
Oracle® Streams
Replication Administrator's Guide

10g Release 1 (10.1)

Part No. B10728-01

December 2003

Oracle Streams Replication Administrator’s Guide, 10g Release 1 (10.1)

Part No. B10728-01

Copyright © 2003 Oracle Corporation. All rights reserved.

Primary Author: Randy Urbano

Graphic Artist: Valarie Moore

Contributors: Nimar Arora, Lance Ashdown, Ram Avudaiappan, Sukanya Balaraman, Neerja Bhatt,
Ragamayi Bhyravabhotla, Diego Cassinera, Debu Chatterjee, Alan Downing, Lisa Eldridge, Curt
Elsbernd, Yong Feng, Jairaj Galagali, Brajesh Goyal, Sanjay Kaluskar, Lewis Kaplan, Anand
Lakshminath, Jing Liu, Edwina Lu, Raghu Mani, Pat McElroy, Krishnan Meiyyappan, Shailendra Mishra,
Tony Morales, Bhagat Nainani, Anand Padmanaban, Kashan Peyetti, Maria Pratt, Arvind Rajaram, Viv
Schupmann, Vipul Shah, Neeraj Shodhan, Wayne Smith, Benny Souder, Jim Stamos, Janet Stern, Mahesh
Subramaniam, Bob Thome, Hung Tran, Ramkumar Venkatesan, Byron Wang, Wei Wang, James M.
Wilson, Lik Wong, David Zhang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle Store, SQL*Plus, and PL/SQL are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

iii

Contents

Send Us Your Comments ... xi

Preface... xiii

Audience ... xiv
Organization... xiv
Related Documentation ... xvii
Conventions... xviii
Documentation Accessibility ... xxi

Part I Streams Replication Concepts

1 Understanding Streams Replication

Overview of Streams Replication.. 1-2
Rules in a Streams Replication Environment ... 1-3
Non-Identical Replicas with Streams .. 1-5
Subsetting with Streams .. 1-5

Capture and Streams Replication .. 1-6
Change Capture Using a Capture Process.. 1-6
Change Capture Using a Custom Application... 1-11

Propagation and Streams Replication .. 1-12
LCR Staging... 1-12
LCR Propagation .. 1-12

iv

Apply and Streams Replication ... 1-14
Overview of the Apply Process .. 1-14
Apply Processing Options for LCRs .. 1-15
Considerations for Applying DML Changes to Tables... 1-17
Considerations for Applying DDL Changes .. 1-26
Instantiation SCN and Ignore SCN for an Apply Process .. 1-30
The Oldest SCN for an Apply Process... 1-31
Low-Watermark and High-Watermark for an Apply Process... 1-32
Trigger Firing Property.. 1-32

2 Instantiation and Streams Replication

Overview of Instantiation and Streams Replication.. 2-2
Capture Process Rules and Preparation for Instantiation... 2-4

DBMS_STREAMS_ADM Package Procedures Automatically Prepare Objects.................. 2-4
When Preparing for Instantiation Is Required ... 2-5

Oracle Data Pump and Streams Instantiation ... 2-7
Data Pump Export and Object Consistency.. 2-7
Oracle Data Pump Import and Streams Instantiation... 2-8

Original Export/Import and Streams Instantiation .. 2-13
The OBJECT_CONSISTENT Export Utility Parameter and Streams.................................. 2-13
Original Import Utility Parameters Relevant to Streams.. 2-14

3 Streams Conflict Resolution

About DML Conflicts in a Streams Environment .. 3-2
Conflict Types in a Streams Environment ... 3-2

Update Conflicts in a Streams Environment .. 3-3
Uniqueness Conflicts in a Streams Environment... 3-3
Delete Conflicts in a Streams Environment .. 3-3
Foreign Key Conflicts in a Streams Environment.. 3-3

Conflicts and Transaction Ordering in a Streams Environment.. 3-4
Conflict Detection in a Streams Environment .. 3-5

Control Over Conflict Detection for Nonkey Columns .. 3-5
Rows Identification During Conflict Detection in a Streams Environment 3-6

v

Conflict Avoidance in a Streams Environment... 3-6
Use a Primary Database Ownership Model ... 3-6
Avoid Specific Types of Conflicts .. 3-6

Conflict Resolution in a Streams Environment .. 3-8
Prebuilt Update Conflict Handlers .. 3-9
Custom Conflict Handlers... 3-15

4 Streams Tags

Introduction to Tags ... 4-2
Tags and Rules Created by the DBMS_STREAMS_ADM Package ... 4-3
Tags and Online Backup Statements .. 4-6
Tags and an Apply Process.. 4-7
Streams Tags in a Replication Environment.. 4-8

Each Databases Is a Source and Destination Database for Shared Data 4-9
Primary Database Sharing Data with Several Secondary Databases.................................. 4-13
Primary Database Sharing Data with Several Extended Secondary Databases................ 4-20

5 Streams Heterogeneous Information Sharing

Oracle to Non-Oracle Data Sharing with Streams ... 5-2
Change Capture and Staging in an Oracle to Non-Oracle Environment............................. 5-3
Change Apply in an Oracle to Non-Oracle Environment .. 5-3
Transformations in an Oracle to Non-Oracle Environment... 5-10
Messaging Gateway and Streams .. 5-10
Error Handling in an Oracle to Non-Oracle Environment... 5-10
Example Oracle to Non-Oracle Streams Environment ... 5-11

Non-Oracle to Oracle Data Sharing with Streams ... 5-11
Change Capture and Staging in a Non-Oracle to Oracle Environment 5-12
Change Apply in a Non-Oracle to Oracle Environment .. 5-12
Instantiation from a Non-Oracle Database to an Oracle Database 5-13

Non-Oracle to Non-Oracle Data Sharing with Streams .. 5-13

vi

Part II Configuring and Administering Streams Replication

6 Configuring Streams Replication

Creating a New Streams Single Source Environment ... 6-2
Adding Shared Objects to an Existing Single Source Environment... 6-7
Adding a New Destination Database to a Single Source Environment................................. 6-14
Creating a New Streams Multiple Source Environment... 6-18

Configuring Populated Databases When Creating a Multiple Source Environment....... 6-22
Adding Shared Objects to Import Databases When Creating a New Environment......... 6-23
Complete the Multiple Source Environment Configuration.. 6-24

Adding Shared Objects to an Existing Multiple Source Environment 6-25
Configuring Populated Databases When Adding Shared Objects...................................... 6-30
Adding Shared Objects to Import Databases in an Existing Environment........................ 6-31
Complete the Adding Objects to a Multiple Source Environment Configuration............ 6-33

Adding a New Database to an Existing Multiple Source Environment 6-34
Configuring Databases If the Shared Objects Already Exist at the New Database 6-37
Adding Shared Objects to a New Database .. 6-39

7 Managing Capture, Propagation, and Apply

Managing Capture for Streams Replication .. 7-2
Creating a Capture Process ... 7-2
Managing Supplemental Logging in a Streams Replication Environment.......................... 7-4

Managing Staging and Propagation for Streams Replication.. 7-8
Creating a SYS.AnyData Queue to Stage LCRs.. 7-9
Creating a Propagation That Propagates LCRs.. 7-10

Managing Apply for Streams Replication ... 7-12
Creating an Apply Process That Applies LCRs ... 7-12
Managing the Substitute Key Columns for a Table... 7-14
Managing a DML Handler .. 7-16
Managing the DDL Handler for an Apply Process ... 7-20
Managing Streams Conflict Detection and Resolution ... 7-23

Replicating and Maintaining Tablespaces Using Streams ... 7-29

vii

Managing Streams Tags... 7-33
Managing Streams Tags for the Current Session... 7-33
Managing Streams Tags for an Apply Process... 7-34

Changing the DBID or Global Name of a Source Database .. 7-35
Resynchronizing a Source Database in a Multiple Source Environment 7-37
Performing Database Point-in-Time Recovery in a Streams Environment........................... 7-38

Performing Point-in-Time Recovery on the Source in a Single Source Environment 7-38
Performing Point-in-Time Recovery in a Multiple Source Environment........................... 7-42
Performing Point-in-Time Recovery on a Destination Database .. 7-44

8 Performing Instantiations

Preparing Database Objects for Instantiation at a Source Database .. 8-2
Aborting Preparation for Instantiation at a Source Database.. 8-3
Instantiating Objects in a Streams Replication Environment ... 8-4

Instantiating Objects in a Streams Environment Using Data Pump Export/Import 8-4
Instantiating Objects in a Streams Environment Using Transportable Tablespaces 8-8
Instantiating Objects in a Streams Environment Using Original Export/Import............. 8-13
Instantiating an Entire Database in a Streams Environment Using RMAN...................... 8-15

Setting Instantiation SCNs at a Destination Database ... 8-22
Setting Instantiation SCNs Using Export/Import ... 8-23
Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package 8-25

9 Managing Logical Change Records (LCRs)

Requirements for Managing LCRs.. 9-2
Constructing and Enqueuing LCRs .. 9-3
Managing LCRs Containing LONG, LONG RAW, or LOB Columns 9-9

Requirements for Processing LCRs Containing LONG and LONG RAW Columns 9-10
Requirements for Constructing and Processing LCRs Containing LOB Columns........... 9-11
Apply Process Behavior for LCRs Containing LOBs .. 9-13
Example Script for Constructing and Enqueuing LCRs Containing LOBs........................ 9-14

viii

10 Monitoring Streams Replication

Monitoring Supplemental Logging .. 10-2
Displaying Supplemental Log Groups at a Source Database .. 10-2
Displaying Database Supplemental Logging Specifications.. 10-4

Monitoring an Apply Process in a Streams Replication Environment 10-4
Displaying the Substitute Key Columns Specified at a Destination Database 10-5
Displaying Information About DML and DDL Handlers .. 10-6
Displaying Information About Conflict Detection .. 10-8
Displaying Information About Update Conflict Handlers... 10-9

Monitoring Buffered Queues ... 10-10
Determining the Number of LCRs in Each Buffered Queue.. 10-11
Viewing the Capture Processes For the LCRs in Each Buffered Queue 10-12
Displaying General Information About Propagations That Send Captured Events 10-14
Displaying the Number of Events and Bytes Sent By Propagations................................. 10-15
Displaying Performance Statistics For Propagations That Send Captured Events......... 10-16
Viewing the Propagations Dequeuing LCRs From Each Buffered Queue....................... 10-17
Displaying Performance Statistics For Propagations That Receive Captured Events.... 10-19
Viewing the Apply Processes Dequeuing LCRs From Each Buffered Queue................. 10-20

Monitoring Streams Tags .. 10-21
Displaying the Tag Value for the Current Session... 10-21
Displaying the Default Tag Value for Each Apply Process.. 10-22

Monitoring Instantiation ... 10-23
Determining Which Database Objects Are Prepared for Instantiation............................. 10-23
Determining the Tables for Which an Instantiation SCN Has Been Set 10-24

Running Flashback Queries in a Streams Replication Environment 10-26

11 Troubleshooting Streams Replication

Is the Apply Process Encountering Contention? .. 11-2
Is the Apply Process Waiting for a Dependent Transaction? ... 11-4
Is an Apply Server Performing Poorly for Certain Transactions? ... 11-5
Are There Any Apply Errors in the Error Queue? .. 11-7

ORA-01031 Insufficient Privileges ... 11-7
ORA-01403 No Data Found... 11-8
ORA-23605 Invalid Value for Streams Parameter ... 11-10
ORA-23607 Invalid Column.. 11-11

ix

ORA-24031 Invalid Value, parameter_name Should Be Non-NULL 11-11
ORA-26687 Instantiation SCN Not Set .. 11-12
ORA-26688 Missing Key in LCR .. 11-14
ORA-26689 Column Type Mismatch... 11-15

Part III Example Replication Environments

12 Simple Single Source Replication Example

Overview of the Simple Single Source Replication Example.. 12-2
Prerequisites .. 12-3

13 Single Source Heterogeneous Replication Example

Overview of the Single Source Heterogeneous Replication Example 13-2
Prerequisites .. 13-5
Add Objects to an Existing Streams Replication Environment... 13-7
Add a Database to an Existing Streams Replication Environment... 13-9

14 Multiple Source Replication Example

Overview of the Multiple Source Databases Example.. 14-2
Prerequisites .. 14-5

Part IV Appendixes

A Migrating Advanced Replication to Streams

Overview of the Migration Process... A-2
Migration Script Generation and Use.. A-2
Modification of the Migration Script ... A-3
Actions Performed by the Generated Script... A-3
Migration Script Errors .. A-4
Manual Migration of Updatable Materialized Views ... A-4
Advanced Replication Elements That Cannot Be Migrated to Streams............................... A-4

Preparing to Generate the Migration Script .. A-5

x

Generating and Modifying the Migration Script ... A-5
Example Advanced Replication Environment to be Migrated to Streams A-6

Performing the Migration for Advanced Replication to Streams ... A-12
Before Executing the Migration Script... A-12
Executing the Migration Script ... A-14
After Executing the Script.. A-15

Recreating Master Sites to Retain Materialized View Groups .. A-17

Index

xi

Send Us Your Comments

Oracle Streams Replication Administrator’s Guide, 10g Release 1 (10.1)

Part No. B10728-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

� Electronic mail: infodev_us@oracle.com
� FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
� Postal service:

Oracle Corporation
Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

xii

xiii

Preface

Oracle Streams Replication Administrator’s Guide describes the features and
functionality of Streams that can be used for data replication. This document
contains conceptual information about Streams replication, along with information
about configuring and managing a Streams replication environment.

This preface contains these topics:

� Audience

� Organization

� Related Documentation

� Conventions

� Documentation Accessibility

xiv

Audience
Oracle Streams Replication Administrator’s Guide is intended for database
administrators who create and maintain Streams replication environments. These
administrators perform one or more of the following tasks:

� Plan for a Streams replication environment

� Configure a Streams replication environment

� Configure conflict resolution in a Streams replication environment

� Administer a Streams replication environment

� Monitor a Streams replication environment

� Perform necessary troubleshooting activities for a Streams replication
environment

To use this document, you need to be familiar with relational database concepts,
SQL, distributed database administration, general Oracle Streams concepts,
Advanced Queuing concepts, PL/SQL, and the operating systems under which you
run a Streams environment.

Organization
This document contains:

Part I, "Streams Replication Concepts"
Contains chapters that describe conceptual information relating to Streams.

Chapter 1, "Understanding Streams Replication"
Contains general conceptual information about Streams replication. Includes
information about change capture, propagation, change apply, and instantiation in a
Streams replication environment.

Chapter 2, "Instantiation and Streams Replication"
Contains conceptual information about instantiation and Streams replication.
Includes conceptual information about preparing database objects for instantiation
and information about using various utilities to perform instantiations.

xv

Chapter 3, "Streams Conflict Resolution"
Contains conceptual information about conflicts. Includes information about the
possible types of conflicts, conflict detection, conflict avoidance, and conflict
resolution in Streams environments.

Chapter 4, "Streams Tags"
Contains conceptual information about Streams tags. Includes information about
how tag values are used in rules, how a tag value can be set for an apply process,
and how to avoid change cycling using tags.

Chapter 5, "Streams Heterogeneous Information Sharing"
Contains conceptual information about heterogeneous information sharing using
Streams. Includes information about sharing information in an Oracle database
with a non-Oracle database, sharing information in a non-Oracle database with an
Oracle database, and using Streams to share information between two non-Oracle
databases.

Part II, "Configuring and Administering Streams Replication"
Contains chapters that illustrate example environments.

Chapter 6, "Configuring Streams Replication"
Contains information about configuring a single source and multiple source
Streams replication environment. Also includes instructions for adding objects and
databases to an existing Streams environment.

Chapter 7, "Managing Capture, Propagation, and Apply"
Contains information about managing capture processes, propagations, and apply
processes in a Streams replication environment. Also includes instructions for
managing Streams tags, and for performing database point-in-time recovery at a
destination database in a Streams environment.

Chapter 8, "Performing Instantiations"
Contains contains instructions for performing instantiations in a Streams replication
environment. Database objects must be instantiated at a destination database before
changes to these objects can be replicated.

xvi

Chapter 9, "Managing Logical Change Records (LCRs)"
Contains instructions for managing logical change records (LCRs) in a Streams
replication environment. Specifically, this chapter includes requirements for
managing LCRs, instructions for constructing LCRs, and information about
managing LCRs that contain LONG, LONG RAW, or LOB column data.

Chapter 10, "Monitoring Streams Replication"
Contains information about monitoring a Streams replication environment. This
chapter contains example queries that you may want to use to monitor your
Streams replication environment.

Chapter 11, "Troubleshooting Streams Replication"
Contains information about identifying and correcting common apply process
problems in a Streams replication environment.

Part III, "Example Replication Environments"
Contains chapters that illustrate example environments.

Chapter 12, "Simple Single Source Replication Example"
Contains a step by step example that configures a simple single source replication
environment using Streams.

Chapter 13, "Single Source Heterogeneous Replication Example"
Contains a step by step example that configures a single source heterogeneous
replication environment using Streams. Also contains step by step examples for
adding objects and databases to this environment.

Chapter 14, "Multiple Source Replication Example"
Contains a step by step example that configures a multiple source replication
environment using Streams.

Part IV, "Appendixes"
Contains chapters that illustrate example environments.

Appendix A, "Migrating Advanced Replication to Streams"
Contains information about migrating an Advanced Replication environment to a
Streams environment. This chapter provides a conceptual overview of the steps in
this process and documents each step with procedures and examples.

xvii

Related Documentation
For more information, see these Oracle resources:

� Oracle Streams Concepts and Administration

� Oracle Database Concepts

� Oracle Database Administrator's Guide

� Oracle Database SQL Reference

� PL/SQL Packages and Types Reference

� PL/SQL User's Guide and Reference

� Oracle Database Utilities

� Oracle Database Heterogeneous Connectivity Administrator's Guide

� Streams online help for the Streams tool in the Oracle Enterprise Manager
Console

You may find more information about a particular topic in the other documents in
the Oracle documentation set.

Oracle error message documentation is only available in HTML. If you only have
access to the Oracle Documentation CD, you can browse the error messages by
range. Once you find the specific range, use your browser's "find in page" feature to
locate the specific message. When connected to the Internet, you can search for a
specific error message using the error message search feature of the Oracle online
documentation.

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how you
can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

xviii

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

In addition, you can find resources related to Oracle Streams at

http://otn.oracle.com/products/dataint/content.html

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

� Conventions in Text

� Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

xix

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

Convention Meaning Example

xx

... Horizontal ellipsis points indicate either:

� That we have omitted parts of the
code that are not directly related to
the example

� That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

xxi

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

xxii

Part I
 Streams Replication Concepts

This part describes conceptual information about Streams replication and contains
the following chapters:

� Chapter 1, "Understanding Streams Replication"

� Chapter 2, "Instantiation and Streams Replication"

� Chapter 3, "Streams Conflict Resolution"

� Chapter 4, "Streams Tags"

� Chapter 5, "Streams Heterogeneous Information Sharing"

Understanding Streams Replication 1-1

1
Understanding Streams Replication

This chapter contains conceptual information about Streams replication. This
chapter contains these topics:

� Overview of Streams Replication

� Capture and Streams Replication

� Propagation and Streams Replication

� Apply and Streams Replication

See Also: Oracle Streams Concepts and Administration for general
information about Oracle Streams. This document assumes that
you understand the concepts described in Oracle Streams Concepts
and Administration.

Overview of Streams Replication

1-2 Oracle Streams Replication Administrator’s Guide

Overview of Streams Replication
Replication is the process of sharing database objects and data at multiple
databases. To maintain replicated database objects and data at multiple databases, a
change to one of these database objects at a database is shared with the other
databases. In this way, the database objects and data are kept in sync at all of the
databases in the replication environment. In a Streams replication environment, the
database where a change originates is called the source database, and a database
where a change is shared is called a destination database.

When you use Streams, replication of a DML or DDL change typically includes
three steps:

1. A capture process or an application creates one or more logical change records
(LCRs) and enqueues them into a queue. If the change was a data manipulation
language (DML) operation, then each LCR encapsulates a row change resulting
from the DML operation to a shared table at the source database. If the change
was a data definition language (DDL) operation, then an LCR encapsulates the
DDL change that was made to a shared database object at a source database.

2. A propagation propagates the staged LCR to another queue, which usually
resides in a database that is separate from the database where the LCR was
captured. An LCR may be propagated to a number of queues before it arrives at
a destination database.

3. At a destination database, an apply process consumes the change by applying
the LCR to the shared database object. An apply process may dequeue the LCR
and apply it directly, or an apply process may dequeue the LCR and send it to
an apply handler. In a Streams replication environment, an apply handler
performs customized processing of the LCR and then applies the LCR to the
shared database object.

Step 1 and Step 3 are required, but Step 2 is optional because, in some cases, an
application may enqueue an LCR directly into a queue at a destination database. In
addition, in a heterogeneous replication environment in which an Oracle database
shares information with a non-Oracle database, an apply process may apply
changes directly to a non-Oracle database without propagating LCRs.

Figure 1–1 illustrates the information flow in a Streams replication environment.

Overview of Streams Replication

Understanding Streams Replication 1-3

Figure 1–1 Streams Information Flow

This document describes how to use Streams for replication and includes the
following information:

� Conceptual information relating to Streams replication

� Information about configuring a Streams replication environment

� Instructions for administering, monitoring, and troubleshooting a Streams
replication environment

� Demonstration scripts that create and maintain example Streams replication
environments

Replication is one form of information sharing. Oracle Streams enables replication,
and it also enables other forms of information sharing, such as messaging, event
management and notification, data warehouse loading, and data protection.

Rules in a Streams Replication Environment
A rule is a database object that enables a client to perform an action when an event
occurs and a condition is satisfied. Rules are evaluated by a rules engine, which is a
built-in part of Oracle. You use rules to control the information flow in a Streams
replication environment. Each of the following mechanisms is a client of the rules
engine:

� Capture process

� Propagation

� Apply process

You control the behavior of each of these Streams clients using rules. A rule set
contains a collection of rules, and you can associate a positive and a negative rule
set with a Streams client. A Streams client performs an action if an event satisfies its

See Also: Oracle Streams Concepts and Administration for more
information about the other information sharing capabilities
of Streams

ConsumptionCapture Staging

Overview of Streams Replication

1-4 Oracle Streams Replication Administrator’s Guide

rule sets. In general, a change satisfies the rule sets for a Streams client if no rules in
the negative rule set evaluate to TRUE for the event, and at least one rule in the
positive rule set evaluates to TRUE for the event. If a Streams client is associated
with both a positive and negative rule set, then the negative rule set is always
evaluated first.

Specifically, you control the information flow in a Streams replication environment
in the following ways:

� Specify the changes that a capture process captures from the redo log or
discards. That is, if a change found in the redo log satisfies the rule sets for a
capture process, then the capture process captures the change. If a change found
in the redo log does not satisfy the rule sets for a capture process, then the
capture process discards the change.

� Specify the LCRs that a propagation propagates from one queue to another or
discards. That is, if an LCR in a queue satisfies the rule sets for a propagation,
then the propagation propagates the LCR. If an LCR in a queue does not satisfy
the rule sets for a propagation, then the propagation discards the LCR.

� Specify the LCRs that an apply process retrieves from a queue or discards. That
is, if an LCR in a queue satisfies the rule sets for an apply process, then the LCR
is retrieved and processed by the apply process. If an LCR in a queue does not
satisfy the rule sets for an apply process, then the apply process discards
the LCR.

You can use the Oracle-supplied DBMS_STREAMS_ADM PL/SQL package to create
rules for a Streams replication environment. You can specify these system-created
rules at the following levels:

� Table - Contains a rule condition that evaluates to TRUE for changes made to a
particular table

� Schema - Contains a rule condition that evaluates to TRUE for changes made to
a particular schema

� Global - Contains a rule condition that evaluates to TRUE for all changes made
to a database

In addition, a single system-created rule may evaluate to TRUE for DML changes or
for DDL changes, but not both. So, for example, if you want to replicate both DML
and DDL changes to a particular table, then you need both a table-level DML rule
and a table-level DDL rule for the table.

See Also: Oracle Streams Concepts and Administration for more
information about how rules are used in Streams

Overview of Streams Replication

Understanding Streams Replication 1-5

Non-Identical Replicas with Streams
Streams replication supports sharing database objects that are not identical at
multiple databases. Different databases in the Streams environment can contain
shared database objects with different structures. You can configure rule-based
transformations during capture, propagation, or apply to make any necessary
changes to LCRs so that they can be applied at a destination database. In Streams
replication, a rule-based transformation is any user-defined modification to an LCR
that results when a rule in a positive rule set evaluates to TRUE. A rule-based
transformation must be defined as a PL/SQL function that takes a SYS.AnyData
object as input and returns a SYS.AnyData object.

For example, a table at a source database may have the same data as a table at a
destination database, but some of the column names may be different. In this case, a
rule-based transformation can change the names of the columns in LCRs from the
source database so that they can be applied successfully at the destination database.

Rule-based transformations can be done at any point in the Streams information
flow. That is, a capture process may perform a rule-based transformation on a
change when a rule in its positive rule set evaluates to TRUE for the change.
Similarly, a propagation or an apply process may perform a rule-based
transformation on an LCR when a rule in its positive rule set evaluates to TRUE for
the LCR.

Subsetting with Streams
Streams also supports subsetting of table data through the use of subset rules. If a
shared table in a database in a Streams replication environment contains only a
subset of data, then you can configure Streams to manage changes to a table so that
only the appropriate subset of data is shared with the subset table. For example, a
particular database may maintain data for employees in a particular department
only. In this case, you can use subset rules to share changes to the data for
employees in that department with the subset table, but not changes to employees
in other departments.

Subsetting can be done at any point in the Streams information flow. That is, a
capture process may use a subset rule to capture a subset of changes to a particular
table, a propagation may use a subset rule to propagate a subset of changes to a
particular table, and an apply process may use a subset rule to apply only a subset
of changes to a particular table.

See Also: Oracle Streams Concepts and Administration for more
information about rule-based transformations

Capture and Streams Replication

1-6 Oracle Streams Replication Administrator’s Guide

Capture and Streams Replication
To maintain replicated database objects and data, you must capture changes made
to these database objects and their data. Next, you must share these changes with
the databases in the replication environment. In a Streams replication environment,
you can capture changes in either of the following ways:

� Change Capture Using a Capture Process

� Change Capture Using a Custom Application

Change Capture Using a Capture Process
This section contains a brief overview of the capture process and conceptual
information that is important for a capture process in a replication environment.

Capture Process Overview
Changes made to database objects in an Oracle database are logged in the redo log
to guarantee recoverability in the event of user error or media failure. A capture
process is an Oracle background process that reads the database redo log to capture
DML and DDL changes made to database objects. The source database for a change
that was captured by a capture process is always the database where the change
was generated in the redo log. A capture process formats these changes into events
called LCRs and enqueues them into a queue. Because a running capture process
automatically captures changes based on its rules, change capture using a capture
process is sometimes called implicit capture.

There are two types of LCRs: a row LCR contains information about a change to a
row in a table resulting from a DML operation, and a DDL LCR contains
information about a DDL change to a database object. You use rules to specify
which changes are captured. A single DML operation may change more than one
row in a table. Therefore, a single DML operation may result in more than one
row LCR, and a single transaction may consist of multiple DML operations.

Changes are captured by a capture user. The capture user captures all DML
changes and DDL changes that satisfy the capture process rule sets.

See Also: Oracle Streams Concepts and Administration for more
information subset rules

See Also: Oracle Streams Concepts and Administration for general
conceptual information about a capture process

Capture and Streams Replication

Understanding Streams Replication 1-7

A capture process may capture changes locally at the source database, or it may
capture changes remotely at a downstream database. Figure 1–2 illustrates a local
capture process.

Figure 1–2 Local Capture Process

Downstream capture means that a capture process runs on a database other than
the source database. The archived redo log files from the source database are copied
to the downstream database, and the capture process captures changes in these files
at the downstream database. You can copy the archived redo log files to the
downstream database using log transport services, the DBMS_FILE_TRANSFER
package, file transfer protocol (FTP), or some other mechanism. Figure 1–3
illustrates a downstream capture process.

User Changes

Database Objects

Redo
Log

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

Capture
Process

LCRs

Capture
Changes

Log
Changes

Capture and Streams Replication

1-8 Oracle Streams Replication Administrator’s Guide

Figure 1–3 Downstream Capture Process

A local capture process reads the online redo log whenever possible and archived
redo log files otherwise. A downstream capture process always reads archived redo
log files from the source database.

Note: As illustrated in Figure 1–3, the source database for a
change captured by a downstream capture process is the database
where the change was recorded in the redo log, not the database
running the downstream capture process.

Downstream Database

Redo
Log

Queue

LCR
User Message
LCR
LCR
LCR
User Message
.
.
.

Capture
Process

Capture
Changes

LCRs

Source Database

User Changes

Redo
Log

Log
Changes

Copy Redo
Log Files

Database Objects

Capture and Streams Replication

Understanding Streams Replication 1-9

Supplemental Logging for Streams Replication
Supplemental logging places additional column data into a redo log whenever an
operation is performed. The capture process captures this additional information
and places it in LCRs. Supplemental logging is always configured at a source
database, regardless of the location of the capture process that captures changes to
the source database.

There are two types of supplemental logging: database supplemental logging and
table supplemental logging. Database supplemental logging specifies supplemental
logging for an entire database, while table supplemental logging enables you to
specify log groups for supplemental logging of a particular table. If you use table
supplemental logging, then you can choose between two types of log groups:
unconditional log groups and conditional log groups.

Unconditional log groups log the before images of specified columns when the
table is changed, regardless of whether the change affected any of the specified
columns. Unconditional log groups are sometimes referred to as always log groups.
Conditional log groups log the before images of all specified columns only if at
least one of the columns in the log group is changed.

Supplementing logging at the database level, unconditional log groups at the table
level, and conditional log groups at the table level together determine which old
values are logged for a change.

If you plan to use one or more apply processes to apply LCRs captured by a capture
process, then you must enable supplemental logging at the source database for the
following types of columns in tables at the destination database:

� Any columns at the source database that are used in a primary key in tables for
which changes are applied at a destination database must be unconditionally
logged in a log group or by database supplemental logging of primary key
columns.

� If the parallelism of any apply process that will apply the changes is greater
than 1, then any unique constraint at a destination database that comes from
multiple columns at the source database must be conditionally logged.
Supplemental logging does not need to be specified if the unique constraint
comes from a single column at the source database.

� If the parallelism of any apply process that will apply the changes is greater
than 1, then any foreign key constraint at a destination database that comes
from multiple columns at the source database must be conditionally logged.
Supplemental logging does not need to be specified if the foreign key comes
from a single column at the source database.

Capture and Streams Replication

1-10 Oracle Streams Replication Administrator’s Guide

� Any columns at the source database that are used in substitute key columns for
an apply process at a destination database must be unconditionally logged. You
specify substitute key columns for a table using the SET_KEY_COLUMNS
procedure in the DBMS_APPLY_ADM package.

� The columns specified in a column list for conflict resolution during apply must
be conditionally logged if more than one column at the source database is used
in the column list at the destination database.

� Any columns at the source database that are used by a DML handler or error
handler at a destination database must be unconditionally logged.

� Any columns at the source database that are used by a rule or a rule-based
transformation must be unconditionally logged.

� If you specify row subsetting for a table at a destination database, then any
columns at the source database that are in the destination table or columns at
the source database that are in the subset condition must be unconditionally
logged. You specify a row subsetting condition for an apply process using the
dml_condition parameter in the ADD_SUBSET_RULES procedure in the
DBMS_STREAMS_ADM package.

If you do not use supplemental logging for these types of columns at a source
database, then changes involving these columns might not apply properly at a
destination database.

Note: LOB, LONG, LONG RAW, and user-defined type columns
cannot be part of a supplemental log group.

Capture and Streams Replication

Understanding Streams Replication 1-11

Change Capture Using a Custom Application
A custom application may capture the changes made to a Oracle database by
reading from transaction logs, by using triggers, or by some other method. The
application must assemble and order the transactions and must convert each
change into an LCR. Next, the application must enqueue the LCRs into a queue in
an Oracle database using the DBMS_STREAMS_MESSAGING package or the
DBMS_AQ package. The application must commit after enqueuing all LCRs in each
transaction.

Because the LCRs are constructed and enqueued manually by a user or application,
change capture that manually enqueues constructed LCRs is sometimes called
explicit capture. If you have a heterogeneous replication environment where you
must capture changes at a non-Oracle database and share these changes with an
Oracle database, then you can create a custom application to capture changes made
to the non-Oracle database.

See Also:

� "Managing Supplemental Logging in a Streams Replication
Environment" on page 7-4

� "Monitoring Supplemental Logging" on page 10-2

� "Considerations for Applying DML Changes to Tables" on
page 1-17 for more information about apply process behavior
that may require supplemental logging at the source database

� "Column Lists" on page 3-12 for more information about
supplemental logging and column lists

� Oracle Streams Concepts and Administration for more information
about rule-based transformations

� Oracle Data Guard Concepts and Administration for information
about using supplemental logging

See Also:

� "Non-Oracle to Oracle Data Sharing with Streams" on page 5-11

� "Constructing and Enqueuing LCRs" on page 9-3

Propagation and Streams Replication

1-12 Oracle Streams Replication Administrator’s Guide

Propagation and Streams Replication
In a Streams replication environment, propagations propagate captured changes to
the appropriate databases so that changes to replicated database objects can be
shared. You use SYS.AnyData queues to stage LCRs, and propagations to
propagate these LCRs to the appropriate databases. The following sections describe
staging and propagation in a Streams replication environment:

� LCR Staging

� LCR Propagation

LCR Staging
Captured events are staged in a staging area. In Streams, the staging area is a
SYS.AnyData queue that can store row LCRs and DDL LCRs, as well as other
types of events. Captured events are staged in a buffered queue, which is System
Global Area (SGA) memory associated with a SYS.AnyData queue that contains
only captured events.

Staged LCRs can be propagated by a propagation or applied by an apply process,
and a particular staged LCR may be both propagated and applied. A running
propagation automatically propagates LCRs based on the rules in its rule sets, and a
running apply process automatically applies LCRs based on the rules in its rule sets.

LCR Propagation
In a Streams replication environment, a propagation typically propagates LCRs
from a queue in the local database to a queue in a remote database. The queue from
which the LCRs are propagated is called the source queue, and the queue that
receives the LCRs is called the destination queue. There can be a one-to-many,
many-to-one, or many-to-many relationship between source and destination
queues.

See Also: Oracle Streams Concepts and Administration for more
information about staging and propagation in Streams

See Also: Oracle Streams Concepts and Administration for more
information about buffered queues

Propagation and Streams Replication

Understanding Streams Replication 1-13

Figure 1–4 Propagation from a Source Queue to a Destination Queue

Even after an LCR is propagated by a propagation or applied by an apply process, it
may remain in the source queue if you have also configured Streams to propagate
the LCR to one or more other queues. Also, notice that a SYS.AnyData queue may
store non-LCR user messages as well as LCRs. Typically, non-LCR user messages
are used for messaging applications, not for replication.

You may configure a Streams replication environment to propagate LCRs through
one or more intermediate databases before arriving at a destination database. Such
a propagation environment is called a directed network. An LCR may or may not
be processed by an apply process at an intermediate database. Rules determine
which LCRs are propagated to each destination database, and you can specify the
route that events will traverse on their way to a destination database.

The advantage of using a directed network is that a source database does not need
to have a physical network connection with the destination database. So, if you
want LCRs to propagate from one database to another, but there is no direct
network connection between the computers running these databases, then you can
still propagate the LCRs without reconfiguring your network, as long as one or
more intermediate databases connect the source database to the destination
database. If you use directed networks, and an intermediate site goes down for an
extended period of time or is removed, then you may need to reconfigure the
network and the Streams environment.

See Also: Oracle Streams Concepts and Administration for more
information about directed networks

Source
Queue

LCR
User Message
LCR
LCR
LCR
User Message
.
.
.

Destination
Queue

User Message
LCR
User Message
LCR
LCR
.
.
.

Propagate
Events

Apply and Streams Replication

1-14 Oracle Streams Replication Administrator’s Guide

Apply and Streams Replication
In a Streams replication environment, changes made to shared database objects are
captured and propagated to destination databases where they are applied. You
configure one or more apply processes at each destination database to apply these
changes. The following sections describe the concepts related to change apply in a
Streams replication environment:

� Overview of the Apply Process

� Apply Processing Options for LCRs

� Considerations for Applying DML Changes to Tables

� Considerations for Applying DDL Changes

� Instantiation SCN and Ignore SCN for an Apply Process

� The Oldest SCN for an Apply Process

� Low-Watermark and High-Watermark for an Apply Process

� Trigger Firing Property

Overview of the Apply Process
An apply process is an optional Oracle background process that dequeues logical
change records (LCRs) and user messages from a specific queue and either applies
each one directly or passes it as a parameter to a user-defined procedure. The LCRs
dequeued by an apply process contain the results of DML changes or DDL changes
that an apply process can apply to database objects in a destination database. A
user-defined message dequeued by an apply process is of type SYS.AnyData and
can contain any user message, including a user-created LCR.

Events are applied by an apply user. The apply user applies all row changes
resulting from DML operations and all DDL changes. The apply user also runs
user-defined apply handlers.

See Also: Oracle Streams Concepts and Administration for more
information about change apply with an apply process

Apply and Streams Replication

Understanding Streams Replication 1-15

Apply Processing Options for LCRs
An apply process is a flexible mechanism for processing the events in a queue. You
have options to consider when you configure one or more apply processes for your
environment. Typically, to accomplish replication in a Streams environment, an
apply process applies LCRs, not non-LCR user messages. This section discusses the
LCR processing options available to you with an apply process.

Captured and User-Enqueued LCRs
A single apply process can apply either captured events or user-enqueued events,
but not both. If a queue at a destination database contains both captured and
user-enqueued LCRs, then the destination database must have at least two apply
processes to process the events. You can use the DBMS_STREAMS_ADM package or
the DBMS_APPLY_ADM package to create an apply process that applies captured
LCRs, but only the CREATE_APPLY procedure in the DBMS_APPLY_ADM package
can create an apply process that applies user-enqueued LCRs.

Direct and Custom Apply of LCRs
Direct apply means that an apply process applies an LCR without running a user
procedure. The apply process either successfully applies the change in the LCR to a
database object or, if a conflict or an apply error is encountered, tries to resolve the
error with a conflict handler or a user-specified procedure called an error handler.

If a conflict handler can resolve the conflict, then it either applies the LCR or it
discards the change in the LCR. If an error handler can resolve the error, then it
should apply the LCR, if appropriate. An error handler may resolve an error by
modifying the LCR before applying it. If the error handler cannot resolve the error,
then the apply process places the transaction, and all LCRs associated with the
transaction, into the error queue.

Custom apply means that an apply process passes the LCR as a parameter to a user
procedure for processing. The user procedure can then process the LCR in a
customized way.

A user procedure that processes row LCRs resulting from DML statements is called
a DML handler, while a user procedure that processes DDL LCRs resulting from
DDL statements is called a DDL handler. An apply process can have many DML
handlers but only one DDL handler, which processes all DDL LCRs dequeued by
the apply process.

See Also: "Creating an Apply Process That Applies LCRs" on
page 7-12

Apply and Streams Replication

1-16 Oracle Streams Replication Administrator’s Guide

For each table associated with an apply process, you can set a separate DML
handler to process each of the following types of operations in row LCRs:

� INSERT

� UPDATE

� DELETE

� LOB_UPDATE

For example, the hr.employees table may have one DML handler to process
INSERT operations and a different DML handler to process UPDATE operations.

A user procedure can be used for any customized processing of LCRs. For example,
if you want to skip DELETE operations for the hr.employees table at a certain
destination database, then you can specify a DML handler for DELETE operations
on this table to accomplish this goal. Such a handler is not invoked for INSERT,
UPDATE, or LOB_UPDATE operations on the table. Or, if you want to log DDL
changes before applying them, then you can create a user procedure that processes
DDL operations to accomplish this.

A DML handler should never commit and never roll back, except to a named
savepoint that the user procedure has established. To execute DDL inside a DDL
handler, invoke the EXECUTE member procedure for the LCR.

In addition to DML handlers and DDL handlers, you can specify a precommit
handler for an apply process. A precommit handler is a PL/SQL procedure that
takes the commit SCN from an internal commit directive in the queue used by the
apply process. The precommit handler may process the commit information in any
customized way. For example, it may record the commit information for an apply
process in an audit table.

Attention: Do not modify LONG, LONG RAW or LOB column data in
an LCR. This includes DML handlers, error handlers, and
rule-based transformation functions.

Apply and Streams Replication

Understanding Streams Replication 1-17

Considerations for Applying DML Changes to Tables
The following sections discuss considerations for applying DML changes to tables:

� Constraints and Applying DML Changes to Tables

� Substitute Key Columns

� Apply Process Behavior for Column Discrepancies

� Index-Organized Tables and an Apply Process

� Conflict Resolution and an Apply Process

� Handlers and Row LCR Processing

Constraints and Applying DML Changes to Tables
You must ensure that the primary key columns at the destination database are
logged in the redo log at the source database for every update. A unique or foreign
key constraint at a destination database that contains data from more that one
column at the source database requires additional logging at the source database.

There are various ways to ensure that a column is logged at the source database. For
example, whenever the value of a column is updated, the column is logged. Also,
Oracle has a feature called supplemental logging that automates the logging of
specified columns.

For a unique key and foreign key constraint at a destination database that contains
data from only one column at a source database, no supplemental logging is
required. However, for a constraint that contains data from multiple columns at the
source database, you must create a conditional supplemental log group containing
all the columns at the source database that are used by the constraint at the
destination database.

See Also:

� "Managing a DML Handler" on page 7-16

� "Managing the DDL Handler for an Apply Process" on
page 7-20

� "Managing LCRs Containing LONG, LONG RAW, or LOB
Columns" on page 9-9

� Oracle Streams Concepts and Administration for more information
about event processing options with an apply process

Apply and Streams Replication

1-18 Oracle Streams Replication Administrator’s Guide

Typically, unique key and foreign key constraints include the same columns at the
source database and destination database. However, in some cases, an apply
handler or rule-based transformation may combine a multi-column constraint from
the source database into a single key column at the destination database. Also, an
apply handler or rule-based transformation may separate a single key column from
the source database into a multi-column constraint at the destination database. In
such cases, the number of columns in the constraint at the source database
determines whether a conditional supplemental log group is required. If there is
more than one column in the constraint at the source database, then a conditional
supplemental log group containing all the constraint columns is required at the
source database. If there is only one column in the constraint at the source database,
then no supplemental logging is required for the key column.

Substitute Key Columns
If possible, each table for which changes are applied by an apply process should
have a primary key. When a primary key is not possible, Oracle Corporation
recommends that each table have a set of columns that can be used as a unique
identifier for each row of the table. If the tables that you plan to use in your Streams
environment do not have a primary key or a set of unique columns, then consider
altering these tables accordingly.

To detect conflicts and handle errors accurately, Oracle must be able to identify
uniquely and match corresponding rows at different databases. By default, Streams
uses the primary key of a table to identify rows in the table, and if a primary key
does not exist, Streams uses the smallest unique index that has at least one NOT
NULL column to identify rows in the table. When a table at a destination database
does not have a primary key or a unique index with at least one NOT NULL column,
or when you want to use columns other than the primary key or unique index for
the key, you can designate a substitute key at the destination database. A substitute
key is a column or set of columns that Oracle can use to identify rows in the table
during apply.

You can specify the substitute primary key for a table using the SET_KEY_COLUMNS
procedure in the DBMS_APPLY_ADM package. Unlike true primary keys, the
substitute key columns may contain nulls. Also, the substitute key columns take
precedence over any existing primary key or unique indexes for the specified table
for all apply processes at the destination database.

See Also: "Supplemental Logging for Streams Replication" on
page 1-9

Apply and Streams Replication

Understanding Streams Replication 1-19

If you specify a substitute key for a table in a destination database, and these
columns are not a primary key for the same table at the source database, then you
must create an unconditional supplemental log group containing the substitute key
columns at the source database.

In the absence of substitute key columns, primary key constraints, and unique
indexes, an apply process uses all of the columns in the table as the key columns,
excluding LOB, LONG, and LONG RAW columns. In this case, you must create an
unconditional supplemental log group containing these columns at the source
database. Using substitute key columns is preferable when there is no primary key
constraint for a table because fewer columns are needed in the row LCR.

Note:

� Oracle Corporation recommends that each column you specify
as a substitute key column be a NOT NULL column. You should
also create a single index that includes all of the columns in a
substitute key. Following these guidelines improves
performance for changes because the database can locate the
relevant row more efficiently.

� You should not permit applications to update the primary key
or substitute key columns of a table. This ensures that the
database can identify rows and preserve the integrity of the
data.

� LOB, LONG, LONG RAW, and user-defined type columns cannot
be specified as substitute key columns.

See Also:

� The DBMS_APPLY_ADM.SET_KEY_COLUMNS procedure in the
PL/SQL Packages and Types Reference

� "Supplemental Logging for Streams Replication" on page 1-9

Apply and Streams Replication

1-20 Oracle Streams Replication Administrator’s Guide

Apply Process Behavior for Column Discrepancies
A column discrepancy is any difference in the columns in a table at a source
database and the columns in the same table at a destination database. If there are
column discrepancies in your Streams environment, then use rule-based
transformations or DML handlers to make the columns in row LCRs being applied
by an apply process match the columns in the relevant tables at a destination
database. The following sections describe apply process behavior for common
column discrepancies.

Missing Columns at the Destination Database If the table at the destination database is
missing one or more columns that are in the table at the source database, then an
apply process raises an error and moves the transaction that caused the error into
the error queue. You can avoid such an error by creating a rule-based
transformation or DML handler that eliminates the missing columns from the LCRs
before they are applied. Specifically, the transformation or handler can remove the
extra columns using the DELETE_COLUMN member procedure on the row LCR.

Extra Columns at the Destination Database If the table at the destination database has
more columns than the table at the source database, then apply process behavior
depends on whether the extra columns are required for dependency computations.
If the extra columns are not used for dependency computations, then an apply
process applies changes to the destination table. In this case, if column defaults exist
for the extra columns at the destination database, then these defaults are used for
these columns for all inserts. Otherwise, these inserted columns are NULL.

If, however, the extra columns are used for dependency computations, then an
apply process places the transactions that include these changes in the error queue.
The following types of columns are required for dependency computations:

� For all changes, all key columns

� For INSERT and DELETE statements, all columns involved with constraints

� For UPDATE statements, if a constraint column is changed, such as a unique key
constraint column or a foreign key constraint column, then all columns
involved in the constraint

See Also:

� Oracle Streams Concepts and Administration for more information
about apply process handlers and rule-based transformations

� PL/SQL Packages and Types Reference for more information
about LCRs

Apply and Streams Replication

Understanding Streams Replication 1-21

Column Datatype Mismatch If the datatype for a column in a table at the destination
database does not match the datatype for the same column at the source database,
then an apply process places transactions containing the changes to the mismatched
column into the error queue. To avoid such an error, you can create a rule-based
transformation or DML handler that converts the datatype.

Index-Organized Tables and an Apply Process
An apply process can apply changes made to an index-organized table only if the
index-organized table meets the following conditions:

� The index-organized table does not require an OVERFLOW clause.

� The index-organized table does not contain any columns of the following
datatypes: LONG, LONG RAW, CLOB, NCLOB, BLOB, BFILE, ROWID, UROWID, and
user-defined types (including object types, REFs, varrays, and nested tables).

� If the index-organized table is partitioned, then it does not have row movement
enabled.

If an index-organized table does not satisfy these requirements, then an apply
process raises an error if it tries to apply LCRs that contain changes to it.

Conflict Resolution and an Apply Process
Conflicts are possible in a Streams configuration where data is shared between
multiple databases. A conflict can occur if DML changes are allowed to a table for
which changes are captured and to a table where these changes are applied.

For example, a transaction at the source database may update a row at nearly the
same time as a different transaction that updates the same row at a destination
database. In this case, if data consistency between the two databases is important,
then when the change is propagated to the destination database, an apply process
must be instructed either to keep the change at the destination database or replace it
with the change from the source database. When data conflicts occur, you need a
mechanism to ensure that the conflict is resolved in accordance with your business
rules.

Streams automatically detects conflicts and, for update conflicts, tries to use an
update conflict handler to resolve them if one is configured. Streams offers a variety
of prebuilt handlers that enable you to define a conflict resolution system for your
database that resolves conflicts in accordance with your business rules. If you have

See Also: Oracle Streams Concepts and Administration for
information about the datatypes supported by an apply process

Apply and Streams Replication

1-22 Oracle Streams Replication Administrator’s Guide

a unique situation that a prebuilt conflict resolution handler cannot resolve, then
you can build and use your own custom conflict resolution handlers in an error
handler or DML handler. Conflict detection may be disabled for nonkey columns.

Handlers and Row LCR Processing
Any of the following handlers may process a row LCR:

� DML handler

� Error handler

� Update conflict handler

The following sections describe the possible scenarios involving these handlers:

� No Relevant Handlers

� Relevant Update Conflict Handler

� DML Handler But No Relevant Update Conflict Handler

� DML Handler And a Relevant Update Conflict Handler

� Error Handler But No Relevant Update Conflict Handler

� Error Handler And a Relevant Update Conflict Handler

You cannot have a DML handler and an error handler simultaneously for the same
operation on the same table. Therefore, there is no scenario in which they could
both be invoked.

No Relevant Handlers If there are no relevant handlers for a row LCR, then an apply
process tries to apply the change specified in the row LCR directly. If the apply
process can apply the row LCR, then the change is made to the row in the table. If
there is a conflict or an error during apply, then the transaction containing the row
LCR is rolled back, and all of the LCRs in the transaction that should be applied
according to the apply process rule sets are moved to the error queue.

Relevant Update Conflict Handler Consider a case where there is a relevant update
conflict handler configured, but no other relevant handlers are configured. An
apply process tries to apply the change specified in a row LCR directly. If the apply
process can apply the row LCR, then the change is made to the row in the table.

See Also: Chapter 3, "Streams Conflict Resolution"

Apply and Streams Replication

Understanding Streams Replication 1-23

If there is an error during apply that is caused by a condition other than an update
conflict, including a uniqueness conflict or a delete conflict, then the transaction
containing the row LCR is rolled back, and all of the LCRs in the transaction that
should be applied according to the apply process rule sets are moved to the error
queue.

If there is an update conflict during apply, then the relevant update conflict handler
is invoked. If the update conflict handler resolves the conflict successfully, then the
apply process either applies the LCR or discards the LCR, depending on the
resolution of the update conflict, and the apply process continues applying the
other LCRs in the transaction that should be applied according to the apply process
rule sets. If the update conflict handler cannot resolve the conflict, then the
transaction containing the row LCR is rolled back, and all of the LCRs in the
transaction that should be applied according to the apply process rule sets are
moved to the error queue.

DML Handler But No Relevant Update Conflict Handler Consider a case where an apply
process passes a row LCR to a DML handler, and there is no relevant update
conflict handler configured.

The DML handler processes the row LCR. The designer of the DML handler has
complete control over this processing. Some DML handlers may perform SQL
operations or run the EXECUTE member procedure of the row LCR. If the DML
handler runs the EXECUTE member procedure of the row LCR, then the apply
process tries to apply the row LCR. This row LCR may have been modified by the
DML handler.

If any SQL operation performed by the DML handler fails, or if an attempt to run
the EXECUTE member procedure fails, then the DML handler can try to handle the
exception. If the DML handler does not raise an exception, then the apply process
assumes the DML handler has performed the appropriate action with the row LCR,
and the apply process continues applying the other LCRs in the transaction that
should be applied according to the apply process rule sets.

If the DML handler cannot handle the exception, then the DML handler should
raise an exception. In this case, the transaction containing the row LCR is rolled
back, and all of the LCRs in the transaction that should be applied according to the
apply process rule sets are moved to the error queue.

Apply and Streams Replication

1-24 Oracle Streams Replication Administrator’s Guide

DML Handler And a Relevant Update Conflict Handler Consider a case where an apply
process passes a row LCR to a DML handler and there is a relevant update conflict
handler configured.

The DML handler processes the row LCR. The designer of the DML handler has
complete control over this processing. Some DML handlers may perform SQL
operations or run the EXECUTE member procedure of the row LCR. If the DML
handler runs the EXECUTE member procedure of the row LCR, then the apply
process tries to apply the row LCR. This row LCR may have been modified by the
DML handler.

If any SQL operation performed by the DML handler fails, or if an attempt to run
the EXECUTE member procedure fails for any reason other than an update conflict,
then the behavior is the same as that described in "DML Handler But No Relevant
Update Conflict Handler" on page 1-23. Note that uniqueness conflicts and delete
conflicts are not update conflicts.

If an attempt to run the EXECUTE member procedure fails because of an update
conflict, then the behavior depends on the setting of the conflict_resolution
parameter in the EXECUTE member procedure:

The conflict_resolution Parameter Is Set To true
If the conflict_resolution parameter is set to true, then the relevant update
conflict handler is invoked. If the update conflict handler resolves the conflict
successfully, and all other operations performed by the DML handler succeed, then
the DML handler finishes without raising an exception, and the apply process
continues applying the other LCRs in the transaction that should be applied
according to the apply process rule sets.

If the update conflict handler cannot resolve the conflict, then the DML handler can
try to handle the exception. If the DML handler does not raise an exception, then
the apply process assumes the DML handler has performed the appropriate action
with the row LCR, and the apply process continues applying the other LCRs in the
transaction that should be applied according to the apply process rule sets. If the
DML handler cannot handle the exception, then the DML handler should raise an
exception. In this case, the transaction containing the row LCR is rolled back, and all
of the LCRs in the transaction that should be applied according to the apply process
rule sets are moved to the error queue.

The conflict_resolution Parameter Is Set To false
If the conflict_resolution parameter is set to false, then the relevant update
conflict handler is not invoked. In this case, the behavior is the same as that
described in "DML Handler But No Relevant Update Conflict Handler" on
page 1-23.

Apply and Streams Replication

Understanding Streams Replication 1-25

Error Handler But No Relevant Update Conflict Handler Consider a case where an apply
process encounters an error when it tries to apply a row LCR. This error may be
caused by a conflict or by some other condition. There is an error handler for the
table operation but no relevant update conflict handler configured.

The row LCR is passed to the error handler. The error handler processes the row
LCR. The designer of the error handler has complete control over this processing.
Some error handlers may perform SQL operations or run the EXECUTE member
procedure of the row LCR. If the error handler runs the EXECUTE member
procedure of the row LCR, then the apply process tries to apply the row LCR. This
row LCR may have been modified by the error handler.

If any SQL operation performed by the error handler fails, or if an attempt to run
the EXECUTE member procedure fails, then the error handler can try to handle the
exception. If the error handler does not raise an exception, then the apply process
assumes the error handler has performed the appropriate action with the row LCR,
and the apply process continues applying the other LCRs in the transaction that
should be applied according to the apply process rule sets.

If the error handler cannot handle the exception, then the error handler should raise
an exception. In this case, the transaction containing the row LCR is rolled back, and
all of the LCRs in the transaction that should be applied according to the apply
process rule sets are moved to the error queue.

Error Handler And a Relevant Update Conflict Handler Consider a case where an apply
process encounters an error when it tries to apply a row LCR. There is an error
handler for the table operation, and there is a relevant update conflict handler
configured.

The handler that is invoked to handle the error depends on the type of error it is:

� If the error is caused by a condition other than an update conflict, including a
uniqueness conflict or a delete conflict, then the error handler is invoked, and
the behavior is the same as that described in "Error Handler But No Relevant
Update Conflict Handler" on page 1-25.

� If the error is caused by an update conflict, then the update conflict handler is
invoked. If the update conflict handler resolves the conflict successfully, then
the apply process continues applying the other LCRs in the transaction that
should be applied according to the apply process rule sets. In this case, the error
handler is not invoked.

Apply and Streams Replication

1-26 Oracle Streams Replication Administrator’s Guide

If the update conflict handler cannot resolve the conflict, then the error handler
is invoked. If the error handler does not raise an exception, then the apply
process assumes the error handler has performed the appropriate action with
the row LCR, and the apply process continues applying the other LCRs in the
transaction that should be applied according to the apply process rule sets. If
the error handler cannot process the LCR, then the error handler should raise
an exception. In this case, the transaction containing the row LCR is rolled back,
and all of the LCRs in the transaction that should be applied according to the
apply process rule sets are moved to the error queue.

Considerations for Applying DDL Changes
The following sections discuss considerations for applying DDL changes to tables:

� Types of DDL Changes Ignored by an Apply Process

� Database Structures in a Streams Environment

� Current Schema User Must Exist at Destination Database

� System-Generated Names

� CREATE TABLE AS SELECT Statements

Types of DDL Changes Ignored by an Apply Process
The following types of DDL changes are not supported by an apply process. These
types of DDL changes are not applied:

� ALTER MATERIALIZED VIEW

� ALTER MATERIALIZED VIEW LOG

� CREATE DATABASE LINK

� CREATE SCHEMA AUTHORIZATION

See Also:

� PL/SQL Packages and Types Reference for more information about
the EXECUTE member procedure for row LCRs

� Oracle Streams Concepts and Administration for more information
about managing apply handlers and for more information
about how rules are used in Streams

� "Managing Streams Conflict Detection and Resolution" on
page 7-23

Apply and Streams Replication

Understanding Streams Replication 1-27

� CREATE MATERIALIZED VIEW

� CREATE MATERIALIZED VIEW LOG

� DROP DATABASE LINK

� DROP MATERIALIZED VIEW

� DROP MATERIALIZED VIEW LOG

� RENAME

If an apply process receives a DDL LCR that specifies an operation that cannot be
applied, then the apply process ignores the DDL LCR and records the following
message in the apply process trace file, followed by the DDL text that was ignored:

Apply process ignored the following DDL:

An apply process applies all other types of DDL changes if the DDL LCRs
containing the changes should be applied according to the apply process rule sets.
Also, an apply process can apply valid, user-enqueued DDL LCRs.

Database Structures in a Streams Environment
For captured DDL changes to be applied properly at a destination database, either
the destination database must have the same database structures as the source
database, or the non-identical database structural information must not be specified
in the DDL statement. Database structures include data files, tablespaces, rollback
segments, and other physical and logical structures that support database objects.

Note:

� An apply process applies ALTER object_type object_name
RENAME changes, such as ALTER TABLE jobs RENAME.
Therefore, if you want DDL changes that rename objects to be
applied, then use ALTER object_type object_name
RENAME statements instead of RENAME statements.

� The name "materialized view" is synonymous with the name
"snapshot". Snapshot equivalents of the statements on
materialized views are ignored by an apply process.

See Also: Oracle Streams Concepts and Administration for more
information about how rules are used in Streams

Apply and Streams Replication

1-28 Oracle Streams Replication Administrator’s Guide

For example, for captured DDL changes to tables to be applied properly at a
destination database, the following conditions must be met:

� The same storage parameters must be specified in the CREATE TABLE statement
at the source database and destination database.

� If a DDL statement refers to specific tablespaces or rollback segments, then the
tablespaces or rollback segments must have the same names and compatible
specifications at the source database and destination database.

However, if the tablespaces and rollback segments are not specified in the DDL
statement, then the default tablespaces and rollback segments are used. In this
case, the tablespaces and rollback segments can differ at the source database
and destination database.

� The same partitioning specifications must be used at the source database and
destination database.

Current Schema User Must Exist at Destination Database
For a DDL LCR to be applied at a destination database successfully, the user
specified as the current_schema in the DDL LCR must exist at the destination
database. The current schema is the schema that is used if no schema is specified for
an object in the DDL text.

System-Generated Names
If you plan to capture DDL changes at a source database and apply these DDL
changes at a destination database, then avoid using system-generated names. If a
DDL statement results in a system-generated name for an object, then the name of
the object typically will be different at the source database and each destination
database applying the DDL change from this source database. Different names for
objects can result in apply errors for future DDL changes.

For example, suppose the following DDL statement is run at a source database:

CREATE TABLE sys_gen_name (n1 NUMBER NOT NULL);

See Also:

� Oracle Database Concepts for more information about database
structures

� PL/SQL Packages and Types Reference for more information about
the current_schema attribute in DDL LCRs

Apply and Streams Replication

Understanding Streams Replication 1-29

This statement results in a NOT NULL constraint with a system-generated name. For
example, the NOT NULL constraint may be named sys_001500. When this change
is applied at a destination database, the system-generated name for this constraint
may be sys_c1000.

Suppose the following DDL statement is run at the source database:

ALTER TABLE sys_gen_name DROP CONSTRAINT sys_001500;

This DDL statement succeeds at the source database, but it fails at the destination
database and results in an apply error.

To avoid such an error, explicitly name all objects resulting from DDL statements.
For example, to name a NOT NULL constraint explicitly, run the following DDL
statement:

CREATE TABLE sys_gen_name (n1 NUMBER CONSTRAINT sys_gen_name_nn NOT NULL);

CREATE TABLE AS SELECT Statements
When applying a change resulting from a CREATE TABLE AS SELECT statement, an
apply process performs two steps:

1. The CREATE TABLE AS SELECT statement is executed at the destination
database, but it creates only the structure of the table. It does not insert any
rows into the table. If the CREATE TABLE AS SELECT statement fails, then an
apply process error results. Otherwise, the statement auto commits, and the
apply process performs Step 2.

2. The apply process inserts the rows that were inserted at the source database as a
result of the CREATE TABLE AS SELECT statement into the corresponding table
at the destination database. It is possible that a capture process, a propagation,
or an apply process will discard all of the row LCRs with these inserts based on
their rule sets. In this case, the table remains empty at the destination database.

See Also: Oracle Streams Concepts and Administration for more
information about how rules are used in Streams

Apply and Streams Replication

1-30 Oracle Streams Replication Administrator’s Guide

Instantiation SCN and Ignore SCN for an Apply Process
In a Streams environment that shares information within a single database or
between multiple databases, a source database is the database where changes are
generated in the redo log. Suppose an environment has the following
characteristics:

� A capture process captures changes to tables at the source database and stages
the changes as LCRs in a queue.

� An apply process applies these LCRs, either at the same database or at a
destination database to which the LCRs have been propagated.

In such an environment, for the each table, only changes that committed after a
specific system change number (SCN) at the source database are applied. An
instantiation SCN specifies this value for each table.

An instantiation SCN may be set during instantiation, or an instantiation SCN may
be set using a procedure in the DBMS_APPLY_ADM package. If the tables do not exist
at the destination database before the Streams replication environment is
configured, then these table are physically created (instantiated) using copies from
the source database, and the instantiation SCN is set for each table during
instantiation. If the tables already exist at the destination database before the
Streams replication environment is configured, then these table are not instantiated
using copies from the source database. Instead, the instantiation SCN must be set
manually for each table using one of the following procedures in the
DBMS_APPLY_ADM package: SET_TABLE_INSTANTIATION_SCN,
SET_SCHEMA_INSTANATIATION_SCN, or SET_GLOBAL_INSTANTIATION_SCN.

The instantiation SCN for a database object controls which LCRs that contain
changes to the database object are ignored by an apply process and which LCRs are
applied by an apply process. If the commit SCN of an LCR for a database object
from a source database is less than or equal to the instantiation SCN for that
database object at a destination database, then the apply process at the destination
database discards the LCR. Otherwise, the apply process applies the LCR.

Also, if there are multiple source databases for a shared database object at a
destination database, then an instantiation SCN must be set for each source
database, and the instantiation SCN may be different for each source database. You
can set instantiation SCNs by using export/import or transportable tablespaces.
You also can set an instantiation SCN by using a procedure in the
DBMS_APPLY_ADM package.

Apply and Streams Replication

Understanding Streams Replication 1-31

Streams also records the ignore SCN for each database object. The ignore SCN is
the SCN below which changes to the database object cannot be applied. The
instantiation SCN for an object cannot be set lower than the ignore SCN for the
object. This value corresponds to the SCN value at the source database at the time
when the object was prepared for instantiation. An ignore SCN is set for a database
object only when the database object is instantiated using Export/Import.

You can view the instantiation SCN and ignore SCN for database objects by
querying the DBA_APPLY_INSTANTIATED_OBJECTS data dictionary view.

The Oldest SCN for an Apply Process
If an apply process is running, then the oldest SCN is the first SCN of the
transactions currently being dequeued and applied. For a stopped apply process,
the oldest SCN is the first SCN of the transactions that were being applied when the
apply process was stopped.

The following are two common scenarios in which the oldest SCN is important:

� You must recover the database in which the apply process is running to a
certain point in time.

� You stop using an existing capture process that captures changes for the apply
process and use a different capture process to capture changes for the apply
process.

In both cases, you should determine the oldest SCN for the apply process by
querying the DBA_APPLY_PROGRESS data dictionary view. The
OLDEST_MESSAGE_NUMBER column in this view contains the oldest SCN. Next, set
the start SCN for the capture process that is capturing changes for the apply process
to the same value as the oldest SCN value. If the capture process is capturing
changes for other apply processes, then these other apply processes may receive
duplicate LCRs when you reset the start SCN for the capture process. In this case,
the other apply processes automatically discard the duplicate LCRs.

See Also:

� "Setting Instantiation SCNs at a Destination Database" on
page 8-22

� "Instantiating Objects in a Streams Replication Environment"
on page 8-4

� "Preparing Database Objects for Instantiation at a Source
Database" on page 8-2

Apply and Streams Replication

1-32 Oracle Streams Replication Administrator’s Guide

Low-Watermark and High-Watermark for an Apply Process
The low-watermark for an apply process is the system change number (SCN) up to
which all events have been applied. That is, events that were committed at an SCN
less than or equal to the low-watermark number have definitely been applied, but
some events that were committed with a higher SCN also may have been applied.
The low-watermark SCN for an apply process is equivalent to the applied SCN for
a capture process.

The high-watermark for an apply process is the SCN beyond which no events have
been applied. That is, no events that were committed with an SCN greater than the
high-watermark have been applied.

You can view the low-watermark and high-watermark for one or more apply
processes by querying the V$STREAMS_APPLY_COORDINATOR and
ALL_APPLY_PROGRESS data dictionary views.

Trigger Firing Property
You can control a DML or DDL trigger's firing property using the
SET_TRIGGER_FIRING_PROPERTY procedure in the DBMS_DDL package. This
procedure lets you specify whether a trigger's firing property is set to fire once.

If a trigger's firing property is set to fire once, then it does not fire in the following
cases:

� When a relevant change is made by an apply process

� When a relevant change results from the execution of one or more apply errors
using the EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure in the
DBMS_APPLY_ADM package

If a trigger is not set to fire once, then it fires in both of these cases.

By default, DML and DDL triggers are set to fire once. You can check a trigger's
firing property by using the IS_TRIGGER_FIRE_ONCE function in the DBMS_DDL
package.

See Also:

� Oracle Streams Concepts and Administration for more information
about SCN values relating to a capture process

� "Performing Point-in-Time Recovery on a Destination
Database" on page 7-44

Apply and Streams Replication

Understanding Streams Replication 1-33

For example, in the hr schema, the update_job_history trigger adds a row to
the job_history table when data is updated in the job_id or department_id
column in the employees table. Suppose, in a Streams environment, the following
configuration exists:

� A capture process captures changes to both of these tables at the dbs1.net
database.

� A propagation propagates these changes to the dbs2.net database.

� An apply process applies these changes at the dbs2.net database.

� The update_job_history trigger exists in the hr schema in both databases.

If the update_job_history trigger is not set to fire once at dbs2.net in this
scenario, then these actions result:

1. The job_id column is updated for an employee in the employees table at
dbs1.net.

2. The update_job_history trigger fires at dbs1.net and adds a row to the
job_history table that records the change.

3. The capture process at dbs1.net captures the changes to both the employees
table and the job_history table.

4. A propagation propagates these changes to the dbs2.net database.

5. An apply process at the dbs2.net database applies both changes.

6. The update_job_history trigger fires at dbs2.net when the apply process
updates the employees table.

In this case, the change to the employees table is recorded twice at the dbs2.net
database: when the apply process applies the change to the job_history table
and when the update_job_history trigger fires to record the change made to
the employees table by the apply process.

As you can see, the database administrator may not want the
update_job_history trigger to fire at the dbs2.net database when a change is
made by the apply process. Similarly, a database administrator may not want a
trigger to fire because of the execution of an apply error transaction. If the
update_job_history trigger's firing property is set to fire once, then it does not
fire at dbs2.net when the apply process applies a change to the employees table,
and it does not fire when an executed error transaction updates the employees
table.

Apply and Streams Replication

1-34 Oracle Streams Replication Administrator’s Guide

Also, if you use the ON SCHEMA clause to create a schema trigger, then the schema
trigger fires only if the schema performs a relevant change. Therefore, when an
apply process is applying changes, a schema trigger that is set to fire always fires
only if the apply user is the same as the schema specified in the schema trigger. If
the schema trigger is set to fire once, then it never fires when an apply process
applies changes, regardless of whether the apply user is the same as the schema
specified in the schema trigger.

For example, if you specify a schema trigger that always fires on the hr schema at a
source database and destination database, but the apply user at a destination
database is strmadmin, then the trigger fires when the hr user performs a relevant
change on the source database, but the trigger does not fire when this change is
applied at the destination database. However, if you specify a schema trigger that
always fires on the strmadmin schema at the destination database, then this trigger
fires whenever a relevant change is made by the apply process, regardless of any
trigger specifications at the source database.

Note: Only DML and DDL triggers can be set to fire once. All
other types of triggers always fire.

See Also: PL/SQL Packages and Types Reference for more
information about setting a trigger's firing property with the
SET_TRIGGER_FIRING_PROPERTY procedure

Instantiation and Streams Replication 2-1

2
Instantiation and Streams Replication

This chapter contains conceptual information about instantiation and Streams
replication.

This chapter contains these topics:

� Overview of Instantiation and Streams Replication

� Capture Process Rules and Preparation for Instantiation

� Oracle Data Pump and Streams Instantiation

� Original Export/Import and Streams Instantiation

See Also: Chapter 8, "Performing Instantiations"

Overview of Instantiation and Streams Replication

2-2 Oracle Streams Replication Administrator’s Guide

Overview of Instantiation and Streams Replication
In a Streams environment that shares a database object within a single database or
between multiple databases, a source database is the database where changes to the
object are generated in the redo log, and a destination database is the database
where these changes are dequeued by an apply process. If a capture process
captures, or will capture, such changes, and the changes will be applied locally or
propagated to other databases and applied at destination databases, then you must
instantiate these source database objects before you can replicate changes to the
objects. If a database where changes to the source database objects will be applied is
a different database than the source database, then the destination database must
have a copy of these database objects.

In Streams, the following general steps instantiate a database object:

1. Prepare the object for instantiation at the source database.

2. If a copy of the object does not exist at the destination database, then create an
object physically at the destination database based on an object at the source
database. You can use export/import, transportable tablespaces, or RMAN to
copy database objects for instantiation. If the database object already exists at
the destination database, then this step is not necessary.

3. Set the instantiation SCN for the database object at the destination database. An
instantiation SCN instructs an apply process at the destination database to
apply only changes that committed at the source database after the
specified SCN.

In some cases, Step 1 and Step 3 are completed automatically. For example, when
you add rules for an object to the positive rule set for a capture process by running
a procedure in the DBMS_STREAMS_ADM package, the object is prepared for
instantiation automatically. Also, when you use export/import or transportable
tablespaces to copy database objects from a source database to a destination
database, instantiation SCNs may be set for these objects automatically.

Note: You can use either Data Pump export/import or original
export/import for Streams instantiations. General references to
export/import in this document refer to both Data Pump and
original export/import. This document distinguishes between Data
Pump and original export/import when necessary.

Overview of Instantiation and Streams Replication

Instantiation and Streams Replication 2-3

If the database object being instantiated is a table, then the objects at the source and
destination database do not need to be an exact match. However, if some or all of
the table data is replicated between the two databases, then the data that is
replicated should be consistent when the table is instantiated. Whenever you plan
to replicate changes to a database object, you must always prepare the object for
instantiation at the source database and set the instantiation SCN for the object at
the destination database. By preparing an object for instantiation, you are setting
the lowest SCN for which changes to the object may need to be applied at
destination databases. This SCN is called the ignore SCN. You should prepare a
database object for instantiation after a capture process has been configured to
capture changes to the object.

When you instantiate tables using export/import, transportable tablespaces, or
RMAN, any table supplemental log group specifications are retained for the
instantiated tables. That is, after instantiation, log group specifications for imported
tables at the import database are the same as the log group specifications for these
tables at the export database. If you do not want to retain supplemental log group
specifications for tables at the import database, then you can drop specific
supplemental log groups after import.

Database supplemental logging specifications are not retained during
export/import, even if you perform a full database export/import. However,
RMAN retains database supplemental logging specifications at the instantiated
database.

The following sections provide more information about instantiation and Streams
replication:

� Capture Process Rules and Preparation for Instantiation

� Oracle Data Pump and Streams Instantiation

� Original Export/Import and Streams Instantiation

Attention:

� During an export for a Streams instantiation, make sure no
DDL changes are made to objects being exported.

� When you export a database or schema that contains rules with
non-NULL action contexts, the database or the default
tablespace of the schema that owns the rules must be writeable.
If the database or tablespace is read-only, then export errors
result.

Capture Process Rules and Preparation for Instantiation

2-4 Oracle Streams Replication Administrator’s Guide

Capture Process Rules and Preparation for Instantiation
The following procedures in the DBMS_CAPTURE_ADM package prepare database
objects for instantiation:

� PREPARE_TABLE_INSTANTIATION prepares a single table for instantiation.

� PREPARE_SCHEMA_INSTANTIATION prepares for instantiation all of the
database objects in a schema and all database objects added to the schema in the
future.

� PREPARE_GLOBAL_INSTANTIATION prepares for instantiation all of the
database objects in a database and all database objects added to the database in
the future.

These procedures record the lowest SCN of each object for instantiation. SCNs
subsequent to the lowest SCN for an object can be used for instantiating the object.
These procedures also populate the Streams data dictionary for the relevant capture
processes, propagations, and apply processes that capture, propagate, or apply
changes made to the table, schema, or database being prepared for instantiation.

DBMS_STREAMS_ADM Package Procedures Automatically Prepare Objects
When you add rules to the positive rule set for a capture process by running a
procedure in the DBMS_STREAMS_ADM package, a procedure in the
DBMS_CAPTURE_ADM package is run automatically on the database objects whose
changes will be captured by the capture process. The following table lists which
procedure is run in the DBMS_CAPTURE_ADM package when you run a procedure in
the DBMS_STREAMS_ADM package.

See Also:

� "Instantiating Objects in a Streams Replication Environment"
on page 8-4

� "The Oldest SCN for an Apply Process" on page 1-31

� "Managing Supplemental Logging in a Streams Replication
Environment" on page 7-4 for information about adding and
dropping supplemental log groups

Capture Process Rules and Preparation for Instantiation

Instantiation and Streams Replication 2-5

More than one call to prepare for instantiation is allowed. When capture process
rules are created by the DBMS_RULE_ADM package instead of the
DBMS_STREAMS_ADM package, you must run the appropriate procedure manually
to prepare each table, schema, or database whose changes will be captured for
instantiation, if you plan to apply changes that result from these capture process
rules with an apply process.

If you are using downstream capture, and the downstream capture process uses a
database link from the downstream database to the source database, then the
objects are prepared for instantiation automatically. However, if the downstream
capture process does not use a database link from the downstream database to the
source database, then you must prepare the objects for instantiation manually.

When Preparing for Instantiation Is Required
Whenever you add, or modify the condition of, a capture process, propagation, or
apply process rule for an object that is in a positive rule set, you must run the
appropriate procedure to prepare the object for instantiation at the source database
if any of the following conditions are met:

� One or more rules are added to the positive rule set for a capture process that
instruct the capture process to capture changes made to the object.

� One or more conditions of rules in the positive rule set for a capture process are
modified to instruct the capture process to capture changes made to the object.

� One or more rules are added to the positive rule set for a propagation that
instruct the propagation to propagate changes made to the object.

� One or more conditions of rules in the positive rule set for a propagation are
modified to instruct the propagation to propagate changes made to the object.

When you run this procedure in the
DBMS_STREAMS_ADM package

This procedure in the DBMS_CAPTURE_ADM
package is run automatically

ADD_TABLE_RULES

ADD_SUBSET_RULES

PREPARE_TABLE_INSTANTIATION

ADD_SCHEMA_RULES PREPARE_SCHEMA_INSTANTIATION

ADD_GLOBAL_RULES PREPARE_GLOBAL_INSTANTIATION

Capture Process Rules and Preparation for Instantiation

2-6 Oracle Streams Replication Administrator’s Guide

� One or more rules are added to the positive rule set for an apply process that
instruct the apply process to apply changes made to the object at the source
database.

� One or more conditions of rules in the positive rule set for an apply process are
modified to instruct the apply process to apply changes made to the object at
the source database.

Whenever you remove, or modify the condition of, a capture process, propagation,
or apply process rule for an object that is in a negative rule set, you must run the
appropriate procedure to prepare the object for instantiation at the source database
if any of the following conditions are met:

� One or more rules are removed from the negative rule set for a capture process
to instruct the capture process to capture changes made to the object.

� One or more conditions of rules in the negative rule set for a capture process are
modified to instruct the capture process to capture changes made to the object.

� One or more rules are removed from the negative rule set for a propagation to
instruct the propagation to propagate changes made to the object.

� One or more conditions of rules in the negative rule set for a propagation are
modified to instruct the propagation to propagate changes made to the object.

� One or more rules are removed from the negative rule set for an apply process
to instruct the apply process to apply changes made to the object at the source
database.

� One or more conditions of rules in the negative rule set for an apply process are
modified to instruct the apply process to apply changes made to the object at
the source database.

When any of these conditions are met for changes to a positive or negative rule set,
you must prepare the relevant database objects for instantiation at the source
database to populate any relevant Streams data dictionary that requires information
about the source object, even if the object already exists at a remote database where
the rules were added or changed.

The relevant Streams data dictionaries are populated asynchronously for both the
local dictionary and all remote dictionaries. The procedure that prepares for
instantiation adds information to the redo log at the source database. The local
Streams data dictionary is populated with the information about the object when a
capture process captures these redo entries, and any remote Streams data
dictionaries are populated when the information is propagated to them.

Oracle Data Pump and Streams Instantiation

Instantiation and Streams Replication 2-7

Oracle Data Pump and Streams Instantiation
The following sections contain information about Streams instantiations that use
Oracle Data Pump.

Data Pump Export and Object Consistency
During export, Oracle Data Pump automatically uses the Oracle Flashback feature
to ensure that the exported data and the exported procedural actions for each object
are consistent to a single point in time. When you perform an instantiation in a
Streams environment, some degree of consistency is required. Using the Data Pump
Export utility is sufficient to ensure this consistency for Streams instantiations.

If you are using an export dump file for other purposes in addition to a Streams
instantiation, and these other purposes have more stringent consistency
requirements than those provided by Data Pump's default export, then you can use
the Data Pump Export utility parameters FLASHBACK_SCN or FLASHBACK_TIME
for Streams instantiations. For example, if an export includes objects with foreign
key constraints, then more stringent consistency may be required.

See Also:

� "Capture Process Overview" on page 1-6 for more information
about local and downstream capture

� "Preparing Database Objects for Instantiation at a Source
Database" on page 8-2

See Also:

� "Instantiating Objects in a Streams Environment Using Data
Pump Export/Import" on page 8-4

� Oracle Streams Concepts and Administration for information
about performing a full database export/import on a database
using Streams

� Oracle Database Utilities for more information about Data Pump

Oracle Data Pump and Streams Instantiation

2-8 Oracle Streams Replication Administrator’s Guide

Oracle Data Pump Import and Streams Instantiation
The following sections provide more information about Oracle Data Pump import
and Streams instantiation.

Instantiation SCNs and Data Pump Imports
During Data Pump import, an instantiation SCN is set at the import database for
each database object that was prepared for instantiation at the export database
before the Data Pump export was performed. The instantiation SCN settings are
based on metadata obtained during Data Pump export.

Instantiation SCNs and Streams Tags Resulting From Data Pump Imports
A Data Pump import session may set its Streams tag to the hexadecimal equivalent
of '00' to avoid cycling the changes made by the import. Redo entries resulting
from such an import have this tag value.

Whether the import session tag is set to the hexadecimal equivalent of '00'
depends on the export that is being imported. Specifically, the import session tag is
set to the hexadecimal equivalent of '00' in either of the following cases:

� The Data Pump export was in FULL or SCHEMA mode.

� The Data Pump export was in TABLE or TABLESPACE mode and at least one
table included in the export was prepared for instantiation at the export
database before the export was performed.

If neither one of these conditions is true for a Data Pump export that is being
imported, then the import session tag is NULL.

See Also: "Instantiation SCN and Ignore SCN for an Apply
Process" on page 1-30

Oracle Data Pump and Streams Instantiation

Instantiation and Streams Replication 2-9

The STREAMS_CONFIGURATION Data Pump Import Utility Parameter
The STREAMS_CONFIGURATION Data Pump Import utility parameter specifies
whether to import any general Streams metadata that may be present in the export
dump file. This import parameter is relevant only if you are performing a full
database import. By default the STREAMS_CONFIGURATION Import utility
parameter is set to y. Typically, specify y if an import is part of a backup or restore
operation.

The following objects are imported regardless of the STREAMS_CONFIGURATION
setting if the information is present in the export dump file:

� SYS.AnyData queues and their queue tables

� Queue subscribers

� Advanced Queuing agents

� Job queue jobs related to Streams propagations

� Rules, including their positive and negative rule sets and evaluation contexts.
All rules are imported, including Streams rules and non-Streams rules. Streams
rules are rules generated by the system when certain procedures in the
DBMS_STREAMS_ADM package are run, while non-Streams rules are rules
created using the DBMS_RULE_ADM package.

Note:

� If you perform a network import using Data Pump, then an
implicit export is performed in the same mode as the import.
For example, if the network import is in schema mode, then the
implicit export is in schema mode also.

� The import session tag is not set if the Data Pump import is
performed in TRANSPORTABLE TABLESPACE mode. An import
performed in this mode does not generate any redo
information for the imported data. Therefore, setting the
session tag is not required.

See Also: Chapter 4, "Streams Tags"

Oracle Data Pump and Streams Instantiation

2-10 Oracle Streams Replication Administrator’s Guide

If the STREAMS_CONFIGURATION parameter is set to n, then information about
Streams rules is not imported into the following data dictionary views:
ALL_STREAMS_RULES, ALL_STREAMS_GLOBAL_RULES,
ALL_STREAMS_SCHEMA_RULES, ALL_STREAMS_TABLE_RULES,
DBA_STREAMS_RULES, DBA_STREAMS_GLOBAL_RULES,
DBA_STREAMS_SCHEMA_RULES, and DBA_STREAMS_TABLE_RULES.
However, regardless of the STREAMS_CONFIGURATION parameter setting,
information about these rules is imported into the ALL_RULES,
ALL_RULE_SETS, ALL_RULE_SET_RULES, DBA_RULES, DBA_RULE_SETS,
DBA_RULE_SET_RULES, USER_RULES, USER_RULE_SETS, and
USER_RULE_SET_RULES data dictionary views.

When the STREAMS_CONFIGURATION Import utility parameter is set to y, the
import includes the following information, if the information is present in the
export dump file; when the STREAMS_CONFIGURATION Import utility parameter is
set to n, the import does not include the following information:

� Capture processes that capture local changes, including the following
information for each capture process:

� Name of the capture process

� State of the capture process

� Capture process parameter settings

� Queue owner and queue name of the queue used by the capture process

� Rule set owner and rule set name of each positive and negative rule set
used by the capture process

� Capture user for the capture process

� Extra attribute settings if a capture process is configured to include extra
attributes in LCRs

� The time that the status of the capture process last changed. This
information is recorded in the DBA_CAPTURE data dictionary view.

� If the capture process disabled or aborted, then the error number and
message of the error that was the cause. This information is recorded in the
DBA_CAPTURE data dictionary view.

� If any tables have been prepared for instantiation at the export database, then
these tables are prepared for instantiation at the import database.

� If any schemas have been prepared for instantiation at the export database, then
these schemas are prepared for instantiation at the import database.

Oracle Data Pump and Streams Instantiation

Instantiation and Streams Replication 2-11

� If the export database has been prepared for instantiation, then the import
database is prepared for instantiation.

� The state of each SYS.AnyData queue that is used by a Streams client, either
started or stopped. Streams clients include capture processes, propagations,
apply process, and messaging clients. SYS.AnyData queues themselves are
imported regardless of the STREAMS_CONFIGURATION Import utility
parameter setting.

� Propagations, including the following information for each propagation:

� Name of the propagation

� Queue owner and queue name of the source queue

� Queue owner and queue name of the destination queue

� Destination database link

� Rule set owner and rule set name of each positive and negative rule set
used by the propagation

� Apply processes, including the following information for each apply process:

� Name of the apply process

� State of the apply process

� Apply process parameter settings

� Queue owner and queue name of the queue used by the apply process

� Rule set owner and rule set name of each positive and negative rule set
used by the apply process

� Whether the apply process applies captured or user-enqueued events

� Apply user for the apply process

� Message handler used by the apply process, if one exists

� DDL handler used by the apply process, if one exists

� Precommit handler used by the apply process, if one exists

� Tag generated in the redo log for changes made by the apply process

� Apply database link, if one exists

� Source database for the apply process

Oracle Data Pump and Streams Instantiation

2-12 Oracle Streams Replication Administrator’s Guide

� The information about apply progress in the DBA_APPLY_PROGRESS data
dictionary view, including applied message number, oldest message
number (oldest SCN), apply time, and applied message create time

� Apply errors

� The time that the status of the apply process last changed. This information
is recorded in the DBA_APPLY data dictionary view.

� If the apply process disabled or aborted, then the error number and
message of the error that was the cause. This information is recorded in the
DBA_APPLY data dictionary view.

� DML handlers

� Error handlers

� Update conflict handlers

� Substitute key columns for apply tables

� Instantiation SCN for each apply object

� Ignore SCN for each apply object

� Messaging Clients, including the following information for each messaging
client:

� Name of the messaging client

� Queue owner and queue name of the queue used by the messaging client

� Rule set owner and rule set name of each positive and negative rule set
used by the messaging client

� Message notification settings

� Some data dictionary information about Streams rules. The rules themselves are
imported regardless of the setting for the STREAMS_CONFIGURATION
parameter.

� Data dictionary information about Streams administrators, messaging clients,
message rules, and extra attributes used in message rules.

Note: Downstream capture processes are not included in an
import regardless of the STREAMS_CONFIGURATION setting.

Original Export/Import and Streams Instantiation

Instantiation and Streams Replication 2-13

Original Export/Import and Streams Instantiation
This section describes parameters for the original Export and Import utilities that
are relevant to Streams.

The OBJECT_CONSISTENT Export Utility Parameter and Streams
The OBJECT_CONSISTENT Export utility parameter specifies whether or not the
Export utility repeatedly uses the SET TRANSACTION READ ONLY statement to
ensure that the exported data and the exported procedural actions for each object
are consistent to a single point in time. If OBJECT_CONSISTENT is set to y, then
each object is exported in its own read-only transaction, even if it is partitioned. In
contrast, if you use the CONSISTENT Export utility parameter, then there is only
one read-only transaction.

When you perform an instantiation in a Streams environment, some degree of
consistency is required for the database objects being instantiated. The
OBJECT_CONSISTENT Export utility parameter is sufficient to ensure this
consistency for Streams instantiations. If you are using an export dump file for
other purposes in addition to a Streams instantiation, and these other purposes
have more stringent consistency requirements than those provided by
OBJECT_CONSISTENT, then you can use Export utility parameters CONSISTENT,
FLASHBACK_SCN, or FLASHBACK_TIME for Streams instantiations. For example, if
an export includes objects with foreign key constraints, then more stringent
consistency may be required.

By default the OBJECT_CONSISTENT Export utility parameter is set to n. Specify y
when an export is performed as part of a Streams instantiation and no more
stringent Export utility parameter is needed.

See Also:

� "Instantiating Objects in a Streams Environment Using Original
Export/Import" on page 8-13

� Oracle Streams Concepts and Administration for information
about performing a full database export/import on a database
using Streams

� Oracle Database Utilities for information about performing
exports and imports using the original Export and Import
utilities

Original Export/Import and Streams Instantiation

2-14 Oracle Streams Replication Administrator’s Guide

Original Import Utility Parameters Relevant to Streams
The following parameters for the original Import utility are relevant to Streams.

The STREAMS_INSTANTIATION Import Utility Parameter and Streams
The STREAMS_INSTANTIATION Import utility parameter specifies whether to
import Streams instantiation metadata that may be present in the export dump file.
When this parameter is set to y, and the export dump file contains the metadata for
instantiation SCNs, an instantiation SCN is set at the import database for each
database object imported.

In addition, when this parameter is set to y, the import session sets its Streams tag
to the hexadecimal equivalent of '00' to avoid cycling the changes made by the
import. Redo entries resulting from the import have this tag value.

By default the STREAMS_INSTANTIATION Import utility parameter is set to n.
Specify y when an import is performed as part of a Streams instantiation.

The STREAMS_CONFIGURATION Import Utility Parameter and Streams
The STREAMS_CONFIGURATION Import utility parameter behaves the same for the
original Import utility and the Data Pump Import utility.

See Also:

� "Instantiation SCN and Ignore SCN for an Apply Process" on
page 1-30

� Chapter 4, "Streams Tags"

See Also: "The STREAMS_CONFIGURATION Data Pump
Import Utility Parameter" on page 2-9 for more information about
this parameter

Streams Conflict Resolution 3-1

3
Streams Conflict Resolution

Some Streams environments must use conflict handlers to resolve possible data
conflicts that can result from sharing data between multiple databases.

This chapter contains these topics:

� About DML Conflicts in a Streams Environment

� Conflict Types in a Streams Environment

� Conflicts and Transaction Ordering in a Streams Environment

� Conflict Detection in a Streams Environment

� Conflict Avoidance in a Streams Environment

� Conflict Resolution in a Streams Environment

See Also: "Managing Streams Conflict Detection and Resolution"
on page 7-23

About DML Conflicts in a Streams Environment

3-2 Oracle Streams Replication Administrator’s Guide

About DML Conflicts in a Streams Environment
Conflicts can occur in a Streams environment that permits concurrent data
manipulation language (DML) operations on the same data at multiple databases.
In a Streams environment, DML conflicts can occur only when an apply process is
applying an event that contains a row change resulting from a DML operation. This
type of event is called a row logical change record, or row LCR. An apply process
automatically detects conflicts caused by row LCRs.

For example, when two transactions originating at different databases update the
same row at nearly the same time, a conflict can occur. When you configure a
Streams environment, you must consider whether conflicts can occur. You can
configure conflict resolution to resolve conflicts automatically, if your system
design permits conflicts.

In general, you should try to design a Streams environment that avoids the
possibility of conflicts. Using the conflict avoidance techniques discussed later in
this chapter, most system designs can avoid conflicts in all or a large percentage of
the shared data. However, many applications require that some percentage of the
shared data be updatable at multiple databases at any time. If this is the case, then
you must address the possibility of conflicts.

Conflict Types in a Streams Environment
You may encounter these types of conflicts when you share data at multiple
databases:

� Update Conflicts in a Streams Environment

� Uniqueness Conflicts in a Streams Environment

� Delete Conflicts in a Streams Environment

� Foreign Key Conflicts in a Streams Environment

Note: An apply process does not detect DDL conflicts or conflicts
resulting from user-enqueued events. Make sure your environment
avoids these types of conflicts.

See Also: Oracle Streams Concepts and Administration for more
information about row LCRs

Conflict Types in a Streams Environment

Streams Conflict Resolution 3-3

Update Conflicts in a Streams Environment
An update conflict occurs when the apply process applies a row LCR containing an
update to a row that conflicts with another update to the same row. Update conflicts
can happen when two transactions originating from different databases update the
same row at nearly the same time.

Uniqueness Conflicts in a Streams Environment
A uniqueness conflict occurs when the apply process applies a row LCR containing
a change to a row that violates a uniqueness integrity constraint, such as a PRIMARY
KEY or UNIQUE constraint. For example, consider what happens when two
transactions originate from two different databases, each inserting a row into a table
with the same primary key value. In this case, the transactions cause a uniqueness
conflict.

Delete Conflicts in a Streams Environment
A delete conflict occurs when two transactions originate at different databases,
with one transaction deleting a row and another transaction updating or deleting
the same row. In this case, the row referenced in the row LCR does not exist to be
either updated or deleted.

Foreign Key Conflicts in a Streams Environment
A foreign key conflict occurs when the apply process applies a row LCR containing
a change to a row that violates a foreign key constraint. For example, in the hr
schema, the department_id column in the employees table is a foreign key of
the department_id column in the departments table. Consider what can
happen when the following changes originate at two different databases (A and B)
and are propagated to a third database (C):

� At database A, a row is inserted into the departments table with a
department_id of 271. This change is propagated to database B and applied
there.

� At database B, a row is inserted into the employees table with an
employee_id of 206 and a department_id of 271.

If the change that originated at database B is applied at database C before the
change that originated at database A, then a foreign key conflict results because the
row for the department with a department_id of 271 does not yet exist in the
departments table at database C.

Conflicts and Transaction Ordering in a Streams Environment

3-4 Oracle Streams Replication Administrator’s Guide

Conflicts and Transaction Ordering in a Streams Environment
Ordering conflicts can occur in a Streams environment when three or more
databases share data and the data is updated at two or more of these databases. For
example, consider a scenario in which three databases share information in the
hr.departments table. The database names are mult1.net, mult2.net, and
mult3.net. Suppose a change is made to a row in the hr.departments table at
mult1.net that will be propagated to both mult2.net and mult3.net. The
following series of actions may occur:

1. The change is propagated to mult2.net.

2. An apply process at mult2.net applies the change from mult1.net.

3. A different change to the same row is made at mult2.net.

4. The change at mult2.net is propagated to mult3.net.

5. An apply process at mult3.net attempts to apply the change from
mult2.net before another apply process at mult3.net applies the change
from mult1.net.

In this case, a conflict occurs because a column value for the row at mult3.net
does not match the corresponding old value in the row LCR propagated from
mult2.net.

In addition to causing a data conflict, transactions that are applied out of order
might experience referential integrity problems at a remote database if supporting
data has not been successfully propagated to that database. Consider the scenario
where a new customer calls an order department. A customer record is created and
an order is placed. If the order data is applied at a remote database before the
customer data, then a referential integrity error is raised because the customer that
the order references does not exist at the remote database.

If an ordering conflict is encountered, then you can resolve the conflict by
reexecuting the transaction in the error queue after the required data has been
propagated to the remote database and applied.

Conflict Detection in a Streams Environment

Streams Conflict Resolution 3-5

Conflict Detection in a Streams Environment
An apply process detects update, uniqueness, delete, and foreign key conflicts as
follows:

� An apply process detects an update conflict if there is any difference between
the old values for a row in a row LCR and the current values of the same row at
the destination database.

� An apply process detects a uniqueness conflict if a uniqueness constraint
violation occurs when applying an LCR that contains an insert or update
operation.

� An apply process detects a delete conflict if it cannot find a row when applying
an LCR that contains an update or delete operation, because the primary key of
the row does not exist.

� An apply process detects a foreign key conflict if a foreign key constraint
violation occurs when applying an LCR.

A conflict may be detected when an apply process attempts to apply an LCR
directly or when an apply process handler, such as a DML handler, runs the
EXECUTE member procedure for an LCR. A conflict also may be detected when
either the EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure in the
DBMS_APPLY_ADM package is run.

Control Over Conflict Detection for Nonkey Columns
By default, an apply process compares old values for all columns during conflict
detection, but you can stop conflict detection for nonkey columns using the
COMPARE_OLD_VALUES procedure in the DBMS_APPLY_ADM package. Conflict
detection may not be needed for some nonkey columns.

Note: Any old LOB values in update LCRs, delete LCRs, and
LCRs dealing with piecewise updates to LOB columns are not used
by conflict detection.

See Also:

� "Stopping Conflict Detection for Nonkey Columns" on
page 7-27

� "Displaying Information About Conflict Detection" on
page 10-8

Conflict Avoidance in a Streams Environment

3-6 Oracle Streams Replication Administrator’s Guide

Rows Identification During Conflict Detection in a Streams Environment
To detect conflicts accurately, Oracle must be able to identify and match
corresponding rows at different databases uniquely. By default, Oracle uses the
primary key of a table to identify rows in a table uniquely. When a table does not
have a primary key, you should designate a substitute key. A substitute key is a
column or set of columns that Oracle can use to identify uniquely rows in the table.

Conflict Avoidance in a Streams Environment
This section describes ways to avoid data conflicts.

Use a Primary Database Ownership Model
You can avoid the possibility of conflicts by limiting the number of databases in the
system that have simultaneous update access to the tables containing shared data.
Primary ownership prevents all conflicts, because only a single database permits
updates to a set of shared data. Applications can even use row and column
subsetting to establish more granular ownership of data than at the table level. For
example, applications might have update access to specific columns or rows in a
shared table on a database-by-database basis.

Avoid Specific Types of Conflicts
If a primary database ownership model is too restrictive for your application
requirements, then you can use a shared ownership data model, which means that
conflicts may be possible. Even so, typically you can use some simple strategies to
avoid specific types of conflicts.

Avoid Uniqueness Conflicts in a Streams Environment
You can avoid uniqueness conflicts by ensuring that each database uses unique
identifiers for shared data. There are three ways to ensure unique identifiers at all
databases in a Streams environment.

One way is to construct a unique identifier by executing the following select
statement:

SELECT SYS_GUID() OID FROM DUAL;

See Also: "Substitute Key Columns" on page 1-18

Conflict Avoidance in a Streams Environment

Streams Conflict Resolution 3-7

This SQL operator returns a 16-byte globally unique identifier. This value is based
on an algorithm that uses time, date, and the computer identifier to generate a
globally unique identifier. The globally unique identifier appears in a format similar
to the following:

A741C791252B3EA0E034080020AE3E0A

Another way to avoid uniqueness conflicts is to create a sequence at each of the
databases that shares data and concatenate the database name (or other globally
unique value) with the local sequence. This approach helps to avoid any duplicate
sequence values and helps to prevent uniqueness conflicts.

Finally, you can create a customized sequence at each of the databases that shares
data so that no two databases can generate the same value. You can accomplish this
by using a combination of starting, incrementing, and maximum values in the
CREATE SEQUENCE statement. For example, you might configure the following
sequences:

Using a similar approach, you can define different ranges for each database by
specifying a START WITH and MAXVALUE that would produce a unique range for
each database.

Avoid Delete Conflicts in a Streams Environment
Always avoid delete conflicts in shared data environments. In general, applications
that operate within a shared ownership data model should not delete rows using
DELETE statements. Instead, applications should mark rows for deletion and then
configure the system to purge logically deleted rows periodically.

Table 3–1 Customized Sequences for Streams Replication Environments

Parameter Database A Database B Database C

START WITH 1 3 5

INCREMENT BY 10 10 10

Range Example 1, 11, 21, 31, 41,... 3, 13, 23, 33, 43,... 5, 15, 25, 35, 45,...

Conflict Resolution in a Streams Environment

3-8 Oracle Streams Replication Administrator’s Guide

Avoid Update Conflicts in a Streams Environment
After trying to eliminate the possibility of uniqueness and delete conflicts, you
should also try to limit the number of possible update conflicts. However, in a
shared ownership data model, update conflicts cannot be avoided in all cases. If
you cannot avoid all update conflicts, then you must understand the types of
conflicts possible and configure the system to resolve them if they occur.

Conflict Resolution in a Streams Environment
After an update conflict has been detected, a conflict handler can attempt to resolve
it. Streams provides prebuilt conflict handlers to resolve update conflicts, but not
uniqueness, delete, foreign key, or ordering conflicts. However, you can build your
own custom conflict handler to resolve data conflicts specific to your business rules.
Such a conflict handler can be part of a DML handler or an error handler.

Whether you use prebuilt or custom conflict handlers, a conflict handler is applied
as soon as a conflict is detected. If neither the specified conflict handler nor the
relevant apply handler can resolve the conflict, then the conflict is logged in the
error queue. You may want to use the relevant apply handler to notify the database
administrator when a conflict occurs.

When a conflict causes a transaction to be moved to the error queue, sometimes it is
possible to correct the condition that caused the conflict. In these cases, you can
reexecute a transaction using the EXECUTE_ERROR procedure in the
DBMS_APPLY_ADM package.

See Also:

� Oracle Streams Concepts and Administration for more information
about DML handlers, error handlers, and the error queue

� "Handlers and Row LCR Processing" on page 1-22 for more
information about how update conflict handlers interact with
DML handlers and error handlers

� PL/SQL Packages and Types Reference for more information about
the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM
package

Conflict Resolution in a Streams Environment

Streams Conflict Resolution 3-9

Prebuilt Update Conflict Handlers
This section describes the types of prebuilt update conflict handlers available to you
and how column lists and resolution columns are used in prebuilt update conflict
handlers. A column list is a list of columns for which the update conflict handler is
called when there is an update conflict. The resolution column is the column used to
identify an update conflict handler. If you use a MAXIMUM or MINIMUM prebuilt
update conflict handler, then the resolution column is also the column used to
resolve the conflict. The resolution column must be one of the columns in the
column list for the handler.

Use the SET_UPDATE_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM
package to specify one or more update conflict handlers for a particular table. There
are no prebuilt conflict handlers for uniqueness, delete, or foreign key conflicts.

Types of Prebuilt Update Conflict Handlers
Oracle provides the following types of prebuilt update conflict handlers for a
Streams environment: OVERWRITE, DISCARD, MAXIMUM, and MINIMUM.

The description for each type of handler later in this section refers to the following
conflict scenario:

1. The following update is made at the dbs1.net source database:

UPDATE hr.employees SET salary = 4900 WHERE employee_id = 200;
COMMIT;

This update changes the salary for employee 200 from 4400 to 4900.

2. At nearly the same time, the following update is made at the dbs2.net
destination database:

UPDATE hr.employees SET salary = 5000 WHERE employee_id = 200;
COMMIT;

See Also:

� "Managing Streams Conflict Detection and Resolution" on
page 7-23 for instructions on adding, modifying, and removing
an update conflict handler

� PL/SQL Packages and Types Reference for more information about
the SET_UPDATE_CONFLICT_HANDLER procedure

� "Column Lists" on page 3-12

� "Resolution Columns" on page 3-14

Conflict Resolution in a Streams Environment

3-10 Oracle Streams Replication Administrator’s Guide

3. A capture process captures the update at the dbs1.net source database and
puts the resulting row LCR in a queue.

4. A propagation propagates the row LCR from the queue at dbs1.net to a
queue at dbs2.net.

5. An apply process at dbs2.net attempts to apply the row LCR to the
hr.employees table but encounters a conflict because the salary value at
dbs2.net is 5000, which does not match the old value for the salary in the
row LCR (4400).

The following sections describe each prebuilt conflict handler and explain how the
handler resolves this conflict.

OVERWRITE When a conflict occurs, the OVERWRITE handler replaces the current
value at the destination database with the new value in the LCR from the source
database.

If the OVERWRITE handler is used for the hr.employees table at the dbs2.net
destination database in the conflict example, then the new value in the row LCR
overwrites the value at dbs2.net. Therefore, after the conflict is resolved, the
salary for employee 200 is 4900.

DISCARD When a conflict occurs, the DISCARD handler ignores the values in the
LCR from the source database and retains the value at the destination database.

If the DISCARD handler is used for the hr.employees table at the dbs2.net
destination database in the conflict example, then the new value in the row LCR is
discarded. Therefore, after the conflict is resolved, the salary for employee 200
is 5000 at dbs2.net.

MAXIMUM When a conflict occurs, the MAXIMUM conflict handler compares the new
value in the LCR from the source database with the current value in the destination
database for a designated resolution column. If the new value of the resolution
column in the LCR is greater than the current value of the column at the destination
database, then the apply process resolves the conflict in favor of the LCR. If the new
value of the resolution column in the LCR is less than the current value of the
column at the destination database, then the apply process resolves the conflict in
favor of the destination database.

If the MAXIMUM handler is used for the salary column in the hr.employees table
at the dbs2.net destination database in the conflict example, then the apply
process does not apply the row LCR, because the salary in the row LCR is less than

Conflict Resolution in a Streams Environment

Streams Conflict Resolution 3-11

the current salary in the table. Therefore, after the conflict is resolved, the salary for
employee 200 is 5000 at dbs2.net.

If you want to resolve conflicts based on the time of the transactions involved, then
one way to do this is to add a column to a shared table that automatically records
the transaction time with a trigger. You can designate this column as a resolution
column for a MAXIMUM conflict handler, and the transaction with the latest (or
greater) time would be used automatically.

The following is an example of a trigger that records the time of a transaction for the
hr.employees table. Assume that the job_id, salary, and commission_pct
columns are part of the column list for the conflict resolution handler. The trigger
should fire only when an UPDATE is performed on the columns in the column list or
when an INSERT is performed.

CONNECT hr/hr

ALTER TABLE hr.employees ADD (time TIMESTAMP WITH TIME ZONE);

CREATE OR REPLACE TRIGGER hr.insert_time_employees
BEFORE
 INSERT OR UPDATE OF job_id, salary, commission_pct ON hr.employees
FOR EACH ROW
BEGIN
 -- Consider time synchronization problems. The previous update to this
 -- row may have originated from a site with a clock time ahead of the
 -- local clock time.
 IF :OLD.TIME IS NULL OR :OLD.TIME < SYSTIMESTAMP THEN
 :NEW.TIME := SYSTIMESTAMP;
 ELSE
 :NEW.TIME := :OLD.TIME + 1 / 86400;
 END IF;
END;
/

If you use such a trigger for conflict resolution, then make sure the trigger's firing
property is fire once, which is the default. Otherwise, a new time may be marked
when transactions are applied by an apply process, resulting in the loss of the actual
time of the transaction.

See Also: "Trigger Firing Property" on page 1-32

Conflict Resolution in a Streams Environment

3-12 Oracle Streams Replication Administrator’s Guide

MINIMUM When a conflict occurs, the MINIMUM conflict handler compares the new
value in the LCR from the source database with the current value in the destination
database for a designated resolution column. If the new value of the resolution
column in the LCR is less than the current value of the column at the destination
database, then the apply process resolves the conflict in favor of the LCR. If the new
value of the resolution column in the LCR is greater than the current value of the
column at the destination database, then the apply process resolves the conflict in
favor of the destination database.

If the MINIMUM handler is used for the salary column in the hr.employees table
at the dbs2.net destination database in the conflict example, then the apply
process resolves the conflict in favor of the row LCR, because the salary in the row
LCR is less than the current salary in the table. Therefore, after the conflict is
resolved, the salary for employee 200 is 4900.

Column Lists
Each time you specify a prebuilt update conflict handler for a table, you must
specify a column list. A column list is a list of columns for which the update conflict
handler is called. If an update conflict occurs for one or more of the columns in the
list when an apply process tries to apply a row LCR, then the update conflict
handler is called to resolve the conflict. The update conflict handler is not called if a
conflict occurs only in columns that are not in the list. The scope of conflict
resolution is a single column list on a single row LCR.

You can specify more than one update conflict handler for a particular table, but the
same column cannot be in more than one column list. For example, suppose you
specify two prebuilt update conflict handlers on hr.employees table:

� The first update conflict handler has the following columns in its column list:
salary and commission_pct.

� The second update conflict handler has the following columns in its column list:
job_id and department_id.

Also, assume that no other conflict handlers exist for this table. In this case, if a
conflict occurs for the salary column when an apply process tries to apply a row
LCR, then the first update conflict handler is called to resolve the conflict. If,
however, a conflict occurs for the department_id column, then the second update
conflict handler is called to resolve the conflict. If a conflict occurs for a column that
is not in a column list for any conflict handler, then no conflict handler is called, and
an error results. In this example, if a conflict occurs for the manager_id column in
the hr.employees table, then an error results. If conflicts occur in more than one
column list when a row LCR is being applied, and there are no conflicts in any

Conflict Resolution in a Streams Environment

Streams Conflict Resolution 3-13

columns that are not in a column list, then the appropriate update conflict handler
is invoked for each column list with a conflict.

Column lists enable you to use different handlers to resolve conflicts for different
types of data. For example, numeric data is often suited for a maximum or
minimum conflict handler, while an overwrite or discard conflict handler might be
preferred for character data.

If a conflict occurs in a column that is not in a column list, then the error handler for
the specific operation on the table attempts to resolve the conflict. If the error
handler cannot resolve the conflict, or if there is no such error handler, then the
transaction that caused the conflict is moved to the error queue.

Also, if a conflict occurs for a column in a column list that uses either the
OVERWRITE, MAXIMUM, or MINIMUM prebuilt handler, and the row LCR does not
contain all of the columns in this column list, then the conflict cannot be resolved
because all of the values are not available. In this case, the transaction that caused
the conflict is moved to the error queue. If the column list uses the DISCARD
prebuilt method, then the row LCR is discarded and no error results, even if the
row LCR does not contain all of the columns in this column list.

A conditional supplemental log group must be specified for the columns specified
in a column list if more than one column at the source database affects the column
list at the destination database. Supplemental logging is specified at the source
database and adds additional information to the LCR, which is needed to resolve
conflicts properly. Typically, a conditional supplemental log group must be specified
for the columns in a column list if there is more than one column in the column list,
but not if there is only one column in the column list.

However, in some cases, a conditional supplemental log group is required even if
there is only one column in a column list. That is, an apply handler or rule-based
transformation may combine multiple columns from the source database into a
single column in the column list at the destination database. For example, a
rule-based transformation may take three columns that store street, state, and postal
code data from a source database and combine the data into a single address
column at a destination database.

Also, in some cases, no conditional supplemental log group is required even if there
is more than one column in a column list. For example, an apply handler or
rule-based transformation may separate one address column from the source
database into multiple columns that are in a column list at the destination database.
A rule-based transformation may take an address that includes street, state, and
postal code data in one address column at a source database and separate the data
into three columns at a destination database.

Conflict Resolution in a Streams Environment

3-14 Oracle Streams Replication Administrator’s Guide

Resolution Columns
The resolution column is the column used to identify an update conflict handler. If
you use a MAXIMUM or MINIMUM prebuilt update conflict handler, then the
resolution column is also the column used to resolve the conflict. The resolution
column must be one of the columns in the column list for the handler.

For example, if the salary column in the hr.employees table is specified as the
resolution column for a maximum or minimum conflict handler, then the salary
column is evaluated to determine whether column list values in the row LCR are
applied or the destination database values for the column list are retained.

In either of the following situations involving a resolution column for a conflict, the
apply process moves the transaction containing the row LCR that caused the
conflict to the error queue, if the error handler cannot resolve the problem. In these
cases, the conflict cannot be resolved and the values of the columns at the
destination database remain unchanged:

� The new LCR value and the destination row value for the resolution column are
the same (for example, if the resolution column was not the column causing the
conflict).

� Either the new LCR value of the resolution column or the current value of the
resolution column at the destination database is NULL.

Note: Prebuilt update conflict handlers do not support LOB,
LONG, LONG RAW, and user-defined type columns. Therefore, you
should not include these types of columns in the column_list
parameter when running the SET_UPDATE_CONFLICT_HANDLER
procedure.

See Also: "Supplemental Logging for Streams Replication" on
page 1-9

Note: Although the resolution column is not used for OVERWRITE
and DISCARD conflict handlers, a resolution column must be
specified for these conflict handlers.

Conflict Resolution in a Streams Environment

Streams Conflict Resolution 3-15

Data Convergence
When you share data between multiple databases, and you want the data to be the
same at all of these databases, then make sure you use conflict resolution handlers
that cause the data to converge at all databases. If you allow changes to shared data
at all of your databases, then data convergence for a table is possible only if all
databases that are sharing data capture changes to the shared data and propagate
these changes to all of the other databases that are sharing the data.

In such an environment, the MAXIMUM conflict resolution method can guarantee
convergence only if the values in the resolution column are always increasing. A
time-based resolution column meets this requirement, as long as successive
timestamps on a row are distinct. The MINIMUM conflict resolution method can
guarantee convergence in such an environment only if the values in the resolution
column are always decreasing.

Custom Conflict Handlers
You can create a PL/SQL procedure to use as a custom conflict handler. You use the
SET_DML_HANDLER procedure in the DBMS_APPLY_ADM package to designate one
or more custom conflict handlers for a particular table. Specifically, set the
following parameters when you run this procedure to specify a custom conflict
handler:

� Set the object_name parameter to the fully qualified name of the table for
which you want to perform conflict resolution.

� Set the object_type parameter to TABLE.

� Set the operation_name parameter to the type of operation for which the
custom conflict handler is called. The possible operations are the following:
INSERT, UPDATE, DELETE, and LOB_UPDATE.

� If you want an error handler to perform conflict resolution when an error is
raised, then set the error_handler parameter to true. Or, if you want to
include conflict resolution in your DML handler, then set the error_handler
parameter to false.

If you specify false for this parameter, then, when you execute a row LCR
using the EXECUTE member procedure for the LCR, the conflict resolution
within the DML handler is performed for the specified object and operation(s).

� Specify the procedure to resolve a conflict by setting the user_procedure
parameter. This user procedure is called to resolve any conflicts on the specified
table resulting from the specified type of operation.

Conflict Resolution in a Streams Environment

3-16 Oracle Streams Replication Administrator’s Guide

If the custom conflict handler cannot resolve the conflict, then the apply process
moves the transaction containing the conflict to the error queue and does not apply
the transaction.

If both a prebuilt update conflict handler and a custom conflict handler exist for a
particular object, then the prebuilt update conflict handler is invoked only if both of
the following conditions are met:

� The custom conflict handler executes the row LCR using the EXECUTE member
procedure for the LCR.

� The conflict_resolution parameter in the EXECUTE member procedure
for the row LCR is set to true.

See Also:

� "Handlers and Row LCR Processing" on page 1-22 for more
information about how update conflict handlers interact with
DML handlers and error handlers

� "Managing a DML Handler" on page 7-16

� Oracle Streams Concepts and Administration for more information
about managing error handlers

� PL/SQL Packages and Types Reference for more information about
the SET_DML_HANDLER procedure

Streams Tags 4-1

4
Streams Tags

This chapter explains the concepts related to Streams tags.

This chapter contains these topics:

� Introduction to Tags

� Tags and Rules Created by the DBMS_STREAMS_ADM Package

� Tags and Online Backup Statements

� Tags and an Apply Process

� Streams Tags in a Replication Environment

See Also: "Managing Streams Tags" on page 7-33

Introduction to Tags

4-2 Oracle Streams Replication Administrator’s Guide

Introduction to Tags
Every redo entry in the redo log has a tag associated with it. The datatype of the tag
is RAW. By default, when a user or application generates redo entries, the value of
the tag is NULL for each redo entry, and a NULL tag consumes no space. The size
limit for a tag value is 2000 bytes.

You can configure how tag values are interpreted. For example, a tag can be used to
determine whether an LCR contains a change that originated in the local database
or at a different database, so that you can avoid change cycling (sending an LCR
back to the database where it originated). Tags may be used for other LCR tracking
purposes as well. You also can use tags to specify the set of destination databases
for each LCR.

You can control the value of the tags generated in the redo log in the following
ways:

� Use the DBMS_STREAMS.SET_TAG procedure to specify the value of the redo
tags generated in the current session. When a database change is made in the
session, the tag becomes part of the redo entry that records the change.
Different sessions can have the same tag setting or different tag settings.

� Use the CREATE_APPLY or ALTER_APPLY procedure in the DBMS_APPLY_ADM
package to control the value of the redo tags generated when an apply process
runs. All sessions coordinated by the apply process coordinator use this tag
setting. By default, redo entries generated by an apply process have a tag value
that is the hexadecimal equivalent of '00' (double zero).

Based on the rules in the rule sets for the capture process, the tag value in the redo
entry for a change may determine whether or not the change is captured. For
captured changes, the tags become part of the LCRs captured by a capture process
retrieving changes from the redo log.

Similarly, once a tag is part of an LCR, the value of the tag may determine whether a
propagation propagates the LCR and whether an apply process applies the LCR.
The behavior of a rule-based transformation, DML handler, or error handler also
can depend on the value of the tag. In addition, you can set the tag value for an
existing LCR using the SET_TAG member procedure for the LCR. For example, you
may set a tag in an LCR during a rule-based transformation.

Tags and Rules Created by the DBMS_STREAMS_ADM Package

Streams Tags 4-3

Tags and Rules Created by the DBMS_STREAMS_ADM Package
When you use a procedure in the DBMS_STREAMS_ADM package to create rules and
set the include_tagged_lcr parameter to false, each rule contains a condition
that evaluates to TRUE only if the tag is NULL. In DML rules, the condition is the
following:

:dml.is_null_tag()='Y'

In DDL rules, the condition is the following:

:ddl.is_null_tag()='Y'

Consider a positive rule set with a single rule and assume the rule contains such a
condition. In this case, Streams capture processes, propagations, and apply
processes behave in the following way:

� A capture process captures a change only if the tag in the redo log entry for the
change is NULL and the rest of the rule conditions evaluate to TRUE for the
change.

� A propagation propagates an event containing an LCR only if the tag in the
LCR is NULL and the rest of the rule conditions evaluate to TRUE for the LCR.

� An apply process applies an event containing an LCR only if the tag in the LCR
is NULL and the rest of the rule conditions evaluate to TRUE for the LCR.

Alternatively, consider a negative rule set with a single rule and assume the rule
contains such a condition. In this case, Streams capture processes, propagations,
and apply processes behave in the following way:

� A capture process discards a change only if the tag in the redo log entry for the
change is NULL and the rest of the rule conditions evaluate to TRUE for the
change.

� A propagation or apply process discards an event containing an LCR only if the
tag in the LCR is NULL and the rest of the rule conditions evaluate to TRUE for
the LCR.

See Also:

� PL/SQL Packages and Types Reference for more information about
the SET_TAG member procedure for LCRs

� Oracle Streams Concepts and Administration for more information
about how rules are used in Streams

Tags and Rules Created by the DBMS_STREAMS_ADM Package

4-4 Oracle Streams Replication Administrator’s Guide

In most cases, specify true for the include_tagged_lcr parameter if rules are
being added to a negative rule set so that changes are discarded regardless of their
tag values.

The following procedures in the DBMS_STREAMS_ADM package create rules that
contain one of these conditions by default:

� ADD_GLOBAL_PROPAGATION_RULES

� ADD_GLOBAL_RULES

� ADD_SCHEMA_PROPAGATION_RULES

� ADD_SCHEMA_RULES

� ADD_SUBSET_PROPAGATION_RULES

� ADD_SUBSET_RULES

� ADD_TABLE_PROPAGATION_RULES

� ADD_TABLE_RULES

If you do not want the rules to contain such a condition, then set the
include_tagged_lcr parameter to true when you run these procedures. This
setting results in no conditions relating to tags in the rules. Therefore, rule
evaluation of the LCR does not depend on the value of the tag.

For example, consider a table rule that evaluates to TRUE for all DML changes to the
hr.locations table that originated at the dbs1.net source database.

Assume the ADD_TABLE_RULES procedure is run to generate this rule:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.locations',
 streams_type => 'capture',
 streams_name => 'capture',
 queue_name => 'streams_queue',

 include_tagged_lcr => false, -- Note parameter setting
 source_database => 'dbs1.net',
 include_dml => true,
 include_ddl => false);

END;
/

Tags and Rules Created by the DBMS_STREAMS_ADM Package

Streams Tags 4-5

Notice that the include_tagged_lcr parameter is set to false, which is the
default. The ADD_TABLE_RULES procedure generates a rule with a rule condition
similar to the following:

(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'LOCATIONS'))
and :dml.is_null_tag() = 'Y' and :dml.get_source_database_name() = 'DBS1.NET')

If a capture process uses a positive rule set that contains this rule, then the rule
evaluates to FALSE if the tag for a change in a redo entry is a non-NULL value, such
as '0' or '1'. So, if a redo entry contains a row change to the hr.locations
table, then the change is captured only if the tag for the redo entry is NULL.

However, suppose the include_tagged_lcr parameter is set to true when
ADD_TABLE_RULES is run:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.locations',
 streams_type => 'capture',
 streams_name => 'capture',
 queue_name => 'streams_queue',
 include_tagged_lcr => true, -- Note parameter setting
 source_database => 'dbs1.net',
 include_dml => true,
 include_ddl => false);
END;
/

In this case, the ADD_TABLE_RULES procedure generates a rule with a rule
condition similar to the following:

(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'LOCATIONS'))
and :dml.get_source_database_name() = 'DBS1.NET')

Notice that there is no condition relating to the tag. If a capture process uses a
positive rule set that contains this rule, then the rule evaluates to TRUE if the tag in a
redo entry for a DML change to the hr.locations table is a non-NULL value, such
as '0' or '1'. The rule also evaluates to TRUE if the tag is NULL. So, if a redo entry
contains a DML change to the hr.locations table, then the change is captured
regardless of the value for the tag.

If you want to modify the is_null_tag condition in an existing system-created
rule, then you should use an appropriate procedure in the DBMS_STREAMS_ADM
package to create a new rule that is the same as the rule you want to modify, except
for the is_null_tag condition. Next, use the REMOVE_RULE procedure in the

Tags and Online Backup Statements

4-6 Oracle Streams Replication Administrator’s Guide

DBMS_STREAMS_ADM package to remove the old rule from the appropriate rule set.
In addition, you can use the and_condition parameter for the procedures that
create rules in the DBMS_STREAMS_ADM package to add conditions relating to tags
to system-created rules.

If you created a rule with the DBMS_RULE_ADM package, then you can add, remove,
or modify the is_null_tag condition in the rule by using the ALTER_RULE
procedure in this package.

Tags and Online Backup Statements
If you are using global rules to capture and apply DDL changes for an entire
database, then online backup statements will be captured, propagated, and applied
by default. Typically, database administrators do not want to replicate online
backup statements. Instead, they only want them to run at the database where they
are executed originally. An online backup statement uses the BEGIN BACKUP and
END BACKUP clauses in an ALTER TABLESPACE or ALTER DATABASE statement.

To avoid replicating online backup statements, you can use one of the following
strategies:

� Include one or more calls to the DBMS_STREAMS.SET_TAG procedure in your
online backup procedures, and set the session tag to a value that will cause the
online backup statements to be ignored by a capture process.

� Use a DDL handler for an apply process to avoid applying the online backup
statements.

See Also:

� Oracle Streams Concepts and Administration for examples of rules
generated by the procedures in the DBMS_STREAMS_ADM
package

� PL/SQL Packages and Types Reference for more information about
the DBMS_STREAMS_ADM package and the
DBMS_RULE_ADM.ALTER_RULE procedure

� "Setting the Tag Values Generated by an Apply Process" on
page 7-34 for more information about the SET_TAG procedure

Note: If you use Recovery Manager (RMAN) to perform an online
backup, then the online backup statements are not used, and there
is no need to set Streams tags for backups.

Tags and an Apply Process

Streams Tags 4-7

Tags and an Apply Process
An apply process generates entries in the redo log of a destination database when it
applies DML or DDL changes. For example, if the apply process applies a change
that updates a row in a table, then that change is recorded in the redo log at the
destination database. You can control the tags in these redo entries by setting the
apply_tag parameter in the CREATE_APPLY or ALTER_APPLY procedure in the
DBMS_APPLY_ADM package. For example, an apply process may generate redo tags
that are equivalent to the hexadecimal value of '0' (zero) or '1'.

The default tag value generated in the redo log by an apply process is '00' (double
zero). This value is the default tag value for an apply process if you use a procedure
in the DBMS_STREAMS_ADM package or the CREATE_APPLY procedure in the
DBMS_APPLY_ADM package to create the apply process. There is nothing special
about this value beyond the fact that it is a non-NULL value. The fact that it is a
non-NULL value is important because rules created by the DBMS_STREAMS_ADM
package by default contain a condition that evaluates to TRUE only if the tag is
NULL in a redo entry or an LCR. You can alter the tag value for an existing apply
process using the ALTER_APPLY procedure in the DBMS_APPLY_ADM package.

Redo entries generated by an apply handler for an apply process have the tag value
of the apply process, unless the handler sets the tag to a different value using the
SET_TAG procedure. If a DML handler, DDL handler, or message handler calls the
SET_TAG procedure in the DBMS_STREAMS package, then any subsequent redo
entries generated by the handler will include the tag specified in the SET_TAG call,
even if the tag for the apply process is different. When the handler exits, any
subsequent redo entries generated by the apply process have the tag specified for
the apply process.

See Also: Oracle Database Backup and Recovery Advanced User's
Guide for information about making backups

Streams Tags in a Replication Environment

4-8 Oracle Streams Replication Administrator’s Guide

Streams Tags in a Replication Environment
In a Streams environment that includes more than one database sharing data
bidirectionally, you can use tags to avoid change cycling. Change cycling means
sending a change back to the database where it originated. Typically, change cycling
should be avoided because it can result in each change going through endless loops
back to the database where it originated. Such loops can result in unintended data
in the database and tax the networking and computer resources of an environment.
By default, Streams is designed to avoid change cycling.

Using tags and appropriate rules for Streams capture processes, propagations, and
apply processes, you can avoid such change cycles. This section describes various
Streams environments and how tags and rules can be used to avoid change cycling
in these environments.

This section contains these topics:

� Each Databases Is a Source and Destination Database for Shared Data

� Primary Database Sharing Data with Several Secondary Databases

� Primary Database Sharing Data with Several Extended Secondary Databases

See Also:

� "Apply and Streams Replication" on page 1-14 for more
information about the apply process

� "Tags and Rules Created by the DBMS_STREAMS_ADM
Package" on page 4-3 for more information about the default
tag condition in Streams rules

� "Managing Streams Tags" on page 7-33

� PL/SQL Packages and Types Reference for more information about
the DBMS_STREAMS_ADM package and the DBMS_APPLY_ADM
package

Streams Tags in a Replication Environment

Streams Tags 4-9

Each Databases Is a Source and Destination Database for Shared Data
This scenario involves a Streams environment in which each database is a source
database for every other database, and each database is a destination database of
every other database. Each database communicates directly with every other
database.

For example, consider an environment that replicates the database objects and data
in the hr schema between three Oracle databases: mult1.net, mult2.net, and
mult3.net. DML and DDL changes made to tables in the hr schema are captured
at all three databases in the environment and propagated to each of the other
databases in the environment, where changes are applied. Figure 4–1 illustrates an
example environment in which each database is a source database.

Streams Tags in a Replication Environment

4-10 Oracle Streams Replication Administrator’s Guide

Figure 4–1 Each Database Is a Source and Destination Database

mult2.net mult3.net

mult1.net

Propagate
Locally

Captured
LCRs

Propagate
Locally

Captured
LCRs

Propagate Locally
Captured LCRs

Propagate Locally
Captured LCRs

User Changes User Changes

User Changes

Database Objects

Capture
Process

Enqueue
LCRs

Capture
Changes

Queue

Apply Process for mult1.net changes

Apply Process for mult2.net changes

Dequeue LCRs
sent From
mult2.net

Dequeue
LCRs sent
From
mult1.net

Apply Changes sent from mult2.net

Apply Changes sent from mult1.net

Database Objects

Capture
Process

Enqueue
LCRs

Capture
Changes

Queue

Apply Process for mult1.net changes

Apply Process for mult3.net changes

Dequeue LCRs
sent From
mult3.net

Dequeue
LCRs sent
From
mult1.net

Apply Changes sent from mult3.net

Apply Changes sent from mult1.net

Database Objects

Capture
Process

Enqueue
LCRs

Capture
Changes

Queue

Apply Process for mult2.net changes

Apply Process for mult3.net changes

Dequeue LCRs
sent From
mult3.net

Dequeue
LCRs sent
From
mult2.net

Apply Changes sent from mult3.net

Apply Changes sent from mult2.net

Streams Tags in a Replication Environment

Streams Tags 4-11

You can avoid change cycles by configuring such an environment in the following
way:

� Configure one apply process at each database to generate non-NULL redo tags
for changes from each source database. If you use a procedure in the
DBMS_STREAMS_ADM package to create an apply process, then the apply
process generates non-NULL tags with a value of '00' in the redo log by
default. In this case, no further action is required for the apply process to
generate non-NULL tags.

If you use the CREATE_APPLY procedure in the DBMS_APPLY_ADM package to
create an apply process, then do not set the apply_tag parameter. Again, the
apply process generates non-NULL tags with a value of '00' in the redo log by
default, and no further action is required.

� Configure the capture process at each database to capture changes only if the
tag in the redo entry for the change is NULL. You do this by ensuring that each
DML rule in the positive rule set used by the capture process has the following
condition:

:dml.is_null_tag()='Y'

Each DDL rule should have the following condition:

:ddl.is_null_tag()='Y'

These rule conditions indicate that the capture process captures a change only if
the tag for the change is NULL. If you use the DBMS_STREAMS_ADM package to
generate rules, then each rule has such a condition by default.

This configuration prevents change cycling because all of the changes applied by
the apply processes are never recaptured (they were captured originally at the
source databases). Each database sends all of its changes to the hr schema to every
other database. So, in this environment, no changes are lost, and all databases are
synchronized. Figure 4–2 illustrates how tags can be used in a database in a
multiple source environment.

Streams Tags in a Replication Environment

4-12 Oracle Streams Replication Administrator’s Guide

Figure 4–2 Tag Use When Each Database Is a Source and Destination Database

See Also: Chapter 14, "Multiple Source Replication Example" for
a detailed illustration of this example

mult1.net

User Changes

Database Objects

Enqueue
LCRs

Capture changes with
NULL Tags

Capture
Process

Redo
Log

Record
apply
changes
from
mult2.net
(Tag is '00')

Record
apply
changes
from
mult3.net
(Tag is '00')

Queue

Apply Process for mult2.net changes

Apply Process for mult3.net changes

Dequeue
LCRs sent
From
mult3.net

Dequeue
LCRs sent
From
mult2.net

Apply Changes sent from mult3.net

Apply Changes sent from mult2.net

Record user
changes
(Tag is NULL)

Propagate
Locally

Captured
LCRs

Propagate
Locally

Captured
LCRs

Streams Tags in a Replication Environment

Streams Tags 4-13

Primary Database Sharing Data with Several Secondary Databases
This scenario involves a Streams environment in which one database is the primary
database, and this primary database shares data with several secondary databases.
The secondary databases share data only with the primary database. The secondary
databases do not share data directly with each other, but, instead, share data
indirectly with each other through the primary database. This type of environment
is sometimes called a "hub and spoke" environment, with the primary database
being the hub and the secondary databases being the spokes.

In such an environment, changes are captured, propagated, and applied in the
following way:

� The primary database captures local changes to the shared data and propagates
these changes to all secondary databases, where these changes are applied at
each secondary database locally.

� Each secondary database captures local changes to the shared data and
propagates these changes to the primary database only, where these changes are
applied at the primary database locally.

� The primary database applies changes from each secondary database locally.
Next, these changes are captured at the primary database and propagated to all
secondary databases, except for the one at which the change originated. Each
secondary database applies the changes from the other secondary databases
locally, after they have gone through the primary database. This configuration is
an example of apply forwarding.

An alternate scenario may use queue forwarding. If this environment used
queue forwarding, then changes from secondary databases that are applied at
the primary database are not captured at the primary database. Instead, these
changes are forwarded from the queue at the primary database to all secondary
databases, except for the one at which the change originated.

For example, consider an environment that replicates the database objects and data
in the hr schema between one primary database named ps1.net and three
secondary databases named ps2.net, ps3.net, and ps4.net. DML and DDL
changes made to tables in the hr schema are captured at the primary database and
at the three secondary databases in the environment. Next, these changes are
propagated and applied as described previously. The environment uses apply
forwarding, not queue forwarding, to share data between the secondary databases

See Also: Oracle Streams Concepts and Administration for more
information about apply forwarding and queue forwarding

Streams Tags in a Replication Environment

4-14 Oracle Streams Replication Administrator’s Guide

through the primary database. Figure 4–3 illustrates an example environment
which has one primary database and multiple secondary databases.

Figure 4–3 Primary Database Sharing Data with Several Secondary Databases

You can avoid change cycles by configuring the environment in the following way:

� Configure each apply process at the primary database ps1.net to generate
non-NULL redo tags that indicate the site from which it is receiving changes. In
this environment, the primary database has at least one apply process for each
secondary database from which it receives changes. For example, if an apply
process at the primary database receives changes from the ps2.net secondary
database, then this apply process may generate a raw value that is equivalent to
the hexadecimal value '2' for all changes it applies. You do this by setting the
apply_tag parameter in the CREATE_APPLY or ALTER_APPLY procedure in
the DBMS_APPLY_ADM package to the non-NULL value.

Primary
Database

Secondary
Database

Secondary
Database

Secondary
Database

Streams Tags in a Replication Environment

Streams Tags 4-15

For example, run the following procedure to create an apply process that
generates redo entries with tags that are equivalent to the hexadecimal
value '2':

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.streams_queue',
 apply_name => 'apply_ps2',
 rule_set_name => 'strmadmin.apply_rules_ps2',
 apply_tag => HEXTORAW('2'),
 apply_captured => true);
END;
/

� Configure the apply process at each secondary database to generate non-NULL
redo tags. The exact value of the tags is irrelevant as long as it is non-NULL. In
this environment, each secondary database has one apply process that applies
changes from the primary database.

If you use a procedure in the DBMS_STREAMS_ADM package to create an apply
process, then the apply process generates non-NULL tags with a value of '00'
in the redo log by default. In this case, no further action is required for the
apply process to generate non-NULL tags.

For example, assuming no apply processes exist at the secondary databases, run
the ADD_SCHEMA_RULES procedure in the DBMS_STREAMS_ADM package at
each secondary database to create an apply process that generates non-NULL
redo entries with tags that are equivalent to the hexadecimal value '00':

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'apply',
 streams_name => 'apply',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true,

 source_database => 'ps1.net',
 inclusion_rule => true);
END;
/

Streams Tags in a Replication Environment

4-16 Oracle Streams Replication Administrator’s Guide

� Configure the capture process at the primary database to capture changes to the
shared data regardless of the tags. You do this by setting the
include_tagged_lcr parameter to true when you run one of the
procedures that generate capture process rules in the DBMS_STREAMS_ADM
package. If you use the DBMS_RULE_ADM package to create rules for the capture
process at the primary database, then make sure the rules do not contain
is_null_tag conditions, because these conditions involve tags in the
redo log.

For example, run the following procedure at the primary database to produce
one DML capture process rule and one DDL capture process rule that each have
a condition that evaluates to TRUE for changes in the hr schema, regardless of
the tag for the change:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'capture',
 streams_name => 'capture',
 queue_name => 'strmadmin.streams_queue',
 include_tagged_lcr => true, -- Note parameter setting
 include_dml => true,
 include_ddl => true,
 inclusion_rule => true);
END;
/

� Configure the capture process at each secondary database to capture changes
only if the tag in the redo entry for the change is NULL. You do this by ensuring
that each DML rule in the positive rule set used by the capture process at the
secondary database has the following condition:

:dml.is_null_tag()='Y'

DDL rules should have the following condition:

:ddl.is_null_tag()='Y'

These rules indicate that the capture process captures a change only if the tag
for the change is NULL. If you use the DBMS_STREAMS_ADM package to generate
rules, then each rule has one of these conditions by default. If you use the
DBMS_RULE_ADM package to create rules for the capture process at a secondary
database, then make sure each rule contains one of these conditions.

Streams Tags in a Replication Environment

Streams Tags 4-17

� Configure one propagation from the queue at the primary database to the
queue at each secondary database. Each propagation should use a positive rule
set with rules that instruct the propagation to propagate all LCRs in the queue
at the primary database to the queue at the secondary database, except for
changes that originated at the secondary database.

For example, if a propagation propagates changes to the secondary database
ps2.net, whose tags are equivalent to the hexadecimal value '2', then the
rules for the propagation should propagate all LCRs relating to the hr schema
to the secondary database, except for LCRs with a tag of '2'. For row LCRs,
such rules should include the following condition:

:dml.get_tag()!=HEXTORAW('2')

For DDL LCRs, such rules should include the following condition:

:ddl.get_tag()!=HEXTORAW('2')

You can use the and_condition parameter in a procedure in the
DBMS_STREAMS_ADM package to add these conditions to system-created rules,
or you can use the CREATE_RULE procedure in the DBMS_RULE_ADM package
to create rules with these conditions. See Oracle Streams Concepts and
Administration for more information about the and_condition parameter.

� Configure one propagation from the queue at each secondary database to the
queue at the primary database. A queue at one of the secondary databases
contains only local changes made by user sessions and applications at the
secondary database, not changes made by an apply process. Therefore, no
further configuration is necessary for these propagations.

This configuration prevents change cycling in the following way:

� Changes that originated at a secondary database are never propagated back to
that secondary database.

� Changes that originated at the primary database are never propagated back to
the primary database.

� All changes made to the shared data at any database in the environment are
propagated to every other database in the environment.

So, in this environment, no changes are lost, and all databases are synchronized.

Figure 4–4 illustrates how tags are used at the primary database ps1.net.

Streams Tags in a Replication Environment

4-18 Oracle Streams Replication Administrator’s Guide

Figure 4–4 Tags Used at the Primary Database

Primary Database ps1.net

User Changes

Database Objects

Propagate All locally captured
LCRs to ps2.net, except
LCRs with Tag = '2'

Receive LCRs
sent from
ps2.net

Propagate All locally captured
LCRs to ps3.net, except
LCRs with Tag = '3'

Receive LCRs
sent from
ps3.net

Propagate all locally
captured LCRs to ps4.net,
except LCRs with Tag = '4'

Receive LCRs
sent from
ps4.net

Enqueue LCRs
(including Tags)

Capture Changes
with Any Tag
(including a NULL tag)

Capture
Process

Redo
Log

Record
apply
changes
from
ps4.net
(Tag is '4')

Record
apply
changes
from
ps2.net
(Tag is '2')

Record
apply
changes
from
ps3.net
(Tag is '3')

Queue

Apply Process for ps2.net changes

Apply Process for ps3.net changes

Apply Process for ps4.net changes

Dequeue LCRs sent
From ps4.net

Dequeue
LCRs sent
From
ps3.net

Dequeue
LCRs sent
From ps2.net

Apply Changes sent from ps4.net

Apply Changes sent from ps3.net

Apply Changes sent from ps2.net

Record user
changes
(Tag is NULL)

Streams Tags in a Replication Environment

Streams Tags 4-19

Figure 4–5 illustrates how tags are used at one of the secondary databases
(ps2.net).

Figure 4–5 Tags Used at a Secondary Database

Secondary Database ps2.net

Database Objects

Propagate locally
captured LCRs
to ps1.net

Receive LCRs
From Primary
Database

Enqueue
LCRs

Capture Changes
with NULL Tag

Capture
Process

Redo
Log

Record
changes
from
ps1.net
(Tag is '00')

Queue

Apply Process for ps1.net changes

Dequeue
LCRs sent
from ps1.net

Apply Changes sent from ps1.net

Record user changes
(Tag is NULL)

User Changes

Streams Tags in a Replication Environment

4-20 Oracle Streams Replication Administrator’s Guide

Primary Database Sharing Data with Several Extended Secondary Databases
In this environment, one primary database shares data with several secondary
databases, but the secondary databases have other secondary databases connected
to them, which will be called remote secondary databases. This environment is an
extension of the environment described in "Primary Database Sharing Data with
Several Secondary Databases" on page 4-13.

A remote secondary database does not share data directly with the primary
database, but instead shares data indirectly with the primary database through a
secondary database. So, the shared data exists at the primary database, at each
secondary database, and at each remote secondary database. Changes made at any
of these databases are captured and propagated to all of the other databases.
Figure 4–6 illustrates an environment with one primary database and multiple
extended secondary databases.

Streams Tags in a Replication Environment

Streams Tags 4-21

Figure 4–6 Primary Database and Several Extended Secondary Databases

Remote
Secondary
Database

Primary
Database

Remote
Secondary
Database

Secondary
Database

. . .

Secondary
Database

Secondary
Database

Remote
Secondary
Database

Remote
Secondary
Database

Remote
Secondary
Database

Remote
Secondary
Database

.

Streams Tags in a Replication Environment

4-22 Oracle Streams Replication Administrator’s Guide

In such an environment, you can avoid change cycling in the following way:

� Configure the primary database in the same way that it is configured in the
example described in "Primary Database Sharing Data with Several Secondary
Databases" on page 4-13.

� Configure each remote secondary database similar to the way that each
secondary database is configured in the example described in "Primary
Database Sharing Data with Several Secondary Databases" on page 4-13. The
only difference is that the remote secondary databases share data directly with
secondary databases, not the primary database.

� At each secondary database, configure one apply process to apply changes from
the primary database with a redo tag value that is equivalent to the
hexadecimal value '00'. This value is the default tag value for an apply
process.

� At each secondary database, configure one apply process to apply changes from
each of its remote secondary databases with a redo tag value that is unique for
the remote secondary database.

� Configure the capture process at each secondary database to capture all
changes to the shared data in the redo log, regardless of the tag value for the
changes.

� Configure one propagation from the queue at each secondary database to the
queue at the primary database. The propagation should use a positive rule set
with rules that instruct the propagation to propagate all LCRs in the queue at
the secondary database to the queue at the primary database, except for
changes that originated at the primary database. You do this by adding a
condition to the rules that evaluates to TRUE only if the tag in the LCR does not
equal '00'. For example, enter a condition similar to the following for
row LCRs:

:dml.get_tag()!=HEXTORAW('00')

You can use the and_condition parameter in a procedure in the
DBMS_STREAMS_ADM package to add this condition to system-created rules, or
you can use the CREATE_RULE procedure in the DBMS_RULE_ADM package to
create rules with this condition. See Oracle Streams Concepts and Administration
for more information about the and_condition parameter.

Streams Tags in a Replication Environment

Streams Tags 4-23

� Configure one propagation from the queue at each secondary database to the
queue at each remote secondary database. Each propagation should use a
positive rule set with rules that instruct the propagation to propagate all LCRs
in the queue at the secondary database to the queue at the remote secondary
database, except for changes that originated at the remote secondary database.
You do this by adding a condition to the rules that evaluates to TRUE only if the
tag in the LCR does not equal the tag value for the remote secondary database.

For example, if the tag value of a remote secondary database is equivalent to the
hexadecimal value '19', then enter a condition similar to the following for row
LCRs:

:dml.get_tag()!=HEXTORAW('19')

You can use the and_condition parameter in a procedure in the
DBMS_STREAMS_ADM package to add this condition to system-created rules, or
you can use the CREATE_RULE procedure in the DBMS_RULE_ADM package to
create rules with this condition. See Oracle Streams Concepts and Administration
for more information about the and_condition parameter.

By configuring the environment in this way, you prevent change cycling, and no
changes originating at any database are lost.

Streams Tags in a Replication Environment

4-24 Oracle Streams Replication Administrator’s Guide

Streams Heterogeneous Information Sharing 5-1

5
Streams Heterogeneous

Information Sharing

This chapter explains concepts relating to Streams support for information sharing
between Oracle databases and non-Oracle databases.

This chapter contains these topics:

� Oracle to Non-Oracle Data Sharing with Streams

� Non-Oracle to Oracle Data Sharing with Streams

� Non-Oracle to Non-Oracle Data Sharing with Streams

Oracle to Non-Oracle Data Sharing with Streams

5-2 Oracle Streams Replication Administrator’s Guide

Oracle to Non-Oracle Data Sharing with Streams
To share DML changes from an Oracle source database to a non-Oracle destination
database, the Oracle database functions as a proxy and carries out some of the steps
that would normally be done at the destination database. That is, the events
intended for the non-Oracle destination database are dequeued in the Oracle
database itself and an apply process at the Oracle database applies the changes to
the non-Oracle database across a network connection through an Oracle
Transparent Gateway. Figure 5–1 shows an Oracle database sharing data with a
non-Oracle database.

Figure 5–1 Oracle to Non-Oracle Heterogeneous Data Sharing

You should configure the Oracle Transparent Gateway to use the transaction model
COMMIT_CONFIRM.

See Also: Your Oracle-supplied gateway-specific documentation
for information about using the transaction model
COMMIT_CONFIRM for your Oracle Transparent Gateway

Heterogeneous
Services

Oracle
Database

Non-Oracle
Database

Queue

Database
Objects

Dequeue
Events

Oracle
Transparent

Gateway

Apply
ChangesApply

Process

Oracle to Non-Oracle Data Sharing with Streams

Streams Heterogeneous Information Sharing 5-3

Change Capture and Staging in an Oracle to Non-Oracle Environment
In an Oracle to non-Oracle environment, the capture process functions the same
way as it would in an Oracle-only environment. That is, it finds changes in the redo
log, captures them based on capture process rules, and enqueues the captured
changes as logical change records (LCRs) into a SYS.AnyData queue. In addition, a
single capture process may capture changes that will be applied at both Oracle and
non-Oracle databases.

Similarly, the SYS.AnyData queue that stages the captured LCRs functions the
same way as it would in an Oracle-only environment, and you can propagate LCRs
to any number of intermediate queues in Oracle databases before they are applied
at a non-Oracle database.

Change Apply in an Oracle to Non-Oracle Environment
An apply process running in an Oracle database uses Heterogeneous Services and
an Oracle Transparent Gateway to apply changes encapsulated in LCRs directly to
database objects in a non-Oracle database. The LCRs are not propagated to a queue
in the non-Oracle database, as they would be in an Oracle-only Streams
environment. Instead, the apply process applies the changes directly through a
database link to the non-Oracle database.

See Also:

� Oracle Streams Concepts and Administration for general
information about capture processes, staging, and propagations

� Chapter 1, "Understanding Streams Replication" for
information about capture processes, staging, and propagations
in a Streams replication environment

See Also:

� Oracle Streams Concepts and Administration for general
information about apply processes

� "Apply and Streams Replication" on page 1-14 for information
about apply processes in a Streams replication environment

Oracle to Non-Oracle Data Sharing with Streams

5-4 Oracle Streams Replication Administrator’s Guide

Apply Process Configuration in an Oracle to Non-Oracle Environment
This section describes the configuration of an apply process that will apply changes
to a non-Oracle database.

Database Link to the Non-Oracle Database When you create an apply process that will
apply changes to a non-Oracle database, you previously must have configured
Heterogeneous Services, the Oracle Transparent Gateway, and a database link,
which will be used by the apply process to apply the changes to the non-Oracle
database. The database link must be created with an explicit CONNECT TO clause.

When the database link is created and working properly, create the apply process
using the CREATE_APPLY procedure in the DBMS_APPLY_ADM package and specify
the database link for the apply_database_link parameter. After you create an
apply process, you can use apply process rules to specify which changes are applied
at the non-Oracle database.

Substitute Key Columns in an Oracle to Non-Oracle Heterogeneous Environment If you use
substitute key columns for any of the tables at the non-Oracle database, then specify
the database link to the non-Oracle database when you run the SET_KEY_COLUMNS
procedure in the DBMS_APPLY_ADM package.

See Also:

� Oracle Database Heterogeneous Connectivity Administrator's Guide
for more information about Heterogeneous Services and Oracle
Transparent Gateways

� PL/SQL Packages and Types Reference for more information about
the procedures in the DBMS_APPLY_ADM package

� Oracle Streams Concepts and Administration for information
about specifying apply process rules

See Also:

� "Substitute Key Columns" on page 1-18

� "Managing the Substitute Key Columns for a Table" on
page 7-14

Oracle to Non-Oracle Data Sharing with Streams

Streams Heterogeneous Information Sharing 5-5

Parallelism in an Oracle to Non-Oracle Heterogeneous Environment You must set the
parallelism apply process parameter to 1, the default setting, when an apply
process is applying changes to a non-Oracle database. Currently, parallel apply to
non-Oracle databases is not supported. However, you may use multiple apply
processes to apply changes a non-Oracle database.

DML Handlers in an Oracle to Non-Oracle Heterogeneous Environment If you use a DML
handler to process row LCRs for any of the tables at the non-Oracle database, then
specify the database link to the non-Oracle database when you run the
SET_DML_HANDLER procedure in the DBMS_APPLY_ADM package.

Message Handlers in an Oracle to Non-Oracle Heterogeneous Environment If you want to
use a message handler to process user-enqueued messages for a non-Oracle
database, then, when you run the CREATE_APPLY procedure in the
DBMS_APPLY_ADM package, specify the database link to the non-Oracle database
using the apply_database_link parameter, and specify the message handler
procedure using the message_handler parameter.

Error and Conflict Handlers in an Oracle to Non-Oracle Heterogeneous Environment
Currently, error handlers and conflict handlers are not supported when sharing
data from an Oracle database to a non-Oracle database. If an apply error occurs,
then the transaction containing the LCR that caused the error is moved into the
error queue in the Oracle database.

Datatypes Applied at Non-Oracle Databases
When applying changes to a non-Oracle database, an apply process applies changes
made to columns of only the following datatypes:

� CHAR

� VARCHAR2

� NCHAR

� NVARCHAR2

See Also: "Managing a DML Handler" on page 7-16 and Oracle
Streams Concepts and Administration for information about event
processing options for an apply process

See Also: Oracle Streams Concepts and Administration for
information about event processing options and managing
message handlers

Oracle to Non-Oracle Data Sharing with Streams

5-6 Oracle Streams Replication Administrator’s Guide

� NUMBER

� DATE

� RAW

� TIMESTAMP

� TIMESTAMP WITH TIME ZONE

� TIMESTAMP WITH LOCAL TIME ZONE

� INTERVAL YEAR TO MONTH

� INTERVAL DAY TO SECOND

The apply process does not apply changes in columns of the following datatypes to
non-Oracle databases: CLOB, NCLOB, BLOB, BFILE, LONG, LONG RAW, ROWID,
UROWID, and user-defined types (including object types, REFs, varrays, and nested
tables). The apply process raises an error when an LCR contains a datatype that is
not listed, and the transaction containing the LCR that caused the error is moved to
the error queue in the Oracle database.

Each Oracle Transparent Gateway may have further limitations regarding
datatypes. For a datatype to be supported in an Oracle to non-Oracle environment,
the datatype must be supported by both Streams and the Oracle Transparent
Gateway being used.

Types of DML Changes Applied at Non-Oracle Databases
When you specify that DML changes made to certain tables should be applied at a
non-Oracle database, an apply process can apply only the following types of DML
changes:

� INSERT

� UPDATE

� DELETE

See Also:

� Oracle Database SQL Reference for more information about these
datatypes

� Your Oracle-supplied gateway-specific documentation for
information about transparent gateways

Oracle to Non-Oracle Data Sharing with Streams

Streams Heterogeneous Information Sharing 5-7

Instantiation in an Oracle to Non-Oracle Environment
Before you start an apply process that applies changes to a non-Oracle database,
complete the following steps to instantiate each table at the non-Oracle database:

1. Use the DBMS_HS_PASSTHROUGH package or the tools supplied with the
non-Oracle database to create the table at the non-Oracle database.

The following is an example that uses the DBMS_HS_PASSTHROUGH package to
create the hr.regions table in the het.net non-Oracle database:

CONNECT hr/hr

DECLARE
 ret INTEGER;
BEGIN
ret := DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE@het.net (
 'CREATE TABLE regions (region_id INTEGER, region_name VARCHAR(50))');
END;
/
COMMIT;

2. If the changes that will be shared between the Oracle and non-Oracle database
are captured by a capture process at the Oracle database, then prepare all tables
that will share data for instantiation.

Note: The apply process cannot apply DDL changes at non-Oracle
databases.

See Also: Oracle Database Heterogeneous Connectivity
Administrator's Guide and your Oracle supplied gateway-specific
documentation for more information about Heterogeneous Services
and Oracle Transparent Gateway

See Also: "Preparing Database Objects for Instantiation at a
Source Database" on page 8-2

Oracle to Non-Oracle Data Sharing with Streams

5-8 Oracle Streams Replication Administrator’s Guide

3. Create a PL/SQL procedure (or a C program) that performs the following
actions:

� Gets the current SCN using the GET_SYSTEM_CHANGE_NUMBER function in
the DBMS_FLASHBACK package.

� Invokes the ENABLE_AT_SYSTEM_CHANGE_NUMBER procedure in the
DBMS_FLASHBACK package to set the current session to the obtained SCN.
This action ensures that all fetches are done using the same SCN.

� Populates the table at the non-Oracle site by fetching row by row from the
table at the Oracle database and then inserting row by row into the table at
the non-Oracle database. All fetches should be done at the SCN obtained
using the GET_SYSTEM_CHANGE_NUMBER function.

For example, the following PL/SQL procedure gets the flashback SCN, fetches
each row in the hr.regions table in the current Oracle database, and inserts
them into the hr.regions table in the het.net non-Oracle database. Notice
that flashback is disabled before the rows are inserted into the non-Oracle
database.

SET SERVEROUTPUT ON
CREATE OR REPLACE PROCEDURE insert_reg IS
 CURSOR c1 IS
 SELECT region_id, region_name FROM hr.regions;
 c1_rec c1 % ROWTYPE;
 scn NUMBER;
BEGIN
 scn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER(
 query_scn => scn);
 /* Open c1 in flashback mode */
 OPEN c1;
 /* Disable Flashback */
 DBMS_FLASHBACK.DISABLE;
 LOOP
 FETCH c1 INTO c1_rec;
 EXIT WHEN c1%NOTFOUND;
 /*
 Note that all the DML operations inside the loop are performed
 with Flashback disabled
 */
 INSERT INTO hr.regions@het.net VALUES (
 c1_rec.region_id,
 c1_rec.region_name);
 END LOOP;

Oracle to Non-Oracle Data Sharing with Streams

Streams Heterogeneous Information Sharing 5-9

 COMMIT;
 DBMS_OUTPUT.PUT_LINE('SCN = ' || scn);
 EXCEPTION WHEN OTHERS THEN
 DBMS_FLASHBACK.DISABLE;
 RAISE;
END;
/

Make a note of the SCN returned.

If the Oracle Transparent Gateway you are using supports the Heterogeneous
Services callback functionality, then you can replace the loop in the previous
example with the following SQL statement:

INSERT INTO hr.region@het.net SELECT * FROM hr.region@!;

4. Set the instantiation SCN for the table at the non-Oracle database. Specify the
SCN you obtained in Step 3 in the SET_TABLE_INSTANTIATION_SCN
procedure in the DBMS_APPLY_ADM package to instruct the apply process to
skip all LCRs with changes that occurred before the SCN you obtained in Step
3. Make sure you set the apply_database_link parameter to the database
link for the remote non-Oracle database.

Note: The user who creates and runs the procedure in the
previous example must have EXECUTE privilege on the
DBMS_FLASHBACK package and all privileges on the tables
involved.

See Also: Oracle Database Heterogeneous Connectivity
Administrator's Guide and your Oracle-supplied gateway-specific
documentation for information about callback functionality and
your Oracle Transparent Gateway

See Also: "Setting Instantiation SCNs at a Destination Database"
on page 8-22 and PL/SQL Packages and Types Reference for more
information about the SET_TABLE_INSTANTIATION_SCN
procedure

Oracle to Non-Oracle Data Sharing with Streams

5-10 Oracle Streams Replication Administrator’s Guide

Transformations in an Oracle to Non-Oracle Environment
In an Oracle to non-Oracle environment, you can specify rule-based
transformations during capture or apply the same way as you would in an
Oracle-only environment. In addition, if your environment propagates LCRs to one
or more intermediate Oracle databases before they are applied at a non-Oracle
database, then you can specify a rule-based transformation during propagation
from a queue at an Oracle database to another queue at an Oracle database.

Messaging Gateway and Streams
Messaging Gateway is a feature of the Oracle database that provides propagation
between Oracle queues and non-Oracle message queuing systems. Messages
enqueued into an Oracle queue are automatically propagated to a non-Oracle
queue, and the messages enqueued into a non-Oracle queue are automatically
propagated to an Oracle queue. It provides guaranteed message delivery to the
non-Oracle messaging system and supports the native message format for the
non-Oracle messaging system. It also supports specification of user-defined
transformations that are invoked while propagating from an Oracle queue to the
non-Oracle messaging system or from the non-Oracle messaging system to an
Oracle queue.

Error Handling in an Oracle to Non-Oracle Environment
If the apply process encounters an unhandled error when it tries to apply an LCR at
a non-Oracle database, then the transaction containing the LCR is placed in the
error queue in the Oracle database that is running the apply process. The apply
process detects data conflicts in the same way as it does in an Oracle-only
environment, but automatic conflict resolution is not supported currently in an
Oracle to non-Oracle environment. Therefore, any data conflicts encountered are
treated as apply errors.

See Also: Oracle Streams Concepts and Administration for more
information about rule-based transformations

See Also: Oracle Streams Advanced Queuing User's Guide and
Reference for more information about the Messaging Gateway

Non-Oracle to Oracle Data Sharing with Streams

Streams Heterogeneous Information Sharing 5-11

Example Oracle to Non-Oracle Streams Environment
Chapter 13, "Single Source Heterogeneous Replication Example" contains a detailed
example that includes sharing data in an Oracle to non-Oracle Streams
environment.

Non-Oracle to Oracle Data Sharing with Streams
To capture and propagate changes from a non-Oracle database to an Oracle
database, a custom application is required. This application gets the changes made
to the non-Oracle database by reading from transaction logs, by using triggers, or
by some other method. The application must assemble and order the transactions
and must convert each change into a logical change record (LCR). Next, the
application must enqueue the LCRs into a queue in an Oracle database using the
DBMS_STREAMS_MESSAGING package or the DBMS_AQ package. The application
must commit after enqueuing all LCRs in each transaction. Figure 5–2 shows a
non-Oracle databases sharing data with an Oracle database.

Figure 5–2 Non-Oracle to Oracle Heterogeneous Data Sharing

Oracle
Database

Non-Oracle
Database

Queue
Get
Changes

Dequeue
Events

Enqueue User
Messages
Containing
LCRs

Database
Objects

User
Application

Apply
Changes

Apply
Process

Non-Oracle to Oracle Data Sharing with Streams

5-12 Oracle Streams Replication Administrator’s Guide

Change Capture and Staging in a Non-Oracle to Oracle Environment
Because the custom user application is responsible for assembling changes at the
non-Oracle database into LCRs and enqueuing the LCRs into a queue at the Oracle
database, the application is completely responsible for change capture. This means
that the application must construct LCRs that represent changes at the non-Oracle
database and then enqueue these LCRs into the queue at the Oracle database. The
application must enqueue transactions serially in the same order as the transactions
committed on the non-Oracle source database.

If you want to ensure the same transactional consistency at both the Oracle database
where changes are applied and the non-Oracle database where changes originate,
then you must use a transactional queue to stage the LCRs at the Oracle database.
For example, suppose a single transaction contains three row changes, and the
custom application enqueues three row LCRs, one for each change, and then
commits. With a transactional queue, a commit is performed by the apply process
after the third row LCR, retaining the consistency of the transaction. If you use a
nontransactional queue, then a commit is performed for each row LCR by the apply
process. The SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package
creates a transactional queue automatically.

Change Apply in a Non-Oracle to Oracle Environment
In a non-Oracle to Oracle environment, the apply process functions the same way as
it would in an Oracle-only environment. That is, it dequeues each event from its
associated queue based on apply process rules, performs any rule-based
transformation, and either sends the event to a handler or applies it directly. Error
handling and conflict resolution also function the same as they would in an
Oracle-only environment. So, you can specify a prebuilt update conflict handler or
create a custom conflict handler to resolve conflicts.

The apply process should be configured to apply user-enqueued LCRs, not
captured LCRs. So, the apply process should be created using the CREATE_APPLY
procedure in the DBMS_APPLY_ADM package, and the apply_captured parameter
should be set to false when you run this procedure. After the apply process is
created, you can use procedures in the DBMS_STREAMS_ADM package to add rules
for LCRs to the apply process rule sets.

See Also: "Constructing and Enqueuing LCRs" on page 9-3 for
more information about constructing and enqueuing LCRs

Non-Oracle to Non-Oracle Data Sharing with Streams

Streams Heterogeneous Information Sharing 5-13

Instantiation from a Non-Oracle Database to an Oracle Database
There is no automatic way to instantiate tables that exist at a non-Oracle database at
an Oracle database. However, you can perform the following general procedure to
instantiate a table manually:

1. At the non-Oracle database, use a non-Oracle utility to export the table to a flat
file.

2. At the Oracle database, create an empty table that matches the table at the
non-Oracle database.

3. At the Oracle database, use SQL*Loader to load the contents of the flat file into
the table.

Non-Oracle to Non-Oracle Data Sharing with Streams
Streams supports data sharing between two non-Oracle databases through a
combination of non-Oracle to Oracle data sharing and Oracle to non-Oracle data
sharing. Such an environment would use Streams in an Oracle database as an
intermediate database between two non-Oracle databases.

For example, a non-Oracle to non-Oracle environment may consist of the following
databases:

� A non-Oracle database named het1.net

� An Oracle database named dbs1.net

� A non-Oracle database named het2.net

A user application assembles changes at het1.net and enqueues them into a
queue in dbs1.net. Next, the apply process at dbs1.net applies the changes to
het2.net using Heterogeneous Services and an Oracle Transparent Gateway.
Another apply process at dbs1.net could apply some or all of the changes in the

See Also:

� Oracle Streams Concepts and Administration for more information
about apply processes, rules, and rule-based transformations

� Chapter 3, "Streams Conflict Resolution"

See Also: Oracle Database Utilities for information about using
SQL*Loader

Non-Oracle to Non-Oracle Data Sharing with Streams

5-14 Oracle Streams Replication Administrator’s Guide

queue locally at dbs1.net. One or more propagations at dbs1.net could
propagate some or all of the changes in the queue to other Oracle databases.

Part II
 Configuring and Administering Streams

Replication

This part describes configuring, managing, and monitoring a Streams replication
and contains the following chapters:

� Chapter 6, "Configuring Streams Replication"

� Chapter 7, "Managing Capture, Propagation, and Apply"

� Chapter 8, "Performing Instantiations"

� Chapter 9, "Managing Logical Change Records (LCRs)"

� Chapter 10, "Monitoring Streams Replication"

� Chapter 11, "Troubleshooting Streams Replication"

Configuring Streams Replication 6-1

6
Configuring Streams Replication

This chapter contains instructions for configuring Streams single source and
multiple source replication environments. This chapter also includes instructions
for adding objects and databases to an existing Streams replication environment.

This chapter contains these topics:

� Creating a New Streams Single Source Environment

� Adding Shared Objects to an Existing Single Source Environment

� Adding a New Destination Database to a Single Source Environment

� Creating a New Streams Multiple Source Environment

� Adding Shared Objects to an Existing Multiple Source Environment

� Adding a New Database to an Existing Multiple Source Environment

Note: The instructions in the following sections assume you will
use the DBMS_STREAMS_ADM package to configure your Streams
environment. If you use other packages, then extra steps may be
necessary for each task.

Creating a New Streams Single Source Environment

6-2 Oracle Streams Replication Administrator’s Guide

Creating a New Streams Single Source Environment
This section lists the general steps to perform when creating a new single source
Streams environment. A single source environment is one in which there is only
one source database for shared data. There may be more than one source database
in a single source environment, but no two source databases capture any of the
same data.

Before starting capture processes and configuring propagations in a new Streams
environment, make sure any propagations or apply processes that will receive
events are configured to handle these events. That is, the propagations or apply
processes should exist, and each one should be associated with rule sets that handle
the events appropriately. If these propagations and apply processes are not
configured properly to handle these events, then events may be lost.

This example assumes that the shared database objects are read-only at the
destination databases. If the shared objects are read/write at the destination
databases, then the replication environment will not stay in sync because Streams is
not configured to replicate the changes made to the shared objects at the destination
databases.

Figure 6–1 shows an example Streams single source replication environment.

Creating a New Streams Single Source Environment

Configuring Streams Replication 6-3

Figure 6–1 Example Streams Single Source Environment

You may create a Streams environment that is more complicated than the one
shown in Figure 6–1. For example, a single source Streams environment may use
downstream capture and directed networks.

Source Database

Database
link for

propagation

Includes:
· A SYS.AnyData queue
· Supplemental logging specifications
· A capture process
· One propagation for each

destination database
· Rule sets for the capture process

and the propagations
· Each shared object prepared for

instantiation

Destination Database

Includes:
· A SYS.AnyData queue
· Instantiation SCN set for each

shared object
· An apply process for the source database
· Rule sets for the apply process

· · ·

Additional
Destination
Databases

Creating a New Streams Single Source Environment

6-4 Oracle Streams Replication Administrator’s Guide

In general, if you are configuring a new Streams single source environment in
which changes for shared objects are captured at one database and then propagated
and applied at remote databases, then you should configure the environment in the
following order:

1. Complete the necessary tasks to prepare each database in your environment for
Streams:

� Configure a Streams administrator

� Set initialization parameters relevant to Streams

� For each database that will run a capture process, prepare the database to
run a capture process

� Configure network connectivity and database links

Some of these tasks may not be required at certain databases.

2. Create any necessary SYS.AnyData queues that do not already exist. When
you create a capture process or apply process, you associate the process with a
specific SYS.AnyData queue. When you create a propagation, you associate it
with a specific source queue and destination queue. See "Creating a
SYS.AnyData Queue to Stage LCRs" on page 7-9 for instructions.

3. Specify supplemental logging at each source database for any shared object. See
"Managing Supplemental Logging in a Streams Replication Environment" on
page 7-4 for instructions.

4. At each database, create the required capture processes, propagations, and
apply processes for your environment. You can create them in any order.

� Create one or more capture processes at each database that will capture
changes. Make sure each capture process uses rule sets that are appropriate
for capturing changes. Do not start the capture processes you create. Oracle
Corporation recommends that you use only one capture process for each
source database. See "Creating a Capture Process" on page 7-2 for
instructions.

When you use a procedure in the DBMS_STREAMS_ADM package to add the
capture process rules, it automatically runs the
PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or

See Also: Oracle Streams Concepts and Administration for more
information about preparing a database for Streams

Creating a New Streams Single Source Environment

Configuring Streams Replication 6-5

PREPARE_GLOBAL_INSTANTIATION procedure in the
DBMS_CAPTURE_ADM package for the specified table, specified schema, or
entire database, respectively, if the capture process is a local capture process
or a downstream capture process with a database link to the source
database.

You must run the appropriate procedure to prepare for instantiation
manually if any of the following conditions is true:

– You use the DBMS_RULE_ADM package to add or modify rules.

– You use an existing capture process and do not add capture process
rules for any shared object.

– You use a downstream capture process with no database link to the
source database.

If you must prepare for instantiation manually, then see "Preparing
Database Objects for Instantiation at a Source Database" on page 8-2 for
instructions.

� Create all propagations that propagate the captured events from a source
queue to a destination queue. Make sure each propagation uses rule sets
that are appropriate for propagating changes. See "Creating a Propagation
That Propagates LCRs" on page 7-10 for instructions.

� Create one or more apply processes at each database that will apply
changes. Make sure each apply process uses rule sets that are appropriate
for applying changes. Do not start the apply processes you create. See
"Creating an Apply Process That Applies LCRs" on page 7-12 for
instructions.

5. Either instantiate, or set the instantiation SCN for, each database object for
which changes are applied by an apply process. If the database objects do not
exist at a destination database, then instantiate them using export/import,
transportable tablespaces, or RMAN. If the database objects already exist at a
destination database, then set the instantiation SCNs for them manually.

� To instantiate database objects using export/import, first export them at the
source database. Next, import them at the destination database. See "Setting
Instantiation SCNs Using Export/Import" on page 8-23 for information.
Also, see "Instantiating Objects in a Streams Replication Environment" on
page 8-4 for information about instantiating objects using export/import,
transportable tablespaces, and RMAN.

Creating a New Streams Single Source Environment

6-6 Oracle Streams Replication Administrator’s Guide

If you use the original Export utility, then set the OBJECT_CONSISTENT
export parameter to y. Regardless of whether you use Data Pump export or
original export, you may specify a more stringent degree of consistency by
using an export parameter such as FLASHBACK_SCN or FLASHBACK_TIME.

If you use the original Import utility, then set the
STREAMS_INSTANTIATION import parameter to y.

� To set the instantiation SCN for a table, schema, or database manually, run
the appropriate procedure or procedures in the DBMS_APPLY_ADM package
at the destination database:

– SET_TABLE_INSTANTIATION_SCN

– SET_SCHEMA_INSTANTIATION_SCN

– SET_GLOBAL_INSTANTIATION_SCN

When you run one of these procedures, you must ensure that the shared
objects at the destination database are consistent with the source database
as of the instantiation SCN.

If you run SET_GLOBAL_INSTANTIATION_SCN at a destination database,
then set the recursive parameter for this procedure to true so that the
instantiation SCN also is set for each schema at the destination database
and for the tables owned by these schemas.

If you run SET_SCHEMA_INSTANTIATION_SCN at a destination database,
then set the recursive parameter for this procedure to true so that the
instantiation SCN also is set for each table in the schema.

If you set the recursive parameter to true in the
SET_GLOBAL_INSTANTIATION_SCN procedure or the
SET_SCHEMA_INSTANTIATION_SCN procedure, then a database link from
the destination database to the source database is required. This database
link must have the same name as the global name of the source database
and must be accessible to the user who executes the procedure. See "Setting
Instantiation SCNs Using the DBMS_APPLY_ADM Package" on page 8-25
for instructions.

Alternatively, you can perform a metadata export/import to set the
instantiation SCNs for existing database objects. If you choose this option,
then make sure no rows are imported. Also, make sure the shared objects at
all of the destination databases are consistent with the source database that
performed the export at the time of the export. If you are sharing DML
changes only, then table level export/import is sufficient. If you are sharing

Adding Shared Objects to an Existing Single Source Environment

Configuring Streams Replication 6-7

DDL changes also, then additional considerations apply. See "Setting
Instantiation SCNs Using Export/Import" on page 8-23 for more
information about performing a metadata export/import.

6. Start each apply process you created in Step 4 using the START_APPLY
procedure in the DBMS_APPLY_ADM package.

7. Start each capture process you created in Step 4 using the START_CAPTURE
procedure in the DBMS_CAPTURE_ADM package.

When you are configuring the environment, remember that capture processes and
apply processes are stopped when they are created, but propagations are scheduled
to propagate events immediately when they are created. The capture process must
be created before the relevant objects are instantiated at a remote destination
database. You must create the propagations and apply processes before starting the
capture process, and you must instantiate the objects before running the
whole stream.

Adding Shared Objects to an Existing Single Source Environment
You add existing database objects to an existing single source environment by
adding the necessary rules to the appropriate capture processes, propagations, and
apply processes. Before creating or altering capture or propagation rules in a
running Streams environment, make sure any propagations or apply processes that
will receive events as a result of the new or altered rules are configured to handle
these events. That is, the propagations or apply processes should exist, and each
one should be associated with rule sets that handle the events appropriately. If these
propagations and apply processes are not configured properly to handle these
events, then events may be lost.

See Also:

� Chapter 12, "Simple Single Source Replication Example" and
Chapter 13, "Single Source Heterogeneous
Replication Example" for detailed examples that set up single
source environments

Adding Shared Objects to an Existing Single Source Environment

6-8 Oracle Streams Replication Administrator’s Guide

For example, suppose you want to add a table to a Streams environment that
already captures, propagates, and applies changes to other tables. Assume only one
capture process will capture changes to this table, and only one apply process will
apply changes to this table. In this case, you must add one or more table rules to the
following rule sets:

� The positive rule set for the apply process that will apply changes to the table

� The positive rule set for each propagation that will propagate changes to the
table

� The positive rule set for the capture process that will capture changes to the
table

If you perform administrative steps in the wrong order, you may lose events. For
example, if you add the rule to a capture process rule set first, without stopping the
capture process, then the propagation will not propagate the changes if it does not
have a rule that instructs it to do so, and the changes may be lost.

This example assumes that the shared database objects are read-only at the
destination databases. If the shared objects are read/write at the destination
databases, then the replication environment will not stay in sync because Streams is
not configured to replicate the changes made to the shared objects at the destination
databases.

Figure 6–2 shows the additional configuration steps that must be completed to add
shared database objects to a single source Streams environment.

Adding Shared Objects to an Existing Single Source Environment

Configuring Streams Replication 6-9

Figure 6–2 Example of Adding Shared Objects to a Single Source Environment

Destination Database

Source Database

Existing
database

link for
propagation

Additional configuration includes:
· Supplemental logging specifications for

the added shared objects
· Each additional shared object prepared

for instantiation
· Appropriate rules for the added objects

included the rule sets for the capture
process and for the propagations

Additional configuration includes:
· Instantiation SCN set for each additional

shared object
· Appropriate rules for the added objects

included in the rule sets for the
apply process

· · ·

Additional
Destination
Databases

Adding Shared Objects to an Existing Single Source Environment

6-10 Oracle Streams Replication Administrator’s Guide

To avoid losing events, you should complete the configuration in the following
order:

1. At each source database where shared objects are being added, specify
supplemental logging for the added shared objects. See "Managing
Supplemental Logging in a Streams Replication Environment" on page 7-4 for
instructions.

2. Either stop the capture process, disable one of the propagation jobs, or stop the
apply processes:

� Use the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to
stop a capture process.

� Use the DISABLE_PROPAGATION_SCHEDULE procedure in the
DBMS_AQADM package to disable a propagation job.

� Use the STOP_APPLY procedure in the DBMS_APPLY_ADM package to stop
an apply process.

3. Add the relevant rules to the rule sets for the apply processes. To add rules to
the rule set for an apply process, you can run one of the following procedures:

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules
to the positive or negative rule set for an apply process. The
ADD_SUBSET_RULES procedure can add rules only to the positive rule set for
an apply process.

4. Add the relevant rules to the rule sets for the propagations. To add rules to the
rule set for a propagation, you can run one of the following procedures:

� DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES

See Also: Oracle Streams Concepts and Administration for more
information about completing these tasks

Adding Shared Objects to an Existing Single Source Environment

Configuring Streams Replication 6-11

Excluding the ADD_SUBSET_PROPAGATION_RULES procedure, these
procedures can add rules to the positive or negative rule set for a propagation.
The ADD_SUBSET_PROPAGATION_RULES procedure can add rules only to the
positive rule set for a propagation.

5. Add the relevant rules to the rule sets used by the capture process. To add rules
to a rule set for an existing capture process, you can run one of the following
procedures and specify the existing capture process:

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules
to the positive or negative rule set for a capture process. The
ADD_SUBSET_RULES procedure can add rules only to the positive rule set for a
capture process.

When you a procedure in the DBMS_STREAMS_ADM package to add the capture
process rules, it automatically runs the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION
procedure in the DBMS_CAPTURE_ADM package for the specified table, specified
schema, or entire database, respectively, if the capture process is a local capture
process or a downstream capture process with a database link to the source
database.

You must run the appropriate procedure to prepare for instantiation manually
if any of the following conditions is true:

� You use DBMS_RULE_ADM to create or modify rules in a capture process
rule set.

� You do not add rules for the added objects to a capture process rule set,
because the capture process already captures changes to these objects. In
this case, rules for the objects may be added to propagations and apply
processes in the environment, but not to the capture process.

� You use a downstream capture process with no database link to the source
database.

If you must prepare for instantiation manually, then see "Preparing Database
Objects for Instantiation at a Source Database" on page 8-2 for instructions.

Adding Shared Objects to an Existing Single Source Environment

6-12 Oracle Streams Replication Administrator’s Guide

6. At each destination database, either instantiate, or set the instantiation SCN for,
each database object you are adding to the Streams environment. If the database
objects do not exist at a destination database, then instantiate them using
export/import, transportable tablespaces, or RMAN. If the database objects
already exist at a destination database, then set the instantiation SCNs for them
manually.

� To instantiate database objects using export/import, first export them at the
source database. Next, import them at the destination database. See "Setting
Instantiation SCNs Using Export/Import" on page 8-23 for information.
Also, see "Instantiating Objects in a Streams Replication Environment" on
page 8-4 for information about instantiating objects using export/import,
transportable tablespaces, and RMAN.

If you use the original Export utility, then set the OBJECT_CONSISTENT
export parameter to y. Regardless of whether you use Data Pump export or
original export, you may specify a more stringent degree of consistency by
using an export parameter such as FLASHBACK_SCN or FLASHBACK_TIME.

If you use the original Import utility, then set the
STREAMS_INSTANTIATION import parameter to y.

� To set the instantiation SCN for a table, schema, or database manually, run
the appropriate procedure or procedures in the DBMS_APPLY_ADM package
at a destination database:

– SET_TABLE_INSTANTIATION_SCN

– SET_SCHEMA_INSTANTIATION_SCN

– SET_GLOBAL_INSTANTIATION_SCN

When you run one of these procedures at a destination database, you must
ensure that every added object at the destination database is consistent with
the source database as of the instantiation SCN.

If you run SET_GLOBAL_INSTANTIATION_SCN at a destination database,
then set the recursive parameter for this procedure to true so that the
instantiation SCN also is set for each schema at the destination database
and for the tables owned by these schemas.

If you run SET_SCHEMA_INSTANTIATION_SCN at a destination database,
then set the recursive parameter for this procedure to true so that the
instantiation SCN also is set for each table in the schema.

Adding Shared Objects to an Existing Single Source Environment

Configuring Streams Replication 6-13

If you set the recursive parameter to true in the
SET_GLOBAL_INSTANTIATION_SCN procedure or the
SET_SCHEMA_INSTANTIATION_SCN procedure, then a database link from
the destination database to the source database is required. This database
link must have the same name as the global name of the source database
and must be accessible to the user who executes the procedure. See "Setting
Instantiation SCNs Using the DBMS_APPLY_ADM Package" on page 8-25
for instructions.

Alternatively, you can perform a metadata export/import to set the
instantiation SCNs for existing database objects. If you choose this option,
then make sure no rows are imported. Also, make sure every added object
at the importing destination database is consistent with the source database
that performed the export at the time of the export. If you are sharing DML
changes only, then table level export/import is sufficient. If you are sharing
DDL changes also, then additional considerations apply. See "Setting
Instantiation SCNs Using Export/Import" on page 8-23 for more
information about performing a metadata export/import.

7. Start any Streams process you stopped in Step 2 or enable any propagation job
you disabled in Step 2:

� Use the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package
to start a capture process.

� Use the ENABLE_PROPAGATION_SCHEDULE procedure in the DBMS_AQADM
package to enable a propagation job.

� Use the START_APPLY procedure in the DBMS_APPLY_ADM package to start
an apply process.

You must stop the capture process, disable one of the propagation jobs, or stop the
apply process in Step 2 to ensure that the table or schema is instantiated before the
first LCR resulting from the added rule(s) reaches the apply process. Otherwise,
events could be lost or could result in apply errors, depending on whether the
apply process rule(s) have been added.

If you are certain that the added table is not being modified at the source database
during this procedure, and that there are no LCRs for the table already in the stream
or waiting to be captured, then you can perform Step 7 before Step 6 to reduce the
amount of time that a Streams process or propagation job is stopped.

See Also: Oracle Streams Concepts and Administration for more
information about completing these tasks

Adding a New Destination Database to a Single Source Environment

6-14 Oracle Streams Replication Administrator’s Guide

Adding a New Destination Database to a Single Source Environment
You add a destination database to an existing single source environment by creating
one or more new apply processes at the new destination database and, if necessary,
configuring one or more propagations to propagate changes to the new destination
database. You may also need to add rules to existing propagations in the stream that
propagates to the new destination database.

As in the example that describes "Adding Shared Objects to an Existing Single
Source Environment" on page 6-7, before creating or altering propagation rules in a
running Streams environment, make sure any propagations or apply processes that
will receive events as a result of the new or altered rules are configured to handle
these events. Otherwise, events may be lost.

This example assumes that the shared database objects are read-only at the
destination databases. If the shared objects are read/write at the destination
databases, then the replication environment will not stay in sync because Streams is
not configured to replicate the changes made to the shared objects at the destination
databases.

Figure 6–3 shows the additional configuration steps that must be completed to add
a destination database to a single source Streams environment.

See Also: "Add Objects to an Existing Streams Replication
Environment" on page 13-7 for a detailed example that adds objects
to an existing single source environment

Adding a New Destination Database to a Single Source Environment

Configuring Streams Replication 6-15

Figure 6–3 Example of Adding a Destination to a Single Source Environment

To avoid losing events, you should complete the configuration in the following
order:

1. Complete the necessary tasks to prepare each database in your environment for
Streams:

� Configure a Streams administrator

� Set initialization parameters relevant to Streams

� Configure network connectivity and database links

Some of these tasks may not be required at certain databases.

Existing Destination Database Added Destination Database

Source Database

Existing
database

link for
existing

propagation

Added
database

link for
 added

propagation

Additional configuration includes:
· Each shared object prepared

for instantiation
· A propagation for the added

destination database

Additional configuration includes:
· A SYS.AnyData queue
· Instantiation SCN set for each

shared object
· An apply process for the source database
· Rule sets for the apply process

No Additional configuration required

· · ·

Additional
Destination
Databases

Adding a New Destination Database to a Single Source Environment

6-16 Oracle Streams Replication Administrator’s Guide

2. Create any necessary SYS.AnyData queues that do not already exist at the
destination database. When you create an apply process, you associate the
apply process with a specific SYS.AnyData queue. See "Creating a
SYS.AnyData Queue to Stage LCRs" on page 7-9 for instructions.

3. Create one or more apply processes at the new destination database to apply
the changes from its source database. Make sure each apply process uses rule
sets that are appropriate for applying changes. Do not start any of the apply
processes at the new database. See "Creating an Apply Process That Applies
LCRs" on page 7-12 for instructions.

Keeping the apply processes stopped prevents changes made at the source
databases from being applied before the instantiation of the new database is
completed, which would otherwise lead to incorrect data and errors.

4. Configure any necessary propagations to propagate changes from the source
databases to the new destination database. Make sure each propagation uses
rule sets that are appropriate for propagating changes. See "Creating a
Propagation That Propagates LCRs" on page 7-10.

5. At the source database, prepare for instantiation each database object for which
changes will be applied by an apply process at the new destination database.
Run either the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION
procedure in the DBMS_CAPTURE_ADM package for the specified table, specified
schema, or entire database, respectively. See "Preparing Database Objects for
Instantiation at a Source Database" on page 8-2 for instructions.

6. At the new destination database, either instantiate, or set the instantiation SCNs
for, each database object for which changes will be applied by an apply process.
If the database objects do not already exist at the new destination database, then
instantiate them using export/import, transportable tablespaces, or RMAN. If
the database objects exist at the new destination database, then set the
instantiation SCNs for them.

� To instantiate database objects using export/import, first export them at the
source database. Next, import them at the destination database. See "Setting
Instantiation SCNs Using Export/Import" on page 8-23 for information.
Also, see "Instantiating Objects in a Streams Replication Environment" on
page 8-4 for information about instantiating objects using export/import,
transportable tablespaces, and RMAN.

See Also: Oracle Streams Concepts and Administration for more
information about preparing a database for Streams

Adding a New Destination Database to a Single Source Environment

Configuring Streams Replication 6-17

If you use the original Export utility, then set the OBJECT_CONSISTENT
export parameter to y. Regardless of whether you use Data Pump export or
original export, you may specify a more stringent degree of consistency by
using an export parameter such as FLASHBACK_SCN or FLASHBACK_TIME.

If you use the original Import utility, then set the
STREAMS_INSTANTIATION import parameter to y.

� To set the instantiation SCN for a table, schema, or database manually, run
the appropriate procedure or procedures in the DBMS_APPLY_ADM package
at the new destination database:

– SET_TABLE_INSTANTIATION_SCN

– SET_SCHEMA_INSTANTIATION_SCN

– SET_GLOBAL_INSTANTIATION_SCN

When you run one of these procedures, you must ensure that the shared
objects at the new destination database are consistent with the source
database as of the instantiation SCN.

If you run SET_GLOBAL_INSTANTIATION_SCN at a destination database,
then set the recursive parameter for this procedure to true so that the
instantiation SCN also is set for each schema at the destination database
and for the tables owned by these schemas.

If you run SET_SCHEMA_INSTANTIATION_SCN at a destination database,
then set the recursive parameter for this procedure to true so that the
instantiation SCN also is set for each table in the schema.

If you set the recursive parameter to true in the
SET_GLOBAL_INSTANTIATION_SCN procedure or the
SET_SCHEMA_INSTANTIATION_SCN procedure, then a database link from
the destination database to the source database is required. This database
link must have the same name as the global name of the source database
and must be accessible to the user who executes the procedure. See "Setting
Instantiation SCNs Using the DBMS_APPLY_ADM Package" on page 8-25
for instructions.

Alternatively, you can perform a metadata export/import to set the
instantiation SCNs for existing database objects. If you choose this option,
then make sure no rows are imported. Also, make sure the shared objects at
the importing destination database are consistent with the source database
that performed the export at the time of the export. If you are sharing DML
changes only, then table level export/import is sufficient. If you are sharing

Creating a New Streams Multiple Source Environment

6-18 Oracle Streams Replication Administrator’s Guide

DDL changes also, then additional considerations apply. See "Setting
Instantiation SCNs Using Export/Import" on page 8-23 for more
information about performing a metadata export/import.

7. Start the apply processes you created in Step 3 using the START_APPLY
procedure in the DBMS_APPLY_ADM package.

Creating a New Streams Multiple Source Environment
This section lists the general steps to perform when creating a new multiple source
Streams environment. A multiple source environment is one in which there is more
than one source database for any of the shared data.

This example uses the following terms:

� Populated database: A database that already contains the shared database
objects before you create the new multiple source environment. You must have
at least one populated database to create the new Streams environment.

� Export database: A populated database on which you perform an export of the
shared database objects. This export is used to instantiate the shared database
objects at the import databases. You may not have an export database if all of
the databases in the environment are populated databases.

� Import database: A database that does not contain the shared database objects
before you create the new multiple source environment. You instantiate the
shared database objects at an import database by performing an import of these
database objects. You may not have any import databases if all of the databases
in the environment are populated databases.

Figure 6–4 shows an example multiple source Streams environment.

See Also: "Add a Database to an Existing Streams Replication
Environment" on page 13-9 for detailed example that adds a
database to an existing single source environment

Creating a New Streams Multiple Source Environment

Configuring Streams Replication 6-19

Figure 6–4 Example Streams Multiple Source Environment

You may create a Streams environment that is more complicated than the one
shown in Figure 6–4. For example, a multiple source Streams environment may use
downstream capture and directed networks.

Source / Destination Database

Database
links for

propagations

Includes:
· One or more SYS.AnyData queues
· Supplemental logging specifications
· Each shared object prepared for

instantiation
· One or more capture processes
· One propagation for each of the other

destination databases
· Instantiation SCN set for each shared

object for each of the other source
databases

· One apply process for each of the other
source databases

· Rule sets for the capture process(es),
propagation(s), and apply process(es)

· Conflict resolution if necessary

· · ·

Additional
Source / Destination
Databases

Source / Destination Database

Includes:
· One or more SYS.AnyData queues
· Supplemental logging specifications
· Each shared object prepared for

instantiation
· One or more capture processes
· One propagation for each of the other

destination databases
· Instantiation SCN set for each shared

object for each of the other source
databases

· One apply process for each of the other
source databases

· Rule sets for the capture process(es),
propagation(s), and apply process(es)

· Conflict resolution if necessary

Creating a New Streams Multiple Source Environment

6-20 Oracle Streams Replication Administrator’s Guide

Complete the following steps to create a new multiple source environment:

1. Complete the necessary tasks to prepare each database in your environment for
Streams:

� Configure a Streams administrator

� Set initialization parameters relevant to Streams

� For each database that will run a capture process, prepare the database to
run a capture process

� Configure network connectivity and database links

Some of these tasks may not be required at certain databases.

2. At each populated database, specify any necessary supplemental logging for
the shared objects. See "Managing Supplemental Logging in a Streams
Replication Environment" on page 7-4 for instructions.

3. Create any necessary SYS.AnyData queues that do not already exist. When
you create a capture process or apply process, you associate the process with a
specific SYS.AnyData queue. When you create a propagation, you associate it
with a specific source queue and destination queue. See "Creating a
SYS.AnyData Queue to Stage LCRs" on page 7-9 for instructions.

4. At each database, create the required capture processes, propagations, and
apply processes for your environment. You can create them in any order.

� Create one or more capture processes at each database that will capture
changes. Make sure each capture process uses rule sets that are appropriate
for capturing changes. Do not start the capture processes you create. Oracle
Corporation recommends that you use only one capture process for each
source database. See "Creating a Capture Process" on page 7-2 for
instructions.

Note: Make sure no changes are made to the objects being shared
at a database you are adding to the Streams environment until the
instantiation at the database is complete.

See Also: Oracle Streams Concepts and Administration for more
information about preparing a database for Streams

Creating a New Streams Multiple Source Environment

Configuring Streams Replication 6-21

When you a procedure in the DBMS_STREAMS_ADM package to add the
capture process rules, it automatically runs the
PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or
PREPARE_GLOBAL_INSTANTIATION procedure in the
DBMS_CAPTURE_ADM package for the specified table, specified schema, or
entire database, respectively, if the capture process is a local capture process
or a downstream capture process with a database link to the source
database.

You must run the appropriate procedure to prepare for instantiation
manually if any of the following conditions is true:

– You use the DBMS_RULE_ADM package to add or modify rules.

– You use an existing capture process and do not add capture process
rules for any shared object.

– You use a downstream capture process with no database link to the
source database.

If you must prepare for instantiation manually, then see "Preparing
Database Objects for Instantiation at a Source Database" on page 8-2 for
instructions.

� Create all propagations that propagate the captured events from a source
queue to a destination queue. Make sure each propagation uses rule sets
that are appropriate for propagating changes. See "Creating a Propagation
That Propagates LCRs" on page 7-10 for instructions.

� Create one or more apply processes at each database that will apply
changes. Make sure each apply process uses rule sets that are appropriate
for applying changes. Do not start the apply processes you create. See
"Creating an Apply Process That Applies LCRs" on page 7-12 for
instructions.

After completing these steps, complete the steps in each of the following sections
that apply to your environment. You may need to complete the steps in only one of
these sections or in both of these sections:

Creating a New Streams Multiple Source Environment

6-22 Oracle Streams Replication Administrator’s Guide

� For each populated database, complete the steps in "Configuring Populated
Databases When Creating a Multiple Source Environment" on page 6-22. These
steps are required only if your environment has more than one populated
database.

� For each import database, complete the steps in "Adding Shared Objects to
Import Databases When Creating a New Environment" on page 6-23.

Configuring Populated Databases When Creating a Multiple Source Environment
After completing the steps in "Creating a New Streams Multiple Source
Environment" on page 6-18, complete the following steps for the populated
databases if your environment has more than one populated database:

1. For each populated database, set the instantiation SCN at each of the other
populated databases in the environment that will be a destination database of
the populated source database. These instantiation SCNs must be set, and only
the changes made at a particular populated database that are committed after
the corresponding SCN for that database will be applied at another populated
database.

For each populated database, you can set these instantiation SCNs in one of the
following ways:

a. Perform a metadata only export of the shared objects at the populated
database and import the metadata at each of the other populated databases.
Such an import sets the required instantiation SCNs for the populated
database at the other populated databases. Make sure no rows are
imported. Also, make sure the shared objects at each populated database
performing a metadata import are consistent with the populated database
that performed the metadata export at the time of the export.

If you are sharing DML changes only, then table level export/import is
sufficient. If you are sharing DDL changes also, then additional
considerations apply. See "Setting Instantiation SCNs Using
Export/Import" on page 8-23 for more information about performing a
metadata export/import.

b. Set the instantiation SCNs manually at each of the other populated
databases. Do this for each of the shared objects. Make sure the shared
objects at each populated database are consistent with the instantiation
SCNs you set at that database. See "Setting Instantiation SCNs Using the
DBMS_APPLY_ADM Package" on page 8-25 for instructions.

Creating a New Streams Multiple Source Environment

Configuring Streams Replication 6-23

Adding Shared Objects to Import Databases When Creating a New Environment
After completing the steps in "Creating a New Streams Multiple Source
Environment" on page 6-18, complete the following steps for the import databases:

1. Pick the populated database that you will use as the export database. Do not
perform the instantiations yet.

2. For each import database, set the instantiation SCNs at all of the other
databases in the environment that will be a destination database of the import
database. In this case, the import database will be the source database for these
destination databases. The databases where you set the instantiation SCNs may
include populated databases and other import databases.

a. If one or more schemas will be created at an import database during
instantiation or by a subsequent shared DDL change, then run the
SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM
package for this import database at all of the other databases in the
environment.

b. If a schema exists at an import database, and one or more tables will be
created in the schema during instantiation or by a subsequent shared DDL
change, then run the SET_SCHEMA_INSTANTIATION_SCN procedure in
the DBMS_APPLY_ADM package for the schema at all of the other databases
in the environment for the import database. Do this for each such schema.

See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package" on
page 8-25 for instructions.

Because you are running these procedures before any tables are instantiated at
the import databases, and because the local capture processes are configured
already for these import databases, you will not need to run the
SET_TABLE_INSTANTIATION_SCN procedure for each table created during
the instantiation. Instantiation SCNs will be set automatically for these tables at
all of the other databases in the environment that will be destination databases
of the import database.

3. At the export database you chose in Step 1, perform an export of the shared
objects. Next, perform an import of the shared objects at each import database.
See "Instantiating Objects in a Streams Replication Environment" on page 8-4
and Oracle Database Utilities for information about using export/import.

If you use the original Export utility, then set the OBJECT_CONSISTENT export
parameter to y. Regardless of whether you use Data Pump export or original

Creating a New Streams Multiple Source Environment

6-24 Oracle Streams Replication Administrator’s Guide

export, you may specify a more stringent degree of consistency by using an
export parameter such as FLASHBACK_SCN or FLASHBACK_TIME.

If you use the original Import utility, then set the STREAMS_INSTANTIATION
import parameter to y.

4. For each populated database, except for the export database, set the
instantiation SCNs at each import database that will be a destination database
of the populated source database. These instantiation SCNs must be set, and
only the changes made at a populated database that are committed after the
corresponding SCN for that database will be applied at an import database.

You can set these instantiation SCNs in one of the following ways:

a. Perform a metadata only export at each populated database and import the
metadata at each import database. Each import sets the required
instantiation SCNs for the populated database at the import database. In
this case, ensure that the shared objects at the import database are
consistent with the populated database at the time of the export.

If you are sharing DML changes only, then table level export/import is
sufficient. If you are sharing DDL changes also, then additional
considerations apply. See "Setting Instantiation SCNs Using
Export/Import" on page 8-23 for more information about performing a
metadata export/import.

b. For each populated database, set the instantiation SCN manually for each
shared object at each import database. Make sure the shared objects at each
import database are consistent with the populated database as of the
corresponding instantiation SCN. See "Setting Instantiation SCNs Using the
DBMS_APPLY_ADM Package" on page 8-25 for instructions.

Complete the Multiple Source Environment Configuration
Before completing the steps in this section, you should have completed the
following tasks:

� "Creating a New Streams Multiple Source Environment" on page 6-18

� "Configuring Populated Databases When Creating a Multiple Source
Environment" on page 6-22, if your environment has more than one populated
database

� "Adding Shared Objects to Import Databases When Creating a New
Environment" on page 6-23, if your environment has one or more import
databases

Adding Shared Objects to an Existing Multiple Source Environment

Configuring Streams Replication 6-25

When all of the previous configuration steps are finished, complete the following
steps:

1. At each database, configure conflict resolution if conflicts are possible. See
"Managing Streams Conflict Detection and Resolution" on page 7-23 for
instructions.

2. Start each apply process in the environment using the START_APPLY procedure
in the DBMS_APPLY_ADM package.

3. Start each capture process the environment using the START_CAPTURE
procedure in the DBMS_CAPTURE_ADM package.

Adding Shared Objects to an Existing Multiple Source Environment
You add existing database objects to an existing multiple source environment by
adding the necessary rules to the appropriate capture processes, propagations, and
apply processes.

This example uses the following terms:

� Populated database: A database that already contains the shared database
objects being added to the multiple source environment. You must have at least
one populated database to add the objects to the environment.

� Export database: A populated database on which you perform an export of the
database objects you are adding to the environment. This export is used to
instantiate the added database objects at the import databases. You may not
have an export database if all of the databases in the environment are populated
databases.

� Import database: A database that does not contain the shared database objects
before they are added to the multiple source environment. You instantiate the
shared database objects at an import database by performing an import of these
database objects. You may not have any import databases if all of the databases
in the environment are populated databases.

Before creating or altering capture or propagation rules in a running Streams
environment, make sure any propagations or apply processes that will receive
events as a result of the new or altered rules are configured to handle these events.
That is, the propagations or apply processes should exist, and each one should be
associated with rule sets that handle the events appropriately. If these propagations

See Also: Chapter 14, "Multiple Source Replication Example" for
a detailed example that creates a multiple source environment

Adding Shared Objects to an Existing Multiple Source Environment

6-26 Oracle Streams Replication Administrator’s Guide

and apply processes are not configured properly to handle these events, then events
may be lost.

For example, suppose you want to add a new table to a Streams environment that
already captures, propagates, and applies changes to other tables. Assume multiple
capture processes in the environment will capture changes to this table, and
multiple apply processes will apply changes to this table. In this case, you must add
one or more table rules to the following rule sets:

� The positive rule set for each apply process that will apply changes to the table.

� The positive rule set for each propagation that will propagate changes to the
table

� The positive rule set for each capture process that will capture changes to the
table

If you perform administrative steps in the wrong order, you may lose events. For
example, if you add the rule to a capture process rule set first, without stopping the
capture process, then the propagation will not propagate the changes if it does not
have a rule that instructs it to do so, and the changes may be lost.

Figure 6–5 shows the additional configuration steps that must be completed to add
shared database objects to a multiple source Streams environment.

Adding Shared Objects to an Existing Multiple Source Environment

Configuring Streams Replication 6-27

Figure 6–5 Example of Adding Shared Objects to a Multiple Source Environment

Source / Destination Database

Existing
database
links for

propagations

Additional configuration includes:
· Supplemental logging specifications

for added shared objects
· Each additional object prepared for

instantiation
· Appropriate rules for the added objects

included in the rule sets for the
capture process(es), propagation(s),
and apply process(es)

· Instantiation SCN set for each
additional object for each of the other
source databases

· Conflict resolution for the added objects
if necessary

· · ·

Additional
Source / Destination
Databases

Source / Destination Database

Additional configuration includes:
· Supplemental logging specifications

for added shared objects
· Each additional object prepared for

instantiation
· Appropriate rules for the added objects

included in the rule sets for the
capture process(es), propagation(s),
and apply process(es)

· Instantiation SCN set for each
additional object for each of the other
source databases

· Conflict resolution for the added objects
if necessary

Adding Shared Objects to an Existing Multiple Source Environment

6-28 Oracle Streams Replication Administrator’s Guide

To avoid losing events, you should complete the configuration in the following
order:

1. At each populated database, specify any necessary supplemental logging for
the objects being added to the environment. See "Managing Supplemental
Logging in a Streams Replication Environment" on page 7-4 for instructions.

2. Either stop all of the capture processes that will capture changes to the added
objects, disable all of the propagation jobs that will propagate changes to the
added objects, or stop all of the apply process that will apply changes to the
added objects:

� Use the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to
stop a capture process.

� Use the DISABLE_PROPAGATION_SCHEDULE procedure in the
DBMS_AQADM package to disable a propagation job.

� Use the STOP_APPLY procedure in the DBMS_APPLY_ADM package to stop
an apply process.

3. Add the relevant rules to the rule sets for the apply processes that will apply
changes to the added objects. To add rules to the rule set for an apply process,
you can run one of the following procedures:

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules
to the positive or negative rule set for an apply process. The
ADD_SUBSET_RULES procedure can add rules only to the positive rule set for
an apply process.

4. Add the relevant rules to the rule sets for the propagations that will propagate
changes to the added objects. To add rules to the rule set for a propagation, you
can run one of the following procedures:

� DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_PROPAGATION_RULES

See Also: Oracle Streams Concepts and Administration for more
information about completing these tasks

Adding Shared Objects to an Existing Multiple Source Environment

Configuring Streams Replication 6-29

� DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES

Excluding the ADD_SUBSET_PROPAGATION_RULES procedure, these
procedures can add rules to the positive or negative rule set for a propagation.
The ADD_SUBSET_PROPAGATION_RULES procedure can add rules only to the
positive rule set for a propagation.

5. Add the relevant rules to the rule sets used by each capture process that will
capture changes to the added objects. To add rules to a rule set for an existing
capture process, you can run one of the following procedures and specify the
existing capture process:

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules
to the positive or negative rule set for a capture process. The
ADD_SUBSET_RULES procedure can add rules only to the positive rule set for a
capture process.

When you a procedure in the DBMS_STREAMS_ADM package to add the capture
process rules, it automatically runs the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION
procedure in the DBMS_CAPTURE_ADM package for the specified table, specified
schema, or entire database, respectively, if the capture process is a local capture
process or a downstream capture process with a database link to the source
database.

You must run the appropriate procedure to prepare for instantiation manually if
any of the following conditions is true:

� You use DBMS_RULE_ADM to create or modify rules in a capture process
rule set.

� You do not add rules for the added objects to a capture process rule set,
because the capture process already captures changes to these objects. In
this case, rules for the objects may be added to propagations and apply
processes in the environment, but not to the capture process.

� You use a downstream capture process with no database link to the source
database.

Adding Shared Objects to an Existing Multiple Source Environment

6-30 Oracle Streams Replication Administrator’s Guide

If you must prepare for instantiation manually, then see "Preparing Database
Objects for Instantiation at a Source Database" on page 8-2 for instructions.

After completing these steps, complete the steps in each of the following sections
that apply to your environment. You may need to complete the steps in only one of
these sections or in both of these sections:

� For each populated database, complete the steps in "Configuring Populated
Databases When Adding Shared Objects" on page 6-30. These steps are required
only if your environment has more than one populated database.

� For each import database, complete the steps in "Adding Shared Objects to
Import Databases in an Existing Environment" on page 6-31.

Configuring Populated Databases When Adding Shared Objects
After completing the steps in "Adding Shared Objects to an Existing Multiple
Source Environment" on page 6-25, complete the following steps for each populated
database if your environment has more than one populated database:

1. For each populated database, set the instantiation SCN for each added object at
the other populated databases in the environment. These instantiation SCNs
must be set, and only the changes made at a particular populated database that
are committed after the corresponding SCN for that database will be applied at
another populated database.

For each populated database, you can set these instantiation SCNs for each
added object in one of the following ways:

a. Perform a metadata only export of the added objects at the populated
database and import the metadata at each of the other populated databases.
Such an import sets the required instantiation SCNs for the database at the
other databases. Make sure no rows are imported. Also, make sure the
shared objects at each of the other populated databases are consistent with
the populated database that performed the export at the time of the export.

If you are sharing DML changes only, then table level export/import is
sufficient. If you are sharing DDL changes also, then additional
considerations apply. See "Setting Instantiation SCNs Using
Export/Import" on page 8-23 for more information about performing a
metadata export/import.

b. Set the instantiation SCNs manually for the added objects at each of the
other populated databases. Make sure every added object at each populated
database is consistent with the instantiation SCNs you set at that database.

Adding Shared Objects to an Existing Multiple Source Environment

Configuring Streams Replication 6-31

See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package"
on page 8-25 for instructions.

Adding Shared Objects to Import Databases in an Existing Environment
After completing the steps in "Adding Shared Objects to an Existing Multiple
Source Environment" on page 6-25, complete the following steps for the import
databases:

1. Pick the populated database that you will use as the export database. Do not
perform the instantiations yet.

2. For each import database, set the instantiation SCNs for the added objects at all
of the other databases in the environment that will be a destination database of
the import database. In this case, the import database will be the source
database for these destination databases. The databases where you set the
instantiation SCNs may be populated databases and other import databases.

a. If one or more schemas will be created at an import database during
instantiation or by a subsequent shared DDL change, then run the
SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM
package for this import database at all of the other databases in the
environment.

b. If a schema exists at an import database, and one or more tables will be
created in the schema during instantiation or by a subsequent shared DDL
change, then run the SET_SCHEMA_INSTANTIATION_SCN procedure in
the DBMS_APPLY_ADM package for the schema for this import database at
each of the other databases in the environment. Do this for each such
schema.

See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package" on
page 8-25 for instructions.

Because you are running these procedures before any tables are instantiated at
the import databases, and because the local capture processes are configured
already for these import databases, you will not need to run the
SET_TABLE_INSTANTIATION_SCN procedure for each table created during
instantiation. Instantiation SCNs will be set automatically for these tables at all
of the other databases in the environment that will be destination databases of
the import database.

3. At the export database you chose in Step 1, perform an export of the shared
objects. Next, perform an import of the shared objects at each import database.

Adding Shared Objects to an Existing Multiple Source Environment

6-32 Oracle Streams Replication Administrator’s Guide

See "Instantiating Objects in a Streams Replication Environment" on page 8-4
and Oracle Database Utilities for information about using export/import.

If you use the original Export utility, then set the OBJECT_CONSISTENT export
parameter to y. Regardless of whether you use Data Pump export or original
export, you may specify a more stringent degree of consistency by using an
export parameter such as FLASHBACK_SCN or FLASHBACK_TIME.

If you use the original Import utility, then set the STREAMS_INSTANTIATION
import parameter to y.

4. For each populated database, except for the export database, set the
instantiation SCNs for the added objects at each import database that will be a
destination database of the populated source database. These instantiation
SCNs must be set, and only the changes made at a populated database that are
committed after the corresponding SCN for that database will be applied at an
import database.

For each populated database, you can set these instantiation SCNs for the
added objects in one of the following ways:

a. Perform a metadata only export of the added objects at the populated
database and import the metadata at each import database. Each import
sets the required instantiation SCNs for the populated database at the
import database. In this case, ensure that every added object at the import
database is consistent with the populated database at the time of the export.

If you are sharing DML changes only, then table level export/import is
sufficient. If you are sharing DDL changes also, then additional
considerations apply. See "Setting Instantiation SCNs Using
Export/Import" on page 8-23 for more information about performing a
metadata export/import.

b. Set the instantiation SCNs manually for the added objects at each import
database. Make sure every added object at each import database is
consistent with the populated database as of the corresponding
instantiation SCN. See "Setting Instantiation SCNs Using the
DBMS_APPLY_ADM Package" on page 8-25 for instructions.

Adding Shared Objects to an Existing Multiple Source Environment

Configuring Streams Replication 6-33

Complete the Adding Objects to a Multiple Source Environment Configuration
Before completing the configuration, you should have completed the following
tasks:

� "Adding Shared Objects to an Existing Multiple Source Environment" on
page 6-25

� "Configuring Populated Databases When Adding Shared Objects" on page 6-30,
if your environment has more than one populated database

� "Adding Shared Objects to Import Databases in an Existing Environment" on
page 6-31, if your environment had import databases

When all of the previous configuration steps are finished, complete the following
steps:

1. At each database, configure conflict resolution for the added database objects if
conflicts are possible. See "Managing Streams Conflict Detection and
Resolution" on page 7-23 for instructions.

2. Start each Streams process you stopped and enable each propagation job you
disabled in Step 2 on page 6-28 in "Adding Shared Objects to an Existing
Multiple Source Environment":

� Use the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package
to start a capture process.

� Use the ENABLE_PROPAGATION_SCHEDULE procedure in the DBMS_AQADM
package to enable a propagation job.

� Use the START_APPLY procedure in the DBMS_APPLY_ADM package to start
an apply process.

See Also: Oracle Streams Concepts and Administration for more
information about completing these tasks

Adding a New Database to an Existing Multiple Source Environment

6-34 Oracle Streams Replication Administrator’s Guide

Adding a New Database to an Existing Multiple Source Environment
Figure 6–6 shows the additional configuration steps that must be completed to add
a source/destination database to a multiple source Streams environment.

Figure 6–6 Example of Adding a Database to a Multiple Source Environment

Existing Source / Destination Database

Added
database
links for

propagations

Additional configuration includes:
· A SYS.AnyData queue to stage changes

from the new source database (optional)
· Each shared object prepared for

instantiation
· A propagation for the added database
· Instantiation SCN set for each shared

object for the added source database
· An apply process for the added

source database
· Rule sets for the added propagation

and apply process

· · ·

Additional
Source / Destination
Databases

Added Source / Destination Database

Additional configuration includes:
· One or more SYS.AnyData queues
· Supplemental logging specifications
· Each shared object prepared for

instantiation
· One or more capture processes
· One propagation for each of the other

destination databases
· Instantiation SCN set for each shared

object for each of the other source
databases

· One apply process for each of the other
source databases

· Rule sets for the capture process(es),
propagation(s), and apply process(es)

· Conflict resolution if necessary

Adding a New Database to an Existing Multiple Source Environment

Configuring Streams Replication 6-35

Complete the following steps to add a new source/destination database to an
existing multiple source Streams environment:

1. Complete the necessary tasks to prepare each database in your environment for
Streams:

� Configure a Streams administrator

� Set initialization parameters relevant to Streams

� For each database that will run a capture process, prepare the database to
run a capture process

� Configure network connectivity and database links

Some of these tasks may not be required at certain databases.

2. Create any necessary SYS.AnyData queues that do not already exist. When
you create a capture process or apply process, you associate the process with a
specific SYS.AnyData queue. When you create a propagation, you associate it
with a specific source queue and destination queue. See "Creating a
SYS.AnyData Queue to Stage LCRs" on page 7-9 for instructions.

3. Create one or more apply processes at the new database to apply the changes
from its source databases. Make sure each apply process uses rule sets that are
appropriate for applying changes. Do not start any apply process at the new
database. See "Creating an Apply Process That Applies LCRs" on page 7-12 for
instructions.

Keeping the apply processes stopped prevents changes made at the source
databases from being applied before the instantiation of the new database is
completed, which would otherwise lead to incorrect data and errors.

4. If the new database will be a source database, then, at all databases that will be
destination databases for the changes made at the new database, create one or
more apply processes to apply changes from the new database. Make sure each
apply process uses rule sets that are appropriate for applying changes. Do not

Note: Make sure no changes are made to the objects being shared
at the database you are adding to the Streams environment until
the instantiation at the database is complete.

See Also: Oracle Streams Concepts and Administration for more
information about preparing a database for Streams

Adding a New Database to an Existing Multiple Source Environment

6-36 Oracle Streams Replication Administrator’s Guide

start any of these new apply processes. See "Creating an Apply Process That
Applies LCRs" on page 7-12 for instructions.

5. Configure propagations at the databases that will be source databases of the
new database to send changes to the new database. Make sure each propagation
uses rule sets that are appropriate for propagating changes. See "Creating a
Propagation That Propagates LCRs" on page 7-10.

6. If the new database will be a source database, then configure propagations at
the new database to send changes from the new database to each of its
destination databases. Make sure each propagation uses rule sets that are
appropriate for propagating changes. See "Creating a Propagation That
Propagates LCRs" on page 7-10.

7. If the new database will be a source database, and the shared objects already
exist at the new database, then specify any necessary supplemental logging for
the shared objects at the new database. See "Managing Supplemental Logging
in a Streams Replication Environment" on page 7-4 for instructions.

8. At each source database for the new database, prepare for instantiation each
database object for which changes will be applied by an apply process at the
new database. Run either the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION
procedure in the DBMS_CAPTURE_ADM package for the specified table, specified
schema, or entire database, respectively. See "Preparing Database Objects for
Instantiation at a Source Database" on page 8-2 for instructions.

9. If the new database will be a source database, then create one or more capture
processes to capture the relevant changes. See "Creating a Capture Process" on
page 7-2 for instructions. Oracle Corporation recommends that you use only
one capture process for each source database.

When you use a procedure in the DBMS_STREAMS_ADM package to add the
capture process rules, it automatically runs the
PREPARE_TABLE_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, or
PREPARE_GLOBAL_INSTANTIATION procedure in the DBMS_CAPTURE_ADM
package for the specified table, specified schema, or entire database,
respectively, if the capture process is a local capture process or a downstream
capture process with a database link to the source database.

Adding a New Database to an Existing Multiple Source Environment

Configuring Streams Replication 6-37

You must run the appropriate procedure to prepare for instantiation manually
if any of the following conditions is true:

� You use the DBMS_RULE_ADM package to add or modify rules.

� You use an existing capture process and do not add capture process rules
for any shared object.

� You use a downstream capture process with no database link to the source
database.

If you must prepare for instantiation manually, then see "Preparing Database
Objects for Instantiation at a Source Database" on page 8-2 for instructions.

10. If the new database will be a source database, then start any capture process
you created in Step 9 using the START_CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

After completing these steps, complete the steps in the appropriate section:

� If the objects that are to be shared with the new database already exist at the
new database, then complete the steps in "Configuring Databases If the Shared
Objects Already Exist at the New Database" on page 6-37.

� If the objects that are to be shared with the new database do not already exist at
the new database, complete the steps in "Adding Shared Objects to a New
Database" on page 6-39.

Configuring Databases If the Shared Objects Already Exist at the New Database
After completing the steps in "Adding a New Database to an Existing Multiple
Source Environment" on page 6-34, complete the following steps if the objects that
are to be shared with the new database already exist at the new database:

1. For each source database of the new database, set the instantiation SCNs at the
new database. These instantiation SCNs must be set, and only the changes
made at a source database that are committed after the corresponding SCN for
that database will be applied at the new database.

For each source database of the new database, you can set these instantiation
SCNs in one of the following ways:

a. Perform a metadata only export of the shared objects at the source database
and import the metadata at the new database. The import sets the required
instantiation SCNs for the source database at the new database. Make sure
no rows are imported. In this case, ensure that the shared objects at the new
database are consistent with the source database at the time of the export.

Adding a New Database to an Existing Multiple Source Environment

6-38 Oracle Streams Replication Administrator’s Guide

If you are sharing DML changes only, then table level export/import is
sufficient. If you are sharing DDL changes also, then additional
considerations apply. See "Setting Instantiation SCNs Using
Export/Import" on page 8-23 for more information about performing a
metadata export/import.

b. Set the instantiation SCNs manually at the new database for the shared
objects. Make sure the shared objects at the new database are consistent
with the source database as of the corresponding instantiation SCN. See
"Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package" on
page 8-25 for instructions.

2. For the new database, set the instantiation SCNs at each destination database of
the new database. These instantiation SCNs must be set, and only the changes
made at the new source database that are committed after the corresponding
SCN will be applied at a destination database. If the new database is not a
source database, then do not complete this step.

You can set these instantiation SCNs for the new database in one of the
following ways:

a. Perform a metadata only export at the new database and import the
metadata at each destination database. Make sure no rows are imported.
The import sets the required instantiation SCNs for the new database at
each destination database. In this case, ensure that the shared objects at
each destination database are consistent with the new database at the time
of the export.

If you are sharing DML changes only, then table level export/import is
sufficient. If you are sharing DDL changes also, then additional
considerations apply. See "Setting Instantiation SCNs Using
Export/Import" on page 8-23 for more information about performing a
metadata export/import.

b. Set the instantiation SCNs manually at each destination database for the
shared objects. Make sure the shared objects at each destination database
are consistent with the new database as of the corresponding instantiation
SCN. See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM
Package" on page 8-25 for instructions.

3. At the new database, configure conflict resolution if conflicts are possible. See
"Managing Streams Conflict Detection and Resolution" on page 7-23 for
instructions.

Adding a New Database to an Existing Multiple Source Environment

Configuring Streams Replication 6-39

4. Start the apply processes that you created at the new database in Step 3 on
page 6-35 using the START_APPLY procedure in the DBMS_APPLY_ADM
package.

5. Start the apply processes that you created at each of the other destination
databases in Step 4 on page 6-35. If the new database is not a source database,
then do not complete this step.

Adding Shared Objects to a New Database
After completing the steps in "Adding a New Database to an Existing Multiple
Source Environment" on page 6-34, complete the following steps if the objects that
are to be shared with the new database do not already exist at the new database:

1. If the new database is a source database for other databases, then, at each
destination database of the new source database, set the instantiation SCNs for
the new database.

a. If one or more schemas will be created at the new database during
instantiation or by a subsequent shared DDL change, then run the
SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM
package for the new database at each destination database of the new
database.

b. If a schema exists at the new database, and one or more tables will be
created in the schema during instantiation or by a subsequent shared DDL
change, then run the SET_SCHEMA_INSTANTIATION_SCN procedure in
the DBMS_APPLY_ADM package for the schema at each destination database
of the new database. Do this for each such schema.

See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package" on
page 8-25 for instructions.

Because you are running these procedures before any tables are instantiated at
the new database, and because the local capture process is configured already
at the new database, you will not need to run the
SET_TABLE_INSTANTIATION_SCN procedure for each table created during
instantiation. Instantiation SCNs will be set automatically for these tables at all
of the other databases in the environment that will be destination databases of
the new database.

If the new database will not be a source database, then do not complete this
step, and continue with the next step.

Adding a New Database to an Existing Multiple Source Environment

6-40 Oracle Streams Replication Administrator’s Guide

2. Pick one source database from which to instantiate the shared objects at the new
database using export/import. First, perform an export of the shared objects.
Next, perform an import of the shared objects at the new database. See
"Instantiating Objects in a Streams Replication Environment" on page 8-4 and
Oracle Database Utilities for information about using export/import.

If you use the original Export utility, then set the OBJECT_CONSISTENT export
parameter to y. Regardless of whether you use Data Pump export or original
export, you may specify a more stringent degree of consistency by using an
export parameter such as FLASHBACK_SCN or FLASHBACK_TIME.

If you use the original Import utility, then set the STREAMS_INSTANTIATION
import parameter to y.

3. For each source database of the new database, except for the source database
that performed the export for instantiation in Step 2, set the instantiation SCNs
at the new database. These instantiation SCNs must be set, and only the
changes made at a source database that are committed after the corresponding
SCN for that database will be applied at the new database.

For each source database, you can set these instantiation SCNs in one of the
following ways:

a. Perform a metadata only export at the source database and import the
metadata at the new database. The import sets the required instantiation
SCNs for the source database at the new database. In this case, ensure that
the shared objects at the new database are consistent with the source
database at the time of the export.

If you are sharing DML changes only, then table level export/import is
sufficient. If you are sharing DDL changes also, then additional
considerations apply. See "Setting Instantiation SCNs Using
Export/Import" on page 8-23 for more information about performing a
metadata export/import.

b. Set the instantiation SCNs manually at the new database for the shared
objects. Make sure the shared objects at the new database are consistent
with the source database as of the corresponding instantiation SCN. See
"Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package" on
page 8-25 for instructions.

4. At the new database, configure conflict resolution if conflicts are possible. See
"Managing Streams Conflict Detection and Resolution" on page 7-23 for
instructions.

Adding a New Database to an Existing Multiple Source Environment

Configuring Streams Replication 6-41

5. Start the apply processes that you created in Step 3 on page 6-35 at the new
database using the START_APPLY procedure in the DBMS_APPLY_ADM
package.

6. Start the apply processes that you created in Step 4 on page 6-35 at each of the
other destination databases. If the new database is not a source database, then
do not complete this step.

Adding a New Database to an Existing Multiple Source Environment

6-42 Oracle Streams Replication Administrator’s Guide

Managing Capture, Propagation, and Apply 7-1

7
Managing Capture, Propagation, and Apply

This chapter contains instructions for managing Streams capture processes,
propagations, and Streams apply processes in a Streams replication environment.
This chapter also includes instructions for managing Streams tags, and for
performing database point-in-time recovery at a destination database in a Streams
environment

This chapter contains these topics:

� Managing Capture for Streams Replication

� Managing Staging and Propagation for Streams Replication

� Managing Apply for Streams Replication

� Replicating and Maintaining Tablespaces Using Streams

� Managing Streams Tags

� Changing the DBID or Global Name of a Source Database

� Resynchronizing a Source Database in a Multiple Source Environment

� Performing Database Point-in-Time Recovery in a Streams Environment

Managing Capture for Streams Replication

7-2 Oracle Streams Replication Administrator’s Guide

Managing Capture for Streams Replication
The following sections describe management tasks for a capture process in a
Streams replication environment:

� Creating a Capture Process

� Managing Supplemental Logging in a Streams Replication Environment

You also may need to perform other management tasks.

Creating a Capture Process
A capture process typically starts the process of replicating a database change by
capturing the change, converting the change into a logical change record (LCR), and
enqueuing the change into a SYS.AnyData queue. From there, the LCR can be
propagated to other databases and applied at these database to complete the
replication process.

You can create a capture process that captures changes to the local source database,
or you can create a capture process that captures changes remotely at a downstream
database. If a capture process runs on a downstream database, then archived redo
log files from the source database are copied to the downstream database, and the
capture process captures changes in these files at the downstream database.

You can use any of the following procedures to create a local capture process:

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

� DBMS_CAPTURE_ADM.CREATE_CAPTURE

See Also: Oracle Streams Replication Administrator's Guide for more
information about managing a capture process

Note: To create a capture process, a user must be granted
DBA role.

Managing Capture for Streams Replication

Managing Capture, Propagation, and Apply 7-3

The following is an example that runs the ADD_SCHEMA_RULES procedure in the
DBMS_STREAMS_ADM package to create a local capture process:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'capture',
 streams_name => 'strep01_capture',
 queue_name => 'strep01_queue',
 include_dml => true,
 include_ddl => true,
 include_tagged_lcr => false,
 source_database => NULL,
 inclusion_rule => true);
END;
/

Running this procedure performs the following actions:

� Creates a capture process named strep01_capture. The capture process is
created only if it does not already exist. If a new capture process is created, then
this procedure also sets the start SCN to the point in time of creation.

� Associates the capture process with an existing queue named strep01_queue

� Creates a positive rule set and associates it with the capture process, if the
capture process does not have a positive rule set, because the
inclusion_rule parameter is set to true. The rule set uses the
SYS.STREAMS$_EVALUATION_CONTEXT evaluation context. The rule set name
is specified by the system.

� Creates two rules. One rule evaluates to TRUE for DML changes to the hr
schema and the database objects in the hr schema, and the other rule evaluates
to TRUE for DDL changes to the hr schema and the database objects in the hr
schema. The rule names are specified by the system.

� Adds the two rules to the positive rule set associated with the capture process.
The rules are added to the positive rule set because the inclusion_rule
parameter is set to true.

� Specifies that the capture process captures a change in the redo log only if the
change has a NULL tag, because the include_tagged_lcr parameter is set
to false. This behavior is accomplished through the system-created rules for
the capture process.

Managing Capture for Streams Replication

7-4 Oracle Streams Replication Administrator’s Guide

� Creates a capture process that captures local changes to the source database
because the source_database parameter is set to NULL. For a local capture
process, you also may specify the global name of the local database for this
parameter.

� Prepares all of the database objects in the hr schema, and all of the database
objects added to the hr schema in the future, for instantiation

Managing Supplemental Logging in a Streams Replication Environment
Supplemental logging must be specified for certain columns at a source database for
changes to the columns to be applied successfully at a destination database. The
following sections illustrate how to manage supplemental logging at a source
database:

� Specifying Table Supplemental Logging Using Unconditional Log Groups

� Specifying Table Supplemental Logging Using Conditional Log Groups

� Dropping a Supplemental Log Group

� Specifying Database Supplemental Logging of Key Columns

� Dropping Database Supplemental Logging of Key Columns

Attention: When a capture process is started or restarted, it may
need to scan redo log files with a FIRST_CHANGE# value that is
lower than start SCN. Removing required redo log files before they
are scanned by a capture process causes the capture process to
abort. You can query the DBA_CAPTURE data dictionary view to
determine the first SCN, start SCN, and required checkpoint SCN.
A capture process needs the redo log file that includes the required
checkpoint SCN, and all subsequent redo log files.

See Also: Oracle Streams Concepts and Administration for more
information about creating a capture process, including
information about creating a downstream capture process, and
for more information about the first SCN and start SCN for a
capture process

Note: LOB, LONG, LONG RAW, and user-defined type columns
cannot be part of a supplemental log group.

Managing Capture for Streams Replication

Managing Capture, Propagation, and Apply 7-5

Specifying Table Supplemental Logging Using Unconditional Log Groups
The following sections describe creating an unconditional log group:

� Specifying an Unconditional Supplemental Log Group for Primary Key
Column(s)

� Specifying an Unconditional Supplemental Log Group for All Table Columns

� Specifying an Unconditional Supplemental Log Group That Includes Selected
Columns

Specifying an Unconditional Supplemental Log Group for Primary Key Column(s) To specify
an unconditional supplemental log group that only includes the primary key
column(s) for a table, use an ALTER TABLE statement with the PRIMARY KEY option
in the ADD SUPPLEMENTAL LOG DATA clause.

For example, the following statement adds the primary key column of the
hr.regions table to an unconditional log group:

ALTER TABLE hr.regions ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

The log group has a system-generated name.

Specifying an Unconditional Supplemental Log Group for All Table Columns To specify an
unconditional supplemental log group that includes all of the columns in a table,
use an ALTER TABLE statement with the ALL option in the ADD SUPPLEMENTAL
LOG DATA clause.

For example, the following statement adds all of the columns in the
hr.departments table to an unconditional log group:

ALTER TABLE hr.regions ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

The log group has a system-generated name.

See Also:

� "Supplemental Logging for Streams Replication" on page 1-9
for information about when supplemental logging is required

� "Monitoring Supplemental Logging" on page 10-2

Managing Capture for Streams Replication

7-6 Oracle Streams Replication Administrator’s Guide

Specifying an Unconditional Supplemental Log Group That Includes Selected Columns To
specify an unconditional supplemental log group that contains columns that you
select, use an ALTER TABLE statement with the ALWAYS specification for the ADD
SUPPLEMENTAL LOG GROUP clause.These log groups may include key columns,
if necessary.

For example, the following statement adds the department_id column and the
manager_id column of the hr.departments table to an unconditional log group
named log_group_dep_pk:

ALTER TABLE hr.departments ADD SUPPLEMENTAL LOG GROUP log_group_dep_pk
 (department_id, manager_id) ALWAYS;

The ALWAYS specification makes this log group an unconditional log group.

Specifying Table Supplemental Logging Using Conditional Log Groups
The following sections describe creating a conditional log group:

� Specifying a Conditional Log Group Using the ADD SUPPLEMENTAL LOG
DATA Clause

� Specifying a Conditional Log Group Using the ADD SUPPLEMENTAL LOG
GROUP Clause

Specifying a Conditional Log Group Using the ADD SUPPLEMENTAL LOG DATA Clause You
can use the following options in the ADD SUPPLEMENTAL LOG DATA clause of an
ALTER TABLE statement:

� The FOREIGN KEY option creates a conditional log group that includes the
foreign key column(s) in the table.

� The UNIQUE option creates a conditional log group that includes the unique key
column(s) in the table.

If you specify more than one option in a single ALTER TABLE statement, then a
separate conditional log group is created for each option.

For example, the following statement creates two conditional log groups:

ALTER TABLE hr.employees ADD SUPPLEMENTAL LOG DATA
 (UNIQUE, FOREIGN KEY) COLUMNS;

One conditional log group includes the unique key columns for the table, and the
other conditional log group includes the foreign key columns for the table. Both log
groups have a system-generated name.

Managing Capture for Streams Replication

Managing Capture, Propagation, and Apply 7-7

Specifying a Conditional Log Group Using the ADD SUPPLEMENTAL LOG GROUP Clause To
specify a conditional supplemental log group that includes any columns you choose
to add, you can use the ADD SUPPLEMENTAL LOG GROUP clause in the ALTER
TABLE statement. To make the log group conditional, do not include the ALWAYS
specification.

For example, suppose the min_salary and max_salary columns in the hr.jobs
table are included in a column list for conflict resolution at a destination database.
The following statement adds the min_salary and max_salary columns to a
conditional log group named log_group_jobs_cr:

ALTER TABLE hr.jobs ADD SUPPLEMENTAL LOG GROUP log_group_jobs_cr
 (min_salary, max_salary);

Dropping a Supplemental Log Group
To drop a conditional or unconditional supplemental log group, use the DROP
SUPPLEMENTAL LOG GROUP clause in the ALTER TABLE statement. For example, to
drop a supplemental log group named log_group_jobs_cr, run the following
statement:

ALTER TABLE hr.jobs DROP SUPPLEMENTAL LOG GROUP log_group_jobs_cr;

Specifying Database Supplemental Logging of Key Columns
You also have the option of specifying supplemental logging for all primary key,
unique key, and foreign key columns in a source database. You may choose this
option if you configure a capture process to capture changes to an entire database.
To specify supplemental logging for all primary key, unique key, and foreign key
columns in a source database, issue the following SQL statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

If your primary, unique, and foreign key columns are the same at all source and
destination databases, then running this command at the source database provides
the supplemental logging needed for primary, unique, and foreign key columns at
all destination databases. When you specify the FOREIGN KEY option, all columns
of a row's foreign key are placed in the redo log file if any column belonging to the
foreign key is modified.

Managing Staging and Propagation for Streams Replication

7-8 Oracle Streams Replication Administrator’s Guide

You may omit one or more of these options. For example, if you do not want to
supplementally log all of the foreign key columns in the database, then you can
omit the FOREIGN KEY option, as in the following example:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE) COLUMNS;

In additional to PRIMARY KEY, UNIQUE, and FOREIGN KEY, you also can use the
ALL option. The ALL option specifies that, when a row is changed, all the columns
of that row (except for LOB, LONG, LONG RAW, and user-defined type columns) are
placed in the redo log file.

Supplemental logging statements are cumulative. If you issue two consecutive
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA commands, each with a different
identification key, then both keys are supplementally logged.

Dropping Database Supplemental Logging of Key Columns
To drop supplemental logging for all primary key and unique key columns in a
source database, issue the ALTER DATABASE DROP SUPPLEMENTAL LOG DATA
statement. To drop database supplemental logging for all primary key, unique key,
and foreign key columns, issue the following SQL statement:

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

Managing Staging and Propagation for Streams Replication
The following sections describe management tasks for LCR staging and
propagation in a Streams replication environment:

� Creating a SYS.AnyData Queue to Stage LCRs

� Creating a Propagation That Propagates LCRs

You also may need to perform other management tasks.

Note: Dropping database supplemental logging of key columns
does not affect any existing table-level supplemental log groups.

See Also: Oracle Streams Replication Administrator's Guide for more
information about managing event staging and propagation

Managing Staging and Propagation for Streams Replication

Managing Capture, Propagation, and Apply 7-9

Creating a SYS.AnyData Queue to Stage LCRs
In a Streams replication environment, SYS.AnyData queues stage LCRs that
encapsulate captured changes. These queues may be used by capture processes,
propagations, and apply processes as an LCR goes through a stream from a source
database to a destination database.

You use the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package to
create a SYS.AnyData queue. This procedure enables you to specify the following
for the SYS.AnyData queue it creates:

� The queue table for the queue

� A storage clause for the queue table

� The queue name

� A queue user that will be configured as a secure queue user of the queue and
granted ENQUEUE and DEQUEUE privileges on the queue

� A comment for the queue

This procedure creates a queue that is both a secure queue and a transactional
queue and starts the newly created queue.

For example, to create a SYS.AnyData queue named strep01_queue in the
strmadmin schema with a queue table named strep01_queue_table, run the
following procedure:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.strep01_queue_table',

 queue_name => 'strmadmin.strep01_queue');
END;
/

You also can use procedures in the DBMS_AQADM package to create a SYS.AnyData
queue.

See Also: Oracle Streams Concepts and Administration for
information about managing SYS.AnyData queues

Managing Staging and Propagation for Streams Replication

7-10 Oracle Streams Replication Administrator’s Guide

Creating a Propagation That Propagates LCRs
To replicate LCRs between databases, you must propagate the LCRs from the
database where they were first staged in a queue to the database where they are
applied. To accomplish this goal, you may use any number of separate
propagations.

You can use any of the following procedures to create a propagation:

� DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES

� DBMS_PROPAGATION_ADM.CREATE_PROPAGATION

The following tasks must be completed before you create a propagation:

� Create a source queue and a destination queue for the propagation, if they do
not exist. See "Creating a SYS.AnyData Queue to Stage LCRs" on page 7-9 for
instructions.

� Create a database link between the database containing the source queue and
the database containing the destination queue. See Oracle Streams Concepts and
Administration for more information about creating database links for
propagations.

The following is an example that runs the ADD_SCHEMA_PROPAGATION_RULES
procedure in the DBMS_STREAMS_ADM package to create a propagation:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
 schema_name => 'hr',
 streams_name => 'strep01_propagation',
 source_queue_name => 'strmadmin.strep01_queue',
 destination_queue_name => 'strmadmin.strep02_queue@rep2.net',
 include_dml => true,
 include_ddl => true,
 include_tagged_lcr => false,
 source_database => 'rep1.net',
 inclusion_rule => true);
END;
/

Managing Staging and Propagation for Streams Replication

Managing Capture, Propagation, and Apply 7-11

Running this procedure performs the following actions:

� Creates a propagation named strep01_propagation. The propagation is
created only if it does not already exist.

� Specifies that the propagation propagates LCRs from strep01_queue in the
current database to strep02_queue in the rep2.net database

� Specifies that the propagation uses the rep2.net database link to propagate
the LCRs, because the destination_queue_name parameter contains
@rep2.net

� Creates a positive rule set and associates it with the propagation, if the
propagation does not have a positive rule set, because the inclusion_rule
parameter is set to true. The rule set uses the evaluation context
SYS.STREAMS$_EVALUATION_CONTEXT. The rule set name is specified by the
system.

� Creates two rules. One rule evaluates to TRUE for row LCRs that contain the
results of DML changes to the tables in the hr schema, and the other rule
evaluates to TRUE for DDL LCRs that contain DDL changes to the hr schema or
to the database objects in the hr schema. The rule names are specified by the
system.

� Adds the two rules to the positive rule set associated with the propagation. The
rules are added to the positive rule setbecause the inclusion_rule
parameter is set to true.

� Specifies that the propagation propagates an LCR only if it has a NULL tag,
because the include_tagged_lcr parameter is set to false. This behavior is
accomplished through the system-created rules for the propagation.

� Specifies that the source database for the LCRs being propagated is rep1.net,
which may or may not be the current database. This propagation does not
propagate LCRs in the source queue that have a different source database.

� Creates a propagation job, if one does not exist for the specified database link

See Also: Oracle Streams Concepts and Administration for
information about creating propagations

Managing Apply for Streams Replication

7-12 Oracle Streams Replication Administrator’s Guide

Managing Apply for Streams Replication
The following sections describe management tasks for an apply process in a
Streams replication environment:

� Creating an Apply Process That Applies LCRs

� Managing the Substitute Key Columns for a Table

� Managing a DML Handler

� Managing the DDL Handler for an Apply Process

� Managing Streams Conflict Detection and Resolution

You also may need to perform other management tasks.

Creating an Apply Process That Applies LCRs
When an apply process applies an LCR or sends an LCR to an apply handler that
executes it, the replication process for the LCR is complete. That is, the database
change that is encapsulated in the LCR is shared with the database where the LCR
is applied.

You can use any of the following procedures to create an apply process that
applies LCRs:

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

� DBMS_APPLY_ADM.CREATE_APPLY

Before you create an apply process, create a SYS.AnyData queue to associate with
the apply process, if one does not exist.

See Also: Oracle Streams Concepts and Administration for more
information about managing an apply process

Note: To create an apply process, a user must be granted DBA role.

Managing Apply for Streams Replication

Managing Capture, Propagation, and Apply 7-13

The following is an example that runs the ADD_SCHEMA_RULES procedure in the
DBMS_STREAMS_ADM package to create an apply process:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'apply',
 streams_name => 'strep01_apply',
 queue_name => 'strep02_queue',
 include_dml => true,
 include_ddl => true,
 include_tagged_lcr => false,
 source_database => 'rep1.net',
 inclusion_rule => true);
END;
/

Running this procedure performs the following actions:

� Creates an apply process named strep01_apply that applies captured LCRs
to the local database. The apply process is created only if it does not already
exist. To create an apply process that applies user-enqueued LCRs, you must
use the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package.

� Associates the apply process with an existing queue named strep02_queue

� Creates a positive rule set and associates it with the apply process, if the apply
process does not have a positive rule set, because the inclusion_rule
parameter is set to true. The rule set uses the
SYS.STREAMS$_EVALUATION_CONTEXT evaluation context. The rule set name
is specified by the system.

� Creates two rules. One rule evaluates to TRUE for row LCRs that contain the
results of DML changes to the tables in the hr schema, and the other rule
evaluates to TRUE for DDL LCRs that contain DDL changes to the hr schema or
to the database objects in the hr schema. The rule names are specified by the
system.

� Adds the rules to the positive rule set associated with the apply process because
the inclusion_rule parameter is set to true

Managing Apply for Streams Replication

7-14 Oracle Streams Replication Administrator’s Guide

� Sets the apply_tag for the apply process to a value that is the hexadecimal
equivalent of '00' (double zero). Redo entries generated by the apply process
have a tag with this value.

� Specifies that the apply process applies an LCR only if it has a NULL tag,
because the include_tagged_lcr parameter is set to false. This behavior is
accomplished through the system-created rule for the apply process.

� Specifies that the LCRs applied by the apply process originate at the rep1.net
source database. The rules in the apply process rule sets determine which
events are dequeued by the apply process. If the apply process dequeues an
LCR with a source database that is different than rep1.net, then an error is
raised.

Managing the Substitute Key Columns for a Table
This section contains instructions for setting and removing the substitute key
columns for a table.

Setting Substitute Key Columns for a Table
When an apply process applies changes to a table, substitute key columns can either
replace the primary key columns for a table that has a primary key or act as the
primary key columns for a table that does not have a primary key. Set the substitute
key columns for a table using the SET_KEY_COLUMNS procedure in the
DBMS_APPLY_ADM package. This setting applies to all of the apply processes that
apply local changes to the database.

Note: Depending on the configuration of the apply process you
create, supplemental logging may be required at the source
database on columns in the tables for which an apply process
applies changes.

See Also: Oracle Streams Concepts and Administration for
information about creating apply processes

See Also:

� "Substitute Key Columns" on page 1-18

� "Displaying the Substitute Key Columns Specified at a
Destination Database" on page 10-5

Managing Apply for Streams Replication

Managing Capture, Propagation, and Apply 7-15

For example, to set the substitute key columns for the hr.employees table to the
first_name, last_name, and hire_date columns, replacing the employee_id
column, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_KEY_COLUMNS(
 object_name => 'hr.employees',
 column_list => 'first_name,last_name,hire_date');
END;
/

Note:

� You must specify an unconditional supplemental log group at
the source database for all of the columns specified as
substitute key columns in the column_list or
column_table parameter at the destination database. In this
example, you would specify an unconditional supplemental log
group including the first_name, last_name, and
hire_date columns in the hr.employees table.

� If an apply process applies changes to a remote non-Oracle
database, then it may use different substitute key columns for
the same table. You can run the SET_KEY_COLUMNS procedure
in the DBMS_APPLY_ADM package to specify substitute key
columns for changes that will be applied to a remote
non-Oracle database by setting the apply_database_link
parameter to a non-NULL value.

See Also:

� "Managing Supplemental Logging in a Streams Replication
Environment" on page 7-4

� "Apply Process Configuration in an Oracle to Non-Oracle
Environment" on page 5-4 for information about setting a
setting key columns for a table in a remote non-Oracle database

Managing Apply for Streams Replication

7-16 Oracle Streams Replication Administrator’s Guide

Removing the Substitute Key Columns for a Table
You remove the substitute key columns for a table by specifying NULL for the
column_list or column_table parameter in the SET_KEY_COLUMNS procedure
in the DBMS_APPLY_ADM package. If the table has a primary key, then the table's
primary key is used by any apply process for local changes to the database after you
remove the substitute primary key.

For example, to remove the substitute key columns for the hr.employees table,
run the following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_KEY_COLUMNS(
 object_name => 'hr.employees',
 column_list => NULL);
END;
/

Managing a DML Handler
This section contains instructions for creating, setting, and removing a DML
handler.

Creating a DML Handler
A DML handler must have the following signature:

PROCEDURE user_procedure (
 parameter_name IN SYS.AnyData);

Here, user_procedure stands for the name of the procedure and
parameter_name stands for the name of the parameter passed to the procedure.
The parameter passed to the procedure is a SYS.AnyData encapsulation of a
row LCR.

The following restrictions apply to the user procedure:

� Do not execute COMMIT or ROLLBACK statements. Doing so may endanger the
consistency of the transaction that contains the LCR.

� If you are manipulating a row using the EXECUTE member procedure for the
row LCR, then do not attempt to manipulate more than one row in a row
operation. You must construct and execute manually any DML statements that
manipulate more than one row.

See Also: "Apply Processing Options for LCRs" on page 1-15

Managing Apply for Streams Replication

Managing Capture, Propagation, and Apply 7-17

� If the command type is UPDATE or DELETE, then row operations resubmitted
using the EXECUTE member procedure for the LCR must include the entire key
in the list of old values. The key is the primary key or the smallest unique index
that has at least one NOT NULL column, unless a substitute key has been
specified by the SET_KEY_COLUMNS procedure. If there is no specified key,
then the key consists of all non LOB, non LONG, and non LONG RAW columns.

� If the command type is INSERT, then row operations resubmitted using the
EXECUTE member procedure for the LCR should include the entire key in the
list of new values. Otherwise, duplicate rows are possible. The key is the
primary key or the smallest unique index that has at least one NOT NULL
column, unless a substitute key has been specified by the SET_KEY_COLUMNS
procedure. If there is no specified key, then the key consists of all non LOB, non
LONG, and non LONG RAW columns.

A DML handler can be used for any customized processing of row LCRs. For
example, the handler may modify an LCR and then execute it using the EXECUTE
member procedure for the LCR. When you execute a row LCR in a DML handler,
the apply process applies the LCR without calling the DML handler again.

You may also use a DML handler for recording the history of DML changes. For
example, a DML handler may insert information about an LCR it processes into a
table and then apply the LCR using the EXECUTE member procedure. To create such
a DML handler, first create a table to hold the history information:

CREATE TABLE strmadmin.history_row_lcrs(
 timestamp DATE,
 source_database_name VARCHAR2(128),
command_type VARCHAR2(30),
object_owner VARCHAR2(32),
object_name VARCHAR2(32),

 tag RAW(10),
 transaction_id VARCHAR2(10),
 scn NUMBER,
 commit_scn NUMBER,
old_values SYS.LCR$_ROW_LIST,

 new_values SYS.LCR$_ROW_LIST)
 NESTED TABLE old_values STORE AS old_values_ntab
 NESTED TABLE new_values STORE AS new_values_ntab;

Managing Apply for Streams Replication

7-18 Oracle Streams Replication Administrator’s Guide

Create the procedure that inserts the information about the row LCR into the
history_row_lcrs table and executes the row LCR:

CREATE OR REPLACE PROCEDURE history_dml(in_any IN SYS.ANYDATA)
 IS
 lcr SYS.LCR$_ROW_RECORD;
 rc PLS_INTEGER;
 BEGIN
 -- Access the LCR
 rc := in_any.GETOBJECT(lcr);
 -- Insert information about the LCR into the history_row_lcrs table
 INSERT INTO strmadmin.history_row_lcrs VALUES
 (SYSDATE, lcr.GET_SOURCE_DATABASE_NAME(), lcr.GET_COMMAND_TYPE(),
 lcr.GET_OBJECT_OWNER(), lcr.GET_OBJECT_NAME(), lcr.GET_TAG(),
 lcr.GET_TRANSACTION_ID(), lcr.GET_SCN(), lcr.GET_COMMIT_SCN,
 lcr.GET_VALUES('old'), lcr.GET_VALUES('new', 'n'));
 -- Apply row LCR
 lcr.EXECUTE(true);
END;
/

Note: You must specify an unconditional supplemental log group
at the source database for any columns needed by a DML handler
at the destination database. This example DML handler does not
require any additional supplemental logging because it simply
records information about the row LCR and does not manipulate
the row LCR in any other way.

See Also:

� "Managing Supplemental Logging in a Streams Replication
Environment" on page 7-4

� "Managing LCRs Containing LONG, LONG RAW, or LOB
Columns" on page 9-9 for information about and restrictions
regarding DML handlers and LOB, LONG, and LONG RAW
datatypes

� Oracle Streams Concepts and Administration for an example of a
precommit handler that may be used with this DML handler to
record commit information for applied transactions

Managing Apply for Streams Replication

Managing Capture, Propagation, and Apply 7-19

Setting a DML Handler
A DML handler processes each row LCR dequeued by any apply process that
contains a specific operation on a specific table. You can specify multiple DML
handlers on the same table, to handle different operations on the table. All apply
processes that apply changes to the specified table in the local database use the
specified DML handler.

Set the DML handler using the SET_DML_HANDLER procedure in the
DBMS_APPLY_ADM package. For example, the following procedure sets the DML
handler for UPDATE operations on the hr.locations table. Therefore, when any
apply process that applies changes locally dequeues a row LCR containing an
UPDATE operation on the hr.locations table, the apply process sends the row
LCR to the history_dml PL/SQL procedure in the strmadmin schema for
processing. The apply process does not apply a row LCR containing such a change
directly.

In this example, the apply_name parameter is set to NULL. Therefore, the DML
handler is a general DML handler that is used by all of the apply processes in the
database.

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'hr.locations',
 object_type => 'TABLE',
 operation_name => 'UPDATE',
 error_handler => false,
 user_procedure => 'strmadmin.history_dml',
 apply_database_link => NULL,
 apply_name => NULL);
END;
/

Note: If an apply process applies changes to a remote non-Oracle
database, then it may use a different DML handler for the same
table. You can run the SET_DML_HANDLER procedure in the
DBMS_APPLY_ADM package to specify a DML handler for changes
that will be applied to a remote non-Oracle database by setting the
apply_database_link parameter to a non-NULL value.

Managing Apply for Streams Replication

7-20 Oracle Streams Replication Administrator’s Guide

Unsetting a DML Handler
You unset a DML handler using the SET_DML_HANDLER procedure in the
DBMS_APPLY_ADM package. When you run that procedure, set the
user_procedure parameter to NULL for a specific operation on a specific table.
After the DML handler is unset, any apply process that applies changes locally will
apply a row LCR containing such a change directly.

For example, the following procedure unsets the DML handler for UPDATE
operations on the hr.locations table:

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'hr.locations',
 object_type => 'TABLE',
 operation_name => 'UPDATE',
 error_handler => false,
 user_procedure => NULL,
 apply_name => NULL);
END;
/

Managing the DDL Handler for an Apply Process
This section contains instructions for creating, specifying, and removing the DDL
handler for an apply process.

See Also:

� "DML Handlers in an Oracle to Non-Oracle Heterogeneous
Environment" on page 5-5

� Oracle Streams Concepts and Administration for more information
about rule-based transformations

Note: All applied DDL LCRs commit automatically. Therefore, if a
DDL handler calls the EXECUTE member procedure of a DDL LCR,
then a commit is performed automatically.

Managing Apply for Streams Replication

Managing Capture, Propagation, and Apply 7-21

Creating a DDL Handler for an Apply Process
A DDL handler must have the following signature:

PROCEDURE handler_procedure (
 parameter_name IN SYS.AnyData);

Here, handler_procedure stands for the name of the procedure and
parameter_name stands for the name of the parameter passed to the procedure.
The parameter passed to the procedure is a SYS.AnyData encapsulation of a
DDL LCR.

A DDL handler can be used for any customized processing of DDL LCRs. For
example, the handler may modify the LCR and then execute it using the EXECUTE
member procedure for the LCR. When you execute a DDL LCR in a DDL handler,
the apply process applies the LCR without calling the DDL handler again.

You may also use a DDL handler to record the history of DDL changes. For
example, a DDL handler may insert information about an LCR it processes into a
table and then apply the LCR using the EXECUTE member procedure.

To create such a DDL handler, first create a table to hold the history information:

CREATE TABLE strmadmin.history_ddl_lcrs(
 timestamp DATE,
 source_database_name VARCHAR2(128),
command_type VARCHAR2(30),
object_owner VARCHAR2(32),
object_name VARCHAR2(32),

 object_type VARCHAR2(18),
 ddl_text CLOB,
 logon_user VARCHAR2(32),
 current_schema VARCHAR2(32),
 base_table_owner VARCHAR2(32),
 base_table_name VARCHAR2(32),
 tag RAW(10),
 transaction_id VARCHAR2(10),
 scn NUMBER);

See Also:

� "Apply Processing Options for LCRs" on page 1-15

� PL/SQL Packages and Types Reference for more information about
the EXECUTE member procedure for LCR types

Managing Apply for Streams Replication

7-22 Oracle Streams Replication Administrator’s Guide

Create the procedure that inserts the information about the DDL LCR into the
history_ddl_lcrs table and executes the DDL LCR:

CREATE OR REPLACE PROCEDURE history_ddl(in_any IN SYS.ANYDATA)
 IS
 lcr SYS.LCR$_DDL_RECORD;
 rc PLS_INTEGER;
 ddl_text CLOB;
 BEGIN
 -- Access the LCR
 rc := in_any.GETOBJECT(lcr);
 DBMS_LOB.CREATETEMPORARY(ddl_text, true);
 lcr.GET_DDL_TEXT(ddl_text);
 -- Insert DDL LCR information into history_ddl_lcrs table
 INSERT INTO strmadmin.history_ddl_lcrs VALUES(
 SYSDATE, lcr.GET_SOURCE_DATABASE_NAME(), lcr.GET_COMMAND_TYPE(),
 lcr.GET_OBJECT_OWNER(), lcr.GET_OBJECT_NAME(), lcr.GET_OBJECT_TYPE(),
 ddl_text, lcr.GET_LOGON_USER(), lcr.GET_CURRENT_SCHEMA(),
 lcr.GET_BASE_TABLE_OWNER(), lcr.GET_BASE_TABLE_NAME(), lcr.GET_TAG(),
 lcr.GET_TRANSACTION_ID(), lcr.GET_SCN());
 -- Apply DDL LCR
 lcr.EXECUTE();
 -- Free temporary LOB space
 DBMS_LOB.FREETEMPORARY(ddl_text);
END;
/

Setting the DDL Handler for an Apply Process
A DDL handler processes all DDL LCRs dequeued by an apply process. Set the
DDL handler for an apply process using the ddl_handler parameter in the
ALTER_APPLY procedure in the DBMS_APPLY_ADM package. For example, the
following procedure sets the DDL handler for an apply process named
strep01_apply to the history_ddl procedure in the strmadmin schema.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strep01_apply',
 ddl_handler => 'strmadmin.history_ddl');
END;
/

Managing Apply for Streams Replication

Managing Capture, Propagation, and Apply 7-23

Removing the DDL Handler for an Apply Process
A DDL handler processes all DDL LCRs dequeued by an apply process. You
remove the DDL handler for an apply process by setting the
remove_ddl_handler parameter to true in the ALTER_APPLY procedure in the
DBMS_APPLY_ADM package. For example, the following procedure removes the
DDL handler from an apply process named strep01_apply.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strep01_apply',
 remove_ddl_handler => true);
END;
/

Managing Streams Conflict Detection and Resolution
This section describes the following tasks:

� Setting an Update Conflict Handler

� Modifying an Existing Update Conflict Handler

� Removing an Existing Update Conflict Handler

� Stopping Conflict Detection for Nonkey Columns

Setting an Update Conflict Handler
Set an update conflict handler using the SET_UPDATE_CONFLICT_HANDLER
procedure in the DBMS_APPLY_ADM package. You can use one of the following
prebuilt methods when you create an update conflict resolution handler:

� OVERWRITE

� DISCARD

� MAXIMUM

� MINIMUM

See Also:

� Chapter 3, "Streams Conflict Resolution"

� "Displaying Information About Update Conflict Handlers" on
page 10-9

Managing Apply for Streams Replication

7-24 Oracle Streams Replication Administrator’s Guide

For example, suppose a Streams environment captures changes to the hr.jobs
table at dbs1.net and propagates these changes to the dbs2.net destination
database, where they are applied. In this environment, applications can perform
DML changes on the hr.jobs table at both databases, but, if there is a conflict for a
particular DML change, then the change at the dbs1.net database should always
overwrite the change at the dbs2.net database. In this environment, you can
accomplish this goal by specifying an OVERWRITE handler at the dbs2.net
database.

To specify an update conflict handler for the hr.jobs table in the hr schema at the
dbs2.net database, run the following procedure at dbs2.net:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
 BEGIN
 cols(1) := 'job_title';
 cols(2) := 'min_salary';
 cols(3) := 'max_salary';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.jobs',
 method_name => 'OVERWRITE',
 resolution_column => 'job_title',
 column_list => cols);
END;
/

All apply processes running on a database that apply changes to the specified table
locally use the specified update conflict handler.

Managing Apply for Streams Replication

Managing Capture, Propagation, and Apply 7-25

Modifying an Existing Update Conflict Handler
You can modify an existing update conflict handler by running the
SET_UPDATE_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package.
To update an existing conflict handler, specify the same table and resolution column
as the existing conflict handler.

To modify the update conflict handler created in "Setting an Update Conflict
Handler" on page 7-23, you specify the hr.jobs table and the job_title column
as the resolution column. You can modify this update conflict handler by specifying
a different type of prebuilt method or a different column list, or both. However, if
you want to change the resolution column for an update conflict handler, then you
must remove and re-create the handler.

Note:

� The resolution_column is not used for OVERWRITE and
DISCARD methods, but one of the columns in the
column_list still must be specified.

� You must specify a conditional supplemental log group at the
source database for all of the columns in the column_list at
the destination database. In this example, you would specify a
conditional supplemental log group including the job_title,
min_salary, and max_salary columns in the hr.jobs table
at the dbs1.net database.

� Prebuilt update conflict handlers do not support LOB, LONG,
LONG RAW, and user-defined type columns. Therefore, you
should not include these types of columns in the
column_list parameter when running the procedure
SET_UPDATE_CONFLICT_HANDLER.

See Also:

� "Managing Supplemental Logging in a Streams Replication
Environment" on page 7-4

� Chapter 14, "Multiple Source Replication Example" for an
example Streams environment that illustrates using the
MAXIMUM prebuilt method for time-based conflict resolution

Managing Apply for Streams Replication

7-26 Oracle Streams Replication Administrator’s Guide

For example, suppose the environment changes, and you want changes from
dbs1.net to be discarded in the event of a conflict, whereas previously changes
from dbs1.net overwrote changes at dbs2.net. You can accomplish this goal by
specifying a DISCARD handler at the dbs2.net database.

To modify the existing update conflict handler for the hr.jobs table in the hr
schema at the dbs2.net database, run the following procedure:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
 BEGIN
 cols(1) := 'job_title';
 cols(2) := 'min_salary';
 cols(3) := 'max_salary';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.jobs',
 method_name => 'DISCARD',
 resolution_column => 'job_title',
 column_list => cols);
END;
/

Removing an Existing Update Conflict Handler
You can remove an existing update conflict handler by running the
SET_UPDATE_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package.
To remove a an existing conflict handler, specify NULL for the method, and specify
the same table, column list, and resolution column as the existing conflict handler.

For example, suppose you want to remove the update conflict handler created in
"Setting an Update Conflict Handler" on page 7-23 and then modified in "Modifying
an Existing Update Conflict Handler" on page 7-25. To remove this update conflict
handler, run the following procedure:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
 BEGIN
 cols(1) := 'job_title';
 cols(2) := 'min_salary';
 cols(3) := 'max_salary';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.jobs',
 method_name => NULL,
 resolution_column => 'job_title',
 column_list => cols);

Managing Apply for Streams Replication

Managing Capture, Propagation, and Apply 7-27

END;
/

Stopping Conflict Detection for Nonkey Columns
You can stop conflict detection for nonkey columns using the
COMPARE_OLD_VALUES procedure in the DBMS_APPLY_ADM package.

For example, suppose you configure a time column for conflict resolution for the
hr.employees table, as described in "MAXIMUM" on page 3-10. In this case, you
may decide to stop conflict detection for the other nonkey columns in the table.
After adding the time column and creating the trigger as described in that section,
add the columns in the hr.employees table to the column list for an update
conflict handler:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'first_name';
 cols(2) := 'last_name';
 cols(3) := 'email';
 cols(4) := 'phone_number';
 cols(5) := 'hire_date';
 cols(6) := 'job_id';
 cols(7) := 'salary';
 cols(8) := 'commission_pct';
 cols(9) := 'manager_id';
 cols(10) := 'department_id';
 cols(11) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.employees',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

This example does not include the primary key for the table in the column list
because it assumes that the primary key is never updated. However, other key
columns are included in the column list.

Managing Apply for Streams Replication

7-28 Oracle Streams Replication Administrator’s Guide

To stop conflict detection for all nonkey columns in the table for both UPDATE and
DELETE operations at a destination database, run the following procedure:

DECLARE
 cols DBMS_UTILITY.LNAME_ARRAY;
 BEGIN
 cols(1) := 'first_name';
 cols(2) := 'last_name';
 cols(3) := 'email';
 cols(4) := 'phone_number';
 cols(5) := 'hire_date';
 cols(6) := 'job_id';
 cols(7) := 'salary';
 cols(8) := 'commission_pct';
 DBMS_APPLY_ADM.COMPARE_OLD_VALUES(
 object_name => 'hr.employees',
 column_table => cols,
 operation => '*',
 compare => false);
END;
/

The asterisk (*) specified for the operation parameter means that conflict
detection is stopped for both UPDATE and DELETE operations. After you run this
procedure, all apply processes running on the database that apply changes to the
specified table locally do not detect conflicts on the specified columns. Therefore, in
this example, the time column is the only column used for conflict detection.

Note: The example in this section sets an update conflict handler
before stopping conflict detection for nonkey columns. However,
an update conflict handler is not required before you stop conflict
detection for nonkey columns.

Replicating and Maintaining Tablespaces Using Streams

Managing Capture, Propagation, and Apply 7-29

Replicating and Maintaining Tablespaces Using Streams
You can use the MAINTAIN_SIMPLE_TABLESPACE procedure to configure Streams
replication for a simple tablespace, and you can use the MAINTAIN_TABLESPACES
procedure to configure Streams replication for a set of self-contained tablespaces.
Both of these procedures are in the DBMS_STREAMS_ADM package. These
procedures use transportable tablespaces, Data Pump, the
DBMS_STREAMS_TABLESPACE_ADM package, and the DBMS_FILE_TRANSFER
package to configure the environment.

A self-contained tablespace has no references from the tablespace pointing outside
of the tablespace. For example, if an index in the tablespace is for a table in a
different tablespace, then the tablespace is not self-contained. A simple tablespace is
a self-contained tablespace that uses only one datafile. When there is more than one
tablespace, a self-contained tablespace set has no references from inside the set of
tablespaces pointing outside of the set of tablespaces.

These procedures set up either a single source Streams configuration with the local
database as the source database, or a bi-directional Streams configuration with both
databases acting as source and destination databases. The bi_directional
parameter for each procedure controls whether the Streams configuration is single
source or bi-directional. If bi_directional is false, then a capture process at
the local database captures DML changes to the tables in the specified tablespace or
tablespace set, a propagation propagates these changes to the destination database,
and an apply process at the destination database applies these changes. If
bi_directional is true, then each database captures changes and propagates
them to the other database, and each database applies changes from the other
database.

See Also:

� "Control Over Conflict Detection for Nonkey Columns" on
page 3-5

� "Displaying Information About Conflict Detection" on
page 10-8

� Chapter 14, "Multiple Source Replication Example" for a
detailed example that uses time-based conflict resolution

� PL/SQL Packages and Types Reference for more information about
the COMPARE_OLD_VALUES procedure

Replicating and Maintaining Tablespaces Using Streams

7-30 Oracle Streams Replication Administrator’s Guide

These procedures cannot be used to configure multi-directional replication where
changes may be cycled back to a source database by a third database in the
environment. For example, this procedure cannot be used to configure a Streams
replication environment with three databases where each database shares changes
with the other two databases in the environment. If this procedure is used to
configure a three way replication environment such as this, then changes made at a
source database would be cycled back to the same source database. In a valid three
way replication environment, a particular change is made only once at each
database.

These procedures do not configure the Streams environment to maintain DDL
changes to the tablespace nor to the database objects in the tablespace. For example,
the Streams environment is not configured to replicate ALTER TABLESPACE
statements on the tablespace, nor is it configured to replicate ALTER TABLE
statements on tables in the tablespace. You may configure the Streams environment
to maintain DDL changes manually.

The example in this section uses the MAINTAIN_TABLESPACES procedure to
configure and maintain a bi-directional Streams replication environment. This
example makes the following assumptions:

� The tablespaces tbs1 and tbs2 make a self-contained tablespace set at the
source database sts1.net.

� The datafiles for the tablespace set are both in the /orc/dbs directory at the
source database sts1.net.

� The sts2.net database does not contain the tablespace set currently.

� You want to configure and maintain a bi-directional Streams replication
environment for the tablespace set at these two databases.

This example configures the bi-directional Streams replication environment directly,
but you also have the option of generating a script. You may modify the script and
run it to configure the environment.

Complete the following steps to configure and maintain the bi-directional Streams
replication environment:

1. Configure a Streams administrator at both sts1.net and sts2.net if they do
not exist. See Oracle Streams Concepts and Administration for instructions. This
example assumes that the username of the Streams administrator is
strmadmin at both databases.

Replicating and Maintaining Tablespaces Using Streams

Managing Capture, Propagation, and Apply 7-31

2. Create a database link from the sts1.net database to the sts2.net database:

CONNECT strmadmin/strmadminpw@sts1.net

CREATE DATABASE LINK sts2.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw
 USING 'sts2.net';

3. Create a database link from the sts2.net database to the sts1.net database:

CONNECT strmadmin/strmadminpw@sts2.net

CREATE DATABASE LINK sts1.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw
 USING 'sts1.net';

4. While connected as the Streams administrator to the database that contains the
tablespace set, create a directory object for the directory that contains the
datafiles for the tablespaces in the tablespace set. For example, the following
statement creates a directory object named tbs_directory that corresponds
to the /orc/dbs directory:

CONNECT strmadmin/strmadminpw@sts1.net

CREATE DIRECTORY tbs_directory AS '/orc/dbs';

If the datafiles are in multiple directories, then a directory object must exist for
each of these directories, and the user who runs the MAINTAIN_TABLESPACES
procedure in Step 7 must have READ privilege to these directory objects. In this
example, the Streams administrator has this privilege because this user creates
the directory object.

5. While connected as the Streams administrator to the database that contains the
tablespace set, create a directory object that will hold the generated Data Pump
Export dump file and the datafiles that comprise the cloned tablespace set. For
example, the following statement creates a directory object named
source_directory that corresponds to the /usr/db_files directory:

CONNECT strmadmin/strmadminpw@sts1.net

CREATE DIRECTORY source_directory AS '/usr/db_files';

Replicating and Maintaining Tablespaces Using Streams

7-32 Oracle Streams Replication Administrator’s Guide

6. While connected as the Streams administrator to the database that does not
contain the tablespace set, create a directory object that will hold the transferred
Data Pump Export dump file and the datafiles. For example, the following
statement creates a directory object named dest_directory that corresponds
to the /usr/trans_files directory:

CONNECT strmadmin/strmadminpw@sts2.net

CREATE DIRECTORY dest_directory AS '/usr/trans_files';

7. While connected as the Streams administrator to the database that contains the
tablespace set, run the MAINTAIN_TABLESPACES procedure:

CONNECT strmadmin/strmadminpw@sts1.net

DECLARE
 t_names DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 -- Tablespace names
 t_names(1) := 'TBS1';
 t_names(2) := 'TBS2';
 DBMS_STREAMS_ADM.MAINTAIN_TABLESPACES(
 tablespace_names => t_names,
 source_directory_object => 'SOURCE_DIRECTORY',
 destination_directory_object => 'DEST_DIRECTORY',
 destination_database => 'STS2.NET',
 bi_directional => true);
END;
/

When this procedure completes, the Streams bi-directional replication
environment is configured. The procedure uses default names for the
SYS.AnyData queues and capture processes it creates, and the procedure
produces system-generated names for the propagations and apply processes it
creates. You can specify different names by using additional parameters
available in the MAINTAIN_TABLESPACES procedure. This procedure also
starts the queues, capture processes, and apply processes, and it enables the
propagation schedules for the propagations.

8. Configure conflict resolution for the objects in the tablespace set if necessary.

Typically, conflicts are possible in a bi-directional replication environment. If
conflicts are possible in the environment created by the
MAINTAIN_TABLESPACES procedure, then configure conflict resolution before
you allow users to make changes to the objects in the tablespace set.

Managing Streams Tags

Managing Capture, Propagation, and Apply 7-33

Managing Streams Tags
You can set or get the value of the tags generated by the current session or by an
apply process. The following sections describe how to set and get tag values.

� Managing Streams Tags for the Current Session

� Managing Streams Tags for an Apply Process

Managing Streams Tags for the Current Session
This section contains instructions for setting and getting the tag for the current
session.

Setting the Tag Values Generated by the Current Session
You can set the tag for all redo entries generated by the current session using the
SET_TAG procedure in the DBMS_STREAMS package. For example, to set the tag to
the hexadecimal value of '1D' in the current session, run the following procedure:

BEGIN
 DBMS_STREAMS.SET_TAG(
 tag => HEXTORAW('1D'));
END;
/

After running this procedure, each redo entry generated by DML or DDL
statements in the current session will have a tag value of 1D. Running this
procedure affects only the current session.

See Also:

� PL/SQL Packages and Types Reference for more information about
the MAINTAIN_TABLESPACES procedure

� Chapter 3, "Streams Conflict Resolution" and "Managing
Streams Conflict Detection and Resolution" on page 7-23

See Also:

� Chapter 4, "Streams Tags"

� "Monitoring Streams Tags" on page 10-21

Managing Streams Tags

7-34 Oracle Streams Replication Administrator’s Guide

Getting the Tag Value for the Current Session
You can get the tag for all redo entries generated by the current session using the
GET_TAG procedure in the DBMS_STREAMS package. For example, to get the
hexadecimal value of the tags generated in the redo entries for the current session,
run the following procedure:

SET SERVEROUTPUT ON
DECLARE
 raw_tag RAW(2048);
BEGIN
 raw_tag := DBMS_STREAMS.GET_TAG();
 DBMS_OUTPUT.PUT_LINE('Tag Value = ' || RAWTOHEX(raw_tag));
END;
/

You also can display the tag value for the current session by querying the DUAL
view:

SELECT DBMS_STREAMS.GET_TAG FROM DUAL;

Managing Streams Tags for an Apply Process
This section contains instructions for setting and removing the tag for an apply
process.

Setting the Tag Values Generated by an Apply Process
An apply process generates redo entries when it applies changes to a database or
invokes handlers. You can set the default tag for all redo entries generated by an
apply process when you create the apply process using the CREATE_APPLY
procedure in the DBMS_APPLY_ADM package, or when you alter an existing apply
process using the ALTER_APPLY procedure in the DBMS_APPLY_ADM package. In
both of these procedures, set the apply_tag parameter to the value you want to
specify for the tags generated by the apply process.

See Also:

� "Tags and an Apply Process" on page 4-7 for conceptual
information about how tags are used by an apply process and
apply handlers

� "Apply and Streams Replication" on page 1-14

� "Managing Apply for Streams Replication" on page 7-12

Changing the DBID or Global Name of a Source Database

Managing Capture, Propagation, and Apply 7-35

For example, to set the value of the tags generated in the redo log by an existing
apply process named strep01_apply to the hexadecimal value of '7', run the
following procedure:

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strep01_apply',
 apply_tag => HEXTORAW('7'));
END;
/

After running this procedure, each redo entry generated by the apply process will
have a tag value of 7.

Removing the Apply Tag for an Apply Process
You remove the apply tag for an apply process by setting the remove_apply_tag
parameter to true in the ALTER_APPLY procedure in the DBMS_APPLY_ADM
package. Removing the apply tag means that each redo entry generated by the
apply process has a NULL tag. For example, the following procedure removes the
apply tag from an apply process named strep01_apply.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strep01_apply',
 remove_apply_tag => true);
END;
/

Changing the DBID or Global Name of a Source Database
Typically, database administrators change the DBID and global name of a database
when it is a clone of another database. You can view the DBID of a database by
querying the DBID column in the V$DATABASE dynamic performance view, and
you can view the global name of a database by querying the GLOBAL_NAME static
data dictionary view. When you change the DBID or global name of a source
database, any existing capture processes that capture changes originating at this
source database become unusable. The capture processes may be local capture
processes or downstream capture processes that capture changes originated at the
source database. Also, any existing apply processes that apply changes from the
source database become unusable.

Changing the DBID or Global Name of a Source Database

7-36 Oracle Streams Replication Administrator’s Guide

If a capture process is capturing changes generated by a database for which you
have changed the DBID or global name, then complete the following steps:

1. Shut down the source database.

2. Restart the source database with RESTRICTED SESSION enabled using
STARTUP RESTRICT.

3. Drop the capture process using the DROP_CAPTURE procedure in the
DBMS_CAPTURE_ADM package. The capture process may be a local capture
process at the source database or a downstream capture process at a remote
database.

4. At the source database, run the ALTER SYSTEM SWITCH LOGFILE statement on
the database.

5. If any changes have been captured from the source database, then manually
resynchronize the data at all destination databases that apply changes
originating at this source database. If the database never captured any changes,
then this step is not necessary.

6. Modify any rules that use the source database name as a condition. The source
database name should be changed to the new global name of the source
database where appropriate in these rules. You may need to modify capture
process rules, propagation rules, and apply process rules at the local database
and at remote databases in the environment.

7. Drop the apply processes that apply changes from the capture process that you
dropped in Step 3. Use the DROP_APPLY procedure in the DBMS_APPLY_ADM
package to drop an apply process.

8. At each destination database that applies changes from the source database,
re-create the apply processes you dropped in Step 7. You may want to associate
the each apply process with the same rule sets it used before it was dropped.
See "Creating an Apply Process That Applies LCRs" on page 7-12 for
instructions.

9. Re-create the capture process you dropped in Step 3, if necessary. You may want
to associate the capture process with the same rule sets used by the capture
process you dropped in Step 3. See "Creating a Capture Process" on page 7-2 for
instructions.

10. At the source database, prepare database objects whose changes will be
captured by the re-created capture process for instantiation. See "Preparing
Database Objects for Instantiation at a Source Database" on page 8-2.

Resynchronizing a Source Database in a Multiple Source Environment

Managing Capture, Propagation, and Apply 7-37

11. At each destination database that applies changes from the source database, set
the instantiation SCN for all databases objects to which changes from the source
database will be applied. See "Setting Instantiation SCNs at a Destination
Database" on page 8-22 for instructions.

12. Disable the restricted session using the ALTER SYSTEM DISABLE RESTRICTED
SESSION statement.

13. At each destination database that applies changes from the source database,
start the apply processes you created in Step 8.

14. At the source database, start the capture process you created in Step 9.

Resynchronizing a Source Database in a Multiple Source Environment
A multiple source environment is one in which there is more than one source
database for any of the shared data. If a source database in a multiple source
environment cannot be recovered to the current point in time, then you can use the
method described in this section to resynchronize the source database with the
other source databases in the environment. Some reasons why a database cannot be
recovered to the current point in time include corrupted archived redo logs or the
media failure of an online redo log group.

For example, a bidirectional Streams environment is one in which exactly two
databases share the replicated database objects and data. In this example, assume
that database A is the database that must be resynchronized and that database B is
the other source database in the environment. To resynchronize database A in this
bidirectional Streams environment, complete the following steps:

1. Verify that database B has applied all of the changes sent from database A. You
can query the V$BUFFERED_SUBSCRIBERS data dictionary view at database B
to determine whether the apply process that applies these changes has any
unapplied changes in its queue. See "Viewing the Propagations Dequeuing
LCRs From Each Buffered Queue" on page 10-17 for an example of such a query.
Do not continue until all of these changes have been applied.

2. Remove the Streams configuration from database A by running the
REMOVE_STREAMS_CONFIGURATION procedure in the DBMS_STREAMS_ADM
package. See PL/SQL Packages and Types Reference for more information about
this procedure.

See Also: Oracle Database Utilities for more information about
changing the DBID of a database using the DBNEWID utility

Performing Database Point-in-Time Recovery in a Streams Environment

7-38 Oracle Streams Replication Administrator’s Guide

3. At database B, drop the apply process that applies changes from database A. Do
not drop the rule sets used by this apply process because you will re-create the
apply process in a subsequent step.

4. Complete the steps in "Adding a New Database to an Existing Multiple Source
Environment" on page 6-34 to add database A back into the Streams
environment.

Performing Database Point-in-Time Recovery in a Streams Environment
Point-in-time recovery is the recovery of a database to a specified noncurrent time,
SCN, or log sequence number. The following sections discuss performing
point-in-time recovery in a Streams replication environment:

� Performing Point-in-Time Recovery on the Source in a Single Source
Environment

� Performing Point-in-Time Recovery in a Multiple Source Environment

� Performing Point-in-Time Recovery on a Destination Database

Performing Point-in-Time Recovery on the Source in a Single Source Environment
A single source Streams replication environment is one in which there is only one
source database for shared data. If database point-in-time recovery is required at
the source database in a single source Streams environment, then you must stop all
capture processes that capture changes generated at a source database before you
perform the recovery operation. Both local and downstream capture process that
capture changes generated at the source database must be stopped. Typically,
database administrators reset the log sequence number of a database during
point-in-time recovery. The ALTER DATABASE OPEN RESETLOGS statement is an
example of a statement that resets the log sequence number.

The instructions in this section assume that the single source replication
environment has the following characteristics:

� Only one capture process named strm01_capture, which may be a local or
downstream capture process

� Only one destination database with the global name dest.net

� Only one apply process named strm01_apply at the destination database

See Also: Oracle Database Backup and Recovery Advanced User's
Guide for more information about point-in-time recovery

Performing Database Point-in-Time Recovery in a Streams Environment

Managing Capture, Propagation, and Apply 7-39

If point-in-time recovery must be performed on the source database, then you can
follow these instructions to recover as many transactions as possible at the source
database by using transactions applied at the destination database. These
instructions assume that you can identify the transactions applied at the destination
database after the source point-in-time SCN and execute these transactions at the
source database.

Complete the following steps to perform point-in-time recovery on the source
database in a single source Streams replication environment:

1. Perform point-in-time recovery on the source database if you have not already
done so. Note the point-in-time recovery SCN because it is needed in
subsequent steps.

2. Ensure that the source database is in restricted mode.

3. Stop the capture process using the STOP_CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

4. At the source database, perform a data dictionary build:

SET SERVEROUTPUT ON
DECLARE
 scn NUMBER;
BEGIN
 DBMS_CAPTURE_ADM.BUILD(
 first_scn => scn);
 DBMS_OUTPUT.PUT_LINE('First SCN Value = ' || scn);
END;
/

Note the SCN value returned because it is needed in Step 13.

5. At the destination database, wait until all of the transactions from the source
database in the apply process queue have been applied. The apply processes
should become idle when these transactions have been applied. You can query
the STATE column in both the V$STREAMS_APPLY_READER and
V$STREAMS_APPLY_SERVER. The state should be IDLE for the apply process
in both views before you continue.

Note: Oracle Corporation recommends that you set the apply
process parameter COMMIT_SERIALIZATION to FULL when
performing point-in-time recovery in a single source Streams
replication environment.

Performing Database Point-in-Time Recovery in a Streams Environment

7-40 Oracle Streams Replication Administrator’s Guide

6. Perform a query at the destination database to determine the highest SCN for a
transaction that was applied.

If the apply process is running, then perform the following query:

SELECT HWM_MESSAGE_NUMBER FROM V$STREAMS_APPLY_COORDINATOR
 WHERE APPLY_NAME = 'STRM01_APPLY';

If the apply process is disabled, then perform the following query:

SELECT APPLIED_MESSAGE_NUMBER FROM DBA_APPLY_PROGRESS
 WHERE APPLY_NAME = 'STRM01_APPLY';

Note the highest apply SCN returned by the query because it is needed in
subsequent steps.

7. If the highest apply SCN obtained in Step 6 is less than the point-in-time
recovery SCN noted in Step 1, then proceed to step 8. Otherwise, if the highest
apply SCN obtained in Step 6 is greater than or equal to the point-in-time
recovery SCN noted in Step 1, then the apply process has applied some
transactions from the source database after point-in-time recovery SCN. In this
case complete the following steps:

a. Manually execute transactions applied after the point-in-time SCN at the
source database. When you execute these transactions at the source
database, make sure you set a Streams tag in the session so that the
transactions will not be captured by the capture process. If no such Streams
session tag is set, then these changes may be cycled back to the destination
database. See "Managing Streams Tags for the Current Session" on
page 7-33 for instructions.

b. Disable the restricted session at the source database.

8. If you completed the actions in Step 7, then proceed to step 12. Otherwise, if the
highest apply SCN obtained in Step 6 is less than the point-in-time recovery
SCN noted in Step 1, then the apply process has not applied any transactions
from the source database after point-in-time recovery SCN. In this case,
complete the following steps:

a. Disable the restricted session at the source database.

b. Ensure that the apply process is running at the destination database.

c. Set the maximum_scn capture process parameter of the original capture
process to the point-in-time recovery SCN using the SET_PARAMETER
procedure in the DBMS_CAPTURE_ADM package.

Performing Database Point-in-Time Recovery in a Streams Environment

Managing Capture, Propagation, and Apply 7-41

d. Set the start SCN of the original capture process to the oldest SCN of the
apply process. You can determine the oldest SCN of a running apply
process by querying the OLDEST_SCN_NUM column in the
V$STREAMS_APPLY_READER dynamic performance view at the destination
database. To set the start SCN of the capture process, specify the
start_scn parameter when you run the ALTER_CAPTURE procedure in
the DBMS_CAPTURE_ADM package.

e. Ensure that the capture process writes information to the alert log by
running the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.SET_PARAMETER(
 capture_name => 'strm01_capture',
 parameter => 'write_alert_log',
 value => 'Y');
END;
/

f. Start the original capture process using the START_CAPTURE procedure in
the DBMS_CAPTURE_ADM package.

g. Ensure that the original capture process has captured all changes up to the
maximum_scn setting by querying the CAPTURED_SCN column in the
DBA_CAPTURE data dictionary view. When the value returned by the query
is equal to or greater than the maximum_scn value, the capture process
should stop automatically. When the capture process is stopped, proceed to
the next step.

h. Find the value of the LAST_ENQUEUE_MESSAGE_NUMBER in the alert log.
Note this value because it is needed in subsequent steps.

i. At the destination database, wait until all the changes are applied. You can
monitor the applied changes for the apply process strm01_apply by
running the following queries at the destination database:

SELECT DEQUEUED_MESSAGE_NUMBER
 FROM V$STREAMS_APPLY_READER
 WHERE APPLY_NAME = 'STRM01_APPLY' AND
 DEQUEUED_MESSAGE_NUMBER = last_enqueue_message_number;

Substitute the LAST_ENQUEUE_MESSAGE_NUMBER found in the alert log in
Step h for last_enqueue_message_number on the last line of the query. When
this query returns a row, all of the changes from the capture database have
been applied at the destination database.

Performing Database Point-in-Time Recovery in a Streams Environment

7-42 Oracle Streams Replication Administrator’s Guide

Also, ensure that the state of the apply process reader server and each
apply server is IDLE. For example, run the following queries for an apply
process named strm01_apply:

SELECT STATE FROM V$STREAMS_APPLY_READER
 WHERE APPLY_NAME = 'STRM01_APPLY';

SELECT STATE FROM V$STREAMS_APPLY_SERVER
 WHERE APPLY_NAME = 'STRM01_APPLY';

When both of these queries return IDLE, move on to the next step.

9. At the destination database, drop the apply process using the DROP_APPLY
procedure in the DBMS_APPLY_ADM package.

10. At the destination database, create a new apply process. The new apply process
should use the same queue and rule sets used by the original apply process.

11. At the destination database, start the new apply process using the
START_APPLY procedure in the DBMS_APPLY_ADM package.

12. Drop the original capture process using the DROP_CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

13. Create a new capture process using the CREATE_CAPTURE procedure in the
DBMS_CAPTURE_ADM package to replace the capture process you dropped in
Step 12. Specify the SCN returned by the data dictionary build in Step 4 for both
the first_scn and start_scn parameters. The new capture process should
use the same queue and rule sets as the original capture process.

14. Start the new capture process using the START_CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

Performing Point-in-Time Recovery in a Multiple Source Environment
A multiple source environment is one in which there is more than one source
database for any of the shared data. If database point-in-time recovery is required at
a source database in a multiple source Streams environment, then you can use
another source database in the environment to recapture the changes made to the
recovered source database after the point-in-time recovery.

For example, in a multiple source Streams environment, one source database may
become unavailable at time T2 and undergo point in time recovery to an earlier time
T1. After recovery to T1, transactions performed at the recovered database between
T1 and T2 are lost at the recovered database. However, before the recovered
database became unavailable, assume that these transactions were propagated to

Performing Database Point-in-Time Recovery in a Streams Environment

Managing Capture, Propagation, and Apply 7-43

another source database and applied. In this case, this other source database can be
used to restore the lost changes to the recovered database.

Specifically, to restore changes made to the recovered database after the
point-in-time recovery, you configure a capture process to recapture these changes
from the redo logs at the other source database, a propagation to propagate these
changes from the database where changes are recaptured to the recovered database,
and an apply process at the recovered database to apply these changes.

Changes originating at the other source database that were applied at the recovered
database between T1 and T2 also have been lost and must be recovered. To
accomplish this, alter the capture process at the other source database to start
capturing changes at an earlier SCN. This SCN is the oldest SCN for the apply
process at the recovered database.

The following SCN values are required to restore lost changes to the recovered
database:

� Point-in-time SCN: The SCN for the point-in-time recovery at the recovered
database

� Instantiation SCN: The SCN value to which the instantiation SCN must be set
for each database object involved in the recovery at the recovered database
while changes are being reapplied. At the other source database, this SCN value
corresponds to one less than the commit SCN of the first transaction that was
applied at the other source database and lost at the recovered database.

� Start SCN: The SCN value to which the start SCN is set for the capture process
created to recapture changes at the other source database. This SCN value
corresponds to the earliest SCN at which the apply process at the other source
database started applying a transaction that was lost at the recovered database.
This capture process may be a local or downstream capture process that uses
the other source database for its source database.

� Maximum SCN: The SCN value to which the maximum_scn parameter for the
capture process created to recapture lost changes should be set. The capture
process stops capturing changes when it reaches this SCN value. The current
SCN for the other source database is used for this value.

You should record the point-in-time SCN when you perform point-in-time recovery
on the recovered database. You can use the GET_SCN_MAPPING procedure in the
DBMS_STREAMS_ADM package to determine the other necessary SCN values.

See Also: PL/SQL Packages and Types Reference for more
information about the GET_SCN_MAPPING procedure

Performing Database Point-in-Time Recovery in a Streams Environment

7-44 Oracle Streams Replication Administrator’s Guide

Performing Point-in-Time Recovery on a Destination Database
If database point-in-time recovery is required at a destination database in a Streams
environment, then you must reapply the captured changes that had already been
applied after the point-in-time recovery.

For each relevant capture process, you can choose either of the following methods
to perform point-in-time recovery at a destination database in a Streams
environment:

� Reset the start SCN for the existing capture process that captures the changes
that are applied at the destination database.

� Create a new capture process to capture the changes that must be reapplied at
the destination database.

Resetting the start SCN for the capture process is simpler than creating a new
capture process. However, if the capture process captures changes that are applied
at multiple destination databases, then the changes are resent to all the destination
databases, including the ones that did not perform point-in-time recovery. If a
change is already applied at a destination database, then it is discarded by the apply
process, but you may not want to use the network and computer resources required
to resend the changes to multiple destination databases. In this case, you can create
and temporarily use a new capture process and a new propagation that propagates
changes only to the destination database that was recovered.

The following sections provide instructions for each task:

� Resetting the Start SCN for the Existing Capture Process to Perform Recovery

� Creating a New Capture Process to Perform Recovery

If there are multiple apply processes at the destination database where you
performed point-in-time recovery, then complete one of the tasks in this section for
each apply process.

Neither of these methods should be used if any of the following conditions are true
regarding the destination database you are recovering:

� A propagation propagates user-enqueued messages to the destination database.
Both of these methods reapply only captured events at the destination database,
not user-enqueued events.

� In a directed networks configuration, the destination database is used to
propagate events from a capture process to other databases, but the destination
database does not apply events from this capture process.

Performing Database Point-in-Time Recovery in a Streams Environment

Managing Capture, Propagation, and Apply 7-45

� The oldest message number for an apply process at the destination database is
lower than the first SCN of a capture process that captures changes for this
apply process. The following query at a destination database lists the oldest
message number (oldest SCN) for each apply process:

SELECT APPLY_NAME, OLDEST_MESSAGE_NUMBER FROM DBA_APPLY_PROGRESS;

The following query at a source database lists the first SCN for each capture
process:

SELECT CAPTURE_NAME, FIRST_SCN FROM DBA_CAPTURE;

� The archived log files that contain the intended start SCN are no longer
available.

If any of these conditions are true in your environment, then you cannot use the
methods described in this section. Instead, you must manually resynchronize the
data at all destination databases.

Resetting the Start SCN for the Existing Capture Process to Perform Recovery
If you decide to reset the start SCN for the existing capture process to perform
point-in-time recovery, then complete the following steps:

1. If the destination database is also a source database in a multiple source
Streams environment, then complete the actions described in "Performing
Point-in-Time Recovery in a Multiple Source Environment" on page 7-42.

2. If you are not using directed networks between the source database and
destination database, then drop the propagation that propagates changes from
the source queue at the source database to the destination queue at the
destination database. Use the DROP_PROPAGATION procedure in the
DBMS_PROPAGATION_ADM package to drop the propagation.

If you are using directed networks, and there are intermediate databases
between the source database and destination database, then drop the
propagation at each intermediate database in the path to the destination
database, including the propagation at the source database.

Do not drop the rule sets used by the propagations you drop.

See Also: Oracle Streams Concepts and Administration for more
information about SCN values relating to a capture process and
directed networks

Performing Database Point-in-Time Recovery in a Streams Environment

7-46 Oracle Streams Replication Administrator’s Guide

3. Perform the point-in-time recovery at the destination database.

4. Query for the oldest message number (oldest SCN) from the source database for
the apply process at the destination database. Make a note of the results of the
query. The oldest message number is the earliest system change number (SCN)
that may need to be applied.

The following query at a destination database lists the oldest message number
for each apply process:

SELECT APPLY_NAME, OLDEST_MESSAGE_NUMBER FROM DBA_APPLY_PROGRESS;

5. Stop the existing capture process using the STOP_CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

6. Reset the start SCN of the existing capture process.

To reset the start SCN for an existing capture process, run the ALTER_CAPTURE
procedure in the DBMS_CAPTURE_ADM package and set the start_scn
parameter to the value you recorded from the query in Step 4. For example, to
reset the start SCN for a capture process named strm01_capture to the value
829381993, run the following ALTER_CAPTURE procedure:

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 start_scn => 829381993);
END;
/

7. If you are not using directed networks between the source database and
destination database, then create a new propagation to propagate changes from
the source queue to the destination queue using the CREATE_PROPAGATION
procedure in the DBMS_PROPAGATION_ADM package. Specify any rule sets used
by the original propagation when you create the propagation.

Note: You must drop the appropriate propagation(s). Disabling
them is not sufficient. You will re-create the propagation(s) in
Step 7, and dropping them now ensures that only events created
after resetting the start SCN for the capture process are propagated.

See Also: Oracle Streams Concepts and Administration for more
information about directed networks

Performing Database Point-in-Time Recovery in a Streams Environment

Managing Capture, Propagation, and Apply 7-47

If you are using directed networks, and there are intermediate databases
between the source database and destination database, then create a new
propagation at each intermediate database in the path to the destination
database, including the propagation at the source database.

8. Start the existing capture process using the START_CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

Creating a New Capture Process to Perform Recovery
If you decide to create a new capture process to perform point-in-time recovery,
then complete the following steps:

1. If the destination database is also a source database in a multiple source
Streams environment, then complete the actions described in "Performing
Point-in-Time Recovery in a Multiple Source Environment" on page 7-42.

2. If you are not using directed networks between the source database and
destination database, then drop the propagation that propagates changes from
the source queue at the source database to the destination queue at the
destination database. Use the DROP_PROPAGATION procedure in the
DBMS_PROPAGATION_ADM package to drop the propagation.

If you are using directed networks, and there are intermediate databases
between the source database and destination database, then drop the
propagation that propagates events between the last intermediate database and
the destination database. You do not need to drop the propagations at the other
intermediate databases nor at the source database.

3. Perform the point-in-time recovery at the destination database.

4. Query for the oldest message number (oldest SCN) from the source database for
the apply process at the destination database. Make a note of the results of the
query. The oldest message number is the earliest system change number (SCN)
that may need to be applied.

Note: You must drop the appropriate propagation. Disabling it is
not sufficient.

See Also: Oracle Streams Concepts and Administration for more
information about directed networks

Performing Database Point-in-Time Recovery in a Streams Environment

7-48 Oracle Streams Replication Administrator’s Guide

The following query at a destination database lists the oldest message number
for each apply process:

SELECT APPLY_NAME, OLDEST_MESSAGE_NUMBER FROM DBA_APPLY_PROGRESS;

5. Create a queue at the source database to be used by the capture process using
the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package.

If you are using directed networks, and there are intermediate databases
between the source database and destination database, then create a queue at
each intermediate database in the path to the destination database, including
the new queue at the source database. Do not create a new queue at the
destination database.

6. If you are not using directed networks between the source database and
destination database, then create a new propagation to propagate changes from
the source queue created in Step 5 to the destination queue using the
CREATE_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package.
Specify any rule sets used by the original propagation when you create the
propagation.

If you are using directed networks, and there are intermediate databases
between the source database and destination database, then create a
propagation at each intermediate database in the path to the destination
database, including the propagation from the source database to the first
intermediate database. These propagations propagate changes captured by the
capture process you will create in Step 7 between the queues created in Step 5.

7. Create a new capture process at the source database using the
CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package. Set the
source_queue parameter to the local queue you created in Step 5 and the
start_scn parameter to the value you recorded from the query in Step 4.
Also, specify any rule sets used by the original capture process. If the rule sets
used by the original capture process instruct the capture process to capture
events that should not be sent to the destination database that was recovered,
then you can create and use smaller, customized rule sets that share some rules
with the original rule sets.

8. Start the capture process you created in Step 7 using the START_CAPTURE
procedure in the DBMS_CAPTURE_ADM package.

9. When the oldest message number of the apply process at the recovered
database is approaching the capture number of the original capture process at
the source database, stop the original capture process using the STOP_CAPTURE
procedure in the DBMS_CAPTURE_ADM package.

Performing Database Point-in-Time Recovery in a Streams Environment

Managing Capture, Propagation, and Apply 7-49

At the destination database, you can use the following query to determine the
oldest message number from the source database for the apply process:

SELECT APPLY_NAME, OLDEST_MESSAGE_NUMBER FROM DBA_APPLY_PROGRESS;

At the source database, you can use the following query to determine the
capture number of the original capture process:

SELECT CAPTURE_NAME, CAPTURE_MESSAGE_NUMBER FROM V$STREAMS_CAPTURE;

10. When the oldest message number of the apply process at the recovered
database is beyond the capture number of the original capture process at the
source database, drop the new capture process created in Step 7.

11. If you are not using directed networks between the source database and
destination database, then drop the new propagation created in Step 6.

If you are using directed networks, and there are intermediate databases
between the source database and destination database, then drop the new
propagation at each intermediate database in the path to the destination
database, including the new propagation at the source database.

12. If you are not using directed networks between the source database and
destination database, then remove the queue created in Step 5.

If you are using directed networks, and there are intermediate databases
between the source database and destination database, then drop the new
queue at each intermediate database in the path to the destination database,
including the new queue at the source database. Do not drop the queue at the
destination database.

13. If you are not using directed networks between the source database and
destination database, then create a propagation that propagates changes from
the original source queue at the source database to the destination queue at the
destination database. Use the CREATE_PROPAGATION procedure in the
DBMS_PROPAGATION_ADM package to create the propagation. Specify any rule
sets used by the original propagation when you create the propagation.

If you are using directed networks, and there are intermediate databases
between the source database and destination database, then re-create the
propagation from the last intermediate database to the destination database.
You dropped this propagation in Step 1.

14. Start the capture process you stopped in Step 9.

Performing Database Point-in-Time Recovery in a Streams Environment

7-50 Oracle Streams Replication Administrator’s Guide

All of the steps after Step 8 can be deferred to a later time, or they can be done as
soon as the condition described in Step 9 is met.

Performing Instantiations 8-1

8
Performing Instantiations

This chapter contains instructions for performing instantiations in a Streams
replication environment. Database objects must be instantiated at a destination
database before changes to these objects can be replicated.

This chapter contains these topics:

� Preparing Database Objects for Instantiation at a Source Database

� Aborting Preparation for Instantiation at a Source Database

� Instantiating Objects in a Streams Replication Environment

� Setting Instantiation SCNs at a Destination Database

See Also: Chapter 2, "Instantiation and Streams Replication"

Preparing Database Objects for Instantiation at a Source Database

8-2 Oracle Streams Replication Administrator’s Guide

Preparing Database Objects for Instantiation at a Source Database
If you use the DBMS_STREAMS_ADM package to create rules for a capture process,
then any objects referenced in the system-created rules are prepared for
instantiation automatically. If you use the DBMS_RULE_ADM package to create rules
for a capture process, then you must prepare the database objects referenced in
these rules for instantiation manually. In this case, you should prepare a database
object for instantiation after a capture process has been configured to capture
changes to the database object.

The following procedures in the DBMS_CAPTURE_ADM package prepare database
objects for instantiation:

� PREPARE_TABLE_INSTANTIATION prepares a single table for instantiation.

� PREPARE_SCHEMA_INSTANTIATION prepares for instantiation all of the
database objects in a schema and all database objects added to the schema in
the future.

� PREPARE_GLOBAL_INSTANTIATION prepares for instantiation all of the
objects in a database and all objects added to the database in the future.

If you run one of these procedures while a long running transaction is modifying
one or more database objects being prepared for instantiation, then the procedure
will wait until the long running transaction is complete before it records the
ignore SCN for the objects, which is the SCN below which changes to an object
cannot be applied at destination databases.

For example, to prepare the hr.regions table for instantiation, run the following
procedure:

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name => 'hr.regions');
END;
/

Aborting Preparation for Instantiation at a Source Database

Performing Instantiations 8-3

Aborting Preparation for Instantiation at a Source Database
The following procedures in the DBMS_CAPTURE_ADM package abort preparation
for instantiation:

� ABORT_TABLE_INSTANTIATION reverses the effects of
PREPARE_TABLE_INSTANTIATION.

� ABORT_SCHEMA_INSTANTIATION reverses the effects of
PREPARE_SCHEMA_INSTANTIATION.

� ABORT_GLOBAL_INSTANTIATION reverses the effects of
PREPARE_GLOBAL_INSTANTIATION.

These procedures remove data dictionary information related to the potential
instantiation of the relevant database objects.

For example, to abort the preparation for instantiation of the hr.regions table,
run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.ABORT_TABLE_INSTANTIATION(
 table_name => 'hr.regions');
END;
/

See Also:

� "Overview of Instantiation and Streams Replication" on
page 2-2

� "Instantiating Objects in a Streams Replication Environment"
on page 8-4

� Chapter 6, "Configuring Streams Replication"

� "Instantiation SCN and Ignore SCN for an Apply Process" on
page 1-30

Instantiating Objects in a Streams Replication Environment

8-4 Oracle Streams Replication Administrator’s Guide

Instantiating Objects in a Streams Replication Environment
You can instantiate database objects in a Streams environment in the following
ways:

� Instantiating Objects in a Streams Environment Using Data Pump
Export/Import

� Instantiating Objects in a Streams Environment Using Transportable
Tablespaces

� Instantiating Objects in a Streams Environment Using Original Export/Import

� Instantiating an Entire Database in a Streams Environment Using RMAN

You can use Oracle Data Pump, transportable tablespaces, and the original
Export/Import utilities to instantiate individual database objects, schemas, or an
entire database. You can use RMAN only to instantiate an entire database.

Instantiating Objects in a Streams Environment Using Data Pump Export/Import
The example in this section describes the steps required to instantiate objects in a
Streams environment using Oracle Data Pump export/import. This example makes
the following assumptions:

� You want to capture changes to all of the database objects in the hr schema at a
source database and apply these changes at a separate destination database.

� The hr schema exists at a source database but does not exist at a destination
database. For the purposes of this example, you can drop the hr user at the
destination database using the following SQL statement:

DROP USER hr CASCADE;

See Also:

� "Overview of Instantiation and Streams Replication" on
page 2-2

� "Instantiation SCN and Ignore SCN for an Apply Process" on
page 1-30

� "Preparing Database Objects for Instantiation at a Source
Database" on page 8-2

� "Setting Instantiation SCNs at a Destination Database" on
page 8-22

Instantiating Objects in a Streams Replication Environment

Performing Instantiations 8-5

The Data Pump import re-creates the user and the user's objects at the
destination database.

� You have configured a Streams administrator at the source database and the
destination database named strmadmin. At each database, the Streams
administrator is granted DBA role.

Given these assumptions, complete the following steps to instantiate the hr schema
using Data Pump export/import:

1. While connected in SQL*Plus to the source database as the Streams
administrator, create a directory object to hold the export dump file and export
log file:

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

2. While connected as the Streams administrator strmadmin at the source
database, prepare the database objects in the hr schema for instantiation. You
can complete this step in one of the following ways:

� Add rules for the hr schema to the positive rule set for a capture process
using a procedure in the DBMS_STREAMS_ADM package. If the capture
process is a local capture process or a downstream capture process with a
database link to the source database, then the procedure that you run
prepares the objects in the hr schema for instantiation automatically.

Note: The example in this section uses the command line Data
Pump utility. You also may use the DBMS_DATAPUMP package for
Streams instantiations.

See Also:

� Oracle Streams Concepts and Administration for information
about configuring a Streams administrator

� Oracle Database Utilities for more information about Data Pump

� Part III, "Example Replication Environments" for examples that
use the DBMS_DATAPUMP package for Streams instantiations

Instantiating Objects in a Streams Replication Environment

8-6 Oracle Streams Replication Administrator’s Guide

For example, the following procedure adds rules to the positive rule set of a
capture process named strm01_capture and prepares the hr schema,
and all of its objects, for instantiation:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'capture',
 streams_name => 'strm01_capture',
 queue_name => 'strm01_queue',
 include_dml => true,
 include_ddl => true,
 inclusion_rule => true);
END;
/

If the specified capture process does not exist, then this procedure creates it.

� Add rules for the hr schema to the positive rule set for a capture process
using a procedure in the DBMS_RULE_ADM package, and then prepare the
objects for instantiation manually by specifying the hr schema when you
run the PREPARE_SCHEMA_INSTANTIATION procedure in the
DBMS_CAPTURE_ADM package:

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_SCHEMA_INSTANTIATION(
 schema_name => 'hr');
END;
/

Make sure you add the rules to the positive rule set for the capture process
before you prepare the database objects for instantiation.

3. While still connected to the source database as the Streams administrator,
determine the current system change number (SCN) of the source database:

SELECT DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER FROM DUAL;

The SCN value returned by this query is specified for the FLASHBACK_SCN
Data Pump export parameter in Step 4. Because the hr schema includes foreign
key constraints between tables, the FLASHBACK_SCN export parameter, or a
similar export parameter, must be specified during export. In this example,
assume that the query returned 876606.

After you perform this query, make sure no DDL changes are made to the
objects being exported until after the export is complete.

Instantiating Objects in a Streams Replication Environment

Performing Instantiations 8-7

4. On a command line, use Data Pump to export the hr schema at the source
database.

Perform the export by connecting as an administrative user who is granted
EXP_FULL_DATABASE role. This user also must have READ and WRITE
privilege on the directory object created in Step 1. This example connects as the
the Streams administrator strmadmin.

The following is an example Data Pump export command:

expdp strmadmin/strmadminpw SCHEMAS=hr DIRECTORY=DPUMP_DIR
DUMPFILE=hr_schema_dp.dmp FLASHBACK_SCN=876606

5. While connected in SQL*Plus to the destination database the Streams
administrator, create a directory object to hold the import dump file and import
log file:

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

6. Transfer the Data Pump export dump file hr_schema_dp.dmp to the
destination database. You can use the DBMS_FILE_TRANSFER package, binary
FTP, or some other method to transfer the file to the destination database. After
the file transfer, the export dump file should reside in the directory that
corresponds to the directory object created in Step 5.

7. On a command line at the destination database, use Data Pump to import the
export dump file hr_schema_dp.dmp. Make sure no changes are made to the
tables in the schema being imported at the destination database until the import
is complete. Performing the import automatically sets the instantiation SCN for
the hr schema and all of its objects at the destination database.

Perform the import by connecting as an administrative user who is granted
IMP_FULL_DATABASE role. This user also must have READ and WRITE
privilege on the directory object created in Step 5. This example connects as the
the Streams administrator strmadmin.

The following is an example import command:

impdp strmadmin/strmadminpw SCHEMAS=hr DIRECTORY=DPUMP_DIR
DUMPFILE=hr_schema_dp.dmp

See Also: Oracle Database Utilities for information about
performing a Data Pump export

Instantiating Objects in a Streams Replication Environment

8-8 Oracle Streams Replication Administrator’s Guide

Instantiating Objects in a Streams Environment Using Transportable Tablespaces
The example in this section describes the steps required to instantiate objects in a
Streams environment using transportable tablespaces. Transportable tablespaces is
usually faster than export/import.

To run this example, connect to the source database as an administrative user and
create a new tablespace called jobs_tbs:

CREATE TABLESPACE jobs_tbs DATAFILE '/usr/oracle/dbs/jobs_tbs.dbf' SIZE 5 M;

Place the new table hr.jobs_transport in the jobs_tbs tablespace:

CREATE TABLE hr.jobs_transport TABLESPACE jobs_tbs AS
 SELECT * FROM hr.jobs;

This example makes the following assumptions:

� You want to capture all of the changes to the hr.jobs_transport table at a
source database and apply these changes at a separate destination database.

� The hr.jobs_transport table exists at a source database, and a single
self-contained tablespace named jobs_tbs contains the table. The jobs_tbs
tablespace is stored in a single datafile named jobs_tbs.dbf.

� The jobs_tbs tablespace does not contain data from any other schemas.

� Neither the hr.jobs_transport table nor the jobs_tbs tablespace exist at
the destination database.

� You have configured a Streams administrator at the source database named
strmadmin.

Note: Any table supplemental log groups for the tables exported
from the export database are retained when the tables are imported
at the import database. You may drop these supplemental log
groups if necessary.

See Also: Oracle Database Utilities for information about
performing a Data Pump import

Instantiating Objects in a Streams Replication Environment

Performing Instantiations 8-9

� You have granted the Streams administrator the DBA role at the source
database. The DBA role includes the EXP_FULL_DATABASE role, and a user
must be granted this role to perform a transportable tablespaces export. In this
example, the Streams administrator performs the transportable tablespaces
export.

� You have configured a Streams administrator at the destination database
named strmadmin.

� You have granted the Streams administrator the DBA role at the destination
database. The DBA role includes the IMP_FULL_DATABASE role, and a user
must be granted this role to perform a transportable tablespaces import. In this
example, the Streams administrator performs the transportable tablespaces
import.

Note: You can use the MAINTAIN_SIMPLE_TABLESPACE
procedure to configure Streams replication for a simple tablespace,
and you can use the MAINTAIN_TABLESPACES procedure to
configure Streams replication for a set of self-contained tablespaces.
If you use one of these procedures, then instantiation is performed
automatically for the objects in the tablespace. Oracle Corporation
recommends using MAINTAIN_SIMPLE_TABLESPACE or
MAINTAIN_TABLESPACES to configure replication for the objects
in a tablespace.

See Also:

� Oracle Database Administrator's Guide for more information
about using transportable tablespaces and for information
about limitations that may apply

� Oracle Streams Concepts and Administration for information
about configuring a Streams administrator

� "Replicating and Maintaining Tablespaces Using Streams" on
page 7-29 for more information about using the
MAINTAIN_SIMPLE_TABLESPACE and
MAINTAIN_TABLESPACES procedures

Instantiating Objects in a Streams Replication Environment

8-10 Oracle Streams Replication Administrator’s Guide

Given these assumptions, complete the following steps to instantiate the hr schema
using transportable tablespaces:

1. While connected in SQL*Plus to the source database as the Streams
administrator strmadmin, create a directory object to hold the export dump
file and export log file:

CREATE DIRECTORY TRANS_DIR AS '/usr/trans_dir';

2. While connected as the Streams administrator strmadmin at the source
database, prepare the hr.jobs_transport table for instantiation. You can
complete this step in one of the following ways:

� Add rules for the hr.jobs_transport table to the positive rule set for a
capture process using a procedure in the DBMS_STREAMS_ADM package. If
the capture process is a local capture process or a downstream capture
process with a database link to the source database, then the procedure that
you run prepares this table for instantiation automatically.

For example, the following procedure adds rules to the positive rule set of a
capture process named strm01_capture and prepares the
hr.jobs_transport table:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.jobs_transport',
 streams_type => 'capture',
 streams_name => 'strm01_capture',
 queue_name => 'strmadmin.strm01_queue',

 include_dml => true,
 include_ddl => true,
 inclusion_rule => true);
END;
/

� Add rules for the hr.jobs_transport table to the positive rule set for a
capture process using a procedure in the DBMS_RULE_ADM package, and
then prepare the hr.jobs_transport table for instantiation manually by
specifying the table when you run the PREPARE_TABLE_INSTANTIATION
procedure in the DBMS_CAPTURE_ADM package:

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name => 'hr.jobs_transport');
END;
/

Instantiating Objects in a Streams Replication Environment

Performing Instantiations 8-11

Make sure you add the rules to the positive rule set for the capture process
before you prepare the database objects for instantiation.

3. While connected the Streams administrator at the source database, make the
tablespace that contains the objects you are instantiating read-only. In this
example, the demo_hr tablespace contains the database objects.

ALTER TABLESPACE jobs_tbs READ ONLY;

4. On a command line, use the Data Pump Export utility to export the demo_hr
tablespace at the source database using transportable tablespaces export
parameters. The following is an example export command that uses
transportable tablespaces export parameters:

expdp strmadmin/strmadminpw TRANSPORT_TABLESPACES=jobs_tbs
DIRECTORY=TRANS_DIR DUMPFILE=jobs_tbs_ts.dmp

When you run the export command, make sure you connect as an
administrative user who was granted EXP_FULL_DATABASE role and has READ
and WRITE privileges on the directory object.

You also may perform an instantiation using transportable tablespaces and the
original Export/Import utilities.

5. While connected to the destination database as the Streams administrator
strmadmin, create a directory object to hold the import dump file and import
log file:

CREATE DIRECTORY TRANS_DIR AS '/usr/trans_dir';

6. Transfer both the data files for the tablespace and the export dump file
jobs_tbs_ts.dmp to the destination database. You can use the
DBMS_FILE_TRANSFER package, binary FTP, or some other method to transfer
these files to the destination database. After the file transfer, the export dump
file should reside in the directory that corresponds to the directory object
created in Step 5.

See Also: Oracle Database Utilities for information about
performing an export

Instantiating Objects in a Streams Replication Environment

8-12 Oracle Streams Replication Administrator’s Guide

7. On a command line at the destination database, use the Data Pump Import
utility to import the export dump file jobs_tbs_ts.dmp using transportable
tablespaces import parameters. Performing the import automatically sets the
instantiation SCN for the hr.jobs_transport table at the destination
database.

The following is an example import command:

impdp strmadmin/strmadminpw DIRECTORY=TRANS_DIR DUMPFILE=jobs_tbs_ts.dmp
TRANSPORT_DATAFILES='/usr/orc/dbs/jobs_tbs.dbf'

When you run the import command, make sure you connect an administrative
user who was granted IMP_FULL_DATABASE role and has READ and WRITE
privileges on the directory object.

If you are importing a tablespace that had more than one datafile, then specify
each datafile in the import command. For example, if the import in this example
had a second datafile named jobs_tbs2.dbf, then you can use the following
import command:

impdp strmadmin/strmadminpw DIRECTORY=TRANS_DIR DUMPFILE=jobs_tbs_ts.dmp
TRANSPORT_DATAFILES=('/usr/orc/dbs/jobs_tbs.dbf',
'/usr/orc/dbs/jobs_tbs2.dbf')

8. If necessary, at both the source database and the destination database, connect
as the Streams administrator and put the tablespace into read/write mode:

 ALTER TABLESPACE jobs_tbs READ WRITE;

See Also: Oracle Database Utilities for information about
performing an import

Note: Any table supplemental log groups for the tables exported
from the export database are retained when tables are imported at
the import database. You may drop these supplemental log groups
if necessary.

Instantiating Objects in a Streams Replication Environment

Performing Instantiations 8-13

Instantiating Objects in a Streams Environment Using Original Export/Import
The example in this section describes the steps required to instantiate objects in a
Streams environment using original export/import. This example makes the
following assumptions:

� You want to capture changes to all of the tables in the hr schema at a source
database and apply these changes at a separate destination database.

� The hr schema exists at both the source database and the destination database.
The hr schema at the source database contains seven tables. The hr schema at
the destination database does not contain any tables. For the purposes of this
example, you can drop the tables in the hr schema at the destination database
using the following SQL statements:

DROP TABLE hr.countries CASCADE CONSTRAINTS;
DROP TABLE hr.departments CASCADE CONSTRAINTS;
DROP TABLE hr.employees CASCADE CONSTRAINTS;
DROP TABLE hr.job_history CASCADE CONSTRAINTS;
DROP TABLE hr.jobs CASCADE CONSTRAINTS;
DROP TABLE hr.locations CASCADE CONSTRAINTS;
DROP TABLE hr.regions CASCADE CONSTRAINTS;

The import re-creates these tables at the destination database.

� You have configured a Streams administrator at the source database named
strmadmin.

Given these assumptions, complete the following steps to instantiate the hr schema
using original export/import:

1. While connected in SQL*Plus as the Streams administrator strmadmin at the
source database, prepare the database objects in the hr schema for instantiation.
You can complete this step in one of the following ways:

� Add rules for the hr schema to the positive rule set for a capture process
using a procedure in the DBMS_STREAMS_ADM package. If the capture
process is a local capture process or a downstream capture process with a
database link to the source database, then the procedure that you run
prepares the objects in the hr schema for instantiation automatically.

See Also: Oracle Streams Concepts and Administration for
information about configuring a Streams administrator

Instantiating Objects in a Streams Replication Environment

8-14 Oracle Streams Replication Administrator’s Guide

For example, the following procedure adds rules to the positive rule set of a
capture process named strm01_capture and prepares the hr schema,
and all of its objects, for instantiation:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'capture',
 streams_name => 'strm01_capture',
 queue_name => 'strm01_queue',
 include_dml => true,
 include_ddl => true,
 inclusion_rule => true);
END;
/

� Add rules for the hr schema to the positive rule set for a capture process
using a procedure in the DBMS_RULE_ADM package, and then prepare the
objects for instantiation manually by specifying the hr schema when you
run the PREPARE_SCHEMA_INSTANTIATION procedure in the
DBMS_CAPTURE_ADM package:

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_SCHEMA_INSTANTIATION(
 schema_name => 'hr');
END;
/

Make sure you add the rules to the positive rule set for the capture process
before you prepare the database objects for instantiation.

2. On the command line, use the original Export utility to export the tables in the
hr schema at the source database. Make sure no DDL changes are made to the
tables during the export.

The following is an example export command:

exp hr/hr FILE=hr_schema.dmp CONSISTENT=y
TABLES=countries,departments,employees,jobs,job_history,locations,regions

Because the hr schema includes foreign key constraints between tables, the
CONSISTENT export parameter is set to y to ensure consistency between all of
the objects in the schema. The OBJECT_CONISTENT export parameter is not
used because the CONSISTENT export parameter provides a more stringent
level of consistency.

Instantiating Objects in a Streams Replication Environment

Performing Instantiations 8-15

3. Transfer the export dump file hr_schema.dmp to the destination database.
You can use the DBMS_FILE_TRANSFER package, binary FTP, or some other
method to transfer the to the destination database.

4. At the destination database, use the original Import utility to import the export
dump file hr_schema.dmp. When you run the import command, make sure
you set the STREAMS_INSTANTIATION import parameter to y. This parameter
ensures that the import records instantiation SCN information for each object
imported. Also, make sure no changes are made to the tables in the schema
being imported at the destination database until the import is complete.
Performing the import automatically sets the instantiation SCN for each table in
the hr schema at the destination database.

The following is an example import command:

imp hr/hr FILE=hr_schema.dmp FULL=y COMMIT=y STREAMS_INSTANTIATION=y
LOG=import.log

Instantiating an Entire Database in a Streams Environment Using RMAN
The example in this section describes the steps required to instantiate an entire
database using the Recovery Manager (RMAN) DUPLICATE command. Using the
RMAN DUPLICATE command is usually faster than export/import of an entire
database. When you use the RMAN DUPLICATE command for full database
instantiation, you perform the following general steps:

1. Copy the entire source database to the destination site using the RMAN
DUPLICATE command.

See Also: Oracle Database Utilities for information about
performing an export using the original Export utility

Note: Any table supplemental log groups for the tables exported
from the export database are retained when the tables are imported
at the import database. You may drop these supplemental log
groups if necessary.

See Also: Oracle Database Utilities for information about
performing an import using the original Import utility

Instantiating Objects in a Streams Replication Environment

8-16 Oracle Streams Replication Administrator’s Guide

2. Remove the Streams configuration at the destination site using the
REMOVE_STREAMS_CONFIGURATION procedure in the DBMS_STREAMS_ADM
package.

3. Configure Streams destination site, including configuration of one or more
apply processes to apply changes from the source database.

You can complete this process without stopping any running capture processes or
propagations at the source database. The example in this section makes the
following assumptions:

� You want to capture all of the changes made to a source database named
dpx1.net, propagate these changes to a separate destination database named
dpx2.net, and apply these changes at the destination database.

� You have configured a Streams administrator at the source database named
strmadmin.

Complete the following steps to instantiate an entire database using RMAN:

1. Create a backup of the source database if one does not exist. RMAN requires a
valid backup for duplication. In this example, create a backup of dpx1.net if
one does not exist.

2. While connected in SQL*Plus as the Streams administrator strmadmin at the
source database, create a SYS.AnyData queue to stage the changes from the
source database if such a queue does not already exist. This queue will stage
changes that will be propagated to the destination database after it has been
configured.

Note: Oracle Corporation recommends that you do not use
RMAN for instantiation in an environment where distributed
transactions are possible. Doing so may cause in-doubt transactions
that must be corrected manually. Use export/import or
transportable tablespaces for instantiation instead.

See Also:

� Oracle Streams Concepts and Administration for information
about configuring a Streams administrator

� Oracle Database Backup and Recovery Advanced User's Guide for
instructions on using the RMAN DUPLICATE command

Instantiating Objects in a Streams Replication Environment

Performing Instantiations 8-17

For example, the following procedure creates a queue named streams_queue:

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

Remain connected as the Streams administrator in SQL*Plus at the source
database through Step 8.

3. Create a database link from dpx1.net to dpx2.net:

CREATE DATABASE LINK dpx2.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw
 USING 'dpx2.net';

4. Create a propagation from the source queue at the source database to the
destination queue at the destination database. The destination queue at the
destination database does not exist yet, but creating this propagation ensures
that events enqueued into the source queue will remain staged there until
propagation is possible. In addition to captured LCRs, the source queue will
stage internal messages that will populate the Streams data dictionary at the
destination database.

The following procedure creates the dpx1_to_dpx2 propagation:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(
 streams_name => 'dpx1_to_dpx2',
 source_queue_name => 'strmadmin.streams_queue',
 destination_queue_name => 'strmadmin.streams_queue@dpx2.net',
 include_dml => true,
 include_ddl => true,

 source_database => 'dpx1.net',
 inclusion_rule => true);
END;
/

5. Disable the propagation you created in Step 4.

BEGIN
 DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
 queue_name => 'strmadmin.streams_queue',
 destination => 'dpx2.net');
END;
/

6. Prepare the entire source database for instantiation, if it has not been prepared
for instantiation previously. If there is no capture process that captures all of the
changes to the source database, then create this capture process using the

Instantiating Objects in a Streams Replication Environment

8-18 Oracle Streams Replication Administrator’s Guide

ADD_GLOBAL_RULES procedure in the DBMS_STREAMS_ADM package. If the
capture process is a local capture process or a downstream capture process with
a database link to the source database, then running this procedure
automatically prepares the entire source database for instantiation. If such a
capture process already exists, then make sure the source database has been
prepared for instantiation by querying the
DBA_CAPTURE_PREPARED_DATABASE data dictionary view.

If you need to create a capture process, then this example creates the
capture_db capture process if it does not already exist:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type => 'capture',
 streams_name => 'capture_db',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true,
 inclusion_rule => true);
END;
/

If the capture process already exists and you need to prepare the entire database
for instantiation, then run the following procedure:

EXEC DBMS_CAPTURE_ADM.PREPARE_GLOBAL_INSTANTIATION();

7. If you created a capture process in Step 6, then start the capture process:

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture_db');
END;
/

8. Determine the until SCN for the RMAN duplicate command:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 until_scn NUMBER;
BEGIN
 until_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;

 DBMS_OUTPUT.PUT_LINE('Until SCN: ' || until_scn);
END;
/

Instantiating Objects in a Streams Replication Environment

Performing Instantiations 8-19

Make a note of the until SCN returned. You will use this number in Step 11. For
this example, assume that the returned until SCN is 3050191.

9. Connect to the source database as a system administrator in SQL*Plus and
archive the current online redo log:

ALTER SYSTEM ARCHIVE LOG CURRENT;

10. Prepare your environment for database duplication, which includes preparing
the destination database as an auxiliary instance for duplication. See Oracle
Database Backup and Recovery Advanced User's Guide for instructions.

11. Use the RMAN DUPLICATE command with the OPEN RESTRICTED option to
instantiate the source database at the destination database. The OPEN
RESTRICTED option is required. This option enables a restricted session in the
duplicate database by issuing the following SQL statement: ALTER SYSTEM
ENABLE RESTRICTED SESSION. RMAN issues this statement immediately
before the duplicate database is opened.

You can use the UNTIL SCN clause to specify an SCN for the duplication. Use
the until SCN determined in Step 8 for this clause. The until SCN specified for
the RMAN DUPLICATE command must be higher than the SCN when the
database was prepared for instantiation in Step 6. Also, archived redo logs must
be available for the until SCN specified and for higher SCN values. Therefore,
Step 9 archived the redo log containing the until SCN.

Make sure you use TO database_name in the DUPLICATE command to
specify the name of the duplicate database. In this example, the duplicate
database is dpx2.net. Therefore, the DUPLICATE command for this example
includes TO dpx2.net.

The following is an example of an RMAN DUPLICATE command:

rman
RMAN> CONNECT TARGET SYS/change_on_install@dpx1.net
RMAN> CONNECT AUXILIARY SYS/change_on_install@dpx2.net
RMAN> RUN
 {
 SET UNTIL SCN 3050191;
 ALLOCATE AUXILIARY CHANNEL dpx2 DEVICE TYPE sbt;
 DUPLICATE TARGET DATABASE TO dpx2
 NOFILENAMECHECK
 OPEN RESTRICTED;
 }

Instantiating Objects in a Streams Replication Environment

8-20 Oracle Streams Replication Administrator’s Guide

12. At the destination database, connect as an administrative user in SQL*Plus and
rename the database global name. After the RMAN DUPLICATE command, the
destination database has the same global name as the source database.

ALTER DATABASE RENAME GLOBAL_NAME TO DPX2.NET;

13. At the destination database, connect as an administrator with SYSDBA privilege
in SQL*Plus and run the following procedure:

EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();

14. At the destination database, use the ALTER SYSTEM statement to disable the
RESTRICTED SESSION:

ALTER SYSTEM DISABLE RESTRICTED SESSION;

15. At the destination database, create the queue specified in Step 4. For example:

For example, the following procedure creates a queue named streams_queue:

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

16. At the destination database, connect as the Streams administrator and configure
the Streams environment.

Attention: Make sure you are connected to the destination
database, not the source database, when you run this procedure
because it removes the local Streams configuration.

Note: Any supplemental log groups for the tables at the source
database are retained at the destination database, and the
REMOVE_STREAMS_CONFIGURATION procedure does not drop
them. You may drop these supplemental log groups if necessary.

See Also: PL/SQL Packages and Types Reference for more
information about the REMOVE_STREAMS_CONFIGURATION
procedure

Instantiating Objects in a Streams Replication Environment

Performing Instantiations 8-21

17. At the destination database, set the global instantiation SCN for the source
database. The RMAN DUPLICATE command duplicates the database up to one
less than the SCN value specified in the UNTIL SCN clause. Therefore, you
should subtract one from the until SCN value that you specified when you ran
the DUPLICATE command in Step 11. In this example, the until SCN was set to
3050191. Therefore, the instantiation SCN should be set to 3050191 - 1,
or 3050190.

For example, to set the global instantiation SCN to 3050190 for the dpx1.net
source database, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_GLOBAL_INSTANTIATION_SCN(
 source_database_name => 'dpx1.net',
 instantiation_scn => 3050190,
 recursive => true);
END;
/

Notice that the recursive parameter is set to true to set the instantiation
SCN for all schemas and tables in the destination database.

18. At the destination database, you may start any apply processes that you
configured.

19. At the source database, enable the propagation you disabled in Step 5:

BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(
 queue_name => 'strmadmin.streams_queue',
 destination => 'dpx2.net');
END;
/

Attention: Do not start any apply processes at the destination
database until you set the global instantiation SCN in Step 17.

See Also: Oracle Streams Concepts and Administration for
information about configuring a Streams administrator

Setting Instantiation SCNs at a Destination Database

8-22 Oracle Streams Replication Administrator’s Guide

Setting Instantiation SCNs at a Destination Database
An instantiation SCN instructs an apply process at a destination database to apply
changes to a database object that committed after a specific SCN at a source
database. You can set instantiation SCNs in one of the following ways:

� Export the relevant database objects at the source database and import them
into the destination database. In this case, the export/import creates the
database objects at the destination database, populates them with the data from
the source database, and sets the relevant instantiation SCNs. You may use Data
Pump export/import or original export/import for instantiations. See "Setting
Instantiation SCNs Using Export/Import" on page 8-23 for information about
the instantiation SCNs that are set for different types of export/import
operations.

� Perform a metadata only export/import using Data Pump or original
export/import. If you use Data Pump export/import, then set the CONTENT
parameter to METADATA_ONLY during export at the source database or import
at the destination database, or both. If you use original export/import, then set
the ROWS parameter to n during export at the source database or import at the
destination database, or both. In either case, instantiation SCNs are set for the
database objects, but no data is imported. See "Setting Instantiation SCNs Using
Export/Import" on page 8-23 for information about the instantiation SCNs that
are set for different types of export/import operations.

� Use transportable tablespaces to copy the objects in one or more tablespaces
from a source database to a destination database. An instantiation SCN is set for
each schema in these tablespaces and for each database object in these
tablespaces that was prepared for instantiation before the export. See
"Instantiating Objects in a Streams Environment Using Transportable
Tablespaces" on page 8-8.

� Set the instantiation SCN using the SET_TABLE_INSTANTIATION_SCN,
SET_SCHEMA_INSTANATIATION_SCN, and
SET_GLOBAL_INSTANTIATION_SCN procedures in the DBMS_APPLY_ADM
package. See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM
Package" on page 8-25.

Setting Instantiation SCNs at a Destination Database

Performing Instantiations 8-23

Setting Instantiation SCNs Using Export/Import
This section discusses setting instantiation SCNs by performing an export/import.
The information in this section applies to both metadata export/import operations
and to export/import operations that import rows. Also, you may use either Data
Pump export/import or original export/import.

If you use the original Export utility, then set the OBJECT_CONSISTENT export
parameter to y. Regardless of whether you use Data Pump export or original
export, you may specify a more stringent degree of consistency by using an export
parameter such as FLASHBACK_SCN or FLASHBACK_TIME. Also, if you use the
original Import utility, then set the STREAMS_INSTANTIATION import parameter
to y.

The following sections describe how the instantiation SCNs are set for different
types of export/import operations. These sections refer to prepared tables.
Prepared tables are tables that have been prepared for instantiation using the
PREPARE_TABLE_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, or
PREPARE_GLOBAL_INSTANTIATION procedures in the DBMS_CAPTURE_ADM
package. A table must be a prepared table before export in order for an instantiation
SCN to be set for it during import. However, the database and schemas do not need
to be prepared before the export in order for their instantiation SCNs to be set
during import.

Full Database Export and Full Database Import
A full database export and full database import sets the following instantiation
SCNs at the import database:

� The database, or global, instantiation SCN

� The schema instantiation SCN for each imported user

� The table instantiation SCNs for each prepared table that is imported

See Also:

� "Instantiation SCN and Ignore SCN for an Apply Process" on
page 1-30

� "Overview of Instantiation and Streams Replication" on
page 2-2

� "Instantiating Objects in a Streams Replication Environment"
on page 8-4

Setting Instantiation SCNs at a Destination Database

8-24 Oracle Streams Replication Administrator’s Guide

Full Database or User Export and User Import
A full database or user export and user import sets the following instantiation SCNs
at the import database:

� The schema instantiation SCN for each imported user

� The table instantiation SCN for each prepared table that is imported

Full Database, User, or Table Export and Table Import
Any export that includes one or more tables and a table import sets the table
instantiation SCN for each prepared table that is imported at the import database.

Note:

� If a non-NULL instantiation SCN already exists for a database
object at a destination database that performs an import, then
the import updates the instantiation SCN for that database
object.

� During an export for a Streams instantiation, make sure no
DDL changes are made to objects being exported.

� Any table supplemental logging specifications for the tables
exported from the export database are retained when the tables
are imported at the import database.

See Also:

� "Oracle Data Pump and Streams Instantiation" on page 2-7,
"Original Export/Import and Streams Instantiation" on
page 2-13, and Oracle Database Utilities for information about
using export/import

� Chapter 6, "Configuring Streams Replication" for more
information about performing export/import operations to set
instantiation SCNs when configuring a Streams environment

� "Preparing Database Objects for Instantiation at a Source
Database" on page 8-2

Setting Instantiation SCNs at a Destination Database

Performing Instantiations 8-25

Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package
You can set an instantiation SCN at a destination database for a specified table, a
specified schema, or an entire database using one of the following procedures in the
DBMS_APPLY_ADM package:

� SET_TABLE_INSTANTIATION_SCN

� SET_SCHEMA_INSTANTIATION_SCN

� SET_GLOBAL_INSTANTIATION_SCN

If you set the instantiation SCN for a schema using
SET_SCHEMA_INSTANTIATION_SCN, then you can set the recursive parameter
to true when you run this procedure to set the instantiation SCN for each table in
the schema. Similarly, if you set the instantiation SCN for a database using
SET_GLOBAL_INSTANTIATION_SCN, then you can set the recursive parameter
to true when you run this procedure to set the instantiation SCN for the schemas
in the database and for each table owned by these schemas.

Table 8–1 lists each procedure and the types of statements for which they set an
instantiation SCN.

Note:

� If you set the recursive parameter to true in the
SET_SCHEMA_INSTANTIATION_SCN procedure or the
SET_GLOBAL_INSTANTIATION_SCN procedure, then a
database link from the destination database to the source
database is required. This database link must have the same
name as the global name of the source database and must be
accessible to the user who executes the procedure.

� If a relevant instantiation SCN is not present, then an error is
raised during apply.

Setting Instantiation SCNs at a Destination Database

8-26 Oracle Streams Replication Administrator’s Guide

Setting the Instantiation SCN While Connected to the Source Database
The user who runs the examples in this section must have access to a database link
from the source database to the destination database. In these example, the database
link is hrdb2.net. The following example sets the instantiation SCN for the
hr.departments table at the hrdb2.net database to the current SCN by running
the following procedure at the source database hrdb1.net:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@HRDB2.NET(
 source_object_name => 'hr.departments',
 source_database_name => 'hrdb1.net',
 instantiation_scn => iscn);
END;
/

Table 8–1 Set Instantiation SCN Procedures and the Statements They Cover

Procedure Sets Instantiation SCN for Examples

SET_TABLE_INSTANTIATION_SCN DML and DDL statements on
tables, except CREATE TABLE

DDL statements on table indexes
and table triggers

UPDATE

ALTER TABLE

DROP TABLE

CREATE, ALTER, or DROP INDEX
on a table

CREATE, ALTER, or DROP
TRIGGER on a table

SET_SCHEMA_INSTANTIATION_SCN DDL statements on users, except
CREATE USER

DDL statements on all database
objects that have a non-PUBLIC
owner, except for those DDL
statements handled by a
table-level instantiation SCN

CREATE TABLE

ALTER USER

DROP USER

CREATE PROCEDURE

SET_GLOBAL_INSTANTIATION_SCN DDL statements on database
objects other than users with no
owner

DDL statements on database
objects owned by public

CREATE USER statements

CREATE USER

CREATE TABLESPACE

Setting Instantiation SCNs at a Destination Database

Performing Instantiations 8-27

The following example sets the instantiation SCN for the oe schema and all of its
objects at the hrdb2.net database to the current source database SCN by running
the following procedure at the source database hrdb1.net:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN@HRDB2.NET(
 source_schema_name => 'oe',
 source_database_name => 'hrdb1.net',
 instantiation_scn => iscn,
 recursive => true);
END;
/

Because the recursive parameter is set to true, running this procedure sets the
instantiation SCN for each database object in the oe schema.

Setting the Instantiation SCN While Connected to the Destination Database
The user who runs the examples in this section must have access to a database link
from the destination database to the source database. In these example, the database
link is hrdb1.net. The following example sets the instantiation SCN for the
hr.departments table at the hrdb2.net database to the current source database
SCN at hrdb1.net by running the following procedure at the destination database
hrdb2.net:

Note: When you set the recursive parameter to true, a
database link from the destination database to the source database
is required, even if you run the procedure while you are connected
to the source database. This database link must have the same
name as the global name of the source database and must be
accessible to the current user.

Setting Instantiation SCNs at a Destination Database

8-28 Oracle Streams Replication Administrator’s Guide

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER@HRDB1.NET;
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name => 'hr.departments',
 source_database_name => 'hrdb1.net',
 instantiation_scn => iscn);
END;
/

The following example sets the instantiation SCN for the oe schema and all of its
objects at the hrdb2.net database to the current source database SCN at
hrdb1.net by running the following procedure at the destination database
hrdb2.net:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER@HRDB1.NET;
 DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN(
 source_schema_name => 'oe',
 source_database_name => 'hrdb1.net',
 instantiation_scn => iscn,
 recursive => true);
END;
/

Because the recursive parameter is set to true, running this procedure sets the
instantiation SCN for each database object in the oe schema.

Note: If an apply process applies changes to a remote non-Oracle
database, then set the apply_database_link parameter to the
database link used for remote apply when you set the
instantiation SCN.

Setting Instantiation SCNs at a Destination Database

Performing Instantiations 8-29

See Also:

� Chapter , "Creating a New Streams Single Source Environment"
for more information when to set instantiation SCNs when you
are configuring a Streams environment

� Chapter 13, "Single Source Heterogeneous
Replication Example" and Chapter 14, "Multiple Source
Replication Example" for detailed examples that uses the
SET_TABLE_INSTANTIATION_SCN procedure

� The information about the DBMS_APPLY_ADM package in the
PL/SQL Packages and Types Reference for more information about
which instantiation SCN can be used for a DDL LCR

Setting Instantiation SCNs at a Destination Database

8-30 Oracle Streams Replication Administrator’s Guide

Managing Logical Change Records (LCRs) 9-1

9
Managing Logical Change Records (LCRs)

This chapter contains instructions for managing logical change records (LCRs) in a
Streams replication environment.

This chapter contains these topics:

� Requirements for Managing LCRs

� Constructing and Enqueuing LCRs

� Managing LCRs Containing LONG, LONG RAW, or LOB Columns

See Also: PL/SQL Packages and Types Reference and Oracle Streams
Concepts and Administration for more information about LCRs

Requirements for Managing LCRs

9-2 Oracle Streams Replication Administrator’s Guide

Requirements for Managing LCRs
This section describes requirements for creating or modifying LCRs. You may create
an LCR using a constructor for an LCR type, and then enqueue the LCR into a
SYS.AnyData queue. Such an LCR is a user-enqueued LCR event.

Also, you may modify an LCR using an apply handler or a rule-based
transformation. You can modify both LCRs captured by a capture process and LCRs
constructed and enqueued by a user or application.

Make sure you meet the following requirements when you manage an LCR:

� If you create or modify a row LCR, then make sure the command_type
attribute is consistent with the presence or absence of old column values and
the presence or absence of new column values.

� If you create or modify a DDL LCR, then make sure the ddl_text is consistent
with the base_table_name, base_table_owner, object_type,
object_owner, object_name, and command_type attributes.

� The following datatypes are allowed for columns in a user-constructed
row LCR:

– CHAR

– VARCHAR2

– NCHAR

– NVARCHAR2

– NUMBER

– DATE

– BINARY_FLOAT

– BINARY_DOUBLE

– RAW

– TIMESTAMP

– TIMESTAMP WITH TIME ZONE

– TIMESTAMP WITH LOCAL TIME ZONE

– INTERVAL YEAR TO MONTH

– INTERVAL DAY TO SECOND

Constructing and Enqueuing LCRs

Managing Logical Change Records (LCRs) 9-3

These datatypes are the only datatypes allowed for columns in a
user-constructed row LCR. However, you may use certain techniques to
construct LCRs that contain LOB information. Also, LCRs captured by a capture
process support more datatypes.

Constructing and Enqueuing LCRs
Use the following LCR constructors to create LCRs:

� To create a row LCR that contains a change to a row that resulted from a data
manipulation language (DML) statement, use the SYS.LCR$_ROW_RECORD
constructor.

� To create a DDL LCR that contains a data definition language change, use the
SYS.LCR$_DDL_RECORD constructor. Make sure the DDL text specified in the
ddl_text attribute of each DDL LCR conforms to Oracle SQL syntax.

The following example creates a queue in an Oracle database and an apply process
associated with the queue. Next, it creates a PL/SQL procedure that constructs a
row LCR based on information passed to it and enqueues the row LCR into the
queue. This example assumes that you have configured a Streams administrator
named strmadmin and granted this administrator DBA role.

1. While connected as an administrative user, grant the Streams administrator
EXECUTE privilege on the DBMS_STREAMS_MESSAGING package. For example:

GRANT EXECUTE ON DBMS_STREAMS_MESSAGING TO strmadmin;

Explicit EXECUTE privilege on the package is required because a procedure in
the package is called within a PL/SQL procedure in Step 7. In this case,
granting the privilege through a role is not sufficient.

See Also:

� "Apply Processing Options for LCRs" on page 1-15 for more
information about apply handlers

� "Managing LCRs Containing LONG, LONG RAW, or LOB
Columns" on page 9-9

� Oracle Streams Concepts and Administration for information
about the datatypes captured by a capture process and for
information about rule-based transformations

Constructing and Enqueuing LCRs

9-4 Oracle Streams Replication Administrator’s Guide

2. Create a SYS.AnyData queue in an Oracle database. This example assumes
that the Streams administrator is strmadmin user.

CONNECT strmadmin/strmadminpw

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strm04_queue_table',

 storage_clause => NULL,
 queue_name => 'strm04_queue');

END;
/

3. Create an apply process at the Oracle database to receive messages in the
queue. Make sure the apply_captured parameter is set to false when you
create the apply process, because the apply process will be applying
user-enqueued events, not events captured by a capture process. Also, make
sure the apply_user parameter is set to hr, because changes will be applied in
to the hr.regions table, and the apply user must have privileges to make
DML changes to this table.

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strm04_queue',
 apply_name => 'strm04_apply',
 apply_captured => false,
 apply_user => 'hr');
END;
/

4. Create a positive rule set for the apply process and add a rule that applies DML
changes to the hr.regions table made at the dbs1.net source database.

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.regions',
 streams_type => 'apply',
 streams_name => 'strm04_apply',
 queue_name => 'strm04_queue',
 include_dml => true,
 include_ddl => false,
 include_tagged_lcr => false,
 source_database => 'dbs1.net',
 inclusion_rule => true);

Constructing and Enqueuing LCRs

Managing Logical Change Records (LCRs) 9-5

END;
/

5. Set the disable_on_error parameter for the apply process to n.

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'strm04_apply',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

6. Start the apply process.

EXEC DBMS_APPLY_ADM.START_APPLY('strm04_apply');

7. Create a procedure called construct_row_lcr that constructs a row LCR and
then enqueues it into the queue created in Step 2.

CREATE OR REPLACE PROCEDURE construct_row_lcr(
 source_dbname VARCHAR2,
 cmd_type VARCHAR2,
 obj_owner VARCHAR2,
 obj_name VARCHAR2,
 old_vals SYS.LCR$_ROW_LIST,
 new_vals SYS.LCR$_ROW_LIST) AS
 row_lcr SYS.LCR$_ROW_RECORD;
BEGIN
 -- Construct the LCR based on information passed to procedure
 row_lcr := SYS.LCR$_ROW_RECORD.CONSTRUCT(
 source_database_name => source_dbname,
 command_type => cmd_type,
 object_owner => obj_owner,
 object_name => obj_name,
 old_values => old_vals,
 new_values => new_vals);
 -- Enqueue the created row LCR
 DBMS_STREAMS_MESSAGING.ENQUEUE(
 queue_name => 'strm04_queue',
 payload => SYS.AnyData.ConvertObject(row_lcr));
END construct_row_lcr;
/

Constructing and Enqueuing LCRs

9-6 Oracle Streams Replication Administrator’s Guide

8. Create and enqueue LCRs using the construct_row_lcr procedure created
in Step 3.

a. Create a row LCR that inserts a row into the hr.regions table.

CONNECT strmadmin/strmadminpw

DECLARE
 newunit1 SYS.LCR$_ROW_UNIT;
 newunit2 SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 newunit1 := SYS.LCR$_ROW_UNIT(
 'region_id',
 SYS.AnyData.ConvertNumber(5),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newunit2 := SYS.LCR$_ROW_UNIT(
 'region_name',
 SYS.AnyData.ConvertVarchar2('Moon'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(newunit1,newunit2);
construct_row_lcr(
 source_dbname => 'dbs1.net',
 cmd_type => 'INSERT',
 obj_owner => 'hr',
 obj_name => 'regions',
 old_vals => NULL,
 new_vals => newvals);
END;
/

Note: The application does not need to specify a transaction
identifier or SCN when it creates an LCR because the apply process
generates these values and stores them in memory. If a transaction
identifier or SCN is specified in the LCR, then the apply process
ignores it and assigns a new value.

See Also: PL/SQL Packages and Types Reference for more
information about LCR constructors

Constructing and Enqueuing LCRs

Managing Logical Change Records (LCRs) 9-7

COMMIT;

b. Connect as the hr user and query the hr.regions table to view the
applied row change. The row with a region_id of 5 should have Moon for
the region_name.

CONNECT hr/hr

SELECT * FROM hr.regions;

c. Create a row LCR that updates a row in the hr.regions table.

CONNECT strmadmin/strmadminpw

DECLARE
 oldunit1 SYS.LCR$_ROW_UNIT;
 oldunit2 SYS.LCR$_ROW_UNIT;
 oldvals SYS.LCR$_ROW_LIST;
 newunit1 SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 oldunit1 := SYS.LCR$_ROW_UNIT(
 'region_id',
 SYS.AnyData.ConvertNumber(5),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldunit2 := SYS.LCR$_ROW_UNIT(
 'region_name',
 SYS.AnyData.ConvertVarchar2('Moon'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldvals := SYS.LCR$_ROW_LIST(oldunit1,oldunit2);
 newunit1 := SYS.LCR$_ROW_UNIT(
 'region_name',
 SYS.AnyData.ConvertVarchar2('Mars'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(newunit1);

Constructing and Enqueuing LCRs

9-8 Oracle Streams Replication Administrator’s Guide

construct_row_lcr(
 source_dbname => 'dbs1.net',
 cmd_type => 'UPDATE',
 obj_owner => 'hr',
 obj_name => 'regions',
 old_vals => oldvals,
 new_vals => newvals);
END;
/
COMMIT;

d. Connect as the hr user and query the hr.regions table to view the
applied row change. The row with a region_id of 5 should have Mars for
the region_name.

CONNECT hr/hr

SELECT * FROM hr.regions;

e. Create a row LCR that deletes a row from the hr.regions table.

CONNECT strmadmin/strmadminpw

DECLARE
 oldunit1 SYS.LCR$_ROW_UNIT;
 oldunit2 SYS.LCR$_ROW_UNIT;
 oldvals SYS.LCR$_ROW_LIST;
BEGIN
 oldunit1 := SYS.LCR$_ROW_UNIT(
 'region_id',
 SYS.AnyData.ConvertNumber(5),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldunit2 := SYS.LCR$_ROW_UNIT(
 'region_name',
 SYS.AnyData.ConvertVarchar2('Mars'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldvals := SYS.LCR$_ROW_LIST(oldunit1,oldunit2);

Managing LCRs Containing LONG, LONG RAW, or LOB Columns

Managing Logical Change Records (LCRs) 9-9

construct_row_lcr(
 source_dbname => 'dbs1.net',
 cmd_type => 'DELETE',
 obj_owner => 'hr',
 obj_name => 'regions',
 old_vals => oldvals,
 new_vals => NULL);
END;
/
COMMIT;

f. Connect as the hr user and query the hr.regions table to view the
applied row change. The row with a region_id of 5 should have been
deleted.

CONNECT hr/hr

SELECT * FROM hr.regions;

Managing LCRs Containing LONG, LONG RAW, or LOB Columns
LONG, LONG RAW and LOB datatypes all may be present in row LCRs captured by a
capture process, but these datatypes are represented by other datatypes in row
LCRs. LONG, LONG RAW and certain LOB datatypes cannot be present in user-created
LCRs. Table 9–1 shows the LCR representation for these datatypes and whether
these datatypes can be present in a user-created LCR.

Table 9–1 LONG, LONG RAW, and LOB Datatype Representations in Row LCRs

Datatype
Row LCR
Representation

Can Be Present
in a Captured
LCR?

Can Be Present in a
User-Constructed
LCR?

LONG VARCHAR2 Yes No

LONG RAW RAW Yes No

Fixed-width CLOB VARCHAR2 Yes Yes

Variable-width CLOB RAW in AL16UTF16
character set

Yes No

NCLOB RAW in AL16UTF16
character set

Yes No

BLOB RAW Yes Yes

Managing LCRs Containing LONG, LONG RAW, or LOB Columns

9-10 Oracle Streams Replication Administrator’s Guide

The following are general considerations for row changes involving LONG, LONG
RAW and LOB datatypes in a Streams environment:

� A row change involving a LONG, LONG RAW or LOB may be captured,
propagated, and applied as several LCRs.

� Rules used to evaluate these LCRs must be deterministic, so that either all of the
LCRs corresponding to the row change cause a rule in a rule set to evaluate to
true, or none of them do.

� Rule-based transformations on these LCRs must be deterministic, so that all
LCRs corresponding to the row change are transformed in the same way.

The following sections contain information about the requirements you must meet
when processing LONG or LONG RAW columns, about the requirements you must
meet when constructing or processing LOB columns, and about apply process
behavior for LCRs containing LOB columns. There is also an example that
constructs and enqueues LCRs containing LOB columns.

Requirements for Processing LCRs Containing LONG and LONG RAW Columns
If your environment uses LCRs that contain LONG or LONG RAW columns, then the
data portion of the LCR LONG or LONG RAW column must be of type VARCHAR2 or
RAW. A VARCHAR2 is interpreted as a LONG, and a RAW is interpreted as a LONG RAW.
You may use a rule-based transformation to process row LCRs that contain LONG or
LONG RAW column data.

You must meet the following restrictions when you are processing row LCRs that
contain LONG or LONG RAW column data in Streams:

� You cannot use the SET_VALUE or SET_VALUES row LCR member procedures
in a rule-based transformation that is processing a row LCR that contains LONG
or LONG RAW data. Doing so raises the ORA-26679 error.

� You cannot use a DML handler or error handler to process row LCRs that
contain LONG or LONG RAW column data.

Attention: Do not modify LONG, LONG RAW or LOB column data in
an LCR. This includes DML handlers, error handlers, and
rule-based transformation functions.

Managing LCRs Containing LONG, LONG RAW, or LOB Columns

Managing Logical Change Records (LCRs) 9-11

� You cannot use an apply process to enqueue LCRs that contain LONG or LONG
RAW column data into a destination queue. The SET_DESTINATION_QUEUE
procedure in the DBMS_APPLY_ADM package sets the destination queue for
LCRs that satisfy a specified apply process rule.

Requirements for Constructing and Processing LCRs Containing LOB Columns
If your environment uses LCRs that contain LOB columns, then you must meet the
following requirements when you construct these LCRs or process them with an
apply handler or a rule-based transformation:

� The data portion of the LCR LOB column must be of type VARCHAR2 or RAW. A
VARCHAR2 is interpreted as a CLOB, and a RAW is interpreted as a BLOB.

� The LOB column in a user-constructed row LCR must be either a BLOB or a
fixed-width CLOB. You cannot construct a row LCR with the following types of
LOB columns: NCLOB or variable-width CLOB.

� LOB WRITE, LOB ERASE, and LOB TRIM are the only valid command types for
out-of-line LOBs.

� For LOB WRITE, LOB ERASE, and LOB TRIM LCRs, the old_values collection
should be empty or NULL, and new_values should not be empty.

� The lob_offset should be a valid value for LOB WRITE and LOB ERASE
LCRs. For all other command types, lob_offset should be NULL, under the
assumption that LOB chunks for that column will follow.

� The lob_operation_size should be a valid value for LOB ERASE and
LOB TRIM LCRs. For all other command types, lob_operation_size should
be NULL.

� LOB TRIM and LOB ERASE are valid command types only for an LCR containing
a LOB column with lob_information set to LAST_LOB_CHUNK.

� LOB WRITE is a valid command type only for an LCR containing a LOB column
with lob_information set to LAST_LOB_CHUNK or LOB_CHUNK.

See Also:

� "Apply Processing Options for LCRs" on page 1-15 for more
information about apply handlers

� Oracle Streams Concepts and Administration for information
about rule-based transformations

Managing LCRs Containing LONG, LONG RAW, or LOB Columns

9-12 Oracle Streams Replication Administrator’s Guide

� For LOBs with lob_information set to NULL_LOB, the data portion of the
column should be a NULL of VARCHAR2 type (for a CLOB) or a NULL of RAW type
(for a BLOB). Otherwise, it is interpreted as a non-NULL inline LOB column.

� Only one LOB column reference with one new chunk is allowed for each LOB
WRITE, LOB ERASE, and LOB TRIM LCR.

� The new LOB chunk for a LOB ERASE and a LOB TRIM LCR should be a NULL
value encapsulated in a SYS.AnyData.

All validation of these requirements is done by an apply process. If these
requirements are not met, then an LCR containing a LOB column cannot be applied
by an apply process nor processed by an apply handler. In this case, the LCR is
moved to the error queue with the rest of the LCRs in the same transaction.

Also, do not allow LCRs from a table that contains LOB data to be processed by an
apply handler or rule-based transformation that is invoked only for specific
operations. For example, an apply handler or a rule-based transformation that is
invoked only for INSERT operations should not process LCRs from a table with one
or more LOB columns.

In addition, you cannot use the following row LCR member procedures on a LOB
column when you are processing a row LCR with a rule-based transformation,
DML handler, or error handler:

� ADD_COLUMN

� SET_LOB_INFORMATION

� SET_LOB_OFFSET

� SET_LOB_OPERATION_SIZE

� SET_VALUE

� SET_VALUES

If you attempt to use any of these procedures on a row LCR that is being processed
by a rule-based transformation, DML handler, or error handler, then error
ORA-26679 is raised.

Managing LCRs Containing LONG, LONG RAW, or LOB Columns

Managing Logical Change Records (LCRs) 9-13

Apply Process Behavior for LCRs Containing LOBs
An apply process behaves in the following way when it encounters an LCR that
contains a LOB:

� If an LCR whose command type is INSERT or UPDATE has a new LOB that
contains data, and the lob_information is not DBMS_LCR.LOB_CHUNK or
DBMS_LCR.LAST_LOB_CHUNK, then the data is applied.

� If an LCR whose command type is INSERT or UPDATE has a new LOB that
contains no data, and the lob_information is DBMS_LCR.EMPTY_LOB, then
it is applied as an empty LOB.

� If an LCR whose command type is INSERT or UPDATE has a new LOB that
contains no data, and the lob_information is DBMS_LCR.NULL_LOB or
DBMS_LCR.INLINE_LOB, then it is applied as a NULL.

� If an LCR whose command type is INSERT or UPDATE has a new LOB and the
lob_information is DBMS_LCR.LOB_CHUNK or
DBMS_LCR.LAST_LOB_CHUNK, then any LOB value is ignored. If the command
type is INSERT, then an empty LOB is inserted into the column under the
assumption that LOB chunks will follow. If the command type is UPDATE, then
the column value is ignored under the assumption that LOB chunks will follow.

� If all of the new columns in an LCR whose command type is UPDATE are LOBs
whose lob_information is DBMS_LCR.LOB_CHUNK or
DBMS_LCR.LAST_LOB_CHUNK, then the update is skipped under the
assumption that LOB chunks will follow.

� For any LCR whose command type is UPDATE or DELETE, old LOB values are
ignored.

See Also:

� "Constructing and Enqueuing LCRs" on page 9-3

� "Apply Processing Options for LCRs" on page 1-15 for more
information about apply handlers

� Oracle Streams Concepts and Administration for information
about rule-based transformations

� Oracle Database Application Developer's Guide - Large Objects for
more information about LOBs

� PL/SQL Packages and Types Reference for more information about
member procedures for row LCRs

Managing LCRs Containing LONG, LONG RAW, or LOB Columns

9-14 Oracle Streams Replication Administrator’s Guide

Example Script for Constructing and Enqueuing LCRs Containing LOBs
The example in this section illustrates creating a PL/SQL procedure for constructing
and enqueuing LCRs containing LOBs. This example assumes that you have
prepared your database for Streams by completing the necessary actions described
in Oracle Streams Concepts and Administration.

Note: The extended example is not included in the PDF version of
this chapter, but it is included in the HTML version of the chapter.

Monitoring Streams Replication 10-1

10
Monitoring Streams Replication

This chapter provides information about the static data dictionary views and
dynamic performance views related to Streams replication. You can use these views
to monitor your Streams replication environment. This chapter also illustrates
example queries that you may want to use to monitor your Streams replication
environment.

This chapter contains these topics:

� Monitoring Supplemental Logging

� Monitoring an Apply Process in a Streams Replication Environment

� Monitoring Buffered Queues

� Monitoring Streams Tags

� Monitoring Instantiation

� Running Flashback Queries in a Streams Replication Environment

Note:

� The Streams tool in the Oracle Enterprise Manager Console is
also an excellent way to monitor a Streams environment. See
the online help for the Streams tool for more information.

� To collect elapsed time statistics in the dynamic performance
views discussed in this chapter, set the TIMED_STATISTICS
initialization parameter to true.

Monitoring Supplemental Logging

10-2 Oracle Streams Replication Administrator’s Guide

Monitoring Supplemental Logging
The following sections contain queries that you can run to monitor supplemental
logging at a source database:

� Displaying Supplemental Log Groups at a Source Database

� Displaying Database Supplemental Logging Specifications

Supplemental logging places additional column data into a redo log when an
operation is performed. The capture process captures this additional information
and places it in LCRs. An apply process that applies captured LCRs may need this
additional information to schedule or apply changes correctly.

Displaying Supplemental Log Groups at a Source Database
To check whether one or more log groups are specified for the table at the source
database, run the following query:

COLUMN LOG_GROUP_NAME HEADING 'Log Group' FORMAT A20
COLUMN TABLE_NAME HEADING 'Table' FORMAT A15
COLUMN ALWAYS HEADING 'Conditional or|Unconditional' FORMAT A14
COLUMN LOG_GROUP_TYPE HEADING 'Type of Log Group' FORMAT A20

See Also:

� Oracle Streams Concepts and Administration for more information
about monitoring a Streams environment

� Oracle Database Reference for information about the data
dictionary views described in this chapter

See Also:

� "Supplemental Logging for Streams Replication" on page 1-9

� "Managing Supplemental Logging in a Streams Replication
Environment" on page 7-4

Monitoring Supplemental Logging

Monitoring Streams Replication 10-3

SELECT
 LOG_GROUP_NAME,
 TABLE_NAME,
 DECODE(ALWAYS,
 'ALWAYS', 'Unconditional',
 'CONDITIONAL', 'Conditional') ALWAYS,
 LOG_GROUP_TYPE
 FROM DBA_LOG_GROUPS;

Your output looks similar to the following:

 Conditional or
Log Group Table Unconditional Type of Log Group
-------------------- --------------- -------------- --------------------
LOG_GROUP_DEP_PK DEPARTMENTS Unconditional USER LOG GROUP
SYS_C002105 REGIONS Unconditional PRIMARY KEY LOGGING
SYS_C002106 REGIONS Conditional FOREIGN KEY LOGGING
SYS_C002110 LOCATIONS Unonditional ALL COLUMN LOGGING
SYS_C002111 COUNTRIES Conditional ALL COLUMN LOGGING
LOG_GROUP_JOBS_CR JOBS Conditional USER LOG GROUP

If the output for the type of log group shows how the log group was created:

� If the output is USER LOG GROUP, then the log group was created using the ADD
SUPPLEMENTAL LOG GROUP clause of the ALTER TABLE statement.

� Otherwise, the log group was created using the ADD SUPPLEMENTAL LOG DATA
clause of the ALTER TABLE statement.

If the type of log group is USER LOG GROUP, then you can list the columns in the log
group by querying the DBA_LOG_GROUP_COLUMNS data dictionary view.

Attention: If the type of log group is not USER LOG GROUP, then
the DBA_LOG_GROUP_COLUMNS data dictionary view does not
contain information about the columns in the log group. Instead,
Oracle supplementally logs the correct columns when an operation
is performed on the table. For example, if the type of log group is
PRIMARY KEY LOGGING, then Oracle logs the current primary key
column(s) when a change is performed on the table.

Monitoring an Apply Process in a Streams Replication Environment

10-4 Oracle Streams Replication Administrator’s Guide

Displaying Database Supplemental Logging Specifications
To display the database supplemental logging specifications, query the
V$DATABASE dynamic performance view, as in the following example:

COLUMN log_min HEADING 'Minimum|Supplemental|Logging?' FORMAT A12
COLUMN log_pk HEADING 'Primary Key|Supplemental|Logging?' FORMAT A12
COLUMN log_fk HEADING 'Foreign Key|Supplemental|Logging?' FORMAT A12
COLUMN log_ui HEADING 'Unique Key|Supplemental|Logging?' FORMAT A12
COLUMN log_all HEADING 'All Columns|Supplemental|Logging?' FORMAT A12

SELECT SUPPLEMENTAL_LOG_DATA_MIN log_min,
 SUPPLEMENTAL_LOG_DATA_PK log_pk,
 SUPPLEMENTAL_LOG_DATA_FK log_fk,
 SUPPLEMENTAL_LOG_DATA_UI log_ui,
 SUPPLEMENTAL_LOG_DATA_ALL log_all
 FROM V$DATABASE;

Your output looks similar to the following:

Minimum Primary Key Foreign Key Unique Key All Columns
Supplemental Supplemental Supplemental Supplemental Supplemental
Logging? Logging? Logging? Logging? Logging?
------------ ------------ ------------ ------------ ------------
YES YES YES YES NO

These results show that minimum, primary key, foreign key, and unique key
columns are being supplementally logged for all of the tables in the database.
However, all columns are not being supplementally logged.

Monitoring an Apply Process in a Streams Replication Environment
The following sections contain queries that you can run to monitor an apply process
in a Stream replication environment:

� Displaying the Substitute Key Columns Specified at a Destination Database

� Displaying Information About DML and DDL Handlers

� Displaying Information About Conflict Detection

� Displaying Information About Update Conflict Handlers

Monitoring an Apply Process in a Streams Replication Environment

Monitoring Streams Replication 10-5

Displaying the Substitute Key Columns Specified at a Destination Database
You can designate a substitute key at a destination database, which is a column or
set of columns that Oracle can use to identify rows in the table during apply.
Substitute key columns can be used to specify key columns for a table that has no
primary key, or they can be used instead of a table's primary key when the table is
processed by any apply process at a destination database.

To display all of the substitute key columns specified at a destination database, run
the following query:

COLUMN OBJECT_OWNER HEADING 'Table Owner' FORMAT A20
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A20
COLUMN COLUMN_NAME HEADING 'Substitute Key Name' FORMAT A20
COLUMN APPLY_DATABASE_LINK HEADING 'Database Link|for Remote|Apply' FORMAT A15

SELECT OBJECT_OWNER, OBJECT_NAME, COLUMN_NAME, APPLY_DATABASE_LINK
 FROM DBA_APPLY_KEY_COLUMNS
 ORDER BY APPLY_DATABASE_LINK, OBJECT_OWNER, OBJECT_NAME;

Your output looks similar to the following:

 Database Link
 for Remote
Table Owner Table Name Substitute Key Name Apply
-------------------- -------------------- -------------------- ---------------
HR DEPARTMENTS DEPARTMENT_NAME
HR DEPARTMENTS LOCATION_ID
HR EMPLOYEES FIRST_NAME
HR EMPLOYEES LAST_NAME
HR EMPLOYEES HIRE_DATE

See Also:

� "Apply and Streams Replication" on page 1-14

� "Managing Apply for Streams Replication" on page 7-12

Note: This query shows the database link in the last column if the
substitute key columns are for a remote non-Oracle database. The
last column is NULL if a substitute key column is specified for the
local destination database.

Monitoring an Apply Process in a Streams Replication Environment

10-6 Oracle Streams Replication Administrator’s Guide

Displaying Information About DML and DDL Handlers
This section contains queries that display information about apply process DML
handlers and DDL handlers.

Displaying All of the DML Handlers for Local Apply
When you specify a local DML handler using the SET_DML_HANDLER procedure in
the DBMS_APPLY_ADM package at a destination database, you either can specify
that the handler runs for a specific apply process or that the handler is a general
handler that runs for all apply processes in the database that apply changes locally,
when appropriate. A specific DML handler takes precedence over a generic DML
handler. A DML is run for a specified operation on a specific table.

To display the DML handler for each apply process that applies changes locally in a
database, run the following query:

COLUMN OBJECT_OWNER HEADING 'Table|Owner' FORMAT A11
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A10
COLUMN OPERATION_NAME HEADING 'Operation' FORMAT A9
COLUMN USER_PROCEDURE HEADING 'Handler Procedure' FORMAT A25
COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A15

SELECT OBJECT_OWNER,
 OBJECT_NAME,
 OPERATION_NAME,
 USER_PROCEDURE,
 APPLY_NAME
 FROM DBA_APPLY_DML_HANDLERS
 WHERE ERROR_HANDLER = 'N' AND
 APPLY_DATABASE_LINK IS NULL
 ORDER BY OBJECT_OWNER, OBJECT_NAME;

See Also:

� "Substitute Key Columns" on page 1-18

� "Managing the Substitute Key Columns for a Table" on
page 7-14

� Oracle Streams Concepts and Administration for information
about managing apply errors

See Also: Oracle Streams Concepts and Administration for more
information about DML and DDL handlers

Monitoring an Apply Process in a Streams Replication Environment

Monitoring Streams Replication 10-7

Your output looks similar to the following:

Table Apply Process
Owner Table Name Operation Handler Procedure Name
----------- ---------- --------- ------------------------- --------------
HR LOCATIONS UPDATE "STRMADMIN"."HISTORY_DML"

Because Apply Process Name is NULL for the strmadmin.history_dml DML
handler, this handler is a general handler that runs for all of the local apply
processes.

Displaying the DDL Handler for Each Apply Process
To display the DDL handler for each apply process in a database, run the following
query:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A20
COLUMN DDL_HANDLER HEADING 'DDL Handler' FORMAT A40

SELECT APPLY_NAME, DDL_HANDLER FROM DBA_APPLY;

Your output looks similar to the following:

Apply Process Name DDL Handler
-------------------- --
STREP01_APPLY "STRMADMIN"."HISTORY_DDL"

Note: You also can specify DML handlers to process changes for
remote non-Oracle databases. This query does not display such
DML handlers because it lists a DML handler only if the
APPLY_DATABASE_LINK column is NULL.

See Also: "Managing a DML Handler" on page 7-16

See Also: "Managing the DDL Handler for an Apply Process" on
page 7-20

Monitoring an Apply Process in a Streams Replication Environment

10-8 Oracle Streams Replication Administrator’s Guide

Displaying Information About Conflict Detection
You can stop conflict detection for nonkey columns using the
COMPARE_OLD_VALUES procedure in the DBMS_APPLY_ADM package. When you
use this procedure, conflict detection is stopped for the specified columns for all
apply processes at a destination database. To display each column for which
conflict detection has been stopped, run the following query:

COLUMN OBJECT_OWNER HEADING 'Table Owner' FORMAT A15
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A20
COLUMN COLUMN_NAME HEADING 'Column Name' FORMAT A20
COLUMN COMPARE_OLD_ON_DELETE HEADING 'Compare|Old On|Delete' FORMAT A7
COLUMN COMPARE_OLD_ON_UPDATE HEADING 'Compare|Old On|Update' FORMAT A7

SELECT OBJECT_OWNER,
 OBJECT_NAME,
 COLUMN_NAME,
 COMPARE_OLD_ON_DELETE,
 COMPARE_OLD_ON_UPDATE
 FROM DBA_APPLY_TABLE_COLUMNS
 WHERE APPLY_DATABASE_LINK IS NULL;

Your output should look similar to the following:

 Compare Compare
 Old On Old On
Table Owner Table Name Column Name Delete Update
--------------- -------------------- -------------------- ------- -------
HR EMPLOYEES COMMISSION_PCT NO NO
HR EMPLOYEES EMAIL NO NO
HR EMPLOYEES FIRST_NAME NO NO
HR EMPLOYEES HIRE_DATE NO NO
HR EMPLOYEES JOB_ID NO NO
HR EMPLOYEES LAST_NAME NO NO
HR EMPLOYEES PHONE_NUMBER NO NO
HR EMPLOYEES SALARY NO NO

Note: You also can stop conflict detection for changes that are
applied to remote non-Oracle databases. This query does not
display such specifications because it lists a specification only if the
APPLY_DATABASE_LINK column is NULL.

Monitoring an Apply Process in a Streams Replication Environment

Monitoring Streams Replication 10-9

Displaying Information About Update Conflict Handlers
When you specify an update conflict handler using the
SET_UPDATE_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package,
the update conflict handler is run for all apply processes in the database, when a
relevant conflict occurs.

The query in this section displays all of the columns for which conflict resolution
has been specified using a prebuilt update conflict handler. That is, it shows the
columns in all of the column lists specified in the database. This query also shows
the type of prebuilt conflict handler specified and the resolution column specified
for the column list.

To display information about all of the update conflict handlers in a database, run
the following query:

COLUMN OBJECT_OWNER HEADING 'Table|Owner' FORMAT A5
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A12
COLUMN METHOD_NAME HEADING 'Method' FORMAT A12
COLUMN RESOLUTION_COLUMN HEADING 'Resolution|Column' FORMAT A13
COLUMN COLUMN_NAME HEADING 'Column Name' FORMAT A30

SELECT OBJECT_OWNER,
 OBJECT_NAME,
 METHOD_NAME,
 RESOLUTION_COLUMN,
 COLUMN_NAME
 FROM DBA_APPLY_CONFLICT_COLUMNS
 ORDER BY OBJECT_OWNER, OBJECT_NAME, RESOLUTION_COLUMN;

See Also:

� "Control Over Conflict Detection for Nonkey Columns" on
page 3-5

� "Stopping Conflict Detection for Nonkey Columns" on
page 7-27

Monitoring Buffered Queues

10-10 Oracle Streams Replication Administrator’s Guide

Your output looks similar to the following:

Table Resolution
Owner Table Name Method Column Column Name
----- ------------ ------------ ------------- ------------------------------
HR COUNTRIES MAXIMUM TIME COUNTRY_NAME
HR COUNTRIES MAXIMUM TIME REGION_ID
HR COUNTRIES MAXIMUM TIME TIME
HR DEPARTMENTS MAXIMUM TIME DEPARTMENT_NAME
HR DEPARTMENTS MAXIMUM TIME LOCATION_ID
HR DEPARTMENTS MAXIMUM TIME MANAGER_ID
HR DEPARTMENTS MAXIMUM TIME TIME

Monitoring Buffered Queues
A buffered queue includes the following storage areas:

� System Global Area (SGA) memory associated with a SYS.AnyData queue that
contains only captured LCRs

� Part of a queue table for a SYS.AnyData queue that stores captured LCRs that
have spilled from memory

A buffered queue contains only captured LCRs and enables the Oracle database to
optimize captured LCRs by buffering them in the SGA instead of always storing
them in a queue table. This buffering of captured LCRs happens in any database
where captured LCRs are staged in a SYS.AnyData queue, such as a source
database, an intermediate database, or a destination database. If you have
configured a Streams pool for a database, then buffered queues reside in the
Streams pool. If you have not configured a Streams pool for a database, then
buffered queues reside in the shared pool.

Captured events are always stored in a buffered queue, but user-enqueued LCR
events and user-enqueued non-LCR events are always staged in queue tables, not in
buffered queues. Captured events in a buffered queue may spill from memory if
they have been staged in the buffered queue for a period of time without being
dequeued, or if there is not enough space in memory to hold all of the captured

See Also:

� Chapter 3, "Streams Conflict Resolution"

� "Managing Streams Conflict Detection and Resolution" on
page 7-23

Monitoring Buffered Queues

Monitoring Streams Replication 10-11

events. Captured events that spill from memory are stored in the appropriate queue
table.

The following sections describe queries that enable you to monitor buffered queues:

� Determining the Number of LCRs in Each Buffered Queue

� Viewing the Capture Processes For the LCRs in Each Buffered Queue

� Displaying General Information About Propagations That Send Captured
Events

� Displaying the Number of Events and Bytes Sent By Propagations

� Displaying Performance Statistics For Propagations That Send Captured Events

� Viewing the Propagations Dequeuing LCRs From Each Buffered Queue

� Displaying Performance Statistics For Propagations That Receive Captured
Events

� Viewing the Apply Processes Dequeuing LCRs From Each Buffered Queue

Determining the Number of LCRs in Each Buffered Queue
You cannot access the LCRs in a buffered queue directly, but the
V$BUFFERED_QUEUES dynamic performance view enables you to obtain
information about the number of LCRs in a buffered queue. You can determine the
following information about each buffered queue in a database by running the
query in this section:

� The queue owner

� The queue name

� The number of captured LCRs currently in memory

� The number of captured LCRs that have spilled from memory into the queue
table

� The total number of captured LCRs in the buffered queue, which includes the
captured LCRs in memory and the captured LCRs spilled to the queue table

Monitoring Buffered Queues

10-12 Oracle Streams Replication Administrator’s Guide

To display this information, run the following query:

COLUMN QUEUE_SCHEMA HEADING 'Queue Owner' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A15
COLUMN MEM_MSG HEADING 'LCRs in Memory' FORMAT 99999999
COLUMN SPILL_MSGS HEADING 'Spilled LCRs' FORMAT 99999999
COLUMN NUM_MSGS HEADING 'Total Captured LCRs|in Buffered Queue' FORMAT 99999999

SELECT QUEUE_SCHEMA,
 QUEUE_NAME,
 (NUM_MSGS - SPILL_MSGS) MEM_MSG,
 SPILL_MSGS,
 NUM_MSGS
 FROM V$BUFFERED_QUEUES;

Your output looks similar to the following:

 Total Captured LCRs
Queue Owner Queue Name LCRs in Memory Spilled LCRs in Buffered Queue
--------------- --------------- -------------- ------------ -------------------
STRMADMIN STREAMS_QUEUE 534 21 555

Viewing the Capture Processes For the LCRs in Each Buffered Queue
A capture process is a queue publisher that enqueues captured LCRs into a buffered
queue. These LCRs may be propagated to other queues subsequently. By querying
the V$BUFFERED_PUBLISHERS dynamic performance view, you can display each
capture process that captured the LCRs in the buffered queue. These LCRs may
have been captured at the local database, or they may have been captured at a
remote database and propagated to the queue specified in the query.

The query in this section displays the following information about each of these
capture processes:

� The name of a capture process that captured the LCRs in the buffered queue

� If the capture process is running on a remote database, and the captured LCRs
have been propagated to the local queue, then the name of the queue and
database from which the captured LCRs were last propagated

� The name of the local queue staging the captured LCRs

� The total number of LCRs captured by a capture process that have been staged
in the buffered queue since the database instance was last started

� The message number of the LCR last enqueued into the buffered queue from
the sender

Monitoring Buffered Queues

Monitoring Streams Replication 10-13

To display this information, run the following query:

COLUMN SENDER_NAME HEADING 'Capture|Process' FORMAT A13
COLUMN SENDER_ADDRESS HEADING 'Sender Queue' FORMAT A27
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A15
COLUMN CNUM_MSGS HEADING 'Number|of LCRs|Enqueued' FORMAT 99999999
COLUMN LAST_ENQUEUED_MSG HEADING 'Last|Enqueued|LCR' FORMAT 99999999

SELECT SENDER_NAME,
 SENDER_ADDRESS,
 QUEUE_NAME,
 CNUM_MSGS,
 LAST_ENQUEUED_MSG
 FROM V$BUFFERED_PUBLISHERS;

Your output looks similar to the following:

 Number Last
Capture of LCRs Enqueued
Process Sender Queue Queue Name Enqueued LCR
------------- --------------------------- --------------- --------- ---------
CAPTURE_HR "STRMADMIN"."STREAMS_QUEUE" STREAMS_QUEUE 382 844
 @MULT3.NET

CAPTURE_HR "STRMADMIN"."STREAMS_QUEUE" STREAMS_QUEUE 387 840
 @MULT2.NET

CAPTURE_HR STREAMS_QUEUE 75 833

This output shows following:

� 382 LCRs from the capture_hr capture process running on a remote database
were propagated from a queue named streams_queue on database
mult3.net to the local queue named streams_queue. The message number
of the last enqueued LCR from this sender was 844.

� 387 LCRs from the capture_hr capture process running on a remote database
were propagated from a queue named streams_queue on database
mult2.net to the local queue named streams_queue. The message number
of the last enqueued LCR from this sender was 840.

� 75 LCRs from the local capture_hr capture process were enqueued into the
local queue named streams_queue. The capture process is local because the
Sender Queue column is NULL. The message number of the last enqueued LCR
from this capture process was 833.

Monitoring Buffered Queues

10-14 Oracle Streams Replication Administrator’s Guide

Displaying General Information About Propagations That Send Captured Events
The query in this section displays the following general information about each
propagation that sends captured events from a buffered queue in the local database:

� The name of the propagation

� The queue owner

� The queue name

� The name of the database link used by the propagation

� The status of the propagation schedule

To display this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A15
COLUMN QUEUE_SCHEMA HEADING 'Queue|Owner' FORMAT A10
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A15
COLUMN DBLINK HEADING 'Database|Link' FORMAT A10
COLUMN SCHEDULE_STATUS HEADING 'Schedule Status' FORMAT A20

SELECT p.PROPAGATION_NAME,
 s.QUEUE_SCHEMA,
 s.QUEUE_NAME,
 s.DBLINK,
 s.SCHEDULE_STATUS
 FROM DBA_PROPAGATION p, V$PROPAGATION_SENDER s
 WHERE p.DESTINATION_DBLINK = s.DBLINK AND
 p.SOURCE_QUEUE_OWNER = s.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = s.QUEUE_NAME;

Your output looks similar to the following:

 Queue Queue Database
Propagation Owner Name Link Schedule Status
--------------- ---------- --------------- ---------- --------------------
MULT1_TO_MULT3 STRMADMIN STREAMS_QUEUE MULT3.NET SCHEDULE ENABLED
MULT1_TO_MULT2 STRMADMIN STREAMS_QUEUE MULT2.NET SCHEDULE ENABLED

Monitoring Buffered Queues

Monitoring Streams Replication 10-15

Displaying the Number of Events and Bytes Sent By Propagations
The query in this section displays the number of events and the number of bytes
sent by each propagation that sends captured events from a buffered queue in the
local database:

� The name of the propagation

� The queue name

� The name of the database link used by the propagation

� The total number of events sent since the database instance was last started

� The total number of bytes sent since the database instance was last started

To display this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A15
COLUMN DBLINK HEADING 'Database|Link' FORMAT A10
COLUMN TOTAL_MSGS HEADING 'Total|Events' FORMAT 99999999
COLUMN TOTAL_BYTES HEADING 'Total|Bytes' FORMAT 99999999

SELECT p.PROPAGATION_NAME,
 s.QUEUE_NAME,
 s.DBLINK,
 s.TOTAL_MSGS,
 s.TOTAL_BYTES
 FROM DBA_PROPAGATION p, V$PROPAGATION_SENDER s
 WHERE p.DESTINATION_DBLINK = s.DBLINK AND
 p.SOURCE_QUEUE_OWNER = s.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = s.QUEUE_NAME;

Your output looks similar to the following:

 Queue Database Total Total
Propagation Name Link Events Bytes
--------------- --------------- ---------- --------- ---------
MULT1_TO_MULT3 STREAMS_QUEUE MULT3.NET 79 71467
MULT1_TO_MULT2 STREAMS_QUEUE MULT2.NET 79 71467

Monitoring Buffered Queues

10-16 Oracle Streams Replication Administrator’s Guide

Displaying Performance Statistics For Propagations That Send Captured Events
The query in this section displays the amount of time that a propagation sending
captured events spends performing various tasks. Each propagation sends events
from the source queue to the destination queue. Specifically, the query displays the
following information:

� The name of the propagation

� The queue name

� The name of the database link used by the propagation

� The amount of time spent dequeuing events from the queue since the database
instance was last started, in seconds

� The amount of time spent pickling events since the database instance was last
started, in seconds. Pickling involves changing a captured event in memory into
a series of bytes that can be sent over a network.

� The amount of time spent propagating events since the database instance was
last started, in seconds

To display this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A13
COLUMN DBLINK HEADING 'Database|Link' FORMAT A9
COLUMN ELAPSED_DEQUEUE_TIME HEADING 'Dequeue|Time' FORMAT 99999999.99
COLUMN ELAPSED_PICKLE_TIME HEADING 'Pickle|Time' FORMAT 99999999.99
COLUMN ELAPSED_PROPAGATION_TIME HEADING 'Propagation|Time' FORMAT 99999999.99

SELECT p.PROPAGATION_NAME,
 s.QUEUE_NAME,
 s.DBLINK,
 (s.ELAPSED_DEQUEUE_TIME / 100) ELAPSED_DEQUEUE_TIME,
 (s.ELAPSED_PICKLE_TIME / 100) ELAPSED_PICKLE_TIME,
 (s.ELAPSED_PROPAGATION_TIME / 100) ELAPSED_PROPAGATION_TIME
 FROM DBA_PROPAGATION p, V$PROPAGATION_SENDER s
 WHERE p.DESTINATION_DBLINK = s.DBLINK AND
 p.SOURCE_QUEUE_OWNER = s.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = s.QUEUE_NAME;

Monitoring Buffered Queues

Monitoring Streams Replication 10-17

Your output looks similar to the following:

 Queue Database Dequeue Pickle Propagation
Propagation Name Link Time Time Time
--------------- ------------- --------- ------------ ------------ ------------
MULT1_TO_MULT2 STREAMS_QUEUE MULT2.NET 30.65 45.10 10.91
MULT1_TO_MULT3 STREAMS_QUEUE MULT3.NET 25.36 37.07 8.35

Viewing the Propagations Dequeuing LCRs From Each Buffered Queue
Propagations are queue subscribers that may dequeue captured LCRs from a queue.
By querying the V$BUFFERED_SUBSCRIBERS dynamic performance view, you can
display all the propagations that may dequeue captured LCRs from a queue.

You also can use the V$BUFFERED_SUBSCRIBERS dynamic performance view to
determine the performance of a propagation. For example, if a propagation has a
high number of spilled LCRs, then that propagation may not be dequeuing LCRs
fast enough from the buffered queue. Spilling LCRs to a queue table has a negative
impact on the performance of your Streams environment.

Apply processes also are queue subscribers. This query joins with the
DBA_PROPAGATION and V$BUFFERED_QUEUES views to limit the output to
propagations only and to show the propagation name of each propagation.

The query in this section displays the following information about each propagation
that can dequeue captured LCRs from queues:

� The name of the propagation

� The destination database, which is the database that contains the destination
queue for the propagation

� The sequence number for the captured LCR most recently enqueued into the
queue. The sequence number for an LCR shows the order of the LCR in the
queue.

� The sequence number for the captured LCR in the queue most recently browsed
by the propagation.

� The sequence number for the captured LCR most recently dequeued from the
queue by the propagation.

� The current number of captured LCRs in the queue waiting to be dequeued by
the propagation

� The cumulative number of captured LCRs spilled from memory to the queue
table for the propagation

Monitoring Buffered Queues

10-18 Oracle Streams Replication Administrator’s Guide

To display this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A15
COLUMN SUBSCRIBER_ADDRESS HEADING 'Destination|Database' FORMAT A11
COLUMN CURRENT_ENQ_SEQ HEADING 'Current|Enqueued|Sequence' FORMAT 99999999
COLUMN LAST_BROWSED_SEQ HEADING 'Last|Browsed|Sequence' FORMAT 99999999
COLUMN LAST_DEQUEUED_SEQ HEADING 'Last|Dequeued|Sequence' FORMAT 99999999
COLUMN NUM_MSGS HEADING 'Number of|LCRs in|Queue|(Current)' FORMAT 99999999
COLUMN TOTAL_SPILLED_MSG HEADING 'Number of|Spilled LCRs|(Cumulative)'
 FORMAT 99999999

SELECT p.PROPAGATION_NAME,
 s.SUBSCRIBER_ADDRESS,
 s.CURRENT_ENQ_SEQ,
 s.LAST_BROWSED_SEQ,
 s.LAST_DEQUEUED_SEQ,
 s.NUM_MSGS,
 s.TOTAL_SPILLED_MSG
FROM DBA_PROPAGATION p, V$BUFFERED_SUBSCRIBERS s, V$BUFFERED_QUEUES q
WHERE q.QUEUE_ID = s.QUEUE_ID AND
 p.SOURCE_QUEUE_OWNER = q.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = q.QUEUE_NAME AND
 p.DESTINATION_DBLINK = s.SUBSCRIBER_ADDRESS;

Your output looks similar to the following:

 Number of
 Current Last Last LCRs in Number of
 Destination Enqueued Browsed Dequeued Queue Spilled LCRs
Propagation Database Sequence Sequence Sequence (Current) (Cumulative)
--------------- ----------- --------- --------- --------- --------- ------------
MULT1_TO_MULT2 MULT2.NET 157 144 129 24 0
MULT1_TO_MULT3 MULT3.NET 98 88 81 53 0

Note: If there are multiple propagations using the same database
link but to a different queue at the destination, then the statistics
returned by this query are approximate rather than accurate.

Monitoring Buffered Queues

Monitoring Streams Replication 10-19

Displaying Performance Statistics For Propagations That Receive Captured Events
The query in this section displays the amount of time that each propagation
receiving captured events spends performing various tasks. Each propagation
receives the events and enqueues them into the destination queue for the
propagation. Specifically, the query displays the following information:

� The name of the propagation

� The name of the source queue from which events are propagated

� The name of the source database

� The amount of time spent unpickling events since the database instance was
last started, in seconds. Unpickling involves changing a series of bytes that can
be sent over a network back into a captured event in memory.

� The amount of time spent evaluating rules for propagated events since the
database instance was last started, in seconds

� The amount of time spent enqueuing events into the destination queue for the
propagation since the database instance was last started, in seconds

To display this information, run the following query:

COLUMN SRC_QUEUE_NAME HEADING 'Source|Queue|Name' FORMAT A20
COLUMN SRC_DBNAME HEADING 'Source|Database' FORMAT A15
COLUMN ELAPSED_UNPICKLE_TIME HEADING 'Unpickle|Time' FORMAT 99999999.99
COLUMN ELAPSED_RULE_TIME HEADING 'Rule|Evaluation|Time' FORMAT 99999999.99
COLUMN ELAPSED_ENQUEUE_TIME HEADING 'Enqueue|Time' FORMAT 99999999.99

SELECT SRC_QUEUE_NAME,
 SRC_DBNAME,
 (ELAPSED_UNPICKLE_TIME / 100) ELAPSED_UNPICKLE_TIME,
 (ELAPSED_RULE_TIME / 100) ELAPSED_RULE_TIME,
 (ELAPSED_ENQUEUE_TIME / 100) ELAPSED_ENQUEUE_TIME
 FROM V$PROPAGATION_RECEIVER;

Your output looks similar to the following:

Source Rule
Queue Source Unpickle Evaluation Enqueue
Name Database Time Time Time
-------------------- --------------- ------------ ------------ ------------
"STRMADMIN"."STREAMS MULT2.NET 45.65 5.44 45.85
_QUEUE"
"STRMADMIN"."STREAMS MULT3.NET 53.35 8.01 50.41
_QUEUE"

Monitoring Buffered Queues

10-20 Oracle Streams Replication Administrator’s Guide

Viewing the Apply Processes Dequeuing LCRs From Each Buffered Queue
Apply processes are queue subscribers that may dequeue captured LCRs from a
queue. By querying the V$BUFFERED_SUBSCRIBERS dynamic performance view,
you can display all the apply processes that may dequeue captured LCRs from a
queue.

You also can use the V$BUFFERED_SUBSCRIBERS dynamic performance view to
determine the performance of an apply process. For example, if an apply process
has a high number of spilled LCRs, then that apply process may not be dequeuing
LCRs fast enough from the buffered queue. Spilling LCRs to a queue table has a
negative impact on the performance of your Streams environment.

This query joins with the V$BUFFERED_QUEUES views to show the name of the
queue. In addition, propagations also are queue subscribers, and this query limits
the output to subscribers where the SUBSCRIBER_ADDRESS is NULL to return only
apply processes.

The query in this section displays the following information about the apply
processes that can dequeue captured LCRs from queues:

� The name of the apply process

� The queue owner

� The queue name

� The sequence number for the captured LCR most recently dequeued by the
apply process. The sequence number for an LCR shows the order of the LCR in
the queue.

� The number of captured LCRs in the queue waiting to be dequeued by the
apply process

� The number of captured LCRs spilled from memory to the queue table for the
apply process

To display this information, run the following query:

COLUMN SUBSCRIBER_NAME HEADING 'Apply Process' FORMAT A16
COLUMN QUEUE_SCHEMA HEADING 'Queue|Owner' FORMAT A10
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A15
COLUMN LAST_DEQUEUED_SEQ HEADING 'Last|Dequeued|Sequence' FORMAT 99999999
COLUMN NUM_MSGS HEADING 'Number of|LCRs in|Queue' FORMAT 99999999
COLUMN TOTAL_SPILLED_MSG HEADING 'Number of|Spilled LCRs' FORMAT 99999999

Monitoring Streams Tags

Monitoring Streams Replication 10-21

SELECT s.SUBSCRIBER_NAME,
 q.QUEUE_SCHEMA,
 q.QUEUE_NAME,
 s.LAST_DEQUEUED_SEQ,
 s.NUM_MSGS,
 s.TOTAL_SPILLED_MSG
FROM V$BUFFERED_QUEUES q, V$BUFFERED_SUBSCRIBERS s, DBA_APPLY a
WHERE q.QUEUE_ID = s.QUEUE_ID AND
 s.SUBSCRIBER_ADDRESS IS NULL AND
 s.SUBSCRIBER_NAME = a.APPLY_NAME;

Your output looks similar to the following:

 Last Number of
 Queue Queue Dequeued LCRs in Number of
Apply Process Owner Name Sequence Queue Spilled LCRs
---------------- ---------- --------------- --------- --------- ------------
APPLY_FROM_MULT3 STRMADMIN STREAMS_QUEUE 49 148 0
APPLY_FROM_MULT2 STRMADMIN STREAMS_QUEUE 85 241 1

Monitoring Streams Tags
The following sections contain queries that you can run to display the Streams tag
for the current session and the default tag for each apply process:

� Displaying the Tag Value for the Current Session

� Displaying the Default Tag Value for Each Apply Process

Displaying the Tag Value for the Current Session
You can display the tag value generated in all redo entries for the current session by
querying the DUAL view:

SELECT DBMS_STREAMS.GET_TAG FROM DUAL;

See Also:

� Chapter 4, "Streams Tags"

� "Managing Streams Tags" on page 7-33

� PL/SQL Packages and Types Reference for more information about
the DBMS_STREAMS package

Monitoring Streams Tags

10-22 Oracle Streams Replication Administrator’s Guide

Your output looks similar to the following:

GET_TAG
--
1D

You also can determine the tag for a session by calling the
DBMS_STREAMS.GET_TAG function.

Displaying the Default Tag Value for Each Apply Process
You can get the default tag for all redo entries generated by each apply process by
querying for the APPLY_TAG value in the DBA_APPLY data dictionary view. For
example, to get the hexadecimal value of the default tag generated in the redo
entries by each apply process, run the following query:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A30
COLUMN APPLY_TAG HEADING 'Tag Value' FORMAT A30

SELECT APPLY_NAME, APPLY_TAG FROM DBA_APPLY;

Your output looks similar to the following:

Apply Process Name Tag Value
------------------------------ ------------------------------
APPLY_FROM_MULT2 00
APPLY_FROM_MULT3 00

A handler or rule-based transformation function associated with an apply process
can get the tag by calling the DBMS_STREAMS.GET_TAG function.

Monitoring Instantiation

Monitoring Streams Replication 10-23

Monitoring Instantiation
The following sections contain queries that you can run to determine which
database objects are prepared for instantiation at a source database and the
instantiation SCN for database objects at a destination database:

� Determining Which Database Objects Are Prepared for Instantiation

� Determining the Tables for Which an Instantiation SCN Has Been Set

Determining Which Database Objects Are Prepared for Instantiation
You prepare a database object for instantiation using one of the following
procedures in the DBMS_CAPTURE_ADM package:

� PREPARE_TABLE_INSTANTIATION prepares a single table for instantiation.

� PREPARE_SCHEMA_INSTANTIATION prepares all of the database objects in a
schema for instantiation.

� PREPARE_GLOBAL_INSTANTIATION prepares all of the database objects in a
database for instantiation.

To determine which database objects have been prepared for instantiation, query
the following corresponding data dictionary views:

� DBA_CAPTURE_PREPARED_TABLES

� DBA_CAPTURE_PREPARED_SCHEMAS

� DBA_CAPTURE_PREPARED_DATABASE

For example, to list all of the tables that have been prepared for instantiation, the
SCN for the time when each table was prepared, and the time when each table was
prepared, run the following query:

COLUMN TABLE_OWNER HEADING 'Table Owner' FORMAT A15
COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A15
COLUMN SCN HEADING 'Prepare SCN' FORMAT 99999999999
COLUMN TIMESTAMP HEADING 'Time Ready for|Instantiation'

See Also:

� "Overview of Instantiation and Streams Replication" on
page 2-2

� Chapter 8, "Performing Instantiations"

Monitoring Instantiation

10-24 Oracle Streams Replication Administrator’s Guide

SELECT TABLE_OWNER,
 TABLE_NAME,
 SCN,
 TO_CHAR(TIMESTAMP, 'HH24:MI:SS MM/DD/YY') TIMESTAMP
 FROM DBA_CAPTURE_PREPARED_TABLES;

Your output looks similar to the following:

 Time Ready for
Table Owner Table Name Prepare SCN Instantiation
--------------- --------------- ----------------- -----------------
HR COUNTRIES 196655 12:59:30 02/28/02
HR DEPARTMENTS 196658 12:59:30 02/28/02
HR EMPLOYEES 196659 12:59:30 02/28/02
HR JOBS 196660 12:59:30 02/28/02
HR JOB_HISTORY 196661 12:59:30 02/28/02
HR LOCATIONS 196662 12:59:30 02/28/02
HR REGIONS 196664 12:59:30 02/28/02

Determining the Tables for Which an Instantiation SCN Has Been Set
An instantiation SCN is set at a destination database. It controls which captured
LCRs for a table are ignored by an apply process and which captured LCRs for a
database object are applied by an apply process. If the commit SCN of an LCR for a
table from a source database is less than or equal to the instantiation SCN for that
table at a destination database, then the apply process at the destination database
discards the LCR. Otherwise, the apply process applies the LCR.

You can set an instantiation SCN using one of the following procedures in the
DBMS_APPLY_ADM package:

� SET_TABLE_INSTANTIATION_SCN sets the instantiation SCN for a single
table.

� SET_SCHEMA_INSTANTIATION_SCN sets the instantiation SCN for a schema,
and, optionally, for all of the database objects in the schema.

� SET_GLOBAL_INSTANTIATION_SCN sets the instantiation SCN for a database,
and, optionally, for all of the database objects in the database.

See Also: "Preparing Database Objects for Instantiation at a
Source Database" on page 8-2

Monitoring Instantiation

Monitoring Streams Replication 10-25

To determine which database objects have a set instantiation SCN, query the
following corresponding data dictionary views:

� DBA_APPLY_INSTANTIATED_OBJECTS

� DBA_APPLY_INSTANTIATED_SCHEMAS

� DBA_APPLY_INSTANTIATED_GLOBAL

The following query lists each table for which an instantiation SCN has been set at a
destination database and the instantiation SCN for each table:

COLUMN SOURCE_DATABASE HEADING 'Source Database' FORMAT A15
COLUMN SOURCE_OBJECT_OWNER HEADING 'Object Owner' FORMAT A15
COLUMN SOURCE_OBJECT_NAME HEADING 'Object Name' FORMAT A15
COLUMN INSTANTIATION_SCN HEADING 'Instantiation SCN' FORMAT 99999999999

SELECT SOURCE_DATABASE,
 SOURCE_OBJECT_OWNER,
 SOURCE_OBJECT_NAME,
 INSTANTIATION_SCN
 FROM DBA_APPLY_INSTANTIATED_OBJECTS
 WHERE APPLY_DATABASE_LINK IS NULL;

Your output looks similar to the following:

Source Database Object Owner Object Name Instantiation SCN
--------------- --------------- --------------- -----------------
DBS1.NET HR REGIONS 196660
DBS1.NET HR COUNTRIES 196660
DBS1.NET HR LOCATIONS 196660

Note: You also can instantiation SCNs for changes that are
applied to remote non-Oracle databases. This query does not
display these instantiation SCNs because it lists an instantiation
SCN only if the APPLY_DATABASE_LINK column is NULL.

See Also: "Setting Instantiation SCNs at a Destination Database"
on page 8-22

Running Flashback Queries in a Streams Replication Environment

10-26 Oracle Streams Replication Administrator’s Guide

Running Flashback Queries in a Streams Replication Environment
Oracle Flashback Query enables you to view and repair historical data. You can
perform queries on a database as of a certain clock time or system change number
(SCN). In a Streams single source replication environment, you can use Flashback
Query at the source database and a destination database at a past time when the
replicated database objects should be identical.

Running the queries at corresponding SCNS at the source and destination databases
can be used to determine whether all of the changes to the replicated objects
performed at the source database have been applied at the destination database. If
there are apply errors at the destination database, then such a Flashback Query can
show how the replicated objects looked at the time when the error was raised. This
information could be useful in determining the cause of the error and the best way
to correct the error.

Running a Flashback Query at each database can also check whether tables have
certain rows at the corresponding SCNs. If the table data does not match at the
corresponding SCNs, then there is a problem with the replication environment.

To run queries, the Streams replication environment must have the following
characteristics:

� The replication environment must be a single source environment, where
changes to replicated objects are captured at only one database.

� No modifications are made to the replicated objects in the Stream. That is, no
transformations, subset rules (row migration), or apply handlers modify the
LCRs for the replicated objects.

� No DML or DDL changes are made to the replicated objects at the destination
database.

� Both the source database and the destination database must be configured to
use Oracle Flashback, and the Streams administrator at both databases must be
able to execute subprograms in the DBMS_FLASHBACK package.

� The information in the undo tablespace must go back far enough to perform the
query at each database. Oracle Flashback features use the Automatic Undo
Management system to obtain historical data and metadata for a transaction.
The UNDO_RETENTION initialization parameter at each database must be set to
a value that is large enough to perform the Flashback Query.

Running Flashback Queries in a Streams Replication Environment

Monitoring Streams Replication 10-27

Because Streams replication is asynchronous, you cannot use a past time in the
Flashback Query. However, you can use the GET_SCN_MAPPING procedure in the
DBMS_STREAMS_ADM package to determine the SCN at the destination database
that corresponds to an SCN at the source database.

These instructions assume that you know the SCN for the Flashback Query at the
source database. Using this SCN, you can determine the corresponding SCN for the
Flashback Query at the destination database. To run these queries, complete the
following steps:

1. At the destination database, ensure that the archived redo log file for the
approximate time of the Flashback Query is available to the database. The
GET_SCN_MAPPING procedure requires that this redo log file be available.

2. While connected as the Streams administrator at the destination database, run
the GET_SCN_MAPPING procedure. In this example, assume that the SCN for
the source database is 52073983 and that the name of the apply process that
applies changes from the source database is strm01_apply:

SET SERVEROUTPUT ON
DECLARE
 dest_scn NUMBER;
 start_scn NUMBER;
 dest_skip DBMS_UTILITY.NAME_ARRAY;
BEGIN
 DBMS_STREAMS_ADM.GET_SCN_MAPPING(
 apply_name => 'strm01_apply',
 src_pit_scn => '52073983',
 dest_instantiation_scn => dest_scn,
 dest_start_scn => start_scn,
 dest_skip_txn_ids => dest_skip);
 IF dest_skip.count = 0 THEN
 DBMS_OUTPUT.PUT_LINE('No Skipped Transactions');
 DBMS_OUTPUT.PUT_LINE('Destination SCN: ' || dest_scn);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Destination SCN invalid for Flashback Query.');
 DBMS_OUTPUT.PUT_LINE('At least one transaction was skipped.');
 END IF;
END;
/

If a valid destination SCN is returned, then proceed to Step 3.

Running Flashback Queries in a Streams Replication Environment

10-28 Oracle Streams Replication Administrator’s Guide

If the destination SCN was not valid for Flashback Query because one or more
transactions were skipped by the apply process, then the apply process
parameter commit_serialization was set to none, and non-dependent
transactions have been applied out of order. There is at least one transaction
with a source commit SCN less than src_pit_scn that was committed at the
destination database after the returned dest_instantiation_scn.
Therefore, tables may not be the same at the source and destination databases
for the specified source SCN. You may choose a different source SCN and
restart at Step 1.

3. Run the Flashback Query at the source database using the source SCN.

4. Run the Flashback Query at the destination database using the SCN returned in
Step 2.

5. Compare the results of the queries in Steps 3 and 4 and take any necessary
action.

See Also:

� Oracle Database Concepts and Oracle Database Application
Developer's Guide - Fundamentals for more information about
Flashback Query

� PL/SQL Packages and Types Reference for more information about
the GET_SCN_MAPPING procedure

Troubleshooting Streams Replication 11-1

11
Troubleshooting Streams Replication

This chapter contains information about identifying and resolving common
problems in a Streams replication environment.

This chapter contains these topics:

� Is the Apply Process Encountering Contention?

� Is the Apply Process Waiting for a Dependent Transaction?

� Is an Apply Server Performing Poorly for Certain Transactions?

� Are There Any Apply Errors in the Error Queue?

See Also: Oracle Streams Concepts and Administration for more
information about troubleshooting Streams environments

Is the Apply Process Encountering Contention?

11-2 Oracle Streams Replication Administrator’s Guide

Is the Apply Process Encountering Contention?
An apply server is a component of an apply process. Apply servers apply DML and
DDL changes to database objects at a destination database. An apply process may
use one or more apply servers, and the parallelism apply process parameter
specifies the number of apply servers that may concurrently apply transactions. For
example, if parallelism is set to 5, then an apply process uses a total of five
apply servers.

An apply server encounters contention when the apply server must wait for a
resource that is being used by another session. Contention may result from logical
dependencies. For example, when an apply server tries to apply a change to a row
that a user has locked, then the apply server must wait for the user. Contention also
may result from physical dependencies. For example, interested transaction list
(ITL) contention results when two transactions that are being applied, which may
not be logically dependent, are trying to lock the same block on disk. In this case,
one apply server locks rows in the block, and the other apply server must wait for
access to the block, even though the second apply server is trying to lock different
rows. See "Is the Apply Process Waiting for a Dependent Transaction?" on page 11-4
for detailed information about ITL contention.

When an apply server encounters contention that does not involve another apply
server in the same apply process, it waits until the contention clears. When an apply
server encounters contention that involves another apply server in the same apply
process, one of the two apply servers is rolled back. An apply process that is using
multiple apply servers may be applying multiple transactions at the same time. The
apply process tracks the state of the apply server that is applying the transaction
with the lowest commit SCN. If there is a dependency between two transactions,
then an apply process always applies the transaction with the lowest commit SCN
first. The transaction with the higher commit SCN waits for the other transaction to
commit. Therefore, if the apply server with the lowest commit SCN transaction is
encountering contention, then the contention results from something other than a
dependent transaction. In this case, you can monitor the apply server with the
lowest commit SCN transaction to determine the cause of the contention.

The following four wait states are possible for an apply server:

� Not waiting: The apply server is not encountering contention and is not
waiting. No action is necessary in this case.

� Waiting for an event that is not related to another session: An example of an
event that is not related to another session is a log file sync event, where
redo information must be flushed because of a commit or rollback. In these
cases, nothing is written to the log initially because such waits are common and

Is the Apply Process Encountering Contention?

Troubleshooting Streams Replication 11-3

are usually transient. If the apply server is waiting for the same event after a
certain interval of time, then the apply server writes a message to the alert log
and apply process trace file. For example, an apply server a001 may write a
message similar to the following:

A001: warning -- apply server 1, sid 26 waiting for event:
A001: [log file sync] ...

This output is written to the alert log at intervals until the problem is rectified.

� Waiting for an event that is related to a non apply server session: The apply
server writes a message to the alert log and apply process trace file
immediately. For example, an apply server a001 may write a message similar
to the following:

A001: warning -- apply server 1, sid 10 waiting on user sid 36 for event:
A001: [enq: TM - contention] name|mode=544d0003, object #=a078,
 table/partition=0

This output is written to the alert log at intervals until the problem is rectified.

� Waiting for another apply server session: This state may be caused by
interested transaction list (ITL) contention, but it also may be caused by more
serious issues, such as an apply handler that obtains conflicting locks. In this
case, the apply server that is blocked by another apply server prints only once
to the alert log and the trace file for the apply process, and the blocked apply
server issues a rollback to the blocking apply server. When the blocking apply
server rolls back, another message indicating that the apply server has been
rolled back is printed to the log files, and the rolled back transaction is
reassigned by the coordinator process for the apply process.

For example, if apply server 1 of apply process a001 is blocked by apply
server 2 of the same apply process (a001), then the apply process writes the
following messages to the log files:

A001: apply server 1 blocked on server 2
A001: [enq: TX - row lock contention] name|mode=54580006, usn<<16 |
 slot=1000e, sequence=1853
A001: apply server 2 rolled back

You can determine the total number of times an apply server was rolled back
since the apply process last started by querying the TOTAL_ROLLBACKS
column in the V$STREAMS_APPLY_COORDINATOR dynamic performance view.

Is the Apply Process Waiting for a Dependent Transaction?

11-4 Oracle Streams Replication Administrator’s Guide

Is the Apply Process Waiting for a Dependent Transaction?
If you set the parallelism parameter for an apply process to a value greater
than 1, and you set the commit_serialization parameter of the apply process
to full, then the apply process may detect interested transaction list (ITL)
contention if there is a transaction that is dependent on another transaction with a
higher SCN. ITL contention occurs if the session that created the transaction waited
for an ITL slot in a block. This happens when the session wants to lock a row in the
block, but one or more other sessions have rows locked in the same block, and there
is no free ITL slot in the block.

ITL contention also is possible if the session is waiting due to a shared bitmap index
fragment. Bitmap indexes index key values and a range of rowids. Each entry in a
bitmap index can cover many rows in the actual table. If two sessions want to
update rows covered by the same bitmap index fragment, then the second session
waits for the first transaction to either COMMIT or ROLLBACK.

When an apply process detects such a dependency, it resolves the ITL contention
automatically and records information about it in the alert log and apply process
trace file for the database. ITL contention may negatively affect the performance of
an apply process because there may not be any progress while it is detecting the
deadlock.

To avoid the problem in the future, perform one of the following actions:

� Increase the number of ITLs available. You can do so by changing the
INITRANS setting for the table using the ALTER TABLE statement.

� Set the commit_serialization parameter to none for the apply process.

� Set the parallelism apply process parameter to 1 for the apply process.

See Also:

� Oracle Database Performance Tuning Guide for more information
about contention and about resolving different types
of contention

� Oracle Streams Concepts and Administration for more information
about trace files and the alert log

Is an Apply Server Performing Poorly for Certain Transactions?

Troubleshooting Streams Replication 11-5

Is an Apply Server Performing Poorly for Certain Transactions?
If an apply process is not performing well, then the reason may be that one or more
apply servers used by the apply process are taking an inordinate amount of time to
apply certain transactions. The following query displays information about the
transactions being applied by each apply server used by an apply process named
strm01_apply:

COLUMN SERVER_ID HEADING 'Apply Server ID' FORMAT 99999999
COLUMN STATE HEADING 'Apply Server State' FORMAT A20
COLUMN APPLIED_MESSAGE_NUMBER HEADING 'Applied Message|Number' FORMAT 99999999
COLUMN MESSAGE_SEQUENCE HEADING 'Message Sequence|Number' FORMAT 99999999

SELECT SERVER_ID, STATE, APPLIED_MESSAGE_NUMBER, MESSAGE_SEQUENCE
 FROM V$STREAMS_APPLY_SERVER
 WHERE APPLY_NAME = 'STRM01_APPLY'
 ORDER BY SERVER_ID;

If you run this query repeatedly, then over time the apply server state, applied
message number, and message sequence number should continue to change for
each apply server as it applies transactions. If these values do not change for one or
more apply servers, then the apply server may not be performing well. In this case,
you should make sure that, for each table to which the apply process applies
changes, every key column has an index.

If you have many such tables, then you may need to determine the specific table
and DML or DDL operation that is causing an apply server to perform poorly. To
do so, run the following query when an apply server is taking an inordinately long
time to apply a transaction. In this example, assume that the name of the apply
process is strm01_apply and that apply server number two is performing poorly:

See Also:

� Oracle Streams Concepts and Administration for more information
about apply process parameters and about checking the trace
files and alert log for problems

� Oracle Database Administrator's Guide and Oracle Database SQL
Reference for more information about INITRANS

Is an Apply Server Performing Poorly for Certain Transactions?

11-6 Oracle Streams Replication Administrator’s Guide

COLUMN OPERATION HEADING 'Operation' FORMAT A20
COLUMN OPTIONS HEADING 'Options' FORMAT A20
COLUMN OBJECT_OWNER HEADING 'Object|Owner' FORMAT A10
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A10
COLUMN COST HEADING 'Cost' FORMAT 99999999

SELECT p.OPERATION, p.OPTIONS, p.OBJECT_OWNER, p.OBJECT_NAME, p.COST
 FROM V$SQL_PLAN p, V$SESSION s, V$STREAMS_APPLY_SERVER a
 WHERE a.APPLY_NAME = 'STRM01_APPLY' AND a.SERVER_ID = 2
 AND s.SID = a.SID
 AND p.HASH_VALUE = s.SQL_HASH_VALUE;

This query returns the operation being performed currently by the specified apply
server. The query also returns the owner and name of the table on which the
operation is being performed and the cost of the operation. Make sure each key
column in this table has an index. If the results show FULL for the COST column,
then the operation is causing full table scans, and indexing the table's key columns
may solve the problem.

In addition, you can run the following query to determine the specific DML or DDL
SQL statement that is causing an apply server to perform poorly, assuming that the
name of the apply process is strm01_apply and that apply server number two is
performing poorly:

SELECT t.SQL_TEXT
 FROM V$SESSION s, V$SQLTEXT t, V$STREAMS_APPLY_SERVER a
 WHERE a.APPLY_NAME = 'STRM01_APPLY' AND a.SERVER_ID = 2
 AND s.SID = a.SID
 AND s.SQL_ADDRESS = t.ADDRESS
 AND s.SQL_HASH_VALUE = t.HASH_VALUE
 ORDER BY PIECE;

This query returns the SQL statement being run currently by the specified apply
server. The statement includes the name of the table to which the transaction is
being applied. Make sure each key column in this table has an index.

If the SQL statement returned by the previous query is less than one thousand
characters long, then you may run the following simplified query instead:

SELECT t.SQL_TEXT
 FROM V$SESSION s, V$SQLAREA t, V$STREAMS_APPLY_SERVER a
 WHERE a.APPLY_NAME = 'STRM01_APPLY' AND a.SERVER_ID = 2
 AND s.SID = a.SID
 AND s.SQL_ADDRESS = t.ADDRESS
 AND s.SQL_HASH_VALUE = t.HASH_VALUE;

Are There Any Apply Errors in the Error Queue?

Troubleshooting Streams Replication 11-7

Are There Any Apply Errors in the Error Queue?
When an apply process cannot apply an event, it moves the event and all of the
other events in the same transaction into the error queue. You should check the for
apply errors periodically to see if there are any transactions that could not be
applied. You can check for apply errors by querying the DBA_APPLY_ERROR data
dictionary view.

You may encounter the following types of apply process errors for LCR events:

� ORA-01031 Insufficient Privileges

� ORA-01403 No Data Found

� ORA-23605 Invalid Value for Streams Parameter*

� ORA-23607 Invalid Column*

� ORA-24031 Invalid Value, parameter_name Should Be Non-NULL*

� ORA-26687 Instantiation SCN Not Set

� ORA-26688 Missing Key in LCR*

� ORA-26689 Column Type Mismatch*

The errors marked with an asterisk (*) in the previous list often result from a
problem with an apply handler or a rule-based transformation.

ORA-01031 Insufficient Privileges
This error occurs when the user designated as the apply user does not have the
necessary privileges to perform SQL operations on the replicated objects. The apply
user privileges must be granted by an explicit grant of each privilege. Granting
these privileges through a role is not sufficient for the Streams apply user.

See Also: Oracle Database Performance Tuning Guide and Oracle
Database Reference for more information about the V$SQL_PLAN
dynamic performance view

See Also: Oracle Streams Concepts and Administration for more
information about checking for apply errors and about managing
apply errors

Are There Any Apply Errors in the Error Queue?

11-8 Oracle Streams Replication Administrator’s Guide

Specifically, the following privileges are required:

� For table level DML changes, the INSERT, UPDATE, DELETE, and SELECT
privileges must be granted.

� For table level DDL changes, the ALTER TABLE privilege must be granted.

� For schema level changes, the CREATE ANY TABLE, CREATE ANY INDEX,
CREATE ANY PROCEDURE, ALTER ANY TABLE, and ALTER ANY PROCEDURE
privileges must be granted.

� For global level changes, ALL PRIVILEGES must be granted to the apply user.

To correct this error, complete the following steps:

1. Connect as the apply user on the destination database.

2. Query the SESSION_PRIVS data dictionary view to determine which required
privileges are not granted to the apply user.

3. Connect as an administrative user who can grant privileges.

4. Grant the necessary privileges to the apply user.

5. Reexecute the error transactions in the error queue for the apply process.

ORA-01403 No Data Found
Typically, an ORA-01403 error occurs when an apply process tries to update an
existing row and the OLD_VALUES in the row LCR do not match the current values
at this destination database.

Typically, one of the following conditions causes these errors:

� Supplemental logging is not specified for columns that require supplemental
logging at the source database. In this case, LCRs from the source database may
not contain values for key columns. You can use a DML handler to modify the
LCR so that it contains the necessary supplemental data. After you set the DML
handler, you can reexecute the error transaction. After successful reexecution, if
the DML handler is no longer needed, then remove it.

See Also:

� "Apply and Streams Replication" on page 1-14 for more
information about apply users

� Oracle Streams Concepts and Administration for information
about reexecuting error transactions

Are There Any Apply Errors in the Error Queue?

Troubleshooting Streams Replication 11-9

� There is a problem with the primary key in the table for which an LCR is
applying a change. In this case, make sure the primary key is enabled by
querying the DBA_CONSTRAINTS data dictionary view. If no primary key exists
for the table, or if the target table has a different primary key than the source
table, then specify substitute key columns using the SET_KEY_COLUMNS
procedure in the DBMS_APPLY_ADM package. You also may encounter error
ORA-23416 if a table being applied does not have a primary key. After you
make these changes, you can reexecute the error transaction.

� There is a data mismatch between a row LCR and the table for which the LCR is
applying a change. Make sure row data in the table at the destination database
matches the row data in the LCR. When you are checking for differences in the
data, if there are any DATE columns in the shared table, then make sure your
query shows the hours, minutes, and seconds. If there is a mismatch, then you
can use a DML handler to modify an LCR so that it matches the table. After you
set the DML handler, you can reexecute the error transaction. After successful
reexecution, if the DML handler is no longer needed, then remove it.

Alternatively, you can update the current values in the row so that the row LCR
can be applied successfully. If changes to the row are captured by a capture
process at the destination database, then you probably do not want to replicate
this manual change to destination databases. In this case, complete the
following steps:

1. Set a tag in the session that corrects the row. Make sure you set the tag to a
value that prevents the manual change from being replicated. For example,
the tag may prevent the change from being captured by a capture process.

EXEC DBMS_STREAMS.SET_TAG(tag => HEXTORAW('17'));

In some environments, you may need to set the tag to a different value.

2. Update the row in the table so that the data matches the old values in
the LCR.

3. Reexecute the error or reexecute all errors. To reexecute an error, run the
EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package, and specify
the transaction identifier for the transaction that caused the error. For
example:

EXEC DBMS_APPLY_ADM.EXECUTE_ERROR(local_transaction_id => '5.4.312');

Are There Any Apply Errors in the Error Queue?

11-10 Oracle Streams Replication Administrator’s Guide

Or, execute all errors for the apply process by running the
EXECUTE_ALL_ERRORS procedure:

EXEC DBMS_APPLY_ADM.EXECUTE_ALL_ERRORS(apply_name => 'APPLY');

4. If you are going to make other changes in the current session that you want
to replicate destination databases, then reset the tag for the session to an
appropriate value, as in the following example:

EXEC DBMS_STREAMS.SET_TAG(tag => NULL);

In some environments, you may need to set the tag to a value other
than NULL.

ORA-23605 Invalid Value for Streams Parameter
This error occurs if an incorrect value is used for a Streams parameter or if a row
LCR does not contain the correct old and new values. Row LCRs should contain the
following old and new values, depending on the operation:

� A row LCR for an INSERT operation should contain new values but no old
values.

� A row LCR for an UPDATE operation may contain both new values and old
values.

� A row LCR for a DELETE operation should contain old values but no new
values.

Verify that the correct parameter type (OLD, or NEW, or both) is specified for the row
LCR operation (INSERT, UPDATE, or DELETE). For example, if a DML handler or
rule-based transformation changes an UPDATE row LCR into an INSERT row LCR,
then the handler or transformation should remove the old values in the row LCR.

See Also:

� "Supplemental Logging for Streams Replication" on page 1-9
and "Monitoring Supplemental Logging" on page 10-2

� "Considerations for Applying DML Changes to Tables" on
page 1-17 for information about possible causes of apply errors

� Chapter 4, "Streams Tags"

� Oracle Streams Concepts and Administration for more information
about managing apply errors and for instructions that enable
you to display detailed information about apply errors

Are There Any Apply Errors in the Error Queue?

Troubleshooting Streams Replication 11-11

If an apply handler caused the error, then correct the apply handler and reexecute
the error transaction. If a rule-based transformation caused the error, then you can
create a DML handler that will run when you reexecute the error transaction.
Configure this DML handler to correct the problem. After successful reexecution, if
the DML handler is no longer needed, then remove it. You also should correct the
rule-based transformation that caused the error to prevent future errors.

ORA-23607 Invalid Column
This error is caused by an invalid column specified in the column list of a row LCR.
Check the column names in the row LCR. This error results if an apply handler or
rule-based transformation attempts one of the following actions:

� Delete a column from a row LCR that does not exist in the row LCR

� Rename a column that does not exist in the row LCR

If an apply handler caused the error, then correct the apply handler and reexecute
the error transaction. If a rule-based transformation caused the error, then you can
create a DML handler that will run when you reexecute the error transaction.
Configure this DML handler to correct the problem. After successful reexecution, if
the DML handler is no longer needed, then remove it. You also should correct the
rule-based transformation that caused the error to prevent future errors.

ORA-24031 Invalid Value, parameter_name Should Be Non-NULL
This error may occur when an apply handler or a rule-based transformation passes
a NULL value to an LCR member subprogram instead of a SYS.AnyData value that
contains a NULL.

See Also:

� "Creating a DML Handler" on page 7-16

� Oracle Streams Concepts and Administration for more information
about rule-based transformations

See Also:

� "Creating a DML Handler" on page 7-16

� Oracle Streams Concepts and Administration for more information
about rule-based transformations

Are There Any Apply Errors in the Error Queue?

11-12 Oracle Streams Replication Administrator’s Guide

For example, the following call to the ADD_COLUMN member procedure for row
LCRs may result in this error:

new_lcr.ADD_COLUMN('OLD','LANGUAGE',NULL);

The following example shows the correct way to call the ADD_COLUMN member
procedure for row LCRs:

new_lcr.ADD_COLUMN('OLD','LANGUAGE',SYS.AnyData.ConvertVarchar2(NULL));

If an apply handler caused the error, then correct the apply handler and reexecute
the error transaction. If a rule-based transformation caused the error, then you can
create a DML handler that will run when you reexecute the error transaction.
Configure this DML handler to correct the problem. After successful reexecution, if
the DML handler is no longer needed, then remove it. You also should correct the
rule-based transformation that caused the error to prevent future errors.

ORA-26687 Instantiation SCN Not Set
Typically, this error occurs because the instantiation SCN is not set on an object for
which an apply process is attempting to apply changes. You can query the
DBA_APPLY_INSTANTIATED_OBJECTS data dictionary view to list the objects that
have an instantiation SCN.

You can set an instantiation SCN for one or more objects by exporting the objects at
the source database, and then importing them at the destination database. You may
use either Data Pump export/import or original export/import. If you do not want
to use export/import, then you can run one or more of the following procedures in
the DBMS_APPLY_ADM package:

� SET_TABLE_INSTANTIATION_SCN

� SET_SCHEMA_INSTANTIATION_SCN

� SET_GLOBAL_INSTANTIATION_SCN

See Also:

� "Creating a DML Handler" on page 7-16

� Oracle Streams Concepts and Administration for more information
about rule-based transformations

Are There Any Apply Errors in the Error Queue?

Troubleshooting Streams Replication 11-13

Some of the common reasons why an instantiation SCN is not set for an object at a
destination database include the following:

� You used export/import for instantiation, and you exported the objects from
the source database before preparing the objects for instantiation. You can
prepare objects for instantiation either by creating Streams rules for the objects
with the DBMS_STREAMS_ADM package or by running a procedure in the
DBMS_CAPTURE_ADM package. If the objects were not prepared for instantiation
before the export, then the instantiation SCN information will not be available
in the export file, and the instantiation SCNs will not be set.

In this case, prepare the database objects for instantiation at the source database
by following the instructions in "Preparing Database Objects for Instantiation at
a Source Database" on page 8-2. Next, set the instantiation SCN for the database
objects at the destination database.

� You used original export/import for instantiation, and you performed the
import without specifying y for the STREAMS_INSTANTIATION import
parameter. If this parameter is not set to y for the import, then the instantiation
SCN will not be set.

In this case, repeat the original export/import operation, and set the
STREAMS_INSTANTIATION parameter to y during import. Follow the
instructions in "Instantiating Objects in a Streams Environment Using
Transportable Tablespaces" on page 8-8.

Alternatively, use Data Pump export/import. An instantiation SCN is set for
each imported prepared object automatically when you use Data Pump import.

� Instead of using export/import for instantiation, you set the instantiation SCN
explicitly with the appropriate procedure in the DBMS_APPLY_ADM package.
When the instantiation SCN is set explicitly by the database administrator,
responsibility for the correctness of the data is assumed by the administrator.

In this case, set the instantiation SCN for the database objects explicitly by
following the instructions in "Setting Instantiation SCNs Using the
DBMS_APPLY_ADM Package" on page 8-25. Alternatively, you may choose to
perform a metadata-only export/import to set the instantiation SCNs by
following the instructions in "Setting Instantiation SCNs at a Destination
Database" on page 8-22.

Are There Any Apply Errors in the Error Queue?

11-14 Oracle Streams Replication Administrator’s Guide

� You want to apply DDL changes, but you did not set the instantiation SCN at
the schema or global level.

In this case, set the instantiation SCN for the appropriate schemas by running
the SET_SCHEMA_INSTANTIATION_SCN procedure, or set the instantiation
SCN for the source database by running the
SET_GLOBAL_INSTANTIATION_SCN procedure. Both of these procedures are
in the DBMS_APPLY_ADM package. Follow the instructions in "Setting
Instantiation SCNs Using the DBMS_APPLY_ADM Package" on page 8-25.

After you correct the condition that caused the error, whether you should reexecute
the error transaction or delete it depends on whether the changes included in the
transaction were executed at the destination database when you corrected the error
condition. Follow these guidelines when you decide whether you should reexecute
the transaction in the error queue or delete it:

� If you performed a new export/import, and the new export includes the
transaction in the error queue, then delete the transaction in the error queue.

� If you set instantiation SCNs explicitly or reimported an existing export dump
file, then reexecute the transaction in the error queue.

ORA-26688 Missing Key in LCR
Typically, this error occurs because of one of the following conditions:

� The object for which an LCR is applying a change does not exist in the
destination database. In this case, check to see if the object exists. Also, make
sure you use the correct character case in rule conditions, apply handlers, and
rule-based transformations. For example, if a column name has all uppercase
characters in the data dictionary, then you should specify the column name
with all uppercase characters in rule conditions and in apply handlers.

See Also:

� "Overview of Instantiation and Streams Replication" on
page 2-2

� "Setting Instantiation SCNs at a Destination Database" on
page 8-22

� Oracle Streams Concepts and Administration for information
about reexecuting and deleting error transactions

Are There Any Apply Errors in the Error Queue?

Troubleshooting Streams Replication 11-15

� Supplemental logging is not specified for columns that require supplemental
logging at the source database. In this case, LCRs from the source database may
not contain values for key columns. You can use a DML handler to modify the
LCR so that it contains the necessary supplemental data. After you set the DML
handler, you can reexecute the error transaction. After successful reexecution, if
the DML handler is no longer needed, then remove it.

� There is a problem with the primary key in the table for which an LCR is
applying a change. In this case, make sure the primary key is enabled by
querying the DBA_CONSTRAINTS data dictionary view. If no primary key exists
for the table, or if the table has a multiple column primary key, then specify
substitute key columns using the SET_KEY_COLUMNS procedure in the
DBMS_APPLY_ADM package. You also may encounter error ORA-23416 if a
table does not have a primary key. After you make these changes, you can
reexecute the error transaction.

ORA-26689 Column Type Mismatch
Typically, this error occurs because one or more columns at a table in the source
database do not match the corresponding columns at the destination database. The
LCRs from the source database may contain more columns than the table at the
destination database, or there may be a type mismatch for one or more columns. If
the columns differ at the databases, then you can use rule-based transformations to
avoid errors.

If you use an apply handler or a rule-based transformation, then make sure any
SYS.AnyData conversion functions match the datatype in the LCR that is being
converted. For example, if the column is specified as VARCHAR2, then use
SYS.AnyData.CONVERTVARCHAR2 function to convert the data from type ANY to
VARCHAR2.

Also, make sure you use the correct character case in rule conditions and apply
handlers. For example, if a column name has all uppercase characters in the data
dictionary, then you should specify the column name with all uppercase characters
in rule conditions and in apply handlers.

See Also:

� "Supplemental Logging for Streams Replication" on page 1-9
and "Monitoring Supplemental Logging" on page 10-2

� "Creating a DML Handler" on page 7-16

Are There Any Apply Errors in the Error Queue?

11-16 Oracle Streams Replication Administrator’s Guide

This error may also occur because supplemental logging is not specified where it is
required for nonkey columns at the source database. In this case, LCRs from the
source database may not contain needed values for these nonkey columns.

See Also:

� "Considerations for Applying DML Changes to Tables" on
page 1-17 for information about possible causes of apply errors

� "Supplemental Logging for Streams Replication" on page 1-9
and "Monitoring Supplemental Logging" on page 10-2

� "Creating a DML Handler" on page 7-16

� Oracle Streams Replication Administrator's Guide for information
about rule-based transformations

Part III
 Example Replication Environments

This part includes the following detailed examples that configure and maintain
Streams replication environments:

� Chapter 12, "Simple Single Source Replication Example"

� Chapter 13, "Single Source Heterogeneous Replication Example"

� Chapter 14, "Multiple Source Replication Example"

Simple Single Source Replication Example 12-1

12
Simple Single Source Replication Example

This chapter illustrates an example of a simple single source replication
environment that can be constructed using Streams.

This chapter contains these topics:

� Overview of the Simple Single Source Replication Example

� Prerequisites

Note: The extended example is not included in the PDF version of
this chapter, but it is included in the HTML version of the chapter.

Overview of the Simple Single Source Replication Example

12-2 Oracle Streams Replication Administrator’s Guide

Overview of the Simple Single Source Replication Example
The example in this chapter illustrates using Streams to replicate data in one table
between two databases. A capture process captures data manipulation language
(DML) and data definition language (DDL) changes made to the jobs table in the
hr schema at the str1.net Oracle database, and a propagation propagates these
changes to the str2.net Oracle database. Next, an apply process applies these
changes at the str2.net database. This example assumes that the hr.jobs table
is read-only at the str2.net database.

Figure 12–1 provides an overview of the environment.

Figure 12–1 Simple Example That Shares Data From a Single Source Database

strmadmin.streams_queue

Capture Process

capture_simp

Oracle
Database
str1.net str1_to_str2

Propagate
Changes

Enqueue DML and DDL
Changes to hr.jobs Table

strmadmin.streams_queue Apply Process

apply_simp

Dequeue
Changes

hr.jobs Table

Oracle
Database
str2.net

Apply
Changes

Prerequisites

Simple Single Source Replication Example 12-3

Prerequisites
The following prerequisites must be completed before you begin the example in this
chapter.

� Set the following initialization parameters to the values indicated:

– GLOBAL_NAMES: This parameter must be set to true at each database that
is participating in your Streams environment.

– JOB_QUEUE_PROCESSES: This parameter must be set to at least 2 at each
database that is propagating events in your Streams environment. It should
be set to the same value as the maximum number of jobs that can run
simultaneously plus one. In this example, str1.net propagates events. So,
JOB_QUEUE_PROCESSES must be set to at least 2 at str1.net.

– COMPATIBLE: This parameter must be set to 10.1.0 or higher at each
database that is participating in your Streams environment.

– STREAMS_POOL_SIZE: Optionally set this parameter to an appropriate
value for each database in the environment. This parameter specifies the
size of the Streams pool. The Streams pool contains captured events. In
addition, the Streams pool is used for internal communications during
parallel capture and apply. If STREAMS_POOL_SIZE is set to zero (the
default), then Streams uses the shared pool. In this case, you may need to
increase the size of the shared pool at each database.

� Any database producing changes that will be captured must be running in
ARCHIVELOG mode. In this example, changes are produced at str1.net, and
so str1.net must be running in ARCHIVELOG mode.

See Also: Oracle Streams Concepts and Administration for
information about other initialization parameters that are
important in a Streams environment

See Also: Oracle Database Administrator's Guide for information
about running a database in ARCHIVELOG mode

Prerequisites

12-4 Oracle Streams Replication Administrator’s Guide

� Configure your network and Oracle Net so that the str1.net database can
communicate with the str2.net database.

� This example creates a new user to function as the Streams administrator
(strmadmin) at each database and prompts you for the tablespace you want to
use for this user's data. Before you start this example, either create a new
tablespace or identify an existing tablespace for the Streams administrator to
use at each database. The Streams administrator should not use the SYSTEM
tablespace.

See Also: Oracle Net Services Administrator's Guide

Single Source Heterogeneous Replication Example 13-1

13
Single Source Heterogeneous

Replication Example

This chapter illustrates an example of a single source heterogeneous replication
environment that can be constructed using Streams, as well as the tasks required to
add new objects and databases to such an environment.

This chapter contains these topics:

� Overview of the Single Source Heterogeneous Replication Example

� Prerequisites

� Add Objects to an Existing Streams Replication Environment

� Add a Database to an Existing Streams Replication Environment

Note: The extended example is not included in the PDF version of
this chapter, but it is included in the HTML version of the chapter.

Overview of the Single Source Heterogeneous Replication Example

13-2 Oracle Streams Replication Administrator’s Guide

Overview of the Single Source Heterogeneous Replication Example
This example illustrates using Streams to replicate data between four databases. The
environment is heterogeneous because three of the databases are Oracle databases
and one is a Sybase database. DML and DDL changes made to tables in the hr
schema at the dbs1.net Oracle database are captured and propagated to the other
two Oracle databases. Only DML changes are captured and propagated to the
dbs4.net database, because an apply process cannot apply DDL changes to a
non-Oracle database. Changes to the hr schema occur only at dbs1.net. The hr
schema is read-only at the other databases in the environment.

Figure 13–1 provides an overview of the environment.

Overview of the Single Source Heterogeneous Replication Example

Single Source Heterogeneous Replication Example 13-3

Figure 13–1 Example Environment That Shares Data from a Single Source Database

strmadmin.streams_queue
Capture Process

capture

Enqueue DML
and DDL
Changes
to Tables

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
dbs1.net

strmadmin.streams_queue
Apply Process

apply

Dequeue
Changes

Tables

hr.countries
hr.locations
hr.regions

Oracle
Database
dbs3.net

dbs1_to_dbs2
Propagate Changes Originating at dbs1.net

Apply Process

apply_dbs4

Start Dequeue
of Changes

Finish Dequeue
of Changes

Dequeue
Changes

Table

hr.assignments

Oracle
Database
dbs2.net

dbs2_to_dbs3
Propagate changes originating
at dbs1.net Propagate and apply

changes originating
at dbs1.net

Apply
Changes

Apply Process

apply_dbs2

User Transformation
Function to_assignments:
hr.jobs to hr.assignments

Gateway

Table

hr.jobs

Sybase
Database
dbs4.net

Apply
Changes

strmadmin.streams_queue

Overview of the Single Source Heterogeneous Replication Example

13-4 Oracle Streams Replication Administrator’s Guide

As illustrated in Figure 13–1, dbs1.net contains the following tables in the hr
schema:

� countries

� departments

� employees

� job_history

� jobs

� locations

� regions

This example uses directed networks, which means that captured changes at a
source database are propagated to another database through one or more
intermediate databases. Here, the dbs1.net database propagates changes to the
dbs3.net database through the intermediate database dbs2.net. This
configuration is an example of queue forwarding in a directed network. Also, the
dbs1.net database propagates changes to the dbs2.net database, which applies
the changes directly to the dbs4.net database through a gateway.

Some of the databases in the environment do not have certain tables. If the database
is not an intermediate database for a table and the database does not contain the
table, then changes to the table do not need to be propagated to that database. For
example, the departments, employees, job_history, and jobs tables do not
exist at dbs3.net. Therefore, dbs2.net does not propagate changes to these
tables to dbs3.net.

In this example, Streams is used to perform the following series of actions:

1. The capture process captures DML and DDL changes for all of the tables in the
hr schema and enqueues them into a queue at the dbs1.net database. In this
example, changes to only four of the seven tables are propagated to destination
databases, but in the example that illustrates "Add Objects to an Existing
Streams Replication Environment" on page 13-7, the remaining tables in the hr
schema are added to a destination database.

2. The dbs1.net database propagates these changes in the form of messages to a
queue at dbs2.net.

3. At dbs2.net, DML changes to the jobs table are transformed into DML
changes for the assignments table (which is a direct mapping of jobs) and
then applied. Changes to other tables in the hr schema are not applied
at dbs2.net.

Prerequisites

Single Source Heterogeneous Replication Example 13-5

4. Because the queue at dbs3.net receives changes from the queue at dbs2.net
that originated in countries, locations, and regions tables at dbs1.net,
these changes are propagated from dbs2.net to dbs3.net. This configuration
is an example of directed networks.

5. The apply process at dbs3.net applies changes to the countries,
locations, and regions tables.

6. Because dbs4.net, a Sybase database, receives changes from the queue at
dbs2.net to the jobs table that originated at dbs1.net, these changes are
applied remotely from dbs2.net using the dbs4.net database link through a
gateway. This configuration is an example of heterogeneous support.

Prerequisites
The following prerequisites must be completed before you begin the example in this
chapter.

� Set the following initialization parameters to the values indicated for all
databases in the environment:

– GLOBAL_NAMES: This parameter must be set to true at each database that
is participating in your Streams environment.

– JOB_QUEUE_PROCESSES: This parameter must be set to at least 2 at each
database that is propagating events in your Streams environment. It should
be set to the same value as the maximum number of jobs that can run
simultaneously plus one. In this example, dbs1.net and dbs2.net
propagate events. So, JOB_QUEUE_PROCESSES must be set to at least 2 at
these databases.

– COMPATIBLE: This parameter must be set to 10.1.0 or higher.

– STREAMS_POOL_SIZE: Optionally set this parameter to an appropriate
value for each database in the environment. This parameter specifies the
size of the Streams pool. The Streams pool contains captured events. In
addition, the Streams pool is used for internal communications during
parallel capture and apply. If STREAMS_POOL_SIZE is set to zero (the
default), then Streams uses the shared pool. In this case, you may need to
increase the size of the shared pool at each database.

See Also: Oracle Streams Concepts and Administration for
information about other initialization parameters that are
important in a Streams environment

Prerequisites

13-6 Oracle Streams Replication Administrator’s Guide

� Any database producing changes that will be captured must be running in
ARCHIVELOG mode. In this example, changes are produced at dbs1.net, and
so dbs1.net must be running in ARCHIVELOG mode.

� Configure an Oracle gateway on dbs2.net to communicate with the Sybase
database dbs4.net.

� At the Sybase database dbs4.net, set up the hr user.

� Instantiate the hr.jobs table from the dbs1.net Oracle database at the
dbs4.net Sybase database.

� Configure your network and Oracle Net so that the following databases can
communicate with each other:

– dbs1.net and dbs2.net

– dbs2.net and dbs3.net

– dbs2.net and dbs4.net

– dbs3.net and dbs1.net (for optional Data Pump network instantiation)

� This examples creates a new user to function as the Streams administrator
(strmadmin) at each database and prompts you for the tablespace you want to
use for this user's data. Before you start this example, either create a new
tablespace or identify an existing tablespace for the Streams administrator to
use at each database. The Streams administrator should not use the SYSTEM
tablespace.

See Also: Oracle Database Administrator's Guide for information
about running a database in ARCHIVELOG mode

See Also: Oracle Database Heterogeneous Connectivity
Administrator's Guide

See Also: Your Sybase documentation for information about
creating users and tables in your Sybase database

See Also: "Instantiation in an Oracle to Non-Oracle Environment"
on page 5-7

See Also: Oracle Net Services Administrator's Guide

Add Objects to an Existing Streams Replication Environment

Single Source Heterogeneous Replication Example 13-7

Add Objects to an Existing Streams Replication Environment
This example extends the Streams environment configured in the previous sections
by adding replicated objects to an existing database. To complete this example, you
must have completed the tasks in one of the previous examples in this chapter.

This example will add the following tables to the hr schema in the dbs3.net
database:

� departments

� employees

� job_history

� jobs

When you complete this example, Streams processes changes to these tables with
the following series of actions:

1. The capture process captures changes at dbs1.net and enqueues them at
dbs1.net.

2. A propagation propagates changes from the queue at dbs1.net to the queue
at dbs2.net.

3. A propagation propagates changes from the queue at dbs2.net to the queue
at dbs3.net.

4. The apply process at dbs3.net applies the changes at dbs3.net.

When you complete this example, the hr schema at the dbs3.net database will
have all of its original tables, because the countries, locations, and regions
tables were instantiated at dbs3.net in the previous section.

Figure 13–2 provides an overview of the environment with the added tables.

Add Objects to an Existing Streams Replication Environment

13-8 Oracle Streams Replication Administrator’s Guide

Figure 13–2 Adding Objects to dbs3.net in the Environment

strmadmin.streams_queue
Capture Process

capture

Enqueue DML
and DDL
Changes
to Tables

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
dbs1.net

strmadmin.streams_queue
Apply Process

apply

Dequeue
Changes

Tables

hr.countries
hr.locations
hr.regions

hr.departments
hr.employees
hr.job_history
hr.jobs

Oracle
Database
dbs3.net

dbs1_to_dbs2
Propagate Changes Originating at dbs1.net

Apply Process

apply_dbs4Dequeue
Changes

Table

hr.assignments

Oracle
Database
dbs2.net

dbs2_to_dbs3
Propagate changes originating
at dbs1.net Propagate and apply

changes originating
at dbs1.net

Apply
Changes

Gateway

Table

hr.jobs

Sybase
Database
dbs4.net

Apply
Changes

strmadmin.streams_queue

Added
Tables

Start Dequeue
of Changes

Finish Dequeue
of Changes Apply Process

apply_dbs2

User Transformation
Function to_assignments:
hr.jobs to hr.assignments

Add a Database to an Existing Streams Replication Environment

Single Source Heterogeneous Replication Example 13-9

Add a Database to an Existing Streams Replication Environment
This example extends the Streams environment configured in the previous sections
by adding an additional database to the existing configuration. In this example, an
existing Oracle database named dbs5.net is added to receive changes to the entire
hr schema from the queue at dbs2.net.

Figure 13–3 provides an overview of the environment with the added database.

Add a Database to an Existing Streams Replication Environment

13-10 Oracle Streams Replication Administrator’s Guide

Figure 13–3 Adding the dbs5.net Oracle Database to the Environment

strmadmin.streams_queue
Capture Process

capture

Enqueue DML
and DDL
Changes
to Tables

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
dbs1.net

strmadmin.streams_queue
Apply Process

apply

Dequeue
Changes

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
dbs3.net

dbs1_to_dbs2
Propagate Changes Originating at dbs1.net

Apply Process

apply_dbs4Dequeue
Changes

Table

hr.assignments

Oracle
Database
dbs2.net

dbs2_to_dbs3
Propagate changes originating
at dbs1.net

Apply
Changes

Gateway

Table

hr.jobs

Sybase
Database
dbs4.net

Apply
Changes

strmadmin.streams_queue
Apply Process

apply

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
dbs5.net

Apply Changes

dbs2_to_dbs5
Propagate changes originating
at dbs1.net

Dequeue
Changes

strmadmin.streams_queue

Start Dequeue
of Changes

Finish Dequeue
of Changes Apply Process

apply_dbs2

User Transformation
Function to_assignments:
hr.jobs to hr.assignments

Add a Database to an Existing Streams Replication Environment

Single Source Heterogeneous Replication Example 13-11

To complete this example, you must meet the following prerequisites:

� The dbs5.net database must exist.

� The dbs2.net and dbs5.net databases must be able to communicate with
each other through Oracle Net.

� The dbs5.net and dbs1.net databases must be able to communicate with
each other through Oracle Net (for optional Data Pump network instantiation)

� You must have completed the tasks in the previous examples in this chapter.

� The "Prerequisites" on page 13-5 must be met if you want the entire Streams
environment to work properly.

� This examples creates a new user to function as the Streams administrator
(strmadmin) at the dbs5.net database and prompts you for the tablespace
you want to use for this user's data. Before you start this example, either create
a new tablespace or identify an existing tablespace for the Streams
administrator to use at the dbs5.net database. The Streams administrator
should not use the SYSTEM tablespace.

Add a Database to an Existing Streams Replication Environment

13-12 Oracle Streams Replication Administrator’s Guide

Multiple Source Replication Example 14-1

14
Multiple Source Replication Example

This chapter illustrates an example of a multiple source replication environment
that can be constructed using Streams.

This chapter contains these topics:

� Overview of the Multiple Source Databases Example

� Prerequisites

Note: The extended example is not included in the PDF version of
this chapter, but it is included in the HTML version of the chapter.

Overview of the Multiple Source Databases Example

14-2 Oracle Streams Replication Administrator’s Guide

Overview of the Multiple Source Databases Example
This example illustrates using Streams to replicate data for a schema among three
Oracle databases. DML and DDL changes made to tables in the hr schema are
captured at all databases in the environment and propagated to each of the other
databases in the environment.

Figure 14–1 provides an overview of the environment.

Overview of the Multiple Source Databases Example

Multiple Source Replication Example 14-3

Figure 14–1 Example Environment That Shares Data from Multiple Databases

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
mult1.net

Capture_Process

capture_hr

Enqueue
DML and DDL
Changes
to Tables

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
mult3.net

Capture Process

capture_hr

Enqueue
DML and DDL
Changes
to Tables

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
mult2.net

Capture_Process

capture_hr

Apply Process

apply_from_mult3

Apply Process

apply_from_mult1

Enqueue
DML and DDL
Changes
to Tables

mult1_to_mult3

mult3_to_mult1

mult2_to_mult1

mult1_to_mult2

mult2_to_mult3

mult3_to_mult2

strmadmin.streams_queue strmadmin.streams_queue

strmadmin.streams_queue

Apply Process

apply_from_mult3

Apply Process

apply_from_mult2

Apply Process

apply_from_mult2

Apply Process

apply_from_mult1

Dequeue changes

Apply changes

Dequeue changes

Apply changes

Dequeue changes

Apply changes

Overview of the Multiple Source Databases Example

14-4 Oracle Streams Replication Administrator’s Guide

As illustrated in Figure 14–1, all of the databases will contain the hr schema when
the example is complete. However, at the beginning of the example, the hr schema
exists only at mult1.net. During the example, you instantiate the hr schema at
mult2.net and mult3.net.

In this example, Streams is used to perform the following series of actions:

1. After instantiation, the capture process at each database captures DML and
DDL changes for all of the tables in the hr schema and enqueues them into a
local queue.

2. Each database propagates these changes to all of the other databases in the
environment.

3. The apply process at each database applies changes in the hr schema received
from the other databases in the environment.

This example uses only one queue for each database, but you can use multiple
queues for each database if you want to separate changes from different source
databases. In addition, this example avoids sending changes back to their source
database by using the default apply tag for the apply processes. When you create an
apply process, the changes applied by the apply process have redo entries with a
tag of '00' (double zero) by default. These changes are not recaptured because, by
default, rules created by the DBMS_STREAMS_ADM package have an
is_null_tag()='Y' condition by default, and this condition ensures that each
capture process captures a change in a redo entry only if the tag for the redo entry
is NULL.

See Also: Chapter 4, "Streams Tags" for more information about
tags

Prerequisites

Multiple Source Replication Example 14-5

Prerequisites
The following prerequisites must be completed before you begin the example in this
chapter.

� Set the following initialization parameters to the values indicated at each
database in the Streams environment:

– GLOBAL_NAMES: This parameter must be set to true. Make sure the global
names of the databases are mult1.net, mult2.net, and mult3.net.

– JOB_QUEUE_PROCESSES: This parameter must be set to at least 2 because
each database propagates events. It should be set to the same value as the
maximum number of jobs that can run simultaneously plus one.

– COMPATIBLE: This parameter must be set to 10.1.0 or higher.

– Make sure the PROCESSES and SESSIONS initialization parameters are set
high enough for all of the Streams clients used in this example. This
example configures one capture process, two propagations, and two apply
processes at each database.

– STREAMS_POOL_SIZE: Optionally set this parameter to an appropriate
value for each database in the environment. This parameter specifies the
size of the Streams pool. The Streams pool contains captured events. In
addition, the Streams pool is used for internal communications during
parallel capture and apply. If STREAMS_POOL_SIZE is set to zero (the
default), then Streams uses the shared pool. In this case, you may need to
increase the size of the shared pool at each database.

� Any database producing changes that will be captured must be running in
ARCHIVELOG mode. In this example, all databases are capturing changes, and
so all databases must be running in ARCHIVELOG mode.

Attention: You may need to modify other initialization parameter
settings for this example to run properly.

See Also: Oracle Streams Concepts and Administration for
information about other initialization parameters that are
important in a Streams environment

See Also: Oracle Database Administrator's Guide for information
about running a database in ARCHIVELOG mode

Prerequisites

14-6 Oracle Streams Replication Administrator’s Guide

� Configure your network and Oracle Net so that all three databases can
communicate with each other.

� This examples creates a new user to function as the Streams administrator
(strmadmin) at each database and prompts you for the tablespace you want to
use for this user's data. Before you start this example, either create a new
tablespace or identify an existing tablespace for the Streams administrator to
use at each database. The Streams administrator should not use the SYSTEM
tablespace.

See Also: Oracle Net Services Administrator's Guide

Part IV
 Appendixes

This part includes the following appendix:

� Appendix A, "Migrating Advanced Replication to Streams"

Migrating Advanced Replication to Streams A-1

A
Migrating Advanced Replication to Streams

Database administrators who have been using Advanced Replication to maintain
replicated database objects at different sites can migrate their Advanced Replication
environment to a Streams environment. This chapter provides a conceptual
overview of the steps in this process and documents each step with procedures and
examples.

This chapter contains these topics:

� Overview of the Migration Process

� Preparing to Generate the Migration Script

� Generating and Modifying the Migration Script

� Performing the Migration for Advanced Replication to Streams

� Recreating Master Sites to Retain Materialized View Groups

Note: The example of a generated migration script is not included
in the PDF version of this chapter, but it is included in the HTML
version of the chapter.

See Also: Oracle Database Advanced Replication and Oracle Database
Advanced Replication Management API Reference for more
information about Advanced Replication

Overview of the Migration Process

A-2 Oracle Streams Replication Administrator’s Guide

Overview of the Migration Process
The following sections provide a conceptual overview of the migration process:

� Migration Script Generation and Use

� Modification of the Migration Script

� Actions Performed by the Generated Script

� Migration Script Errors

� Manual Migration of Updatable Materialized Views

� Advanced Replication Elements That Cannot Be Migrated to Streams

Migration Script Generation and Use
You can use the procedure DBMS_REPCAT.STREAMS_MIGRATION to generate a
SQL*Plus script that migrates an existing Advanced Replication environment to a
Streams environment. When you run the DBMS_REPCAT.STREAMS_MIGRATION
procedure at a master definition site in a multimaster replication environment, it
generates a SQL*Plus script in a file at a location that you specify. Once the script is
generated, you run it at each master site in your Advanced Replication environment
to set up a Streams environment for each master site. To successfully generate the
Streams environment for your replication groups, the replication groups for which
you run the script must have exactly the same master sites. If replication groups
have different master sites, then you can generate multiple scripts to migrate each
replication group to Streams.

At times, you must stop, or quiesce, all replication activity for a replication group so
that you can perform certain administrative tasks. You do not need to quiesce the
replication groups when you run the DBMS_REPCAT.STREAMS_MIGRATION
procedure. However, you must quiesce the replication groups being migrated to
Streams when you run the generated script at the master sites. Because you have
queisced the replication groups to run the script at the master sites, you do not have
to stop any existing capture processes, propagation jobs, or apply processes at these
sites.

Overview of the Migration Process

Migrating Advanced Replication to Streams A-3

Modification of the Migration Script
The generated migration script uses comments to indicate Advanced Replication
elements that cannot be converted to Streams. It also provides suggestions for
modifying the script to convert these elements to Streams. You can use these
suggestions to edit the script before you run it. You also can customize the
migration script in other ways to meet your needs.

The script sets all parameters when it runs PL/SQL procedures and functions.
When you generate the script, it sets default values for parameters that typically do
not need to be changed. However, you can change these default parameters by
editing the script if necessary. The parameters with default settings include the
following:

� include_dml

� include_ddl

� include_tagged_lcr

The beginning of the script has a list of variables for names that are used by the
procedures and functions in the script. When you generate the script, it sets these
variables to default values that you should not need to change. However, you can
change the default settings for these variables if necessary. The variables specify
names of queues, capture processes, propagations, and apply processes.

Actions Performed by the Generated Script
The migration script performs the following actions:

� Prints warnings in comments if the replication groups contain features that
cannot be converted to Streams.

� Creates a SYS.AnyData queue, if needed, using the
DBMS_STREAMS_ADM.SET_UP_QUEUE procedure.

� Configures propagation between all master sites using the
DBMS_STREAMS_ADMIN.ADD_TABLE_PROPAGATION_RULES procedure for
each table.

� Configures capture at each master site using the
DBMS_STREAMS_ADMIN.ADD_TABLE_RULES procedure for each table.

� Configures apply for changes from all the other master sites using the
DBMS_STREAMS_ADMIN.ADD_TABLE_RULES procedure for each table.

Overview of the Migration Process

A-4 Oracle Streams Replication Administrator’s Guide

� Sets the instantiation SCN for each replicated object at each site where changes
to the object are applied.

� Creates the necessary supplemental log groups at source databases.

� Sets key columns, if any.

� Configures conflict resolution if it was configured for the Advanced Replication
environment being migrated.

Migration Script Errors
If Oracle encounters an error while running the migration script, then the migration
script exits immediately. If this happens, then you must modify the script to run any
commands that have not already been executed successfully.

Manual Migration of Updatable Materialized Views
You cannot migrate updatable materialized views using the migration script. You
must migrate updatable materialized views from an Advanced Replication
environment to a Streams environment manually.

Advanced Replication Elements That Cannot Be Migrated to Streams
Streams does not support the following:

� Replication of changes to tables with columns of the following datatypes:
BFILE, ROWID, UROWID, and user-defined types (including object types, REFs,
varrays, and nested tables)

� Synchronous replication

If your current Advanced Replication environment uses these features, then these
elements of the environment cannot be migrated to Streams. In this case, you may
decide not to migrate the environment to Streams at this time, or you may decide to
modify the environment so that it can be migrated to Streams.

See Also: "Recreating Master Sites to Retain Materialized View
Groups" on page A-17

Generating and Modifying the Migration Script

Migrating Advanced Replication to Streams A-5

Preparing to Generate the Migration Script
Before generating the migration script, make sure all the following conditions are
met:

� All the replication groups must have the same master site(s).

� The master site that generates the migration script must be running Oracle
Database 10g.

� The other master sites that run the script, but do not generate the script, must
be running Oracle9i release 2 (9.2) or higher.

Generating and Modifying the Migration Script
To generate the migration script, use the procedure
DBMS_REPCAT.STREAMS_MIGRATION in the DBMS_REPCAT package. The syntax
for this procedure is as follows:

DBMS_REPCAT.STREAMS_MIGRATION (
 gnames IN DBMS_UTILITY.NAME_ARRAY,
 file_location IN VARCHAR2,
 filename IN VARCHAR2);

Parameters for the DBMS_REPCAT.STREAMS_MIGRATION procedure include the
following:

� gnames: List of replication groups to migrate to Streams. The replication
groups listed must all contain exactly the same master sites. An error is raised if
the replication groups have different masters.

� file_location: Directory location of the migration script

� filename: Name of the migration script

This procedure generates a script for setting up a Streams environment for the given
replication groups. The script can be customized and run at each master site.

Generating and Modifying the Migration Script

A-6 Oracle Streams Replication Administrator’s Guide

Example Advanced Replication Environment to be Migrated to Streams
Figure A–1 shows the Advanced Replication environment that will be migrated to
Streams in this example.

Figure A–1 Advanced Replication Environment to be Migrated to Streams

This Advanced Replication environment has the following characteristics:

� The orc1.world database is the master definition site for a three-way master
configuration that also includes orc2.world and orc3.world.

� The orc1.world database is the master site for the mv1.world materialized
view site.

� The environment replicates changes to the database objects in the hr schema
between the three master sites and between the master site and the materialized
view site. A single replication group named hr_repg contains the replicated
objects.

� Conflict resolution is configured for the hr.countries table in the
multimaster environment. The latest timestamp conflict resolution method
resolves conflicts on this table.

� The materialized views at the mv1.world site are updatable.

orc1.world orc2.world

mv1.world orc3.world

Materialized
View
Site

Master
Site

Master
Site

Master
Site

Generating and Modifying the Migration Script

Migrating Advanced Replication to Streams A-7

You can configure this Advanced Replication environment by completing the tasks
described in the following sections of the Oracle Database Advanced Replication
Management API Reference:

� Set up the three master sites.

� Set up the materialized view sites (to set up mv1.world only).

� Create the hr_repg master group for the three master sites with orc1.world
as the master definition site.

� Configure timestamp conflict resolution for the hr.countries table.

� Create the materialized view group at mv1.world based on the hr_repg
master group at orc1.world.

To generate the migration script for this Advanced Replication environment,
complete the following steps:

� Create the Streams administrator at all master sites.

� Make a directory location accessible.

� Generate the migration script.

� Verify the generated migration script creation and modify script.

Step 1 Create the Streams administrator at all master sites.
Complete the following steps to create the Streams administrator at each master site
for the replication groups being migrated to Streams. For the example environment
described in "Example Advanced Replication Environment to be Migrated to
Streams" on page A-6, complete these steps at orc1.world, orc2.world, and
orc3.world:

1. Connect as an administrative user who can create users, grant privileges, and
create tablespaces.

2. Either create a tablespace for the Streams administrator or use an existing
tablespace. For example, the following statement creates a new tablespace for
the Streams administrator:

CREATE TABLESPACE streams_tbs DATAFILE '/usr/oracle/dbs/streams_tbs.dbf'
 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

Generating and Modifying the Migration Script

A-8 Oracle Streams Replication Administrator’s Guide

3. Create a new user to act as the Streams administrator or use an existing user.
For example, to create a new user named strmadmin and specify that this user
uses the streams_tbs tablespace, run the following statement:

CREATE USER strmadmin IDENTIFIED BY strmadminpw
 DEFAULT TABLESPACE streams_tbs
 QUOTA UNLIMITED ON streams_tbs;

GRANT CONNECT, RESOURCE, DBA TO strmadmin;

4. Grant any additional privileges required by the Streams administrator. The
necessary privileges depend on your specific Streams environment. For the
example environment described in "Example Advanced Replication
Environment to be Migrated to Streams" on page A-6, the Streams
administrator must be able to create supplemental log groups for the tables in
the hr schema. Therefore, grant the Streams administrator all privileges on
these tables:

GRANT ALL ON hr.countries TO strmadmin;
GRANT ALL ON hr.departments TO strmadmin;
GRANT ALL ON hr.employees TO strmadmin;
GRANT ALL ON hr.jobs TO strmadmin;
GRANT ALL ON hr.job_history TO strmadmin;
GRANT ALL ON hr.locations TO strmadmin;
GRANT ALL ON hr.regions TO strmadmin;

Make sure you complete all of these steps at each master site.

Note:

� To ensure security, use a password other than strmadminpw
for the Streams administrator.

� The migration script assumes that the username of the Streams
administrator is strmadmin. If your Streams administrator has
a different username, then edit the migration script to replace
all instances of strmadmin with the username of your Streams
administrator.

� Make sure you grant DBA role to the Streams administrator.

Generating and Modifying the Migration Script

Migrating Advanced Replication to Streams A-9

Step 2 Make a directory location accessible.
The directory specified by the file_location parameter in the
DBMS_REPCAT.STREAMS_MIGRATION procedure must be accessible to PL/SQL. If
you do not have directory object that is accessible to the Streams administrator at
the master definition site currently, then connect as the Streams administrator, and
create a directory object using the SQL statement CREATE DIRECTORY.

A directory object is similar to an alias for the directory. For example, to create a
directory object called MIG2STR_DIR for the /usr/scripts directory on your
computer system, run the following procedure:

CONNECT strmadmin/strmadminpw@orc1.world

CREATE DIRECTORY MIG2STR_DIR AS '/usr/scripts';

Step 3 Generate the migration script.
To generate the migration script, run the DBMS_REPCAT.STREAMS_MIGRATION
procedure at the master definition site and specify the appropriate parameters. For
example, the following procedure generates a script that migrates an Advanced
Replication environment with one replication group named hr_repg. The script
name is rep2streams.sql, and it is generated into the /usr/scripts directory
on the local computer system. This directory is represented by the directory object
MIG2STR_DIR.

CONNECT strmadmin/strmadminpw@orc1.world

DECLARE
 rep_groups DBMS_UTILITY.NAME_ARRAY;
 BEGIN
 rep_groups(1) := 'HR_REPG';
 DBMS_REPCAT.STREAMS_MIGRATION(
 gnames => rep_groups,
 file_location => 'MIG2STR_DIR',
 filename => 'rep2streams.sql');

See Also: Oracle Streams Concepts and Administration for
information about addition privileges that may be required for a
Streams administrator

See Also: Oracle Database SQL Reference for more information
about the CREATE DIRECTORY statement

Generating and Modifying the Migration Script

A-10 Oracle Streams Replication Administrator’s Guide

END;
/

Step 4 Verify the generated migration script creation and modify script.
After generating the migration script, verify that the script was created viewing the
script in the specified directory. If necessary, you can modify it to support the
following:

� If your environment requires conflict resolution that used the additive, average,
priority group, or site priority Advanced Replication conflict resolution
methods, then configure user-defined conflict resolution methods to resolve
conflicts. Streams does not provide built-in conflict resolution methods that are
equivalent to these methods.

However, the migration script supports the following conflict resolution
methods automatically: overwrite, discard, maximum, and minimum. The
script converts an earliest timestamp method to a minimum method
automatically, and it converts a latest timestamp method to a maximum method
automatically. If you use a timestamp conflict resolution method, then the script
assumes that any triggers necessary to populate the timestamp column in a
table already exist.

� Unique conflict resolution

� Delete conflict resolution

� Multiple conflict resolution methods to be executed in a specified order when a
conflict occurs. Streams allows only one conflict resolution method to be
specified for each column list.

� Procedural replication

� Replication of data definition language (DDL) changes for non-table objects,
including the following:

� Functions

� Indexes

� Indextypes

� Operators

� Packages

Generating and Modifying the Migration Script

Migrating Advanced Replication to Streams A-11

� Package bodies

� Procedures

� Synonyms

� Triggers

� Types

� Type bodies

� Views

Because changes to these objects were being replicated by Advanced Replication at
all sites, the migration script does not need to take any action to migrate these
objects. You can add DDL rules to the Streams environment to support the future
modification and creation of these types of objects.

For example, to specify that a capture process named streams_capture at the
orc1.world database captures DDL changes to all of the database objects in the
hr schema, add the following to the script:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'capture',
 streams_name => 'streams_capture',
 queue_name => 'strmadmin.streams_queue',
 include_dml => false,
 include_ddl => true,
 include_tagged_lcr => false,
 source_database => 'orc1.world');
END;
/

Notice that the include_ddl parameter is set to true. By setting this parameter to
true, this procedure adds a schema rule for DDL changes to the hr schema to the
rule set for the capture process. This rule instructs the capture process to capture
DDL changes to the hr schema and its objects. For the DDL changes to be
replicated, you must add similar rules to the appropriate propagations and apply
processes.

Performing the Migration for Advanced Replication to Streams

A-12 Oracle Streams Replication Administrator’s Guide

Performing the Migration for Advanced Replication to Streams
This section explains how to perform the migration from an Advanced Replication
environment to a Streams environment.

This section contains the following topics:

� Before Executing the Migration Script

� Executing the Migration Script

� After Executing the Script

� Recreating Master Sites to Retain Materialized View Groups

Before Executing the Migration Script
Complete the following steps before executing the migration script:

� Set initialization parameters that are relevant to Streams.

� Enable archive logging at all sites.

� Set up database links, if needed, for queue to queue propagation.

� Quiesce each replication group that you are migrating to Streams.

Step 1 Set initialization parameters that are relevant to Streams.
At each replication database, set initialization parameters that are relevant to
Streams and restart the database if necessary.

Step 2 Enable archive logging at all sites.
Make sure each master site is running in ARCHIVELOG mode, because a capture
process requires ARCHIVELOG mode. In the example environment, orc1.world,
orc2.world, and orc3.world must be running in ARCHIVELOG mode. You can
check the log mode for a database by querying the LOG_MODE column in the
V$DATABASE dynamic performance view.

See Also: Oracle Streams Concepts and Administration for
information about initialization parameters that are important to
Streams

See Also: Oracle Database Administrator's Guide for information
about running a database in ARCHIVELOG mode

Performing the Migration for Advanced Replication to Streams

Migrating Advanced Replication to Streams A-13

Step 3 Set up database links, if needed, for queue to queue propagation.
Create a database link from the Streams administrator at each master site to the
Streams administrator at the other master sites. For the example environment
described in "Example Advanced Replication Environment to be Migrated to
Streams" on page A-6, create the following database links:

CONNECT strmadmin/strmadminpw@orc1.world

CREATE DATABASE LINK orc2.world CONNECT TO strmadmin
 IDENTIFIED BY strmadminpw USING 'orc2.world';

CREATE DATABASE LINK orc3.world CONNECT TO strmadmin
 IDENTIFIED BY strmadminpw USING 'orc3.world';

CONNECT strmadmin/strmadminpw@orc2.world

CREATE DATABASE LINK orc1.world CONNECT TO strmadmin
 IDENTIFIED BY strmadminpw USING 'orc1.world';

CREATE DATABASE LINK orc3.world CONNECT TO strmadmin
 IDENTIFIED BY strmadminpw USING 'orc3.world';

CONNECT strmadmin/strmadminpw@orc3.world

CREATE DATABASE LINK orc1.world CONNECT TO strmadmin
 IDENTIFIED BY strmadminpw USING 'orc1.world';

CREATE DATABASE LINK orc2.world CONNECT TO strmadmin
 IDENTIFIED BY strmadminpw USING 'orc2.world';

Step 4 Quiesce each replication group that you are migrating to Streams.
Run the DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY procedure at the master
definition site for each replication group that you are migrating to Streams.

In the example environment, orc1.world is the master definition site, and
hr_repg is the replication group being migrated to Streams. So, connect to
orc1.world as the replication administrator and run the
SUSPEND_MASTER_ACTIVITY procedure:

CONNECT repadmin/repadmin@orc1.world

Performing the Migration for Advanced Replication to Streams

A-14 Oracle Streams Replication Administrator’s Guide

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

Do not proceed until the master group is quiesced. You can check the status of a
master group by querying the STATUS column in the DBA_REPGROUP data
dictionary view.

Executing the Migration Script
Perform the following steps to migrate:

� Connect as the Streams administrator and run the script at each site.

� Verify that Streams configuration completed successfully at all sites.

Step 1 Connect as the Streams administrator and run the script at each site.
In the example environment, connect in SQL*Plus as the Streams administrator
strmadmin in SQL*Plus at orc1.world, orc2.world, and orc3.world and
execute the migration script rep2streams.sql:

CONNECT strmadmin/strmadminpw@orc1.world
SET ECHO ON
SPOOL rep2streams.out
@rep2streams.sql

CONNECT strmadmin/strmadminpw@orc2.world
SET ECHO ON
SPOOL rep2streams.out
@rep2streams.sql

CONNECT strmadmin/strmadminpw@orc3.world
SET ECHO ON
SPOOL rep2streams.out
@rep2streams.sql

Step 2 Verify that Streams configuration completed successfully at all sites.
Check the spool file at each site to make sure there are no errors. If there are errors,
then you should modify the script to execute the steps that were not completed
successfully, and then rerun the script. In the example environment, the spool file is
rep2streams.out at each master site.

Performing the Migration for Advanced Replication to Streams

Migrating Advanced Replication to Streams A-15

After Executing the Script
Perform the following steps to complete the migration process:

� Drop replication groups you migrated at each site.

� Start the apply processes at each site.

� Start the capture process at each site.

Step 1 Drop replication groups you migrated at each site.
To drop a replication group that you successfully migrated to Streams, connect as
the replication administrator to the master definition site, and run the
DBMS_REPCAT.DROP_MASTER_REPGROUP procedure.

CONNECT repadmin/repadmin@orc1.world

BEGIN
 DBMS_REPCAT.DROP_MASTER_REPGROUP (
 gname => 'hr_repg',
 drop_contents => false,
 all_sites => true);
END;
/

To make sure the migrated replication groups are dropped at each database, query
the GNAME column in the DBA_REPGROUP data dictionary view. The migrated
replication groups should not appear in the query output at any database.

If you no longer need the replication administrator, then you may drop this user
also.

Attention: Make sure the drop_contents parameter is set to
false in the DROP_MASTER_REPGROUP procedure. If it is set to
true, then the replicated database objects are dropped.

Caution: Do not resume any Advanced Replication activity once
Streams is set up.

Performing the Migration for Advanced Replication to Streams

A-16 Oracle Streams Replication Administrator’s Guide

Step 2 Start the apply processes at each site.
You can view the names of the apply processes at each site by running the following
query while connected as the Streams administrator:

SELECT APPLY_NAME FROM DBA_APPLY;

When you know the names of the apply processes, you can start each one by
running the START_APPLY procedure in the DBMS_APPLY_ADM package while
connected as the Streams administrator. For example, the following procedure starts
an apply process named apply_from_orc2 at orc1.world:

CONNECT strmadmin/strmadminpw@orc1.world

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_from_orc2');
END;
/

Make sure you start each apply process at every database in the new Streams
environment.

Step 3 Start the capture process at each site.
You can view the name of the capture process at each site by running the following
query while connected as the Streams administrator:

SELECT CAPTURE_NAME FROM DBA_CAPTURE;

When you know the name of the capture process, you can start each one by running
the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package while
connected as the Streams administrator. For example, the following procedure
starts a capture process named streams_capture at orc1.world:

CONNECT strmadmin/strmadminpw@orc1.world

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'streams_capture');
END;
/

Make sure you start each capture process at every database in the new Streams
environment.

Recreating Master Sites to Retain Materialized View Groups

Migrating Advanced Replication to Streams A-17

Recreating Master Sites to Retain Materialized View Groups
If one or more materialized view groups used a master group that you migrated to
Streams, then you must re-create the master group to retain these materialized view
groups. Therefore, each database acting as the master site for a materialized view
group must become the master definition site for a one-master configuration of a
replication group that contains the tables used by the materialized views in the
materialized view group.

Use the replication management APIs to create a replication group similar to the
original replication group that was migrated to Streams. That is, the new replication
group should have the same replication group name, objects, conflict resolution
methods, and key columns. To retain the existing materialized view groups, you
must re-create each master group at each master site that contained a master group
for a materialized view group, re-create the master replication objects in the master
group, regenerate replication support for the master group, and resume replication
activity for the master group.

For example, consider the following Advanced Replication environment:

� Two master sites, mdb1.net and mdb2.net, have the replication group rg1.
The mdb1.net database is the master definition site, and the objects in the rg1
replication group are replicated between mdb1.net and mdb2.net.

� The rg1 replication group at mdb1.net is the master group to the mvg1
materialized view group at mv1.net.

� The rg1 replication group at mdb2.net is the master group to the mvg2
materialized view group at mv2.net.

If the rg1 replication group is migrated to Streams at both mdb1.net and
mdb2.net, and you want to retain the materialized view groups mvg1 at mv1.net
and mvg2 at mv2.net, then you need to re-create the rg1 replication group at
mdb1.net and mdb2.net after the migration to Streams. You configure both
mdb1.net and mdb2.net to be the master definition site for the rg1 replication
group in a one-master environment.

It is not necessary to drop or re-create materialized view groups at the materialized
view sites. As long as a new master replication group resembles the original
replication group, the materialized view groups are not affected. Do not refresh
these materialized view groups until generation of replication support for each
master object is complete (Step 3 in the task in this section). Similarly, do not push
the deferred transaction queue at any materialized view site with updatable
materialized views until generation of replication support for each master object is
complete.

Recreating Master Sites to Retain Materialized View Groups

A-18 Oracle Streams Replication Administrator’s Guide

For the example environment described in "Example Advanced Replication
Environment to be Migrated to Streams" on page A-6, only the hr_repg replication
group at orc1.world was the master group to a materialized view group at
mv1.world. To retain this materialized view group at mv1.world, complete the
following steps while connected as the replication administrator:

1. Create the master group hr_repg at orc1.world.

CONNECT repadmin/repadmin@orc1.world

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPGROUP (
 gname => 'hr_repg');
END;
/

2. Add the tables in the hr schema to the hr_repg master group. These tables are
master tables to the materialized views at mv1.world.

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'countries',
 sname => 'hr',
 use_existing_object => true,
 copy_rows => false);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'departments',
 sname => 'hr',
 use_existing_object => true,
 copy_rows => false);
END;
/

Recreating Master Sites to Retain Materialized View Groups

Migrating Advanced Replication to Streams A-19

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'employees',
 sname => 'hr',
 use_existing_object => true,
 copy_rows => false);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'jobs',
 sname => 'hr',
 use_existing_object => true,
 copy_rows => false);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'job_history',
 sname => 'hr',
 use_existing_object => true,
 copy_rows => false);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'locations',
 sname => 'hr',
 use_existing_object => true,
 copy_rows => false);
END;
/

Recreating Master Sites to Retain Materialized View Groups

A-20 Oracle Streams Replication Administrator’s Guide

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'regions',
 sname => 'hr',
 use_existing_object => true,
 copy_rows => false);
END;
/

3. Generate replication support for each object in the hr_repg master group.

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'countries',
 type => 'TABLE');
END;
/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'departments',
 type => 'TABLE');
END;
/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'employees',
 type => 'TABLE');
END;
/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'jobs',
 type => 'TABLE');
END;
/

Recreating Master Sites to Retain Materialized View Groups

Migrating Advanced Replication to Streams A-21

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'job_history',
 type => 'TABLE');
END;
/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'locations',
 type => 'TABLE');
END;
/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'regions',
 type => 'TABLE');
END;
/

4. Resume master activity for the hr_repg master group.

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

Note: A materialized view log should exist for each table you
added to the hr_repg master group, unless you deleted these logs
manually after you migrated the replication group to Streams. If
these materialized view logs do not exist, then you must create
them.

Recreating Master Sites to Retain Materialized View Groups

A-22 Oracle Streams Replication Administrator’s Guide

Index-1

Index
A
ABORT_GLOBAL_INSTANTIATION

procedure, 8-3
ABORT_SCHEMA_INSTANTIATION

procedure, 8-3
ABORT_TABLE_INSTANTIATION procedure, 8-3
ADD SUPPLEMENTAL LOG DATA clause of

ALTER DATABASE, 7-7
ADD SUPPLEMENTAL LOG DATA clause of

ALTER TABLE
conditional log groups, 7-6
unconditional log groups, 7-5

ADD SUPPLEMENTAL LOG GROUP clause of
ALTER TABLE

conditional log groups, 7-6
unconditional log groups, 7-5

ALTER DATABASE statement
ADD SUPPLEMENTAL LOG DATA clause, 7-7
DROP SUPPLEMENTAL LOG DATA

clause, 7-8
ALTER TABLE statement

ADD SUPPLEMENTAL LOG DATA clause
conditional log groups, 7-6
unconditional log groups, 7-5

ADD SUPPLEMENTAL LOG GROUP clause
conditional log groups, 7-6
unconditional log groups, 7-5

DROP SUPPLEMENTAL LOG GROUP
clause, 7-7

ALTER_APPLY procedure
removing the DDL handler, 7-23
removing the tag value, 7-35

setting the DDL handler, 7-22
setting the tag value, 4-2, 4-7, 7-34

applied SCN, 1-32
apply process, 1-14

applied SCN, 1-32
apply handlers, 1-22
apply servers

troubleshooting, 11-5
conflict handlers, 1-22

heterogeneous environments, 5-5
conflict resolution, 1-21, 3-1
constraints, 1-17
contention, 11-2, 11-4
creating, 7-12
datatypes applied

heterogeneous environments, 5-5
DDL changes, 1-26

CREATE TABLE AS SELECT, 1-29
current schema, 1-28
data structures, 1-27
ignored, 1-26
system-generated names, 1-28

DDL handlers, 1-15
creating, 7-21
monitoring, 10-7
removing, 7-23
setting, 7-22

dependent transactions, 11-4
DML changes, 1-17

heterogeneous environments, 5-6
DML handlers, 1-15

creating, 7-16
heterogeneous environments, 5-5

Index-2

monitoring, 10-6
setting, 7-19

error handlers, 1-15
heterogeneous environments, 5-5

heterogeneous environments, 5-3, 5-12
database links, 5-4

high-watermark, 1-32
ignore SCN, 1-30
index-organized tables, 1-21
instantiation SCN, 1-30
key columns, 1-17
LOBs, 9-13
low-watermark, 1-32
managing, 7-12
message handlers

heterogeneous environments, 5-5
monitoring, 10-4

apply handlers, 10-6
oldest SCN, 1-31

point-in-time recovery, 7-44
parameters

commit_serialization, 11-4
heterogeneous environments, 5-5
parallelism, 11-4

performance, 11-5
substitute key columns, 1-18

heterogeneous environments, 5-4, 5-5
removing, 7-16
setting, 7-14

tables, 1-17
apply handlers, 1-22
column discrepancies, 1-20

tags, 4-7
monitoring, 10-22
removing, 7-35
setting, 7-34

triggers
firing property, 1-32
ON SCHEMA clause, 1-34

troubleshooting, 11-1
error queue, 11-7

update conflict handlers
monitoring, 10-9

ARCHIVELOG mode
capture process, 12-3, 13-6

B
backups

online
Streams, 4-6

buffered queues, 1-12
monitoring, 10-10

apply processes, 10-20
capture processes, 10-12
propagations, 10-14, 10-15, 10-16, 10-17,

10-19

C
capture process, 1-6

ARCHIVELOG mode, 12-3, 13-6
creating, 7-2
DBID

changing, 7-35
global name

changing, 7-35
heterogeneous environments, 5-3
log sequence number

resetting, 7-38
supplemental logging, 1-9

managing, 7-4
change cycling

avoidance
tags, 4-8

column lists, 3-12
COMPARE_OLD_VALUES procedure, 3-5, 7-27
COMPATIBLE initialization parameter, 12-3, 13-5
conflict resolution, 3-1

column lists, 3-12
conflict handlers, 3-4, 3-5, 3-6, 3-8

custom, 3-15
interaction with apply handlers, 1-22
modifying, 7-25
prebuilt, 3-9
removing, 7-26
setting, 7-23

data convergence, 3-15
DISCARD handler, 3-10
MAXIMUM handler, 3-10

latest time, 3-11
MINIMUM handler, 3-12

Index-3

OVERWRITE handler, 3-10
resolution columns, 3-14
time-based, 3-11

conflicts
avoidance, 3-6

delete, 3-7
primary database ownership, 3-6
uniqueness, 3-6
update, 3-8

delete, 3-3
detection, 3-5

identifying rows, 3-6
monitoring, 10-8
stopping, 3-5, 7-27

DML conflicts, 3-2
foreign key, 3-3
transaction ordering, 3-4
types of, 3-2
uniqueness, 3-3
update, 3-3

constructing
LCRs, 9-14

CREATE TABLE statement
AS SELECT

apply process, 1-29
CREATE_APPLY procedure

tags, 4-2, 4-7

D
datatypes

heterogeneous environments, 5-5
DBA_APPLY view, 10-7, 10-22
DBA_APPLY_CONFLICT_COLUMNS view, 10-9
DBA_APPLY_DML_HANDLERS view, 10-6
DBA_APPLY_INSTANTIATED_OBJECTS

view, 10-24
DBA_APPLY_KEY_COLUMNS view, 10-5
DBA_APPLY_TABLE_COLUMNS view, 10-8
DBA_CAPTURE_PREPARED_DATABASE

view, 10-23
DBA_CAPTURE_PREPARED_SCHEMAS

view, 10-23

DBA_CAPTURE_PREPARED_TABLES
view, 10-23

DBA_LOG_GROUPS view, 10-2
DBA_PROPAGATION view, 10-14, 10-15, 10-16,

10-17
DBID (database identifier)

capture process
changing, 7-35

DBMS_STREAMS package, 7-33
DBMS_STREAMS_ADM package, 1-4

tags, 4-3
DDL handlers, 1-15

creating, 7-21
monitoring, 10-7
removing, 7-23
setting, 7-22

DISCARD conflict resolution handler, 3-10
DML handlers, 1-15, 1-22

creating, 7-16
monitoring, 10-6
setting, 7-19
unsetting, 7-20

DROP SUPPLEMENTAL LOG DATA clause of
ALTER DATABASE, 7-8

DROP SUPPLEMENTAL LOG GROUP clause, 7-7

E
ENQUEUE procedure, 9-5
error handlers, 1-22
error queue

apply process, 11-7
heterogeneous environments, 5-10

EXECUTE member procedure, 7-18, 7-22
explicit capture, 1-11
Export

OBJECT_CONSISTENT parameter, 2-13, 8-13
Oracle Streams, 2-13, 8-23

F
flashback queries

Streams replication, 10-26

Index-4

G
GET_BASE_TABLE_NAME member function, 7-22
GET_BASE_TABLE_OWNER member

function, 7-22
GET_COMMAND_TYPE member function, 7-22
GET_COMMIT_SCN member function, 7-18
GET_CURRENT_SCHEMA member function, 7-22
GET_LOGON_USER member function, 7-22
GET_OBJECT_NAME member function, 7-18, 7-22
GET_OBJECT_OWNER member function, 7-18,

7-22
GET_SCN member function, 7-18, 7-22
GET_SCN_MAPPING procedure, 7-42, 10-26
GET_SOURCE_DATABASE_NAME member

function, 7-22
GET_TAG function, 7-34, 10-21
GET_TAG member function, 7-18, 7-22
GET_TRANSACTION_ID member function, 7-18,

7-22
GET_VALUES member function, 7-18
global name

capture process
changing, 7-35

GLOBAL_NAMES initialization parameter, 12-3,
13-5

H
heterogeneous information sharing, 5-1

non-Oracle to non-Oracle, 5-13
non-Oracle to Oracle, 5-11

apply process, 5-12
capturing changes, 5-12
instantiation, 5-13
user application, 5-12

Oracle to non-Oracle, 5-2
apply process, 5-3
capture process, 5-3
conflict handlers, 5-5
database links, 5-4
datatypes applied, 5-5
DML changes, 5-6
DML handlers, 5-5
error handlers, 5-5
errors, 5-10

instantiation, 5-7
message handlers, 5-5
parallelism, 5-5
staging, 5-3
substitute key columns, 5-4, 5-5
transformations, 5-10

high-watermark, 1-32

I
ignore SCN, 1-30
Import

Oracle Streams, 2-13, 8-23
STREAMS_CONFIGURATION parameter, 2-9,

2-14
STREAMS_INSTANTIATION parameter, 2-14,

8-13
index-organized tables

apply process, 1-21
instantiation, 2-1

aborting preparation, 8-3
example, 8-4

Data Pump export/import, 8-4
original export/import, 8-13
RMAN, 8-15
transportable tablespaces, 8-8

export/import
Data Pump and original, 2-2

heterogeneous environments
non-Oracle to Oracle, 5-13
Oracle to non-Oracle, 5-7

monitoring, 10-23
Oracle Streams, 8-23
preparing for, 2-2, 8-2
setting an SCN, 8-22

DDL LCRs, 8-25
export/import, 8-23

supplemental logging specifications, 2-3
instantiation SCN, 1-30
IS_TRIGGER_FIRE_ONCE function, 1-32

J
JOB_QUEUE_PROCESSES initialization

parameter, 12-3, 13-5

Index-5

L
LCRs. See logical change records
LOBs

Oracle Streams, 9-9
apply process, 9-13
constructing, 9-14

log sequence number
Streams capture process, 7-38

logical change records (LCRs)
constructing, 9-3
DDL LCRs

current_schema, 1-28
enqueuing, 9-3
getting information about, 7-18, 7-22
LOB columns, 9-9, 9-14

apply process, 9-13
requirements, 9-11

LONG columns, 9-9
requirements, 9-10

LONG RAW columns, 9-9
requirements, 9-10

managing, 9-1
requirements, 9-2

LONG datatype
Oracle Streams, 9-9

LONG RAW datatype
Oracle Streams, 9-9

low-watermark, 1-32

M
MAINTAIN_TABLESPACES procedure, 7-29
MAXIMUM conflict resolution handler, 3-10

latest time, 3-11
MINIMUM conflict resolution handler, 3-12
monitoring

apply process, 10-4
apply handlers, 10-6
DDL handlers, 10-7
update conflict handlers, 10-9

conflict detection, 10-8
DML handlers, 10-6
instantiation, 10-23
Oracle Streams

replication, 10-1

supplemental logging, 10-2
tags, 10-21

apply process value, 10-22
current session value, 10-21

O
OBJECT_CONSISTENT parameter

Export utility, 2-13, 8-13
oldest SCN, 1-31

point-in-time recovery, 7-44
ON SCHEMA clause

of CREATE TRIGGER
apply process, 1-34

ORA-01403 error, 11-8
ORA-23605 error, 11-10
ORA-23607 error, 11-11
ORA-24031 error, 11-11
ORA-26679 error, 9-12
ORA-26687 error, 11-12
ORA-26688 error, 11-14
ORA-26689 error, 11-15
Oracle Data Pump

Import utility
STREAMS_CONFIGURATION

parameter, 2-9
instantiations, 8-4

Oracle Streams
adding databases, 13-9
adding objects, 13-7
conflict resolution, 3-1
Data Pump, 2-2
example environments

replication, 12-1, 13-1, 14-1
Export utility, 2-2, 2-13, 8-23
heterogeneous information sharing, 5-1
Import utility, 2-2, 2-13, 8-23
initialization parameters, 12-3, 13-5
instantiation, 2-2, 8-23
LOBs, 9-9
logical change records (LCRs)

managing, 9-1
LONG datatype, 9-9
migrating to from Advanced Replication, A-1
point-in-time recovery, 7-38

Index-6

replication, 1-1
adding databases, 6-14, 6-34
adding objects, 6-7, 6-25
configuring, 6-1
monitoring, 10-1
subsetting, 1-5
troubleshooting, 11-1

rules, 1-3
supplemental logging, 1-9

managing, 7-4
tags, 4-1

OVERWRITE conflict resolution handler, 3-10

P
point-in-time recovery

Oracle Streams, 7-38
PREPARE_GLOBAL_INSTANTIATION

procedure, 2-2, 8-2
PREPARE_SCHEMA_INSTANTIATION

procedure, 2-2, 8-2
PREPARE_TABLE_INSTANTIATION

procedure, 2-2, 8-2
propagations, 1-12

creating, 7-10

Q
queues

buffered queues, 1-12

R
replication

migrating to Streams, A-1
Oracle Streams, 1-1

adding databases, 6-14, 6-34, 13-9
adding objects, 6-7, 6-25, 13-7
configuring, 6-1
heterogeneous single source example, 13-1
multiple source example, 14-1
simple single source example, 12-1

resolution columns, 3-14

rules, 1-3
system-created

subset, 1-5
tags, 4-3

S
SET_DML_HANDLER procedure, 3-15

setting a DML handler, 7-19
unsetting a DML handler, 7-20

SET_GLOBAL_INSTANTIATION_SCN
procedure, 8-22, 8-25

SET_KEY_COLUMNS procedure, 1-18
removing substitute key columns, 7-16
setting substitute key columns, 7-14

SET_PARAMETER procedure
apply process, 11-4

SET_SCHEMA_INSTANTIATION_SCN
procedure, 8-22, 8-25

SET_TABLE_INSTANTIATION_SCN
procedure, 8-22

SET_TAG procedure, 4-2, 7-33
SET_TRIGGER_FIRING_PROPERTY

procedure, 1-32
SET_UPDATE_CONFLICT_HANDLER

procedure, 3-9
modifying an update conflict handler, 7-25
removing an update conflict handler, 7-26
setting an update conflict handler, 7-23

staging
buffered queues, 1-12

monitoring, 10-10
heterogeneous environments, 5-3

STREAMS_CONFIGURATION parameter
Data Pump Import utility, 2-9
Import utility, 2-9, 2-14

STREAMS_INSTANTIATION parameter
Import utility, 2-14, 8-13

supplemental logging, 1-9
capture process

managing, 7-4
column lists, 3-12
conditional log groups, 1-9
DBA_LOG_GROUPS view, 10-2
instantiation, 2-3

Index-7

monitoring, 10-2
unconditional log groups, 1-9

system change numbers (SCN)
applied SCN for an apply process, 1-32
oldest SCN for an apply process, 1-31

point-in-time recovery, 7-44
system-generated names

apply process, 1-28

T
tags, 4-1

ALTER_APPLY procedure, 4-2, 4-7
apply process, 4-7
change cycling

avoidance, 4-8
CREATE_APPLY procedure, 4-2, 4-7
examples, 4-8
getting value for current session, 7-34
managing, 7-33
monitoring, 10-21

apply process value, 10-22
current session value, 10-21

online backups, 4-6
removing value for apply process, 7-35
rules, 4-3

include_tagged_lcr parameter, 4-4
SET_TAG procedure, 4-2
setting value for apply process, 7-34
setting value for current session, 7-33

transformations
heterogeneous environments

Oracle to non-Oracle, 5-10
rule-based, 1-5

triggers
firing property, 1-32
system triggers

on SCHEMA, 1-34
troubleshooting

apply process, 11-1
error queue, 11-7
performance, 11-5

Oracle Streams
replication, 11-1

V
V$BUFFERED_PUBLISHERS view, 10-12
V$BUFFERED_QUEUES view, 10-11, 10-17, 10-20
V$BUFFERED_SUBSCRIBERS view, 10-17, 10-20
V$DATABASE view

supplemental logging, 10-4
V$PROPAGATION_RECEIVER view, 10-19
V$PROPAGATION_SENDER view, 10-14, 10-15,

10-16
V$STREAMS_APPLY_SERVER view, 11-5

Index-8

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	Part I� Streams Replication Concepts
	1 Understanding Streams Replication
	Overview of Streams Replication
	Rules in a Streams Replication Environment
	Non-Identical Replicas with Streams
	Subsetting with Streams

	Capture and Streams Replication
	Change Capture Using a Capture Process
	Capture Process Overview
	Supplemental Logging for Streams Replication

	Change Capture Using a Custom Application

	Propagation and Streams Replication
	LCR Staging
	LCR Propagation

	Apply and Streams Replication
	Overview of the Apply Process
	Apply Processing Options for LCRs
	Captured and User-Enqueued LCRs
	Direct and Custom Apply of LCRs

	Considerations for Applying DML Changes to Tables
	Constraints and Applying DML Changes to Tables
	Substitute Key Columns
	Apply Process Behavior for Column Discrepancies
	Missing Columns at the Destination Database
	Extra Columns at the Destination Database
	Column Datatype Mismatch

	Index-Organized Tables and an Apply Process
	Conflict Resolution and an Apply Process
	Handlers and Row LCR Processing
	No Relevant Handlers
	Relevant Update Conflict Handler
	DML Handler But No Relevant Update Conflict Handler
	DML Handler And a Relevant Update Conflict Handler
	Error Handler But No Relevant Update Conflict Handler
	Error Handler And a Relevant Update Conflict Handler

	Considerations for Applying DDL Changes
	Types of DDL Changes Ignored by an Apply Process
	Database Structures in a Streams Environment
	Current Schema User Must Exist at Destination Database
	System-Generated Names
	CREATE TABLE AS SELECT Statements

	Instantiation SCN and Ignore SCN for an Apply Process
	The Oldest SCN for an Apply Process
	Low-Watermark and High-Watermark for an Apply Process
	Trigger Firing Property

	2 Instantiation and Streams Replication
	Overview of Instantiation and Streams Replication
	Capture Process Rules and Preparation for Instantiation
	DBMS_STREAMS_ADM Package Procedures Automatically Prepare Objects
	When Preparing for Instantiation Is Required

	Oracle Data Pump and Streams Instantiation
	Data Pump Export and Object Consistency
	Oracle Data Pump Import and Streams Instantiation
	Instantiation SCNs and Data Pump Imports
	Instantiation SCNs and Streams Tags Resulting From Data Pump Imports
	The STREAMS_CONFIGURATION Data Pump Import Utility Parameter

	Original Export/Import and Streams Instantiation
	The OBJECT_CONSISTENT Export Utility Parameter and Streams
	Original Import Utility Parameters Relevant to Streams
	The STREAMS_INSTANTIATION Import Utility Parameter and Streams
	The STREAMS_CONFIGURATION Import Utility Parameter and Streams

	3 Streams Conflict Resolution
	About DML Conflicts in a Streams Environment
	Conflict Types in a Streams Environment
	Update Conflicts in a Streams Environment
	Uniqueness Conflicts in a Streams Environment
	Delete Conflicts in a Streams Environment
	Foreign Key Conflicts in a Streams Environment

	Conflicts and Transaction Ordering in a Streams Environment
	Conflict Detection in a Streams Environment
	Control Over Conflict Detection for Nonkey Columns
	Rows Identification During Conflict Detection in a Streams Environment

	Conflict Avoidance in a Streams Environment
	Use a Primary Database Ownership Model
	Avoid Specific Types of Conflicts
	Avoid Uniqueness Conflicts in a Streams Environment
	Avoid Delete Conflicts in a Streams Environment
	Avoid Update Conflicts in a Streams Environment

	Conflict Resolution in a Streams Environment
	Prebuilt Update Conflict Handlers
	Types of Prebuilt Update Conflict Handlers
	OVERWRITE
	DISCARD
	MAXIMUM
	MINIMUM

	Column Lists
	Resolution Columns
	Data Convergence

	Custom Conflict Handlers

	4 Streams Tags
	Introduction to Tags
	Tags and Rules Created by the DBMS_STREAMS_ADM Package
	Tags and Online Backup Statements
	Tags and an Apply Process
	Streams Tags in a Replication Environment
	Each Databases Is a Source and Destination Database for Shared Data
	Primary Database Sharing Data with Several Secondary Databases
	Primary Database Sharing Data with Several Extended Secondary Databases

	5 Streams Heterogeneous Information�Sharing
	Oracle to Non-Oracle Data Sharing with Streams
	Change Capture and Staging in an Oracle to Non-Oracle Environment
	Change Apply in an Oracle to Non-Oracle Environment
	Apply Process Configuration in an Oracle to Non-Oracle Environment
	Database Link to the Non-Oracle Database
	Substitute Key Columns in an Oracle to Non-Oracle Heterogeneous Environment
	Parallelism in an Oracle to Non-Oracle Heterogeneous Environment
	DML Handlers in an Oracle to Non-Oracle Heterogeneous Environment
	Message Handlers in an Oracle to Non-Oracle Heterogeneous Environment
	Error and Conflict Handlers in an Oracle to Non-Oracle Heterogeneous Environment

	Datatypes Applied at Non-Oracle Databases
	Types of DML Changes Applied at Non-Oracle Databases
	Instantiation in an Oracle to Non-Oracle Environment

	Transformations in an Oracle to Non-Oracle Environment
	Messaging Gateway and Streams
	Error Handling in an Oracle to Non-Oracle Environment
	Example Oracle to Non-Oracle Streams Environment

	Non-Oracle to Oracle Data Sharing with Streams
	Change Capture and Staging in a Non-Oracle to Oracle Environment
	Change Apply in a Non-Oracle to Oracle Environment
	Instantiation from a Non-Oracle Database to an Oracle Database

	Non-Oracle to Non-Oracle Data Sharing with Streams

	Part II� Configuring and Administering Streams Replication
	6 Configuring Streams Replication
	Creating a New Streams Single Source Environment
	Adding Shared Objects to an Existing Single Source Environment
	Adding a New Destination Database to a Single Source Environment
	Creating a New Streams Multiple Source Environment
	Configuring Populated Databases When Creating a Multiple Source Environment
	Adding Shared Objects to Import Databases When Creating a New Environment
	Complete the Multiple Source Environment Configuration

	Adding Shared Objects to an Existing Multiple Source Environment
	Configuring Populated Databases When Adding Shared Objects
	Adding Shared Objects to Import Databases in an Existing Environment
	Complete the Adding Objects to a Multiple Source Environment Configuration

	Adding a New Database to an Existing Multiple Source Environment
	Configuring Databases If the Shared Objects Already Exist at the New Database
	Adding Shared Objects to a New Database

	7 Managing Capture, Propagation, and Apply
	Managing Capture for Streams Replication
	Creating a Capture Process
	Managing Supplemental Logging in a Streams Replication Environment
	Specifying Table Supplemental Logging Using Unconditional Log Groups
	Specifying an Unconditional Supplemental Log Group for Primary Key Column(s)
	Specifying an Unconditional Supplemental Log Group for All Table Columns
	Specifying an Unconditional Supplemental Log Group That Includes Selected Columns

	Specifying Table Supplemental Logging Using Conditional Log Groups
	Specifying a Conditional Log Group Using the ADD SUPPLEMENTAL LOG DATA Clause
	Specifying a Conditional Log Group Using the ADD SUPPLEMENTAL LOG GROUP Clause

	Dropping a Supplemental Log Group
	Specifying Database Supplemental Logging of Key Columns
	Dropping Database Supplemental Logging of Key Columns

	Managing Staging and Propagation for Streams Replication
	Creating a SYS.AnyData Queue to Stage LCRs
	Creating a Propagation That Propagates LCRs

	Managing Apply for Streams Replication
	Creating an Apply Process That Applies LCRs
	Managing the Substitute Key Columns for a Table
	Setting Substitute Key Columns for a Table
	Removing the Substitute Key Columns for a Table

	Managing a DML Handler
	Creating a DML Handler
	Setting a DML Handler
	Unsetting a DML Handler

	Managing the DDL Handler for an Apply Process
	Creating a DDL Handler for an Apply Process
	Setting the DDL Handler for an Apply Process
	Removing the DDL Handler for an Apply Process

	Managing Streams Conflict Detection and Resolution
	Setting an Update Conflict Handler
	Modifying an Existing Update Conflict Handler
	Removing an Existing Update Conflict Handler
	Stopping Conflict Detection for Nonkey Columns

	Replicating and Maintaining Tablespaces Using Streams
	Managing Streams Tags
	Managing Streams Tags for the Current Session
	Setting the Tag Values Generated by the Current Session
	Getting the Tag Value for the Current Session

	Managing Streams Tags for an Apply Process
	Setting the Tag Values Generated by an Apply Process
	Removing the Apply Tag for an Apply Process

	Changing the DBID or Global Name of a Source Database
	Resynchronizing a Source Database in a Multiple Source Environment
	Performing Database Point-in-Time Recovery in a Streams Environment
	Performing Point-in-Time Recovery on the Source in a Single Source Environment
	Performing Point-in-Time Recovery in a Multiple Source Environment
	Performing Point-in-Time Recovery on a Destination Database
	Resetting the Start SCN for the Existing Capture Process to Perform Recovery
	Creating a New Capture Process to Perform Recovery

	8 Performing Instantiations
	Preparing Database Objects for Instantiation at a Source Database
	Aborting Preparation for Instantiation at a Source Database
	Instantiating Objects in a Streams Replication Environment
	Instantiating Objects in a Streams Environment Using Data Pump Export/Import
	Instantiating Objects in a Streams Environment Using Transportable Tablespaces
	Instantiating Objects in a Streams Environment Using Original Export/Import
	Instantiating an Entire Database in a Streams Environment Using RMAN

	Setting Instantiation SCNs at a Destination Database
	Setting Instantiation SCNs Using Export/Import
	Full Database Export and Full Database Import
	Full Database or User Export and User Import
	Full Database, User, or Table Export and Table Import

	Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package
	Setting the Instantiation SCN While Connected to the Source Database
	Setting the Instantiation SCN While Connected to the Destination Database

	9 Managing Logical Change Records (LCRs)
	Requirements for Managing LCRs
	Constructing and Enqueuing LCRs
	Managing LCRs Containing LONG, LONG RAW, or LOB Columns
	Requirements for Processing LCRs Containing LONG and LONG RAW Columns
	Requirements for Constructing and Processing LCRs Containing LOB Columns
	Apply Process Behavior for LCRs Containing LOBs
	Example Script for Constructing and Enqueuing LCRs Containing LOBs

	10 Monitoring Streams Replication
	Monitoring Supplemental Logging
	Displaying Supplemental Log Groups at a Source Database
	Displaying Database Supplemental Logging Specifications

	Monitoring an Apply Process in a Streams Replication Environment
	Displaying the Substitute Key Columns Specified at a Destination Database
	Displaying Information About DML and DDL Handlers
	Displaying All of the DML Handlers for Local Apply
	Displaying the DDL Handler for Each Apply Process

	Displaying Information About Conflict Detection
	Displaying Information About Update Conflict Handlers

	Monitoring Buffered Queues
	Determining the Number of LCRs in Each Buffered Queue
	Viewing the Capture Processes For the LCRs in Each Buffered Queue
	Displaying General Information About Propagations That Send Captured Events
	Displaying the Number of Events and Bytes Sent By Propagations
	Displaying Performance Statistics For Propagations That Send Captured Events
	Viewing the Propagations Dequeuing LCRs From Each Buffered Queue
	Displaying Performance Statistics For Propagations That Receive Captured Events
	Viewing the Apply Processes Dequeuing LCRs From Each Buffered Queue

	Monitoring Streams Tags
	Displaying the Tag Value for the Current Session
	Displaying the Default Tag Value for Each Apply Process

	Monitoring Instantiation
	Determining Which Database Objects Are Prepared for Instantiation
	Determining the Tables for Which an Instantiation SCN Has Been Set

	Running Flashback Queries in a Streams Replication Environment

	11 Troubleshooting Streams Replication
	Is the Apply Process Encountering Contention?
	Is the Apply Process Waiting for a Dependent Transaction?
	Is an Apply Server Performing Poorly for Certain Transactions?
	Are There Any Apply Errors in the Error Queue?
	ORA-01031 Insufficient Privileges
	ORA-01403 No Data Found
	ORA-23605 Invalid Value for Streams Parameter
	ORA-23607 Invalid Column
	ORA-24031 Invalid Value, parameter_name Should Be Non-NULL
	ORA-26687 Instantiation SCN Not Set
	ORA-26688 Missing Key in LCR
	ORA-26689 Column Type Mismatch

	Part III� Example Replication Environments
	12 Simple Single Source Replication Example
	Overview of the Simple Single Source Replication Example
	Prerequisites

	13 Single Source Heterogeneous Replication�Example
	Overview of the Single Source Heterogeneous Replication Example
	Prerequisites
	Add Objects to an Existing Streams Replication Environment
	Add a Database to an Existing Streams Replication Environment

	14 Multiple Source Replication Example
	Overview of the Multiple Source Databases Example
	Prerequisites

	Part IV� Appendixes
	A Migrating Advanced Replication to Streams
	Overview of the Migration Process
	Migration Script Generation and Use
	Modification of the Migration Script
	Actions Performed by the Generated Script
	Migration Script Errors
	Manual Migration of Updatable Materialized Views
	Advanced Replication Elements That Cannot Be Migrated to Streams

	Preparing to Generate the Migration Script
	Generating and Modifying the Migration Script
	Example Advanced Replication Environment to be Migrated to Streams

	Performing the Migration for Advanced Replication to Streams
	Before Executing the Migration Script
	Executing the Migration Script
	After Executing the Script

	Recreating Master Sites to Retain Materialized View Groups

	Index

