
Oracle® OLAP
Application Developer's Guide

10g Release 1 (10.1)

Part No. B10333-02

December 2003

Oracle OLAP Application Developer’s Guide, 10g Release 1 (10.1)

Part No. B10333-02

Copyright © 2002, 2003 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Express, Personal Express, Oracle Discoverer, PL/SQL, and
SQL*Plus are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

iii

Contents

Send Us Your Comments .. xxi

Preface... xxiii

Intended Audience ... xxiii
Documentation Accessibility .. xxiii
Structure.. xxiv
Related Documents.. xxvi
Conventions... xxvii

Part I Fundamentals

1 Overview

OLAP Technology Within the Oracle Database ... 1-1
Problems Maintaining Two Distinct Systems .. 1-1
Full Integration of Multidimensional Technology .. 1-2

Using OLAP to Answer Business Questions .. 1-2
Common Analytical Applications ... 1-3
Deciding When to Use Analytic Workspaces .. 1-4
Working With Oracle OLAP ... 1-5

OLAP Analytic Engine .. 1-6
Analytic Workspaces.. 1-6
Analytic Workspace Manager .. 1-6
OLAP Worksheet.. 1-6
SQL Interface to OLAP .. 1-7

iv

OLAP DML.. 1-7
OLAP Catalog ... 1-7
Analytic Workspace Java APIs ... 1-8
OLAP API .. 1-8
Oracle Enterprise Manager.. 1-8
Oracle Warehouse Builder... 1-9

Process Overview: Creating and Maintaining Analytic Workspaces 1-9

2 The Multidimensional Data Model

The Logical Multidimensional Data Model .. 2-1
Logical Cubes .. 2-2
Logical Measures .. 2-2
Logical Dimensions .. 2-3
Logical Hierarchies and Levels... 2-3
Logical Attributes ... 2-4

The Relational Implementation of the Model .. 2-4
Dimension Tables ... 2-5
Fact Tables.. 2-6
Materialized Views... 2-6

The Analytic Workspace Implementation of the Model ... 2-6
Multidimensional Data Storage in Analytic Workspaces... 2-7
Database Standard Form Analytic Workspaces... 2-9
Analytic Workspace Dimensions ... 2-10

Use of Dimensions in Standard Form Analytic Workspaces .. 2-10
Analytic Workspace Variables.. 2-11

Use of Variables to Store Measures... 2-12
Use of Variables to Store Attributes.. 2-12

Analytic Workspace Formulas.. 2-12
Analytic Workspace Relations .. 2-13

3 The Sample Schema

Case Study Scenario ... 3-1
Reporting Requirements.. 3-2
Business Goals... 3-3
Information Requirements .. 3-3

v

Business Analysis Questions ... 3-3
What products are profitable? ... 3-4
Who are our customers, and what and how are they buying?....................................... 3-4
What accounts are most profitable?.. 3-5
What is the performance of each distribution channel? .. 3-5
Is there still a seasonal variance to the business? ... 3-6
Summary of Information Requirements .. 3-6

Identifying Required Business Facts.. 3-6
Designing a Logical Data Model for Global Computing.. 3-7

Identifying Dimensions .. 3-7
Identifying Levels.. 3-7
Identifying Hierarchies... 3-8
Identifying Stored Measures.. 3-8

The Global Star Schema .. 3-9
Dimension Table: TIME_DIM... 3-11
Dimension Table: CUSTOMER_DIM .. 3-12
Dimension Table: PRODUCT_DIM... 3-13
Dimension Table: CHANNEL_DIM.. 3-14
Fact Tables: UNITS_HISTORY_FACT and _UPDATE_FACT... 3-14
Fact Tables: PRICE_AND_COST_HISTORY_FACT and _UPDATE_FACT 3-15

Mapping the Global Schema to an Analytic Workspace .. 3-16
Global Product Dimension Mapping .. 3-16
Global Time Dimension Mapping.. 3-17
Global Price Cube Mapping.. 3-19

4 Developing Java Applications for OLAP

Building Analytical Java Applications ... 4-1
About Java ... 4-1
The Java Solution for OLAP.. 4-2
Oracle Java Development Environment.. 4-3

Introducing the BI Beans... 4-3
Metadata .. 4-4
Navigation ... 4-4
Formatting ... 4-4
Graphs .. 4-5

vi

Crosstabs .. 4-5
Tables.. 4-5
Data Beans ... 4-6
Wizards .. 4-6

Understanding the OLAP API.. 4-6
How the OLAP API Accesses Multidimensional Data ... 4-7
Calculation Capabilities ... 4-8
Intelligent Caching ... 4-8

Managing Data Sources for the BI Beans and OLAP API .. 4-9

Part II Fundamentals of Creating and Using Analytic Workspaces

5 Defining a Logical Multidimensional Model

Introduction to OLAP Metadata .. 5-1
Creating Metadata for Your Source Data ... 5-3

For Source Data in a Basic Star or Snowflake Schema ... 5-3
For Dimension Tables with Complex Hierarchies.. 5-4
For Other Schema Configurations .. 5-5

Creating Metadata for Your Analytic Workspace ... 5-5
Creating Metadata for Your Applications... 5-6

Overview of the OLAP Catalog.. 5-6
OLAP Catalog Components.. 5-7

About CWM1 ... 5-7
About CWM2 ... 5-7

Steps for Creating OLAP Metadata.. 5-8
Choosing a Tool for Creating OLAP Catalog Metadata .. 5-8

Creating Metadata for an Analytic Workspace.. 5-8
Creating Metadata Using Oracle Enterprise Manager... 5-11

Procedure: Accessing OLAP Management ... 5-11
Defining Metadata for Dimension Tables ... 5-12

Information That You Supply for Dimensions.. 5-12
Time Dimension... 5-12
Procedure: Defining a Logical Dimension in the OLAP Catalog 5-13

vii

Defining Metadata for Fact Tables ... 5-13
Information That You Supply for Cubes ... 5-13
Procedure: Defining a Logical Cube in the OLAP Catalog... 5-14

Case Study: Creating Metadata for the GLOBAL Star Schema ... 5-14
Defining a Logical Time Dimension for the Global Schema .. 5-15
Defining a Logical Units Cube for the Global Schema.. 5-16

Creating Metadata Using PL/SQL ... 5-16
CWM2 Packages for Creating OLAP Dimensions... 5-17
CWM2 Packages for Creating Cubes... 5-17
CWM2 Package for Mapping Metadata.. 5-17
CWM2 Package for Creating Level-Based Dimension Tables .. 5-18
CWM2 Packages for Classification and Validation... 5-18

6 Creating an Analytic Workspace

Methods of Creating a Workspace... 6-1
Introduction to Analytic Workspace Manager .. 6-3

OLAP Catalog View .. 6-4
Object View .. 6-5
OLAP Worksheet.. 6-6
Opening a Database Connection With Analytic Workspace Manager................................. 6-7

Creating a Standard Form Workspace Using Analytic Workspace Manager.......................... 6-7
Choosing a Schema for the Analytic Workspace ... 6-8
Setting Advanced Storage Options.. 6-8

Defining a Composite Dimension... 6-8
Ordering the Dimensions in a Cube ... 6-9
Setting the Segment Size .. 6-9

Choosing Build Options .. 6-10
Generating Scripts .. 6-10
Basic Steps for Creating a Standard Form Workspace.. 6-10

Case Study: Creating the Global Analytic Workspace .. 6-12
Defining the GLOBAL_AW Workspace User .. 6-12
Examining Sparsity Characteristics for GLOBAL.. 6-12
Running the Create Analytic Workspace Wizard ... 6-13
Manually Changing Object Definitions... 6-13
Completing the Build... 6-15

viii

Case Study: Creating the Sales History Analytic Workspace... 6-16
Defining Startup Parameters for the SH Build ... 6-16
Defining Tablespaces for SH ... 6-16
Examining the Sparsity Characteristics of SH Data... 6-17
Managing the SH Build.. 6-17
Running the Create Analytic Workspace Wizard.. 6-18
Building the Sales History Analytic Workspace .. 6-19

Generating Aggregate Data .. 6-19
Strategies for Calculating Aggregates ... 6-19
How to Select Levels to Pre-Aggregate and Store ... 6-20
About Aggregation Plans .. 6-20
How to Create and Deploy an Aggregation Plan .. 6-21

Creating an Aggregation Plan ... 6-21
Changing the Aggregation Operator.. 6-21
Deploying an Aggregation Plan.. 6-22

Case Study: Aggregating Data in the GLOBAL Analytic Workspace 6-23
Identifying Levels for Precalculation... 6-23
Aggregating the Global Price Cube ... 6-24

Enabling an Analytic Workspace for an Application .. 6-24
How to Enable an Analytic Workspace... 6-25
About Enabling for the BI Beans .. 6-25

Star Schema of Views.. 6-25
OLAP Catalog Metadata for Analytic Workspaces.. 6-26

How to Enable an Analytic Workspace for Oracle Discoverer.. 6-27
About Enabling for Oracle Discoverer ... 6-27

Views Created for Discoverer.. 6-28
Refreshing the Data in an Analytic Workspace .. 6-31

Using the Refresh Wizard.. 6-31
Refreshing From Different Relational Tables ... 6-31
Case Study: Refreshing the Units Cube... 6-32
When a Data Refresh Requires Re-Enabling .. 6-33

ix

7 SQL Access to Analytic Workspaces

Overview of SQL Access ... 7-1
Manipulating Analytic Workspace Data... 7-1
Querying an Analytic Workspace.. 7-3
About the Active Catalogs .. 7-3

Support for Custom Measures ... 7-3
Methods of Defining Custom Measures ... 7-3
Analytic Support for Custom Measures.. 7-4

Forecasts and Regressions ... 7-4
Time Series Manipulation .. 7-4
Financial Operations .. 7-5
Statistical Operations .. 7-5
Numeric Computations.. 7-5
Text Manipulation... 7-6
Allocation ... 7-6
Aggregation ... 7-6
Models .. 7-7

Creating Custom Measures Using DBMS_AW_UTILITIES .. 7-7
Case Study: Adding Sales to Global Using DBMS_AW_UTILITIES 7-8

Acquiring Information About the Analytic Workspace .. 7-8
Using DBMS_AW_UTILITIES to Define Sales as a Custom Measure.................................. 7-9
Viewing the Workspace Formula... 7-10
Querying the Sales Custom Measure .. 7-10

Creating Custom Measures Using OLAP_EXPRESSION... 7-11
Case Study: Adding Sales to Global Using OLAP_EXPRESSION... 7-11
Using OLAP_TABLE for Direct Access to Workspace Data ... 7-12

Designing Views of an Analytic Workspace .. 7-12
Process Overview ... 7-13
Using OLAP_TABLE.. 7-13
Using the SELECT MODEL Clause ... 7-14

Case Study: Using OLAP_TABLE to Create Global Custom Measures................................. 7-15
Defining Formulas in the Analytic Workspace.. 7-16
Querying an Analytic Workspace Using OLAP_TABLE ... 7-16

OLAP_TABLE Function ... 7-18
SELECT Statement .. 7-18

x

Using OLAP_TABLE to Create a Measure View for the BI Beans 7-18
Creating and Executing the SQL Script.. 7-19
About the Sample Script... 7-20

Defining OLAP Catalog Metadata for Workspace Views .. 7-20

8 Exploring a Standard Form Analytic Workspace

About Workspaces Created Using OLAP Tools .. 8-2
About Database Standard Form ... 8-2
Standard Form Implementation of the Logical Model.. 8-3
Additional Requirements for OLAP Tools ... 8-4

Querying a Standard Form Analytic Workspace .. 8-4
Querying the Standard Form Catalogs.. 8-4
Querying Properties ... 8-5

Standard Form Dimensions .. 8-6
Dimdef Dimension ... 8-6

Contents of an Analytic Workspace Dimension ... 8-7
Properties of an Analytic Workspace Dimdef Dimension .. 8-7

Standard Form Metadata for Dimensions... 8-9
ALL_DIMENSIONS Dimension.. 8-9
ALL_DESCRIPTIONS Variable for Dimensions... 8-9
AW_NAMES Variable for Dimensions .. 8-9
DIM_LEVELS Valueset... 8-9

Standard Form Hierarchies ... 8-9
Hierlist Dimension.. 8-10

Contents of a Hierlist Dimension.. 8-10
Properties of a Hierlist Dimension.. 8-10

Member_Parentrel Relation .. 8-11
Contents of a Member_Parentrel Relation... 8-11
Properties of a Member_Parentrel Relation... 8-12

Member_Gid Variable.. 8-12
Contents of a Member_GID Variable ... 8-12
Properties of a Member_Gid Variable.. 8-13

Member_Inhier Variable.. 8-13
Contents of a Member_Inhier Variable .. 8-14
Properties of a Member_Inhier Variable.. 8-14

xi

Standard Form Metadata for Hierarchies ... 8-15
ALL_HIERARCHIES Dimension.. 8-15
ALL_DESCRIPTIONS Variable for Hierarchies ... 8-15
DIM_HIERARCHIES Valueset.. 8-15
DEFAULT_HIER Relation ... 8-15

Standard Form Levels .. 8-16
Levellist Dimension.. 8-16

Contents of a Levellist Dimension .. 8-16
Properties of a Levellist Dimension.. 8-16

Member_Levelrel Relation .. 8-17
Contents of a Level Relation .. 8-17
Properties of a Member_Levelrel Relation .. 8-18

Member_Familyrel Relation ... 8-18
Contents of a Family Relation ... 8-18
Properties of a Member_Familyrel Relation.. 8-19

Standard Form Metadata for Levels .. 8-19
ALL_LEVELS Dimension... 8-20
ALL_DESCRIPTIONS Variable for Levels .. 8-20
DIM_LEVELS Valueset... 8-20

Standard Form Attributes ... 8-20
ALL_LANGUAGES Dimension... 8-21
Standard Form Metadata for Attributes.. 8-22

ALL_ATTRIBUTES Dimension... 8-22
ALL_DESCRIPTIONS Variable for Attributes.. 8-22
AW_NAMES Variable for Attributes ... 8-23

Standard Form Measures... 8-23
Measure Variable.. 8-23
Measuredef Formula .. 8-24
Standard Form Metadata for Measures... 8-24

ALL_MEASURES Dimension.. 8-25
ALL_DESCRIPTIONS Variable for Measures... 8-25
AW_NAMES Variable for Measures .. 8-25
CUBE_MEASURES Valueset ... 8-25

xii

Standard Form Cubes... 8-25
Cubedef Dimension.. 8-26

Contents of a Cubedef Dimension .. 8-26
Properties of a Cubedef Dimension.. 8-26

Comspec Aggregation Map .. 8-27
Loopspec Composite Dimension.. 8-28
Standard Form Metadata for Cubes... 8-29

ALL_CUBES Dimension... 8-29
ALL_DESCRIPTIONS Variable for Cubes... 8-29
AW_NAMES Variable for Cubes .. 8-30
CUBE_MEASURES Valueset ... 8-30

Standard Form Catalogs .. 8-30
OLAP API Enabler Catalogs ... 8-31
AWCREATE Catalogs ... 8-34

Part III Acquiring Data From Additional Sources

9 Adding Measures to a Standard Form Analytic Workspace

Working in a Standard Form Analytic Workspace ... 9-1
Methods of Executing OLAP DML Commands ... 9-2

Using Analytic Workspace Manager to Execute OLAP DML ... 9-3
Using OLAP Worksheet to Execute OLAP DML... 9-4

Procedure: Opening OLAP Worksheet from Analytic Workspace Manager............... 9-4
Procedure: Using the Editor in OLAP Worksheet .. 9-5

Using DBMS_AW.EXECUTE to Execute OLAP DML .. 9-6
DBMS_AW.EXECUTE Command Format .. 9-6
Adding Contents to a DML Program From SQL.. 9-7

Adding Custom Measures to a Cube .. 9-8
Defining a Standard Form Measure Variable... 9-8
Defining a Formula... 9-9
Registering a New Measure .. 9-11

ALL_MEASURES Dimension.. 9-12
Adding a Dimension Member.. 9-12
Saving Changes to an Analytic Workspace.. 9-13

xiii

ALL_DESCRIPTIONS Variable... 9-13
Limiting the Number of Active Dimension Members.. 9-14
Targeting a Specific Cell.. 9-14
Assigning Values to a Variable .. 9-15

AW_NAMES Variable .. 9-15
CUBE_MEASURES Valueset ... 9-16

Case Study: Adding Measures to the Global Analytic Workspace... 9-16
Creating Measures for SALES, EXTENDED_COST, and MARGIN................................... 9-18

Creating New Variables in GLOBAL ... 9-18
Calculating and Storing Values in Variables... 9-18
Creating Measure Formulas .. 9-19
Aggregating the New Global Variables ... 9-20

Adding More Custom Measures to GLOBAL.. 9-21
Using an OLAP DML Program to Add Measures to GLOBAL... 9-21

10 Predicting Future Performance

Creating a Forecast.. 10-1
Steps for Creating a Forecast... 10-2
Creating the Forecast Time Periods ... 10-2
Defining Variables for the Results ... 10-2

Developing a Forecast Program ... 10-3
Generating a Forecast... 10-4

Defining a New Cube .. 10-4
Creating a Cubedef Object .. 10-5
Creating a Default Aggregation Map .. 10-5
Registering a New Cube.. 10-6

Adding a Cube to the ALL_CUBES Dimension ... 10-6
Adding a Cube to the ALL_DESCRIPTIONS Variable.. 10-7
Adding a Cube to the AW_NAMES Variable ... 10-7
Adding Measures to the New Cube in the CUBE_MEASURES Valueset 10-8

Troubleshooting a Hand-Crafted Cube... 10-8
Case Study: Forecasting Global Sales... 10-9

Defining a New Cube for Forecast Measures... 10-9
Defining the Forecasting Measures for Global Sales... 10-11
Developing a Forecasting Program for Global Sales... 10-12

xiv

Identifying Historical and Forecast Time Periods .. 10-12
Arguments to the FORECAST_SALES Sample Program .. 10-12

Reviewing the Forecast Data for Global Sales .. 10-14
Aggregating and Enabling the Forecast Measure.. 10-16

11 Acquiring Data From Other Sources

Overview of OLAP Data Acquisition Subsystems .. 11-1
How to Manually Create a Standard Form Analytic Workspace... 11-2
Reading Flat Files.. 11-4

About the File Reader Programs .. 11-4
Writing a Program for Reading Files ... 11-5
Mapping Fields to Workspace Objects .. 11-6

Reading Ruled Files... 11-6
Reading Structured PRN Files ... 11-7
Reading CSV Files ... 11-7

Setting Dimension Status for Reading Measures... 11-8
Optimizing a Data Load .. 11-8
Reading and Maintaining Dimension Members .. 11-10
Transforming Incoming Values.. 11-11

Basic Transformations... 11-11
Using Relations to Align Dimension Values ... 11-11

Fetching Data From Relational Tables .. 11-12
OLAP DML Support for SQL.. 11-12
Process: Copying Data From Relational Tables Into Analytic Workspace Objects 11-13
Fetching Dimensions Members From Tables ... 11-14
Sorting Dimension Members .. 11-15
Fetching Measures From Tables ... 11-16

Populating Additional Metadata Objects .. 11-18
Using ___POP.FMLYREL .. 11-18
Using ___ORDR.HIERARCHIES.. 11-19

Case Study: Creating the GLOBALX Workspace From Alternative Sources 11-19
Designing and Implementing the GLOBALX Star Schema.. 11-20

GLOBALX Schema Diagram.. 11-20
Procedure: Creating the GLOBALX Sample Schema... 11-22

Creating OLAP Catalog Metadata for the GLOBALX Schema.. 11-22

xv

Creating the GLOBALX Analytic Workspace .. 11-23
Fetching the Price Cube From Relational Tables ... 11-25

Loading Products From GLOBAL.PRODUCT_DIM ... 11-26
Loading Time From GLOBAL.TIME_DIM.. 11-28
Loading the PRICE Cube From PRICE_AND_COST_HISTORY_FACT.................. 11-30

Loading the Units Cube From Flat Files ... 11-32
Loading Channels From CHANNELS.DAT ... 11-33
Loading Customers From CUSTOMERS.DAT ... 11-34
Reading the UNITS_CUBE.DAT File ... 11-37

Populating Additional Standard Form Metadata Objects.. 11-39
Using Tools with the GLOBALX Analytic Workspace ... 11-40

Part IV Database Administration for OLAP

12 Administering Oracle OLAP

Administration Overview ... 12-1
Creating Tablespaces for Analytic Workspaces .. 12-2

Creating an UNDO Tablespace .. 12-2
Creating a Permanent Tablespace for Analytic Workspaces ... 12-3
Creating a Temporary Tablespace for Analytic Workspaces... 12-4
Querying the Size of an Analytic Workspace... 12-5

Setting Up User Names.. 12-5
SQL Access For DBAs and Application Developers ... 12-6
SQL Access for Analysts.. 12-6
Access to Database Objects Using the BI Beans ... 12-7

Initialization Parameters for Oracle OLAP ... 12-7
Procedure: Setting System Parameters for OLAP.. 12-8
About the OLAP_PAGE_POOL_SIZE Setting ... 12-8
About the PGA_AGGREGATE_TARGET Setting... 12-9

Initialization Parameters for the BI Beans ... 12-9
Permitting Access to External Files ... 12-10

Creating a Database Directory.. 12-11
Granting Access Rights to a Database Directory ... 12-11
Example: Creating and Using a Database Directory... 12-12

xvi

Understanding Data Storage .. 12-12
Analytic Workspace Tables ... 12-12
System Tables .. 12-14

Monitoring Performance ... 12-15

13 Materialized Views for the OLAP API

Summary Management with Oracle OLAP ... 13-1
Overview and Requirements .. 13-2

Materialized Views Required for a Cube .. 13-2
Materialized Views and OLAP Metadata ... 13-3

Example: Dimension Materialized View ... 13-3
CREATE Materialized View for a Dimension Hierarchy .. 13-3
Bitmap Indexes for a Dimension Hierarchy ... 13-4
Statistics for a Dimension Hierarchy ... 13-4

Example: Fact Materialized View .. 13-5
CREATE Fact Materialized View ... 13-5
Bitmap Indexes for Fact Materialized Views.. 13-6
Statistics for Fact Materialized Views.. 13-6

Using the DBMS_ODM Package ... 13-6
Procedure: Create Grouping Set Materialized Views ... 13-7
Example: Create Grouping Set Materialized Views for a Sales Cube................................. 13-8

A Database Standard Form for Analytic Workspaces

Overview of Database Standard Form.. A-1
Purpose of Database Standard Form ... A-1
Audience for Database Standard Form ... A-2
Logical Model and Workspace Objects ... A-3

Implementation of a Cube.. A-3
Implementation of a Measure.. A-3
Implementation of a Dimension.. A-3

Classes of Workspace Objects ... A-4
Properties of Workspace Objects.. A-4

xvii

Object Naming Conventions .. A-4
Logical Names... A-5
Name Space Organization... A-5
Simple Logical Names and Full Names .. A-6

Workspace Object Properties ... A-6
Properties Specific to Implementation Class Objects .. A-7
System Properties on All Workspace Objects .. A-8
Role Property on All Workspace Objects.. A-8
Role Property Values for Implementation Class Objects.. A-8
Role Property Values for Catalogs Class Objects... A-10
Role Property Values for Features Class Objects ... A-12
Role Property Values for Extensions Class Objects... A-13
Terminology: Using Role Names to Describe Objects .. A-14

Implementation Class Objects ... A-14
Cube Objects.. A-15

Cubedef Dimension .. A-15
Loopspec Composite... A-16

Measure Objects.. A-17
Measuredef Object... A-17
COMPSPEC Aggmap ... A-17

Dimension Objects.. A-18
Dimdef Dimension .. A-19
Hierlist Dimension .. A-20
Levellist Dimension .. A-20
Member_Levelrel Relation... A-21
Member_Parentrel Relation ... A-22
Hier_Levels Valueset .. A-23
Attrdef Object... A-23

Catalogs Class Objects... A-25
Lists of Objects .. A-25

ALL_CUBES Dimension... A-25
ALL_MEASURES Dimension.. A-26
ALL_DIMENSIONS Dimension ... A-26
ALL_HIERARCHIES Dimension.. A-26
ALL_LEVELS Dimension... A-27

xviii

ALL_ATTRIBUTES Dimension ... A-28
ALL_OBJECTS Dimension... A-28

Lists of Types, Roles, and Languages .. A-29
ALL_OBJTYPES Dimension... A-29
ALL_DESCTYPES Dimension ... A-30
ALL_ATTRTYPES Dimension... A-30
AW_ROLES Dimension.. A-30
ALL_LANGUAGES Dimension.. A-32

Lists of Cube and Dimension Objects .. A-32
CUBE_MEASURES Valueset ... A-32
DIM_HIERARCHIES Valueset .. A-33
DIM_LEVELS Valueset... A-33
DIM_ATTRIBUTES Valueset ... A-34

Supporting Object Information... A-34
AW_NAMES Variable .. A-34
AW_COMPSPECS Variable ... A-35
AW_LOOPSPECS Variable .. A-35

Features Class Objects ... A-35
ALL_DESCRIPTIONS Variable .. A-36
ATTR_INHIER Variable .. A-36
DEFAULT_HIER Relation... A-37
VISIBLE Variable .. A-37
Member_Inhier Variable.. A-38
Member_Createdby Variable .. A-38
Member_Familyrel Relation.. A-39
Member_Gid Variable.. A-39
OBJ_CREATEDBY Variable .. A-39
OBJ_STATE Variable.. A-40
VERSION Variable ... A-40

Extensions Class Objects ... A-40

B Upgrading From Express Server

Administration .. B-1
Management Tools ... B-2
Authentication of Users ... B-2

xix

Data Transfer... B-2
Localization ... B-3

Applications Support ... B-4
Programming Environment .. B-4
Communications... B-5
Metadata .. B-5

Programming Language Changes.. B-5
New Commands... B-6
Obsolete Commands .. B-6
UPDATE and COMMIT .. B-6

Converting Oracle Express Databases to Standard Form ... B-7
Who Should Use CREATE_DB_STDFORM ... B-7

What CREATE_DB_STDFORM Does For You ... B-8
What CREATE_DB_STDFORM Does Not Do For You ... B-8

Converting From Oracle Express Objects Metadata ... B-9
CREATE_DB_STDFORM Syntax.. B-9
Procedure: Converting From Oracle Express Objects to Standard Form B-10

Populating Time Attributes .. B-12
Sorting Time Dimension Members... B-12
Creating and Populating End Date and Time Span Attributes B-13
Setting Properties on Time Objects... B-13

Revising the Load Programs... B-13
Example: Converting the XADEMO Database to Standard Form B-14

Creating a Standard Form XADEMO Analytic Workspace.. B-14
About the Time Dimension in XADEMO.. B-16
Populating the XADEMO Time Attributes ... B-17

C Programs Used to Create GLOBALX

SQL Scripts for Defining Users and Tablespaces... C-1
SQL Scripts for the GLOBALX Star Schema... C-3
SQL Scripts for OLAP Catalog Metadata... C-4

Glossary

Index

xx

xxi

Send Us Your Comments

Oracle OLAP Application Developer’s Guide, 10g Release 1 (10.1)

Part No. B10333-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com
■ FAX: 781-238-9850 Attn: Oracle OLAP
■ Postal service:

Oracle Corporation
Oracle OLAP Documentation
10 Van de Graaff Drive
Burlington, MA 01803
U.S.A.

If you would like a reply, please give your name, address, telephone number, and electronic mail
address (optional).

If you have problems with the software, please contact your local Oracle Support Services.

xxii

xxiii

Preface

The Oracle OLAP Application Developer’s Guide explains how SQL and Java
applications can extend their analytic processing capabilities by using the OLAP
option in the Enterprise edition of the Oracle Database.

The preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Structure

■ Related Documents

■ Conventions

Intended Audience
This manual is intended for applications developers. To use this manual, you
should know SQL and have a general familiarity with the Oracle tools available to
SQL developers and database administrators.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be

xxiv

accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Structure
The following paragraphs describe the chapters that comprise this manual.

Part I, "Fundamentals"
Part I introduces the basic concepts, tools, and capabilities of the OLAP option.

Chapter 1, "Overview"
This chapter introduces the powerful analytic resources available in an Oracle
Database installed with the OLAP option.

Chapter 2, "The Multidimensional Data Model"
This chapter describes the multidimensional data model and how it is implemented
in relational tables, analytic workspaces, and the OLAP Catalog.

Chapter 3, "The Sample Schema"
This chapter describes the GLOBAL sample schema that is used for the examples in
this manual.

Chapter 4, "Developing Java Applications for OLAP"
This chapter presents the rich development environment and the powerful tools
that you can use to create OLAP applications.

xxv

Part II, "Fundamentals of Creating and Using Analytic Workspaces"
Part II provides instructions for creating standard form analytic workspaces from a
relational schema using a set of graphical tools.

Chapter 5, "Defining a Logical Multidimensional Model"
This chapter describes the OLAP Catalog and the methods for working with OLAP
metadata so that you can describe your data as logical multidimensional objects.

Chapter 6, "Creating an Analytic Workspace"
This chapter explains how to create a standard form analytic workspace by using
the wizards in Analytic Workspace Manager.

Chapter 7, "SQL Access to Analytic Workspaces"
This chapter introduces various SQL packages that provide access to the data in an
analytic workspace.

Chapter 8, "Exploring a Standard Form Analytic Workspace"
This chapter describes the objects created in a standard form analytic workspace. It
serves as a guide to your own analytic workspace, and you can examine the
property sheets of the objects described here by opening the Object View in Analytic
Workspace Manager.

Part III, "Acquiring Data From Additional Sources"
Part III describes ways that you can create a new analytic workspace or enhance an
existing one with data from sources other than a star or snowflake schema.

Chapter 9, "Adding Measures to a Standard Form Analytic Workspace"
This chapter explains how to add calculated measures as a permanent addition to a
standard form analytic workspace.

Chapter 10, "Predicting Future Performance"
This chapter explains how to forecast future results based on past performance and
make this information available in a new standard form cube.

Chapter 11, "Acquiring Data From Other Sources"
This chapter introduces the data acquisition facilities in the OLAP DML, which you
can use to create a standard form analytic workspace, or add data to an existing
workspace, from sources other than a star or snowflake schema.

xxvi

Part IV, "Database Administration for OLAP"
Part IV explains how to perform administrative tasks associated with the OLAP
option.

Chapter 12, "Administering Oracle OLAP"
This chapter identifies the administrative tasks associated with the OLAP option
and provides performance tips.

Chapter 13, "Materialized Views for the OLAP API"
This chapter explains how to create materialized views that can be used by the
Business Intelligence Beans when relational tables (instead of an analytic
workspace) are used to store the data.

Appendix A, "Database Standard Form for Analytic Workspaces"
This appendix specifies the rules for a database standard form analytic workspace.

Appendix B, "Upgrading From Express Server"
This appendix provides upgrade instructions and identifies some of the major
differences between Oracle Express Server 6.3 and Oracle OLAP.

Appendix C, "Programs Used to Create GLOBALX"
This appendix provides additional source code used to create the example in

Glossary
The glossary contains definitions of terms that are specific to OLAP.

Related Documents
For more information, see the following manuals in the Oracle Database 10g
documentation set:

■ Oracle OLAP Application Developer's Guide

Explains how SQL and Java applications can extend their analytic processing
capabilities by using Oracle OLAP in the Enterprise Edition of Oracle Database.

■ Oracle OLAP Reference

Explains the syntax of PL/SQL packages and types and the column structure of
views related to Oracle OLAP.

xxvii

■ Oracle OLAP DML Reference

Contains a complete description of the OLAP Data Manipulation Language
(OLAP DML) used to define and manipulate analytic workspace objects.

■ Oracle OLAP Developer's Guide to the OLAP API

Introduces the Oracle OLAP API, a Java application programming interface for
Oracle OLAP, which is used to perform online analytical processing of the data
stored in an Oracle database. Describes the API and how to discover metadata,
create queries, and retrieve data.

■ Oracle OLAP Java API Reference

Describes the classes and methods in the Oracle OLAP Java API for querying
analytic workspaces and relational data warehouses.

■ Oracle OLAP Analytic Workspace Java API Reference

Describes the classes and methods in the Oracle OLAP Java API for building
and maintaining analytic workspaces.

Conventions
The following conventions are also used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the DIGITAL Command Language prompt
in Windows and the Bourne shell prompt in Digital UNIX

xxviii

Part I
Fundamentals

Part I introduces basic concepts, tools, and capabilities of the OLAP option. By
reading the chapters in this part, you will learn how the OLAP option works within
the Oracle Database, how the multidimensional data model is implemented, and
how applications can use multidimensional data to improve their analytic
capabilities.

Part I contains the following chapters:

■ Chapter 1, "Overview"

■ Chapter 2, "The Multidimensional Data Model"

■ Chapter 3, "The Sample Schema"

■ Chapter 4, "Developing Java Applications for OLAP"

Overview 1-1

1
Overview

This chapter introduces the powerful analytic resources available in an Oracle
Database installed with the OLAP option. It consists of the following topics:

■ OLAP Technology Within the Oracle Database

■ Using OLAP to Answer Business Questions

■ Common Analytical Applications

■ Deciding When to Use Analytic Workspaces

■ Working With Oracle OLAP

■ Process Overview: Creating and Maintaining Analytic Workspaces

OLAP Technology Within the Oracle Database
Multidimensional technology is now available within the Oracle Database.
Organizations no longer need to choose between a multidimensional OLAP
database and a relational database. By integrating multidimensional tables and an
analytic engine into the database, Oracle provides the power of multidimensional
analysis along with the manageability, scalability, and reliability of the Oracle
Database.

Problems Maintaining Two Distinct Systems
The integration of multidimensional technology in a relational database is
important because maintaining a standalone multidimensional database is costly. It
requires additional hardware and DBAs who are skilled at using the specialized
administrative tools of the multidimensional database. Moreover, standalone
multidimensional databases require applications that use proprietary APIs. This
severely limits the number of applications that can be run against them, not only

Using OLAP to Answer Business Questions

1-2 Oracle OLAP Application Developer’s Guide

because fewer applications are available in these APIs, but because all the data that
they run on must be transferred from the relational database to the
multidimensional database. These requirements often force enterprises into
supporting two sets of query and reporting tools, one for the relational database
and the other for the multidimensional database.

Full Integration of Multidimensional Technology
In contrast, the OLAP option is fully integrated into the Oracle Database. DBAs use
the same tools to administer this option as they use to administer all other
components of the database. The DBA can decide the best location for storing and
calculating the data as part of optimizing the operations of the database. A single
application can access both relational and multidimensional data.

SQL-based applications can now use pure SQL against information-rich relational
views of multidimensional data provided by an OLAP-enabled Oracle Database.
OLAP calculations can be queried using SQL, enabling application developers to
leverage their investment in SQL while expanding the analytic sophistication of
their software to include modeling, forecasting, and what-if analysis. Standard
reporting applications can present the results of complex multidimensional
calculations, while ad-hoc querying tools such as custom aggregate members and
custom measures can expand the analyst's range of calculation functions.

Using OLAP to Answer Business Questions
Relational databases provide the online transactional processing (OLTP) that is
essential for businesses to keep track of their affairs. Designed for efficient selection,
storage, and retrieval of data, relational databases are ideal for housing gigabytes of
detailed data.

The success of relational databases is apparent in their use to store information
about an increasingly wide scope of activities. As a result, they contain a wealth of
data that can yield critical information about a business. This information can
provide a significant edge in an increasingly competitive marketplace.

The challenge is in deriving answers to business questions from the available data,
so that decision makers at all levels can respond quickly to changes in the business
climate.

A standard transactional query might ask, "When did order 84305 ship?" This query
reflects the basic mechanics of doing business. It involves simple data selection and
retrieval of one record (or, at most, several related records) identified by a unique
order number. Any follow-up questions, such as which postal carrier was used and

Common Analytical Applications

Overview 1-3

where was the order shipped to, can probably be answered by the same record. This
record has a useful life span in the transactional world: it begins when a customer
places the order and ends when the order is shipped and paid for. At this point, the
record can be rolled off to an archive.

In contrast, a typical series of analytical queries might ask, "How do sales in the
Pacific Rim for this quarter compare with sales a year ago? What can we predict for
sales next quarter? What factors can we alter to improve the sales forecast? What
happens if I change this number?"

These are not questions about doing business transactions, but about analyzing past
performance and making decisions that will improve future performance, provide a
more competitive edge, and thus enhance profitability. The analytic database is a
"crystal ball" for decision makers whose ability to make sound decisions today is
dependent on how well they can predict the future. Getting the answers to these
questions involves single-row calculations, time series analysis, and access to
aggregated historical and current data. This requires OLAP -- online analytical
processing.

Common Analytical Applications
Here are a few examples of common applications that can use the OLAP option to
realize valuable gains in functionality and performance:

■ Planning applications enable organizations to predict outcomes. They generate
new data using predictive analytical tools such as models, forecasts,
aggregation, allocation, and scenario management. Some examples of this type
of application are corporate budgeting and financial analyses, and demand
planning systems.

■ Budgeting and financial analysis systems enable organizations to analyze past
performance, build revenue and spending plans, manage to attain profit goals,
and model the effects of change on the financial plan. Management can
determine spending and investment levels that are appropriate for the
anticipated revenue and profit levels. Financial analysts can prepare alternative
budgets and investment plans contingent on factors such as fluctuations in
currency values.

■ Demand planning systems enable organizations to predict market demand
based on factors such as sales history, promotional plans, and pricing models.
They can model different scenarios that forecast product demand and then
determine appropriate manufacturing goals.

Deciding When to Use Analytic Workspaces

1-4 Oracle OLAP Application Developer’s Guide

As this discussion highlights, the data processing required to answer analytical
questions is fundamentally different from the data processing required to answer
transactional questions. The users are different, their goals are different, their
queries are different, and the type of data that they need is different. A relational
data warehouse enhanced with the OLAP option provides the best environment for
data analysis.

Deciding When to Use Analytic Workspaces
The types of analyses performed by applications that run against your data
warehouse will help you decide whether to store the data entirely in analytic
workspaces or distributed between analytic workspaces and relational tables.

Analytic workspaces provide an alternative to materialized views for generating
and storing aggregate data. They provide complex aggregation methods that are not
available in materialized views, such as weighted calculations, non-additive
methods, and models. You might also choose analytic workspaces when you have
storage issues concerning aggregate data. Analytic workspaces always present fully
solved data to the application, regardless of whether the data is entirely
pre-aggregated, partially pre-aggregated, or entirely aggregated on demand. The
flexibility of the OLAP aggregation system enables you to pre-aggregate within the
limitations of your data refresh window without compromising run-time response
time. Moreover, analytic workspaces can store pre-aggregated data very efficiently.

You may also prefer to use analytic workspaces for applications that support
predictive analysis functions, such as models, forecasts, and what-if scenarios.
Moreover, analytic workspaces are highly optimized for performing single-row
calculations, which they can compute at run-time to support custom measures.

A distributed solution may be optimal for query and reporting applications that use
the advanced calculation capabilities of analytic workspaces less frequently. For
these types of applications, you can create and populate analytic workspaces at
run-time for more intensive analysis; the results can be sent directly to the analyst or
written to relational tables. The implementation of a distributed model can, of
course, vary widely since it encompasses solutions that range from storing all data
in relational tables to storing all data in analytic workspaces.

The BI Beans can run against analytic workspaces or relational tables. If you do not
plan to use analytic workspaces, then refer to the information in "Managing Data
Sources for the BI Beans and OLAP API" on page 4-9.

Working With Oracle OLAP

Overview 1-5

Working With Oracle OLAP
There are several levels at which you can work with analytic workspaces:

■ Graphical user interfaces (GUIs) provide wizards and property sheets for
performing the basic tasks for creating and managing analytic workspaces. This
topmost level formulates calls to the underlying SQL packages. Your
introduction to developing and maintaining analytic workspaces is learning to
use these GUIs.

■ SQL packages perform all the tasks needed to create, maintain, and expose
analytic workspaces for use by applications. Some SQL packages work directly
with workspaces and execute the underlying OLAP DML. Other SQL packages
work with relational tables and views, and execute SQL.

■ Java packages can build and query analytic workspaces.

■ OLAP DML is the native language of analytic workspaces and implements all
operations initiated at the other levels.

Installation of the OLAP option with the Oracle Database includes the following
components:

OLAP Analytic Engine
Analytic Workspaces
Analytic Workspace Manager
OLAP Worksheet
SQL Interface to OLAP
OLAP DML
OLAP Catalog
Analytic Workspace Java APIs
OLAP API

The following applications can provide important functionality when working in
OLAP, and are available online at the Oracle Web site:

Oracle Warehouse Builder
Oracle Enterprise Manager

All of these components and applications are described in the following
paragraphs. The relationships among them are described throughout this guide.

Working With Oracle OLAP

1-6 Oracle OLAP Application Developer’s Guide

OLAP Analytic Engine
The OLAP analytic engine supports the selection and rapid calculation of
multidimensional data. The status of an individual session persists to support a
series of queries, which is typical of analytical applications; the output from one
query is easily used as input to the next query. A comprehensive set of data
manipulation tools supports modeling, aggregation, allocation, forecasting, and
what-if analysis. The OLAP engine runs within the Oracle kernel.

Analytic Workspaces
Analytic workspaces store data in a multidimensional format where it can be
manipulated by the OLAP engine. An analytic workspace is stored as a LOB table
in a relational schema. Within a single database, many analytic workspaces can be
created and shared among users. Like a relational schema, an analytic workspace is
owned by a particular user ID, and other users can be granted access to it. Because
individual users can save a personal copy of their alterations to a workspace, the
workspace environment is particularly conducive to planning applications.

Analytic Workspace Manager
Analytic Workspace Manager provides a user interface for creating an analytic
workspace in database standard form. This form enables the analytic workspace to
be used with various tools that aggregate, refresh, and enable the data so that it is
accessible to OLAP applications. These tools are also provided by Analytic
Workspace Manager.

For more information about Analytic Workspace Manager, refer to Chapter 6,
"Creating an Analytic Workspace".

OLAP Worksheet
OLAP Worksheet is an interactive environment for working with analytic
workspaces, similar to SQL*Plus Worksheet. It provides easy access to the OLAP
DML, and enables you to perform sophisticated business analysis, such as
modeling, forecasting, and allocation. You can switch between two different modes,
one for working with analytic workspaces in the OLAP DML, and the other for
working with relational tables and views in SQL. It is available through Analytic
Workspace Manager or as a separate executable.

For more information about OLAP Worksheet, refer to Chapter 9.

Working With Oracle OLAP

Overview 1-7

SQL Interface to OLAP
The SQL interface to OLAP provides access to analytic workspaces from SQL. The
SQL interface is implemented in PL/SQL packages. These are the primary ones:

■ CWM2 is a large collection of packages for defining OLAP Catalog metadata.
These packages support the BI Beans enabler in Analytic Workspace Manager.

■ DBMS_AW contains procedures for executing OLAP DML commands. This
package supports OLAP Worksheet, and the property sheets and dialogs in
Analytic Workspace Manager. Using the procedures and functions in the
DBMS_AW package, SQL programmers can issue OLAP DML commands directly
against analytic workspace data. They can move data from relational tables into
an analytic workspace, perform advanced analysis of the data (for example,
forecasting), and copy the results of that analysis into relational tables.

■ DBMS_AWM contains procedures for creating analytic workspaces. It supports
the Create Analytic Workspace wizard in Analytic Workspace Manager.

■ DBMS_AW_UTILITIES contains procedures for creating and managing custom
measures in a standard form analytic workspace. Custom measures are defined
at run-time, and are calculated from stored measures.

For more information about these PL/SQL packages, refer to Chapter 7, "SQL
Access to Analytic Workspaces" and the Oracle OLAP Reference.

OLAP DML
OLAP DML is a mature low-level language that is native to analytic workspaces. It
is the data definition and manipulation language for creating analytic workspaces,
defining data containers, and manipulating the data stored in these containers. All
other levels of operation (GUIs, Java, and SQL) resolve to the OLAP DML. It offers
the maximum power and flexibility in acquiring, manipulating, and analyzing data.

If you are upgrading from Oracle Express, or if your data is stored in formats not
supported by the higher level tools, then you may work directly in the OLAP DML
at an early stage. Otherwise, you may use the OLAP DML directly only to enhance
the functionality of your workspaces.

OLAP Catalog
OLAP Catalog is the metadata repository provided for the OLAP option. It consists
of write APIs, which are a set of PL/SQL procedures, and read APIs, which are
relational views within the Oracle Database. The metadata describes data, which is
presented as a star schema, in multidimensional terms such as cubes, measures,

Working With Oracle OLAP

1-8 Oracle OLAP Application Developer’s Guide

dimensions, and attributes. The OLAP Catalog is used to perform two distinct
functions:

■ To create an analytic workspace from a star or snowflake schema.

■ To provide a Java application, which uses the BI Beans, with access to data
stored in either an analytic workspace or relational tables. The BI Beans requires
OLAP Catalog metadata. If data is not defined in the OLAP Catalog, then it is
not available to applications that use the BI Beans.

The OLAP Catalog read APIs make the metadata that you have defined available to
applications. They are useful to any application that uses SQL SELECT statements
to run against views of analytic workspace data.

SQL applications do not require the use of the OLAP Catalog, but may benefit from
using it. They can run against the logical objects that are defined in the OLAP
catalog, without an awareness of where the underlying data resides.

Analytic Workspace Java APIs
The Analytic Workspace Java APIs provide a Java interface for the creation and
maintenance of analytic workspaces. These APIs are an alternative to using the
OLAP Catalog for defining an analytic workspace build.

OLAP API
The OLAP API is the Java-based programming interface for OLAP applications, and
supports the BI Beans. The BI Beans are building blocks for developing analytic
applications in Java, and are available for use with JDeveloper. If you are a Java
developer, then you should consider using the BI Beans for your analytic
applications. Note that the BI Beans are not included with the OLAP option, but
they require an OLAP-enabled Oracle Database.

Oracle Enterprise Manager
Oracle Enterprise Manager is a system management tool that provides you with an
integrated solution for managing Oracle products without formulating complex
SQL commands. You can use Enterprise Manager to set up user accounts, define
tablespaces, monitor performance, and do other administrative tasks associated
with your database, including the OLAP option.

See Also: Oracle OLAP Analytic Workspace Java API Reference

Process Overview: Creating and Maintaining Analytic Workspaces

Overview 1-9

The OLAP Management tool is part of the Enterprise Manager support for data
warehouses. Using a graphical user interface, you can define logical metadata
dimensions, measures, and cubes in the OLAP Catalog for the dimension tables and
fact tables of a star or snowflake schema that complies with the database
requirements for creating a dimension.

For more information about the OLAP Management tool, refer to Chapter 5,
"Defining a Logical Multidimensional Model".

Oracle Warehouse Builder
Oracle Warehouse Builder can extract data from many different sources, transform
it into a star schema in the relational database, generate OLAP Catalog metadata,
and create an analytic workspace. Warehouse Builder provides an alternative to
using the OLAP Management tool in Enterprise Manager, and the Create Analytic
Workspace wizard in Analytic Workspace Manager. The resulting analytic
workspace is in database standard form, so you can then use Analytic Workspace
Manager to aggregate, enhance, and enable your data.

If your data requires transformation, then Oracle Warehouse Builder provides the
best method for generating an analytic workspace. Once you have created a logical
model for your data warehouse, Oracle Warehouse Builder requires only a few extra
steps to generate an analytic workspace in addition to a star schema.

Process Overview: Creating and Maintaining Analytic Workspaces
Analytic workspaces can be created in a variety of ways, depending on the
characteristics of the data source and your own personal preference. However, the
basic process is the same for all of them.

These are the basic stages:

1. Define a logical multidimensional model in the metadata, and map the logical
objects to physical data sources. See Chapter 5.

2. Create and populate an analytic workspace. See Chapter 6.

3. Generate information-rich data using aggregation, allocation, modeling,
forecasting, and other analytic methods. See Chapter 6, Chapter 9, and
Chapter 10.

4. Generate relational views of the analytic workspace. See Chapter 6.

See Also: Oracle Warehouse Builder User’s Guide

Process Overview: Creating and Maintaining Analytic Workspaces

1-10 Oracle OLAP Application Developer’s Guide

5. Define metadata specifically for use by particular applications. See Chapter 6.

6. Periodically refresh the analytic workspace with new data. See Chapter 6.

7. Calculate custom measures and dimension members. See Chapter 7 and
Chapter 9.

Table 1–1 identifies the tools available for performing each stage. Using these tools
to perform the various stages of creating and managing analytic workspaces is the
topic of this guide.

Table 1–1 Tools for Working With Analytic Workspaces

Stage Tools

Design a logical model and map
it to data sources

Oracle Enterprise Manager

CWM2 Write APIs

Oracle Warehouse Builder

Analytic Workspace Java APIs

Create and populate an analytic
workspace

Analytic Workspace Manager wizards

DBMS_AWM PL/SQL package

Oracle Warehouse Builder

Analytic Workspace Java APIs

Generate information Analytic Workspace Manager wizards

DBMS_AWM PL/SQL package

Analytic Workspace Java APIs

OLAP DML

Create views Analytic Workspace Manager enablers

OLAP_TABLE function

Generate metadata for views Analytic Workspace Manager enablers

CWM2 Write APIs

Generate custom measures DBMS_AW_UTILITIES PL/SQL package

DBMS_AW PL/SQL package

OLAP_TABLE function

Analytic Workspace Java APIs

OLAP DML

Process Overview: Creating and Maintaining Analytic Workspaces

Overview 1-11

Refresh the data Analytic Workspace Manager wizards

DBMS_AWM PL/SQL package

Analytic Workspace Java APIs

OLAP DML

Table 1–1 (Cont.) Tools for Working With Analytic Workspaces

Stage Tools

Process Overview: Creating and Maintaining Analytic Workspaces

1-12 Oracle OLAP Application Developer’s Guide

The Multidimensional Data Model 2-1

2
The Multidimensional Data Model

This chapter describes the multidimensional data model and how it is implemented
in relational tables and standard form analytic workspaces. It consists of the
following topics:

■ The Logical Multidimensional Data Model

■ The Relational Implementation of the Model

■ The Analytic Workspace Implementation of the Model

The Logical Multidimensional Data Model
The multidimensional data model is an integral part of On-Line Analytical
Processing, or OLAP. Because OLAP is on-line, it must provide answers quickly;
analysts pose iterative queries during interactive sessions, not in batch jobs that run
overnight. And because OLAP is also analytic, the queries are complex. The
multidimensional data model is designed to solve complex queries in real time.

The multidimensional data model is important because it enforces simplicity. As
Ralph Kimball states in his landmark book, The Data Warehouse Toolkit:

"The central attraction of the dimensional model of a business is its simplicity.... that
simplicity is the fundamental key that allows users to understand databases, and
allows software to navigate databases efficiently."

The multidimensional data model is composed of logical cubes, measures,
dimensions, hierarchies, levels, and attributes. The simplicity of the model is
inherent because it defines objects that represent real-world business entities.
Analysts know which business measures they are interested in examining, which
dimensions and attributes make the data meaningful, and how the dimensions of
their business are organized into levels and hierarchies.

The Logical Multidimensional Data Model

2-2 Oracle OLAP Application Developer’s Guide

Figure 2–1 shows the relationships among the logical objects.

Figure 2–1 Diagram of the Logical Multidimensional Model

Logical Cubes
Logical cubes provide a means of organizing measures that have the same shape,
that is, they have the exact same dimensions. Measures in the same cube have the
same relationships to other logical objects and can easily be analyzed and displayed
together.

Logical Measures
Measures populate the cells of a logical cube with the facts collected about business
operations. Measures are organized by dimensions, which typically include a Time
dimension.

An analytic database contains snapshots of historical data, derived from data in a
legacy system, transactional database, syndicated sources, or other data sources.
Three years of historical data is generally considered to be appropriate for analytic
applications.

Measures are static and consistent while analysts are using them to inform their
decisions. They are updated in a batch window at regular intervals: weekly, daily, or
periodically throughout the day. Many applications refresh their data by adding
periods to the time dimension of a measure, and may also roll off an equal number
of the oldest time periods. Each update provides a fixed historical record of a

The Logical Multidimensional Data Model

The Multidimensional Data Model 2-3

particular business activity for that interval. Other applications do a full rebuild of
their data rather than performing incremental updates.

A critical decision in defining a measure is the lowest level of detail (sometimes
called the grain). Users may never view this base level data, but it determines the
types of analysis that can be performed. For example, market analysts (unlike order
entry personnel) do not need to know that Beth Miller in Ann Arbor, Michigan,
placed an order for a size 10 blue polka-dot dress on July 6, 2002, at 2:34 p.m. But
they might want to find out which color of dress was most popular in the summer
of 2002 in the Midwestern United States.

The base level determines whether analysts can get an answer to this question. For
this particular question, Time could be rolled up into months, Customer could be
rolled up into regions, and Product could be rolled up into items (such as dresses)
with an attribute of color. However, this level of aggregate data could not answer
the question: At what time of day are women most likely to place an order? An
important decision is the extent to which the data has been pre-aggregated before
being loaded into a data warehouse.

Logical Dimensions
Dimensions contain a set of unique values that identify and categorize data. They
form the edges of a logical cube, and thus of the measures within the cube. Because
measures are typically multidimensional, a single value in a measure must be
qualified by a member of each dimension to be meaningful. For example, the Sales
measure has four dimensions: Time, Customer, Product, and Channel. A particular
Sales value (43,613.50) only has meaning when it is qualified by a specific time
period (Feb-01), a customer (Warren Systems), a product (Portable PCs), and a
channel (Catalog).

Logical Hierarchies and Levels
A hierarchy is a way to organize data at different levels of aggregation. In viewing
data, analysts use dimension hierarchies to recognize trends at one level, drill down
to lower levels to identify reasons for these trends, and roll up to higher levels to see
what affect these trends have on a larger sector of the business.

Each level represents a position in the hierarchy. Each level above the base (or most
detailed) level contains aggregate values for the levels below it. The members at
different levels have a one-to-many parent-child relation. For example, Q1-02 and
Q2-02 are the children of 2002, thus 2002 is the parent of Q1-02 and Q2-02.

The Relational Implementation of the Model

2-4 Oracle OLAP Application Developer’s Guide

Suppose a data warehouse contains snapshots of data taken three times a day, that
is, every 8 hours. Analysts might normally prefer to view the data that has been
aggregated into days, weeks, quarters, or years. Thus, the Time dimension needs a
hierarchy with at least five levels.

Similarly, a sales manager with a particular target for the upcoming year might
want to allocate that target amount among the sales representatives in his territory;
the allocation requires a dimension hierarchy in which individual sales
representatives are the child values of a particular territory.

Hierarchies and levels have a many-to-many relationship. A hierarchy typically
contains several levels, and a single level can be included in more than one
hierarchy.

Logical Attributes
An attribute provides additional information about the data. Some attributes are
used for display. For example, you might have a product dimension that uses Stock
Keeping Units (SKUs) for dimension members. The SKUs are an excellent way of
uniquely identifying thousands of products, but are meaningless to most people if
they are used to label the data in a report or graph. You would define attributes for
the descriptive labels.

You might also have attributes like colors, flavors, or sizes. This type of attribute can
be used for data selection and answering questions such as: Which colors were the
most popular in women's dresses in the summer of 2002? How does this compare
with the previous summer?

Time attributes can provide information about the Time dimension that may be
useful in some types of analysis, such as identifying the last day or the number of
days in each time period.

The Relational Implementation of the Model
The relational implementation of the multidimensional data model is typically a
star schema, as shown in Figure 2–2, or a snowflake schema. A star schema is a
convention for organizing the data into dimension tables, fact tables, and
materialized views. Ultimately, all of the data is stored in columns, and metadata is
required to identify the columns that function as multidimensional objects.

In Oracle Database, you can define a logical multidimensional model for relational
tables using the OLAP Catalog or AWXML, as described in Chapter 5. The metadata
distinguishes level columns from attribute columns in the dimension tables and

The Relational Implementation of the Model

The Multidimensional Data Model 2-5

specifies the hierarchical relationships among the levels. It identifies the various
measures that are stored in columns of the fact tables and aggregation methods for
the measures. And it provides display names for all of these logical objects.

Figure 2–2 Diagram of a Star Schema

Dimension Tables
A star schema stores all of the information about a dimension in a single table. Each
level of a hierarchy is represented by a column or column set in the dimension table.
A dimension object can be used to define the hierarchical relationship between two
columns (or column sets) that represent two levels of a hierarchy; without a
dimension object, the hierarchical relationships are defined only in metadata.
Attributes are stored in columns of the dimension tables.

The Analytic Workspace Implementation of the Model

2-6 Oracle OLAP Application Developer’s Guide

A snowflake schema normalizes the dimension members by storing each level in a
separate table.

Fact Tables
Measures are stored in fact tables. Fact tables contain a composite primary key,
which is composed of several foreign keys (one for each dimension table) and a
column for each measure that uses these dimensions.

Materialized Views
Aggregate data is calculated on the basis of the hierarchical relationships defined in
the dimension tables. These aggregates are stored in separate tables, called
summary tables or materialized views. Oracle provides extensive support for
materialized views, including automatic refresh and query rewrite.

Queries can be written either against a fact table or against a materialized view. If a
query is written against the fact table that requires aggregate data for its result set,
the query is either redirected by query rewrite to an existing materialized view, or
the data is aggregated on the fly.

Each materialized view is specific to a particular combination of levels; in
Figure 2–2, only two materialized views are shown of a possible 27 (3 dimensions
with 3 levels have 3**3 possible level combinations).

The Analytic Workspace Implementation of the Model
Analytic workspaces have several different types of data containers, such as
dimensions, variables, and relations. Each type of container can be used in a variety
of ways to store different types of information. For example, a dimension can
define an edge of a measure, or store the names of all the languages supported by
the analytic workspace, or all of the acceptable values of a relation. Dimension
objects are themselves one dimensional lists of values, while variables and relations
are designed specifically to support the efficient storage, retrieval, and
manipulation of multidimensional data.

Note: Analytic workspaces are registered in the database data
dictionary as tables. However, objects stored in analytic workspaces
are not registered in the database data dictionary.

The Analytic Workspace Implementation of the Model

The Multidimensional Data Model 2-7

Like relational tables, analytic workspaces have no specific content requirements.
You can create an empty analytic workspace, populate it only with OLAP DML
programs, or define a single dimension to hold a list of values. This guide, however,
describes analytic workspaces that comply with database standard form. Database
standard form (or simply, standard form) is a convention for instantiating the
logical multidimensional model in a particular way so that it can be managed by the
current set of Oracle OLAP utilities. It defines a set of metadata that can be queried
by any application. Standard form is discussed extensively in this guide, and is
described in Appendix A.

Multidimensional Data Storage in Analytic Workspaces
In the logical multidimensional model, a cube represents all measures with the
same shape, that is, the exact same dimensions. In a cube shape, each edge
represents a dimension. The dimension members are aligned on the edges and
divide the cube shape into cells in which data values are stored.

In an analytic workspace, the cube shape also represents the physical storage of
multidimensional measures, in contrast with two-dimensional relational tables. An
advantage of the cube shape is that it can be rotated: there is no one right way to
manipulate or view the data. This is an important part of multidimensional data
storage, calculation, and display, because different analysts need to view the data in
different ways. For example, if you are the Sales Manager for the Pacific Rim, then
you need to look at the data differently from a product manager or a financial
analyst.

Assume that a company collects data on sales. The company maintains records that
quantify how many of each product was sold in a particular sales region during a
specific time period. You can visualize the sales measure as the cube shown in
Figure 2–3.

The Analytic Workspace Implementation of the Model

2-8 Oracle OLAP Application Developer’s Guide

Figure 2–3 Comparison of Product Sales By City

Figure 2–3 compares the sales of various products in different cities for January 2001
(shown) and February 2001 (not shown). This view of the data might be used to
identify products that are performing poorly in certain markets. Figure 2–4 shows
sales of various products during a four-month period in Rome (shown) and Tokyo
(not shown). This view of the data is the basis for trend analysis.

Figure 2–4 Comparison of Product Sales By Month

The Analytic Workspace Implementation of the Model

The Multidimensional Data Model 2-9

A cube shape is three dimensional. Of course, measures can have many more than
three dimensions, but three dimensions are the maximum number that can be
represented pictorially. Additional dimensions are pictured with additional cube
shapes.

Database Standard Form Analytic Workspaces
Figure 2–5 shows how dimension, variable, formula, and relation objects in a
standard form analytic workspace are used to implement the multidimensional
model. Measures with identical dimensions compose a logical cube. All dimensions
have attributes, and all hierarchical dimensions have level relations and
self-relations; for clarity, these objects are shown only once in the diagram. Variables
and formulas can have any number of dimensions; three are shown here.

Figure 2–5 Diagram of a Standard Form Analytic Workspace

The Analytic Workspace Implementation of the Model

2-10 Oracle OLAP Application Developer’s Guide

Analytic Workspace Dimensions
A dimension in an analytic workspace is a highly optimized, one-dimensional index
of values that serves as a key table. Variables, relations, formulas (which are stored
equations) are among the objects that can have dimensions.

Dimensions have several intrinsic characteristics that are important for data
analysis:

■ Referential integrity. Each dimension member is unique and cannot be NA (that
is, null). If a measure has three dimensions, then each data value of that
measure must be qualified by a member of each dimension. Likewise, each
combination of dimension members has a value, even if it is NA.

■ Consistency. Dimensions are maintained as separate containers and are shared
by measures. Measures with the same dimensionality can be manipulated
together easily. For example, if the sales and expense measures are dimensioned
by time and line, then you can create equations such as profit = sales - expense.

■ Preserved order of members. Each dimension has a default status, which is a
list of all of its members in the order they are stored. The default status list is
always the same unless it is purposefully altered by adding, deleting, or
moving members. Within a session, a user can change the selection and order of
the status list; this is called the current status list. The current status list remains
the same until the user purposefully alters it by adding, removing, or changing
the order of its members.

Because the order of dimension members is consistent and known, the selection
of members can be relative. For example, this function call compares the sales
values of all currently selected time periods in the current status list against
sales from the prior period.

lagdif(sales, 1, time)

■ Highly denormalized. A dimension typically contains members at all levels of
all hierarchies. This type of dimension is sometimes called an embedded total
dimension.

In addition to simple dimensions, there are several special types of dimensions used
in a standard form analytic workspace, such as composites and concat dimensions.
These dimensions are discussed later in this guide.

Use of Dimensions in Standard Form Analytic Workspaces
In an analytic workspace, data dimensions are structured hierarchically so that data
at different levels can be manipulated for aggregation, allocation, and navigation.

The Analytic Workspace Implementation of the Model

The Multidimensional Data Model 2-11

However, all dimension members at all levels for all hierarchies are stored in a
single data dimension container. For example, months, quarters, and years are all
stored in a single dimension for Time. The hierarchical relationships among
dimension members are defined by a parent relation, described in "Analytic
Workspace Relations" on page 2-13.

Not all data is hierarchical in nature, however, and you can create data dimensions
that do not have levels. A line item dimension is one such dimension, and the
relationships among its members require a model rather than a multilevel hierarchy.
The extensive data modeling subsystem available in analytic workspaces enables
you to create both simple and complex models, which can be solved alone or in
conjunction with aggregation methods.

As a one-dimensional index, a dimension container has many uses in an analytic
workspace in addition to dimensioning measures. A standard form analytic
workspace uses dimensions to store various types of metadata, such as lists of
hierarchies, levels, and the dimensions composing a logical cube.

Analytic Workspace Variables
A variable is a data value table, that is, an array with a particular data type and
indexed by a specific list of dimensions. The dimensions themselves are not stored
with the variable.

Each combination of dimension members defines a data cell, regardless of whether
a value exists for that cell or not. Thus, the absence of data can be purposefully
included or excluded from the analysis. For example, if a particular product was not
available before a certain date, then the analysis may exclude null values (called
NAs) in the prior periods. However, if the product was available but did not sell in
some markets, then the analysis may include the NAs.

No special physical relationship exists among variables that share the same
dimensions. However, a logical relationship exists because, even though they store
different data that may be a different data type, they are identical containers.
Variables that have identical dimensions compose a logical cube.

If you change a dimension, such as adding new time periods to the Time dimension,
then all variables dimensioned by Time are automatically changed to include these
new time periods, even if the other variables have no data for them. Variables that
share dimensions (and thus are contained by the same logical cube) can also be
manipulated together in a variety of ways, such as aggregation, allocation,
modeling, and numeric calculations. This type of calculation is easy and fast in an
analytic workspace, while the equivalent single-row calculation in a relational
schema can be quite difficult.

The Analytic Workspace Implementation of the Model

2-12 Oracle OLAP Application Developer’s Guide

Use of Variables to Store Measures
In an analytic workspace, facts are stored in variables, typically with a numeric data
type. Each type of data is stored in its own variable, so that while sales data and
expenses data might have the same dimensions and the same data type, they are
stored in two distinct variables. The containers are identical, but the contents are
unique.

An analytic workspace provides a valuable alternative to materialized views for
creating, storing, and maintaining summary data. A very sophisticated aggregation
system supports modeling in addition to an extensive number of aggregation
methods. Moreover, finely grained aggregation rules enable you to decide precisely
which data within a single measure is pre-aggregated, and which data within the
same measure will be calculated at run-time.

Pre-aggregated data is stored in a compact format in the same container as the
base-level data, and the performance impact of aggregating data on the fly is
negligible when the aggregation rules have been defined according to known good
methods. If aggregate data needed for the result set is stored in the variable, then it
is simply retrieved. If the aggregate data does not exist, then it is calculated on the
fly.

Use of Variables to Store Attributes
Like measures, attributes are stored in variables. However, there are significant
differences between attributes and measures. While attributes are often
multidimensional, only one dimension is a data dimension. A hierarchy dimension,
which lists the data dimension hierarchies, and a language dimension, which
provides support for multiple languages, are typical of the other dimensions.

Attributes provide supplementary information about each dimension member,
regardless of its level in a dimension hierarchy. For example, a Time dimension
might have three attribute variables, one for descriptive names, another for the
period end dates, and a third for period time spans. These attributes provide Time
member OCT-02 with a descriptive name of October 2002, an end date of
31-OCT-02, and a time span of 31. All of the other days, months, quarters, and
years in the Time dimension have similar information stored in these three attribute
variables.

Analytic Workspace Formulas
A formula is a stored equation. A call to any function in the OLAP DML or to any
custom program can be stored in a formula. In this way, a formula in an analytic
workspace is like a relational view.

The Analytic Workspace Implementation of the Model

The Multidimensional Data Model 2-13

In a standard form analytic workspace, one of the uses of a formula object is to
provide the interface between aggregation rules and a variable that holds the data.
The name of a measure is always the name of a formula, not the underlying
variable. While the variable only contains stored data (the base-level data and
precalculated aggregates), the formula returns a fully solved measure containing
data that is both stored and calculated on the fly. This method enables all queries
against a particular measure to be written against the same column of the same
relational view for the analytic workspace, regardless of whether the data is
calculated or simply retrieved. That column presents data acquired from the
formula.

Formulas can also be used to calculated other results like ratios, differences, moving
totals, and averages on the fly.

Analytic Workspace Relations
Relations are identical to variables except in their data type. A variable has a
general data type, such as DECIMAL or TEXT, while a relation has a dimension as its
data type. For example, a relation with a data type of PRODUCT only accepts values
that are members of the PRODUCT dimension; an attempt to store any other value
causes an error. The dimension members provide a finite list of acceptable values
for a relation. A relation container is like a foreign key column, except that it can be
multidimensional.

In a standard form analytic workspace, two relations support the hierarchical
content of the data dimensions: a parent relation and a level relation.

A parent relation is a self-relation that identifies the parent of each member of a
dimension hierarchy. This relation defines the hierarchical structure of the
dimension.

A level relation identifies the level of each member of a dimension hierarchy. It is
used to select and sort dimension members based on level.

The Analytic Workspace Implementation of the Model

2-14 Oracle OLAP Application Developer’s Guide

The Sample Schema 3-1

3
The Sample Schema

This guide uses the Global schema for its examples. This chapter describes this
schema and explains how it will be mapped to multidimensional objects. It consists
of the following topics:

■ Case Study Scenario

■ The Global Star Schema

■ Mapping the Global Schema to an Analytic Workspace

Case Study Scenario
The fictional Global Computing Company was established in 1990. Global
Computing distributes computer hardware and software components to customers
on a worldwide basis. The Sales and Marketing department has not been meeting
its budgeted numbers. As a result, this department has been challenged to develop
a successful sales and marketing strategy.

Global Computing operates in an extremely competitive market. Competitors are
numerous, customers are especially price-sensitive, and profit margins tend to be
narrow. In order to grow profitably, Global Computing must increase sales of its
most profitable products.

Various factors in Global Computing's current business point to a decline in sales
and profits:

■ Traditionally, Global Computing experiences low third-quarter sales (July
through September). However, recent sales in other quarters have also been
lower than expected. The company has experienced bursts of growth but, for no
apparent reason, has had lower first-quarter sales during the last two years as
compared with prior years.

Case Study Scenario

3-2 Oracle OLAP Application Developer’s Guide

■ Global has been successful with its newest sales channel, the Internet. Although
sales within this channel are growing, overall profits are declining.

■ Perhaps the most significant factor is that margins on personal computers -
previously the source of most of Global Computing's profits - are declining
rapidly.

Global Computing needs to understand how each of these factors is affecting its
business.

Current reporting is done by the IT department, which produces certain standard
reports on a monthly basis. Any ad hoc reports are handled on an as-needed basis
and are subject to the time constraints of the limited IT staff. Complaints have been
widespread within the Sales and Marketing department, with regard to the delay in
response to report requests. Complaints have also been numerous in the IT
department, with regard to analysts who change their minds frequently or ask for
further information.

The Sales and Marketing department has been struggling with a lack of timely
information about what it is selling, who is buying, and how they are buying. In a
meeting with the CIO, the VP of Sales and Marketing states, "By the time I get the
information, it's no longer useful. I'm only able to get information at the end of each
month, and it doesn't have the details I need to do my job."

Reporting Requirements
When asked to be more specific about what she needs, the Vice President of Sales
and Marketing identifies the following requirements:

■ Trended sales data for specific customers, regions, and segments.

■ The ability to provide information and some analysis capabilities to the field
sales force. A Web interface would be preferred, since the sales force is
distributed throughout the world.

■ Detail regarding mail-order, phone, and e-mail sales on a weekly and monthly
basis, as well as a comparison to past time periods. Information must identify
when, how, and what is being sold by each channel.

■ Margin information on products in order to understand the dollar contribution
for each sale.

■ Knowledge of percent change versus the prior and year-ago period for sales,
units, and margin.

■ The ability to perform analysis of the data by ad hoc groupings.

Case Study Scenario

The Sample Schema 3-3

The CIO has discussed these requirements with his team and has come to the
conclusion that a standard reporting solution against the production order entry
system would not be flexible enough to provide the required analysis capabilities.
The reporting requirements for business analysis are so diverse that the projected
cost of development, along with the expected turnaround time for requests, would
make this solution unacceptable.

The CIO's team recommends using an analytic workspace to support analysis. The
team suggests that the Sales and Marketing department's IT group work with
Corporate IT to build an analytic workspace that meets their needs for information
analysis.

Business Goals
The development team identifies the following high-level business goals that the
project must meet:

■ Global Computing's strategic goal is to increase company profits by increasing
sales of higher margin products and by increasing sales volume overall.

■ The Sales and Marketing department objectives are to:

– Analyze industry trends and target specific market segments

– Analyze sales channels and increase profits

– Identify product trends and create a strategy for developing the appropriate
channels

Information Requirements
Once you have established business goals, you can determine the type of
information that will help achieve these goals. To understand how end users will
examine the data in the analytic workspace, it is important to conduct extensive
interviews. From interviews with key end users, you can determine how they look
at the business, and what types of business analysis questions they want to answer

Business Analysis Questions
Interviews with the VP of Sales and Marketing, salespeople, and market analysts at
Global Computing reveal the following business analysis questions:

■ What products are profitable?

■ Who are our customers, and what and how are they buying?

Case Study Scenario

3-4 Oracle OLAP Application Developer’s Guide

■ What accounts are most profitable?

■ What is the performance of each distribution channel?

■ Is there still a seasonal variance to the business?

We can examine each of these business analysis questions in detail.

What products are profitable?
This business analysis question consists of the following questions:

■ What is the percent of total sales for any item, product family, or product class
in any month, quarter or year, and in any distribution channel? How does this
percent of sales differ from a year ago?

■ What is the unit price, unit cost, and margin for each unit for any item in any
particular month? What are the price, cost, and margin trends for any item in
any month?

■ What items were most profitable in any month, quarter, or year, in any
distribution channel, and in any geographic area or market segment? How did
profitability change from the prior period? What was the percent change in
profitability from the prior period?

■ What items experienced the greatest change in profitability from the prior
period?

■ What items contributed the most to total profitability in any month, quarter, or
year, in any distribution channel, and in any geographic area or market
segment?

■ What items have the highest per-unit margin for any particular month?

■ In summary, what are the trends?

Who are our customers, and what and how are they buying?
This business analysis question consists of the following questions:

■ What were sales for any item, product family, or product class in any month,
quarter, or year?

■ What were sales for any item, product family, or product class in any
distribution channel, geographic area, or market segment?

■ How did sales change from the prior period? What was the percent change in
sales from the prior period?

Case Study Scenario

The Sample Schema 3-5

■ How did sales change from a year ago? What was the percent change in sales
from a year ago?

■ In summary, what are the trends?

What accounts are most profitable?
This business analysis question consists of the following questions:

■ What accounts are most profitable in any month, quarter, or year, in any
distribution channel, by any item, product family, or product class?

■ What were sales and extended margin (gross profit) by account for any month,
quarter, or year, for any distribution channel, and for any product?

■ How does account profitability compare to the prior time period?

■ Which accounts experienced the greatest increase in sales as compared to the
prior period?

■ What is the percent change in sales from the prior period? Did the percent
change in profitability increase at the same rate as the percent change in sales?

■ In summary, what are the trends?

What is the performance of each distribution channel?
This business analysis question consists of the following questions:

■ What is the percent of sales to total sales for each distribution channel for any
item, product family, or product class, or for any geographic area or market
segment?

■ What is the profitability of each distribution channel: direct sales, catalog sales,
and the Internet?

■ Is the newest distribution channel, the Internet, "cannibalizing" catalog sales?
Are customers simply switching ordering methods, or is the Internet
distribution channel reaching additional customers?

■ In summary, what are the trends?

Case Study Scenario

3-6 Oracle OLAP Application Developer’s Guide

Is there still a seasonal variance to the business?
This business analysis question consists of the following questions:

■ Are there identifiable seasonal sales patterns for particular items or product
families?

■ How do seasonal sales patterns vary by geographic location?

■ How do seasonal sales patterns vary by market segment?

■ Are there differences in seasonal sales patterns as compared to last year?

Summary of Information Requirements
By examining the types of analyses that users wish to perform, we can identify the
following key requirements for analysis:

■ Global Computing has a strong need for profitability analysis. The company
must understand profitability by product, account, market segment, and
distribution channel. It also needs to understand profitability trends.

■ Global Computing needs to understand how sales vary by time of year. The
company must understand these seasonal trends by product, geographic area,
market segment, and distribution channel.

■ Global Computing has a need for ad hoc sales analysis. Analysis must identify
what products are sold to whom, when these products are sold, and how
customers buy these products.

■ The ability to perform trend analysis is important to Global Computing.

Identifying Required Business Facts
The key analysis requirements reveal the business facts that are required to support
analysis requirements at Global Computing.

These facts are ordered by time, product, customer shipment or market segment,
and distribution channel:

Sales
Units
Change in sales from prior period
Percent change in sales from prior period
Change in sales from prior year
Percent change in sales from prior year
Product share

Case Study Scenario

The Sample Schema 3-7

Channel share
Market share
Extended cost
Extended margin
Extended margin change from prior period
Extended margin percent change from prior period
Margin, percent of total product sales
Units sold, change from prior period
Units sold, percent change from prior period
Units sold, change from prior year
Units sold, percent change from prior year

These facts are ordered by item and month:

Unit price
Unit cost
Margin per unit

Designing a Logical Data Model for Global Computing
"Business Goals" on page 3-3 identifies the business facts that will support analysis
requirements at Global Computing. Next, we will identify the dimensions, levels,
and attributes in a logical data model. We will also identify the relationships within
each dimension. The resulting data model will be used to design the Global star
schema, the OLAP Catalog metadata, and the analytic workspace.

Identifying Dimensions
Four dimensions that will be used to organize the facts in the database.

■ Product shows how data varies by product.

■ Customer shows how data varies by customer or geographic area.

■ Channel shows how data varies according to each distribution channel.

■ Time how data varies over time.

Identifying Levels
Now that we have identified dimensions, we can identify the levels of
summarization within each dimension. Analysis requirements at Global Computing
reveal that:

Case Study Scenario

3-8 Oracle OLAP Application Developer’s Guide

■ There are three distribution channels: Sales, Catalog, and Internet. These three
values are the lowest level of detail in the data warehouse and will be grouped
in the Channel level. From the order of highest level of summarization to the
lowest level of detail, levels will be All Channels and Channel.

■ Global performs customer and geographic analysis along the line of shipments
to customers and by market segmentation. In each case, the lowest level of
detail in the data model is the Ship To location.

– When analyzing along the line of customer shipments, the levels of
summarization will be (highest to lowest): All Customers, Region,
Warehouse, and Ship To.

– When analyzing by market segmentation, the levels of summarization will
be (highest to lowest): Total Market, Market Segment, Account, and Ship To.

■ The product dimension will have four levels (highest to lowest): Total, Class,
Family, and Item.

■ The time dimension will have three levels (highest to lowest): Year, Quarter, and
Month.

Within the Channel, Customer, and Product dimensions, we added a Total or All
level as the highest level of summarization. Adding this highest level will provide
additional flexibility as application users analyze data.

Identifying Hierarchies
We will identify the hierarchies that organize the levels within each dimension. To
identify hierarchies, we will group the levels in the correct order of summarization
and in a way that supports the identified types of analysis.

For the Channel, Product, and Time dimensions, Global Computing requires only
one hierarchy for each dimension. For the Customer dimension, however, Global
Computing requires two hierarchies. Analysis within the Customer dimension
tends to be either by geographic area or market segment. Therefore, we will
organize levels into two hierarchies, Shipments and Market Segment.

Identifying Stored Measures
"Identifying Required Business Facts" on page 3-6 lists 21 business facts that are
required to support the analysis requirements of Global Computing. Of this
number, only three facts need to be acquired from the transactional database:

■ Units

■ Unit Price

The Global Star Schema

The Sample Schema 3-9

■ Unit Cost

All of the other facts can be derived from these basic facts. The derived facts can be
calculated in the analytic workspace on demand. If experience shows that some of
these derived facts are being used heavily and the calculations are putting a
noticeable load on the system, then some of these facts can be calculated and stored
in the analytic workspace as a data maintenance procedure.

The Global Star Schema
The Global schema consists of two fact tables and four dimension tables. The
dimension tables use numeric surrogate keys for each level column to assure that
dimension members are unique across levels. For example, a geography dimension
can easily have identical values at different levels, for example, New York at the
City level and New York at the state level. In an analytic workspace, dimension
members at all levels are fetched into a single dimension, and duplicate values
overwrite each other unless additional steps are taken to assure uniqueness.

Figure 3–1 shows the relationships among the tables. In addition, the Global schema
contains update fact tables, which are omitted from the diagram but occupy the
same logical position as the history fact tables.

The Global Star Schema

3-10 Oracle OLAP Application Developer’s Guide

Figure 3–1 Global Schema Diagram

The Global Star Schema

The Sample Schema 3-11

Dimension Table: TIME_DIM
The TIME_DIM table defines a time dimension with three levels. Each level is
supported by four columns: a numeric surrogate key, a textual description, an end
date (last day in time period), and a time span (number of days in time period). This
is the most basic information required to define a time dimension.

The surrogate keys are artificial values with no meaning outside the context of the
table. They assure that the same values are not repeated at different levels, and they
provide the fastest processing speeds both in the relational tables and in the analytic
workspace. The descriptive columns provide meaning to these numeric identifiers.

The end date and time span columns support time-series analysis, such as:

■ Change from a prior period

■ Change from a year ago

■ Year-to-date

■ Range of time

There are seven years defined, from 1998 to 2004, with data provided for 1998 to
early 2003. The last year is available for forecasting.

In the standard hierarchy, the rollup sequence from the base to the top level is:

MONTH -> QUARTER -> YEAR

 Table 3–1 describes the columns of the TIME_DIM table.

Table 3–1 TIME_DIM Column Descriptions

Column Datatype Role
Unique
Values Sample Value

MONTH_ID NUMBER Primary key
Surrogate key

78 34

MONTH_DSC VARCHAR2 Attribute - Apr-99

QUARTER_ID NUMBER Surrogate key 26 10

QUARTER_DSC VARCHAR2 Attribute - Q2-99

YEAR_ID NUMBER Surrogate key 7 2

YEAR_DSC VARCHAR2 Attribute - 1999

MONTH_TIME_SPAN NUMBER Attribute - 30

QUARTER_TIMESPAN NUMBER Attribute - 91

The Global Star Schema

3-12 Oracle OLAP Application Developer’s Guide

Dimension Table: CUSTOMER_DIM
The CUSTOMER_DIM table defines seven levels that will be used to define two
hierarchies. Each level has a numeric surrogate key and a textual description, which
is the most basic information to define a "normal" dimension, that is, a dimension
that is not time. SHIP_TO is the primary key, and its values will become the
base-level members for both Customer hierarchies.

In the Market hierarchy, the rollup sequence from the base to the top level is:

SHIP_TO -> ACCOUNT -> MARKET_SEGMENT -> TOTAL_MARKET

In the Customer hierarchy, the rollup sequence is:

SHIP_TO -> WAREHOUSE -> REGION-> ALL_CUSTOMERS

Table 3–2 describes the columns of the CUSTOMER_DIM table.

YEAR_TIMESPAN NUMBER Attribute - 365

MONTH_END_DATE DATE Attribute - 30-Apr-1999

QUARTER_END_DATE DATE Attribute - 30-Jun-1999

YEAR_END_DATE DATE Attribute - 31-Dec-1999

Table 3–2 CUSTOMER_DIM Column Descriptions

Column Datatype Role Hierarchy
Unique
Values Sample Value

SHIP_TO_ID NUMBER Primary key
Surrogate key

Both 61 89

SHIP_TO_DSC VARCHAR2 Attribute - - Monolith Motor Co.
Knoxville

ACCOUNT_ID NUMBER Surrogate key Market 24 36

ACCOUNT_DSC VARCHAR2 Attribute - - Monolith Motor
Company

MARKET_SEGMENT_ID NUMBER Surrogate key Market 5 5

MARKET_SEGMENT_DS
C

VARCHAR2 Attribute - - Manufacturing

Table 3–1 (Cont.) TIME_DIM Column Descriptions

Column Datatype Role
Unique
Values Sample Value

The Global Star Schema

The Sample Schema 3-13

Dimension Table: PRODUCT_DIM
The PRODUCT_DIM table defines a product dimension with four levels. Each level
has a numeric surrogate key and descriptive text. ITEM_ID is the primary key, so its
values will become the base-level members of the Product dimension.

In the Product hierarchy, the rollup sequence from the base level to the top level is:

ITEM -> FAMILY -> CLASS -> TOTAL_PRODUCT

Table 3–3 describes the columns of the PRODUCT_DIM table.

TOTAL_MARKET_ID NUMBER Surrogate key Market 1 7

TOTAL_MARKET_DSC VARCHAR2 Attribute - - Total Market

WAREHOUSE_ID NUMBER Surrogate key Customers 11 21

WAREHOUSE_DSC VARCHAR2 Attribute - - United States

REGION_ID NUMBER Surrogate key Customers 3 10

REGION_DSC VARCHAR2 Attribute - - North America

ALL_CUSTOMERS_ID NUMBER Surrogate key Customers 1 1

ALL_CUSTOMERS_DSC VARCHAR2 Attribute Customers - All Customers

Table 3–3 PRODUCT_DIM Column Descriptions

Column Datatype Role Unique Values Sample Value

ITEM_ID NUMBER Primary key
Surrogate key

36 48

ITEM_DSC VARCHAR2 Attribute - Keyboard Wrist Rest

ITEM_PACKAGE_ID NUMBER Attribute 4 Laptop Value Pack

FAMILY_ID NUMBER Surrogate key 9 7

FAMILY_DSC VARCHAR2 Attribute - Accessories

CLASS_ID NUMBER Surrogate key 2 3

Table 3–2 (Cont.) CUSTOMER_DIM Column Descriptions

Column Datatype Role Hierarchy
Unique
Values Sample Value

The Global Star Schema

3-14 Oracle OLAP Application Developer’s Guide

Dimension Table: CHANNEL_DIM
The CHANNEL_DIM table contains four columns. CHANNEL_ID is the primary key,
and its values will become the base-level members of the Channel dimension.
ALL_CHANNELS_ID defines a single value that represents all of the channels. In the
OLAP Catalog, these two columns will define the two levels of a single Channel
hierarchy. The rollup sequence from the base level to the top level is simply:

CHANNEL -> ALL_CHANNELS

The remaining columns, CHANNEL_DSC and ALL_CHANNELS_DSC, provide textual
descriptions that give the surrogate keys meaning.

Table 3–4 describes the columns of the CHANNEL_DIM table.

Fact Tables: UNITS_HISTORY_FACT and _UPDATE_FACT
The UNITS_HISTORY_FACT and UNITS_UPDATE_FACT tables contain four foreign
key columns, which together comprise a multi-column primary key. The foreign
keys are related to the primary keys of the four dimension tables.

In UNITS_HISTORY_FACT, every foreign key value for Product, Customer, and
Channel is used at least once, and 65 time periods are used. The table contains
169,487 rows of a possible 513,864 unique key combinations.

CLASS_DSC VARCHAR2 Attribute - Software/Other

TOTAL_PRODUCT_ID NUMBER Surrogate key 1 1

TOTAL_PRODUCT_DSC VARCHAR2 Attribute - Total Product

Table 3–4 CHANNEL_DIM Column Descriptions

Column Datatype Role
Unique
Values Sample Value

CHANNEL_ID NUMBER Primary key
Surrogate key

3 4

CHANNEL_DSC VARCHAR2 Attribute - Internet

ALL_CHANNELS_ID NUMBER Surrogate key 1 1

ALL_CHANNELS_DSC VARCHAR2 Attribute - All Channels

Table 3–3 (Cont.) PRODUCT_DIM Column Descriptions

Column Datatype Role Unique Values Sample Value

The Global Star Schema

The Sample Schema 3-15

UNITS_UPDATE_FACT adds data for month 91 (Jun-03). Every foreign key value
for Product, Customer, and Channel is used at least once. The table contains 3,459
rows of a possible unique 6,588 key combinations.

Table 3–5 describes the columns in both tables.

Fact Tables: PRICE_AND_COST_HISTORY_FACT and _UPDATE_FACT
The PRICE_AND_COST_HISTORY_FACT and PRICE_AND_COST_UPDATE_FACT
tables contain two foreign key columns, which together comprise a multi-column
primary key, and two fact columns.

In PRICE_AND_COST_HISTORY_FACT, data is provided for all products for 65
months.

PRICE_AND_COST_UPDATE_FACT adds data for month 91 (Jun-03) for all
products.

Table 3–6 describes the columns of both tables.

Table 3–5 UNITS_HISTORY_FACT and UNITS_UPDATE_FACT Column Descriptions

Column Datatype Role Description

CHANNEL_ID NUMBER Key Related to CHANNEL_DIM

ITEM_ID NUMBER Key Related to PRODUCT_DIM

SHIP_TO_ID NUMBER Key Related to CUSTOMER_DIM

MONTH_ID NUMBER Key Related to TIME_DIM

UNITS NUMBER Facts Number of units sold

Table 3–6 PRICE_AND_COST_HISTORY_FACT and
PRICE_AND_COST_UPDATE_FACT Column Descriptions

Column Datatype Role Description

ITEM_ID NUMBER Key Related to PRODUCT_DIM

MONTH_ID NUMBER Key Related to TIME_DIM

UNIT_PRICE NUMBER Facts List price of a unit

UNIT_COST NUMBER Facts Cost to produce a unit

Mapping the Global Schema to an Analytic Workspace

3-16 Oracle OLAP Application Developer’s Guide

Mapping the Global Schema to an Analytic Workspace
The OLAP Catalog provides an interface for mapping the columns of relational
tables to the multidimensional objects of an analytic workspace. The following
tables identify the mapping for the PRICE_AND_COST_HISTORY_FACT fact table
and its related dimension tables, PRODUCT_DIM and TIME_DIM. These tables are
the source for the PRICE_CUBE cube.

The analytic workspace objects listed in these tables will be created in Chapter 6,
"Creating an Analytic Workspace", and are described in more detail in Chapter 8,
"Exploring a Standard Form Analytic Workspace".

Global Product Dimension Mapping
Table 3–7 shows how the columns of the PRODUCT_DIM dimension table are
mapped to workspace objects to provide an embedded total PRODUCT dimension.

PRODUCT_DIM supports a single dimension hierarchy, PRODUCT_ROLLUP, with
four levels: ITEM, FAMILY, CLASS, and TOTAL_PRODUCT. The descriptive columns
are mapped to both the long and short descriptions, but this redundancy in the
analytic workspace is not required.

Table 3–7 Mapping the Global Product Dimension

PRODUCT_DIM Table
Columns

OLAP Catalog Logical
Objects

GLOBAL Analytic Workspace
Objects

ITEM_ID PRODUCT_ROLLUP hierarchy,
ITEM level

PRODUCT dimension

PRODUCT_PARENTREL parent
relation

PRODUCT_LEVELLIST level
dimension (ITEM, FAMILY,
CLASS, TOTAL_PRODUCT)

PRODUCT_LEVELREL level
relation

PRODUCT_HIERLIST
hierarchy dimension
(PRODUCT_ROLLUP)

FAMILY_ID PRODUCT_ROLLUP hierarchy,
FAMILY level

CLASS_ID PRODUCT_ROLLUP hierarchy,
CLASS level

TOTAL_PRODUCT_ID PRODUCT_ROLLUP hierarchy,
TOTAL_PRODUCT level

ITEM_PACKAGE PACKAGE attribute PRODUCT_PACKAGE variable

Mapping the Global Schema to an Analytic Workspace

The Sample Schema 3-17

Global Time Dimension Mapping
Table 3–8 shows how the columns of the TIME_DIM dimension table are mapped to
workspace objects to provide an embedded total TIME dimension.

TIME_DIM supports a single dimension hierarchy, Calendar, with three levels:
Month, Quarter, and Year. For time-based analysis in the analytic workspace, a
Time dimension must have End_Date and Time_Span attributes, as it does here. The
descriptive columns are mapped to both the long and short descriptions, but this
redundancy in the analytic workspace is not required.

ITEM_DSC ITEM Long Description
attribute

ITEM Short Description
attribute

PRODUCT_LONG_DESCRIPTIO
N variable

PRODUCT_SHORT_DESCRIPTI
ON variable

FAMILY_DSC FAMILY Long Description
attribute

FAMILY Short Description
attribute

CLASS_DSC CLASS Long Description
attribute

CLASS Short Description
attribute

TOTAL_PRODUCT_DSC CLASS Long Description
attribute

CLASS Short Description
attribute

Table 3–7 (Cont.) Mapping the Global Product Dimension

PRODUCT_DIM Table
Columns

OLAP Catalog Logical
Objects

GLOBAL Analytic Workspace
Objects

Mapping the Global Schema to an Analytic Workspace

3-18 Oracle OLAP Application Developer’s Guide

Table 3–8 Mapping the Global Time Dimension

TIME_DIM Table
Columns

OLAP Catalog Logical
Objects

GLOBAL Analytic Workspace
Objects

MONTH_ID Calendar hierarchy,
Month level

TIME dimension

TIME_PARENTREL parent
relation

TIME_LEVELLIST level
dimension (Month, Quarter,
Year))

TIME_LEVELREL level relation

TIME_HIERLIST hierarchy
dimension (Calendar)

QUARTER_ID Calendar hierarchy,
Quarter level

YEAR_ID Calendar hierarchy, Year
level

MONTH_DSC Month Long Description
attribute

Month Short Description
attribute

TIME_LONG_DESCRIPTION
variable

TIME_SHORT_DESCRIPTION
variable

QUARTER_DSC Quarter Long attribute
Attribute

Quarter Short attribute
Attribute

YEAR_DSC Year Long Description
attribute

Year Short Description
attribute

MONTH_TIMESPAN Month Time_Span
attribute

TIME_TIME_SPAN variable

QUARTER_TIMESPAN Quarter Time_Span
attribute

YEAR_TIMESPAN Year Time_Span attribute

MONTH_END_DATE Month End_Date attribute TIME_END_DATE variable

QUARTER_END_DATE Quarter End_Date
attribute

YEAR_END_DATE Year End_Date attribute

Mapping the Global Schema to an Analytic Workspace

The Sample Schema 3-19

Global Price Cube Mapping
Table 3–9 shows how the columns of the PRICE_AND_COST_HISTORY_FACT fact
table are mapped to workspace objects to provide a PRICE_CUBE cube with two
measures, UNIT_COST and UNIT_PRICE.

An aggregation operator is defined in the OLAP Catalog and is the basis for an
initial aggmap for the cube. The aggmap provides the rules of aggregation. The
measure formulas use the aggmap to aggregate the base-level data loaded into the
measure variables.

Most variables are sparse and require a composite dimension, which is associated
with the cube.

Table 3–9 Mapping the Global Price Cube

PRICE_AND_COST_HIS
TORY_FACT Table
Columns

OLAP Catalog Logical
Objects

GLOBAL Analytic Workspace
Objects

ITEM_ID PRICE_CUBE cube

SUM aggregation operator

PRICE_CUBE dimension (TIME,
PRODUCT)

PRICE_CUBE_COMPOSITE
dimension

PRICE_CUBE_AGGMAP_AWCREAT
EDDEFAULT_1 aggmap

MONTH_ID

UNIT_PRICE UNIT_PRICE measure UNIT_PRICE formula

UNIT_PRICE_VARIABLE
variable

UNIT_COST UNIT_COST measure UNIT_COST formula

UNIT_COST_VARIABLE variable

Mapping the Global Schema to an Analytic Workspace

3-20 Oracle OLAP Application Developer’s Guide

Developing Java Applications for OLAP 4-1

4
Developing Java Applications for OLAP

This chapter presents the rich development environment and the powerful tools
that you can use to create OLAP applications. It includes the following topics:

■ Building Analytical Java Applications

■ Introducing the BI Beans

■ Understanding the OLAP API

■ Managing Data Sources for the BI Beans and OLAP API

For information about SQL access to analytic workspaces, refer to Chapter 7, "SQL
Access to Analytic Workspaces".

Building Analytical Java Applications
Java is the language of the Internet. Using Java, an application developer can write
standalone Java applications (which can be launched from a browser with Java's
WebStart technology), or they can create HTML applications through servlets,
JavaServer Pages (JSP), and Oracle User Interface XML (UIX), which access live data
from an Oracle Database.

About Java
Java is the preferred programming language for an ever-increasing number of
professional software developers. For those who have been programming in C or
C++, the move to Java is easy because it provides a familiar environment while
avoiding many of the shortcomings of the C language. Developed by Sun
Microsystems, Java is fast superseding C++ and Visual Basic as the language of
choice for application developers, for the following reasons:

Building Analytical Java Applications

4-2 Oracle OLAP Application Developer’s Guide

■ Object oriented. Java enables application developers to focus on the data and
methods of manipulating that data, rather than on abstract procedures; the
programmer defines the desired object rather than the steps needed to create
that object. Almost everything in Java is defined as an object.

■ Platform independent. The Java compiler creates byte code that is interpreted at
runtime by the Java Virtual Machine (JVM). As the result, the same software can
run on all Windows, Unix, and Macintosh platforms where the JVM has been
installed. All major browsers have the JVM built in.

■ Network based. Java was designed to work over a network, which enables Java
programs to handle remote resources as easily as local resources.

■ Secure. Java code is either trusted or untrusted, and access to system resources
is determined by this characteristic. Local code is trusted to have full access to
system resources, but downloaded remote code (that is, an applet) is not
trusted. The Java "sandbox" security model provides a very restricted
environment for untrusted code.

The Java Solution for OLAP
To develop an OLAP application, you can use the Java programming language. Java
enables you to write applications that are platform-independent and easily
deployed over the Internet.

The OLAP API is a Java-based application programming interface that provides
access to multidimensional data for analytical business applications. The OLAP API
uses OLAP Catalog metadata to access data that is stored either in the relational
tables of a star or snowflake schema, or in views of an analytic workspace that has
been enabled for its use.

Java classes in the OLAP API provide all of the functions required of an OLAP
application: Connection to an OLAP instance; authentication of user credentials;
access to data in the RDBMS controlled by the permissions granted to those
credentials; and selection and manipulation of that data for business analysis.

The BI Beans simplify application development by providing these functions as
JavaBeans. Moreover, the BI Beans include JavaBeans for presenting the data in
graphs, crosstabs, and tables.

Note: Oracle JDeveloper and the BI Beans are not packaged with
the Oracle RDBMS.

Introducing the BI Beans

Developing Java Applications for OLAP 4-3

Oracle Java Development Environment
Oracle JDeveloper provides an integrated development environment (IDE) for
developing Java applications. Although third-party Java IDEs can also be used
effectively, only JDeveloper achieves full integration with the Oracle Database and
BI Beans wizards. The following are a few JDeveloper features:

■ Remote graphical debugger with break points, watches, and an inspector.

■ Multiple document interface (MDI)

■ Codecoach feature that helps you to optimize your code

■ Generation of 100% Pure Java applications, applets, servlets, Java beans, and so
forth with no proprietary code or markers

■ Oracle Database browser

Introducing the BI Beans
The BI Beans provide reusable components that are the basic building blocks for
OLAP decision support applications. Using the BI Beans, developers can rapidly
develop and deploy new applications, because these large functional units have
already been developed and tested — not only for their robustness, but also for
their ease of use. And because the BI Beans provide a common look and feel to
OLAP applications, the learning curve for end users is greatly reduced.

The BI Beans contain the following:

■ Presentation Beans display the data in a rich variety of formats so that trends
and variations can easily be detected. Among the Presentation Beans currently
available are Graph, Table, and Crosstabs.

■ Data Beans acquire and manipulate the data. The Data Beans use the OLAP
API to connect to a data source, define a query, manipulate the resultant data
set, and return the results to the Presentation Beans for display. Data Beans
include a Query Builder and a Calculation Builder.

■ Persistence Services is a set of packages that support the storage and retrieval
of objects in the BI Beans Catalog, not only so that you can save your work, but
also so that you can share the work with others who have access to the Catalog.

Note: Oracle JDeveloper is an application and is not packaged
with the Oracle RDBMS.

Introducing the BI Beans

4-4 Oracle OLAP Application Developer’s Guide

The BI Beans can be implemented as a Java client or a thin client. Java clients best
support users who do immersed analyses, that is, use the system for extensive
periods of time with a lot of interaction. For example, users who create reports
benefit from a Java client. Thin clients best support remote users who use a low
bandwidth connection and have basic analytical needs. Thin clients can be
embedded in a portal or other Web site for these users.

Metadata
The OLAP API and the BI Beans use the OLAP Catalog to provide the information
they need about multidimensional objects defined in an Oracle data warehouse,
such as measures and dimensions. The BI Beans generates additional metadata to
support its additional functionality. This additional metadata is called the BI Beans
Catalog.

Navigation
The Presentation Beans support navigation techniques such as drilling, pivoting,
and paging.

■ Drilling displays lower-level values that contribute to a higher-level aggregate,
such as the cities that contribute to a state total.

■ Pivoting rotates the data cube so that the dimension members that labeled a
series now label groups, or the dimension members that labeled columns in a
crosstab now label rows instead. For example, if products label the rows and
regions label the columns, then you can pivot the data cube so that products
label the columns and regions label the rows.

■ Paging handles additional dimensions by showing each member in a separate
graph, crosstab, or table rather than nesting them in the columns or rows. For
example, you might want to see each time period in a separate graph rather
than all time periods on the same graph.

Formatting
The Presentation Beans enable you to change the appearance of a particular display.
In addition, the values of the data itself can affect the format.

■ Number formatting. Numerical displays can be modified by changing their
scale, number of decimal digits and leading zeros, currency symbol, negative
notation, and so forth. Currency symbols and scaling factors can be displayed in
the column or row headers rather than in the cells.

Introducing the BI Beans

Developing Java Applications for OLAP 4-5

■ Stoplight formatting. The formatting of the cell background color, border, font,
and so forth can be data driven so that outstanding or problematic results stand
out visually from the other data values.

■ Ranking. In ranking reports, the numerical rank of each dimension value, based
on the value of the measure, is displayed.

Graphs
The Graph bean presents data in a large selection of two- and three-dimensional
business chart types, such as bar, area, line, pie, ring, scatter, bubble, pyramid, and
stock market. Many of the 2D graphs can be displayed as clustered, stacked, dual-Y,
percentage, horizontal, vertical, or 3D effect.

Bar, line, and area graphs can be combined so that individual rows in the data cube
can be specified as one of these graph types. You can also assign marker shape and
type, data line type, color, and width, and fill colors on a row-by-row basis.

The graph image can be copied to the system clipboard and exported in GIF and
other image formats.

Users can zoom in and out of selected areas of a graph. They can also scroll across
the axes.

Crosstabs
The Crosstab bean presents data in a two-dimensional grid similar to a spreadsheet.
Multiple dimensions can be nested along the rows or columns, and additional
dimensions can appear as separate pages. Among the available customizations are:
Font style, size, color and underlining; individual cell background colors; border
formats; and text alignment.

Users can navigate through the data using either a mouse or the keyboard. They can
insert rows and columns to display totals, and edit cells for what-if analysis.

Tables
The Table bean presents data in record format like a relational table or view. In
contrast to the crosstab, the table display handles measures individually rather than
as members of a measure dimension. Thus, each measure can be manipulated
individually.

Understanding the OLAP API

4-6 Oracle OLAP Application Developer’s Guide

Data Beans
The Data Beans use the OLAP API to provide the basic services needed by an
application. They enable clients to identify a database, present credentials for
accessing that database, and make a connection. The application can then access the
metadata and identify the available data. Users can select the measures they want to
see and the specific slice of data that is of interest to them. That data can then be
modified and manipulated.

Wizards
The BI Beans offer wizards that can be used both by application developers in
creating an initial environment and by end users in customizing applications to suit
their particular needs. The wizards lead you step-by-step so that you provide all of
the information needed by an application. The following are some of the tasks that
can be done using wizards.

■ Building a query. Fact tables and materialized views often contain much more
data than users are interested in viewing. Fetching vast quantities of data can
also degrade performance unnecessarily. In addition to selecting measures, you
can limit the amount of data fetched in a query by selecting dimension
members from a list or using a set of conditions. A selection can be saved and
used again just by picking its name from a list.

The BI Beans take advantage of all of the new OLAP functions in the database,
including ranking, lag, lead, and windowing. End users can create powerful
queries that ask sophisticated analytical questions, without knowing SQL at all.

■ Generating custom measures. You can define new "custom" measures whose
values are calculated from data stored within the database. For example, a user
might create a custom measure that shows the percent of change in sales from a
year ago. The data in the custom measure would be calculated using the lag
method on data in the Sales measure. Because a DBA cannot anticipate and
create all of the calculations required by all users, the BI Beans enable users to
create their own.

Understanding the OLAP API
OLAP applications typically have object-oriented user interfaces where users
manipulate objects that represent organized groupings of their data. Thus, there is a
natural relationship between an object-oriented user interface and an
object-oriented API such as the Oracle OLAP API. The OLAP API exploits this

Understanding the OLAP API

Developing Java Applications for OLAP 4-7

natural relationship by providing objects that match the end-user behavior that an
application needs.

Object-oriented languages such as Java manipulate data by applying methods on
objects. This approach enables the objects to maintain a current state and support
incremental modifications to that state. This approach provides excellent support
for common OLAP actions such as drill and rotate.

For example, a central activity for users of OLAP applications is refining queries. A
user has a question in mind and devises a query to answer that question. In most
cases, the initial results of the query prompt the user to want to dig deeper for a
solution, perhaps by drilling to see more detailed data or by rotating the report to
highlight correlations in the data. The OLAP API is able to use the result of one
query as the input to the next query.

How the OLAP API Accesses Multidimensional Data
The OLAP API accesses the data through the OLAP Catalog, that is, the relational
tables that contain OLAP metadata. The application does not need to be aware of
whether the data is located in relational tables or in an analytic workspace, nor does
it need to know the mechanism for accessing that data.

Oracle OLAP translates all queries from the OLAP API into SQL; when a query is
issued through the OLAP API, the SQL generator in Oracle OLAP issues a SELECT
statement against a relational table or view. This has several advantages for
application developers:

■ The difficult task of writing the complex SQL needed to resolve
multidimensional queries, and even more difficult task of optimizing that
complex SQL, is left for Oracle OLAP to do. Application developers can be
more productive writing in the OLAP API, which is designed for OLAP.

■ Updates to SQL and the OLAP DML will be incorporated into new versions of
the OLAP API. Applications can make use of new analytic and performance
features without recoding.

As an alternative access method, the OLAP API provides a way for a Java
application to directly manipulate workspace data, without the need for any
metadata and without the use of the OLAP API data manipulation classes. The Java
application uses the SPLExecutor class in the OLAP API to send DML commands
directly to Oracle OLAP for execution in the workspace.

Whichever access method is used, the application establishes a connection, opens
the workspace, accesses the data (either through MDM metadata or through
SPLExecutor), closes the workspace, and closes the connection.

Understanding the OLAP API

4-8 Oracle OLAP Application Developer’s Guide

Calculation Capabilities
The OLAP API generates SQL commands to select and manipulate data stored in
the relational tables or views. When the data is stored in an analytic workspace, the
computational power of the OLAP engine can be used to manipulate the data,
including:

■ Modeling

■ Forecasting

■ What-if scenarios

When the data is stored in a star or snowflake schema, the SQL commands
generated by the OLAP API can include the "N-pass" functions, such as RANK,
PERCENTILE, TOPN, BOTTOMN, LAG, LEAD, SUM, AVG, MIN, MAX, COUNT, and
STDDEV. Data fetches use many database innovations, including concatenated
rollup, scrollable cursors, and query rewrite.

The OLAP API provides expanded calculation capabilities beyond those that can be
handled efficiently in other OLAP solutions, such as:

■ Totals broken out by multiple attributes

■ Suppression of NA and zero rows, columns, and pages

■ Union dimensions

■ Measures as dimensions

■ Inter-row calculations such as the following book-to-bill ratio:

Balance(Account "BOOKED", Period "PRIOR")/ Balance(Account "BILLED", Period
"LAST")

■ Asymmetric queries

Intelligent Caching
Analytical queries are by nature iterative. An analyst formulates a query, sees the
results, and then formulates other queries based on those results. Since the
likelihood is very high in business analysis of needing the same data to answer

See Also:

■ Oracle OLAP Developer's Guide to the OLAP API

■ OLAP API Javadoc

Managing Data Sources for the BI Beans and OLAP API

Developing Java Applications for OLAP 4-9

subsequent queries, the OLAP API caches the metadata so that it is available
throughout the session without fetching it again. Moreover, the OLAP API defines
the result set of a query geometrically. Using multidimensional cursors, the OLAP
API can randomly access disparate regions of the result set. This enables an
application to retrieve just the data currently of interest instead of all of the data in
the result set. For example, you might scroll to the end of a page without having to
fetch all of the data on the page.

Managing Data Sources for the BI Beans and OLAP API
Applications built using the BI Beans and the OLAP API can have as a data source
either an analytic workspace or a relational schema (star or snowflake). This guide
is written primarily to describe the creation and management of analytic
workspaces. However, the information for creating a relational data warehouse for
use by the BI Beans and the OLAP API is also contained here.

Take these steps if you plan to use a star or snowflake schema as the data source for
OLAP applications, and you do not plan to create an analytic workspace:

1. Create CWM1 or CWM2 metadata as described in "Overview of the OLAP
Catalog" on page 5-6.

2. Using a SQL command processor such as SQL*Plus, issue this command to
make the metadata accessible to the BI Beans.

EXECUTE CWM2_OLAP_METADATA_REFRESH.MR_REFRESH

3. Create materialized views as described in Chapter 13.

Managing Data Sources for the BI Beans and OLAP API

4-10 Oracle OLAP Application Developer’s Guide

Part II
Fundamentals of Creating and Using

Analytic Workspaces

Part II contains information about creating analytic workspaces. It contains the
following chapters:

■ Chapter 5, "Defining a Logical Multidimensional Model"

■ Chapter 6, "Creating an Analytic Workspace"

■ Chapter 7, "SQL Access to Analytic Workspaces"

■ Chapter 8, "Exploring a Standard Form Analytic Workspace"

Defining a Logical Multidimensional Model 5-1

5
Defining a Logical Multidimensional Model

This chapter describes methods of creating a logical multidimensional model. It
includes the following sections:

■ Introduction to OLAP Metadata

■ Overview of the OLAP Catalog

■ Choosing a Tool for Creating OLAP Catalog Metadata

■ Creating Metadata Using Oracle Enterprise Manager

■ Case Study: Creating Metadata for the GLOBAL Star Schema

■ Creating Metadata Using PL/SQL

Introduction to OLAP Metadata
Metadata is used throughout Oracle OLAP to define a logical multidimensional
model:

■ To describe the source data as multidimensional objects for use by the analytic
workspace build tools.

There are several methods of creating this type of metadata, as described in this
chapter.

■ To identify the components of logical objects in an analytic workspace for use
by the refresh, aggregation, and enablement tools.

Database standard form describes this metadata, which is generated by the
workspace creation tools. Refer to Appendix A for a description of standard
form.

Introduction to OLAP Metadata

5-2 Oracle OLAP Application Developer’s Guide

■ To describe relational views of analytic workspaces as multidimensional objects
for use by OLAP applications.

The application determines the type of metadata that is needed. The BI Beans
require OLAP Catalog metadata, which is described in this chapter.

You only need to describe your source data; the OLAP tools can generate the
equivalent metadata for the analytic workspace and the workspace views. The
logical model is transformed along with the data. Figure 5–1 shows the metadata
transformations performed by the OLAP tools. These metadata types are discussed
in this chapter.

Figure 5–1 Transformation of the Logical Model

Introduction to OLAP Metadata

Defining a Logical Multidimensional Model 5-3

Creating Metadata for Your Source Data
Defining the logical model is the first stage of metadata creation; the second stage is
mapping the logical objects to physical data sources. Different types of metadata
have different requirements for the storage format of the source data; you must
choose the method that is appropriate for your data source. Moreover, there are
multiple methods of creating metadata, including graphical user interfaces and
PL/SQL APIs.

For Source Data in a Basic Star or Snowflake Schema
The CWM1 write APIs, which are used by the OLAP Management tool, create a
database dimension object for each logical OLAP dimension. The database
dimension object imposes the following restrictions on dimension tables and the
related fact tables of a star or snowflake schema:

■ All hierarchies must be level-based; the schema cannot use parent-child
dimension tables.

■ Multiple hierarchies defined for a dimension must have the same base level.

■ Level columns cannot contain NULLs.

■ Fact data must be unsolved, that is, it is stored only at the lowest level of the
hierarchy, and all the data for a cube must be stored in a single fact table.

If your source data is a star or snowflake schema and conforms to these additional
requirements, then you can use either Oracle Enterprise Manager or the CWM2 APIs,
depending on your personal preference. The OLAP Management tool in Oracle
Enterprise Manager provides a graphical user interface. The CWM2 APIs enable you
to generate a SQL program that you can easily modify and port to other databases.

If your source data is a star or snowflake schema that does not conform with these
requirements, then use the CWM2 APIs.

Figure 5–2 shows the tools for creating OLAP Catalog metadata.

Introduction to OLAP Metadata

5-4 Oracle OLAP Application Developer’s Guide

Figure 5–2 Tools for Creating OLAP Catalog Metadata for Source Data

This chapter introduces the OLAP Management tool in Oracle Enterprise Manager
and the CWM2 APIs.

For Dimension Tables with Complex Hierarchies
If your source data is a star or snowflake schema, but the dimension tables include
any of the following variations, then use the CWM2 APIs:

■ Level columns containing NULLs, such as skip-level hierarchies

■ Multiple hierarchies with different base levels (sometimes called ragged
hierarchies)

■ Multiple hierarchies with values mapped to different levels

■ Embedded total dimensions

■ Parent-child dimensions

See Also: Oracle OLAP Reference for complete syntax and
descriptions of the CWM2 APIs

Introduction to OLAP Metadata

Defining a Logical Multidimensional Model 5-5

If your schema contains parent-child dimension tables, then you must convert them
to level-based dimension tables. The CWM2 write APIs include a package for this
transformation.

For Other Schema Configurations
If you are using Oracle Warehouse Builder already to transform your data, then
generating an analytic workspace takes only a few additional steps. Warehouse
Builder provides a graphical interface for designing a logical model, and deploys
the model as metadata. When you use the OLAP Bridge in Warehouse Builder, it
generates CWM1 metadata from its Design Repository. Warehouse Builder also
creates and populates an analytic workspace, and enables it for use by the BI Beans.

If your data is stored in flat files or SQL tables, then you can use a manual method
described in this guide. This method enables you to use the OLAP Catalog, but
requires you to write data loading programs in the OLAP DML.

If you are upgrading from Oracle Express, then you may be able to automate the
conversion process.

Creating Metadata for Your Analytic Workspace
The tools for creating analytic workspaces comply with the requirements of
database standard form, and transform the source metadata into standard form
metadata. You do not need to perform any extra steps to maintain the standard
form metadata when you use the OLAP tools to maintain the analytic workspace.
You can make changes to the logical model in the metadata for the data source, and
the refresh tool makes the appropriate changes to the standard form metadata.

However, if you make manual changes to your analytic workspace, such as adding
a measure, then you are responsible for making the appropriate changes to the
standard form metadata. Standard form is described in Appendix A.

See Also:

■ Oracle Warehouse Builder User’s Guide if your data requires
transformation

■ Chapter 11 if your data is in flat files, or in a purely relational
schema and you prefer to use the OLAP DML

■ Appendix B if your data is in an Express database

Overview of the OLAP Catalog

5-6 Oracle OLAP Application Developer’s Guide

Creating Metadata for Your Applications
Applications that use the BI Beans require OLAP Catalog metadata, and those that
use Discoverer require an End User Layer. Both types of metadata require the data
source to be in relational tables or views for SQL access. Thus, the enablers in
Analytic Workspace Manager for these types of applications generate views of
analytic workspace objects in the format required by the metadata, and then
generate the metadata itself. The enablers transform the standard form metadata
provided in the analytic workspace; you do not need to redefine the logical model.
Instructions for enabling an analytic workspace are provided in Chapter 6.

Overview of the OLAP Catalog
The OLAP Catalog defines logical multidimensional objects and maps them to
physical data sources. The logical objects are cubes, measures, dimensions, and so
forth as described in "The Logical Multidimensional Data Model" on page 2-1. The
physical data sources are the columns of a relational table or view. A number of
different warehouse configurations can be represented by OLAP Catalog metadata.

The OLAP Catalog serves these distinct functions for analytic workspaces:

■ Describes the relational tables of a star or snowflake schema so that the data can
be fetched into an analytic workspace. This metadata is used only when
building or refreshing the analytic workspace.

■ Describes the relational views of an analytic workspace so that the data can be
queried by the BI Beans. This metadata is used only at runtime so that
applications have access to the workspace data.

Thus, when you are developing an analytic workspace, you may create two sets of
OLAP Catalog metadata: one for the source schema, and the other for the analytic
workspace. If your analytic workspace is used by another application, such as
Oracle Discoverer, then you only define OLAP Catalog metadata for your source
schema. For your analytic workspace, you create an End User Layer (EUL), which is
the type of metadata required by Discoverer.

The OLAP Catalog is also used to describe the relational tables of a star schema so
that the data can be queried by the BI Beans. In this type of scenario, no analytic
workspace is used; aggregate data is stored in materialized views, as described in
Chapter 13.

The BI Beans query metadata stored in the OLAP Catalog. Your data, whether it is
stored in relational tables or in an analytic workspace, is inaccessible to applications

Overview of the OLAP Catalog

Defining a Logical Multidimensional Model 5-7

based in these technologies unless the data is identified in the OLAP Catalog. The
OLAP Catalog is also available to any other applications that want to use it.

OLAP Catalog Components
The OLAP Catalog includes the following:

■ Metadata model tables: A set of relational tables within the database that
instantiate the OLAP metadata model. These tables define all the OLAP
metadata objects: dimensions, measures, cubes, measure folders, and so on.
Within the metadata definitions are references to the actual data sources.

■ Write API: A set of PL/SQL packages for creating and editing OLAP metadata.
These packages contain procedures for inserting, updating, and deleting rows
in the model tables.

■ Read API: A set of relational views within the database that provide
information about the metadata registered in the model tables.

Two versions of the OLAP Catalog are currently in use, CWM1 (also called
CWM-Lite) and CWM2. Each version has its own metadata model tables, write API,
and read API. However, applications can query a set of union views that contains
all of the OLAP Catalog metadata, regardless of the write API used to generate it.

About CWM1
CWM1 is available through the OLAP Management tool of Oracle Enterprise
Manager. You can use CWM1 only to describe a schema that complies with the
requirements listed in "Choosing a Tool for Creating OLAP Catalog Metadata" on
page 5-8. You can then use the OLAP Catalog to create an analytic workspace or to
access the relational schema directly through the BI Beans.

You can view CWM1 metadata in the OLAP Management tool of Enterprise Manager,
or in the OLAP Catalog View of Analytic Workspace Manager.

About CWM2
CWM2 is available through the BI Beans enabler in Analytic Workspace Manager and
as a set of PL/SQL packages. You can use CWM2 to describe a star or snowflake
schema that does not comply with the requirements for CWM1. You can use only
CWM2 to define the metadata for an analytic workspace; you cannot use CWM1 for
this purpose.

You can view CWM2 metadata in the OLAP Catalog View of Analytic Workspace
Manager.

Choosing a Tool for Creating OLAP Catalog Metadata

5-8 Oracle OLAP Application Developer’s Guide

Steps for Creating OLAP Metadata
Whether you create OLAP metadata programmatically or by using a graphic
interface, you follow the same basic steps.

To create OLAP metadata:

1. Create logical dimensions. Specify the levels, attributes, and hierarchies
associated with each one. ("Procedure: Defining a Logical Dimension in the
OLAP Catalog" on page 5-13)

2. Create logical cubes and specify their edges (dimensions). ("Procedure: Defining
a Logical Cube in the OLAP Catalog" on page 5-14)

3. Create logical measures that represent the fact data. Associate each measure
with a cube. ("Procedure: Defining a Logical Cube in the OLAP Catalog")

4. Map the logical entities to the source data. ("Procedure: Defining a Logical Cube
in the OLAP Catalog" on page 5-14)

Choosing a Tool for Creating OLAP Catalog Metadata
The tools for creating OLAP Catalog metadata depend on whether you are creating
the metadata for a relational schema or for an analytic workspace. Some tools have
specific prerequisites.

Creating Metadata for an Analytic Workspace
When you create OLAP Catalog metadata for the data stored in an analytic
workspace, you define it against relational views of the multidimensional objects in
the workspace. These views emulate a star schema, but are different in the way they
expose dimensions. Instead of dedicating a separate column to each level of a
dimension hierarchy, these views list all dimension members at all levels in a single
column. For this reason, views of this type are called embedded total views. The
views display the dimensions in the same format in which they are stored in the
analytic workspace. You can create CWM2 metadata for embedded total views; you
cannot create CWM1 metadata for them.

You can choose among three tools for creating OLAP Catalog metadata for an
analytic workspace:

■ Analytic Workspace Manager

■ Oracle Warehouse Builder

■ CWM2 APIs

Choosing a Tool for Creating OLAP Catalog Metadata

Defining a Logical Multidimensional Model 5-9

Figure 5–3 shows the relationships among these tools and an analytic workspace.
When an analytic workspace is enabled for use by the BI Beans, relational views are
created that can access workspace objects in response to a query. The CWM2 write
APIs store metadata about the logical model represented by the views in the CWM2
read APIs. This metadata is automatically available through the Union views. You
must run a PL/SQL procedure to make the metadata available to the Metadata
Refresh Views, which are the views that provide the best performance when
queried by the OLAP API.

Choosing a Tool for Creating OLAP Catalog Metadata

5-10 Oracle OLAP Application Developer’s Guide

Figure 5–3 Tools for Creating Metadata for Analytic Workspaces

If you have a standard form analytic workspace, then use the BI Beans enabler in
Analytic Workspace Manager to generate the relational views and the CWM2
metadata in a single step.

If you use Oracle Warehouse Builder to generate your analytic workspace, then it
also creates the views and the CWM2 metadata for access by the BI Beans.

Creating Metadata Using Oracle Enterprise Manager

Defining a Logical Multidimensional Model 5-11

If your analytic workspace includes objects that do not comply with database
standard form, or you wish to generate the relational views manually, then write
your own CWM2 script. You may wish to start by modifying a script generated by
Analytic Workspace Manager.

Chapter 6, explains how to use the BI Beans enabler in Analytic Workspace
Manager.

Creating Metadata Using Oracle Enterprise Manager
If your data warehouse complies with the requirements listed in "For Source Data in
a Basic Star or Snowflake Schema" on page 5-3, you can create OLAP metadata
using the OLAP Management tool in Oracle Enterprise Manager.

You generate the SQL statements that create the metadata primarily by following
the steps presented by a wizard or by completing a property sheet. If you wish, you
can display the SQL statements before executing them.

Procedure: Accessing OLAP Management
Follow these steps to start Oracle Enterprise Manager and access OLAP
Management:

1. Open Oracle Enterprise Manager 10g Grid Control in your browser.

The login page is displayed.

2. Enter a user name and password for Enterprise Manager.

The Grid Control home page is displayed.

3. Click the Targets tab.

The Hosts page is displayed.

4. Click the Database tab.

The Databases page is displayed.

5. Click the link for the database you want to manage.

The Oracle Database home page is displayed.

6. Click the Administration link.

See Also: Oracle OLAP Reference for complete syntax and
descriptions of the CWM2 APIs

Creating Metadata Using Oracle Enterprise Manager

5-12 Oracle OLAP Application Developer’s Guide

The Database Administration page is displayed.

7. Look for the Warehouse heading. Links in the left column are used for Oracle
OLAP. (The other Warehouse links are used only for relational warehouses that
do not use the OLAP option. Do not use those links.)

You see the types of objects that you can create: Cubes, OLAP dimensions, and
measure folders. These links are for OLAP Management.

Defining Metadata for Dimension Tables
When creating OLAP metadata, you must first define the metadata objects for the
dimension tables. These metadata objects are logical dimensions based on database
dimension objects. You can use the Dimension Creation wizard or supply
information directly in the Create Dimension dialog box.

Information That You Supply for Dimensions
To define a dimension, you provide all the information that will be needed to label
and aggregate the measures dimensioned by it, including:

■ The name of the dimension

■ The tables that contain the data for the dimension

■ The name of each level, and the columns that contain the data for each level

■ The number and order of levels in each hierarchy

■ Join keys for levels that are stored in separate tables

■ The columns that contain attributes for the levels

■ A display name and description for the dimension and each of its hierarchies,
levels, and attributes

Time Dimension
Business analysis is performed on historical data, so fully defined time periods are
vital. Your time dimension table must have columns for period end dates and time
span. This information supports time-series analysis, such as comparisons with
earlier time periods. If your schema does not have these columns, then you can
define time as a normal dimension, but it will not support time-based analysis.

Typical levels and hierarchies for Time dimensions are suggested by the Dimension
wizard, but you do not have to use them.

Creating Metadata Using Oracle Enterprise Manager

Defining a Logical Multidimensional Model 5-13

Procedure: Defining a Logical Dimension in the OLAP Catalog
Follow these steps to create a dimension and its associated levels, hierarchies, and
attributes:

1. Start Oracle Enterprise Manager and access OLAP Management, as described in
"Procedure: Accessing OLAP Management" on page 5-11.

2. Click the OLAP Dimensions link under Warehouse.

If you have not already logged into the database, the Database Login page is
displayed. Enter your login name and password for the database.

The Search Objects page is displayed.

3. Click Create.

The Create Dimension page is displayed.

4. Choose Help if you need further information.

Defining Metadata for Fact Tables
After you have defined the metadata objects for the dimension tables, you can
create metadata objects for the fact tables. These metadata objects are measures and
cubes. A cube is a collection of identically dimensioned measures. Cubes and
measures are defined entirely in the OLAP metadata; there are no corresponding
database objects.

Information That You Supply for Cubes
When you define a cube, you identify information such as the following:

■ The name of the cube and the fact table associated with it. All measures in a
cube must be from a single fact table.

Tip: If you plan to calculate and store custom measures such as
forecasts as a permanent part of your analytic workspace, you can
add empty columns to the fact tables and define logical measures
from those columns. Then the analytic workspace creation process
will create and register all of the objects associated with the custom
measures, so you only need to populate them. Refer to Chapter 11
for more information about this method of creating custom
measures.

Case Study: Creating Metadata for the GLOBAL Star Schema

5-14 Oracle OLAP Application Developer’s Guide

■ The names of the dimensions and the levels in the dimension hierarchies that
will be used in the cube.

■ The names of the measures and the columns in the fact table where the values
for each measure is stored.

■ Default aggregation operators for each dimension of each measure (such as sum
or average).

■ Any calculation dependencies.

Procedure: Defining a Logical Cube in the OLAP Catalog
 Follow these steps to create a cube:

1. If you have not done so already, start Oracle Enterprise Manager and access
OLAP Management, as described in "Procedure: Accessing OLAP
Management" on page 5-11.

2. Click the Cubes link under Warehouse.

If you have not already logged into the database, the Database Login page is
displayed. Enter your login name and password for the database.

The Search Objects page is displayed.

3. Click Create.

The Create Cube page is displayed.

4. Choose Help if you need further information.

Case Study: Creating Metadata for the GLOBAL Star Schema
The Global star schema conforms to all of the requirements of CWM1, so you can use
the OLAP Management tool in Oracle Enterprise Manager.

Note: If you are creating OLAP Catalog metadata for use by the BI
Beans running directly against a relational schema (that is, with no
analytic workspace, then your last step is to open SQL*Plus
Worksheet and issue this command:

EXECUTE CWM2_OLAP_METADATA_REFRESH.MR_REFRESH

For relational source data, be sure to create materialized views as
described in Chapter 13.

Case Study: Creating Metadata for the GLOBAL Star Schema

Defining a Logical Multidimensional Model 5-15

If you have installed the Global schema, the OLAP Catalog metadata may be
already defined. However, you can follow this example by creating the metadata in
a different schema. All of the mappings between logical objects and source columns
are described in Chapter 3. The following procedures explain how to define just one
dimension and one cube.

Defining a Logical Time Dimension for the Global Schema
The TIMES_DIM table supports a single Calendar hierarchy with three levels
(Month, Quarter, and Year) as described in "Dimension Table: TIME_DIM" on
page 3-11. These are the steps to define a logical Time dimension using the Create
Dimension wizard.

1. On the Add Dimension page, do the following:

■ For Name, type TIME.

■ For Schema, choose GLOBAL.

■ For Type, select Time.

2. On the Add Level page, do the following

a. For Name, type YEAR.

b. For Type, choose Year.

c. For Table, choose TIME_DIM.

d. Click Populate Columns.

e. Move YEAR_ID from Available Columns to Selected Columns.

f. Click OK.

g. Repeat these steps for the Quarter and Month levels. Map Quarter to
QUARTER_ID and MONTH to MONTH_ID.

3. On the Add Hierarchy page, do the following:

a. For Name, type Calendar.

b. Choose Move All.

c. Use the arrow keys to order the levels like this:

Year
Quarter
Month

Creating Metadata Using PL/SQL

5-16 Oracle OLAP Application Developer’s Guide

4. On the Create Dimension page, choose Attributes. Edit the Long_Description
and Short_Description attributes and create the Time_Span and End_Date
attributes. Map the attributes to the columns shown in "Global Time Dimension
Mapping" on page 3-17.

5. On the Create Dimension page, choose OLAP Options. Type whatever
descriptions you want to add.

When you have successfully created a dimension, it appears on the Dimensions
page.

Defining a Logical Units Cube for the Global Schema
The UNITS_HISTORY_FACT table has a multi-column primary key, composed of
four surrogate keys from the four dimension tables, and one measure (UNITS).
These are the steps to define a logical Units cube. If you have installed the Global
schema, this cube may be defined already. However, you can follow these steps by
creating the cube under a different name or in a different schema.

1. On the Create Cube page, do the following:

a. For Name, type UNITS_CUBE.

b. For Display Name, type Units Cube.

c. For Schema, choose GLOBAL.

d. For Description, type your own description.

e. For Fact Type, choose Table.

f. For Fact Schema, choose GLOBAL.

g. For Fact Table, choose UNITS_HISTORY_FACT.

2. Use the Add Dimension page to add each dimension (CHANNEL, CUSTOMER,
PRODUCT, and TIME). Use the default properties and identify the appropriate
foreign key columns in the fact tables.

Creating Metadata Using PL/SQL
The CWM2 PL/SQL packages contain stored procedures that can create OLAP
metadata for a variety of schema designs, as described in "Choosing a Tool for
Creating OLAP Catalog Metadata" on page 5-8.

Before using these packages, make sure that you have performed any required
preprocessing steps.

Creating Metadata Using PL/SQL

Defining a Logical Multidimensional Model 5-17

CWM2 Packages for Creating OLAP Dimensions
The following packages contain procedures that create metadata for dimension
tables:

■ CWM2_OLAP_DIMENSION contains procedures for creating dimensions.

■ CWM2_OLAP_HIERARCHY contains procedures for creating hierarchies for
dimensions.

■ CWM2_OLAP_LEVEL contains procedures for creating levels for dimensions and
for associating levels with hierarchies.

■ CWM2_OLAP_LEVEL_ATTRIBUTE contains procedures for creating level
attributes and associating them with levels.

■ CWM2_OLAP_DIMENSION_ATTRIBUTE contains procedures for creating
dimension attributes and associating them with dimensions.

CWM2 Packages for Creating Cubes
The following packages contain procedures that create metadata for fact tables:

■ CWM2_OLAP_CUBE contains procedures for creating the multidimensional
structure of cubes.

■ CWM2_OLAP_MEASURE contains procedures for creating measures and
associating them with cubes.

CWM2 Package for Mapping Metadata
The CWM2_OLAP_TABLE_MAP package contains procedures that map logical
metadata entities to their physical data source. The data may be stored in relational
tables, or it may be represented by relational views. When the dimension tables and
fact tables are defined as views, the actual data may reside in analytic workspaces.

See Also:

■ "SQL Scripts for OLAP Catalog Metadata" on page C-4 for a full
example of using the CWM2 PL/SQL packages.

■ Oracle OLAP Reference for the comprehensive syntax of the
CWM2 packages.

Creating Metadata Using PL/SQL

5-18 Oracle OLAP Application Developer’s Guide

CWM2 Package for Creating Level-Based Dimension Tables
The CWM2_OLAP_PC_TRANSFORM package contains a procedure for transforming
parent-child dimension tables to level-based dimension tables. This conversion is
necessary if the dimension will be accessed by the BI Beans.

CWM2 Packages for Classification and Validation
The following packages contain procedures for creating measure folders and
validating OLAP metadata:

■ CWM2_OLAP_CATALOG provides procedures for creating and maintaining
measure folders.

■ CWM2_OLAP_VALIDATE provides procedures for validating OLAP Catalog
metadata.

■ CWM2_OLAP_METADATA_REFRESH provides procedures for refreshing
metadata tables that support queries by the BI Beans.

Creating an Analytic Workspace 6-1

6
Creating an Analytic Workspace

This chapter explains how to create a standard form analytic workspace that
performs optimally. It explores the various design decisions that affect how the data
is stored in an analytic workspace, and thus how quickly it can be retrieved. These
decisions are discussed in the context of using the wizards in Analytic Workspace
Manager.

This chapter contains the following topics:

■ Methods of Creating a Workspace

■ Introduction to Analytic Workspace Manager

■ Creating a Standard Form Workspace Using Analytic Workspace Manager

■ Case Study: Creating the Global Analytic Workspace

■ Case Study: Creating the Sales History Analytic Workspace

■ Generating Aggregate Data

■ Case Study: Aggregating Data in the GLOBAL Analytic Workspace

■ Enabling an Analytic Workspace for an Application

■ Refreshing the Data in an Analytic Workspace

Methods of Creating a Workspace
With OLAP Catalog metadata defined for your data source, you can choose from
these methods for creating an analytic workspace:

■ Analytic Workspace Manager. The Create Analytic Workspace wizard is the
easiest method of creating an analytic workspace, and the one described in this

Methods of Creating a Workspace

6-2 Oracle OLAP Application Developer’s Guide

chapter. The wizard generates a SQL script of DBMS_AWM statements, which you
can choose to execute immediately or save for execution later.

■ DBMS_AWM PL/SQL package. The DBMS_AWM package enables you to
automate the build process in a script and schedule it to run overnight in a
batch window. For most production systems, this is the preferred practice.

You can use the Create Analytic Workspace wizard to generate a basic script,
then edit the script to make any changes. This is a much less tedious and
time-consuming method than coding the scripts entirely by hand. The
DBMS_AWM package provides greater flexibility in designing your analytic
workspace than the graphical methods.

Figure 6–1 shows the relationships among the tools used in the build process.

Introduction to Analytic Workspace Manager

Creating an Analytic Workspace 6-3

Figure 6–1 Components Used With the OLAP Catalog to Build an Analytic Workspace

Introduction to Analytic Workspace Manager
Analytic Workspace Manager is a primary tool for creating, developing, and
managing analytic workspaces. It is a Java application that provides a graphical
user interface to several PL/SQL packages and to the OLAP DML.

The console, or main window, provides two views: the OLAP Catalog View, and the
Object View. You can switch between these two views using the View menu. In
addition, there are menus, a toolbar, a navigation pane, and a display pane. When
you select an object in the navigator pane, the display pane to the right provides
detailed information about that object. When you right-click an object, you get a
choice of menu items with appropriate actions for that object.

Introduction to Analytic Workspace Manager

6-4 Oracle OLAP Application Developer’s Guide

You can also conduct an interactive session using the OLAP DML, by opening
OLAP Worksheet. You can switch between the console and OLAP Worksheet, and
have an up-to-date view of your workspace in each one, because they share the
same session.

Analytic Workspace Manager has a full online Help system, which includes
context-sensitive Help.

OLAP Catalog View
OLAP Catalog View displays all OLAP Catalog metadata that you own or that you
have been given access rights to read, both CWM1 and CWM2. The view lists the
primary logical objects: measure folders, cubes, and dimensions. You cannot create
or change the metadata; to do that, you must use Oracle Enterprise Manager, Oracle
Warehouse Builder, or the CWM2 PL/SQL procedures.

After you create an analytic workspace, the OLAP Catalog View shows the
instantiated cubes in the analytic workspace in addition to the logical cubes in the
relational model. You can augment the metadata by creating and deploying an
aggregation plan on a workspace cube. An aggregation plan is associated with a
workspace cube and is stored in the analytic workspace. It provides the rules for
solving the data in a cube so that values are calculated for all levels.

Figure 6–2 shows the OLAP Catalog View. A relational cube named PRICE_CUBE in
the GLOBAL schema is selected in the view, so the pane to the right displays
information about the cube. Notice that an analytic workspace was created in the
GLOBAL_AW schema from the relational cubes defined in GLOBAL.

Introduction to Analytic Workspace Manager

Creating an Analytic Workspace 6-5

Figure 6–2 OLAP Catalog View in Analytic Workspace Manager

Object View
The Object View provides a graphical user interface to the OLAP DML. You can
create, modify, and delete individual workspace objects. Using the tools available
through the Object View, you can modify a workspace made by the Create Analytic
Workspace wizard.

The Object View is useful primarily for managing the definitions of workspace
objects. If you need to manage the contents of a workspace object or execute a
program, or if you are adept at using the OLAP DML, then you can open OLAP
Worksheet and have full use of the OLAP DML.

Figure 6–3 shows the Object View. A formula named UNIT_PRICE is currently
selected, so the right pane shows information about the formula.

Introduction to Analytic Workspace Manager

6-6 Oracle OLAP Application Developer’s Guide

Figure 6–3 Object View in Analytic Workspace Manager

OLAP Worksheet
OLAP Worksheet opens in a separate window from the Analytic Workspace
Manager console. This window provides menus, a toolbar, an input pane for OLAP
DML commands on the bottom, and an output pane on the top.

Figure 6–4 shows OLAP Worksheet opened from Analytic Workspace Manager.
Notice that the GLOBAL workspace is attached with read/write access in both OLAP
Worksheet (as shown by the AW LIST command) and Analytic Workspace Manager
(as shown by the Object View). The two applications share the same session.

Creating a Standard Form Workspace Using Analytic Workspace Manager

Creating an Analytic Workspace 6-7

Figure 6–4 OLAP Worksheet Opened From Analytic Workspace Manager

Opening a Database Connection With Analytic Workspace Manager
To connect to a database:

1. From the File menu, choose Connect.

The Connect to Database dialog appears.

2. Enter your database user name, password, and service. Then select OK.

Specify the service in the form host:port:sid (for example,
myhost-sun:1521:rel10g).

Creating a Standard Form Workspace Using Analytic Workspace
Manager

Using the Create Analytic Workspace wizard, you can create a workspace from one
or more cubes in the OLAP Catalog. The resulting workspace is in database
standard form, which is described in Appendix A.

Creating a Standard Form Workspace Using Analytic Workspace Manager

6-8 Oracle OLAP Application Developer’s Guide

The Create Analytic Workspace wizard provides reasonable defaults so that you can
create an analytic workspace with the minimum number of decisions. By accepting
the default settings, you create a physical storage model for your data that is
appropriate for many types of data. If you are new to OLAP-type analysis, you may
want to start by creating an analytic workspace with the default settings, and find
out from using it whether its performance characteristics are acceptable.

However, good performance is critical in a production system. To create a
workspace with the best performance, explore the characteristics of your data and
set the advanced storage options appropriately for its requirements.

Choosing a Schema for the Analytic Workspace
Always create an analytic workspace in a separate schema from the relational
tables. This practice prevents conflicts in defining unique names within a single
namespace.

Setting Advanced Storage Options
Storage settings can have a huge impact on performance. When they are set
incorrectly, you will experience poor performance for both data loads and run-time
analysis. The default settings are appropriate when your data has the expected
characteristics: a dense time dimension, and random sparsity (less than 30%
non-null values) across the other dimensions.

Defining a Composite Dimension
Composite dimensions are a means of reducing the amount of space needed to store
sparse data. Without composites, an analytic workspace stores a value for each
combination of dimension members, even if that value is null (NA). With
composites, only the combinations of dimension members with real data are stored.
A combination of dimension members for which there is a data value is called a
tuple. The addition of a data value to a variable automatically triggers the creation
of a new composite tuple.

The order in which the dimensions are listed in a composite controls the order in
which the composite tuples are stored. The dimensions are typically ordered by size
(that is, number of members) so that the largest is the fastest varying and the
smallest is the slowest varying. The composite tuples are stored so that the fastest
varying dimension members are clustered together, and the slowest varying
dimension members are the most widely separated. In the composite definition, the
first dimension is the fastest varying, and the last dimension is the slowest varying.

Creating a Standard Form Workspace Using Analytic Workspace Manager

Creating an Analytic Workspace 6-9

For example, in a composite for <CUSTOMER PRODUCT CHANNEL>, CUSTOMER is
the fastest varying and CHANNEL is the slowest varying.

Analytic Workspace Manager assumes that your data is sparse (that is, few data
values compared to the number of cells in the cube), and will create one composite
for each cube. The composite includes all dimensions except Time. Measures are
often defined with the Time dimension first, regardless of its size, to facilitate
time-based analysis and data refreshes.

If your Time dimension is sparse, then define a composite that includes Time. If
another dimension is dense, then define a composite that excludes that dimension.
(If you have a very small, dense dimension, you can include it as the last dimension
in the composite.) Remember to order the dimensions in the composite from the one
with the most members to the one with the fewest members.

Ordering the Dimensions in a Cube
The order in which the dimensions are listed in a cube affects performance because
it determines the way the data is stored on disk. The first dimension in a cube is the
fastest-varying dimension, and the last dimension is the slowest-varying
dimension. The data for each measure in a cube is stored as a linear stream, in
which the values of the fastest-varying dimension are clustered together.

Data storage is typically optimized for loads. List the dense dimension (such as
Time) before the composite. If there is more than one dense dimension, then list the
largest one first.

Setting the Segment Size
A segment is the amount of contiguous disk space reserved for storing the data in a
measure. Performance is best when all of the data for a measure is stored in one
segment.

Analytic Workspace Manager creates a segment large enough for the initial load.
This setting defines a segment exactly large enough for the Time dimension (which
is outside the composite) and plentifully large enough to store composite tuples as
they are created. When you update your data, a second segment is created that is
the same size as the first segment. Subsequent updates will be stored in this
segment until it reaches its capacity in one of the dimensions, at which time a third,
equal sized segment will be created, and so forth.

When you manually set the segment size, you can create a segment that permits
future growth. Be sure to specify ample space, particularly for the fastest-varying
dense dimension (that is, the first one in the list). Keep in mind, however, that you

Creating a Standard Form Workspace Using Analytic Workspace Manager

6-10 Oracle OLAP Application Developer’s Guide

are reserving disk space that will not be available for other uses. Do not create a
segment far in excess of realistic growth.

You can only specify the segment size for multidimensional variables. You cannot
specify the segment size for variables dimensioned only by a composite or by a
single dimension.

Choosing Build Options
The Create Analytic Workspace wizard enables you to decide how much data you
want to load and when you want to initiate the load.

You can create an analytic workspace with all of the object definitions and several
choices of data:

■ No data

■ All data from the dimension tables but none from the fact tables

■ All data from the dimension tables and the fact tables

Partial builds enable you to make manual changes to the object definitions before
loading the data. To load the data later, use the Refresh Analytic Workspace wizard.

Generating Scripts
The option of generating SQL scripts is particularly useful if you are working with a
large amount of data. Scripts enable you to:

■ Make changes to the build process.

■ Schedule the build to run overnight in a batch window.

Basic Steps for Creating a Standard Form Workspace
To create a workspace in database standard form:

1. Configure your database instance for OLAP use. Define permanent, temporary,
and undo tablespaces, and set the database parameters to values appropriate
for data loads. Refer to Chapter 12 for details.

2. Define a user who will own the analytic workspace. Grant the user the
OLAP_USER role and SELECT privileges on the source data tables.

While you can create the workspace in the same schema as the relational tables,
doing so causes problems in defining unique names within a single namespace.

Creating a Standard Form Workspace Using Analytic Workspace Manager

Creating an Analytic Workspace 6-11

3. Examine the sparsity characteristics of your data. The default data storage
settings are appropriate for data that is dense across the Time dimension and
sparse across all other dimensions. If your data has these sparsity
characteristics, or you cannot determine them, then use the default data storage
settings. Otherwise, when you run the Create Analytic Workspace wizard,
define a composite that is appropriate for your data cube.

4. Open Analytic Workspace Manager and connect to your database instance as
the user you defined earlier for this purpose.

5. If you want to generate log files, from the Tools menu choose Configuration.
Click Help for further information.

Log files store the messages that are generated by the various wizards. They do
not provide additional information, but they are useful if the wizard fails and
you want to explore the reasons for the failure.

6. In the OLAP Catalog View, verify that you have defined dimensions,
hierarchies, measures, and cubes for the source data, and that you have access
to these logical objects from your current session.

7. From the Tools menu, choose Create Analytic Workspace Using Wizard.
Complete the steps of the wizard. If you need to define a composite, be sure to
select the advanced storage options.

Click the Help button to get specific information about each step.

8. You can enable the workspace for the BI Beans either now or later. You may
want to postpone enabling until after you enhance your analytic workspace
with aggregate data and custom measures.

If the workspace will support other types of applications, then you can enable it
later using the appropriate wizard.

9. From the File menu, choose Save. This option commits all changes to the
database made during this session.

10. If you chose a build option that defines objects without loading all of the data,
then run the Refresh Analytic Workspace wizard when you are ready to
complete the build.

When you have finished, you will have an analytic workspace populated with the
detail data fetched from your relational star or snowflake schema.

Case Study: Creating the Global Analytic Workspace

6-12 Oracle OLAP Application Developer’s Guide

Case Study: Creating the Global Analytic Workspace
The following case study explains the choices made in creating an analytic
workspace from the GLOBAL star schema. Chapter 3 describes the tables.

Defining the GLOBAL_AW Workspace User
This example creates the GLOBAL analytic workspace in a different schema from the
source tables. Example 6–1 lists the SQL commands to define the GLOBAL_AW user
with sufficient access rights to use Analytic Workspace Manager and to access the
GLOBAL star schema. Alternatively, you can define users through Oracle Enterprise
Manager.

Example 6–1 SQL Script for Defining the GLOBAL_AW User

CREATE USER "GLOBAL_AW" PROFILE "DEFAULT"
 IDENTIFIED BY "global_aw" DEFAULT TABLESPACE "GLOBAL"
 TEMPORARY TABLESPACE "OLAPTEMP"
 QUOTA UNLIMITED ON "GLOBAL"
 QUOTA UNLIMITED ON "OLAPTEMP"
 ACCOUNT UNLOCK;

GRANT OLAP_USER TO GLOBAL_AW;

GRANT SELECT ON global.channel_dim TO global_aw;
GRANT SELECT ON global.product_dim TO global_aw;
GRANT SELECT ON global.customer_dim TO global_aw;
GRANT SELECT ON global.time_dim TO global_aw;
GRANT SELECT ON global.units_history_fact TO global_aw;
GRANT SELECT ON global.price_and_cost_history_fact TO global_aw;

Examining Sparsity Characteristics for GLOBAL
By using SQL SELECT commands with the COUNT and COUNT(DISTINCT)
functions, you can estimate how dense the resulting multidimensional cubes will be
in the analytic workspace.

The PRICE_AND_COST_HISTORY_FACT table has 1407 rows with values for both
UNIT_PRICE and UNIT_COST out of a possible 1728 dimension value combinations
(48 months * 36 products). The Price cube (which is mapped to the
PRICE_AND_COST_HISTORY_FACT table) is 80% dense, and so a composite will
actually slow performance rather than improve it. A dense cube is fairly unusual,
and the Create Analytic Workspace wizard does not support it, nor does the

Case Study: Creating the Global Analytic Workspace

Creating an Analytic Workspace 6-13

DBMS_AWM PL/SQL package. Thus, you will need to make some modifications to
the workspace object definitions before loading the data.

The UNITS_HISTORY_FACT table has 110,166 rows with values for UNITS out of a
possible 316,224 dimension value combinations (48 months * 36 products * 61
customers * 3 channels). This cube is 30% dense, which is sufficiently sparse for a
composite.

Because Time is aggregated to the month level, the Time dimension is probably
dense. This cube can use the default composite.

Running the Create Analytic Workspace Wizard
Make these choices when running the Create Analytic Workspace wizard:

■ On the Choose Data Loading Options page, do the following:

– Choose the second build option, Build analytic workspace and load
dimensions. This choice enables you to make modifications to the variable
definitions before loading the data.

– Clear the Generate unique keys box. The dimension tables use surrogate
keys for all levels to assure unique dimension values.

■ On the Choose Advanced Storage and Naming Options page, no prefix is
needed when naming the workspace objects because the analytic workspace is
being created in a different schema from the relational tables. The cube name
prefix is optional, but may be useful when an analytic workspace contains
multiple cubes.

The selected build option causes the Create Analytic Workspace wizard to define all
of the workspace objects and fetch all of the data from the dimension tables. The
measures are defined but do not have data. You can make changes to the object
definitions before loading the data.

(An alternative approach to the one taken in this example is to generate a SQL script
and modify the calls to DBMS_AWM, so that the analytic workspace is generated
correctly and does not require modification.)

Manually Changing Object Definitions
Measure names such as UNIT_PRICE and UNIT_COST are given to the formulas in
the analytic workspace that are used to aggregate the variables. The data itself is
stored in variables with names like UNIT_PRICE_VARIABLE and
UNIT_CUBE_VARIABLE.

Case Study: Creating the Global Analytic Workspace

6-14 Oracle OLAP Application Developer’s Guide

Using OLAP Worksheet and the OLAP DML, you can make two changes to
UNIT_PRICE_VARIABLE and UNIT_COST_VARIABLE:

■ Remove the composite. The Price cube is 80% dense, as explained in
"Examining Sparsity Characteristics for GLOBAL" on page 6-12.
UNIT_PRICE_VARIABLE and UNIT_CUBE_VARIABLE store the data for the
Price cube. Because these variables are dense, defining them with a composite
would actually slow performance.

■ Change the data type. The data for the Price cube is easily handled by the
SHORTDECIMAL data type. Use DECIMAL (8 bytes) and SHORTDECIMAL (4
bytes) whenever possible to save storage space and maximize performance.
DECIMAL is the default numeric data type. For a full list of data types, search
Analytic Workspace Manager Help.

These are significant changes that require the variables to be redefined, not simply
modified.

Take these steps to redefine the variables:

1. In the Object View, attach the GLOBAL analytic workspace with read/write
access.

2. Choose OLAP Worksheet from the Tools menu.

3. In the lower pane (the query window) enter this command to display the object
definitions for the two variables:

FULLDSC price_cube_unit_price_variable price_cube_unit_cost_variable

4. Select the full object definitions from the top pane (the response window) and
paste them into a text editor.

5. Edit the definitions so that they look like the following code example. Note the
DELETE command at the beginning, the changes to the data type and
dimensionality in the DEFINE commands, the addition of a CONSIDER
command after each DEFINE, and the standard form PROPERTY commands
listed with the full command on a single line.

DELETE PRICE_CUBE_UNIT_PRICE_VARIABLE PRICE_CUBE_UNIT_COST_VARIABLE

DEFINE PRICE_CUBE_UNIT_PRICE_VARIABLE VARIABLE SHORTDECIMAL <TIME PRODUCT>
CONSIDER PRICE_CUBE_UNIT_PRICE_VARIABLE
PROPERTY 'AW$CLASS''EXTENSION'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '20MAY03_10:37:08'
PROPERTY 'AW$PARENT_NAME' 'PRICE_CUBE_UNIT_PRICE'

Case Study: Creating the Global Analytic Workspace

Creating an Analytic Workspace 6-15

PROPERTY 'AW$ROLE' 'VARIABLE'
PROPERTY 'AW$SEGWDTH_CMD' 'chgdfn
GLOBAL_AW.GLOBAL!PRICE_CUBE_UNIT_PRICE_VARIABLE segwidth 120 72'
PROPERTY 'AW$STATE' 'CREATED'

DEFINE PRICE_CUBE_UNIT_COST_VARIABLE VARIABLE SHORTDECIMAL <TIME PRODUCT>
CONSIDER PRICE_CUBE_UNIT_COST_VARIABLE
PROPERTY 'AW$CLASS' 'EXTENSION'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '20MAY03_10:37:08'
PROPERTY 'AW$PARENT_NAME' 'PRICE_CUBE_UNIT_COST'
PROPERTY 'AW$ROLE' 'VARIABLE'
PROPERTY 'AW$SEGWDTH_CMD' 'chgdfn
GLOBAL_AW.GLOBAL!PRICE_CUBE_UNIT_COST_VARIABLE segwidth 85 72'
PROPERTY 'AW$STATE' 'CREATED'

6. Save the file in, or move it to, a disk directory that has been defined as a
directory object in the database. Then use the OLAP DML INFILE command to
execute the file. INFILE is equivalent to the SQL @ command.

INFILE 'directory_object/filename'

Check the response window for errors. To fix them, edit the file and execute it
again.

7. To save these changes, type these commands into the query window and
execute them:

UPDATE
COMMIT

Completing the Build
After all of the changes are made to the workspace object definitions, run the
Refresh wizard to load the data, as described in "Refreshing the Data in an Analytic
Workspace" on page 6-31 The dimensions do not need to be refreshed; only the
cubes.

The workspace can be enabled now or after deploying an aggregation plan.

Case Study: Creating the Sales History Analytic Workspace

6-16 Oracle OLAP Application Developer’s Guide

Case Study: Creating the Sales History Analytic Workspace
Although Global is used for most of the examples in this manual, Sales History has
a very different set of data characteristics and demonstrates a correspondingly
different set of build choices.

Sales History (SH) is a sample star schema that is delivered with your Oracle
Database, along with a fully defined logical model stored in the OLAP Catalog. The
SH schema has two cubes, SALES and COSTS. The SALES cube has five dimensions,
and the COSTS cube uses two of these dimensions. This case study uses only the
SALES cube.

Defining Startup Parameters for the SH Build
When building a large analytic workspace, the startup parameters for the Oracle
Database affect how quickly the build proceeds. Example 6–2 shows a few of the
settings in the init.ora file for building Sales History. For more information
about these settings, refer to Chapter 12.

Example 6–2 Startup Parameters for Building Sales History

UNDO_TABLESPACE=OLAPUNDO
UNDO_MANAGEMENT=AUTO
PGA_AGGREGATE_TARGET=128M

Defining Tablespaces for SH
While the GLOBAL analytic workspace has less than a million cells for base-level
data in its largest cube, the Sales History COST cube has over 235 trillion. This
makes Sales History quite large for a sample schema, yet it is small to average for a
real application. It is sufficiently large for the build to fail unless resources have
been allocated specifically for its use. The build needs adequate temporary and
permanent tablespaces:

■ Define a tablespace just for use by the Sales History analytic workspace, which
is sufficiently large to hold the base-level data, stored aggregates, forecast data,
and so forth. If possible, define extension files on separate physical disks. For
the best performance, do not use the same tablespace as the star schema.

■ Define a temporary tablespace that is sufficiently large to hold the data for the
SALES cube. Use a small EXTENT MANAGEMENT SIZE value, such as 256K.

See Also: Oracle Database Sample Schemas for a full description of
Sales History.

Case Study: Creating the Sales History Analytic Workspace

Creating an Analytic Workspace 6-17

Example 6–3 shows how the tablespaces might be defined for Sales History.

Example 6–3 SQL Script for Defining Tablespaces for the Sales History Analytic
Workspace

/* Create a permanent tablespace on four disks */
CREATE TABLESPACE sh_aw DATAFILE '/disk1/oradata/sh_aw1.dbf' SIZE 64M AUTOEXTEND
ON NEXT 64M MAXSIZE 1024M EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

ALTER TABLESPACE sh_aw ADD DATAFILE '/disk2/oradata/sh_aw2.dbf' SIZE 64M REUSE
AUTOEXTEND ON NEXT 64M MAXSIZE 1024M,'/disk3/oradata/sh_aw3.dbf' SIZE 64M REUSE
AUTOEXTEND ON NEXT 64M MAXSIZE 1024M,'/disk4/oradata/sh_aw4.dbf' SIZE 64M REUSE
AUTOEXTEND ON NEXT 64M MAXSIZE UNLIMITED;

/* Create a temporary tablespace on four disks */
CREATE TEMPORARY TABLESPACE sh_temp TEMPFILE '/disk1/oradata/sh_aw.tmp' SIZE 64M
REUSE AUTOEXTEND ON NEXT 64M MAXSIZE 1024M EXTENT MANAGEMENT LOCAL UNIFORM SIZE
256K;

ALTER TABLESPACE sh_temp ADD TEMPFILE '/disk2/oradata/sh_aw2.tmp' SIZE 64M REUSE
AUTOEXTEND ON NEXT 64M MAXSIZE 1024M,'/disk3/oradata/sh_aw3.tmp' SIZE 64M REUSE
AUTOEXTEND ON NEXT 64M MAXSIZE 1024M,'/disk4/oradata/sh_aw4.tmp' SIZE 64M REUSE
AUTOEXTEND ON NEXT 64M MAXSIZE UNLIMITED;

Examining the Sparsity Characteristics of SH Data
The data in the SH relational schema is extremely sparse. Many dimension keys are
never used as foreign keys in the SALES fact table, much less used in all possible
combinations with the other four dimensions. For example, CUSTOMERS.CUST_ID
has 5100 values, of which only 2557 are used in the SALES.CUST_ID column.

Time is also a sparse dimension, with only 1075 of 1826 dimension members used.
Thus, TIMES_DIM must be included in the composite. You can define a composite
with all five dimensions by choosing Advanced Storage Options. List TIMES as the
first dimension (the fastest varying) in the composite, to facilitate time-based
analysis and data maintenance, even though it is smaller than PRODUCTS and
CUSTOMERS. List the other dimensions from largest to smallest. This information is
easily obtained by issuing a SELECT COUNT(*) on the dimension tables.

Managing the SH Build
Because SH is large, you may want to manage these aspects of the build:

Case Study: Creating the Sales History Analytic Workspace

6-18 Oracle OLAP Application Developer’s Guide

■ Time: Execute the build during off-peak hours. To do this, generate a SQL script
for the build instead of creating it immediately.

■ Progress Monitor: Add comments to the SQL script so that you can monitor its
progress. If the build fails for any reason, or if you need to interrupt it, you can
restart the script from where the build stopped.

■ Permanent Tablespace Size: If possible, define some measures with smaller data
types, as described in "Manually Changing Object Definitions" on page 6-13.
This type of change requires you to choose one of the partial build options.

For a description of data types, search Help in Analytic Workspace Manager.

Running the Create Analytic Workspace Wizard
Make these choices in the Create Analytic Workspace wizard for building Sales
History, based on the previous discussion:

■ On the Choose Data Loading Options page, do the following:

– Choose the second build option, Build analytic workspace and load
dimensions. This choice enables you to make modifications to the variable
definitions before loading the data.

– Clear the Generate unique keys box. The dimension tables use surrogate
keys for all levels to assure unique dimension values.

■ On the Choose Advanced Storage and Naming Options page, select Advanced
Storage Options. This choice enables you to define a composite that includes
the TIMES dimension.

No prefix is needed because the analytic workspace is being created in a
different schema from the relational tables. The cube name prefix is optional,
but may be useful when an analytic workspace contains multiple cubes.

■ When creating the composite, include all of the dimensions and put them in this
order. Do not specify a segment size, because a very large segment is allocated
automatically for composites.

TIMES
PRODUCTS
CUSTOMERS
PROMOTIONS
CHANNELS

■ On the Choose Create and Enablement Options page, select Save Script to File.
You do not need to enable the workspace at this time.

Generating Aggregate Data

Creating an Analytic Workspace 6-19

Building the Sales History Analytic Workspace
Take these steps to build the Sales History analytic workspace:

1. Run the build script. After it has completed successfully, you have an analytic
workspace with all of the dimensions, hierarchies, levels, and attributes from
the dimension tables.

2. Make any changes or additions to the object definitions.

3. Run the Refresh wizard to load the data, as described in "Refreshing the Data in
an Analytic Workspace" on page 6-31. The dimensions do not need to be
refreshed; only the cubes.

The workspace can be enabled now or after deploying an aggregation plan.

Generating Aggregate Data
An analytic workspace initially contains only the detail data from the relational
schema. However, it also contains the hierarchies, levels, and parent relations that
are needed to aggregate the data. The aggregate data in an analytic workspace
replaces the use of materialized views; all of the aggregate data is created in the
analytic workspace. To optimize run-time performance, you must generate and
store some aggregate data.

Strategies for Calculating Aggregates
A data cube in an analytic workspace can be solved at two distinct times:

■ At run-time when needed. The cells for the aggregate values are NA (null) until
a query requests the aggregate values. The aggregates are then calculated in
response to the query. This type of aggregation is referred to as on-the-fly or
run-time aggregation. Run-time aggregation slows querying time since the data
must be calculated instead of just retrieved, but it does not require storage in a
permanent tablespace for the aggregate values.

■ As a data maintenance procedure. The DBA calculates the aggregate values
and stores them in the analytic workspace for all users to share. This type of
aggregate data is sometimes call precomputed or stored aggregates. Stored
aggregates support the fastest querying time, but increase the size of the
analytic workspace and therefore the size of the relational database. The
amount of stored data may also be limited by the amount of time available for
data maintenance, which is typically limited to a batch window. Fully

Generating Aggregate Data

6-20 Oracle OLAP Application Developer’s Guide

materializing a cube may simply take more time than the batch window
permits.

When dimensions have multiple hierarchies or the hierarchies have many
levels, fully aggregating the measures increases the size of your analytic
workspace (and thus your database) geometrically. At the same time, much of
the intermediate level data may be accessed infrequently or not at all.

A typical strategy is to aggregate some of the data as a data maintenance procedure
and the rest of the data on demand. This strategy is called skip-level aggregation.
The data cube is presented to the application fully solved, with no detectable
difference between the values that were retrieved from storage and the values that
were calculated for the query. When skip-level aggregation is done correctly, the
time to calculate the unsolved levels is negligible.

How to Select Levels to Pre-Aggregate and Store
A good strategy for identifying levels for pre-aggregation is to determine the ratio
of dimension members at each level, and to keep the ratio of members to be rolled
up on the fly at approximately 10:1. This ratio assures that all answer sets can be
returned quickly. Either the data is stored in the analytic workspace, or it can be
calculated by rolling up 10 values at a time into each aggregate value.

This 10:1 rule is best applied with some judgment. You might want to permit a
higher ratio for levels that you know are seldom accessed. Or you might want to
pre-calculate levels at a lower ratio if you know they have heavy use.

About Aggregation Plans
An analytic workspace that was created by the Create Analytic Workspace wizard
has a default set of rules, called an aggregation plan, for each cube. A default plan
specifies that:

■ No aggregate levels are stored. All aggregate data is calculated at run-time as
necessary to return an answer set to a query.

■ All measures in the cube use the default plan.

The default aggregation plans assure that the measures in a cube are always
presented to an application with fully solved data; that is, all levels of all hierarchies
in an answer set are populated. However, because the default plans specify that all
levels must be calculated during the user's session, their use typically causes
unacceptably slow performance.

Generating Aggregate Data

Creating an Analytic Workspace 6-21

You can define and deploy aggregation plans that precalculate some of the data.
Each measure can have its own aggregation plan, or any number of measures in a
cube can share the same one. For each aggregation plan that you create, you must
specify:

■ Which aggregate levels are stored.

■ Which measures in the cube use the plan.

An aggregation plan does not take effect until it is deployed. Deployment creates
and modifies objects in the analytic workspace to support the aggregation plan, and
then calculates all stored aggregate levels. While you can create an aggregation plan
in a few minutes, deployment can take much longer, depending on the amount of
data that needs to be calculated and the available resources. You may want to
schedule aggregation for off-peak hours.

How to Create and Deploy an Aggregation Plan
An aggregation plan can be used for all the measures in a cube, or just for selected
measures.

Creating an Aggregation Plan
To create an aggregation plan:

1. Expand the Cubes folder of OLAP Catalog View so that you can see the names
of the analytic workspaces in your schema.

2. Right-click the name of your workspace.

3. Choose Create Aggregation Plan Using Wizard. Complete the steps of the
wizard.

Click the Help button to get specific information about each step.

The aggregation plan is a permanent part of your analytic workspace until you
explicitly delete it.

Changing the Aggregation Operator
The Aggregation Plan wizard always specifies SUM as the method of aggregation.
However, you can change the method to one of these operators:

AVERAGE
FIRST
LAST

Generating Aggregate Data

6-22 Oracle OLAP Application Developer’s Guide

MAX
MIN

A procedure in the DBMS_AWM package changes the operator in an existing
aggregation plan. The syntax of the procedure call is this:

EXECUTE DBMS_AWM.SET_AWCUBEAGG_SPEC_AGGOP('aggplan', 'aw_owner', 'aw_name',
'cube', 'measure', 'dimension', 'operator')

For the BI Beans to be aware of this change, you must either re-enable your analytic
workspace or manually execute the
CWM2_OLAP_METADATA_REFRESH.MR_AC_REFRESH procedure.

See the example in "Aggregating the Global Price Cube" on page 6-24. For a full
discussion of the syntax, refer to the Oracle OLAP Reference.

Deploying an Aggregation Plan
Deployment first deletes any previously aggregated data, then solves the data for
the specified levels.

To deploy an aggregation plan:

1. Expand the OLAP Catalog View sufficiently to see the names of the aggregation
plans for your workspace.

2. Right-click the name of an aggregation plan, and choose Deploy Aggregation
Plan Using Wizard. Complete the steps of the wizard.

You can edit an aggregation plan, but no change is made to your data until you
redeploy the modified plan. Similarly, you can delete an aggregation plan, but no
change is made until you deploy another plan for the same measures.

You must redeploy your aggregation plans whenever you refresh the data. Refer to
"Refreshing the Data in an Analytic Workspace" on page 6-31 for further
information.

Case Study: Aggregating Data in the GLOBAL Analytic Workspace

Creating an Analytic Workspace 6-23

Case Study: Aggregating Data in the GLOBAL Analytic Workspace
GLOBAL contains two cubes. Aggregates for the Units cube are summed, which is
the default, but aggregates for the Price cube are averaged. All measures within
each cube are aggregated in the same way.

Identifying Levels for Precalculation
To identify the levels to be precalculated, you must know the number of dimension
members at each level. You can easily acquire this information using either SQL
statements or OLAP DML commands.

For example, this SQL statement:

SELECT COUNT(DISTINCT year_id) FROM global.time_dim;

and this OLAP DML command in the GLOBAL analytic workspace:

SHOW NUMLINES(LIMIT(time TO time_levelrel EQ 'Year'))

both return the number of TIME dimension members at the Year level.

Global is a very small data set, so few adjacent levels have a 10:1 ratio of dimension
members. Table 6–1 identifies the levels to be calculated and stored in the analytic
workspace.

Table 6–1 Precalculated Levels in the Global Workspace

Dimension Level Members Precalculate

TIME Month 60 X

TIME Quarter 20 --

TIME Year 5 X

CUSTOMER Ship_To 61 X

CUSTOMER Account 24 --

CUSTOMER Market_Segment 5 X

CUSTOMER Total_Market 1 --

CUSTOMER Warehouse 11 --

CUSTOMER Region 3 X

CUSTOMER All_Customers 1 --

Enabling an Analytic Workspace for an Application

6-24 Oracle OLAP Application Developer’s Guide

Aggregating the Global Price Cube
Take these steps to aggregate the Price cube.

1. Run the Create Aggregation Plan wizard and create a plan for PRICE_CUBE.

2. In the Object View, attach the GLOBAL analytic workspace in read/write mode.

3. From the Tools menu, choose OLAP Worksheet.

4. From the Options menu of OLAP Worksheet, select SQL Mode.

5. Type these SQL statements in the query window.

EXECUTE DBMS_AWM.SET_AWCUBEAGG_SPEC_AGGOP('price_aggplan', 'global_aw',
'global', 'price_cube', 'unit_price', 'time', 'AVERAGE')

EXECUTE DBMS_AWM.SET_AWCUBEAGG_SPEC_AGGOP('price_aggplan', 'global_aw',
'global', 'price_cube', 'unit_cost', 'time', 'AVERAGE')

6. In the OLAP Catalog View, run the Deploy Aggregation Plan wizard to
generate the aggregate data.

7. From the File menu, choose Save.

8. Enable the GLOBAL analytic workspace for the BI Beans.

Enabling an Analytic Workspace for an Application
Oracle applications are typically designed to run against relational tables in the
Oracle Database. The relational tables must conform to certain standards set by the
application, and some form of metadata is used to identify the data to the
application. For example, the BI Beans requires a star or snowflake schema with

PRODUCT Item 36 X

PRODUCT Family 9 --

PRODUCT Class 2 X

PRODUCT Total_Product 1 --

CHANNEL Channel 3 X

CHANNEL All_Channels 1 --

Table 6–1 (Cont.) Precalculated Levels in the Global Workspace

Dimension Level Members Precalculate

Enabling an Analytic Workspace for an Application

Creating an Analytic Workspace 6-25

embedded total dimension views for solved data, and OLAP Catalog metadata to
describe the schema.

The same applications, without modification, can run against analytic workspaces
which have been enabled for their use. Enabling an analytic workspace means that
you have:

■ Created views of analytic workspace data that conform to the same criteria as
the relational tables typically used by the application. These views use the
OLAP_TABLE function to extract workspace data.

■ Created any metadata required by the application in order to access the views.

How to Enable an Analytic Workspace
To enable an analytic workspace, complete these steps:

1. Expand the OLAP Catalog View sufficiently to see the workspaces for your
schema.

2. Right-click the name of the analytic workspace you want to enable.

3. Choose Enable Workspace for OLAP API & BI Beans.

or

Enable Workspace for Oracle Discoverer Using Wizard.

Complete the steps of the wizard. Click the Help button to get specific
information about each step.

About Enabling for the BI Beans
When you enable an analytic workspace for the BI Beans, you create several views
that form a star schema. In addition, you create CWM2 metadata, which makes these
views accessible to BI Beans applications.

Star Schema of Views
The star schema for a BI Beans-enabled analytic workspace includes:

■ A dimension view for each hierarchy

■ A fact view for each combination of dimension hierarchies

See Also: Oracle OLAP Reference for full descriptions of the views
and CWM2 read API.

Enabling an Analytic Workspace for an Application

6-26 Oracle OLAP Application Developer’s Guide

These views are sometimes called embedded total views because dimension
members at all levels are listed in a single column. Information about which level a
particular member belongs to and the parent-child relationships among members is
stored in separate columns. Within the fact tables, summary data is interspersed
with (or embedded in) the base-level data. This differs markedly from the source
star schema, in which there is no summary data in the fact tables and each level is
represented by its own column in the dimension tables.

Table 6–2 describes the views created in the GLOBAL_AW schema when the GLOBAL
analytic workspace is enabled.

OLAP Catalog Metadata for Analytic Workspaces
When an analytic workspace is enabled for the BI Beans, OLAP Catalog metadata is
created for the relational views, as described previously.

OLAP Catalog metadata for analytic workspaces is stored in a set of tables, which
you can access through a set of views owned by OLAPSYS. The public synonyms for
these views have a prefix of ALL_OLAP2.

Table 6–2 Views of the GLOBAL Analytic Workspace for the BI Beans

Name of View Description

GLOB_GLOBA_CHANN_CHANN5VIEW CHANNEL dimension view, CHANNEL_ROLLUP
hierarchy

GLOB_GLOBA_CUSTO_MARKE6VIEW CUSTOMER dimension view, MARKET_SEGMENT
hierarchy

GLOB_GLOBA_CUSTO_SHIPM7VIEW CUSTOMER dimension view, SHIPMENTS hierarchy

GLOB_GLOBA_PRODU_PRODU1VIEW PRODUCT dimension view, PRODUCT_ROLLUP
hierarchy

GLOB_GLOBA_TIME_CALEN2VIEW TIME dimension view, CALENDAR hierarchy

GLOB_GLOBA_PRICE_CU4VIEW PRICE_CUBE measure view

GLOB_GLOBA_SALES_CU10VIEW SALES_CUBE measure view, CUSTOMER
MARKET_SEGMENT hierarchy

GLOB_GLOBA_SALES_CU9VIEW SALES_CUBE measure view, CUSTOMER
SHIPMENTS hierarchy

GLOB_GLOBA_UNITS_CU12VIEW UNITS_CUBE measure view, CUSTOMER
MARKET_SEGMENT hierarchy

GLOB_GLOBA_UNITS_CU13VIEW UNITS_CUBE measure view, CUSTOMER
SHIPMENTS hierarchy

Enabling an Analytic Workspace for an Application

Creating an Analytic Workspace 6-27

The BI Beans query a special set of views, also owned by OLAPSYS, with the public
synonym MRV_OLAP2. These views are created from the CWM2 metadata tables with
a special structure that improves performance.

You can browse the metadata in the OLAP Catalog View of Analytic Workspace
Manager, or you can use SQL commands to query the views. Example 6–4 shows
the results of a query.

Example 6–4 Querying the CWM2 Read API

SELECT * FROM OLAPSYS.MRV_OLAP2_CATALOGS;

CATALOG_ID CATALOG_NAME PARENT_CATALOG_ID DESCRIPTION
1849 GLOBAL_CAT Global Business Areas
475 XADEMO_MULTIKEY_CAT XADEMO MULTIKEY Measures
669 XADEMO_CAT XADEMO CWM Business Area

How to Enable an Analytic Workspace for Oracle Discoverer
To enable an analytic workspace, complete these steps:

1. Expand the OLAP Catalog View to see the workspaces for your schema.

2. Right-click the name of the analytic workspace you want to enable.

3. Choose Enable Workspace for Oracle Discoverer Using Wizard. Complete the
steps of the wizard.

Click the Help button to get specific information about each step.

4. Detach the analytic workspace, saving your changes first if necessary.

5. To create the views, execute the SQL script generated by the wizard.

6. To create an End User Layer (EUL), use Oracle Discoverer Administrator to
import the EEX file generated by the wizard.

About Enabling for Oracle Discoverer
The Enable for Discoverer wizard generates two files on your local computer, where
you are running Analytic Workspace Manager:

■ A SQL script that creates views of workspace data in the format required by
Discoverer.

■ An EEX file that contains XML for creating an End User Layer.

Enabling an Analytic Workspace for an Application

6-28 Oracle OLAP Application Developer’s Guide

Your analytic workspace is not enabled until you run the script and import the EEX
file.

This release supports only one hierarchy for each dimension. If a dimension has
multiple hierarchies, you must select one of them for access through Discoverer.

Views Created for Discoverer
Enabling an analytic workspace for Discoverer generates two sets of views.

The first set of views contains the OLAP_TABLE function calls that actually extract
the data. This set exists to simplify creation of views in the format used by
Discoverer (the second set of views), requiring that only a few object types and table
types be defined. This set contains two types of views. Both sets use a letter and
digit identifier, instead of the names, to identify the schema, the dimensions, and
the levels.

■ A view of the complete analytic workspace, with all dimensions and all
measures. The name in this format:

workspace_schema_FULL_VIEW

where schema is an S followed by a digit, such as S1.

■ A view for each dimension. The names are in this format:

TFDV_dimension_VIEW

where dimension is a D followed by a digit, such as D5.

The second set of views selects data from the first set, and presents the analytic
workspace data in the format required by Discoverer. This set also has two types of
views.

■ A measure view for each combination of dimension levels. This view runs
against the FULL_VIEW described earlier. The names are in this format:

FACTVIEW_schema_level_level_level...

where schema is an S followed by a digit, such as S1, and level is an L
followed by a digit, such as L1.

■ A view for each dimension. This view runs against the TFDV view described
earlier. The names are in this format:

DV_dimension

where dimension is a D followed by a number, such as D1.

Enabling an Analytic Workspace for an Application

Creating an Analytic Workspace 6-29

Figure 6–5 shows the relationships among the views.

Figure 6–5 Relationships Among Views for Discoverer

Table 6–3 describes the views of the GLOBAL analytic workspace.

Table 6–3 Views of the GLOBAL Analytic Workspace for Oracle Discoverer

View Description

GLOBAL_S1_FULL_VIEW Uses the OLAP_TABLE function to create a
complete view of all dimensions and measures in
the GLOBAL analytic workspace

Enabling an Analytic Workspace for an Application

6-30 Oracle OLAP Application Developer’s Guide

TFVD_D1_VIEW Uses the OLAP_TABLE function to create a
PRODUCT dimension view

TFVD_D2_VIEW Uses the OLAP_TABLE function to create a TIME
dimension view

TFVD_D3_VIEW Uses the OLAP_TABLE function to create a
CHANNEL dimension view

TFVD_D4_VIEW Uses the OLAP_TABLE function to create a
CUSTOMER dimension view

FACTVIEW_S1_L1_L6_L10_L14 Selects all measures at the ALL_CHANNELS,
ALL_CUSTOMERS, TOTAL_PRODUCT, and YEAR
levels from GLOBAL_S1_FULL_VIEW.

FACTVIEW_S1_L1_L6_L10_L15 Selects all measures at the ALL_CHANNELS,
ALL_CUSTOMERS, TOTAL_PRODUCT, and QUARTER
levels from GLOBAL_S1_FULL_VIEW.

 . .

 . .

 . .

FACTVIEW_S1_L2_L9_L13_L15 Selects all measures at the CHANNEL, SHIP_TO,
ITEM, and QUARTER levels from
GLOBAL_S1_FULL_VIEW.

FACTVIEW_S1_L2_L9_L13_L16 Selects all measures at the CHANNEL, SHIP_TO,
ITEM, and MONTH levels from
GLOBAL_S1_FULL_VIEW.

DV_CHANNEL Selects the CHANNEL dimension view from
TFVD_D3_VIEW.

DV_CUSTOMER Selects the CUSTOMER dimension view from
TFVD_D4_VIEW.

DV_PRODUCT Selects the PRODUCT dimension view from
TFVD_D1_VIEW.

DV_TIME Selects the TIME dimension view from
TFVD_D2_VIEW.

Table 6–3 (Cont.) Views of the GLOBAL Analytic Workspace for Oracle Discoverer

View Description

Refreshing the Data in an Analytic Workspace

Creating an Analytic Workspace 6-31

Refreshing the Data in an Analytic Workspace
Some build options do not load data, so you must perform an initial refresh before
your analytic workspace can be used. Over time, all analytic workspaces need to be
refreshed with new data. The data source will have new time periods as well as
other new dimension members.

Using the Refresh Wizard
The Refresh Analytic Workspace wizard adds new members for selected
dimensions and reloads all of the data for selected measures. The wizard requires
the new data to be in the same tables as the original data.

To refresh your data, complete these steps:

1. Expand the OLAP Catalog View to see the workspaces for your schema.

2. Right-click the name of the analytic workspace you want to enable.

3. Choose Refresh Analytic Workspace Using Wizard. Complete the steps of the
wizard. You can refresh individual dimensions, or measures, or both.

Click the Help button to get specific information about each step.

4. Re-enable the cube if necessary.

5. Re-deploy the aggregation plans.

Refreshing From Different Relational Tables
The Refresh wizard accesses the same tables that the Create Analytic Workspace
wizard used originally. However, you may bring new data into your relational
schema in separate tables. You can either write a load program in SQL using the
DBMS_AWM package, or follow these alternative steps.

These are the basic steps for refreshing a cube:

1. In the Object View of Analytic Workspace Manager, attach the analytic
workspace in Read/Write mode.

2. In the Object View, expand the Programs folder and select the load program
that was generated by the Create Analytic Workspace wizard to load data for
the original build.

If you are not sure which program to choose, then expand the Dimension folder
and select the cubedef dimension. On the Properties page, note the value of the
AW$LOADPRGS property.

Refreshing the Data in an Analytic Workspace

6-32 Oracle OLAP Application Developer’s Guide

3. On the Program page of the property viewer, edit the load program and change
the name of the source table.

4. Choose Apply, then Compile.

Correct any errors before continuing.

5. Right-click the name of the load program, then choose Copy to Clipboard.

6. Open OLAP Worksheet, and execute the program. Paste the name of the
program into the query window by typing Ctrl+V.

CALL program

7. Check the new data using the LIMIT and REPORT commands.

8. Issue UPDATE and COMMIT commands to save the new data.

Case Study: Refreshing the Units Cube
The Global star schema provides an additional month of data in separate update
tables.

1. In the Object View, expand the Programs folder and select
GLOBAL_AW.GLOBAL!___GET.CUBE.DATA_UNITS_CUBE_1.

2. Display the Program page of the load program, and locate the name of the
source file, UNITS_HISTORY_FACT.

SQL DECLARE C1 CURSOR FOR SELECT CHANNEL_ID,SHIP_TO_ID,ITEM_ID, -
 MONTH_ID,UNITS FROM GLOBAL.UNITS_HISTORY_FACT

3. Edit this statement by replacing UNITS_HISTORY_FACT with
UNITS_UPDATE_FACT.

4. Choose Apply, then Compile.

5. Open OLAP Worksheet and run the revised load program with a command like
this:

CALL ___get.cube.data_units_cube_1

6. Display a sample of the new data with commands like these:

LIMIT channel TO '1' "Select any channel
LIMIT product TO '1' "Select any product
LIMIT time TO '91' "Select the new time period
LIMIT customer TO '76' "Select any customer
" Add the parent values of customer 76

Refreshing the Data in an Analytic Workspace

Creating an Analytic Workspace 6-33

LIMIT customer ADD ANCESTORS USING customer_parentrel
REPORT DOWN customer units "View the new data

CHANNEL: 1
PRODUCT: 1
 --UNITS---
 ---TIME---
CUSTOMER 91
-------------- ----------
76 1,220.00
17 7,378.00
8 12,985.00
1 50,632.00

7. Save the changes with these commands:

UPDATE
COMMIT

or

From the File menu of Analytic Workspace Manager, choose Save.

When a Data Refresh Requires Re-Enabling
Routine refreshes of the data do not require you to re-enable the workspace for a
particular application, because the views created by the enablers do not need to be
redefined for new dimension members. However, you do need to re-enable your
workspace if you make changes to the logical model, such as:

■ Change the OLAP Catalog metadata for the source cubes

■ Add or delete a cube in the analytic workspace

■ Add or delete a measure in the analytic workspace

■ Add or delete a hierarchy in the analytic workspace

■ Add or delete a level in the analytic workspace

■ Change the OLAP Catalog metadata for the analytic workspace.

Because the enabling step takes only a short time to complete, you may prefer to
re-enable your analytic workspace each time you refresh it.

Refreshing the Data in an Analytic Workspace

6-34 Oracle OLAP Application Developer’s Guide

If you want to delete old dimension members (for example, roll off the same
number of old time periods as you added new ones) or load only new data values,
then you can generate build scripts and modify the calls to the DBMS_AWM package.

See Also: Oracle OLAP Application Developer's Guide for reference
information about the DBMS_AWM package.

SQL Access to Analytic Workspaces 7-1

7
SQL Access to Analytic Workspaces

This chapter introduces methods of accessing the data in an analytic workspace
using SQL. Most of these methods can be used at runtime as part of an application.

This chapter contains the following topics:

■ Overview of SQL Access

■ Support for Custom Measures

■ Creating Custom Measures Using DBMS_AW_UTILITIES

■ Case Study: Adding Sales to Global Using DBMS_AW_UTILITIES

■ Creating Custom Measures Using OLAP_EXPRESSION

■ Case Study: Adding Sales to Global Using OLAP_EXPRESSION

■ Using OLAP_TABLE for Direct Access to Workspace Data

■ Case Study: Using OLAP_TABLE to Create Global Custom Measures

Overview of SQL Access
Using SQL, you can manipulate analytic workspace data and extract that data into
your application. There are various methods that you can use, and the best one
depends on the type of analytic workspace you have, the particular task you want
to accomplish, and your personal preferences.

Manipulating Analytic Workspace Data
To manipulate analytic workspace data using SQL, you must use PL/SQL
procedures that execute OLAP DML commands. The OLAP DML is the language
for working in an analytic workspace. Using it, you can create, modify, delete, and

Overview of SQL Access

7-2 Oracle OLAP Application Developer’s Guide

populate workspace objects. Any method that you use for performing these tasks
uses the OLAP DML.

Several PL/SQL packages are available that execute OLAP DML commands. A call
to a single procedure can execute a single OLAP DML command, or dozens of
commands to perform a specific task. Among these packages are:

■ DBMS_AW contains procedures for executing individual OLAP DML commands.

■ DBMS_AW_UTILITIES contains procedures for managing custom measures in
standard form analytic workspaces that have been enabled for the BI Beans.

■ DBMS_AWM contains procedures for creating standard form analytic workspaces.

You can use any of these packages directly in a SQL interface such as SQL*PLus.
Analytic Workspace Manager and OLAP Worksheet are applications that use these
SQL packages. Figure 7–1 shows the relationships among them.

Figure 7–1 Analytic Workspace Manager's Use of PL/SQL Packages

Support for Custom Measures

SQL Access to Analytic Workspaces 7-3

Querying an Analytic Workspace
The OLAP_TABLE function provides the basic technology for querying an analytic
workspace, as described in "Using OLAP_TABLE for Direct Access to Workspace
Data" on page 7-12. It operates outside of the conventions of standard form, and can
access data from any analytic workspace. However, tools that use OLAP_TABLE,
such as the enablers, require standard form to construct the appropriate syntax.

About the Active Catalogs
Oracle OLAP provides catalogs of information about standard form analytic
workspaces. These active catalogs are generated and maintained automatically
without requiring any action by the DBA.

The active catalogs are implemented as public views with names that begin
ALL_OLAP2_AW. For example, ALL_OLAP2_AW_CUBES lists cubes in all analytic
workspaces, and ALL_OLAP2_AW_DIMENSIONS lists all of the dimensions. You can
query the active catalogs directly from SQL.

For descriptions of the active catalogs, refer to the Oracle OLAP Reference.

Support for Custom Measures
A custom measure is calculated from one or more measures stored in the analytic
workspace. Often, it is created by an analyst just for the duration of a session.
However, a custom measure can also be saved as a permanent part of the analytic
workspace.

These saved custom measures can either be solved at run-time or stored in
variables. Run-time calculations do not require disk storage space and do not
extend the processing time required for data maintenance. However, they may slow
performance. You need to decide which measures to calculate on demand and
which, if any, to store. The custom measures described in this chapter are calculated
for a query. For instructions on creating stored custom measures, refer to Chapter 9.

Methods of Defining Custom Measures
Two PL/SQL packages support custom measures in an analytic workspace:

■ DBMS_AW_UTILITIES contains procedures for creating, updating, and deleting
custom measures. This package operates only on the views created by the
enabler for the BI Beans. The custom measures are stored in the predefined

Support for Custom Measures

7-4 Oracle OLAP Application Developer’s Guide

columns provided in these views for custom measures. You can define a custom
measure to persist either for the duration of the session or permanently.

■ DBMS_AW contains various procedures to execute OLAP DML commands.
Several of them can be used in SELECT statements to execute a calculation or
data manipulation in the analytic workspace. The calculations are returned
along with the rest of the result set. This type of custom measure exists only for
the duration of the SELECT statement.

In addition, you can use the OLAP_TABLE function to define and access custom
measures outside of the framework of standard form, as described in "Using
OLAP_TABLE for Direct Access to Workspace Data" on page 7-12.

Analytic Support for Custom Measures
Regardless of the method that you use to define a custom measure, you will express
the calculation itself using the OLAP DML. Following are descriptions of the many
functions and commands available for manipulating your data. In addition, you can
perform inter-row calculations using operators for multiplication (*), division (/),
addition (+), subtraction (-), and so forth.

Forecasts and Regressions
The OLAP DML offers the most sophisticated and up-to-date forecasting and
regression tools, including simple linear regressions, non-linear regression methods,
single exponential smoothing, double exponential smoothing, and the Holt-Winters
method.

Time Series Manipulation
The time series functions perform operations such as lead, lag, and moving average.
Table 7–1 describes the time series functions, which can easily be incorporated into
custom measures.

Table 7–1 OLAP DML Time Series Functions

Function Returns

CUMSUM Cumulative totals

LAG Value for a previous time period at a specified offset

LAGABSPCT Percentage difference between a value and the absolute value
for a previous time period at a specified offset

Support for Custom Measures

SQL Access to Analytic Workspaces 7-5

Financial Operations
The financial functions include interest rate calculations, depreciation, and payment
schedules, similar to those provided in spreadsheets.

For example, the FPMTSCHED function calculates a payment schedule (principal
plus interest) for paying off a series of fixed-rate installment loans over a specified
number of time periods. The following call to FPMTSCHED calculates 36 payments
based on the amounts listed in the LOANS variable, at the interest rates listed in the
RATES variable, for the MONTH dimension of these variables.

FPMTSCHED(loans, rates, 36, month)

Statistical Operations
Statistical operations include standard deviation, rank, and correlation. For
example, the STDDEV function calculates the standard deviation. The function call

STDDEV(units month)

returns the standard deviation of values in the UNITS measure for all months that
are currently selected.

Numeric Computations
Functions are available to perform a wide variety of computations (such as sine,
cosine, square root, minimum, and maximum) and data type conversions.

LAGDIF Difference between a value and the value for a previous time
period at a specified offset

LAGPCT Percentage difference between a value and the value for a
previous time period at a specified offset

LEAD Value for a subsequent time period at a specified offset

MOVINGAVERAGE A series of averages over a specified range

MOVINGMAX A series of maximum values over a specified range

MOVINGMIN A series of minimum values over a specified range

MOVINGTOTAL A series of totals over a specified range

Table 7–1 (Cont.) OLAP DML Time Series Functions

Function Returns

Support for Custom Measures

7-6 Oracle OLAP Application Developer’s Guide

For example, the MAX function compares two expressions and returns the larger
value. This function call

MAX(actual, forecast)

compares the ACTUAL and FORECAST measures and returns the larger values for all
dimension members currently selected.

Text Manipulation
The OLAP DML provides support for manipulating both single- and multibyte
character sets, with functions for concatenating strings, locating a string within a
larger body of text, inserting a string, and so forth.

For example, the EXTCHARS function extracts a portion of text. The function call

EXTCHARS('lastname,firstname', 1,8)

extracts the first 8 characters, which contains the characters

lastname

Allocation
Allocations are a critical part of planning applications. Given a target for the
organization, whether for sales quota, product growth, salary, or equipment,
managers must allocate that target among its contributors. The supported allocation
methods include:

■ Copy methods (hierarchical copy, minimum, maximum, first, last)

■ Even distribution (even, hierarchical even)

■ Proportional distribution (including weighted distributions and user-defined
multidimensional functions)

Aggregation
Aggregation is a basic feature of analytic workspaces. When you create a standard
form analytic workspace, it contains a default aggregation plan for each cube.
Wizards in Analytic Workspace Manager enable you to identify stored aggregate
levels quickly and easily.

The OLAP DML offers a broader range of aggregation methods than are currently
available through Analytic Workspace Manager or PL/SQL procedures. You can
choose whatever method seems appropriate: by level, individual member, member
attribute, time range, data value, or other criteria.

Creating Custom Measures Using DBMS_AW_UTILITIES

SQL Access to Analytic Workspaces 7-7

Models
A model is a set of interrelated equations. These are some of the modeling features
supported by the OLAP DML:

■ You can perform calculations for individual dimension members following
unique calculation rules.

■ Oracle OLAP determines the order of the calculations, so you can list them in
any order without concern for dependencies.

■ Oracle OLAP solves simultaneous equations.

You can assign results either to a variable or to a dimension member.
Dimension-based equations provide flexibility; since you do not need to specify the
modeling variable until you solve a model, you can run the same model with any
other measure with the same dimension. For example, you could run the same
model on Budget and Actual, which both have a Line dimension.

Creating Custom Measures Using DBMS_AW_UTILITIES
The enabler for the BI Beans creates fact views with columns specifically for custom
measures defined by the DBMS_AW_UTILITIES package. There are 100 columns for
numeric data named CUST_MEAS_NUM1 to CUST_MEAS_NUM100, and 100 columns
for text data named CUST_MEAS_TEXT1 to CUST_MEAS_TEXT100.

This is the basic syntax for creating a custom measure:

CALL DBMS_AW_UTILITIES.CREATE_CUSTOM_MEASURE(
 schema.aw_name, aw_formula_name, aw_formula_expression,
 'PERMANENT'|'TEMPORARY', schema.view_name;

The BI Beans enabler creates CWM2 metadata for the views of analytic workspaces,
and DBMS_AW_UTILITIES creates CWM2 metadata for the custom measures added
to these views. This metadata is stored in tables that identify the mapping between
the custom measures and the generic column names of the view:

■ CWM2$_AW_TEMP_CUST_MEAS_MAP lists temporary custom measures for the
current user.

■ CWM2$_AW_PERM_CUST_MEAS_MAP lists permanent custom measures for users
with the DBA role.

Case Study: Adding Sales to Global Using DBMS_AW_UTILITIES

7-8 Oracle OLAP Application Developer’s Guide

Case Study: Adding Sales to Global Using DBMS_AW_UTILITIES
"Identifying Required Business Facts" on page 3-6 identifies the data requirements
of the Global Corporation. Only three facts are stored in the star schema; the others
must be calculated in the analytic workspace. Because GLOBAL is a standard form
analytic workspace that has been enabled for the BI Beans, the
DBMS_AW_UTILITIES package is available for the DBA to define these measures.

Acquiring Information About the Analytic Workspace
Before you can define custom measures, you must know the names of measures
that are already defined in the analytic workspace. You can query the
ALL_OLAP2_AW_CUBE_MEASURES view in the Active Catalog for the names of
measures defined in the GLOBAL analytic workspace. Example 7–1 shows how to
obtain the names of the measures.

Example 7–1 Querying the Active Catalog for Measure Names

SELECT aw_cube_name, aw_measure_name
 FROM all_olap2_aw_cube_measures
 WHERE aw_owner = 'GLOBAL_AW' AND
 aw_name = 'GLOBAL';

AW_CUBE_NAME AW_MEASURE_NAME
------------- -----------------
PRICE_CUBE UNIT_COST
PRICE_CUBE UNIT_PRICE
UNITS_CUBE UNITS

The ALL_AW_CUBE_ENABLED_VIEWS view identifies the cubes that are enabled for
the BI Beans, the names of the views created by the enabler to access those cubes,
and the dimensions and dimension hierarchies for each view.

Example 7–2 shows that the Price cube is dimensioned by PRODUCT and TIME, and
can be queried through a view named GLOB_GLOBA_PRICE_CU4VIEW. The Units
cube is dimensioned by CHANNEL, CUSTOMER, PRODUCT, and TIME. The CUSTOMER
dimension has two hierarchies: MARKET_SEGMENT is shown in
GLOB_GLOBA_UNITS_CU9VIEW and SHIPMENTS is shown in
GLOB_GLOBA_UNITS_CU10VIEW.

Example 7–2 SELECT Statement for Querying the Active Catalog

SELECT cube_name, system_viewname, hiercombo_str
 FROM all_aw_cube_enabled_views WHERE

Case Study: Adding Sales to Global Using DBMS_AW_UTILITIES

SQL Access to Analytic Workspaces 7-9

 aw_name = 'GLOBAL' AND
 cube_name = 'PRICE_CUBE' OR
 cube_name = 'UNITS_CUBE';

CUBE_NAME SYSTEM_VIEWNAME HIERCOMBO_STR
------------ ------------------------- --
PRICE_CUBE GLOB_GLOBA_PRICE_CU4VIEW DIM:PRODUCT/HIER:PRODUCT_ROLLUP;DIM:TIME/HIER:Calendar
UNITS_CUBE GLOB_GLOBA_UNITS_CU9VIEW DIM:CHANNEL/HIER:CHANNEL_ROLLUP;
 DIM:CUSTOMER/HIER:MARKET_SEGMENT;
 DIM:PRODUCT/HIER:PRODUCT_ROLLUP;
 DIM:TIME/HIER:Calendar
UNITS_CUBE GLOB_GLOBA_UNITS_CU10VIEW DIM:CHANNEL/HIER:CHANNEL_ROLLUP;
 DIM:CUSTOMER/HIER:SHIPMENTS;
 DIM:PRODUCT/HIER:PRODUCT_ROLLUP;
 DIM:TIME/HIER:Calendar

Using DBMS_AW_UTILITIES to Define Sales as a Custom Measure
After getting the information you need to define a custom measure, you can define
your custom measures using DBMS_AW_UTILITIES. This example defines SALES,
which calculates the product of two other measures, UNITS and UNIT_PRICE, for
each combination of dimension members.

UNITS is a measure in the Units cube, and UNIT_PRICE is a measure in the Price
cube. The Units cube has four dimensions: TIME, PRODUCT, CUSTOMER, and
CHANNEL. The Price cube has only two dimensions, TIME and PRODUCT. The
product of these two measures will have four dimensions, so SALES must be added
to a view of the Units cube.

Example 7–3 adds the SALES measure to both views for the Units cube. Notice that
only the first call specifies the equation for the SALES formula. The second call just
identifies the existing SALES formula.

Note: Whenever you use DBMS_AW_UTILITIES in a SQL
environment such as SQL*Plus, be sure to begin with these settings:

SET SERVEROUT ON
EXECUTE CWM2_OLAP_MANAGER.SET_ECHO_ON

Otherwise, you will not see any diagnostic messages.

Case Study: Adding Sales to Global Using DBMS_AW_UTILITIES

7-10 Oracle OLAP Application Developer’s Guide

Example 7–3 Defining SALES Using DBMS_AW_UTILITIES

SET SERVEROUT ON
EXECUTE CWM2_OLAP_MANAGER.SET_ECHO_ON
EXECUTE DBMS_AW_UTILITIES.CREATE_CUSTOM_MEASURE(
 'global_aw.global', 'sales', 'units * unit_price',
 'PERMANENT', 'global_aw.glob_globa_units_cu9view');

EXECUTE DBMS_AW_UTILITIES.CREATE_CUSTOM_MEASURE(
 'global_aw.global', 'sales', '',
 'PERMANENT', 'global_aw.glob_globa_units_cu10view');

Viewing the Workspace Formula
Use this command to see the formula created in the analytic workspace:

EXECUTE DBMS_AW.EXECUTE('DESCRIBE sales');

DEFINE SALES FORMULA DECIMAL <TIME CUSTOMER PRODUCT CHANNEL>
EQ units * unit_price

You can also view the property sheet for SALES in Analytic Workspace Manager.

Querying the Sales Custom Measure
OLAPSYS.CWM2$_AW_PERM_CUST_MEAS_MAP identifies the mapping between the
SALES custom measure and a column in the views.

SELECT aw_access_view_name, cust_adt_column, aw_measure_name
 FROM olapsys.cwm2$_aw_perm_cust_meas_map
 WHERE workspace_name = 'global_aw.global';

AW_ACCESS_VIEW_NAME CUST_ADT_COLUMN AW_MEASURE_NAME
------------------------------------ ---------------- ---------------
global_aw.glob_globa_units_cu9view CUST_MEAS_NUM1 sales
global_aw.glob_globa_units_cu10view CUST_MEAS_NUM1 sales

Queries for the SALES measure must select values from the CUST_MEAS_NUM1
columns of the two tables.

Case Study: Adding Sales to Global Using OLAP_EXPRESSION

SQL Access to Analytic Workspaces 7-11

Creating Custom Measures Using OLAP_EXPRESSION
The DBMS_AW package contains several procedures for specifying run-time
calculations.

■ OLAP_EXPRESSION performs numeric calculations

■ OLAP_EXPRESSION_BOOL performs Boolean calculations

■ OLAP_EXPRESSION_DATE performs date calculations

■ OLAP_EXPRESSION_TEXT performs text manipulations

You can use these procedures to specify inter-row calculations using SELECT
statements on a view of analytic workspace data. The calculations are performed by
the OLAP engine. The only requirement for using these functions is that the
SELECT statement for the view must contain a call to the OLAP_TABLE function
with a ROW2CELL clause. The enabler for the BI Beans generates views of this type,
and you can also generate custom views with ROW2CELL columns as described in
"Using OLAP_TABLE for Direct Access to Workspace Data" on page 7-12.

The syntax of the four functions is identical. The difference between them is only in
data type. This is the basic syntax for OLAP_EXPRESSION:

OLAP_EXPRESSION(r2c, expression)

For example: OLAP_EXPRESSION('R2C', 'units * unit_price')

Case Study: Adding Sales to Global Using OLAP_EXPRESSION
Enablement for the BI Beans created two views of the Units cube, one for each of the
two hierarchies for the CUSTOMER dimension. The following SELECT statement
queries one of the views and generates a new column for Sales. The SALES column
is calculated in the analytic workspace.

SELECT time_et, units, OLAP_EXPRESSION(r2c, 'units * unit_price') sales
 FROM global_aw.glob_globa_units_cu9view WHERE
 channel_et ='1' AND
 product_et = '4' AND
 customer_et = '24' AND
 time_et > '66' AND
 units IS NOT NULL
 ORDER BY OLAP_EXPRESSION(r2c, 'units * unit_price') DESC;

Using OLAP_TABLE for Direct Access to Workspace Data

7-12 Oracle OLAP Application Developer’s Guide

The result set of this SELECT statement is sorted so that the sales figures are listed
in descending order.

TIME_ET UNITS SALES
--------- -------- ----------
 8 6 170017.38
68 5 123300.25
 9 3 93293.85
 7 3 64931.7
67 2 50932.26

Using OLAP_TABLE for Direct Access to Workspace Data
The OLAP_TABLE function provides the basic technology for extracting data from
an analytic workspace. All of the views of analytic workspaces that are generated
by the enablers use the OLAP_TABLE function. By using OLAP_TABLE directly, you
have full control over data access. You can develop your own views to support
applications for which there are no enablers, and you can extract workspace data
directly into your application. This capability can provide your application with
tremendous flexibility, since user queries can be formulated into calls to
OLAP_TABLE at runtime.

While the OLAP tools that use the OLAP_TABLE function require a standard form
analytic workspace, the OLAP_TABLE function itself does not use standard form
metadata.

Designing Views of an Analytic Workspace
The number of views that you create, and the number and characteristics of the
columns in these views, depends largely on the requirements of the applications
that these views are designed to support.

Because analytic workspaces contain aggregate data, the views must include the
aggregates. There are several formats for presenting aggregate data:

■ Create a star schema with dimension views and measure views. The dimension
views list dimension members at all levels in a single column.

■ Create a view that includes columns for all of the dimensions, attributes, and
measures.

■ Create a view in rollup form that shows the full parentage of each dimension
member in multiple columns.

■ Create a separate table for each aggregation level.

Using OLAP_TABLE for Direct Access to Workspace Data

SQL Access to Analytic Workspaces 7-13

Choose a format that is appropriate for your application and its metadata.

Process Overview
These are the basic steps you must follow to generate views of data stored in an
analytic workspace.

1. Explore the analytic workspace and identify the variables, formulas, relations,
and dimensions that you want to expose to your application.

2. Decide how you want to present these objects in relational tables or views,
based on the requirements of the application that will use them.

3. For each table or view that you plan to create, issue a SELECT statement using
the OLAP_TABLE function. The SELECT statement can be an argument to a
CREATE VIEW statement.

4. Commit these changes to the database if you are creating views for general use.

5. Create whatever metadata is required by your application to query the views.

Using OLAP_TABLE
You use the OLAP_TABLE function in a SQL SELECT statement to query the
multidimensional data stored in an analytic workspace. OLAP_TABLE can be used
wherever you would use the name of a table or view. You can use SELECT
statements to create views, or to fetch data directly from an analytic workspace into
an application.

OLAP_TABLE returns a table of objects that can be joined to relational tables and
views, or to other tables of objects populated by OLAP_TABLE. It can also return
stored workspace data, or it can perform calculations on stored data and return the
results of the calculations.

Example 7–4 is a template that you can use as the starting point for the SQL scripts
that you will develop for extracting data from your analytic workspace. You can
then execute the script with the @ command in SQL*Plus.

Note: Be sure to verify that you have created the views correctly
by issuing SELECT statements against them. Only at that time will
any errors in the call to OLAP_TABLE appear.

Using OLAP_TABLE for Direct Access to Workspace Data

7-14 Oracle OLAP Application Developer’s Guide

Example 7–4 Template for Using OLAP_TABLE

SET ECHO ON
SET SERVEROUT ON

--CREATE OR REPLACE VIEW view_name AS
SELECT column1, column2, columnn
 FROM TABLE(OLAP_TABLE(
 'connection',
 'table_obj',
 'datamap',
 'limit_map'))
 MODEL (
 DIMENSION BY(et_dims, gids)
 MEASURES(measures, attributes, row2cell)
 RULES UPDATE SEQUENTIAL ORDER();
/
COMMIT
/
GRANT SELECT ON view_name TO PUBLIC;

Using the SELECT MODEL Clause
When used in a SELECT statement that queries OLAP_TABLE, the MODEL clause is
an optimization that results in significantly faster response time. It can be used only
when creating a table type with embedded total dimensions, such as the views used
by the BI Beans and the OLAP API.

Note that while the MODEL clause is used in relational queries for inter-row
calculations, you should not use it for this purpose with OLAP_TABLE. For
OLAP_TABLE, the MODEL clause is used only to optimize the query.

When used in a SELECT statement that queries an analytic workspace, MODEL has
the following arguments.

DIMENSION BY
The names of the embedded total dimension columns, as defined in the limit map.
For BI Beans applications, include the GID columns in this list.

See Also: Oracle OLAP Reference for a description of OLAP_TABLE
syntax.

See Also: The SELECT entry in the Oracle Database SQL Reference
for general information about the MODEL clause.

Case Study: Using OLAP_TABLE to Create Global Custom Measures

SQL Access to Analytic Workspaces 7-15

Any other columns in the DIMENSION BY list disables this optimization. A
properly constructed SELECT statement still executes, but more slowly.

MEASURES
The measures, attributes, R2Cs, and any other columns excluded from the
DIMENSION BY list.

RULES UPDATE SEQUENTIAL ORDER
The RULES clause is required, but it should not include complex or inter-row
calculations since they will slow the query. Any calculations specified in the RULES
clause are performed by SQL. If you want to perform inter-row calculations, you
can create a custom measure in the analytic workspace using any of the alternative
methods discussed in this chapter, including the limit map of OLAP_TABLE.

UPDATE indicates that you are not adding any custom members in the DIMENSION
BY clause. Be sure to include this keyword, because otherwise the SQL WHERE
clauses for measures are discarded, which can significantly degrade performance.

SEQUENTIAL ORDER prevents Oracle from evaluating the rules to ascertain their
dependencies.

Case Study: Using OLAP_TABLE to Create Global Custom Measures
The Global Corporation requires numerous custom measures in addition to the
three stored measures fetched from a star schema into the GLOBAL analytic
workspace. The OLAP_TABLE function offers a method of creating these derived
measures, although other methods (described previously in this chapter) are also
available to GLOBAL.

UNITS is one of the stored measures, and the units for the prior period is a required
derived measures. Although they are not required, other derived measures such as
the difference from the prior period or the percent change may also be desirable.

Derived measures can be defined permanently in the analytic workspace or
specified in the syntax of the OLAP_TABLE function. This example adds these two
measures:

■ UNITS_PP calculates the units sold in the prior period.

■ UNITS_PCTCHG_PP is the percent change from the prior period.

This example creates a new OLAP Catalog cube for these measures.

Case Study: Using OLAP_TABLE to Create Global Custom Measures

7-16 Oracle OLAP Application Developer’s Guide

Defining Formulas in the Analytic Workspace
If it does not already exist, add UNITS_PP, which returns the value of the prior time
period, to the GLOBAL analytic workspace with these commands:

DEFINE units_pp FORMULA LAG(units, 1, time, LEVELREL time_levelrel)
UPDATE;COMMIT

This syntax for defining a formula gives it the same data type and dimensionality as
the source object. The new formula has this definition:

DEFINE UNITS_PP FORMULA DECIMAL <TIME CUSTOMER PRODUCT CHANNEL>
EQ lag(units, 1, time, levelrel time_levelrel)

Alternatively, you can define UNITS_PP using the property sheets in Analytic
Workspace Manager.

Example 7–7 defines UNITS_PCTCHG_PP in the OLAP_TABLE function, using the
OLAP DML LAGPCT function. UNITS_PCTCHG_PP calculates the percent change
from the prior period.

Neither UNITS_PP nor UNITS_PCTCHG_PP are defined as standard form measures.
To comply with standard form, they need several OLAP DML properties, and they
must be registered as measures in the standard form catalogs. However,
OLAP_TABLE and the OLAP Catalog do not require standard form; only the tools
that simplify their use require standard form.

Querying an Analytic Workspace Using OLAP_TABLE
Example 7–5 shows a script that fetches data directly into a SQL application using a
SELECT statement with the OLAP_TABLE function. This selection is separate from
any application enablement process.

To query the Units measures in the GLOBAL analytic workspace, take these steps:

1. Open a file with any text editor, and enter the body of the SQL script shown in
Example 7–5. Save it with a name such as units_query.sql.

2. Open a SQL*Plus session with a user name that has access rights to the GLOBAL
analytic workspace.

3. Execute the SQL script with a command like this one:

@units_query

There is neither standard form metadata nor application metadata for UNITS_PP.
An explanation of the example follows the code.

Case Study: Using OLAP_TABLE to Create Global Custom Measures

SQL Access to Analytic Workspaces 7-17

Example 7–5 UNITS_QUERY Script for Querying with OLAP_TABLE

SELECT time_name, units, units_pp FROM TABLE(OLAP_TABLE(
 'global DURATION SESSION',
 '',
 'LIMIT customer_hierlist TO 2',
 'MEASURE units AS NUMBER(16) FROM units
 MEASURE units_pp AS NUMBER(16) FROM units_pp
 DIMENSION channel_dim FROM channel WITH
 HIERARCHY channel_parentrel
 DIMENSION product_dim FROM product WITH
 HIERARCHY product_parentrel
 DIMENSION customer_dim FROM customer WITH
 HIERARCHY customer_parentrel
 DIMENSION time_dim FROM time WITH
 HIERARCHY time_parentrel
 ATTRIBUTE time_name AS VARCHAR2(8) FROM time_long_description'))
WHERE units IS NOT NULL and
 channel_dim = '1' and
 product_dim = '1' and
 customer_dim = '21';
MODEL
DIMENSION BY(channel_dim, product_dim, customer_dim, time_dim)
MEASURES(units, units_pp, time_name)
RULES UPDATE SEQUENTIAL ORDER ();
/

Example 7–6 shows the results of running the script in Example 7–5.

Example 7–6 Results of Running the UNITS_QUERY Script

@units_query

TIME_NAM UNITS UNITS_PP
-------- ---------- ----------
Jan-98 11357
Feb-98 11336 11357
Mar-98 11184 11336
 .
 .
 .
2001 230913 202580
2002 201590 230913
2003 109711 201590

93 rows selected.

Case Study: Using OLAP_TABLE to Create Global Custom Measures

7-18 Oracle OLAP Application Developer’s Guide

OLAP_TABLE Function
In Example 7–5, the arguments to OLAP_TABLE provide the most basic information:
the measures you want to see, their dimensions, and the descriptive names for time
periods that make this data meaningful. In addition, the OLAP_TABLE function
needs the names of the parent relations, which define the hierarchical structure of
the dimensions. Since these dimensions were created by the Create Analytic
Workspace wizard in Analytic Workspace Manager, the parent relations are named
dimension_PARENTREL.

The CUSTOMER dimension has two hierarchies, and a LIMIT command selects the
second hierarchy, MARKET_SEGMENTS; SHIPMENTS is the first hierarchy in the
CUSTOMER_HIERLIST hierarchy dimension, and so it is the default. The other
dimensions have only one hierarchy, so there is no need to limit their hierlist
dimensions.

The limit map identifies two measures (UNITS and UNITS_PP), both of which are
formulas in the analytic workspace. UNITS calculates aggregates from a stored
measure, and UNITS_PP returns the value of the prior period, as defined in
"Defining Formulas in the Analytic Workspace" on page 7-16. Data types are
specified only for the selected columns: TIME_NAME, UNITS, and UNITS_PP.

SELECT Statement
In Example 7–5, the SELECT statement identifies the columns and rows of interest,
just as it does for physical tables in the database. In this particular selection, the
WHERE clause limits all dimensions except TIME to a single value, then labels the
result set only with the long descriptions for TIME.

Using OLAP_TABLE to Create a Measure View for the BI Beans
Example 7–7 shows how you can make the data in an analytic workspace available
to the BI Beans using OLAP_TABLE. The process involves these steps:

1. Create views that conform with the requirements of the BI Beans.

2. Define OLAP Catalog metadata so that the views can be queried by the BI
Beans.

This example creates a measure view of UNITS, UNITS_PP, and
UNITS_PCTCHG_PP for the CUSTOMER MARKET_ROLLUP hierarchy. A second view
is required for the SHIPMENTS_ROLLUP hierarchy. The example does not show the
dimension views either, although the OLAP Catalog and the BI Beans require views
of each dimension.

Case Study: Using OLAP_TABLE to Create Global Custom Measures

SQL Access to Analytic Workspaces 7-19

UNITS_PCTCHG_PP is a custom measure defined in the limit map using the
AW_EXPR keyword. It uses the OLAP DML LAGPCT function to calculate the
percent difference from the prior period.

Creating and Executing the SQL Script
To create the views for the OLAP API, take these steps:

1. Open a file with any text editor, and enter the body of the SQL script shown in
Example 7–7. Save it with a name such as ts_views.sql.

2. Open a SQL*Plus session with a user name that has access rights to the GLOBAL
analytic workspace.

3. Execute the SQL script with a command like this one:

@ts_view

4. Commit these changes to the database.

5. Issue SELECT commands against the views to verify that they were defined
correctly; if not, an error will be generated.

Example 7–7 Creating Views for the OLAP API

CREATE OR REPLACE VIEW ts_view_1 AS SELECT * FROM TABLE(OLAP_TABLE(
 'global DURATION SESSION',
 '',
 'LIMIT customer_hierlist to 1',
 'MEASURE units AS NUMBER(16) FROM units
 MEASURE units_pp AS NUMBER(16) FROM units_pp
 MEASURE units_pctchg_pp AS NUMBER(8,2)
 FROM AW_EXPR LAGPCT(units, 1, time LEVELREL time_levelrel
 ROW2CELL r2c
 DIMENSION channel_et AS VARCHAR2(4) FROM channel WITH
 HIERARCHY channel_parentrel
 INHIERARCHY channel_inhier
 GID channel_gid AS NUMBER(2) FROM channel_gid
 DIMENSION product_et AS VARCHAR2(4) FROM product WITH
 HIERARCHY product_parentrel
 INHIERARCHY product_inhier
 GID product_gid AS NUMBER(2) FROM product_gid
 DIMENSION customer_et AS VARCHAR2(4) FROM customer WITH
 HIERARCHY customer_parentrel
 INHIERARCHY customer_inhier
 GID customer_gid AS NUMBER(2) from customer_gid

Case Study: Using OLAP_TABLE to Create Global Custom Measures

7-20 Oracle OLAP Application Developer’s Guide

 DIMENSION time_et AS VARCHAR2(8) FROM time WITH
 HIERARCHY time_parentrel
 INHIERARCHY time_inhier
 GID time_gid AS NUMBER(2) FROM time_gid'))
 WHERE units IS NOT NULL
MODEL
 DIMENSION BY(channel_et, channel_gid, product_et, product_gid,
 customer_et, customer_gid, time_et, time_gid)
 MEASURES(units, units_pp, units_pctchg_pp,r2c)
 RULES UPDATE SEQUENTIAL ORDER ();

About the Sample Script
Example 7–7 defines a view that conforms to the requirements of the OLAP API for
a fact table:

■ Each dimension has one embedded total column for its members at all
hierarchical levels. The columns are named dimension_ET to match the views
generated by the OLAP API enabler.

■ Each dimension has a column for its grouping IDs. The columns are named
dimension_GID to match the views generated by the OLAP API enabler.

■ A ROW2CELL column is defined for use by the OLAP_EXPRESSION function.

For each dimension, the view identifies these analytic workspace objects:

■ The HIERARCHY relation, which defines the hierarchical relationship among
dimension members by identifying the parent of each member.

■ The INHIERARCHY variable, which identifies whether a dimension member is
in the selected hierarchy.

■ The GID variable, as described previously.

These objects were created by the Create Analytic Workspace wizard. Notice that
the GID variables are the only ones that are mapped to columns in the view.

Defining OLAP Catalog Metadata for Workspace Views
To define OLAP Catalog metadata for views of an analytic workspace, you must use
the CWM2 write APIs. You can then view CWM2 metadata in the OLAP Catalog view
of Analytic Workspace Manager, or by querying the OLAP Catalog views directly in
SQL. You can neither define nor view CWM2 metadata using Oracle Enterprise
Manager.

Case Study: Using OLAP_TABLE to Create Global Custom Measures

SQL Access to Analytic Workspaces 7-21

The new measures (UNITS_PP and UNITS_PCTCHG_PP) could be added to the
existing Units cube. However, Example 7–8 shows how you can create a new cube
for them using predefined dimensions. The example also creates a new measure
folder.

To create the OLAP Catalog metadata for the new measures, follow these steps:

1. Open a file with any text editor, and enter the body of the SQL script shown in
Example 7–8. Save it with a name such as ts_cwm.sql.

Refer to the Oracle OLAP Reference for the complete syntax and usage notes for
the CWM2 APIs.

2. Open a SQL*Plus session with a user name that has access rights to the GLOBAL
analytic workspace and issue these commands:

SET ECHO ON
SET LINESIZE 135
SET PAGESIZE 50
SET SERVEROUTPUT ON FORMAT WRAPPED SIZE 1000000
EXECUTE CWM2_OLAP_MANAGER.SET_ECHO_ON;

These settings enable you to see any error messages and view the full report
from the validation programs that are run by the script. It is important to
validate the metadata before committing it to your database.

3. Execute the SQL script with a command like this one:

@ts_cwm

Note: If the validation messages exceed the maximum buffer size for SQL*Plus,
you can redirect them to a log file by using
CWM2_OLAP_MANAGER.BEGIN_LOG.

4. If there are errors, then take these steps:

a. Issue a ROLLBACK command,

b. Fix the errors in the script.

c. Rerun the script.

5. Copy the metadata to special views for the BI Beans:

EXECUTE CWM2_OLAP_METADATA_REFRESH.MR_REFRESH();

This procedure issues a COMMIT.

Case Study: Using OLAP_TABLE to Create Global Custom Measures

7-22 Oracle OLAP Application Developer’s Guide

Once these measures are defined in the OLAP Catalog, they are available to
BI Beans applications the same as the standard form measures. Figure 7–2 shows
the result set of a query issued through a BI Beans application.

Figure 7–2 New Measures Queried Using a BI Beans Sample Application

Example 7–8 Script for Creating OLAP Catalog Metadata for GLOBAL Measures

BEGIN
-- Define TS_CUBE cube with predefined dimensions
CWM2_OLAP_CUBE.CREATE_CUBE('GLOBAL_AW', 'TS_CUBE', 'TS Cube', 'TS Cube', 'Units Time Series
Cube');
CWM2_OLAP_CUBE.ADD_DIMENSION_TO_CUBE('GLOBAL_AW', 'TS_CUBE', 'GLOBAL_AW', 'CHANNEL');
CWM2_OLAP_CUBE.ADD_DIMENSION_TO_CUBE('GLOBAL_AW', 'TS_CUBE', 'GLOBAL_AW', 'PRODUCT');
CWM2_OLAP_CUBE.ADD_DIMENSION_TO_CUBE('GLOBAL_AW', 'TS_CUBE', 'GLOBAL_AW', 'CUSTOMER');
CWM2_OLAP_CUBE.ADD_DIMENSION_TO_CUBE('GLOBAL_AW', 'TS_CUBE', 'GLOBAL_AW', 'Time');
CWM2_OLAP_MEASURE.CREATE_MEASURE('GLOBAL_AW', 'TS_CUBE', 'UNITS_PP', 'Units PP',
 'Units Prior Period', 'Units Sold in Prior Period');
CWM2_OLAP_MEASURE.CREATE_MEASURE('GLOBAL_AW', 'TS_CUBE', 'UNITS_PCTCHG_PP', 'Units PctChgPP',
 'Units Pct Chg PP', 'Percent Difference in Units Sold From Prior Period');

-- Map TS_VIEW_1 view to metadata cube TS_CUBE
CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_LEVELKEY('GLOBAL_AW', 'TS_CUBE', 'GLOBAL_AW', 'TS_VIEW_1', 'ET',

Case Study: Using OLAP_TABLE to Create Global Custom Measures

SQL Access to Analytic Workspaces 7-23

 'DIM:GLOBAL_AW.CHANNEL/HIER:CHANNEL_ROLLUP/GID:CHANNEL_GID/LVL:CHANNEL/COL:CHANNEL_ET;
 DIM:GLOBAL_AW.CUSTOMER/HIER:SHIPMENTS/GID:CUSTOMER_GID/LVL:SHIP_TO/COL:CUSTOMER_ET;
 DIM:GLOBAL_AW.PRODUCT/HIER:PRODUCT_ROLLUP/GID:PRODUCT_GID/LVL:ITEM/COL:PRODUCT_ET;
 DIM:GLOBAL_AW.Time/HIER:Calendar/GID:TIME_GID/LVL:Month/COL:TIME_ET');

CWM2_OLAP_TABLE_MAP.ADD_AWVIEW('GLOBAL_AW', 'TS_VIEW_1', 'r2c');

CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_MEASURE('GLOBAL_AW', 'TS_CUBE', 'UNITS_PP', 'GLOBAL_AW', 'TS_VIEW_1',
'UNITS_PP',

 'DIM:GLOBAL_AW.CHANNEL/HIER:CHANNEL_ROLLUP/GID:CHANNEL_GID/LVL:CHANNEL/COL:CHANNEL_ET;
 DIM:GLOBAL_AW.CUSTOMER/HIER:SHIPMENTS/GID:CUSTOMER_GID/LVL:SHIP_TO/COL:CUSTOMER_ET;
 DIM:GLOBAL_AW.PRODUCT/HIER:PRODUCT_ROLLUP/GID:PRODUCT_GID/LVL:ITEM/COL:PRODUCT_ET;
 DIM:GLOBAL_AW.TIME/HIER:Calendar/GID:TIME_GID/LVL:Month/COL:TIME_ET;');

CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_MEASURE('GLOBAL_AW', 'TS_CUBE', 'UNITS_PCTCHG_PP', 'GLOBAL_AW',
'TS_VIEW_1', 'UNITS_PCTCHG_PP',
 'DIM:GLOBAL_AW.CHANNEL/HIER:CHANNEL_ROLLUP/GID:CHANNEL_GID/LVL:CHANNEL/COL:CHANNEL_ET;
 DIM:GLOBAL_AW.CUSTOMER/HIER:SHIPMENTS/GID:CUSTOMER_GID/LVL:SHIP_TO/COL:CUSTOMER_ET;
 DIM:GLOBAL_AW.PRODUCT/HIER:PRODUCT_ROLLUP/GID:PRODUCT_GID/LVL:ITEM/COL:PRODUCT_ET;
 DIM:GLOBAL_AW.TIME/HIER:Calendar/GID:TIME_GID/LVL:Month/COL:TIME_ET;');

CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_LEVELKEY('GLOBAL_AW', 'TS_CUBE', 'GLOBAL_AW', 'TS_VIEW_2', 'ET',
 'DIM:GLOBAL_AW.CHANNEL/HIER:CHANNEL_ROLLUP/GID:CHANNEL_GID/LVL:CHANNEL/COL:CHANNEL_ET;
 DIM:GLOBAL_AW.CUSTOMER/HIER:MARKET_SEGMENT/GID:CUSTOMER_GID/LVL:SHIP_TO/COL:CUSTOMER_ET;
 DIM:GLOBAL_AW.PRODUCT/HIER:PRODUCT_ROLLUP/GID:PRODUCT_GID/LVL:ITEM/COL:PRODUCT_ET;
 DIM:GLOBAL_AW.TIME/HIER:Calendar/GID:TIME_GID/LVL:Month/COL:TIME_ET;');

CWM2_OLAP_TABLE_MAP.ADD_AWVIEW('GLOBAL_AW', 'TS_VIEW_2', 'r2c');

-- Map TS_VIEW_2 view to metadata cube TS_CUBE
CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_MEASURE('GLOBAL_AW', 'TS_CUBE', 'UNITS_PP', 'GLOBAL_AW',
'TS_VIEW_2', 'UNITS_PP',
 'DIM:GLOBAL_AW.CHANNEL/HIER:CHANNEL_ROLLUP/GID:CHANNEL_GID/LVL:CHANNEL/COL:CHANNEL_ET;
 DIM:GLOBAL_AW.CUSTOMER/HIER:MARKET_SEGMENT/GID:CUSTOMER_GID/LVL:SHIP_TO/COL:CUSTOMER_ET;
 DIM:GLOBAL_AW.PRODUCT/HIER:PRODUCT_ROLLUP/GID:PRODUCT_GID/LVL:ITEM/COL:PRODUCT_ET;
 DIM:GLOBAL_AW.TIME/HIER:Calendar/GID:TIME_GID/LVL:Month/COL:TIME_ET;');

CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_MEASURE('GLOBAL_AW', 'TS_CUBE', 'UNITS_PCTCHG_PP', 'GLOBAL_AW',
'TS_VIEW_2', 'UNITS_PCTCHG_PP',
 'DIM:GLOBAL_AW.CHANNEL/HIER:CHANNEL_ROLLUP/GID:CHANNEL_GID/LVL:CHANNEL/COL:CHANNEL_ET;
 DIM:GLOBAL_AW.CUSTOMER/HIER:MARKET_SEGMENT/GID:CUSTOMER_GID/LVL:SHIP_TO/COL:CUSTOMER_ET;
 DIM:GLOBAL_AW.PRODUCT/HIER:PRODUCT_ROLLUP/GID:PRODUCT_GID/LVL:ITEM/COL:PRODUCT_ET;
 DIM:GLOBAL_AW.TIME/HIER:Calendar/GID:TIME_GID/LVL:Month/COL:TIME_ET;');

-- Validate the cube metadata

Case Study: Using OLAP_TABLE to Create Global Custom Measures

7-24 Oracle OLAP Application Developer’s Guide

CWM2_OLAP_VALIDATE.VALIDATE_CUBE('GLOBAL_AW', 'TS_CUBE', 'OLAP API');

-- Create a measure folder
CWM2_OLAP_CATALOG.CREATE_CATALOG('GLOBAL_ANALYTIC_CAT', 'Global Analytic Measures');
CWM2_OLAP_CATALOG.ADD_CATALOG_ENTITY('GLOBAL_ANALYTIC_CAT', 'GLOBAL_AW', 'TS_CUBE', 'UNITS');
CWM2_OLAP_CATALOG.ADD_CATALOG_ENTITY('GLOBAL_ANALYTIC_CAT', 'GLOBAL_AW', 'TS_CUBE', 'UNITS_PP');
CWM2_OLAP_CATALOG.ADD_CATALOG_ENTITY('GLOBAL_ANALYTIC_CAT', 'GLOBAL_AW', 'TS_CUBE',
'UNITS_PCTCHG_PP');
--COMMIT;
end;
/

Exploring a Standard Form Analytic Workspace 8-1

8
Exploring a Standard Form

Analytic Workspace

This chapter describes the objects created in a standard form analytic workspace. It
serves as a guide to your own analytic workspace, and you can examine the
property sheets of the objects described here by opening the Object View in Analytic
Workspace Manager.

This chapter contains the following topics:

■ About Workspaces Created Using OLAP Tools

■ Standard Form Dimensions

■ Standard Form Hierarchies

■ Standard Form Levels

■ Standard Form Attributes

■ Standard Form Measures

■ Standard Form Cubes

■ Standard Form Catalogs

■ OLAP API Enabler Catalogs

■ AWCREATE Catalogs

See Also: Appendix A for the complete database standard form
specification.

About Workspaces Created Using OLAP Tools

8-2 Oracle OLAP Application Developer’s Guide

About Workspaces Created Using OLAP Tools
As described in Chapter 6, there are several methods for creating analytic
workspaces. All of these methods create analytic workspaces with the same basic
characteristics. These characteristics include compliance with the database standard
form conventions.

About Database Standard Form
Just as a relational schema can be set up in countless ways, the design of an analytic
workspace can be structured in as many ways as there are application developers.
However, when an application is created to run against analytic workspaces, it
requires one particular design so that it can locate particular objects and identify
their role within the workspace. The design for the tools available through Analytic
Workspace Manager is called database standard form.

Analytic Workspace Manager and the current generation of tools can only be used
with database standard form analytic workspaces. Database standard form (or
simply, standard form) stipulates:

■ Certain objects must exist in the analytic workspace. These objects and
properties are used by tools in Analytic Workspace Manager that perform tasks
such as aggregation, data refresh, and applications enablement. The active
catalogs, described in "Overview of SQL Access" on page 7-1, also rely on
database standard form, as do some PL/SQL packages, such as
DBMS_AW_UTILITIES.

■ OLAP DML properties (which begin with AW$) must be defined on these
objects. The property values are metadata for the object, and identify its
relationships with other objects in the analytic workspace.

■ Objects must be registered in workspace catalogs. OLAP tools query these
metadata catalogs to get information about how the logical cubes, measures,
and dimensions are instantiated in the analytic workspace. When you define
objects using the tools in Analytic Workspace Manager, the tools also maintain
the catalogs. However, when you define objects manually, as described in some
chapters of this guide, you must also maintain the properties and the catalogs
for the tools to be aware of the new objects.

The Create Analytic Workspace wizard in Analytic Workspace Manager creates
analytic workspaces in standard form. By using the Object View to browse the
workspace objects, you can gain familiarity with standard form.

About Workspaces Created Using OLAP Tools

Exploring a Standard Form Analytic Workspace 8-3

Not all of the objects required by standard form are currently used by the analytic
workspace tools. These objects are not described in this chapter, and you can ignore
them at this time.

Standard Form Implementation of the Logical Model
The standard form logical model includes cubes, measures, and dimensions, as well
as the hierarchies, levels, and attributes that are associated with dimensions. A cube
is considered to be the parent of the measures that it contains, and a dimension is
considered to be the parent of its hierarchies, levels, and attributes. A cube has
dimensionality; that is, it is associated with its list of dimensions.

It is important to remember that standard form is a logical metadata model that is
imposed on an analytic workspace. It does not describe the inherent relationships
among workspace objects, such as the relationship between variables and formulas
and their dimensions, or among dimensions in a workspace relation.

Figure 8–1 shows the basic objects that implement this model in a standard form
analytic workspace.

Figure 8–1 Standard Form Implementation of the Basic Logical Model

See Also: Appendix A for a full description of the database
standard form convention.

Querying a Standard Form Analytic Workspace

8-4 Oracle OLAP Application Developer’s Guide

Additional Requirements for OLAP Tools
Some of the tools in Analytic Workspace Manager require additional properties and
objects, which are defined in the analytic workspace.

Some property values identify build parameters in DBMS_AWM procedures. If you
created your analytic workspace by running DBMS_AWM directly, then you will
immediately recognize these values. If you used Analytic Workspace Manager or
Oracle Warehouse Builder, which generated the calls to DBMS_AWM, then you can
see the choices made for you.

Standard form does not specify a naming convention for workspace objects.
However, DBMS_AWM creates objects with standardized names that typically identify
the role of the object within the analytic workspace. This chapter identifies objects
by the value of their AW$ROLE property and identifies the standardized names
given by DBMS_AWM. When creating an analytic workspace, you may choose to add
prefixes to these names.

The term "standard form" is thus used loosely in this chapter to refer to both the
convention and its implementation by DBMS_AWM.

Querying a Standard Form Analytic Workspace
Standard form enables you to discover the names of logical objects and the names of
the physical workspace objects that implement the logical model.

Querying the Standard Form Catalogs
You can acquire information about an analytic workspace by querying its standard
form catalogs. These catalogs are implemented as dimensions, variables, relations,
and valuesets in the analytic workspace. Some of these objects are in the CATALOGS
class, and others are in the EXTENSIONS class.

The ALL_OBJECTS dimension is a catalog that contains the names of all logical
objects. ALL_OBJECTS is a concat dimension, that is, it is a concatenated list of the
members of other simple dimensions. Separate dimensions for each logical object
type contain the names of logical objects, for example, the ALL_HIERARCHIES
dimension contains the names of all hierarchies, and the ALL_LEVELS dimension
contains the names of all levels. You can query these dimensions to discover the
logical model implemented by an analytic workspace.

For example, the following command displays the names of all measures in the
analytic workspace.

Querying a Standard Form Analytic Workspace

Exploring a Standard Form Analytic Workspace 8-5

REPORT W 40 all_measures

ALL_MEASURES
--
GLOBAL_AW.UNITS_CUBE.UNITS.MEASURE
GLOBAL_AW.PRICE_CUBE.UNIT_COST.MEASURE
GLOBAL_AW.PRICE_CUBE.UNIT_PRICE.MEASURE

ALL_OBJECTS and its simple dimensions (such as ALL_LEVELS) are used in
dimensional catalogs that are implemented as variables, relations, and valuesets.

Refer to "Catalogs Class Objects" on page A-25 for more information about standard
form catalogs.

Querying Properties
By querying the standard form properties attached to workspace objects, you can
discover the relationship between the logical model and the physical objects that
implement the model.

You can query the properties on a particular object, or limit the NAME dimension to
objects with particular properties or property values. The NAME dimension contains
the names of all objects in an analytic workspace. By limiting the status of the NAME
dimension, you can limit the scope of commands that otherwise act on all objects.

All objects have the following properties, which are described in Table A–2 on
page A-8:

AW$CLASS
AW$CREATEDBY
AW$LASTMODIFIED
AW$ROLE

The following commands show how you can use the AW$ROLE property to discover
the names of measuredef objects:

LIMIT name TO OBJ(PROPERTY 'AW$ROLE') EQ 'MEASUREDEF'
REPORT name

NAME

UNITS
UNIT_COST
UNIT_PRICE

Standard Form Dimensions

8-6 Oracle OLAP Application Developer’s Guide

The FULLDSC command lists all the properties and their values:

FULLDSC units

DEFINE UNITS FORMULA DECIMAL <TIME PRODUCT CUSTOMER CHANNEL>
EQ
aggregate(GLOBAL_AW!UNITS_STORED using GLOBAL_AW!-
GLOBAL.DEFAULTAGGMAP1.AGGREGATIONDEFINITION COUNTVAR GLOBAL_AW!-
UNITS_COUNTVAR)
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '25SEP03_14:01:54'
PROPERTY 'AW$LOGICAL_NAME' 'UNITS'
PROPERTY 'AW$PARENT_NAME' 'UNITS_CUBE'
PROPERTY 'AW$ROLE' 'MEASUREDEF'
PROPERTY 'AW$STATE' 'VALID_MEMBER'

Or you can use the OBJ function to get the value of a specific property:

SHOW OBJ(PROPERTY 'AW$PARENT_NAME', 'UNITS')

UNITS_CUBE

Standard Form Dimensions
The dimensions of a cube are typically hierarchical in nature and thus have levels
and hierarchies. Dimensions in an analytic workspace are frequently called
embedded total dimensions because they contain members at all levels, and thus
are used to define measures with aggregate data. Dimension members are acquired
from multiple level columns of a relational dimension table.

An embedded total dimension has, in addition to the dimension object, at least one
level and one hierarchy. A flat dimension does not require them.

All dimensions have a default order attribute, as described in "Standard Form
Attributes" on page 8-20. Time attributes must have end date and time span
attributes.

For additional information about dimensions, refer to "Implementation Class
Objects" on page A-14.

Dimdef Dimension
A dimdef dimension (that is, a dimension used in a cube) in an analytic workspace
has the name defined in the metadata, such as TIME or PRODUCT, and may have a

Standard Form Dimensions

Exploring a Standard Form Analytic Workspace 8-7

prefix specified in the build. The dimension has a TEXT data type unless you
redefine it before loading the dimension members. Dimension members may have a
level prefix added to the source values.

Contents of an Analytic Workspace Dimension
The analytic workspace dimension members may be exactly the same as those in
the relational dimension table, or they may have a level prefix. The prefix is an
option in the build. Example 8–1 shows how the Global PRODUCT dimension
members would appear if a prefix were specified in the build. (The Global star
schema provides surrogate keys, so no prefix is actually needed to assure unique
dimension members across levels.)

All dimension members are sorted during the load process. For the Time
dimension, the members are sorted by level and by end-date within the levels. This
order is required to support time-series analysis, which is based on the relative
position of time periods within the dimension. Other dimensions are sorted by level
and alphanumerically by dimension member within the levels. A default order
attribute identifies the original order in which the dimension members were loaded
into the analytic workspace.

Example 8–1 Global Products with Level Prefixes

LIMIT product TO product_levelrel EQ 'ITEM'
LIMIT product KEEP FIRST 3
LIMIT product ADD ANCESTORS USING product_parentrel
REPORT W 20 product

PRODUCT

ITEM.13
ITEM.14
ITEM.15
FAMILY.4
CLASS.2
TOTAL_PRODUCT.1

Properties of an Analytic Workspace Dimdef Dimension
Table 8–1 describes the OLAP DML properties of a dimdef dimension. For
descriptions of the properties independent of the object type, refer to Appendix A.

Standard Form Dimensions

8-8 Oracle OLAP Application Developer’s Guide

Table 8–1 Dimdef Dimension Properties

Property Value

AW$CLASS IMPLEMENTATION

AW$CREATEDBY Creator of the dimension; the Refresh wizard requires a value
of AW$CREATE, which indicates that the dimension was created
by AWCREATE programs

AW$LASTMODIFIED Date and time the dimension was last accessed by an analytic
workspace tool

AW$LOGICAL_NAME OLAP Catalog source name

AW$PARENT_NAME NA

AW$ROLE DIMDEF

AW$STATE ACTIVE

AW$TYPE Time for a Time dimension, otherwise NA

DESCRIPTION Optional description of the dimension

LOAD_TYPE Type of load performed for last refresh, either
FULL_LOAD_ADDITIONS_ONLY or FULL_LOAD, as specified
by DBMS_AWM.CREATE_AWDIMLOAD_SPEC; used by
AWCREATE programs

SOURCE_NAME OLAP Catalog source dimension; used by AWCREATE
programs and the active catalog

SOURCE_OWNER Owner of OLAP Catalog source metadata; used by AWCREATE
programs and the active catalog

UNIQUE_RDBMS_KEY YES if source dimension tables provided unique keys across
levels, or NO if level names were prefixed to the keys to assure
uniqueness, as specified by
DBMS_AWM.SET_AWDIMLOAD_SPEC_PARAMETER; used by
AWCREATE programs

DISPLAY_NAME OLAP Catalog source display name or
DBMS_AWM.SET_AWDIMLOAD_SPEC_PARAMETER setting;
used by AWCREATE programs

P_DISPLAY_NAME OLAP Catalog plural display name or
DBMS_AWM.SET_AWDIMLOAD_SPEC_PARAMETER setting.

Standard Form Hierarchies

Exploring a Standard Form Analytic Workspace 8-9

Standard Form Metadata for Dimensions
Standard form metadata for dimensions is stored in these objects:

■ ALL_DIMENSIONS dimension

■ ALL_DESCRIPTIONS variable

■ AW_NAMES variable

■ DIM_LEVELS valueset

ALL_DIMENSIONS Dimension
The ALL_DIMENSIONS dimension contains the names of all dimensions in this
format:

workspace.dimension.DIMENSION

For example: GLOBAL_AW.PRODUCT.DIMENSION

ALL_DIMENSIONS is a base dimension of the ALL_OBJECTS concat dimension.
ALL_OBJECTS dimensions ALL_DESCRIPTIONS and AW_NAMES, so these catalogs
have an entry for each measure.

ALL_DESCRIPTIONS Variable for Dimensions
The ALL_DESCRIPTIONS variable contains short, long, and plural names for the
dimensions. All objects have a short name acquired from the metadata, but may or
may not have long and plural names.

AW_NAMES Variable for Dimensions
The AW_NAMES measure provides the fully qualified name of the workspace
dimension object in this format:

schema.workspace!dimension

For example: GLOBAL_AW.GLOBAL!PRODUCT

DIM_LEVELS Valueset
The DIM_LEVELS valueset identifies the levels defined for each dimension.

Standard Form Hierarchies
The following objects support dimension hierarchies:

Standard Form Hierarchies

8-10 Oracle OLAP Application Developer’s Guide

■ Hierlist dimension

■ Member_parentrel relation

■ Member_gid variable

■ Member_inhier variable

The values of the member_parentrel relation, member_gid variable, and member_inhier
variable can be different for different hierarchies, so the hierlist dimension is used to
define these objects.

For additional information about hierarchies, refer to "Implementation Class
Objects" on page A-14 and "Features Class Objects" on page A-35.

Hierlist Dimension
A hierlist dimension stores the names of the hierarchies defined for a particular
dimension. The names of the hierarchies are acquired from the OLAP Catalog. This
text dimension typically has a name of dimdef_HIERLIST.

Contents of a Hierlist Dimension
Example 8–2 shows the contents of CUSTOMER_HIERLIST in the GLOBAL analytic
workspace.

Example 8–2 GLOBAL Hierlist Dimension for CUSTOMER

REPORT W 20 customer_hierlist

CUSTOMER_HIERLIST

SHIPMENTS
MARKET_SEGMENT

Properties of a Hierlist Dimension
Table 8–2 describes the OLAP DML properties of a hierlist dimension. For
descriptions of the properties independent of the object type, refer to Appendix A.

Standard Form Hierarchies

Exploring a Standard Form Analytic Workspace 8-11

Member_Parentrel Relation
A member_parentrel relation defines the hierarchical relationship among dimension
members by identifying the parent of each member. This relation provides the
essential hierarchical support for the dimension. This information is acquired from
the relational dimension table. The parent relation is named dimdef_PARENTREL.

Contents of a Member_Parentrel Relation
A member_parentrel relation is a type of self-relation, in which the only valid values
are dimension members. Example 8–3 shows the member_parentrel relation for the
CHANNEL dimension in the GLOBAL analytic workspace. The relation defines a
two-level hierarchy in which 1 is the parent of 2, 3, and 4.

Example 8–3 CHANNEL Member_Parentrel Relation in GLOBAL

REPORT DOWN channel W 20 channel_parentrel

 -CHANNEL_PARENTREL--
 --CHANNEL_HIERLIST--
CHANNEL CHANNEL_ROLLUP
-------------- --------------------
1 NA
2 1
3 1
4 1

Table 8–2 Hierlist Dimension Properties

Property Value

AW$CLASS IMPLEMENTATION

AW$CREATEDBY Creator of the dimension; the Refresh wizard requires a value
of AW$CREATE, which indicates that the dimension was created
by AWCREATE programs

AW$LASTMODIFIED Date and time the dimension was last accessed by an analytic
workspace tool

AW$PARENT_NAME Dimdef dimension

AW$ROLE HIERLIST

AW$STATE CREATED

Standard Form Hierarchies

8-12 Oracle OLAP Application Developer’s Guide

Properties of a Member_Parentrel Relation
Table 8–3 describes the OLAP DML properties of a member_parentrel relation. For
descriptions of the properties independent of the object type, refer to Appendix A.

Member_Gid Variable
Member_gid variables improve the performance of views for the OLAP API. This
integer variable identifies the depth in the hierarchy of each dimension member.
This information is generated by the GROUPINGID command in the OLAP DML;
refer to its entry in the Oracle OLAP DML Reference for information about its
contents. The standard name for a member_gid variable is dimdef_GID.

Contents of a Member_GID Variable
Example 8–4 shows the member_gid variable for the CHANNEL dimension in the
GLOBAL analytic workspace. It shows that channels 2, 3, and 4 are at the base level
(0) and channel 1 is one level deep (1).

Table 8–3 Member_Parentrel Relation Properties

Property Value

AW$CLASS IMPLEMENTATION

AW$CREATEDBY Creator of the relation; the Refresh tool requires a value of
AW$CREATE, which indicates that the relation was created by
AWCREATE programs

AW$LASTMODIFIED Date and time the relation was last accessed by an analytic
workspace tool

AW$PARENT_NAME Dimdef dimension

AW$ROLE MEMBER_PARENTREL

AW$STATE CREATED

Standard Form Hierarchies

Exploring a Standard Form Analytic Workspace 8-13

Example 8–4 CHANNEL Member_Gid in Global

REPORT DOWN channel W 20 channel_gid

 ----CHANNEL_GID-----
 --CHANNEL_HIERLIST--
CHANNEL CHANNEL_ROLLUP
-------------- --------------------
1 1
2 0
3 0
4 0

Properties of a Member_Gid Variable
Table 8–4 describes the OLAP DML properties of a member_gid variable. For
descriptions of the properties independent of the object type, refer to Appendix A.

Member_Inhier Variable
Member_inhier variables are used to improve the performance of views for the
OLAP API. This Boolean variable identifies whether a dimension member belongs
to a level that is included in a particular hierarchy. The information is acquired from
the OLAP Catalog metadata, and typically is useful only for dimensions with
multiple hierarchies. The standard name for a member_inhier variable is
dimension_INHIER.

Table 8–4 Member_GID Variable Properties

Property Value

AW$CLASS FEATURES

AW$CREATEDBY Creator of the variable; the Refresh tool requires a value of
AW$CREATE, which indicates that the variable was created by
AWCREATE programs

AW$LASTMODIFIED Date and time the variable was last accessed by an analytic
workspace tool

AW$PARENT_NAME Dimdef dimension

AW$ROLE MEMBER_GID

AW$STATE CREATED

Standard Form Hierarchies

8-14 Oracle OLAP Application Developer’s Guide

Contents of a Member_Inhier Variable
Example 8–5 shows the contents of the member_inhier variable for the CUSTOMER
dimension of the GLOBAL analytic workspace. YES indicates that the dimension
member is in the hierarchy; NA indicates that it is not in the hierarchy.

Example 8–5 CUSTOMER Member_Inhier Variable in GLOBAL

LIMIT customer TO customer_levelrel EQ 'SHIP_TO' "Select base-level members
LIMIT customer KEEP FIRST 1 "Keep just the first one
LIMIT customer ADD ANCESTORS USING customer_parentrel "Add its ancestors
REPORT DOWN customer W 15 customer_inhier

 --------CUSTOMER_INHIER--------
 -------CUSTOMER_HIERLIST-------
CUSTOMER SHIPMENTS MARKET_SEGMENT
-------------- --------------- ---------------
46 yes yes
21 yes NA
22 NA yes
10 yes NA
5 NA yes
1 yes NA
7 NA yes

Properties of a Member_Inhier Variable
Table 8–5 describes the OLAP DML properties of a member_inhier variable. For
descriptions of the properties independent of the object type, refer to Appendix A.

Table 8–5 Member_Inhier Variable Properties

Property Value

AW$CLASS FEATURES

AW$CREATEDBY Creator of the variable; the Refresh tool requires a value of
AW$CREATE, which indicates that the variable was created by
AWCREATE programs

AW$LASTMODIFIED Date and time the variable was last accessed by an analytic
workspace tool

AW$PARENT_NAME Dimdef dimension

AW$ROLE MEMBER_INHIER

AW$STATE CREATED

Standard Form Hierarchies

Exploring a Standard Form Analytic Workspace 8-15

Standard Form Metadata for Hierarchies
Standard form metadata for hierarchies is stored in these objects:

■ ALL_HIERARCHIES dimension

■ ALL_DESCRIPTIONS variable

■ DIM_HIERARCHIES valueset

■ DEFAULT_HIER relation

ALL_HIERARCHIES Dimension
The ALL_HIERARCHIES dimension contains the names of all hierarchies in this
format:

workspace.dimension.hierarchy.HIERARCHY

For example: GLOBAL_AW.CUSTOMER.SHIPMENTS.HIERARCHY

ALL_HIERARCHIES is a base dimension of the ALL_OBJECTS concat dimension.
ALL_OBJECTS dimensions ALL_DESCRIPTIONS and AW_NAMES.
ALL_DESCRIPTIONS provides values for the hierarchies, but AW_NAMES does not.

ALL_DESCRIPTIONS Variable for Hierarchies
The ALL_DESCRIPTIONS variable contains short, long, and plural names for the
hierarchies. All objects have a short name acquired from the metadata, but may or
may not have long and plural names.

DIM_HIERARCHIES Valueset
The DIM_HIERARCHIES valueset identifies the hierarchies defined for each
dimension.

DEFAULT_HIER Relation
The DEFAULT_HIER relation identifies the default hierarchy for each dimension.

Standard Form Levels

8-16 Oracle OLAP Application Developer’s Guide

Standard Form Levels
Levels are the basis of dimension hierarchies. A level belongs to one or more
hierarchies. These objects support level definitions:

■ Levellist dimension

■ Member_levelrel relation

■ Member_familyrel relation

For additional information about levels, refer to "Implementation Class Objects" on
page A-14 and "Features Class Objects" on page A-35.

Levellist Dimension
A levellist dimension stores the names of all levels for all hierarchies defined for a
particular dimension. The information is acquired from the OLAP Catalog. This text
dimension typically has the name dimdef_LEVELLIST.

Contents of a Levellist Dimension
Example 8–6 shows the CUSTOMER levellist dimension in GLOBAL, which contains
the levels for both the SHIPMENTS and MARKET_SEGMENT hierarchies.

Example 8–6 CUSTOMER Levellist Dimension in GLOBAL

REPORT W 20 customer_levellist

CUSTOMER_LEVELLIST

TOTAL_MARKET
MARKET_SEGMENT
ACCOUNT
ALL_CUSTOMERS
REGION
WAREHOUSE
SHIP_TO

Properties of a Levellist Dimension
Table 8–6 describes the properties of a levellist dimension. For descriptions of the
properties independent of the object type, refer to Appendix A.

Standard Form Levels

Exploring a Standard Form Analytic Workspace 8-17

Member_Levelrel Relation
A member_levelrel relation identifies the level of each dimension member. It
facilitates the selection of dimension members by level. The information is acquired
from the relational fact tables. This text dimension typically has the name
dimdef_LEVELREL.

Contents of a Level Relation
Example 8–7 shows the CUSTOMER member_levelrel relation in GLOBAL.

Example 8–7 CUSTOMER Member_Levelrel Relation in GLOBAL

LIMIT customer TO '62' "Select customer 62
LIMIT customer ADD ANCESTORS USING customer_parentrel "Add ancestors
REPORT DOWN customer W 20 customer_levelrel

CUSTOMER CUSTOMER_LEVELREL
-------------- --------------------
62 SHIP_TO
21 WAREHOUSE
27 ACCOUNT
10 REGION
6 MARKET_SEGMENT
1 ALL_CUSTOMERS
7 TOTAL_MARKET

Table 8–6 Levellist Dimension Properties

Property Value

AW$CLASS IMPLEMENTATION

AW$CREATEDBY Creator of the level; the Refresh tool requires a value of
AW$CREATE, which indicates that the level was created by
AWCREATE programs

AW$LASTMODIFIED Date and time the level was last accessed by an analytic
workspace tool

AW$LOGICAL_NAME NA

AW$PARENT_NAME Dimdef dimension

AW$ROLE LEVELLIST

AW$STATE CREATED

Standard Form Levels

8-18 Oracle OLAP Application Developer’s Guide

Properties of a Member_Levelrel Relation
Table 8–7 describes the OLAP DML properties of a member_levelrel relation. For
descriptions of the properties independent of the object type, refer to Appendix A.

Member_Familyrel Relation
Member_familyrel relations improve the performance of views for Oracle Discoverer.
It provides a crosstab with the full parentage of each dimension member within a
single row. The standard name for a family relation is dimdef_FAMILYREL.

Contents of a Family Relation
Example 8–8 shows the CUSTOMER family relation in GLOBAL.

Example 8–8 CUSTOMER Family Relation in GLOBAL

LIMIT customer TO '78' "Select customer 78
LIMIT customer ADD ANCESTORS USING customer_parentrel "Add the ancestors
LIMIT customer_hierlist TO 'SHIPMENTS' "Select the SHIPMENTS hierarchy

REPORT customer_familyrel

Table 8–7 Member_Levelrel Relation Properties

Property Value

AW$CLASS IMPLEMENTATION

AW$CREATEDBY Creator of the level; the Refresh tool requires a value of
AW$CREATE, which indicates that the level was created by
AWCREATE programs

AW$LASTMODIFIED Date and time the level was last accessed by an analytic
workspace tool

AW$PARENT_NAME Dimdef dimension

AW$ROLE MEMBER_LEVELREL

AW$STATE CREATED

Standard Form Levels

Exploring a Standard Form Analytic Workspace 8-19

CUSTOMER_HIERLIST: SHIPMENTS
 -----------------------------CUSTOMER_FAMILYREL-----------------------------
 ----------------------------------CUSTOMER----------------------------------
CUSTOMER_LEVEL
LIST 78 21 31 10 2 1 7
-------------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
TOTAL_MARKET NA NA NA NA NA NA NA
MARKET_SEGMENT NA NA NA NA NA NA NA
ACCOUNT NA NA NA NA NA NA NA
ALL_CUSTOMERS 1 1 NA 1 NA 1 NA
REGION 10 10 NA 10 NA NA NA
WAREHOUSE 21 21 NA NA NA NA NA
SHIP_TO 78 NA NA NA NA NA NA

Properties of a Member_Familyrel Relation
Table 8–8 describes the OLAP DML properties of a member_familyrel relation. For
descriptions of the properties independent of the object type, refer to Appendix A.

Standard Form Metadata for Levels
Standard form metadata for levels is stored in these objects:

■ ALL_LEVELS dimension

■ ALL_DESCRIPTIONS variable

■ DIM_LEVELS valueset

Table 8–8 Member_Familyrel Relation Properties

Property Value

AW$CLASS FEATURES

AW$CREATEDBY Creator of the relation; the Refresh tool requires a value of
AW$CREATE, which indicates that the relation was created by
AWCREATE programs

AW$LASTMODIFIED Date and time the relation was last accessed by an analytic
workspace tool

AW$PARENT_NAME Dimdef dimension

AW$ROLE MEMBER_FAMILYREL

AW$STATE CREATED

Standard Form Attributes

8-20 Oracle OLAP Application Developer’s Guide

ALL_LEVELS Dimension
The ALL_LEVELS dimension contains the names of all levels in this format:

workspace.dimension.level.LEVEL

For example: GLOBAL_AW.TIME.Quarter.LEVEL

ALL_LEVELS is a base dimension of the ALL_OBJECTS concat dimension.
ALL_OBJECTS dimensions ALL_DESCRIPTIONS and AW_NAMES.
ALL_DESCRIPTIONS provides values for the levels, but AW_NAMES does not.

ALL_DESCRIPTIONS Variable for Levels
The ALL_DESCRIPTIONS variable contains short, long, and plural names for the
levels. All levels have a short name acquired from the metadata, but may or may
not have long and plural names.

DIM_LEVELS Valueset
The DIM_LEVELS valueset identifies the levels defined for each dimension.

Standard Form Attributes
Attributes are defined as variables, usually with a text data type. They provide
information about the dimension members, and are typically acquired from
relational dimension tables. An attribute is dimensioned by a dimdef dimension, a
hierlist dimension, and the ALL_LANGUAGES dimension.

Dimension members are sorted during a load, and an attribute named
dimension_ORDER identifies the original order in which they were fetched, row by
row, into the analytic workspace.

Table 8–9 describes the OLAP DML properties for attributes. For descriptions of the
properties independent of the object type, refer to Appendix A.

Table 8–9 Attribute Properties

Property Value

AW$CLASS IMPLEMENTATION

AW$CREATEDBY Creator of the attribute; the Refresh tool requires a value of
AW$CREATE, which indicates that the attribute was created by
AWCREATE programs

Standard Form Attributes

Exploring a Standard Form Analytic Workspace 8-21

For additional information about standard form attributes, refer to the
"Implementation Class Objects" on page A-14 and "Catalogs Class Objects" on
page A-25.

ALL_LANGUAGES Dimension
The ALL_LANGUAGES dimension enables an analytic workspace to support multiple
languages. It initially has one member, which identifies the database (and thus the
analytic workspace) territory and language, for example, AMERICAN_AMERICA.

Table 8–10 describes the OLAP DML properties of the ALL_LANGUAGES dimension.
For descriptions of the properties independent of the object type, refer to
Appendix A.

AW$LASTMODIFIED Date and time the attribute was last accessed by an analytic
workspace tool

AW$LOGICAL_NAME OLAP Catalog source attribute name

AW$PARENT_NAME Dimdef dimension

AW$ROLE ATTRDEF

AW$STATE CREATED

AW$TYPE Long Description, Short Description, Time Span,
End Date, and DEFAULT_ORDER are currently used as special
attribute types

SOURCE_DATATYPE The basic data type of the source column, such as VARCHAR2 or
DATE; used by AWCREATE programs

SOURCE_DIMNAME OLAP Catalog source dimension name; used by AWCREATE
programs

SOURCE_NAME OLAP Catalog source attribute name; used by AWCREATE
programs and the active catalog

SOURCE_OWNER Owner of OLAP Catalog source metadata; used by AWCREATE
programs and the active catalog

Table 8–9 (Cont.) Attribute Properties

Property Value

Standard Form Attributes

8-22 Oracle OLAP Application Developer’s Guide

Standard Form Metadata for Attributes
Standard form metadata for attributes is stored in these objects:

■ ALL_ATTRIBUTES dimension

■ ALL_DESCRIPTIONS variable

■ AW_NAMES variable

■ DIM_ATTRIBUTES valueset

ALL_ATTRIBUTES Dimension
The ALL_ATTRIBUTES dimension contains the names of all attributes in this
format:

workspace.dimension.attribute.ATTRIBUTE

For example: GLOBAL_AW.TIME.End_Date.ATTRIBUTE

ALL_ATTRIBUTES is a base dimension of the ALL_OBJECTS concat dimension.
ALL_OBJECTS dimensions ALL_DESCRIPTIONS and AW_NAMES, so these catalogs
have an entry for each attribute.

ALL_DESCRIPTIONS Variable for Attributes
The ALL_DESCRIPTIONS variable contains short, long, and plural names for the
attributes. All objects have a short name acquired from the metadata, but may or
may not have long and plural names.

Table 8–10 ALL_LANGUAGES Dimension Properties

Property Value

AW$CLASS CATALOG

AW$CREATEDBY AW$CREATE

AW$LASTMODIFIED Date and time

AW$ROLE ALL_LANGUAGES

AW$STATE CREATED

Standard Form Measures

Exploring a Standard Form Analytic Workspace 8-23

AW_NAMES Variable for Attributes
The AW_NAMES measure provides a name for each attribute in this format:

schema.workspace!attribute

For example: GLOBAL_AW.GLOBAL!TIME_END_DATE

Standard Form Measures
Each measure is defined by two workspace objects: a variable and a formula.

For additional information about standard form measures, refer to "Implementation
Class Objects" on page A-14 and "Extensions Class Objects" on page A-40.

Measure Variable
A measure variable initially contains only base-level data, which is typically
acquired from a relational fact table. If you deploy an aggregation plan, then the
variable also contains precalculated aggregate levels.

A measure variable has a DECIMAL data type unless you redefined it before loading
data during the initial build. The standard name for a measure variable is
measuredef_VARIABLE.

Table 8–11 describes its properties. For descriptions of the properties independent of
the object type, refer to Appendix A.

Table 8–11 Measuredef_VARIABLE Properties

Property Value

AW$CLASS EXTENSION

AW$CREATEDBY Creator of the cube; the Refresh tool requires a value of
AW$CREATE, which indicates that the object was created by
AWCREATE programs

AW$LASTMODIFIED Date and time the cube was last accessed by an analytic
workspace tool

AW$PARENT_NAME Name of the measure

AW$ROLE VARIABLE

AW$SEGWDTH_CMD CHGDFN command for defining the segment size

AW$STATE CREATED

Standard Form Measures

8-24 Oracle OLAP Application Developer’s Guide

Measuredef Formula
A measuredef formula calculates the aggregate data using a set of aggregation rules
stored in an aggmap. Its standard name is the name of the measure. Table 8–12
describes its properties. For descriptions of the properties independent of the object
type, refer to Appendix A.

Standard Form Metadata for Measures
Standard form metadata for measures is stored in these objects:

■ ALL_MEASURES dimension

■ ALL_DESCRIPTIONS variable

Table 8–12 Measuredef Formula Properties

Property Value

AW$CLASS IMPLEMENTATION

AW$COMPSPEC Name of the current deployed aggmap

AW$CREATEDBY Creator of the measure; some tools may require a value of
AW$CREATE, which indicates that the measure was created by
AWCREATE programs

AW$LASTMODIFIED Date and time the measure was last accessed by an analytic
workspace tool

AW$LOGICAL_NAME OLAP Catalog measure name

AW$PARENT_NAME Cube name

AW$ROLE MEASUREDEF

AW$STATE CREATED

MEASCOLS Name of the analytic workspace catalog (named cube.MSCL)
that identifies the source column in the fact table; used by
AWCREATE programs

SOURCE_CUBENAME Name of the OLAP Catalog source cube; used by AWCREATE
programs

SOURCE_NAME OLAP Catalog source measure; used by AWCREATE programs
and the active catalog

SOURCE_OWNER Owner of OLAP Catalog source metadata; used by AWCREATE
programs and the active catalog

Standard Form Cubes

Exploring a Standard Form Analytic Workspace 8-25

■ AW_NAMES variable

■ CUBE_MEASURES valueset

ALL_MEASURES Dimension
The ALL_MEASURES dimension contains the names of all measures in this format:

workspace.cube.measure.MEASURE

For example: GLOBAL_AW.UNITS_CUBE.UNITS.MEASURE

ALL_MEASURES is a base dimension of the ALL_OBJECTS concat dimension.
ALL_OBJECTS dimensions ALL_DESCRIPTIONS and AW_NAMES, so these catalogs
have an entry for each measure.

ALL_DESCRIPTIONS Variable for Measures
The ALL_DESCRIPTIONS variable contains short, long, and plural names for the
measures. All objects have a short name acquired from the metadata, but may or
may not have long and plural names.

AW_NAMES Variable for Measures
The AW_NAMES measure provides a name for each measure in this format:

schema.workspace!measure

For example: GLOBAL_AW.GLOBAL!UNITS

CUBE_MEASURES Valueset
The CUBE_MEASURES valueset identifies the measures for each cube.

Standard Form Cubes
Cubes are implemented as text dimensions that list the names of the dimensions
(sometimes called the edges) of the cube. A default aggregation map and composite
dimension are also defined for all measures in the cube.

For additional information about standard form cubes, refer to "Implementation
Class Objects" on page A-14.

Standard Form Cubes

8-26 Oracle OLAP Application Developer’s Guide

Cubedef Dimension
The cubedef dimension lists the names of the dimdef dimensions, such as TIME and
PRODUCT, for measures in the cube. The standard name for this dimension is the
name of the logical cube, such as UNITS_CUBE. The name has a prefix if you
specified one in the build options.

Contents of a Cubedef Dimension
Example 8–9 shows the cubedef dimension for the UNITS_CUBE in GLOBAL.

Example 8–9 Units Cube Dimension in GLOBAL

REPORT units_cube

UNITS_CUBE

CHANNEL
CUSTOMER
PRODUCT
TIME

Properties of a Cubedef Dimension
Table 8–13 describes the OLAP DML properties of a cubedef dimension. For
descriptions of the properties independent of the object type, refer to Appendix A.

Table 8–13 Cubedef Properties

Property Value

AGGMAPLIST Single- or multiline text string with the names of all aggmaps
defined for this cube, used by AWCREATE programs

AW$CLASS IMPLEMENTATION

AW$CREATEDBY Creator of the cube; the Refresh tool and the Aggregation Plan
tool requires a value of AW$CREATE, which indicates that the
object was created by AWCREATE programs

AW$LASTMODIFIED Date and time the cube was last accessed by an analytic
workspace tool

AW$LOADPRGS Name of the OLAP DML program used to fetch data from the
relational schema into the analytic workspace

AW$LOGICAL_NAME Logical name of the source cube, such as a cube defined in the
OLAP Catalog

Standard Form Cubes

Exploring a Standard Form Analytic Workspace 8-27

Comspec Aggregation Map
A default aggmap is created for each cube, which specifies runtime aggregation
across all dimensions. This aggmap is initially referenced by the formulas for all
measures associated with the cube. When you create and deploy aggregation plans
using the wizards in Analytic Workspace Manager, you create new aggmaps and
change the formulas for specified measures.

The standard name for default aggmaps is
cubedef_AGGMAP_AWCREATEDDEFAULT_1, for example,
UNITS_CUBE_AGGMAP_AWCREATEDDEFAULT_1.

Table 8–14 describes the properties of a comspec aggmap. For descriptions of the
properties independent of the object type, refer to Appendix A.

AW$LOOPSPEC The workspace composite used to define variables for this cube

AW$PARENT_NAME NA

AW$ROLE CUBEDEF

DISPLAY_NAME OLAP Catalog source display name

FORMDIMS Ordered list of dimensions for measure formulas; used by
AWCREATE programs

LOADNAME The name of the load program used to populate the cube; used
by AWCREATE programs

LOADTYPE LOAD_DATA when data is loaded as part of the build, or
LOAD_PROGRAM if the DML load program is created but not
run; these are keywords for
DBMS_AWM.CREATE_AWCUBELOAD_SPEC and are used by
AWCREATE programs

SOURCE_NAME OLAP Catalog source cube; used by AWCREATE programs and
the active catalog

SOURCE_OWNER Owner of OLAP Catalog source metadata; used by AWCREATE
programs and the active catalog

SYS_DIMS Ordered list of dimensions for measure variables, usually Time
followed by a composite of all other dimensions; used by
AWCREATE programs

SYS_DIMSML Alphabetized list of dimensions for the cube; used by
AWCREATE programs

Table 8–13 (Cont.) Cubedef Properties

Property Value

Standard Form Cubes

8-28 Oracle OLAP Application Developer’s Guide

Loopspec Composite Dimension
Using the Create Analytic Workspace wizard, you can accept the default composite
or define a composite yourself.

A default composite is named cubedef_COMPOSITE and consists of all dimensions of
the cube except Time. The dimensions are ordered from the one with the most
members to the one with the least members.

A custom composite has the name and characteristics that you assigned to it.

Table 8–15 describes the properties of a loopspec composite dimension. For
descriptions of the properties independent of the object type, refer to Appendix A.

Table 8–14 Comspec Aggmap Properties

Property Value

AW$CLASS IMPLEMENTATION

AW$COUNTVARCMD Name of the integer variable used when the aggmap calculates
an average; otherwise NA

AW$CREATEDBY Creator of the aggmap; some tools may require a value of
AW$CREATE, which indicates that the aggmap was created by
AWCREATE programs

AW$LASTMODIFIED Date and time the aggmap was last accessed by an analytic
workspace tool

AW$PARENT_NAME Workspace cube name

AW$ROLE COMSPEC

AW$STATE CREATED

ISDFLTAGGMAP YES for the default aggregation map, or NO for aggmaps
created after the initial build; used during a data refresh

Table 8–15 Loopspec Composite Properties

Property Value

AW$CLASS IMPLEMENTATION

AW$CREATEDBY Creator of the composite; some tools may require a value of
AW$CREATE, which indicates that the composite was created
by AWCREATE programs

AW$LASTMODIFIED Date and time the composite was last accessed by an analytic
workspace tool

Standard Form Cubes

Exploring a Standard Form Analytic Workspace 8-29

For additional information about loopspec composites, refer to "Implementation
Class Objects" on page A-14.

Standard Form Metadata for Cubes
Standard form metadata for cubes is stored in these objects:

■ ALL_CUBES dimension

■ ALL_DESCRIPTIONS variable

■ AW_NAMES variable

■ CUBE_MEASURES valueset

ALL_CUBES Dimension
The ALL_CUBES dimension contains the names of all cubes in this format:

workspace.cube.CUBE

For example: GLOBAL_AW.UNITS_CUBE.CUBE

ALL_CUBES is a base dimension of the ALL_OBJECTS concat dimension.
ALL_OBJECTS dimensions ALL_DESCRIPTIONS and AW_NAMES, so these catalogs
have an entry for each cube.

ALL_DESCRIPTIONS Variable for Cubes
The ALL_DESCRIPTIONS variable contains short, long, and plural names for the
cubes. All objects have a short name acquired from the metadata, but may or may
not have long and plural names.

AW$PARENT_NAME Cubedef dimension

AW$ROLE LOOPSPEC

AW$STATE CREATED

Table 8–15 (Cont.) Loopspec Composite Properties

Property Value

Standard Form Catalogs

8-30 Oracle OLAP Application Developer’s Guide

AW_NAMES Variable for Cubes
The AW_NAMES measure provides a name for each cube in this format:

schema.workspace!cube

For example: GLOBAL_AW.GLOBAL!UNITS_CUBE

CUBE_MEASURES Valueset
The CUBE_MEASURES valueset identifies the measures for each cube.

Standard Form Catalogs
Database standard form requires a Catalogs class of objects. These objects hold
information about the objects in the analytic workspace that implement the logical
model. Table 8–16 describes these objects. For additional information about the
catalogs, refer to "Catalogs Class Objects" on page A-25.

Table 8–16 Standard Form Catalogs

Catalog Object Type Contents

ALL_ATTRIBUTES Dimension The full name of each attribute of each workspace dimension
in the form schema.dimension.attribute.ATTRIBUTE

ALL_CUBES Dimension The full name of each workspace cube (that is, a dimension
whose values are the dimensions of a cube) in the form
schema.cube.CUBE

ALL_DESCRIPTIONS Variable Contains the short, long, and plural descriptions of the logical
objects

ALL_DIMENSIONS Dimension The full name of each workspace data dimension (that is,
dimensions used in data cubes) in the form
schema.dimension.DIMENSION

ALL_HIERARCHIES Dimension The full name of each hierarchy of each workspace dimension
in the form schema.dimension.hierarchy.HIERARCHY

ALL_LEVELS Dimension The full name of each level of each workspace dimension in
the form schema.dimension.level.LEVEL

ALL_MEASURES Dimension The full name of each workspace measure (that is, a formula
that returns a fully solved measure) in the form
schema.measure.MEASURE.

ALL_OBJECTS Concat dimension ALL_DIMENSIONS, ALL_CUBES, ALL_MEASURES,
ALL_HIERARCHIES, ALL_LEVELS, and ALL_ATTRIBUTES

OLAP API Enabler Catalogs

Exploring a Standard Form Analytic Workspace 8-31

OLAP API Enabler Catalogs
The build process creates numerous objects within an analytic workspace to
support the enabler for the OLAP API and BI Beans, and the active catalog. The
enabler also creates some objects. Table 8–17 describes the catalogs used by the
OLAP API.

AW_NAMES Variable The names of the analytic workspace objects that implement
each logical object defined by the source metadata

CUBE_MEASURES Valueset A list of measures that belong to each cube

DEFAULT_HIER Relation The full name of the default hierarchy for each dimension

DIM_ATTRIBUTES Valueset A list of attributes that belong to each dimension

DIM_HIERARCHIES Valueset A list of hierarchies that belong to each dimension

DIM_LEVELS Valueset A list of levels that belong to each dimension

Note: The OLAP API Enabler catalogs may change or disappear
in future software releases.

Table 8–17 OLAP API Enabler Catalogs

Catalog Object Type Contents

__SYS_HIERCJT Conjoint The combinations of dimension hierarchies for which a
fact view is required; created for transient use during
enablement

__SYS_HIERCJT_BUILD Conjoint The combinations of dimension hierarchies for which a
fact view is required; created for transient use during
cube refresh

cube_NEWSNAPSHOT_DIM Dimension An integer dimension for cube_NEWSNAPSHOT_VAR

cube_SNAPSHOT_DIM Dimension An integer dimension for cube_SNAPSHOT_VAR

OLAP_SYS_ADTDIM Dimension The names of the object types used by the OLAP_TABLE
function to generate the views

OLAP_SYS_ADTTBLDIM Dimension The names of the table types used by the OLAP_TABLE
function to generate the views

Table 8–16 (Cont.) Standard Form Catalogs

Catalog Object Type Contents

OLAP API Enabler Catalogs

8-32 Oracle OLAP Application Developer’s Guide

OLAP_SYS_CUBENAME_DIM Dimension The names of the cubes in the analytic workspace

OLAP_SYS_CUBEVIEW_DIM Dimension The names of the fact views defined for the analytic
workspace; used by the
ALL_OLAP2_CUBE_ENABLED_VIEW active catalog

OLAP_SYS_DIMNAME_DIM Dimension The names of the dimensions in the analytic workspace

OLAP_SYS_DIMVIEW_DIM Dimension The name of the relational dimension view for each
hierarchy; used by the
ALL_OLAP2_DIM_ENABLED_VIEW active catalog

OLAP_SYS_VIEWDIM Dimension The names of the relational views defined for the
analytic workspace

OLAP_SYS_ADTREL Relation The name of the object type used by the OLAP_TABLE
function for each relational view

OLAP_SYS_ADTTBLREL Relation The name of the table type used by the OLAP_TABLE
function for each relational view

OLAP_SYS_CUBENAME_REL Relation The analytic workspace cube represented by each fact
view

OLAP_SYS_DIMNAME_REL Relation The analytic workspace dimension represented by each
dimension view.

OLAP_SYS_CUBEVALSET Valueset The names of fact views during cube refresh; otherwise,
NA

OLAP_SYS_DIMVALSET Valueset The names of dimension views during dimension
refresh; otherwise, NA

cube_NEWSNAPSHOT_VAR Variable Identifies the dimensions and hierarchies associated
with a cube at the time that the cube is being enabled
for the OLAP API. If this variable is identical to
cube_SNAPSHOT_VAR, then the views are still current
and do not need to be regenerated.

cube_SNAPSHOT_VAR Variable Identifies dimensions and hierarchies associated with a
cube for the views currently generated for the
OLAP API.

cube_SYS_ENABLE Variable A multiline text string with the names of the object
type, table type, and views generated by the enabler for
an analytic workspace cube

dimension_SYS_ENABLE Variable A multiline text string with the names of the object
type, table type, and views generated by the enabler for
an analytic workspace dimension

Table 8–17 (Cont.) OLAP API Enabler Catalogs

Catalog Object Type Contents

OLAP API Enabler Catalogs

Exploring a Standard Form Analytic Workspace 8-33

OLAP_SYS_CUBEADTNAME_VAR Variable The object type used by the OLAP_TABLE function to
generate each fact view

OLAP_SYS_CUBEAWOWNER_VAR Variable The schema owner of each fact view; used by the
ALL_OLAP2_CUBE_ENABLED_VIEW active catalog

OLAP_SYS_CUBEHIERCOMBO_VAR Variable An integer value for each combination of dimension
hierarchies represented by a fact view; used by the
ALL_OLAP2_CUBE_ENABLED_VIEW active catalog

OLAP_SYS_CUBEHIERCOMBOSTR_VAR Variable Text strings that identify the dimensions and
hierarchies represented by each fact view; used by the
ALL_OLAP2_CUBE_ENABLED_VIEWS active catalog

OLAP_SYS_CUBENAME_VAR Variable The analytic workspace cube represented by each fact
view; used by the ALL_OLAP2_CUBE_ENABLED_VIEW
active catalog

OLAP_SYS_CUBETBLNAME_VAR Variable The table type used by the OLAP_TABLE function to
generate each fact view

OLAP_SYS_CUBEUSERVIEW_VAR Variable New names assigned to workspace cubes using the
CWM2_OLAP_CUBE.SET_CUBE_NAME procedure, or NA
when new names have not been defined; used by the
ALL_OLAP2_CUBE_ENABLED_VIEW active catalog

OLAP_SYS_DIMADTNAME_VAR Variable The name of the object type used by the OLAP_TABLE
function for each dimension view

OLAP_SYS_DIMAWOWNER_VAR Variable The schema owner of each dimension view; used by the
ALL_OLAP2_DIM_ENABLED_VIEW active catalog

OLAP_SYS_DIMHIERNAME_VAR Variable The name of the hierarchy represented by each
dimension view; used by the
ALL_OLAP2_DIM_ENABLED_VIEW active catalog

OLAP_SYS_DIMHIERPOS_VAR Variable The numerical position of each hierarchy in the
dimension_HIERLIST hierarchy dimension.

OLAP_SYS_DIMNAME_VAR Variable The analytic workspace name of the dimension
represented by each dimension view; used by the
ALL_OLAP2_DIM_ENABLED_VIEW active catalog

Table 8–17 (Cont.) OLAP API Enabler Catalogs

Catalog Object Type Contents

AWCREATE Catalogs

8-34 Oracle OLAP Application Developer’s Guide

AWCREATE Catalogs
Several catalogs are used during the build and refresh process, and currently persist
in the analytic workspace. Some of them are also used transiently during the
enablement process for Oracle Discoverer. Table 8–18 describes the AWCREATE
catalogs.

OLAP_SYS_DIMTBLNAME_VAR Variable The name of the table type used by the OLAP_TABLE
function for each dimension view.

OLAP_SYS_DIMUSERVIEW_VAR Variable New names assigned to workspace cubes using the
CWM2_OLAP_DIMENSION.SET_DIMENSION_NAME
procedure, or NA when new names have not been
defined; used by the
ALL_OLAP2_DIM_ENABLED_VIEW active catalog

OLAP_SYS_LIMITMAP Variable The limit map used by the OLAP_TABLE function for
each relational view

Note: The AWCREATE catalogs may change or disappear in future
software releases.

Table 8–18 AWCREATE Catalogs

Catalog Object Type Contents

dimension_SRCCOMPOSITE Composite A composite dimension composed of the
dimension_HIERLIST, dimension_LEVELLIST, and
dimension_LEVELCOLLIST dimensions

cube_HIERCJT Conjoint The names of the hierarchies for the dimensions of the
cube

dimension_LEVELCOLLIST Dimension Integer values

cube_HIERCJT.DMKY Variable The name of the key column of source dimension table
for the dimensions of the cube

cube_HIERCJT.DMLV Variable The name of the dimension level at which data is stored

cube_HIERCJT.FT Variable The name of the fact table that is the source for the cube

cube_HIERCJT.HC Variable Integer values

Table 8–17 (Cont.) OLAP API Enabler Catalogs

Catalog Object Type Contents

AWCREATE Catalogs

Exploring a Standard Form Analytic Workspace 8-35

cube_measure.MSCL Variable The name of the source column for the measure

dimension_attribute_SRCATTRCOL Variable The names of the source columns for the attributes by
hierarchy and level

dimension_attribute_SRCATTROWNER Variable The name of the schema owner of the source dimension
table for the attributes by hierarchy and level

dimension_attribute_SRCATTRTBL Variable The name of the source dimension table for the
attributes by hierarchy and level

dimension_LEVELCOLMAP Variable The source dimension value corresponding to each
dimension member in the analytic workspace; the
values can acquire a prefix during the build

dimension_SRCLVLCOL Variable The name of the source column for the level

dimension_SRCLVLOWNER Variable The name of the schema owner of the source dimension
table

dimension_SRCLVLPNTCOL Variable The name of the source column for the parent level

dimension_SRCLVLTBL Variable The name of the source dimension table

Table 8–18 (Cont.) AWCREATE Catalogs

Catalog Object Type Contents

AWCREATE Catalogs

8-36 Oracle OLAP Application Developer’s Guide

Part III
Acquiring Data From Additional Sources

Part III describes ways that you can create a new analytic workspace or enhance an
existing one with data from sources other than a star or snowflake schema. The data
can be generated by analytic functions available in an analytic workspace, or from
external sources such as flat files.

Part III contains the following chapters:

■ Chapter 9, "Adding Measures to a Standard Form Analytic Workspace"

■ Chapter 10, "Predicting Future Performance"

■ Chapter 11, "Acquiring Data From Other Sources"

Adding Measures to a Standard Form Analytic Workspace 9-1

9
Adding Measures to a Standard Form

Analytic Workspace

In this chapter, you will learn how to create new measures as a permanent addition
to a standard form analytic workspace. Using the method described in this chapter,
you can define custom measures that can store data (instead of calculating it on
demand) and are indistinguishable from any other measures in the analytic
workspace. However, the process is more complex than using
DBMS_AW_UTILITIES or OLAP_EXPRESSION, as described in Chapter 7.

You can also populate the new workspace objects by using advanced calculation
methods (such as forecasting or allocation) or by loading the data from external
sources.

You will also learn various methods of executing OLAP DML commands.

This chapter contains the following topics:

■ Working in a Standard Form Analytic Workspace

■ Methods of Executing OLAP DML Commands

■ Adding Custom Measures to a Cube

■ Case Study: Adding Measures to the Global Analytic Workspace

Working in a Standard Form Analytic Workspace
Analytic Workspace Manager and the current generation of tools can only be used
with database standard form analytic workspaces. As described in Chapter 8,
database standard form (or simply, standard form) identifies the types of objects
that must exist, the OLAP DML properties that must be assigned to them, and a
variety of catalogs within the analytic workspace for registering workspace objects.

Methods of Executing OLAP DML Commands

9-2 Oracle OLAP Application Developer’s Guide

Conformity with this standard enables the tools to perform their jobs, such as
aggregating and refreshing the data, and generating views and metadata.
Otherwise, the tools have no means of identifying the function of workspace objects
within a logical multidimensional model.

Over the life span of an analytic workspace, you may want to add measures from a
new data source, or define a permanent custom measure using some of the more
advanced calculation techniques, such as forecasting or allocation.

While you would need to refresh these measures manually, you would still want to
use the aggregation and enablement tools with the new measures.

For the new measures to be accessible to the tools, you must take these steps:

1. Define the appropriate workspace objects (formulas, or measures, or both).

2. Attach OLAP DML properties to the objects with the appropriate values.

3. Register the objects in the standard form workspace catalogs.

This chapter explains how to perform these steps.

Methods of Executing OLAP DML Commands
When working with an analytic workspace, you can use any of these methods for
issuing OLAP DML commands to the OLAP engine for execution:

■ Using dialogs in Analytic Workspace Manager, you can create analytic
workspaces, and define and modify workspace objects such as dimensions,
variables, models, and aggmaps.

■ Within OLAP Worksheet, you can open an interactive OLAP session in which to
issue OLAP DML commands. You can run OLAP Worksheet from Analytic
Workspace Manager. Note that when you attach a workspace in Analytic
Workspace Manager, you can modify it using either the dialogs or OLAP
Worksheet; they share the same session.

See Also:

■ Chapter 7 for alternative methods of adding custom measures
to an analytic workspace.

■ Chapter 8 for descriptions of catalogs, objects, and properties in
a standard form analytic workspace.

■ Chapter 11 for methods of populating new measures from
external sources such as flat files.

Methods of Executing OLAP DML Commands

Adding Measures to a Standard Form Analytic Workspace 9-3

■ Within a SQL session (such as in SQL*Plus), you can embed OLAP DML
commands in calls to the DBMS_AW.EXECUTE PL/SQL procedure.

This chapter identifies how to use the Analytic Workspace Manager dialogs as
much as possible. As you become more familiar with the OLAP DML, you may find
that the other methods are very useful.

When developing SQL- or Java-based applications, you can also embed OLAP DML
in these ways:

■ In SQL programs, you can embed OLAP DML commands using the procedures
in the DBMS_AW package.

■ In Java programs, you can embed OLAP DML commands using the
SPLExecutor class in the OLAP API.

Both the DBMS_AW package and OLAP Worksheet enable you to intersperse SQL
and OLAP DML commands within a single working environment.

Using Analytic Workspace Manager to Execute OLAP DML
In Chapter 6, you learned to use the various wizards in Analytic Workspace
Manager for creating and managing analytic workspaces. These wizards are
available in the OLAP Catalog view. The Object View in Analytic Workspace
Manager has property sheets and menus for defining all of the object types
available in analytic workspaces. The wizards, property sheets, and menu choices
send OLAP DML commands to the OLAP engine for execution.

For example, to create a dimension, you open the Create Dimension dialog and
define the dimension using a property sheet. When you click the Create button, a
DEFINE DIMENSION command in the OLAP DML is formulated and executed in
your analytic workspace.

This method is particularly good for enhancing an analytic workspace that was
generated by a wizard. You may want to create a formula or modify an aggmap. By
selecting an object in the Object View, you can modify many of its characteristics in
the property pages. Note that some characteristics cannot be changed after an object
is created (such as the dimensions or data type of a variable), so those characteristics
are dimmed.

See Also:

■ OLAP API Javadoc for a description of the SPLExecutor class.

■ Oracle OLAP Reference for descriptions of the procedures in the
DBMS_AW package.

Methods of Executing OLAP DML Commands

9-4 Oracle OLAP Application Developer’s Guide

If you need to populate any new objects, you can do so by executing the
appropriate DML commands in OLAP Worksheet. When you run OLAP Worksheet
from within Analytic Workspace Manager, you are accessing the same session. Any
changes that you make in OLAP Worksheet are immediately reflected in Analytic
Workspace Manager, and vice versa. In this environment, you can alternate between
the graphical and command line interfaces within the same session.

Using OLAP Worksheet to Execute OLAP DML
For anyone who is already familiar with the OLAP DML or is doing extensive
development work in an analytic workspace, OLAP Worksheet offers the most
suitable environment. You can open an OLAP session and work interactively in the
OLAP DML, using all facets of this feature-rich language. OLAP Worksheet
provides an editor for writing programs, models, and aggmaps. You can also switch
to a SQL mode and issue SQL commands against relational tables and views.

You can run OLAP Worksheet from Analytic Workspace Manager.

Procedure: Opening OLAP Worksheet from Analytic Workspace Manager
1. Open Analytic Workspace Manager.

2. Connect to your database.

3. From the Tools menu, select OLAP Worksheet.

The OLAP Worksheet window opens. If you have attached an analytic
workspace in Analytic Workspace Manager, then that workspace is attached to
your session in OLAP Worksheet.

4. To execute an OLAP DML command, type it in the input pane at the bottom of
the window.

For example, to view the list of attached analytic workspaces, issue this
command:

AW LIST

Note that the EXPRESS workspace must always be attached.

Methods of Executing OLAP DML Commands

Adding Measures to a Standard Form Analytic Workspace 9-5

Procedure: Using the Editor in OLAP Worksheet
Use the Edit window to change the content of a program, model, or aggmap.
Alternatively, you can use the property pages in Analytic Workspace Manager to
edit these objects, but you cannot execute them there.

You cannot change the contents of a dimension, variable, relation, valueset, or other
data container using the editor.

1. To add contents to a program object, issue this command to open the edit
window:

EDIT program_name

For example, EDIT CREATE_MEASURE.

PROGRAM is the default object type; you must specify the other types. For
example, you would issue a command such as EDIT AGGMAP
units_cube_aggmap to edit an aggregation map.

2. Type the OLAP commands that you want in the program.

3. When you are done editing the program, from the editor's File menu, choose
Save, then Close.

4. To compile and execute the program, issue these commands:

CALL program_name

Note: The COMPILE command is optional because the program will compile
automatically. However, a separate COMPILE command is useful for quickly
identifying syntax errors in the OLAP DML commands.

5. To issue SQL commands, from the Options menu, select SQL Mode. To resume
issuing OLAP DML commands, clear SQL Mode.

Note: Because OLAP Worksheet and Analytic Workspace
Manager share the same session, you must be careful when moving
between the two applications. Your actions in the Object View may
have consequences on commands that you issue in OLAP
Worksheet. Use the AW LIST command to check the order in which
analytic workspaces are attached, since some commands, like
LISTNAMES and DEFINE, operate only on the first workspace. Also
issue a LIMIT NAME TO ALL command before using commands
like EXPORT, which use the status of the NAME dimension.

Methods of Executing OLAP DML Commands

9-6 Oracle OLAP Application Developer’s Guide

Example 9–1 shows a sample session in which a program named CREATE_MEASURE
is created, compiled, and executed within OLAP Worksheet

Example 9–1 Creating an OLAP DML Program in OLAP Worksheet

DEFINE create_measure PROGRAM

LD Define a database standard form measure

EDIT create_measure
 .
 . " Enter program code
 . " Choose Save

CALL create_measure

Using DBMS_AW.EXECUTE to Execute OLAP DML
The DBMS_AW.EXECUTE procedure enables you to issue OLAP DML commands at
any time within a SQL session. To see the output of the OLAP DML commands,
issue this SQL command once during your session:

SET SERVEROUT ON FORMAT WRAPPED

DBMS_AW.EXECUTE Command Format
Following is the basic format of DBMW_AW.EXECUTE, in which you can substitute
one or more OLAP DML commands, separated by semicolons, between the single
quotes.

EXECUTE DBMS_AW.EXECUTE('dml_command_1; dml_command_2; dml_command_n');

In the following example, the first command opens the GLOBAL analytic workspace.
The second command sets the focus on a measure named SALES_PP and assigns an
equation to it.

EXECUTE DBMS_AW.EXECUTE('AW ATTACH global RW');
EXECUTE DBMS_AW.EXECUTE('-
 CONSIDER sales_pp; EQ LAG(sales, 1, time, LEVELREL time_levelrel)');

Methods of Executing OLAP DML Commands

Adding Measures to a Standard Form Analytic Workspace 9-7

Adding Contents to a DML Program From SQL
You can define the contents of a program in a text file, which you can easily modify.
Follow these steps:

1. Define a database directory object if you have not done so already.

CREATE DIRECTORY directory AS 'path_name';
GRANT permission ON DIRECTORY directory TO users;

2. Open an analytic workspace if you have not done so already.

EXECUTE DBMS_AW.EXECUTE('AW CREATE aw_name ');

or

EXECUTE DBMS_AW.EXECUTE('AW ATTACH aw_name RW');

It is a good practice to develop your OLAP DML programs in a separate
analytic workspace from your data.

3. Create a program object and, optionally, document it by attaching a description.
The following syntax defines a new program.

EXECUTE DBMS_AW.EXECUTE('DEFINE object PROGRAM; LD object description');

4. Open a text editor and create a file with the following contents:

CONSIDER program_name
PROGRAM
 .
 . " OLAP DML commands
 .
END

Tip: If your operating system permits you to open multiple windows, you can
use one window for your SQL session and another for editing the text file.

5. Execute the text file.

EXECUTE DBMS_AW.EXECUTE('INFILE directory/filename');

6. Compile and execute the program.

EXECUTE DBMS_AW.EXECUTE('CALL program_name');

Example 9–2 shows a sample session in which a program named CREATE_MEASURE
is created, compiled, and executed within a SQL session.

Adding Custom Measures to a Cube

9-8 Oracle OLAP Application Developer’s Guide

Example 9–2 Creating an OLAP DML Program in SQL*Plus

% sqlplus
 .
 .
 .
SQL> CREATE DIRECTORY olapfiles AS '/users/oracle/olapfiles';
SQL> GRANT all ON DIRECTORY olapfiles TO ALL;
SQL> EXECUTE DBMS_AW.EXECUTE('AW ATTACH global_programs RW');
SQL> EXECUTE DBMS_AW.EXECUTE('DEFINE create_measure PROGRAM; LD Get measures');

-- Create a file named getmeas.inf in directory olapfiles with the
-- contents of the program. Start with the template and edit it for
-- the sample data.

SQL> EXECUTE DBMS_AW.EXECUTE('INFILE olapfiles/getmeas.inf');
SQL> EXECUTE DBMS_AW.EXECUTE('CALL create_measure');

Adding Custom Measures to a Cube
Most of the variables in your analytic workspace are created from the base-level
data in your source star or snowflake schema. However, you may want to store the
results of your analysis in a variable. For example, if you generate a forecast, you
must identify a target variable in which to store the forecast.

In a standard form workspace, a logical measure is implemented with a variable
and a formula, as described in Chapter 8. To add a custom measure in database
standard form, you need to create these objects manually. Afterward, the enablers
will include the custom measures in the views exactly the same was as the other
measures. For applications, the original measures and the custom measures will be
indistinguishable.

Defining a Standard Form Measure Variable
If you just want to define a formula for calculating a custom measure on the fly
from existing measures in your analytic workspace, you can bypass this step. You
can define as many custom measures you wish from the same measure variables.

However, if you want to store the results of a forecast or other analysis, or load data
from other sources, then take these steps to define a measure variable in Analytic
Workspace Manager.

Adding Custom Measures to a Cube

Adding Measures to a Standard Form Analytic Workspace 9-9

1. Open the Object View and expand the folder for your analytic workspace.

2. Right-click the Variable folder and choose Create Variable.

The Create Variable dialog is displayed.

3. On the Basic page, specify a name, description, and data type for the variable.
To conform with the other variable names in the workspace, the name should
end with _VARIABLE, and may begin with the cube name (such as
SALES_CUBE_). Click Help for more information about these choices.

4. On the Dimensions page, select the dimensions for the variable and list them in
the appropriate order.

Note: The correct order is very important for performance.

If you will add this measure to an existing cube, then dimension it the same as
the other variables in the cube. In most cases, the Time dimension is first,
followed by a composite of all the other dimensions. Otherwise, click Help for
information about ordering the dimensions.

5. On the Properties page, define the properties listed in Table 8–11 on page 8-23.
If you are adding the measure to an existing cube, then you can duplicate many
of the property settings of the other variables. Otherwise, search Help for
information about segment size.

6. From the File menu, choose Save to update the analytic workspace and all
objects in the current schema.

7. Populate the variable, either by performing calculations on existing measures in
your analytic workspace, or from external data sources, as described in
Chapter 11.

Defining a Formula
A single variable can be the source of data for numerous formulas. Applications run
their queries against formulas (or relational views of the formulas), not against
variables. Thus the names of the formulas are the names of the measures.

Tip: To define a variable just like another one in a cube (including
data type), right-click that variable from the Object View and
choose Create Like. Then you can just modify the new variables
properties as shown in Table 9–1. For an example of this method,
refer to "Creating New Variables in GLOBAL" on page 9-18.

Adding Custom Measures to a Cube

9-10 Oracle OLAP Application Developer’s Guide

Every data variable has a corresponding formula that aggregates data at runtime by
using an AGGREGATE function in its equation. You can create additional formulas
for manipulating the data, and thus add information-rich data to your analytic
workspace, by using the wealth of functions and operators available in the OLAP
DML. Figure 9–1 shows the relationships among these workspace objects.

Figure 9–1 Relationships Among Formulas and Variables

Note: If the source variable already has a formula defined, then
the easiest way to add another formula is to right-click the existing
formula in the Object View and choose Create Like. Then you can
replace the expression and modify the new formula's properties.
For an example of this method, refer to "Creating Measure
Formulas" on page 9-19.

Adding Custom Measures to a Cube

Adding Measures to a Standard Form Analytic Workspace 9-11

Take these steps to define a formula:

1. Open the Object View and expand the folder for your analytic workspace.

2. Right-click the Formulas folder and choose Create Formula.

The Create Formula dialog is displayed.

3. On the Basic page, specify a name, description, and data type for the formula.
Choose the same data type for the formula as the source variable. Click Help
for more information about these choices.

4. On the Dimensions page, select the dimensions for the formula and list them in
the appropriate order.

List the base dimensions of the source variable. Do not specify the composite,
but the dimensions that compose the composite in the order in which they are
listed. Reflecting the dimension order of the source variable in the formula is
important for good performance.

For example, if the source variable is dimensioned by TIME and
UNITS_CUBE_COMPOSITE, then dimension the formula by TIME, CUSTOMER,
PRODUCT, and CHANNEL (in that order), because UNITS_CUBE_COMPOSITE is
dimensioned by CUSTOMER, PRODUCT, and CHANNEL.

You can see the dimensions of a composite by selecting the composite from the
Dimensions folder and looking at its Dimensions property sheet.

5. On the Expression page, type the equation for the formula.

For aggregation, call the AGGREGATE function using this basic syntax:

AGGREGATE(variable USING aggmap)

Refer to the Oracle OLAP DML Reference for the full syntax of AGGREGATE and
other data manipulation functions.

6. On the Properties page, define the properties listed in Table 8–12 on page 8-24.

7. Delete these properties: SOURCE_CUBENAME, SOURCE_NAME, SOURCE_OWNER.

These properties identify a relational data source for a measure, and so are not
relevant in this context.

Registering a New Measure
Tools such as the enablers and refresh wizards in Analytic Workspace Manager use
metadata that is stored within the workspace to identify objects. The metadata is

Adding Custom Measures to a Cube

9-12 Oracle OLAP Application Developer’s Guide

stored in standard form catalogs, which are implemented as dimensions, variables,
and valuesets. After you create a new measure, you must register it in several
catalogs. Since registration involves adding data to workspace objects, you must use
OLAP Worksheet and the OLAP DML to register a measure.

Registration of a new measure involves four catalogs. You can examine their
property sheets in Analytic Workspace Manager, or you can issue this command in
OLAP Worksheet to see their definitions:

DESCRIBE all_measures all_descriptions aw_names cube_measures

ALL_MEASURES Dimension
The ALL_MEASURES dimension is a list of all measures in the analytic workspace.
The REPORT command shows the contents of data containers, such as dimensions
and measures. It has this basic syntax:

REPORT object

To see the contents of the ALL_MEASURES dimension, issue this OLAP DML
command:

REPORT W 60 all_measures

The W parameter specifies the column width of the report.

Adding a Dimension Member The MAINTAIN command enables you to add, remove,
and reorder the members of a dimension. It has this basic syntax:

MAINTAIN dimension ADD member

The names of the measures have this detailed format:

schema.cube.formula.MEASURE

To add the name of a measure to the ALL_MEASURES dimension, use this command
syntax:

MAINTAIN ALL_MEASURES ADD 'detailed_measure_name'

For example:

MAINTAIN ALL_MEASURES ADD 'GLOBAL.UNITS_CUBE.PROFIT.MEASURE'

Adding Custom Measures to a Cube

Adding Measures to a Standard Form Analytic Workspace 9-13

Saving Changes to an Analytic Workspace Issue another REPORT command to make
sure that the change was made correctly, then issue these commands to save it:

UPDATE; COMMIT

The UPDATE command copies your changes to the LOB table where the analytic
workspace is stored. The COMMIT command issues a SQL COMMIT and saves all
changes to the database for the session. You must issue both these commands, in
this order, for changes to an analytic workspace to be saved for future sessions.

ALL_DESCRIPTIONS Variable
The ALL_DESCRIPTIONS variable stores the short, long, and plural descriptions of
each dimension member, which can be used for display. ALL_DESCRIPTIONS is
dimensioned by ALL_OBJECTS, ALL_DESCTYPES, and ALL_LANGUAGES.

■ ALL_OBJECTS is a concat dimension, which means that it is composed of two
or more other dimensions in a concatenated list of dimension members.
ALL_OBJECTS is composed of ALL_DIMENSIONS, ALL_CUBES,
ALL_MEASURES, ALL_HIERARCHIES, ALL_LEVELS, and ALL_ATTRIBUTES.
Maintenance and selection of dimension members is performed on these base
dimensions rather than directly on the ALL_OBJECTS concat dimension.

■ ALL_DESCTYPES lists LONG, SHORT, and PLURAL as its members. Objects
dimensioned by ALL_DESCTYPES can provide multiple descriptors of these
types.

■ ALL_LANGUAGES lists the languages supported in the analytic workspace. It
initially has the database language, such as AMERICAN_AMERICA. If additional
languages are added to ALL_LANGUAGES, objects dimensioned by it can
provide text in multiple languages.

Note: The OLAP DML interprets upper- and lower-case letters the
same for commands and workspace object names, so that
MAINTAIN ALL_MEASURES, maintain all_measures, and
mAiNtAiN all_MEASures are interpreted identically. However,
text strings (including dimension members) are case-sensitive, so
that 'global.units_cube.profit.measure' and
'Global.Units_Cube.Profit.Measure' are not the same
value. Text strings are always enclosed in single quotes.

Adding Custom Measures to a Cube

9-14 Oracle OLAP Application Developer’s Guide

Limiting the Number of Active Dimension Members In analytic workspaces, all of the data
for an object is initially selected, or in status. To view or manipulate a subset of the
data, you must use the LIMIT command to restrict the number of active values. The
LIMIT command is similar to a WHERE clause in a SQL SELECT statement.
However, in an analytic workspace, the selection persists for subsequent commands
until you explicitly change the selection.

LIMIT operates on dimensions, and has many options for selecting dimension
members. The most basic form of the LIMIT command is:

LIMIT dimension TO values|position

where values is one or more dimension members, and position is a member's
numeric order (1, 2, and so forth) or a keyword (such as FIRST or LAST).

By limiting the dimensions of a variable, you restrict the number of its cells for use
by subsequent commands.

 To see the contents of ALL_DESCRIPTIONS, issue OLAP DML commands such as
these:

LIMIT all_languages TO 1
REPORT W 65 DOWN all_objects w 20 ACROSS all_desctypes: all_descriptions

One method of limiting a concat dimension is to limit a base dimension, then limit
the concat dimension to the status of the base dimension. For example, to view only
the descriptions of the first two dimensions, issue commands like these:

LIMIT all_dimensions TO FIRST 2
LIMIT all_objects TO all_dimensions
LIMIT all_languages TO 1
REPORT W 65 DOWN all_objects w 20 ACROSS all_desctypes: all_descriptions

Targeting a Specific Cell Although you can use the LIMIT command to restrict a
variable to a single active cell, qualified data references (QDRs) are used more often
for this purpose. QDRs operate independent of the current status of the dimensions,
and are in effect only for the duration of a command. If a dimension is omitted from

Note: If your dimension members are integers, then be sure to
specify them correctly in the LIMIT syntax. In a dimension with a
TEXT data type, '1' (with quotes) identifies the member whose
value is 1, while 1 (without quotes) identifies the first member in
the dimension list.

Adding Custom Measures to a Cube

Adding Measures to a Standard Form Analytic Workspace 9-15

a QDR, the first value in status is used, so LIMIT can be used to simplify the syntax
of a QDR for a multidimensional variable.

A QDR has this syntax:

variable(dimension 'member', dimension 'member'...)

For example, the following command shows the short description of UNITS_CUBE:

LIMIT all_measures TO 'GLOBAL_AW.UNITS_CUBE.UNITS.MEASURE'
LIMIT all_objects TO all_measures
report all_descriptions(all_desctypes 'SHORT', all_languages 'AMERICAN_AMERICA')

Assigning Values to a Variable Limiting dimension members is particularly important
when manually setting the values of a variable. You use the assignment operator (=)
to assign the value of an expression to the current selection of cells.

Use commands such as these to add descriptions of your new measure:

LIMIT all_languages TO 1
LIMIT all_measures TO 'detailed_measure_name'
LIMIT all_objects TO all_measures
all_descriptions(all_desctypes, 'SHORT')= 'short description'
all_descriptions(all_desctypes, 'LONG')= 'long description'
all_descriptions(all_desctypes, 'PLURAL')= 'plural description'

Issue another REPORT command to make sure that the changes were made
correctly, then issue these commands to save them:

UPDATE; COMMIT

AW_NAMES Variable
The AW_NAMES variable identifies the full name of objects in the analytic workspace,
which correspond to the detailed names of the ALL_OBJECTS dimension. Full
workspace object names have this format:

schema.workspace!object

For example, GLOBAL_AW.GLOBAL!SALES.

To see the contents of AW_NAMES, issue this OLAP DML command:

REPORT W 60 DOWN all_objects W 35 aw_names

Case Study: Adding Measures to the Global Analytic Workspace

9-16 Oracle OLAP Application Developer’s Guide

Use commands such as these to add the workspace name of a new measure:

LIMIT all_measures TO 'detailed_measure_name'
LIMIT all_objects TO all_measures
aw_names = 'full workspace object name'

Issue another REPORT command to make sure that the changes were made
correctly, then issue these commands to save them:

UPDATE; COMMIT

CUBE_MEASURES Valueset
The CUBE_MEASURES valueset identifies the measures in each cube. It is
dimensioned by ALL_CUBES and contains values of the ALL_MEASURES dimension.

The VALUES function returns the contents of a valueset. To see the contents of
CUBE_MEASURES, issue this OLAP DML command:

REPORT W 35 DOWN all_cubes W 55 VALUES(cube_measures)

Use commands such as these to add a measure to an existing cube:

LIMIT all_cubes TO cube
LIMIT cube_measures ADD 'detailed measure name'

For example:

LIMIT all_cubes TO 'UNITS_CUBE'
LIMIT cube_measures ADD 'GLOBAL.UNITS_CUBE.PROFIT.MEASURE'

Issue another REPORT command to make sure that the changes were made
correctly, then issue these commands to save them:

UPDATE; COMMIT

Case Study: Adding Measures to the Global Analytic Workspace
"Identifying Required Business Facts" on page 3-6 identifies the business measures
required by the Global Corporation. Only three measures were acquired from the
star schema: Units, Unit Price, and Unit Cost. The remaining business measures can
be calculated from those three.

Custom measures can either be solved at run-time or stored in variables. Run-time
calculations do not require disk storage space and do not extend the processing time

Case Study: Adding Measures to the Global Analytic Workspace

Adding Measures to a Standard Form Analytic Workspace 9-17

required for data maintenance. However, they may slow performance. You need to
decide which measures to calculate on the fly and which, if any, to store.

Many of the required business measures are based on sales, extended cost, and
margin, as shown in Table 9–1. Because these three calculated measures are used so
heavily, the example stores them in variables. The other measures can be
implemented as formulas and calculated on demand.

Table 9–1 Custom Measures for the GLOBAL Analytic Workspace

Required Business
Measures

Object Name in
GLOBAL Analytic
Workspace Expression

Sales SALES UNITS * UNIT_PRICE

Extended Cost EXTENDED_COST UNITS * UNIT_COST

Margin MARGIN SALES - EXTENDED_COST

Change in sales from prior
period (month, quarter, or
year)

SALES_PP LAG(sales, 1, time, LEVELREL
time_levelrel)

Percent change in sales
from prior period

SALES_PCTCHG_PP LAGPCT(sales, 1, time, LEVELREL
time_levelrel) * 100

Product share SHARE_SALES_PROD (sales/sales(product '1')) * 100

Channel share SHARE_SALES_CHAN (sales/sales(channel '1')) * 100

Market share SHARE_SALES_CUST (sales/sales(customer '1')) * 100

Extended margin change
from prior period

MARGIN_PP LAG(margin, 1, time, LEVELREL
time_levelrel)

Extended margin percent
change from prior period

MARGIN_PCTCHG_PP LAGPCT(margin, 1, time, LEVELREL
time_levelrel) * 100

Extended margin, percent
of total product sales

MARGIN_PCT_SALES (margin/sales(product '1')) * 100

Units sold, change from
prior period

UNITS_PP LAG(units, 1, time, LEVELREL
time_levelrel)

Margin per unit UNIT_MARGIN margin/units

Case Study: Adding Measures to the Global Analytic Workspace

9-18 Oracle OLAP Application Developer’s Guide

Creating Measures for SALES, EXTENDED_COST, and MARGIN
The variables for Sales, Extended Cost, and Margin will have the same dimensions
as Units, and will be added to the Units cube.

Creating New Variables in GLOBAL
Follow these steps to create SALES_VARIABLE.

1. In the Object View of Analytic Workspace Manager, expand the Variables folder
for the GLOBAL analytic workspace.

2. Right-click UNITS_VARIABLE, and choose Create Like from the menu.

The Create Like dialog is displayed.

3. Type SALES_VARIABLE in the Destination Name box, and click OK.

SALES_VARIABLE is added to the list in the Variables folder.

4. Click SALES_VARIABLE to display it in the property viewer. On the Properties
page, make the following changes to the settings:

AW$PARENT_NAME: Change to SALES.

AW$SEGWDTH_CMD: Change the variable name to SALES_VARIABLE.

Click Apply to save changes to the property pages.

5. Repeat these steps for EXTENDED_COST_VARIABLE and MARGIN_VARIABLE.

6. To save the new definitions, choose Save from the File menu.

Calculating and Storing Values in Variables
The following commands calculate data just at the base level so that the new
variables can be aggregated separately. The ACROSS command loops over the
dimension members currently in status.

A hyphen at the end of a line continues a command to the next line.

Note: The data in SALES_VARIABLE,
EXTENDED_COST_VARIABLE, and MARGIN_VARIABLE must be
refreshed manually each time the source variables are refreshed.
Commands like the following can be copied into an OLAP DML
program and executed as part of the refresh process.

Case Study: Adding Measures to the Global Analytic Workspace

Adding Measures to a Standard Form Analytic Workspace 9-19

" Select base level dimension members
LIMIT time TO time_levelrel 'Month'
LIMIT channel TO channel_levelrel 'CHANNEL'
LIMIT product TO product_levelrel 'ITEM'
LIMIT customer TO customer_levelrel 'SHIP_TO'

" Populate variables using calculations
ACROSS time units_cube_composite DO -
 'extended_cost_variable = units_variable * unit_cost_variable'
ACROSS time units_cube_composite DO -
 'sales_variable = units_variable * unit_price_variable'
ACROSS time units_cube_composite DO -
 'margin_variable = sales_variable - extended_cost_variable'

" Save the new variables
UPDATE
COMMIT

Creating Measure Formulas
Follow these steps to create and register the SALES formula. Repeat them for
EXTENDED_COST and MARGIN.

1. In the Object View of Analytic Workspace Manager, expand the Formulas folder
for the GLOBAL analytic workspace.

2. Right-click UNITS, and choose Create Like from the menu.

The Create Like dialog is displayed.

3. Type SALES in the Destination Name box, and click OK.

SALES is added to the list in the Formulas folder.

4. Click SALES and make these changes to the property pages:

On the Expression page, change UNITS_VARIABLE to SALES_VARIABLE in the
AGGREGATE function call.

On the Properties page, change the values of AW$LOGICAL_NAME and
SOURCE_NAME to SALES.

Click Apply to save changes to the property pages.

5. To save the new definitions, choose Save from the File menu.

6. To register the SALES measure, open OLAP Worksheet and issue the following
commands:

Case Study: Adding Measures to the Global Analytic Workspace

9-20 Oracle OLAP Application Developer’s Guide

" Add SALES to the ALL_MEASURES dimension
MAINTAIN ALL_MEASURES ADD 'global_aw.units_cube.sales.measure'

" Add descriptions to the ALL_DESCRIPTIONS variable
LIMIT all_measures TO 'global_aw.units_cube.sales.measure'
LIMIT all_objects TO all_measures
LIMIT all_languages TO 1
all_descriptions(all_desctypes, 'SHORT')= 'Sales'
all_descriptions(all_desctypes, 'LONG')= 'Sales as Units * Price'
all_descriptions(all_desctypes, 'PLURAL')= 'Sales'

" Add measure name to the AW_NAMES variable

aw_names = 'GLOBAL_AW.GLOBAL!SALES'

" Add measure to the CUBE_MEASURES valueset
LIMIT all_cubes TO 'GLOBAL_AW.UNITS_CUBE.CUBE'
LIMIT cube_measures ADD 'GLOBAL_AW.UNITS_CUBE.SALES.MEASURE'

" Save these changes
UPDATE
COMMIT

Aggregating the New Global Variables
After you have created a standard form measure, you can aggregate it the same as
any other measure. Because the new measures were added to an existing cube, you
can either modify an existing aggregation plan or create a new one for the new
measures. Follow these steps:

1. In the OLAP Catalog View, expand the Cubes folder sufficiently to see
UNITS_CUBE in the GLOBAL analytic workspace.

2. To modify an existing aggregation plan, do the following:

a. Expand the Aggregation Plans folder under UNITS_CUBE and right-click
the plan.

b. Choose Edit from the menu.

c. Add SALES, EXTENDED_COST, and MARGIN to the plan.

or

To create a new aggregation plan, right-click UNITS_CUBE and choose Create
Aggregation Plan Using Wizard. Follow the steps of the wizard, and choose
Help for additional information.

Case Study: Adding Measures to the Global Analytic Workspace

Adding Measures to a Standard Form Analytic Workspace 9-21

3. To deploy the aggregation plan, right-click it and choose Deploy Aggregation
Plan from the menu.

4. Choose Save from the File menu.

Adding More Custom Measures to GLOBAL
The remaining measures can be calculated at runtime using any of the available
methods. The following steps create a new formula object and register it as a
measure, using the method described in this chapter. Alternatively, you can use the
DBMS_AW_UTILITIES package to define permanent custom measures, as described
in Chapter 7.

To define the SALES_PP measure, take these steps:

1. In the Object View, right-click the SALES formula and choose Create Like from
the menu.

2. Type SALES_PP as the destination name in the Create Like dialog.

3. Click the new SALES_PP formula and make these changes to the property
pages:

On the Properties page, change AW$LOGICAL_NAME and SOURCE_NAME to
SALES_PP.

On the Expression page, replace the AGGREGATE function with this LAG
function:

LAG(sales, 1, time, LEVELREL time_levelrel)

4. Register SALES_PP the same as the other measures.

Repeat these steps for the other measures listed in Table 9–1.

Using an OLAP DML Program to Add Measures to GLOBAL
The previous examples showed how to define measures manually using Analytic
Workspace Manager. Another option is to use an OLAP DML program.
Example 9–3 shows a sample program for adding measures. It takes three
arguments:

■ The name of the measure

■ The name of the source variable

■ The name of the cube for the measure

Case Study: Adding Measures to the Global Analytic Workspace

9-22 Oracle OLAP Application Developer’s Guide

This is the command to run the program:

CALL create_measure('display_name' 'source_variable')

For example, CALL create_measure('Sales' 'sales_variable')

All of the other information is provided in local variables at the beginning of the
program. If you use this program as a template for creating measures in your own
analytic workspace, then either change the settings of these local variables or
change the variables to command-line arguments.

This is the basic sequence of the program:

■ Checks that the source variable exists and creates it if it does not. The program
does not populate the variable; it just creates the object definition.

■ Creates a formula with an AGGREGATE function in the equation. You can alter
the equation at any time.

■ Registers the new measure in the database standard form catalogs.

Comments are used throughout the program to help you understand how it works.
You will also see these symbols:

" (double quote) begins or ends a comment
' (single quote) encloses literal text
& (ampersand) substitutes the value of an expression for the expression itself
\ (backslash) identifies the next character as literal, not part of command syntax
= (equal) sets the variable on the left to the value of the expression on the right
- (hyphen) continues command onto next line
: (colon) follows the name of label used to redirect processing

For the full syntax and usage of the commands and functions in this program, refer
to the Oracle OLAP DML Reference.

Example 9–3 DML Program for Adding Measures to UNITS_CUBE

DEFINE CREATE_MEASURE PROGRAM
PROGRAM
ARG _displayname text
ARG _measvar text
ARG _cube text
VARIABLE _schema text
VARIABLE _aw text
VARIABLE _fullname text
VARIABLE _measure text
VARIABLE _datatype text

Case Study: Adding Measures to the Global Analytic Workspace

Adding Measures to a Standard Form Analytic Workspace 9-23

VARIABLE _dims text
VARIABLE _segwidth text
VARIABLE _aggmap text
VARIABLE _createdby text
VARIABLE _fullmeas text

TRAP ON OOPS "Redirect processing on error to OOPS label

" Check for measure name argument on command line
IF _displayname EQ na
 THEN SIGNAL noarg 'You must supply a measure name.'
 ELSE _measure = UPCASE(_displayname)

IF _measvar EQ na
 THEN _measvar = JOINCHARS(_measure, '_VARIABLE')

IF _cube EQ na
 THEN _cube = 'UNITS_CUBE'
 ELSE _cube = UPCASE(_cube)

" Change these local variables for your data
_schema = 'GLOBAL_AW' " Name of the schema that owns the analytic workspace
_aw = 'GLOBAL' " Name of the analytic workspace
_segwidth = '85 1000000' " Segment size appropriate for measures in this cube
_aggmap = JOINCHARS(_cube '_AGGMAP_AWCREATEDDEFAULT_1') " Name of default aggmap for cube
_datatype = 'DECIMAL'

_createdby = 'AW$CREATE'
_fullname = UPCASE(JOINCHARS(_schema, '.', _cube, '.', _measvar))
_dims = OBJ(PROPERTY, 'SYS_DIMS', _cube)
_fullmeas = UPCASE(JOINCHARS(_schema, '.', _cube, '.', _measure, '.MEASURE'))

" Redirect processing to FORMULA label if variable already exists
IF EXISTS(_measvar)
 THEN GOTO FORMULA

" Define the variable
&JOINCHARS('DEFINE ', _measvar, ' VARIABLE ' , _datatype , ' <', _dims, '>')

" Set Database Standard Form metadata required to register a measure variable
&JOINCHARS('CONSIDER ', _measvar)
PROPERTY 'AW$CLASS' 'EXTENSION'
PROPERTY 'AW$CREATEDBY' _createdby
PROPERTY 'AW$LASTMODIFIED' JOINCHARS(today , '_' , tod)
PROPERTY 'AW$PARENT_NAME' _measure

Case Study: Adding Measures to the Global Analytic Workspace

9-24 Oracle OLAP Application Developer’s Guide

PROPERTY 'AW$ROLE' 'VARIABLE'
PROPERTY 'AW$STATE' 'CREATED'
PROPERTY 'AW$SEGWDTH_CMD' JOINCHARS(-
 'CHGDFN ' , _schema , '.' , _aw , '!' , _measure , ' SEGWIDTH ' , _segwidth)

FORMULA:
" Check if the measure is already defined
IF EXISTS(_measure)
 THEN SIGNAL measexists JOINCHARS(_measure ' already exists.')
" Create the formula
&JOINCHARS('DEFINE ' , _measure , ' FORMULA ' , _measvar)
" Define the calculation equation
&JOINCHARS('EQ AGGREGATE(', _schema, '.', _aw, '!', _measvar, ' USING ', _aggmap, ')')

" Set properties needed by the BI Beans enablement process
&JOINCHARS('CONSIDER ' , _measure)
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$COMPSPEC' _aggmap
PROPERTY 'AW$CREATEDBY' _createdby
PROPERTY 'AW$LASTMODIFIED' JOINCHARS(TODAY , '_' , TOD)
PROPERTY 'AW$LOGICAL_NAME' _measure
PROPERTY 'AW$PARENT_NAME' _cube
PROPERTY 'AW$ROLE' 'MEASUREDEF'
PROPERTY 'AW$STATE' 'CREATED'

" Register measure in standard form catalogs
&JOINCHARS('MAINTAIN all_measures ADD ', '\'', _fullmeas, '\'')
&JOINCHARS('all_descriptions(all_objects \'<ALL_MEASURES: ' , _fullmeas ' >\' all_desctypes
\'SHORT\') = \'' , _displayname , '\'')
&JOINCHARS('aw_names(all_objects \'<ALL_MEASURES: ' , _fullmeas ' >\') = \'', _schema, '.', _aw,
'!', _measure, '\'')
&JOINCHARS('LIMIT all_cubes to \'', _schema, '.', _cube, '.CUBE\'')
&JOINCHARS('LIMIT cube_measures add ' '\'', _fullmeas, '\'')
RETURN

OOPS:
show 'Program ended in an error.'
END

Predicting Future Performance 10-1

10
Predicting Future Performance

This chapter introduces the tools available in an analytic workspace to generate a
forecast. It explains how to store the forecast in a standard form measure, and how
to create a standard form cube for forecast results.

This chapter contains the following chapters:

■ Creating a Forecast

■ Developing a Forecast Program

■ Defining a New Cube

■ Case Study: Forecasting Global Sales

Creating a Forecast
The OLAP DML supports simple linear regressions, several non-linear regression
methods, single exponential smoothing, double exponential smoothing, and the
Holt-Winters method. If you are unsure of which method to use, you can have the
OLAP engine decide the best fit for your data based on past performance.

Most forecasts are calculated at the base level. You then aggregate the base-level
forecast data to generate forecast aggregates. Typically, you do not generate forecast
aggregates from the aggregates of actual data. The examples in this chapter assume
that you wish to generate forecast aggregates in this way.

However, at times you may want to generate forecasts at the aggregate level and
then allocate the data to lower levels. This method of forecasting is also supported.

Creating a Forecast

10-2 Oracle OLAP Application Developer’s Guide

Steps for Creating a Forecast
These are the steps for creating a forecast. Each one is discussed in more detail in
the sections that follow.

1. Verify that the time periods for the forecast have been created in your time
dimension. Add them if necessary.

2. Define the variables that will be used to store the results.

3. Write a program that generates the forecast.

4. Compile and run the program.

5. Check the results.

6. Add the results measure to a cube. Optionally, first create a new cube for
forecasting results.

7. Create a new aggregation plan or modify an existing one to include the measure
containing the forecast results. Deploy the aggregation plan.

8. Enable the analytic workspace for your applications.

Creating the Forecast Time Periods
The future time periods that you want to forecast must be defined as members of
the time dimension in your analytic workspace. If they do not exist there already,
you must:

1. Add the new members and their attributes to the Time dimension table in the
source schema.

2. Use the Refresh wizard in Analytic Workspace Manager to add the new
members to the dimension in the analytic workspace.

You should use whatever mechanism guarantees that these Time dimension
members will be identical when you load actual data.

Defining Variables for the Results
A forecast requires a minimum of one variable for the results, and up to three
variables if you want seasonal and smoothed seasonal forecasts. These variables
typically have the same dimensions and data type as the variable used to generate
the forecast.

Take these steps to define the variables for a forecast:

Developing a Forecast Program

Predicting Future Performance 10-3

1. Define the results variable as a standard form measure.

Refer to "Adding Custom Measures to a Cube" on page 9-8 for instructions on
defining the variable and the aggregate formula, and for registering the
measure.

2. For a seasonal forecast, define a second variable for the seasonal factors. Do not
assign standard form properties to this variable. Instead, do the following:

a. In the Object View, expand the folder for your analytic workspace.

b. Right-click Variables and choose Create Variable from the menu.

c. Define the variable with a DECIMAL data type.

d. On the Dimensions page, list the dimensions in the appropriate order for
variables in your cube, typically Time first, then a composite dimension.

3. For a smoothed seasonal forecast, define a third variable for the smoothing
factors. Copy the seasonal factors variable by right-clicking the variable and
choosing Create Like.

Developing a Forecast Program
A forecast uses several related commands that are always executed from within an
OLAP DML program. These commands define a forecasting context. Use the
following commands in the order they are listed here.

1. FCOPEN function. Opens a forecasting context and returns its handle.

2. FCSET command. Specifies the characteristics of a forecast.

3. FCEXEC command. Executes a forecast and populates Oracle OLAP variables
with forecasting data.

4. FCQUERY function (optional). Retrieves information about the characteristics of
a forecast or a trial of a forecast.

5. FCCLOSE command. Closes a forecasting context.

Example 10–1 provides a template for these commands and others that are typically
used in a forecast.

See Also: For descriptions of the various forecasting methods,
information about querying forecast trials, and the full syntax of
these commands and functions, refer to the Oracle OLAP DML
Reference.

Defining a New Cube

10-4 Oracle OLAP Application Developer’s Guide

Example 10–1 Template for a Forecast

VARIABLE handle INTEGER " Define a local variable
TRAP ON OOPS " Redirect processing on error to OOPS label

" Select base level time periods
LIMIT time_dim TO levelrel_time 'base_data'
" Keep historical and forecast periods
LIMIT time_dim KEEP LAST n

" Open a handle for the forecast
handle = FCOPEN('forecast_name')
" Specify the forecast method
FCSET handle METHOD 'method' descriptors
" Execute the forecast and identify source and target variables
FCEXEC handle TIME time_dim INTO target_var1 SEASONAL -
 target_var2 SMSEASONAL target_var3 source_var
FCCLOSE handle " Close the forecast
RETURN

OOPS:
SHOW 'Error running program'

Generating a Forecast
To generate the forecast data, run the forecast program, using a command like this
one.

CALL forecast_sales

Defining a New Cube
Cubes provide a method of organizing measures with similar characteristics. There
is no practical limit on the number of measures that you can associate with a
particular cube. However, you may prefer to create a separate cube for some
calculated measures, even though they have the same characteristics as an existing
cube. For example, while you can add forecast measures to an existing cube with
actual measures, you might not want to risk confusing them.

The metadata for cubes includes information about the source variables for its
measures, such as the names of the composite and the aggregation maps. The
following discussion assumes that these objects already exist. If not, refer to
Chapter 6.

Defining a New Cube

Predicting Future Performance 10-5

Creating a Cubedef Object
A cubedef object is a text dimension that lists the names of a cube's dimensions, as
described in "Standard Form Cubes" on page 8-25Take the following steps to create
a cubedef object using Analytic Workspace Manager.

1. Open the Object View and expand the folder for your analytic workspace.

2. Expand the Dimension folder and right-click a cubedef dimension for an existing
cube.

3. Choose Create Like from the menu.

The Create Like dialog is displayed.

4. Type a name for the new cube.

To conform with the other cube names in the workspace, the name should end
with _CUBE, such as SALES_CUBE.

5. Select the new cubedef dimension from the Dimension folder, and make these
changes in the property viewer:

■ Basic page: Type a new description.

■ Properties page: Delete these properties: AW$LOADPRGS, LOAD_TYPE,
SOURCE_NAME, SOURCE_OWNER. Then edit the other property values so
they are appropriate for the new object. For more information about these
properties, refer to Table 8–13 on page 8-26.

The new cube does not use a load program to obtain data, and it should not
appear in the Refresh wizard.

6. Open OLAP Worksheet. Use commands such as the following to add the names
of dimensions as values:

MAINTAIN cube ADD 'dimension' 'dimension' ...

For example: MAINTAIN new_cube ADD 'PRODUCT' 'TIME'

7. From the File menu, choose Save to update the analytic workspace and all
objects in the current schema.

Creating a Default Aggregation Map
All cubes must have a default aggregation map, which is used initially to guarantee
that all queries are answered by fully solved measures. An aggregation map (or

Defining a New Cube

10-6 Oracle OLAP Application Developer’s Guide

aggmap object in the language of the OLAP DML) contains all of the rules for
aggregation.

To create a default aggregation map for a cube, take these steps:

1. In the Object View, expand the Aggregation Maps folder.

2. Right-click the default aggregation for a similar cube and choose Create Like
from the menu.

A default aggregation map has a name such as
UNITS_CUBE_AGGMAP_AWCREATEDDEFAULT_1.

3. Give the new aggregation map a similar name, such as
FORECAST_CUBE_AGGMAP_AWCREATEDDEFAULT_1.

4. Select the new aggregation map and make these changes:

■ Properties page: Change the value of AW$PARENT_NAME to the name of the
new cube.

■ Aggmap page: Verify that there is exactly one RELATION command for
each dimension of the new cube. If changes are needed, make them and
then click Compile to check the syntax of your changes.

5. Click Apply to save these changes in your session.

6. From the File menu, choose Save to save these changes for future sessions.

Registering a New Cube
Registering a cube is very similar to registering a measure, as described in
"Registering a New Measure" on page 9-12. It involves most of the same catalogs.
You can examine their property sheets in Analytic Workspace Manager, or you can
issue this command in OLAP Worksheet to see their definitions:

DESCRIBE all_cubes all_descriptions aw_names cube_measures

For more information about these catalogs, refer to "Standard Form Catalogs" on
page 8-30.

Adding a Cube to the ALL_CUBES Dimension
The ALL_CUBES dimension is a list of all cubes in the analytic workspace. To see its
contents, issue this OLAP DML command:

REPORT W 40 all_cubes

Defining a New Cube

Predicting Future Performance 10-7

The names of the cubes have this detailed format:

schema.cube.CUBE

To add a new cube to ALL_CUBES, use this command syntax:

MAINTAIN all_cubes ADD detailed_cube_name

For example:

MAINTAIN all_cubes ADD 'GLOBAL.ANALYTICS_CUBE.CUBE'

Issue another REPORT command to make sure that the change was made correctly,
then issue these commands to save it:

UPDATE; COMMIT

Adding a Cube to the ALL_DESCRIPTIONS Variable
The ALL_DESCRIPTIONS variable stores the short, long, and plural descriptions of
each object, as described in "ALL_DESCRIPTIONS Variable" on page 9-13.

Use commands such as these to add descriptions of your new cube:

LIMIT all_languages TO 'AMERICAN.AMERICA'
LIMIT all_cubes TO 'detailed_mcubename'
LIMIT all_objects TO all_cubes
all_descriptions(all_desctypes, 'SHORT')= 'short description'
all_descriptions(all_desctypes, 'LONG')= 'long description'
all_descriptions(all_desctypes, 'PLURAL')= 'plural description'

Issue another REPORT command to make sure that the changes were made
correctly, then issue these commands to save them:

UPDATE; COMMIT

Adding a Cube to the AW_NAMES Variable
The AW_NAMES variable identifies the full name of objects in the analytic workspace,
as described in "AW_NAMES Variable" on page 9-15.

Use commands such as these to add the workspace name of a new cube:

LIMIT all_cubes TO 'detailed_cube_name'
LIMIT all_objects TO all_cubes
aw_names = 'full workspace object name'

Defining a New Cube

10-8 Oracle OLAP Application Developer’s Guide

Issue another REPORT command to make sure that the changes were made
correctly, then issue these commands to save them:

UPDATE; COMMIT

Adding Measures to the New Cube in the CUBE_MEASURES Valueset
The CUBE_MEASURES valueset identifies the measures in each cube, as described in
"CUBE_MEASURES Valueset" on page 9-16.

Use commands such as these to add measures to the new cube:

LIMIT all_cubes TO cube
LIMIT cube_measures ADD 'detailed measure name . . .'

For example:

LIMIT all_cubes TO 'ANALYTICS_CUBE'
LIMIT cube_measures ADD 'GLOBAL.ANALYTICS_CUBE.PROFIT.MEASURE' -
 'GLOBAL.ANALYTICS_CUBE.SALES_PCTCHG.MEASURE'

Issue another REPORT command to make sure that the changes were made
correctly, then issue these commands to save them:

UPDATE; COMMIT

Troubleshooting a Hand-Crafted Cube
If you made errors in creating a cube, then errors will occur when you try to
aggregate the cube, or refresh or enable your analytic workspace. Follow this check
list to identify the cause of failure.

■ Check the properties of the cube dimension against those listed in "Standard
Form Cubes" on page 8-25. If you copied another cube, make sure that you
made all of the appropriate changes to the property values.

■ Verify that you populated the cube dimension.

REPORT forecast_cube

FORECAST_CUBE

CHANNEL
CUSTOMER
PRODUCT
TIME

Case Study: Forecasting Global Sales

Predicting Future Performance 10-9

■ Verify that you added the cube to the ALL_CUBES dimension.

REPORT W 30 all_cubes

ALL_CUBES

GLOBAL_AW.PRICE_CUBE.CUBE
GLOBAL_AW.UNITS_CUBE.CUBE
GLOBAL_AW.FORECAST_CUBE.CUBE

■ Verify that you added the cube to the AW_NAMES variable.

LIMIT all_objects TO all_cubes
REPORT W 42 DOWN all_objects W 35 aw_names

ALL_OBJECTS AW_NAMES
-- -----------------------------------
<ALL_CUBES: GLOBAL_AW.PRICE_CUBE.CUBE> GLOBAL_AW.GLOBAL!PRICE_CUBE
<ALL_CUBES: GLOBAL_AW.UNITS_CUBE.CUBE> GLOBAL_AW.GLOBAL!UNITS_CUBE
<ALL_CUBES: GLOBAL_AW.FORECAST_CUBE.CUBE> GLOBAL_AW.GLOBAL!FORECAST_CUBE

Case Study: Forecasting Global Sales
While you could add the forecast measure to the Units cube, which contains the
actual data, this example will create a new cube for it named FORECAST_CUBE.
FORECAST_CUBE has the same dimensions as UNITS_CUBE, so the two cubes will
share a composite dimension, UNITS_CUBE_COMPOSITE. The forecast will
populate a single measure in the Forecast cube.

This example assumes that you have created the SALES measure, as described in
Chapter 9.

Defining a New Cube for Forecast Measures
 These are the basic steps to create a new cube named FORECAST_CUBE:

1. In the Object View of Analytic Workspace Manager, copy UNITS_CUBE as
FORECAST_CUBE using Create Like. This step copies the object definition, but
not the contents, of UNITS_CUBE.

2. On the Properties page for FORECAST_CUBE, change the following properties,
then click Apply:

■ AW$LOADPRGS, LOAD_TYPE, SOURCE_NAME, SOURCE_OWNER: Delete so
that cube will be ignored by the Refresh wizard.

Case Study: Forecasting Global Sales

10-10 Oracle OLAP Application Developer’s Guide

■ AW$LOGICAL_NAME: Set to FORECAST_CUBE

■ AGGMAPLIST: Set to
FORECAST_CUBE_AGGMAP_AWCREATEDDEFAULT_1

■ DISPLAY_NAME: Set to Sales Forecast Cube

3. Right-click UNITS_CUBE_AGGMAP_AWCREATEDDEFAULT_1, and choose Create
Like to create a default aggregation map named
FORECAST_CUBE_AGGMAP_AWCREATEDDEFAULT_1.

4. On the Properties page, change the value of AW$PARENT_NAME to
FORECAST_CUBE.

The new cube has the same dimensions as the Units cube. Otherwise, you
would need to edit the aggregation map.

5. To save the new definitions, choose Save from the File menu.

6. To add the dimensions of the Forecast cube, issue this command:

MAINTAIN forecast_cube ADD 'CHANNEL' 'CUSTOMER' 'PRODUCT' 'TIME'

7. To register the FORECAST_CUBE cube, open OLAP Worksheet and issue the
following commands:

" Add FORECAST_CUBE to the ALL_CUBES dimension
MAINTAIN ALL_CUBES ADD 'GLOBAL_AW.FORECAST_CUBE.CUBE'

" Add descriptions to the ALL_DESCRIPTIONS variable
LIMIT all_cubes TO 'GLOBAL_AW.FORECAST_CUBE.CUBE'
LIMIT all_objects TO all_cubes
LIMIT all_languages TO 1
all_descriptions(all_desctypes, 'SHORT')= 'Sales Fcast'
all_descriptions(all_desctypes, 'LONG')= 'Sales Forecast
all_descriptions(all_desctypes, 'PLURAL')= 'Sales Forecasts'

" Add cube name to the AW_NAMES variable

aw_names = 'GLOBAL_AW.GLOBAL!FORECAST_CUBE'

" Save these changes
UPDATE
COMMIT

Case Study: Forecasting Global Sales

Predicting Future Performance 10-11

Defining the Forecasting Measures for Global Sales
The results of this forecast are stored in three variables. Only one is of interest to
analysts; the other two hold the seasonal and smoothing adjustment factors used to
create the forecast.

The quickest way to define the standard form measure is using the
CREATE_MEASURE program shown in Example 9–3, "DML Program for Adding
Measures to UNITS_CUBE". Take these steps:

1. In the Object View of Analytic Workspace Manager, attach GLOBAL in
read/write mode. If the program is in a separate workspace, then it must be
attached also, in either read-only or read/write mode.

2. Open OLAP Worksheet and issue the following command:

AW LIST

The GLOBAL analytic workspace must be listed first because the new workspace
objects will be created in the first one listed. If GLOBAL is not first, then issue
this command:

AW ATTACH global FIRST

3. Issue this command to create a standard form measure for the forecast results:

CALL create_measure('sales_fcast', na, 'forecast_cube')

The arguments specify a new measure named SALES_FCAST, a new variable
whose name is constructed from the measure name, and a cube named
FORECAST_CUBE.

4. Create SALES_FCAST_SEASONAL by taking these steps:

a. In the Object View, right-click Create Variable.

The Create Variable dialog is displayed.

b. On the Basic page, define SALES_FCAST_SEASONAL with a DECIMAL data
type.

c. On the Dimensions page, list TIME first, then UNITS_CUBE_COMPOSITE.

d. Click Create to save this variable definition in the current session.

5. Create SALES_FCAST_SMOOTHED by right-clicking SALES_FCAST_SEASONAL
and choosing Create Like from the menu.

6. From the File menu, choose Save.

Case Study: Forecasting Global Sales

10-12 Oracle OLAP Application Developer’s Guide

Developing a Forecasting Program for Global Sales
Example 10–2 shows a program named FORECAST_SALES, which forecasts sales in
the GLOBAL analytic workspace. You can use it as the basis of forecast programs in
your analytic workspace.

The forecast itself requires only four commands. The default forecast method is
AUTOMATIC, which permits the OLAP engine to select the best method based on the
data. Seasonality is also specified, and both seasonal and smoothed seasonal
variables are targeted.

Identifying Historical and Forecast Time Periods
In the GLOBAL analytic workspace, there are 65 historical periods (Jan-98 to
May-03) and 12 forecast periods (Jun-03 to May-04). Because the base time period
is a month, seasonal adjustments are based on a 12-period cycle. The program uses
the INTEGER argument of the LIMIT function to obtain the numeric position of the
last historical time period, and sets the status of TIME relative to that position.

Arguments to the FORECAST_SALES Sample Program
The FORECAST_SALES program takes five arguments:

■ The forecasting method (AUTOMATIC, LINREF, NLREL1 to NLREG5, SESMOOTH,
DESMOOTH, or HOLT/WINTERS). These methods are described in the Oracle
OLAP DML Reference.

■ The long description of the last time period for which there is data.

■ The number of historical periods to be used in the forecast.

■ The number of periods to forecast.

■ The number of periods in a seasonal cycle.

Default values are set for these arguments so that they can be omitted from the
command line. These are some of the ways you can run this program:

CALL forecast_sales
CALL forecast_sales('holt/winters')
CALL forecast_sales(na, na, 36, 6)

Because arguments are passed sequentially to the program, you may need to pass
an NA as a placeholder value for some arguments, as shown in the third example.
Later arguments can simply be omitted.

Case Study: Forecasting Global Sales

Predicting Future Performance 10-13

The program arguments, along with some preset local variables, are used to select
the dimension members in the status. All dimensions are limited to the base level,
so that precalculated aggregates will not be used in the forecast. In addition, the
TIME dimension must be limited so that only the source historical periods and the
target forecast periods are in status.

Example 10–2 Forecasting Program for Global Sales

DEFINE FORECAST_SALES PROGRAM
PROGRAM
ARG _method TEXT " Forecasting method
ARG _last_time TEXT " Long desc of last hist time period
ARG _histperiods INT " Number of historical periods
ARG _fcast_periods INT " Number of forecast periods
ARG _periodicity INT " Number of periods in a cycle
VARIABLE _time_level TEXT " Base level of time dimension
VARIABLE _channel_level TEXT " Base level of channel dimension
VARIABLE _product_level TEXT " Base level of product dimension
VARIABLE _customer_level TEXT " Base level of customer dimension
VARIABLE _last_time_pos INT " Numeric position of _last_time in time dim
VARIABLE _handle INT " Forecast handle

TRAP ON OOPS " Divert processing on error to OOPS label

" Set default values for args
if _method eq na
 then _method = 'AUTOMATIC'
if _last_time eq na
 then _last_time = 'May-03'
if _histperiods eq na
 then _histperiods = 48
if _fcast_periods eq na
 then _fcast_periods = 12
if _periodicity eq na
 then _periodicity = 12

" Identify base levels of dimensions
 _time_level='MONTH'
 _channel_level='CHANNEL'
 _product_level= 'ITEM'
 _customer_level='SHIP_TO'

" Set dimension status to base level
PUSH time channel product customer
LIMIT channel TO channel_levelrel EQ _channel_level

Case Study: Forecasting Global Sales

10-14 Oracle OLAP Application Developer’s Guide

LIMIT product TO product_levelrel EQ _product_level
LIMIT customer TO customer_levelrel EQ _customer_level
LIMIT time TO time_levelrel EQ _time_level

" Check time parameters of forecast and refine status of time dimension
_last_time_pos = LIMIT(INTEGER time TO time_long_description EQ _last_time)
IF _histperiods + _fcast_periods GT STATLEN(time)
 THEN SIGNAL toosmall 'You specified more time periods than are defined.'
IF _last_time_pos - _histperiods lt 0
 THEN SIGNAL nohist 'You specified too many historical periods.'
IF _last_time_pos + _fcast_periods GT STATLAST(time)
 THEN SIGNAL nofuture 'You specified too many forecast periods.'
 ELSE LIMIT time KEEP -
 (_last_time_pos - _histperiods + 1) TO (_last_time_pos + _fcast_periods)

" Run the forecast
_handle = FCOPEN('sales')
FCSET _handle METHOD _method HISTPERIODS _histperiods PERIODICITY _periodicity
FCEXEC _handle TIME time INTO sales_fcast_variable -
 SEASONAL sales_fcast_seasonal_variable -
 SMSEASONAL sales_fcast_smoothed_variable sales
FCCLOSE _handle

POP time channel product customer
RETURN

OOPS:
SHOW 'Program ended in an error.'
END

Reviewing the Forecast Data for Global Sales
Example 10–3 shows partial results from running the FORECAST_SALES program
with the default settings. The SALES measure has data only for historical time
periods (May-03 and earlier), and the SALES_FCAST measure has data only for
forecast time periods (Jun-03 and later). SALES_FCAST_SEASONAL and
SALES_FCAST_SMOOTHED store the factors in the cells for the first seasonal cycle
(12 months).

Locating data in a very sparse measure can be a challenge. Limit the time dimension
to the periods of interest for the forecast, and limit all of the other dimensions to one
member that you know has data. Example 10–3 also shows how to limit a
dimension by level, attribute value, position, or value.

Case Study: Forecasting Global Sales

Predicting Future Performance 10-15

Example 10–3 Viewing Forecast Results for Global Sales

LIMIT time TO time_levelrel EQ 'MONTH' "Select base level time periods
"Remove periods not used in forecast
LIMIT time REMOVE time_end_date LT '30JUN00'
"Select base level channels and products
LIMIT channel TO channel_long_description EQ 'Direct Sales'
LIMIT product TO product_levelrel EQ 'ITEM'
LIMIT product KEEP FIRST 1 "Keep just the first product
LIMIT customer TO '51' "Select customer 51
REPORT W 5 DOWN time W 12 <time_long_description sales -
 sales_fcast sales_fcast_seasonal sales_fcast_smoothed>

CHANNEL: 2
PRODUCT: 13
CUSTOMER: 51
ALL_LANGUAGES: AMERICAN_AMERICA
 -------------------------TIME_HIERLIST--------------------------
 ----------------------------CALENDAR----------------------------
 TIME_LONG_DE SALES_FCAST_ SALES_FCAST_
TIME SCRIPTION SALES SALES_FCAST SEASONAL SMOOTHED
----- ------------ ------------ ------------ ------------ ------------
48 Jun-00 2,893.68 NA 0.32 0.70
49 Jul-00 2,840.35 NA 0.78 0.70
50 Aug-00 5,739.92 NA 1.16 0.70
51 Sep-00 5,821.08 NA 0.74 0.70
52 Oct-00 5,034.92 NA 0.32 0.69
53 Nov-00 2,488.27 NA 0.74 1.37
54 Dec-00 5,100.34 NA 1.36 1.22
55 Jan-01 NA NA 0.70 1.24
56 Feb-01 4,903.58 NA 1.35 1.28
57 Mar-01 4,893.34 NA 1.39 1.32
58 Apr-01 4,824.84 NA 1.49 1.37
59 May-01 4,791.26 NA 1.65 0.70
 .
 .
 .
91 Jun-03 NA 0.98 NA NA
92 Jul-03 NA 1.01 NA NA
93 Aug-03 NA 1.21 NA NA
94 Sep-03 NA 1.12 NA NA
95 Oct-03 NA 1.07 NA NA
96 Nov-03 NA 1.05 NA NA
97 Dec-03 NA 1.06 NA NA
103 Jan-04 NA 1.79 NA NA

Case Study: Forecasting Global Sales

10-16 Oracle OLAP Application Developer’s Guide

104 Feb-04 NA 1.84 NA NA
105 Mar-04 NA 1.89 NA NA
106 Apr-04 NA 1.93 NA NA
107 May-04 NA 1.96 NA NA
108 Jun-04 NA NA NA NA

Aggregating and Enabling the Forecast Measure
You can create and deploy an aggregation plan for the new Forecast cube the same
as any other cube:

1. In the OLAP Catalog View, expand the GLOBAL analytic workspace folder.

2. Right-click FORECAST_CUBE and choose Create Aggregation Plan Using
Wizard from the menu. Follow the steps of the wizard.

3. After creating the aggregation plan, expand the Aggregation Plans folder.

4. Right-click the name of the aggregation plan and choose Deploy Aggregation
Plan Using Wizard.

To make the forecast available to applications, re-enable the GLOBAL analytic
workspace.

If you experience problems with running any of these wizards, refer to
"Troubleshooting a Hand-Crafted Cube" on page 10-8.

Acquiring Data From Other Sources 11-1

11
Acquiring Data From Other Sources

Oracle OLAP provides data acquisition facilities so that you can create a standard
form analytic workspace, or add data to an existing workspace, from sources other
than a star or snowflake schema. This chapter introduces those facilities. It contains
the following topics:

■ Overview of OLAP Data Acquisition Subsystems

■ How to Manually Create a Standard Form Analytic Workspace

■ Reading Flat Files

■ Fetching Data From Relational Tables

■ Populating Additional Metadata Objects

■ Case Study: Creating the GLOBALX Workspace From Alternative Sources

Overview of OLAP Data Acquisition Subsystems
Oracle Warehouse Builder can transform a wide variety of data sources into a star
schema and, from the star schema, into an analytic workspace. As an alternative
method, you can create an analytic workspace containing empty standard form
objects, and populate these objects directly from the data sources using the facilities
of the OLAP DML.

Even if you have successfully built your analytic workspace using either Analytic
Workspace Manager or Oracle Warehouse Builder, you may want to add measures
from other sources, such as syndicated data or government business statistics. In
that case, you can use the information provided in Chapter 8, "Exploring a Standard
Form Analytic Workspace", and Chapter 9, "Adding Measures to a Standard Form
Analytic Workspace" to define and register the standard form workspace objects.

How to Manually Create a Standard Form Analytic Workspace

11-2 Oracle OLAP Application Developer’s Guide

Then you can use one of the methods introduced in this chapter to populate the
objects.

This chapter shows how to use OLAP tools to generate a standard form analytic
workspace, then how to populate it manually from various sources using the OLAP
DML.

The OLAP DML has facilities to load data from these sources:

■ Flat files. The file reader commands load data from flat files, so that you can
use data from spreadsheets, syndicated and government sources, or legacy
database systems.

■ Relational tables. The OLAP DML SQL command enables you to issue most
SQL commands from an analytic workspace. Using the SQL command, you can
fetch data with appropriate data types from any relational table or view into an
analytic workspace. OLAP tools, such as the DBMS_AWM package, use the SQL
command to populate analytic workspaces.

■ EIF files. The IMPORT and EXPORT commands enable you to create standard
form analytic workspaces from legacy Express databases. A conversion
program is available for those containing Oracle Express Objects metadata.
Refer to

How to Manually Create a Standard Form Analytic Workspace
The steps that you take to create a standard form analytic workspace from
alternative sources is basically the same as from a star or snowflake schema. There
are two primary differences:

■ Instead of loading your data into the star or snowflake schema of a data
warehouse, you simply create the empty tables. These tables provide the basis
for defining the OLAP Catalog metadata required by the DBMS_AWM package to
create an analytic workspace. The data remains in its original form until it is
loaded directly into an analytic workspace.

■ The DBMS_AWM package uses characteristics of the data in the initial load to
make default choices such as dimension order and segment size. Since there is
no data from which it can make appropriate choices, you must specify the
correct values. Using the DBMS_AWM package directly provides you with the
most control. However, you can still use Analytic Workspace Manager or Oracle
Warehouse Builder if you wish, and modify the results where necessary before
loading the data.

How to Manually Create a Standard Form Analytic Workspace

Acquiring Data From Other Sources 11-3

Take these steps to generate a standard form analytic workspace from flat files,
relational tables, or an Express database with no Oracle Express Objects metadata.
(If you are converting an Oracle Express Objects database, skip these instructions
and go to Appendix B.)

1. Identify the dimensions, attributes, measures, and cubes for your data, and use
this information to design a star schema.

You can use pencil and paper, a database design software package, or any other
method that suites you.

2. Implement your design by creating the dimension tables and fact tables.

You can issue SQL CREATE TABLE statements directly in SQL*Plus, or use a
graphical interface such as Oracle Enterprise Manager to create the tables. Note
that you are creating the tables, but not populating them.

3. Create OLAP Catalog metadata for the star schema.

Use any of these methods for creating either CWM1 or CWM2 metadata: the OLAP
Management tool in Oracle Enterprise Manager; the OLAP Bridge in Oracle
Warehouse Builder; or the CWM2 PL/SQL package.

4. Create a standard form analytic workspace from the OLAP Catalog metadata.

Use any of these methods: the Create Analytic Workspace wizard in Analytic
Workspace Manager; the OLAP Bridge in Oracle Warehouse Builder; or the
DBMS_AWM PL/SQL package. Specify a full load, even though the tables do not
contain data, so that all catalogs are populated correctly in the analytic
workspace.

5. Review the analytic workspace and make any changes to the object definitions.
In particular, look at the dimension order for composites and data variables,
and set an appropriate segment size on the target variables.

Refer to "Case Study: Creating the GLOBALX Workspace From Alternative
Sources" on page 11-19 for examples of these types of changes.

6. Load data into the dimensions, relations, and variables of the standard form
analytic workspace.

Use any of the methods described in this chapter.

7. Make any additional changes to the workspace metadata.

You now have a standard form analytic workspace, and you can use any of the tools
for aggregation and deployment provided for standard form workspaces. However,

Reading Flat Files

11-4 Oracle OLAP Application Developer’s Guide

you must refresh the data using whatever OLAP DML programs you created for
that purpose.

Reading Flat Files
You can use file reader OLAP DML commands to acquire data from external files in
various formats: binary, packed decimal, or text. While you can use some of the file
reader commands individually, it is best to place them in a program. You can
thereby minimize mistakes in typing and test your commands on smaller sets of
data. A program also enables you to perform operations in which several
commands are used together to loop over many records in a file. Afterward, you
can use the program to refresh your data.

About the File Reader Programs
Table 11–1 describes the OLAP DML file reader commands. Refer to the Oracle
OLAP DML Reference for the complete syntax, usage notes, and examples of these
commands and functions.

Table 11–1 OLAP DML File Reader Commands

Command Description

FILECLOSE command Closes an open file.

FILEERROR function Returns information about the first error that occurred when
you are processing a record from an input file with the
FILEREAD and FILEVIEW commands.

FILEGET function Returns text from a file that has been opened for reading.

FILENEXT function Makes a record available for processing by the FILEVIEW
command. It returns YES when it is able to read a record and
NO when it reaches the end of the file.

FILEOPEN function Opens a file, assigns it a fileunit number (an arbitrary integer),
and returns that number.

FILEPUT command Writes data that is specified in a text expression to a file that is
opened in WRITE or APPEND mode.

FILEQUERY function Returns information about one or more files.

FILEREAD command Reads records from an input file, processes the data, and stores
the data in workspace dimensions, composites, relations, and
variables, according to descriptions of the fields in the input
record.

Reading Flat Files

Acquiring Data From Other Sources 11-5

Writing a Program for Reading Files
While reading from a file, you can format the data from each field individually, and
use DML functions to process the information before assigning it to a workspace
object. Reading a file generally involves the following steps.

1. Open the data file.

2. Read data from the file one record or line at a time.

3. Process the data and assign it to one or more workspace objects.

4. Close the file.

The FILEREAD and FILEVIEW commands have the same attributes and can do the
same processing on your data. However, they differ in important ways:

■ The FILEREAD command loops automatically over all records in the file and
processes them automatically. Use FILEREAD when all records that you wish to
read in the file are the same. FILEREAD is easier to use and faster than
FILEVIEW.

Because FILEREAD is able to process most files, it is shown in the examples in
this chapter.

■ The FILEVIEW command processes one record at a time. FILEVIEW is the more
powerful of the two file-reading commands; it can process all of files that
FILEREAD can, plus process different types of records.

Example 11–1 provides a template for a developing a file-reading program in the
OLAP DML. Refer to "Fetching Dimensions Members From Tables" on page 11-14
for strategies for reading dimension members.

FILESET command Sets the paging attributes of a specified fileunit

FILEVIEW command Works in conjunction with the FILENEXT function to read one
record at a time of an input file, process the data, and store the
data in workspace dimensions and variables according to the
descriptions of the fields.

RECNO function Reports the current record number of a file opened for reading.

Table 11–1 (Cont.) OLAP DML File Reader Commands

Command Description

Reading Flat Files

11-6 Oracle OLAP Application Developer’s Guide

Example 11–1 Template for Reading Flat Files

VARIABLE funit INTEGER "Define local variable for file handle
TRAP ON CLEANUP "Divert processing on error to CLEANUP label
funit = FILEOPEN('directory/datafile' READ) "Open the file

"Read the file with FILEREAD
FILEREAD funit
 .
 .
 .
CLEANUP: "Cleanup label
IF funit NE na "Close the file
 THEN FILECLOSE funit

Mapping Fields to Workspace Objects
The FILEREAD command maps fields to workspace objects. A source file can be
structured with records in any of the following ways:

■ Ruled files contain data in columns, with fields defined by a starting position
and a width.

■ Structured PRN files contain strings of text or numbers. A text field is enclosed
in quotation marks. A number field can contain periods (.) in addition to
numbers, but any other character, including spaces and commas, terminates the
field.

■ CSV files (for Comma-Separated Values) use a special character, the delimiter, to
separate the fields in a record.

The target for the data in an analytic workspace is either a dimension, a relation, or
a variable. Dimensions can either be maintained by adding new members, or they
can be used just to align incoming data with existing dimension members. In
standard form analytic workspaces, a variable is typically an attribute or a measure.

Reading Ruled Files
The basic syntax of FILEREAD for mapping the data in ruled files is:

COLUMN n WIDTH n workspace_object

The following is an example of four records from a data file. From left to right, the
columns are channels, products, customers, time periods, and units. The first

Reading Flat Files

Acquiring Data From Other Sources 11-7

column (channels) is 10 characters wide, and the other columns are 11 characters
wide.

 2 13 51 54 2
 2 13 51 56 2
 2 13 51 57 2
 2 13 51 58 2

The following FILEREAD command reads the data from the last column into the
UNITS_VARIABLE variable, aligning the values in the other four columns with
existing dimension members. The RULED keyword is optional, since it is the default
record format.

FILEREAD funit RULED -
 COLUMN 1 WIDTH 10 channel -
 COLUMN 11 WIDTH 11 product -
 COLUMN 22 WIDTH 11 customer -
 COLUMN 33 WIDTH 11 time -
 COLUMN 44 WIDTH 11 units_variable

Reading Structured PRN Files
The basic syntax in FILEREAD for mapping structured data is:

FIELD n workspace_object

The same data file shown previously in "Reading Ruled Files" can be read with the
following command:

FILEREAD funit STRUCTURED -
 FIELD 1 channel -
 FIELD 2 product -
 FIELD 3 customer -
 FIELD 4 time -
 FIELD 5 units_variable

Reading CSV Files
The basic syntax for reading a CSV file is the same as for structured PRN files:

FIELD n workspace_object

Reading Flat Files

11-8 Oracle OLAP Application Developer’s Guide

The following is an example of four records from a CSV file, in which a comma is
the delimiter. The fields are the same as the previous data file shown in "Reading
Ruled Files": channels, products, customers, time periods, and units.

2,13,51,54,2
2,13,51,56,2
2,13,51,57,2
2,13,51,58,2

This file can be read with the following command; the DELIMITER clause is
optional in this case, because a comma is the default delimiter.

FILEREAD funit CSV DELIMITER ',' -
 FIELD 1 channel -
 FIELD 2 product -
 FIELD 3 customer -
 FIELD 4 time -
 FIELD 5 units_variable

Setting Dimension Status for Reading Measures
Whenever you read data values into a variable, you must set the status of each
dimension. Typically, the incoming records contain a field for each dimension; when
a record is processed in the analytic workspace, the dimensions are temporarily
limited to these values so that data targeted at a variable or relation is stored in the
correct cell. However, if the records omit one or more dimensions, then you must
set them manually before reading the file.

For example, if your file contains data only for the Direct Sales channel for August
2003, and thus does not have fields specifying the channel or time, then your
program must limit the CHANNEL and TIME dimensions before reading the file.
Otherwise, the data is aligned with the first member of those dimensions (All
Channels and Jan-98).

Optimizing a Data Load
Your data will load fastest if the variables in your analytic workspace are defined
with fastest and slowest varying dimensions that match the order of records in the
source data file. If you have control over the order of records in the source data file,
then you can create the data file to match the variables in your analytic workspace.
Otherwise, you may need to choose between optimizing for loads and optimizing
for queries when defining the dimension order of variables in your analytic
workspace.

Reading Flat Files

Acquiring Data From Other Sources 11-9

For example, a data file might have records sorted in this order:

■ Lists all records for the first channel, then all records for the second channel,
and so forth.

■ Lists all products for the first channel, then all products for the second channel,
and so forth.

■ Lists all customers for the first product, then lists all customers for the second
product, and so forth.

■ Lists all time periods for the first customer, then all time periods for the second
customer, and so forth.

In a workspace variable definition, the order of the dimensions identifies the way
the data is stored. The fastest-varying dimension is listed first, and the
slowest-varying dimension is listed last.

For this sample file, the data load will proceed fastest if the target variable is
defined with TIME as the fastest varying dimension and CHANNEL as the slowest
varying dimension, so the dimensions are listed in this order: TIME PRODUCT
CUSTOMER CHANNEL. With a composite dimension, the definition looks like this:

DEFINE UNITS_VARIABLE VARIABLE DECIMAL <TIME UNITS_CUBE_COMPOSITE <CUSTOMER
PRODUCT CHANNEL>>

Having the TIME dimension as the fastest varying dimension outside the composite
also provides good run-time performance for time-based analysis, because the time
periods are clustered together. This is a best-case scenario, in which the workspace
variables are optimized for queries, and the data file is sorted correctly for the
fastest loads.

However, if you have a separate data file for each time period, then TIME becomes
the slowest-varying dimension for the load. In this case, there is a conflict between
the dimension order that optimizes queries, and the dimension order that optimizes
data loads. You need to choose which dimension order is best under these
circumstances.

If you have a small batch window in which to load data, you may need to optimize
for the data load by defining variables with TIME as the last dimension, as shown
here:

DEFINE UNITS_VARIABLE VARIABLE DECIMAL <UNITS_CUBE_COMPOSITE <CUSTOMER PRODUCT
CHANNEL> TIME>

Reading Flat Files

11-10 Oracle OLAP Application Developer’s Guide

Reading and Maintaining Dimension Members
The records in a data file typically contain fields for dimension values that identify
the cell in which the data values should be stored. When all of the dimension values
in the file already exist in your analytic workspace, you can use the default attribute
MATCH in the dimension field description. MATCH accepts only dimension values
that already are in the analytic workspace.

When an incoming value does not match, the command signals an error. Your file
reader program can handle the error by skipping the record and continuing
processing, or by halting the processing and letting you check the validity of the
data file. The test for whether the error is caused by a new dimension member or
another type of error is based on the transient value of the ERRORNAME option when
the error is signaled.

Example 11–2 provides a template for error handling that permits processing to
continue when a dimension value in the data file does not match a dimension value
in the analytic workspace.

When your data file contains all new, or a mixture of new and existing dimension
values, you can add the new values and all the associated data to the analytic
workspace by using the APPEND attribute in the field description, as shown here:

FILEREAD funit -
 COLUMN n APPEND WIDTH n dimension

Example 11–2 Template for Skipping Records With New Dimension Members

VARIABLE funit INTEGER "Define local variable for file handle
TRAP ON oops "Divert processing on error to oops label
funit = FILEOPEN('directory/datafile' READ) "Open the file

next: "Resume processing label
FILEREAD funit "Read the file with FILEREAD
 .
 .
 .

WHILE FILENEXT(funit) "Or read it with FILEVIEW
 DO
 FILEVIEW funit...
 DOEND

FILECLOSE funit "Close the file
RETURN "End normal processing
oops: "Error label

Reading Flat Files

Acquiring Data From Other Sources 11-11

IF funit NE na AND ERRORNAME NE 'ATTN'
 THEN DO
 TRAP ON oops
 GOTO next "Resume processing at next label
 DOEND
IF funit NE na "Close the file on error
 THEN FILECLOSE funit

Transforming Incoming Values
The FILEREAD command enables you to modify values as they are read into the
analytic workspace.

Basic Transformations
To simply add characters before or after a value, use the LSET and RSET clauses.
For example, if the incoming time periods are only the months (such as JAN, FEB,
MAR), you can add the year before storing the values in the TIME dimension:

FILEREAD funit -
 COLUMN 1 WIDTH 15 RSET '-04' time

For other transformations, you can use the FILEVIEW command or any of the data
manipulation functions of the OLAP DML. The object of these manipulations is the
keyword VALUE, which represents the value of the current field. In this example, the
incoming values are converted to upper case:

FILEREAD funit -
 COLUMN 1 WIDTH 15 time = UPCASE(VALUE)

Using Relations to Align Dimension Values
If you need to match existing dimension values and a simple transformation cannot
create a match, then you can create a relation in the analytic workspace that
correlates the two sets of values. Take these steps:

1. Create a new dimension for the incoming dimension values.

You can define the dimension in Analytic Workspace Manager or with a
command like this in OLAP Worksheet:

DEFINE new_dimension DIMENSION TEXT

2. Read the dimension values from the file.

3. Create a relation between the two dimensions.

Fetching Data From Relational Tables

11-12 Oracle OLAP Application Developer’s Guide

You can define the relation in Analytic Workspace Manager or with a command
like this in OLAP Worksheet:

DEFINE relation RELATION dimension <new_dimension>

4. Read the data from the file, using the relation to align the data.

Use syntax like this:

FILEREAD funit CSV -
 FIELD 1 dimension = relation(new_dimension VALUE)

For example, if your Product dimension uses SKUs (stock keeping units) as
dimension members, and you want to add data that uses bar codes, then you create
a dimension for the bar codes and a relation between the bar codes and the SKUs of
the Product dimension. You can populate the relation from a file that correlates bar
codes and SKUs.

Fetching Data From Relational Tables
You can embed SQL statements in OLAP DML programs using the OLAP DML
SQL command.

SQL sql_statement

When formatting a SQL statement that is an argument to the OLAP DML, be sure to
use single quotes (') wherever you need quotes. In the OLAP DML, a double quote
(") indicates the beginning of a comment.

OLAP DML Support for SQL
You can use almost any SQL statement that is supported by Oracle in the OLAP
DML SQL command. You can use SELECT to copy data from relational tables into
analytic workspace objects. You can use the INSERT command to copy data from
analytic workspace objects into relational tables.

The following Oracle SQL extensions are also supported:

■ The FOR UPDATE clause in the SELECT statement of a cursor declaration, so
that you can update or delete data associated with the cursor

See Also: Oracle OLAP DML Reference under the entries for
FILEREAD, FILEVIEW, and DEFINE RELATION for the complete
syntax, usage notes, and examples of these commands.

Fetching Data From Relational Tables

Acquiring Data From Other Sources 11-13

■ The WHERE CURRENT OF cursor clause in UPDATE and DELETE statements for
interactive modifications to a table

■ Stored procedures and triggers

COMMIT and ROLLBACK are ignored as arguments to the SQL command. To commit
your changes, issue the OLAP DML UPDATE and COMMIT commands. You cannot
roll back using the OLAP DML.

Most SQL commands are submitted directly to the SQL command processor;
however, a small number are first processed in the OLAP DML, and their syntax
may be slightly different from standard SQL. Refer to the Oracle OLAP DML
Reference for further details.

Table 11–2 describes the OLAP DML commands that support embedded SQL.

Process: Copying Data From Relational Tables Into Analytic Workspace Objects
Using the OLAP DML, you can populate a standard form analytic workspace from
relational tables by taking the following steps:

1. Define the analytic workspace objects that will hold the relational table data.

Follow the steps listed in "How to Manually Create a Standard Form Analytic
Workspace" on page 11-2. Then browse the analytic workspace to identify the
objects you need to populate.

2. Write an OLAP DML program for each dimension. Compile and run the
programs.

Read the following instructions in "Fetching Data From Relational Tables".

Table 11–2 OLAP DML Commands for Embedded SQL

Statement Description

SQL command Passes SQL commands to the database SQL command
processor

SQLBLOCKMAX option Controls the maximum number of records retrieved from a
table at one time

SQLCODE option Holds the value returned by the database after the most
recently attempted SQL operation

SQLERRM option Contains an error message when SQLCODE has a nonzero value

SQLMESSAGES option Controls whether error messages are sent to the current output
file

Fetching Data From Relational Tables

11-14 Oracle OLAP Application Developer’s Guide

3. Write an OLAP DML program for each cube. Compile and run the programs.

Read the instructions in "Fetching Measures From Tables" on page 11-16.

Fetching Dimensions Members From Tables
There are several strategies for fetching dimension members. The best practice is to
fetch just the dimension members first, and fetch their attributes as a separate step.
For Time members, the best practice is to fetch one level at a time, making a
separate pass through the source table for each level. This practice enables you to
fetch the Time members in the correct order so that they do not need to be sorted
afterward.

However, the simplest method, and the one shown here, populates dimension
members at all levels, and all of the objects that support hierarchies, at the same
time. Before using this method, be sure that SEGWIDTH is set correctly, as discussed
in "Setting the Segment Size" on page 6-9.

Example 11–3 is a template that you can use for fetching dimensions in one pass.
The program does the following:

■ Reads the level columns one at a time, with their attribute columns, beginning
with the top level (or most aggregate) and concluding with the base level. The
syntax supports one hierarchy; refer to Example 11–18 on page 11-35 for the
equivalent syntax in FILEREAD for handling multiple hierarchies.

Because the parent relation is being populated at the same time, the parents
must be added to the workspace dimension before their children. Otherwise, an
error will occur, because a relation only accepts as legitimate values the
members of a particular dimension. This is not an issue if you load all
dimension members first.

■ Populates a Boolean member_inhier variable manually. The n shown in the
syntax is either a 1 (for yes) or a 0 (for no).

■ Populates the member_levelrel relation manually with the appropriate level name
for the column. Level names must exactly match the members of the levellist
dimension.

■ Populates the member_parentrel relation with the parent dimension member
from the appropriate column.

■ Includes commands for handling errors, which are omitted from other
examples so they are easier to read.

Fetching Data From Relational Tables

Acquiring Data From Other Sources 11-15

Example 11–3 Template for Fetching Dimension Members

SQLMESSAGES=YES " Display error messages on the screen
TRAP ON CLEANUP " Go to the CLEANUP label if an error occurs
SQL DECLARE cursor CURSOR FOR SELECT -
 top_level, n, 'levelname', parent_level, attribute, attribute,...-
 .
 .
 .
 base_level, n, 'levelname', attribute, attribute,... -
 FROM table -
 WHERE where_clause

" Signal an error if the command failed
IF SQLCODE NE 0
 THEN SIGNAL declerr 'Define cursor failed'

" Open the cursor
SQL OPEN cursor
IF SQLCODE NE 0
 THEN SIGNAL openerr 'Open cursor failed'

" Fetch the data
SQL IMPORT cursor INTO -
 :APPEND dimension, :inhier, :levelrel, :parentrel, :attribute, :attribute,
...

IF SQLCODE NE 0 AND SQLCODE NE 100
 THEN SIGNAL geterr 'Fetch failed'

" Save these changes
UPDATE
COMMIT

CLEANUP:
SQL CLOSE cursor
SQL CLEANUP

Sorting Dimension Members
When you fetch dimension members at all levels in a single pass through the source
table, they are mixed together in the target workspace dimension. For most
dimensions, the order does not affect processing, although you can sort the
members by level if you wish.

Fetching Data From Relational Tables

11-16 Oracle OLAP Application Developer’s Guide

However, it is very important for Time dimension members to be ordered
chronologically within levels so that the Time dimension supports time series
analysis. Functions such as LEAD, LAG, and MOVINGAVERAGE use the relative
position of Time members in their calculations. For example, LAG returns the
dimension member that is a specified number of values before the current member.
If the time periods are not in chronological order, the returned value is meaningless.

Your analytic workspace will perform better if you load the dimensions in the
correct order instead of sorting them afterward.

Example 11–4 contains an OLAP DML program template for sorting the Time
dimension. It does the following:

■ Defines a valueset in which to hold the sorted values.

■ Sorts the Time dimension by level first, then by end date within level.

■ Stores the sorted values in the valueset.

■ Reorders the Time dimension members.

Example 11–4 Template for Sorting the Time Dimension

IF NOT EXISTS('valueset')
 THEN DEFINE valueset VALUESET time_dim
LIMIT time_dim TO ALL
"Sort levels in descending order and time periods in ascending order
SORT time_dim D time_dim_LEVELREL A time_dim_END_DATE
LIMIT valueset TO time_dim
MAINTAIN time_dim MOVE VALUES(valueset) FIRST

"Save these changes
UPDATE
COMMIT

Fetching Measures From Tables
To fetch data from relational tables, you must write a program that defines a SQL
cursor with the selection of data that you want to fetch, then retrieves the data into
the analytic workspace objects that you previously created.

Example 11–5 is a template that you can use for fetching all of the measures for a
particular cube. It does the following:

■ Identifies a key column with the members of each dimension. When the data is
fetched into a variable, the dimensions are limited to the appropriate cell by
these values.

Fetching Data From Relational Tables

Acquiring Data From Other Sources 11-17

■ Orders the source data to match the target variable.

The ORDER BY clause in the SELECT statement is the reverse of the dimension
list for the variable. If a variable is dimensioned by <Product Geography
Time> so that Product is the fastest varying and Time is the slowest, then the
ORDER BY clause sorts the rows by Time, Geography, and Product. This
ordering speeds the data load.

■ Requires that values in the key columns match existing members in the target
workspace dimensions.

A required match prevents new dimension members from being created
without their level, parentage, attributes, and so forth.

Example 11–5 Template for Fetching Measures

SQLMESSAGES=YES " Display error messages on the screen
TRAP ON CLEANUP " Go to the CLEANUP label if an error occurs
" Define a cursor for selecting data
SQL DECLARE cursor CURSOR FOR SELECT -
 key1, key2, key3, keyn -
 meas1, meas2, meas3, measn -
 FROM table
 ORDER BY slowest_dim, ..., fastest_dim
" Signal an error if the command failed
IF SQLCODE NE 0
 THEN SIGNAL declerr 'Define cursor failed'

" Open the cursor
SQL OPEN cursor
IF SQLCODE NE 0
 THEN SIGNAL openerr 'Open cursor failed'

" Fetch the data
SQL IMPORT cursor INTO :MATCH dim1, :MATCH dim2, -
 :MATCH dim3, :MATCH dimn, -
 :var1, :var2 :var3
IF SQLCODE NE 0 AND SQLCODE NE 100
 THEN SIGNAL geterr 'Fetch failed'

" Save these changes
UPDATE
COMMIT

CLEANUP:

Populating Additional Metadata Objects

11-18 Oracle OLAP Application Developer’s Guide

SQL CLOSE cursor " Close the cursor
SQL CLEANUP " Free resources

Populating Additional Metadata Objects
Some of the metadata objects in an analytic workspace can only be populated after
loading the data. Since you are creating a standard form analytic workspace, you
can use the same OLAP DML programs as the DBMS_AWM package. These programs
are stored in an analytic workspace named AWCREATE, which is owned by SYS. You
can access the programs by attaching the workspace with this OLAP DML
command:

AW ATTACH sys.awcreate

This chapter describes two programs:

■ ___POP.FMLYREL populates the member_gid variables and member_familyrel
relations.

■ ___ORDER.HIERARCHIES populates the default_order variables.

The program names have three initial underscores.

Using ___POP.FMLYREL
The ___POP.FMLYREL program populates the member_gid variable and
member_familyrel variable for a dimension of a data cube. You must execute
___POP.FMLYREL for each dimension. Use this syntax to call ___POP.FMLYREL:

CALL ___POP.FMLYREL(aw, aw!dim, aw!dim_HIERLIST, aw!dim_LEVELLIST,
aw!dim_LEVELREL, dim, aw!dim_PARENTREL, aw!dim_INHIER)

Where:

aw is the name of the analytic workspace.
dim is the name of a dimdef dimension.

All arguments are text expressions, so you must enclose literal text in single quotes.
Use all upper-case letters for the arguments.

For an example, see "Populating Additional Standard Form Metadata Objects" on
page 11-39.

Case Study: Creating the GLOBALX Workspace From Alternative Sources

Acquiring Data From Other Sources 11-19

Using ___ORDR.HIERARCHIES
The ORDR.HIERARCHIES program populates the default_order attribute of a data
dimension. You must run it for each dimension of a data cube. Use this syntax to
run ORDR.HIERARCHIES:

CALL ___ordr.hierarchies('aw!dim', 'aw!dim_HIERLIST', 'aw!dim_HIER_CREATEDBY',
'dim_PARENTREL', 'dim_ORDER', 'dim_INHIER')

Where:

aw is the name of the analytic workspace.
dim is the name of a dimdef dimension.

All arguments are text expressions, so you must enclose literal text in single quotes.
Use all upper-case letters for the arguments.

For an example, see "Populating Additional Standard Form Metadata Objects" on
page 11-39.

Case Study: Creating the GLOBALX Workspace From Alternative
Sources

This example shows how to create an analytic workspace by acquiring data from
relational tables and flat files. It uses Global data simply because you are already
familiar with this data set; if you want to create an analytic workspace directly from
the Global star schema, refer to Chapter 6.

These are the basic steps:

1. Create the GLOBALX user and a default tablespace.

2. Create a star schema in GLOBALX.

3. Create OLAP Catalog metadata for the GLOBALX star schema that defines all of
the dimensions, levels, hierarchies, attributes, and measures.

4. Define the GLOBALX_AW user and default tablespace.

5. Create the GLOBALX standard form analytic workspace.

6. Modify the GLOBALX analytic workspace, such as redefining composites and
setting the segment size.

7. Populate the Price cube from relational tables using the OLAP DML SQL
command.

Case Study: Creating the GLOBALX Workspace From Alternative Sources

11-20 Oracle OLAP Application Developer’s Guide

8. Populate the Units cube from a flat file using the OLAP DML File Reader
commands.

9. Aggregate the data.

10. Enable the GLOBALX analytic workspace for use by the BI Beans.

Designing and Implementing the GLOBALX Star Schema
Because Global data is already stored in the GLOBAL star schema, GLOBALX can
simply mimic its design for the Price and Units cubes. The only difference is that
while GLOBAL is populated with data, GLOBALX contains empty tables.

GLOBALX Schema Diagram
Example 11–6 diagrams the schema relationships.

Case Study: Creating the GLOBALX Workspace From Alternative Sources

Acquiring Data From Other Sources 11-21

Example 11–6 GLOBALX Schema Diagram

Case Study: Creating the GLOBALX Workspace From Alternative Sources

11-22 Oracle OLAP Application Developer’s Guide

Procedure: Creating the GLOBALX Sample Schema
Take these steps to create the sample GLOBALX schema:

1. Create the GLOBALX user and a default tablespace. Sample scripts are shown in
"SQL Scripts for Defining Users and Tablespaces" on page C-1.

2. Create the SQL scripts listed in "SQL Scripts for the GLOBALX Star Schema" on
page C-3.

3. Log in to SQL*Plus or a similar SQL command processor as the GLOBALX user.

4. Execute the scripts using the SQL @ command.

5. After the scripts execute without errors, issue a SQL COMMIT statement.

Creating OLAP Catalog Metadata for the GLOBALX Schema
The metadata for the GLOBALX star schema can be generated by any available
method: the OLAP Management tools in Oracle Enterprise Manager, the OLAP
Bridge in Oracle Warehouse Builder, or the CWM2 PL/SQL package. This example
arbitrarily uses the CWM2 packages.

Take these steps to create OLAP Catalog metadata for the GLOBALX schema:

1. Create the SQL scripts listed in "SQL Scripts for OLAP Catalog Metadata" on
page C-4.

2. Log in to SQL*Plus or a similar SQL command processor as the GLOBALX user.

3. Issue these SQL commands so that you can see the full report from the
metadata validator, both on the screen and saved to a file:

SET LINESIZE 135
SET SERVEROUT ON SIZE 999999
EXECUTE cwm2_olap_manager.set_echo_on
SPOOL filepath
SET ECHO ON

The buffer for server output holds a maximum of 1,000,000 characters. If you
are building a large application, you may need to control the size of the output
with a combination of SET_ECHO_ON, SET_ECHO_OFF, BEGIN_LOG, and
END_LOG commands.

4. Execute the CWM2 scripts using the SQL @ command.

5. After the scripts execute without errors, issue a SQL COMMIT statement.

Case Study: Creating the GLOBALX Workspace From Alternative Sources

Acquiring Data From Other Sources 11-23

6. Examine the metadata in Analytic Workspace Manager, as shown in
Figure 11–1.

a. Open Analytic Workspace Manager and connect as the GLOBALX user.

b. In the OLAP Catalog view, expand the Cubes, GLOBALX, and Relational
Cubes folders.

Figure 11–1 GLOBALX Metadata Displayed in Analytic Workspace Manager

Creating the GLOBALX Analytic Workspace
You can create the GLOBALX analytic workspace from the empty tables and OLAP
Catalog metadata using any of the available methods: The Create Analytic
Workspace wizard in Analytic Workspace Manager, the OLAP bridge in Oracle
Warehouse Builder, or the DBMS_AWM PL/SQL procedures. This example uses the
wizard to generate a script containing calls to DBMS_AWM, then modifies the script.

Take these steps to create the GLOBALX analytic workspace.

Case Study: Creating the GLOBALX Workspace From Alternative Sources

11-24 Oracle OLAP Application Developer’s Guide

1. Create the GLOBALX_AW user with access rights to the GLOBALX tables and
tablespaces, using a script like the one in "SQL Scripts for Defining Users and
Tablespaces" on page C-1.

2. Open Analytic Workspace Manager and log in to the database as the
GLOBALX_AW user.

3. From the Tools menu, choose Create Analytic Workspace Using Wizard.

4. Make these choices in the wizard:

■ Specify Analytic Workspace page: Type GLOBALX as the workspace name,
and select GLOBALX_AW as the schema.

■ Select Cubes page: Select all cubes in the GLOBALX relational schema.

■ Choose Data Loading Options page: Select Build analytic workspace and
load dimensions and facts. Clear the Generate unique keys box.

There is no data in the tables to load; however, this choice populates more
catalogs in the analytic workspace than the other choices. The lack of data
does not cause the build to fail.

■ Choose Advanced Storage and Naming Options page: Select Display the
pages for setting the advanced storage options. Clear the Prefix measure
names with cube names box.

Because no data is available, the tools cannot determine the correct order of
the dimensions, nor an appropriate segment size. You must provide this
information or the analytic workspace will run slower than it should.

■ Create Composite Dimension and following pages: Create a composite for
the Units Cube named UNITS_CUBE_COMPOSITE with the dimensions in
this order: CUSTOMER PRODUCT CHANNEL. Omit TIME from the
composite.

■ Specify Segment Width and Dimension Order page: For the Units Cube,
specify the dimensions like this.

TIME 85
<CUSTOMER PRODUCT CHANNEL> 1000000

5. Save the new analytic workspace.

6. Open the GLOBALX analytic workspace in OLAP Worksheet, and make the
following modifications:

Case Study: Creating the GLOBALX Workspace From Alternative Sources

Acquiring Data From Other Sources 11-25

a. Delete and redefine UNIT_COST_VARIABLE and UNIT_PRICE_VARIABLE
so they are dimensioned by <TIME PRODUCT>.

These 80% dense, two-dimensional measures will perform better without a
composite. Refer to "Examining Sparsity Characteristics for GLOBAL" on
page 6-12 for a discussion of composite definitions. Follow the instructions
in "Manually Changing Object Definitions" on page 6-13.

b. Delete PRICE_CUBE_COMPOSITE.

c. Set the segment size on either one of the variables with a command like
this:

CHGDFN unit_price_variable SEGWIDTH 85 50

These settings reserve contiguous disk space for 85 time periods and 50
products. A single command changes the segment size on all measures in
the same cube.

d. Set the segment size on the dimension attributes with the following
commands:

CHGDFN time_end_date SEGWIDTH 85 1
CHGDFN time_long_description SEGWIDTH 85 1 1
CHGDFN customer_long_description SEGWIDTH 80 2 1
CHGDFN product_long_description SEGWIDTH 50 1 1
CHGDFN channel_long_description SEGWIDTH 3 1 1

e. Save these changes by issuing UPDATE and COMMIT commands.

Fetching the Price Cube From Relational Tables
The Price cube has two measures, UNIT_COST and UNIT_PRICE, with two
dimensions, PRODUCT and TIME. In this example, the data is loaded manually from
the GLOBAL star schema. However, it could be loaded from any form of relational
tables using the method described here.

Take these steps to populate the Price cube in the GLOBALX analytic workspace:

1. Open Analytic Workspace Manager and connect to the database as the
GLOBALX_AW user.

2. In the Object View, open the GLOBALX analytic workspace in read/write mode.

3. Create the OLAP DML programs for fetching the PRODUCT and TIME
dimension members.

Case Study: Creating the GLOBALX Workspace From Alternative Sources

11-26 Oracle OLAP Application Developer’s Guide

You can create and compile programs in the Object View or in OLAP
Worksheet. You can execute programs, and view the contents of the objects they
populated, only in OLAP Worksheet.

4. Open OLAP Worksheet and execute the programs using the CALL command.

CALL program_name

5. After the programs run without error, check the contents of the target
workspace objects to verify that they are populated correctly.

6. Issue UPDATE and COMMIT commands to save the loaded data.

7. Create and execute a data load program for the Price cube.

8. After that program runs without error, check the data in the target variables

9. Issue UPDATE and COMMIT commands to save the loaded data.

Loading Products From GLOBAL.PRODUCT_DIM
The GETPROD program shown in Example 11–7 fetches data into the PRODUCT
dimension, the member_parentrel relation and the long_description variable. Note that
parent values must be added to the PRODUCT dimension before their children,
otherwise an error will occur in populating the parent relation. Thus the SELECT
statement lists the level columns from the highest level of aggregation to the lowest.

The member_inhier Boolean variable is populated with values of 1 for true and 0 for
false. The member_levelrel relation is also populated with text values that match the
values of the levellist dimension.

Define the example program, then execute it with this command:

CALL getprod

Example 11–7 OLAP DML Program for Loading Products From GLOBAL.PRODUCT_DIM

DEFINE GETPROD PROGRAM
PROGRAM
TRAP ON CLEANUP
" Define cursor c1
SQL DECLARE c1 CURSOR FOR SELECT -
 total_product_id, 1, 'TOTAL_PRODUCT', total_product_dsc, -
 class_id, 1, 'CLASS', total_product_id, class_dsc, -
 family_id, 1, 'FAMILY', class_id, family_dsc, -
 item_id, 1, 'ITEM', family_id, item_dsc, item_package_id -
 FROM global.product_dim

Case Study: Creating the GLOBALX Workspace From Alternative Sources

Acquiring Data From Other Sources 11-27

" Open the cursor
SQL OPEN c1

" Fetch the data
SQL FETCH c1 LOOP INTO -
 :APPEND product, :product_inhier, :product_levelrel, :product_long_description, -
 :APPEND product, :product_inhier, :product_levelrel, :product_parentrel, -
 :product_long_description, -
 :APPEND product, :product_inhier, :product_levelrel, :product_parentrel,-
 :product_long_description, -
 :APPEND product, :product_inhier, :product_levelrel, :product_parentrel, -
 :product_long_description, :product_package

" Save these changes
UPDATE
COMMIT

CLEANUP:
SQL CLOSE c1
SQL CLEANUP
END

Example 11–8 shows a selection of the data to verify that the load was successful.

Example 11–8 Viewing the PRODUCT Dimension and Attributes

LIMIT product TO product_levelrel EQ 'ITEM'
LIMIT product KEEP FIRST 2
LIMIT product ADD ANCESTORS USING product_parentrel
REPORT W 8 DOWN product W 16 <product_long_description product_levelrel>
 W 10 <product_parentrel product_inhier>

ALL_LANGUAGES: AMERICAN_AMERICA
 -------------------PRODUCT_HIERLIST--------------------
 --------------------PRODUCT_ROLLUP---------------------
 PRODUCT_LONG_DES PRODUCT_PA PRODUCT_IN
PRODUCT CRIPTION PRODUCT_LEVELREL RENTREL HIER
-------- ---------------- ---------------- ---------- ----------
13 Envoy Standard ITEM 4 yes
14 Envoy Executive ITEM 4 yes
4 Portable PCs FAMILY 2 yes
2 Hardware CLASS 1 yes
1 Total Product TOTAL_PRODUCT NA yes

Case Study: Creating the GLOBALX Workspace From Alternative Sources

11-28 Oracle OLAP Application Developer’s Guide

Loading Time From GLOBAL.TIME_DIM
The program to fetch TIME members, shown in Example 11–9, is very similar to the
previous program for fetching PRODUCT members. It differs only in the addition of
time span and end date attributes.

However, TIME members must be sorted chronologically within levels in order to
support time series analysis functions. Each row contains dimension members at
every level, so the TIME dimension is populated with the levels completely mixed.
Example 11–10 shows a program that sorts the TIME dimension. It uses the SORT
command to order the current, temporary status of the TIME dimension, saves this
order in a valueset, then loops over the valueset with the MAINTAIN command to
reorder the values permanently.

Define the example programs, then execute them with these commands:

CALL gettime
CALL timesort

Example 11–9 OLAP DML Program for Loading Time From GLOBAL.TIME_DIM

DEFINE GETTIME PROGRAM
PROGRAM
TRAP ON CLEANUP
SQL DECLARE c1 CURSOR FOR SELECT -
 year_id, 1, 'YEAR', year_dsc, year_timespan, year_end_date, -
 quarter_id, 1, 'QUARTER', year_id, quarter_dsc, quarter_timespan, quarter_end_date, -
 month_id, 1, 'MONTH', quarter_id, month_dsc, month_timespan, month_end_date -
 FROM global.time_dim -
 ORDER BY month_end_date

" Open the cursor
SQL OPEN c1

" Fetch the data
SQL FETCH c1 LOOP INTO -
 :APPEND time, :time_inhier, :time_levelrel, :time_long_description, -
 :time_time_span, :time_end_date,-
 :APPEND time, :time_inhier, :time_levelrel, :time_parentrel, -
 :time_long_description, :time_time_span, :time_end_date,-
 :APPEND time, :time_inhier, :time_levelrel, :time_parentrel, -
 :time_long_description, :time_time_span, :time_end_date

" Save these changes
UPDATE
COMMIT

Case Study: Creating the GLOBALX Workspace From Alternative Sources

Acquiring Data From Other Sources 11-29

CLEANUP:
SQL CLOSE c1
SQL CLEANUP
END

Example 11–10 OLAP DML Program for Sorting TIME Dimension Members

DEFINE TIMESORT PROGRAM
PROGRAM
" Create a valueset to hold the sorted values
IF NOT EXISTS('timeset')
 THEN DEFINE timeset VALUESET time
LIMIT time TO ALL
" Sort by descending levels and ascending end-dates
SORT time D time_LEVELREL A time_end_date
" Save sorted values in the valueset
LIMIT timeset TO time
" Reorder the dimension members
MAINTAIN time MOVE VALUES(timeset) FIRST
END

The TIME dimension has too many members to list in its entirety, but selecting
members by ancestry (as shown for PRODUCT) temporarily reorders the dimension.
The results will show whether the objects were populated correctly, but not
necessarily whether the members are sorted correctly. Example 11–11 uses LIMIT
commands that do not change the original order. The report shows the correct sort
order.

Example 11–11 Viewing the TIME Dimension and Attributes

LIMIT time TO FIRST 10
LIMIT time ADD LAST 3
REPORT W 5 DOWN time W 8 <time_long_description time_parentrel time_levelrel
time_inhier time_end_date time_time_span>

Case Study: Creating the GLOBALX Workspace From Alternative Sources

11-30 Oracle OLAP Application Developer’s Guide

ALL_LANGUAGES: AMERICAN_AMERICA
 --------------------TIME_HIERLIST--------------------
 ----------------------CALENDAR-----------------------
 TIME_LON
 G_DESCRI TIME_PAR TIME_LEV TIME_INH TIME_END TIME_TIM
TIME PTION ENTREL ELREL IER _DATE E_SPAN
----- -------- -------- -------- -------- -------- --------
1 1998 NA YEAR yes 31DEC98 365.00
2 1999 NA YEAR yes 31DEC99 365.00
3 2000 NA YEAR yes 31DEC00 366.00
4 2001 NA YEAR yes 31DEC01 365.00
85 2002 NA YEAR yes 31DEC02 365.00
102 2003 NA YEAR yes 31DEC03 365.00
119 2004 NA YEAR yes 31DEC04 366.00
5 Q1-98 1 QUARTER yes 31MAR98 90.00
6 Q2-98 1 QUARTER yes 30JUN98 91.00
7 Q3-98 1 QUARTER yes 30SEP98 92.00
106 Apr-04 116 MONTH yes 30APR04 30.00
107 May-04 116 MONTH yes 31MAY04 31.00
108 Jun-04 116 MONTH yes 30JUN04 30.00

Loading the PRICE Cube From PRICE_AND_COST_HISTORY_FACT
Example 11–12 shows the program for fetching data into UNIT_PRICE_VARIABLE
and UNIT_COST_VARIABLE. Note that the data must be loaded into the variables,
not into the measuredef formulas, which have the same names as the logical
measures. These are the definitions for these variables:

DEFINE UNIT_PRICE_VARIABLE VARIABLE DECIMAL <TIME PRODUCT>
LD IMPLEMENTATION Variable for UNIT_PRICE Measure

DEFINE UNIT_COST_VARIABLE VARIABLE DECIMAL <TIME PRODUCT>
LD IMPLEMENTATION Variable for UNIT_COST Measure

The ORDER BY clause in the DECLARE CURSOR SELECT statement sorts the rows
so that PRODUCT (ITEM_ID) is the slower varying dimension and TIME
(MONTH_ID) is the faster varying dimension. This organization corresponds to the
order in which the values are stored in the workspace variables, as shown by their
definitions. This sort order enables the data to be loaded as quickly as possible.

All of the dimension members must already exist in the analytic workspace. If a
value is found without a match among the dimension members, then the program
fails with an error.

Case Study: Creating the GLOBALX Workspace From Alternative Sources

Acquiring Data From Other Sources 11-31

Define the example program, then execute it with this command:

CALL getpricecube

Example 11–12 OLAP DML Program to Load the PRICE Cube From PRICE_AND_COST_HISTORY_FACT

DEFINE GETPRICECUBE PROGRAM
PROGRAM
" Define a cursor for selecting data
SQL DECLARE c1 CURSOR FOR SELECT -
 item_id, month_id, unit_price, unit_cost -
 FROM global.price_and_cost_history_fact -
 ORDER BY item_id, month_id

" Open the cursor
SQL OPEN c1

" Fetch the data
SQL FETCH c1 LOOP INTO :MATCH product, :MATCH time, -
 :unit_price_variable, :unit_cost_variable

" Save these changes
UPDATE
COMMIT
SQL CLOSE c1 " Close the cursor
SQL CLEANUP
END

Unlike most measures, those from the Price cube are dense so that it is easy to check
the data. The LIMIT commands in Example 11–13 select members at all levels of the
PRODUCT and TIME hierarchies. There is only data at the lowest levels, so the other
levels are calculated on demand. Notice that the measuredef formulas are shown, not
their underlying variables.

To make a quick check for any values in a variable, use the ANY function:

SHOW ANY(variable NE NA)

For example:

SHOW ANY(unit_price_variable NE NA)

A return value of YES indicates that at least one cell has data; a value of NO indicates
that all cells are empty.

Case Study: Creating the GLOBALX Workspace From Alternative Sources

11-32 Oracle OLAP Application Developer’s Guide

Example 11–13 Validating the PRICE_CUBE Data Load

LIMIT time TO '44' '45'
LIMIT time ADD ANCESTORS USING time_parentrel
LIMIT product TO '13'
LIMIT product ADD ANCESTORS USING product_parentrel
REPORT unit_price unit_cost

 --PRODUCT--
 ---------13---------- ----------4---------- ----------2---------- ----------1----------
TIME UNIT_PRICE UNIT_COST UNIT_PRICE UNIT_COST UNIT_PRICE UNIT_COST UNIT_PRICE UNIT_COST
-------------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
44 3,008.91 2,862.51 9,483.71 8,944.35 19,163.02 18,071.18 19,960.72 18,714.88
45 3,142.99 2,926.79 9,590.01 9,024.35 18,969.89 17,924.55 19,735.20 18,542.48
13 9,152.01 8,655.17 28,452.92 26,883.70 57,229.23 53,982.32 59,577.63 55,873.16
3 34,314.40 32,681.09 111,333.24 105,481.00 224,713.71 211,680.12 234,516.47 219,574.10

Loading the Units Cube From Flat Files
The Units cube has one measure, UNITS, and four dimensions, TIME, CUSTOMER,
PRODUCT, and CHANNEL. The TIME and PRODUCT dimensions have already been
added to the analytic workspace in "Fetching the Price Cube From Relational
Tables" on page 11-25, so unless additional dimension members are contained in the
flat files, these two dimensions do not need to be maintained. However, the
CUSTOMER and CHANNEL dimensions must be fully populated before loading the
UNITS measure.

This example loads data from three flat files:

■ CHANNEL.DAT contains all CHANNEL dimension members and their attributes.
It is equivalent to the CHANNEL_DIM dimension table in the GLOBAL star
schema, described in Chapter 3.

■ CUSTOMER.DAT contains all CUSTOMER dimension members and their
attributes. It is equivalent to the CUSTOMER_DIM dimension table in the
GLOBAL star schema, described in Chapter 3.

■ UNITS.DAT contains the base-level data for the UNITS measure. It is equivalent
to the UNITS_HISTORY_FACT fact table in the GLOBAL star schema, described
in Chapter 3.

The basic process for loading from flat files is the same as loading from relational
tables, as described earlier in "Fetching the Price Cube From Relational Tables" on
page 11-25. The difference is only in the OLAP DML programs.

Case Study: Creating the GLOBALX Workspace From Alternative Sources

Acquiring Data From Other Sources 11-33

Loading Channels From CHANNELS.DAT
CHANNELS.DAT is a comma-delimited file as shown in Example 11–14. It has fields
that correspond to the columns of the CHANNELS_DIM dimension table in the
Global star schema:

Channel ID
Channel Description
All Channels ID
All Channels Description

With these fields, you can populate the CHANNEL dimension, the
CHANNEL_LONG_DESCRIPTION attribute, the CHANNEL_PARENTREL relation, and
the CHANNEL_LEVELREL relation. In addition, you can populate CHANNEL_INHIER
and CHANNEL_LEVELREL with literal text during the data load.

Example 11–14 CHANNELS.DAT Flat File

2,Direct Sales,1,All Channels
3,Catalog,1,All Channels
4,Internet,1,All Channels

Loading the dimension values is straightforward except for the All Channels
dimension member (1), which appears only in the third field. It must be added to
the CHANNEL dimension before it can be used as the parent of other dimension
members in CHANNEL_PARENTREL. For this reason, the third field is read first as a
dimension member that has no parent, and again as a parent value. Example 11–15
shows the program for loading the data.

Define the sample program, then execute it with this command:

CALL read_channels

Example 11–15 OLAP DML Program for Loading Channels from CHANNELS.DAT

DEFINE READ_CHANNELS PROGRAM
PROGRAM
VARIABLE funit INTEGER "Define local variable for file handle
TRAP ON CLEANUP "Divert processing on error to CLEANUP label
funit = FILEOPEN('gx/channels.dat' READ) "Open the file

FILEREAD funit CSV -
 FIELD 3 APPEND channel channel_inhier=yes channel_levelrel='ALL_CHANNELS' -
 FIELD 4 channel_long_description -
 FIELD 1 APPEND channel channel_inhier=YES channel_levelrel='CHANNEL' -

Case Study: Creating the GLOBALX Workspace From Alternative Sources

11-34 Oracle OLAP Application Developer’s Guide

 FIELD 2 channel_long_description -
 FIELD 3 channel_parentrel

CLEANUP:
IF funit NE na
 THEN FILECLOSE funit
END

CHANNEL is a very small dimension with only four members, so you can review the
results of the load without selecting a sample. Example 11–16 shows the results of
the load.

Example 11–16 Viewing the CHANNEL Dimension and Attributes

REPORT W 8 DOWN channel W 12 <channel_long_description channel_parentrel
channel_levelrel channel_inhier>

ALL_LANGUAGES: AMERICAN_AMERICA
 -----------------CHANNEL_HIERLIST------------------
 ------------------CHANNEL_ROLLUP-------------------
 CHANNEL_LONG CHANNEL_PARE CHANNEL_LEVE CHANNEL_INHI
CHANNEL _DESCRIPTION NTREL LREL ER
-------- ------------ ------------ ------------ ------------
1 All Channels NA ALL_CHANNELS yes
2 Direct Sales 1 CHANNEL yes
3 Catalog 1 CHANNEL yes
4 Internet 1 CHANNEL yes

Loading Customers From CUSTOMERS.DAT
CUSTOMERS.DAT is a structured file, so that text columns are enclosed in double
quotes. It has fields that correspond to the columns in the CUSTOMERS_DIM
dimension table in the GLOBAL star schema:

Ship_To ID
Ship_To Description
Account ID
Account Description
Market Segment ID
Market Segment Description
Total Market ID
Total Market Description
Warehouse ID
Warehouse Description

Case Study: Creating the GLOBALX Workspace From Alternative Sources

Acquiring Data From Other Sources 11-35

Region ID
Region Description
All Customers ID
All Customers Description

Example 11–17 shows the first six fields of a few sample records. It contains the
same types of information as CHANNELS.DAT, so that all of the equivalent
workspace objects are populated. The one significant difference is that the data
supports two hierarchies.

Example 11–17 CUSTOMERS.DAT Flat File

49 "Bavarian Indust, GmbH Rome" 22 "Bavarian Industries" 5 "Manufacturing" ...
50 "Bavarian Indust, GmbH London" 22 "Bavarian Industries" 5 "Manufacturing" ...
55 "CiCi Douglas Chattanooga" 24 "CiCi Douglas" 5 "Manufacturing" ...
 .
 .
 .

The load program for CUSTOMERS.DAT, like the one for CHANNELS.DAT, must read
parent dimension members before their children. Field 13 contains the most
aggregate level, All Customers ID, so it is loaded first. The program shown in
Example 11–18 loads the parent members for the SHIPMENTS_ROLLUP hierarchy
first, then the parent members for the MARKET_ROLLUP hierarchy. The base level,
SHIP_TO, belongs to both hierarchies.

Define the example program, then execute it with this command:

CALL read_customers

Example 11–18 OLAP DML Program for Reading CUSTOMERS.DAT

DEFINE READ_CUSTOMERS PROGRAM
PROGRAM
VARIABLE funit INTEGER "Define local variable for file handle
TRAP ON CLEANUP "Divert processing on error to CLEANUP label
funit = FILEOPEN('gx/customers.dat' READ) "Open the file

FILEREAD funit STRUCTURED -
 FIELD 13 APPEND customer -
 customer_inhier(customer_hierlist 'SHIPMENTS_ROLLUP')=yes -
 customer_levelrel='ALL_CUSTOMERS' -
 FIELD 14 customer_long_description(customer_hierlist 'SHIPMENTS_ROLLUP') -
 FIELD 11 APPEND customer -
 customer_inhier(customer_hierlist 'SHIPMENTS_ROLLUP')=yes -

Case Study: Creating the GLOBALX Workspace From Alternative Sources

11-36 Oracle OLAP Application Developer’s Guide

 customer_levelrel='REGION' -
 FIELD 12 customer_long_description(customer_hierlist 'SHIPMENTS_ROLLUP') -
 FIELD 13 customer_parentrel(customer_hierlist 'SHIPMENTS_ROLLUP') -
 FIELD 9 APPEND customer -
 customer_inhier(customer_hierlist 'SHIPMENTS_ROLLUP')=yes -
 customer_levelrel='WAREHOUSE' -
 FIELD 10 customer_long_description(customer_hierlist 'SHIPMENTS_ROLLUP') -
 FIELD 11 customer_parentrel(customer_hierlist 'SHIPMENTS_ROLLUP') -
 FIELD 7 APPEND customer -
 customer_inhier(customer_hierlist 'MARKET_ROLLUP')=yes -
 customer_levelrel='TOTAL_MARKET' -
 FIELD 8 customer_long_description(customer_hierlist 'MARKET_ROLLUP') -
 FIELD 9 customer_parentrel(customer_hierlist 'MARKET_ROLLUP') -
 FIELD 5 APPEND customer -
 customer_inhier(customer_hierlist 'MARKET_ROLLUP')=yes -
 customer_levelrel='MARKET_SEGMENT' -
 FIELD 6 customer_long_description(customer_hierlist 'MARKET_ROLLUP') -
 FIELD 7 customer_parentrel(customer_hierlist 'MARKET_ROLLUP') -
 FIELD 3 APPEND customer -
 customer_inhier(customer_hierlist 'MARKET_ROLLUP')=yes -
 customer_levelrel='ACCOUNT' -
 FIELD 4 customer_long_description(customer_hierlist 'MARKET_ROLLUP') -
 FIELD 5 customer_parentrel(customer_hierlist 'MARKET_ROLLUP') -
 FIELD 1 APPEND customer -
 customer_inhier(customer_hierlist 'SHIPMENTS_ROLLUP')=yes -
 customer_inhier(customer_hierlist 'MARKET_ROLLUP')=yes -
 customer_levelrel='SHIP_TO' -
 FIELD 2 customer_long_description(customer_hierlist 'SHIPMENTS_ROLLUP') -
 FIELD 2 customer_long_description(customer_hierlist 'MARKET_ROLLUP') -
 FIELD 3 customer_parentrel(customer_hierlist 'MARKET_ROLLUP') -
 FIELD 9 customer_parentrel(customer_hierlist 'SHIPMENTS_ROLLUP')

CLEANUP:
IF funit NE na
 THEN FILECLOSE funit
END

CUSTOMER is too large a dimension to show the complete results of the load.
Example 11–19 shows how to select a few base-level dimensions and their ancestors,
so that you can check that the supporting objects were populated correctly.

Case Study: Creating the GLOBALX Workspace From Alternative Sources

Acquiring Data From Other Sources 11-37

Example 11–19 Viewing the CUSTOMER Dimension and Attributes

LIMIT customer TO customer_levelrel 'SHIP_TO' "Select base-level members
LIMIT customer KEEP FIRST 2 "Keep the first 2 base-level members
LIMIT customer ADD ANCESTORS USING customer_parentrel "Add all their ancestors
SORT customer A customer_levelrel A CUSTOMER "Sort the selected members within levels

REPORT W 8 DOWN customer W 16 <customer_long_description customer_levelrel> -
 W 6 <customer_parentrel customer_inhier>

ALL_LANGUAGES: AMERICAN_AMERICA
 ---------------------------------------CUSTOMER_HIERLIST---------------------------------------
 -----------------MARKET_ROLLUP----------------- ---------------SHIPMENTS_ROLLUP----------------
 CUSTOM CUSTOM CUSTOM CUSTOM
 CUSTOMER_LONG_DE CUSTOMER_LEVELRE ER_PAR ER_INH CUSTOMER_LONG_DE CUSTOMER_LEVELRE ER_PAR ER_INH
CUSTOMER SCRIPTION L ENTREL IER SCRIPTION L ENTREL IER
-------- ---------------- ---------------- ------ ------ ---------------- ---------------- ------ ------
22 Bavarian ACCOUNT 5 yes NA ACCOUNT NA NA
 Industries
1 All Customers ALL_CUSTOMERS NA NA All Customers ALL_CUSTOMERS NA yes
5 Manufacturing MARKET_SEGMENT 7 yes NA MARKET_SEGMENT NA NA
9 Europe REGION 1 NA Europe REGION 1 yes
49 Bavarian Indust, SHIP_TO 22 yes Bavarian Indust, SHIP_TO 16 yes
 GmbH Rome GmbH Rome
50 Bavarian Indust, SHIP_TO 22 yes Bavarian Indust, SHIP_TO 20 yes
 GmbH London GmbH London
7 Total Market TOTAL_MARKET 14 yes NA TOTAL_MARKET NA NA
14 Germany WAREHOUSE 9 NA Germany WAREHOUSE 9 yes
16 Italy WAREHOUSE 9 NA Italy WAREHOUSE 9 yes
20 United Kingdom WAREHOUSE 9 NA United Kingdom WAREHOUSE 9 yes

Reading the UNITS_CUBE.DAT File
UNITS_CUBE.DAT contains just the Units measure with columns for each
dimension key. Example 11–20 shows several sample rows.

Example 11–20 UNITS_CUBE.DAT Flat File

CHANNEL_ID ITEM_ID SHIP_TO_ID MONTH_ID UNITS
---------- ---------- ---------- ---------- ----------
 2 13 51 54 2
 2 13 51 56 2
 2 13 51 57 2
 2 13 51 58 2
 2 13 51 59 2
 2 13 51 61 1

Case Study: Creating the GLOBALX Workspace From Alternative Sources

11-38 Oracle OLAP Application Developer’s Guide

The data is written to the UNITS_VARIABLE variable, not to the UNITS formula.
This is the definition of UNITS_VARIABLE:

DEFINE UNITS_VARIABLE VARIABLE DECIMAL <TIME UNITS_CUBE_COMPOSITE <CUSTOMER
PRODUCT CHANNEL>>

Notice that it is dimensioned by UNITS_CUBE_COMPOSITE, but the incoming data
is aligned with the base dimensions, as shown in Example 11–21. All four base
dimensions are already populated.

Define the example program, then execute it with this command:

CALL read_units

Example 11–21 OLAP DML Program For Reading UNITS_CUBE.DAT

DEFINE READ_UNITS PROGRAM
PROGRAM
VARIABLE funit INTEGER "Define local variable for file handle
TRAP ON cleanup "Divert processing on error to cleanup label
funit = FILEOPEN('gx/units_cube.dat' READ) "Open the file

FILEREAD funit STRUCTURED -
 FIELD 1 channel -
 FIELD 2 product -
 FIELD 3 customer -
 FIELD 4 time -
 FIELD 5 units_variable

cleanup:
IF funit NE na
 THEN FILECLOSE funit
END

Measures typically contain vast amounts of data but are quite sparse, so you must
target specific cells to verify that the data was loaded correctly. You can do this by
selecting a row or two from the source file and limiting the workspace dimensions
to those values, as shown in Example 11–22.

Example 11–22 Validating the UNITS_CUBE Data Load

limit time to '50' to '60'
limit channel to '2'
limit product to '13' '14'
limit customer to '51'
report down time across product: units_variable

Case Study: Creating the GLOBALX Workspace From Alternative Sources

Acquiring Data From Other Sources 11-39

CHANNEL: 2
CUSTOMER: 51
 ---UNITS_VARIABLE----
 -------PRODUCT-------
TIME 13 14
-------------- ---------- ----------
50 2.00 2.00
51 2.00 NA
52 2.00 2.00
53 1.00 2.00
54 2.00 2.00
55 NA 2.00
56 2.00 2.00
57 2.00 NA
58 2.00 1.00
59 2.00 2.00
60 NA 1.00

Populating Additional Standard Form Metadata Objects
If you enable the GLOBALX analytic workspace for the BI Beans now, the dimension
views will have many empty columns. For example, the view of the CHANNEL
dimension has these empty columns:

CHANNEL_GID
CHANNEL_PARENTGID
ALL_CHANN_ALL_CHANNELS
CHANNEL_CHANNEL
AW_MEMBER_ORDER

The ___POP_FMLYREL and ___ORDR.HIERARCHIES programs populate the
workspace objects that are displayed by these columns. Example 11–23 shows the
commands used for the CHANNEL dimension. Repeat these commands for the
PRODUCT, CUSTOMER, and TIME dimensions.

You do not need to re-enable the GLOBALX workspace after populating these
objects. The data is available through the views as soon as you commit the changes
to the database.

Example 11–23 OLAP DML Commands to Populate CHANNEL Metadata Objects

" Populate CHANNEL_GID and CHANNEL_FAMILYREL
CALL ___POP.FMLYREL('GLOBALX', 'GLOBALX!CHANNEL', 'GLOBALX!CHANNEL_HIERLIST',

Case Study: Creating the GLOBALX Workspace From Alternative Sources

11-40 Oracle OLAP Application Developer’s Guide

'GLOBALX!CHANNEL_LEVELLIST', 'GLOBALX!CHANNEL_LEVELREL', 'CHANNEL',
'GLOBALX!CHANNEL_PARENTREL', 'GLOBALX!CHANNEL_INHIER')

" Populate CHANNEL_ORDER
call ___ordr.hierarchies('GLOBALX!CHANNEL', 'GLOBALX!CHANNEL_HIERLIST',
'GLOBALX!CHANNEL_HIER_CREATEDBY', 'CHANNEL_PARENTREL', 'CHANNEL_ORDER',
'CHANNEL_INHIER')

Using Tools with the GLOBALX Analytic Workspace
You can now use the Create and Deploy Aggregation Plan wizards and the
enablers.

For refreshing the data, you must revise your data loading programs to access new
data sources or to restrict the load to new time periods.

Part IV
Database Administration for OLAP

Part IV provides information for database administrators on administrative tasks
associated with Oracle OLAP. It contains the following chapter:

■ Chapter 12, "Administering Oracle OLAP"

■ Chapter 13, "Materialized Views for the OLAP API"

Administering Oracle OLAP 12-1

12
Administering Oracle OLAP

This chapter describes the various administrative tasks that are associated with
Oracle OLAP. It contains the following topics:

■ Administration Overview

■ Creating Tablespaces for Analytic Workspaces

■ Setting Up User Names

■ Initialization Parameters for Oracle OLAP

■ Initialization Parameters for the BI Beans

■ Permitting Access to External Files

■ Understanding Data Storage

■ Monitoring Performance

Administration Overview
Because Oracle OLAP is contained in the database and its resources are managed
using the same tools, the management tasks of Oracle OLAP and the database
converge. Nonetheless, a database administrator or applications developer needs to
address management tasks in the specific context of Oracle OLAP, in addition to
creating and maintaining analytic workspaces. Following is a list of these tasks.

■ Tablespaces. Create permanent and temporary tablespaces to prevent I/O
bottlenecks, as described in "Creating Tablespaces for Analytic Workspaces" on
page 12-2.

■ Database configuration. Set initialization parameters to optimize performance,
as described in "Initialization Parameters for Oracle OLAP" on page 12-7 and
"Initialization Parameters for the BI Beans" on page 12-9.

Creating Tablespaces for Analytic Workspaces

12-2 Oracle OLAP Application Developer’s Guide

■ Security. Users of OLAP applications must have database identities that have
been granted the appropriate access rights. For users to have access to files, you
must define database directory objects and grant users access to them. Refer to
"Setting Up User Names" on page 12-5.

■ Performance. Database monitoring tools can identify recommended changes to
the database configuration based on past usage, as described in "Monitoring
Performance" on page 12-15.

Creating Tablespaces for Analytic Workspaces
Before you create an analytic workspace, you should create undo, permanent, and
temporary tablespaces dedicated to their use. Analytic workspaces are created in
the user's default tablespace, unless the user specifies otherwise. The default
tablespace for all users is set initially to SYS. Creating analytic workspaces in the
SYS tablespace can degrade overall performance. Similarly, analytic workspaces
should not share tablespaces with relational tables, especially not the source star or
snowflake schema.

Oracle OLAP makes heavy use of temporary tablespaces, so it is particularly
important that they be set up correctly to prevent I/O bottlenecks.

The tablespaces that you set up for use by Oracle OLAP are used by SQL for tasks
such as creating and maintaining OLAP Catalog metadata and views of workspace
data, in addition to their use by analytic workspaces.

If possible, you should stripe the datafiles and temporary files across as many
controllers and drives as are available.

Creating an UNDO Tablespace
The following SQL commands create an undo tablespace.

CREATE UNDO TABLESPACE tablespace DATAFILE 'pathname'
 SIZE size REUSE AUTOEXTEND ON NEXT size
 MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL;

Where:

tablespace is the name of the tablespace
pathname is the fully qualified file name
size is an appropriate number of bytes

See Also: Oracle Database Administrator's Guide for detailed
information about managing the Oracle Database.

Creating Tablespaces for Analytic Workspaces

Administering Oracle OLAP 12-3

For example:

CREATE UNDO TABLESPACE olapundo DATAFILE '$ORACLE_HOME/oradata/undo.dbf'
 SIZE 64M REUSE AUTOEXTEND ON NEXT 8M
 MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL;

After creating the undo tablespace, change your system parameter file to include
these settings, then restart the database as described in "Initialization Parameters for
Oracle OLAP" on page 12-7.

UNDO_TABLESPACE=tablespace
UNDO_MANAGEMENT=AUTO

Creating a Permanent Tablespace for Analytic Workspaces
When a user creates an analytic workspace, it is created in the user's default
tablespace, which is initially set to the SYS tablespace. The following SQL
statements create a tablespace appropriate for storing analytic workspaces.

CREATE TABLESPACE tablespace DATAFILE 'pathname'
 SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

ALTER USER username DEFAULT TABLESPACE tablespace

Where:

tablespace is the name of the tablespace
pathname is the fully qualified file name
size is an appropriate number of bytes
username is the name of a database user

For example:

CREATE TABLESPACE glo DATAFILE '$ORACLE_HOME/oradata/glo.dbf'
 SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

If your computer has multiple disks, then you can stripe the tablespace across them.
The next example shows SQL statements that distribute the GLO tablespace across
three physical disks:

CREATE TABLESPACE glo DATAFILE
 'disk1/oradata/glo1.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE 1024M
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

Creating Tablespaces for Analytic Workspaces

12-4 Oracle OLAP Application Developer’s Guide

ALTER TABLESPACE glo ADD DATAFILE
 'disk2/oradata/glo2.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE 1024M,
 'disk3/oradata/glo3.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE UNLIMITED;

Creating a Temporary Tablespace for Analytic Workspaces
Oracle OLAP uses temporary tablespace to store all changes to the data in an
analytic workspace, whether the changes are the result of a data load, what-if
analysis, forecasting, aggregation, or some other analysis. An OLAP DML UPDATE
command moves the changes into the permanent tablespace and clears the
temporary tablespace.

Oracle OLAP also uses temporary tablespace to maintain different generations of an
analytic workspace. This enables it to present a consistent view of the analytic
workspace when one or more users are reading it while the contents are being
updated. This usage creates numerous extensions within the tablespace, so be sure
to specify a small EXTENT MANAGEMENT size.

The following commands create a temporary tablespace suitable for use by Oracle
OLAP.

CREATE TEMPORARY TABLESPACE tablespace TEMPFILE 'pathname'
 SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE size;

Where:

pathname is a fully qualified file name
size is an appropriate number of bytes
tablespace is the name of the tablespace
username is a database user

For example:

CREATE TEMPORARY TABLESPACE glotmp TEMPFILE '$ORACLE_HOME/oradata/glotmp.tmp'
 SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K;

You can stripe temporary tablespaces across several disks the same as permanent
tablespaces. The next example shows the GLOTMP temporary tablespace striped
across three physical disks.

CREATE TEMPORARY TABLESPACE glotmp TEMPFILE
 'disk1/oradata/glotmp1.tmp' SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE 1024M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K;

Setting Up User Names

Administering Oracle OLAP 12-5

ALTER TABLESPACE glotmp ADD TEMPFILE
 'disk2/oradata/glotmp2.tmp' SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE 1024M,
 'disk3/oradata/glotmp3.tmp' SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED;

Querying the Size of an Analytic Workspace
To find out the size of the tablespace extensions for a particular analytic workspace,
use the following SQL statements:

COLUMN DBMS_LOB.GETLENGTH(AWLOB) HEADING "Bytes";
SELECT EXTNUM, DBMS_LOB.GETLENGTH(AWLOB) FROM AW$awname;

Where:

awname is the name of the analytic workspace.

Setting Up User Names
To connect to the database, a user must present a user name and password that can
be authenticated by database security. All users must have the CONNECT role. The
additional privileges associated with that user name control the user's access to
data. As a database administrator, you must set up user names with appropriate
credentials for all users of Oracle OLAP applications.

You can define user names and grant them these rights from the Security folder of
Oracle Enterprise Manager or by using SQL commands.

Two roles are defined on installation of the database explicitly to support Oracle
OLAP:

■ OLAP_USER role provides users with the privileges to create and manage OLAP
Catalog metadata and standard form analytic workspaces in their own
schemas. Any OLAP user who will be performing these tasks should have the
OLAP_USER role or equivalent privileges.

■ OLAP_DBA role provides a DBA or system administrator with privileges to
create and manage OLAP Catalog metadata and standard form analytic
workspaces in any schema. The OLAP_DBA role is granted with the DBA role.
Care should be taken in extending this privilege to additional users.

See Also: Oracle Database SQL Reference for more information
about granting privileges.

Setting Up User Names

12-6 Oracle OLAP Application Developer’s Guide

SQL Access For DBAs and Application Developers
To create OLAP Catalog metadata, users must be granted the OLAP_USER role. To
create analytic workspaces, users also need SELECT privileges on the source schema
tables, and an unlimited quota on the tablespace in which the workspace is created.
Example 12–1 shows the SQL statements for creating the GLOBAL_AW user.

Example 12–1 SQL Statements for Creating the GLOBAL_AW User

CREATE USER 'GLOBAL_AW' IDENTIFIED BY 'global_aw'
 DEFAULT TABLESPACE glo
 TEMPORARY TABLESPACE glotmp
 QUOTA UNLIMITED ON glo
 QUOTA UNLIMITED ON glotmp
 ACCOUNT UNLOCK;

GRANT SELECT ON global.channel_dim TO global_aw;
GRANT SELECT ON global.customer_dim TO global_aw;
GRANT SELECT ON global.product_dim TO global_aw;
GRANT SELECT ON global.time_dim TO global_aw;
GRANT SELECT ON global.price_and_cost_history_fact TO global_aw;
GRANT SELECT ON global.price_and_cost_update_fact TO global_aw;
GRANT SELECT ON global.units_history_fact TO global_aw;
GRANT SELECT ON global.units_update_fact TO global_aw;

SQL Access for Analysts
To access an existing analytic workspace, users must have these access privileges on
the table in which the workspace is stored:

■ To read from the analytic workspace, SELECT privileges.

■ To write to the analytic workspace, SELECT, INSERT, and UPDATE privileges.

Note that the name of the table is the same as the name of the analytic workspace,
with the addition of an AW$ prefix. For example, the XADEMO analytic workspace is
stored in the AW$XADEMO relational table.

For users to access views of workspace data, they must be granted EXECUTE
privileges explicitly on those views.

Example 12–2 shows the SQL statements that gives all users read-only privileges to
the GLOBAL analytic workspace, and user SCOTT read/write privileges.

Initialization Parameters for Oracle OLAP

Administering Oracle OLAP 12-7

Example 12–2 Granting Access Rights to the GLOBAL Analytic Workspace

GRANT SELECT ON global_aw.aw$ global TO PUBLIC;
GRANT INSERT ON global_aw.aw$ global TO scott;
GRANT UPDATE ON global_aw.aw$ global TO scott;

Access to Database Objects Using the BI Beans
To connect to the database using the BI Beans, users must have the following access
rights to the database:

■ CONNECT role

■ QUERY REWRITE system privilege

■ SELECT privileges on the database objects containing the data to be analyzed,
whether the data is stored in an analytic workspace or in relational tables. Refer
to the previous topic, "SQL Access for Analysts", for information about granting
access to analytic workspaces.

Initialization Parameters for Oracle OLAP
Table 12–1 identifies the parameters that affect the performance of Oracle OLAP.
Alter your server parameter file or init.ora file to these values, then restart your
database instance. You can monitor the effectiveness of these settings and adjust
them as necessary.

Table 12–1 Initial Settings for Database Parameter Files

Parameter Setting

DB_CACHE_SIZE Half of physical memory

OLAP_PAGE_POOL_SIZE For queries, 2-8MB; enlarge temporarily for data loads

PARALLEL_MAX_SERVERS The number of processors minus one

This parameter limits the number of processes that are
used for a parallel update and for SQL SELECT
operations when reading from relational tables. The
number of parallel processes is also dependent on the
number of analytic workspace extension files that are
being updated.

PGA_AGGREGATE_TARGET 200-400 MB

SESSIONS 2.5 * maximum number of simultaneous OLAP users

Initialization Parameters for Oracle OLAP

12-8 Oracle OLAP Application Developer’s Guide

Procedure: Setting System Parameters for OLAP
Take the following steps to set system parameters:

1. Open the initsid.ora initialization file in a text editor.

The initialization file is located in $ORACLE_HOME/admin/sid/pfile, where
sid is the system identifier as defined in
$ORACLE_HOME/network/admin/tnsnames.ora.

2. Add or change the settings in the file.

For example, you might enter a command like this so that Oracle can write files
to the olapscripts directory:

UTL_FILE_DIR=/users/oracle/olapscripts

3. Stop and restart the database, using commands such as the following. Be sure to
identify the initialization file in the STARTUP command.

SQLPLUS '/ AS SYSDBA'
SHUTDOWN IMMEDIATE
STARTUP pfile=$ORACLE_HOME/admin/rel10g/pfile/initrel10g.ora

About the OLAP_PAGE_POOL_SIZE Setting
OLAP_PAGE_POOL_SIZE is an initialization parameter that is specific to Oracle
OLAP. This parameter specifies in bytes the maximum size of the paging cache to be
allocated to each OLAP session. The minimum value of OLAP_PAGE_POOL_SIZE is
2 MB. The default value is 32 MB.

These are the basic guidelines for setting OLAP_PAGE_POOL_SIZE:

UTL_FILE_DIR Directory path where the Oracle Database can write to a
file.

UNDO_MANAGEMENT AUTO

UNDO_TABLESPACE Name of the undo tablespace, which must be defined
first as shown in "Creating an UNDO Tablespace" on
page 12-2

See Also: Oracle Database Performance Tuning Guide for
information about these parameters.

Table 12–1 (Cont.) Initial Settings for Database Parameter Files

Parameter Setting

Initialization Parameters for the BI Beans

Administering Oracle OLAP 12-9

■ In the database initialization file, set OLAP_PAGE_POOL_SIZE to a value based
on the maximum number of simultaneous OLAP users. The setting should be in
the order to 2-8MB; 4MB is typical. Larger is better, but remember that each user
is allocated that amount.

■ For data loads, use a SQL ALTER SESSION statement to enlarge the OLAP
page pool as much as possible just for the duration of the load, on the basis that
the page pool is not shared with other users at this time. The setting should be
in the order of 100-400MB, but smaller than DB_CACHE_SIZE.

The OLAP page pool is allocated at the start of an OLAP session and released when
the user closes the session. An OLAP session can be initiated by the OLAP_TABLE
function, the DBMS_AWM PL/SQL package, or using the command line in OLAP
Worksheet.

The OLAP page pool is allocated from the User Global Area (UGA). When the
database is running in dedicated mode, the UGA is part of the Process Global Area
(PGA). When the database is running as a shared server process, the UGA is part of
the Shared Global Area (SGA).

When the OLAP page pool is full, it uses the DB cache as a swap space. This
in-memory swapping is a relatively fast operation. When the DB cache is full, it
swaps to disk, which is a relatively slow operation. If the DB cache must swap to
disk frequently, then performance will suffer significantly.

About the PGA_AGGREGATE_TARGET Setting
PGA_AGGREGATE_TARGET is used by SQL statements, particularly when
performing SELECT statements with GROUP BY and ORDER BY clauses. It is not
used by the OLAP engine. However, PGA_AGGREGATE_TARGET can affect the
performance of the BI Beans when selecting data from relational tables. If your
Oracle Database supports this type of application, set PGA_AGGREGATE_TARGET
initially to 200-400MB, and use the database performance monitoring tools to
recommend adjustments.

Initialization Parameters for the BI Beans
The BI Beans will perform best if the configuration parameters for the database are
optimized for this type of use. During installation of the Oracle Database, an OLAP
configuration table is created and populated with ALTER SESSION commands that
have been tested to optimize the performance of the BI Beans. Each time the BI
Beans opens a session, it executes these ALTER SESSION commands.

Permitting Access to External Files

12-10 Oracle OLAP Application Developer’s Guide

If a database instance is being used only to support Java applications that use the
BI Beans, then you can modify your server parameter file or init.ora file to
include these settings. Alternatively, you might want to include some of the settings
in the server parameter file and leave others in the table, depending upon how your
database instance is going to be used. These are your choices:

■ Keep all of the parameters in the configuration table, so that they are set as part
of the initialization of a BI Beans session. This method fully isolates these
configuration settings solely for the BI Beans. (Default)

■ Add some of the configuration parameters to the server parameter file or
init.ora file, and delete those rows from the configuration table. This is
useful if your database is being used by other applications that require the same
settings.

■ Add all of the configuration parameters to the server parameter file or
init.ora file, and delete all rows from the configuration table. This is the
most convenient if your database instance is being used only by the BI Beans.

Regardless of where these parameters are set, you should check the Oracle
Technology Network for updated recommendations.

Permitting Access to External Files
The OLAP DML contains three types of commands that read from and write to
external files:

■ File read commands that copy data from flat files to workspace objects.

■ Import and export commands that copy workspace objects and their contents to
files for transfer to another database instance.

■ File input and output commands that read and execute DML commands from a
file and redirect command output to a file.

These commands control access to files by using BFILE security. This database
security mechanism creates a logical database directory to represent a physical disk
directory. Permissions are assigned to the database directory, which control access
to files within the associated physical directory.

You use PL/SQL statements to create a database directory and grant permissions.
The relevant syntax of these SQL statements is provided in this chapter.

See Also: Oracle Database SQL Reference for descriptions of
initialization parameters that can be set by the ALTER SESSION
command

Permitting Access to External Files

Administering Oracle OLAP 12-11

Creating a Database Directory
To create a database directory, you must have CREATE ANY DIRECTORY system
privileges.

Use a CREATE DIRECTORY statement to create a new directory, or a REPLACE
DIRECTORY statement to redefine an existing directory, using the following
PL/SQL syntax:

{CREATE | REPLACE | CREATE OR REPLACE} DIRECTORY directory AS 'pathname';

Where:

directory is the name of the logical database directory
pathname is the physical directory path

Granting Access Rights to a Database Directory
After you create a directory, grant users and groups access rights to the files
contained in that directory, using the following PL/SQL syntax:

GRANT permission ON DIRECTORY directory TO {user | role | PUBLIC};

Where:

permission is one of the following:

READ for read-only access
WRITE for write-only access
ALL for read and write access

directory is the name of the database directory

user is a database user who gets immediate access rights to directory

role is a database role that gets immediate access rights to directory

PUBLIC gives all database users immediate access rights to directory

See Also: Oracle Database SQL Reference under the entries for
CREATE DIRECTORY and GRANT for the full syntax and usage
notes.

Understanding Data Storage

12-12 Oracle OLAP Application Developer’s Guide

Example: Creating and Using a Database Directory
The following SQL commands create a directory named OLAPFILES to control
access to a directory named /users/oracle/OraHome1/olap and grant read
access to all users.

CREATE DIRECTORY olapfiles as '/users/oracle/OraHome1/olap';
GRANT READ ON DIRECTORY olapfiles TO PUBLIC;

Users access files located in /users/oracle/OraHome1/olap with DML
commands such as this one:

IMPORT ALL FROM EIF FILE 'olapfiles/salesq2.eif' DATA DFNS

Understanding Data Storage
Oracle OLAP multidimensional data is stored in analytic workspaces, which are, in
turn, stored in relational tables. An analytic workspace can contain a variety of
objects, such as dimensions, variables, and OLAP DML programs. These objects
typically support a particular application or set of data.

Whenever an analytic workspace is created, modified, or accessed, the information
is stored in a table in the relational database.

Analytic Workspace Tables
Analytic workspaces are stored in tables in the Oracle Database. The names of these
tables always begin with AW$.

For example, if the GLOBAL_AW user creates two analytic workspaces, one named
GLOBAL and the other named GLOBAL_PROGRAMS, then these tables will be created
in the GLOBAL_AW schema:

AW$GLOBAL
AW$GLOBAL_PROGRAMS

Tables are created by default with eight partitions. You can manage these partitions
the same as you would for any other table in your database.

Important: These tables are vital for the operation of Oracle OLAP.
Do not delete them or attempt to modify them directly unless you
are fully aware of the consequences.

Understanding Data Storage

Administering Oracle OLAP 12-13

The tables store all of the object definitions and data. Each object in an analytic
workspace is stored in one or more page spaces, and each page space is stored in a
separate row of the table. A page space is grouping of related data pages; a page is a
unit for swapping data in and out of memory.

For example, a dimension is stored in three page spaces and thus has three rows
(one each for dimension members, a hash index, and a logical-to-physical map). A
variable is stored in one row; a partitioned variable has a row for each partition.

Table 12–2 describes the columns of a table that stores an analytic workspace.

Table 12–2 Column Descriptions for Analytic Workspace Tables

Column Data Type NULL Description

EXTNUM NUMBER(8) - Extension number

Analytic workspaces are stored in physical
LOBs (called extensions), which have a
default maximum size of 500MB. The first
extension is 0, the second is 1, and so forth.

PS# NUMBER(10) - Page space number

Each object is stored in at least one page
space.

GEN# NUMBER(10) - Generation number

A generation (a snapshot of the page space) is
maintained for each reader to assure a
consistent view of the analytic workspace
throughout a session.

AWLOB BLOB - Analytic workspace LOB

Actual storage of the analytic workspace
object.

OBJNAME VARCHAR2(60) - Object name

The name of the object in the analytic
workspace.

PARTNAME VARCHAR2(60) - Partition name

A name for the page space in which the object
is stored. Each object is stored in its own page
space. A partitioned variable is stored with a
page space for each partition. The number of
partitions and their names are specified when
a partition template is created in the analytic
workspace.

Understanding Data Storage

12-14 Oracle OLAP Application Developer’s Guide

Table 12–3 shows a few sample rows of an analytic workspace table, which are the
results of the following query.

SELECT * FROM aw$global WHERE
 OBJNAME = 'TIME' OR
 OBJNAME = 'UNITS_VARIABLE'
 ORDER BY GEN#, PS#;

System Tables
The SYS user owns several tables associated with analytic workspaces:

AW$EXPRESS
AW$AWCREATE
AW$AWMD
AW$
PS$

■ AW$EXPRESS stores the EXPRESS analytic workspace. This workspace contains
objects and programs that support the OLAP DML. The EXPRESS workspace is
used any time that a session is open.

■ AW$AWCREATE stores the AWCREATE analytic workspace, which contains
programs for creating and managing standard form analytic workspaces.

■ AW$AWMD stores the AWMD analytic workspace, which contains programs for
creating standard form catalogs.

Table 12–3 Sample Rows From AW$GLOBAL

EXTNUM PS# GEN# AWLOB OBJNAME PARTNAME

0 2515 0 - TIME TIME

0 2516 0 - TIME TIME

0 2517 0 - TIME TIME

0 2745 0 - UNITS_VARIABLE UNITS_VARIABLE

0 2515 9 - TIME TIME

0 2516 9 - TIME TIME

0 2517 9 - TIME TIME

See Also: Oracle OLAP DML Reference for information about
managing analytic workspaces.

Monitoring Performance

Administering Oracle OLAP 12-15

■ AW$ maintains a record of all analytic workspaces in the database, recording its
name, owner, and other information.

■ PS$ maintains a history of all page spaces. A page is an ordered series of bytes
equivalent to a file. Oracle OLAP manages a cache of workspace pages. Pages
are read from storage in a table and written into the cache in response to a
query. The same page can be accessed by several sessions.

The information stored in PS$ enables the Oracle OLAP to discard pages that
are no longer in use, and to maintain a consistent view of the data for all users,
even when the workspace is being modified during their sessions. When
changes to a workspace are saved, unused pages are purged and the
corresponding rows are deleted from PS$.

The CWM1 and CWM2 read APIs are tables owned by the OLAPSYS user. Public
synonyms provide user access to these tables.

Monitoring Performance
Each Oracle Database instance maintains a set of virtual tables that record current
database activity. These tables are called dynamic performance tables. The dynamic
performance tables collect data on internal disk structures and memory structures.
Among them are tables that collect data on Oracle OLAP. By monitoring these
tables, you can detect usage trends and diagnose system bottlenecks. Refer to the
Oracle OLAP Reference for information about the OLAP dynamic performance
views.

Monitoring Performance

12-16 Oracle OLAP Application Developer’s Guide

Materialized Views for the OLAP API 13-1

13
Materialized Views for the OLAP API

This chapter explains how to create materialized views specific to the requirements
of the OLAP API and the BI Beans. If you are using analytic workspaces, then you
can skip this information because an analytic workspace generates and stores
aggregate data so that materialized views are unnecessary. However, if you are
developing a strictly relational application, then you must create materialized views
using the methods described here. Otherwise, the SQL used to create the
materialized views will not match the SQL generated by the OLAP API, and Query
Rewrite will not use the materialized views to formulate the answer set to a query.

This chapter includes the following topics:

■ Summary Management with Oracle OLAP

■ Overview and Requirements

■ Example: Dimension Materialized View

■ Example: Fact Materialized View

■ Using the DBMS_ODM Package

Summary Management with Oracle OLAP
A basic feature of online analytical processing (OLAP) is the ability to analyze and
view various levels of aggregate data. With Oracle OLAP, you can choose to store
aggregate data within analytic workspaces or within materialized views.

See Also: Oracle Data Warehousing Guide for information on
managing materialized views.

Overview and Requirements

13-2 Oracle OLAP Application Developer’s Guide

Summary management for relational warehouses is managed by Oracle's query
rewrite facility. Query rewrite enables a query to fetch aggregate data from
materialized views rather than recomputing the aggregates at runtime.

When the OLAP API queries a warehouse stored in relational tables, it uses query
rewrite whenever possible. To prepare your relational warehouse for access by the
OLAP API, you need to establish materialized views according to the guidelines
described in this chapter.

Overview and Requirements
The OLAP API requires a specific set of materialized views for each OLAP Catalog
cube that maps to a star schema. The cube must be mapped to a single fact table,
and the fact table may contain only lowest-level data.

For each cube, there must be a separate dimension materialized view for each
hierarchy of each of the cube's dimensions. For the cube's fact table, there is a single
materialized view, created with GROUP BY GROUPING SETS syntax.

Use the Oracle Data Management package, DBMS_ODM, to create materialized views.

Materialized Views Required for a Cube
The OLAP API requires a dimension materialized view for each hierarchy
associated with a cube. For example, the SALES_CUBE cube in the Sales History
(SH) schema requires seven dimension materialized views, as illustrated in
Table 13–1.

For the cube's fact table, the OLAP API requires a single grouping set materialized
view.

Important: Do not use the DBMS_OLAP package to create
materialized views for the OLAP API. Query rewrite will not map
the SQL generated by the OLAP API to the materialized views
generated by this package.

The DBMS_OLAP package is described in the Oracle Data
Warehousing Guide.

Example: Dimension Materialized View

Materialized Views for the OLAP API 13-3

Materialized Views and OLAP Metadata
Before creating materialized views, you must create OLAP metadata for the star
schema. You can use Oracle Enterprise Manager, or you can write a script using the
CWM2 packages. Refer to Chapter 5 for information about the OLAP Catalog.

Example: Dimension Materialized View
The SQL script for creating dimension materialized views includes a CREATE
MATERIALIZED VIEW statement, and statements for generating statistics and
bitmap indexes.

CREATE Materialized View for a Dimension Hierarchy
The basic syntax of the CREATE MATERIALIZED VIEW statement for a dimension
hierarchy is as follows.

CREATE MATERIALIZED VIEW mv_name
PARTITION BY RANGE (gid)
 (partition values less than(1) ,
 .
 .
 partition values less than(MAXVALUE))
TABLESPACE tblspace_name
BUILD IMMEDIATE
USING NO INDEX
REFRESH FORCE
ENABLE QUERY REWRITE
AS

Table 13–1 Number of Dimension Materialized Views for SH.SALES_CUBE

SALES_CUBE Dimensions Hierarchies Number of MVs

SH.CHANNELS_DIM CHANNEL_ROLLUP 1

SH.CUSTOMERS_DIM CUST_ROLLUP

GEOG_ROLLUP

2

SH.PRODUCTS_DIM PROD_ROLLUP 1

SH.PROMOTIONS_DIM PROMO_ROLLUP 1

SH.TIMES_DIM CAL_ROLLUP

FIS_ROLLUP

2

Example: Dimension Materialized View

13-4 Oracle OLAP Application Developer’s Guide

SELECT
 COUNT(*) COUNT_STAR,
 GROUPING_ID(level_columns) gid,
 MAX(attribute_column_1)
 .
 .
 MAX(attribute_column_n)
 level_cols
FROM
 dimension_tables
GROUP BY
 hierarchy1_level1, ROLLUP(hierarchy1_level2,... hierarchy1_leveln),
 hierarchy2_level1, ROLLUP(hierarchy2_level2,... hierarchy2_leveln),
 .
 .
 hierarchyn_level1, ROLLUP(hierarchyn_level2,... hierarchyn_leveln);

In the GROUP BY clause, level columns are listed in order from most aggregate
(level1) to least aggregate (leveln). The least aggregate level, or "leaf node", is also
the key column. Note that level1 is excluded from the ROLLUP list.

Bitmap Indexes for a Dimension Hierarchy
The script includes statements like the following to generate bitmap indexes for the
level columns and the GID column. It also calculates a bitmap index for the parent
GID and parent ET key.

CREATE BITMAP INDEX index_name ON mv_name(level_column)
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

Statistics for a Dimension Hierarchy
The script includes statements like the following to generate statistics.

execute dbms_stats.gather_table_stats(mv_owner, mv_name,
degree=>dbms_stats.default_degree,method_opt=>
 'for all columns size skewonly') ;
ALTER TABLE mv_name MINIMIZE RECORDS_PER_BLOCK ;

Example: Fact Materialized View

Materialized Views for the OLAP API 13-5

Example: Fact Materialized View
The SQL script generated by the DBMS_ODM package for creating fact materialized
views includes a CREATE MATERIALIZED VIEW statement and statements for
generating statistics and bitmap indexes.

CREATE Fact Materialized View
The basic syntax of the CREATE MATERIALIZED VIEW statement with grouping
sets for a fact table is as follows.

CREATE MATERIALIZED VIEW mv_name
PARTITION BY RANGE (gid)
 (partition values less than(1) ,
 .
 .
 partition values less than(MAXVALUE))
PCTFREE x PCTUSED y
BUILD IMMEDIATE
USING NO INDEX
REFRESH FORCE
ENABLE QUERY REWRITE
AS
SELECT
 GROUPING_ID(level_columns) gid,
 agg_method(measure_1),
 .
 .
 agg_method(measure_n),
 COUNT(*) COUNT_OF_STAR,
 level_columns
FROM
 dimension_tables, fact_table
WHERE
 (dimension_primary_key_1 = fact_foreign_key_1) AND
 .
 .
 (dimension_primary_key_n = fact_foreign_key_n)
GROUP BY GROUPING SETS (
 (level columns in grouping set_1),
 .
 .
 (level columns in grouping set_n);

Using the DBMS_ODM Package

13-6 Oracle OLAP Application Developer’s Guide

Each grouping set contains a combination of levels specified for aggregation. For
example, a grouping set could specify that the cube's data be aggregated by month
for all products in each region. The procedures in the DBMS_ODM package use two
tables, SYS.OLAPTABLEVELS and SYS.OLAPTABLEVELTUPLES, to construct the
level combinations in each grouping set. For information on generating and editing
these tables, see "Procedure: Create Grouping Set Materialized Views" on page 13-7.

The SELECT clause lists the levels from the dimension tables and the measures from
the fact table. The selected measures will be aggregated over each combination of
these levels that has been specified for aggregation. The aggregation method is
typically addition (SUM), but it may be a method such as average or weighted
average. The aggregation method associated with each measure is specified in the
OLAP Catalog metadata for the measure.

Bitmap Indexes for Fact Materialized Views
The script includes statements like the following to generate bitmap indexes for
each level chosen for inclusion in the materialized view. It also creates a bitmap
index for all higher aggregate levels within the dimension. For example, if you
chose to aggregate to the quarter level of a time calendar hierarchy, a bitmap index
would be created for year and quarter.

CREATE BITMAP INDEX index_name ON mv_name(level_col)
LOCAL
COMPUTE STATISTICS
PARALLEL PCTFREE 0
NOLOGGING;

Statistics for Fact Materialized Views
The script includes statements like the following to generate statistics.

execute dbms_stats.gather_table_stats(mv_owner, mv_name,
 degree=>dbms_stats.default_degree, estimate_percent=>
 dbms_stats.auto_sample_size, method_opt=>
 'for all columns size 1 for columns size 254 GID' , granularity=>'GLOBAL') ;
ALTER TABLE mv_name MINIMIZE RECORDS_PER_BLOCK ;

Using the DBMS_ODM Package
The procedures in the OLAP Data Management package, DBMS_ODM, generate
scripts that create dimension materialized views and fact materialized views in
grouping set form. You can run these scripts in their original form, modify the

Using the DBMS_ODM Package

Materialized Views for the OLAP API 13-7

scripts before executing them, or use them simply as models for writing your own
SQL scripts.

Procedure: Create Grouping Set Materialized Views
Follow these steps to create grouping set materialized views for a cube:

1. Create a cube in the OLAP Catalog. You can use Enterprise Manager, or you can
use the CWM2 procedures. If you use the CWM2 procedures, be sure to map the
cube to a star schema.

2. Enable your database to write scripts to a file by setting the UTL_FILE_DIR
parameter to a valid directory.

3. Log in to SQL*Plus using the identity of the metadata owner.

4. Delete any materialized views that currently exist for the cube.

5. Create scripts to generate the dimension materialized views. Execute
DBMS.CREATEDIMMV_GS for each of the cube's dimensions.

6. Use the following three step procedure to create a script to generate a grouping
set materialized view for the cube's fact table:

a. Execute DBMS_ODM.CREATEDIMLEVTUPLE to create the table
SYS.OLAPTABLEVELS. This table lists all the dimensions of the cube and
all the levels of each dimension.

By default, all the levels of all the dimensions are selected for inclusion in
the materialized view. If you know that you will not need to store
aggregate data for some levels, you can edit the table to deselect those
levels.

b. Execute DBMS_ODM.CREATECUBELEVELTUPLE to create the table
SYS.OLAPTABLEVELTUPLES. This table lists all the possible combinations
(grouping sets) of the cube's levels. Only the grouping sets that include the
levels selected in SYS.OLAPTABLEVELS are selected for inclusion in the
materialized view. If you know that you will not need to store aggregate
data for some of these level combinations, you can edit the table to deselect
those combinations

Important: If you choose to modify the scripts, take care to
generate materialized views with the same structure as those
generated by DBMS_ODM. Otherwise the materialized views may
not be accessible to the OLAP API.

Using the DBMS_ODM Package

13-8 Oracle OLAP Application Developer’s Guide

c. Execute DBMS_ODM.CREATEFACTMV_GS to create the script.

7. Optionally, edit the scripts using any text editor.

8. Run the scripts in SQL*Plus, using commands such as the following:

@/users/oracle/OraHome1/olap/mvscript.sql;

Example: Create Grouping Set Materialized Views for a Sales Cube
Let's assume that you want to create materialized views for the DRUGSTORE cube in
the DRUG_DEPOT schema. The cube contains sales, cost, quantity, and forecasting
data. It is mapped to a fact table containing only lowest-level data and to dimension
tables for CHANNEL, GEOGRAPHY, PRODUCT, and TIME. Each dimension has a single
hierarchy.

1. First generate the scripts for the dimension materialized views. The following
statements create the scripts chanmv, prodmv, geogmv, and timemv in
/dat1/scripts/drug_depot.

EXEC DBMS_ODM.CREATEDIMMV_GS
 ('drug_depot', 'channel','chanmv','/dat1/scripts/drug_depot');
EXEC DBMS_ODM.CREATEDIMMV_GS
 ('drug_depot', 'product','prodmv','/dat1/scripts/drug_depot');
EXEC DBMS_ODM.CREATEDIMMV_GS
 ('drug_depot', 'geography','geogmv','/dat1/scripts/drug_depot');
EXEC DBMS_ODM.CREATEDIMMV_GS
 ('drug_depot', 'time','timemv','/dat1/scripts/drug_depot');

2. Run the scripts to create the dimension materialized views.

3. Next create the table of dimension levels for the fact materialized view.

EXEC DBMS_ODM.CREATEDIMLEVTUPLE('drug_depot', 'drugstore');

The table of levels, SYS.OLAPTABLEVELS, is a temporary table specific to your
session. You can view the table as follows.

select * from SYS.OLAPTABLEVELS;

SCHEMA_NAME DIMENSION_NAME CUBE_NAME LEVEL_NAME SELECTED
----------- -------------- ---------- ---------- --------
DRUG_DEPOT CHANNEL DRUGSTORE TOTAL 1
DRUG_DEPOT CHANNEL DRUGSTORE CHANNEL_CLASS 1
DRUG_DEPOT CHANNEL DRUGSTORE CHANNEL_ID 1
DRUG_DEPOT GEOGRAPHY DRUGSTORE TOTAL 1
DRUG_DEPOT GEOGRAPHY DRUGSTORE REGION 1

Using the DBMS_ODM Package

Materialized Views for the OLAP API 13-9

DRUG_DEPOT GEOGRAPHY DRUGSTORE SUB_REGION 1
DRUG_DEPOT GEOGRAPHY DRUGSTORE COUNTRY 1
DRUG_DEPOT GEOGRAPHY DRUGSTORE STATE_PROVINCE 1
DRUG_DEPOT PRODUCT DRUGSTORE TOTAL 1
DRUG_DEPOT PRODUCT DRUGSTORE PROD_CATEGORY 1
DRUG_DEPOT PRODUCT DRUGSTORE PROD_SUBCATEGORY 1
DRUG_DEPOT PRODUCT DRUGSTORE ID 1
DRUG_DEPOT TIME DRUGSTORE Year 1
DRUG_DEPOT TIME DRUGSTORE Quarter 1
DRUG_DEPOT TIME DRUGSTORE Month 1

All the levels in SYS.OLAPTABLEVELS are initially selected with "1" in the
SELECTED column.

4. Let's assume that you want to store aggregate data for each region and
sub-region, across all channels and all categories of products. You do not care
about data at the month level, you only want to store quarter and year data in
the materialized view.

Edit SYS.OLAPTABLEVELS to deselect all CHANNEL levels except total, the
state-province level of GEOGRAPHY, sub-categories and individual product IDs
in PRODUCT, and month in TIME.

update SYS.OLAPTABLEVELS set selected = 0
 where LEVEL_NAME in ('CHANNEL_ID','CHANNEL_CLASS', 'STATE_PROVINCE',
 'ID','PROD_SUBCATEGORY','Month');
select * from sys.olaptablevels;

SCHEMA_NAME DIMENSION_NAME CUBE_NAME LEVEL_NAME SELECTED
----------- -------------- ---------- ---------- --------
DRUG_DEPOT CHANNEL DRUGSTORE TOTAL 1
DRUG_DEPOT CHANNEL DRUGSTORE CHANNEL_CLASS 0
DRUG_DEPOT CHANNEL DRUGSTORE CHANNEL_ID 0
DRUG_DEPOT GEOGRAPHY DRUGSTORE TOTAL 1
DRUG_DEPOT GEOGRAPHY DRUGSTORE REGION 1
DRUG_DEPOT GEOGRAPHY DRUGSTORE SUB_REGION 1
DRUG_DEPOT GEOGRAPHY DRUGSTORE COUNTRY 1
DRUG_DEPOT GEOGRAPHY DRUGSTORE STATE_PROVINCE 0
DRUG_DEPOT PRODUCT DRUGSTORE TOTAL 1
DRUG_DEPOT PRODUCT DRUGSTORE PROD_CATEGORY 1
DRUG_DEPOT PRODUCT DRUGSTORE PROD_SUBCATEGORY 0
DRUG_DEPOT PRODUCT DRUGSTORE ID 0
DRUG_DEPOT TIME DRUGSTORE Year 1
DRUG_DEPOT TIME DRUGSTORE Quarter 1
DRUG_DEPOT TIME DRUGSTORE Month 0

Using the DBMS_ODM Package

13-10 Oracle OLAP Application Developer’s Guide

5. Next create the table SYS.OLAPTABLEVELTUPLES. This table, which is also a
session-specific temporary table, contains all the possible combinations of the
cube's levels. Each combination of four levels, or grouping set, has an
identification number. The grouping sets that include the levels you selected in
SYS.OLAPTABLEVELS are marked with a 1 in the SELECTED column.

exec dbms_odm.createcubeleveltuple('drug_depot','drugstore');
select * from sys.olaptableveltuples;

ID SCHEMA_NAME CUBE_NAME DIMENSION_NAME LEVEL_NAME SELECTED
-- ----------- --------- -------------- ----------- --------
1 DRUG_DEPOT DRUGSTORE GEOGRAPHY STATE_PROVINCE 0
1 DRUG_DEPOT DRUGSTORE PRODUCT ID 0
1 DRUG_DEPOT DRUGSTORE CHANNEL CHANNEL_ID 0
1 DRUG_DEPOT DRUGSTORE TIME Month 0
2 DRUG_DEPOT DRUGSTORE GEOGRAPHY COUNTRY 0
2 DRUG_DEPOT DRUGSTORE PRODUCT ID 0
2 DRUG_DEPOT DRUGSTORE CHANNEL CHANNEL_ID 0

2 DRUG_DEPOT DRUGSTORE TIME Month 0
.
.
.
112 DRUG_DEPOT DRUGSTORE GEOGRAPHY COUNTRY 1
112 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
112 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
112 DRUG_DEPOT DRUGSTORE TIME Quarter 1
113 DRUG_DEPOT DRUGSTORE GEOGRAPHY SUB_REGION 1
113 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
113 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
113 DRUG_DEPOT DRUGSTORE TIME Quarter 1
.
.
.
179 DRUG_DEPOT DRUGSTORE GEOGRAPHY REGION 1
179 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
179 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
179 DRUG_DEPOT DRUGSTORE TIME Year 1
180 DRUG_DEPOT DRUGSTORE GEOGRAPHY TOTAL 1
180 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
180 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
180 DRUG_DEPOT DRUGSTORE TIME Year 1

The SYS.OLAPTABLEVELTUPLES table has 720 rows, identifying 180 unique level
tuples, or grouping sets. 180 is the product of the number of levels for each of the

Using the DBMS_ODM Package

Materialized Views for the OLAP API 13-11

cube's dimensions, 3*5*4*3. There are 3 levels in CHANNEL, 5 levels in GEOGRAPHY, 4
levels in PRODUCT, and 3 levels in TIME

Of the 180 grouping sets, only 16 are selected for inclusion in the materialized view.
You can display the 64 selected rows (16*4) with the following statement.

select * from sys.olaptableveltuples where SELECTED = 1;

ID SCHEMA_NAME CUBE_NAME DIMENSION_NAME LEVEL_NAME SELECTED
-- ----------- --------- -------------- ----------- --------
112 DRUG_DEPOT DRUGSTORE GEOGRAPHY COUNTRY 1
112 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
112 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
112 DRUG_DEPOT DRUGSTORE TIME Quarter 1
113 DRUG_DEPOT DRUGSTORE GEOGRAPHY SUB_REGION 1
113 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
113 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
113 DRUG_DEPOT DRUGSTORE TIME Quarter 1
114 DRUG_DEPOT DRUGSTORE GEOGRAPHY REGION 1
114 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
114 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
114 DRUG_DEPOT DRUGSTORE TIME Quarter 1
115 DRUG_DEPOT DRUGSTORE GEOGRAPHY TOTAL 1
115 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
115 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
115 DRUG_DEPOT DRUGSTORE TIME Quarter 1
117 DRUG_DEPOT DRUGSTORE GEOGRAPHY COUNTRY 1
117 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
117 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
117 DRUG_DEPOT DRUGSTORE TIME Quarter 1
118 DRUG_DEPOT DRUGSTORE GEOGRAPHY SUB_REGION 1
118 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
118 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
118 DRUG_DEPOT DRUGSTORE TIME Quarter 1
119 DRUG_DEPOT DRUGSTORE GEOGRAPHY REGION 1
119 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
119 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
119 DRUG_DEPOT DRUGSTORE TIME Quarter 1
120 DRUG_DEPOT DRUGSTORE GEOGRAPHY TOTAL 1
120 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
120 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
120 DRUG_DEPOT DRUGSTORE TIME Quarter 1
172 DRUG_DEPOT DRUGSTORE GEOGRAPHY COUNTRY 1
172 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
172 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1

Using the DBMS_ODM Package

13-12 Oracle OLAP Application Developer’s Guide

172 DRUG_DEPOT DRUGSTORE TIME Year 1
173 DRUG_DEPOT DRUGSTORE GEOGRAPHY SUB_REGION 1
173 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
173 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
173 DRUG_DEPOT DRUGSTORE TIME Year 1
174 DRUG_DEPOT DRUGSTORE GEOGRAPHY REGION 1
174 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
174 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
174 DRUG_DEPOT DRUGSTORE TIME Year 1
175 DRUG_DEPOT DRUGSTORE GEOGRAPHY TOTAL 1
175 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
175 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
175 DRUG_DEPOT DRUGSTORE TIME Year 1
177 DRUG_DEPOT DRUGSTORE GEOGRAPHY COUNTRY 1
177 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
177 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
177 DRUG_DEPOT DRUGSTORE TIME Year 1
178 DRUG_DEPOT DRUGSTORE GEOGRAPHY SUB_REGION 1
178 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
178 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
178 DRUG_DEPOT DRUGSTORE TIME Year 1
179 DRUG_DEPOT DRUGSTORE GEOGRAPHY REGION 1
179 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
179 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
179 DRUG_DEPOT DRUGSTORE TIME Year 1
180 DRUG_DEPOT DRUGSTORE GEOGRAPHY TOTAL 1
180 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
180 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
180 DRUG_DEPOT DRUGSTORE TIME Year 1

6. Suppose you want to store product totals by year for each sub-region. You do
not want to store aggregates for any other grouping sets that contain the
sub-region level.

Grouping sets 113, 118, 173, and 178 all use the SUB_REGION level of
GEOGRAPHY.

ID GEOGRAPHY PRODUCT CHANNEL TIME
-- ---------- ------- ------ -----
113 SUB_REGION PROD_CATEGORY TOTAL Quarter
118 SUB_REGION TOTAL TOTAL Quarter
173 SUB_REGION PROD_CATEGORY TOTAL Year
178 SUB_REGION TOTAL TOTAL Year

Using the DBMS_ODM Package

Materialized Views for the OLAP API 13-13

You could edit the SYS.OLAPTABLEVELTUPLES table with a statement like the
following.

update SYS.OLAPTABLEVELTUPLES set selected = 0
 where ID in ('113','118', '173');
select * from sys.olaptableveltuples where SELECTED = 1;

ID SCHEMA_NAME CUBE_NAME DIMENSION_NAME LEVEL_NAME SELECTED
-- ----------- --------- -------------- ----------- --------
112 DRUG_DEPOT DRUGSTORE GEOGRAPHY COUNTRY 1
112 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
112 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
112 DRUG_DEPOT DRUGSTORE TIME Quarter 1
114 DRUG_DEPOT DRUGSTORE GEOGRAPHY REGION 1
114 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
114 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
114 DRUG_DEPOT DRUGSTORE TIME Quarter 1
115 DRUG_DEPOT DRUGSTORE GEOGRAPHY TOTAL 1
115 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
115 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
115 DRUG_DEPOT DRUGSTORE TIME Quarter 1
117 DRUG_DEPOT DRUGSTORE GEOGRAPHY COUNTRY 1
117 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
117 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
117 DRUG_DEPOT DRUGSTORE TIME Quarter 1
119 DRUG_DEPOT DRUGSTORE GEOGRAPHY REGION 1
119 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
119 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
119 DRUG_DEPOT DRUGSTORE TIME Quarter 1
120 DRUG_DEPOT DRUGSTORE GEOGRAPHY TOTAL 1
120 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
120 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
120 DRUG_DEPOT DRUGSTORE TIME Quarter 1
172 DRUG_DEPOT DRUGSTORE GEOGRAPHY COUNTRY 1
172 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
172 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
172 DRUG_DEPOT DRUGSTORE TIME Year 1
174 DRUG_DEPOT DRUGSTORE GEOGRAPHY REGION 1
174 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
174 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
174 DRUG_DEPOT DRUGSTORE TIME Year 1
175 DRUG_DEPOT DRUGSTORE GEOGRAPHY TOTAL 1
175 DRUG_DEPOT DRUGSTORE PRODUCT PROD_CATEGORY 1
175 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
175 DRUG_DEPOT DRUGSTORE TIME Year 1

Using the DBMS_ODM Package

13-14 Oracle OLAP Application Developer’s Guide

177 DRUG_DEPOT DRUGSTORE GEOGRAPHY COUNTRY 1
177 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
177 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
177 DRUG_DEPOT DRUGSTORE TIME Year 1
178 DRUG_DEPOT DRUGSTORE GEOGRAPHY SUB_REGION 1
178 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
178 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
178 DRUG_DEPOT DRUGSTORE TIME Year 1
179 DRUG_DEPOT DRUGSTORE GEOGRAPHY REGION 1
179 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
179 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
179 DRUG_DEPOT DRUGSTORE TIME Year 1
180 DRUG_DEPOT DRUGSTORE GEOGRAPHY TOTAL 1
180 DRUG_DEPOT DRUGSTORE PRODUCT TOTAL 1
180 DRUG_DEPOT DRUGSTORE CHANNEL TOTAL 1
180 DRUG_DEPOT DRUGSTORE TIME Year 1

7. To create the script that will generate the fact materialized view, run the
CREATEFACTMV_GS procedure.

exec dbms_odm.createfactmv_gs
 ('drug_depot','drugstore',
 'drugstore_mv','/dat1/scripts/drug_depot',TRUE);

The CREATE MATERIALIZED VIEW statement in the script contains the
following grouping sets in the GROUP BY GROUPING SETS clause.

(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER, CHANNELS.TOTAL,
 PRODUCTS.TOTAL, PRODUCTS.PROD_CATEGORY, GEOGRAPHIES.TOTAL,
 GEOGRAPHIES.REGION, GEOGRAPHIES.SUB_REGION, GEOGRAPHIES.COUNTRY),
(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER, CHANNELS.TOTAL,
 PRODUCTS.TOTAL, PRODUCTS.PROD_CATEGORY, GEOGRAPHIES.TOTAL,
 GEOGRAPHIES.REGION),
(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER, CHANNELS.TOTAL,
 PRODUCTS.TOTAL, PRODUCTS.PROD_CATEGORY, GEOGRAPHIES.TOTAL),
(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER, CHANNELS.TOTAL,
 PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL , GEOGRAPHIES.REGION,
 GEOGRAPHIES.SUB_REGION, GEOGRAPHIES.COUNTRY),
(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER, CHANNELS.TOTAL,
 PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL, GEOGRAPHIES.REGION),
(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER, CHANNELS.TOTAL,
 PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL),
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL,
 PRODUCTS.PROD_CATEGORY, GEOGRAPHIES.TOTAL, GEOGRAPHIES.REGION,
 GEOGRAPHIES.SUB_REGION, GEOGRAPHIES.COUNTRY),
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL,

Using the DBMS_ODM Package

Materialized Views for the OLAP API 13-15

 PRODUCTS.PROD_CATEGORY, GEOGRAPHIES.TOTAL, GEOGRAPHIES.REGION),
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL,
 PRODUCTS.PROD_CATEGORY, GEOGRAPHIES.TOTAL),
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL,
 GEOGRAPHIES.REGION, GEOGRAPHIES.SUB_REGION, GEOGRAPHIES.COUNTRY),
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL,
 GEOGRAPHIES.REGION, GEOGRAPHIES.SUB_REGION),
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL,
 GEOGRAPHIES.REGION),
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL)

The following statement at the end of the script sets the MV_SUMMARY_CODE
associated with the cube in the OLAP Catalog. This setting indicates that the
materialized view associated with this cube is in grouping set form.

execute cwm2_olap_cube.set_mv_summary_code
 ('DRUG_DEPOT', 'DRUGSTORE', 'GROUPINGSET') ;

8. Run the drugstore_mv script to create the fact materialized view.

Using the DBMS_ODM Package

13-16 Oracle OLAP Application Developer’s Guide

Database Standard Form for Analytic Workspaces A-1

A
Database Standard Form for

Analytic Workspaces

Database standard form is a set of conventions describing the objects in an analytic
workspace that can be managed by various Oracle OLAP utilities. This appendix
describes database standard form conventions. It has the following sections:

■ Overview of Database Standard Form

■ Object Naming Conventions

■ Workspace Object Properties

■ Implementation Class Objects

■ Catalogs Class Objects

■ Features Class Objects

■ Extensions Class Objects

Overview of Database Standard Form
An analytic workspace that conforms to database standard form has objects that
implement a logical model for cubes, dimensions, and measures. Standard form
includes naming conventions for workspace objects, and it specifies object
properties relating the logical model to the workspace objects that implement it.

Purpose of Database Standard Form
The purpose of the standard form conventions is to provide an agreed-upon logical
model and workspace implementation to be used by related Oracle OLAP utilities.
Because these utilities work with data and metadata that is in the standard form, the

Overview of Database Standard Form

A-2 Oracle OLAP Application Developer’s Guide

utilities are compatible with one another. Therefore, a DBA who uses these utilities
can create and maintain analytic workspaces that can be accessed through more
than one analytic tool. Currently, access is available through the OLAP API, BI
Beans, and Discoverer.

The Analytic Workspace Manager provides the following utilities, which either
create or depend upon the presence of a standard form workspace:

■ Analytic Workspace Creation Wizard creates a new workspace in standard form
from OLAP Catalog metadata.

■ Analytic Workspace Refresh Wizard refreshes an existing workspace in
standard form from OLAP Catalog metadata.

■ Enable for OLAP API and BI Beans feature enables a standard form workspace
for access through the OLAP API and BI Beans.

■ Enable for Discoverer Wizard enables a standard form workspace for access
through Discoverer.

Analytic Workspace Manager uses the PL/SQL package DBMS_AWM to create,
refresh, and enable standard form analytic workspaces for access by the OLAP API.
You can use the Analytic Workspace Manager to manage your analytic workspaces,
or you can develop your own scripts using the DBMS_AWM procedures.

Audience for Database Standard Form
Ordinarily, you create, manage, and enable standard form workspaces using the
tools and procedures provided. Therefore, you will typically have no need for
detailed knowledge of the standard form. However, such knowledge is necessary
under the following circumstances:

■ When you want to make manual additions to an existing standard form
workspace. For example, the OLAP Catalog metadata might not have included
a plural description for a dimension, and the DBA might want to add one in the
workspace rather than in the OLAP Catalog.

■ When you are developing an application that uses standard form workspaces,
and you want it to discover information at run-time, such as which measures
are available for analysis in a particular workspace, how they are dimensioned,
and what levels and hierarchies are defined.

This appendix describes the standard form so that if you have these requirements,
you can understand the conventions of a standard form workspace. To understand
these conventions, you must be familiar with multidimensional OLAP concepts and
should be experienced in using the OLAP DML.

Overview of Database Standard Form

Database Standard Form for Analytic Workspaces A-3

Logical Model and Workspace Objects
The standard form logical model includes cubes, measures, and dimensions, as well
as the hierarchies, levels, and attributes that are associated with dimensions. A cube
is considered to be the parent of the measures that it contains, and a dimension is
considered to be the parent of its hierarchies, levels, and attributes. A cube has
dimensionality; that is, it is associated with its list of dimensions.

Implementation of a Cube
The primary workspace object that implements a logical cube is a workspace
dimension referred to as the cubedef dimension. The values of this dimension are the
names of the cube's dimensions.

Secondary workspace objects that implement a logical cube are an aggmap (referred
to as the comspec aggmap) and a composite (referred to as the loopspec composite).

For more information about these objects, see "Cube Objects" on page A-15.

Implementation of a Measure
The primary workspace object that implements a logical measure is a workspace
variable, formula, or relation referred to as the measuredef object. The values of this
object are the values of the logical measure.

The only secondary workspace object for a measure is the compspec aggmap for its
cube.

For more information about these objects, see "Measure Objects" on page A-17.

Implementation of a Dimension
The primary workspace object that implements a logical dimension is a workspace
dimension referred to as the dimdef dimension. The values of this dimension are the
values of the logical dimension.

Hierarchies and levels of a dimension do not have primary objects of their own.
Instead, the following objects provide the implementation:

■ hierlist dimension lists the dimension's hierarchies

■ levellist dimension lists the dimension's levels

■ parentrel relation records the parent for each member of the dimension

■ levelrel relation records the level for each member of the dimension

■ hier_levels valueset records the levels in each hierarchy

Object Naming Conventions

A-4 Oracle OLAP Application Developer’s Guide

The primary workspace object that implements an attribute of a dimension is a
workspace variable, formula, or relation referred to as the attrdef object. The values
of this object are the values of the logical attribute.

For more information about these objects, see "Dimension Objects" on page A-18.

Classes of Workspace Objects
Each standard form workspace object belongs to one of four classes:

■ Implementation class. Objects in this class implement the logical model. They
include all the workspace objects described in the section "Logical Model and
Workspace Objects" on page A-3, for example the cubedef, measuredef, dimdef, and
hierlist objects.

■ Catalogs class. Objects in this class hold information about the logical model.
They include a list of all the cubes in the workspace, a list of all the measures in
the workspace, a list of all the dimensions in the workspace, and other lists that
can facilitate the work of various utilities.

■ Features class. Objects in this class hold information about specific objects in
the logical model. For example, one object stores the descriptions of all the
logical objects, while another indicates whether the object is intended to be
visible to the user.

■ Extensions class. Objects in this class are defined and maintained by the Oracle
OLAP utilities. They are proprietary extensions to the standard form, and there
is no commitment on the part of Oracle to maintain them from release to
release.

Do not define, modify, or depend on objects in the Extensions class.

Properties of Workspace Objects
A fundamental feature of standard form is that it depends on the OLAP DML
properties of workspace objects for the implementation of the logical model. OLAP
DML properties are assigned using the OLAP DML PROPERTY command.

Object Naming Conventions
There are no restrictions on the names of the workspace objects that implement a
standard form logical model, other than the rules imposed by the OLAP DML. For
logical objects, however, standard form imposes strict naming rules. This is because
the utilities that depend on standard form reference objects by their logical names.

Object Naming Conventions

Database Standard Form for Analytic Workspaces A-5

Standard form naming conventions for logical names are consistent with those of
the Oracle Database. They establish name spaces within which logical names must
be unique, and they provide rules for constructing full names to reflect the name
space organization. Logical names are sometimes referred to as "simple logical
names" in order to distinguish them from full names.

Logical Names
In general, the simple logical name for an object, such as a cube or dimension,
conforms to the rules for a SQL simple expression, with minor differences. The rules
for standard form logical names require that a name:

1. Have 1 to 30 bytes.

2. Cannot be an Oracle reserved word.

3. Is not case-sensitive.

4. Cannot contain quotation marks.

5. Must begin with an alphabetic character from your database character set.

6. Must contain only alphanumeric characters from your database character set
and the underscore (_), dollar sign ($), and pound sign (#). However, Oracle
strongly discourages you from using the dollar or pound sign. If your database
character set contains multi byte characters, Oracle recommends that you
include at least one single-byte character in each logical name.

The AW$LOGICAL_NAME property of a workspace object contains the simple logical
name of the object that it implements. An example of a simple logical name is
PRODUCT.

Name Space Organization
Standard form naming conventions impose an organization of logical objects that
defines the following name spaces:

■ Schema. The logical names of cubes and dimensions must be unique within the
schema that owns the analytic workspace.

■ Cube. The logical names of measures must be unique within a given cube.

■ Dimension. The logical names of hierarchies must be unique within a
dimension. The logical names of levels must be unique within a dimension. The
logical names of attributes must be unique within a dimension. Within a given
dimension, a hierarchy can have the same name as a level or attribute.

Workspace Object Properties

A-6 Oracle OLAP Application Developer’s Guide

The name space organization reflects an ownership, or parent, relationship among
the logical objects. For example, a measure has a cube as its parent object, and an
attribute has a dimension as its parent object. The AW$PARENT_NAME property on
workspace objects records these relationships.

Simple Logical Names and Full Names
Because simple logical names are not unique outside their name space, standard
form conventions specify a full name for each logical object. This full name includes
the simple logical name, but also indicates the name space to which the object
belongs and its object type. The following is an example of a full name for an
attribute whose simple name is TIME_SPAN and whose parent object is a dimension
called TIME.

GLOBAL_AW.TIME.TIME_SPAN.ATTRIBUTE

The final component of a full name is the object type. In this example, it is
ATTRIBUTE. All the possible types are listed in the all_objtypes dimension, which is
described in "ALL_OBJTYPES Dimension" on page A-29.

Full names are used in the catalog class objects that list various object types. For
example, the values of the all_dimensions, all_cubes, and all_attributes dimensions are
the full names of logical objects.

Workspace Object Properties
The section "Properties of Workspace Objects" on page A-4 introduced the use of
properties in the standard form. Properties are the primary method by which logical
objects are implemented by workspace objects. The properties are created on the
workspace objects using the OLAP DML PROPERTY command.

Workspace objects in the standard form have well-defined properties that fall into
three groups:

■ Properties specific to implementation class objects.

■ System properties on all workspace objects.

These properties are created and given values by Oracle OLAP utilities, either
DBMS_AWM or the utilities offered by Analytic Workspace Manager. You must
never modify or delete these properties.

■ Role property on all workspace objects.

Workspace Object Properties

Database Standard Form for Analytic Workspaces A-7

All objects that are in the standard form have a property called AW$ROLE. It
indicates the role (or function) that is played by the object in the standard form.

Properties Specific to Implementation Class Objects
Properties for the logical name and parent name are on all implementation class
objects. Three additional properties might or might not be present depending on the
role of the object.

Table A–1 lists the implementation class properties and describes each one.

Table A–1 Implementation Class Properties

Property Description

AW$LOGICAL_NAME The simple logical name of the logical object that is
implemented by this workspace object. The value is set only
for objects whose role is CUBEDEF, MEASUREDEF, DIMDEF, and
ATTRDEF. The property exists, but the value is NA, for all other
roles in the implementation class.

AW$PARENT_NAME The simple logical name of the parent of the logical object that
is implemented by this workspace object. The value is set for
all implementation class objects except for those whose roles
are CUBEDEF and DIMDEF. The value is NA for these two,
because they have no parent.

AW$LOOPSPEC For objects with role CUBEDEF, the name of the composite for
the cube. This is the name of a workspace object, not the logical
name of an object. For all other roles, this property is missing.

AW$COMPSPEC For objects with role MEASUREDEF, the name of the AGGMAP
object for the measure. This is the name of a workspace object,
not the logical name of an object. For all other roles, this
property is missing.

AW$TYPE For objects with role DIMDEF and ATTRDEF, the type of the
dimension or attribute. For all other roles, this property is
missing.

If the role is DIMDEF, this property indicates whether the
dimension is a time dimension. Values are TIME or NA.

If the role is ATTRDEF, this property indicates a special use for
the attribute by Oracle OLAP. Values that indicate special use
are DEFAULT_ORDER, END_DATE, TIME_SPAN,
MEMBER_LONG_DESCRIPTION,
MEMBER_SHORT_DESCRIPTION, MEMBER_VISIBLE. If the
value is USER or NA, then the attribute has no special meaning
for Oracle OLAP.

Workspace Object Properties

A-8 Oracle OLAP Application Developer’s Guide

System Properties on All Workspace Objects
All workspace objects that are part of the standard form have four system
properties.

Table A–2 lists the system properties and describes each one.

Role Property on All Workspace Objects
All workspace objects that are part of the standard form have a role property.

Table A–3 describes the role property.

Role Property Values for Implementation Class Objects
The AW$ROLE property indicates the function (that is, role) that is performed by the
workspace object. For implementation class objects, roles indicate fundamental
building blocks of the logical model, such as cubes, measures, and dimensions.

Table A–2 System Properties

Property Description

AW$CLASS The class of the workspace object. Possible values are
IMPLEMENTATION, CATALOGS, FEATURES, and EXTENSIONS.
For a description of these classes, see "Classes of Workspace
Objects" on page A-4.

AW$CREATEDBY The entity that created the workspace object. For example, if it
was created by DBMS_AWM, then the value is AW$CREATE.

AW$LASTMODIFIED The date and time when the workspace object was last
registered.

AW$STATE The state of the workspace object with respect to the standard
form, for example, VALID_MEMBER.

Table A–3 Role Property

Property Description

AW$ROLE The role (that is, function) that is performed by this object. The
possible values are different for each object class. For
information on property values, see "Role Property Values for
Implementation Class Objects" on page A-8, "Role Property
Values for Catalogs Class Objects" on page A-10, "Role
Property Values for Features Class Objects" on page A-12, and
"Role Property Values for Extensions Class Objects" on
page A-13.

Workspace Object Properties

Database Standard Form for Analytic Workspaces A-9

There can be several implementation class objects that have the same role in a
standard form workspace. For example, there are several objects with the role of
DIMDEF because there is one such object for each dimension in the logical model.

Table A–4 lists the possible values and describes each role.

Table A–4 Role Property Values: Implementation Class

Role Property Value Role Description

CUBEDEF Implements a cube whose logical name is in the
AW$LOGICAL_NAME property. For information about objects
with this role, see "Cubedef Dimension" on page A-15.

MEASUREDEF Implements a measure whose logical name is in the
AW$LOGICAL_NAME property. For information about objects
with this role, see "Measuredef Object" on page A-17.

DIMDEF Implements a dimension whose logical name is in the
AW$LOGICAL_NAME property. For information about objects
with this role, see "Dimdef Dimension" on page A-19.

HIERLIST Lists the names of the hierarchies of the dimension whose
name is in the AW$PARENT_NAME property. For information
about objects with this role, see "Hierlist Dimension" on
page A-20.

LEVELLIST Lists the names of the levels of the dimension whose name is in
the AW$PARENT_NAME property. For information about objects
with this role, see "Levellist Dimension" on page A-20.

MEMBER_LEVELREL Records the level for each member of the dimension whose
name is in the AW$PARENT_NAME property. For information
about objects with this role, see "Member_Levelrel Relation" on
page A-21.

MEMBER_PARENTREL Records the parent for each member of the dimension whose
name is in the AW$PARENT_NAME property. For information
about objects with this role, see "Member_Parentrel Relation"
on page A-22.

HIER_LEVELS Lists the levels that are included in each hierarchy of the
dimension whose name is in the AW$PARENT_NAME property.
For information about objects with this role, see "Hier_Levels
Valueset" on page A-23.

ATTRDEF Implements an attribute whose logical name is in the
AW$LOGICAL_NAME property. For information about objects
with this role, see "Attrdef Object" on page A-23.

Workspace Object Properties

A-10 Oracle OLAP Application Developer’s Guide

Role Property Values for Catalogs Class Objects
The AW$ROLE property indicates the function (or role) that is performed by the
workspace object. For catalogs class objects, the objects with various roles provide
information about the logical model such as a list of cubes, a list of object types, or a
list of measures.

There is only one catalogs class object with a given role in a standard form
workspace. For example, there is only one object that lists all the dimensions in the
workspace.

Table A–5 lists the possible values and describes each role.

Table A–5 Role Property Values: Catalogs Class

Role Property Value Role Description

ALL_OBJECTS Lists the full names of all the objects that have been
registered with the standard form in this workspace. For
information about the object with this role, see
"ALL_OBJECTS Dimension" on page A-28.

ALL_CUBES Lists the full names of all the cubes that have been
registered with the standard form in this workspace. For
information about the object with this role, see
"ALL_CUBES Dimension" on page A-25.

ALL_MEASURES Lists the full names of all the measures that have been
registered with the standard form in this workspace. For
information about the object with this role, see
"ALL_MEASURES Dimension" on page A-26.

ALL_DIMENSIONS Lists the full names of all the dimensions that have been
registered with the standard form in this workspace. For
information about the object with this role, see
"ALL_DIMENSIONS Dimension" on page A-26

ALL_HIERARCHIES Lists the full names of all the hierarchies that have been
registered with the standard form in this workspace. For
information about the object with this role, see
"ALL_HIERARCHIES Dimension" on page A-26.

ALL_LEVELS Lists the full names of all the levels that have been
registered with the standard form in this workspace. For
information about the object with this role, see
"ALL_LEVELS Dimension" on page A-27.

ALL_ATTRIBUTES Lists the full names of all the attributes that have been
registered with the standard form in this workspace. For
information about the object with this role, see
"ALL_ATTRIBUTES Dimension" on page A-28.

Workspace Object Properties

Database Standard Form for Analytic Workspaces A-11

ALL_OBJTYPES Lists types of objects currently supported by the standard
form: CUBE, MEASURE, DIMENSION, HIERARCHY, LEVEL,
and ATTRIBUTE. For information about the object with this
role, see "ALL_OBJTYPES Dimension" on page A-29.

ALL_DESCTYPES Lists the types of descriptions currently supported by the
standard form: SHORT, LONG, and PLURAL. For information
about the object with this role, see "ALL_DESCTYPES
Dimension" on page A-30.

ALL_ATTRTYPES Lists all the attribute types that are currently supported by
the standard form. These are valid values for the AW$TYPE
property of an object with the ATTRDEF role. For
information about the object with the ALL_ATTRTYPES role,
see "ALL_ATTRTYPES Dimension" on page A-30.

AW_ROLES Lists all values for the AW$ROLE property currently
supported by the standard form. The list includes roles for
objects of all classes. For information about the object with
this role, see "AW_ROLES Dimension" on page A-30.

ALL_LANGUAGES Lists the names of all the languages that a DBA has
included in the workspace. For information about the object
with this role, see "ALL_LANGUAGES Dimension" on
page A-32.

CUBE_MEASURES Lists the full names of the measures that belong to each
cube in the workspace. For information about the object
with this role, see "CUBE_MEASURES Valueset" on
page A-32.

DIM_HIERARCHIES Lists the full names of the hierarchies that belong to each
dimension in the workspace. For information about the
object with this role, see "DIM_HIERARCHIES Valueset" on
page A-33.

DIM_LEVELS Lists the full names of the levels that belong to each
dimension in the workspace. For information about the
object with this role, see "DIM_LEVELS Valueset" on
page A-33.

DIM_ATTRIBUTES Lists the full names of the attributes that belong to each
dimension in the workspace. For information about the
object with this role, see "DIM_ATTRIBUTES Valueset" on
page A-34.

Table A–5 (Cont.) Role Property Values: Catalogs Class

Role Property Value Role Description

Workspace Object Properties

A-12 Oracle OLAP Application Developer’s Guide

Role Property Values for Features Class Objects
The AW$ROLE property indicates the function (or role) that is performed by the
workspace object. For features class objects, roles provide various types of
supplementary data for logical objects such as descriptions.

For many roles, there is a single features class object in a standard form workspace.
However, for the roles that have MEMBER in their names, there is one object for each
dimension.

Table A–6 lists the possible values and describes each role that applies to features
class objects.

AW_NAMES Records the name of the workspace object that implements
each logical cube, measure, dimension, and attribute. For
other logical objects, there is no single corresponding
workspace object, so the value is NA. For information about
the object with this role, see "AW_NAMES Variable" on
page A-34.

AW_COMPSPECS Records, for each dimension, the names of all AGGMAP
objects that reference the dimension. For information about
the object with this role, see "AW_COMPSPECS Variable" on
page A-35.

AW_LOOPSPECS Records, for each cube, the name of its composite. For
information about the object with this role, see
"AW_LOOPSPECS Variable" on page A-35.

Table A–6 Role Property Values: Features Class

Role Property Value Role Description

ALL_DESCRIPTIONS Records short, long, and plural descriptions for all objects. For
information about the object with this role, see
"ALL_DESCRIPTIONS Variable" on page A-36.

ATTR_INHIER Indicates whether a given attribute is associated with a given
hierarchy. For information about the object with this role, see
"ATTR_INHIER Variable" on page A-36.

DEFAULT_HIER Records the full name of the default hierarchy for each
dimension. For information about the object with this role, see
"DEFAULT_HIER Relation" on page A-37.

Table A–5 (Cont.) Role Property Values: Catalogs Class

Role Property Value Role Description

Workspace Object Properties

Database Standard Form for Analytic Workspaces A-13

Role Property Values for Extensions Class Objects
The AW$ROLE property indicates the function (or role) that is performed by the
workspace object. For Extensions class objects, roles are for internal use of Oracle
OLAP utilities such as DBMS_AWM and the enablers.

DBAs and users must not create, modify, or depend on objects that are in the
Extensions class. The AW$ROLE property, and all properties, for objects in this class
are for proprietary use only. Oracle makes no commitment to maintain the roles and
relationships of these objects.

MEMBER_CREATEDBY Records the entity that created each member of a given
dimension. For information about the object with this role, see
"Member_Createdby Variable" on page A-38.

MEMBER_FAMILYREL Records the family relation for each hierarchy of a given
dimension. For information about the object with this role, see
"Member_Familyrel Relation" on page A-39.

MEMBER_GID Records the grouping id for each hierarchy of a given
dimension. For information about the object with this role, see
"Member_Gid Variable" on page A-39.

MEMBER_INHIER Indicates whether a given member of a dimension is in a given
hierarchy. For information about the object with this role, see
"Member_Inhier Variable" on page A-38.

OBJ_CREATEDBY Records the entity that created each object. For information
about the object with this role, see "OBJ_CREATEDBY
Variable" on page A-39.

OBJ_STATE Records the current state of each object that has ever been
registered. For information about the object with this role, see
"OBJ_STATE Variable" on page A-40.

VERSION Records the number of the standard form version under which
the workspace is being managed. For information about the
object with this role, see "VERSION Variable" on page A-40.

VISIBLE Indicates whether a given object should be made visible to the
user by Oracle OLAP enabling utilities. For information about
the object with this role, see "VISIBLE Variable" on page A-37.

Table A–6 (Cont.) Role Property Values: Features Class

Role Property Value Role Description

Implementation Class Objects

A-14 Oracle OLAP Application Developer’s Guide

Terminology: Using Role Names to Describe Objects
Because the standard form conventions have no conventions that govern the names
of workspace objects, documentation cannot refer to the objects by name. Instead,
the objects are discussed using the values of their AW$ROLE properties as
descriptors.

For example, we refer to the cubedef dimension, the aw_names variable, and the
default_hier relation. These references are to the workspace objects whose AW$ROLE
property is set to CUBEDEF, AW_NAMES, and DEFAULT_HIER, respectively. The
actual names of the workspace objects for most classes are typically similar to, but
not identical to, their roles.

The sections that follow describe each object that has a role in the standard form
conventions.

Implementation Class Objects
The objects in the implementation class provide the implementation for the logical
objects in a given workspace. In general, they hold the data that users see as
dimensions and measures. Implementation class objects differ from workspace to
workspace. For example, one workspace might have measures called SALES and
COST, while another workspace might have measures called BUDGET and ACTUAL.

The cubedef, measuredef, and dimdef objects implement cubes, measures, and
dimensions respectively. In addition, each of these objects have implementation
class helper objects. An overview of the objects is provided in the section "Logical
Model and Workspace Objects" on page A-3.

The rest of this section describes each of the implementation class objects. Note that
the examples in this section show the properties required by the standard form. If
you examine a workspace that was created by Analytic Workspace Manager or the
DBMS_AWM package, you might find some additional properties on various objects.
These are not required for compliance with the standard form.

For information about the values that should be assigned to the properties, see
Chapter 8.

To list all the objects that have a given role, limit the NAME dimension to all the
objects that have that role and then report the values of the NAME dimension. For
example, execute the following OLAP DML commands to list all the cubedef objects.

LIMIT name TO OBJ(PROPERTY 'AW$ROLE') EQ 'CUBEDEF'
REPORT name

Implementation Class Objects

Database Standard Form for Analytic Workspaces A-15

NAME

UNITS_CUBE
PRICE_CUBE

Cube Objects
A cube is implemented by a cubedef dimension. It also has a loopspec composite.

Cubedef Dimension
A logical cube is implemented by a workspace dimension that has the value
CUBEDEF in its AW$ROLE property. The values of a given cubedef dimension are the
names of the logical dimensions of the cube.

A cubedef dimension has no parent, so its AW$PARENT_NAME property is set to NA. A
logical cube is the parent of the measures that belong to it.

The following is a full description of a cubedef dimension called UNITS_CUBE.

FULLDSC units_cube

DEFINE UNITS_CUBE DIMENSION TEXT
LD IMPLEMENTATION UNITS_CUBE Cube
PROPERTY 'AGGMAPLIST' 'GLOBAL_AW.GLOBAL!UNITS_CUBE_AGGMAP_AWCREATEDDEFAULT_1'
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:28:35'
PROPERTY 'AW$LOADPRGS' 'GLOBAL_AW.GLOBAL!___GET.CUBE.DATA_UNITS_CUBE_1'
PROPERTY 'AW$LOGICAL_NAME' 'UNITS_CUBE'
PROPERTY 'AW$LOOPSPEC' 'GLOBAL_AW.GLOBAL!UNITS_CUBE_COMPOSITE'
PROPERTY 'AW$PARENT_NAME' NA
PROPERTY 'AW$ROLE' 'CUBEDEF'

The following is a report that shows the values of the UNITS_CUBE dimension. The
values are the names of the dimdef dimensions that implement the cube's logical
dimensions.

REPORT units_cube

UNITS_CUBE

CHANNEL
CUSTOMER
PRODUCT
TIME

Implementation Class Objects

A-16 Oracle OLAP Application Developer’s Guide

Loopspec Composite
A logical cube has a loopspec composite, which facilitates efficient data access for the
cube's measures. The loopspec composite is particularly useful when looping
through sparse data is required. For information about composites, see the Oracle
OLAP DML Reference.

Typically, the loopspec composite includes all the dimensions of the cube, except for
any time dimension that might be present. The parent of a loopspec is the logical
cube that it supports.

The following is a full description of a loopspec composite for the logical cube called
UNITS_CUBE. The composite includes all the dimensions that are listed as values of
the cubedef dimension, except for the TIME dimension.

FULLDSC units_cube_composite

DEFINE UNITS_CUBE_COMPOSITE COMPOSITE <CUSTOMER PRODUCT CHANNEL>
LD IMPLEMENTATION Composite for UNITS_CUBE cube
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:28:40'
PROPERTY 'AW$PARENT_NAME' 'UNITS_CUBE'
PROPERTY 'AW$ROLE' 'LOOPSPEC'
PROPERTY 'AW$STATE' 'CREATED'

The following is a report that shows the first nine values of this loopspec composite.

REPORT units_cube_composite

 CUSTOMER PRODUCT CHANNEL
---------- ---------- ----------
51 13 2
51 14 2
51 15 2
51 16 2
65 17 2
65 18 2
65 19 2
65 20 2
61 20 2
. . .
. . .
. . .

Implementation Class Objects

Database Standard Form for Analytic Workspaces A-17

Measure Objects
A measure is implemented by a measuredef object. A measure also has a compspec
aggmap, which provides aggregation rules for the measure.

Measuredef Object
A logical measure is implemented by a workspace object that has the value
MEASUREDEF in its AW$ROLE property. The measuredef object can be a variable,
formula, or relation.

The values of the measuredef object are the values of the logical measure, and its
parent is the logical cube.

The following is a full description of a measuredef object for the logical measure
called UNITS. The object is a formula that is dimensioned by the dimensions of the
parent cube, which is called UNITS_CUBE. The formula includes fully qualified
object names, but this type of specification is optional.

FULLDSC units

DEFINE UNITS FORMULA DECIMAL <TIME CUSTOMER PRODUCT CHANNEL>
LD IMPLEMENTATION UNITS Measure in UNITS_CUBE Cube
EQ aggregate(GLOBAL_AW.GLOBAL!UNITS_VARIABLE using
GLOBAL_AW.GLOBAL!UNITS_CUBE_AGGMAP_AWCREATEDDEFAULT_1)
PROPERTY 'AW$CLASS' -'IMPLEMENTATION'
PROPERTY 'AW$COMPSPEC' 'GLOBAL_AW.GLOBAL!UNITS_CUBE_AGGMAP_AWCREATEDDEFAULT_1'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:28:41'
PROPERTY 'AW$LOGICAL_NAME' 'UNITS'
PROPERTY 'AW$PARENT_NAME' 'UNITS_CUBE'
PROPERTY 'AW$ROLE' 'MEASUREDEF'
PROPERTY 'AW$STATE' 'CREATED'

The AW$COMPSPEC property holds the name of the measure's compspec aggmap. If
this property value is NA, then measure values that are not stored will not be
calculated; they will be NA.

COMPSPEC Aggmap
A logical measure can have a compspec object, which is an aggmap that specifies the
rules for calculating aggregates. For information about aggmaps, see the Oracle
OLAP DML Reference.

Implementation Class Objects

A-18 Oracle OLAP Application Developer’s Guide

The following is a full description of a compspec aggmap for the logical measure
called UNITS. The aggmap includes fully qualified object names, but this type of
specification is optional.

FULLDSC units_cube_aggmap_awcreateddefault_1

DEFINE UNITS_CUBE_AGGMAP_AWCREATEDDEFAULT_1 AGGMAP
LD IMPLEMENTATION Default aggmap created by dbms_awm.refresh_awcube for
UNITS_CUBE cube
AGGMAP
RELATION GLOBAL_AW.GLOBAL!CHANNEL_PARENTREL OPERATOR SUM PRECOMPUTE(NA)
RELATION GLOBAL_AW.GLOBAL!CUSTOMER_PARENTREL OPERATOR SUM PRECOMPUTE(NA)
RELATION GLOBAL_AW.GLOBAL!PRODUCT_PARENTREL OPERATOR SUM PRECOMPUTE(NA)
RELATION GLOBAL_AW.GLOBAL!TIME_PARENTREL OPERATOR SUM PRECOMPUTE(NA)
AGGINDEX NO
END
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:29:24'
PROPERTY 'AW$PARENT_NAME' 'UNITS_CUBE'
PROPERTY 'AW$ROLE' 'COMPSPEC'
PROPERTY 'AW$STATE' 'CREATED'

Dimension Objects
A dimension is implemented by a dimdef object. In addition, a dimension has one
each of the following supporting objects:

■ Hierlist dimension

■ Levellist dimension

■ Member_levelrel relation

■ Member_parentrel relation

■ Hier_levels valueset

Optionally, a dimension can have one or more attrdef objects.

For each of these objects, its AW$ROLE property records the object's function. For
example, the AW$ROLE property of a hierlist dimension is set to HIERLIST. In
addition, the AW$PARENT property for each of these objects contains the name of the
logical dimension to which the object belongs.

Implementation Class Objects

Database Standard Form for Analytic Workspaces A-19

If a dimension does not have a hierarchy, or it does not have levels, or it has neither,
then these supporting objects exist but they are not populated.

Dimdef Dimension
A logical dimension is implemented by a workspace dimension that has the value
DIMDEF in its AW$ROLE property. The values of a given dimdef dimension are the
values of the logical dimension.

A dimdef dimension has no parent, so its AW$PARENT_NAME property is set to NA.
The AW$TYPE property is set to TIME for time dimensions, and it is set to NA for all
other dimensions.

The following is a full description of a dimdef dimension for the logical dimension
called PRODUCT.

FULLDSC product

DEFINE PRODUCT DIMENSION TEXT
LD IMPLEMENTATION PRODUCT Dimension
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:42'
PROPERTY 'AW$LOGICAL_NAME' 'PRODUCT'
PROPERTY 'AW$PARENT_NAME' NA
PROPERTY 'AW$ROLE' 'DIMDEF'
PROPERTY 'AW$STATE' 'ACTIVE'
PROPERTY 'AW$TYPE' NA

The following is a report that shows sample values of this dimdef dimension from all
the levels. This is an embedded totals dimension. In this example, the use of
surrogate keys ensures uniqueness among the values from all levels. When
surrogate keys are not used, another strategy must be used to insure uniqueness.
For example, you can use the level as a prefix, such as ITEM.46 and FAMILY.7.
The example includes an attrdef variable and member_levelrel relation to clarify the
results.

LIMIT product TO '46'
LIMIT product ADD ANCESTORS USING product_parentrel
REPORT DOWN product W 25 <product_long_description product_levelrel>

Implementation Class Objects

A-20 Oracle OLAP Application Developer’s Guide

ALL_LANGUAGES: AMERICAN_AMERICA
 -----------------PRODUCT_HIERLIST------------------
 ------------------PRODUCT_ROLLUP-------------------
PRODUCT PRODUCT_LONG_DESCRIPTION PRODUCT_LEVELREL
-------------- ------------------------- -------------------------
46 Standard Mouse ITEM
7 Accessories FAMILY
3 Software/Other CLASS
1 Total Product TOTAL_PRODUCT

Hierlist Dimension
A hierlist dimension lists the names of the hierarchies of its parent dimension. That
is, the values of the hierlist dimension are the names of hierarchies, such as the
CALENDAR and FISCAL hierarchies for a time dimension. The hierarchies do not
have one-to-one implementations as workspace objects, so the names refer to logical
hierarchies not to workspace objects.

The following is a full description of a hierlist dimension called TIME_HIERLIST.

DEFINE TIME_HIERLIST DIMENSION TEXT
LD IMPLEMENTATION List of Hierarchies for TIME
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'HIERLIST'
PROPERTY 'AW$STATE' 'CREATED'

The following is a report that shows the values of this hierlist dimension. TIME has
one hierarchy, which is named CALENDAR.

REPORT time_hierlist

TIME_HIERLIST

CALENDAR

Levellist Dimension
A levellist dimension lists the names of the levels of its parent dimension. That is,
the values of the levellist dimension are the names of levels, such as the CITY,
STATE, and COUNTRY levels for a geography dimension. The levels do not have
one-to-one implementations as workspace objects, so the names refer to logical
levels not to workspace objects. The logical level for each dimension value is
identified in the dimension's MEMBER_LEVELREL relation.

Implementation Class Objects

Database Standard Form for Analytic Workspaces A-21

The following is a full description of a levellist dimension called TIME_LEVELLIST.

FULLDSC time_levellist

DEFINE TIME_LEVELLIST DIMENSION TEXT
LD IMPLEMENTATION List of levels for TIME
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$LOGICAL_NAME' NA
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'LEVELLIST'
PROPERTY 'AW$STATE' 'CREATED'

The following is a report that shows the values of this levellist dimension. The levels
are YEAR, QUARTER, and MONTH.

REPORT time_levellist

TIME_LEVELLIST

YEAR
QUARTER
MONTH

Member_Levelrel Relation
A member_levelrel relation records the level for each value of the relation's parent
dimension. For example, for a geography dimension, the member_levelrel relation
might record the fact that BOSTON belongs to the CITY level and IOWA belongs to
the STATE level.

The following is a full description of a member_levelrel relation called
TIME_LEVELREL.

FULLDSC time_levelrel

DEFINE TIME_LEVELREL RELATION TIME_LEVELLIST <TIME>
LD IMPLEMENTATION Level of each dimension member for TIME
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'MEMBER_LEVELREL'
PROPERTY 'AW$STATE' 'CREATED'

Implementation Class Objects

A-22 Oracle OLAP Application Developer’s Guide

The following is a report that shows sample values of this member_levelrel relation.
The levels are MONTH, QUARTER, and YEAR.

LIMIT time TO '75'
LIMIT time ADD ANCESTORS USING time_parentrel
REPORT DOWN time W 15 time_levelrel

TIME TIME_LEVELREL
-------------- ---------------
75 MONTH
83 QUARTER
85 YEAR

Member_Parentrel Relation
A member_parentrel relation records the parent dimension value for each value of the
relation's parent dimension. For example, for a geography dimension, the
member_parentrel relation might record the fact that the parent of BOSTON is
MASSACHUSETTS, and the parent of IOWA is USA.

The following is a full description of a member_parentrel relation called
TIME_PARENTREL.

FULLDSC time_parentrel

DEFINE TIME_PARENTREL RELATION TIME <TIME TIME_HIERLIST>
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'MEMBER_PARENTREL'
PROPERTY 'AW$STATE' 'CREATED'

The following is a report that shows the values of this member_parentrel relation. The
parent of a given value can be different, depending on which hierarchy is being
considered.

REPORT DOWN time W 20 time_parentrel

 ---TIME_PARENTREL---
 ---TIME_HIERLIST----
TIME CALENDAR
-------------- --------------------
75 83
83 85
85 NA

Implementation Class Objects

Database Standard Form for Analytic Workspaces A-23

Hier_Levels Valueset
A hier_levels valueset lists the levels that are included in each hierarchy of the parent
dimension.

The following is a full description of a hier_levels valueset called
TIME_HIER_LEVELS.

FULLDSC time_hier_levels

DEFINE TIME_HIER_LEVELS VALUESET TIME_LEVELLIST <TIME_HIERLIST>
LD IMPLEMENTATION Ordered from Bottom to Top list of levels in a hierarchy for
TIME
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'HIER_LEVELS'
PROPERTY 'AW$STATE' 'CREATED'

The following command present the list of levels for each hierarchy, as recorded in
this hier_levels valueset.

REPORT W 25 VALUES(time_hier_levels)

TIME_HIERLIST VALUES(TIME_HIER_LEVELS)
-------------- -------------------------
CALENDAR MONTH
 QUARTER
 YEAR

Attrdef Object
A logical attribute is implemented by a workspace object that has the value attrdef in
its AW$ROLE property. The attrdef object can be a variable, formula, or relation. The
values of the attrdef object are the values of the logical attribute, and its parent is the
logical dimension to which it belongs.

The AW$TYPE property indicates whether Oracle OLAP has a special use for the
attribute. Property values that indicate such a special use are DEFAULT_ORDER,
END_DATE, TIME_SPAN, MEMBER_LONG_DESCRIPTION,
MEMBER_SHORT_DESCRIPTION, and MEMBER_VISIBLE. If the value is USER or
NA, then the attribute has no special meaning for Oracle OLAP.

Implementation Class Objects

A-24 Oracle OLAP Application Developer’s Guide

An attrdef object must be dimensioned by its parent dimdef dimension. In addition, it
can be dimensioned by the hierlist dimension or the ALL_LANGUAGES dimension, or
both.

The following is a full description of an attrdef object called
TIME_LONG_DESCRIPTION. This long description attribute is implemented as a
variable.

FULLDSC time_long_description

DEFINE TIME_LONG_DESCRIPTION VARIABLE TEXT <TIME TIME_HIERLIST ALL_LANGUAGES>
LD IMPLEMENTATION LONG_DESCRIPTION Attribute for TIME Dimension
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:28:25'
PROPERTY 'AW$LOGICAL_NAME' 'LONG_DESCRIPTION'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'ATTRDEF'
PROPERTY 'AW$STATE' 'CREATED'
PROPERTY 'AW$TYPE' 'Long Description'

The following is a report that shows selected values of this attrdef object at each
level.

LIMIT time TO time_levelrel EQ 'YEAR'
LIMIT time KEEP LAST 1
LIMIT time ADD DESCENDANTS USING time_parentrel
REPORT DOWN time W 25 time_long_description

ALL_LANGUAGES: AMERICAN_AMERICA
 --TIME_LONG_DESCRIPTION--
 ------TIME_HIERLIST------
TIME CALENDAR
-------------- -------------------------
119 2004
115 Q1-04
116 Q2-04
103 Jan-04
104 Feb-04
105 Mar-04
106 Apr-04
107 May-04
108 Jun-04

Catalogs Class Objects

Database Standard Form for Analytic Workspaces A-25

Catalogs Class Objects
Catalogs class objects hold information about the logical objects in the workspace.
Catalog class objects include a list of all the cubes in the workspace, a list of all the
measures in the workspace, a list of all the dimensions in the workspace, and other
lists that can facilitate the work of various utilities. A given workspace has a single
instance of each Catalog class object. DBMS_AWM creates these objects using the role
as the name, so that the all_languages dimension is named ALL_LANGUAGES. For
this reason, the names of objects in the CATALOGS class are shown here in capital
letters to indicate actual names.

In this section, Catalogs class objects are discussed in the following groups:

■ Lists of Objects

■ Lists of Types, Roles, and Languages

■ Lists of Cube and Dimension Objects

■ Supporting Object Information

Lists of Objects
The Catalogs class includes a set of dimensions, each of which lists all the objects of
a given kind. For example, the ALL_MEASURES dimension lists all the logical
measures.

ALL_CUBES Dimension
The ALL_CUBES dimension lists the full names of all the logical cubes in the
workspace. The following is a full description of an ALL_CUBES dimension.

FULLDSC all_cubes

DEFINE ALL_CUBES DIMENSION TEXT
LD CATALOGS List of all cubes in the aw
PROPERTY 'AW$CLASS' 'CATALOGS'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'ALL_CUBES'
PROPERTY 'AW$STATE' 'CREATED'

The following is a report of the values of this ALL_CUBES dimension.

REPORT W 30 all_cubes

Catalogs Class Objects

A-26 Oracle OLAP Application Developer’s Guide

ALL_CUBES

GLOBAL_AW.UNITS_CUBE.CUBE
GLOBAL_AW.PRICE_CUBE.CUBE

ALL_MEASURES Dimension
The ALL_MEASURES dimension lists the full names of all the logical measures in the
workspace.

A full description for this dimension is similar to those presented for the
ALL_CUBES dimension in "ALL_CUBES Dimension" on page A-25. The following is
a report of the values of an ALL_MEASURES dimension.

REPORT W 40 all_measures

ALL_MEASURES
--
GLOBAL_AW.UNITS_CUBE.UNITS.MEASURE
GLOBAL_AW.PRICE_CUBE.UNIT_COST.MEASURE
GLOBAL_AW.PRICE_CUBE.UNIT_PRICE.MEASURE

ALL_DIMENSIONS Dimension
The ALL_DIMENSIONS dimension lists the full names of all the logical dimensions
in the workspace.

A full description for this dimension is similar to those presented for the
ALL_CUBES dimension in "ALL_CUBES Dimension" on page A-25. The following is
a report of the values of an ALL_DIMENSIONS dimension.

REPORT W 40 all_dimensions

ALL_DIMENSIONS
--
GLOBAL_AW.CHANNEL.DIMENSION
GLOBAL_AW.CUSTOMER.DIMENSION
GLOBAL_AW.PRODUCT.DIMENSION
GLOBAL_AW.TIME.DIMENSION

ALL_HIERARCHIES Dimension
The ALL_HIERARCHIES dimension lists the full names of all the hierarchies in the
workspace.

Catalogs Class Objects

Database Standard Form for Analytic Workspaces A-27

A full description for this dimension is similar to those presented for the
ALL_CUBES dimension in "ALL_CUBES Dimension" on page A-25. The following is
a report of the values of an ALL_HIERARCHIES dimension.

REPORT W 45 all_hierarchies

ALL_HIERARCHIES

GLOBAL_AW.CHANNEL.CHANNEL_ROLLUP.HIERARCHY
GLOBAL_AW.CHANNEL.AW$NONE.HIERARCHY
GLOBAL_AW.CUSTOMER.SHIPMENTS_ROLLUP.HIERARCHY
GLOBAL_AW.CUSTOMER.MARKET_ROLLUP.HIERARCHY
GLOBAL_AW.CUSTOMER.AW$NONE.HIERARCHY
GLOBAL_AW.PRODUCT.PRODUCT_ROLLUP.HIERARCHY
GLOBAL_AW.PRODUCT.AW$NONE.HIERARCHY
GLOBAL_AW.TIME.CALENDAR.HIERARCHY
GLOBAL_AW.TIME.AW$NONE.HIERARCHY

Hierarchies with a simple name of AW$NONE indicate that a dimension has no
hierarchy.

ALL_LEVELS Dimension
The ALL_LEVELS dimension lists the full names of all the levels in the workspace.

A full description for this dimension is similar to those presented for the
ALL_CUBES dimension in "ALL_CUBES Dimension" on page A-25. The following is
a report of the values of an ALL_LEVELS dimension.

REPORT W 40 all_levels

ALL_LEVELS
--
GLOBAL_AW.CHANNEL.ALL_CHANNELS.LEVEL
GLOBAL_AW.CHANNEL.CHANNEL.LEVEL
GLOBAL_AW.CHANNEL.AW$NONE.LEVEL
GLOBAL_AW.CUSTOMER.ALL_CUSTOMERS.LEVEL
GLOBAL_AW.CUSTOMER.REGION.LEVEL
GLOBAL_AW.CUSTOMER.WAREHOUSE.LEVEL
GLOBAL_AW.CUSTOMER.TOTAL_MARKET.LEVEL
GLOBAL_AW.CUSTOMER.MARKET_SEGMENT.LEVEL
GLOBAL_AW.CUSTOMER.ACCOUNT.LEVEL
GLOBAL_AW.CUSTOMER.SHIP_TO.LEVEL
GLOBAL_AW.CUSTOMER.AW$NONE.LEVEL
GLOBAL_AW.PRODUCT.TOTAL_PRODUCT.LEVEL
GLOBAL_AW.PRODUCT.CLASS.LEVEL

Catalogs Class Objects

A-28 Oracle OLAP Application Developer’s Guide

GLOBAL_AW.PRODUCT.FAMILY.LEVEL
GLOBAL_AW.PRODUCT.ITEM.LEVEL
GLOBAL_AW.PRODUCT.AW$NONE.LEVEL
GLOBAL_AW.TIME.YEAR.LEVEL
GLOBAL_AW.TIME.QUARTER.LEVEL
GLOBAL_AW.TIME.MONTH.LEVEL
GLOBAL_AW.TIME.AW$NONE.LEVEL

ALL_ATTRIBUTES Dimension
The ALL_ATTRIBUTES dimension lists the full names of all the attributes in the
workspace.

A full description for this dimension is similar to those presented for the
ALL_CUBES dimension in "ALL_CUBES Dimension" on page A-25. The following is
a report of the values of an ALL_ATTRIBUTES dimension.

REPORT W 50 all_attributes

ALL_ATTRIBUTES
--
GLOBAL_AW.CHANNEL.LONG_DESCRIPTION.ATTRIBUTE
GLOBAL_AW.CHANNEL.SHORT_DESCRIPTION.ATTRIBUTE
GLOBAL_AW.CUSTOMER.LONG_DESCRIPTION.ATTRIBUTE
GLOBAL_AW.CUSTOMER.SHORT_DESCRIPTION.ATTRIBUTE
GLOBAL_AW.PRODUCT.LONG_DESCRIPTION.ATTRIBUTE
GLOBAL_AW.PRODUCT.SHORT_DESCRIPTION.ATTRIBUTE
GLOBAL_AW.PRODUCT.PACKAGE.ATTRIBUTE
GLOBAL_AW.TIME.LONG_DESCRIPTION.ATTRIBUTE
GLOBAL_AW.TIME.SHORT_DESCRIPTION.ATTRIBUTE
GLOBAL_AW.TIME.END_DATE.ATTRIBUTE
GLOBAL_AW.TIME.TIME_SPAN.ATTRIBUTE

ALL_OBJECTS Dimension
The ALL_OBJECTS dimension lists the full names of all the logical objects in the
workspace.

The following is a full description of an ALL_OBJECTS dimension.

FULLDSC all_objects

DEFINE ALL_OBJECTS DIMENSION CONCAT (ALL_DIMENSIONS ALL_CUBES ALL_MEASURES
ALL_HIERARCHIES ALL_LEVELS ALL_ATTRIBUTES)
LD CATALOGS List of all objects in the aw
PROPERTY 'AW$CLASS''CATALOGS'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'

Catalogs Class Objects

Database Standard Form for Analytic Workspaces A-29

PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:07:35'
PROPERTY 'AW$ROLE' 'ALL_OBJECTS'
PROPERTY 'AW$STATE' 'CREATED'

ALL_OBJECTS is a concat dimension of the ALL_CUBES, ALL_MEASURES,
ALL_HIERARCHIES, ALL_LEVELS, and ALL_ATTRIBUTES dimensions. Its
dimension members are a concatenated list of the members of those dimensions, as
shown by this example.

LIMIT all_cubes TO FIRST 2
LIMIT all_measures TO FIRST 2
LIMIT all_hierarchies TO FIRST 2
LIMIT all_levels TO FIRST 2
LIMIT all_attributes TO FIRST 2
LIMIT all_objects TO all_cubes
LIMIT all_objects ADD all_measures
LIMIT all_objects ADD all_hierarchies
LIMIT all_objects ADD all_levels
LIMIT all_objects ADD all_attributes
REPORT W 70 all_objects

ALL_OBJECTS
--
<ALL_CUBES: GLOBAL_AW.UNITS_CUBE.CUBE>
<ALL_CUBES: GLOBAL_AW.PRICE_CUBE.CUBE>
<ALL_MEASURES: GLOBAL_AW.UNITS_CUBE.UNITS.MEASURE>
<ALL_MEASURES: GLOBAL_AW.PRICE_CUBE.UNIT_COST.MEASURE>
<ALL_HIERARCHIES: GLOBAL_AW.CHANNEL.CHANNEL_ROLLUP.HIERARCHY>
<ALL_HIERARCHIES: GLOBAL_AW.CHANNEL.AW$NONE.HIERARCHY>
<ALL_LEVELS: GLOBAL_AW.CHANNEL.ALL_CHANNELS.LEVEL>
<ALL_LEVELS: GLOBAL_AW.CHANNEL.CHANNEL.LEVEL>
<ALL_ATTRIBUTES: GLOBAL_AW.CHANNEL.LONG_DESCRIPTION.ATTRIBUTE>
<ALL_ATTRIBUTES: GLOBAL_AW.CHANNEL.SHORT_DESCRIPTION.ATTRIBUTE>

Lists of Types, Roles, and Languages
The Catalogs class includes dimensions that list types and roles that are supported
by the current version of the standard form. In addition, there is a dimension that
lists the languages supported by the current analytic workspace.

ALL_OBJTYPES Dimension
The ALL_OBJTYPES dimension lists all the object types that are supported in the
current version of the standard form. The following report lists the types.

Catalogs Class Objects

A-30 Oracle OLAP Application Developer’s Guide

REPORT all_objtypes

ALL_OBJTYPES

CUBE
MEASURE
DIMENSION
LEVEL
HIERARCHY
ATTRIBUTE

ALL_DESCTYPES Dimension
The ALL_DESCTYPES dimension lists all the description types that are recognized
in the current version of the standard form. The following report lists the types.

REPORT all_desctypes

ALL_DESCTYPES

SHORT
LONG
PLURAL

ALL_ATTRTYPES Dimension
The ALL_ATTRTYPES dimension lists all the attribute types that are recognized in
the current version of the standard form. The following report lists the types.

REPORT W 40 all_attrtypes

ALL_ATTRTYPES
--
DEFAULT_ORDER
END_DATE
TIME_SPAN
MEMBER_LONG_DESCRIPTION
MEMBER_SHORT_DESCRIPTION
MEMBER_VISIBLE
USER

AW_ROLES Dimension
The AW_ROLES dimension lists all the roles that are recognized in the current
version of the standard form. The following report lists the roles.

Catalogs Class Objects

Database Standard Form for Analytic Workspaces A-31

REPORT W 30 aw_roles

AW_ROLES

LANGUAGEDEF
ADTVIEWLIST
ADTLIST
ADTTBLLIST
ADTREL
ADTTBLREL
ADTLMTMAP
DIMDEF
MEMBER_CREATEDBY
LEVELLIST
MEMBER_LEVELREL
LEVEL_CREATEDBY
LEVELCOLLIST
LEVELCOLNUM
LEVELCOLMAP
HIERLIST
HIER_CREATEDBY
MEMBER_INHIER
MEMBER_PARENTREL
ATTRDEF
SRCCOMPOSITE
SRCLVLOWNER
SRCLVLTBL
SRCLVLCOL
SRCLVLPNTCOL
MEMBER_FAMILYREL
HIER_LEVELS
MEMBER_GID
ALL_LANGUAGES
ALL_DIMENSIONS
ALL_CUBES
ALL_MEASURES
ALL_HIERARCHIES
ALL_LEVELS
ALL_ATTRIBUTES
AW_ROLES
ALL_DESCTYPES
ALL_OBJTYPES
ALL_OBJECTS
AW_NAMES
AW_COMPSPECS

Catalogs Class Objects

A-32 Oracle OLAP Application Developer’s Guide

AW_LOOPSPECS

ALL_LANGUAGES Dimension
The ALL_LANGUAGES dimension lists all the languages that are implemented in the
current analytic workspace. The following report lists the single language that is
implemented in a sample workspace. Language names should follow Globalization
Support standards.

REPORT W 30 all_languages

ALL_LANGUAGES

AMERICAN_AMERICA

Lists of Cube and Dimension Objects
The Catalogs class includes valuesets that list the measures in each cube, as well as
the hierarchies, levels, and attributes in each dimension. These lists are specific to a
given workspace.

CUBE_MEASURES Valueset
The CUBE_MEASURES valueset lists the measures that belong to each cube in the
current analytic workspace. The valueset is dimensioned by ALL_CUBES, so that
each cube has its own list. The following is a full description of a CUBE_MEASURES
valueset in a sample workspace.

FULLDSC cube_measures

DEFINE CUBE_MEASURES VALUESET ALL_MEASURES <ALL_CUBES>
PROPERTY 'AW$CLASS' 'CATALOGS'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$ROLE' 'CUBE_MEASURES'
PROPERTY 'AW$STATE' 'CREATED'

The following commands present the list of measures associated with each cube.

LCOLWIDTH=30 "Widen the label column
REPORT W 40 VALUES(cube_measures)

ALL_CUBES VALUES(CUBE_MEASURES)
------------------------------ --
GLOBAL_AW.UNITS_CUBE.CUBE GLOBAL_AW.UNITS_CUBE.UNITS.MEASURE

Catalogs Class Objects

Database Standard Form for Analytic Workspaces A-33

GLOBAL_AW.PRICE_CUBE.CUBE GLOBAL_AW.PRICE_CUBE.UNIT_COST.MEASURE
 GLOBAL_AW.PRICE_CUBE.UNIT_PRICE.MEASURE

DIM_HIERARCHIES Valueset
The DIM_HIERARCHIES valueset lists the hierarchies that belong to each dimension
in the current analytic workspace. The valueset is dimensioned by
ALL_DIMENSIONS, so that each dimension has its own list. The following
commands present the list of hierarchies for each dimension.

REPORT W 45 VALUES(dim_hierarchies)

ALL_DIMENSIONS VALUES(DIM_HIERARCHIES)
------------------------------ ---
GLOBAL_AW.CHANNEL.DIMENSION GLOBAL_AW.CHANNEL.CHANNEL_ROLLUP.HIERARCHY
GLOBAL_AW.CUSTOMER.DIMENSION GLOBAL_AW.CUSTOMER.SHIPMENTS_ROLLUP.HIERARCHY
 GLOBAL_AW.CUSTOMER.MARKET_ROLLUP.HIERARCHY
GLOBAL_AW.PRODUCT.DIMENSION GLOBAL_AW.PRODUCT.PRODUCT_ROLLUP.HIERARCHY
GLOBAL_AW.TIME.DIMENSION GLOBAL_AW.TIME.CALENDAR.HIERARCHY

DIM_LEVELS Valueset
The DIM_LEVELS valueset lists the levels that belong to each dimension in the
current analytic workspace. The valueset is dimensioned by ALL_DIMENSIONS, so
that each dimension has its own list. The following commands present the list of
levels for each dimension.

REPORT W 45 VALUES(dim_levels)

ALL_DIMENSIONS VALUES(DIM_LEVELS)
------------------------------ ---
GLOBAL_AW.CHANNEL.DIMENSION GLOBAL_AW.CHANNEL.ALL_CHANNELS.LEVEL
 GLOBAL_AW.CHANNEL.CHANNEL.LEVEL
GLOBAL_AW.CUSTOMER.DIMENSION GLOBAL_AW.CUSTOMER.ALL_CUSTOMERS.LEVEL
 GLOBAL_AW.CUSTOMER.REGION.LEVEL
 GLOBAL_AW.CUSTOMER.WAREHOUSE.LEVEL
 GLOBAL_AW.CUSTOMER.TOTAL_MARKET.LEVEL
 GLOBAL_AW.CUSTOMER.MARKET_SEGMENT.LEVEL
 GLOBAL_AW.CUSTOMER.ACCOUNT.LEVEL
 GLOBAL_AW.CUSTOMER.SHIP_TO.LEVEL
GLOBAL_AW.PRODUCT.DIMENSION GLOBAL_AW.PRODUCT.TOTAL_PRODUCT.LEVEL
 GLOBAL_AW.PRODUCT.CLASS.LEVEL
 GLOBAL_AW.PRODUCT.FAMILY.LEVEL
 GLOBAL_AW.PRODUCT.ITEM.LEVEL
GLOBAL_AW.TIME.DIMENSION GLOBAL_AW.TIME.YEAR.LEVEL

Catalogs Class Objects

A-34 Oracle OLAP Application Developer’s Guide

 GLOBAL_AW.TIME.QUARTER.LEVEL
 GLOBAL_AW.TIME.MONTH.LEVEL

DIM_ATTRIBUTES Valueset
The DIM_ATTRIBUTES valueset lists the attributes that belong to each dimension in
the current analytic workspace. The valueset is dimensioned by ALL_DIMENSIONS,
so that each dimension has its own list. The following commands present the list of
attributes for a dimension called TIME.

REPORT W 46 VALUES(dim_attributes)

ALL_DIMENSIONS VALUES(DIM_ATTRIBUTES)
------------------------------ --
GLOBAL_AW.CHANNEL.DIMENSION GLOBAL_AW.CHANNEL.LONG_DESCRIPTION.ATTRIBUTE
 GLOBAL_AW.CHANNEL.SHORT_DESCRIPTION.ATTRIBUTE
GLOBAL_AW.CUSTOMER.DIMENSION GLOBAL_AW.CUSTOMER.LONG_DESCRIPTION.ATTRIBUTE
 GLOBAL_AW.CUSTOMER.SHORT_DESCRIPTION.ATTRIBUTE
GLOBAL_AW.PRODUCT.DIMENSION GLOBAL_AW.PRODUCT.LONG_DESCRIPTION.ATTRIBUTE
 GLOBAL_AW.PRODUCT.SHORT_DESCRIPTION.ATTRIBUTE
 GLOBAL_AW.PRODUCT.PACKAGE.ATTRIBUTE
GLOBAL_AW.TIME.DIMENSION GLOBAL_AW.TIME.LONG_DESCRIPTION.ATTRIBUTE
 GLOBAL_AW.TIME.SHORT_DESCRIPTION.ATTRIBUTE
 GLOBAL_AW.TIME.END_DATE.ATTRIBUTE
 GLOBAL_AW.TIME.TIME_SPAN.ATTRIBUTE

Supporting Object Information
The Catalogs class includes variables and formulas that list the objects that support
various other objects.

AW_NAMES Variable
The AW_NAMES variable is dimensioned by ALL_OBJECTS. It contains the name of
the workspace object that implements each logical object. If no workspace object
implements a given logical object, the value is NA.

The following is a full description of an AW_NAMES variable.

FULLDSC aw_names

DEFINE AW_NAMES VARIABLE TEXT <ALL_OBJECTS>
PROPERTY 'AW$CLASS' 'CATALOGS'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'AW_NAMES'

Features Class Objects

Database Standard Form for Analytic Workspaces A-35

PROPERTY 'AW$STATE' 'CREATED'

AW_COMPSPECS Variable
The AW_COMPSPECS variable is dimensioned by ALL_DIMENSIONS. For each
logical dimension, the AW_COMPSPECS variable contains the names of the AGGMAP
objects that must be modified when the dimension is modified.

The following is a full description of an AW_COMPSPECS variable.

FULLDSC aw_compspecs

DEFINE AW_COMPSPECS VARIABLE TEXT <ALL_DIMENSIONS>
PROPERTY 'AW$CLASS' 'CATALOGS'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'AW_COMPSPECS'
PROPERTY 'AW$STATE' 'CREATED'

AW_LOOPSPECS Variable
The AW_LOOPSPECS variable is dimensioned by ALL_CUBES. It contains the name
of the workspace composite for each cube.

The following is a full description of an AW_LOOPSPECS variable.

FULLDSC aw_loopspecs

DEFINE AW_LOOPSPECS VARIABLE TEXT <ALL_CUBES>
PROPERTY 'AW$CLASS' 'CATALOGS'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'AW_LOOPSPECS'
PROPERTY 'AW$STATE' 'CREATED'

Features Class Objects
Features class objects hold information about specific logical objects and the
workspace objects that implement them. For example, one object stores the
descriptions of all the logical objects, while another indicates whether the object is
intended to be visible to the user.

Features Class Objects

A-36 Oracle OLAP Application Developer’s Guide

ALL_DESCRIPTIONS Variable
The ALL_DESCRIPTIONS variable contains the short, long, and plural descriptions
of various logical objects. For search convenience it is dimensioned by a composite.

The following is a full description of an ALL_DESCRIPTIONS variable.

FULLDSC all_descriptions

DEFINE ALL_DESCRIPTIONS VARIABLE TEXT <SPARSE <ALL_OBJECTS ALL_DESCTYPES ALL_LANGUAGES>>
LD FEATURES Descriptions for all objects
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'ALL_DESCRIPTIONS'
PROPERTY 'AW$STATE' 'CREATED'

The following report shows sample values for ALL_DESCRIPTIONS.

report w 30 down all_dimensions all_descriptions

ALL_LANGUAGES: AMERICAN_AMERICA
 --------ALL_DESCRIPTIONS--------
 ---------ALL_DESCTYPES----------
ALL_DIMENSIONS SHORT LONG PLURAL
------------------------------ ---------- ---------- ----------
GLOBAL_AW.CHANNEL.DIMENSION Channel NA CHANNEL
GLOBAL_AW.CUSTOMER.DIMENSION Customer NA CUSTOMER
GLOBAL_AW.PRODUCT.DIMENSION Product NA PRODUCT
GLOBAL_AW.TIME.DIMENSION Time NA TIME

ATTR_INHIER Variable
The ATTR_INHIER variable is a boolean variable that indicates whether a given
attribute is associated with a given hierarchy. The variable is dimensioned by
ALL_ATTRIBUTES and ALL_HIERARCHIES.

The following is a full description of an ATTR_INHIER variable.

FULLDSC attr_inhier

DEFINE ATTR_INHIER VARIABLE BOOLEAN <ALL_ATTRIBUTES ALL_HIERARCHIES>
LD FEATURES Indicates if each attribute participates in each hierarchy
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'ATTR_INHIER'
PROPERTY 'AW$STATE' 'CREATED'

Features Class Objects

Database Standard Form for Analytic Workspaces A-37

DEFAULT_HIER Relation
The DEFAULT_HIER relation records the full name of the default hierarchy for each
dimension. The base dimension for the relation is ALL_DIMENSIONS.

The following is a full description of a DEFAULT_HIER relation.

FULLDSC default_hier

DEFINE DEFAULT_HIER RELATION ALL_HIERARCHIES <ALL_DIMENSIONS>
LD FEATURES Default hierarchy for each dimension
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'DEFAULT_HIER'
PROPERTY 'AW$STATE' 'CREATED'

The following report shows the default hierarchy for each dimension.

REPORT W 45 default_hier

ALL_DIMENSIONS DEFAULT_HIER
------------------------------ ---
GLOBAL_AW.CHANNEL.DIMENSION GLOBAL_AW.CHANNEL.CHANNEL_ROLLUP.HIERARCHY
GLOBAL_AW.CUSTOMER.DIMENSION GLOBAL_AW.CUSTOMER.SHIPMENTS_ROLLUP.HIERARCHY
GLOBAL_AW.PRODUCT.DIMENSION GLOBAL_AW.PRODUCT.PRODUCT_ROLLUP.HIERARCHY
GLOBAL_AW.TIME.DIMENSION GLOBAL_AW.TIME.CALENDAR.HIERARCHY

VISIBLE Variable
The VISIBLE variable is a boolean that indicates whether the Oracle OLAP enabler
utilities should expose or ignore the objects that are registered. The variable is
dimensioned by ALL_OBJECTS so that each object has its own setting.

The following is a full description of a VISIBLE variable.

FULLDSC visible

DEFINE VISIBLE VARIABLE BOOLEAN <ALL_OBJECTS>
LD FEATURES Is the object visible
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'VISIBLE'
PROPERTY 'AW$STATE' 'CREATED'

Features Class Objects

A-38 Oracle OLAP Application Developer’s Guide

Member_Inhier Variable
The member_inhier variable is a boolean variable that indicates whether a given
member of a dimension is in a given hierarchy. There is one of these variables for
each dimension in the workspace, and that dimension is the variable's parent.

The following is a full description of a member_inhier variable for the TIME
dimension.

FULLDSC time_inhier

DEFINE TIME_INHIER VARIABLE BOOLEAN <TIME TIME_HIERLIST>
LD FEATURES Indicator of whether each dimension member participates in a
hierarchy for TIME
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'MEMBER_INHIER'
PROPERTY 'AW$STATE' 'CREATED'

Member_Createdby Variable
The member_createdby variable records the entity that created each member of a
given dimension. There is one of these variables for each dimension in the
workspace, and that dimension is the variable's parent.

The following is a full description of a member_createdby variable for a dimension
called TIME.

FULLDSC time_createdby

DEFINE TIME_CREATEDBY VARIABLE TEXT <TIME>
LD FEATURES Creator of each dimension member for TIME
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'MEMBER_CREATEDBY'
PROPERTY 'AW$STATE' 'CREATED'

Features Class Objects

Database Standard Form for Analytic Workspaces A-39

Member_Familyrel Relation
The member_familyrel relation records the ancestors of a given member of a
dimension. There is one of these relations for each dimension in the workspace, and
that dimension is the variable's parent. These relations are for internal use.

The following is a full description of a member_familyrel relation for the TIME
dimension.

FULLDSC time_familyrel

DEFINE TIME_FAMILYREL RELATION TIME <TIME TIME_LEVELLIST TIME_HIERLIST>
LD FEATURES Family/Ancestry structure for TIME
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'MEMBER_FAMILYREL'
PROPERTY 'AW$STATE' 'CREATED'

Member_Gid Variable
The member_gid variable records the level depth of a given member of a dimension,
within a given hierarchy. There is one of these relations for each dimension in the
workspace, and that dimension is the variable's parent. These relations are for
internal use.

The following is a full description of a member_gid relation for the TIME dimension.

FULLDSC time_gid

DEFINE TIME_GID VARIABLE INTEGER <TIME TIME_HIERLIST>
LD FEATURES Grouping id value for TIME
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'MEMBER_GID'
PROPERTY 'AW$STATE' 'CREATED'

OBJ_CREATEDBY Variable
The OBJ_CREATEDBY variable records the entity that created each object that is
registered in the standard form. The variable is dimensioned by ALL_OBJECTS.

The following is a full description of the OBJ_CREATEDBY variable.

Extensions Class Objects

A-40 Oracle OLAP Application Developer’s Guide

FULLDSC obj_createdby

DEFINE OBJ_CREATEDBY VARIABLE TEXT <ALL_OBJECTS>
LD FEATURES Creator of each object
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'OBJ_CREATEDBY'
PROPERTY 'AW$STATE' 'CREATED'

OBJ_STATE Variable
The OBJ_STATE variable records the state for each registered object in the standard
form. The variable is dimensioned by ALL_OBJECTS. The value for each object is
either UNDER_CONSTRUCTION or ACTIVE.

The following is a full description of the OBJ_CREATEDBY variable.

FULLDSC obj_state

DEFINE OBJ_STATE VARIABLE TEXT <ALL_OBJECTS>
LD FEATURES State of each object
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'OBJ_STATE'
PROPERTY 'AW$STATE' 'CREATED'

VERSION Variable
The VERSION variable records the version number of the standard form convention
under which the analytic workspace is being managed.

Extensions Class Objects
Extensions class objects are defined and maintained by the Oracle OLAP utilities.
They are proprietary extensions to the standard form, and there is no commitment
on the part of Oracle to maintain them from release to release.

Do not define, modify, or depend on objects in the extensions class.

Upgrading From Express Server B-1

B
Upgrading From Express Server

This appendix provides upgrade instructions and identifies some of the major
differences between Oracle Express Server 6.3 and Oracle OLAP. It is intended to
provide a frame of reference to help you understand the material presented in this
guide.

This appendix includes the following topics:

■ Administration

■ Applications Support

■ Programming Language Changes

■ Converting Oracle Express Databases to Standard Form

Administration
Oracle OLAP is installed as an option in Oracle Enterprise Edition, and it is now
integrated with Oracle Database. While Express Server runs in a service
environment, Oracle OLAP runs within the Oracle kernel.

In Oracle, the term database refers only to the relational database. An Express
database is now called an analytic workspace. In Oracle OLAP, an analytic
workspace can be used either as a transient data cache or as a persistent data
repository. A persistent analytic workspace is stored as a LOB in a relational table,
which in turn is stored in a tablespace. There are no ".db" files.

The administrative tasks for Oracle OLAP are merged with the database tool set.

Administration

B-2 Oracle OLAP Application Developer’s Guide

Management Tools
Oracle Enterprise Manager encompasses the tools for administering Oracle
databases, providing a common user interface across all platforms. Performance
data for OLAP can be collected in system tables the same as any other Oracle
database performance statistics. Oracle Enterprise Manager provides a graphical
interface to SQL. Because OLAP now runs within the Oracle Database kernel, many
of the basic administrative tasks (such as starting, stopping, and configuring the
process) are subsumed into database management.

Analytic Workspace Manager is the tool for creating and managing analytic
workspaces.

OLAP Instance Manager, oesmgr, and oescmd are not available.

Authentication of Users
Oracle OLAP does not use operating system identities, except for the installation
user under whose identity Oracle Database is installed. You can delete other
operating system identities created for use by Express Server (such as the DBA user,
the Initialize user, the Default user, and individual user names) if they have no other
purpose.

All authentication is performed by Oracle Database. Applications must always
present credentials before opening a session, and those credentials must match a
user name and password stored in the relational database. Before users can access
Oracle OLAP, you must define user names and passwords in the database.

For users to access operating system files, they must have access rights to a
directory object that is mapped to the physical directory path. This access is granted
either to an individual user ID or to a database role.

Data Transfer
An Oracle OLAP session is always connected to the database. You do not open a
connection with the database as a separate or optional step.

You can copy data between an analytic workspace objects (such as variables and
dimensions) and relational tables in the following ways:

See Also: Chapter 12 for more information about OLAP
administration tasks

Administration

Upgrading From Express Server B-3

■ A PL/SQL package named DBMS_AWM provides procedures for creating an
analytic workspace from relational tables. Analytic Workspace Manager
provides a graphical interface to this package.

■ The OLAP DML SQL command fetches data into dimensions and variables for
further manipulation. A new SQL IMPORT command facilitates bulk data
transfer from relational tables into the analytic workspace, and a new SQL
INSERT DIRECT command facilitates data transfer from the analytic
workspace into relational tables.

■ Using SQL table functions, it is now possible for a SQL-based application to
manipulate and extract data from an analytic workspace. Express Server did not
permit a data transfer to be initiated externally. Analytic Workspace Manager
provides a graphical interface to the OLAP_TABLE function.

ODBC is not available, and thus access to third-party databases is not available
directly from Oracle OLAP.

Oracle Express Relational Access Administrator and Oracle Express Relational
Access Manager are not available.

Localization
The Express Server language support has been replaced by Oracle Globalization
Technology, which provides more extensive localization support and is much easier
to administer than the localization features of Express Server. Oracle Database and
Oracle OLAP use the same character set, which is selected during installation.

If you are upgrading Express databases that use translation tables, then you can
delete those tables because they are not needed by Oracle OLAP. Likewise, you
should check your Express programs for use of obsolete commands and keywords
that supported translation tables.

Support for Globalization Technology has been added to the OLAP DML. These
options enable an application to query the current localization settings and override
the behaviors controlled by the default language and territory.

Table B–1 identifies the Unicode character sets available in Oracle that are
equivalent to the Express Server character sets. If you plan to import Express
databases or to use Oracle OLAP to access multibyte data in external files, then you
might find this information helpful in identifying an appropriate database character
set. Note that the Express CHARSET option is now obsolete.

Applications Support

B-4 Oracle OLAP Application Developer’s Guide

Applications Support
Oracle OLAP enables applications to access its multidimensional data directly
through either a Java API or SQL. Express SPL programs can be executed using
either programming method. Be sure to review all SPL programs to remove
commands that are no longer available and to take advantage of new functionality.

Analytic Workspace Manager provides wizards for creating a database standard
form analytic workspace from relational tables, aggregating the data, and enabling
the workspace for access by the BI Beans or Oracle Discoverer. Enablement involves
generating relational views of data stored in an analytic workspace, and creating
metadata for those views that is in the appropriate type for the application.

You cannot run Windows C++, HTML, or Java applications that were developed for
use with Express Server.

Programming Environment
Applications for Oracle OLAP can be developed in Java using the BI Beans.
SQL-based applications can access OLAP data through views or manipulate it
directly through the OLAP_TABLE functions.

OLAP Worksheet provides an interactive environment for developing stored
procedures in either the OLAP DML or SQL. The PL/SQL DBMS_AW procedure
executes OLAP DML commands from a SQL environment.

You cannot connect to Oracle OLAP using Express Administrator, Personal Express,
or the Express Connection Utility.

Table B–1 Multibyte Character Set Equivalents

Express Server Unicode Character Set

EUC JA16EUC

SHIFTJIS JA16SJIS

HANGEUL KO16KSC5601

SCHINESE ZHS16GBK

TCHINESE ZHT16BIG5

See Also: Chapter 6 for methods of creating standard form
analytic workspaces from data in relational tables

Programming Language Changes

Upgrading From Express Server B-5

Communications
Oracle OLAP provides communications through Oracle Call Interface (OCI) and
Java Database Connectivity (JDBC).

OLAP Worksheet uses XCA for communication with the analytic workspace.
However, XCA is not supported for user-developed applications and may produce
unexpected results.

SNAPI is no longer available. Session sharing is not supported.

Metadata
The BI Beans can query data that is stored either in an analytic workspace or in
relational tables. The database administrator defines OLAP Catalog metadata for
both types of data source. The metadata is stored in tables and views.

Database standard form is a type of metadata stored in analytic workspaces for use
by the server tools provided in Analytic Workspace Manager. This metadata is
stored in properties on workspace objects and in catalogs, which are implemented
as special dimensions, variables, and valuesets.

Oracle Express Administrator is not available in Oracle OLAP, and the Oracle
Express Objects metadata that it generated is not used by the BI Beans.

Programming Language Changes
Numerous changes have been made to the Express Stored Procedure Language
(now called the OLAP Data Manipulation Language or OLAP DML).

See Also:

■ Chapter 4 for information about the BI Beans

■ Chapter 9 for methods of executing OLAP DML commands

See Also:

■ Chapter 5 for information about the OLAP Catalog.

■ Chapter 8 for information about database standard form.

Programming Language Changes

B-6 Oracle OLAP Application Developer’s Guide

New Commands
Support in the following areas has been added to the OLAP DML:

Allocation
Dynamic model execution
Bulk data transfers between analytic workspaces and relational tables
Byte manipulation functions
Data conversion functions
New data types

Obsolete Commands
Support in the following areas has been dropped:

EXTCALL
ODBC
SNAPI
XCA
Operating system commands

Conjoint dimensions and the ROLLUP command are still available, but composite
dimensions and aggmaps are strongly recommended instead, because they are
easier to manage and perform better.

UPDATE and COMMIT
The UPDATE command moves analytic workspace changes from a temporary
tablespace to a permanent tablespace. Your changes are not saved permanently
until you execute a COMMIT command, either from your Oracle OLAP session or
from SQL. A COMMIT writes the permanent tablespace to disk.

Changes that have not been moved to the permanent tablespace are not committed.
If you issue a COMMIT without first updating your analytic workspace, then no
changes to the analytic workspace that you made after your last UPDATE are
committed to disk.

The COMMIT command executes a SQL COMMIT command. All changes made
during your session are committed, whether they were made through Oracle OLAP
or through another form of access (such as SQL) to the database.

See Also: OLAP DML Reference for comprehensive lists of new,
obsolete, and significantly revised commands

Converting Oracle Express Databases to Standard Form

Upgrading From Express Server B-7

Converting Oracle Express Databases to Standard Form
EIF files are used to transfer the contents of an analytic workspace from one
database to another and to upgrade from an Express database. You can create an
analytic workspace from an Express database simply by using EIF files to transfer
the objects.

The more complex task is to create an analytic workspace in database standard
form, so that you can use the current generation of Oracle OLAP tools. You may be
able to leverage your investment in Express metadata to create standard form
metadata. Otherwise, you must define a new logical metadata model.

Who Should Use CREATE_DB_STDFORM
If your Express database contains Oracle Express Objects metadata (that is, it was
created by Oracle Express Administrator), then you can use a conversion program
named CREATE_DB_STDFORM. Without Oracle Express Objects metadata,
CREATE_DB_STDFORM cannot generate sufficient standard form metadata for the
OLAP tools to work.

Especially if your source data is in flat files, then use CREATE_DB_STDFORM if
possible. There are no tools currently available for creating a standard form analytic
workspace directly from flat files.

If your source data is in tables or views, then you have a choice of using
CREATE_DB_STDFORM to convert an Express database, or using other tools to create
an analytic workspace directly from the source data. CREATE_DB_STDFORM enables
you to use your Oracle Express Objects metadata instead of redefining the logical
model in the OLAP Catalog. However, you must perform other steps manually, as
described in "What CREATE_DB_STDFORM Does Not Do For You" on page B-8.
You can choose which method best suits your needs.

 Table B–2 identifies the upgrade options.

Table B–2 Choosing an Upgrade Path for Express Databases

If you have Oracle
Express Objects
metadata...

And your source data is
located in...

THEN create a standard form
analytic workspace using...

Yes Tables or views CREATE_DB_STDFORM or one of the
methods described in Chapter 6.

Yes Flat files CREATE_DB_STDFORM.

Converting Oracle Express Databases to Standard Form

B-8 Oracle OLAP Application Developer’s Guide

What CREATE_DB_STDFORM Does For You
CREATE_DB_STDFORM enables you to start using the BI Beans against your data in
a matter of minutes. The conversion step from Oracle Express Objects metadata to
database standard form metadata involves running a single program. You can then
enable the analytic workspace for the BI Beans using a dialog in Analytic
Workspace Manager. The entire process, from importing the EIF file to querying
views of the analytic workspace using a BI Beans application, is very quick and
fully automated.

If you load data only at the base level, then you can use the Aggregation wizards in
Analytic Workspace Manager to create and deploy an aggregation plan. This
method of aggregation is faster and more flexible than the ROLLUP command.

What CREATE_DB_STDFORM Does Not Do For You
The conversion process circumvents the usual first step in creating an analytic
workspace: developing a logical data model in the OLAP Catalog and mapping the
logical objects to the data source. In this usual scenario, if you want to modify the
logical model, you modify the OLAP Catalog; the tools make the appropriate
changes to the standard form catalogs by refreshing them from the OLAP Catalog.
This maintenance process is not available to analytic workspaces converted by
CREATE_DB_STDFORM. Thus, you must do the following tasks manually:

■ If you want to perform time-based analysis on your data, you must identify all
time dimensions and populate end date and time span attributes before using
CREATE_DB_STDFORM. A sample program is provided in this appendix.

■ Your analytic workspace may contain programs with references to obsolete
commands. You must revise them. You may also want to use some of the new
features. For example, you can handle sparse data with composites (instead of
conjoints) if you are not doing so already. You must define new variables and

No Tables or views One of the methods described in
Chapter 6.

No Flat files Oracle Warehouse Builder as
described in Chapter 6, or the method
described in Chapter 11.

Table B–2 (Cont.) Choosing an Upgrade Path for Express Databases

If you have Oracle
Express Objects
metadata...

And your source data is
located in...

THEN create a standard form
analytic workspace using...

Converting Oracle Express Databases to Standard Form

Upgrading From Express Server B-9

copy the data from the old variables (or reload it from the data source) to make
this change.

■ You cannot use the Refresh Wizard in Analytic Workspace Manager to copy
new data into a converted analytic workspace. Instead, you must modify the
load programs or create new ones, and run them manually.

■ You must make any changes to the standard form metadata manually using the
MAINTAIN command and qualified data references.

Converting From Oracle Express Objects Metadata
The Oracle Express Objects conversion tool operates on an analytic workspace. It
uses the Oracle Express Objects metadata to identify the roles of various objects,
and then does the following:

■ Populates existing objects with the appropriate standard form properties. For
example, the Oracle Express Objects language dimension is given the AW$ROLE
value of ALL_LANGUAGES.

■ Creates new standard form objects with the dimensions and properties required
by standard form, and copies the data from existing objects into it. For example,
standard form attributes are dimensioned by the hierdim dimension and Oracle
Express Objects attributes are not. In an XADEMO analytic workspace, the
conversion tool creates a variable named CHANNEL_LONG_DESCRIPTION
dimensioned by CHANNEL, C0.HIERDIM, and _XA_LANGDIM, and populates it
with values from C0.LONGLABEL.

■ Creates and populates standard form metadata objects, such as the standard
form catalogs, member_gid and member_inhier variables, and member_familyrel
and member_levelrel relations. For descriptions of these standard form objects,
refer to Appendix A.

The conversion tool adds standard form objects and properties; it does not delete
any Oracle Express Objects objects or properties. You can delete them manually if
you wish.

The BI Beans requires a level-sorted Time dimension with period end dates and
time span attributes in order to support time-based analysis.

CREATE_DB_STDFORM Syntax
The CREATE_DB_STDFORM program runs the Oracle Express Objects conversion
tool. It has this syntax:

CREATE_DB_STDFORM(aw, [mode], [debug], [directory], [filename], [metacheck])

Converting Oracle Express Databases to Standard Form

B-10 Oracle OLAP Application Developer’s Guide

Where:

aw is the name of the analytic workspace (TEXT)

mode is the attachment mode (RO | RW | RWX)

debug controls whether the debugger runs (YES | NO)

directory is a database directory where the debug file is written (TEXT)

filename is the name of the debug file (TEXT)

metacheck controls whether a metadata check precedes the conversion (YES | NO)

For example, the following command attaches XADEMO in read/write mode, verifies
that the Oracle Express Objects metadata is complete, converts the analytic
workspace to standard form, and sends status messages to the screen:

CALL CREATE_DB_STDFORM('xademo')

The next command attaches XADEMO in read/write exclusive mode and redirects
the status messages to a file named xademo.log in a database directory named
xademo_dir. It also performs the metadata check.

CALL CREATE_DB_STDFORM('xademo', 'rwx', yes, 'xademo_dir', 'xademo.log')

Procedure: Converting From Oracle Express Objects to Standard Form
Most of the steps for converting to standard form (such as creating a new analytic
workspace and importing the EIF file) can be done using the Object View in
Analytic Workspace Manager. However, this procedure uses the command-line
interface provided by OLAP Worksheet, on the basis that users making this
conversion are already familiar with OLAP DML commands.

Follow these steps to use the Oracle Express Objects metadata conversion tool to
create a standard form analytic workspace.

1. Create an EIF file from your Oracle Express Objects database, and copy the file
to a physical directory that is mapped to a database directory.

For information about database directories, refer to Permitting Access to
External Files on page 12-10.

2. Open Analytic Workspace Manager and attach to Oracle Database, as described
in "Introduction to Analytic Workspace Manager" on page 6-3.

3. From the Tools menu, choose OLAP Worksheet.

Converting Oracle Express Databases to Standard Form

Upgrading From Express Server B-11

OLAP Worksheet opens in a separate window. For information about using
OLAP Worksheet, refer to "Using OLAP Worksheet to Execute OLAP DML" on
page 9-4.

4. Create a new analytic workspace from the EIF file using commands like these:

AW CREATE aw
IMPORT ALL FROM EIF FILE 'directory/filename.eif' DATA DFNS
UPDATE
COMMIT

5. Identify the time dimensions:

LIMIT name TO OBJ(PROPERTY 'DIMTYPE') EQ 1
REPORT name

6. Identify the hierarchy dimension for each time dimension:

SHOW OBJ(PROPERTY 'HIERDIM' timedim)

Note: The Oracle Express Objects metadata identifies all of the objects that
support hierarchies and levels for a dimension. You can use the FULLDSC
command to see all of the properties of a dimension, or use the OBJ function as
shown here to obtain the value of particular properties, such as HIERDIM,
LEVELDIM, and LEVELREL.

7. Create date and time span attributes for each dimension.

DEFINE TIME_TIME_SPAN VARIABLE INTEGER <timedim hierdim>
PROPERTY 'USERDATA' FALSE

DEFINE TIME_END_DATE VARIABLE DATE <timedim hierdim>
PROPERTY 'USERDATA' FALSE

8. Populate the end date and time span attributes, as described in "Populating
Time Attributes" on page B-12.

9. Set properties on the Time dimension:

CONSIDER timedim
PROPERTY 'END_DATE' attribute_name
PROPERTY 'TIME_SPAN' attribute_name

The END_DATE and TIME_SPAN values (attribute_name) identify the names of
the variables that you just created.

10. Run the conversion tool with a command like this:

Converting Oracle Express Databases to Standard Form

B-12 Oracle OLAP Application Developer’s Guide

CALL CREATE_DB_STDFORM('aw')

Refer to the syntax description in "CREATE_DB_STDFORM Syntax" on
page B-9.

11. After the conversion tool completes successfully, save the changes:

UPDATE
COMMIT

You now have a standard form analytic workspace.

12. Enable the workspace for the BI Beans. Refer to "Enabling an Analytic
Workspace for an Application" on page 6-24.

You can do this step now or after you have completed the other steps in this
procedure.

13. To refresh the analytic workspace with new data, revise and run the data loader
programs, as described in "Revising the Load Programs" on page B-13.

Populating Time Attributes
A standard form Time dimension has the following characteristics:

■ Dimension members are sorted chronologically within level.

■ The AW$TYPE property has a value of 'Time'.

■ Period end date and time span attributes are defined and populated.

The conversion process sets the AW$TYPE property, defines standard form attributes
for period end dates and time span, and registers this information in the standard
form catalogs. It does not change the order of the Time dimension members nor
populate the attributes.

Sorting Time Dimension Members
If the Time members are not already sorted in chronological order within levels,
then use a program like the one shown in "Sorting Dimension Members" on
page 11-15 to sort them correctly. This topic assumes that your analytic workspace
contains an embedded total dimension for time periods.

Converting Oracle Express Databases to Standard Form

Upgrading From Express Server B-13

Creating and Populating End Date and Time Span Attributes
The end date and time span attributes are variables dimensioned by Time and
Time's hierdim dimension. The end date variable must be defined with a DATE data
type.

The method that you use to populate the end date and time span attributes depends
on your data source and the format of your Time dimension members. If the
information is available from your original data source (that is, the source from
which you populated the Express database), then you can load the information
using a file reader program like those discussed in "Reading Flat Files" on page 11-4.
Otherwise, you must derive the information from the dimension members or their
descriptions. An example of this method is shown in "Populating the XADEMO
Time Attributes" on page B-17.

Setting Properties on Time Objects
You must define and set the following properties before running
CREATE_DB_STDFORM:

■ On the Time dimension, set the END_DATE and TIME_SPAN properties to the
object names for these attributes. The DIMTYPE property should be set to 1
already.

■ On the end-date and time-span attributes, set the USERDATA property to
FALSE.

Revising the Load Programs
The Refresh wizard in Analytic Workspace Manager only operates on analytic
workspaces created using DBMS_AWM procedures, as described in Chapter 6. When
you create an analytic workspace using CREATE_DB_STDFORM, you circumvent the
mechanisms that provide the Refresh wizard with the information it needs to
acquire new data. You must refresh your analytic workspace manually using OLAP
DML programs.

Your analytic workspace probably contains programs generated by Express
Administrator for refreshing your Express database. You can begin by modifying
these programs for use in your analytic workspace; they are unusable in their
current state.

Delete the following code from your load programs:

Converting Oracle Express Databases to Standard Form

B-14 Oracle OLAP Application Developer’s Guide

■ Calls to EDDE.MSG. This program displayed Express error messages in the
Administrator graphical interface, and deleting calls to it does not affect the
operation of your program.

■ Calls to EDDE.HIERMNT. This program managed the metadata associated with
dimension hierarchies. It is not available for use in analytic workspaces, nor is
any of the information about your data that was stored in an XPDDDATA
database. You must manage any changes to the standard form metadata
manually.

■ Code to establish a connection with Oracle. Since the analytic workspace is part
of Oracle Database, a connection is always open.

The load programs only refresh the dimensions and measures. They do not refresh
the dimension attributes, the hierarchy and level objects, or the standard form
catalogs. Refer to Chapter 11 for information about writing load programs for
standard form objects associated with dimensions. Refer to Appendix A for
information about the standard form catalogs.

Example: Converting the XADEMO Database to Standard Form
This example uses an EIF file that contains objects and Oracle Express Objects
metadata from an Express database named XADEMO. If you are converting an
Express database, you are probably already familiar with XADEMO.

Creating a Standard Form XADEMO Analytic Workspace
Suppose that an EIF file named xademo.eif is located in a system directory
named \users\oracle\xademo_files. Take these steps to create a standard
form analytic workspace from this file.

1. Log in to your Oracle database as the SYSTEM user and create the XADEMO user,
permanent and temporary tablespaces, and a database directory for access to
the EIF file.

CREATE TABLESPACE olapdata DATAFILE '$ORACLE_HOME/oradata/olapdata.dbf'
 SIZE 5M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

CREATE TEMPORARY TABLESPACE olaptmp TEMPFILE
'$ORACLE_HOME/oradata/olaptmp.tmp'
 SIZE 5M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K;

CREATE USER xademo IDENTIFIED BY 'xademo'

Converting Oracle Express Databases to Standard Form

Upgrading From Express Server B-15

 DEFAULT TABLESPACE olapdata
 TEMPORARY TABLESPACE olaptmp
 QUOTA UNLIMITED ON olapdata
 QUOTA UNLIMITED ON olaptmp
 ACCOUNT UNLOCK;

CREATE DIRECTORY xademo_dir as '/users/oracle/OraHome1/xademo_files';
GRANT READ ON DIRECTORY xademo_dir TO xademo;

Refer to Chapter 12 for information about performing these tasks.

2. Open Analytic Workspace Manager and connect to your Oracle Database as the
XADEMO user.

3. Open OLAP Worksheet.

4. Create an analytic workspace from the EIF file:

AW CREATE xademo
IMPORT ALL FROM EIF FILE 'olapdata/xademo.eif' DATA DFNS
UPDATE
COMMIT

5. Identify the time dimensions:

LIMIT name TO OBJ(PROPERTY 'DIMTYPE') EQ 1
REPORT name

NAME

TIME
QUARTER
YEAR
MONTH

This example shows how to provide support to the TIME dimension.

6. Identify the HIERDIM dimension for TIME.

SHOW OBJ(PROPERTY 'HIERDIM' 'TIME')

T0.HIERDIM

7. Create the TIME_END_DATE and TIME_TIME_SPAN variables.

DEFINE TIME_END_DATE VARIABLE DATE <TIME T0.HIERDIM>
PROPERTY 'USERDATA' FALSE
DEFINE TIME_TIME_SPAN VARIABLE INTEGER <TIME T0.HIERDIM>

Converting Oracle Express Databases to Standard Form

B-16 Oracle OLAP Application Developer’s Guide

PROPERTY 'USERDATA' FALSE

8. Populate the TIME_END_DATE and TIME_TIME_SPAN variables, as described
in the following sections.

9. Set the properties on TIME.

CONSIDER time
PROPERTY 'END_DATE' 'TIME_END_DATE'
PROPERTY 'TIME_SPAN' 'TIME_TIME_SPAN'

10. Convert the analytic workspace to database standard form:

CALL CREATE_DB_STDFORM('xademo')
UPDATE
COMMIT

The XADEMO database does not have a data loader program, so no example is
provided here. However, Chapter 11 includes examples of file load and SQL fetch
programs.

About the Time Dimension in XADEMO
Oracle Express Objects metadata stores the names of supporting objects in
properties on the TIME dimension, as shown in Table B–3.

By using the OBJ function, you can discover the names of objects that support the
TIME dimension:

SHOW OBJ(PROPERTY 'LEVELDIM' 'TIME')
T0.LEVELDIM

SHOW OBJ(PROPERTY 'LEVELLABELFRM' 'TIME')
T0.LVLLABFRM

Table B–3 Oracle Express Objects Properties for Hierarchy and Level Support

Property Description

HIERDIM List of hierarchies (dimension)

LEVELDIM List of levels (dimension)

LEVELREL Level associated with each dimension member (relation)

LEVELLABELFRM Description of each level (formula)

Converting Oracle Express Databases to Standard Form

Upgrading From Express Server B-17

The TIME dimension has two hierarchies, which are listed in the T0.LEVELDIM
dimension. They are named STANDARD and YTD. The following report shows
sample TIME members at each level.

REPORT DOWN time t0.levelrel W 20 t0.lvllabfrm

 ----------------------------T0.HIERDIM-----------------------------
 ------------STANDARD------------- ---------------YTD---------------
TIME T0.LEVELREL T0.LVLLABFRM T0.LEVELREL T0.LVLLABFRM
---------- ------------ -------------------- ------------ --------------------
JAN96 L3 Month(s) L5 YTD Month(s) Detail
FEB96 L3 Month(s) L5 YTD Month(s) Detail
Q1.96 L2 Quarter(s) NA NA
LAST.YTD NA NA L4 YTD Summaries
1996 L1 Year(s) NA NA

Populating the XADEMO Time Attributes
The POP_TIME_ATTRS program shown in Example B–1 populates the
TIME_END_DATE and TIME_TIME_SPAN variables.

For TIME_END_DATE, the program uses the ENDDATE function to identify the last
day of each time period. The ENDDATE function only operates on dimensions with a
time data type (such as MONTH and YEAR). However, the XADEMO TIME dimension
has a TEXT data type. Several transformations are needed before the ENDDATE
function can be used. The program takes these steps:

1. For each level, defines a dimension with the appropriate data type (MONTH,
QUARTER, or YEAR). In the example, the dimensions are named M_TEMP,
Q_TEMP, and Y_TEMP.

2. Stores the names of the dimension members for particular level in a valueset. In
the example, the valueset is named T_LIST.

3. Uses the current status of the T_LIST valueset to add members to the new
dimensions (M_TEMP, Q_TEMP, and Y_TEMP).

For TIME_TIME_SPAN, the program extracts the first two characters from
TIME_END_DATE at the month level, which has values like 30APR96, to get the
number of days in each month.

The program then uses the ROLLUP command to calculate the number of days in
each quarter and year. T0.PARENT is a self-relation that identifies the parent-child
relationships among dimension members. However, T0.PARENT and
TIME_TIME_SPAN are both dimensioned by T0.HIERDIM, so ROLLUP cannot use
T0.PARENT. Instead, the program creates a relation named TIME_PARENTREL

Converting Oracle Express Databases to Standard Form

B-18 Oracle OLAP Application Developer’s Guide

dimensioned only by TIME, populates it from T0.PARENT, and uses the new
relation in the ROLLUP command.

Note that aggmaps are more efficient than ROLLUP, but since this case involves just
a single dimension in which all aggregate values are stored, ROLLUP is slightly
more convenient and the performance differences are negligible.

Example B–1 OLAP DML Program for Populating TIME Attributes

DEFINE POP_TIME_ATTRS PROGRAM
PROGRAM
VARIABLE _ytd TEXT " Stores YTD time members
TRAP ON cleanup " Divert processing on error to CLEANUP label

" Define dimensions for each level with date data types
IF NOT EXISTS('m_temp')
 THEN DEFINE m_temp DIMENSION MONTH
 ELSE MAINTAIN m_temp DELETE ALL

IF NOT EXISTS('q_temp')
 THEN DEFINE q_temp DIMENSION QUARTER
 ELSE MAINTAIN q_temp DELETE ALL

" Format years like TIME year members (1997 instead of YR97)
IF NOT EXISTS('y_temp')
 THEN DO
 DEFINE y_temp DIMENSION YEAR
 CONSIDER y_temp
 VNF <YYYY>
 DOEND
 ELSE MAINTAIN y_temp DELETE ALL

" Define a valueset to store time members
IF NOT EXISTS('t_list')
 THEN DEFINE t_list VALUESET TIME
 ELSE LIMIT t_list TO NA

" Define a one-dimensional time self-relation for rollup
IF NOT EXISTS('time_parentrel')
 THEN DEFINE time_parentrel RELATION time <time>
 ELSE time_parentrel = NA

" Initialize target variables
ALLSTAT
time_time_span = NA

Converting Oracle Express Databases to Standard Form

Upgrading From Express Server B-19

time_end_date = NA
" ***
" Set values for the STANDARD hierarchy
" ***
LIMIT t0.hierdim TO 'STANDARD'
" Select all time members at the month level
LIMIT time TO t0.levelrel 'L3'
" Store months in the valueset
LIMIT t_list TO time
" Populate M_TEMP so all months have a MONTH data type
MAINTAIN m_temp MERGE values(t_list)
" Calculate the end date
FOR m_temp
 time_end_date(time, m_temp) = ENDDATE(m_temp)
" Extract the number of days in each month
time_time_span = CONVERT(EXTCHARS(time_end_date, 1, 2), DECIMAL)

" Store quarters in q_temp
LIMIT time TO t0.levelrel 'L2'
LIMIT t_list TO time
MAINTAIN q_temp MERGE VALUES(t_list)
FOR q_temp
 time_end_date(time, q_temp) = ENDDATE(q_temp)

" Store years in y_temp
LIMIT time TO t0.levelrel 'L1'
LIMIT t_list TO time
MAINTAIN y_temp MERGE VALUES(t_list)
FOR y_temp
 time_end_date(time, y_temp) = ENDDATE(y_temp)
" ***
" Set values for the YTD hierarchy
" ***
LIMIT t0.hierdim TO 'YTD'
" Limit status of months to YTD
LIMIT time TO t0.levelrel 'L5'
LIMIT t_list TO time
LIMIT m_temp TO t_list

" Calculate end date and time span for months
FOR m_temp
 time_end_date(time, m_temp) = ENDDATE(m_temp)
time_time_span = CONVERT(EXTCHARS(time_end_date, 1, 2), DECIMAL)

" Get current and previous YTD

Converting Oracle Express Databases to Standard Form

B-20 Oracle OLAP Application Developer’s Guide

LIMIT time TO t0.parent EQ 'LAST.YTD'
LIMIT time KEEP LAST 1
_ytd = time
time_end_date(time, 'LAST.YTD') = time_end_date(time, _ytd)
LIMIT time TO t0.parent EQ 'CURRENT.YTD'
LIMIT time KEEP LAST 1
_ytd = time
time_end_date(time, 'CURRENT.YTD') = time_end_date(time, _ytd)

" Rollup time span for quarters and years
LIMIT t0.hierdim TO ALL
LIMIT time TO ALL
FOR t0.hierdim
 DO
 time_parentrel = t0.parent
 ROLLUP time_time_span OVER time USING time_parentrel
 DOEND

CLEANUP:
" Delete temporary objects
DELETE m_temp q_temp y_temp t_list time_parentrel
END

Programs Used to Create GLOBALX C-1

C
Programs Used to Create GLOBALX

GLOBALX is a sample analytic workspace that is populated manually from sources
other than a star schema, as described in Chapter 11. This appendix provides
additional source code needed to replicate the examples in that chapter, but which
are extraneous to the topics being discussed.

This appendix contains the following topics:

■ SQL Scripts for Defining Users and Tablespaces

■ SQL Scripts for the GLOBALX Star Schema

■ SQL Scripts for OLAP Catalog Metadata

SQL Scripts for Defining Users and Tablespaces
Create the GLOBALX tablespace first, since it will be the default tablespace for both
the GLOBALX and GLOBALX_AW users. Then create the GLOBALX user. Define the
star schema before creating the GLOBALX_AW user.

Example C–1 Script for Creating the GLOBALX Tablespaces

CREATE TABLESPACE globalx LOGGING
 DATAFILE '/users/oracle/global_data/globalx.dbf'
 SIZE 5M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

CREATE TEMPORARY TABLESPACE glotempx
 TEMPFILE '/users/oracle/global_data/glotempx.tmp'
 SIZE 5M REUNE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K;

SQL Scripts for Defining Users and Tablespaces

C-2 Oracle OLAP Application Developer’s Guide

Example C–2 Script for Creating the GLOBALX User

/* Create the user and grant privileges */
CREATE USER globalx IDENTIFIED BY "globalx"
 DEFAULT TABLESPACE globalx
 TEMPORARY TABLESPACE glotempx
 QUOTA UNLIMITED ON globalx
 QUOTA UNLIMITED ON glotempx
 ACCOUNT UNLOCK;
GRANT CONNECT TO globalx;
GRANT OLAP_USER TO globalx;
GRANT CREATE ANY TYPE TO globalx;
GRANT CREATE ANY DIRECTORY TO globalx;

/* Create a database directory*/
CREATE OR REPLACE DIRECTORY gx AS '/users/oracle/globalx_files';
GRANT ALL ON DIRECTORY gx TO PUBLIC;

Example C–3 Script for Creating the GLOBALX_AW User

/* Create the user and grant privileges */
CREATE USER globalx_aw IDENTIFIED BY globalx_aw
 DEFAULT TABLESPACE globalx
 TEMPORARY TABLESPACE glotempx
 QUOTA UNLIMITED ON globalx
 QUOTA UNLIMITED ON glotempx
 ACCOUNT UNLOCK;
GRANT CONNECT TO globalx_aw;
GRANT OLAP_USER TO globalx_aw;
GRANT CREATE ANY TYPE TO globalx_aw;
GRANT CREATE ANY DIRECTORY TO globalx_aw;

/* Grant access to GLOBALX star schema */
GRANT SELECT ON GLOBALX.CHANNEL_DUMMY to GLOBALX_AW;
GRANT SELECT ON GLOBALX.PROD_DUMMY to GLOBALX_AW;
GRANT SELECT ON GLOBALX.CUSTOM_DUMMY to GLOBALX_AW;
GRANT SELECT ON GLOBALX.TIME_DUMMY to GLOBALX_AW;
GRANT SELECT ON GLOBALX.UNITS_DUMMY to GLOBALX_AW;
GRANT SELECT ON GLOBALX.PRICE_AND_COST_DUMMY to GLOBALX_AW;

SQL Scripts for the GLOBALX Star Schema

Programs Used to Create GLOBALX C-3

SQL Scripts for the GLOBALX Star Schema
Example C–4 shows the SQL script used to create the empty GLOBALX tables.

Example C–4 Script for Creating the Empty GLOBALX Tables

CREATE TABLE GLOBALX.CHANNEL_DUMMY
 (CHANNEL_ID NUMBER(5),
 CHANNEL_DSC VARCHAR2(15),
 ALL_CHANNELS_ID NUMBER(5),
 ALL_CHANNELS_DSC VARCHAR2(15),
 CONSTRAINT UK_ON_CHANNEL_ID PRIMARY KEY(CHANNEL_ID));

CREATE TABLE GLOBALX.CUSTOM_DUMMY
 (SHIP_TO_ID NUMBER(5),
 SHIP_TO_DSC VARCHAR2(30),
 ACCOUNT_ID NUMBER(5),
 ACCOUNT_DSC VARCHAR2(30),
 MARKET_SEGMENT_ID NUMBER(5),
 MARKET_SEGMENT_DSC VARCHAR2(15),
 TOTAL_MARKET_ID NUMBER(5),
 TOTAL_MARKET_DSC VARCHAR2(15),
 WAREHOUSE_ID NUMBER(5),
 WAREHOUSE_DSC VARCHAR2(15),
 REGION_ID NUMBER(5),
 REGION_DSC VARCHAR(15),
 ALL_CUSTOMERS_ID NUMBER(5),
 ALL_CUSTOMERS_DSC VARCHAR2(15),
 CONSTRAINT UK_ON_SHIP_TO_ID PRIMARY KEY(SHIP_TO_ID));

CREATE TABLE GLOBALX.PROD_DUMMY
 (ITEM_ID NUMBER(5),
 ITEM_DSC VARCHAR2(31),
 ITEM_PACKAGE_ID VARCHAR2(20),
 FAMILY_ID NUMBER(5),
 FAMILY_DSC VARCHAR2(20),
 CLASS_ID NUMBER(5),
 CLASS_DSC VARCHAR2(15),
 TOTAL_PRODUCT_ID NUMBER(5),
 TOTAL_PRODUCT_DSC VARCHAR2(15),
 CONSTRAINT UK_ON_ITEM_ID PRIMARY KEY(ITEM_ID));

CREATE TABLE GLOBALX.TIME_DUMMY
 (MONTH_ID NUMBER(5),
 MONTH_DSC VARCHAR2(10),

SQL Scripts for OLAP Catalog Metadata

C-4 Oracle OLAP Application Developer’s Guide

 QUARTER_ID NUMBER(5),
 QUARTER_DSC VARCHAR2(5),
 YEAR_ID NUMBER(5),
 YEAR_DSC VARCHAR2(5),
 MONTH_TIMESPAN NUMBER(5),
 QUARTER_TIMESPAN NUMBER(5),
 YEAR_TIMESPAN NUMBER(5),
 MONTH_END_DATE DATE,
 QUARTER_END_DATE DATE,
 YEAR_END_DATE DATE,
 CONSTRAINT UK_ON_MONTH_ID PRIMARY KEY(MONTH_ID));

CREATE TABLE GLOBALX.PRICE_AND_COST_DUMMY
 (ITEM_ID NUMBER(5),
 MONTH_ID NUMBER(5),
 UNIT_PRICE NUMBER,
 UNIT_COST NUMBER,
 CONSTRAINT FK_ON_ITEM_ID_01 FOREIGN KEY (ITEM_ID)
 REFERENCES PROD_DUMMY(ITEM_ID),
 CONSTRAINT FK_ON_MONTH_ID_01 FOREIGN KEY (MONTH_ID)
 REFERENCES TIME_DUMMY(MONTH_ID));

CREATE TABLE GLOBALX.UNITS_DUMMY
 (CHANNEL_ID NUMBER(5),
 ITEM_ID NUMBER(5),
 SHIP_TO_ID NUMBER(5),
 MONTH_ID NUMBER(5),
 UNITS NUMBER,
 CONSTRAINT FK_ON_CHANNEL_ID_02 FOREIGN KEY (CHANNEL_ID)
 REFERENCES CHANNEL_DUMMY(CHANNEL_ID),
 CONSTRAINT FK_ON_ITEM_ID_02 FOREIGN KEY (ITEM_ID)
 REFERENCES PROD_DUMMY(ITEM_ID),
 CONSTRAINT FK_ON_SHIP_TO_ID_02 FOREIGN KEY (SHIP_TO_ID)
 REFERENCES CUSTOM_DUMMY(SHIP_TO_ID),
 CONSTRAINT FK_ON_MONTH_ID_02 FOREIGN KEY (MONTH_ID)
 REFERENCES TIME_DUMMY(MONTH_ID));

SQL Scripts for OLAP Catalog Metadata
Example C–5 through Example C–10 are the scripts that define OLAP Catalog
metadata for the GLOBALX star schema. This metadata enables the Create Analytic
Workspace wizard to define a database standard form analytic workspace.

SQL Scripts for OLAP Catalog Metadata

Programs Used to Create GLOBALX C-5

Example C–5 Script for Creating CHANNEL Metadata

EXECUTE CWM2_OLAP_DIMENSION.DROP_DIMENSION('GLOBALX','CHANNEL');
EXECUTE CWM2_OLAP_DIMENSION.CREATE_DIMENSION('GLOBALX','CHANNEL','Channel','CHANNEL',
 'Channel','Channel',NULL);
EXECUTE cwm2_olap_dimension_attribute.create_dimension_attribute_2('GLOBALX','CHANNEL',
 'Long Description','Long Description','Long Description','Long Description',1);
EXECUTE cwm2_olap_dimension_attribute.create_dimension_attribute_2('GLOBALX','CHANNEL',
 'Short Description','Short Description','Short Description','Short Description',1);
EXECUTE cwm2_olap_hierarchy.create_hierarchy('GLOBALX','CHANNEL','CHANNEL_ROLLUP',
 'Channel Rollup','Channel Rollup','Channel Rollup','UNSOLVED LEVEL-BASED');
EXECUTE cwm2_olap_dimension.set_default_display_hierarchy('GLOBALX','CHANNEL',
 CHANNEL_ROLLUP');
EXECUTE cwm2_olap_level.create_level('GLOBALX','CHANNEL','ALL_CHANNELS','All Channels',
 'All Channels','All Channels','All Channels');
EXECUTE cwm2_olap_level.create_level('GLOBALX','CHANNEL','CHANNEL','Channel','Channel',
 'Channel','Channel');
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','CHANNEL','CHANNEL_ROLLUP',
 'ALL_CHANNELS',NULL);
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','CHANNEL','CHANNEL_ROLLUP',
 'CHANNEL', 'ALL_CHANNELS');
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CHANNEL',
 'Long Description','ALL_CHANNELS','Long Description','Long Description',
 'Long Description','Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CHANNEL',
 'Long Description','CHANNEL','Long Description','Long Description','Long Description',
 'Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CHANNEL',
 'Short Description','ALL_CHANNELS','Short Description','Short Description',
 'Short Description','Short Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CHANNEL',
 'Short Description','CHANNEL','Short Description','Short Description',
 'Short Description','Short Description',1);
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','CHANNEL','CHANNEL_ROLLUP',
 'ALL_CHANNELS','GLOBALX','CHANNEL_DUMMY','ALL_CHANNELS_ID',NULL);
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','CHANNEL','CHANNEL_ROLLUP',
 'CHANNEL','GLOBALX','CHANNEL_DUMMY','CHANNEL_ID','ALL_CHANNELS_ID');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CHANNEL',
 'Long Description','CHANNEL_ROLLUP','CHANNEL','Long Description','GLOBALX',
 'CHANNEL_DUMMY','CHANNEL_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CHANNEL','Long Description',
 'CHANNEL_ROLLUP','ALL_CHANNELS','Long Description','GLOBALX', 'CHANNEL_DUMMY',
 'ALL_CHANNELS_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CHANNEL','Short Description',
 'CHANNEL_ROLLUP','CHANNEL','Short Description','GLOBALX', 'CHANNEL_DUMMY','CHANNEL_DSC');

SQL Scripts for OLAP Catalog Metadata

C-6 Oracle OLAP Application Developer’s Guide

EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CHANNEL','Short Description',
 'CHANNEL_ROLLUP','ALL_CHANNELS','Short Description', 'GLOBALX','CHANNEL_DUMMY',
 'ALL_CHANNELS_DSC');
EXECUTE cwm2_olap_validate.validate_dimension('GLOBALX', 'CHANNEL');

Example C–6 Script for Creating CUSTOMER Metadata

EXECUTE CWM2_OLAP_DIMENSION.DROP_DIMENSION('GLOBALX','CUSTOMER');
EXECUTE CWM2_OLAP_DIMENSION.CREATE_DIMENSION('GLOBALX','CUSTOMER','Customer','CUSTOMER',
 'Customer','Customer',NULL);
EXECUTE cwm2_olap_dimension_attribute.create_dimension_attribute_2('GLOBALX','CUSTOMER',
 'Long Description','Long Description','Long Description','Long Description',1);
EXECUTE cwm2_olap_dimension_attribute.create_dimension_attribute_2('GLOBALX','CUSTOMER',
 'Short Description','Short Description','Short Description','Short Description',1);
EXECUTE cwm2_olap_hierarchy.create_hierarchy('GLOBALX','CUSTOMER','MARKET_ROLLUP',
 'Market Rollup','Market Rollup','Market Rollup','UNSOLVED LEVEL-BASED');
EXECUTE cwm2_olap_hierarchy.create_hierarchy('GLOBALX','CUSTOMER','SHIPMENTS_ROLLUP',
 'Shipments Rollup','Shipments Rollup','Shipments Rollup','UNSOLVED LEVEL-BASED');
EXECUTE cwm2_olap_dimension.set_default_display_hierarchy('GLOBALX', 'CUSTOMER',
 'SHIPMENTS_ROLLUP');
EXECUTE cwm2_olap_level.create_level('GLOBALX','CUSTOMER','ALL_CUSTOMERS','All Customers',
 'All Customers','All Customers','All Customers');
EXECUTE cwm2_olap_level.create_level('GLOBALX','CUSTOMER','REGION','Region', 'Region','Region',
 'Region');
EXECUTE cwm2_olap_level.create_level('GLOBALX','CUSTOMER','WAREHOUSE', 'Warehouse','Warehouse',
 'Warehouse','Warehouse');
EXECUTE cwm2_olap_level.create_level('GLOBALX','CUSTOMER','TOTAL_MARKET','Total Market',
 'Total Market','Total Market','Total Market');
EXECUTE cwm2_olap_level.create_level('GLOBALX','CUSTOMER','MARKET_SEGMENT','Market Segment',
 'Market Segment','Market Segment','Market Segment');
EXECUTE cwm2_olap_level.create_level('GLOBALX','CUSTOMER','ACCOUNT', 'Account','Account',
 'Account','Account');
EXECUTE cwm2_olap_level.create_level('GLOBALX','CUSTOMER','SHIP_TO','Ship To','Ship To',
 'Ship To','Ship To');
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','CUSTOMER', 'MARKET_ROLLUP',
 'TOTAL_MARKET',NULL);
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','CUSTOMER', 'MARKET_ROLLUP',
 'MARKET_SEGMENT','TOTAL_MARKET');
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','CUSTOMER','MARKET_ROLLUP',
 'ACCOUNT','MARKET_SEGMENT');
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','CUSTOMER','MARKET_ROLLUP',
 'SHIP_TO','ACCOUNT');
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','CUSTOMER','SHIPMENTS_ROLLUP',
 'ALL_CUSTOMERS',NULL);

SQL Scripts for OLAP Catalog Metadata

Programs Used to Create GLOBALX C-7

EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','CUSTOMER','SHIPMENTS_ROLLUP',
 'REGION','ALL_CUSTOMERS');
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','CUSTOMER','SHIPMENTS_ROLLUP',
 'WAREHOUSE','REGION');
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','CUSTOMER','SHIPMENTS_ROLLUP',
 'SHIP_TO','WAREHOUSE');
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Long Description','ALL_CUSTOMERS','Long Description','Long Description',
 'Long Description','Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Long Description','REGION','Long Description','Long Description','Long Description',
 'Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Long Description','WAREHOUSE','Long Description','Long Description','Long Description',
 'Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Long Description','TOTAL_MARKET','Long Description','Long Description','Long Description',
 'Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Long Description','MARKET_SEGMENT','Long Description','Long Description',
 'Long Description','Long Description',1) ;
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Long Description','ACCOUNT','Long Description','Long Description','Long Description',
 'Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Long Description','SHIP_TO','Long Description','Long Description','Long Description',
 'Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Short Description','ALL_CUSTOMERS','Short Description','Short Description',
 'Short Description','Short Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Short Description','REGION','Short Description','Short Description','Short Description',
 'Short Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Short Description','WAREHOUSE','Short Description','Short Description','Short Description',
 'Short Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Short Description','TOTAL_MARKET','Short Description','Short Description',
 'Short Description','Short Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Short Description','MARKET_SEGMENT','Short Description','Short Description',
 'Short Description','Short Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Short Description','ACCOUNT','Short Description','Short Description',
 'Short Description','Short Description',1);

SQL Scripts for OLAP Catalog Metadata

C-8 Oracle OLAP Application Developer’s Guide

EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','CUSTOMER',
 'Short Description','SHIP_TO','Short Description','Short Description','Short Description',
 'Short Description',1);
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','CUSTOMER','MARKET_ROLLUP',
 'TOTAL_MARKET','GLOBALX','CUSTOM_DUMMY','ALL_CUSTOMERS_ID',NULL);
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','CUSTOMER','MARKET_ROLLUP',
 'MARKET_SEGMENT','GLOBALX','CUSTOM_DUMMY','MARKET_SEGMENT_ID','ALL_CUSTOMERS_ID');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','CUSTOMER','MARKET_ROLLUP',
 'ACCOUNT','GLOBALX','CUSTOM_DUMMY','ACCOUNT_ID','MARKET_SEGMENT_ID');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','CUSTOMER','MARKET_ROLLUP',
 'SHIP_TO','GLOBALX','CUSTOM_DUMMY','SHIP_TO_ID','ACCOUNT_ID');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','CUSTOMER','SHIPMENTS_ROLLUP',
 'ALL_CUSTOMERS','GLOBALX','CUSTOM_DUMMY','ALL_CUSTOMERS_ID',NULL);
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','CUSTOMER','SHIPMENTS_ROLLUP',
 'REGION','GLOBALX','CUSTOM_DUMMY','REGION_ID','ALL_CUSTOMERS_ID');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','CUSTOMER','SHIPMENTS_ROLLUP',
 'WAREHOUSE','GLOBALX','CUSTOM_DUMMY','WAREHOUSE_ID','REGION_ID');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','CUSTOMER','SHIPMENTS_ROLLUP',
 'SHIP_TO','GLOBALX','CUSTOM_DUMMY','SHIP_TO_ID','WAREHOUSE_ID');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER','Long Description',
 'MARKET_ROLLUP','SHIP_TO','Long Description','GLOBALX', 'CUSTOM_DUMMY','SHIP_TO_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER','Long Description',
 'MARKET_ROLLUP','ACCOUNT','Long Description','GLOBALX', 'CUSTOM_DUMMY','ACCOUNT_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER','Long Description',
 'MARKET_ROLLUP','MARKET_SEGMENT','Long Description','GLOBALX', 'CUSTOM_DUMMY',
 'MARKET_SEGMENT_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER','Long Description',
 'MARKET_ROLLUP','TOTAL_MARKET','Long Description','GLOBALX','CUSTOM_DUMMY',
 'TOTAL_MARKET_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER','Long Description',
 'SHIPMENTS_ROLLUP','SHIP_TO','Long Description','GLOBALX', 'CUSTOM_DUMMY','SHIP_TO_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER','Long Description',
 'SHIPMENTS_ROLLUP','WAREHOUSE','Long Description','GLOBALX', 'CUSTOM_DUMMY',
 'WAREHOUSE_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER','Long Description',
 'SHIPMENTS_ROLLUP','REGION','Long Description','GLOBALX', 'CUSTOM_DUMMY','REGION_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER','Long Description',
 'SHIPMENTS_ROLLUP','ALL_CUSTOMERS','Long Description','GLOBALX', 'CUSTOM_DUMMY',
 'ALL_CUSTOMERS_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER','Short Description',
 'MARKET_ROLLUP','SHIP_TO','Short Description','GLOBALX', 'CUSTOM_DUMMY','SHIP_TO_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER','Short Description',
 'MARKET_ROLLUP','ACCOUNT','Short Description','GLOBALX', 'CUSTOM_DUMMY','ACCOUNT_DSC');

SQL Scripts for OLAP Catalog Metadata

Programs Used to Create GLOBALX C-9

EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER',
 'Short Description','MARKET_ROLLUP','MARKET_SEGMENT','Short Description','GLOBALX',
 'CUSTOM_DUMMY','MARKET_SEGMENT_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER',
 'Short Description','MARKET_ROLLUP','TOTAL_MARKET','Short Description','GLOBALX',
 'CUSTOM_DUMMY','TOTAL_MARKET_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER',
 'Short Description','SHIPMENTS_ROLLUP','SHIP_TO','Short Description','GLOBALX',
 'CUSTOM_DUMMY','SHIP_TO_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER',
 'Short Description','SHIPMENTS_ROLLUP','WAREHOUSE','Short Description','GLOBALX',
 'CUSTOM_DUMMY','WAREHOUSE_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER',
 'Short Description','SHIPMENTS_ROLLUP','REGION','Short Description','GLOBALX',
 'CUSTOM_DUMMY','REGION_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','CUSTOMER',
 'Short Description','SHIPMENTS_ROLLUP','ALL_CUSTOMERS','Short Description','GLOBALX',
 'CUSTOM_DUMMY','ALL_CUSTOMERS_DSC');
EXECUTE cwm2_olap_validate.validate_dimension('GLOBALX', 'CUSTOMER');

Example C–7 Script for Creating PRODUCT Metadata

EXECUTE CWM2_OLAP_DIMENSION.DROP_DIMENSION('GLOBALX','PRODUCT');
EXECUTE CWM2_OLAP_DIMENSION.CREATE_DIMENSION('GLOBALX','PRODUCT','Product','PRODUCT',
 'Product','Product',NULL);
EXECUTE cwm2_olap_dimension_attribute.create_dimension_attribute_2('GLOBALX','PRODUCT',
 'Long Description','Long Description','Long Description','Long Description',1);
EXECUTE cwm2_olap_dimension_attribute.create_dimension_attribute_2('GLOBALX','PRODUCT',
 'Short Description','Short Description','Short Description','Short Description',1);
EXECUTE cwm2_olap_dimension_attribute.create_dimension_attribute_2('GLOBALX',
 'PRODUCT','Package', 'Package','Package','Package',0);
EXECUTE cwm2_olap_hierarchy.create_hierarchy('GLOBALX','PRODUCT','PRODUCT_ROLLUP',
 'Product Rollup','Product Rollup','Product Rollup','UNSOLVED LEVEL-BASED');
EXECUTE cwm2_olap_dimension.set_default_display_hierarchy('GLOBALX','PRODUCT',
 'PRODUCT_ROLLUP');
EXECUTE cwm2_olap_level.create_level('GLOBALX','PRODUCT','TOTAL_PRODUCT','Total Product',
 'Total Product','Total Product','Total Product');
EXECUTE cwm2_olap_level.create_level('GLOBALX','PRODUCT','CLASS', 'Class','Class',
 'Class','Class');
EXECUTE cwm2_olap_level.create_level('GLOBALX','PRODUCT','FAMILY', 'Family','Family',
 'Family','Family');
EXECUTE cwm2_olap_level.create_level('GLOBALX','PRODUCT','ITEM','Item','Item','Item','Item');
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','PRODUCT','PRODUCT_ROLLUP',
 'TOTAL_PRODUCT',NULL);

SQL Scripts for OLAP Catalog Metadata

C-10 Oracle OLAP Application Developer’s Guide

EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','PRODUCT','PRODUCT_ROLLUP',
 'CLASS','TOTAL_PRODUCT');
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','PRODUCT','PRODUCT_ROLLUP',
 'FAMILY','CLASS');
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','PRODUCT','PRODUCT_ROLLUP',
 'ITEM','FAMILY');
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','PRODUCT',
 'Long Description','TOTAL_PRODUCT','Long Description','Long Description',
 'Long Description','Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','PRODUCT',
 'Long Description','CLASS','Long Description','Long Description','Long Description',
 'Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','PRODUCT',
 'Long Description','FAMILY','Long Description','Long Description','Long Description',
 'Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','PRODUCT',
 'Long Description','ITEM','Long Description','Long Description','Long Description',
 'Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','PRODUCT',
 'Short Description','TOTAL_PRODUCT','Short Description','Short Description',
 'Short Description','Short Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','PRODUCT',
 'Short Description','CLASS','Short Description','Short Description','Short Description',
 'Short Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','PRODUCT',
 'Short Description','FAMILY','Short Description','Short Description','Short Description',
 'Short Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','PRODUCT',
 'Short Description','ITEM','Short Description','Short Description','Short Description',
 'Short Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','PRODUCT', 'Package',
 'ITEM','Package','Package','Package','Package',0);
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','PRODUCT','PRODUCT_ROLLUP',
 'TOTAL_PRODUCT','GLOBALX','PROD_DUMMY','TOTAL_PRODUCT_ID',NULL);
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','PRODUCT', 'PRODUCT_ROLLUP','CLASS',
 'GLOBALX','PROD_DUMMY','CLASS_ID','TOTAL_PRODUCT_ID');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','PRODUCT', 'PRODUCT_ROLLUP',
 'FAMILY', 'GLOBALX','PROD_DUMMY','FAMILY_ID','CLASS_ID');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','PRODUCT','PRODUCT_ROLLUP',
 'ITEM','GLOBALX','PROD_DUMMY','ITEM_ID','FAMILY_ID');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','PRODUCT','Long Description',
 'PRODUCT_ROLLUP','ITEM','Long Description','GLOBALX','PROD_DUMMY','ITEM_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','PRODUCT','Long Description',
 'PRODUCT_ROLLUP','FAMILY','Long Description','GLOBALX','PROD_DUMMY','FAMILY_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','PRODUCT',

SQL Scripts for OLAP Catalog Metadata

Programs Used to Create GLOBALX C-11

 'Long Description','PRODUCT_ROLLUP','CLASS','Long Description','GLOBALX',
 'PROD_DUMMY','CLASS_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','PRODUCT','Long Description',
 'PRODUCT_ROLLUP','TOTAL_PRODUCT','Long Description','GLOBALX', 'PROD_DUMMY',
 'TOTAL_PRODUCT_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','PRODUCT','Short Description',
 'PRODUCT_ROLLUP','ITEM','Short Description','GLOBALX','PROD_DUMMY','ITEM_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','PRODUCT','Short Description',
 'PRODUCT_ROLLUP','FAMILY','Short Description','GLOBALX','PROD_DUMMY','FAMILY_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','PRODUCT','Short Description',
 'PRODUCT_ROLLUP','CLASS','Short Description','GLOBALX','PROD_DUMMY','CLASS_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','PRODUCT','Short Description',
 'PRODUCT_ROLLUP','TOTAL_PRODUCT','Short Description','GLOBALX','PROD_DUMMY',
 'TOTAL_PRODUCT_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','PRODUCT', 'Package',
 'PRODUCT_ROLLUP','ITEM','Package','GLOBALX','PROD_DUMMY','ITEM_PACKAGE_ID');
EXECUTE cwm2_olap_validate.validate_dimension('GLOBALX', 'PRODUCT');

Example C–8 Script for Creating TIME Metadata

EXECUTE CWM2_OLAP_DIMENSION.DROP_DIMENSION('GLOBALX','TIME');
EXECUTE CWM2_OLAP_DIMENSION.CREATE_DIMENSION('GLOBALX','TIME','Time', 'TIME','Time',
 'Time','Time');
EXECUTE cwm2_olap_dimension_attribute.create_dimension_attribute_2('GLOBALX','TIME',
 'Long Description','Long Description','Long Description','Long Description',1);
EXECUTE cwm2_olap_dimension_attribute.create_dimension_attribute_2('GLOBALX','TIME',
 'Short Description','Short Description','Short Description','Short Description',1);
EXECUTE cwm2_olap_dimension_attribute.create_dimension_attribute_2('GLOBALX','TIME',
 'End Date','End Date','End Date','End Date',1);
EXECUTE cwm2_olap_dimension_attribute.create_dimension_attribute_2('GLOBALX','TIME',
 'Time Span','Timespan','Timespan','Timespan',1);
EXECUTE cwm2_olap_hierarchy.create_hierarchy('GLOBALX','TIME','CALENDAR', 'Calendar',
 'Calendar','Calendar','UNSOLVED LEVEL-BASED');
EXECUTE cwm2_olap_dimension.set_default_display_hierarchy('GLOBALX','TIME','CALENDAR');
EXECUTE cwm2_olap_level.create_level('GLOBALX','TIME','YEAR','Year','Year','Year','Year');
EXECUTE cwm2_olap_level.create_level('GLOBALX','TIME','QUARTER', 'Quarter','Quarter',
 'Quarter','Quarter');
EXECUTE cwm2_olap_level.create_level('GLOBALX','TIME','MONTH','Month','Month','Month','Month');
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','TIME','CALENDAR','YEAR',NULL);
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','TIME','CALENDAR','QUARTER','YEAR');
EXECUTE cwm2_olap_level.add_level_to_hierarchy('GLOBALX','TIME','CALENDAR','MONTH','QUARTER');
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','TIME','Long Description',
 'YEAR','Long Description','Long Description','Long Description','Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','TIME','Long Description',
 'QUARTER','Long Description','Long Description','Long Description','Long Description',1);

SQL Scripts for OLAP Catalog Metadata

C-12 Oracle OLAP Application Developer’s Guide

EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','TIME','Long Description',
 'MONTH','Long Description','Long Description','Long Description','Long Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','TIME','Short Description',
 'YEAR','Short Description','Short Description','Short Description','Short Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','TIME','Short Description',
 'QUARTER','Short Description','Short Description','Short Description','Short Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','TIME','Short Description',
 'MONTH','Short Description','Short Description','Short Description','Short Description',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','TIME','End Date','YEAR',
 'End Date','End Date','End Date','End Date',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','TIME','End Date','QUARTER',
 'End Date','End Date','End Date','End Date',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','TIME','End Date','MONTH',
 'End Date','End Date','End Date','End Date',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','TIME','Time Span','YEAR',
 'Time Span','Timespan','Timespan','Timespan',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','TIME','Time Span',
 'QUARTER','Time Span','Timespan','Timespan','Timespan',1);
EXECUTE cwm2_olap_level_attribute.create_level_attribute_2('GLOBALX','TIME','Time Span','MONTH',
 'Time Span','Timespan','Timespan','Timespan',1);
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','TIME','CALENDAR', 'YEAR','GLOBALX',
 'TIME_DUMMY','YEAR_ID',NULL);
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','TIME','CALENDAR', 'QUARTER',
 'GLOBALX','TIME_DUMMY','QUARTER_ID','YEAR_ID');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVEL('GLOBALX','TIME','CALENDAR', 'MONTH','GLOBALX',
 'TIME_DUMMY','MONTH_ID','QUARTER_ID');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','TIME','Long Description',
 'CALENDAR','MONTH','Long Description','GLOBALX','TIME_DUMMY','MONTH_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','TIME','Long Description',
 'CALENDAR','QUARTER','Long Description','GLOBALX','TIME_DUMMY','QUARTER_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','TIME','Long Description',
 'CALENDAR','YEAR','Long Description','GLOBALX','TIME_DUMMY','YEAR_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','TIME','Short Description',
 'CALENDAR','MONTH','Short Description','GLOBALX','TIME_DUMMY','MONTH_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','TIME','Short Description',
 'CALENDAR','QUARTER','Short Description','GLOBALX','TIME_DUMMY','QUARTER_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','TIME','Short Description',
 'CALENDAR','YEAR','Short Description','GLOBALX','TIME_DUMMY','YEAR_DSC');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','TIME','End Date', 'CALENDAR',
 'MONTH','End Date','GLOBALX','TIME_DUMMY','MONTH_END_DATE');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','TIME','End Date', 'CALENDAR',
 'QUARTER','End Date','GLOBALX','TIME_DUMMY','QUARTER_END_DATE');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','TIME','End Date', 'CALENDAR',
 'YEAR','End Date','GLOBALX','TIME_DUMMY','YEAR_END_DATE');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','TIME','Time Span',

SQL Scripts for OLAP Catalog Metadata

Programs Used to Create GLOBALX C-13

 'CALENDAR','MONTH','Time Span','GLOBALX','TIME_DUMMY','MONTH_TIMESPAN');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','TIME','Time Span',
 'CALENDAR','QUARTER','Time Span','GLOBALX','TIME_DUMMY','QUARTER_TIMESPAN');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_DIMTBL_HIERLEVELATTR('GLOBALX','TIME','Time Span',
 'CALENDAR','YEAR','Time Span','GLOBALX','TIME_DUMMY','YEAR_TIMESPAN');
EXECUTE cwm2_olap_validate.validate_dimension('GLOBALX', 'TIME');

Example C–9 Script for Creating UNITS Cube

EXECUTE CWM2_OLAP_CUBE.DROP_CUBE('GLOBALX','UNITS_CUBE');
EXECUTE CWM2_OLAP_CUBE.CREATE_CUBE('GLOBALX','UNITS_CUBE','UNITS CUBE','UNITS CUBE',
 'UNITS CUBE');
EXECUTE CWM2_OLAP_CUBE.ADD_DIMENSION_TO_CUBE('GLOBALX','UNITS_CUBE','GLOBALX','CHANNEL');
EXECUTE CWM2_OLAP_CUBE.ADD_DIMENSION_TO_CUBE('GLOBALX','UNITS_CUBE','GLOBALX','CUSTOMER');
EXECUTE CWM2_OLAP_CUBE.ADD_DIMENSION_TO_CUBE('GLOBALX','UNITS_CUBE','GLOBALX','PRODUCT');
EXECUTE CWM2_OLAP_CUBE.ADD_DIMENSION_TO_CUBE('GLOBALX','UNITS_CUBE','GLOBALX','TIME');
EXECUTE CWM2_OLAP_MEASURE.CREATE_MEASURE('GLOBALX','UNITS_CUBE','UNITS','UNITS','Units Sold',
 'Units Sold');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_LEVELKEY('GLOBALX','UNITS_CUBE','GLOBALX','UNITS_DUMMY',
 'LOWESTLEVEL',
 'DIM:GLOBALX.CHANNEL/HIER:CHANNEL_ROLLUP/LVL:CHANNEL/COL:CHANNEL_ID;
 DIM:GLOBALX.CUSTOMER/HIER:MARKET_ROLLUP/LVL:SHIP_TO/COL:SHIP_TO_ID;
 DIM:GLOBALX.PRODUCT/HIER:PRODUCT_ROLLUP/LVL:ITEM/COL:ITEM_ID;
 DIM:GLOBALX.TIME/HIER:CALENDAR/LVL:MONTH/ COL:MONTH_ID;');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_LEVELKEY('GLOBALX','UNITS_CUBE','GLOBALX',
 'UNITS_DUMMY','LOWESTLEVEL',
 'DIM:GLOBALX.CHANNEL/HIER:CHANNEL_ROLLUP/LVL:CHANNEL/COL:CHANNEL_ID;
 DIM:GLOBALX.CUSTOMER/HIER:SHIPMENTS_ROLLUP/LVL:SHIP_TO/COL:SHIP_TO_ID;
 DIM:GLOBALX.PRODUCT/HIER:PRODUCT_ROLLUP/LVL:ITEM/COL:ITEM_ID;
 DIM:GLOBALX.TIME/HIER:CALENDAR/LVL:MONTH/COL:MONTH_ID;');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_MEASURE('GLOBALX','UNITS_CUBE','UNITS','GLOBALX',
 'UNITS_DUMMY','UNITS',
 'DIM:GLOBALX.CHANNEL/HIER:CHANNEL_ROLLUP/LVL:CHANNEL/COL:CHANNEL_ID;
 DIM:GLOBALX.CUSTOMER/HIER:MARKET_ROLLUP/LVL:SHIP_TO/COL:SHIP_TO_ID;
 DIM:GLOBALX.PRODUCT/HIER:PRODUCT_ROLLUP/LVL:ITEM/COL:ITEM_ID;
 DIM:GLOBALX.TIME/HIER:CALENDAR/LVL:MONTH/COL:MONTH_ID;');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_MEASURE('GLOBALX','UNITS_CUBE','UNITS','GLOBALX',
 'UNITS_DUMMY','UNITS',
 'DIM:GLOBALX.CHANNEL/HIER:CHANNEL_ROLLUP/LVL:CHANNEL/COL:CHANNEL_ID;
 DIM:GLOBALX.CUSTOMER/HIER:SHIPMENTS_ROLLUP/LVL:SHIP_TO/COL:SHIP_TO_ID;
 DIM:GLOBALX.PRODUCT/HIER:PRODUCT_ROLLUP/LVL:ITEM/COL:ITEM_ID;
 DIM:GLOBALX.TIME/HIER:CALENDAR/LVL:MONTH/COL:MONTH_ID;');
EXECUTE cwm2_olap_validate.validate_Cube('GLOBALX', 'UNITS_CUBE');

SQL Scripts for OLAP Catalog Metadata

C-14 Oracle OLAP Application Developer’s Guide

Example C–10 Script for Create PRICE Cube

EXECUTE CWM2_OLAP_CUBE.DROP_CUBE('GLOBALX','PRICE_CUBE');
EXECUTE CWM2_OLAP_CUBE.CREATE_CUBE('GLOBALX','PRICE_CUBE','PRICE CUBE','PRICE CUBE',
 'PRICE CUBE');
EXECUTE CWM2_OLAP_CUBE.ADD_DIMENSION_TO_CUBE('GLOBALX','PRICE_CUBE','GLOBALX','TIME');
EXECUTE CWM2_OLAP_CUBE.ADD_DIMENSION_TO_CUBE('GLOBALX','PRICE_CUBE','GLOBALX','PRODUCT');
EXECUTE CWM2_OLAP_MEASURE.CREATE_MEASURE('GLOBALX','PRICE_CUBE','UNIT_COST','UNIT COST',
 'Unit Cost','Unit Cost');
EXECUTE CWM2_OLAP_MEASURE.CREATE_MEASURE('GLOBALX','PRICE_CUBE','UNIT_PRICE','UNIT PRICE',
 'Unit Price','Unit Price');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_LEVELKEY('GLOBALX','PRICE_CUBE',
 'GLOBALX', 'PRICE_AND_COST_DUMMY','LOWESTLEVEL',
 'DIM:GLOBALX.PRODUCT/HIER:PRODUCT_ROLLUP/LVL:ITEM/COL:ITEM_ID;
 DIM:GLOBALX.TIME/HIER:CALENDAR/LVL:MONTH/COL:MONTH_ID;');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_MEASURE('GLOBALX','PRICE_CUBE','UNIT_COST','GLOBALX',
 'PRICE_AND_COST_DUMMY','UNIT_COST',
 'DIM:GLOBALX.PRODUCT/HIER:PRODUCT_ROLLUP/LVL:ITEM/COL:ITEM_ID;
 DIM:GLOBALX.TIME/HIER:CALENDAR/LVL:MONTH/COL:MONTH_ID;');
EXECUTE CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_MEASURE('GLOBALX','PRICE_CUBE','UNIT_PRICE','GLOBALX',
 'PRICE_AND_COST_DUMMY','UNIT_PRICE',
 'DIM:GLOBALX.PRODUCT/HIER:PRODUCT_ROLLUP/LVL:ITEM/COL:ITEM_ID;
 DIM:GLOBALX.TIME/HIER:CALENDAR/LVL:MONTH/COL:MONTH_ID;');
EXECUTE cwm2_olap_validate.validate_Cube('GLOBALX', 'PRICE_CUBE');

Glossary-1

Glossary

abstract data type (ADT)

See object type.

additive

Describes a fact (or measure) that can be summarized through addition. An additive
fact is the most common type of fact. Examples include sales, cost, and profit.

Contrast with nonadditive, semi-additive.

aggregation

The process of consolidating data values into a single value. For example, sales data
could be collected on a daily basis and then be aggregated to the week level, the
week data could be aggregated to the month level, and so on. The data can then be
referred to as aggregate data. Aggregation is synonymous with summarization, and
aggregate data is synonymous with summary data.

analytic workspace

A multidimensional schema stored in a LOB table in the relational database. An
analytic workspace can contain a variety of objects. Some of these objects may be
integrally connected to other objects, while others are totally independent. Some
objects store data that is useful to applications, and other objects may only exist for
the purposes of the DBA or developer. There are several basic types of objects which
play a variety of roles in the multidimensional model. In these respects, an analytic
workspace is very similar to a relational schema.

The OLAP DML is the basic, low-level language for working in an analytic
workspace. Tools are available in PL/SQL and Java that provide an interface to the
OLAP DML for users already familiar with those languages.

Glossary-2

See also OLAP DML.

ancestor

A value at any level higher than a given value in a hierarchy. For example, in a Time
dimension, the value 2002 might be the ancestor of the values Q1-02 and Jan-02. In a
dimension hierarchy, the data value of the ancestor is the aggregated value of the
data values of its descendants.

Contrast with descendant. See also hierarchy, level, parent.

attribute

A descriptive characteristic of either a single dimension member or a group of
dimension members. When applied to a single member, attributes provide
supplementary information that can be used for display (such as a descriptive
name) or in analysis (such as the number of days in a time period). When applied to
a group, attributes represent logical groupings that enable users to select data based
on like characteristics. For example, in a database representing footwear, you can
use a shoe color attribute to select all boots, sneakers, and slippers that share the
same color.

base level data

Data at the lowest level, often acquired from another source, such as a transactional
database.

Contrast with aggregation.

cell

A single data value of an expression. In a dimensioned expression, a cell is
identified by one value from each of the dimensions of the expression. For example,
if you have a variable with the dimensions MONTH and DISTRICT, then each
combination of a month and a district identifies a separate cell of that variable.

See also dimension, variable.

child

A value at the level under a given value in a hierarchy. For example, in a Time
dimension, the value Jan-02 might be the child of the value Q1-2002. A value can be
a child for more than one parent if the child value belongs to multiple hierarchies.

Contrast with parent. See also descendant, hierarchy, level.

Glossary-3

composite

An analytic workspace object that lists dimension-value combinations (also called a
tuple) for which there is data. When a data value is added to a variable
dimensioned by a composite, that action triggers the creation of a composite tuple.
A composite is an index into one or more sparse data variables, and is used to store
sparse data in a compact form.

See also dimension, sparsity, variable.

container

See object.

cube

A logical organization of measures with identical dimensions. The edges of the cube
contain dimension members and the body of the cube contains data values. For
example, sales data can be organized into a cube, whose edges contain values from
the time, product, and customer dimensions and whose body contains Volume Sales
and Dollar Sales data. In a star schema, a cube is represented by a fact table.

custom measure

A derived measure that is calculated at run-time and presented as one or more
additional columns of data added to a result set. The result set includes a value for
each dimension member currently in status. A custom measure typically employs a
single-row function to perform a calculation on one or more stored measures. For
example, an analyst might create a custom measure for the difference in costs from
the prior period, which uses the OLAP DML LAGDIF function on the COSTS
measure. Another analyst might create a custom measure that calculates profits by
subtracting the COSTS measure from the SALES measure.

See also dimension member, OLAP DML, measure, status.

custom member

A member of a dimension created at run-time and defined as the parent of one or
more existing dimension members. The values of a measure for a custom member
are calculated using the aggregation rules for that dimension.

See also aggregation, dimension member, parent.

data source

A database, application, repository, or file that provides data.

Glossary-4

data warehouse

A relational database that is designed for query and analysis rather than transaction
processing. A data warehouse usually contains historical data that is derived from
transaction data, but it can include data from other sources. It separates analysis
workload from transaction workload and enables a business to consolidate data
from several sources.

database standard form

An analytic workspace that has been constructed with a specific set of objects, such
as hierarchy dimensions, level dimensions, parent relations, and level relations.
Each object must be defined with a set of properties that identify its role and its
relationships with other objects in the analytic workspace. The standard form is
required for an analytic workspace to be accessible to OLAP tools, however, it is not
a prerequisite for multidimensional analysis.

DBA

Database administrator. The person responsible for creating, installing, configuring
and maintaining Oracle Databases.

definition

The description of an analytic workspace object. An object definition includes
characteristics such as the object's name, type (for example, dimension or variable),
data type, dimensions, long description, permission specifications, and properties.

See also dictionary, object, property.

denormalized

Permit redundancy in a table. Contrast with normalize.

derived fact (or measure)

A fact (or measure) that is generated from existing data using a mathematical
operation or a data transformation. Examples include averages, totals, percentages,
and differences.

descendant

A dimension member at any level below a particular member in a hierarchy. The
level immediately below is the child.

Contrast with ancestor. See also aggregation, child, hierarchy, level.

Glossary-5

dictionary

The collection of object definitions in an analytic workspace. The dictionary is also
called the workspace dictionary.

See also definition, object.

dimension

A structure that categorizes data. Among the most common dimensions for
sales-oriented data are time, geography, and product. Most dimensions have
hierarchies.

In an analytic workspace, a dimension is a container for a list of values. A
dimension acts as an index for identifying the values of a variable. For example, if
sales data has a separate sales figure for each month, then the data has a month
dimension; that is, the data is organized by month.

In SQL, a dimension is a type of object that defines hierarchical (parent/child)
relationships between pairs of column sets.

See also hierarchy.

dimension member

One element in the list that makes up a dimension. Also called a dimension value.
A computer company might have dimension members in the product dimension
called LAPPC and DESKPC. Members in the geography dimension might include
Boston and Paris. Members in the time dimension might include NOV02, DEC02,
JAN03, FEB03, MAR03, and so forth.

dimension table

A relational table that stores all or part of the values for a logical dimension in a star
or snowflake schema. Dimension tables describe the business entities of an
enterprise, represented as hierarchical, categorical information such as time,
departments, locations, and products. They are sometimes called lookup or
reference tables.

dimension value

See dimension member.

dimension view

A relational view of data in an analytic workspace that contains the same types of
data as a dimension table in a star schema, that is, columns for dimension members

Glossary-6

and attributes. A dimension view typically lists all dimension members in the key
column, regardless of their level in the dimension hierarchy.

See also dimension table, star schema.

drill

To navigate from one item to a set of related items. Drilling typically involves
navigating up and down through the levels in a hierarchy. When selecting data, you
can expand or collapse a hierarchy by drilling down or up in it, respectively.

drill down

To expand the view to include child values that are associated with parent values in
the hierarchy.

drill up

To collapse the list of descendant values that are associated with a parent value in
the hierarchy.

edge

A set of one or more dimensions that are displayed together in a cube or document.
Although there is no limit to the number of edges in a cube, data is often organized
for display purposes along three edges, which are referred to as the row edge, the
column edge, and the page edge.

In a cross-tab report, dimension members on the row edge appear in the first
column and identify the rows, dimension members on the column edge appear in
the first row and identify the columns, and dimension members on the page edge
label the individual pages of the report.

See also cube.

EIF file

A specially formatted file for transferring data between analytic workspaces. Using
the OLAP DML, you can create an EIF file using the EXPORT command and read an
EIF file using the IMPORT command.

embedded total

A predefined level of aggregation built into a dimension for which a hierarchy
exists. For example, in a time dimension, each quarter represents the total for the
months in the quarter. Data for embedded totals is calculated in the analytic
workspace by the aggregation system.

Glossary-7

See also aggregation, dimension, hierarchy.

fact

See measure. See also additive, derived fact (or measure).

fact table

A table in a star schema that contains facts. A fact table typically has two types of
columns: those that contain facts and those that are foreign keys to dimension
tables. The primary key of a fact table is usually a composite key that is made up of
all of its foreign keys.

A fact table might contain either detail level facts or facts that have been
aggregated. Fact tables that contain aggregated facts are typically called summary
tables or materialized views. A fact table usually contains facts with the same level
of aggregation.

family relation

An analytic workspace relation object that identifies the complete parentage of each
dimension member. A family relation has at least two dimensions: the data
dimension and a level dimension. The contents of the relation identify, for each
dimension member, the ancestor at each level of the hierarchy.

See also ancestor, level, relation.

formula

A type of workspace object that represents a stored calculation, expression, or
procedure that produces a value. A formula provides a way to define and save
complex or frequently used relationships within the data without storing the result
set. Each time you query a formula, the OLAP engine performs the calculation or
procedure that is required to produce the value.

hierarchy

A logical structure that uses ordered levels as a means of organizing data. A
hierarchy can be used to define data aggregation; for example, in a time dimension,
a hierarchy might be used to aggregate data from the month level to the quarter
level to the year level. A hierarchy can be used to define a navigational drill path,
regardless of whether the levels in the hierarchy represent aggregated totals.

In the PL/SQL, hierarchies can be defined part of a dimension object.

Glossary-8

level

A position in a hierarchy. For example, a time dimension might have a hierarchy
that represents data at the month, quarter, and year levels.

level relation

An analytic workspace relation object that identifies the level of each dimension
member.

See also level, relation.

mapping

The definition of the relationship and data flow between source and target objects.

materialized view

A precomputed relational table comprising aggregated or joined data from fact and
possibly dimension tables. Also known as a summary or aggregate table.

measure

Data that can be examined and analyzed, such as sales or cost data. You can select
and display the data in a measure. Measures can be stored as variables or relations,
or measures can be calculated by means of formulas. The terms measure and fact
are synonymous; measure is more commonly used in a multidimensional
environment and fact is more commonly used in a relational environment.

There are both base measures and custom measures. Base measures, such as Volume
Sales and Dollar Sales, are stored. Custom measures, such as Volume Share Year
Ago, are calculated from base measures.

See also formula, relation, variable.

measure view

A relational view of data in analytic workspace that contains the same types of data
as a fact table in a star schema. However, in addition to the base-level facts, a
measure view also contains derived data, such as aggregates and inter-row
calculations.

See also fact table, star schema.

metadata

Data that describes data and other structures, such as objects, business rules, and
processes.

Glossary-9

See also OLAP Catalog.

model

A type of analytic workspace object that contains a set of interrelated equations,
which are used to calculate data and assign it to a variable or dimension value.
Models are used frequently when working with financial data.

See also dimension member, object, variable.

NA value

A special data value that indicates that data is "not available" (NA). It is the value of
any cell to which a specific data value has not been assigned or for which data
cannot be calculated.

See also cell, sparsity.

nonadditive

Describes a fact (or measure) that cannot be summarized through addition, such as
average. Contrast with additive, semi-additive.

normalize

In a relational database, the process of removing redundancy in data by separating
the data into multiple tables. Contrast with denormalized.

object

In an analytic workspace, a distinct item in the workspace dictionary. Analytic
workspaces consist of one or more objects, such as variables, formulas, dimensions,
relations, and programs, which are used to organize, store, and retrieve data. Each
object is created with a particular object type and stores a particular type of
information. Objects that are the same type (for example, three variables) can have
different roles within the analytic workspace.

See also role.

object type

In Oracle object technology, a form of user-defined data type that is an abstraction
of a real-world entity. An object type is a schema object with the following
components:

■ A name, which identifies the object type uniquely within a schema

■ Attributes, which model the structure and state of the real-world entity

Glossary-10

■ Methods, which implement the behavior of the real-world entity, in either
PL/SQL or Java

OLAP Catalog

A metadata package consisting of a set of read and write APIs that describe data in
multidimensional terms, such as cubes, measures, dimensions, and attributes.

See also metadata.

OLAP DML

The low-level data definition and manipulation language for analytic workspaces.

on-the-fly

Calculated at run-time in response to a specific query. In an analytic workspace,
custom measures and custom members are typically calculated on the fly.
Aggregate data can be precalculated, calculated on the fly, or a combination of the
two methods.

Contrast with precalculate.

online analytical processing (OLAP)

Functionality characterized by dynamic, multidimensional analysis of historical
data, which supports activities such as the following:

■ Calculating across dimensions and through hierarchies

■ Analyzing trends

■ Drilling up and down through hierarchies

■ Rotating to change the dimensional orientation

online transaction processing (OLTP)

Systems optimized for fast and reliable transaction handling. Compared to data
analysis systems, most OLTP interactions involve a relatively small number of rows,
but a larger group of tables.

parent

A dimension member at the level immediately above a particular member in a
hierarchy. In a dimension hierarchy, the data value of the parent is the aggregated
total of the data values of its children.

Contrast with child. See also hierarchy, level.

Glossary-11

parent-child relation

A one-to-many relationship between one parent and one or more children in a
hierarchical dimension. For example, New York (at the state level) might be the
parent of Albany, Buffalo, Poughkeepsie, and Rochester (at the city level).

See also child, parent.

parent relation

An analytic workspace relation object that defines a dimension's hierarchies by
storing the parent of each dimension member.

See also parent, relation.

precalculate

Calculated and stored as a data maintenance procedure. In an analytic workspace,
aggregate data can be precalculated, calculated on the fly, or a combination of the
two methods.

Contrast with on-the-fly.

program

A type of database object that contains a series of OLAP DML commands. A
program executes a set of related commands. Programs can be nested, with one
calling another. A program can return a value; in this case, it is called a user-defined
function.

See also object.

property

A characteristic of an object or component. Properties provide identifiers and
descriptions, define object features (such as the number of decimal places or the
color), or define object behaviors (such as whether an object is enabled). Properties
are used extensively in standard form analytic workspaces.

See also object.

QDR

See qualified data reference.

qualified data reference

A qualifier that limits one or more dimensions to a single value for the duration of
an OLAP DML command. A QDR is useful when you want to temporarily reference

Glossary-12

a value without affecting the current status. In the following example of an OLAP
DML command, the QDR limits the MONTH dimension to JUN02.

SHOW sales(month 'JUN02')

See also dimension, dimension member, status.

relation

A type of workspace object that is similar to a variable, except that it restricts its
data values to the members of a particular dimension (such as PRODUCT) instead of
to a particular data type (such as NUMBER). A relation establishes a correspondence
between the values of a given dimension and the values of that dimension or other
dimensions in the database.

For example, you might have a relation between cities and sales regions, such that
each city belongs to a particular region. In a relation between cities and sales
regions, the relation is dimensioned by CITY. Each cell holds the corresponding
value of the REGION dimension.

See also cell, dimension, dimension member, variable.

role

The function of a workspace object within its broader categorization of object type.
For example, a variable that stores numeric business measures has a role of
measure. A variable that stores descriptive product names has a role of attribute.
Both are variables, but they contain different types of information and play different
roles in the multidimensional model.

See also object.

rollup form

A table that displays the full ancestry of each dimension member within a row. The
table provides a column for each level of the hierarchy.

For example, a row for base-level dimension member Florence has FLORENCE in the
City column, ITALY in the Country column, and EUROPE in the Region column. A
row for Italy has null in the City column, ITALY in the Country column, and
EUROPE in the Region column.

Contrast with embedded total. See also ancestor, dimension member, hierarchy.

schema

A collection of related database objects. Relational schemas are grouped by database
user ID and include tables, views, and other objects. Multidimensional schemas are

Glossary-13

called analytic workspaces and include dimensions, relations, variables, and other
objects.

See also analytic workspace, snowflake schema, star schema.

semi-additive

Describes a fact (or measure) that can be summarized through addition along some,
but not all, dimensions. Examples include head count and on-hand stock.

Contrast with additive, nonadditive.

snowflake schema

A type of star schema in which the dimension tables are partly or fully normalized.

See also normalize, schema, star schema.

solved data

A result set in which all derived data has been calculated. Data fetched from an
analytic workspace is always fully solved, because all of the data in the result set is
calculated before it is returned to the SQL-based application. The result set from the
analytic workspace is the same whether the data was precalculated or calculated on
the fly.

See also on-the-fly, precalculate.

source

A database, application, file, or other storage facility from which the data in a data
warehouse is derived.

sparsity

A concept that refers to multidimensional data in which a relatively high percentage
of the combinations of dimension values do not contain actual data. Such "empty,"
or NA, values take up storage space in an analytic workspace. To handle sparse
data efficiently, you can create a composite.

There are two types of sparsity.

■ Controlled sparsity occurs when a range of values of one or more dimensions
has no data; for example, a new variable dimensioned by month for which you
do not have data for past months. The cells exist because you have past months
in the month dimension, but the cells contain NA values.

■ Random sparsity occurs when NA values are scattered throughout the variable,
usually because some combinations of dimension values never have any data.

Glossary-14

For example, a district might only sell certain products and never have data for
other products. Other districts might sell some of those products and other
ones, too.

See also composite, NA value.

standard form

See database standard form.

star query

A join between a fact table and a number of dimension tables. Each dimension table
is joined to the fact table using a primary key to foreign key join, but the dimension
tables are not joined to each other.

star schema

A relational schema whose design represents a multidimensional data model. The
star schema consists of one or more fact tables and one or more dimension tables
that are related through foreign keys.

See also schema, snowflake schema

status

The list of currently accessible values for a given dimension. If the status of a given
dimension is limited to a subset of its stored values, then all expressions that are
based on that dimension will be limited to the corresponding subset of data. The
status of a dimension persists within a particular session, and does not change until
it is changed deliberately. When an analytic workspace is first attached to a session,
all members are in status.

See also dimension, dimension member.

summary

See aggregation, materialized view.

update window

The length of time available for updating the data in your database.

valueset

A type of workspace object. A valueset contains a list of dimension members for a
particular dimension. After defining a valueset, you use the LIMIT command to
assign members from the dimension to the valueset. The values in a valueset can be
saved across Oracle OLAP sessions.

Glossary-15

When you begin a new Oracle OLAP session or start up a workspace, each
dimension has all values in the status. You can then limit a dimension to the values
stored in the valueset for that dimension.

See also dimension.

variable

A type of workspace object that stores data. The data type of a variable indicates the
kind of data that it contains, such as numeric or text data.

If a variable has dimensions, then those dimensions organize its data, and there is
one cell for each combination of dimension members. A dimensioned variable is an
array whose cells are individual data values. If a variable has no dimensions, then it
is a single-cell variable, which contains one data value.

See also cell, dimension, dimension member, object.

Glossary-16

Index-1

Index
A
access rights, 12-7
active catalogs, 7-3
aggmap see also aggregation maps, 8-27
AGGREGATE function

in formulas, 9-10
aggregating data

on-the-fly, 6-19
precomputing, 6-19

aggregation commands
OLAP DML, 7-6

aggregation maps
database standard form, 8-27

aggregation operators
in analytic workspaces, 6-21

aggregation plans
creating, 6-21
described, 6-20

ALL_ATTRIBUTES dimension, 8-22, A-28
ALL_ATTRTYPES dimension, A-30
ALL_CUBES dimension, 8-29, A-25
ALL_DESCRIPTIONS variable, 8-9, 8-15, 8-20,

8-22, 8-25, 8-29, 9-13, A-36
ALL_DESCTYPES dimension, A-30
ALL_DIMENSIONS dimension, 8-9, A-26
ALL_HIERARCHIES dimension, 8-15, A-26
ALL_LANGUAGES dimension, 8-21, A-32
ALL_LEVELS dimension, 8-20, A-27
ALL_MEASURES dimension, 8-25, 9-12, A-26
ALL_OBJECTS dimension, A-28
ALL_OBJTYPES dimension, A-29
ALL_OLAP2_AW views, 7-3
allocation, B-5

allocation commands
OLAP DML, 7-6

ALTER SESSION commands, 12-9
Analytic Workspace Java API, 5-5
Analytic Workspace Manager, 6-1 to 6-33
analytic workspaces

aggregation plans, 6-21
basic process overview, 1-9
basic steps for creating, 6-10
common uses, 1-4
database storage, 12-12
defined, 1-6
enabling for Discoverer, 6-25, 6-27
enabling for OLAP API, 6-25
maintaining, 6-31
object relationships, 2-9
standard form, 6-7

applications
differences from Express, B-4

assignment statements, 9-15
ATTR_INHIER variable

database standard form, A-36
ATTRDEF object, A-23
attributes

 See Also dimension attributes
 See Also level attributes
analytic workspace, 2-12
creating logical, 5-13, 5-17
database standard form, 8-20
logical, 2-4

authentication, 12-5
AW$ tables, 12-15
AW$CLASS property, A-8
AW$CREATEDBY property, A-8

Index-2

AW$LASTMODIFIED property, A-8
AW$LOADPRGS property, 6-31
AW$ROLE property, A-8
AW$STATE property, A-8
AW_COMPSPECS variable, A-35
AW_LOOPSPECS variable, A-35
AW_NAMES variable, 8-9, 8-23, 8-25, 8-30, 9-15,

A-34
AW_ROLES dimension, A-30
AWXML package, 5-5

B
batch window for aggregation, 6-19
BFILE security, 12-10
BI Beans

described, 4-2, 4-3
enabling analytic workspaces, 6-25
relational data source, 4-9
relational data sources, 4-9
See also OLAP API

build options
for analytic workspaces, 6-10

C
caches

use in iterative queries, 4-8
calculation engine

defined, 1-6
catalogs

AWCREATE, 8-34
database standard form, 8-30
OLAP API enabler, 8-31

catalogs class
database standard form, A-25

CHANNEL_DIM table
described, 3-14

character sets, B-3
CHARSET option, B-3
classes

database standard form, A-4
COMMIT command, B-6

composites
database standard form, 8-28
defining, 6-8

COMSPEC object, A-17
configuration procedures, 12-1
conjoints, B-6
CONNECT role, 12-7
connect string

for Analytic Workspace Manager, 6-7
CREATE_DB_STDFORM program, B-7
crosstab bean, 4-5
cube dimensions

described, 8-26
cube refresh

basic steps, 6-31
CUBE_MEASURES valueset, 8-25, 8-30, 9-16, A-32
CUBEDEF dimension, A-3, A-15
cubes

database standard form, 8-25
defined, 5-13
logical, 2-7

cursors, 4-8
CUST_MEAS columns, 7-7
custom measures

BI Beans support, 4-6
managing, 7-3 to 7-12
syntax for DBMS_AW_UTILITIES, 7-7
views of mappings, 7-7

CUSTOMER_DIM table
described, 3-12

CWM2
described, 1-7
write APIs, 5-17

CWM2_OLAP_CATALOG package, 5-18
CWM2_OLAP_CUBE package, 5-17
CWM2_OLAP_DIMENSION package, 5-17
CWM2_OLAP_HIERARCHY package, 5-17
CWM2_OLAP_LEVEL package, 5-17
CWM2_OLAP_LEVEL_ATTRIBUTE package, 5-17
CWM2_OLAP_MEASURE package, 5-17
CWM2_OLAP_PC_TRANSFORM package, 5-18
CWM2_OLAP_VALIDATE package, 5-18

Index-3

D
data dictionary

see active catalogs
data formatting, 4-4
data models, 2-1
data refreshes, 6-31
data striping, 12-2
database configuration, 12-1
database security, 12-5
database standard form

basics, 9-1
creating new measures, 9-8
described, 8-2
extensions, 8-4
specification, A-1 to A-40

DB_CACHE_SIZE parameter, 12-7
DBMS_AW package

described, 1-7, 7-2
EXECUTE procedure, 9-6
executing OLAP DML commands, 9-3
managing custom measures, 7-4

DBMS_AW_UTILITIES package
described, 1-7, 7-2
managing custom measures, 7-3

DBMS_AWM package
described, 1-7, 7-2

DEFAULT_HIER relation, 8-15, A-37
demand planning systems, 1-3
DIM_ATTRIBUTES valueset, A-34
DIM_HIERARCHIES valueset, 8-15, A-33
DIM_LEVELS valueset, 8-9, 8-20, A-33
DIMDEF dimension, A-3, A-19
dimension hierarchies

 See hierarchies
dimension members

selecting, 9-14
dimension order

basic rules, 6-9
dimension tables

defining metadata, 5-12
described, 2-5

dimensions
analytic workspace, 2-10
creating logical, 5-13
database standard form, 8-6
logical, 2-3, 5-12
relational, 2-5
time, 5-12

directories
database, 12-10

Discoverer
enabling analytic workspaces, 6-27

drilling, 4-4
dynamic performance tables, 12-15

E
EDDE.HIERMNT program (obsolete), B-14
EDDE.MSG program (obsolete), B-14
EEX file

generating for analytic workspaces, 6-27
EIF files, B-7
enablement

analytic workspace, 6-25
creating OLAP Catalog metadata, 6-26
creating views for the OLAP API, 6-25

End User Layer (EUL)
creating for analytic workspaces, 6-27

Express Connection Utility (obsolete), B-4
Express databases

converting to standard form, B-7
Express Relational Access Administrator

(obsolete), B-3
Express Relational Access Manager (obsolete), B-3
EXTCALL (obsolete), B-6
extensions class

database standard form, A-40

F
fact tables

defining metadata, 5-13
described, 2-6

familyrel relation
database standard form, 8-18

fastest varying dimension, 6-8

Index-4

features class
database standard form, A-35

files
allowing access, 12-10

financial applications, 1-3
financial operations

OLAP DML, 7-5
forecasting commands

OLAP DML, 7-4, 10-1
formatting

data, 4-4
formulas

analytic workspace, 2-12
defining, 9-11

G
Global star schema

described, 3-9 to 3-15
GLOBAL_AW user

defining, 6-12
globalization, B-3
Globalization Technology See NLS
GLOBALX tables, C-3
graph bean, 4-5

H
HIER_LEVELS valueset, A-23
hierarchies

analytic workspace, 2-10
creating logical, 5-13
database standard form, 8-9
logical, 2-3

hierarchy dimension
see also hierlist dimension

HIERLEVELS valueset, A-3
HIERLIST dimension, A-3, A-20

database standard form, 8-10
for attributes, 8-20

I
IDE

defined, 4-3
implementation class

database standard form, A-14
inhier variables

database standard form, 8-13
in-hierarchy variables

see also inhier variables
initialization parameters, 12-9 to 12-10
init.ora file, 12-7

J
Java

described, 4-1
sandbox security, 4-2

JDeveloper, 4-3

L
LAG function

OLAP DML, 7-16
language support, B-3
level dimension

see also levellist dimension
level relation see also levelrel relation
level relations

described, 2-13
LEVELLIST dimension, A-3, A-20

database standard form, 8-16
LEVELREL relation, 8-17, A-3, A-21
levels

analytic workspace, 2-10
creating logical, 5-13
database standard form, 8-16
logical, 2-3

LIMIT command, 9-14
load programs, 6-31

editing, 6-32
localization, B-3
log files

generating in Analytic Workspace
Manager, 6-11

Index-5

login names, 12-5
LOOPSPEC composite, A-16

M
materialized views

CWM2, 13-6
described, 2-6
grouping sets, 13-6 to 13-15

MDI
defined, 4-3

MEASUREDEF object, A-3, A-17
measures

analytic workspace, 2-12
custom, 4-6
database standard form, 8-23
logical, 2-2
relational, 2-6

MEMBER_CREATEDBY variable, A-38
MEMBER_FAMILYREL relation, A-39
MEMBER_INHIER variable, A-38
MODEL clause (SELECT), 7-14
modeling commands

OLAP DML, 7-7
modeling support, B-5
MR_REFRESH procedure, 7-21
multibyte character sets

Express equivalents, B-3

N
naming conventions

database standard form, A-4
naming restrictions

for analytic workspaces, 6-8
NLS_LANG configuration parameter, B-3
n-pass functions, 4-8
number formatting, 4-4
numeric functions

OLAP DML, 7-5

O
object-oriented programming, 4-6
ODBC (obsolete), B-6

ODBC support (obsolete), B-3
oescmd program (obsolete), B-2
oesmgr program (obsolete), B-2
OLAP

defined, 1-2
OLAP API

described, 1-8, 4-2, 4-6
enabling analytic workspaces, 6-25
relational data source, 4-9
See also BI Beans

OLAP Beans, 4-3, 4-6
OLAP Catalog

CWM2 sample scripts, 7-21 to 7-24
described, 1-5
metadata model tables, 5-7
read APIs, 5-7
sample scripts, C-4
uses for analytic workspaces, 5-6
uses for relational tables, 5-6
write APIs, 5-7

OLAP DML
described, 1-7
editing programs, 9-5
executing commands, 9-3
executing in OLAP Worksheet, 9-4
special symbols, 9-22
SQL interface, 7-2
using in OLAP Worksheet, 6-5

OLAP Instance Manager (obsolete), B-2
OLAP Management tool, 5-11
OLAP metadata

creating in Enterprise Manager, 5-11
creating with CWM2 APIs, 5-16
materialized views, 13-3
steps for creating, 5-8
viewing in Analytic Workspace Manager, 6-4

OLAP Worksheet, B-5
described, 6-6
opening in Analytic Workspace Manager, 6-5
session sharing, 6-4

OLAP_PAGE_POOL_SIZE, 12-8
OLAP_TABLE

optimization, 7-14
OLAP_TABLE function, 7-12 to 7-20

described, 7-3

Index-6

OLTP
defined, 1-2

operating system commands (obsolete in OLAP
DML), B-6

operators
OLAP DML, 7-4

optimization techniques, 12-2

P
page pool

for ORACLE OLAP, 12-8
paging, 4-4
PARALLEL_MAX_SERVERS parameter, 12-7
parameter file, 12-7
parent relations

described, 2-13
see also parentrel relations

parent-child relations
described, 2-3

PARENTREL relation, A-3, A-22
parentrel relations

database standard form, 8-11
partitioning, 12-12
performance counters, 12-15
Personal Express (obsolete), B-4
pfile settings, 12-7
PGA allocation, 12-9
PGA_AGGREGATE_TARGET parameter, 12-7
pivoting, 4-4
predictive analysis applications, 1-3
Presentation Beans, 4-3
PRICE_AND_COST_HISTORY_FACT table

described, 3-15
mapping to workspace objects, 3-19

PRICE_AND_COST_UPDATE_FACT table
described, 3-15

PRODUCT_DIM table
described, 3-13
mapping to workspace objects, 3-16

programs
editing OLAP DML, 9-7
executing OLAP DML, 9-5

PS$ tables, 12-15

Q
qualified data references (QDRs), 9-15
query builder, 4-6
QUERY REWRITE system privilege, 12-7

R
rank formatting, 4-5
referential integrity, 2-10
refresh process

analytic workspace data, 6-31
regressions

OLAP DML, 7-4, 10-1
Relational Access Administrator (obsolete), B-3
Relational Access Manager (obsolete), B-3
relational data sources, 4-9
relations

analytic workspace, 2-13
result sets, 4-8
roles, 12-7
ROLLUP command, B-6, B-8
run-time aggregation, 6-19

S
schemas

star, snowflake, 5-11
segment size

basic rules, 6-9
SEGWIDTH

see segment size
SELECT privilege, 12-7
SELECT statement

MODEL clause, 7-14
server parameter file, 12-7
session sharing, B-5
SESSIONS parameter, 12-7
simultaneous equations, 7-7
slowest varying dimension, 6-8
SNAPI (obsolete), B-6
SNAPI communications (obsolete), B-5
sparsity characteristics, 6-12, 6-17
SPLExecutor class

executing OLAP DML commands, 9-3
SQL command (OLAP DML), B-3

Index-7

SQL interface, 1-7
SQL*Plus session settings, 7-21
standard form

see database standard form
star schema

described, 2-4
startup parameters

database, 6-16
statistical operations

OLAP DML, 7-5
stoplight formatting, 4-5
string functions

OLAP DML, 7-6
striping, 12-2
system properties

database standard form, A-8

T
table bean, 4-5
tablespaces

defining, 6-16, C-1
for analytic workspaces, 12-2

text manipulation
OLAP DML, 7-6

Time attributes
creating for converted Express databases, B-12

time dimensions, 5-12
time series functions

OLAP DML, 7-4
TIME_DIM table

described, 3-11
mapping to workspace objects, 3-17

translation tables, B-3
tuples

in composites, 6-8

U
Unicode, B-3
UNITS_HISTORY_FACT table

described, 3-14
UNITS_UPDATE_FACT table

described, 3-14
UPDATE command, B-6

user access
sample scripts, C-1

user access rights, 12-7
user names, 12-5

V
variables

analytic workspace, 2-11
targeting cells, 9-15

views
creating for Discoverer, 6-29
template for creating, 7-13

VISIBLE variable, A-37

W
wizards

Analytic Workspace Manager, 6-11 to 6-31
BI Beans, 4-6

X
XCA (obsolete), B-6
XCA (unsupported), B-5
XML metadata, 5-5
XPDDDATA database (obsolete), B-14

Index-8

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	Part I� Fundamentals
	1 Overview
	OLAP Technology Within the Oracle Database
	Problems Maintaining Two Distinct Systems
	Full Integration of Multidimensional Technology

	Using OLAP to Answer Business Questions
	Common Analytical Applications
	Deciding When to Use Analytic Workspaces
	Working With Oracle OLAP
	OLAP Analytic Engine
	Analytic Workspaces
	Analytic Workspace Manager
	OLAP Worksheet
	SQL Interface to OLAP
	OLAP DML
	OLAP Catalog
	Analytic Workspace Java APIs
	OLAP API
	Oracle Enterprise Manager
	Oracle Warehouse Builder

	Process Overview: Creating and Maintaining Analytic Workspaces

	2 The Multidimensional Data Model
	The Logical Multidimensional Data Model
	Logical Cubes
	Logical Measures
	Logical Dimensions
	Logical Hierarchies and Levels
	Logical Attributes

	The Relational Implementation of the Model
	Dimension Tables
	Fact Tables
	Materialized Views

	The Analytic Workspace Implementation of the Model
	Multidimensional Data Storage in Analytic Workspaces
	Database Standard Form Analytic Workspaces
	Analytic Workspace Dimensions
	Use of Dimensions in Standard Form Analytic Workspaces

	Analytic Workspace Variables
	Use of Variables to Store Measures
	Use of Variables to Store Attributes

	Analytic Workspace Formulas
	Analytic Workspace Relations

	3 The Sample Schema
	Case Study Scenario
	Reporting Requirements
	Business Goals
	Information Requirements
	Business Analysis Questions
	What products are profitable?
	Who are our customers, and what and how are they buying?
	What accounts are most profitable?
	What is the performance of each distribution channel?
	Is there still a seasonal variance to the business?
	Summary of Information Requirements

	Identifying Required Business Facts
	Designing a Logical Data Model for Global Computing
	Identifying Dimensions
	Identifying Levels
	Identifying Hierarchies
	Identifying Stored Measures

	The Global Star Schema
	Dimension Table: TIME_DIM
	Dimension Table: CUSTOMER_DIM
	Dimension Table: PRODUCT_DIM
	Dimension Table: CHANNEL_DIM
	Fact Tables: UNITS_HISTORY_FACT and _UPDATE_FACT
	Fact Tables: PRICE_AND_COST_HISTORY_FACT and _UPDATE_FACT

	Mapping the Global Schema to an Analytic Workspace
	Global Product Dimension Mapping
	Global Time Dimension Mapping
	Global Price Cube Mapping

	4 Developing Java Applications for OLAP
	Building Analytical Java Applications
	About Java
	The Java Solution for OLAP
	Oracle Java Development Environment

	Introducing the BI Beans
	Metadata
	Navigation
	Formatting
	Graphs
	Crosstabs
	Tables
	Data Beans
	Wizards

	Understanding the OLAP API
	How the OLAP API Accesses Multidimensional Data
	Calculation Capabilities
	Intelligent Caching

	Managing Data Sources for the BI Beans and OLAP API

	Part II� Fundamentals of Creating and Using Analytic Workspaces
	5 Defining a Logical Multidimensional Model
	Introduction to OLAP Metadata
	Creating Metadata for Your Source Data
	For Source Data in a Basic Star or Snowflake Schema
	For Dimension Tables with Complex Hierarchies
	For Other Schema Configurations

	Creating Metadata for Your Analytic Workspace
	Creating Metadata for Your Applications

	Overview of the OLAP Catalog
	OLAP Catalog Components
	About CWM1
	About CWM2

	Steps for Creating OLAP Metadata

	Choosing a Tool for Creating OLAP Catalog Metadata
	Creating Metadata for an Analytic Workspace

	Creating Metadata Using Oracle Enterprise Manager
	Procedure: Accessing OLAP Management
	Defining Metadata for Dimension Tables
	Information That You Supply for Dimensions
	Time Dimension
	Procedure: Defining a Logical Dimension in the OLAP Catalog

	Defining Metadata for Fact Tables
	Information That You Supply for Cubes
	Procedure: Defining a Logical Cube in the OLAP Catalog

	Case Study: Creating Metadata for the GLOBAL Star Schema
	Defining a Logical Time Dimension for the Global Schema
	Defining a Logical Units Cube for the Global Schema

	Creating Metadata Using PL/SQL
	CWM2 Packages for Creating OLAP Dimensions
	CWM2 Packages for Creating Cubes
	CWM2 Package for Mapping Metadata
	CWM2 Package for Creating Level-Based Dimension Tables
	CWM2 Packages for Classification and Validation

	6 Creating an Analytic Workspace
	Methods of Creating a Workspace
	Introduction to Analytic Workspace Manager
	OLAP Catalog View
	Object View
	OLAP Worksheet
	Opening a Database Connection With Analytic Workspace Manager

	Creating a Standard Form Workspace Using Analytic Workspace Manager
	Choosing a Schema for the Analytic Workspace
	Setting Advanced Storage Options
	Defining a Composite Dimension
	Ordering the Dimensions in a Cube
	Setting the Segment Size

	Choosing Build Options
	Generating Scripts
	Basic Steps for Creating a Standard Form Workspace

	Case Study: Creating the Global Analytic Workspace
	Defining the GLOBAL_AW Workspace User
	Examining Sparsity Characteristics for GLOBAL
	Running the Create Analytic Workspace Wizard
	Manually Changing Object Definitions
	Completing the Build

	Case Study: Creating the Sales History Analytic Workspace
	Defining Startup Parameters for the SH Build
	Defining Tablespaces for SH
	Examining the Sparsity Characteristics of SH Data
	Managing the SH Build
	Running the Create Analytic Workspace Wizard
	Building the Sales History Analytic Workspace

	Generating Aggregate Data
	Strategies for Calculating Aggregates
	How to Select Levels to Pre-Aggregate and Store
	About Aggregation Plans
	How to Create and Deploy an Aggregation Plan
	Creating an Aggregation Plan
	Changing the Aggregation Operator
	Deploying an Aggregation Plan

	Case Study: Aggregating Data in the GLOBAL Analytic Workspace
	Identifying Levels for Precalculation
	Aggregating the Global Price Cube

	Enabling an Analytic Workspace for an Application
	How to Enable an Analytic Workspace
	About Enabling for the BI Beans
	Star Schema of Views
	OLAP Catalog Metadata for Analytic Workspaces

	How to Enable an Analytic Workspace for Oracle Discoverer
	About Enabling for Oracle Discoverer
	Views Created for Discoverer

	Refreshing the Data in an Analytic Workspace
	Using the Refresh Wizard
	Refreshing From Different Relational Tables
	Case Study: Refreshing the Units Cube
	When a Data Refresh Requires Re-Enabling

	7 SQL Access to Analytic�Workspaces
	Overview of SQL Access
	Manipulating Analytic Workspace Data
	Querying an Analytic Workspace
	About the Active Catalogs

	Support for Custom Measures
	Methods of Defining Custom Measures
	Analytic Support for Custom Measures
	Forecasts and Regressions
	Time Series Manipulation
	Financial Operations
	Statistical Operations
	Numeric Computations
	Text Manipulation
	Allocation
	Aggregation
	Models

	Creating Custom Measures Using DBMS_AW_UTILITIES
	Case Study: Adding Sales to Global Using DBMS_AW_UTILITIES
	Acquiring Information About the Analytic Workspace
	Using DBMS_AW_UTILITIES to Define Sales as a Custom Measure
	Viewing the Workspace Formula
	Querying the Sales Custom Measure

	Creating Custom Measures Using OLAP_EXPRESSION
	Case Study: Adding Sales to Global Using OLAP_EXPRESSION
	Using OLAP_TABLE for Direct Access to Workspace Data
	Designing Views of an Analytic Workspace
	Process Overview
	Using OLAP_TABLE
	Using the SELECT MODEL Clause

	Case Study: Using OLAP_TABLE to Create Global Custom Measures
	Defining Formulas in the Analytic Workspace
	Querying an Analytic Workspace Using OLAP_TABLE
	OLAP_TABLE Function
	SELECT Statement

	Using OLAP_TABLE to Create a Measure View for the BI Beans
	Creating and Executing the SQL Script
	About the Sample Script

	Defining OLAP Catalog Metadata for Workspace Views

	8 Exploring a Standard Form Analytic�Workspace
	About Workspaces Created Using OLAP Tools
	About Database Standard Form
	Standard Form Implementation of the Logical Model
	Additional Requirements for OLAP Tools

	Querying a Standard Form Analytic Workspace
	Querying the Standard Form Catalogs
	Querying Properties

	Standard Form Dimensions
	Dimdef Dimension
	Contents of an Analytic Workspace Dimension
	Properties of an Analytic Workspace Dimdef Dimension

	Standard Form Metadata for Dimensions
	ALL_DIMENSIONS Dimension
	ALL_DESCRIPTIONS Variable for Dimensions
	AW_NAMES Variable for Dimensions
	DIM_LEVELS Valueset

	Standard Form Hierarchies
	Hierlist Dimension
	Contents of a Hierlist Dimension
	Properties of a Hierlist Dimension

	Member_Parentrel Relation
	Contents of a Member_Parentrel Relation
	Properties of a Member_Parentrel Relation

	Member_Gid Variable
	Contents of a Member_GID Variable
	Properties of a Member_Gid Variable

	Member_Inhier Variable
	Contents of a Member_Inhier Variable
	Properties of a Member_Inhier Variable

	Standard Form Metadata for Hierarchies
	ALL_HIERARCHIES Dimension
	ALL_DESCRIPTIONS Variable for Hierarchies
	DIM_HIERARCHIES Valueset
	DEFAULT_HIER Relation

	Standard Form Levels
	Levellist Dimension
	Contents of a Levellist Dimension
	Properties of a Levellist Dimension

	Member_Levelrel Relation
	Contents of a Level Relation
	Properties of a Member_Levelrel Relation

	Member_Familyrel Relation
	Contents of a Family Relation
	Properties of a Member_Familyrel Relation

	Standard Form Metadata for Levels
	ALL_LEVELS Dimension
	ALL_DESCRIPTIONS Variable for Levels
	DIM_LEVELS Valueset

	Standard Form Attributes
	ALL_LANGUAGES Dimension
	Standard Form Metadata for Attributes
	ALL_ATTRIBUTES Dimension
	ALL_DESCRIPTIONS Variable for Attributes
	AW_NAMES Variable for Attributes

	Standard Form Measures
	Measure Variable
	Measuredef Formula
	Standard Form Metadata for Measures
	ALL_MEASURES Dimension
	ALL_DESCRIPTIONS Variable for Measures
	AW_NAMES Variable for Measures
	CUBE_MEASURES Valueset

	Standard Form Cubes
	Cubedef Dimension
	Contents of a Cubedef Dimension
	Properties of a Cubedef Dimension

	Comspec Aggregation Map
	Loopspec Composite Dimension
	Standard Form Metadata for Cubes
	ALL_CUBES Dimension
	ALL_DESCRIPTIONS Variable for Cubes
	AW_NAMES Variable for Cubes
	CUBE_MEASURES Valueset

	Standard Form Catalogs
	OLAP API Enabler Catalogs
	AWCREATE Catalogs

	Part III� Acquiring Data From Additional Sources
	9 Adding Measures to a Standard Form Analytic�Workspace
	Working in a Standard Form Analytic Workspace
	Methods of Executing OLAP DML Commands
	Using Analytic Workspace Manager to Execute OLAP DML
	Using OLAP Worksheet to Execute OLAP DML
	Procedure: Opening OLAP Worksheet from Analytic Workspace Manager
	Procedure: Using the Editor in OLAP Worksheet

	Using DBMS_AW.EXECUTE to Execute OLAP DML
	DBMS_AW.EXECUTE Command Format
	Adding Contents to a DML Program From SQL

	Adding Custom Measures to a Cube
	Defining a Standard Form Measure Variable
	Defining a Formula
	Registering a New Measure
	ALL_MEASURES Dimension
	Adding a Dimension Member
	Saving Changes to an Analytic Workspace

	ALL_DESCRIPTIONS Variable
	Limiting the Number of Active Dimension Members
	Targeting a Specific Cell
	Assigning Values to a Variable

	AW_NAMES Variable
	CUBE_MEASURES Valueset

	Case Study: Adding Measures to the Global Analytic Workspace
	Creating Measures for SALES, EXTENDED_COST, and MARGIN
	Creating New Variables in GLOBAL
	Calculating and Storing Values in Variables
	Creating Measure Formulas
	Aggregating the New Global Variables

	Adding More Custom Measures to GLOBAL
	Using an OLAP DML Program to Add Measures to GLOBAL

	10 Predicting Future Performance
	Creating a Forecast
	Steps for Creating a Forecast
	Creating the Forecast Time Periods
	Defining Variables for the Results

	Developing a Forecast Program
	Generating a Forecast

	Defining a New Cube
	Creating a Cubedef Object
	Creating a Default Aggregation Map
	Registering a New Cube
	Adding a Cube to the ALL_CUBES Dimension
	Adding a Cube to the ALL_DESCRIPTIONS Variable
	Adding a Cube to the AW_NAMES Variable
	Adding Measures to the New Cube in the CUBE_MEASURES Valueset

	Troubleshooting a Hand-Crafted Cube

	Case Study: Forecasting Global Sales
	Defining a New Cube for Forecast Measures
	Defining the Forecasting Measures for Global Sales
	Developing a Forecasting Program for Global Sales
	Identifying Historical and Forecast Time Periods
	Arguments to the FORECAST_SALES Sample Program

	Reviewing the Forecast Data for Global Sales
	Aggregating and Enabling the Forecast Measure

	11 Acquiring Data From Other Sources
	Overview of OLAP Data Acquisition Subsystems
	How to Manually Create a Standard Form Analytic Workspace
	Reading Flat Files
	About the File Reader Programs
	Writing a Program for Reading Files
	Mapping Fields to Workspace Objects
	Reading Ruled Files
	Reading Structured PRN Files
	Reading CSV Files

	Setting Dimension Status for Reading Measures
	Optimizing a Data Load
	Reading and Maintaining Dimension Members
	Transforming Incoming Values
	Basic Transformations
	Using Relations to Align Dimension Values

	Fetching Data From Relational Tables
	OLAP DML Support for SQL
	Process: Copying Data From Relational Tables Into Analytic Workspace Objects
	Fetching Dimensions Members From Tables
	Sorting Dimension Members
	Fetching Measures From Tables

	Populating Additional Metadata Objects
	Using ___POP.FMLYREL
	Using ___ORDR.HIERARCHIES

	Case Study: Creating the GLOBALX Workspace From Alternative Sources
	Designing and Implementing the GLOBALX Star Schema
	GLOBALX Schema Diagram
	Procedure: Creating the GLOBALX Sample Schema

	Creating OLAP Catalog Metadata for the GLOBALX Schema
	Creating the GLOBALX Analytic Workspace
	Fetching the Price Cube From Relational Tables
	Loading Products From GLOBAL.PRODUCT_DIM
	Loading Time From GLOBAL.TIME_DIM
	Loading the PRICE Cube From PRICE_AND_COST_HISTORY_FACT

	Loading the Units Cube From Flat Files
	Loading Channels From CHANNELS.DAT
	Loading Customers From CUSTOMERS.DAT
	Reading the UNITS_CUBE.DAT File

	Populating Additional Standard Form Metadata Objects
	Using Tools with the GLOBALX Analytic Workspace

	Part IV� Database Administration for OLAP
	12 Administering Oracle OLAP
	Administration Overview
	Creating Tablespaces for Analytic Workspaces
	Creating an UNDO Tablespace
	Creating a Permanent Tablespace for Analytic Workspaces
	Creating a Temporary Tablespace for Analytic Workspaces
	Querying the Size of an Analytic Workspace

	Setting Up User Names
	SQL Access For DBAs and Application Developers
	SQL Access for Analysts
	Access to Database Objects Using the BI Beans

	Initialization Parameters for Oracle OLAP
	Procedure: Setting System Parameters for OLAP
	About the OLAP_PAGE_POOL_SIZE Setting
	About the PGA_AGGREGATE_TARGET Setting

	Initialization Parameters for the BI Beans
	Permitting Access to External Files
	Creating a Database Directory
	Granting Access Rights to a Database Directory
	Example: Creating and Using a Database Directory

	Understanding Data Storage
	Analytic Workspace Tables
	System Tables

	Monitoring Performance

	13 Materialized Views for the OLAP API
	Summary Management with Oracle OLAP
	Overview and Requirements
	Materialized Views Required for a Cube
	Materialized Views and OLAP Metadata

	Example: Dimension Materialized View
	CREATE Materialized View for a Dimension Hierarchy
	Bitmap Indexes for a Dimension Hierarchy
	Statistics for a Dimension Hierarchy

	Example: Fact Materialized View
	CREATE Fact Materialized View
	Bitmap Indexes for Fact Materialized Views
	Statistics for Fact Materialized Views

	Using the DBMS_ODM Package
	Procedure: Create Grouping Set Materialized Views
	Example: Create Grouping Set Materialized Views for a Sales Cube

	A Database Standard Form for Analytic�Workspaces
	Overview of Database Standard Form
	Purpose of Database Standard Form
	Audience for Database Standard Form
	Logical Model and Workspace Objects
	Implementation of a Cube
	Implementation of a Measure
	Implementation of a Dimension

	Classes of Workspace Objects
	Properties of Workspace Objects

	Object Naming Conventions
	Logical Names
	Name Space Organization
	Simple Logical Names and Full Names

	Workspace Object Properties
	Properties Specific to Implementation Class Objects
	System Properties on All Workspace Objects
	Role Property on All Workspace Objects
	Role Property Values for Implementation Class Objects
	Role Property Values for Catalogs Class Objects
	Role Property Values for Features Class Objects
	Role Property Values for Extensions Class Objects
	Terminology: Using Role Names to Describe Objects

	Implementation Class Objects
	Cube Objects
	Cubedef Dimension
	Loopspec Composite

	Measure Objects
	Measuredef Object
	COMPSPEC Aggmap

	Dimension Objects
	Dimdef Dimension
	Hierlist Dimension
	Levellist Dimension
	Member_Levelrel Relation
	Member_Parentrel Relation
	Hier_Levels Valueset
	Attrdef Object

	Catalogs Class Objects
	Lists of Objects
	ALL_CUBES Dimension
	ALL_MEASURES Dimension
	ALL_DIMENSIONS Dimension
	ALL_HIERARCHIES Dimension
	ALL_LEVELS Dimension
	ALL_ATTRIBUTES Dimension
	ALL_OBJECTS Dimension

	Lists of Types, Roles, and Languages
	ALL_OBJTYPES Dimension
	ALL_DESCTYPES Dimension
	ALL_ATTRTYPES Dimension
	AW_ROLES Dimension
	ALL_LANGUAGES Dimension

	Lists of Cube and Dimension Objects
	CUBE_MEASURES Valueset
	DIM_HIERARCHIES Valueset
	DIM_LEVELS Valueset
	DIM_ATTRIBUTES Valueset

	Supporting Object Information
	AW_NAMES Variable
	AW_COMPSPECS Variable
	AW_LOOPSPECS Variable

	Features Class Objects
	ALL_DESCRIPTIONS Variable
	ATTR_INHIER Variable
	DEFAULT_HIER Relation
	VISIBLE Variable
	Member_Inhier Variable
	Member_Createdby Variable
	Member_Familyrel Relation
	Member_Gid Variable
	OBJ_CREATEDBY Variable
	OBJ_STATE Variable
	VERSION Variable

	Extensions Class Objects

	B Upgrading From Express Server
	Administration
	Management Tools
	Authentication of Users
	Data Transfer
	Localization

	Applications Support
	Programming Environment
	Communications
	Metadata

	Programming Language Changes
	New Commands
	Obsolete Commands
	UPDATE and COMMIT

	Converting Oracle Express Databases to Standard Form
	Who Should Use CREATE_DB_STDFORM
	What CREATE_DB_STDFORM Does For You
	What CREATE_DB_STDFORM Does Not Do For You

	Converting From Oracle Express Objects Metadata
	CREATE_DB_STDFORM Syntax
	Procedure: Converting From Oracle Express Objects to Standard Form

	Populating Time Attributes
	Sorting Time Dimension Members
	Creating and Populating End Date and Time Span Attributes
	Setting Properties on Time Objects

	Revising the Load Programs
	Example: Converting the XADEMO Database to Standard Form
	Creating a Standard Form XADEMO Analytic Workspace
	About the Time Dimension in XADEMO
	Populating the XADEMO Time Attributes

	C Programs Used to Create GLOBALX
	SQL Scripts for Defining Users and Tablespaces
	SQL Scripts for the GLOBALX Star Schema
	SQL Scripts for OLAP Catalog Metadata

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

