255
bytes. Use that length in the picture.

FILE LOBs
only

PIC X(n)
[VARYING]

LOB Statements

Large Objects (LOBs) 13-19

Usage Notes
Indicator variables should be declared as PIC S9(4) COMP. After execution has
completed, SQLERRD(3) contains the number of attributes retrieved without error. If
there was an execution error, the attribute at which it occurred is one more than the
contents of SQLERRD(3).

DESCRIBE Example
Here is a simple Pro*COBOL example that extracts the DIRECTORY and FILENAME
attributes of a given BFILE:

...
 01 A-BFILE SQL-BFILE.
 01 DIRECTORY PIC X(30) VARYING.
 01 FILENAME PIC X(30) VARYING.
 01 D-IND PIC S9(4) COMP.
 01 F-IND PIC S9(4) COMP.
 01 FEXISTS PIC S9(9) COMP.
 01 ISOPN PIC S9(9) COMP.
...

Finally, select a BFILE locator from some LOB table and do the DESCRIBE:

 EXEC SQL ALLOCATE :A-BFILE END-EXEC.
 EXEC SQL INSERT INTO lob_table (a_bfile) VALUES (BFILENAME ('lob.dir',
 'image.gif')) END-EXEC.
 EXEC SQL SELECT a_bfile INTO :A-BFILE FROM lob_table WHERE ... END-EXEC.
 EXEC SQL DESCRIBE :A-BFILE GET DIRECTORY, FILENAME, FILEEXISTS, ISOPEN
 INTO :DIRECTORY:D-IND, :FILENAME:F-IND, FEXISTS, ISOPN ND-EXEC.

Indicator variables are valid for use only with the DIRECTORY and FILENAME
attributes. These attributes are character strings whose values may be truncated if the
host variable buffers used to hold their values are not large enough. When truncation
occurs, the value of the indicator will be set to the original length of the attribute.

ISOPEN For BFILEs, if the input BFILE locator was never used in
an OPEN statement, the BFILE is considered not to be
OPENed by this locator. However, a different BFILE
locator may have OPENed the BFILE. More than one
OPEN can be performed on the same BFILE using different
locators. For LOBs, if a different locator opened the LOB,
the LOB is still considered to be OPEN by the input
locator. ISOPEN is true when it is nonzero; false when it
equals 0.

- PIC S9(9)
COMP

ISTEMPORARY Determines whether or not the input LOB locator refers to
a temporary LOB or not. ISTEMPORARY is true when it is
nonzero; false when it equals 0.

BLOBs, CLOBs
and NCLOBs
only

PIC S9(9)
COMP

LENGTH Length of BLOBs and BFILEs in bytes, CLOBs and
NCLOBs in characters. For BFILEs, the length includes
EOF if it exists. Empty internal LOBs have zero length.
LOBs/BFILEs that are not initialized have undefined
length.

- PIC 9(9)
COMP

Table 13–3 (Cont.) LOB Attributes

LOB Attribute Attribute Description Restrictions
COBOL
Type

LOB Statements

13-20 Pro*COBOL Programmer’s Guide

READ and WRITE Using the Polling Method
Here is an outline of using READ with the polling method:

Start the read polling by setting the amount to zero in the first LOB READ (or set the
amount to the size of the total data to be read). The amount is first set to zero in this
case outline which omits details:

 EXEC SQL ALLOCATE :CLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.

 EXEC SQL SELECT A_CLOB INTO :CLOB1 FROM LOB_TABLE WHERE ... END-EXEC.

 MOVE 0 TO AMT.
 EXEC SQL LOB READ :AMT FROM :VLOB1 AT :OFFSET INTO :BUFFER END-EXEC.

 READ-LOOP.
 EXEC SQL LOB READ :AMT FROM :CLOB1 INTO BUFFER $END-EXEC.
 GO TO READ-LOOP.

 END-OF-CLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

 EXEC SQL FREE :CLOB1 END-EXEC.

The following code outline writes data from a buffer into an internal CLOB. The value
of AMT (16 characters) in the initial write statement should be the length of the entire
data you will write. The buffer is 5 characters long.

If EOF is read in the initial read, then do the LOB WRITE ONE. If not, start polling
with a LOB WRITE FIRST of the buffer. Read the data, and do a LOB WRITE NEXT of
the output. No offset is needed in the LOB WRITE NEXT because data is written at the
end of the last write. After EOF is read, break out of the read loop and do a LOB
WRITE LAST. The amount returned must equal the initial amount value (16).

 MOVE 16 TO AMT.
 PERFORM READ-NEXT-RECORD.
 MOVE INREC TO BUFFER-ARR.
 MOVE 5 TO BUFFER-LEN.
 IF (END-OF-FILE = "Y")
 EXEC SQL LOB WRITE ONE :AMT FROM :BUFFER INTO CLOB1
 AT :OFFSET END-EXEC.
 PERFORM DISPLAY-CLOB
 ELSE
 EXEC SQL LOB WRITE FIRST :AMT FROM :BUFFER INTO :CLOB1
 AT :OFFSET END-EXEC.
 PERFORM READ-NEXT-RECORD.
 PERFORM WRITE-TO-CLOB
 UNTIL END-OF-FILE = "Y".
 MOVE INREC TO BUFFER-ARR.
 MOVE 1 TO BUFFER-LEN.
 EXEC SQL LOB WRITE LAST :AMT FROM :BUFFER INTO :CLOB1 END-EXEC.
 PERFORM DISPLAY-CLOB.
 ...
 WRITE-TO-CLOB.
 MOVE INREC TO BUFFER-ARR.
 MOVE 5 TO BUFFER-LEN.
 EXEC SQL LOB WRITE NEXT :AMT FROM :BUFFER INTO :CLOB1 END-EXEC.
 PERFORM READ-NEXT RECORD.

LOB Sample Program: LOBDEMO1.PCO

Large Objects (LOBs) 13-21

 READ-NEXT-RECORD.
 MOVE SPACES TO INREC.
 READ INFILE NEXT RECORD
 AT END
 MOVE "Y" TO END-OF-FILE.
 ...

LOB Sample Program: LOBDEMO1.PCO
The LOBDEMO1.PCO program illustrates several LOB embedded SQL statements.
The source code is in your demo directory. The application uses a table named
license_table whose columns are social security number, name, and a CLOB
containing text summarizing driving offenses. Several simplified SQL operations of a
typical motor vehicle department are modeled.

The possible actions are:

■ Add new records.

■ List records by social security number.

■ List information in a record, given a social security number.

■ Append a new traffic violation to an existing CLOB's contents.

Here is the listing of LOBDEMO1.PCO:

 * LOB Demo 1: DMV Database *
 * *
 * SCENARIO: *
 * *
 * We consider the example of a database used to store driver's *
 * licenses. The licenses are stored as rows of a table containing *
 * three columns: the sss number of a person, his/her name and the *
 * text summary of the info found in his license. *
 * *
 * The sss number and the name are the unique social security number *
 * and name of an individual. The text summary is a summary of the *
 * information on the individual, including his driving record, *
 * which can be arbitrarily long and may contain comments and data *
 * regarding the person's driving ability. *
 * *
 * APPLICATION OVERVIEW: *
 * *
 * This example demonstrate how a Pro*COBOL client can handle the *
 * new LOB datatypes. Demonstrated are the mechanisms for accessing *
 * and storing lobs to/from tables. *
 * *
 * To run the demo: *
 * *
 * 1. Execute the script, lobdemo1.sql in Server Manager *
 * 2. Precompile using Pro*COBOL *
 * procob lobdemo1 *
 * 3. Compile/Link (This step is platform specific) *
 * *
 * lobdemo1.sql contains the following SQL statements: *
 * *
 * connect scott/tiger; *
 * *
 * drop table license_table; *
 * *

LOB Sample Program: LOBDEMO1.PCO

13-22 Pro*COBOL Programmer’s Guide

 * create table license_table(*
 * sss char(9), *
 * name varchar2(50), *
 * txt_summary clob); *
 * *
 * insert into license_table *
 * values('971517006', 'Dennis Kernighan', *
 * 'Wearing a Bright Orange Shirt'); *
 * *
 * insert into license_table *
 * values('555001212', 'Eight H. Number', *
 * 'Driving Under the Influence'); *
 * *
 * insert into license_table *
 * values('010101010', 'P. Doughboy', *
 * 'Impersonating An Oracle Employee'); *
 * *
 * insert into license_table *
 * values('555377012', 'Calvin N. Hobbes', *
 * 'Driving Under the Influence'); *
 * *
 * The main program provides the menu of actions that can be *
 * performed. The program stops when the number 5 (Quit) option *
 * is entered. Depending on the input, this main program calls *
 * the appropriate nested program to execute the chosen action. *
 * *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOBDEMO1.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 USERNAME PIC X(5).
 01 PASSWD PIC X(5).
 01 CHOICE PIC 9 VALUE 0.
 01 SSS PIC X(9).
 01 SSSEXISTS PIC 9 VALUE ZERO.
 01 LICENSE-TXT SQL-CLOB .
 01 NEWCRIME PIC X(35) VARYING.
 01 SSSCOUNT PIC S9(4) COMP.
 01 THE-STRING PIC X(200) VARYING.
 01 TXT-LENGTH PIC S9(9) COMP.
 01 CRIMES.
 05 FILLER PIC X(35) VALUE "Driving Under the Influence".
 05 FILLER PIC X(35) VALUE "Grand Theft Auto".
 05 FILLER PIC X(35) VALUE "Driving Without a License".
 05 FILLER PIC X(35) VALUE
 "Impersonating an Oracle Employee".
 05 FILLER PIC X(35) VALUE "Wearing a Bright Orange Shirt".
 01 CRIMELIST REDEFINES CRIMES.
 05 CRIME PIC X(35) OCCURS 5 TIMES.
 01 CRIME-INDEX PIC 9.
 01 TXT-LEN PIC S9(9) COMP.
 01 CRIME-LEN PIC S9(9) COMP.
 01 NAME1 PIC X(50) VARYING.
 01 NEWNAME PIC X(50).

 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.

LOB Sample Program: LOBDEMO1.PCO

Large Objects (LOBs) 13-23

 A000-CONTROL SECTION.

 * A000-CONTROL
 * Overall control section

 A000-CNTRL.
 EXEC SQL
WHENEVER SQLERROR DO PERFORM Z900-SQLERROR
 END-EXEC.
 PERFORM B000-LOGON.
 PERFORM C000-MAIN UNTIL CHOICE = 5.
 PERFORM D000-LOGOFF.
 A000-EXIT.
 STOP RUN.

 B000-LOGON SECTION.

 * B000-LOGON
 * Log on to database.

 B000-LGN.
 DISPLAY '**'.
 DISPLAY '* Welcome to the DMV Database *'.
 DISPLAY '**'.
 MOVE "scott" TO USERNAME.
 MOVE "tiger" TO PASSWD.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "Connecting to license database account: ",
 USERNAME, "/", PASSWD.
 DISPLAY " ".
 B000-EXIT.
 EXIT.
 C000-MAIN SECTION.

 * C000-MAIN
 * Display the main menu and action requests

 C000-MN.

 DISPLAY " ".
 DISPLAY "License Options:".
 DISPLAY "1. List available records by SSS number".
 DISPLAY "2. Get information on a particular record".
 DISPLAY "3. Add crime to a record".
 DISPLAY "4. Insert new record to database".
 DISPLAY "5. Quit".
 DISPLAY " ".

 MOVE ZERO TO CHOICE.
 PERFORM Z300-ACCEPT-CHOICE UNTIL CHOICE < 6
 AND CHOICE > 0.
 IF (CHOICE = 1)
 PERFORM C100-LIST-RECORDS.
 IF (CHOICE = 2)
 PERFORM C200-GET-RECORD.
 IF (CHOICE = 3)
 PERFORM C300-ADD-CRIME.

LOB Sample Program: LOBDEMO1.PCO

13-24 Pro*COBOL Programmer’s Guide

 IF (CHOICE = 4)
 PERFORM C400-NEW-RECORD.
 C000-EXIT.
 EXIT.

 C100-LIST-RECORDS SECTION.

 * C100-LIST-RECORDS
 * Select Social Security Numbers from LICENCSE_TABLE
 * and display the list

 C100-LST.

 EXEC SQL DECLARE SSS_CURSOR CURSOR FOR
SELECT SSS FROM LICENSE_TABLE
 END-EXEC.

 EXEC SQL OPEN SSS_CURSOR END-EXEC.

 DISPLAY "Available records:".

 PERFORM C110-DISPLAY-RECORDS UNTIL SQLCODE = 1403.
 EXEC SQL CLOSE SSS_CURSOR END-EXEC.
 C100-EXIT.
 EXIT.
 C110-DISPLAY-RECORDS SECTION.

 * C110-DISPLAY-RECORDS
 * Fetch the next record from the cursor and display it.

 C110-DSPLY.
 EXEC SQL FETCH SSS_CURSOR INTO :SSS END-EXEC.
 IF SQLCODE = 0 THEN
 DISPLAY SSS.
 C110-EXIT.
 EXIT.

 C200-GET-RECORD SECTION.

 * C200-GET-RECORD
 * Allocates the global clob LICENSE-TXT then selects
 * the name and text which corresponds to the client-supplied
 * sss. It then calls Z200-PRINTCRIME to print the information and
 * frees the clob.

 C200-GTRECRD.
 PERFORM Z100-GET-SSS.
 IF (SSSEXISTS = 1)
 EXEC SQL ALLOCATE :LICENSE-TXT END-EXEC
 EXEC SQL SELECT NAME, TXT_SUMMARY
 INTO :NAME1, :LICENSE-TXT FROM LICENSE_TABLE
 WHERE SSS = :SSS END-EXEC
 DISPLAY "==
 - "========================"
 DISPLAY " "
 DISPLAY "NAME: ", NAME1-ARR, "SSS: ", SSS
 DISPLAY " "
 PERFORM Z200-PRINTCRIME
 DISPLAY " "
 DISPLAY "==

LOB Sample Program: LOBDEMO1.PCO

Large Objects (LOBs) 13-25

 - "========================"
 EXEC SQL FREE :LICENSE-TXT END-EXEC
 ELSE
 DISPLAY "SSS Number Not Found".
 C200-EXIT.
 EXIT.
 C310-GETNEWCRIME SECTION.

 * C310-GETNEWCRIME
 * Provides a list of the possible crimes to the user and
 * stores the user's correct response in the variable
 * NEWCRIME.

 C310-GTNWCRM.

 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.

 DISPLAY " ".
 DISPLAY "Select from the following:".
 PERFORM C311-DISPLAY-CRIME
 VARYING CRIME-INDEX FROM 1 BY 1
 UNTIL CRIME-INDEX > 5.
 MOVE ZERO TO CHOICE.
 PERFORM Z300-ACCEPT-CHOICE UNTIL CHOICE < 6
 AND CHOICE > 0.
 MOVE CRIME(CHOICE) TO NEWCRIME-ARR.
 MOVE 35 TO NEWCRIME-LEN.
 MOVE ZERO TO CHOICE.
 C310-EXIT.
 EXIT.
 C311-DISPLAY-CRIME SECTION.

 * C311-DISPLAY-CRIME
 * Display an element of the crime table

 C311-DSPLYCRM.
 DISPLAY "(", CRIME-INDEX, ") ", CRIME(CRIME-INDEX).
 C311-EXIT.
 EXIT.
 C320-APPENDTOCLOB SECTION.

 * C320-APPENDTOCLOB
 * Obtains the length of the global clob LICENSE-TXT and
 * uses that in the LOB WRITE statement to append the NEWCRIME
 * character buffer to the global clob LICENSE-TXT.
 * The name corresponding the global SSS is then selected
 * and displayed to the screen along with value of LICENSE-TXT.
 * The caller to this function must allocate, select and later
 * free the global clob LICENSE-TXT.

 C320-PPNDTCLB.

 EXEC SQL
WHENEVER SQLERROR DO PERFORM Z900-SQLERROR
 END-EXEC.

 EXEC SQL LOB DESCRIBE :LICENSE-TXT GET LENGTH
 INTO :TXT-LEN END-EXEC.

 MOVE NEWCRIME-LEN TO CRIME-LEN.

LOB Sample Program: LOBDEMO1.PCO

13-26 Pro*COBOL Programmer’s Guide

 IF (TXT-LEN NOT = 0)
 ADD 3 TO TXT-LEN
 ELSE
 ADD 1 TO TXT-LEN.
 EXEC SQL LOB WRITE :CRIME-LEN FROM :NEWCRIME
 INTO :LICENSE-TXT AT :TXT-LEN END-EXEC.

 EXEC SQL SELECT NAME INTO :NAME1 FROM LICENSE_TABLE
 WHERE SSS = :SSS END-EXEC.
 DISPLAY " ".
 DISPLAY "NAME: ", NAME1-ARR, "SSS: ", SSS.
 DISPLAY " ".
 PERFORM Z200-PRINTCRIME.
 DISPLAY " ".

 C320-EXIT.
 EXIT.

 C300-ADD-CRIME SECTION.

 * ADD-CRIME
 * Obtains a sss and crime from the user and appends
 * the crime to the list of crimes of the corresponding sss.

 C300-DDCRM.

 EXEC SQL
 WHENEVER SQLERROR DO PERFORM Z900-SQLERROR
 END-EXEC.

 PERFORM Z100-GET-SSS.
 IF (SSSEXISTS = 1)
 EXEC SQL ALLOCATE :LICENSE-TXT END-EXEC
 PERFORM C310-GETNEWCRIME
 EXEC SQL SELECT TXT_SUMMARY INTO :LICENSE-TXT
 FROM LICENSE_TABLE WHERE SSS = :SSS
 FOR UPDATE END-EXEC
 PERFORM C320-APPENDTOCLOB
 EXEC SQL FREE :LICENSE-TXT END-EXEC
 ELSE
 DISPLAY "SSS Number Not Found".
 C300-EXIT.
 EXIT.

 C400-NEW-RECORD SECTION.

 * C400-NEW-RECORD
 * Obtains the sss and name of a new record and inserts them
 * along with an empty_clob() for the clob in the table.

 C400-NWRCRD.

 PERFORM Z100-GET-SSS.
 IF (SSSEXISTS = 1)
 DISPLAY "Record with that sss number already exists"
 ELSE
 DISPLAY "Name? " WITH NO ADVANCING
 ACCEPT NEWNAME
 DISPLAY " ".
 EXEC SQL ALLOCATE :LICENSE-TXT END-EXEC

LOB Sample Program: LOBDEMO1.PCO

Large Objects (LOBs) 13-27

 EXEC SQL INSERT INTO LICENSE_TABLE
 VALUES (:SSS, :NEWNAME, EMPTY_CLOB()) END-EXEC
 EXEC SQL SELECT TXT_SUMMARY INTO :LICENSE-TXT
 FROM LICENSE_TABLE WHERE SSS = :SSS END-EXEC
 DISPLAY "==
 - "========================"
 DISPLAY "NAME: ", NEWNAME,"SSS: ", SSS
 PERFORM Z200-PRINTCRIME
 DISPLAY "==
 - "========================"
 EXEC SQL FREE :LICENSE-TXT END-EXEC.
 C400-EXIT.
 EXIT.
 D000-LOGOFF SECTION.

 * D000-LOGOFF
 * Commit the work done to the database and log off

 D000-LGFF.
 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY!".
 DISPLAY " ".
 D000-EXIT.
 STOP RUN.
 Z100-GET-SSS SECTION.

 * Z100-GET-SSS
 * Fills the global variable SSS with the client-supplied sss.
 * Sets the global variable SSSEXISTS to 0 if the sss does not
 * correspond to any entry in the database, else sets it to 1.

 Z100-GTSSS.
 DISPLAY "Social Security Number? " WITH NO ADVANCING.
 ACCEPT SSS.
 DISPLAY " ".

 EXEC SQL SELECT COUNT(*) INTO :SSSCOUNT FROM LICENSE_TABLE
 WHERE SSS = :SSS END-EXEC.

 IF (SSSCOUNT = 0)
 MOVE 0 TO SSSEXISTS
 ELSE
 MOVE 1 TO SSSEXISTS.
 Z100-EXIT.
 EXIT.
 Z200-PRINTCRIME SECTION.

 * Z200-PRINTCRIME
 * Obtains the length of the global clob LICENSE-TXT and
 * uses that in the LOB READ statement to read the clob
 * into a character buffer to display the contents of the clob.
 * The caller to this function must allocate, select and later
 * free the global clob LICENSE-TXT.

 Z200-PRNTCRM.
 DISPLAY "=====================".
 DISPLAY " CRIME SHEET SUMMARY ".
 DISPLAY "=====================".

LOB Sample Program: LOBDEMO1.PCO

13-28 Pro*COBOL Programmer’s Guide

 MOVE SPACE TO THE-STRING-ARR.
 EXEC SQL LOB DESCRIBE :LICENSE-TXT GET LENGTH
 INTO :TXT-LENGTH END-EXEC.

 IF (TXT-LENGTH = 0)
 DISPLAY "Record is clean"
 ELSE
 EXEC SQL LOB READ :TXT-LENGTH FROM :LICENSE-TXT
 INTO :THE-STRING END-EXEC
 DISPLAY THE-STRING-ARR.

 Z200-EXIT.
 EXIT.
 Z300-ACCEPT-CHOICE SECTION.

 * Z300-ACCEPT-CHOICE
 * Accept a choice between 1 and 5

 Z300-CCPT.
 DISPLAY "Your Selection (1-5)? " WITH NO ADVANCING.
 ACCEPT CHOICE.
 DISPLAY " ".
 IF CHOICE >5 OR CHOICE < 1 THEN
 DISPLAY "Invalid Selection"
 DISPLAY "Please Choose from the indicated list".
 Z300-EXIT.
 EXIT.

 Z900-SQLERROR SECTION.

 * Z900-SQLERROR
 * Called whenever a SQLERROR occurs.
 * Display the Error, Roll Back any work done and Log Off

 Z900-SQLRRR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 Z900-EXIT.
 STOP RUN.

Precompiler Options 14-1

14
Precompiler Options

This chapter describes the precompiler options of Pro*COBOL. This chapter includes:

■ The procob Command

■ Actions During Precompilation

■ About the Options

■ Entering Precompiler Options

■ Scope of Precompiler Options

■ Quick Reference

■ Using Pro*COBOL Precompiler Options

The procob Command
The location of Pro*COBOL differs from system to system. Typically, your system
manager or DBA defines environment variables or aliases or uses other operating
system-specific means to make the Pro*COBOL executable accessible.

To run the Oracle Pro*COBOL Precompiler, you issue the command

procob [option_name=value] [option_name=value] ...

The option value is always separated from the option name by an equals sign (=), with
no white space around the equals sign.

For example, the INAME option specifies the source file to be precompiled. The
command:

procob INAME=test

precompiles the file test.pco in the current directory, since Pro*COBOL assumes that the
filename extension is .pco.

You need not use a file extension when specifying INAME unless the extension is
nonstandard.

Input and output filenames need not be accompanied by their respective option
names, INAME and ONAME. When the option names are not specified, Pro*COBOL
assumes that the first filename specified on the command line is the input filename
and that the second filename is the output filename.

Thus, the command

procob MODE=ANSI myfile myfile.cob

Actions During Precompilation

14-2 Pro*COBOL Programmer’s Guide

is equivalent to

procob MODE=ANSI INAME=myfile.pco ONAME=myfile.cob

Case-Sensitivity
In general, you can use either uppercase or lowercase for command-line option names
and values. However, if your operating system is case-sensitive (as in UNIX for
example) you must specify filename values, including the name of Pro*COBOL
executable, using the correct combination of upper and lowercase letters.

Note: Option names and option values that do not name specific operating system
objects, such as filenames, are not case-sensitive. In the examples in this guide, option
names are written in upper case or lower case, and option values are usually in lower
case. Filenames, including the name of the Pro*COBOL executable itself, always follow
the case conventions used by the operating system on which it is executed.

With some operating systems and user shells, such as UNIX C shell, the ? may need to
be preceded by an "escape" character, such as a back-slash (\). For example, instead of
procob ?, you might need to use procob \? to list the Pro*COBOL option settings.

Consult your platform-specific documentation.

Actions During Precompilation
During precompilation, Pro*COBOL generates COBOL code that replaces the SQL
statements embedded in your host program. The generated code includes data
structures that contain the datatype, length, and address of each host variable, as well
as other information required by the Oracle runtime library, SQLLIB. The generated
code also contains the calls to SQLLIB routines that perform the embedded SQL
operations.

Pro*COBOL can issue warnings and error messages. These messages are described in
Oracle Database Error Messages.

About the Options
Many useful options are available at precompile time. They let you control how
resources are used, how errors are reported, how input and output are formatted, and
how cursors are managed.

The value of an option is a literal, which represents text or numeric values. For
example, for the option

... INAME=my_test

the value is a string literal that specifies a filename.

For the option

... PREFETCH=100

the value is numeric.

Some options take Boolean values, which you can represent with the strings YES or
NO, TRUE or FALSE, or with the integer literals 1 or 0, respectively. For example, the
option

... SELECT_ERROR=YES

About the Options

Precompiler Options 14-3

is equivalent to

... SELECT_ERROR=TRUE

or

... SELECT_ERROR=1

You leave no white space around the equals (=) sign. This is because spaces delimit
individual options. For example, you might specify the option AUTO_CONNECT on
the command line as follows:

... AUTO_CONNECT=YES

You can abbreviate the names of options unless the abbreviation is ambiguous. For
example, you cannot use the abbreviation MAX because it might stand for
MAXLITERAL or MAXOPENCURSORS.

A handy reference to the Pro*COBOL options is available online. To see the online
display, enter the Pro*COBOL command, with no arguments, at your operating system
prompt:

procob

The display gives the name, syntax, default value, and purpose of each option.
Options marked with an asterisk (*) can be specified inline as well as on the command
line.

Precedence of Option Values
Option values are determined by the following, in order of increasing precedence:

■ A default built in to Pro*COBOL

■ A value set in the system configuration file

■ A value set in a user configuration file

■ A value entered in the command line

■ A value set in an inline specification

For example, the option MAXOPENCURSORS specifies the maximum number of
cached open cursors. The built-in Pro*COBOL default value for this option is 10.
However, if MAXOPENCURSORS=32 is specified in the system configuration file, the
value becomes 32. The user configuration file could set it to yet another value, which
then overrides the system configuration value.

If the MAXOPNCURSORS option is set on the command line, the new command-line
value takes precedence. Finally, an inline specification takes precedence over all
preceding defaults. For more information, see "Entering Precompiler Options" on
page 14-4.

Macro and Micro Options
Option MODE is known as a macro option. Some newer options, such as END_OF_
FETCH, control only one function and are known as micro options. When setting a
macro and a micro option, you must remember that the macro option has precedence
over micro options. This is the case if, and only if, the macro option is at a higher level
of precedence than the micro option. (As described in the section "Precedence of
Option Values" on page 14-3.) This behavior is a change from releases of Pro*COBOL
prior to 8.0.

Entering Precompiler Options

14-4 Pro*COBOL Programmer’s Guide

For example, the default for MODE is ORACLE, and for END_OF_FETCH is 1403. If
you specify MODE=ANSI in the user configuration file, Pro*COBOL will return a
value of 100 at the end of fetch, overriding the default END_OF_FETCH value of 1403.
If you specify both MODE=ANSI and END_OF_FETCH=1403 in the configuration file,
then 1403 will be returned. If you specify END_OF_FETCH=1403 in your
configuration file and MODE=ANSI on the command line, then 100 will be returned.

The following table lists the values of micro options set by the macro option values:

Determining Current Values
You can interactively determine the current value for one or more options by using a
question mark on the command line. For example, if you issue the command

procob ?

the complete option set, along with current values, is displayed on your terminal. In
this case, the values are those built into Pro*COBOL, overridden by any values in the
system configuration file. But if you issue the following command

procob CONFIG=my_config_file.cfg ?

and there is a file named my_config_file.cfg in the current directory, the options
from the my_config_file.cfg file are listed with the other default values. Values in
the user configuration file supply missing values, and they supersede values built into
Pro*COBOL and values specified in the system configuration file.

You can also determine the current value of a single option by simply specifying the
option name followed by =? as in

procob MAXOPENCURSORS=?

Entering Precompiler Options
All Pro*COBOL options (except CONFIG) can be entered on the command line or from
a configuration file. Many options can also be entered inline. During a given run,
Pro*COBOL can accept options from all three sources.

Table 14–1 How Macro Option Values Set Micro Option Values

Macro Option Micro Option

MODE=ANSI | ISO CLOSE_ON_COMMIT=YES

DECLARE_SECTION=YES

END_OF_FETCH=100

DYNAMIC=ANSI

TYPE_CODE=ANSI

MODE=ANSI14 | ANSI13 | ISO14 | ISO13 CLOSE_ON_COMMIT=NO

DECLARE_SECTION=YES

END_OF_FETCH=100

MODE=ORACLE CLOSE_ON_COMMIT=NO

DECLARE_SECTION=NO

END_OF_FETCH=1403

DYNAMIC=ORACLE

TYPE_CODE=ORACLE

Entering Precompiler Options

Precompiler Options 14-5

On the Command Line
You enter precompiler options on the command line using ... [option_
name=value] [option_name=value] ...

Separate each option with one or more spaces. For example, you might enter the
following options:

... ERRORS=no LTYPE=short

Inline
Enter options inline by coding EXEC ORACLE OPTION statements, using the
following syntax:

 EXEC ORACLE OPTION (option_name=value) END-EXEC.

For example, you might code the following statement:

 EXEC ORACLE OPTION (RELEASE_CURSOR=YES) END-EXEC.

An option entered inline overrides the same option entered on the command line.

Advantages
The EXEC ORACLE feature is especially useful for changing option values during
precompilation. For example, you might want to change the HOLD_CURSOR and
RELEASE_CURSOR values on a statement-by-statement basis. Appendix C,
"Performance Tuning" shows you how to use inline options to optimize runtime
performance.

Specifying options inline is also helpful if your operating system limits the number of
characters you can enter on the command line, and you can store inline options in
configuration files. These are discussed in the next section.

Scope of EXEC ORACLE
An EXEC ORACLE statement stays in effect until textually superseded by another
EXEC ORACLE statement specifying the same option. In the following example,
HOLD_CURSOR=NO stays in effect until superseded by HOLD_CURSOR=YES:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-NAME PIC X(20) VARYING.
 01 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
 01 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
 01 DEPT-NUMBER PIC S9(4) COMP VALUE ZERO.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL WHENEVER NOT FOUND GOTO NO-MORE END-EXEC.
 ...
 EXEC ORACLE OPTION (HOLD_CURSOR=NO)END-EXEC.
 ...
 EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT EMPNO, DEPTNO FROM EMP
 END-EXEC.
 EXEC SQL OPEN emp_cursor END-EXEC.

 DISPLAY 'Employee Number Dept'.
 DISPLAY '--------------- ----'.
 PERFORM
 EXEC SQL

Scope of Precompiler Options

14-6 Pro*COBOL Programmer’s Guide

 FETCH emp_cursor INTO :EMP-NUMBER, :DEPT-NUMBER
 END-EXEC
 DISPLAY EMP-NUMBER, DEPT-NUMBER END-EXEC
 END-PERFORM.

 NO-MORE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 PERFORM
 DISPLAY 'Employee number? '
 ACCEPT EMP-NUMBER
 IF EMP-NUMBER IS NOT = 0
 EXEC ORACLE OPTION (HOLD_CURSOR=YES) END-EXEC
 EXEC SQL SELECT ENAME, SAL
 INTO :EMP-NAME, :SALARY
 FROM EMP
 WHERE EMPNO = :EMP-NUMBER
 DISPLAY 'Salary for ', EMP-NAME, ' is ', SALARY
 END-EXEC
 END-IF
 END-PERFORM.
 NEXT-PARA.
 ...

Configuration Files
A configuration file is a text file that contains precompiler options. Each record (line)
in the file contains one option, with its associated value or values. For example, a
configuration file might contain the lines

FIPS=YES
MODE=ANSI

to set values for the FIPS and MODE options.

There is a single system configuration file for each system. The name of the system
configuration file is

pcbcfg.cfg

The location of the file is operating system-specific. On most UNIX systems, the
Pro*COBOL configuration file is usually located in the $ORACLE_
HOME/precomp/admin directory, where $ORACLE_HOME is the environment variable
for the database software.

Note that before release 8.0 of Pro*COBOL, the configuration file was called pccob.cfg.

The Pro*COBOL user can have one or more user configuration files. The name of the
configuration file must be specified using the CONFIG command-line option. For
more information, see "Determining Current Values" on page 14-4.

Note: You cannot nest configuration files. This means that CONFIG is not a valid
option inside a configuration file.

Scope of Precompiler Options
A precompilation unit is a file containing COBOL code and one or more embedded
SQL statements. The options specified for a given precompilation unit affect only that
unit; they have no effect on other units.

For example, if you specify HOLD_CURSOR=YES and RELEASE_CURSOR=YES for
unit A but not unit B, SQL statements in unit A run with these HOLD_CURSOR and

Quick Reference

Precompiler Options 14-7

RELEASE_CURSOR values, but SQL statements in unit B run with the default values.
However, the MAXOPENCURSORS setting that is in effect when you connect to
Oracle stays in effect for the life of that connection.

The scope of an inline option is positional, not logical. That is, an inline option affects
SQL statements that follow it in the source file, not in the flow of program logic. An
option setting stays in effect until the end-of-file unless you re-specify the option.

Quick Reference
Table 14–2 is a quick reference to the Pro*COBOL options. Options marked with an
asterisk can be entered inline.

Another handy reference is available online. To see the online display, just enter the
Pro*COBOL command without options at your operating system prompt. The display
gives the name, syntax, default value, and purpose of each option.

Note: There are some platform-specific options. For example, on byte-swapped
platforms the option COMP5 governs the use of certain COMPUTATIONAL items.
Check your system-specific Oracle manuals.

Table 14–2 Option List

Syntax Default Specifies

ASACC={YES | NO} NO If YES, use ASA carriage control for
listing.

ASSUME_SQLCODE={YES | NO} NO If YES, assume SQLCODE variable
exists.

AUTO_CONNECT={YES | NO} NO If YES, allow automatic connect to
ops$ accounts before the first
executable statement.

CLOSE_ON_COMMIT* NO If YES, close all cursors on COMMIT.

CONFIG=filename (none) Specifies name of user-defined
configuration file.

DATE_FORMAT LOCAL Specifies date string format.

DBMS={NATIVE | V7 | V8} NATIVE Version-specific behavior of Oracle at
precompile time.

DECLARE_SECTION NO If YES, DECLARE SECTION is
required.

DEFINE=symbol * (none) Define a symbol used in conditional
precompilation.

DYNAMIC ORACLE Specifies Oracle or ANSI dynamic
semantics in SQL Method 4.

END_OF_FETCH 1403 End-of-fetch SQLCODE value.

ERRORS={YES | NO} * YES If YES, display errors on the terminal.

FIPS={YES | NO} NO If YES, ANSI/ISO extensions are
flagged.

FORMAT={ANSI | TERMINAL} ANSI Format of input file COBOL
statements.

HOLD_CURSOR={YES | NO}* NO If YES, hold OraCursor (do not
re-assign).

Quick Reference

14-8 Pro*COBOL Programmer’s Guide

HOST={COBOL | COB74} COBOL COBOL version used in input file
(COBOL 85 or COBOL 74).

[INAME=]filename (none) Name of input file.

INCLUDE=path* (none) Pathname for EXEC SQL INCLUDE
files.

IRECLEN=integer 80 Record length of input file.

LITDELIM={APOST | QUOTE} QUOTE Delimiters for COBOL strings.

LNAME=filename (none) Name of listing file.

LRECLEN=integer 132 Record length of listing file.

LTYPE={LONG | SHORT | NONE}
*

LONG Type of listing.

MAXLITERAL=integer * 1024 Maximum length of strings.

MAXOPENCURSORS=integer * 10 Maximum number of OraCursors
cached (1).

MODE={ORACLE | ANSI} ORACLE If ANSI, follow the ANSI/ISO SQL
standard.

NESTED={YES | NO} YES If YES, nested programs are
supported.

NLS_LOCAL={YES | NO} NO If YES, use NCHAR semantics of
previous Pro*COBOL releases.

[ONAME=]filename iname.cob Name of output file.

ORACA={YES | NO}* NO If YES, use ORACA communications
area.

ORECLEN=integer 80 Record length of output file.

PAGELEN=integer 66 Lines for each page in listing.

PICX CHARF Datatype of PIC X COBOL variables.

PREFETCH 1 Speed up queries by pre-fetching a
given number of rows.

RELEASE_CURSOR={YES | NO} * NO If YES, release OraCursor after
execute.

SELECT_ERROR={YES | NO}* YES If YES, generate FOUND error on
SELECT.

SQLCHECK={SEMANTICS |
SYNTAX}*

SYNTAX SQL checking level.

THREADS={YES | NO} NO Indicates a multithreaded
application.

TYPE_CODE ORACLE Use Oracle or ANSI type codes for
dynamic SQL method 4.

UNSAFE_NULL={YES | NO} NO If YES, unsafe null fetches are
allowed (disables the ORA-01405
message).

USERID=username/password[@dbna
me]

(none) Oracle username, password, and
optional database.

Table 14–2 (Cont.) Option List

Syntax Default Specifies

Using Pro*COBOL Precompiler Options

Precompiler Options 14-9

Using Pro*COBOL Precompiler Options
This section is organized for easy reference. It lists the Pro*COBOL precompiler
options alphabetically and for each option gives its purpose, syntax, and default value.
Usage notes that help you understand how the option works are also provided. Unless
the usage notes say otherwise, the option can be entered on the command line, inline,
or from a configuration file.

ASACC

Purpose
Specifies whether the listing file follows the ASA convention of using the first column
in each line for carriage control.

Syntax
ASACC={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

ASSUME_SQLCODE

Purpose
Instructs Pro*COBOL to presume that SQLCODE is declared whether or not it is
declared in the program, or of the proper type.

Syntax
ASSUME_SQLCODE={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

When DECLARE_SECTION=YES and ASSUME_SQLCODE=YES, SQLCODE can be
declared outside a Declare Section.

When DECLARE_SECTION=YES and ASSUME_SQLCODE=NO, SQLCODE is
recognized as the status variable if and only if at least one of the following criteria is
satisfied:

VARCHAR={YES | NO} NO If YES, accept user-defined
VARCHAR group items.

XREF={YES | NO}* YES If YES, generate symbol cross
references in listing.

Table 14–2 (Cont.) Option List

Syntax Default Specifies

Using Pro*COBOL Precompiler Options

14-10 Pro*COBOL Programmer’s Guide

■ It is declared with exactly the right datatype.

■ Pro*COBOL finds no other status variable. If Pro*COBOL finds a SQLSTATE
declaration (of exactly the right type of course), or finds an include of a SQLCA,
then it will not presume SQLCODE is declared.

When ASSUME_SQLCODE=YES, and when SQLSTATE and/or SQLCA are declared
as status variables, Pro*COBOL presumes SQLCODE is declared whether or not it is
declared or of the proper type.

AUTO_CONNECT

Purpose
Specifies whether your program connects automatically to the default user account.

Syntax
AUTO_CONNECT={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

When AUTO_CONNECT=YES, as soon as Pro*COBOL encounters an executable SQL
statement, your program tries to log on to Oracle automatically with the userid

<prefix><username>

where <prefix> is the value of the Oracle initialization parameter OS_AUTHENT_
PREFIX (the default value is OPS$) and <username> is your operating system user or
task name. In this case, you cannot override the default value for MAXOPENCURORS
(10), even if you specify a different value on the command line.

When AUTO_CONNECT=NO (the default), you must use the CONNECT statement
to logon to Oracle.

CHARSET_PICX

Purpose
Specifies the character set form used by PIC X variables used in select, insert, or
update statements.

Syntax
CHARSET_PICX={NCHAR_CHARSET | DB_CHARSET }

Default
DB_CHARSET

Usage Notes
Can be used on the command line or in a configuration file, but not inline.

If CHARSET_PICX = NCHAR_CHARSET, the PIC X bind or define buffer is converted
according to the server-side National Character Set. Possible performance impact

Using Pro*COBOL Precompiler Options

Precompiler Options 14-11

might be seen when target column is CHAR. Similarly, if CHARSET_PICX = DB_
CHARSET, the PIC X bind or define buffer is converted according to server-side
Database Character Set. There can be some data loss when target column is NCHAR.

CHARSET_PICN

Purpose
Specifies the character set form used by PIC N variables used in select, insert, or
update statements.

Syntax
CHARSET_PICN={NCHAR_CHARSET | DB_CHARSET }

Default
NCHAR_CHARSET

Usage Notes
Can be used on the command line or in a configuration file, but not inline.

If CHARSET_PICN = DB_CHARSET, the PIC N bind or define buffer is converted
according to the server-side Database Character Set. There can be some data loss when
target column is NCHAR. Similarly, if CHARSET_PICN = NCHAR_CHARSET, the
PIC N bind or define buffer is converted according to server-side National Character
Set. Possible performance impact might be seen when target column is CHAR. .

CLOSE_ON_COMMIT

Purpose
Specifies whether or not all cursors declared without the WITH HOLD clause are
closed on commit.

Syntax
CLOSE_ON_COMMIT={YES | NO}

Default
NO

Usage Notes
Can be used only on the command line or in a configuration file.

This option will only have an effect when a cursor is not coded using the WITH HOLD
clause in a DECLARE CURSOR statement, since that will override both the new
option and the existing behavior which is associated with the MODE option. If MODE
is specified at a higher level than CLOSE_ON_COMMIT, then MODE takes
precedence. For example, the defaults are MODE=ORACLE and CLOSE_ON_
COMMIT=NO. If the user specifies MODE=ANSI on the command line, then any
cursors not using the WITH HOLD clause will be closed on commit.

Issuing a COMMIT or ROLLBACK closes all explicit cursors. (When
MODE=ORACLE, a commit or rollback closes only cursors referenced in a CURRENT
OF clause.)

Using Pro*COBOL Precompiler Options

14-12 Pro*COBOL Programmer’s Guide

For a further discussion of the precedence of this option see "Macro and Micro
Options" on page 14-3.

CONFIG

Purpose
Specifies the name of a user configuration file.

Syntax
CONFIG=filename

Default
None

Usage Notes
Can be entered only on the command line.

Pro*COBOL can use a configuration file containing preset command-line options.
However, you can specify any of several alternative files, called user configuration files.
For more information, see "Entering Precompiler Options" on page 14-4 on page 14-4.

You cannot nest configuration files. Therefore, you cannot specify the option CONFIG
in a configuration file.

DATE_FORMAT

Purpose
Species the string format in which dates are returned.

Syntax
DATE_FORMAT={ISO | USA | EUR | JIS | LOCAL | 'fmt' (default LOCAL)

Default
LOCAL

Usage Notes
Can only be entered on the command line or in a configuration file. The date strings
are shown in the following table:

'fmt' is a date format model, such as "Month dd, yyyy". See Oracle Database SQL
Reference for the list of date format model elements.

Table 14–3 Formats for Date Strings

Format Name Abbreviation Date Format

International Standards Organization ISO yyyy-mm-dd

USA standard USA mm/dd/yyyy

European standard EUR dd.mm.yyyy

Japanese Industrial Standard JIS yyyy-mm-dd

installation-defined LOCAL Any installation-defined form.

Using Pro*COBOL Precompiler Options

Precompiler Options 14-13

There is one restriction on the use of the DATE_FORMAT option: All compilation units
to be linked together must use the same DATE_FORMAT value. An error occurs when
there is a mismatch in the values of DATE_FORMAT across compilation units

DBMS

Purpose
Specifies whether Oracle follows the semantic and syntactic rules of Oracle7 Database,
Oracle8i, Oracle9i, or the native version of Oracle (that is, the version to which your
application is connected).

Syntax
DBMS={V7 | V8 | NATIVE}

Default
NATIVE

Usage Notes
Cannot be entered inline.

With the DBMS option you control the version-specific behavior of Oracle. When
DBMS=NATIVE (the default), Oracle follows the semantic and syntactic rules of the
native version of Oracle.

DECLARE_SECTION

Purpose
Specifies whether or not only declarations in a Declare Section are allowed as host
variables.

Syntax
DECLARE_SECTION={YES | NO}

Default
NO

Usage Notes
Can be entered only on the command line or in a configuration file.

When MODE=ORACLE, use of the BEGIN DECLARE SECTION and END DECLARE
SECTION statements are optional, starting with release 8.0 of Pro*COBOL. The
DECLARE_SECTION option is provided for backward compatibility with previous
releases. DECLARE_SECTION is a micro option of MODE.

This option allows the user to specify MODE=ORACLE together with DECLARE_
SECTION=YES to get the same effect that previous releases provided when using
MODE=ORACLE alone. (Only variables declared inside the DECLARE statements are
allowed as host variables.) For a discussion of precedence of this option, see
"Precedence of Option Values" on page 14-3.

Using Pro*COBOL Precompiler Options

14-14 Pro*COBOL Programmer’s Guide

DEFINE

Purpose
Specifies a user-defined symbol that is used to include or exclude portions of source
code during a conditional precompilation. For more information, see "Conditional
Precompilations" on page 2-18.

Syntax
DEFINE=symbol

Default
None

Usage Notes
If you enter DEFINE inline, the EXEC ORACLE statement takes the following form:

EXEC ORACLE DEFINE symbol END-EXEC.

DYNAMIC

Purpose
This micro option of MODE specifies the descriptor behavior in dynamic SQL Method
4.

Syntax
DYNAMIC={ORACLE | ANSI}

Default
ORACLE

Usage Notes
Cannot be entered inline by use of the EXEC ORACLE OPTION statement.

See the DYNAMIC option settings in "ANSI Dynamic SQL Precompiler Options" on
page 10-9.

END_OF_FETCH

Purpose
This micro option of MODE specifies which SQLCODE value is returned when an
END-OF-FETCH condition occurs after execution of a SQL statement.

Syntax
END_OF_FETCH={100 | 1403}

Default
1403

Usage Notes
Can be entered only on the command line or in a configuration file.

Using Pro*COBOL Precompiler Options

Precompiler Options 14-15

END_OF_FETCH is a micro option of MODE. For further discussion, see "Macro and
Micro Options" on page 14-3.

If you specify MODE=ANSI in a configuration file, Pro*COBOL returns the SQLCODE
value 100 at the END_OF_FETCH, overriding the default END_OF_FETCH=1403.

If you specify MODE=ANSI and END_OF_FETCH=1403 in the configuration file, then
Pro*COBOL will return the SQLCODE value 1403 at the END_OF_FETCH.

If you specify MODE=ANSI in the configuration file and END_OF_FETCH=1403 on
the command line, which has a higher precedence than your configuration file,
Pro*COBOL will again return the SQLCODE value 1403 at the END_OF_FETCH.

ERRORS

Purpose
Specifies whether Pro*COBOL error messages are sent to the terminal and listing file
or only to the listing file.

Syntax
ERRORS={YES | NO}

Default
YES

Usage Notes
When ERRORS=YES, error messages are sent to the terminal and listing file.

When ERRORS=NO, error messages are sent only to the listing file.

FIPS

Purpose
Specifies whether extensions to ANSI/ISO SQL are flagged (by the FIPS Flagger). An
extension is any SQL element that violates ANSI/ISO format or syntax rules, except
privilege enforcement rules.

Syntax
FIPS={YES | NO}

Default
NO

Usage Notes
When FIPS=YES, the FIPS Flagger issues warning (not error) messages if you use an
Oracle extension to the ANSI/ISO embedded SQL standard (SQL92) or use a SQL92
feature in a nonconforming manner.

The following extensions to ANSI/ISO SQL are flagged at precompile time:

■ Array interface including the FOR clause

■ SQLCA, ORACA, and SQLDA data structures

■ Dynamic SQL including the DESCRIBE statement

Using Pro*COBOL Precompiler Options

14-16 Pro*COBOL Programmer’s Guide

■ Embedded PL/SQL blocks

■ Automatic datatype conversion

■ DATE, COMP-3, NUMBER, RAW, LONG RAW, VARRAW, ROWID, and
VARCHAR datatypes

■ ORACLE OPTION statement for specifying runtime options

■ EXEC IAF and EXEC TOOLS statements in user exits

■ CONNECT statement

■ TYPE and VAR datatype equivalencing statements

■ AT db_name clause

■ DECLARE...DATABASE, ...STATEMENT, and ...TABLE statements

■ SQLWARNING condition in WHENEVER statement

■ DO and STOP actions in WHENEVER statement

■ COMMENT and FORCE TRANSACTION clauses in COMMIT statement

■ FORCE TRANSACTION and TO SAVEPOINT clauses in ROLLBACK statement

■ RELEASE parameter in COMMIT and ROLLBACK statements

■ Optional colon-prefixing of WHENEVER...DO labels and of host variables in the
INTO clause

FORMAT

Purpose
Specifies the format of COBOL statements.

Syntax
FORMAT={ANSI | TERMINAL}

Default
ANSI

Usage Notes
Cannot be entered inline.

The format of input lines is system-dependent. Check your system-specific Oracle
manuals, or your COBOL compiler.

When FORMAT=ANSI, the format of input lines conforms as much as possible to the
current ANSI standard for COBOL. When FORMAT=TERMINAL, input lines can start
in column 1. Example code in this book is in TERMINAL format. See "Coding Areas"
on page 2-8 for a more complete description.

HOLD_CURSOR

Purpose
Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the
cursor cache.

Using Pro*COBOL Precompiler Options

Precompiler Options 14-17

Syntax
HOLD_CURSOR={YES | NO}

Default
NO

Usage Notes
You can use HOLD_CURSOR to improve the performance of your program. For more
information, see Appendix C, "Performance Tuning".

When a SQL data manipulation statement is executed, its associated cursor is linked to
an entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle
private SQL area, which stores information needed to process the statement. HOLD_
CURSOR controls what happens to the link between the cursor and cursor cache.

When HOLD_CURSOR=NO, after Oracle executes the SQL statement and the cursor is
closed, Pro*COBOL marks the link as reusable. The link is reused as soon as the cursor
cache entry to which it points is needed for another SQL statement. This frees memory
allocated to the private SQL area and releases parse locks.

When HOLD_CURSOR=YES, the link is maintained; Pro*COBOL does not reuse it.
This is useful for SQL statements that are executed often because it speeds up
subsequent executions and there is no need to re-parse the statement or allocate
memory for an Oracle private SQL area.

For inline use with implicit cursors, set HOLD_CURSOR before executing the SQL
statement. For inline use with explicit cursors, set HOLD_CURSOR before opening the
cursor.

For information showing how the HOLD_CURSOR and RELEASE_CURSOR options
interact, see Appendix C, "Performance Tuning", specifically Table C–1, " HOLD_
CURSOR and RELEASE _CURSOR Interactions" on page C-9.

HOST

Purpose
Specifies the host language to be used.

Syntax
HOST={COB74 | COBOL}

Default
COBOL

Usage Notes
Cannot be entered inline.

COB74 refers to the 1974 version of ANSI-approved COBOL. COBOL refers to the 1985
version. Other values might be available on your platform.

INAME

Purpose
Specifies the name of the input file.

Using Pro*COBOL Precompiler Options

14-18 Pro*COBOL Programmer’s Guide

Syntax
INAME=filename

Default
None

Usage Notes
Cannot be entered inline.

All input file names must be unique at precompilation time.

When specifying the name of your input file on the command line, the keyword
INAME is optional. For example, in Pro*COBOL, you can specify myprog.pco instead of
INAME=myprog.pco.

You need not use a file extension when specifying INAME unless the extension is
nonstandard. On the UNIX platform, Pro*COBOL assumes the default input file
extension pco.

INCLUDE

Purpose
Specifies a directory path for EXEC SQL INCLUDE files. It only applies to operating
systems that use directories.

Syntax
INCLUDE=path

Default
Current directory

Usage Notes
Typically, you use INCLUDE to specify a directory path for the SQLCA and ORACA
files. Pro*COBOL searches first in the current directory, then in the directory specified
by INCLUDE, and finally in a directory for standard INCLUDE files. Hence, you need
not specify a directory path for standard files such as the SQLCA and ORACA.

You must still use INCLUDE to specify a directory path for nonstandard files unless
they are stored in the current directory. You can specify more than one path on the
command line, as follows:

... INCLUDE=path1 INCLUDE=path2 ...

Pro*COBOL searches first in the current directory, then in the directory named by
path1, then in the directory named by path2, and finally in the directory for standard
INCLUDE files.

Note: Pro*COBOL looks for a file in the current directory first—even if you specify a
directory path. Therefore, if the file you want to INCLUDE resides in another
directory, make sure no file with the same name resides in the current directory.

The syntax for specifying a directory path is system-specific. Follow the conventions of
your operating system.

Using Pro*COBOL Precompiler Options

Precompiler Options 14-19

IRECLEN

Purpose
Specifies the record length of the input file.

Syntax
IRECLEN=integer

Default
80

Usage Notes
Cannot be entered inline.

The value you specify for IRECLEN should not exceed the value of ORECLEN. The
maximum value allowed is system-dependent.

LITDELIM

Purpose
The LITDELIM option specifies the delimiters for string constants and literals in the
COBOL code generated by Pro*COBOL.

Syntax
LITDELIM={APOST | QUOTE}

Default
QUOTE

Usage Notes
When LITDELIM=APOST, Pro*COBOL uses apostrophes when generating COBOL
code. If you specify LITDELIM=QUOTE, quotation marks are used, as in

 CALL "SQLROL" USING SQL-TMP0.

In SQL statements, you must use quotation marks to delimit identifiers containing
special or lowercase characters, as in

 EXEC SQL CREATE TABLE "Emp2" END-EXEC.

but you must use apostrophes to delimit string constants, as in

 EXEC SQL SELECT ENAME FROM EMP WHERE JOB = 'CLERK' END-EXEC.

Regardless of which delimiters are used in the Pro*COBOL source file, Pro*COBOL
generates the delimiters specified by the LITDELIM value.

LNAME

Purpose
Specifies a nondefault name for the listing file.

Using Pro*COBOL Precompiler Options

14-20 Pro*COBOL Programmer’s Guide

Syntax
LNAME=filename

Default
Input

Usage Notes
Cannot be entered inline.

By default, the listing file is written to the current directory.

LRECLEN

Purpose
Specifies the record length of the listing file.

Syntax
LRECLEN=integer

Default
132

Usage Notes
Cannot be entered inline.

The value of LRECLEN can range from 80 through 132. If you specify a value below
the range, 80 is used instead. If you specify a value above the range, an error occurs.
LRECLEN should exceed IRECLEN by at least 8 to allow for the insertion of line
numbers.

LTYPE

Purpose
Specifies the listing type.

Syntax
LTYPE={LONG | SHORT | NONE}

Default
LONG

Usage Notes
Cannot be entered inline.

Table 14–4 Types of Listings

Listing Types Description

LTYPE=LONG input lines appear in the listing file.

LTYPE=SHORT input lines do not appear in the listing file.

LTYPE=NONE no listing file is created.

Using Pro*COBOL Precompiler Options

Precompiler Options 14-21

MAXLITERAL

Purpose
Specifies the maximum length of string literals generated by Pro*COBOL so that
compiler limits are not exceeded. For example, if your compiler cannot handle string
literals longer than 132 characters, you can specify MAXLITERAL=132 on the
command line.

Syntax
MAXLITERAL=integer

Default
1024

Usage Notes
The maximum value of MAXLITERAL is compiler-dependent. The default value is
language-dependent, but you may have to specify a lower value. For example, some
COBOL compilers cannot handle string literals longer than 132 characters, so you
would specify MAXLITERAL=132.

Strings that exceed the length specified by MAXLITERAL are divided during
precompilation, then recombined (concatenated) at run time.

You can enter MAXLITERAL inline but your program can set its value just once, and
the EXEC ORACLE statement must precede the first EXEC SQL statement. Otherwise,
Pro*COBOL issues a warning message, ignores the extra or misplaced EXEC ORACLE
statement, and continues processing.

MAXOPENCURSORS

Purpose
Specifies the number of concurrently open cursors that Pro*COBOL tries to keep
cached.

Syntax
MAXOPENCURSORS=integer

Default
10

Usage Notes
You can use MAXOPENCURSORS to improve the performance of your program. For
more information, see Appendix C, "Performance Tuning".

When precompiling separately, use MAXOPENCURSORS as described in "Separate
Precompilations" on page 2-19.

MAXOPENCURSORS specifies the initial size of the SQLLIB cursor cache.

When an implicit statement is executed and HOLD_CURSOR=NO, or an explicit
cursor is closed, the cursor entry is marked as reusable. If this statement is issued
again and the cursor entry has not been used for another statement, it is reused.

If a new cursor is needed and the number of cursors allocated is less than
MAXOPENCURSORS, then the next one in the cache is allocated. Once

Using Pro*COBOL Precompiler Options

14-22 Pro*COBOL Programmer’s Guide

MAXOPENCCURSORS has been exceeded, Oracle first tries to reuse a previous entry.
If there are no free entries, then an additional cache entry is allocated. Oracle continues
to do this until the program runs out of memory or the database parameter OPEN_
CURSORS is exceeded.

During normal processing, when using HOLD_CURSOR=NO and RELEASE_
CURSOR=NO (the default), it is advisable to set MAXOPENCURSORS to no more
than 6 less than the database parameter OPEN_CURSORS to allow for the cursors
used by the data dictionary to process statements.

As your program's need for concurrently open cursors grows, you might want to
re-specify MAXOPENCURSORS to match the need. A value of 45 to 50 is not
uncommon, but remember that each cursor requires another private SQL area in the
user process memory space. The default value of 10 is adequate for most programs.

MODE

Purpose
This macro option specifies whether your program observes Oracle practices or
complies with the current ANSI SQL standard.

Syntax
MODE={ANSI | ISO | ANSI14 | ISO14 | ANSI13 | ISO13 | ORACLE}

Default
ORACLE

Usage Notes
Cannot be entered inline.

The following pairs of MODE values are equivalent: ANSI and ISO, ANSI14 and
ISO14, ANSI13 and ISO13.

When MODE=ORACLE (the default), your embedded SQL program observes Oracle
practices.

When MODE={ANSI14 | ANSI13}, your program complies closely with the current
ANSI SQL standard.

When MODE=ANSI, your program complies fully with the ANSI standard and the
following changes go into effect:

■ You cannot open a cursor that is already open or CLOSE a cursor that is already
closed. (When MODE=ORACLE, you can reOPEN an open cursor to avoid
re-parsing.)

■ No error message is issued if Oracle assigns a truncated column value to an output
host variable.

When MODE={ANSI | ANSI14}, a 4-byte integer variable named SQLCODE or a
5-byte character variable named SQLSTATE must be declared. For more information,
see "Error Handling Alternatives" on page 8-1.

Using Pro*COBOL Precompiler Options

Precompiler Options 14-23

NESTED

Purpose
Indicates whether GLOBAL clauses in nested programs are to be generated. If the
compiler supports nested programs, use YES as the value of NESTED.

Syntax
NESTED={YES | NO}

Default
YES

Usage Notes
Cannot be entered inline.

NLS_LOCAL

Purpose
The NLS_LOCAL option determines whether Globalization Support (formerly called
NLS) character conversions are performed by the Pro*COBOL runtime library or by
the Oracle Server.

Syntax
NLS_LOCAL={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

This option is for use when passing National Character Set variables to and from the
server.

When NLS_LOCAL=YES, the runtime library (SQLLIB) locally performs
blank-padding and blank-stripping for host variables that have multibyte
Globalization Support datatypes. Continue to use this value only for Pro*COBOL
applications written for releases before releases 8.0.

When NLS_LOCAL=YES, because dynamic SQL statements are not processed at
precompile time, this option has no effect on dynamic SQL statements.

Also, when NLS_LOCAL=YES, columns storing multibyte Globalization Support data
cannot be used in embedded data definition language (DDL) statements. This
restriction cannot be enforced when precompiling, so the use of these column types
within embedded DDL statements results in an execution error rather than a
precompile error.

When NLS_LOCAL=NO, blank-padding and blank-stripping operations are
performed by the Oracle Server for host variables that have multibyte Globalization
Support datatypes. Use for all new release 8.0, or later, applications.

The environment variable NLS_NCHAR specifies the character set used for National
Character Set data. (NCHAR, NVARCHAR2, NCLOB). If it is not specified, the

Using Pro*COBOL Precompiler Options

14-24 Pro*COBOL Programmer’s Guide

character set defined or defined indirectly by NLS_LANG will be used. See: the NLS_
LANG section in the Oracle Database Globalization Support Guide for details.

ONAME

Purpose
Specifies the name of the output file.

Syntax
ONAME=filename

Default
System dependent

Usage Notes
Cannot be entered inline.

Use this option to specify the name of the output file, where the name differs from that
of the input file. For example, if you issue

procob INAME=my_test

the default output filename is my_test.cob. If you want the output filename to be
my_test_1.cob, issue the command

procob INAME=my_test ONAME=my_test_1.cob

Note that you should add the .cob extension to files specified using ONAME. There is
no default extension with the ONAME option.

Attention: Oracle recommends that you not let the output filename default, but rather
name it explicitly using ONAME.

ORACA

Purpose
Specifies whether a program can use the Oracle Communications Area (ORACA).

Syntax
ORACA={YES | NO}

Default
NO

Usage Notes
When ORACA=YES, you must place the INCLUDE ORACA statement in your
program.

ORECLEN

Purpose
Specifies the record length of the output file.

Using Pro*COBOL Precompiler Options

Precompiler Options 14-25

Syntax
ORECLEN=integer

Default
80

Usage Notes
Cannot be entered inline.

The value you specify for ORECLEN should equal or exceed the value of IRECLEN.
The maximum value allowed is system-dependent.

PAGELEN

Purpose
Specifies the number of lines for each physical page of the listing file.

Syntax
PAGELEN=integer

Default
66

Usage Notes
Cannot be entered inline. The maximum value allowed is system-dependent.

PICX

Purpose
Specifies the default datatype of PIC X variables.

Syntax
PICX={CHARF | VARCHAR2}

Default
CHARF

Usage Notes
Can be entered only on the command line or in a configuration file.

Starting in Pro*COBOL 8.0, the default datatype of PIC X, N, or G variables was
changed from VARCHAR2 to CHARF. PICX is provided for backward compatibility.

This new default behavior is consistent with the normal COBOL move semantics. Note
that this is a change in behavior for the case where you are inserting a PIC X variable
(with MODE=ORACLE) into a VARCHAR2 column. Any trailing blanks which had
formerly been trimmed will be preserved. Note also, that the new default lessens the
occurrence of the following anomaly: Using a PIC X bind variable initialized with
trailing blanks in a WHERE clause would never match a value with the same number
of trailing blanks which was stored in a char column because the bind variable's
trailing blanks were stripped before the comparison.

Using Pro*COBOL Precompiler Options

14-26 Pro*COBOL Programmer’s Guide

When PICX=VARCHAR2, Oracle treats local CHAR variables in a PL/SQL block like
variable-length character values. When PICX=CHARF, however, Oracle treats the
CHAR variables like ANSI-compliant, fixed-length character values. See "Default for
PIC X" on page 4-23 for an extensive discussion.

PREFETCH

Purpose
Use this option to speed up queries by pre-fetching a given number of rows.

Syntax
PREFETCH=integer

Default
1

Usage Notes
Can be used in a configuration file or on the command-line. The value of the integer is
used for execution of all queries using explicit cursors, subject to the rules of
precedence.

When used in-line it must be placed before OPEN statements with explicit cursors.
Then the number of rows pre-fetched when that OPEN is done is determined by the
last in-line PREFETCH option in effect.

The PREFETCH default is 1. To turn off prefetching, use PREFETCH=0 on the
command line.

Prefetching is turned off when LONG or LOB columns are being accessed. PREFETCH
is used to enhance the performance of single row fetches. PREFETCH values have no
effect when doing array fetches, regardless of which value is assigned.

There is no single perfect prefetch number that can be used to assist all the fetches in an
application.

Therefore, when using the PREFETCH option, you should test different values to give
a general improvement across all statements in the program. Note that if certain
statements need to be tuned individually, the PREFETCH option can be specified in
line using EXEC ORACLE OPTION. Note that this will affect all fetch statements that
follow the command in your program. Select the appropriate prefetch number to
enhance the performance of any particular FETCH statement. To achieve this
individual prefetch count, you should use the inline prefetch option. (Rather than from
the command line.)

The maximum value is 9999. See "The PREFETCH Precompiler Option" on page 5-13
for further discussion.

RELEASE_CURSOR

Purpose
Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the
cursor cache.

Syntax
RELEASE_CURSOR={YES | NO}

Using Pro*COBOL Precompiler Options

Precompiler Options 14-27

Default
NO

Usage Notes
You can use RELEASE_CURSOR to improve the performance of your program. For
more information, see .

When a SQL data manipulation statement is executed, its associated cursor is linked to
an entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle
private SQL area, which stores information needed to process the statement.
RELEASE_CURSOR controls what happens to the link between the cursor cache and
private SQL area.

When RELEASE_CURSOR=YES, after Oracle executes the SQL statement and the
cursor is closed, Pro*COBOL immediately removes the link. This frees memory
allocated to the private SQL area and releases parse locks. To make sure that associated
resources are freed when you CLOSE a cursor, you must specify RELEASE_
CURSOR=YES.

When RELEASE_CURSOR=NO, the link is maintained. Pro*COBOL does not reuse
the link unless the number of open cursors exceeds the value of MAXOPENCURSORS.
This is useful for SQL statements that are executed often because it speeds up
subsequent executions. There is no need to re-parse the statement or allocate memory
for an Oracle private SQL area.

For inline use with implicit cursors, set RELEASE_CURSOR before executing the SQL
statement. For inline use with explicit cursors, set RELEASE_CURSOR before opening
the cursor.

Note that RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES. For information
showing how these two options interact, see Appendix C, "Performance Tuning",
specifically Table C–1, " HOLD_CURSOR and RELEASE _CURSOR Interactions" on
page C-9.

SELECT_ERROR

Purpose
Specifies whether your program generates an error when a SELECT statement returns
more than one row or more rows than a host array can accommodate.

Syntax
SELECT_ERROR={YES | NO}

Default
YES

Usage Notes
When SELECT_ERROR=YES, an error is generated if a single-row select returns too
many rows or an array select returns more rows than the host array can accommodate.

When SELECT_ERROR=NO, no error is generated when a single-row select returns
too many rows or when an array select returns more rows than the host array can
accommodate.

Whether you specify YES or NO, a random row is selected from the table. To ensure a
specific ordering of rows, use the ORDER BY clause in your SELECT statement. When

Using Pro*COBOL Precompiler Options

14-28 Pro*COBOL Programmer’s Guide

SELECT_ERROR=NO and you use ORDER BY, Oracle returns the first row, or the first
n rows if you are selecting into an array. When SELECT_ERROR=YES, whether or not
you use ORDER BY, an error is generated if too many rows are returned.

SQLCHECK

Purpose
Specifies the type and extent of syntactic and semantic checking.

Syntax
SQLCHECK={SEMANTICS | FULL | SYNTAX | LIMITED}

Default
SYNTAX

Usage Notes
The values SEMANTICS and FULL are equivalent, as are the values SYNTAX and
LIMITED.

Pro*COBOL can help you debug a program by checking the syntax and semantics of
embedded SQL statements and PL/SQL blocks. Any errors found are reported at
precompile time.

You control the level of checking by entering the SQLCHECK option inline or on the
command line, or both inline and on the command line. However, the level of
checking you specify inline cannot be higher than the level you specify (or accept by
default) on the command line.

Pro*COBOL generates an error when PL/SQL reserved words are used in SQL
statements, even though the SQL statements are not themselves PL/SQL. If a PL/SQL
reserved word must be used as an identifier, you can enclose it in double-quotes (").

When SQLCHECK=SEMANTICS, Pro*COBOL checks the syntax and semantics of

■ Data manipulation statements such as INSERT and UPDATE

■ PL/SQL blocks

However, Pro*COBOL checks only the syntax of remote data manipulation statements
(those using the AT db_name clause).

Pro*COBOL gets the information for a semantic check from embedded DECLARE
TABLE statements or, if you specify the option USERID, by connecting to Oracle and
accessing the data dictionary. You need not connect to Oracle if every table referenced
in a data manipulation statement or PL/SQL block is defined in a DECLARE TABLE
statement.

If you connect to Oracle but some information cannot be found in the data dictionary,
you must use DECLARE TABLE statements to supply the missing information. During
precompilation, a DECLARE TABLE definition overrides a data dictionary definition if
they conflict.

Specify SQLCHECK=SEMANTICS when precompiling new programs. If you embed
PL/SQL blocks in a host program, you must specify SQLCHECK=SEMANTICS and
the option USERID.

When SQLCHECK=SYNTAX, Pro*COBOL checks the syntax of data manipulation
statements

Using Pro*COBOL Precompiler Options

Precompiler Options 14-29

No semantic checking is done. DECLARE TABLE statements are ignored and PL/SQL
blocks are not allowed. When checking data manipulation statements, Pro*COBOL
uses Oracle9i syntax rules, which are downwardly compatible. Specify
SQLCHECK=SYNTAX when migrating your precompiled programs.

Table 14–5 summarizes the checking done by SQLCHECK. For more information
about syntactic and semantic checking, see Appendix D, "Syntactic and Semantic
Checking".

THREADS

Purpose
When THREADS=YES, the precompiler allows multithreaded applications.

Syntax
THREADS={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

This precompiler option is required for any program that requires multithreading
support.

With THREADS=YES, the precompiler generates an error if no EXEC SQL CONTEXT
USE directive is encountered before the first context is visible and an executable SQL
statement is found. For more information, see Chapter 12, "Multithreaded
Applications".

TYPE_CODE

Purpose
This micro option of MODE specifies whether ANSI or Oracle datatype codes are used
in ANSI dynamic SQL method 4. Its setting is the same as the setting of MODE option.

Syntax
TYPE_CODE={ORACLE | ANSI}

Default
ORACLE

Table 14–5 Checking Done by SQLCHECK

-
SQLCHECK=
SEMANTICS -

SQLCHECK=
SYNTAX -

- Syntax Semantics Syntax Semantics

DML X X X -

Remote
DML

X - X -

PL/SQL X X - -

Using Pro*COBOL Precompiler Options

14-30 Pro*COBOL Programmer’s Guide

Usage Notes
Cannot be entered inline.

See the possible option settings inTable 10–3 on page 10-9.

UNSAFE_NULL

Purpose
Specifying UNSAFE_NULL=YES prevents generation of ORA-01405 messages when
fetching NULLs without using indicator variables.

Syntax
UNSAFE_NULL={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

The UNSAFE_NULL=YES is allowed only when MODE=ORACLE.

The UNSAFE_NULL option has no effect on host variables in an embedded PL/SQL
block. You must use indicator variables to avoid ORA-01405 errors.

When UNSAFE_NULL=YES, no error is returned if a SELECT or FETCH statement
selects a NULL, and there is no indicator variable associated with the output host
variable. When UNSAFE_NULL=NO, selecting or fetching a NULL column or
expression into a host variable that has no associated indicator variable causes an error
(SQLSTATE is 22002; SQLCODE is ORA-01405).

USERID

Purpose
Specifies an Oracle username and password.

Syntax
USERID=username/password[@dbname]

Default
None

Usage Notes
Cannot be entered inline.

When SQLCHECK=SEMANTICS, if you want Pro*COBOL to get needed information
by connecting to Oracle and accessing the data dictionary, you must also specify
USERID. The database alias is optional. Do not enter the brackets.

Using Pro*COBOL Precompiler Options

Precompiler Options 14-31

VARCHAR

Purpose
The VARCHAR option instructs Pro*COBOL to treat the COBOL group item described
in Chapter 5, "Embedded SQL" as a VARCHAR datatype.

Syntax
VARCHAR={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

When VARCHAR=YES, the implicit group item described in Chapter 5, "Embedded
SQL" is accepted as a VARCHAR external datatype with a length field and a string
field.

When VARCHAR=NO, Pro*COBOL does not accept the implicit group items as
VARCHAR external datatypes.

XREF

Purpose
Specifies whether a cross-reference section is included in the listing file.

Syntax
XREF={YES | NO}

Default
YES

Usage Notes
When XREF=YES, cross references are included for host variables, cursor names, and
statement names. The cross references show where each object is defined and
referenced in your program.

When XREF=NO, the cross-reference section is not included.

Using Pro*COBOL Precompiler Options

14-32 Pro*COBOL Programmer’s Guide

Operating System Dependencies A-1

A
Operating System Dependencies

Some details of COBOL programming vary from one system to another. This appendix
is a collection of all system-specific issues regarding Pro*COBOL. References are
provided, where applicable, to other sources in your document set.

System-Specific References in this Manual
System-specific references are described in the following section, grouped by subject
area.

COBOL Versions
The Pro*COBOL Precompiler supports the standard implementation of COBOL for
your operating system (usually COBOL-85 or COBOL-74). Some platforms may
support both COBOL implementations. Check your Oracle system-specific
documentation.

Host Variables
How you declare and name host variables depends on which COBOL compiler you
use. Check your COBOL user's guide for details about declaring and naming host
variables.

Declaring
Declare host variables according to COBOL rules, specifying a COBOL datatype
supported by Oracle. Table 4–6, " Host Variable Declarations" on page 4-12 shows the
COBOL datatypes and pseudotypes you can specify. However, your COBOL
implementation might not include all of them.

Naming
Host variable names must consist only of letters, digits, and hyphens. They must begin
with a letter. They can be any length, but only the first 30 characters are significant.
Your compiler might allow a different maximum length.

Due to a Pro*COBOL limitation, when interacting with SQLLIB (C routines), some
unpredictable results may occur unless boundaries for host variables are properly
aligned. Refer to your COBOL documentation for specific information on defining
host variable boundary alignment. Work-arounds could include:

■ Manual alignment using FILLER

■ FORCE the boundary by using 01 level entries

System-Specific References in this Manual

A-2 Pro*COBOL Programmer’s Guide

■ If the data source is third party code, then use temporary variables at 77 level
entries or 01 level entries, and use those as host variables.

INCLUDE Statements
You can INCLUDE any file. When you precompile your Pro*COBOL program, each
EXEC SQL INCLUDE statement is replaced by a copy of the file named in the
statement.

If your system uses file extensions but you do not specify one, the Pro*COBOL
Precompiler assumes the default extension for source files (usually COB). The default
extension is system-dependent. Check your Oracle system-specific documentation.

If your system uses directories, you can set a directory path for included files by
specifying the precompiler option INCLUDE=path. You must use INCLUDE to specify
a directory path for nonstandard files unless they are stored in the current directory.
The syntax for specifying a directory path is system-specific. Check your Oracle
system-specific documentation.

MAXLITERAL Default
With the MAXLITERAL precompiler option you can specify the maximum length of
string literals generated by the precompiler, so that compiler limits are not exceeded.
The MAXLITERAL default value is 1024, but you might have to specify a lower value.

For example, if your COBOL compiler cannot handle string literals longer than 132
characters, specify "MAXLITERAL=132." Check your COBOL compiler user's guide.
For more information about the MAXLITERAL option, see Chapter 14, "Precompiler
Options"

PIC N or Pic G Clause for Multi-byte Globalization Support Characters
Some COBOL compilers may not support the use of the PIC N or PIC G clause for
declaring multibyte Globalization Support character variables. Check your COBOL
user's guide before writing source code that uses these clauses to declare multibyte
character variables.

RETURN-CODE Special Register May Be Unpredictable.
The contents of the RETURN-CODE special register (for those systems that support it)
are unpredictable after any SQL statement or SQLLIB function.

Byte-Order of Binary Data
On some platforms such as NT, the COBOL compiler reverses the byte-ordering of
binary data. See your platform-specific documentation for the COMP5 precompiler
option.

Reserved Words, Keywords, and Namespaces B-1

B
Reserved Words, Keywords, and

Namespaces

Topics in this appendix include:

■ Reserved Words and Keywords

■ Reserved Namespaces

Reserved Words and Keywords
Some words are reserved by Oracle. That is, they have a special meaning to Oracle and
cannot be redefined. For this reason, you cannot use them to name database objects
such as columns, tables, or indexes. To view the lists of the Oracle reserved words for
SQL and PL/SQL, see the Oracle Database SQL Reference and the PL/SQL User's Guide
and Reference.

Like COBOL keywords, you cannot use Pro*COBOL keywords as variables in your
program(s). Otherwise, an error will be generated. An error may result if they are used
as the name of a database object such as a column. Here are the keywords used in
Pro*COBOL.

Keywords in Pro*COBOL Keywords in Pro*COBOL Keywords in Pro*COBOL

all allocate alter

analyze and any

append arraylen as

asc assign at

audit authorization avg

begin between bind

both break buffer

buffering by call

cast char character

character_set_name charf charz

check chunksize close

comment commit connect

constraint constraints context

continue convbufsz copy

Reserved Words and Keywords

B-2 Pro*COBOL Programmer’s Guide

count create current

currval cursor data

database date datetime_interval_code

datetime_interval_precision day deallocate

decimal declare default

define delete desc

describe descriptor directory

disable display distinct

do drop else

enable end end-exec

endif erase escape

exec execute exists

explain extract fetch

file fileexists filename

first float flush

for force found

free from function

get global go

goto grant group

having hold host_stride_length

hour iaf identified

ifdef ifndef immediate

in include indicator

indicator_stride_length input insert

integer internal_length intersect

interval into is

isopen istemporary last

leading length level

like list load

lob local lock

long max message

min minus minute

mode month name

national_character nchar next

nextval noaudit not

notfound nowait null

nullable number nvarchar2

octet_length of one

Keywords in Pro*COBOL Keywords in Pro*COBOL Keywords in Pro*COBOL

Reserved Namespaces

Reserved Words, Keywords, and Namespaces B-3

Reserved Namespaces
Table B–1 contains a list of namespaces that are reserved by Oracle. The initial
characters of subprogram names in Oracle libraries are restricted to the character

only open option

or oracle order

output overlaps overpunch

package partition perform

precision prepare prior

procedure put raw

read ref reference

release rename replace

return returned_length returned_octet_length

returning revoke role

rollback rowid rownum

savepoint scale second

section select set

some sql sql-context

sql-cursor sqlerror sqlwarning

start statement stddev

stop string sum

sysdate sysdba sysoper

table temporary threads

time timestamp timezone_hour

timezone_minute to tools

trailing transaction trigger

trim truncate type

uid union unique

unsigned user_defined_type_name user_defined_type_name_length

user_defined_type_schema user_defined_type_schema_length user_defined_type_version

update use user

using validate value

values var varchar

varchar2 variables variance

varnum varraw view

whenever where with

work write year

zone - -

Keywords in Pro*COBOL Keywords in Pro*COBOL Keywords in Pro*COBOL

Reserved Namespaces

B-4 Pro*COBOL Programmer’s Guide

strings in this list. Because of potential name conflicts, use subprogram names that do
not begin with these characters.

For example, the Oracle Net Transparent Network Service functions all begin with the
characters "NS," so avoid writing subprograms with names beginning with "NS."

Table B–1 Reserved Namespaces

Namespace Library

 XA external functions for XA applications only

 SQ external SQLLIB functions used by Oracle Precompiler and
SQL*Module applications

 O, OCI external OCI functions internal OCI functions

 UPI, KP function names from the Oracle UPI layer

NA

NC

ND

NL

NM

NR

NS

NT

NZ

OSN

TTC

Oracle Net Native services product

Oracle Net RPC project

Oracle Net Directory

Oracle Net Network Library layer

Oracle Net Net Management Project

Oracle Net Interchange

Oracle Net Transparent Network Service

Oracle Net Drivers

Oracle Net Security Service

Oracle Net V1

Oracle Net Two task

 GEN, L, ORA Core library functions

 LI, LM, LX function names from the Oracle Globalization Support layer

 S function names from system-dependent libraries

Performance Tuning C-1

C
Performance Tuning

This appendix shows you some simple, easy-to-apply methods for improving the
performance of your applications. Using these methods, you can often reduce
processing time by 25 percent or more. Topics are:

■ Causes of Poor Performance

■ Improving Performance

■ Using Host Tables

■ Using PL/SQL and Java

■ Optimizing SQL Statements

■ Using Indexes

■ Taking Advantage of Row-Level Locking

■ Eliminating Unnecessary Parsing

Causes of Poor Performance
One cause of poor performance is high Oracle communication overhead. Oracle must
process SQL statements one at a time. Thus, each statement results in another call to
Oracle and higher overhead. In a networked environment, SQL statements must be
sent over the network, adding to network traffic. Heavy network traffic can slow
down your application significantly.

Another cause of poor performance is inefficient SQL statements. Because SQL is so
flexible, you can get the same result using two different statements. Using one
statement might be less efficient. For example, the following two SELECT statements
return the same rows (the name and number of every department having at least one
employee):

 EXEC SQL SELECT DNAME, DEPTNO
 FROM DEPT
 WHERE DEPTNO IN (SELECT DEPTNO FROM EMP)
 END-EXEC.

Contrasted with:

 EXEC SQL SELECT DNAME, DEPTNO
 FROM DEPT
 WHERE EXISTS
 (SELECT DEPTNO FROM EMP WHERE DEPT.DEPTNO = EMP.DEPTNO)
 END-EXEC.

Improving Performance

C-2 Pro*COBOL Programmer’s Guide

The first statement is slower because it does a time-consuming full scan of the EMP
table for every department number in the DEPT table. Even if the DEPTNO column in
EMP is indexed, the index is not used because the subquery lacks a WHERE clause
naming DEPTNO.

Another cause of poor performance is unnecessary parsing and binding. Recall that
before executing a SQL statement, Oracle must parse and bind it. Parsing means
examining the SQL statement to make sure it follows syntax rules and refers to valid
database objects. Binding means associating host variables in the SQL statement with
their addresses so that Oracle can read or write their values.

Many applications manage cursors poorly. This results in unnecessary parsing and
binding, which adds noticeably to processing overhead.

Improving Performance
If you are unhappy with the performance of your precompiled programs, there are
several ways you can reduce overhead.

You can greatly reduce Oracle communication overhead, especially in networked
environments, by

■ Using host tables

■ Using embedded PL/SQL

You can reduce processing overhead—sometimes dramatically—by

■ Optimizing SQL statements

■ Using indexes

■ Taking advantage of row-level locking

■ Eliminating unnecessary parsing

■ Avoiding unnecessary reparsing

The following sections look at each of these ways to cut overhead.

Using Host Tables
Host tables can boost performance because they let you manipulate an entire collection
of data with a single SQL statement. For example, suppose you want to insert salaries
for 300 employees into the EMP table. Without tables your program must do 300
individual inserts—one for each employee. With arrays, only one INSERT is necessary.
Consider the following statement:

 EXEC SQL INSERT INTO EMP (SAL) VALUES (:SALARY) END-EXEC.

If SALARY is a simple host variable, Oracle executes the INSERT statement once,
inserting a single row into the EMP table. In that row, the SAL column has the value of
SALARY. To insert 300 rows this way, you must execute the INSERT statement 300
times.

However, if SALARY is a host table of size 300, Oracle inserts all 300 rows into the
EMP table at once. In each row, the SAL column has the value of an element in the
SALARY table.

For more information, see Chapter 7, "Host Tables"

Optimizing SQL Statements

Performance Tuning C-3

Using PL/SQL and Java
As Figure C–1 shows, if your application is database-intensive, you can use control
structures to group SQL statements in a PL/SQL block, then send the entire block to
Oracle. This can drastically reduce communication between your application and the
database.

Also, you can use PL/SQL and Java subprograms to reduce calls from your
application to the database. For example, to execute ten individual SQL statements, ten
calls are required, but to execute a subprogram containing ten SQL statements, only
one call is required.

Unlike anonymous blocks, PL/SQL and Java subprograms can be compiled separately
and stored in a database. When called, they are passed to the PL/SQL engine
immediately. Moreover, only one copy of a subprogram need be loaded into memory
for execution by multiple users.

Figure C–1 PL/SQL Boosts Performance

This illustration shows that, if your application is database-intensive, then you can use
control structures to group SQL statements in a PL/SQL block, and send the entire
block to Oracle.

Optimizing SQL Statements
For every SQL statement, the optimizer generates an execution plan, which is a series of
steps that Oracle takes to execute the statement. These steps are determined by rules
given in the Oracle Database Application Developer's Guide - Fundamentals. Following
these rules will help you write optimal SQL statements.

SQL
IF ... THEN

SQL
ELSE

SQL
END IF
SQL

RPC

SQL

SQL

SQL

SQL

Application

Application

Application

Other DBMSs

Oracle8i
with PL/SQL

Oracle8i
with PL/SQL
and Stored
Procedures

PL/SQL Increases Performance
Especially in Networked Environments

Using Indexes

C-4 Pro*COBOL Programmer’s Guide

Optimizer Hints
For every SQL statement, the optimizer generates an execution plan, which is a series of
steps that Oracle takes to execute the statement. In some cases, you can suggest the
way to optimize a SQL statement. These suggestions, called hints, let you influence
decisions made by the optimizer.

Hints are not directives; they merely help the optimizer do its job. Some hints limit the
scope of information used to optimize a SQL statement, while others suggest overall
strategies. You can use hints to specify the:

■ Optimization approach for a SQL statement

■ Access path for each referenced table

■ Join order for a join

■ Method used to join tables

Giving Hints
You give hints to the optimizer by placing them in a C-style Comment immediately
after the verb in a SELECT, UPDATE, or DELETE statement. You can choose
rule-based or cost-based optimization. With cost-based optimization, hints help
maximize throughput or response time. In the following example, the ALL_ROWS
hint helps maximize query throughput:

 EXEC SQL SELECT /*+ ALL_ROWS (cost-based) */ EMPNO, ENAME, SAL
 INTO :EMP-NUMBER, :EMP-NAME, :SALARY
 FROM EMP
 WHERE DEPTNO = :DEPT-NUMBER
 END-EXEC.

The plus sign (+), which must immediately follow the Comment opener, indicates that
the Comment contains one or more hints. Notice that the Comment can contain
remarks as well as hints.

For more information about optimizer hints, see the Oracle Database Application
Developer's Guide - Fundamentals

Trace Facility

You can use the SQL trace facility and the EXPLAIN PLAN statement to identify SQL
statements that might be slowing down your application. The trace facility generates
statistics for every SQL statement executed by Oracle. From these statistics, you can
determine which statements take the most time to process. You can then concentrate
your tuning efforts on those statements.

The EXPLAIN PLAN statement shows the execution plan for each SQL statement in
your application. You can use the execution plan to identify inefficient SQL statements.

See Also: Oracle Database Application Developer's Guide - Fundamentals for instructions
on using trace tools and analyzing their output.

Using Indexes
Using rowids, an index associates each distinct value in a table column with the rows
containing that value. An index is created with the CREATE INDEX statement. For
details, see the Oracle Database SQL Reference.

You can use indexes to boost the performance of queries that return less than 15% of
the rows in a table. A query that returns 15% or more of the rows in a table is executed

Eliminating Unnecessary Parsing

Performance Tuning C-5

faster by a full scan, that is, by reading all rows sequentially. Any query that names an
indexed column in its WHERE clause can use the index. For guidelines that help you
choose which columns to index, see the Oracle Database Application Developer's Guide -
Fundamentals.

Taking Advantage of Row-Level Locking
By default, Oracle locks data at the row level rather than the table level. Row-level
locking allows multiple users to access different rows in the same table concurrently.
The resulting performance gain is significant.

You can specify table-level locking, but it lessens the effectiveness of the transaction
processing option. For more information about table locking, see "Using the LOCK
TABLE Statement" on "Using the LOCK TABLE Statement" on page 3-17.

Applications that do online transaction processing benefit most from row-level
locking. If your application relies on table-level locking, modify it to take advantage of
row-level locking. In general, avoid explicit table-level locking.

Eliminating Unnecessary Parsing
Eliminating unnecessary parsing requires correct handling of cursors and selective use
of the following cursor management options:

■ MAXOPENCURSORS

■ HOLD_CURSOR

■ RELEASE_CURSOR

These options affect implicit and explicit cursors, the cursor cache, and private SQL
areas.

Note: You can use the ORACA to get cursor cache statistics. See "Using the Oracle
Communications Area" on page 8-17.

Handling Explicit Cursors
Recall that there are two types of cursors: implicit and explicit (see "Errors and
Warnings" on page 2-6). Oracle implicitly declares a cursor for all data definition and
data manipulation statements. However, for queries that return more than one row,
you should explicitly declare a cursor and fetch in batches rather than select into a host
table. You use the DECLARE CURSOR statement to declare an explicit cursor. How
you handle the opening and closing of explicit cursors affects performance.

If you need to reevaluate the active set, simply reopen the cursor. The OPEN statement
will use any new host-variable values. You can save processing time if you do not
close the cursor first.

Only CLOSE a cursor when you want to free the resources (memory and locks)
acquired by OPENing the cursor. For example, your program should close all cursors
before exiting.

Note: To make performance tuning easier, the precompiler lets you reopen an already
open cursor. However, this is an Oracle extension to the ANSI/ISO embedded SQL
standard. So, when MODE=ANSI, you must close a cursor before reopening it.

Cursor Control
In general, there are three factors that affect the control of an explicitly declared cursor:

Eliminating Unnecessary Parsing

C-6 Pro*COBOL Programmer’s Guide

■ Using the DECLARE, OPEN, FETCH, and CLOSE statements.

■ Using the PREPARE, DECLARE, OPEN, FETCH, and CLOSE statements

■ COMMIT closes the cursor when MODE=ANSI

With the first way, beware of unnecessary parsing. The OPEN statement does the
parsing, but only if the parsed statement is unavailable because the cursor was closed
or never opened. Your program should declare the cursor, re-open it every time the
value of a host variable changes, and close it only when the SQL statement is no longer
needed.

With the second way, which is used in dynamic SQL Methods 3 and 4, the PREPARE
statement does the parsing, and the parsed statement is available until a CLOSE
statement is executed. Your program should prepare the SQL statement and declare
the cursor, re-open the cursor every time the value of a host variable changes,
re-prepare the SQL statement and re-open the cursor if the SQL statement changes,
and close the cursor only when the SQL statement is no longer needed.

When possible, avoid placing OPEN and CLOSE statements in a loop; this is a
potential cause of unnecessary re-parsing of the SQL statement. In the next example,
both the OPEN and CLOSE statements are inside the outer loop. When MODE=ANSI,
the CLOSE statement must be positioned as shown, because ANSI requires a cursor to
be closed before being re-opened.

 EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, SAL FROM EMP
 WHERE SAL > :SALARY
 AND SAL <= :SALARY + 1000
 END-EXEC.
 MOVE 0 TO SALARY.
 TOP.
 EXEC SQL OPEN emp_cursor END-EXEC.
 LOOP.
 EXEC SQL FETCH emp_cursor INTO
 ...
 IF SQLCODE = 0
 GO TO LOOP
 ELSE
 ADD 1000 TO SALARY
 END-IF.
 EXEC SQL CLOSE emp_cursor END-EXEC.
 IF SALARY < 5000
 GO TO TOP.

With MODE=ORACLE, however, by placing the CLOSE statement outside the outer
loop, you can avoid possible re-parsing at each iteration of the OPEN statement.

 TOP.
 EXEC SQL OPEN emp_cursor END-EXEC.
 LOOP.
 EXEC SQL FETCH emp_cursor INTO
 ...
 IF SQLCODE = 0
 GO TO LOOP
 ELSE
 ADD 1000 TO SALARY
 END-IF.
 IF SALARY < 5000
 GO TO TOP.
 EXEC SQL CLOSE emp_cursor END-EXEC.

Eliminating Unnecessary Parsing

Performance Tuning C-7

Using the Cursor Management Options
A SQL statement need be parsed only once unless you change its makeup. For
example, you change the makeup of a query by adding a column to its select list or
WHERE clause. The HOLD_CURSOR, RELEASE_CURSOR, and
MAXOPENCURSORS options give you some control over how Oracle manages the
parsing and re-parsing of SQL statements. Declaring an explicit cursor gives you
maximum control over parsing.

Private SQL Areas and Cursor Cache
When any statement is executed, its associated cursor is linked to an entry in the
cursor cache. The cursor cache is a continuously updated area of memory used for
cursor management. The cursor cache entry is in turn linked to a private SQL area.

The private SQL area, a work area created dynamically at run time by Oracle, contains
the parsed SQL statement, the addresses of host variables, and other information
needed to process the statement. Dynamic Method 3 lets you name a SQL statement,
access the information in its private SQL area, and, to some extent, control its
processing.

Figure C–2 represents the cursor cache after your program has done an insert and a
delete.

Figure C–2 Cursors Linked through the Cursor Cache

This illustration represents the cursor cache after your program has done an insert and
a delete.

Resource Use
The maximum number of open cursors for each user session is set by the initialization
parameter OPEN_CURSORS.

MAXOPENCURSORS specifies the initial size of the cursor cache. If a new cursor is
needed and there are no free cache entries, Oracle tries to reuse an entry. Its success
depends on the values of HOLD_CURSOR and RELEASE_CURSOR and, for explicit
cursors, on the status of the cursor itself.

If the value of MAXOPENCURSORS is less than the number of statements that need to
be cached during the execution of the program, Oracle will search for cursor cache
entries to reuse once MAXOPENCURSORS cache entries have been exhausted. For
example, suppose the cache entry E(1) for an INSERT statement is marked as reusable,
and the number of cache entries already equals MAXOPENCURSORS. If the program

Cursor Cache

Context Area

Context Area

E(1)

E(2)

E(MAXOPENCURSORS)

EXEC SQL INSERT ...
Cursor

EXEC SQL DELETE ...
Cursor

.

.

.

.

.

.

Eliminating Unnecessary Parsing

C-8 Pro*COBOL Programmer’s Guide

executes a new statement, cache entry E(1) and its private SQL area might be
reassigned to the new statement. To reexecute the INSERT statement, Oracle would
have to re-parse it and reassign another cache entry.

Oracle allocates an additional cache entry if it cannot find one to reuse. For example, if
MAXOPENCURSORS=8 and all eight entries are active, a ninth is created. If necessary,
Oracle keeps allocating additional cache entries until it runs out of memory or reaches
the limit set by OPEN_CURSORS. This dynamic allocation adds to processing
overhead.

Thus, specifying a low value for MAXOPENCURSORS with HOLD_CURSOR=NO
(the default) saves memory but causes potentially expensive dynamic allocations and
de-allocations of new cache entries. Specifying a high value for MAXOPENCURSORS
assures speedy execution but uses more memory.

Infrequent Execution
Sometimes, the link between an infrequently executed SQL statement and its private
SQL area should be temporary.

When HOLD_CURSOR=NO (the default), after Oracle executes the SQL statement
and the cursor is closed, the precompiler marks the link between the cursor and cursor
cache as reusable. The link is reused as soon as the cursor cache entry to which it
points is needed for another SQL statement. This frees memory allocated to the private
SQL area and releases parse locks. However, because a prepared cursor must remain
active, its link is maintained even when HOLD_CURSOR=NO.

When RELEASE_CURSOR=YES, after Oracle executes the SQL statement and the
cursor is closed, the private SQL area is automatically freed and the parsed statement
lost. This might be necessary if, for example, you wish to conserve memory.

When RELEASE_CURSOR=YES, the link between the private SQL area and the cache
entry is immediately removed and the private SQL area freed. Even if you tried to
specify HOLD_CURSOR=YES, Oracle must still reallocate memory for a private SQL
area and re-parse the SQL statement before executing it. Therefore, specifying
RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES.

Frequent Execution
The links between a frequently executed SQL statement and its private SQL area should
be maintained, because the private SQL area contains all the information needed to
execute the statement. Maintaining access to this information makes subsequent
execution of the statement much faster.

When HOLD_CURSOR=YES, the link between the cursor and cursor cache is
maintained after Oracle executes the SQL statement. Thus, the parsed statement and
allocated memory remain available. This is useful for SQL statements that you want to
keep active because it avoids unnecessary re-parsing.

Effect on the Shared SQL Area
Oracle9i caches the parsed representations of SQL statements and PL/SQL in its
Shared SQL Cache. These representations are maintained until aged out by the need
for the space to be used for other statements. For more information, see the Oracle
Database Concepts manual. The behavior of the Oracle server in this respect is
unaffected by the Precompiler's cursor management settings and so can have the
following effects:

Avoiding Unnecessary Reparsing

Performance Tuning C-9

■ When RELEASE_CURSOR=YES and a statement is re executed, a request will be
sent to the server to parse the statement but a full parse may not be necessary since
the statement may still be cached.

■ When using HOLD_CURSOR=YES no locks are held on any objects referred to in
the statement and so a redefinition of one of the objects in the statement will force
the cached statement to become invalid and for the server to automatically reparse
the statement. This may cause unexpected results.

■ Nonetheless, when RELEASE_CURSOR=YES, the re-parse might not require extra
processing because Oracle caches the parsed representations of SQL statements
and PL/SQL blocks in its Shared SQL Cache. Even if its cursor is closed, the parsed
representation remains available until it is aged out of the cache.

Embedded PL/SQL Considerations
For the purposes of cursor management, an embedded PL/SQL block is treated just
like a SQL statement. When an embedded PL/SQL block is executed, a parent cursor
is associated with the entire block and a link is created between the cache entry and
the private SQL area in the PGA for the embedded PL/SQL block. Be aware that each
SQL statement inside the embedded block also requires a private SQL area in the PGA.
These SQL statements use child cursors that PL/SQL manages itself. The disposition
of the child cursors is determined through its associated parent cursor. That is, the
private SQL areas used by the child cursors are freed after the private SQL area for its
parent cursor is freed.

Note:

Using the defaults, HOLD_CURSOR=YES and RELEASE_CURSOR=NO, after
executing a SQL statement with an earlier Oracle version, its parsed representation
remains available. With Oracle9i, under similar conditions, the parsed representation
remains available only until it is aged out of the Shared SQL Cache. Normally, this is
not a problem, but you might get unexpected results if the definition of a referenced
object changes before the SQL statement is re-parsed.

Parameter Interactions
Table C–1 shows how HOLD_CURSOR and RELEASE_CURSOR interact. Notice that
HOLD_CURSOR=NO overrides RELEASE_CURSOR=NO and that RELEASE_
CURSOR=YES overrides HOLD_CURSOR=YES.

 Avoiding Unnecessary Reparsing
When an embedded SQL statement is executed in a loop, it gets parsed only once.
However, the execute phase of the SQL statement can result in errors, and statements
are reparsed, with the following exceptions:

■ ORA-1403 (not found)

■ ORA-1405 (truncation)

Table C–1 HOLD_CURSOR and RELEASE _CURSOR Interactions

HOLD_CURSOR RELEASE_CURSOR Links are...

NO NO marked as reusable

YES NO maintained

NO YES removed immediately

YES YES removed immediately

Avoiding Unnecessary Reparsing

C-10 Pro*COBOL Programmer’s Guide

■ ORA-1406 (null value)

By correcting the errors, you can eliminate this unnecessary reparsing.

Syntactic and Semantic Checking D-1

D
Syntactic and Semantic Checking

By checking the syntax and semantics of embedded SQL statements and PL/SQL
blocks, the Oracle Precompilers help you quickly find and fix coding mistakes. This
appendix shows you how to use the SQLCHECK option to control the type and extent
of checking.

Topics are:

■ Syntactic and Semantic Checking Basics

■ Controlling the Type and Extent of Checking

■ Specifying SQLCHECK=SEMANTICS

Syntactic and Semantic Checking Basics
Rules of syntax specify how language elements are sequenced to form valid
statements. Thus, syntactic checking verifies that keywords, object names, operators,
delimiters, and so on are placed correctly in your SQL statement. It also applies to
procedures and functions called from PL/SQL blocks. For example, the following
embedded SQL statements contain syntax errors:

* -- misspelled keyword WHERE
 EXEC SQL DELETE FROM EMP WERE DEPTNO = 20 END-EXEC.
* -- missing parentheses around column names COMM and SAL
 EXEC SQL
 INSERT INTO EMP COMM, SAL VALUES (NULL, 1500)
 END-EXEC.

Rules of semantics specify how valid external references are made. Thus, semantic
checking verifies that references to database objects and host variables are valid and
that host-variable datatypes are correct. For example, the following embedded SQL
statements contain semantic errors:

* -- nonexistent table, EMPP
 EXEC SQL DELETE FROM EMPP WHERE DEPTNO = 20 END-EXEC.
* -- undeclared host variable, EMP-NAME
 EXEC SQL SELECT * FROM EMP WHERE ENAME = :EMP-NAME END-EXEC.

The rules of SQL syntax and semantics are defined in the Oracle Database SQL
Reference.

Controlling the Type and Extent of Checking
You control the type and extent of checking by specifying the SQLCHECK option on
the command line. With SQLCHECK, the type of checking can be syntactic, or both

Specifying SQLCHECK=SEMANTICS

D-2 Pro*COBOL Programmer’s Guide

syntactic and semantic. The extent of checking can include data manipulation
statements and PL/SQL blocks. However, SQLCHECK cannot check dynamic SQL
statements because they are not defined fully until run time.

You can specify the following values for SQLCHECK:

■ SEMANTICS | FULL

■ SYNTAX | LIMITED

The values SEMANTICS and FULL are equivalent, as are the values SYNTAX and
LIMITED. The default value is SYNTAX.

Specifying SQLCHECK=SEMANTICS
When SQLCHECK=SEMANTICS, the precompiler checks the syntax and semantics of

■ Data manipulation statements such as INSERT and UPDATE.

■ PL/SQL blocks.

The precompiler gets the information for a semantic check from embedded DECLARE
TABLE statements or, if you specify the option USERID, by connecting to the database
and accessing the data dictionary.

If you connect to the database but some table information cannot be found in the data
dictionary, you must use DECLARE TABLE statements to supply the missing
information. A DECLARE TABLE definition overrides a data dictionary definition if
they conflict.

When checking data manipulation statements, the precompiler uses the Oracle9i set of
syntax rules found in the Oracle Database SQL Reference but uses a stricter set of
semantic rules. As a result, existing applications written for earlier versions of Oracle
might not precompile successfully when SQLCHECK=SEMANTICS.

Specify SQLCHECK=SEMANTICS when precompiling new programs. If you embed
PL/SQL blocks in a host program, you must specify SQLCHECK=SEMANTICS.

Enabling a Semantic Check
When SQLCHECK=SEMANTICS, the precompiler can get information needed for a
semantic check in either of the following ways:

■ Connect to Oracle and access the data dictionary

■ Use embedded DECLARE TABLE statements

Connecting to Oracle
To do a semantic check, the precompiler can connect to the database that maintains
definitions of tables and views referenced in your host program. After connecting, the
precompiler accesses the data dictionary for needed information. The data dictionary
stores table and column names, table and column constraints, column lengths, column
datatypes, and so on.

If some of the needed information cannot be found in the data dictionary (because
your program refers to a table not yet created, for example), you must supply the
missing information using the DECLARE TABLE statement.

To connect to the database, specify the option USERID on the command line, using the
syntax

USERID=username/password

Specifying SQLCHECK=SEMANTICS

Syntactic and Semantic Checking D-3

where username and password comprise a valid Oracle9i userid. If you omit the
password, you are prompted for it. If, instead of a username and password, you
specify

USERID=/

the precompiler tries to connect to the database automatically with the userid

<prefix><username>

where prefix is the value of the initialization parameter OS_AUTHENT_PREFIX (the
default value is OPS$) and username is your operating system user or task name.

If you try connecting, but cannot (for example, if the database is unavailable), the
precompiler stops processing and issues an error message. If you omit the option
USERID, the precompiler must get needed information from embedded DECLARE
TABLE statements.

Using DECLARE TABLE
The precompiler can do a semantic check without connecting to the database as long
as your program does not call any stored procedures or functions from an anonymous
PL/SQL block. To do the check, the precompiler must get information about tables
and views from embedded DECLARE TABLE directives. Thus, every table referenced
in a data manipulation statement or PL/SQL block must be defined in a DECLARE
TABLE statement.

The syntax of the DECLARE TABLE statement is

 EXEC SQL DECLARE table_name TABLE
 (col_name col_datatype [DEFAULT expr] [NULL|NOT NULL], ...)
 END-EXEC.

where expr is any expression that can be used as a default column value in the
CREATE TABLE statement. col_datatype is an Oracle column declaration. Only integers
can be used, not expressions. See "DECLARE TABLE (Oracle Embedded SQL
Directive)" on page E-22.

If you use DECLARE TABLE to define a database table that already exists, the
precompiler uses your definition, ignoring the one in the data dictionary.

Specifying SQLCHECK=SEMANTICS

D-4 Pro*COBOL Programmer’s Guide

Embedded SQL Statements and Precompiler Directives E-1

E
Embedded SQL Statements and Precompiler

Directives

This appendix describes of both SQL92 embedded SQL statements and directives as
well as the Oracle9i embedded SQL extensions. These statements and directives are
prefaced in your source code with the keywords, EXEC SQL.

Note: Only statements which differ in syntax from non-embedded SQL are described
in this appendix. For details of the non-embedded SQL statements, see the Oracle
Database SQL Reference.

This appendix contains the following sections:

■ Summary of Precompiler Directives and Embedded SQL Statements

■ About the Statement Descriptions

■ How to Read Syntax Diagrams

■ ALLOCATE (Executable Embedded SQL Extension)

■ ALLOCATE DESCRIPTOR (Executable Embedded SQL)

■ CALL (Executable Embedded SQL)

■ CLOSE (Executable Embedded SQL)

■ COMMIT (Executable Embedded SQL)

■ CONNECT (Executable Embedded SQL Extension)

■ CONTEXT ALLOCATE (Executable Embedded SQL Extension)

■ CONTEXT FREE (Executable Embedded SQL Extension)

■ CONTEXT USE (Oracle Embedded SQL Directive)

■ DECLARE CURSOR (Embedded SQL Directive)

■ DECLARE DATABASE (Oracle Embedded SQL Directive)

■ DECLARE STATEMENT (Embedded SQL Directive)

■ DECLARE TABLE (Oracle Embedded SQL Directive)

■ DELETE (Executable Embedded SQL)

■ DESCRIBE (Executable Embedded SQL)

■ DESCRIBE DESCRIPTOR (Executable Embedded SQL)

■ ENABLE THREADS (Executable Embedded SQL Extension)

■ EXECUTE ... END-EXEC (Executable Embedded SQL Extension)

E-2 Pro*COBOL Programmer’s Guide

■ EXECUTE (Executable Embedded SQL)

■ EXECUTE DESCRIPTOR (Executable Embedded SQL

■ EXECUTE IMMEDIATE (Executable Embedded SQL)

■ FETCH (Executable Embedded SQL)

■ FETCH DESCRIPTOR (Executable Embedded SQL)

■ FREE (Executable Embedded SQL Extension)

■ GET DESCRIPTOR (Executable Embedded SQL)

■ INSERT (Executable Embedded SQL)

■ LOB APPEND (Executable Embedded SQL Extension)

■ LOB ASSIGN (Executable Embedded SQL Extension)

■ LOB CLOSE (Executable Embedded SQL Extension)

■ LOB COPY (Executable Embedded SQL Extension)

■ LOB CREATE TEMPORARY (Executable Embedded SQL Extension)

■ LOB DESCRIBE (Executable Embedded SQL Extension)

■ LOB DISABLE BUFFERING (Executable Embedded SQL Extension)

■ LOB ENABLE BUFFERING (Executable Embedded SQL Extension)

■ LOB ERASE (Executable Embedded SQL Extension)

■ LOB FILE CLOSE ALL (Executable Embedded SQL Extension)

■ LOB FILE SET (Executable Embedded SQL Extension)

■ LOB FLUSH BUFFER (Executable Embedded SQL Extension)

■ LOB FREE TEMPORARY (Executable Embedded SQL Extension)

■ LOB LOAD (Executable Embedded SQL Extension)

■ LOB OPEN (Executable Embedded SQL Extension)

■ LOB READ (Executable Embedded SQL Extension)

■ LOB TRIM (Executable Embedded SQL Extension)

■ LOB WRITE (Executable Embedded SQL Extension)

■ OPEN (Executable Embedded SQL)

■ OPEN DESCRIPTOR (Executable Embedded SQL)

■ PREPARE (Executable Embedded SQL)

■ ROLLBACK (Executable Embedded SQL)

■ SAVEPOINT (Executable Embedded SQL)

■ SET DESCRIPTOR (Executable Embedded SQL)

■ SELECT (Executable Embedded SQL)

■ UPDATE (Executable Embedded SQL)

■ VAR (Oracle Embedded SQL Directive)

■ WHENEVER (Embedded SQL Directive)

Summary of Precompiler Directives and Embedded SQL Statements

Embedded SQL Statements and Precompiler Directives E-3

Summary of Precompiler Directives and Embedded SQL Statements
Embedded SQL statements place DDL, DML, and Transaction Control statements
within a procedural language program. Embedded SQL is supported by the Oracle
Precompilers. Table E–2 provides a functional summary of the embedded SQL
statements and directives.

The Source/Type column in Table E–2 is displayed in the format source/type where:

Table E–1 Source/Type Column Meaning

SQL Statements Directives

source Is either SQL92 standard SQL (S) or an Oracle extension (O).

type Is either an executable (E) statement or a directive (D).

Table E–2 Precompiler Directives and Embedded SQL Statements and Clauses

EXEC SQL Statement Source/Type Purpose

ALLOCATE O/E To allocate memory for a cursor variable, LOB locator or ROWID.

ALLOCATE DESCRIPTOR S/E To allocate a descriptor for ANSI dynamic SQL.

CALL S/E Call a stored procedure.

CLOSE S/E To disable a cursor.

COMMIT S/E To make all database changes permanent.

CONNECT O/E To log on to a database instance.

CONTEXT ALLOCATE O/E To allocate memory for a SQLLIB runtime context.

CONTEXT FREE O/E To free memory for a SQLLIB runtime context.

CONTEXT USE O/E To specify a SQLLIB runtime context.

DEALLOCATE DESCRIPTOR S/E To deallocate a descriptor area to free memory.

DECLARE CURSOR S/D To declare a cursor, associating it with a query.

DECLARE DATABASE O/D To declare an identifier for a nondefault database to be accessed in
subsequent embedded SQL statements.

DECLARE STATEMENT S/D To assign a SQL variable name to a SQL statement.

DECLARE TABLE O/D To declare the table structure for semantic checking of embedded
SQL statements by the Oracle Precompiler.

DELETE S/E To remove rows from a table or from a view's base table.

DESCRIBE S/E To initialize a descriptor, a structure holding host variable
descriptions.

DESCRIBE DECRIPTOR S/E To obtain information about an ANSI SQL statement, and store it
in a descriptor.

ENABLE THREADS O/E To initialize a process that supports multiple threads.

EXECUTE...END-EXEC O/E To execute an anonymous PL/SQL block.

EXECUTE S/E To execute a prepared dynamic SQL statement.

EXECUTE DESCRIPTOR S/E To execute a prepared statement using ANSI Dynamic SQL.

EXECUTE IMMEDIATE S/E To prepare and execute a SQL statement with no host variables.

FETCH S/E To retrieve rows selected by a query.

FETCH DESCRIPTOR S/E To retrieve rows selected by a query using ANSI Dynamic SQL.

FREE S/E To free memory used by a cursor, LOB locator, or ROWID.

GET DESCRIPTOR S/E To move information from an ANSI SQL descriptor area into host
variables.

INSERT S/E To add rows to a table or to a view's base table.

About the Statement Descriptions

E-4 Pro*COBOL Programmer’s Guide

About the Statement Descriptions
The directives, and statements appear alphabetically. The description of each contains
the following sections:

LOB APPEND O/E To append a LOB to the end of another lOB.

LOB ASSIGN O/E To assign a LOB or BFILE locator to another locator.

LOB CLOSE O/E To close an open LOB or BFILE.

LOB COPY O/E To copy all or part of a LOB value into another LOB.

LOB CREATE TEMPORARY O/E To create a temporary LOB.

LOB DESCRIBE O/E To retrieve attributes from a LOB.

LOB DISABLE BUFFERING O/E To disable LOB buffering.

LOB ENABLE BUFFERING O/E To enable LOB buffering.

LOB ERASE O/E To erase a given amount of LOB data starting from a given offset.

LOB FILE CLOSE ALL O/E To close all open BFILE.

LOB FILE SET O/E To set DIRECTORY and FILENAME in a BFILE locator.

LOB FLUSH BUFFER O/E To write the LOB buffers to the database server.

LOB FREE TEMPORARY O/E To free temporary space for the LOB locator.

LOB LOAD O/E To copy all or part of a BFILE into an internal LOB.

LOB OPEN O/E To open a LOB or BFILE to read or read/write access.

LOB READ O/E To read all or part of a LOB or BFILE into a buffer.

LOB TRIM O/E To truncate a lob value.

LOB WRITE O/E To write the contents of a buffer to a LOB.

OPEN S/E To execute the query associated with a cursor.

OPEN DESCRIPTOR S/E To execute the query associated with a cursor in ANSI Dynamic
SQL.

PREPARE S/E To parse a dynamic SQL statement.

ROLLBACK S/E To end the current transaction and discard all changes.

SAVEPOINT S/E To identify a point in a transaction to which you can later roll
back.

SELECT S/E To retrieve data from one or more tables, views, or snapshots,
assigning the selected values to host variables.

SET DESCRIPTOR S/E To set information in the ANSI SQL descriptor area from host
variables.

UPDATE S/E To change existing values in a table or in a view's base table.

VAR O/D To override the default datatype and assign a specific Oracle9i
external datatype to a host variable.

WHENEVER S/D To specify handling for error and warning conditions.

Directives Description

Purpose Describes the basic uses of the statement.

Prerequisites Lists privileges you must have and steps that you must take
before using the statement. Unless otherwise noted, most
statements also require that the database be open by your
instance.

Table E–2 (Cont.) Precompiler Directives and Embedded SQL Statements and Clauses

EXEC SQL Statement Source/Type Purpose

How to Read Syntax Diagrams

Embedded SQL Statements and Precompiler Directives E-5

How to Read Syntax Diagrams
Syntax diagrams are used to illustrate embedded SQL syntax. They are drawings that
depict valid syntax.

Trace each diagram from left to right, in the direction shown by the arrows.

Statements keywords appear in UPPER CASE inside rectangles. Type them exactly as
shown in the rectangles. Parameters appear in lower case inside ovals. Variables are
used for the parameters. Operators, delimiters, and terminators appear inside circles.

If the syntax diagram has more than one path, you can choose any path to travel.

If you have the choice of more than one keyword, operator, or parameter, your options
appear in a vertical list. In the following example, you can travel down the vertical line
as far as you like, then continue along any horizontal line:

According to the diagram, all of the following statements are valid:

EXEC SQL WHENEVER NOT FOUND ...
EXEC SQL WHENEVER SQLERROR ...
EXEC SQL WHENEVER SQLWARNING ...

Statement Terminator
In all Pro*COBOL EXEC SQL diagrams, each statement is understood to end with the
token END-EXEC.

Required Keywords and Parameters
Required keywords and parameters can appear singly or in a vertical list of
alternatives. Single required keywords and parameters appear on the main path, that
is, on the horizontal line you are currently traveling. In the following example, cursor
is a required parameter:

Syntax Shows the syntax diagram with the keywords and parameters of
the statement.

Keywords and
Parameters

Describes the purpose of each keyword and parameter.

Usage Notes Discusses how and when to use the statement.

Prerequisites Lists privileges you must have and steps that you must take
before using the statement. Unless otherwise noted, most
statements also require that the database be open by your
instance.

Syntax Shows the syntax diagram with the keywords and parameters of
the statement.

Directives Description

EXEC SQL WHENEVER

NOT FOUND

SQLERROR

SQLWARNING

How to Read Syntax Diagrams

E-6 Pro*COBOL Programmer’s Guide

If there is a cursor named EMPCURSOR, then, according to the diagram, the following
statement is valid:

EXEC SQL CLOSE EMPCURSOR END-EXEC.

If any of the keywords or parameters in a vertical list appears on the main path, one of
them is required. That is, you must choose one of the keywords or parameters, but not
necessarily the one that appears on the main path. In the following example, you must
choose one of the four actions:

Optional Keywords and Parameters
If keywords and parameters appear in a vertical list preceding the main path, they are
optional. In the following example, instead of traveling down a vertical line, you can
continue along the main path:

If there is a database named oracle2, then, according to the diagram, all of the following
statements are valid:

 EXEC SQL ROLLBACK END-EXEC.
 EXEC SQL ROLLBACK WORK END-EXEC.
 EXEC SQL AT ORACLE2 ROLLBACK END-EXEC.

Syntax Loops
Loops let you repeat the syntax within them as many times as you like. In the
following example, column_name is inside a loop. So, after choosing one column name,
you can go back repeatedly to choose another.

EXEC SQL CLOSE cursor

CONTINUE

GOTO label

STOP

DO routine

EXEC SQL
AT db_name

ROLLBACK
WORK

ALLOCATE (Executable Embedded SQL Extension)

Embedded SQL Statements and Precompiler Directives E-7

If DEBIT, CREDIT, and BALANCE are column names, then, according to the diagram,
all of the following statements are valid:

EXEC SQL SELECT DEBIT INTO ...
EXEC SQL SELECT CREDIT, BALANCE INTO ...
EXEC SQL SELECT DEBIT, CREDIT, BALANCE INTO ...

Multi-part Diagrams
Read a multi-part diagram as if all the main paths were joined end-to-end. The
following example is a two-part diagram:

According to the diagram, the following statement is valid:

 EXEC SQL PREPARE statement_name FROM :host_string END-EXEC.

Oracle Names
The names of Oracle database objects, such as tables and columns, must not exceed 30
characters in length. The first character must be a letter, but the rest can be any
combination of letters, numerals, dollar signs ($), pound signs (#), and underscores (_).

However, if a name is enclosed by quotation marks ("), it can contain any combination
of legal characters, including spaces but excluding quotation marks.

Oracle names are not case-sensitive except when enclosed by quotation marks.

ALLOCATE (Executable Embedded SQL Extension)

Purpose
To allocate a cursor variable to be referenced in a PL/SQL block, or to allocate a LOB
locator, or a ROWID .

Prerequisites
A cursor variable (see Chapter 6, "Embedded PL/SQL") of type SQL-CURSOR must be
declared before allocating memory for the cursor variable.

EXEC SQL SELECT column_name

'

INTO ...

EXEC SQL PREPARE statement_name

FROM
: host_string

string_literal

ALLOCATE DESCRIPTOR (Executable Embedded SQL)

E-8 Pro*COBOL Programmer’s Guide

Syntax

Keywords and Parameters

Usage Notes
Whereas a cursor is static, a cursor variable is dynamic because it is not tied to a
specific query. You can open a cursor variable for any type-compatible query.

For more information on this statement, see PL/SQL User's Guide and Reference and
Oracle Database SQL Reference.

Example
This partial example illustrates the use of the ALLOCATE statement:

 ...
 01 EMP-CUR SQL-CURSOR.
 01 EMP-REC.
 ...
 EXEC SQL ALLOCATE :EMP-CUR END-EXEC.
 ...

Related Topics
CLOSE (Executable Embedded SQL) on page E-11.

EXECUTE (Executable Embedded SQL) on page E-11.

FETCH (Executable Embedded SQL) on page E-35.

FREE (Executable Embedded SQL Extension) on page E-39.

ALLOCATE DESCRIPTOR (Executable Embedded SQL)

Purpose
 An ANSI dynamic SQL statement that allocates a descriptor.

Prerequisites
None.

Keywords and
Parameters Description

cursor_variable A cursor variable of type SQL-CURSOR

host_ptr A variable of type SQL-ROWID for a ROWID, or SQL-BLOB,
SQL-CLOB, or SQL-NCLOB for a LOB

EXEC SQL ALLOCATE :
cursor_variable

host_ptr

CALL (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-9

Syntax

Keywords and Parameters

Usage Notes
Use DYNAMIC=ANSI precompiler option. For information on using this statement,
see "ALLOCATE DESCRIPTOR" on page 10-10.

Example
 EXEC SQL
 FOR :batch ALLOCATE DESCRIPTOR GLOBAL :binddes WITH MAX 25
 END-EXEC.

Related Topics
DESCRIBE DESCRIPTOR (Executable Embedded SQL) on page E-28.

GET DESCRIPTOR (Executable Embedded SQL) on page E-40.

SET DESCRIPTOR (Executable Embedded SQL) on page E-66.

CALL (Executable Embedded SQL)

Purpose
To call a stored procedure.

Prerequisites
An active database connection must exist.

Keywords and
Parameters Description

array_size

integer

Host variable containing number of rows to be processed.

Number of rows to be processed.

descriptor_name

descriptor name

Host variable containing number of rows to be processed.

Number of rows to be processed.

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

WITH MAX integer Maximum number of host variables. The default is 100.

EXEC SQL

FOR
integer

: array_size
ALLOCATE DESCRIPTOR

GLOBAL

LOCAL

: descriptor_name

' descriptor name '

WITH MAX integer

CALL (Executable Embedded SQL)

E-10 Pro*COBOL Programmer’s Guide

Syntax

Keywords and Parameters

Usage Notes
For more about this statement, see Calling a Stored PL/SQL or Java Subprogram on
page 6-16.

For a complete discussion of stored procedures, see: Oracle Database Application
Developer's Guide - Fundamentals, "External Routines" chapter.

Example
 ...
 05 EMP-NAME PIC X(10) VARYING.
 05 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
 05 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
...
 05 D-EMP-NUMBER PIC 9(4).
...
 ACCEPT D-EMP-NUMBER.
 EXEC SQL
 CALL mypkge.getsal(:EMP-NUMBER, :D-EMP-NUMBER, :EMP-NAME) INTO :SALARY
 END-EXEC.
...

Keywords and
Parameters Description

schema Is the schema containing the procedure. If you omit schema,
Oracle9i assumes the procedure is in your own schema.

pkg The package where the procedure is stored.

st_proc The stored procedure to be called.

db_link The complete or partial name of a database link to a remote
database where the procedure is located. For information on
referring to database links, see the Oracle Database SQL Reference.

expr The list of expressions that are the parameters of the procedure.

ret_var The host variable that receives the returned value of a function.

ret_ind The indicator variable for ret_var.

EXEC SQL CALL
schema . pkg .

st_proc
@ db_link

(expr

,

)
INTO : ret_var

INDICATOR
: ret_ind

CLOSE (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-11

Related Topics
None

CLOSE (Executable Embedded SQL)

Purpose
To disable a cursor, freeing the resources acquired by opening the cursor, and releasing
parse locks.

Prerequisites
The cursor or cursor variable must be open and MODE=ANSI.

Syntax

Keywords and Parameters

Usage Notes
Rows cannot be fetched from a closed cursor. A cursor need not be closed to be
reopened. The HOLD_CURSOR and RELEASE_CURSOR precompiler options alter
the effect of the CLOSE statement. For information on these options, see Chapter 14,
"Precompiler Options".

Example
This example illustrates the use of the CLOSE statement:

 EXEC SQL CLOSE EMP-CUR END-EXEC.

Related Topics
DECLARE CURSOR (Embedded SQL Directive) on page E-18.

OPEN (Executable Embedded SQL) on page E-54.

PREPARE (Executable Embedded SQL) on page E-58.

Keywords and
Parameters Description

cursor The cursor to be closed

cursor_variable The cursor variable to be closed.

EXEC SQL CLOSE
cursor

: cursor_variable

COMMIT (Executable Embedded SQL)

E-12 Pro*COBOL Programmer’s Guide

COMMIT (Executable Embedded SQL)

Purpose
To end your current transaction, making permanent all its changes to the database and
optionally freeing all resources and disconnecting from the database server.

Prerequisites
To commit your current transaction, no privileges are necessary.

To manually commit a distributed in-doubt transaction that you originally committed,
you must have FORCE TRANSACTION system privilege. To manually commit a
distributed in-doubt transaction that was originally committed by another user, you
must have FORCE ANY TRANSACTION system privilege.

Syntax

Keyword and Parameters

Keywords and Parameters Description

AT Identifies the database to which the COMMIT statement
is issued. The database can be identified by either:

db_name A database identifier declared in a previous DECLARE
DATABASE statement or used in a CONNECT
statement.

host_variable If you omit this clause, Oracle9i issues the statement to
your default database.

WORK Is supported only for compliance with standard SQL.
The statements COMMIT and COMMIT WORK are
equivalent.

COMMENT Specifies a comment to be associated with the current
transaction. The 'text' is a quoted literal of up to 50
characters that Oracle9i stores in the data dictionary
view DBA_2PC_PENDING along with the transaction ID
if the transaction becomes in-doubt.

RELEASE Frees all resources and disconnects the application from
the Oracle9i Server.

EXEC SQL

AT
db_name

: host_variable
COMMIT

WORK

COMMENT ' text ' RELEASE

FORCE ' text '
, integer

CONNECT (Executable Embedded SQL Extension)

Embedded SQL Statements and Precompiler Directives E-13

Usage Notes
Always explicitly commit or rollback the last transaction in your program by using the
COMMIT or ROLLBACK statement and the RELEASE option. Oracle9i automatically
rolls back changes if the program terminates abnormally.

The COMMIT statement has no effect on host variables or on the flow of control in the
program. For more information on this statement, see "Using the COMMIT Statement"
on page 3-10.

Example
This example illustrates the use of the embedded SQL COMMIT statement:

 EXEC SQL AT SALESDB COMMIT RELEASE END-EXEC.

Related Topics
ROLLBACK (Executable Embedded SQL) on page E-59.

SAVEPOINT (Executable Embedded SQL) on page E-62.

CONNECT (Executable Embedded SQL Extension)

Purpose
To logon to an Oracle9i database.

Prerequisites
You must have CREATE SESSION system privilege in the specified database.

Syntax

FORCE Manually commits an in-doubt distributed transaction.
The transaction is identified by the 'text' containing its
local or global transaction ID. To find the IDs of such
transactions, query the data dictionary view DBA_2PC_
PENDING. You can also use the optional integer to
explicitly assign the transaction a system change number
(SCN). If you omit the integer, the transaction is
committed using the current SCN.

Keywords and Parameters Description

EXEC SQL CONNECT :
user IDENTIFIED BY : password

user_password

AT
db_name

: host_variable USING : dbstring

ALTER AUTHORIZATION : new_password

IN
SYSDBA

SYSOPER
MODE

CONNECT (Executable Embedded SQL Extension)

E-14 Pro*COBOL Programmer’s Guide

Keyword and Parameters

Usage Notes
A program can have multiple connections, but can only connect once to your default
database. For more information on this statement, see: "Concurrent Logons" on
page 3-3.

Example
The following example illustrate the use of CONNECT:

 EXEC SQL CONNECT :USERNAME
 IDENTIFIED BY :PASSWORD
 END-EXEC.
You can also use this statement in which the value of :userid is the value of :username
and :password separated by a "/" such as 'SCOTT/TIGER':

 EXEC SQL CONNECT :USERID END-EXEC.

Related Topics
COMMIT (Executable Embedded SQL) on page E-12.

DECLARE DATABASE (Oracle Embedded SQL Directive) on page E-20.

ROLLBACK (Executable Embedded SQL) on page E-59.

Keywords and Parameters Description

user

password

Specifies your username and password separately.

user_password Is a single host variable containing the connect string
username/password[@dbname].

To allow Oracle9i to verify your connection through your
operating system, specify "/" as the :user_password value.

AT Identifies the database to which the connection is made.
The database can be identified by either:

db_name A database identifier declared in a previous DECLARE
DATABASE statement.

host_variable A host variable whose value is a previously declared db_
name.

USING Specifies the Oracle Net database specification string used
to connect to a nondefault database. If you omit this
clause, you are connected to your default database.

ALTER AUTHORIZATION Change password to the following string.

new_password New password string.

IN SYSDBA MODE

IN SYSOPER MODE

Connect with SYSDBA or SYSOPER system privileges.
Not allowed when ALTER AUTHORIZATION is used, or
precompiler option AUTO_CONNECT is set to YES.

CONTEXT FREE (Executable Embedded SQL Extension)

Embedded SQL Statements and Precompiler Directives E-15

CONTEXT ALLOCATE (Executable Embedded SQL Extension)

Purpose
To initialize a SQLLIB runtime context that is referenced in an EXEC SQL CONTEXT
USE statement.

Prerequisites
The runtime context must be declared of type SQL-CONTEXT.

Syntax

Keywords and Parameters

Usage Notes
For more information on this statement, see "Embedded SQL Statements and
Directives for Runtime Contexts" on page 12-6.

Example
This example illustrates the use of a CONTEXT ALLOCATE statement in a
Pro*COBOL embedded SQL program:

 EXEC SQL CONTEXT ALLOCATE :ctx1 END-EXEC.

Related Topics
CONTEXT FREE (Executable Embedded SQL Extension) on page E-15.

CONTEXT USE (Oracle Embedded SQL Directive) on page E-16.

CONTEXT FREE (Executable Embedded SQL Extension)

Purpose
To free all memory associated with a runtime context and place a null pointer in the
host program variable.

Prerequisites
The CONTEXT ALLOCATE statement must be used to allocate memory for the
specified runtime context before the CONTEXT FREE statement can free the memory
allocated for it.

Keywords and Parameters Description

context The SQLLIB runtime context for which memory is to be
allocated.

EXEC SQL CONTEXT ALLOCATE : context

CONTEXT USE (Oracle Embedded SQL Directive)

E-16 Pro*COBOL Programmer’s Guide

Syntax

Keywords and Parameters

Usage Notes
For more information on this statement, see "Embedded SQL Statements and
Directives for Runtime Contexts" on page 12-6.

Example
This example illustrates the use of a CONTEXT FREE statement in a Pro*COBOL
embedded SQL program:

 EXEC SQL CONTEXT FREE :ctx1 END-EXEC.

Related Topics
CONTEXT ALLOCATE (Executable Embedded SQL Extension) on page E-15.

CONTEXT USE (Oracle Embedded SQL Directive) on page E-16.

CONTEXT USE (Oracle Embedded SQL Directive)

Purpose
To instruct the precompiler to use the specified SQLLIB runtime context on subsequent
executable SQL statements

Prerequisites
The runtime context specified by the CONTEXT USE directive must be previously
declared.

Syntax

Keywords and Parameters Description

context The allocated runtime context for which the
memory is to be deallocated.

EXEC SQL CONTEXT FREE : context

EXEC SQL CONTEXT USE
: context

DEFAULT

DEALLOCATE DESCRIPTOR (Embedded SQL Statement)

Embedded SQL Statements and Precompiler Directives E-17

Keywords and Parameters

Usage Notes
This statement has no effect on declarative statements such as EXEC SQL INCLUDE or
EXEC ORACLE OPTION. It works similarly to the EXEC SQL WHENEVER directive
in that it affects all executable SQL statements which positionally follow it in a given
source file without regard to standard C scope rules.

For more information on this statement, see "Embedded SQL Statements and
Directives for Runtime Contexts" on page 12-6.

Example
This example illustrates the use of a CONTEXT USE directive in a Pro*COBOL
program:

 EXEC SQL CONTEXT USE :ctx1 END-EXEC.

Related Topics
CONTEXT ALLOCATE (Executable Embedded SQL Extension) on page E-15.

CONTEXT FREE (Executable Embedded SQL Extension) on page E-15.

DEALLOCATE DESCRIPTOR (Embedded SQL Statement)

Purpose
An ANSI dynamic SQL statement that deallocates a descriptor area to free memory.

Prerequisites
The descriptor specified by the DEALLOCATE DESCRIPTOR statement must be
previously allocated using the ALLOCATE DESCRIPTOR statement.

Syntax

Keywords and Parameters Description

context The allocated runtime context to use for subsequent
executable SQL statements that follow it. For
example, after specifying in your source code which
context to use (multiple contexts can be allocated),
you can connect to the Oracle Server and perform
database operations within the scope of that context.

DEFAULT Indicates that the global context is to be used.

EXEC SQL DEALLOCATE DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

' descriptor name '

DECLARE CURSOR (Embedded SQL Directive)

E-18 Pro*COBOL Programmer’s Guide

Keywords and Parameters

Usage Notes
Use DYNAMIC=ANSI precompiler option.

 For more information on this statement, see "DEALLOCATE DESCRIPTOR" on
page 10-10.

Example
 EXEC SQL DEALLOCATE DESCRIPTOR GLOBAL 'SELDES' END-EXEC.

Related Topics
ALLOCATE DESCRIPTOR (Executable Embedded SQL) on page E-8.

DESCRIBE DESCRIPTOR (Executable Embedded SQL) on page E-28.

GET DESCRIPTOR (Executable Embedded SQL) on page E-40.

PREPARE (Executable Embedded SQL) on page E-58.

SET DESCRIPTOR (Executable Embedded SQL) on page E-66.

DECLARE CURSOR (Embedded SQL Directive)

Purpose
To declare a cursor, giving it a name and associating it with a SQL statement or a
PL/SQL block.

Prerequisites
If you associate the cursor with an identifier for a SQL statement or PL/SQL block,
you must have declared this identifier in a previous DECLARE STATEMENT
statement.

Keywords and
Parameters Description

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

descriptor_name

'descriptor name'

Host variable containing the name of the allocated ANSI
descriptor.

Name of the allocated ANSI descriptor.

DECLARE CURSOR (Embedded SQL Directive)

Embedded SQL Statements and Precompiler Directives E-19

Syntax

Keywords and Parameters

Usage Notes
You must declare a cursor before referencing it in other embedded SQL statements.
The scope of a cursor declaration is global within its precompilation unit and the name
of each cursor must be unique in its scope. You cannot declare two cursors with the
same name in a single precompilation unit.

You can reference the cursor in the WHERE clause of an UPDATE or DELETE
statement using the CURRENT OF syntax, if the cursor has been opened with an
OPEN statement and positioned on a row with a FETCH statement. For more
information on this statement, see "WITH HOLD Clause in DECLARE CURSOR
Statements" on page 3-11.

Example
This example illustrates the use of a DECLARE CURSOR statement:

Keywords and
Parameters Description

AT Identifies the database on which the cursor is declared. The
database can be identified by either:

db_name Database identifier declared in a previous DECLARE
DATABASE statement.

host_variable Host variable whose value is a previously declared db_name.

If you omit this clause, Oracle9i declares the cursor on your
default database.

cursor Name of the cursor to be declared.

WITH HOLD Cursor remains open after a COMMIT or a ROLLBACK. The
cursor must not be declared for UPDATE.

SELECT statement Is a SELECT statement to be associated with the cursor. The
following statement cannot contain an INTO clause.

statement_name Identifies a SQL statement or PL/SQL block to be associated
with the cursor. The statement_name or block_name must be
previously declared in a DECLARE STATEMENT statement.

EXEC SQL

AT
db_name

: host_variable

DECLARE cursor CURSOR
WITH HOLD

FOR

SELECT command

statement_name

block_name

DECLARE DATABASE (Oracle Embedded SQL Directive)

E-20 Pro*COBOL Programmer’s Guide

 EXEC SQL DECLARE EMPCURSOR CURSOR
 FOR SELECT ENAME, EMPNO, JOB, SAL
 FROM EMP
 WHERE DEPTNO = :DEPTNO
 END-EXEC.

Related Topics
CLOSE (Executable Embedded SQL) on page E-11.

DECLARE DATABASE (Oracle Embedded SQL Directive) on page E-20.

DECLARE STATEMENT (Embedded SQL Directive) on page E-21.

DELETE (Executable Embedded SQL) on page E-23.

FETCH (Executable Embedded SQL) on page E-35.

OPEN (Executable Embedded SQL) on page E-54.

PREPARE (Executable Embedded SQL) on page E-58.

SELECT (Executable Embedded SQL) on page E-63.

UPDATE (Executable Embedded SQL) on page E-67.

DECLARE DATABASE (Oracle Embedded SQL Directive)

Purpose
To declare an identifier for a nondefault database to be accessed in subsequent
embedded SQL statements.

Prerequisites
You must have access to a username on the nondefault database.

Syntax

Keywords and Parameters

Usage Notes
You declare a db_name for a nondefault database so that other embedded SQL
statements can refer to that database using the AT clause. Before issuing a CONNECT
statement with an AT clause, you must declare a db_name for the nondefault database
with a DECLARE DATABASE statement.

For more information on this statement, see "Using Username/Password" on page 3-4.

Keywords and
Parameters Description

db_name The identifier established for the nondefault database.

EXEC SQL DECLARE db_name DATABASE

DECLARE STATEMENT (Embedded SQL Directive)

Embedded SQL Statements and Precompiler Directives E-21

Example
This example illustrates the use of a DECLARE DATABASE directive:

 EXEC SQL DECLARE ORACLE3 DATABASE END-EXEC.

Related Topics
COMMIT (Executable Embedded SQL) on page E-12

CONNECT (Executable Embedded SQL Extension) on page E-13.

DECLARE CURSOR (Embedded SQL Directive) on page E-18.

DECLARE STATEMENT (Embedded SQL Directive) on page E-21.

DELETE (Executable Embedded SQL) on page E-23.

EXECUTE (Executable Embedded SQL) on page E-31.

EXECUTE IMMEDIATE (Executable Embedded SQL) on page E-34.

INSERT (Executable Embedded SQL) on page E-42.

SELECT (Executable Embedded SQL) on page E-63.

UPDATE (Executable Embedded SQL) on page E-67.

DECLARE STATEMENT (Embedded SQL Directive)

Purpose
To declare an identifier for a SQL statement or PL/SQL block to be used in other
embedded SQL statements.

Prerequisites
None.

Syntax

Keywords and Parameters

Keywords and
Parameters Description

AT Identifies the database on which the SQL statement or PL/SQL block is
declared. The database can be identified by either:

db_name Database identifier declared in a previous DECLARE DATABASE
statement.

EXEC SQL

AT
db_name

: host_variable
DECLARE statement_name STATEMENT

DECLARE TABLE (Oracle Embedded SQL Directive)

E-22 Pro*COBOL Programmer’s Guide

Usage Notes
You must declare an identifier for a SQL statement or PL/SQL block with a DECLARE
STATEMENT statement only if a DECLARE CURSOR statement referencing the
identifier appears physically (not logically) in the embedded SQL program before the
PREPARE statement that parses the statement or block and associates it with its
identifier.

The scope of a statement declaration is global within its precompilation unit, like a
cursor declaration. For more information on this statement, see "DECLARE" on
page 9-15.

Example I
This example illustrates the use of the DECLARE STATEMENT statement:

 EXEC SQL AT REMOTEDB
 DECLARE MYSTATEMENT STATEMENT
 END-EXEC.
 EXEC SQL PREPARE MYSTATEMENT FROM :MY-STRING
 END-EXEC.
 EXEC SQL EXECUTE MYSTATEMENT END-EXEC.

Example II
In this example, the DECLARE STATEMENT statement is required because the
DECLARE CURSOR statement precedes the PREPARE statement:

 EXEC SQL DECLARE MYSTATEMENT STATEMENT END-EXEC.
 ...
 EXEC SQL DECLARE EMPCURSOR CURSOR FOR MYSTATEMENT END-EXEC.
 ...
 EXEC SQL PREPARE MYSTATEMENT FROM :MY-STRING END-EXEC.
 ...

Related Topics
CLOSE (Executable Embedded SQL) on page E-11.

DECLARE DATABASE (Oracle Embedded SQL Directive) on page E-20.

FETCH (Executable Embedded SQL) on page E-35.

OPEN (Executable Embedded SQL) on page E-54.

PREPARE (Executable Embedded SQL) on page E-58.

DECLARE TABLE (Oracle Embedded SQL Directive)

Purpose
To define the structure of a table or view, including each column's datatype, default
value, and NULL or NOT NULL specification for semantic checking by the
precompiler when option SQLCHECK=SEMANTICS (or FULL).

host_variable Host variable whose value is a previously declared db_name. If you
omit this clause, Oracle Database 10g declares the SQL statement or
PL/SQL block on your default database.

statement_name Is the declared identifier for the statement or PL/SQL block.

Keywords and
Parameters Description

DELETE (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-23

Prerequisites
None.

Syntax

Keywords and Parameters

Usage Notes
Datatypes can only use integers (not expressions) for length, precision, scale. For more
information on using this statement, see "Specifying SQLCHECK=SEMANTICS" on
page D-2.

Example
The following statement declares the PARTS table with the PARTNO, BIN, and QTY
columns:

 EXEC SQL DECLARE PARTS TABLE
 (PARTNO NUMBER NOT NULL,
 BIN NUMBER,
 QTY NUMBER)
 END-EXEC.

Related Topics
None.

DELETE (Executable Embedded SQL)

Purpose
To remove rows from a table or from a view's base table.

Keywords and
Parameters Description

table The name of the declared table.

column A column of the table.

datatype The datatype of a column. For information on Oracle9i datatypes,
see "The Oracle Database 10g Datatypes" on page 4-1.

NOT NULL Specifies that a column cannot contain nulls.

EXEC SQL DECLARE table TABLE

(column datatype
NOT NULL

,

)

DELETE (Executable Embedded SQL)

E-24 Pro*COBOL Programmer’s Guide

Prerequisites
For you to delete rows from a table, the table must be in your own schema or you must
have DELETE privilege on the table.

For you to delete rows from the base table of a view, the owner of the schema
containing the view must have DELETE privilege on the base table. Also, if the view is
in a schema other than your own, you must be granted DELETE privilege on the view.

The DELETE ANY TABLE system privilege also enables you to delete rows from any
table or any view's base table.

Syntax

where the DML Returning clause is:

EXEC SQL

AT
db_name

: host_variable
FOR

: host_integer

integer

DELETE
FROM

alias
WHERE

condition

CURRENT OF cursor DML.RETURNING.CLAUSE

(subquery)

schema . table

view

@ db_link

PARTITION (part_name)

RETURN

RETURNING
expr

,

INTO : host_variable

INDICATOR
: ind_variable

,

DELETE (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-25

Keywords and Parameters

Usage Notes
 The host variables in the WHERE clause should be either all scalars or all arrays. If
they are scalars, Oracle9i executes the DELETE statement only once. If they are arrays,
Oracle9i executes the statement once for each set of array components. Each execution
may delete zero, one, or multiple rows.

Array host variables in the WHERE clause can have different sizes. In this case, the
number of times Oracle9i executes the statement is determined by the smaller of the
following values:

■ the size of the smallest array

■ the value of the host_integer in the optional FOR clause

If no rows satisfy the condition, no rows are deleted and the SQLCODE returns a
NOT_FOUND condition.

Keywords and
Parameters Description

AT Identifies the database to which the DELETE statement is issued. The
database can be identified by either:

db_name A database identifier declared in a previous DECLARE DATABASE
statement.

host_variable A host variable whose value is a previously declared db_name. If you
omit this clause, the DELETE statement is issued to your default
database.

host_integer

integer

Limits the number of times the statement is executed if the WHERE
clause contains array host variables. If you omit this clause, Oracle9i
executes the statement once for each component of the smallest array.

schema The schema containing the table or view. If you omit schema, Oracle9i
assumes the table or view is in your own schema.

table view The name of a table from which the rows are to be deleted. If you
specify view, Oracle9i deletes rows from the view's base table.

dblink The complete or partial name of a database link to a remote database
where the table or view is located. For information on referring to
database links, see Chapter 2 of the Oracle Database SQL Reference. You
can only delete rows from a remote table or view if you are using
Oracle9i with the distributed option.

If you omit dblink, Oracle9 assumes that the table or view is located on
the local database.

part_name Name of partition in the table

alias The alias assigned to the table. Aliases are generally used in DELETE
statements with correlated queries.

WHERE Specifies which rows are deleted:

condition

CURRENT OF

If you omit this clause entirely, Oracle9i deletes all rows from the table
or view.

DML returning
clause

See "DML Returning Clause" on page 5-7 for a discussion.

DESCRIBE (Executable Embedded SQL)

E-26 Pro*COBOL Programmer’s Guide

The cumulative number of rows deleted is returned through the SQLCA. If the
WHERE clause contains array host variables, this value reflects the total number of
rows deleted for all components of the array processed by the DELETE statement.

If no rows satisfy the condition, Oracle9i returns an error through the SQLCODE of the
SQLCA. If you omit the WHERE clause, Oracle9i raises a warning flag in the fifth
component of SQLWARN in the SQLCA. For more information on this statement and
the SQLCA, see "Using the SQL Communications Area" on page 8-5.

You can use comments in a DELETE statement to pass instructions, or hints, to the
Oracle9i optimizer. The optimizer uses hints to choose an execution plan for the
statement. For more information on hints, see Oracle Database Performance Tuning
Guide.

Example
This example illustrates the use of the DELETE statement:

 EXEC SQL DELETE FROM EMP
 WHERE DEPTNO = :DEPTNO
 AND JOB = :JOB
 END-EXEC.
 EXEC SQL DECLARE EMPCURSOR CURSOR
 FOR SELECT EMPNO, COMM
 FROM EMP
 END-EXEC.
 EXEC SQL OPEN EMPCURSOR END-EXEC.
 EXEC SQL FETCH EMPCURSOR
 INTO :EMP-NUMBER, :COMMISSION
 END-EXEC.
 EXEC SQL DELETE FROM EMP
 WHERE CURRENT OF EMPCURSOR
 END-EXEC.

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive) on page E-20.

DECLARE STATEMENT (Embedded SQL Directive) on page E-21.

DESCRIBE (Executable Embedded SQL)

Purpose
To initialize a descriptor to hold descriptions of host variables for an Oracle dynamic
SQL statement or PL/SQL block.

Prerequisites
You must have prepared the SQL statement or PL/SQL block in a previous embedded
SQL PREPARE statement.

DESCRIBE (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-27

Syntax

Keywords and Parameters

Usage Notes
You must issue a DESCRIBE statement before manipulating the bind or select
descriptor within an embedded SQL program.

You cannot describe both input variables and output variables into the same
descriptor.

The number of variables found by a DESCRIBE statement is the total number of
placeholders in the prepare SQL statement or PL/SQL block, rather than the total
number of uniquely named placeholders. For more information on this statement, see
"The DESCRIBE Statement" on page 9-19.

Example
This example illustrates the use of the DESCRIBE statement in a Pro*COBOL
embedded SQL program:

 EXEC SQL PREPARE MYSTATEMENT FROM :MY-STRING END-EXEC.
 EXEC SQL DECLARE EMPCURSOR
 FOR SELECT EMPNO, ENAME, SAL, COMM
 FROM EMP
 WHERE DEPTNO = :DEPT-NUMBER
 END-EXEC.
 EXEC SQL DESCRIBE BIND VARIABLES FOR MYSTATEMENT
 INTO BINDDESCRIPTOR
 END-EXEC.
 EXEC SQL OPEN EMPCURSOR
 USING BINDDESCRIPTOR
 END-EXEC.

Keywords and
Parameters Description

BIND VARIABLES FOR Initializes the descriptor to hold information about the input
variables for the SQL statement or PL/SQL block.

SELECT LIST FOR Initializes the descriptor to hold information about the select list
of a SELECT statement.

- The default is SELECT LIST FOR.

statement_name Identifies a SQL statement or PL/SQL block previously
prepared with a PREPARE statement.

descriptor The name of the descriptor to be initialized.

EXEC SQL DESCRIBE

BIND VARIABLES FOR

SELECT LIST FOR

statement_name INTO descriptor

DESCRIBE DESCRIPTOR (Executable Embedded SQL)

E-28 Pro*COBOL Programmer’s Guide

 EXEC SQL DESCRIBE SELECT LIST FOR MY-STATEMENT
 INTO SELECTDESCRIPTOR
 END-EXEC.
 EXEC SQL FETCH EMPCURSOR
 INTO SELECTDESCRIPTOR
 END-EXEC.

Related Topics
PREPARE (Executable Embedded SQL) on page E-58.

DESCRIBE DESCRIPTOR (Executable Embedded SQL)

Purpose
Used to obtain information about an ANSI SQL statement, and to store it in a
descriptor.

Prerequisites
You must have prepared the SQL statement in a previous embedded SQL PREPARE
statement.

Syntax

Keywords and Parameters

Usage Notes
Use DYNAMIC=ANSI precompiler option. Only COUNT and NAME are
implemented for the INPUT descriptor.

Keywords and
Parameters Description

statement_id The name of the previously prepared SQL statement or PL/SQL
block. OUTPUT is the default.

desc_name Host variable containing the name of the descriptor that will
hold information about the SQL statement.

'descriptor name' Name of the descriptor

GLOBAL | LOCAL LOCAL is the default. It means file scope, as opposed to
GLOBAL, which means application scope.

EXEC SQL DESCRIBE

INPUT

OUTPUT
statement_id

USING
SQL

DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

’ descriptor name ’

ENABLE THREADS (Executable Embedded SQL Extension)

Embedded SQL Statements and Precompiler Directives E-29

The number of variables found by a DESCRIBE statement is the total number of
place-holders in the prepare SQL statement or PL/SQL block, rather than the total
number of uniquely named place-holders. For more information on this statement, see
Chapter 10, "ANSI Dynamic SQL".

Example
 EXEC SQL PREPARE s FROM :my_stament END-EXEC.
 EXEC SQL DESCRIBE INPUT s USING DESCRIPTOR 'in' END-EXEC.

Related Topics
ALLOCATE DESCRIPTOR (Executable Embedded SQL) on page E-8.

DEALLOCATE DESCRIPTOR (Embedded SQL Statement) on page E-17.

GET DESCRIPTOR (Executable Embedded SQL) on page E-40.

PREPARE (Executable Embedded SQL) on page E-66.

SET DESCRIPTOR (Executable Embedded SQL) on page E-66.

ENABLE THREADS (Executable Embedded SQL Extension)

Purpose
To initialize a process that supports multiple threads.

Prerequisites
You must be developing a precompiler application for and compiling it on a platform
that supports multithreaded applications, and THREADS=YES must be specified on
the command line.

Syntax

Keywords and Parameters
None.

Usage Notes
The ENABLE THREADS statement must be executed once, and only once, before any
other executable SQL statement and before spawning any threads. This statement does
not require a host-variable specification.

Example
This example illustrates the use of the ENABLE THREADS statement in a Pro*COBOL
program:

EXEC SQL ENABLE THREADS END-EXEC.

EXEC SQL ENABLE THREADS

EXECUTE ... END-EXEC (Executable Embedded SQL Extension)

E-30 Pro*COBOL Programmer’s Guide

Related Topics
CONTEXT ALLOCATE (Executable Embedded SQL Extension) on page E-15.

CONTEXT FREE (Executable Embedded SQL Extension) on page E-15.

CONTEXT USE (Oracle Embedded SQL Directive) on page E-16.

EXECUTE ... END-EXEC (Executable Embedded SQL Extension)

Purpose
To embed an anonymous PL/SQL block into an Oracle Pro*COBOL program.

Prerequisites
None.

Syntax

Keywords and Parameters

Usage Notes
Since the Oracle Precompilers treat an embedded PL/SQL block like a single
embedded SQL statement, you can embed a PL/SQL block anywhere in an Oracle
Precompiler program that you can embed a SQL statement. For more information on
embedding PL/SQL blocks in Oracle Precompiler programs, see Chapter 6,
"Embedded PL/SQL".

Keywords and Parameters Description

AT Identifies the database on which the PL/SQL block is
executed. The database can be identified by either:

db_name A database identifier declared in a previous DECLARE
DATABASE statement.

host_variable A host variable whose value is a previously declared db_
name.

If you omit this clause, the PL/SQL block is executed on your
default database.

pl/sql_block For information on PL/SQL, including how to write PL/SQL
blocks, see the PL/SQL User's Guide and Reference.

END-EXEC Must appear after the embedded PL/SQL block.

EXEC SQL

AT
db_name

: host_variable
EXECUTE pl/sql_block END-EXEC

EXECUTE (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-31

Example
Placing this EXECUTE statement in an Oracle Precompiler program embeds a PL/SQL
block in the program:

 EXEC SQL EXECUTE
 BEGIN
 SELECT ENAME, JOB, SAL
 INTO :EMP-NAME:IND-NAME, :JOB-TITLE, :SALARY
 FROM EMP
 WHERE EMPNO = :EMP-NUMBER;
 IF :EMP-NAME:IND-NAME IS NULL
 THEN RAISE NAME-MISSING;
 END IF;
 END;
 END-EXEC.

Related Topics
EXECUTE IMMEDIATE (Executable Embedded SQL) on page E-34.

EXECUTE (Executable Embedded SQL)

Purpose
In Oracle dynamic SQL, to execute a DELETE, INSERT, or UPDATE statement or a
PL/SQL block that has been previously prepared with an embedded SQL PREPARE
statement.

Prerequisites
You must first prepare the SQL statement or PL/SQL block with an embedded SQL
PREPARE statement.

Syntax

EXEC SQL

FOR
integer

: array_size
EXECUTE statement_id

USING

DESCRIPTOR SQLDA_descriptor

: host_variable

INDICATOR
: indicator_variable

,

EXECUTE DESCRIPTOR (Executable Embedded SQL

E-32 Pro*COBOL Programmer’s Guide

Keywords and Parameters

Usage Note
For more information on this statement, see Chapter 9, "Oracle Dynamic SQL".

Example
This example illustrates the use of the EXECUTE statement in a Pro*COBOL
embedded SQL program:

 EXEC SQL PREPARE MY-STATEMENT FROM MY-STRING END-EXEC.
 EXEC SQL EXECUTE MY-STATEMENT USING :MY-VAR END-EXEC.

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive) on page E-20.

PREPARE (Executable Embedded SQL) on page E-58.

EXECUTE DESCRIPTOR (Executable Embedded SQL

Purpose
In ANSI SQL Method 4, to execute a DELETE, INSERT, or UPDATE statement or a
PL/SQL block that has been previously prepared with an embedded SQL PREPARE
statement.

Prerequisites
You must first prepare the SQL statement or PL/SQL block with an embedded SQL
PREPARE statement.

Keywords and
Parameters Description

FOR :array_size

FOR integer

Host variable containing the number of rows to be processed.

Number of rows to be processed.

Limits the number of times the statement is executed when the
USING clause contains array host variables If you omit this
clause, Oracle9i executes the statement once for each component
of the smallest array.

statement_id A precompiler identifier associated with the SQL statement or
PL/SQL block to be executed. Use the embedded SQL PREPARE
statement to associate the precompiler identifier with the
statement or PL/SQL block.

USING DESCRIPTOR
SQLDA_descriptor

Uses an Oracle descriptor.

CANNOT be used together with an ANSI descriptor (INTO
clause).

USING Specifies a list of host variables with optional indicator variables
that Oracle9i substitutes as input variables into the statement to
be executed. The host and indicator variables must be either all
scalars or all arrays.

host_variable Host variables.

indicator_variable Indicator variables.

EXECUTE DESCRIPTOR (Executable Embedded SQL

Embedded SQL Statements and Precompiler Directives E-33

Syntax

Keywords and Parameters

Usage Notes
For more information on this statement, see "EXECUTE" on page 10-17.

Keywords and
Parameters Description

FOR :array_size

FOR integer

Host variable containing the number of rows to be processed.

Number of rows to be processed.

Limits the number of times the statement is executed. Oracle9i
executes the statement once for each component of the smallest
array.

statement_id A precompiler identifier associated with the SQL statement or
PL/SQL block to be executed. Use the embedded SQL PREPARE
statement to associate the precompiler identifier with the
statement or PL/SQL block.

USING

 descriptor_name

descriptor name

An ANSI input descriptor.

Host variable containing name of the input descriptor.

Name of the input descriptor.

INTO

descriptor_name

descriptor name

An ANSI output descriptor.

Host variable containing the name of the output descriptor.

Name of the output descriptor.

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

EXEC SQL

FOR
integer

: array_size
EXECUTE statement_id

USING
SQL

DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

’ descriptor name ’

INTO
SQL

DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

’ descriptor name ’

EXECUTE IMMEDIATE (Executable Embedded SQL)

E-34 Pro*COBOL Programmer’s Guide

Examples
The ANSI dynamic SQL Method 4 enables DML RETURNING in a SELECT to be
supported by the INTO clause in EXECUTE:

EXEC SQL EXECUTE S2 USING DESCRIPTOR :bv1 INTO DESCRIPTOR 'SELDES' END-EXEC.

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive) on page E-20.

PREPARE (Executable Embedded SQL) on page E-58.

EXECUTE IMMEDIATE (Executable Embedded SQL)

Purpose
To prepare and execute a DELETE, INSERT, or UPDATE statement or a PL/SQL block
containing no host variables.

Prerequisites
None.

Syntax

Keywords and Parameters

Keywords and Parameters Description

AT Identifies the database on which the SQL statement or
PL/SQL block is executed. The database can be identified
by either:

db_name A database identifier declared in a previous DECLARE
DATABASE statement.

host_variable A host variable whose value is a previously declared db_
name.

If you omit this clause, the statement or block is executed on
your default database.

host_string A host variable whose value is the SQL statement or
PL/SQL block to be executed.

EXEC SQL

AT
db_name

: host_variable

EXECUTE IMMEDIATE
: host_string

’ text ’

FETCH (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-35

Usage Notes
When you issue an EXECUTE IMMEDIATE statement, Oracle9i parses the specified
SQL statement or PL/SQL block, checking for errors, and executes it. If any errors are
encountered, they are returned in the SQLCODE component of the SQLCA.

For more information on this statement, see "The EXECUTE IMMEDIATE Statement"
on page 9-6.

Example
This example illustrates the use of the EXECUTE IMMEDIATE statement:

 EXEC SQL
 EXECUTE IMMEDIATE 'DELETE FROM EMP WHERE EMPNO = 9460'
 END-EXEC.

Related Topics
PREPARE (Executable Embedded SQL) on page E-58.

EXECUTE (Executable Embedded SQL) on page E-31.

FETCH (Executable Embedded SQL)

Purpose
To retrieve one or more rows returned by a query, assigning the select list values to
host variables. For ANSI Dynamic SQL Method 4, see "FETCH DESCRIPTOR
(Executable Embedded SQL)" on page E-37.

Prerequisites
You must first open the cursor with an the OPEN statement.

Syntax

text A text literal containing the SQL statement or PL/SQL block
to be executed. The quotes may be omitted.

The SQL statement can only be a DELETE, INSERT, or
UPDATE statement.

Keywords and Parameters Description

EXEC SQL

FOR
integer

: array_size
FETCH

cursor

: cursor_variable

USING DESCRIPTOR SQLDA_descriptor

INTO : host_variable

INDICATOR
: indicator_variable

,

FETCH (Executable Embedded SQL)

E-36 Pro*COBOL Programmer’s Guide

Keywords and Parameters

Usage Notes
The FETCH statement reads the rows of the active set and names the output variables
which contain the results. Indicator values are set to -1 if their associated host variable
is null.

The number of rows retrieved is specified by the size of the output host variables or
the value specified in the FOR clause. The host variables to receive the data should be
either all scalars or all arrays. If they are scalars, Oracle9i fetches only one row. If they
are arrays, Oracle9i fetches enough rows to fill the arrays.

Array host variables can have different sizes. In this case, the number of rows Oracle9i
fetches is determined by the smaller of the following values:

■ The size of the smallest array

■ The value of the host_integer in the optional FOR clause

Of course, the number of rows fetched can be further limited by the number of rows
that actually satisfy the query.

If a FETCH statement does not retrieve all rows returned by the query, the cursor is
positioned on the next returned row. When the last row returned by the query has
been retrieved, the next FETCH statement results in an warning code returned in the
SQLCODE element of the SQLCA.

If the array is not completely filled then the warning is issued and you should check
SQLERRD(3) to see how many rows were actually fetched.

Keywords and
Parameters Description

FOR :array_size

FOR integer

Host variable containing the number of rows to be processed.

Number of rows to be processed.

Limits the number of rows fetched if you are using array host
variables. If you omit this clause, Oracle9i fetches enough rows
to fill the smallest array.

cursor A cursor that is declared by a DECLARE CURSOR statement.
The FETCH statement returns one of the rows selected by the
query associated with the cursor.

cursor_variable A cursor variable is allocated an ALLOCATE statement. The
FETCH statement returns one of the rows selected by the query
associated with the cursor variable.

INTO Specifies a list of host variables and optional indicator variables
into which data is fetched. These host variables and indicator
variables must be declared within the program.

USING SQLDA_variable Specifies the Oracle descriptor referenced in a previous
DESCRIBE statement. Only use this clause with dynamic
embedded SQL, method 4. The USING clause does not apply
when a cursor variable is used.

host_variable The host variable into which data is returned.

indicator_variable The host indicator variable.

FETCH DESCRIPTOR (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-37

Note that the FETCH statement does not contain an AT clause. You must specify the
database accessed by the cursor in the DECLARE CURSOR statement.

You can only move forward through the active set with FETCH statements. If you
want to revisit any of the previously fetched rows, you must reopen the cursor and
fetch each row in turn. If you want to change the active set, you must assign new
values to the input host variables in the cursor's query and reopen the cursor.

Example
This example illustrates the FETCH statement in a Pro*COBOL embedded SQL
program:

 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT JOB, SAL FROM EMP WHERE DEPTNO = 30
 END-EXEC.
 ...
 EXEC SQL WHENEVER NOT FOUND GOTO ...
 LOOP.
 EXEC SQL FETCH EMPCURSOR INTO :JOB-TITLE1, :SALARY1 END-EXEC.
 EXEC SQL FETCH EMPCURSOR INTO :JOB-TITLE2, :SALARY2 END-EXEC.
 ...
 GO TO LOOP.
 ...

Related Topics
CLOSE (Executable Embedded SQL) on page E-11.

DECLARE CURSOR (Embedded SQL Directive) on page E-18.

OPEN (Executable Embedded SQL) on page E-54.

PREPARE (Executable Embedded SQL) on page E-58.

FETCH DESCRIPTOR (Executable Embedded SQL)

Purpose
To retrieve one or more rows returned by a query, assigning the select list values to
host variables. Used in ANSI Dynamic SQL Method 4.

Prerequisites
You must first open the cursor with an the OPEN statement.

Syntax

EXEC SQL

FOR
integer

: array_size
FETCH

cursor

: cursor_variable

INTO
SQL

DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

’ descriptor name ’

FETCH DESCRIPTOR (Executable Embedded SQL)

E-38 Pro*COBOL Programmer’s Guide

Keywords and Parameters

Usage Notes
The number of rows retrieved is specified by the size of the output host variables and
the value specified in the FOR clause. The host variables to receive the data should be
either all scalars or all arrays. If they are scalars, Oracle9i fetches only one row. If they
are arrays, Oracle9i fetches enough rows to fill the arrays.

Array host variables can have different sizes. In this case, the number of rows Oracle9i
fetches is determined by the smaller of the following values:

■ The size of the smallest array

■ The value of the array_size in the optional FOR clause

■ Of course, the number of rows fetched can be further limited by the number of
rows that actually satisfy the query.

If a FETCH statement does not retrieve all rows returned by the query, the cursor is
positioned on the next returned row. When the last row returned by the query has
been retrieved, the next FETCH statement results in a warning code returned in the
SQLCODE element of the SQLCA.

If the array is not completely filled then the warning is issued and you should check
SQLERRD(3) to see how many rows were actually fetched.

Note that the FETCH statement does not contain an AT clause. You must specify the
database accessed by the cursor in the DECLARE CURSOR statement.

You can only move forward through the active set with FETCH statements. If you
want to revisit any of the previously fetched rows, you must reopen the cursor and

Keywords and
Parameters Description

FOR :array_size

FOR integer

Host variable containing the number of rows to be processed.

Number of rows to be processed.

Limits the number of rows fetched if you are using array host
variables. If you omit this clause, Oracle9i fetches enough rows
to fill the smallest array.

cursor A cursor that is declared by a DECLARE CURSOR statement.
The FETCH statement returns one of the rows selected by the
query associated with the cursor.

cursor_variable A cursor variable is allocated an ALLOCATE statement. The
FETCH statement returns one of the rows selected by the query
associated with the cursor variable.

INTO Specifies a list of host variables and optional indicator variables
into which data is fetched. These host variables and indicator
variables must be declared within the program.

INTO 'descriptor name'

INTO :descriptor_name

Name of the output ANSI descriptor.

Host variable containing the name of the output descriptor.

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

FREE (Executable Embedded SQL Extension)

Embedded SQL Statements and Precompiler Directives E-39

fetch each row in turn. If you want to change the active set, you must assign new
values to the input host variables in the cursor's query and reopen the cursor.

Use DYNAMIC=ANSI precompiler option for the ANSI SQL Method 4 application.
For more information, see "FETCH" on page 10-19 for the ANSI SQL Method 4
application.

Example
...
EXEC SQL ALLOCATE DESCRIPTOR 'output_descriptor' END-EXEC.
...
EXEC SQL PREPARE S FROM :dyn_statement END-EXEC.
EXEC SQL DECLARE mycursor CURSOR FOR S END-EXEC.
...
EXEC SQL FETCH mycursor INTO DESCRIPTOR 'output_descriptor' END-EXEC.
...

Related Topics
PREPARE statement on page E-58.

FREE (Executable Embedded SQL Extension)

Purpose
To free memory used by a cursor, LOB locator, or ROWID.

Prerequisites
The memory has to have been already allocated.

Syntax

Keywords and Parameters

Usage Notes
See "Cursors" on page 5-8 and "Cursor Variables" on page 6-22.

Keywords and
Parameters Description

cursor_variable A cursor variable that has previously been allocated in an
ALLOCATE statement. It is of type SQL-CURSOR.

The FETCH statement returns one of the rows selected by the
query associated with the cursor variable.

host_ptr A variable of type SQL-ROWID for a ROWID, or SQL-BLOB,
SQL-CLOB, or SQL-NCLOB for a LOB.

EXEC SQL FREE :
cursor_variable

host_ptr

GET DESCRIPTOR (Executable Embedded SQL)

E-40 Pro*COBOL Programmer’s Guide

Example
* CURSOR VARIABLE EXAMPLE
...
 01 CUR SQL-CURSOR.
...
 EXEC SQL ALLOCATE :CUR END-EXEC.
...
 EXEC SQL CLOSE :CUR END-EXEC.
 EXEC SQL FREE :CUR END-EXEC.
...

Related Topics
ALLOCATE (Executable Embedded SQL Extension) on page E-7.

CLOSE (Executable Embedded SQL) on page E-11.

DECLARE CURSOR (Embedded SQL Directive) on page E-18.

GET DESCRIPTOR (Executable Embedded SQL)

Purpose
To obtain information about host variables from a SQL descriptor area.

Prerequisites
Use only with value semantics and ANSI dynamic SQL Method 4.

Syntax

where item_name can be one of these choices:

EXEC SQL

FOR
integer

: array_size
GET DESCRIPTOR

GLOBAL

LOCAL

: descriptor_name

'descriptor name'

VALUE
: host_integer

integer
: host_var = item_name

,

: host_var = COUNT

GET DESCRIPTOR (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-41

Keywords and Parameters

Keywords and
Parameters Description

array_size

integer

Host variable containing the number of rows to be processed.

Number of rows to be processed.

:descriptor_name Host variable containing the name of the allocated ANSI
descriptor.

'descriptor name' Name of the allocated ANSI descriptor.

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

host_var=COUNT Host variable containing the total number of input or output
variables.

integer Total number of input or output variables.

VALUE :host_integer Host variable containing the position of the referenced input or
output variable.

VALUE integer The position of the referenced input or output variable.

host_var Host variable which will receive the item's value.

item_name The item_name is found in Table 10–4 on page 10-12, and
Table 10–5 on page 10-12, under the "Descriptor Item Name"
column heading.

TYPE

LENGTH

OCTET_LENGTH

RETURNED_LENGTH

RETURNED_OCTET_LENGTH

PRECISION

SCALE

NULLABLE

INDICATOR

DATA

NAME

CHARACTER_SET_NAME

NATIONAL_CHARACTER

INTERNAL_LENGTH

INSERT (Executable Embedded SQL)

E-42 Pro*COBOL Programmer’s Guide

Usage Notes
Use DYNAMIC=ANSI precompiler option. The array size clause can be used with
DATA, RETURNED_LENGTH, and INDICATOR item names. See "GET
DESCRIPTOR" on page 10-11.

Example
 EXEC SQL GET DESCRIPTOR GLOBAL 'mydesc' :mydesc_num_vars = COUNT END-EXEC.

Related Topics
ALLOCATE DESCRIPTOR (Executable Embedded SQL) on page E-8.

DESCRIBE DESCRIPTOR (Executable Embedded SQL) on page E-28.

SET DESCRIPTOR (Executable Embedded SQL) on page E-66.

INSERT (Executable Embedded SQL)

Purpose
To add rows to a table or to a view's base table.

Prerequisites
For you to insert rows into a table, the table must be in your own schema or you must
have INSERT privilege on the table.

For you to insert rows into the base table of a view, the owner of the schema
containing the view must have INSERT privilege on the base table. Also, if the view is
in a schema other than your own, you must have INSERT privilege on the view.

The INSERT ANY TABLE system privilege also enables you to insert rows into any
table or any view's base table.

Syntax

EXEC SQL

AT
db_name

: host_variable
FOR

: host_integer

integer

INSERT INTO

(subquery)

schema . table

view

@ db_link

PARTITION (part_name)

(column)

,

VALUES (expr

,

)

subquery

DML.RETURNING.CLAUSE

INSERT (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-43

where DML returning clause is:

Keywords and Parameters

Keywords and Parameters Description

AT Identifies the database on which the INSERT statement is
executed. The database can be identified by either:

db_name A database identifier declared in a previous DECLARE
DATABASE statement.

host_variable A host variable whose value is a previously declared db_
name. If you omit this clause, the INSERT statement is
executed on your default database.

FOR :host_integer Limits the number of times the statement is executed if the
VALUES clause contains array host variables. If you omit
this clause, Oracle9i executes the statement once for each
component in the smallest array.

schema The schema containing the table or view. If you omit
schema, Oracle9i assumes the table or view is in your own
schema.

table

view

The name of the table into which rows are to be inserted. If
you specify view, Oracle9i inserts rows into the view's base
table.

db_link A complete or partial name of a database link to a remote
database where the table or view is located. For
information on referring to database links, see the Oracle
Database SQL Reference. You can only insert rows into a
remote table or view if you are using Oracle9i with the
distributed option.

 If you omit db_link, Oracle9i assumes that the table or
view is on the local database.

part_name The name of partition in the table

column A column of the table or view. In the inserted row, each
column in this list is assigned a value from the VALUES
clause or the query.

If you omit one of the table's columns from this list, the
column's value for the inserted row is the column's default
value as specified when the table was created. If you omit
the column list altogether, the VALUES clause or query
must specify values for all columns in the table.

RETURN

RETURNING
expr

,

INTO : host_variable

INDICATOR
: ind_variable

,

LOB APPEND (Executable Embedded SQL Extension)

E-44 Pro*COBOL Programmer’s Guide

Usage Notes
Any host variables that appear in the WHERE clause should be either all scalars or all
arrays. If they are scalars, Oracle9 executes the INSERT statement once. If they are
arrays, Oracle9i executes the INSERT statement once for each set of array components,
inserting one row each time.

Array host variables in the WHERE clause can have different sizes. In this case, the
number of times Oracle9i executes the statement is determined by the smaller of the
following values:

■ Size of the smallest array

■ The value of the host_integer in the optional FOR clause.

For more information on this statement, see "The Basic SQL Statements" on page 5-5.

Example I
This example illustrates the use of the embedded SQL INSERT statement:

 EXEC SQL
 INSERT INTO EMP (ENAME, EMPNO, SAL)
 VALUES (:ENAME, :EMPNO, :SAL)
 END-EXEC.

Example II
This example shows an embedded SQL INSERT statement with a subquery:

 EXEC SQL
 INSERT INTO NEWEMP (ENAME, EMPNO, SAL)
 SELECT ENAME, EMPNO, SAL FROM EMP
 WHERE DEPTNO = :DEPTNO
 END-EXEC.

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive) on page E-20.

LOB APPEND (Executable Embedded SQL Extension)

Purpose
To append a LOB to the end of another LOB.

VALUES Specifies a row of values to be inserted into the table or
view. See the syntax description of expr in the Oracle
Database SQL Reference. Note that the expressions can be
host variables with optional indicator variables. You must
specify an expression in the VALUES clause for each
column in the column list.

subquery A subquery that returns rows that are inserted into the
table. The select list of this subquery must have the same
number of columns as the column list of the INSERT
statement. For the syntax description of a subquery, see
"SELECT" in the Oracle Database SQL Reference.

DML returning clause See "DML Returning Clause" on page 5-7 for a discussion.

Keywords and Parameters Description

LOB CLOSE (Executable Embedded SQL Extension)

Embedded SQL Statements and Precompiler Directives E-45

Prerequisites
LOB buffering must not be enabled.The destination LOB must have been initialized.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "APPEND" on
page 13-8.

Related Topics
See the other LOB statements.

LOB ASSIGN (Executable Embedded SQL Extension)

Purpose
To assign a LOB or BFILE locator to another locator.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "ASSIGN" on
page 13-8.

Related Topics
See the other LOB statements.

LOB CLOSE (Executable Embedded SQL Extension)

Purpose
To close an open LOB or BFILE.

EXEC SQL

AT
db_name

: host_variable
LOB APPEND : src TO : dst

EXEC SQL

AT
db_name

: host_variable
LOB ASSIGN : src TO : dst

LOB COPY (Executable Embedded SQL Extension)

E-46 Pro*COBOL Programmer’s Guide

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "CLOSE" on
page 13-9.

Related Topics
See the other LOB statements.

LOB COPY (Executable Embedded SQL Extension)

Purpose
To copy all or part of a LOB value into another LOB.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "COPY" on
page 13-9.

Related Topics
See the other LOB statements.

LOB CREATE TEMPORARY (Executable Embedded SQL Extension)

Purpose
To create a temporary LOB.

EXEC SQL

AT
db_name

: host_variable
LOB CLOSE : src

EXEC SQL

AT
db_name

: host_variable

LOB COPY : amt FROM : src

AT : src_offset

TO : dst
AT : dst_offset

LOB DESCRIBE (Executable Embedded SQL Extension)

Embedded SQL Statements and Precompiler Directives E-47

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "CREATE
TEMPORARY" on page 13-10.

Related Topics
See the other LOB statements.

LOB DESCRIBE (Executable Embedded SQL Extension)

Purpose
To retrieve attributes from a LOB.

Syntax

where attrib is:

EXEC SQL

AT
db_name

: host_variable
LOB CREATE TEMPORARY : src

EXEC SQL

AT
db_name

: host_variable

LOB DESCRIBE : src

GET attrib

,

INTO : hv

INDICATOR
: hv_ind

,

LOB DISABLE BUFFERING (Executable Embedded SQL Extension)

E-48 Pro*COBOL Programmer’s Guide

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "DESCRIBE" on
page 13-18.

Related Topics
See the other LOB statements.

LOB DISABLE BUFFERING (Executable Embedded SQL Extension)

Purpose
To disable LOB buffering.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "DISABLE
BUFFERING" on page 13-11.

Related Topics
See the other LOB statements.

LOB ENABLE BUFFERING (Executable Embedded SQL Extension)

Purpose
To enable LOB buffering.

CHUNKSIZE

DIRECTORY

FILEEXISTS

FILENAME

ISOPEN

ISTEMPORARY

LENGTH

EXEC SQL

AT
db_name

: host_variable
LOB DISABLE BUFFERING : src

LOB FILE CLOSE ALL (Executable Embedded SQL Extension)

Embedded SQL Statements and Precompiler Directives E-49

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see ENABLE
BUFFERING on page 13-11

Related Topics
See the other LOB statements.

LOB ERASE (Executable Embedded SQL Extension)

Purpose
To erase a given amount of LOB data starting from a given offset.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "ERASE" on
page 13-11.

Related Topics
See the other LOB statements.

LOB FILE CLOSE ALL (Executable Embedded SQL Extension)

Purpose
To close all open BFILEs in the current session.

EXEC SQL

AT
db_name

: host_variable
LOB ENABLE BUFFERING : src

EXEC SQL

AT
db_name

: host_variable
LOB ERASE : amt

FROM : src
AT : src_offset

LOB FILE SET (Executable Embedded SQL Extension)

E-50 Pro*COBOL Programmer’s Guide

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "FILE CLOSE
ALL" on page 13-12.

Related Topics
See the other LOB statements.

LOB FILE SET (Executable Embedded SQL Extension)

Purpose
To set DIRECTORY and FILENAME in a BFILE locator.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "FILE SET" on
page 13-12.

Related Topics
See the other LOB statements.

LOB FLUSH BUFFER (Executable Embedded SQL Extension)

Purpose
To write the LOB buffers to the database server.

EXEC SQL

AT
db_name

: host_variable
LOB FILE CLOSE ALL

EXEC SQL

AT
db_name

: host_variable
LOB FILE SET : file

DIRECTORY = : alias , FILENAME = : filename

LOB LOAD (Executable Embedded SQL Extension)

Embedded SQL Statements and Precompiler Directives E-51

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "FLUSH BUFFER"
on page 13-13.

Related Topics
See the other LOB statements.

LOB FREE TEMPORARY (Executable Embedded SQL Extension)

Purpose
To free temporary space for the LOB locator.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "FREE
TEMPORARY" on page 13-13.

Related Topics
See the other LOB statements.

LOB LOAD (Executable Embedded SQL Extension)

Purpose
To copy all or part of a BFILE into an internal LOB.

EXEC SQL

AT
db_name

: host_variable
LOB FLUSH BUFFER : src

FREE

EXEC SQL

AT
db_name

: host_variable
LOB FREE TEMPORARY : src

LOB OPEN (Executable Embedded SQL Extension)

E-52 Pro*COBOL Programmer’s Guide

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "LOAD FROM
FILE" on page 13-14.

Related Topics
See the other LOB statements.

LOB OPEN (Executable Embedded SQL Extension)

Purpose
To open a LOB or BFILE for read or read/write access.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "OPEN" on
page 13-14.

Related Topics
See the other LOB statements.

LOB READ (Executable Embedded SQL Extension)

Purpose
To read all or part of a LOB or BFILE into a buffer.

EXEC SQL

AT
db_name

: host_variable
LOB LOAD : amt FROM

FILE : file
AT : src_offset

INTO : dst
AT : dst_offset

EXEC SQL

AT
db_name

: host_variable
LOB OPEN : src

READ ONLY

READ WRITE

LOB WRITE (Executable Embedded SQL Extension)

Embedded SQL Statements and Precompiler Directives E-53

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "READ" on
page 13-15.

Related Topics
See the other LOB statements.

LOB TRIM (Executable Embedded SQL Extension)

Purpose
To truncate a LOB value.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "TRIM" on
page 13-16.

Related Topics
See the other LOB statements.

LOB WRITE (Executable Embedded SQL Extension)

Purpose
To write the contents of a buffer to a LOB.

EXEC SQL

AT
db_name

: host_variable
LOB READ : amt FROM : src

AT : src_offset
INTO : buffer

WITH LENGTH : buflen

EXEC SQL

AT
db_name

: host_variable
LOB TRIM : src TO : newlen

OPEN (Executable Embedded SQL)

E-54 Pro*COBOL Programmer’s Guide

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "WRITE" on
page 13-17.

Related Topics
See the other LOB statements.

OPEN (Executable Embedded SQL)

Purpose
To open a cursor, evaluating the associated query and substituting the host variable
names supplied by the USING clause into the WHERE clause of the query. It can be
used in place of EXECUTE in dynamic SQL. For the ANSI Dynamic SQL syntax, see
"OPEN DESCRIPTOR (Executable Embedded SQL)" on page E-56.

Prerequisites
You must declare the cursor with a DECLARE CURSOR embedded SQL statement
before opening it.

EXEC SQL

AT
db_name

: host_variable
LOB WRITE

APPEND

FIRST

NEXT

LAST

ONE
: amt FROM : buffer

WITH LENGTH : buflen
INTO : dst

AT : dst_offset

OPEN (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-55

Syntax

Keywords and Parameters

Usage Notes
The OPEN statement defines the active set of rows and initializes the cursor just before
the first row of the active set. The values of the host variables at the time of the OPEN
are substituted in the statement. This statement does not actually retrieve rows; rows
are retrieved by the FETCH statement.

Once you have opened a cursor, its input host variables are not reexamined until you
reopen the cursor. To change any input host variables and therefore the active set, you
must reopen the cursor.

All cursors in a program are in a closed state when the program is initiated or when
they have been explicitly closed using the CLOSE statement.

Keywords and
Parameters Description

array_size

integer

Host variable containing the number of rows to be processed.

Number of rows to be processed.

Can only be used when the OPEN is equivalent to EXECUTE.

cursor The (previously declared) cursor to be opened.

host_variable Specifies a host variable with an optional indicator variable to be
substituted into the statement associated with the cursor.

CANNOT be used together with an ANSI descriptor (INTO
clause).

DESCRIPTOR SQLDA_
descriptor

Specifies an Oracle descriptor that describes the host variables to
be substituted into the WHERE clause of the associated query.
The descriptor must be initialized in a previous DESCRIBE
statement. The substitution is based on position. The host
variable names specified in this statement can be different from
the variable names in the associated query.

CANNOT be used together with an ANSI descriptor (INTO
clause).

EXEC SQL

FOR
integer

: array_size
OPEN cursor

USING

DESCRIPTOR SQLDA_descriptor

: host_variable

INDICATOR
: indicator_variable

,

OPEN DESCRIPTOR (Executable Embedded SQL)

E-56 Pro*COBOL Programmer’s Guide

You can reopen a cursor without first closing it. For more information on this
statement, see "Opening a Cursor" on page 5-10.

Example
This example illustrates the use of the OPEN statement in a Pro*COBOL program:

 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT ENAME, EMPNO, JOB, SAL
 FROM EMP
 WHERE DEPTNO = :DEPTNO
 END-EXEC.
 EXEC SQL OPEN EMPCURSOR END-EXEC.

Related Topics
CLOSE (Executable Embedded SQL) on page E-11.

DECLARE CURSOR (Embedded SQL Directive) on page E-18.

EXECUTE (Executable Embedded SQL) on page E-31.

FETCH (Executable Embedded SQL) on page E-35.

PREPARE (Executable Embedded SQL) on page E-58.

OPEN DESCRIPTOR (Executable Embedded SQL)

Purpose
To open a cursor (for ANSI Dynamic SQL Method 4), evaluating the associated query
and substituting the input host variable names supplied by the USING clause into the
WHERE clause of the query. The INTO clause denotes the output descriptor. It can be
used in place of EXECUTE in dynamic SQL.

Prerequisites
You must declare the cursor with a DECLARE CURSOR embedded SQL statement
before opening it.

OPEN DESCRIPTOR (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-57

Syntax

Keywords and Parameters

Usage Notes
Set the precompiler option DYNAMIC to ANSI.

The OPEN statement defines the active set of rows and initializes the cursor just before
the first row of the active set. The values of the host variables at the time of the OPEN
are substituted in the statement. This statement does not actually retrieve rows; rows
are retrieved by the FETCH statement.

Once you have opened a cursor, its input host variables are not reexamined until you
reopen the cursor. To change any input host variables and therefore the active set, you
must reopen the cursor.

Keywords and
Parameters Description

array_size

integer

Host variable containing the number of rows to be processed.

Number of rows to be processed.

Used only with dynamic SQL when it is equivalent to
EXECUTE.

cursor The (previously declared) cursor to be opened.

USING DESCRIPTOR

descriptor_name 'descriptor
name'

Specifies an ANSI input descriptor with the host variable
containing the name of the ANSI descriptor, or the name of the
ANSI descriptor.

INTO DESCRIPTOR
descriptor_name 'descriptor
name'

Specifies an ANSI output descriptor with the host variable
containing the name of the ANSI descriptor, or the name of the
ANSI descriptor.

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

EXEC SQL

FOR
integer

: array_size
OPEN cursor

USING
SQL

DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

’ descriptor name ’

INTO
SQL

DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

’ descriptor name ’

PREPARE (Executable Embedded SQL)

E-58 Pro*COBOL Programmer’s Guide

All cursors in a program are in a closed state when the program is initiated or when
they have been explicitly closed using the CLOSE statement.

You can reopen a cursor without first closing it. For more information on this
statement, see "Inserting Rows" on page 5-6.

Example
 01 DYN-STATEMENT PIC X(58) VALUE "SELECT ENAME, EMPNO FROM EMP WHERE
 DEPTNO =:DEPTNO-DAT".
 01 DEPTNO-DAT PIC S9(9) COMP VALUE 10.
 ...
 EXEC SQL ALLOCATE DESCRIPTOR 'input-descriptor' END-EXEC.
 EXEC SQL ALLOCATE DESCRIPTOR 'output-descriptor'
 ...
 EXEC SQL PREPARE S FROM :DYN-STATEMENT END-EXEC.
 EXEC SQL DECLARE C CURSOR FOR S END-EXEC.
 ...
 EXEC SQL OPEN C USING DESCRIPTOR 'input-descriptor' END-EXEC.
 ...

Related Topics
CLOSE (Executable Embedded SQL) on page E-11.

DECLARE CURSOR (Embedded SQL Directive) on page E-18.

FETCH DESCRIPTOR (Executable Embedded SQL) on page E-37.

PREPARE (Executable Embedded SQL) on page E-58.

PREPARE (Executable Embedded SQL)

Purpose
To parse a SQL statement or PL/SQL block specified by a host variable and associate it
with an identifier.

Prerequisites
None.

Syntax

EXEC SQL

AT
db_name

: host_variable
PREPARE statement_id FROM

: host_string

' text '

select_command

ROLLBACK (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-59

Keywords and Parameters

Usage Notes
Any variables that appear in the host_string or text are placeholders. The actual host
variable names are assigned in the USING clause of the OPEN statement (input host
variables) or in the INTO clause of the FETCH statement (output host variables).

A SQL statement is prepared only once, but can be executed any number of times.

Example
This example illustrates the use of a PREPARE statement in a Pro*COBOL embedded
SQL program:

 EXEC SQL PREPARE MYSTATEMENT FROM :MY-STRING END-EXEC.
 EXEC SQL EXECUTE MYSTATEMENT END-EXEC.

Related Topics
CLOSE (Executable Embedded SQL) on page E-11.

DECLARE CURSOR (Embedded SQL Directive) on page E-18.

FETCH (Executable Embedded SQL) on page E-35.

OPEN (Executable Embedded SQL) on page E-56.

ROLLBACK (Executable Embedded SQL)

Purpose
To undo work done in the current transaction. You can also use this statement to
manually undo the work done by an in-doubt distributed transaction.

Prerequisites
To roll back your current transaction, no privileges are necessary.

Keywords and
Parameters Description

db_name A null-terminated string containing the database connection
name, as established previously in a CONNECT statement. If it
is omitted, or if it is an empty string, the default database
connection is assumed.

host_variable A host variable containing the name of the database connection.

array_size

integer

Host variable containing the number of rows to be processed.

Number of rows to be processed.

statement_id The identifier to be associated with the prepared SQL statement
or PL/SQL block. If this identifier was previously assigned to
another statement or block, the prior assignment is superseded.

host_string A host variable whose value is the text of a SQL statement or
PL/SQL block to be prepared.

text A text literal containing the SQL statement or PL/SQL block to
be executed. The quotes may be omitted.

select_command A SELECT statement.

ROLLBACK (Executable Embedded SQL)

E-60 Pro*COBOL Programmer’s Guide

To manually roll back an in-doubt distributed transaction that you originally
committed, you must have FORCE TRANSACTION system privilege. To manually
roll back an in-doubt distributed transaction originally committed by another user,
you must have FORCE ANY TRANSACTION system privilege.

Syntax

Keywords and Parameters

Keywords and
Parameters Description

db_name A null-terminated string containing the database connection
name, as established previously in a CONNECT statement. If it
is omitted, or if it is an empty string, the default database
connection is assumed.

host_variable A host variable containing the name of the database connection.

If you omit this clause, the savepoint is created on your default
database.

WORK Is optional and is provided for ANSI compatibility.

TO Rolls back the current transaction to the specified savepoint. If
you omit this clause, the ROLLBACK statement rolls back the
entire transaction.

FORCE Manually rolls back an in-doubt distributed transaction. The
transaction is identified by the text containing its local or global
transaction ID. To find the IDs of such transactions, query the
data dictionary view DBA_2PC_PENDING.

ROLLBACK statements with the FORCE clause are not
supported in PL/SQL.

RELEASE Frees all resources and disconnects the application from the
database server. The RELEASE clause is not allowed with
SAVEPOINT and FORCE clauses.

savepoint The name of the savepoint to be rolled back to.

EXEC SQL

AT
db_name

: host_variable

ROLLBACK
WORK

TO
SAVEPOINT

savepoint

FORCE ’ text ’

RELEASE

ROLLBACK (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-61

Usage Notes
A transaction (or a logical unit of work) is a sequence of SQL statements that Oracle9i
treats as a single unit. A transaction begins with the first executable SQL statement
after a COMMIT, ROLLBACK or connection to the database. A transaction ends with a
COMMIT statement, a ROLLBACK statement, or disconnection (intentional or
unintentional) from the database. Note that Oracle9i issues an implicit COMMIT
statement before and after processing any data definition language statement.

Using the ROLLBACK statement without the TO SAVEPOINT clause performs the
following operations:

■ ends the transaction

■ undoes all changes in the current transaction

■ erases all savepoints in the transaction

■ releases the transaction's locks

Using the ROLLBACK statement with the TO SAVEPOINT clause performs the
following operations:

■ rolls back just the portion of the transaction after the savepoint.

■ loses all savepoints created after that savepoint. Note that the named savepoint is
retained, so you can roll back to the same savepoint multiple times. Prior
savepoints are also retained.

■ releases all table and row locks acquired since the savepoint. Note that other
transactions that have requested access to rows locked after the savepoint must
continue to wait until the transaction is committed or rolled back. Other
transactions that have not already requested the rows can request and access the
rows immediately.

It is recommended that you explicitly end transactions in application programs using
either a COMMIT or ROLLBACK statement. If you do not explicitly commit the
transaction and the program terminates abnormally, Oracle9i rolls back the last
uncommitted transaction.

Example I
The following statement rolls back your entire current transaction:

 EXEC SQL ROLLBACK END-EXEC.

Example II
The following statement rolls back your current transaction to savepoint SP5:

 EXEC SQL ROLLBACK TO SAVEPOINT SP5 END-EXEC.

Distributed Transactions
Oracle9i with the distributed option enables you to perform distributed transactions,
or transactions that modify data on multiple databases. To commit or roll back a
distributed transaction, you need only issue a COMMIT or ROLLBACK statement as
you would any other transaction.

If there is a network failure during the commit process for a distributed transaction,
the state of the transaction may be unknown, or in-doubt. After consultation with the
administrators of the other databases involved in the transaction, you may decide to
manually commit or roll back the transaction on your local database. You can

SAVEPOINT (Executable Embedded SQL)

E-62 Pro*COBOL Programmer’s Guide

manually roll back the transaction on your local database by issuing a ROLLBACK
statement with the FORCE clause.

You cannot manually roll back an in-doubt transaction to a savepoint.

A ROLLBACK statement with a FORCE clause only rolls back the specified
transaction. Such a statement does not affect your current transaction.

Example III
The following statement manually rolls back an in-doubt distributed transaction:

 EXEC SQL ROLLBACK WORK FORCE '25.32.87' END-EXEC.

Related Topics
COMMIT (Executable Embedded SQL) on page E-12.

SAVEPOINT (Executable Embedded SQL) on page E-62.

SAVEPOINT (Executable Embedded SQL)

Purpose
To identify a point in a transaction to which you can later roll back.

Prerequisites
None.

Syntax

Keywords and Parameters

Keywords and
Parameters Description

AT Identifies the database on which the savepoint is created. The
database can be identified by either:

db_name A database identifier declared in a previous DECLARE
DATABASE statement.

host_variable A host variable whose value is a previously declared db_name. If
you omit this clause, the savepoint is created on your default
database.

savepoint The name of the savepoint to be created.

EXEC SQL

AT
db_name

: host_variable
SAVEPOINT savepoint

SELECT (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-63

Usage Notes
For more information on this statement, see "Using the SAVEPOINT Statement" on
page 3-13.

Example
This example illustrates the use of the embedded SQL SAVEPOINT statement:

 EXEC SQL SAVEPOINT SAVE3 END-EXEC.

Related Topics
COMMIT (Executable Embedded SQL) on page E-12.

ROLLBACK (Executable Embedded SQL) on page E-59.

SELECT (Executable Embedded SQL)

Purpose
To retrieve data from one or more tables, views, or snapshots, assigning the selected
values to host variables.

Prerequisites
For you to select data from a table or snapshot, the table or snapshot must be in your
own schema or you must have SELECT privilege on the table or snapshot.

For you to select rows from the base tables of a view, the owner of the schema
containing the view must have SELECT privilege on the base tables. Also, if the view
is in a schema other than your own, you must have SELECT privilege on the view.

The SELECT ANY TABLE system privilege also enables you to select data from any
table or any snapshot or any view's base table.

SELECT (Executable Embedded SQL)

E-64 Pro*COBOL Programmer’s Guide

Syntax

EXEC SQL

AT
db_name

: host_variable
SELECT select_list

INTO : host_variable

INDICATOR
: indicator_variable

,

FROM table_list

WHERE condition

START WITH condition
CONNECT BY condition

CONNECT BY condition
START WITH condition

GROUP BY expr

,
HAVING condition

WITH READONLY

WITH CHECK OPTION

UNION

UNION ALL

INTERSECT

MINUS

SELECT command

ORDER BY
expr

position

ASC

DESC

,

FOR UPDATE
OF

schema .
table .

view .

snapshot
column

,

NOWAIT

SELECT (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-65

Keywords and Parameters

All other keywords and parameters are identical to the non-embedded SQL SELECT
statement.

Usage Notes
If no rows meet the WHERE clause condition, no rows are retrieved and Oracle9i
returns an error code through the SQLCODE component of the SQLCA.

You can use comments in a SELECT statement to pass instructions, or hints, to the
Oracle9i optimizer. The optimizer uses hints to choose an execution plan for the
statement. For more information on hints, see Oracle Database Performance Tuning
Guide.

Example
This example illustrates the use of the embedded SQL SELECT statement:

 EXEC SQL SELECT ENAME, SAL + 100, JOB
 INTO :ENAME, :SAL, :JOB
 FROM EMP
 WHERE EMPNO = :EMPNO
 END-EXEC.

Related Topics
DECLARE CURSOR (Embedded SQL Directive) on page E-18.

DECLARE DATABASE (Oracle Embedded SQL Directive) on page E-20.

EXECUTE (Executable Embedded SQL) on page E-31.

FETCH (Executable Embedded SQL) on page E-35.

PREPARE (Executable Embedded SQL) on page E-58.

Keywords and Parameters Description

AT Identifies the database to which the SELECT statement is
issued. The database can be identified by either:

db_name A database identifier declared in a previous DECLARE
DATABASE statement.

host_variable A host variable whose value is a previously declared db_
name.

If you omit this clause, the SELECT statement is issued to
your default database.

select_list Identical to the non-embedded SELECT statement except
that a host variables can be used in place of literals.

INTO Specifies output host variables and optional indicator
variables to receive the data returned by the SELECT
statement. Note that these variables must be either all
scalars or all arrays, but arrays need not have the same
size.

WHERE Restricts the rows returned to those for which the
condition is TRUE. See the syntax description of condition
in the Oracle Database SQL Reference. The condition can
contain host variables, but cannot contain indicator
variables. These host variables can be either scalars or
arrays.

SET DESCRIPTOR (Executable Embedded SQL)

E-66 Pro*COBOL Programmer’s Guide

SET DESCRIPTOR (Executable Embedded SQL)

Purpose
Use this ANSI dynamic SQL statement to set information in the descriptor area from
host variables.

Prerequisites
Use after a DESCRIBE DESCRIPTOR.

Syntax

where item_name can be one of these choices:

EXEC SQL

FOR
integer

: array_size
SET DESCRIPTOR

GLOBAL

LOCAL

: descriptor_name

’descriptor name’

VALUE
: host_integer

integer
item_name = : host_var

,

COUNT =
: host_integer

integer

TYPE

LENGTH

PRECISION

SCALE

REF
INDICATOR

REF
DATA

CHARACTER_SET_NAME

REF
RETURNED_LENGTH

NATIONAL_CHARACTER

UPDATE (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-67

Keywords and Parameters

Usage Notes
Use DYNAMIC=ANSI precompiler option. Set CHARACTER_SET_NAME to UTF16
for client-side Unicode support. See "SET DESCRIPTOR" on page 10-13 for complete
details, including tables of descriptor item names.

Example
 EXEC SQL SET DESCRIPTOR GLOBAL :mydescr COUNT = 3 END-EXEC.

Related Topics
ALLOCATE DESCRIPTOR (Executable Embedded SQL) on page E-8.

DEALLOCATE DESCRIPTOR (Embedded SQL Statement) on page E-17.

DESCRIBE DESCRIPTOR (Executable Embedded SQL) on page E-28.

GET DESCRIPTOR (Executable Embedded SQL) on page E-40.

PREPARE (Executable Embedded SQL) on page E-58.

UPDATE (Executable Embedded SQL)

Purpose
To change existing values in a table or in a view's base table.

Keywords and
Parameters Description

array_size

integer

Host variable containing the number of rows to be processed.

Number of rows to be processed. The array size clause can only be
used with DATA, RETURNED_LENGTH and INDICATOR item
names.

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

descriptor_name

'descriptor name'

Host variable containing the name of the allocated ANSI descriptor.

Name of the allocated ANSI descriptor.

COUNT The total number of input or output variables.

VALUE The position of the referenced host variable in the statement.

item_name See Table 10–6 on page 10-14, and Table 10–7 on page 10-14 for lists
of the item_names, and their descriptions.

host_var Host variable containing the total number of input or output
variables.

integer Total number of input or output variables.

host_var The host variables used to set the item.

REF Reference semantics are to be used. Can be used only with
RETURNED_LENGTH, DATA, and INDICATOR item names.

Must be used to set RETURNED_LENGTH.

UPDATE (Executable Embedded SQL)

E-68 Pro*COBOL Programmer’s Guide

Prerequisites
For you to update values in a table or snapshot, the table must be in your own schema
or you must have UPDATE privilege on the table.

For you to update values in the base table of a view, the owner of the schema
containing the view must have UPDATE privilege on the base table. Also, if the view
is in a schema other than your own, you must have UPDATE privilege on the view.

The UPDATE ANY TABLE system privilege also enables you to update values in any
table or any view's base table.

Syntax

where DML returning clause is:

EXEC SQL

AT
dbname

: host_variable
FOR

: host_integer

integer

UPDATE

(subquery)

schema . table

view

@ db_link

PARTITION (part_name)

SET

column =
expr

(subquery_2)

(column

,

) = (subquery_1)

,

WHERE
condition

CURRENT OF cursor DML.RETURNING.CLAUSE

RETURN

RETURNING
expr

,

INTO : host_variable

INDICATOR
: ind_variable

,

UPDATE (Executable Embedded SQL)

Embedded SQL Statements and Precompiler Directives E-69

Keywords and Parameters

Keywords and Parameters Description

AT identifies the database to which the UPDATE
statement is issued. The database can be identified by
either:

dbname A database identifier declared in a previous
DECLARE DATABASE statement.

host_variable A host variable whose value is a previously declared
dbname.

- If you omit this clause, the UPDATE statement is
issued to your default database.

FOR :host_integer Limits the number of times the UPDATE statement is
executed if the SET and WHERE clauses contain array
host variables. If you omit this clause, Oracle9i
executes the statement once for each component of
the smallest array.

schema The schema containing the table or view. If you omit
schema, Oracle9i assumes the table or view is in your
own schema.

table view The name of the table to be updated. If you specify
view, Oracle9i updates the view's base table.

dblink A complete or partial name of a database link to a
remote database where the table or view is located.
For information on referring to database links, see the
Oracle Database SQL Reference. You can only use a
database link to update a remote table or view if you
are using Oracle9i with the distributed option.

part_name Name of partition in the table

alias A name used to reference the table, view, or subquery
elsewhere in the statement.

column The name of a column of the table or view that is to be
updated. If you omit a column of the table from the
SET clause, that column's value remains unchanged.

expr The new value assigned to the corresponding column.
This expression can contain host variables and
optional indicator variables. See the syntax of expr in
the Oracle Database SQL Reference.

subquery_1 A subquery that returns new values that are assigned
to the corresponding columns. For the syntax of a
subquery, see "SELECT" in the Oracle Database SQL
Reference.

subquery_2 A subquery that return a new value that is assigned to
the corresponding column. For the syntax of a
subquery, see "SELECT" in the Oracle Database SQL
Reference.

WHERE Specifies which rows of the table or view are
updated:

- condition

- CURRENT OF

- If you omit this clause entirely, Oracle9i updates all
rows of the table or view.

UPDATE (Executable Embedded SQL)

E-70 Pro*COBOL Programmer’s Guide

Usage Notes
Host variables in the SET and WHERE clauses must be either all scalars or all arrays. If
they are scalars, Oracle9i executes the UPDATE statement only once. If they are arrays,
Oracle9i executes the statement once for each set of array components. Each execution
may update zero, one, or multiple rows.

Array host variables can have different sizes. In this case, the number of times Oracle9i
executes the statement is determined by the smaller

of the following values:

■ The size of the smallest array

■ The value of the host_integer in the optional FOR clause

The cumulative number of rows updated is returned through the third element of the
SQLERRD component of the SQLCA. When arrays are used as input host variables,
this count reflects the total number of updates for all components of the array
processed in the UPDATE statement. If no rows satisfy the condition, no rows are
updated and Oracle9i returns an error message through the SQLCODE element of the
SQLCA. If you omit the WHERE clause, all rows are updated and Oracle9i raises a
warning flag in the fifth component of the SQLWARN element of the SQLCA.

You can use comments in an UPDATE statement to pass instructions, or hints, to the
Oracle9i optimizer. The optimizer uses hints to choose an execution plan for the
statement. For more information on hints, see Oracle Database Performance Tuning
Guide.

For more information on this statement, see "The Basic SQL Statements" on page 5-5
andChapter 3, "Database Concepts".

Examples
The following examples illustrate the use of the embedded SQL UPDATE statement:

 EXEC SQL UPDATE EMP
 SET SAL = :SAL, COMM = :COMM INDICATOR :COMM-IND
 WHERE ENAME = :ENAME
 END-EXEC.

 EXEC SQL UPDATE EMP
 SET (SAL, COMM) =
 (SELECT AVG(SAL)*1.1, AVG(COMM)*1.1
 FROM EMP)
 WHERE ENAME = 'JONES'
 END-EXEC.

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive) on page E-20.

DML returning clause See "DML Returning Clause" on page 5-7 for a
discussion.

Keywords and Parameters Description

VAR (Oracle Embedded SQL Directive)

Embedded SQL Statements and Precompiler Directives E-71

VAR (Oracle Embedded SQL Directive)

Purpose
To perform host variable equivalencing, to assign a specific Oracle9i external datatype to
an individual host variable, overriding the default datatype assignment. There is an
optional clause, CONVBUFSZ, that specifies the size of a buffer for character set
conversion.

Prerequisites
The host variable must be previously declared in the embedded SQL program.

Syntax

Keywords and Parameters

Usage Notes
Datatype equivalencing is useful for any of the following purposes:

■ To store program data as binary data in the database

■ To override default datatype conversion

For more information about Oracle datatypes, see "Sample Program 4: Datatype
Equivalencing" on page 4-38.

Keywords and
Parameters Description

host_variable The host variable to be assigned an Oracle9i external datatype.

dtyp An Oracle9i external datatype recognized by Pro*COBOL (not
an Oracle9i internal datatype). The datatype may include a
length, precision, or scale. This external datatype is assigned to
the host_variable. For a list of external datatypes, see "External
Datatypes" on page 4-3.

size The size in bytes of a buffer in the Oracle9i runtime library used
to perform conversion between character sets of the host_variable.

EXEC SQL VAR host_variable

IS dtyp

(
length

precision , scale
)

CONVBUFSZ
IS

(size)

CONVBUFSZ
IS

(size)

WHENEVER (Embedded SQL Directive)

E-72 Pro*COBOL Programmer’s Guide

Example
This example equivalences the host variable DEPT_NAME to the datatype
VARCHAR2 and the host variable BUFFER to the datatype RAW(200):

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 DEPT-NAME PIC X(15).
* -- default datatype is CHAR
 EXEC SQL VAR DEPT-NAME IS VARCHAR2 END-EXEC.
* -- reset to STRING
 ...
 01 BUFFER-VAR.
 05 BUFFER PIC X(200).
* -- default datatype is CHAR
 EXEC SQL VAR BUFFER IS RAW(200) END-EXEC.
* -- refer to RAW
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.

Related Topics
None.

WHENEVER (Embedded SQL Directive)

Purpose
To specify the action to be taken when an error or warning results from executing an
embedded SQL program.

Prerequisites
None.

Syntax

where DO.CALL.CLAUSE is:

EXEC SQL WHENEVER

NOT FOUND

NOTFOUND

SQLERROR

SQLWARNING

CONTINUE

GO TO

GOTO
label

STOP

DO PERFORM label

DO.CALL.CLAUSE

DO CALL subprogram_name
USING param

WHENEVER (Embedded SQL Directive)

Embedded SQL Statements and Precompiler Directives E-73

Keywords and Parameters

The WHENEVER directive enables your program to take one of several possible
actions in the event an embedded SQL statement results in an error or warning.

The scope of a WHENEVER statement is positional, rather than logical. A
WHENEVER statement applies to all embedded SQL statements that textually follow
it in the source file, not in the flow of the program logic. A WHENEVER statement
remains in effect until it is superseded by another WHENEVER statement checking for
the same condition.

For more information about and examples of the conditions and actions of this
directive, see "WHENEVER Directive" on page 8-11.

 Do not confuse the WHENEVER embedded SQL directive with the WHENEVER
SQL*Plus command.

Example
The following example illustrates the use of the WHENEVER directive in a
Pro*COBOL embedded SQL program:

 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 ...
 EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.
 ...
 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY "ORACLE ERROR DETECTED.".
 EXEC SQL ROLLBACK RELEASE END-EXEC.
 STOP RUN.

Keywords and
Parameters Description

NOT FOUND |
NOTFOUND

Identifies any exception condition that returns an error code of
+1403 to SQLCODE (or a +100 code when MODE=ANSI).

SQLERROR Identifies a condition that results in a negative return code.

SQLWARNING Identifies a non-fatal warning condition.

CONTINUE Indicates that the program should progress to the next
statement.

GOTO | GO TO Indicates that the program should branch to the statement
named by label.

STOP Stops program execution.

DO PERFORM Indicates that the program should perform a paragraph or
section at label.

DO CALL Indicates that the program should execute a subprogram.

subprogram_name The subprogram to be executed. It may have to be inside quotes
(").

USING Indicates that the parameters of the subprogram follow.

param A list of subprogram parameters separated by blanks.

WHENEVER (Embedded SQL Directive)

E-74 Pro*COBOL Programmer’s Guide

Related Topics
None

Index-1

Index

A
abbreviations permitted, 2-8
abnormal termination

automatic rollback, E-13
active set, 5-9

changing, 5-10, 5-11
definition, 5-8
when empty, 5-11

ALLOCATE DESCRIPTOR statement, E-8
ALLOCATE statement, E-7

use with ROWID, 4-26
allocating

cursors, E-7
thread context, 12-6, E-15

allocating cursor variables, 6-23
ALTER AUTHORIZATION

changing password, 3-8
ANSI dynamic SQL

See also dynamic SQL (ANSI), 10-1
ANSI format

COBOL statements, 2-8
ANSI/ISO SQL

extensions, 14-15
application development process, 2-1
ARRAYLEN statement, 6-12
ASACC precompiler option, 14-9
ASSUME_SQLCODE precompiler option, 14-9
AT clause

CONNECT statement, 3-5
DECLARE CURSOR statement, 3-5
DECLARE STATEMENT statement, 3-6
EXECUTE IMMEDIATE statement, 3-6
of COMMIT statement, E-12
of CONNECT statement, E-14
of DECLARE CURSOR directive, E-19
of DECLARE STATEMENT directive, E-21
of EXECUTE IMMEDIATE statement, E-34
of EXECUTE statement, E-30
of INSERT statements, E-43
of SAVEPOINT statement, E-62
of SELECT statement, E-65
of UPDATE statement, E-69
restrictions, 3-6

AUTO_CONNECT option
instead of CONNECT statement, 3-7

AUTO_CONNECT precompiler option, 14-10
automatic logons, 3-4, 3-7
Avoiding Unnecessary Reparsing, C-9

B
batch fetch, 7-5

example, 7-5
number of rows returned, 7-6

BFILES
definition, 13-2

bind descriptor, 11-3
bind descriptors

information in, 9-19
bind SQLDA, 11-2
bind variables, 9-19
binding host variables, 9-3
BNDDFCLP variable (SQLDA), 11-10
BNDDFCRCP variable (SQLDA), 11-10
BNDDFMT variable (SQLDA), 11-6
BNDDH-CUR-VNAMEL variable (SQLDA), 11-9
BNDDH-MAX-VNAMEL variable (SQLDA), 11-9
BNDDH-VNAME variable (SQLDA), 11-9
BNDDI variable (SQLDA), 11-8
BNDDI-CUR-VNAMEL variable (SQLDA), 11-10
BNDDI-MAX-VNAMEL variable (SQLDA), 11-10
BNDDI-VNAME variable (SQLDA), 11-9
BNDDV variable (SQLDA), 11-6
BNDDVLN variable (SQLDA), 11-6
BNDDVTYP variable (SQLDA), 11-8

C
CALL SQL statement, 6-17
CALL statement, E-9

example, 6-17
case-insensitivity, 2-8
CHAR datatypes

external, 4-4
character host variables

as output variables, 4-24
handling, 4-23
server handling, 4-24
types, 4-23

character sets
multibyte, 4-29

Index-2

character strings
multibyte, 4-29

CHARF datatype specifier, 4-37
using in VAR statement, 4-37

CHARF datatypes
external, 4-4

CHARZ datatype
external, 4-4

CLOSE command
examples, E-11

CLOSE statement, E-11
example, 5-11
in dynamic SQL method 4, 11-29

CLOSE_ON_COMMIT
precompiler option, 3-11, 5-9

CLOSE_ON_COMMIT precompiler option, 14-11
closing

cursors, E-11
COBOL versions supported, 2-8, A-1
COBOL-74, A-1
COBOL-85, A-1
code page, 4-28
coding area

for paragraph names, 2-13
coding conventions, 2-8
column list, 5-7
COMMENT clause

of COMMIT statement, E-12
comments

ANSI SQL-style, 2-9
C-style, 2-9
embedded SQL statements, 2-9
in embedded SQL, 2-9

comments in dynamic PL/SQL blocks, 9-23
commit, 3-10

automatic, 3-10
explicit versus implicit, 3-10

COMMIT statement, 3-11, E-12
effects, 3-11
ending a transaction, E-61
example, 3-11
examples, E-13
RELEASE option, 3-11
using in a PL/SQL block, 3-19
where to place, 3-11

committing
transactions, E-12

compilation, 2-21
composite types, 11-13
concurrency, 3-9
concurrent logons, 3-3
conditional precompilation, 2-18

defining symbols, 2-19
example, 2-19

CONFIG precompiler option, 14-11, 14-12
configuration file

system versus user, 14-12
CONNECT statement, E-13

AT clause, 3-5
enabling a semantic check, D-2

examples, E-14
logging on to Oracle, 3-1
placement, 3-2
requirements, 3-2
USING clause, 3-5
when not required, 3-7

connecting to Oracle, 3-1
automatically, 3-7
concurrently, 3-3
example of, 3-2
via Oracle Net, 3-3

connections
default versus non-default, 3-4
implicit, 3-9
naming, 3-4

CONTEXT ALLOCATE statement, 12-6, E-15
CONTEXT FREE statement, 12-7, E-15
CONTEXT USE directive, 12-6
CONTEXT USE SQL directive, E-16
CONTEXT USE SQL statement, 12-6
continuation lines

syntax, 2-10
CONTINUE action

of WHENEVER directive, 8-12, E-73
CONVBUFSZ clause in VAR statement, 4-36
CREATE PROCEDURE statement, 6-16
creating

savepoints, E-62
CURRENT OF clause, 5-12, 7-5

example, 5-12
mimicking with ROWID, 3-17, 7-15
restrictions, 5-12

current row, 5-8
CURRVAL pseudocolumn, 4-9
cursor cache, 8-18

gathering statistics about, 8-21
purpose, 8-17, C-7

cursor variables, 6-22, E-7
advantages, 6-22
allocating, 6-23
closing, 6-25
declaring, 6-23
fetching from, 6-25
heap memory usage, 6-23
opening

anonymous block, 6-24
stored procedure, 6-23

restrictions, 6-26
scope, 6-23

cursors, 5-9
allocating, E-7
association with query, 5-9
closing, E-11
declaring, 5-9
effects on performance, C-5
explicit versus implicit, 5-8
fetching rows from, E-35, E-37
naming, 5-9
opening, E-54, E-56
reopening, 5-10, 5-11

Index-3

restricted scope of, 2-20
restrictions, 5-10
scope, 5-10
using for multirow queries, 5-9
using more than one, 5-10
when closed automatically, 5-12

D
data definition language (DDL)

description, 5-1
embedded, 14-23

data integrity, 3-9
data lock, 3-9
database links

using in DELETE statement, E-25
using in INSERT statement, E-43
using in UPDATE statement, E-69

datatype
internal versus external, 2-6

datatype conversion
between internal and external types, 4-33

datatype equivalencing
advantages, 4-33
example, 4-36
guidelines, 4-38

datatypes
ANSI DATE, 4-10
coercing NUMBER to VARCHAR2, 11-14
conversions, 4-31
dealing with Oracle internal, 11-13
descriptor codes, 11-14
equivalencing

description, 4-33
example, 4-35

internal, 11-11
INTERVAL DAY TO SECOND, 4-11
INTERVAL YEAR TO MONTH, 4-11
need to coerce, 11-13
PL/SQL equivalents, 11-13
TIMESTAMP, 4-10
TIMESTAMP WITH LOCAL TIME ZONE, 4-10
TIMESTAMP WITH TIME ZONE, 4-10
when to reset, 11-13

DATE datatype
converting, 4-33
default format, 4-33

DATE String Format
explicit control over, 4-33

DATE, ANSI
datatype, 4-10

DATE_FORMAT precompiler option, 14-12
DBMS precompiler option, 14-13
DDL, 14-23
DDL (Data Definition Language), 5-1
deadlock, 3-9

effect on transactions, 3-13
how broken, 3-13

DEALLOCATE DESCRIPTOR statement, E-17
DECIMAL datatype, 4-5

declaration
cursor, 5-9
host variable, 2-6

declarative SQL statement, 2-3
using in transactions, 3-10

declarative statements
also known as directives, 2-3

DECLARE CURSOR directive, E-18
example, 5-9
examples, E-19

DECLARE CURSOR statement
AT clause, 3-5
in dynamic SQL method 4, 11-22
where to place, 5-10

DECLARE DATABASE directive, E-20
Declare Section

allowable statements, 2-14
example, 2-15
purpose, 2-14
requirements, 2-14
rules for defining, 2-14
using more than one, 2-15

declare section
defining usernames and passwords, 3-2

DECLARE statement
using in dynamic SQL method 3, 9-15

DECLARE STATEMENT directive, E-21
examples, E-22
scope of, E-22

DECLARE STATEMENT statement
AT clause, 3-6
example, 9-21
using in dynamic SQL, 9-21
when required, 9-21

DECLARE TABLE directive, E-22
examples, E-23

DECLARE TABLE directives
using with the SQLCHECK option, D-3

DECLARE_SECTION precompiler option, 14-13
declaring

cursor variables, 6-23
host tables, 7-2
indicator variables, 4-19
ORACA, 8-18
SQLCA, 8-6
SQLDA, 11-5
VARCHAR variables, 4-21

default
error handling, 8-11
setting of LITDELIM option, 2-10, 14-19
setting of ORACA option, 8-18

default connection, 3-4
DEFINE precompiler option, 14-14
DELETE statement, E-23

embedded SQL examples, E-26
example, 5-8
restrictions with tables, 7-11
using host tables, 7-11
WHERE clause, 5-8

DEPENDING ON clause, 7-2

Index-4

DEPT table, 2-21
DESCRIBE BIND VARIABLES statement

in dynamic SQL method 4, 11-22
DESCRIBE DESCRIPTOR statement, E-28
DESCRIBE SELECT LIST statement

in dynamic SQL method 4, 11-26
DESCRIBE statement, E-26

example, E-27
use with PREPARE statement, E-26
using in dynamic SQL method 4, 9-19

descriptor
naming, E-27

descriptors
bind descriptor, 11-3
purpose, 11-3
select descriptor, 11-3
SQLADR subroutine, 11-3

dimension of host tables, 7-2
directives

also known as declarative statements, 2-3
directory path

INCLUDE files, 2-16
DISPLAY datatype, 4-5
distributed processing, 3-3
DML returning clause, 5-7
DO CALL action

of WHENEVER directive, 8-13, 8-14, E-73
DO PERFORM action

of WHENEVER directive, 8-12, E-73
DSNTIAR

DB2 compatible feature, 8-10
DSNTIAR routine, 8-10
DYNAMIC option

effect on functionality, 10-9
dynamic PL/SQL, 9-22
dynamic SQL

advantages and disadvantages, 9-2
choosing the right method, 9-5
guidelines, 9-4
overview, 2-5, 9-1
restrictions, 14-23
using PL/SQL, 6-18
using the AT clause, 3-6
when useful, 9-2

dynamic SQL (ANSI)
ALLOCATE DESCRIPTOR statement, 10-10
basics, 10-1
bulk operations, 10-7
CLOSE CURSOR statement, 10-20
compared to Oracle dynamic SQL method 4, 10-1
DEALLOCATE DESCRIPTOR statement, 10-10
DESCRIBE DESCRIPTOR statement, 10-15
differences from Oracle dynamic SQL, 10-20
EXECUTE statement, 10-17
FETCH statement, 10-19
GET DESCRIPTOR statement, 10-11
OPEN statement, 10-18
Oracle extensions, 10-6
overview, 10-2
precompiler options, 10-2, 10-9

reference semantics, 10-6
restrictions, 10-20
sample programs, 10-21
SAMPLE12.PCO, 10-21
SET DESCRIPTOR statement, 10-13
use of DECLARE CURSOR, 10-18
use of EXECUTE IMMEDIATE statement, 10-17
use of PREPARE statement, 10-15
when to use, 10-1

dynamic SQL method 1
commands, 9-3
description, 9-7
example, 9-7
requirements, 9-3
using EXECUTE IMMEDIATE, 9-7
using PL/SQL, 9-22

dynamic SQL method 2
commands, 9-4
description, 9-10
requirements, 9-4
using PL/SQL, 9-22
using the DECLARE STATEMENT

statement, 9-21
using the EXECUTE statement, 9-10
using the PREPARE statement, 9-10

dynamic SQL method 3
commands, 9-4
compared to method 2, 9-14
requirements, 9-4
using PL/SQL, 9-22
using the DECLARE statement, 9-15
using the DECLARE STATEMENT

statement, 9-21
using the FETCH statement, 9-15
using the OPEN statement, 9-15
using the PREPARE statement, 9-14

dynamic SQL method 4
CLOSE statement, 11-29
DECLARE CURSOR statement, 11-22
DESCRIBE statement, 11-22, 11-26
external datatypes, 11-11
FETCH statement, 11-28
internal datatypes, 11-11
OPEN statement, 11-25
PREPARE statement, 11-21
prerequisites, 11-10
purpose of descriptors, 11-3
requirements, 9-4, 11-2
sequence of statements used, 11-17
SQLDA, 11-3
steps for, 11-16
using descriptors, 9-18
using PL/SQL, 9-23
using the DECLARE STATEMENT

statement, 9-21
using the DESCRIBE statement, 9-19
using the FOR clause, 9-22
using the SQLDA, 9-19
when needed, 9-18

dynamic SQL statement, 9-2

Index-5

binding of host variables, 9-3
how processed, 9-3
requirements, 9-2
using host tables, 9-21
versus static SQL statement, 9-2

E
embedded DDL, 14-23
embedded PL/SQL

advantages, 6-2
cursor FOR loop, 6-3
example, 6-6, 6-7
host variables, 6-1
indicator variables, 6-2
multibyte Globalization Support features, 4-29
need for SQLCHECK option, 6-6
need for USERID option, 6-6
overview, 2-5
package, 6-4
PL/SQL table, 6-4
requirements, 6-1
subprogram, 6-3
support for SQL, 2-5
user-defined record, 6-5
using %TYPE, 6-3
using the VARCHAR pseudotype, 6-8
using to improve performance, C-3
VARCHAR variables, 6-2
where allowed, 6-1, 6-5

embedded SQL
ALLOCATE DESCRIPTOR statement, E-8
ALLOCATE statement, 4-26, 6-23, E-7
CALL statement, 6-17, E-9
CLOSE statement, 5-11, 6-25, E-11
COMMIT statement, E-12
CONNECT statement, E-13
CONTEXT ALLOCATE statement, 12-6, E-15
CONTEXT FREE statement, 12-7, E-15
CONTEXT USE directive, E-16
DEALLOCATE DESCRIPTOR statement, E-17
DECLARE [CURSOR] directive, 5-9
DECLARE CURSOR directive, E-18
DECLARE DATABASE directive, E-20
DECLARE STATEMENT directive, E-21
DECLARE TABLE directive, E-22
DELETE statement, 5-8, E-23
DESCRIBE DESCRIPTOR statement, E-28
DESCRIBE statement, E-26
ENABLE THREADS statement, 12-6
EXECUTE IMMEDIATE statement, E-34
EXECUTE statement, E-31
EXECUTE...END-EXEC statement, E-30
FETCH DESCRIPTOR statement, E-37
FETCH statement, 5-10, 6-25, E-35, E-37
FREE statement, 6-26, E-39
GET DESCRIPTOR statement, E-40
INSERT statement, 5-6, 7-9, E-42
key concepts, 2-1
OPEN DESCRIPTOR statement, E-56

OPEN statement, 5-10, E-54, E-56
PREPARE statement, E-58
ROLLBACK statement, E-59
SAVEPOINT statement, 3-13, E-62
SELECT statement, 5-6, 7-5, E-63
SET DESCRIPTOR statement, E-66
SET TRANSACTION statement, 3-15
UPDATE statement, 5-8, E-67
VAR directive, E-71
versus interactive SQL, 2-4
when to use, 1-3
WHENEVER directive, E-72

embedded SQL statements
associating paragraph names with, 2-13
comments, 2-9
continuation, 2-10
figurative constants, 2-11
mixing with host-language statements, 2-4
referencing host tables, 7-3
referencing host variables, 4-16
referencing indicator variables, 4-19
requirements, 2-11
summary, E-3
syntax, 2-4, 2-11
terminator, 2-14

embedding
PL/SQL blocks in Oracle7 precompiler

programs, E-30
EMP table, 2-21
ENABLE THREADS SQL statement, E-29
ENABLE THREADS statement, 12-6
enabling

threads, 12-6
encoding scheme, 4-28
END_OF_FETCH precompiler option, 14-14
equivalencing

host variable equivalencing, E-71
equivalencing datatypes, 4-33
error detection

error reporting, E-73
error handling

alternatives, 8-1
benefits, 8-1
default, 8-11
overview, 2-6
using status variables

SQLCA, 8-2, 8-5
using the ROLLBACK statement, 3-12
using the SQLGLS routine, 8-16

error message text
SQLGLM subroutine, 8-10

error messages
maximum length, 8-10

error reporting
error message text, 8-7
key components of, 8-6
parse error offset, 8-6
rows-processed count, 8-6
status codes, 8-6
warning flags, 8-6

Index-6

WHENEVER directive, E-73
ERRORS precompiler option, 14-15
exception, PL/SQL, 6-10
EXEC ORACLE DEFINE statement, 2-18
EXEC ORACLE ELSE statement, 2-18
EXEC ORACLE ENDIF statement, 2-18
EXEC ORACLE IFDEF statement, 2-18
EXEC ORACLE IFNDEF statement, 2-18
EXEC ORACLE statement

scope of, 14-5
syntax for, 14-5
uses for, 14-5
using to enter options inline, 14-5

EXEC SQL clause, 2-4, 2-11
EXECUTE IMMEDIATE statement, E-34

AT clause, 3-6
examples, E-35
using in dynamic SQL Method 1, 9-7

EXECUTE optional keyword of ARRAYLEN
statement, 6-13

EXECUTE statement, E-31
examples, E-31, E-32
using in dynamic SQL Method 2, 9-10

EXECUTE...END-EXEC statement, E-30
execution plan, C-3
EXPLAIN PLAN statement

using to improve performance, C-4
explicit logon

single, 3-4
explicit logons, 3-4
external datatypes

CHAR, 4-4
CHARF, 4-4
CHARZ, 4-4
DECIMAL, 4-5
definition, 2-6
DISPLAY, 4-5
dynamic SQL method 4, 11-11
FLOAT, 4-5
INTEGER, 4-5
LONG, 4-5
LONG RAW, 4-6
LONG VARCHAR, 4-6
LONG VARRAW, 4-6
parameters, 4-35
RAW, 4-6
STRING, 4-7
table of, 4-3
UNSIGNED, 4-7
VARCHAR, 4-7
VARCHAR2, 4-7
VARNUM, 4-8
VARRAW, 4-8

F
features

new, xxv
FETCH SQL statement, E-37
FETCH statement, 5-10, 5-11, E-35

cursor variable, 6-25
example, 5-10
examples, E-37
in dynamic SQL method 4, 11-28
INTO clause, 5-10
used after OPEN statement, E-55, E-57
using in dynamic SQL method 3, 9-15

fetch, batch, 7-5
fetching

rows from cursors, E-35, E-37
figurative constants

embedded SQL statements, 2-11
file extension

for INCLUDE files, 2-16
file length limit, 2-11
FIPS flagger

warns of array usage, 7-5
FIPS precompiler option, 14-15
flags, 8-6
FLOAT datatype, 4-5
FOR clause, 7-12

example, 7-12
of embedded SQL EXECUTE statement, E-32,

E-33
of embedded SQL INSERT statement, E-43
restrictions, 7-13
using with host tables, 7-12

FOR UPDATE OF clause, 3-16
FORCE clause

of COMMIT statement, E-13
of ROLLBACK statement, E-60

format mask, 4-33
FORMAT precompiler option, 14-16

purpose, 2-9
formats of COBOL statements

ANSI, 2-8
TERMINAL, 2-8

forward reference, 5-10
FREE statement, E-39
freeing

thread context, 12-7, E-15
full scan, C-5

G
GET DESCRIPTOR statement, E-40
Globalization Support, 4-27, 14-23

multibyte character strings, 4-29
Globalization Support parameter

NLS_LANG, 4-28
GOTO action

of WHENEVER directive, 8-12, E-73
group items

allowed as host variables, 4-17
implicit VARCHAR, 4-21

guidelines
datatype equivalencing, 4-38
dynamic SQL, 9-4
separate precompilation, 2-19
transaction, 3-18

Index-7

H
heap, 8-18
heap memory

allocating cursor variables, 6-23
heap tables, 4-25
hint, optimizer, C-4
hints

in DELETE statements, E-26
in SELECT statements, E-65
in UPDATE statements, E-70

HOLD_CURSOR option
of ORACLE Precompilers, E-11
using to improve performance, C-8
what it affects, C-5

HOLD_CURSOR precompiler option, 14-16
host language, 2-2
HOST precompiler option, 14-17
host programs, 2-2
host table elements

maximum, 7-3
host table example, 7-7
host tables, 7-1

advantages, 7-1
declaring, 7-2
dimensioning, 7-2
multi-dimensional, 7-2
operations on, 2-6
referencing, 7-3
restrictions, 7-2, 7-7, 7-10, 7-11
restrictions on, 7-5
support for, 4-15
using in dynamic SQL statements, 9-21
using in the DELETE statement, 7-11
using in the INSERT statement, 7-9
using in the SELECT statement, 7-5
using in the UPDATE statement, 7-10
using in the WHERE clause, 7-14
using the FOR clause, 7-12
using to improve performance, C-2
variable-length, 7-2

host variables, 5-1
assigning a value, 2-5
declaring, 2-8, 2-14
declaring and naming, A-1
definition, 2-12
host variable equivalencing, E-71
in EXECUTE statement, E-32
in OPEN statement, E-55
initializing, 4-16
length up to 30 characters, 2-6
naming, 2-6, 4-16, 4-18
overview, 2-5
referencing, 2-6, 4-16
requirements, 2-5
restrictions, 2-12, 4-18
using in PL/SQL, 6-6
where allowed, 2-5
with PL/SQL, 6-1

hyphenation
of host variable names, 2-12

I
identifiers, ORACLE

how to form, E-7
implicit logons, 3-9
implicit VARCHAR, 4-21
IN OUT parameter mode, 6-4
IN parameter mode, 6-4
INAME option

when a file extension is required, 14-1
INAME precompiler option, 14-17
INCLUDE precompiler option, 14-18
INCLUDE statement

case-sensitive operating systems, 2-16
declaring the ORACA, 8-18
declaring the SQLCA, 8-6
declaring the SQLDA, 11-5
effect of, 2-16

INCLUDE statements, A-2
index

using to improve performance, C-4
index-organized table, 4-25
indicator table, 7-1
indicator tables

example, 7-4
purpose, 7-4

indicator variable
using to handle NULLs, 5-3, 5-4

indicator variables, 5-2
assigning values to, 4-18
association with host variables, 4-18
declaring, 2-8, 4-19
function, 4-18
function of, 4-18
interpreting value, 5-3
NULLs, 6-2
referencing, 4-19
required size, 4-19
truncated values, 6-2
used with multibyte character strings, 4-30
using in PL/SQL, 6-9
using to detect NULLs, 4-19
using to detect truncated values, 4-19
using to test for NULLs, 5-4
with PL/SQL, 6-2

in-doubt transaction, 3-18
input host variable

restrictions, 5-1
where allowed, 5-1

INSERT statement, E-42
column list, 5-7
example, 5-6
INTO clause, 5-7
using host tables, 7-9
VALUES clause, 5-7

inserting
rows into tables and views, E-42

INTEGER datatype, 4-5
internal datatype

definition, 2-6
internal datatypes

Index-8

dynamic SQL method 4, 11-11
INTERVAL DAY TO SECOND, xxv
INTERVAL DAY TO SECOND datatype, 4-11
INTERVAL YEAR TO MONTH, xxv
INTERVAL YEAR TO MONTH datatype, 4-11
INTO clause, 5-1, 6-25

FETCH statement, 5-10
INSERT statement, 5-7
of FETCH statement, E-36, E-38
of SELECT statement, E-65
SELECT statement, 5-6

IRECLEN precompiler option, 14-19
IS NULL operator

for testing NULL values, 2-13

J
Java methods

calling from Pro*COBOL, 6-15

L
language support, 1-2
LEVEL pseudocolumns, 4-9
line continuation, 2-10
linking, 2-21
LITDELIM option

purpose, 14-19
LITDELIM precompiler option, 2-10, 14-19
LNAME precompiler option, 14-19
LOB and precompiler datatypes, 13-16
LOB APPEND statement, E-44
LOB ASSIGN statement, E-45
LOB CLOSE statement, E-45
LOB COPY statement, E-46
LOB CREATE statement, E-46
LOB DESCRIBE statement, E-47
LOB DISABLE BUFFERING statement, E-48
LOB ENABLE BUFFERING statement, E-48
LOB ERASE statement, E-49
LOB FILE CLOSE statement, E-49
LOB FILE SET statement, E-50
LOB FLUSH BUFFER statement, E-50
LOB FREE TEMPORARY, E-51
LOB LOAD statement, E-51
LOB OPEN statement, E-52
LOB READ statement, E-52
LOB statements

LOB APPEND, 13-8
LOB ASSIGN, 13-8
LOB CLOSE, 13-9
LOB CLOSE ALL, 13-12
LOB COPY, 13-9
LOB CREATE TEMPORARY, 13-10
LOB DISABLE BUFFERING, 13-11
LOB ENABLE BUFFERING, 13-11
LOB ERASE, 13-11
LOB FILE SET, 13-12
LOB FLUSH BUFFER, 13-13
LOB FREE TEMPORARY, 13-13

LOB LOAD FROM FILE, 13-14
LOB OPEN, 13-14
LOB READ, 13-15
LOB TRIM, 13-16
LOB WRITE, 13-17

LOB TRIM statement, E-53
LOB WRITE statement, E-53
LOBs

advantage of buffering, 13-3
CHUNKSIZE attribute, 13-18
compared with LONG and LONG RAW, 13-2
definition, 13-1
DIRECTORY attribute, 13-18
external, 13-2, 13-6
FILEEXISTS attribute, 13-18
FILENAME attribute, 13-18
internal, 13-1, 13-5
ISOPEN attribute, 13-19
ISTEMPORARY attribute, 13-19
LENGTH attribute, 13-19
LOB demo program, 13-21
locators, 13-3
rules for all statements, 13-6
rules for buffering subsystem, 13-7
rules for statements, 13-7
temporary, 13-3, 13-6
using polling method to read and write, 13-20

lock
released by ROLLBACK statement, E-61

LOCK TABLE statement, 3-17
example, 3-17
using the NOWAIT parameter, 3-17

locking, 3-9, 3-16
explicit versus implicit, 3-16
modes, 3-9
overriding default, 3-16
privileges needed, 3-19
using the FOR UPDATE OF clause, 3-16
using the LOCK TABLE statement, 3-17

logons
automatic, 3-7
concurrent, 3-3
explicit, 3-4
requirements, 3-1

LONG datatype
external, 4-5

LONG RAW datatype
converting, 4-38

LONG RAW datatypes
external, 4-6

LONG VARCHAR datatype, 4-6
LONG VARRAW datatype, 4-6
LRECLEN precompiler option, 14-20
LTYPE precompiler option, 14-20

M
MAXLITERAL, A-2
MAXLITERAL precompiler option, 14-21
MAXOPENCURSORS option, C-5

Index-9

using for separate precompilation, 2-20
MAXOPENCURSORS precompiler option, 14-21
message text, 8-7
MODE

equivalent values, 14-22
MODE option

effects of, 4-23
MODE precompiler option, 14-22
mode, parameter, 6-4
multibyte character sets, 4-29
multi-byte Globalization Support features

datatypes, 2-13
multibyte Globalization Support features

with PL/SQL, 4-29
multithreaded applications

sample program, 12-11
user-interface features

embedded SQL statements and
directives, 12-6

N
namespaces

reserved by Oracle, B-3
naming

host variables, 2-12
of database objects, E-7
select-list items, 11-3

naming conventions
cursor, 5-9
default database, 3-4
host variable, 2-6

NESTED precompiler option, 14-23
nested programs

support for, 2-17
NEXTVAL pseudocolumns, 4-9
nibbles, 4-38
NLS_LOCAL

precompiler option, 14-23
NOT FOUND condition

of WHENEVER directive, 8-11, E-73
NOWAIT parameter, 3-17

using in LOCK TABLE statement, 3-17
NULLs

definition, 2-5
detecting, 4-19
handling

in dynamic SQL method 4, 11-15
indicator variables, 6-2

hardcoding, 5-3
inserting, 5-3
meaning in SQL (NVL function), 2-13
restrictions, 5-4
retrieving, 5-4
SQLNUL subroutine, 11-15
testing for, 5-4

NULLs in SQL
how to detect, 2-13

NUMBER datatype
using the SQLPRC subroutine with, 11-14

NVL function
for retrieving NULL values, 2-13

O
OCIInterval host variable, xxv
ONAME precompiler option, 14-24
OPEN DESCRIPTOR statement, E-56
OPEN SQL statement, E-56
OPEN statement, E-54

example, 5-10
examples, E-56
in dynamic SQL method 4, 11-25
using in dynamic SQL method 3, 9-15

opening
cursors, E-54, E-56

opening a cursor variable, 6-23
operators

relational, 2-14
optimizer hint, C-4
optional division headers, 2-11
options

precompiler concepts, 14-2
ORACA, 8-2

declaring, 8-18
enabling, 8-18
example, 8-21
fields, 8-19
gathering cursor cache statistics, 8-21
ORACABC field, 8-19
ORACAID field, 8-19
ORACCHF flag, 8-19
ORACOC field, 8-21
ORADBGF flag, 8-19
ORAHCHF flag, 8-19
ORAHOC field, 8-21
ORAMOC field, 8-21
ORANEX field, 8-21
ORANOR field, 8-21
ORANPR field, 8-21
ORASFNMC field, 8-20
ORASFNML field, 8-20
ORASLNR field, 8-20
ORASTXTC field, 8-20
ORASTXTF flag, 8-20
ORASTXTL field, 8-20
precompiler option, 8-18
purpose, 8-2, 8-17
structure of, 8-19

ORACA precompiler option, 14-24
ORACABC field, 8-19
ORACAID field, 8-19
ORACCHF flag, 8-19
Oracle Communications Area

ORACA, 8-17
Oracle dynamic SQL

when to use, 10-1
Oracle names

how to form, E-7
Oracle namespaces, B-3

Index-10

Oracle Net
concurrent logons, 3-3
using ROWID datatype, 4-7
using to connect to Oracle, 3-3

Oracle Open Gateway
using ROWID datatype, 4-7

ORACOC
in ORACA, 8-21

ORACOC field, 8-21
ORADBGF flag, 8-19
ORAHCHF flag, 8-19
ORAHOC field, 8-21
ORAMOC field, 8-21
ORANEX

in ORACA, 8-21
ORANEX field, 8-21
ORANOR field, 8-21
ORANPR field, 8-21
ORASFNM, in ORACA, 8-20
ORASFNMC field, 8-20
ORASFNML field, 8-20
ORASLNR

in ORACA, 8-20
ORASLNR field, 8-20
ORASTXTC field, 8-20
ORASTXTF flag, 8-20
ORASTXTL field, 8-20
ORECLEN precompiler option, 14-24
OUT parameter mode, 6-4
output host variable, 5-1
output versus input, 5-1

P
PAGELEN precompiler option, 14-25
paragraph names

associating with SQL statements, 2-13
coding area for, 2-13

parameter mode, 6-4
parse error offset, 8-6
parsing dynamic statements

PREPARE statement, E-58
passwords

changing at runtime with ALTER
AUTHORIZATION, 3-8

defining, 3-2
hardcoding, 3-2

performance
causes of poor, C-1
improving, C-2

PIC G for Globalization Support characters, A-2
PIC N for Globalization Support characters, A-2
PICX precompiler option, 4-23, 14-25
placeholders

duplicate, 9-22
plan, execution, C-3
PL/SQL

advantages, 1-3
cursor FOR loop, 6-3
datatype equivalents, 11-13

embedded, 6-1
exception, 6-10
integration with server, 6-3
opening a cursor variable

anonymous block, 6-24
stored procedure, 6-23

package, 6-4
relationship with SQL, 1-3
subprogram, 6-3
user-defined record, 6-5

PL/SQL block execution
effect on SQLCA components, 8-9

PL/SQL blocks
embedded in Oracle7 precompiler

programs, E-30
PL/SQL subprogram

calling from Pro*COBOL, 6-15
PL/SQL table, 6-4
precompilation

conditional, 2-18
generated code, 14-2
separate, 2-19

precompilation unit, 14-7
precompiler command

required arguments, 14-1
precompiler options

abbreviating name, 14-3
ANSI Dynamic SQL, 10-9
ASACC, 14-9
ASSUME_SQLCODE, 14-9
AUTO_CONNECT, 3-7, 14-10
CLOSE_ON_COMMIT, 5-9, 14-11
CONFIG, 14-12
current values, 14-4
DATE_FORMAT, 14-12
DBMS, 14-13
DECLARE_SECTION, 2-15, 14-13
DEFINE, 14-14
displaying, 14-3
displaying syntax, default, purpose, 14-7
DYNAMIC, 10-9, 14-14
END_OF_FETCH, 14-14
entering, 14-4
entering inline, 14-5
entering on the command line, 14-1
ERRORS, 14-15
FIPS, 14-15
FORMAT, 14-16
HOLD_CURSOR, 14-16, C-5
HOST, 14-17
INAME, 14-17
INCLUDE, 14-18
IRECLEN, 14-19
list, 14-7
LITDELIM, 2-10, 14-19
LNAME, 14-19
LRECLEN, 14-20
LTYPE, 14-20
macro and micro, 14-3
MAXLITERAL, 14-21

Index-11

MAXOPENCURSORS, 2-20, 14-21, C-5
MODE, 4-23, 8-2, 10-9, 14-22
name of the system configuration file, 14-6
NESTED, 14-23
NLS_LOCAL, 14-23
ONAME, 14-24
ORACA, 8-18, 14-24
ORECLEN, 14-24
PAGELEN, 14-25
PICX, 4-23, 14-25
precedence, 14-3
PREFETCH, 5-13, 14-26
RELEASE_CURSOR, 14-26, C-5
respecifying, 14-7
scope of, 14-7
SELECT_ERROR, 14-27
specifying, 14-1
SQLCHECK, 14-28
syntax for, 14-1
table of how macro options set micro

options, 14-4
THREADS, 12-5, 14-29
TYPE_CODE, 10-9, 14-29
UNSAFE_NULL, 14-30
USERID, 14-30
VARCHAR, 14-31
XREF, 14-31

precompilers
advantages, 1-2
Globalization Support, 4-28
language support, 1-2
running, 14-1
using PL/SQL, 6-5

PREFETCH precompiler option, 5-13, 14-26
PREPARE statement, E-58

effect on data definition statements, 9-4
examples, E-59
in dynamic SQL method 4, 11-21
using in dynamic SQL, 9-10, 9-14

private SQL area
association with cursors, 5-8
opening, 5-8
purpose, C-7

Pro*COBOL
how it works, 1-2

program termination, 3-15
programming guidelines, 2-8
programming language support, 1-2
pseudocolumns, 4-8

CURRVAL, 4-9
LEVEL, 4-9
NEXTVAL, 4-9
ROWNUM, 4-9

Q
queries

association with cursor, 5-9
single-row versus multirow, 5-6

query, 5-5

R
RAW datatype

converting, 4-38
external, 4-6

RAWTOHEX function, 4-38
read consistency, 3-9
READ ONLY parameter

using in SET TRANSACTION, 3-15
read-only transaction, 3-15

ending, 3-15
example, 3-15

record, user-defined, 6-5
REDEFINES clause

purpose, 2-13
restrictions, 2-13

reference
host variable, 2-6

reference cursor, 6-22
referencing

host tables, 7-3
host variables, 4-16
indicator variables, 4-19
VARCHAR variables, 4-22

relational operators
COBOL versus SQL, 2-14

RELEASE option, 3-11, 3-15
COMMIT statement, 3-11
omitting, 3-15
restrictions, 3-14
ROLLBACK statement, 3-12

RELEASE_CURSOR option, C-5
of ORACLE Precompilers, E-11

RELEASE_CURSOR precompiler option, 14-26
remote database

declaration of, E-20
restrictions

AT clause, 3-6
CURRENT OF clause, 5-12
cursor declaration, 5-10
cursor variables, 6-26
dynamic SQL, 14-23
FOR clause, 7-13
host tables, 7-2, 7-7, 7-10, 7-11
host variables, 4-18

naming, 2-12
referencing, 4-18

input host variable, 5-1
on host tables, 7-5
REDEFINES clause, 2-13
RELEASE option, 3-14
separate precompilation, 2-20
SET TRANSACTION statement, 3-15
SQLGLM subroutine, 8-10
SQLIEM subroutine, 8-10
TO SAVEPOINT clause, 3-14
use of CURRENT OF clause, 7-5

retrieving rows from a table
embedded SQL, E-63

RETURN-CODE special register is
unpredictable, A-2

Index-12

returning clause, 5-7
in INSERT, 5-7

roll back
to a savepoint, E-62
to the same savepoint multiple times, E-61

rollback
automatic, 3-13
purpose, 3-10
statement-level, 3-13

rollback segments, 3-9
ROLLBACK statement, 3-12, E-59

effects, 3-12
ending a transaction, E-61
example, 3-12
examples, E-61
RELEASE option, 3-12
TO SAVEPOINT clause, 3-12
using in a PL/SQL block, 3-19
using in error-handling routines, 3-12
where to place, 3-12

rolling back
transactions, E-59

row lock
acquiring with FOR UPDATE OF, 3-16
using to improve performance, C-5
when acquired, 3-16
when released, 3-16

ROWID datatype
heap tables versus index-organized tables, 4-25
Universal, 4-25
use of, 4-25
use of ALLOCATE, 4-26

ROWID pseudocolumns
retrieving with SQLROWIDGET, 4-26
universal ROWID, 4-25
using to mimic CURRENT OF, 3-17, 7-15

ROWNUM pseudocolumns, 4-9
rows

fetching from cursors, E-35, E-37
inserting into tables and views, E-42
updating, E-67

rows-processed count, 8-6
RR diagrams

see syntax diagrams, E-5

S
sample database table

DEPT table, 2-21
EMP table, 2-21

sample programs
calling a stored procedure, 6-18
cursor operations, 5-14
cursor variable use, 6-26
cursor variables

PL/SQL source, 6-26
datatype equivalencing, 4-38
dynamic SQL Method 1, 9-8
dynamic SQL method 2, 9-11
dynamic SQL Method 3, 9-16

dynamic SQL method 4, 11-33
EXEC ORACLE scope, 14-5
fetching in batches, 7-7, 7-16
LOBDEMO1.PCO, 13-21
PL/SQL examples, 6-6
SAMPLE10.PCO, 11-33
SAMPLE11.PCO, 6-26
SAMPLE12.PCO, 10-21
SAMPLE13.PCO, 2-18
SAMPLE14.PCO, 7-16
SAMPLE1.PCO, 2-22
SAMPLE2.PCO, 5-14
SAMPLE3.PCO, 7-7
SAMPLE4.PCO, 4-38
SAMPLE6.PCO, 9-8
SAMPLE7.PCO, 9-11
SAMPLE8.PCO, 9-16
SAMPLE9.PCO, 6-18
simple query, 2-22
tables of group items, 7-16
WHENEVER...DO CALL example, 8-14

savepoint, 3-13
SAVEPOINT statement, 3-13, E-62

example, 3-13
examples, E-63

savepoints
creating, E-62
when erased, 3-15

scalar types, 11-13
scale

definition of, 4-35
using SQLPRC to extract, 4-35
when negative, 4-35

scope
cursor variables, 6-23
of DECLARE STATEMENT directive, E-22
of precompiler options, 14-7
of the EXEC ORACLE statement, 14-5
WHENEVER directive, 8-15

search condition, 5-8
using in the WHERE clause, 5-8

SELDFCLP variable (SQLDA), 11-10
SELDFCRCP variable (SQLDA), 11-10
SELDFMT variable (SQLDA), 11-6
SELDH-CUR-VNAMEL variable (SQLDA), 11-9
SELDH-MAX-VNAMEL variable (SQLDA), 11-9
SELDH-VNAME variable (SQLDA), 11-9
SELDI variable (SQLDA), 11-8
SELDI-CUR-VNAMEL variable (SQLDA), 11-10
SELDI-MAX-VNAMEL variable (SQLDA), 11-10
SELDI-VNAME variable (SQLDA), 11-9
SELDV variable (SQLDA), 11-6
SELDVLN variable (SQLDA), 11-6
SELDVTYP variable (SQLDA), 11-8
select descriptor, 11-3
select descriptors

information in, 9-19
select list, 5-6
select SQLDA

purpose of, 11-2

Index-13

SELECT statement, E-63
available clauses, 5-6
embedded SQL examples, E-65
example, 5-6
INTO clause, 5-6
using host tables, 7-5

SELECT_ERROR option, 5-6
SELECT_ERROR precompiler option, 14-27
select-list items

naming, 11-3
semantic checking, D-1

enabling, D-2
using the SQLCHECK option, D-1

separate precompilation
guidelines, 2-19
restrictions, 2-20

session, 3-9
sessions

beginning, E-13
SET clause, 5-8

using a subquery, 5-8
SET DESCRIPTOR statement, E-66
SET TRANSACTION statement

example, 3-15
READ ONLY parameter, 3-15
restrictions, 3-15

snapshot, 3-9
SQL

summary of statements, E-3
SQL codes

returned by SQLGLS routine, 8-17
SQL Communications Area, 2-7
SQL Descriptor Area, 9-19, 11-3
SQL directives

CONTEXT USE, 12-6
DECLARE CURSOR, E-18
DECLARE DATABASE, E-20
DECLARE STATEMENT, E-21
DECLARE TABLE, E-22
VAR, E-71
WHENEVER, E-72

SQL directives CONTEXT USE, E-16
SQL statements

ALLOCATE, E-7
ALLOCATE DESCRIPTOR, E-8
CALL, E-9
CLOSE, E-11
COMMIT, E-12
CONNECT, E-13
CONTEXT ALLOCATE, E-15
CONTEXT FREE, E-15
controlling transactions, 3-10
DEALLOCATE DESCRIPTOR, E-17
DELETE, E-23
DESCRIBE, E-26
DESCRIBE DESCRIPTOR, E-28
ENABLE THREADS, E-29
EXECUTE, E-31
EXECUTE DESCRIPTOR, E-32
EXECUTE IMMEDIATE, E-34

EXECUTE...END-EXEC, E-30
FETCH, E-35, E-37
FETCH DESCRIPTOR, E-37
FREE, E-39
GET DESCRIPTOR, E-40
INSERT, E-42
LOB APPEND, E-44
LOB ASSIGN, E-45
LOB CLOSE, E-45
LOB COPY, E-46
LOB CREATE, E-46
LOB DESCRIBE, E-47
LOB DISABLE BUFFERING, E-48
LOB ENABLE BUFFERING, E-48
LOB ERASE, E-49
LOB FILE CLOSE, E-49
LOB FILE SET, E-50
LOB FLUSH BUFFER, E-50
LOB FREE TEMPORARY, E-51
LOB LOAD, E-51
LOB OPEN, E-52
LOB READ, E-52
LOB TRIM, E-53
LOB WRITE, E-53
OPEN, E-54, E-56
OPEN DESCRIPTOR, E-56
optimizing to improve performance, C-3
PREPARE, E-58
ROLLBACK, E-59
SAVEPOINT, E-62
SELECT, E-63
SET DESCRIPTOR, E-66
static versus dynamic, 2-5
summary of, E-3
UPDATE, E-67
using to control a cursor, 5-6, 5-9

SQL*Plus, 1-3
SQL_CURSOR, E-7
SQLADR subroutine

example, 11-19
parameters, 11-10
storing buffer addresses, 11-3
syntax, 11-10

SQLCA, 8-2
components set for a PL/SQL block, 8-9
declaring EXTERNAL, 2-20
fields, 8-7
interaction with Oracle, 2-7
overview, 2-7
sharing, 2-20
SQLCABC field, 8-7
SQLCAID field, 8-7
SQLCODE field, 8-7
SQLERRD(3) field, 8-8
SQLERRD(5) field, 8-8
SQLERRMC field, 8-8
SQLERRML field, 8-7
SQLWARN(4) flag, 8-9
using with Oracle Net, 8-5

SQLCA status variable

Index-14

data structure, 8-5
declaring, 8-6
effect of MODE option, 8-2
explicit versus implicit checking, 8-2
purpose, 8-5

SQLCABC field, 8-7
SQLCAID field, 8-7
SQLCHECK option

using the DECLARE TABLE statement, D-3
using to check syntax/semantics, D-1

SQLCHECK precompiler option, 14-28
SQLCODE field, 8-7

interpreting its value, 8-7
SQLCODE status variable

effect of MODE option, 8-2
usage, 8-2

SQL-CONTEXT, 12-6
host tables not allowed, 12-6
variable declaration, 4-13

SQLDA, 9-19
bind versus select, 9-19
BNDDFCLP variable, 11-10
BNDDFCRCP variable, 11-10
BNDDFMT variable, 11-6
BNDDH-CUR-VNAMEL variable, 11-9
BNDDH-MAX-VNAMEL variable, 11-9
BNDDH-VNAME variable, 11-9
BNDDI variable, 11-8
BNDDI-CUR-VNAMEL variable, 11-10
BNDDI-MAX-VNAMEL variable, 11-10
BNDDI-VNAME variable, 11-9
BNDDV variable, 11-6
BNDDVLN variable, 11-6
BNDDVTYP variable, 11-8
declaring, 11-5
example, 11-5
information stored in, 9-19
purpose, 11-3
SELDFCLP variable, 11-10
SELDFCRCP variable, 11-10
SELDFMT variable, 11-6
SELDH-CUR-VNAMEL variable, 11-9
SELDH-MAX-VNAMEL variable, 11-9
SELDH-VNAME variable, 11-9
SELDI variable, 11-8
SELDI-CUR-VNAMEL variable, 11-10
SELDI-MAX-VNAMEL variable, 11-10
SELDI-VNAME variable, 11-9
SELDV variable, 11-6
SELDVLN variable, 11-6
SELDVTYP variable, 11-8
SQLADR subroutine, 11-10
SQLDFND variable, 11-6
SQLDNUM variable, 11-5
structure, 11-5

SQLDFND variable (SQLDA), 11-6
SQLDNUM variable (SQLDA), 11-5
SQLERRD(3) field, 8-8

using with batch fetch, 7-6
SQLERRD(3) variable, 8-6

SQLERRD(5) field, 8-8
SQLERRMC field, 8-8
SQLERRMC variable, 8-7
SQLERRML field, 8-7
SQLERROR condition, 8-11

of WHENEVER directive, 8-11
WHENEVER directive, E-73

SQLFC parameter, 8-17
SQLGLM subroutine

example, 8-10
parameters, 8-10
provides DSNTIAR support for DB2

conversions, 8-10
purpose, 8-10
restrictions, 8-10
syntax, 8-10

SQLGLS routine, 8-16
parameters, 8-16
SQL codes returned by, 8-17
syntax, 8-16
using to obtain SQL text, 8-16

SQLIEM subroutine
restrictions, 8-10

SQLNUL subroutine
example, 11-16
parameters, 11-15
purpose, 11-15
syntax, 11-15

SQLPRC subroutine
example, 11-15
parameters, 11-14
purpose, 11-14
syntax, 11-14

SQLROWIDGET
retrieving ROWID of last row inserted, 4-26

SQLSTATE
declaring, 8-3

SQLSTATE status variable
class code, 8-3
coding scheme, 8-3
effect of MODE option, 8-2
interpreting values, 8-3
predefined classes, 8-3
subclass code, 8-3
usage, 8-2

SQLSTM parameter, 8-16
SQLSTM routine, 8-16
SQLWARN(4) flag, 8-9
SQLWARNING

condition WHENEVER directive, E-73
SQLWARNING condition, 8-11

of WHENEVER directive, 8-11
statement-level rollback, 3-13

breaking deadlocks, 3-13
status codes for error reporting, 8-6
STMLEN parameter, 8-17
STOP action

of WHENEVER directive, 8-12, E-73
stored procedure

opening a cursor, 6-26

Index-15

sample programs, 6-26
stored procedures

opening a cursor, 6-23
sample programs, 6-18

stored subprogram
calling, 6-16
creating, 6-16
packaged versus standalone, 6-15
stored versus inline, C-3
using to improve performance, C-3

stored subprogram, calling, 6-15
STRING datatype, 4-7
string literals

continuing on the next line, 2-10
subprogram, PL/SQL, 6-3
subprogram, PL/SQL or Java, 6-15
subquery, 5-7

example, 5-7, 5-8
using in the SET clause, 5-8
using in the VALUES clause, 5-7

syntactic checking, D-1
syntax

continuation lines, 2-10
embedded SQL statements, 2-11
SQLADR subroutine, 11-10
SQLGLM subroutine, 8-10
SQLNUL subroutine, 11-15
SQLPRC, 11-14

syntax diagrams
description of, E-5
how to read, E-5
how to use, E-5
symbols used in, E-5

syntax, embedded SQL, 2-4
SYSDATE function, 4-9
SYSDBA privilege show to set, 3-8
SYSOPER privilege

how to set, 3-8
system failures

effect on transactions, 3-10
System Global Area (SGA), 6-15

T
table (host) elements

maximum, 7-3
table lock

acquiring with LOCK TABLE, 3-17
row share, 3-17
when released, 3-17

tables
elements, 7-1
inserting rows into, E-42
updating rows in, E-67

tables, host, 7-1
TERMINAL format

COBOL statements, 2-8
terminator for embedded SQL statements, 2-14
THREADS

precompiler option, 12-5, 14-29

threads, E-15
allocating context, 12-6, E-15
enabling, 12-6, E-29
freeing context, 12-7, E-15
use context, 12-6, E-16

THREADS precompiler option, 14-29
TIMESTAMP, xxv
TIMESTAMP datatype, 4-10
TIMESTAMP WITH LOCAL TIME ZONE

datatype, 4-10
TIMESTAMP WITH LOCAL TIMEZONE, xxv
TIMESTAMP WITH TIME ZONE datatype, 4-10
TIMESTAMP WITH TIMEZONE, xxv
TO SAVEPOINT clause, 3-13

restrictions, 3-14
using in ROLLBACK statement, 3-13

trace facility
using to improve performance, C-4

transaction, 3-10
transactions

committing, E-12
contents, 3-10
guidelines, 3-18
how to begin, 3-10
how to end, 3-10
in-doubt, 3-18
making permanent, 3-11
read-only, 3-15
rolling back, E-59
subdividing with savepoints, 3-13
undoing, 3-12
undoing parts of, 3-14
when rolled back automatically, 3-10, 3-13

truncated values, 6-10
detecting, 4-19
indicator variables, 6-2

truncation errors
when generated, 5-5

tuning, performance, C-1
TYPE statements

using the CHARF datatype specifier, 4-37
TYPE_CODE option

effect on functionality, 10-9
TYPE_CODE precompiler option, 14-29

U
UID function, 4-9
undo a transaction, E-59
universal ROWID

ROWID pseudocolumns, 4-25
UNSAFE_NULL precompiler option, 14-30
UNSIGNED datatype, 4-7
UPDATE statement, E-67

embedded SQL examples, E-70
example, 5-8
SET clause, 5-8
using host tables, 7-10

updating
rows in tables and views, E-67

Index-16

use
thread context, 12-6

USER function, 4-9
user session, 3-9
user-defined record, 6-5
USERID option

using with the SQLCHECK option, D-2
USERID precompiler option, 14-30
usernames

defining, 3-2
hardcoding, 3-2

USING clause
CONNECT statement, 3-5
of FETCH statement, E-36
of OPEN statement, E-55
using in the EXECUTE statement, 9-11
using indicator variables, 9-11

using dbstring
Oracle Net database id specification, E-14

V
VALUE clause

initializing host variables, 4-16
VALUES clause

INSERT statement, 5-7
of embedded SQL INSERT statement, E-44
of INSERT statement, E-44
using a subquery, 5-7

VAR directive, E-71
examples, E-72

VAR statement
CONVBUFSZ clause, 4-36
syntax for, 4-34
using the CHARF datatype specifier, 4-37

VARCHAR datatype, 4-7
VARCHAR precompiler option, 14-31
VARCHAR pseudotype

using with PL/SQL, 6-8
VARCHAR variables

advantages, 4-25
as input variables, 4-24
as output variables, 4-25
declaring, 4-21
implicit group items, 4-21
length element, 4-21
maximum length, 4-21
referencing, 4-22
server handling, 4-24, 4-25
string element, 4-21
structure, 4-21
versus fixed-length strings, 4-25
with PL/SQL, 6-2

VARCHAR2 datatype
external, 4-7

VARNUM datatype, 4-8
VARRAW datatype, 4-8
VARYING keyword

versus VARYING phrase, 4-21
versions of COBOL supported, 2-8

views
inserting rows into, E-42
updating rows in, E-67

W
warning flags for error reporting, 8-6
WHENEVER

DO CALL example, 8-14
WHENEVER directive, 8-11, E-72

careless usage, 8-15
CONTINUE action, 8-12
DO CALL action, 8-12
DO PERFORM action, 8-12
example, 8-13
examples, E-73
GOTO action, 8-12
overview, 2-8
purpose, 8-11
scope of, 8-15
SQLERROR condition, 8-11
SQLWARNING condition, 8-11
STOP action, 8-12
syntax, 8-12
using to check SQLCA automatically, 8-11

WHERE clause, 5-8
DELETE statement, 5-8
of DELETE statement, E-25
of UPDATE statement, E-69
search condition, 5-8
SELECT statement, 5-6
UPDATE statement, 5-8
using host tables, 7-14

WHERE CURRENT OF clause, 5-12
WITH HOLD

clause of DECLARE CURSOR statement, 5-10
WORK option

of COMMIT statement, E-12
of ROLLBACK statement, E-60

X
XREF precompiler option, 14-31

	Contents
	List of Figures
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Pro*COBOL?
	Oracle Database Release 9.2 New Features in Pro*COBOL
	Oracle9i Release 2 (9.2) New Features in Pro*COBOL
	Oracle9i Release 1 (9.0.1) New Features in Pro*COBOL
	Oracle8i Release 8.1.6 New Features in Pro*COBOL
	Oracle8i Release 8.1.5 New Features in Pro*COBOL
	Oracle8i Release 8.1.3 New Features in Pro*COBOL
	Oracle8 Database Release 8.0 New Features in Pro*COBOL

	1 Introduction
	The Pro*COBOL Precompiler
	Language Alternatives

	Advantages of the Pro*COBOL Precompiler
	The SQL Language
	The PL/SQL Language
	Pro*COBOL Features and Benefits

	2 Precompiler Concepts
	Key Concepts of Embedded SQL Programming
	Steps in Developing an Embedded SQL Application
	Embedded SQL Statements
	Executable versus Declarative Statements

	Embedded SQL Syntax
	Static Versus Dynamic SQL Statements
	Embedded PL/SQL Blocks
	Host Variables and Indicator Variables
	Oracle Datatypes
	Tables
	Errors and Warnings
	SQLCODE/SQLSTATE Status Variables
	SQLCA Status Variable
	WHENEVER Statement
	ORACA
	Precompiler Options and Error Handling

	Programming Guidelines
	Abbreviations
	Case-Insensitivity
	COBOL Versions Supported
	Coding Areas
	Commas
	Comments
	Continuation Lines
	Copy Statements
	Decimal-Point is Comma
	Delimiters
	Division Headers that are Optional
	Embedded SQL Syntax
	Figurative Constants
	File Length
	FILLER is Allowed
	Host Variable Names
	Hyphenated Names
	Level Numbers
	MAXLITERAL Default
	Multibyte Datatypes
	NULLs in SQL
	Paragraph and Section Names
	REDEFINES Clause
	Relational Operators
	Sentence Terminator

	The Declare Section
	Contents of a Declare Section
	An Example

	Precompiler Option DECLARE_SECTION
	Using the INCLUDE Statement
	Filename Extensions
	Search Paths

	Nested Programs
	Support for Nested Programs
	Declaring the SQLCA
	Nested Program Example

	Conditional Precompilations
	An Example
	Defining Symbols

	Separate Precompilations
	Guidelines
	Referencing Cursors
	Specifying MAXOPENCURSORS
	Using a Single SQLCA
	Using a Single DATE_FORMAT

	Restrictions

	Compiling and Linking
	Sample DEPT and EMP Tables
	Sample DEPT and EMP Data

	Sample EMP Program: SAMPLE1.PCO

	3 Database Concepts
	Connecting to Oracle
	Default Databases and Connections
	Concurrent Logons
	Using Username/Password
	Named Database Connections

	Automatic Logons
	The AUTO_CONNECT Precompiler Option

	Changing Passwords at Runtime
	Connect Without Alter Authorization
	Standard CONNECT
	SYSDBA or SYSOPER Privileges

	Using Links

	Key Terms
	How Transactions Guard a Database
	Beginning and Ending Transactions
	Using the COMMIT Statement
	WITH HOLD Clause in DECLARE CURSOR Statements
	CLOSE_ON_COMMIT Precompiler Option

	Using the ROLLBACK Statement
	Statement-Level Rollbacks

	Using the SAVEPOINT Statement
	Using the RELEASE Option
	Using the SET TRANSACTION Statement
	Overriding Default Locking
	Using the FOR UPDATE OF Clause
	Restrictions

	Fetching Across Commits
	Using the LOCK TABLE Statement

	Handling Distributed Transactions
	Guidelines for Transaction Processing
	Designing Applications
	Obtaining Locks
	Using PL/SQL
	X/Open Applications

	4 Datatypes and Host Variables
	The Oracle Database 10g Datatypes
	Internal Datatypes
	External Datatypes
	CHAR
	CHARF
	CHARZ
	DATE
	DECIMAL
	DISPLAY
	FLOAT
	INTEGER
	LONG
	LONG RAW
	LONG VARCHAR
	LONG VARRAW
	NUMBER
	OVER-PUNCH
	RAW
	ROWID
	STRING
	UNSIGNED
	VARCHAR
	VARCHAR2
	VARNUM
	VARRAW
	SQL Pseudocolumns and Functions

	Datetime and Interval Datatype Descriptors
	Host Variables
	Declaring Host Variables
	Example Declarations
	Initialization
	Restrictions

	Referencing Host Variables
	Group Items as Host Variables
	Restrictions

	Indicator Variables
	Using Indicator Variables
	On Input
	On Output

	Declaring Indicator Variables
	Referencing Indicator Variables
	Use in Where Clauses
	Avoid Error Messages
	ANSI Requirements
	Indicator Variables for Multibyte NCHAR Variables
	Indicator Variables with Host Group Items

	VARCHAR Variables
	Declaring VARCHAR Variables
	Implicit VARCHAR Group Items
	Referencing VARCHAR Variables

	Handling Character Data
	Default for PIC X
	Effects of the PICX Option
	Fixed-Length Character Variables
	On Input
	On Output

	Varying-Length Variables
	On Input
	On Output

	Universal ROWIDs
	Subprogram SQLROWIDGET

	Globalization Support
	Multibyte Globalization Support Character Sets
	NLS_LOCAL=YES Restrictions
	Character Strings in Embedded SQL
	Embedded DDL
	Blank Padding
	Indicator Variables
	Various Combinations of PIC X/PIC N Variables and NCHAR/CHAR Columns
	PIC X and NCHAR Column
	PIC N and CHAR column

	Datatype Conversion
	Explicit Control Over DATE String Format
	Datatype Equivalencing
	Usefulness of Equivalencing
	Host Variable Equivalencing
	CONVBUFSZ Clause in VAR Statement
	An Example

	Using the CHARF Datatype Specifier
	Guidelines
	RAW and LONG RAW Values

	Sample Program 4: Datatype Equivalencing

	5 Embedded SQL
	Using Host Variables
	Output Versus Input Host Variables

	Using Indicator Variables
	Input Variables
	Output Variables
	Inserting NULLs
	Handling Returned NULLs
	Fetching NULLs
	Testing for NULLs
	Fetching Truncated Values

	The Basic SQL Statements
	Selecting Rows
	Available Clauses

	Inserting Rows
	DML Returning Clause
	Using Subqueries
	Updating Rows
	Deleting Rows
	Using the WHERE Clause

	Cursors
	Declaring a Cursor
	Opening a Cursor
	Fetching from a Cursor
	Closing a Cursor
	Using the CURRENT OF Clause
	Restrictions
	A Typical Sequence of Statements
	Positioned Update
	The PREFETCH Precompiler Option

	Sample Program 2: Cursor Operations

	6 Embedded PL/SQL
	Embedding PL/SQL
	Host Variables
	VARCHAR Variables
	Indicator Variables
	Handling NULLs
	Handling Truncated Values

	SQLCHECK

	Advantages of PL/SQL
	Better Performance
	Integration with Oracle9i
	Cursor FOR Loops
	Subprograms
	Parameter Modes

	Packages
	PL/SQL Tables
	User-Defined Records

	Embedding PL/SQL Blocks
	Host Variables and PL/SQL
	PL/SQL Examples
	A More Complex PL/SQL Example
	VARCHAR Pseudotype

	Indicator Variables and PL/SQL
	Handling NULLs
	Handling Truncated Values

	Host Tables and PL/SQL
	ARRAYLEN Statement
	Optional Keyword EXECUTE to ARRAYLEN Statement

	Cursor Usage in Embedded PL/SQL
	Stored PL/SQL and Java Subprograms
	Creating Stored Subprograms
	Calling a Stored PL/SQL or Java Subprogram
	Anonymous PL/SQL Block
	CALL Statement
	CALL Example

	Using Dynamic PL/SQL
	Subprograms Restriction

	Sample Program 9: Calling a Stored Procedure
	Remote Access

	Cursor Variables
	Declaring a Cursor Variable
	Allocating a Cursor Variable
	Opening a Cursor Variable
	Opening Indirectly through a Stored PL/SQL Procedure
	Opening Directly from Your Pro*COBOL Application

	Fetching from a Cursor Variable
	Closing a Cursor Variable
	Freeing a Cursor Variable
	Restrictions on Cursor Variables
	Sample Program 11: Cursor Variables
	SAMPLE11.SQL
	SAMPLE11.PCO

	7 Host Tables
	Host Tables
	Advantages of Host Tables
	Tables in Data Manipulation Statements
	Declaring Host Tables
	Restrictions

	Referencing Host Tables
	Using Indicator Tables
	Host Group Item Containing Tables
	Oracle Restrictions
	ANSI Restriction and Requirements

	Selecting into Tables
	Batch Fetches
	Using SQLERRD(3)
	Number of Rows Fetched
	Restrictions on Using Host Tables
	Fetching NULLs
	Fetching Truncated Values
	Sample Program 3: Fetching in Batches

	Inserting with Tables
	Restrictions on Host Tables

	Updating with Tables
	Restrictions in UPDATE

	Deleting with Tables
	Restrictions in DELETE

	Using Indicator Tables
	The FOR Clause
	Restrictions
	In a SELECT Statement
	With the CURRENT OF Clause

	The WHERE Clause
	Mimicking the CURRENT OF Clause
	Tables of Group Items as Host Variables
	Sample Program 14: Tables of Group Items

	8 Error Handling and Diagnostics
	Why Error Handling is Needed
	Error Handling Alternatives
	SQLCA
	ORACA
	ANSI SQLSTATE Variable
	Declaring SQLSTATE
	SQLSTATE Values

	Using the SQL Communications Area
	Contents of the SQLCA
	Declaring the SQLCA
	Key Components of Error Reporting
	Status Codes
	Warning Flags
	Rows-Processed Count
	Parse Error Offset
	Error Message Text

	SQLCA Structure
	SQLCAID
	SQLCABC
	SQLCODE
	SQLERRM
	SQLERRD
	SQLWARN
	SQLEXT

	PL/SQL Considerations
	Getting the Full Text of Error Messages
	DSNTIAR
	WHENEVER Directive
	Conditions
	SQLWARNING
	SQLERROR
	NOT FOUND or NOTFOUND
	Actions
	CONTINUE
	DO CALL
	DO PERFORM
	GOTO or GO TO
	STOP

	Coding the WHENEVER Statement
	DO PERFORM
	DO CALL
	Scope
	Careless Usage: Examples

	Getting the Text of SQL Statements

	Using the Oracle Communications Area
	Contents of the ORACA
	Declaring the ORACA
	Enabling the ORACA
	Choosing Runtime Options
	ORACA Structure
	ORACAID
	ORACABC
	ORACCHF
	ORADBGF
	ORAHCHF
	ORASTXTF
	Diagnostics
	ORASTXT
	ORASFNM
	ORASLNR
	Cursor Cache Statistics
	ORAHOC
	ORAMOC
	ORACOC
	ORANOR
	ORANPR
	ORANEX

	ORACA Example Program

	How Errors Map to SQLSTATE Codes
	Status Variable Combinations

	9 Oracle Dynamic SQL
	Dynamic SQL
	Advantages and Disadvantages of Dynamic SQL
	When to Use Dynamic SQL
	Requirements for Dynamic SQL Statements
	How Dynamic SQL Statements Are Processed
	Methods for Using Dynamic SQL
	Method 1
	Method 2
	Method 3
	Method 4
	Guidelines
	Avoiding Common Errors

	Using Method 1
	The EXECUTE IMMEDIATE Statement
	An Example

	Sample Program 6: Dynamic SQL Method 1
	Using Method 2
	The USING Clause

	Sample Program 7: Dynamic SQL Method 2
	Using Method 3
	PREPARE
	DECLARE
	OPEN
	FETCH
	CLOSE

	Sample Program 8: Dynamic SQL Method 3
	Using Oracle Method 4
	Need for the SQLDA
	The DESCRIBE Statement
	SQLDA Contents
	Implementing Method 4

	Using the DECLARE STATEMENT Statement
	Using Host Tables
	Using PL/SQL
	With Method 1
	With Method 2
	With Method 3
	With Method 4
	Caution

	10 ANSI Dynamic SQL
	Basics of ANSI Dynamic SQL
	Precompiler Options

	Overview of ANSI SQL Statements
	Sample Code
	Oracle Extensions
	Reference Semantics
	Using Tables for Bulk Operations

	ANSI Dynamic SQL Precompiler Options
	Full Syntax of the Dynamic SQL Statements
	ALLOCATE DESCRIPTOR
	Variables
	Examples

	DEALLOCATE DESCRIPTOR
	GET DESCRIPTOR
	SET DESCRIPTOR
	Example

	Use of PREPARE
	DESCRIBE INPUT
	DESCRIBE OUTPUT
	EXECUTE
	Use of EXECUTE IMMEDIATE
	Use of DYNAMIC DECLARE CURSOR
	OPEN Cursor
	FETCH
	CLOSE a Dynamic Cursor
	Differences From Oracle Dynamic Method 4
	Restrictions

	Sample Programs: SAMPLE12.PCO

	11 Oracle Dynamic SQL: Method 4
	Meeting the Special Requirements of Method 4
	Advantages of Method 4
	Information the Database Needs
	Where the Information is Stored
	How Information is Obtained

	Understanding the SQL Descriptor Area (SQLDA)
	Purpose of the SQLDA
	Multiple SQLDAs
	Declaring a SQLDA

	The SQLDA Variables
	Prerequisite Knowledge
	Using SQLADR
	Converting Data
	Coercing Datatypes
	Handling NULL/Not NULL Datatypes

	The Basic Steps
	A Closer Look at Each Step
	Declare a Host String
	Declare the SQLDAs
	Set the Maximum Number to DESCRIBE
	Initialize the Descriptors
	Store the Query Text in the Host String
	PREPARE the Query from the Host String
	DECLARE a Cursor
	DESCRIBE the Bind Variables
	Reset Number of Place-Holders
	Get Values for Bind Variables
	OPEN the Cursor
	DESCRIBE the Select List
	Reset Number of Select-List Items
	Reset Length/Datatype of Each Select-List Item
	FETCH Rows from the Active Set
	Get and Process Select-List Values
	CLOSE the Cursor

	Using Host Tables with Method 4
	Sample Program 10: Dynamic SQL Method 4

	12 Multithreaded Applications
	Introduction to Threads
	Runtime Contexts in Pro*COBOL
	Runtime Context Usage Models
	Multiple Threads Sharing a Single Runtime Context
	Multiple Threads Sharing Multiple Runtime Contexts

	User Interface Features for Multithreaded Applications
	THREADS Option
	Embedded SQL Statements and Directives for Runtime Contexts
	Host Tables of SQL-CONTEXT Are Not Allowed
	EXEC SQL ENABLE THREADS
	EXEC SQL CONTEXT ALLOCATE
	EXEC SQL CONTEXT USE
	EXEC SQL CONTEXT FREE

	Communication with Pro*C/C++ Programs
	Multithreading Programming Considerations
	Restrictions on Multithreading

	Multiple Context Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Multithreaded Example

	13 Large Objects (LOBs)
	Using LOBs
	Internal LOBs
	External LOBs
	Security for BFILEs
	LOBs Compared with LONG and LONG RAW
	LOB Locators
	Temporary LOBs
	LOB Buffering Subsystem

	How to Use LOBs
	LOB Locators in Your Application
	Initializing a LOB
	Internal LOBs
	External LOBs
	Temporary LOBs
	Freeing LOBs

	Rules for LOB Statements
	For All LOB Statements
	For the LOB Buffering Subsystem
	For Host Variables

	LOB Statements
	APPEND
	ASSIGN
	CLOSE
	COPY
	CREATE TEMPORARY
	DISABLE BUFFERING
	ENABLE BUFFERING
	ERASE
	FILE CLOSE ALL
	FILE SET
	FLUSH BUFFER
	FREE TEMPORARY
	LOAD FROM FILE
	OPEN
	READ
	TRIM
	WRITE
	DESCRIBE
	READ and WRITE Using the Polling Method

	LOB Sample Program: LOBDEMO1.PCO

	14 Precompiler Options
	The procob Command
	Case-Sensitivity

	Actions During Precompilation
	About the Options
	Precedence of Option Values
	Macro and Micro Options
	Determining Current Values

	Entering Precompiler Options
	On the Command Line
	Inline
	Advantages
	Scope of EXEC ORACLE

	Configuration Files

	Scope of Precompiler Options
	Quick Reference
	Using Pro*COBOL Precompiler Options
	ASACC
	ASSUME_SQLCODE
	AUTO_CONNECT
	CHARSET_PICX
	CHARSET_PICN
	CLOSE_ON_COMMIT
	CONFIG
	DATE_FORMAT
	DBMS
	DECLARE_SECTION
	DEFINE
	DYNAMIC
	END_OF_FETCH
	ERRORS
	FIPS
	FORMAT
	HOLD_CURSOR
	HOST
	INAME
	INCLUDE
	IRECLEN
	LITDELIM
	LNAME
	LRECLEN
	LTYPE
	MAXLITERAL
	MAXOPENCURSORS
	MODE
	NESTED
	NLS_LOCAL
	ONAME
	ORACA
	ORECLEN
	PAGELEN
	PICX
	PREFETCH
	RELEASE_CURSOR
	SELECT_ERROR
	SQLCHECK
	THREADS
	TYPE_CODE
	UNSAFE_NULL
	USERID
	VARCHAR
	XREF

	A Operating System Dependencies
	System-Specific References in this Manual
	COBOL Versions
	Host Variables
	Declaring
	Naming

	INCLUDE Statements
	MAXLITERAL Default
	PIC N or Pic G Clause for Multi-byte Globalization Support Characters
	RETURN-CODE Special Register May Be Unpredictable.
	Byte-Order of Binary Data

	B Reserved Words, Keywords, and Namespaces
	Reserved Words and Keywords
	Reserved Namespaces

	C Performance Tuning
	Causes of Poor Performance
	Improving Performance
	Using Host Tables
	Using PL/SQL and Java
	Optimizing SQL Statements
	Optimizer Hints
	Giving Hints

	Using Indexes
	Taking Advantage of Row-Level Locking
	Eliminating Unnecessary Parsing
	Handling Explicit Cursors
	Cursor Control

	Using the Cursor Management Options
	Private SQL Areas and Cursor Cache
	Resource Use
	Infrequent Execution
	Frequent Execution
	Effect on the Shared SQL Area
	Embedded PL/SQL Considerations
	Parameter Interactions

	Avoiding Unnecessary Reparsing

	D Syntactic and Semantic Checking
	Syntactic and Semantic Checking Basics
	Controlling the Type and Extent of Checking
	Specifying SQLCHECK=SEMANTICS
	Enabling a Semantic Check
	Connecting to Oracle
	Using DECLARE TABLE

	E Embedded SQL Statements and Precompiler Directives
	Summary of Precompiler Directives and Embedded SQL Statements
	About the Statement Descriptions
	How to Read Syntax Diagrams
	Statement Terminator
	Required Keywords and Parameters
	Optional Keywords and Parameters
	Syntax Loops
	Multi-part Diagrams
	Oracle Names

	ALLOCATE (Executable Embedded SQL Extension)
	ALLOCATE DESCRIPTOR (Executable Embedded SQL)
	CALL (Executable Embedded SQL)
	CLOSE (Executable Embedded SQL)
	COMMIT (Executable Embedded SQL)
	CONNECT (Executable Embedded SQL Extension)
	CONTEXT ALLOCATE (Executable Embedded SQL Extension)
	CONTEXT FREE (Executable Embedded SQL Extension)
	CONTEXT USE (Oracle Embedded SQL Directive)
	DEALLOCATE DESCRIPTOR (Embedded SQL Statement)
	DECLARE CURSOR (Embedded SQL Directive)
	DECLARE DATABASE (Oracle Embedded SQL Directive)
	DECLARE STATEMENT (Embedded SQL Directive)
	DECLARE TABLE (Oracle Embedded SQL Directive)
	DELETE (Executable Embedded SQL)
	DESCRIBE (Executable Embedded SQL)
	DESCRIBE DESCRIPTOR (Executable Embedded SQL)
	ENABLE THREADS (Executable Embedded SQL Extension)
	EXECUTE ... END-EXEC (Executable Embedded SQL Extension)
	EXECUTE (Executable Embedded SQL)
	EXECUTE DESCRIPTOR (Executable Embedded SQL
	EXECUTE IMMEDIATE (Executable Embedded SQL)
	FETCH (Executable Embedded SQL)
	FETCH DESCRIPTOR (Executable Embedded SQL)
	FREE (Executable Embedded SQL Extension)
	GET DESCRIPTOR (Executable Embedded SQL)
	INSERT (Executable Embedded SQL)
	LOB APPEND (Executable Embedded SQL Extension)
	LOB ASSIGN (Executable Embedded SQL Extension)
	LOB CLOSE (Executable Embedded SQL Extension)
	LOB COPY (Executable Embedded SQL Extension)
	LOB CREATE TEMPORARY (Executable Embedded SQL Extension)
	LOB DESCRIBE (Executable Embedded SQL Extension)
	LOB DISABLE BUFFERING (Executable Embedded SQL Extension)
	LOB ENABLE BUFFERING (Executable Embedded SQL Extension)
	LOB ERASE (Executable Embedded SQL Extension)
	LOB FILE CLOSE ALL (Executable Embedded SQL Extension)
	LOB FILE SET (Executable Embedded SQL Extension)
	LOB FLUSH BUFFER (Executable Embedded SQL Extension)
	LOB FREE TEMPORARY (Executable Embedded SQL Extension)
	LOB LOAD (Executable Embedded SQL Extension)
	LOB OPEN (Executable Embedded SQL Extension)
	LOB READ (Executable Embedded SQL Extension)
	LOB TRIM (Executable Embedded SQL Extension)
	LOB WRITE (Executable Embedded SQL Extension)
	OPEN (Executable Embedded SQL)
	OPEN DESCRIPTOR (Executable Embedded SQL)
	PREPARE (Executable Embedded SQL)
	ROLLBACK (Executable Embedded SQL)
	SAVEPOINT (Executable Embedded SQL)
	SELECT (Executable Embedded SQL)
	SET DESCRIPTOR (Executable Embedded SQL)
	UPDATE (Executable Embedded SQL)
	VAR (Oracle Embedded SQL Directive)
	WHENEVER (Embedded SQL Directive)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

