
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 U.S.A.
(650) 960-1300

http://www.sun.com/blueprints

Service Provisioning with
Resource Management
Sam Antwi, Senior Architect, Sun Client Services

Sun BluePrints™ OnLine—November 2004

Part No. 817-7525-10
Revision 03, 11/11/04
Edition: November 2004

Please
Recycle

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95045 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.
In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, SunSolve, SunSolve Online, docs.sun.com, JumpStart, N1, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering
efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry.
Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK
GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, Californie 95045 Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En
particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à l’adresse http://
www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de
Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par
un copyright et licencié par des fournisseurs de Sun.

Certaines parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque enregistree
aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, SunSolve, SunSolve Online, docs.sun.com, JumpStart, N1, et Solaris sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC
sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de
Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Service Provisioning with
Resource Management

Sun customers with large deployments are increasingly looking for ways to drive out cost
and complexity in the data center through a number of major, ongoing or planned IT
initiatives. Some of these initiatives include server consolidation, application stacking,
automated service provisioning, preprovisioned shared infrastructure services, and dynamic
resource provisioning and management.

Years of over-sizing platforms (over-provisioning) and business unit IT autonomy with a
one-application-one-platform style of deployment have left IT environments with low system
utilization, wasted resources, and large, unused system footprints in the data center.
Enterprises are looking to leverage emerging, smaller server footprints of virtualized
technologies to deliver the same services, while maximizing system utilization, delaying
capacity decisions, and balancing system resource requests with optimal resource
provisioning.

A popular way to maximize data center resource utilization on a sustained basis lies in the
ability of infrastructure environments to deliver a level of agility to service demand in which
resources are dynamically provisioned to requesting service workloads. Services can be
migrated to the resource availability point, achieving an overall utilization balance across the
enterprise. Application stacking and service deployment or provisioning is key to realizing
savings in the next-generation data center.

With these cost-savings measures, the risk for IT is the challenge to continue to maintain or
exceed user expectations regarding service level commitments on performance and
availability. Stacked service applications of unknown workload characteristics hosted in the
same operating system image might present resource contention and other service
contamination imperatives, which might unfavorably impact service delivery in regards to
service level agreements.

IT needs a comprehensive, enterprise-based resource management solution born out of a
network service and driven through a business policy engine in which service provisioning,
resource management, and service level commitments meet operational characteristics.
Driving technologies for such capacities are still evolving in the next generation data center
 1

initiatives such as Sun’s N1™ Grid software. In the meantime, IT organizations need to
deploy host-specific resource management, along with service provisioning capabilities, to
address expected service levels for mixed workload, stacked application environments.

Enterprise resource management features and techniques from systems vendors are meeting
this need with ever-expanding system features based on the latest versions of operating
systems. These include workload management, distributed resource management, and
hardware and software partitioning schemes at various levels of granularity. On the Solaris™
Operating System (Solaris OS) platform, the features or techniques include dynamic
reconfiguration, dynamic domaining, resource pooling, containers, and grid computing, along
with their respective system attributes.

While resource management has been a feature of the Solaris OS for sometime, the Solaris™
9 Resource Management (Solaris 9 RM) offers a more granular, elegant, and flexible solution
to Solaris OS platform resource sharing and control. The Solaris 9 RM offers the best, most
predictable approach to guaranteed service level commitment, even in environments where
resources are contested by multiple stacked application service workloads or where
maximizing system resource utilization is paramount.

Application service provisioning has automation features that offer IT organizations the
ability to migrate application workloads to the point of resource availability, thus delivering
service agility. Additionally, the automated nature of application service provisioning through
automatic deployment offers opportunities to improve service quality through automation, as
well as the ability to scale large service deployments.

Definition and Integration Scope
The Solaris 9 RM implementation example in this article is a rather simple illustration of the
Solaris 9 RM software. It begins with a standard provisioning of the Solaris 9 RM in a
multiservice scenario. It then progresses into an automated provisioning of the Solaris 9 RM,
which is integrated into a sample automated deployment of the Sun™ ONE Web Server
using the N1 Grid Service Provisioning System (N1 Grid SPS) tool. This same integration
technique could be used to provision resource controls into other enterprise software
(services) such as BEA WebLogic and Oracle9i® Database Server.

In particular, the manual provisioning aspect of the Solaris 9 RM in this article involves three
application service workloads: Sun ONE Web Server, BEA WebLogic, and Oracle9i. The
Solaris 9 RM implementation involves sharing CPU resources on a Solaris OS server. In
Solaris 9 RM, a share of CPU resource is a defined as a slice or portion of the CPU allocated
to an application or workload throughout its run cycle on a system. Shares are not
percentages or fractions of CPU time, but rather denote the priority or relative importance of
an application service relative to other application services (workload) and to the business in
terms of service level guarantees.
2 Service Provisioning with Resource Management • November 2004

The CPU shares are pre-allocated among three enterprise application service workloads.
Then, the Solaris 9 RM software is provisioned to use its resource control algorithms to
enforce the resource constraints of CPU share allocations. The CPU shares are assigned to
each application service workload at the Solaris 9 RM project level. The project definitions
are configured in the /etc/project file. User and group IDs and memberships are set up
in the appropriate projects. In this case, the user accounts are the run as users for each of the
application services (Sun ONE Web Server, BEA Worklogic, and Oracle9i).

During the automated service provisioning section of this article, automated provisioning
commands for the Solaris 9 RM software are integrated into the N1 Grid SPS service
provisioning models. Specifically, Solaris 9 RM provisioning or configuration commands are
integrated into Sun ONE Web Server XML-based plans and components inside the N1 Grid
SPS software. To help you understand the XML representations, a compilation of the name
spaces that are necessary for service provisioning the Sun ONE Web Server software is
provided.

Although other approaches for integrating resource management into service provisioning are
possible, such as host-based or network database, provisioning-based resource management
has merit for stable policy environments, as well as small scale nonpervasive
implementations. In the absence of comprehensive, enterprise-wide policy-based service
provisioning with integrated resource management, any method for ensuring resource
controls through Solaris 9 RM can be employed.

Solaris 9 RM Provisioning Guidelines
Provisioning Solaris 9 RM manually or as an integral part of service provisioning requires
planning, specification, and proper name space determination. It begins with an
understanding of the workloads and the resource demands. It also includes allocation of CPU
shares as resource constraints, governed by an overall set of business policies consistent with
service management requirements. For the implementation example in this article, the
following guidelines are provided:
n Define a Solaris 9 RM project per application or service component for each of the

following: Sun ONE Web Server, BEA WebLogic, and Oracle9 servers.
n Implement a simple system CPU share resource allocation and management scheme.

Within Solaris 9 RM, this resource control is called project.cpu-share.
 Solaris 9 RM Provisioning Guidelines 3

n Assume multiple instances for each type of service.
n Establish Solaris OS accounts to both own and run the enterprise application services.
n Name the Solaris 9 RM projects as follows:

n Sun ONE Web Server: user.premiws01
n WebLogic Application: user.premapp01
n Oracle database service: user.premdb01

n Allocate CPU share resource control threshold values for the three workload types
(projects) as follows:
n 50 shares for the Sun ONE Web Server service
n 100 shares for the BEA WebLogic service
n 150 shares for the Oracle Server9i service

n Implement Solaris 9 RM projects as host-based projects in the /etc/project file, and
not as a central network-based project database service in LDAP.

n Avoid Solaris 9 RM resource pool definitions and allocations in this sample
implementation will not be supported.

n Use the fair share scheduler (FSS) in the Solaris 9 RM and assigned as the default
scheduling class.

Naming
Naming of implementation elements and their associations is very important in a service
provisioning context given the arbitrary number of services, service instances, and
relationships between application service components across different tiers of a service
architecture. This is more so when goals for higher system utilization imperatives promise to
force hosting multiple applications in a single image of the operating system.

Simplification of managing the data center begins with a structured nomenclature for
administrators to easily recognize services for ongoing management. First, you must name
the application or service. To recognize different service components and their instances,
which might have a close affinity to one another (that is, they might deliver a particular
instance or component of a particular service), the service name tends to follow the
application name. Next, you must establish that defining Solaris 9 RM projects for each
application or service is paramount in this integration, as workload resource request and
usage of system resources will be accounted for and controlled at the Solaris 9 RM project
level.

The Solaris 9 RM project naming in this article follows the user.serviceowner
template. Project definition is registered to the Solaris OS in the /etc/project file. User
accounts are then allocated memberships in projects. As users log in, their default or
4 Service Provisioning with Resource Management • November 2004

assigned membership is checked against the project file, and process workload accounting
and resource control begins at that time. All subsequent application service workload-related
resource requests made by that service or application owner on that system will be tracked
and managed to that project.

TABLE 1 shows the application service implementation element naming for the Solaris 9 RM
provisioning and resource management.

TABLE 2 shows the service and account naming.

Additionally, the Solaris 9 RM project name and share allocations are depicted in TABLE 3.

To complete the entries in the /etc/project file, the project name from TABLE 2 must be
supplied. Then, the appropriate accounts must be added as members of that project. In this
example, the application service owner accounts (already registered in /etc/passwd and /
etc/group) are combined with the project information from TABLE 2.

Next, the system resource to control, in this case the CPU, is determined as the Solaris 9 RM
name, project.cpu-shares. Finally, the action clause must be constructed, made up of
the access privilege, the CPU share threshold value assigned to the particular workload or

TABLE 1 Application Service Naming Description

Service or
Project Name Service Types Service Notation Service Instance

Prem Three-tier (single instance of each
tier)

www premwww01

TABLE 2 Service and Account Naming

Application, Service, Component, or
Workload Type

Service Instance
Name

Account, Owner,
User, or Group ID

SunONEwebserver Web service premiws01 premiws01

WebLogic Application service premapp01 premapp01

OracleServer Data service premdb01 premdb01

TABLE 3 Project and CPU Share Allocation

Service Component, Application, or Workload Project Name CPU Share Allocation

Sun ONE Web Server user.premiws01 50

BEA WebLogic user.premapp01 100

Oracle9i server user.premdb01 150
 Naming 5

application service from TABLE 2, and the necessary action when violation of resource
control occurs. Based on the implementation guidelines, the Solaris 9 RM action clause for
Sun ONE Web Server would be (privileged, 50, deny).

Here is a sample /etc/project entry for a workload or service representing a single Sun
ONE Web Server instance, per the established guidelines.

Standard Provisioning for the Solaris 9 RM
Software
To enable the implementation of a basic Solaris 9 RM, it is necessary to perform the
following steps before the systems administrator begins to define projects, assign user
accounts, and allocate CPU shares.

Note – Before you set up the provisioning environment, confirm that the system is not
already running the Fair Share Scheduler (FSS) as the default scheduling class.

t To Set Up the Provisioning Environment
1. As superuser, manually enable the FSS class with the following command:

2. Reboot the system.

3. Update the nsswitch.conf host line to force the system to visit the local files for
project information, instead of looking up project information in LDAP, NIS+, or other
central service.

user.premiws01:2001:SunONEwebserver
Application:premiws01::project.cpu-shares=(privileged,50,deny)

dispadmin -d FSS
6 Service Provisioning with Resource Management • November 2004

4. Determine and create the project-member Solaris OS accounts and groups in the
/etc/passwd, /etc/shadow, and /etc/group files using the useradd(1M) and
groupadd(1M) commands, then propagating and synchronizing those accounts into the
/etc/shadow file with the pwconv(1M) command.
The following are sample results:

5. Build CPU share allocation entries for the different services or workloads in the Solaris
OS 9 /etc/project file.
The allocation entries are predetermined based on workload resource allocation and control
policy, in accordance with service management and business needs.

For the sample implementation in this article, the Sun ONE Web Server entry in the /etc/
project file is:

The entry for BEA WebLogic instance would be:

Finally, the Oracle9 instance entry would be declared as follow:

cat /etc/passwd
..
sama:x:100:1::/export/home/sama:/bin/sh
premiws01:x:101:1::/export/home/premiws01:/bin/sh
premmw01:x:102:1001::/opt/app/premmw01:/bin/sh
premdb01:x:102:1001::/opt/app/premdb01:/bin/sh

user.premiws01:2001:SunONEwebserver:premiws01::project.cpu-
shares(privileged,50,deny)

user.premapp01:2002:WebLogic:premapp01::project.cpu-
shares=(privileged,100,deny)

user.premb01:2003:OracleServer:premdb01::project.cpu-
shares=(privileged,150,deny)
 Standard Provisioning for the Solaris 9 RM Software 7

6. Edit the /etc/project file for the entries constructed in Step 4.
The following shows the results for the example implementation described in this article:

The proper project entries in the /etc/project file allow the Solaris 9 RM to determine
default projects for the Sun ONE Web Server, BEA WebLogic, and Oracle9i services, related
to resource usage tracking and accounting. After the respective application service instances
start up and run as the Solaris OS service account owners, all resource requests are tracked in
the corresponding projects through the service account membership assignments in the /
etc/project entries.

Solaris 9 RM Automatic Deployment
Integration
Having established how the Solaris 9 RM is configured manually for multiservice workloads,
this section contains an example of how to integrate an automated version of the above
manual procedure into application provisioning involving the Sun ONE Web Server. The
example uses the same implementation guidelines established earlier, except for the
environment preparation steps, which in automated implementations can be addressed as a
finishing step.

To integrate the Solaris 9 RM configuration commands into the N1 Grid SPS service
provisioning actions, you must understand the schema and implementation of the larger
context for that integration—in this case the Sun ONE Web Server in the N1 Grid SPS
software. The example in this section shows how the Solaris 9 RM commands manifest
inside the N1 Grid SPS, as an integral part of application service provisioning. The example
demonstrates this integration only for the Sun ONE Web Server application service or
component, but you can extend these ideas to any other application service or workload type.

cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
user.premiws01:4003:Support for web:premiws01::
project.cpu-shares=(privileged,50,deny)
user.premmw01:2001:Support for
middleware:premmw01::project.cpu-shares=(privileged,100,deny)
user.premdb01:2006:Support for db:premdb01::project.cpu-shares=
(privileged,150,deny)
8 Service Provisioning with Resource Management • November 2004

The N1 Grid SPS software (formerly known as CenterRun) uses two core constructs called
execution plans and components to model the application characteristics for service
deployment and other data center operational behaviors (for example, migrations, compare
deployments, remove deployments, and upgrade software deployments) being performed on
an application service component. The N1 Grid SPS plans represent sequential steps for
affecting a system management behavior, system management functionality, or data center
task, such as an install, configuration, uninstall, upgrade, comparison, or change propagation.
While plans are optional in the N1 Grid SPS, they are necessary for complex tasks.
Components in the N1 Grid SPS represent the applications or software modules on which
major action or behavior is performed. In the N1 Grid SPS, plans and components are
represented as XML code, which can be autogenerated as part of the modeling, development,
and test cycles and effectively manipulated manually through common text editors.

This article describes only the integration of the Solaris 9 RM provisioning commands into
the N1 Grid SPS deployment steps for the Sun ONE Web Server. The Solaris 9 RM
provisioning commands are inserted into the appropriate sections of Sun ONE Web Server
XML code. In a way, the application deployment is provisioning and registering its own CPU
share allocation to the environment every time and every where (host location) the Sun ONE
Web Server application service is provisioned. These ideas could be extended to other
operational behaviors on the Sun ONE Web Server such as service migrations to other hosts
in the data center.

An interesting advantage for provisioning-based resource management scenarios is when a
Sun ONE Web Server application service is retired from an environment. A Solaris 9 RM
removal functionality (or using a modified version of the uninstall built-in procedure) inside
the N1 Grid SPS would cause Sun ONE Web Server provisioning to be removed from the
environment, along with the related Solaris 9 RM definitions for the Sun ONE Web Server
CPU share resource controls, providing a cleanup functionality as a bonus.
 Solaris 9 RM Automatic Deployment Integration 9

N1 Grid SPS Planning and Design
First, you need a high-level design approach for the integration exercise. FIGURE 1 shows a
high-level design involving the key functional elements in the N1 Grid SPS plans and
components. Typically, implementing a data center service functionality with Sun’s N1 Grid
SPS involves a simple design framework involving plans and components. Plans represent
the sequencing of functionality on components. Components represents the service software
primitives, applications, or modules on which plans act to deliver a particular data center
system management behavior, such as upgrading software, applying patches, deploying an
application, repurposing a server, propagating file contents to other files, and comparing
existing deployments.

Plans can be simple or complex, and they can call any number of other plans. Plans invoke
the behavior encapsulated in applications or components (modeled separately). Components
do not need plans to effect a behavior or functionality in the data center because they have
built-in constructs to affect their own behaviors. This is why the N1 Grid SPS is completely
object oriented, where as XML-based components have built-in behavior, procedures, or
methods (in object speak), as well as data structures (including parameter declaration),
parameter passing, and data resources.

FIGURE 1 shows how you can integrate the Solaris 9 RM into blocks of N1 Grid SPS
elements, which implement the Sun ONE Web Server auto-deployment. The context is an N1
Grid SPS plan to provision or deploy the Sun ONE Web Server. Inside the plan is a call or
reference to a Sun ONE Web Server component, specifically a control block
(controlList) inside that component (for more information, refer to an N1 Grid SPS
component schema definition).

The control block sets up the necessary parameters that are passed to a generic Solaris OS
component that implements several modules of Solaris OS functionality for setting up Solaris
OS accounts, provisioning the Solaris 9 RM, or even mounting file systems. In the example
integration, the Solaris OS provisioning for account creation is invoked for the run owner on
the Sun ONE Web Server, premiws01 from TABLE 2.

As FIGURE 1 shows, the generic Solaris OS component is neatly de-coupled from application
service components. It is a substrate component that could be leveraged across all Solaris
OS-based N1 Grid SPS implementations to support any number of service behaviors at the
application level, while delivering common Solaris OS functionality to application services
such as BEA WebLogic or Oracle9i.
10 Service Provisioning with Resource Management • November 2004

FIGURE 1 High-Level Design for Integrated Provisioning

Plan Integration
This article is not a full treatment of Sun ONE Web Server service provisioning or
deployment. It focuses on how to integrate Solaris 9 RM provisioning commands inside the
service deployment in general. In the XML examples that follow, detailed Sun ONE Web
Server service provisioning commands that are not directly relevant to the integration tasks at
hand are suppressed with “........” inside the code examples. As shown in the structure
in FIGURE 1, you must begin with the Sun ONE Web Server XML plan, as shown in the
following code example. The XML code is annotated with comments to help explain the
details of the code.

Plan

Solaris 9 RM call

Web Server component

Solaris 9 RM call

Solaris OS component

Solaris OS accounts

Solaris 9 RM commands
 N1 Grid SPS Planning and Design 11

CODE EXAMPLE 1 Sun ONE Web Server XML Plan and Call

Based on this code and the N1 Grid SPS plan schema, the AddToProject call block
invokes a routine in a section of the Sun ONE XML component named iws60-base. The
routine inside the component is called a control block element inside the N1 Grid SPS. The
AddToProject call block is a top-level call to Solaris 9 RM provisioning detail in other
XML modules.

At the time of this call to the control block, the Sun ONE Web Server deployment (binary
and configuration files) has just successfully completed on the host, hence the call to the
installed block iws60-base. The call immediately after the AddToProject call starts up
the installed Sun ONE Web Server instance, StartIplanetInstance.

Assuming a successful Solaris 9 RM provisioning to the same hosts on which the Sun ONE
Web Server are deployed, control returns to this top-level plan to start up the Sun ONE Web
Server with CPU share resource tracking, which can be check by using the # prstat -J
command.

<?xml version="1.0" encoding="UTF-8" ?>
- <!-- generated by CR
-->
- <executionPlan
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
name="Application_Create_SunONE-Wbs" version="3.0"
xsi:schemaLocation="http://www.centerrun.com/schema/CR
plan.xsd" xmlns="http://www.centerrun.com/schema/CR">
- <compositeSteps> # begin a compound steps

.........
+ <inlineSubplan planName="iws60_create">

.......

.......
component call reference to configure Solaris9 RM
- <call blockName="addToProject">
 <installedComponent name="iws60-base" />
 </call>
- <call blockName="startIplanetInstance"> #now start
the Sun ONE Web Server service.
 <installedComponent name="iws60-base" />
 </call>
......
.......
 </inlineSubplan>
 </compositeSteps>
 </executionPlan>
12 Service Provisioning with Resource Management • November 2004

Component Integration
Inside the Sun ONE Web Server component of CODE EXAMPLE 2, there is a section of code
called AddtoProject, which makes the necessary N1 Grid SPS and Solaris OS calls to
implement Solaris 9 RM provisioning in subsequent calls. In the N1 Grid SPS, this call
reference is represented in the called component as a control block (inside a controlList)
in the appropriate section of the referenced component.

In the example implementation, the N1 Grid SPS matches the iws60-base plan reference
(in CODE EXAMPLE 1) with the control list and control block snippet inside the iws60-base
component in CODE EXAMPLE 2. Control list actions inside a component are performed in the
N1 Grid SPS only if the referenced component has already been successfully deployed to the
target hosts in the data center. In this case, there are no issues because before the call in
CODE EXAMPLE 1 to provision Solaris 9 RM for the Sun ONE Web Server, there is a
successful provisioning step (installation and configuration) for the Sun ONE Web Server to
the target host (determined at runtime or built into the deployment). In the example
implementation, the actual provisioning details of Sun ONE Web Server have been
suppressed.

CODE EXAMPLE 2 shows a fragment of the XML source of the Sun ONE Web Server
component (iws60-base)—the context for inserting the Solaris 9 RM control list reference
called from the plan in CODE EXAMPLE 1. The example implementation shows other
functionality of the Sun ONE Web Server deployment in CODE EXAMPLE 2 to illustrate the
richness of the Sun ONE Web Server implementation. Several tags are shown before the call
to the Solaris OS-specific component called solaris services. These tags are called
elements, in this case child elements, of the component element inside the N1 Grid SPS.

The highlighted sections in the code examples show the key sections of the XML code with
references to other components to issue appropriate commands for creating the Solaris OS
accounts for Solaris 9 RM project membership and project creation. CODE EXAMPLE 2 shows
a call to the CreateServiceAccount control to create the Solaris OS accounts. This call
references control block named create_os_usergroup_nc (inside the control list) of the
Solaris OS services component in CODE EXAMPLE 5. In CODE EXAMPLE 3, the
addToProject control block prepares a list of arguments (called argList in the N1 Grid
SPS) for the call to the Solaris OS component called solaris services with its own
parameter list to accept and process values from the call inside iws60-base. The actual
values of these arguments are declared in the Varlist section of the component or are
instantiated at runtime. The values of these arguments are the values for making entries in
the /etc/project file. These include project IDs, project names, descriptive comments,
resource control definitions, and action clauses, as shown in the highlighted sections of
CODE EXAMPLE 3.

CODE EXAMPLE 5 also shows how accounts are created on the target host with the appropriate
call to the useradd(1M) and groupadd(1M) commands to populate the
/etc/passwd and /etc/group files as appropriate. This automated version is identical
to the standard or manual provisioning discussed earlier.
 N1 Grid SPS Planning and Design 13

CODE EXAMPLE 2 Sun ONE Web Server Component Header and Account Creation

<?xml version="1.0" encoding="UTF-8" ?>
- <!-- generated by CR
 -->
- <component platform="Solaris - any version"
xmlns="http://www.centerrun.com/schema/CR" name="iws60-
base" version="3.0" description="iPlanet 6.0 base
component" xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
xsi:schemaLocation="http://www.centerrun.com/schema/CR
component.xsd">
- <varList>
 <var name="SrvcName" default="premwww01" />

 </varList>

- <installList>

 </installList>

- <controlList>
- <control name="createServiceAccount" description="Create
account for
 service">
- <call blockName="create_os_usergroup_nc">
 <argList gid=":[IwsGid]" user_home_dir=":[UserHomeDir]"
 uid=":[IwsUid]"
 username=":[IwsUserName]" shell="/usr/bin/bash"
 gname=":[IwsGroupName]" />
 <systemService name="solaris services" />
 </call>
 </control>

-
14 Service Provisioning with Resource Management • November 2004

CODE EXAMPLE 3 Sun ONE Web Server Component With Solaris 9 RM Calls

CODE EXAMPLE 4 completes the iws60-base component with a control block to show how
the N1 Grid SPS would remove Solaris 9 RM provisioning, passing the appropriate
application service name to the Solaris OS service component from a host.

CODE EXAMPLE 4 Ending Code Lines of iws60-base XML From CODE EXAMPLE 2

 </control>
- <control name="startIplanetInstance"
description="Start the iplanet instance">
- <execNative userToRunAs=":[IwsUserName]">
- <inputText>
- <![CDATA[:[IWSRoot]/:[https]/start 2>/dev/null
1>/dev/null;
]]>
 </inputText>
 <exec cmd="sh" />
 </execNative>
 </control>
</control>
- <control name="addToProject">
- <call blockName="addToProject">
 <argList projID=":[IwsUid]"
projectConfiguration="project.cpu-shares(privileged,50,
deny)" description="Sun One Web Service"
projName="user.:[SrvcName]" userName=":[IwsUserName]" />
 <systemService name="solaris services" />
 </call>
 </control>

- <control name="removeFromProject">
- <call blockName="removeFromProject">
 <argList projName="user.:[SrvcName]" />
 <systemService name="solaris services" />
 </call>
 </control>
</controlList>
</component>
 N1 Grid SPS Planning and Design 15

Solaris OS Component
A separate Solaris OS component in the Sun ONE service provisioning design is important.
Decoupling Solaris OS-specific data center functionality into a separate component from the
application-level components makes the solution scalable, reusable, and elegant.
CODE EXAMPLE 5, CODE EXAMPLE 6, and CODE EXAMPLE 7 show the relevant fragments of
the Solaris OS component. In the control list section of the Iws60-base component
fragment in the code examples, the references to the Solaris OS underlying component
provides low-level Solaris OS services to application-level components for a solution set of
components, assembled to address a system management behavior in the data center.

The reference to systemService name="solaris services" inside the control
blocks of CODE EXAMPLE 2 is the name of the Solaris OS service or component. This service
or component is bundled with the N1 Grid SPS software and performs a system service for
customer application-level implementations of data center behaviors with the N1 Grid SPS
tool.

In the examples, the Sun ONE Web Server component calls control blocks inside the Solaris
OS component to create service accounts in the Solaris OS and to provision the Solaris 9 RM
for the Sun ONE Web Server, passing appropriate values for populating the project file. The
Solaris OS component is the base component with a set of control blocks that might have
templates for implementing Solaris OS services such as mounting file systems, removing
directories, and configuring network interfaces, in addition to creating accounts and
provisioning the Solaris 9 RM.

Within the create_os_usergroup_nc control block (inside the control list of the
Solaris OS component in CODE EXAMPLE 5) is a parameter list (paramList) child element
that declares a number of parameters to be used inside the control block to set up and
provision the user and group accounts for the application services. Values for these
parameters are passed from the higher-level components.

In the code examples, notice the CDATA section inside the <inputText> block inside the
control blocks. The <inputText> block in N1 Grid SPS prepares a string of text (which
might be a set of commands) to be fed to the shell with the
<exec cmd="/bin/sh" /> call, which is within the ExecNative call. In N1 Grid SPS,
the ExecNative call is a directive to execute the commands (in this case represented inside
the <inputText> element). By so doing, components and plans can execute native shell
commands on hosts where the data center behavior is targeted.

In CODE EXAMPLE 5, notice the CDATA section inside the control blocks. In the N1 Grid SPS
CDATA section preserves formatting, while avoiding XML parsing of the text inside
<inputText> if these commands also contain special shell commands. The preserved
string is then fed to the shell with the <exec cmd="/bin/sh" /> call.
16 Service Provisioning with Resource Management • November 2004

After completion of the Solaris OS component service call, control returns to the master plan
in CODE EXAMPLE 1. At this point, the Sun ONE Web Server service starts with resource
control for CPU sharing and begins to monitor the system.

CODE EXAMPLE 5 Solaris OS-Specific Commands to Set Up and Prepare for Accounts

- <controlList>
- <control name="create_os_usergroup_nc"
description="Create an OS group and user - no error
checking">
- <paramList>
 <param name="username" prompt="Username" />
 <param name="uid" prompt="User ID" />
 <param name="shell" default="/usr/bin/bash"
prompt="Shell" />
 <param name="user_home_dir" prompt="Home Directory for
User" />
 <param name="gname" prompt="Group Name" />
 <param name="gid" prompt="Group ID" />
 </paramList>
- <execNative userToRunAs="root">
- <inputText>
- <![CDATA[

username=:[username]
uid=:[uid]
gname=:[gname]
shell=:[shell]
home_dir=:[user_home_dir]
comment=:[username]
if [x`grep :[uid] /etc/passwd` != 'x' -o x`grep
:[username] /etc/passwd` != 'x']; then
 echo "ERROR: :[uid] or :[username] already exists in
/etc/passwd";
 exit 1;
fi
if [x`grep :[gid] /etc/group` != 'x' -o x`grep :[gname]
/etc/group` != 'x']; then
 echo "ERROR: :[gid] or :[gname] already exists in
/etc/group";
 exit 1;
fi
/usr/sbin/groupadd -g :[gid] :[gname];

Set comment to something if its empty
if ["X$comment" = "X"] ; then
 comment="$username"
fi
 Solaris OS Component 17

CODE EXAMPLE 6 Solaris OS Commands to Create Accounts

CODE EXAMPLE 7 Solaris OS Commands to Populate the Project File

/usr/bin/mkdir -p $home_dir;

echo /usr/sbin/useradd -c $comment -u $uid -g $gname -d
$home_dir -s $shell -m $username
/usr/sbin/useradd -c $comment -u $uid -g $gname -d
$home_dir -s $shell -m $username
/usr/bin/chown -R $username:$gname $home_dir;

]]>
 </inputText>
 <exec cmd="/bin/sh" />
 </execNative>
 </control>

</control>
- <control name="addToProject" description="Solaris 9
Resource Management - add an entry to /etc/project">
- <paramList>
 <param name="projName" />
 <param name="projID" />
 <param name="description" />
 <param name="userName" />
 <param name="projectConfiguration" />
 </paramList>
- <execNative userToRunAs="root">
- <inputText>
- <![CDATA[
grep :[projName] /etc/project;
if [$? != 0] ; then
 echo
":[projName]::[projID]::[description]::[userName]:::
[projectConfiguration]" >> /etc/project;
fi

]]>
 </inputText>
 <exec cmd="sh" />
 </execNative>
 </control>
18 Service Provisioning with Resource Management • November 2004

Resource Management Conclusions
Resource management for mixed workload environment is imperative because IT
organizations should be focused on driving costs out of the data center through initiatives
that maximize system utilization with stacked applications, automatic deployment, and
shared data center infrastructure resources, while gaining service provisioning agility,
scaling, and quality. Applications deployed into these environments will contest shared
resources to meet the service level expectations. Service agreements could be jeopardized if
resource sharing is not controlled.

There are several options for configuring or provisioning Solaris 9 RM to control resource
usage in a multiservice application environment where applications are stacked to maximize
system resources with competing workloads, while delivering service commitments after
moving applications to the stacked environment.

A network service-based database solution (with consideration for policy-based real-time
operational threshold and service management targets) offers the ideal solution to the
enterprise resource management problem. However, the application provisioning-based
resource management solution described in this article represents an interim solutions for IT
organizations. Both of these solutions let resource management follow the application
workload to its point-of-service with location independence, achieving the desired effect.

This article has described how to automate and integrate Solaris 9 RM provisioning inside a
larger service provisioning context. However, it also touched on the inner working of service
provisioning or automated deployment (autodeploy) for application service behaviors or
functionality inside the data center.

With the upcoming release of the Solaris 10 OS, you can expect more granular resource
control. The combination of Solaris Containers and resource management will offer exciting
flexibility and power in attacking service-level management for shared infrastructure
environments, which has been elusive.

In addition to more granular resource control for multi-service workloads, the Solaris
Containers will deliver new levels of capability and flexibility for two critical applications in
IT today: security and consolidation. Being able to host multiple virtual container
environments in a single image of the Solaris OS inherently offers software level isolation.
Consolidators can distribute, dedicate, and host disparate application service types inside
separate software partitions or containers. The application service types are isolated from
faults and other operational imperatives. Additionally, the Solaris Containers support
localized security profiles separate from the security configuration of the hosting Solaris OS
image. Thus, they offer container-hosted applications with customizable security flexibility
not seen in enterprise operating environments today.
 Resource Management Conclusions 19

References
The following reference material was used to create this article:
n Lawson, Stuart J. “Resource Management in the Solaris 9 Operating Environment,” Sun

BluePrints Online, September 2002.

Acknowledgements
Many thanks to Stuart Lawson, Global Customer Benchmarking, and Leon Shaner, IT/
Technical Architect and Java System Architect in Sun Client Services, for reviewing this
article.

Author Bio
Sam Antwi is currently a Senior Architect with Sun Client Services. Prior to joining Sun in
2000, Sam served in various Lead, Architect, Oracle DBA, and Senior Manager roles at
Accenture Ltd. (formerly Andersen Consulting), Deloitte Consulting, and American Airlines
Sabre Computing Group. At Sun Microsystems, Sam has interests in delivering customer
solutions in Systems Architecture, N1 and utility computing, resource management, grid
computing, systems performance tuning, high-end computing systems, high availability
readiness services, server consolidation, capacity planning and data center operations. Sam
holds a Master's degree in Computer Science from the University of Southern California.
20 Service Provisioning with Resource Management • November 2004

Third-Party URLs
Third-party URLs are referenced in this document and provide additional, related
information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will
not be responsible or liable for any actual or alleged damage or loss caused by or in
connection with the use of or reliance on any such content, goods, or services that are
available on or through such sites or resources.

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc. If
you live in the United States, Canada, Europe, or Japan, you can purchase documentation
sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com web site enables you to access Sun technical documentation online.
You can browse the http://docs.sun.com archive or search for a specific book title or
subject.

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine web site at
http://www.sun.com/blueprints/.
 Third-Party URLs 21

	Service Provisioning with Resource Management
	Sam Antwi, Senior Architect, Sun Client Services
	Sun BluePrints™ OnLine-November 2004
	Service Provisioning with Resource Management

	Definition and Integration Scope
	Solaris 9 RM Provisioning Guidelines
	Naming
	TABLE 1 Application Service Naming Description
	TABLE 2 Service and Account Naming
	TABLE 3 Project and CPU Share Allocation

	Standard Provisioning for the Solaris 9 RM Software
	t To Set Up the Provisioning Environment
	1. As superuser, manually enable the FSS class with the following command:
	2. Reboot the system.
	3. Update the nsswitch.conf host line to force the system to visit the local files for project information, instead of looking up project information in LDAP, NIS+, or other central service.
	4. Determine and create the project-member Solaris OS accounts and groups in the /etc/passwd, /etc/shadow, and /etc/group files ...
	5. Build CPU share allocation entries for the different services or workloads in the Solaris OS 9 /etc/project file.
	6. Edit the /etc/project file for the entries constructed in Step 4.

	Solaris 9 RM Automatic Deployment Integration
	N1 Grid SPS Planning and Design
	FIGURE 1 High-Level Design for Integrated Provisioning
	Plan Integration
	CODE EXAMPLE 1 Sun ONE Web Server XML Plan and Call

	Component Integration
	CODE EXAMPLE 2 Sun ONE Web Server Component Header and Account Creation
	CODE EXAMPLE 3 Sun ONE Web Server Component With Solaris 9 RM Calls
	CODE EXAMPLE 4 Ending Code Lines of iws60-base XML From CODE EXAMPLE 2

	Solaris OS Component
	CODE EXAMPLE 5 Solaris OS-Specific Commands to Set Up and Prepare for Accounts
	CODE EXAMPLE 6 Solaris OS Commands to Create Accounts
	CODE EXAMPLE 7 Solaris OS Commands to Populate the Project File

	Resource Management Conclusions
	References
	Acknowledgements
	Author Bio
	Third-Party URLs

