
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Sun™ SNMP Management Agent
Guide for the Sun Fire™ B1600

Part No. 817-1010-10
March 2003, Revision 01

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Sun Fire, Java and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à
http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les
autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, Sun Fire, Java et Solaris sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Part I Technical Description and Functionality

1. Sun SNMP Management Agent Supplement 3

2. Introduction to SNMP 5

SNMP Versions 5

SNMP Managers and Agents 6

SNMP Management Information Base 6

MIB Tables 8

Access Control 9

SNMP Master Agents 9

SNMP Mediator and snmpdx 10

3. Master Agent 11

Functionality 11

Configuration Overview 12

4. The Platform Management Model 13

Modeling the Sun Fire B1600 Platform 13

Managed Objects 14

Derivation of sunPlat Classes 16
iii

5. The Sun Fire B1600 MIBs 17

SNMP Representation of the Model 17

The Physical Model 19

Classes 21

The Logical Model 22

Logical and Physical Hierarchy Mapping 22

Event and Alarm Model 23

The SUN-PLATFORM-MIB 23

Physical Model Table Extensions 24

Logical Model Table Extensions 27

Event and Alarm Log Tables 27

Event Records 28

Events 28

Alarms 29

6. The Physical Model 31

sunPlat Physical Class Hierarchy 31

sunPlat Class Definitions 33

Physical Entity 33

sunPlat Equipment Class 35

sunPlat Circuit Pack Class 37

sunPlat Equipment Holder 38

sunPlat Power Supply 40

sunPlat Battery 40

sunPlat Watchdog 41

sunPlat Alarm 42

sunPlat Fan 44

sunPlat Sensor 44

sunPlat Binary Sensor 45
iv Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

sunPlat Numeric Sensor 46

sunPlat Discrete Sensor 48

sunPlat Chassis 49

7. The Logical Model 51

sunPlat Logical Class Hierarchy 51

SunPlat Logical Class Definitions 52

Logical Entity 53

Logical 53

sunPlat Unitary Computer System 54

sunPlat Administrative Domain 55

8. The sunPlat Notifications 57

sunPlat Notifications Class Hierarchy 57

sunPlat Event Record Classes 58

sunPlat Class Definitions 59

sunPlat Event Record 59

sunPlat Event Additional Record 59

sunPlat Object Creation Record 60

sunPlat Object Deletion Record 60

sunPlat Alarm Record 60

sunPlat Indeterminate Alarm Record 62

sunPlat Communications Alarm Record 62

sunPlat Environmental Alarm Record 62

sunPlat Equipment Alarm Record 62

sunPlat Processing Alarm Record 62

sunPlat Quality of Service Alarm Record 62

sunPlat Attribute Value Change Record 63

sunPlat State Change Record 64
v

Part 2 Installation and Configuration

9. The Management Software Components 67

System Management Options 67

Instrumentation 68

System Requirements 69

Operating Environment 69

Disk Space Requirements 69

Patches 69

Solaris 8 69

Solaris 9 69

Java Environment 70

Confirming Installation 71

Java SNMP API 71

Installation Packages 72

Upgrading the Software 73

Package Delivery 73

Installing the Domain or Target Packages on the Sun Fire B100s 75

Effect on System Files 75

10. Installation 77

Selecting the Installation 77

Instrumentation Configuration 77

Management Interface Configuration 78

Installing the SNMP Software 79

Installing Software for Domain Hardware Monitoring 79

Installing Software for Platform Hardware Monitoring 81

Configuring the System Controller 85

Interface Options 86
vi Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

SNMP using snmpdx (Default) 86

SNMP Plus Master Agent and snmpdx 88

Third-party Master Agent Plus SNMP 90

11. Configuration Files 91

Configuration Files 92

General Configuration File 92

spama.conf 92

General Options 93

Master Agent Options 94

Protocol Mediator Options 95

Access Control 101

Format of an ACL File 102

The acl Group 102

The trap Group 104

Mediator Configuration Files 105

spapm.acl File 105

spapm_snmpdx.acl File 106

Master Agent Configuration Files 108

spama.acl File 108

acl Group 109

trap Group 109

spama.uacl File 109

acl Group 109

spama.security File 110

12. Configuring the Software 113

Default Configuration 113

Access Control 113
vii

Starting and Stopping the Mediator 114

Manual Configuration for Direct Access 114

Mediator as a Sub-Agent of a Third-Party Master Agent 114

Mediator and the SNMPv3 Master Agent 115

Starting and Stopping the Agents 116

Forwarding SNMPv3 Traps 116

13. Uninstalling the Software 117

Platform Agent and Target Agent Packages 117

Domain Agent Packages 118

14. Troubleshooting 119

A. Installing J2RE 1.4 to Co-exist with J2SE 1.3.1 125

Installing J2RE 1.4 125

Editing the Startup Scripts 127

Domain Hardware Monitoring 127

Platform Hardware Monitoring 128

Index 131
viii Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Figures

FIGURE 1-1 Example of Domain and Platform Hardware Monitoring 4

FIGURE 4-1 Example Hardware Resource Hierarchy 14

FIGURE 4-2 sunPlat Managed Object Class Inheritance Diagram 15

FIGURE 5-1 Example Hardware Resource Hierarchy 19

FIGURE 6-1 The sunPlat Physical Resource Inheritance Class Diagram 32

FIGURE 7-1 The sunPlat Logical Resource Inheritance Class Diagram 52

FIGURE 8-1 Event Records Inheritance Class Diagram 58

FIGURE 9-1 Example of Domain and Hardware Platform Monitoring 68

FIGURE 10-1 Data Flow when SNMP is a Sub-Agent of snmpdx 87

FIGURE 10-2 Data Flow When Master Agent is Employed 88

FIGURE 10-3 Data Flow When a Third-Party Master Agent is Employed 90
ix

x Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Tables

TABLE 5-1 Physical Entity Table 20

TABLE 5-2 Physical Mapping Table 21

TABLE 5-3 Physical Entity Table Extensions 26

TABLE 5-4 Key to Physical Entity Table Extensions (TABLE 5-3) 27

TABLE 6-1 Physical Entity Superclass ‘Class’ Attribute Mapping 34

TABLE 6-2 Operational State Attribute Values 36

TABLE 6-3 Availability Status Attribute Values 37

TABLE 6-4 Equipment Holder Type Attribute Values 39

TABLE 6-5 Equipment Holder Status Attribute Values 39

TABLE 6-6 Watchdog Action Attribute Values 42

TABLE 6-7 Alarm Type Attribute Values 43

TABLE 6-8 Alarm State Attribute Values 43

TABLE 6-9 Sensor Type Attribute Values 45

TABLE 8-1 sunPlat Alarm Record Perceived Severity Values 61

TABLE 9-1 SNMP Management Agent Software Package Descriptions 72

TABLE 9-2 SNMP Management Agent Package Bundle 74

TABLE 9-3 Startup Scripts 75

TABLE 10-1 Port Summary for FIGURE 10-1 86

TABLE 10-2 Port Summary for FIGURE 10-2 89

TABLE 10-3 Port Summary for FIGURE 10-3 90
xi

TABLE 11-1 Default Values in spama.conf 97

TABLE 11-2 User Configurable Parameters in spama.security 111
xii Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Code Samples

CODE EXAMPLE 10-1 Setting the SMS IP Address 85

CODE EXAMPLE 11-1 Example of a spama.conf File 98

CODE EXAMPLE 11-2 Example acl Group 103

CODE EXAMPLE 11-3 Example trap Group 104

CODE EXAMPLE 11-4 Example spapm.acl File 105

CODE EXAMPLE 11-5 Example spapm_snmpdx.acl File 107

CODE EXAMPLE 11-6 Example acl Group 109

CODE EXAMPLE 11-7 Example spama.uacl File 110

CODE EXAMPLE 11-8 Example spama-security File 112
xiii

xiv Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Preface

This Guide describes the Sun SNMP Management Agent for the Sun Fire B1600
platform, which supports management of the platform hardware using the Simple
Network Management Protocol.

The Management Agent provides monitoring of inventory, configuration, and
environmental and fault reporting. It also provides control and monitoring of service
indicators, and of power, standby and reset of the processor blades.

It is intended to be read by experienced Enterprise Administrators and professional
developers.

The Guide is divided into two parts:

■ Part 1 (Chapter 1 through Chapter 8) introduces the SNMP Management Agent
and describes its functionality.

■ Part 2 (Chapter 9 through Chapter 13) explains how to install and configure the
software.

How This Book Is Organized
The Guide contains the following chapters:

Part 1

Chapter 1 describes the components of the Sun SNMP Management Agent software.

Chapter 2 provides a brief introduction to the essential features of the Simple
Network Management Protocol (SNMP).

Chapter 3 describes the functionality and features of the SNMPv3 Master Agent.

Chapter 4 provides an overview of how SNMP models the Sun Fire B1600.
xv

Chapter 5 describes how the Sun Fire B1600 managed objects and their relationships
are presented by the SNMP interface.

Chapter 6 describes the sunPlat physical class hierarchy and how the managed
physical object classes defined in the sunPlat model are represented by the
SUN-PLATFORM-MIB.

Chapter 7 describes the sunPlat logical class hierarchy and how the managed object
classes defined in the sunPlat model are represented by the
SUN-PLATFORM-MIB.

Chapter 8 describes the SunPlat notifications classes and attributes, as defined in the
SUN-PLATFORM-MIB.

Part 2

Chapter 9 describes the components that make up the management software for the
Sun Fire B1600 and lists the system checks you should make before installing the
SNMP software.

Chapter 10 describes how to install the management software on the
Sun Fire B1600.

Chapter 11 provides information about the user configurable files.

Chapter 12 describes the default configuration after installation, and explains how to
modify the configuration files.

Chapter 13 explains how to uninstall the software.

Chapter 14 provides help in troubleshooting your software.

Appendix A describes how to install J2RE to co-exist with J2SE, and how to modify
the startup scripts to locate the installation.
xvi Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Typographic Conventions

Shell Prompts

Typeface or
Symbol

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line
variables with real names or
values.

Read Chapter 6 in the User’s Guide.
These are called class options.
To delete a file, type rm filename.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
xvii

Related Documentation

Accessing Sun Documentation
You can view, print, or purchase a broad selection of Sun documentation, including
localized versions, at:

http://www.sun.com/documentation

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Application Title Part Number

SunMC SunMC 3.0 Supplement for the Sun Fire B1600 817-1011

Release Notes SNMP Release Notes for the Sun Fire B1600 817-1006

Sun Fire B1600
Platform

Sun Fire B1600 Blade System Chassis
Hardware Installation Guide
Sun Fire B1600 Blade System Chassis Software
Setup Guide
Sun Fire B1600 Blade System Chassis
Administration Guide
Sun Fire B1600 Blade System Chassis Switch
Administration Guide

816-7614

816-3361

816-4765

816-3365
xviii Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Sun SNMP Management Agent Guide for Sun Fire B1600, part number 817-1010-10
xix

xx Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

PART I Technical Description and Functionality

CHAPTER 1

Sun SNMP Management Agent
Supplement

This release of the Sun™ SNMP Management Agent provides monitoring and
control of the Sun Fire ™ B1600 shelf and Sun Fire B100s blade.

Depending on the platform type, you can employ:

■ A domain agent, running on the Sun Fire B100s blade (domain hardware
monitoring)

The software is installed locally on the server being monitored and only that
server can be monitored. In the case of the Sun Fire B1600, each blade is
monitored separately.

The scope of domain hardware monitoring for the Sun Fire B100s blade is limited
to the hardware of the blade only. It does not include other shelf components such
as the service indicators, PSUs, SSCs and the identity of the shelf itself.

■ A platform agent, proxied through a system controller (platform hardware
monitoring)

The software is installed on a remote (platform agent) server that accesses
platform instrumentation through the system controller. This enables you to
monitor all the hardware managed by the system controller.

The scope of platform hardware monitoring for a Sun Fire B1600 includes the
shelf, its identity, service indicators, and all its field replaceable units (FRUs). In
addition, some hardware information (specifically voltage monitoring) about the
Sun Fire B100s blades is available that is not available using domain hardware
monitoring.

FIGURE 1-1 shows an example of both types of hardware monitoring.
Sun Fire B1600 shelves A and B are connected to the network management station
via a platform agent server (platform hardware monitoring). In the case of
Sun Fire B1600 shelf C, the Sun Fire B100s blades are connected directly to the
network management station (domain hardware monitoring).
3

FIGURE 1-1 Example of Domain and Platform Hardware Monitoring

The software comprises a number of packages that provide the following
functionality:

■ An SNMP sub-agent

By default, the SNMP sub-agent is registered as sub-agent of the Solaris Master
Agent, snmpdx. The sub-agent is also known as the SNMP Mediator.

■ An SNMPv3 Master Agent

The SNMPv3 Master Agent provides single, secure point of presence from which
SNMP Mediators residing on the platform can be accessed. The Master Agent acts
as a proxy by forwarding requests to snmpdx.

■ Sun Fire B1600 and Sun Fire B100s instrumentation.

These packages are installed as required, depending on whether domain-based or
platform-based hardware monitoring is employed.

Platform Agent
 Server

Network Management
StationConsole

B100s

Sun Fire B1600
B

B100s

Sun Fire B1600
A

B100s

Sun Fire B1600
C

4 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

CHAPTER 2

Introduction to SNMP

This chapter provides a brief introduction to the essential features of the Simple
Network Management Protocol (SNMP). It is by no means exhaustive and addresses
the issues that are of particular relevance to the Sun Fire™ B1600 system.

The chapter contains the following sections:

■ “SNMP Versions” on page 5

■ “SNMP Managers and Agents” on page 6

■ “SNMP Management Information Base” on page 6

■ “SNMP Master Agents” on page 9

SNMP Versions
SNMP is an open internet standard for managing networked devices (systems). It is
defined, in common with other internet standards, by a number of Requests for
Comments (RFCs) published by the Internet Engineering Task Force (IETF).

There are three versions of SNMP that define approved standards:

■ SNMPv1

■ SNMPv2 (also known, and referred to in this document, as SNMPv2c)

■ SNMPv3

SNMPv1 was first defined in 1988. SNMPv2 was introduced in 1993 and attempted
to address some of the shortcomings of SNMPv1 by adding further protocol
operations and data types and providing security. Limitations in the security model
led to what is now accepted as the SNMPv2c standard, which dropped the new
security-based features. Experimental versions, known as SNMPv2usec and
SNMPv2* also appeared at this time, but these have not been widely adopted and
remain experimental.
5

SNMPv3, introduced in 1999, defines the SNMP management framework supporting
pluggable components, including security.

For further information about these standards, refer to the following RFCs at the
IETF web site (http://www.ietf.org/rfc.html):

■ SNMPv1: RFC1155, RFC1157, RFC1212, RFC1215

■ SNMPv2: RFC2578, RFC2579, RFC2580, RFC3416

■ SNMPv3: RFC3410, RFC3411, RFC3412, RFC3413, RFC3414, RFC3415

■ Coexistence between standards: RFC2576

SNMP Managers and Agents
SNMP is a network protocol that allows devices to be managed remotely by a
Network Management Station (NMS), also commonly called a Manager.

To be managed, a device must have an SNMP Agent (known as the SNMP Mediator)
associated with it. The purpose of the Mediator is to:

■ Receive requests for data representing the state of the device from the manager,
and provide an appropriate response

■ Accept data from the manager to enable control of the device state

■ Generate SNMP Traps, which are unsolicited messages sent to one or more
selected mangers to signal significant events relating to the device

SNMP Management Information Base
To manage and monitor a device, its characteristics must be represented using a
format known to both the agent and the manager. These characteristics can represent
physical properties such as fan speeds, or services such as routing tables. The data
structure defining these characteristics is known as a Management Information Base
(MIB). This data model is typically organized into tables, but can also include simple
values. An example of the former is a routing table, and an example of the latter is a
timestamp indicating the time at which the agent was started.
6 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

The MIB is a definition for a virtual data store accessible via SNMP. The content is
accessible from the manager using get and set operations as follows:

■ In response to a get operation, the Mediator provides data, either maintained
locally or directly from the managed device.

■ In response to a set operation, the agent typically performs some action affecting
the state of either itself or the managed device.

To enable an NMS to manage a device via its agent, the MIB corresponding to the
data presented by the agent must be loaded into the manger. The mechanism for
doing this varies depending on the implementation of the network management
software. This gives the manager the information required to address and interpret
correctly the data model presented by the agent.

Note – MIBs can reference definitions in other MIBs, so to use a given MIB, it may
be necessary to load others.

To address the content of this virtual data store, the MIB is defined in terms of Object
Identifiers (OIDs). An OID consists of an hierarchically-arranged sequence of integers
that defines a unique name space. Each assigned integer has an associated text name.
For example, the OID 1.3.6.1 corresponds to the OID name
iso.org.dod.internet and 1.3.6.1.4 corresponds to the OID name
iso.org.dod.internet.private.

The numeric form is used within SNMP protocol transactions, whereas the text form
is used in user interfaces to aid readability. Objects represented by such OIDs are
commonly referred to by the last component of their name as a shorthand form. To
avoid confusion arising from this convention, it is normal to apply a MIB-specific
prefix, such as sunPlat, to all object names defined therein, thereby making all such
identifiers globally unique.

Note – The MIB is defined using a language known as ASN.1, the discussion of
which is beyond the scope of this document. For reference, the structure of the MIBs
for SNMPv2c is defined by its Structure of Management Information (SMI), defined
in RFC2578. This defines the syntax and basic data types available to MIBs. The
Textual Conventions (type definitions) defined in RFC2579 define additional data
types and enumerations.
Chapter 2 7

MIB Tables
Much of the data content defined by MIBs is in tabular form, and organized as
entries consisting of a sequence of objects, each with its own OIDs. For example, a
table of fan characteristics could consist of a number of rows, one per fan, with each
row containing columns corresponding to the current speed, the expected speed,
and the minimum acceptable speed.

The addressing of the rows within the table can be:

■ A simple, single-dimensional index (a row number within the table, for
example ‘6’)

■ A more complex, multi-dimensional, instance specifier such as an IP address and
port number (for instance, 127.0.0.1, 1234)

Each table definition within the MIB has an INDEX clause that defines which
instance specifier(s) to use to select a given entry. In either case, the objects used to
define the index to the required row must themselves be defined within the MIB.
Thus, a table with a simple, single-dimensional index typically has an index column
that is referenced by the table’s INDEX clause. A specific data item within a table is
then addressed by specifying the OID giving its columnar prefix.

For example, myFanTable.myFanEntry.myCurrentFanSpeed) with a suffix
instance specifier (for instance 127.0.0.1.1234 from the previous example) gives
myFanTable.myFanEntry.myCurrentFanSpeed.127.0.0.1.1234.

The SMI defining the MIB syntax provides an important capability for extending
tables to add additional entries, effectively by adding extra columns to the table.
This is achieved by defining a table with an INDEX clause that is a duplicate of the
INDEX clause of the table being extended.

It is also possible to define MIB tables that are indexed not by objects contained
within them, but by objects imported from other tables, potentially defined in other
MIBs. This construct, effectively, enables columns to be added to an existing table.

Note – The SUN-PLATFORM-MIB makes extensive use of this mechanism to extend
tables defined in the ENTITY-MIB (see Chapter 5).
8 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Access Control
All addressable objects defined in the MIB have associated maximum access rights,
for instance, read-only or read-write. These determine the maximum access the agent
can support, and can be used by the manager to restrict the operations it will permit
the operator to attempt. The agent is able to apply lower access rights as required,
that is, it is able to refuse writes to objects that are considered read-write. This
refusal can be on the basis of:

■ How applicable the operation is to the object being addressed (for example,
where an object defined by the MIB represents a state machine for which only
certain transactions are legal)

■ Security restrictions that limit certain operations to restricted sets of managers

The mechanism used to communicate security access rights in SMMPv1 is that of
community strings. These are simply text strings such as private and public that are
passed with each SNMP data request. As SNMPv1 and SNMPv2 requests are not
encrypted, this should not be considered secure. The mechanism used to define
which community strings the agent should respond to, and from which manager,
depends on the implementation of the agent, but is typically based on Access
Control Lists (ACLs), which are files describing applicable access permissions.

For a description of how to configure ACLs, refer to Chapter 11.

SNMP Master Agents
A manager communicates with the agent by sending (UDP) packets to a well known
port (161) on the system on which the agent is running. If several agents are running
on a given system, each managing different devices, there is a potential conflict for
the use of the port resource. One possible solution is to use different, non-standard,
ports numbers for each agent. An alternative is to introduce the concept of a Master
Agent, which accepts SNMP requests on behalf of all the agents running on a given
system and forwards these requests as appropriate. This has the benefit of allowing
a manager to access all SNMP agents in a consistent manner. The Sun Fire B1600
supports either approach.

For further information about the Master Agent, refer to Chapter 3.
Chapter 2 9

SNMP Mediator and snmpdx
snmpdx is the standard Solaris™ SNMP agent and is an SNMPv1 master agent.

By default, the SNMP Mediator is registered as a sub-agent of snmpdx. In this
configuration, only SNMPv1 get and set requests are supported although
SNMPv2c notifications are issued.

The relationship between snmpdx and the SNMP Mediator is further developed in
Chapter 10 and Chapter 11.

See also the man page snmpdx(1M).
10 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

CHAPTER 3

Master Agent

This chapter describes the functionality and features of the SNMPv3 Master Agent.

The chapter contains the following sections:

■ “Functionality” on page 11

■ “Configuration Overview” on page 12

Functionality
The SNMPv3 Master Agent provides single, secure point of presence through which
SNMP management information can be accessed.

The SNMPv3 Master Agent binds to the SNMP service port (default 161) and
forwards all requests to snmpdx, the standard Solaris master agent, which in turn
forwards these requests to the appropriate registered sub agents. snmpdx is supplied
as part of the standard Solaris distribution, but it supports SNMPv1 only and
therefore does not directly provide the security offered by SNMPv3. The Master
Agent translates all requests, be they SNMPv1, v2c or v3, to SNMPv1, so that
snmpdx can handle them.

In effect, Master Agent acts as an SNMP firewall by providing secure access to all
existing sub agents.
11

Configuration Overview
This section provides an introduction to the way in which you configure SNMP to
include Master Agent functionality. The topic is developed in detail in Chapter 11,
which includes a full description and examples of the configuration files referred to
in the remainder of this section.

The SNMP Mediator is registered as a sub-agent of snmpdx using an automatically
allocated port number.

Note – The SNMP Agent is referred to as the SNMP Mediator throughout this
Guide.

When Master Agent is enabled, the snmpdx automatic start up is disabled and
Master Agent is registered on port 161. A new port number is assigned to snmpdx,
which is started under control of the Master Agent’s startup file.

Configuration is by means of:

■ The SNMPv3 security files spama.uacl and spama.security
■ The SNMPv1/v2 access control list (ACL) file spama.acl
■ The configuration file spama.conf
■ The startup script, spama

It is not possible to configure Master Agent dynamically while it is running.

The SNMP Mediator also requires configuration and this is described in Chapter 11.
12 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

CHAPTER 4

The Platform Management Model

This chapter provides an overview of how SNMP models the Sun Fire B1600 system
using the Sun Platform SNMP Model (sunPlat).

The chapter contains the following sections:

■ “Modeling the Sun Fire B1600 Platform” on page 13

■ “Managed Objects” on page 14

■ “Derivation of sunPlat Classes” on page 16

Modeling the Sun Fire B1600 Platform
The Sun Fire B1600 is represented as a collection of nested hardware resources within a
chassis. Some resources can be nested directly within the chassis, such as a
motherboard. Others are nested within other resources—for example, a motherboard
can include a processor. These relationships, extending from within the chassis, form
a hierarchy of hardware resources, each physically contained within its enclosing
parent. This hierarchy is modeled using relationships between managed objects that
represent the hardware resources.
13

FIGURE 4-1 Example Hardware Resource Hierarchy

Managed Objects
The sunPlat model provides a useful set of common platform building blocks
representing fundamental hardware resources. Instances of these platform building
blocks are called managed objects. A hardware resource is represented by a managed
object if it can be monitored or if it provides useful configuration information.

Additional managed objects are used to represent other features of the management
interface. For example, hardware resources can issue asynchronous status reports,
(notifications), in response to problems (alarms) or changes in configuration (events).

Chassis

Alarm
Device

Watchdog
Power
Supply

Sensor
Discrete

Module
Sensor

Numeric
Battery

Sensor
Binary

Container OtherFan
14 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Managed objects are defined in terms of managed object classes. Characteristics of
the resource are represented by properties of the managed object. New classes, called
subclasses, are defined in terms of existing classes. A subclass inherits all the
characteristics of its superclass, but represents its own characteristics by adding new
properties.

FIGURE 4-2 shows the class inheritance hierarchy of the hardware building blocks
defined by the sunPlat model.

FIGURE 4-2 sunPlat Managed Object Class Inheritance Diagram

Equipment

Circuit Pack Equipment
Holder

ChassisSensor

Binary
Sensor

Discrete
Sensor

Numeric
Sensor

Alarm
Device

Fan

Battery

Power
Supply

Watchdog
Chapter 4 15

Derivation of sunPlat Classes
The sunPlat classes are based on industry-standard management concepts. The
Sun Fire B1600 system uses a subset of the ITU-T Generic Network Information
Model, chosen for its representation of hardware infrastructure. This provides a
powerful and extendible framework that supports uniform fault and configuration
management in a Telecommunications Management Network (TMN).

The Distributed Management Task Force (DMTF) Common Information Model
(CIM) Schema models the physical environment, and event definition and handling,
and provides system-specific extensions to the common model.
16 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

CHAPTER 5

The Sun Fire B1600 MIBs

This chapter describes how the Sun Fire B1600 managed objects and their
relationships are presented by the SNMP interface.

The chapter contains the following sections:

■ “SNMP Representation of the Model” on page 17

■ “The Physical Model” on page 19

■ “The Logical Model” on page 22

■ “Logical and Physical Hierarchy Mapping” on page 22

■ “Event and Alarm Model” on page 23

■ “The SUN-PLATFORM-MIB” on page 23

SNMP Representation of the Model
The SNMP Mediator supports both polled and event-based management. The
physical components of the Sun Fire B1600 system and also a logical representation
of the administrative domains within it are provided by the ENTITY-MIB, as defined
by RFC 2737, extended by the SUN-PLATFORM-MIB.

Note – Many of the objects defined in the MIBs have a MAX-ACCESS of read-
write, but these objects are only writable where such an operation is appropriate to
the component being modeled.

The ENTITY-MIB contains the following groups, which describe the physical and
logical elements of the managed system:
17

entityPhysical Group

The entityPhysical group describes the physical entities—identifiable physical
resources managed by the agent (for example, chassis, power supplies, sensors and
so forth). These entities are represented by rows in the entPhysicalTable.

entityLogical Group

The entityLogical group describes the logical entities managed by the agent.
These are representations of high value logical entities providing abstractions of
service that must be managed by higher levels of management. These are primarily
concerned with platform hardware management and include functions such as OS
reboot, hardware reset and power control. Typically, they correspond to
administrative domains such as Solaris domains or service controllers.

entityMapping Group

The entityMapping group identifies the relationship between the
entityPhysical group and the entityLogical group. This function is handled
internally by the SNMP Mediator.

entityGeneral Group

The entityGeneral group provides the last change time stamp for the time when
any entity in the Physical Entity Table or Physical Mapping Table is changed.

entityMIBTraps Group

The entityMIBTraps group defines the entPhysicalChange notifications used to
signal a change to any object in the ENTITY-MIB.

Chapter 2 provides an overview of how the generic elements of SNMP represent the
Sun Platform SNMP Model.
18 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

The Physical Model
The sunPlat physical model uses the ENTITY-MIB to provide a containment
hierarchy of hardware entities. Each entity is modeled as a separate row of the
ENTITY-MIB’s entPhysicalTable.

FIGURE 5-1 shows an example of a physical containment hierarchy. The number in the
bottom right corner gives the index to the corresponding row in the entPhysicalTable
(see TABLE 5-1).

FIGURE 5-1 Example Hardware Resource Hierarchy

Chassis

Alarm
Device

Watchdog
Power
Supply

Sensor
Discrete

Module
Sensor

Numeric
Battery

Sensor
Binary

Container OtherFan

1

2 3 4

5 6 7 12

8 9 10

11
Chapter 5 19

This information is presented using SNMP tables:

■ Physical Entity Table (entPhysicalTable)

This table provides a row per hardware entity. These rows are called Entries and a
particular row is referred to as an instance. Each entry contains:

■ The Physical class (entPhysicalClass)

■ Common characteristics of the hardware entity

■ A unique index (entPhysicalIndex)

■ A reference (entPhysicalContainedIn) that points to the row of the hardware
entity that acts as the container for this resource. This is zero for components,
such as a chassis, that are not physically contained within another container.

■ Physical Mapping Table (entPhysicalContainsTable)

This table provides a virtual copy of the hierarchy of the hardware resources
represented in the Physical Entity Table. This table is two-dimensional, indexed
firstly by the entPhysicalIndex of the containing entry, and secondly by the
entPhysicalIndex of each contained entry.

TABLE 5-1 shows the entPhysicalTable on which the above figure is based, and
TABLE 5-2 shows the physical mapping.

TABLE 5-1 Physical Entity Table

entPhysicalIndex entPhysicalClass entPhysicalContainedIn

1 chassis 0

2 fan 1

3 container (for example, a slot containing a FRU) 1

4 other 1

5 sensor (binary) 2

6 module (for example, a pluggable FRU) 3

7 sensor (numeric) 4

8 power supply 6

9 alarm device 6

10 watchdog 6

11 sensor (discrete) 8

12 power supply (battery) 4
20 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Classes
The entPhysicalClass in an enumerated value that provides an indication of the
general hardware type of a particular physical entity, each of which is represented
by a row in the entPhysicalTable.

The following enumerations apply to the Sun Fire B1600 platform (see also
FIGURE 5-1 and TABLE 5-1):

■ other(1)

The enumeration other applies if the physical entity cannot be classified by one
of the following.

■ chassis(3)

The chassis class represents an overall container for equipment. Any class of
physical entity can be contained within a chassis.

■ container(5)

The container class applies to a physical entity that can contain one or more
removable physical entities, of the same or different type. For example, each
empty or full slot in a chassis is modeled as a container. Field-replaceable units
(FRUs), such as a power supply or fan, are modeled as modules within a
container entity.

■ powerSupply(6)

The power supply class applies to a component that can supply power.

TABLE 5-2 Physical Mapping Table

entPhysicalIndex entPhysicalChildIndex

1 2

1 3

1 4

2 5

3 6

4 7

4 12

6 8

6 9

6 10

8 11
Chapter 5 21

■ fan(7)

The fan class applies if the physical entity is a fan or other cooling device.

■ sensor(8)

The sensor class applies to a physical entity that is capable of measuring some
physical property.

■ module(9)

The module class applies to a self-contained sub-system, and which is modeled
within another physical entity such as a chassis or another module. The entity
is always modeled within a container

The Logical Model
The sunPlat logical model uses the ENTITY-MIB to provide a list of high value
logical entities. Each entity is represented as a separate row in the ENTITY-MIB’s
entLogicalTable. Note that, unlike the physical model, the logical is flat rather than
hierarchical.

The ENTITY-MIB does not distinguish between different classes of logical object,
unlike the case for physical objects. The SUN-PLATFORM-MIB provides a class
hierarchy for logical objects and this is described in Chapter 7.

The information in the entLogicalTable can be used to support multi-scoping using
different naming context. However, this capability is not employed in this product.
The information of particular value is the entLogicalDescription and
entLogicalTAddress, the latter giving the IP address at which the logical entity can be
accessed.

Logical and Physical Hierarchy Mapping
The ENTITY-MIB provides a mapping between logical objects and the physical
objects of which they are composed. This is achieved by the entLPMappingTable,
which is a two-dimensional table (similar to the entPhysicalContainsTable) and which
identifies the physical entities that realize a given logical entity. These physical
entities are identified by their entLPPhysicalIndex, which is equivalent to the
entPhysicalIndex.
22 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Although this table can potentially represent all the physical entities associated with
a given logical entity, by convention, only the enclosing physical entity is referenced.
For example, for a logical entity realized by a physical module, the mapping
references only the module, not all the physical entities contained within it.

Event and Alarm Model
The ENTITY-MIB provides a single SNMP notification, entConfigChange, which is
used to signal a change to any of the tables in the MIB. It is set to provide a
maximum of one trap every five seconds.

The SUN-PLATFORM-MIB defines more specific notifications and these are
described in Chapter 8.

The SUN-PLATFORM-MIB
The SUN-PLATFORM-MIB:

■ Extends the Physical Entity Table to represent new classes of component

■ Extends the Logical Entity Table to represent high value platform and server
objects

Note – All objects in the SUN-PLATFORM-MIB have the prefix sunPlat to make
them globally unique.
Chapter 5 23

Physical Model Table Extensions
The SUN-PLATFORM-MIB provides additional attributes from classes that are not
represented in the Physical Entity Table. It extends the Physical Entity Table by
adding the following sparsely populated table extensions:

■ Equipment Table Extension

This augments the Physical Entity Table to provide further information for
managed objects of the Equipment class. This class is applicable for all
Sun Fire B1600 hardware resources. Subclasses of the Equipment class are
represented by further Table Extensions.

■ Equipment Holder Table Extension

This extends the Equipment Table Extension. It provides the additional
information relevant for managed objects of the container(5)
entPhysicalClass.

■ Circuit Pack Table Extension

This extends the Equipment Table Extension. It provides the additional
information relevant for managed objects of the module(9) entPhysical class.

■ Physical Table Extension

This extends the Physical Entity Table. It is used to supplement the
entPhysicalClass column in the Physical Entity Table. If a resource has an
entPhysicalClass of other(1), but is of a class modeled by sunPlat, that is, the
Watchdog or AlarmDevice class, this table identifies its sunPlatPhysicalClass.

■ Sensor Table Extension

This extends the Equipment Table Extension. It provides the additional
information relevant for managed objects of the entPhysicalClass sensor(8).
Subclasses of Sensor class are represented by further Table Extensions and
identified by this table using sunPlatSensorClass.

■ Binary Sensor Table Extension

This extends the Sensor Table Extension. It provides additional information
relevant for managed objects of the entPhysicalClass sensor(8) and
sunPlatSensorClass binary(1).

■ Numeric Sensor Table Extension

This extends the Sensor Table Extension. It provides additional information
relevant for managed objects of the entPhysicalClass sensor(8) and
sunPlatSensorClass numeric(2).

■ Discrete Sensor Table Extension

This extends the Sensor Table Extension. It provides additional information
relevant for managed objects of the entPhysicalClass sensor(8) and
sunPlatSensorClass discrete(3).
24 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

■ Fan Table Extension

This extends the Equipment Table Extension. It provides the additional
information relevant for managed objects of the entPhysicalClass fan(7).

■ Alarm Table Extension

This extends the Equipment Table Extension. It provides the additional
information relevant for managed objects of the entPhysicalClass other(1) and
sunPlatPhysicalClass alarm(8).

■ Watchdog Table Extension

This extends the Equipment Table Extension. It provides the additional
information relevant for managed objects of the entPhysicalClass other(1) and
sunPlatPhysicalClass watchdog(3), typically representing service indicator
LEDs.

■ Power Supply Table Extension

This extends the Equipment Table Extension. It provides the additional
information relevant for managed objects of the entPhysicalClass
powerSupply(6).

TABLE 5-3 shows an example of the Table Extensions to the Physical Entity Table. The
entPhysicalIndex (column 1 in this table) is based on the example hardware resource
hierarchy shown in FIGURE 5-1
Chapter 5 25

26

E
N

T
IT

Y
-M

IB
S

U
N

-P
L

A
T

F
O

R
M

-M
IB

entPhysicalIndex

entPhysicalClass

sunPlatPhysicalClass

sunPlatFanClass

sunPlatSensorClass

sunPlatPowerSupplyClass

138122571169104

TA
B

S
un S

N
M

P
 M

anagem
ent A

gent G
uide for S

un
F

ire
B

1600
•

M
arch 2003

chassis

container

p
ow

er
su

p
p

ly
G

p
ow

er
su

p
p

ly
H

fan
A

fan
B

fan
C

sensor
D

sensor
E

sensor
F

m
od

u
le

other
alarm

other
w

atch
d

og

other
other

entPhysicalTable

sunPlatEquipmentTable

sunPlatEquipmentHolderTable

sunPlatCircuitPackTable

sunPlatPhysicalTable

sunPlatWatchdogTable

sunPlatFanTable

sunPlatAlarmTable

sunPlatSensorTable

sunPlatBinarySensorTable

sunPlatNumericSensorTable

sunPlatDiscreteSensorTable

sunPlatDiscreteSensorStatusTable

sunPlatPowerSupplyTable

L
E

5-3
P

hysical
E

ntity
Table

E
xtensions

Logical Model Table Extensions
The SUN-PLATFORM-MIB provides additional attributes from classes that are not
supported in the Logical Entity Table. It extends the Logical Entity Table by adding
the following sparsely populated table extensions:

■ Logical Class Extension Table

This extends the entLogicalTable to define the class of the logical entity,
SunPlatLogicalClass, and its status, sunPlatLogicalStatus. The sunPlatLogicalTable is
valid for all entries in the entLogicalTable. The Computer System subclass of the
Logical class is represented by a further table extension:

■ Computer System Table Extension

This table extends the entLogicalTable to provide attributes common to
instances of a computer system. The sunPlatUnitaryComputerSystemTable is
valid for those rows of the entLogicalTable with a sunPlatLogicalClass of
computerSystem(2).

A set of entries in the Load Info Table (sunPlatInitialLoadInfoTable) is associated
with each Computer System logical entity. This set comprises parameters used
to control the boot setting of the computer system.

Event and Alarm Log Tables
SNMP traps are not guaranteed to be delivered. In view of this, and to support
management applications ability to track accurately the current status of platform
alarms, the MIB maintains current problem lists for each managed object. This is a
table of outstanding alarms for each object. These are cleared automatically when the
alarm condition clears.

TABLE 5-4 Key to Physical Entity Table Extensions (TABLE 5-3)

Reference Description

A Fan

B Refrigeration

C Heat sink

D Binary

E Numeric

F Discrete

G Power supply

H Battery
Chapter 5 27

The SUN-PLATFORM-MIB defines logs that can be used to record events or alarms
grouped by event or alarm type, or by affected entity. The implementation for the
Sun Fire B1600 employs these logs to maintain lists of outstanding alarms for every
monitored entity for the reason stated in the preceding paragraph.

Each entity in the MIB for which alarms can be generated (that is, all physical and
logical entities) has an entry in the Log Table (sunPlatLogTable). This table provides
administrative status and control for the current problem lists. The logs are
permanently enabled and have no limit on size.

There can be zero or more entries in the Log Record Table corresponding to each
entry in the Log Table. These entries are described in detail in Chapter 8.

Event Records
These records form part of the sunPlat trap notifications. Changes in the model are
communicated to management applications using two categories of SNMP
traps—Events and Alarms.

Events
■ Object Creation Record

This record indicates that a resource has been added to the object model.

■ Object Deletion Record

This record indicates that a resource has been removed from the object model.

■ State Change Record

This record indicates that the state of the resource has changed.

■ Integer Attribute Value Change Record

This record indicates a change in a characteristic of a resource modeled by an
attribute of type INTEGER. The integer can be signed or unsigned, depending on
the affected object.

■ String Attribute Value Change Record

This record indicates a change in a characteristic of a resource modeled by an
attribute of type OCTET STRING.

■ OID Attribute Value Change Record

This record indicates a change in the object identifier attribute of type OBJECT
IDENTIFIER.
28 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Alarms
■ Communications Alarm Record

This record indicates that a failure has occurred in the communication services
that the resource supports.

■ Environmental Alarm Record

This record indicates an environmental condition relating to the resource.

■ Equipment Alarm Record

This record indicates that a resource has become faulty.

■ Processing Error Alarm Record

This record indicates that a resource has an associated software or processing
fault.

■ Quality of Service Alarm Record

This record indicates that a quality of service alarm has occurred.

■ Indeterminate Alarm Record

This record indicates that an alarm of unknown type has occurred.
Chapter 5 29

30 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

CHAPTER 6

The Physical Model

This chapter describes the sunPlat physical class hierarchy and how the managed
physical object classes defined in the sunPlat model are represented by the
SUN-PLATFORM-MIB.

The chapter contains the following sections:

■ “sunPlat Physical Class Hierarchy” on page 31

■ “sunPlat Class Definitions” on page 33

sunPlat Physical Class Hierarchy
FIGURE 6-1 shows the inheritance hierarchy of the sunPlat classes used to model
hardware resources within the Sun Fire B1600.

The Physical Entity superclass provides an attribute for defining the relationship
between managed objects. It also provides standard SNMP attributes that
correspond to attributes in the Equipment class.

The sunPlat Equipment class is derived from the Physical Entity superclass to
provide the additional attributes defined in the corresponding classes that are
applicable for fault monitoring.

The sunPlat Equipment Holder and sunPlat Circuit Pack classes are derived from
the sunPlat Equipment superclass to represent receptacles and the components that
plug into them, respectively.

The sunPlat Equipment class is then further specialized to provide the DMTF-
derived classes.
31

FIGURE 6-1 The sunPlat Physical Resource Inheritance Class Diagram

Variable Speed

Fan Chassis
Power
Supply

Watchdog

Physical Entity

Sensor Type
Latency

Sensor

Circuit Pack

Availability Status
Type
Replaceable
Hot Swappable

Action
Timeout
Last Expired
Monitored Entity

Battery

Battery Status

 Equipment
Holder

Type
Status
Acceptable Circuit Pack Types
Powered

Equipment

Location
Unknown Status
Operational state
Administrative State
Alarm Status

Binary SensorDiscrete Sensor

Current
Interpretation
Acceptable

Numeric Sensor

Accuracy
Normal Min
Normal Max

Lower Threshold Non Critical
Upper Threshold Non Critical
Lower Threshold Critical
Upper Threshold Critical
Lower Threshold Fatal
Upper Threshold Fatal
Enabled Thresholds

IsFRU
Hardware Revision
Name
Model Name
Mfg Name

Serial Number
Descr
Index
Contained In
Firmware Rev
Software Rev

Type
State
Urgency

Alarm
Device

Exponent
Base Units
Rate Units
Current
Hysteresis

Interpret True
Interpret False
Expected
Current
32 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

sunPlat Class Definitions
The attributes of the sunPlat classes are used to represent the characteristics of
hardware resources. The availability and operability of the resource to the manager
are represented by the state of the managed object. Different sunPlat classes have a
variety of attributes that express aspects of the managed object’s state.

Physical Entity
The Physical Entity superclass is used to represent the characteristics which are
generic to all resources.

Note – The entPhysical prefix has been omitted from the following attribute names
for clarity.

■ Descr
This is a text string containing the known name for the resource. This name is
typically the name used to describe the resource in product documentation, on
product legends or, possibly, the name stored in firmware.

■ Is FRU
This is a boolean representing whether the resource is a field replaceable unit.
Only hardware resources of the class sunPlatCircuitPack are considered to be
FRUs.

■ Hardware Rev
This is a text string containing the manufacturer's hardware revision information
for the resource. Not all hardware resources have associated hardware revision
information.

■ Name
This is a text string containing the logical name by which the resource is known to
the operating system and associated utilities. This name can be a device node or a
defined name used by system utilities, where applicable. Not all resources have a
device name.

■ Model Name
This is a text string containing the Manufacturer's customer visible part number
or part definition. Not all hardware resources have associated part numbers or
definitions.

■ Serial Num
This is a text string containing the Manufacturer's serial number for the resource.
Not all hardware resources have associated serial numbers.
Chapter 6 33

■ Mfg Name
This is a text string containing the Manufacturer's name for the resource. Not all
hardware resources have an associated manufacturer’s name.

The Physical Entity superclass also contains attributes that are used for describing
the hierarchy of hardware resources:

■ Class
This enumerated type contains an indication of the general hardware type of a
particular physical resource. The supported values of this class are defined by the
ENTITY-MIB. This attribute can be used as an indication of the relevant Table
Extensions for the managed object. The mapping between the ENTITY-MIB
classes and the sunPlat classes are as shown in TABLE 6-1:

■ Index
This integer uniquely identifies the entry in the Physical Entity Table that
identifies the managed object. Values are not pre-allocated and may vary on each
invocation of the agent.

■ Contained In
This integer represents the Index attribute of the managed object containing this
managed object. The attribute therefore models the relationship between the
managed objects.

TABLE 6-1 Physical Entity Superclass ‘Class’ Attribute Mapping

entPhysicalClass sunPlat Class

chassis(3) sunPlat Chassis

backplane(4) Not implemented

container(5) sunPlat Equipment Holder

powerSupply(6) sunPlat Power Supply

fan(7) sunPlat Fan

sensor(8) sunPlat Sensor, plus subclasses

module(9) sunPlat Circuit Pack

port(10) Not implemented

stack(11) Not implemented

other(1) sunPlat Equipment, plus subclasses

unknown(2) Not implemented
34 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Note – The object at the root of the physical containment hierarchy (typically a
chassis) is not physically contained within another entity represented in the table. To
indicate this, its entPhysicalContainedIn value is set to 0.

■ Firmware Rev
This is a text string containing the manufacturer's firmware revision information
for the resource. Not all hardware resources have associated firmware revision
information.

■ Software Rev
This is a text string containing the manufacturer's software revision information
for the resource. Not all hardware resources have associated software revision
information.

sunPlat Equipment Class
The sunPlat Equipment class is used to represent the characteristics that are generic
to all hardware resources. This class contains attributes representing configuration
and generic health status information. This class is further subclassed to provide
more detail configuration information and monitoring data for particular types of
resource.

The entPhysicalClass is dependent on the subclass being represented.

The sunPlat Equipment class has the following attributes:

Note – The sunPlatEquipment prefix has been omitted from the following attribute
names for clarity.

■ Administrative State
This read-write attribute takes one of the following enumerated values
representing the current administrative state of the resource:

■ locked(1)

■ unlocked(2)

■ shuttingDown(3)
Chapter 6 35

■ Operational State
This read-only attribute is an enumerated type indicating whether the resource is
physically installed and capable of providing service. The attribute contributes to
the state of the managed object and can take the values shown in TABLE 6-2.

■ Alarm Status
This read-only attribute takes an enumerated value representing the current
alarm state of the resource. It indicates the highest severity of any alarm
outstanding on the managed object. The attribute can take the following values:

■ critical(1),

■ major(2),

■ minor(3),

■ indeterminate(4),

■ warning(5),

■ pending(6),

■ cleared(7)

■ Unknown Status
This read-only attribute indicates if the other state attributes might not reflect the
true state of the resource. The attribute takes a boolean value representing
whether the managed object is able to report accurately faults against the
resource. If the resource is unable, truthfully, to reflect its state, this attribute is set
to true.

■ Location Name
This read-only attribute contains a locator for the resource. For resources
contained directly within the chassis, this attribute correlates with legends on
slots and product documentation, or provides a geographical indication of the
position of the resource within the chassis. Other hardware resources typically
have a location corresponding to the Name of the managed object for the resource
in which it is contained.

TABLE 6-2 Operational State Attribute Values

Attribute Values Description

disabled(1) The resource is totally inoperable and unable to provide service to
the user.

enabled(2) The resource is partially or fully operable and available for use.
36 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

sunPlat Circuit Pack Class
The sunPlat Circuit Pack class is used to represent the characteristics that are generic
to a replaceable resource or FRU. A replaceable resource is defined as a hardware
module whose purpose is to package internal hardware components into a
recognized form-factor. Typically, a FRU will have a defined form-factor and
physical appearance. It can be a pluggable removable unit, which is plugged into a
connector, it can be more permanently sited within a bay, or it can fit into a drawer,
rack or shelf.

This class has the entPhysicalClass module(9).

The sunPlat Circuit Pack class has the following attributes:

Note – The sunPlatCircuitPack prefix has been omitted from the following attribute
names for clarity.

■ Type
This read-only attribute is a text string used for assessing the resource's
compatibility with its container. This attribute can identify functionality and
form-factor characteristics of the resource.

■ Availability Status
This read-only attribute further qualifies the Operational State of the managed
object. It is an object using BITS syntax, and can take zero or more of the set of
values shown in TABLE 6-3. Not all of these are applicable to every class of
managed object. This attribute contributes to the state of the managed object.

TABLE 6-3 Availability Status Attribute Values

Attribute Values Bit No. Hex. Description

inTest(0) 0 80 The resource is undergoing a test procedure.

failed(1) 1 40 The resource has an internal fault that prevents it
from operating. Operational State is disabled(1).

powerOff(2) 2 20 The resource requires power to be applied and is
not powered on.

offLine(3) 3 10 The resource requires a routine operation to be
performed to place it online and make it available
for use. Operational State is disabled(1).

offDuty(4) 4 08 The resource has been made inactive by an
internal control process.
Chapter 6 37

■ Replaceable
This read-only attribute takes a boolean value indicating whether the resource is a
replaceable unit.

■ Hot Swappable
This read-only attribute takes a boolean value indicating whether the replaceable
resource is hot swappable.

sunPlat Equipment Holder
The sunPlat Equipment Holder class is used to represent the characteristics of
hardware resources that are capable of holding removable hardware resources.

This class has the entPhysicalClass container(5).

The sunPlat Equipment Holder class has the following attributes:

Note – The sunPlatEquipmentHolder prefix has been omitted from the following
attribute names for clarity.

dependency(5) 5 04 The resource cannot operate because some other
resource on which it depends is unavailable.
Operational State is disabled(1).

degraded(6) 6 02 The service available from the resource is
degraded in some respect, such as in speed or
operating capability. However, the resource
remains available for service. Operational State is
enabled(2).

notInstalled(7) 7 01 The resource represented by the managed object
is not present, or is incomplete. Operational State is
disabled(1).

TABLE 6-3 Availability Status Attribute Values (Continued)

Attribute Values Bit No. Hex. Description
38 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

■ Type
This read-only attribute is an enumerated type representing the holder type of the
resource, as shown in TABLE 6-4:

■ Acceptable Types
This read-only attribute is a list of text strings representing the types of removable
resource (circuit pack) that are supported by the holder. These types are tested for
compatibility with the removable resource's Type attribute.

■ Status
This read-only attribute is an enumerated type indicating the status of the holder
with regards to any replaceable hardware resources (circuit packs) that it may
contain, as shown in TABLE 6-5.

TABLE 6-4 Equipment Holder Type Attribute Values

Attribute Values Description

bay(1) A bay is typically a unit of vertical space within a rack that contains
shelves or drawers for holding telecommunications equipment.
sunPlat interprets its use within a chassis as a physical receptacle
requiring cables for signal connections

shelf(2) A horizontal support or sub rack for holding telecommunications
equipment within a rack.

drawer(3) A horizontal enclosure for holding telecommunications equipment
within a rack.

slot(4) A physical receptacle with an integral connector for signal
connections for removable equipment.

rack(5) A rack is the support infrastructure for holding telecommunications
equipment, holders, and cable management systems within a self-
contained enclosure.

TABLE 6-5 Equipment Holder Status Attribute Values

Attribute Values Description

holderEmpty(1) There is no removable resource in the holder

inTheAcceptableList(2) The holder contains a removable resource that is one of
the types in the Acceptable Circuit Pack Types list

notInTheAcceptableList(3) The holder contains a removable resource recognizable
by the network element; but not one of the types in the
Acceptable Circuit Pack Types list

unknownType(4) The holder contains an unrecognizable removable
resource
Chapter 6 39

■ Powered
This read-write attribute is an enumerated type indicating the power state of the
resource. The possible values are:

■ other(1)

■ unknown(2)

■ powerOff(3)

■ powerOn(4)

sunPlat Power Supply
The sunPlat Power Supply class is used to represent a power supply. It does not
extend the characteristics of the sunPlat Equipment class. A power supply typically
contains sensors representing monitored properties, for example voltages, current,
and temperature. It can also contain other hardware resources such as fans. This is
modeled using relationships between the managed objects.

If a power supply is a removable resource, it is modeled within a managed object of
sunPlat Circuit Pack class.

This class has the entPhysicalClass powerSupply(6).

The sunPlat Power Supply class has the following attribute:

Note – The sunPlatPowerSupply prefix has been omitted from the following attribute
name for clarity.

■ Class

This read-only attribute is an enumerated type indicating the class of the power
supply, and takes the following values:

■ other(1)

■ powerSupply(2)

■ battery(3)

sunPlat Battery
The sunPlat Battery class is used to represent a power supply that supplies power
from a battery.

This class has the entPhysicalClass powerSupply(6) and the
SunPlatPowerSupplyClass battery(3).
40 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

The sunPlat Battery class has the following attribute:

Note – The sunPlatBattery prefix has been omitted from the following attribute name
for clarity.

■ Status
This read-only attribute is an enumerated type that indicates the status of the
battery, and takes the following values:

■ other(1)

■ unknown(2)

■ fullyCharged(3)

■ low(4)

■ critical(5)

■ charging(6)

■ chargingAndHigh(7)

■ chargingAndLow(8)

■ chargingAndCritical(9)

■ undefined(10)

■ partiallyCharged(11)

sunPlat Watchdog
The sunPlat Watchdog class is used to represent the characteristics of timer
hardware resources that allow the hardware to monitor the state of the operating
system or applications.

This class has the entPhysicalClass other(1) and the sunPlatPhysicalClass
watchdog(3).

The sunPlat Watchdog class has the following attributes:

Note – The sunPlatWatchdog prefix has been omitted from the following attribute
names for clarity.

■ Timeout
This read-only attribute is an integer indicating the interval in milliseconds after
which the watchdog will timeout if not reset.
Chapter 6 41

■ Action
This read-only attribute is an enumerated type representing the action taken by
the watchdog if it is not reset within the period specified by the Timeout. The
possible values are shown in TABLE 6-6.

■ Last Expired
This read-only attribute indicates the date and time at which the watchdog last
expired.

■ Monitored Entity
This read-only attribute is an enumerated type representing the entities that can
be monitored by the watchdog. The possible values are:

■ unknown(1)

■ other(2)

■ operatingSystem(3)

■ operatingSystemBootProcess(4)

■ operatingSystemShutdownProcess(5)

■ firmwareBootProcess(6)

■ biosBootProcess(7)

■ application(8)

■ serviceProcessors(9)

sunPlat Alarm
The sunPlat Alarm class is used to represent the characteristics of hardware
resources that emit indications relating to problem situations, for instance buzzers,
LEDs, relays, vibrators, and software alarms.

TABLE 6-6 Watchdog Action Attribute Values

Action Description

statusOnly(1) The watchdog is readable by software, but performs no action

systemInterrupt(2) The watchdog generates a hardware interrupt to the system
being monitored

systemReset(3) The watchdog reset the system being monitored

systemPowerOff(4) The watchdog powers off the system being monitored

systemPowerCycle(5) The watchdog powers off, and then on, the system being
monitored
42 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

This class has the entPhysicalClass other(1) and the sunPlatPhysicalClass
alarm(2).

The sunPlat Alarm class has the following attributes:

Note – The sunPlatAlarm prefix has been omitted from the following attribute
names for clarity.

■ Type
This read-only attribute is an enumerated type representing the means by which
the alarm condition is communicated. The possible values are shown in TABLE 6-7.

■ State
This read-write attribute is an enumerated type representing the state of the alarm
The possible values are shown in TABLE 6-8.

■ Urgency
This read-write attribute is an enumerated type indicating the relative frequency
at which the Alarm flashes, vibrates and/or emits audible tones. The possible
values are:

■ other(1)

■ unknown(2)

■ notSupported(3)

TABLE 6-7 Alarm Type Attribute Values

Attribute Values Description

other(1) The alarm device type is not one of the following

audible(2) The alarm device is audible change on the device

visible(3) The alarm causes a visible change on the device

motion(4) The alarm causes motion of the device

switch(5) The alarm causes an electrical signal change

TABLE 6-8 Alarm State Attribute Values

Attribute Values Description

unknown(1) The state of the alarm is undefined or unobservable

off(2) The alarm is inactive

steady(3) The alarm is active

alternating(4) The alarm is cycling between its inactive and active states
Chapter 6 43

■ informational(4)

■ nonCritical(5)

■ critical(6)

■ unrecoverable(7)

sunPlat Fan
The sunPlat Fan class is used to represent the characteristics of active cooling
devices. A fan typically contains a sensor representing the speed of rotation. This is
modeled using a physical containment relationship between the sunPlat Fan
managed object and a tachometer managed object of class sunPlat Sensor.

This class has the entPhysicalClass fan(7).

The sunPlat Fan class has the following attribute:

Note – The sunPlatFan prefix has been omitted from the following attribute name
for clarity.

■ Class
This read-only attribute is an enumerated type indicating the class of cooling
device, and takes the following values:

■ other(1)

■ fan(2)

■ refrigeration(3)

■ heatPipe(4)

sunPlat Sensor
The sunPlat Sensor superclass is used to represent the generic characteristics of
hardware resources that measure properties of other hardware resources.

This class has the entPhysicalClass sensor(8).

The sunPlat Sensor class has the following attributes:

Note – The sunPlatSensor prefix has been omitted from the following attribute
names for clarity.
44 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

■ Class
This read-only attribute is an enumerated type indicating the class of the sensor,
and takes the following values:

■ binary(1)

■ numeric(2)

■ discrete(3)

■ Type
This read-only attribute is an enumerated type identifying the property that the
sensor measures. Some of the possible values of Type are shown in TABLE 6-9.

■ Latency
This read-only attribute indicates the following:

■ Where the sensor is polled, this integer represents the update interval
measured in milliseconds.

■ Where the sensor is event-driven, this value represents the maximum expected
latency in processing that event.

sunPlat Binary Sensor
A sunPlat Binary Sensor class is used to represent the characteristics of sensors that
return binary output. It augments the sunPlatSensor table to provide the attributes
that are specific to binary sensors.

This class has the entPhysicalClass sensor(8) and the sunPlatSensorClass
binary(1).

The sunPlat Binary Sensor class has the following attributes:

Note – The sunPlatBinarySensor prefix has been omitted from the following attribute
names for clarity.

TABLE 6-9 Sensor Type Attribute Values

Type Description

temperature(3) Sensor for measuring the environmental temperature

voltage(4) Sensor for measuring the electrical voltage

current(5) Sensor for measuring the electrical current

tachometer(6) Sensor for measuring the speed/revolutions of a device

counter(7) A general purpose sensor which counts defined events
Chapter 6 45

■ Current
This read-only attribute takes a boolean value indicating the most recent value of
the sensor.

■ Expected
This read-only attribute takes a boolean value indicating the anticipated value of
the sensor.

■ Interpret True
This read-only attribute is a text string indicating the interpretation of a true
value from the sensor.

■ Interpret False
This read-only attribute is a text string indicating the interpretation of a false
value from the sensor.

sunPlat Numeric Sensor
A sunPlat Numeric Sensor class is used to represent the characteristics of sensors
which can return numeric readings. The numeric sensor values are qualified by a
Unit of Measurement as defined below:

Unit of Measurement = Base Unit * 10Exponent

This qualification allows for units of measurement such as milliampere and
microvolts. If a Rate Unit is defined, the Unit of Measurement is further refined as
below:

Unit of Measurement = Base Unit * 10Exponent per Rate Unit

This qualification allows for units of measurement such as rpm and km/hr.

This class has the entPhysicalClass sensor(8) and the sunPlatSensorClass
numeric(2).

The sunPlat Numeric Sensor class has the following attributes:

Note – The sunPlatNumericSensor prefix has been omitted from the following
attribute names for clarity.

■ Base Units
This read-only attribute is an enumerated type indicating the unit of
measurement, prior to qualification as defined above. Examples of values of this
type are:

■ degC(3)

■ volts(6)

■ amps(7)
46 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

■ Exponent
This read-only attribute is an integer that used to scale the Base Unit by some
power of 10. For example, if sunPlatNumericSensorBaseUnits is set to volts and
sunPlatNumericSensorExponent is set to -6, the units of the values returned are
microVolts.

■ Rate Units
This read-only attribute is an enumerated type that indicates whether the sensor
is measuring an absolute value (when the value is none) or a rate. In the latter
case, the unit specified in sunPlatNumericSensorBaseUnits is expressed as ‘per unit
of time’. For example, if sunPlatNumericSensorBaseUnits is set to degC and
sunPlatNumericSensorRateUnits is set to perSecond, the value represented has the
units degC/second.

Examples of values of this type are:

■ perMicrosecond(2)

■ perMillisecond(3)

■ perSecond(4)

■ perMinute(5)

■ perHour(6)

■ none(1)

■ Current
This read-only attribute is an integer indicating the most recent value of the
sensor.

■ Normal Min
This read-only attribute is an integer indicating the defined threshold below
which the sensor reading is not expected to fall. This value is expressed in terms
of the units of measurement as defined above. The attribute may not be applicable
to some sensors.

■ Normal Max
This read-only attribute is an integer indicating the defined threshold above
which the sensor reading is not expected to rise. This value is expressed in terms
of the units of measurement as defined above. The attribute may not be applicable
to some sensors.

■ Accuracy
This read-only attribute is an integer indicating the degree of error of the sensor
for the measured property as a percentage to two decimal places. The value can
vary depending on whether the sensor reading is linear over its dynamic range.

■ Lower Non Critical Threshold
This read-only attribute is an integer indicating the lower threshold at which a
nonCritical condition occurs.

■ Upper Non Critical Threshold
This read-only attribute is an integer indicating the upper threshold at which a
nonCritical condition occurs.
Chapter 6 47

■ Lower Critical Threshold
This read-only attribute is an integer indicating the lower threshold at which a
critical condition occurs.

■ Upper Critical Threshold
This read-only attribute is an integer indicating the upper threshold at which a
critical condition occurs.

■ Lower Fatal Threshold
This read-only attribute is an integer indicating the lower threshold at which a
fatal condition occurs.

■ Upper Fatal Threshold
This read-only attribute is an integer indicating the upper threshold at which a
fatal condition occurs.

■ Hysteresis
This read-only attribute describes the hysteresis around the threshold values.

■ Enabled Thresholds
This is read-only attribute that, when written to, resets the sensors to their default
values.

sunPlat Discrete Sensor
The sunPlat Discrete Sensor class is used for sensors that cannot be represented by
the sunPlat Numeric Sensor or sunPlat Binary Sensor classes

This class has the entPhysicalClass sensor(8) and the sunPlatSensorClass
discrete(3).

The class comprises two tables. The sunPlatDiscreteSensor table has one attribute,
sunPlatDiscreteSensorCurrent, which indicates the current state of the sensor
expressed as an index in the sunPlatDiscreteSensorStates table.

The sunPlat Discrete Sensor class has the following attributes:

Note – The sunPlatDiscreteSensorState prefix has been omitted from the following
attribute names for clarity.

■ Index
This read-only attribute takes a number that represents the index of a row in the
sunPlatDiscreteSensorStates table, which identifies this sensor state.

■ Interpretation
This read-only attribute is a string describing the state represented by the
corresponding row of the sunPlatDiscreteSensorStatesTable.
48 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

■ Acceptable
This read-only attribute takes a boolean value that indicates whether the state
represented by this row of the table is considered acceptable.

sunPlat Chassis
The sunPlat Chassis class is used to represent the primary enclosure. It does not
extend the characteristics of the sunPlat Equipment class. The chassis contains all the
modeled hardware resources, and is not contained within any other resource.

This class has the entPhysicalClass chassis(3).
Chapter 6 49

50 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

CHAPTER 7

The Logical Model

This chapter describes the sunPlat logical class hierarchy and how the managed
object classes defined in the sunPlat model are represented by the
SUN-PLATFORM-MIB.

The chapter contains the following sections:

■ “sunPlat Logical Class Hierarchy” on page 51

■ “SunPlat Logical Class Definitions” on page 52

sunPlat Logical Class Hierarchy
FIGURE 7-1 shows the inheritance hierarchy of the sunPlat logical classes.

The Logical Entity class provides information common to all logical objects.

The Unitary Computer System class adds properties relevant to reporting the power
status of the modeled computer systems (for example, a Sun Fire B100s blade in a
Sun Fire B1600 chassis), which can also be used to effect forced reset.

The Administrative Domain class adds no additional properties, but is used to
represent the logical object representing administrative contact with the modeled
system. In the case of the Sun Fire B1600 platform, this is used to represent the
System Controller.
51

FIGURE 7-1 The sunPlat Logical Resource Inheritance Class Diagram

SunPlat Logical Class Definitions
The attributes of the logical sunPlat classes are used to represent the characteristics
of logical resources. Such resources represent high value objects such as domains in a
multi-domain system. The availability and operability of the resource to the manager
are represented by the state of the managed object. Different sunPlat classes have a
variety of attributes that express aspects of the managed objects state.

Logical Entity

Description
Index

Unitary Computer
System

Power State
Initial Load Info []

Initial Load Info Description []

Administrative Domain

Logical

Class
Status
52 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Logical Entity
This class represents the logical entity providing identity information. The
significant objects are:

Note – The entLogical prefix has been omitted from the following object names for
clarity.

■ Description

This object identifies the type of object being managed.

■ TAddress

This provides the IP address and UDP port number through which the entity can
be managed directly. For a Sun Fire B100s blade in a Sun Fire B1600 system, this
gives the IP address of the blade, and port 161, through which the blade’s
standard Solaris SNMP agent is contacted.

Logical
This class represents the type of status of the resource represented by this logical
entity. The class contains the following objects

Note – The sunPlatLogical prefix has been omitted from the following attribute
names for clarity.

■ Class

This attributes in an enumerated type indicating the type of logical class, and
takes the following values:

■ other(1)

■ computerSystem(2)

■ adminDomain(3)

■ Status

This attribute is an enumerated type indicating the status of the logical class. It
can take the following values:

■ ok(1)

■ error(2)

■ degraded(3)

■ unknown(4)
Chapter 7 53

■ predFail(5)

■ starting(6)

■ stopping(7)

■ service(8)

■ stressed(9)

■ nonRecover(10)

■ noContact(11)

■ lostComm(12)

■ stopped(13)

sunPlat Unitary Computer System
The specific properties of this class are represented using the
sunPlatUnitaryComputerSystemTable. It has the sunPlat Logical Class of
computerSystem(2)

The class contains the following objects:

Note – The sunPlatUnitaryComputerSystem prefix has been omitted from the
following attribute names for clarity.

■ Power State

This attribute indicates the current power state when read. It also enables remote
control of the power state, for example, to power a blade up or down, or to power
cycle it to effect a forced reset.

The attribute can take the following values:

■ unknown(1)

■ fullPower(2)

■ psLowPower(3)

■ psStandby(4)

■ psOther(5)

■ powerCycle(6)

■ powerOff(7)

■ psWarning(8)

■ hibernate(9)

■ softOff(10)

■ reset(11)
54 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

■ Apply Settings

Writing to this property enables either the default, or a custom set of boot
parameters to be applied.

Associated with each entry in the sunPlatUnitaryComputerSystemTable is a set of
entries in the sunPlatInitialLoadInfoTable defining both the current boot parameter
setting and an alternate set that can be applied by writing to the
sunPlatUnitaryComputerSystemApplySettings object.

sunPlat Administrative Domain
This class adds no properties to the Logical Entity class and thus has no associated
MIB objects. The class has the sunPlat Logical Class of adminDomain(3).
Chapter 7 55

56 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

CHAPTER 8

The sunPlat Notifications

This chapter describes the SunPlat notifications classes and attributes, as defined in
the SUN-PLATFORM-MIB.

sunPlat notification classes are asynchronous messages sent by the agent to
registered network managers. They are used to convey event information more
efficiently than can be achieved through polling the managed objects.

The chapter contains the following sections:

■ “sunPlat Notifications Class Hierarchy” on page 57

■ “sunPlat Class Definitions” on page 59

sunPlat Notifications Class Hierarchy
FIGURE 8-1 shows the inheritance hierarchy of the sunPlat Notifications classes.

The set of Notification classes are represented using an hierarchy of both abstract
and concrete classes exploiting the common attributes across these classes.
57

sunPlat Event Record Classes

FIGURE 8-1 Event Records Inheritance Class Diagram

Object
Creation
Record

State
Change
Record

Object
Deletion
Record

Quality
of Service

Alarm Record

Processing
Alarm Record

Equipment
Alarm Record

Environmental
Alarm Record

Communications
Alarm Record

Indeterminate
Alarm Record

Event Record

ID
Notification Time

Managed Object Instance
Corrected Notifications

Attribute Value
Change Record

Attribute OID
Old Value
New Value

Event Additional
Record

Additional Info
Additional Text

Alarm Record

Perceived Severity
Probable Cause
Specific Problem

Repair Action
58 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

sunPlat Class Definitions

sunPlat Event Record
The sunPlat Event Record superclass represents the attributes common to all
notifications. This class is further subclassed to provide additional information
pertinent to the particular event that it records.

The sunPlat Event Record has the following attributes:

Note – The sunPlatLogRecord prefix has been omitted from the following attribute
names for clarity.

■ ID
This is an integer uniquely identifying the notification and an indication of the
order in which the notifications were generated by the agent. Note that the agent
does not guarantee that its sequencing reflects the order of the underlying events
from which the notifications were generated.

■ Notification Time
This read-only attribute is a timestamp that currently identifies the time at which
the notification was generated.

■ Managed Object Instance
This read-only attribute is an OID that provides a direct reference to an entry in
the MIB representing the resource with which the event is associated.

■ Correlated Notifications
This read-only attribute is a comma-separated list of ID values that identify the
other events to which this event is associated.

sunPlat Event Additional Record
The sunPlat Event Additional Record superclass represents the additional attributes
common to notifications that are generated when the following events occur:

■ Object Creation

■ Object Deletion

■ Alarms

This class is further subclassed to provide additional information applicable to the
particular event that it records.
Chapter 8 59

The sunPlat Event Additional Record has the following attributes:

Note – The sunPlatLogRecord prefix has been omitted from the following attribute
names for clarity.

■ Additional Info
This read-only attribute is an optional OID of an object that can provide
additional information relevant to this notification.

■ Additional Text
An read-only attribute optional text string that provides additional information
relevant to this notification identifying the affected component by its label and
entPhysical name.

sunPlat Object Creation Record

The sunPlat Object Creation Record class is used to indicate that a resource has been
added to the hierarchy below the associated resource; this may be due to a hot-
plugging event. The Additional Info attributes contains the OID of the Physical Entity
Table entry representing the added resource.

Logical objects are created under a manager object instance of 0.0.

sunPlat Object Deletion Record

The sunPlat Object Deletion Record is used to indicate that a resource has been
removed from the hierarchy below the associated resource. The Additional Info
attributes contains the OID of the Physical Entity Table entry representing the
removed resource.

Note – This OID is no longer valid but can still be of use to the receiving manager

sunPlat Alarm Record
The sunPlat Alarm Record superclass represents the additional attributes common to
all notifications representing alarms.

This class is further subclassed for identification of the class of alarm that occurred.
60 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

The sunPlat Alarm Record has the following attributes:

Note – The sunPlatAlarmRecord prefix has been omitted from the following attribute
names for clarity.

■ Perceived Severity
This read-only attribute is an enumerated type defining six severity levels that
indicate how the service of the resource has been affected by the problem. These
values are shown in TABLE 8-1.

■ Probable Cause
This read-only attribute is an optional enumerated type that provides further
qualification as to the type of condition that caused an alarm to be generated.
Examples of values of this type are:

■ coolingSystemFailure(134)

■ IODeviceError(75)

■ powerProblem(58)

■ softwareProgramError(283)

■ Specific Problem
This read-only attribute is an optional text string that identifies further
refinements to the Probable Cause of the alarm.

■ Repair Action
This read-only attribute is a string that lists the recommended repair actions.

TABLE 8-1 sunPlat Alarm Record Perceived Severity Values

Perceived Severity Description

indeterminate(1) The severity level for the alarm can not be determined.

critical(2) A service affecting condition has occurred and an immediate
corrective action is required.

major(3) A service affecting condition has occurred and an urgent corrective
action is required.

minor(4) A non-service affecting condition has occurred and corrective action
should be taken in order to prevent a more serious condition arising.

warning(5) A potential or impending service affecting fault condition has been
detected and action should be taken to prevent a more serious
condition arising.

cleared(6) This clears all alarms for this resource of the same alarm class that
have the same Probable Cause and Specific Problem (if given).
Chapter 8 61

sunPlat Indeterminate Alarm Record

The sunPlat Indeterminate Alarm Record class does not extend the information
provided by the sunPlat Alarm Record class. This class is used to record any alarm
that does not fall into any of the following classes:

sunPlat Communications Alarm Record

The sunPlat Communications Alarm Record class does not extend the information
provided by the sunPlat Alarm Record class. This class is used to record that the
associated resource has detected a communications error.

sunPlat Environmental Alarm Record

The sunPlat Environmental Alarm Record class does not extend the information
provided by the sunPlat Alarm Record class. This class is used to record that the
associated resource has detected a problem in the environment.

sunPlat Equipment Alarm Record

The sunPlat Equipment Alarm Record class does not extend the information
provided by the sunPlat Alarm Record class. This class is used to record that the
associated resource has detected a fault.

sunPlat Processing Alarm Record

The sunPlat Processing Alarm Record class does not extend the information
provided by the sunPlat Alarm Record class. This class is used to record that the
associated resource has detected a software or processing failure.

sunPlat Quality of Service Alarm Record

The sunPlat Quality of Service Alarm Record class does not extend the information
provided by the sunPlat Alarm Record class. This class is used to record that the
associated resource has detected a change to the quality of service.
62 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

sunPlat Attribute Value Change Record
The sunPlat Attribute Value Change Record superclass represents the additional
attributes common to notifications representing attribute changes in the associated
resource.

This class is further subclassed for each of the possible attribute types.

The sunPlat Attribute Value Change Record has the following attributes:

Note – The sunPlatLogRecordChange prefix has been omitted from the following
attribute names for clarity.

■ OID
This read-only attribute is an OID that provides a direct reference to an object in
the Physical Entity Table or Logical Entity Table that represents the managed
object’s attribute whose value has changed.

Depending on the syntax of the affected attribute, the new and old values are
represented using one of the following pairs of objects:

■ New Integer
This read-only attribute identifies the new INTEGER value of the changed
attribute of the managed object. The type signed or unsigned, corresponds to that
of the changed attribute.

■ Old Integer
This read-only attribute identifies the old INTEGER value of the changed attribute
of the managed object. The type, signed or unsigned, corresponds to that of the
changed attribute.

■ New String
This read-only attribute identifies the new OCTET STRING value in an attribute
change notification.

■ Old String
This read-only attribute identifies the old OCTET STRING value in an attribute
change notification.

■ New OID
This read-only attribute identifies the new OBJECT IDENTIFIER value in an
attribute change notification.

■ Old OID
This read-only attribute identifies the old OBJECT IDENTIFIER value in an
attribute change notification.
Chapter 8 63

sunPlat State Change Record

The sunPlat State Change Record class does not extend the information provided by
the sunPlat Attribute Value Change Record class. This class is used to indicate an
change in the managed object’s attribute that reflects an aspect of the state of the
resource.
64 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

PART 2 Installation and Configuration

CHAPTER 9

The Management Software
Components

This chapter describes the components that make up the management software for
the Sun Fire B1600 and lists the requirement for installing the SNMP software.

The chapter contains the following sections:

■ “System Management Options” on page 67

■ “System Requirements” on page 69

■ “Installation Packages” on page 72

■ “Package Delivery” on page 73

■ “Effect on System Files” on page 75

System Management Options
The following system management options are provided for the Sun Fire B1600:

■ System monitoring and control using SNMP
■ SNMPv3 functionality supporting secure management
■ System monitoring using Sun Management Center 3.01

1. For a detailed description, including installation and configuration, refer to the Sun Management Center 3.0
Supplement for the Sun Fire B1600 (part no. 817-1011-10)
67

Instrumentation
Depending on the platform type, you can employ:

■ A domain agent, running on the Sun Fire B100s blade (domain hardware
monitoring)

The software is installed locally on the server being monitored and only that
server can be monitored. In the case of the Sun Fire B1600, each blade is
monitored separately and only one blade can be viewed by each agent instance.

■ A platform agent, proxied through a system controller (platform hardware
monitoring)

The software is installed on a remote server that accesses platform instructions by
means of the system controller. This enables you to monitor all the hardware
managed by the system controller. In the case of the Sun Fire B1600, a whole shelf
of blades can be monitored, including all blades of any type, power supplies and
system controllers.

In FIGURE 9-1, platform hardware monitoring is employed for Sun Fire B1600 shelves
A and B, and domain hardware monitoring is employed for Sun Fire B1600 shelf C.

FIGURE 9-1 Example of Domain and Hardware Platform Monitoring

Platform Agent
 Server

Network Management
StationConsole

B100s

Sun Fire B1600
B

B100s

Sun Fire B1600
A

B100s

Sun Fire B1600
C

68 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

System Requirements
Before installing SNMP Management Agent, ensure that your system complies with
the prerequisites and dependencies discussed in this section.

Operating Environment
The SNMP Management Agent software requires Solaris 8 Update 3 or later.

Disk Space Requirements
At least 512MByte must be available on the platform agent server (1.0GByte is
recommended).

Patches
The following patches must be installed in addition to the standard Solaris operating
environment software:

Solaris 8

No patches are required for the Sun Fire B100s blade.

Java 1.4 must be installed on the platform agent server and blade (for both platform
and domain hardware monitoring) before you install the SNMP Management Agent
software (see “Java Environment” on page 70).

Solaris 9

No patches are required.
Chapter 9 69

Java Environment
To monitor a Sun Fire B100s blade fully, you must pre-install Java J2SE 1.4
components on each monitored Sun Fire B100s blade and on the platform agent
server.

Note – This installation upgrades any existing J2SE software. If you do not want to
upgrade the software—for example, because you have applications that have been
qualified against the default J2SE version 1.3.1—you can install the J2RE to co-exist
with the default system J2SE. This requires additional configuration of the Sun
SNMP Management Agent software, which is described in Appendix A.

If you are monitoring only the Sun Fire B1600 shelf without the target
instrumentation, you need to pre-install Java J2SE 1.4 components only on the
platform agent server. In this case, the instrumentation for the hard disk drive, CPU
information and the Ethernet MAC address is not available.

To ensure that the Java 1.4 files are installed in the correct location (/usr/j2se), use
the j2sdk-1_4_0_03-solaris-sparc.tar.Z package to install them.

The file is available from

http://java.sun.com/j2se/1.4/download.html

Select the SDK download for Solaris SPARC 32-bit tar.Z

Follow the instructions for this download that are available at the above location.

Note – This filename is correct at the time of writing. Ensure that you have the latest
version of this file. The file name has the format j2sdk-1_4_0_<ver>-solaris-
sparc.tar.Z, where <ver> is the revision of the software.

As this installation replaces the system J2SE, to ensure any existing Java applications
continue to run correctly, you must also install the 64-bit J2SE 1.4 packages, which
are contained in the file j2sdk-1_4_0_<ver>-solaris-sparcv9.tar.Z.

Caution – J2SE 1.4 is intended to replace J2SE 1.3.1 on Solaris 8 and you must
uninstall the latter before you install J2SE 1.4. If you install a subsequent quarterly
update for Solaris 8, some of the J2SE 1.4 packages will be overwritten by J2SE 1.3.1
packages. To ensure that J2SE 1.4 is installed in the correct locations, use pkgadd to
install it.
70 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Confirming Installation

To make sure you have the correct installation, use the following command:

This reports the version installed on your system.

Java SNMP API
The installation packages include a newer version of the Java SNMP API,
SUNWjsnmp. Remove the existing version of this package using pkgrm before
installing the Management Agent software.

/usr/j2se/bin/java -version
java version "1.4.1_03"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.1_03-
b04)
Java HotSpot(TM) Client VM (build 1.4.1_03-b04, mixed mode)
Chapter 9 71

Installation Packages
The packages that comprise the management software can be divided into the
following groups:

■ Packages that are required for domain hardware monitoring
■ Packages that are required for platform hardware monitoring on the platform

agent server
■ Packages that are required for platform hardware monitoring on the target

machine

These packages are shown in TABLE 9-1.

TABLE 9-1 SNMP Management Agent Software Package Descriptions

Package Package Name Function

SUNWbgpc SPA Personality Module Framework Framework supporting personality
modules

SUNWbgptk SPA Personality Module Toolkit Reusable library of component
models and data access libraries

SUNWbgpr SPA Personality Module (root) RDP startup script

SUNWbgcm SPA HW Platform Object Manager Platform object manager

SUNWbgcmr SPA HW Platform Object Manager
(root)

Platform object manager startup
script

SUNWbgpm SPA SNMP Protocol Mediator/Master
Agent

SNMP protocol support and Master
Agent

SUNWbgpmr SPA SNMP Protocol Mediator/Master
Agent (root)

SNMP component startup script

SUNWbgidr SPA Domain Discovery (root) Domain Agent Discovery startup
script

SUNWbgod SPA Platform Discovery Platform Agent Discovery daemon

SUNWbgodr SPA Platform Discovery (root) Platform Agent Discovery startup
script

SUNWbgpji SPA Sun Fire B100s Domain
Personality Module

B100s domain instrumentation

SUNWbgpjo SPA Sun Fire B1600 Platform
Personality Module

B1600 platform instrumentation
72 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Note – Internal dependencies exist between the packages and they must be installed
in a specific order (see “Installing the SNMP Software” on page 79.

Upgrading the Software
To upgrade the software, you must remove the existing software before reinstalling
the new version (see Chapter 13).

Package Delivery
The packages are supplied in tar archive bundles. TABLE 9-2 shows the contents of
the SUNWspa.1.0.tar.Z archive bundle, which contains the packages that provide
SNMP support for platform management of a Sun Fire B1600 and domain
management of a Sun Fire B100s.

When unpacked, the packages are located in the directories shown in the table. Refer
to chapter 10 for detailed instructions for installing the software.

Note – Ensure that you have the latest version of this file.
Chapter 9 73

To unpack the tar file, type:

TABLE 9-2 SNMP Management Agent Package Bundle

Bundle Description Contents

SUNspa.1.0.22.tar.Z SNMP platform agent packages to be
installed on the platform agent server

platform/proxy/SUNWbgpc
platform/proxy/SUNWbgpk
platform/proxy/SUNWbgcm
platform/proxy/SUNWbgcmr
platform/proxy/SUNWbgod
platform/proxy/SUNWbgodr
platform/proxy/SUNWbgpjo
platform/proxy/SUNWbgpm
platform/proxy/SUNWbgpmr
platform/proxy/SUNWjdrt
platform/proxy/SUNWjsnmp

SNMP instrumentation packages to be
installed on the Sun Fire B100s blade

platform/target/SUNWbgpc
platform/target/SUNWbgptk
platform/target/SUNWbgpr
platform/target/SUNWbgcm

SNMP domain agent packages to be
installed on the Sun Fire B100s blade

domain/SUNWbgpc
domain/SUNWbgptk
domain/SUNWbgcm
domain/SUNWbgcmr
domain/SUNWbgidr
domain/SUNWbgpji
domain/SUNWbgpm
domain/SUNWbgpmr
domain/SUNWjdrt
domain/SUNWjsnmp

$ zcat SUNWspa.1.0.tar.Z | tar xf -
74 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Installing the Domain or Target Packages on the
Sun Fire B100s
The domain (in the case of domain hardware monitoring) or target (in the case of
platform hardware monitoring) packages must be installed on the Sun Fire B100s
blades. There are several ways you can achieve this, including the following:

■ Unpacking the domain or target packages on each individual Sun Fire B100s
blade

■ Unpacking the domain or target packages in a shared directory visible to root
user of each Sun Fire B100s blade on which the software is to be installed

■ Setting up the domain or target packages for network installation

Effect on System Files
Several new startup files are created in /etc/init.d, as shown in TABLE 9-3, with
links to /etc/rc<n>.d.

The Discovery Module is started automatically by inetd and a new entry is thereby
created in the /etc/inetd.conf file.

The Platform Object Manager (POM) monitors the activity on an IP port for requests
from its clients. These ports are registered in the /etc/services file.

TABLE 9-3 Startup Scripts

Component Startup
Script

Package
Name

Package Description

Platform Object Manager spapom SUNWbgcmr Platform Object Manager (root)

Domain Hardware
Discovery Module

spaibdm*

* On the Sun Fire B100s blade only with domain packages.

SUNWbgidr Domain Hardware Discovery
Module (root)

Remote Data Plug-ins spardp†

† On the Sun Fire B100s blade only with platform/target packages.

SUNWbgpr Personality Module (root)

SNMP Protocol
Mediator/Master Agent

spama SUNWbgpmr SNMP Protocol Mediator
SNMP Master Agent (root)
Chapter 9 75

76 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

CHAPTER 10

Installation

This chapter describes how to install the management software on the
Sun Fire B1600.

The chapter contains the following sections:

■ “Selecting the Installation” on page 77

■ “Installing the SNMP Software” on page 79

■ “Interface Options” on page 86

Selecting the Installation
There are two main considerations to be made when you are deciding which
configuration of the software to install:

1. Instrumentation configuration

2. Management interface configuration

Instrumentation Configuration
Depending on the platform type, you can employ:

■ A domain agent, running on the monitored system

Software is installed locally on the Sun Fire B100s blade being monitored
(domain). Each blade is monitored separately and only one blade can be viewed
at a time. This is known as domain hardware monitoring.
77

■ A platform agent, proxied through a system controller

Software is installed on a remote (platform agent) server, which accesses platform
instructions by means of the Sun Fire B1600 system controller, and on the
Sun Fire B100s (target) blades to be monitored. This enables you to monitor all the
hardware managed by the system controller, including power supplies, system
controllers and all the blades. This is known as platform hardware monitoring.

If you are using platform hardware monitoring, to obtain information about hard
disk drives, CPUs and Ethernet Mac Addresses, you need to install target
packages on each monitored Sun Fire B100s blade.

Note – The Sun Fire B100s blade is referred to as the domain in domain hardware
monitoring and the target in platform hardware monitoring.

See also “Instrumentation” on page 68.

Management Interface Configuration
The management software is designed to be deployed in a number of ways and
currently, the following are supported:

■ SNMP using snmpdx, without Master Agent (this is the default installation)

■ SNMP using the Master Agent and snmpdx

In this case, you must configure the installation manually as described in
Chapter 11 and Chapter 12.
78 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Installing the SNMP Software
This section summarizes the procedure for installing the monitoring software. The
detailed process for each type of installation follows in subsequent sections in this
chapter.

Before installing the software, ensure that:

■ You have the requisite level of Solaris installed on both the domain or target (Sun
Fire B100s) and the platform agent server (see “Operating Environment” on
page 69).

■ You have installed all the necessary patches (see “Patches” on page 69) and any
additional essential packages not supplied as part of the SNMP software (see
“Java Environment” on page 70).

■ You have installed Java 1.4, either by upgrading the existing J2SE or by installing
a separate J2RE as described in “Java Environment” on page 70.

When you are certain that your system meets all these requirements, you can
proceed to install the SNMP software.

You must now decide whether you are using domain hardware monitoring or
platform hardware monitoring.

■ If you select domain hardware monitoring, follow the procedure described in
“Installing Software for Domain Hardware Monitoring” on page 79.

■ If you select platform hardware monitoring, follow the procedure described in
“Installing Software for Platform Hardware Monitoring” on page 81.

Installing Software for Domain Hardware
Monitoring
Install these packages on each blade to be monitored (see “Installing the Domain or
Target Packages on the Sun Fire B100s” on page 75).

▼ To Install the Software

1. Make sure that you have installed Java 1.4.

See “Java Environment” on page 70.

2. Make sure that any existing version of SUNWjsnmp is removed.

See “Java SNMP API” on page 71.
Chapter 10 79

3. Install the domain agent packages on the Sun Fire B100s blade(s) in the order
shown to avoid dependency issues being reported:

4. Configure the Java environment.

a. If you have installed J2SE 1.4 as described in “Java Environment” on page 70,
ignore this step.

b. If you have installed J2RE 1.4 as described in “Installing J2RE 1.4” on page 125,
edit the domain hardware monitoring startup scripts as described in “Domain
Hardware Monitoring” on page 127.

5. Configure the software.

See Chapter 11.

6. Reboot the Sun Fire B100s blade(s).

You have now completed installing the software for domain hardware monitoring.
Continue with “Interface Options” on page 86.

7. Make sure that the processes have started correctly by typing:

If the output is similar to the above, the processes are running.

pkgadd -d . SUNWbgptk SUNWbgpc SUNWbgcm SUNWbgcmr SUNWbgidr \
SUNWbgpji SUNWjsnmp SUNWjdrt SUNWbgpm SUNWbgpmr

ps -ef | grep spa.snmp
root 15789 1 1 13:44:01 pts/2 0:00 /usr/j2se/bin/java

-Dcom.sun.spa.snmp.LOG_LEVEL=INFO -Djdmk.security.file=//etc
#
ps -ef | grep spa.wbem

root 278 1 0 Feb 24 ? 44:19 /usr/j2se/bin/java
 -Dcom.sun.spa.wbem.pomi.port=3333 -Xms64m -Xmx768m -Dcom.sun
#

80 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Installing Software for Platform Hardware
Monitoring
■ Decide whether you are going to install Java 1.4 on the Sun Fire B100s blades (see

the discussion in “Java Environment” on page 70). Installation of Java 1.4 is
essential if you want to support target instrumentation.

■ To install the software with the target instrumentation, start the installation
process at “To Install the Software with Target Instrumentation” on page 81.

■ To install the software without the target instrumentation, start the installation
process at “To Install the Software Without Target Instrumentation” on page 83.

■ Install the platform agent packages on the platform agent server.

■ Install the target platform agent packages on each blade to be monitored, if
required.

■ Set up the system controller SMS IP address.

▼ To Install the Software with Target Instrumentation

1. Make sure that you have installed Java 1.4 on the server acting as the platform
agent.

See “Java Environment” on page 70 and Step 4 below.

2. Make sure that any existing version of SUNWjsnmp is removed from the platform
agent server.

See “Java SNMP API” on page 71.

3. Install the platform agent packages on the platform agent server in the order
shown to avoid dependency problems:

4. Configure the Java environment.

a. If you have installed J2SE 1.4 as described in “Java Environment” on page 70,
ignore this step.

b. If you have installed J2RE 1.4 as described in “Installing J2RE 1.4” on page 125,
edit the platform hardware monitoring startup scripts as described in “Platform
Hardware Monitoring” on page 128.

5. Configure the software.

See Chapter 11.

pkgadd -d . SUNWbgptk SUNWbgpc SUNWbgcm SUNWbgcmr SUNWbgod \
SUNWbgodr SUNWbgpjo SUNWjsnmp SUNWjdrt SUNWbgpm SUNWbgpmr
Chapter 10 81

6. Start the platform agent manually by typing:

or by rebooting the platform agent server.

7. Make sure that the processes have started correctly by typing:

If the output is similar to the above, the processes are running.

8. Make sure that you have installed Java 1.4 on the target Sun Fire B100s blade(s)
being monitored.

See “Java Environment” on page 70 and Step 11 below.

9. Make sure that any existing version of SUNWjsnmp is removed from the target
blade(s).

See “Java SNMP API” on page 71.

10. Install the target platform agent packages on the target blade(s).

These packages enable access to instrumentation data using the monitored
machine’s Solaris interfaces.

Install these packages in the order shown to avoid dependency problems.

/etc/init.d/spapom start
/etc/init.d/init.snmpdx stop
/etc/init.d/spama stop
/etc/init.snmpdx start
pkill -1 inetd

ps -ef | grep spa.snmp
root 15789 1 1 13:44:01 pts/2 0:00 /usr/j2se/bin/java

-Dcom.sun.spa.snmp.LOG_LEVEL=INFO -Djdmk.security.file=//etc
#
ps -ef | grep spa.wbem

root 278 1 0 Feb 24 ? 44:19 /usr/j2se/bin/java
 -Dcom.sun.spa.wbem.pomi.port=3333 -Xms64m -Xmx768m -Dcom.sun
#
netstat -a | grep mismi

*.mismi *.* 0 0 24576 0 LISTEN
 *.mismi *.* 0
0 24576 0 LISTEN
#

pkgadd -d . SUNWbgptk SUNWbgpc SUNWbgcm SUNWbgpr
82 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

11. Configure the Java environment.

a. If you have installed J2SE 1.4 as described in “Java Environment” on page 70,
ignore this step.

b. If you have installed J2RE 1.4 as described in “Installing J2RE 1.4” on page 125,
edit the target hardware monitoring startup scripts as described in “Platform
Hardware Monitoring” on page 128.

12. Start the target instrumentation manually by typing:

or by rebooting the systems.

13. Make sure that the process has started correctly by typing:

If the output is similar to the above, the process is running.

14. Set the SMS IP address using setupsc.

Continue from “Configuring the System Controller” on page 85.

▼ To Install the Software Without Target Instrumentation

1. Make sure that you have installed Java 1.4 on the server acting as the platform
agent.

See “Java Environment” on page 70.

2. Make sure that any existing version of SUNWjsnmp is removed from the platform
agent server.

See “Java SNMP API” on page 71.

3. Install the platform agent packages on the platform agent server in the order
shown to avoid dependency problems:

4. Configure the Java environment.

/etc/init.d/spardp start

netstat -an | grep 1099
 *.1099 *.* 0 0 24576 0 LISTEN

pkgadd -d . SUNWbgptk SUNWbgpc SUNWbgcm SUNWbgcmr SUNWbgod \
SUNWbgodr SUNWbgpjo SUNWjsnmp SUNWjdrt SUNWbgpm SUNWbgpmr
Chapter 10 83

a. If you have installed J2SE 1.4 as described in “Java Environment” on page 70,
ignore this step.

b. If you have installed J2RE 1.4 as described in “Installing J2RE 1.4” on page 125,
edit the platform hardware monitoring startup scripts as described in “Platform
Hardware Monitoring” on page 128.

5. Configure the software.

See Chapter 11.

6. Start the platform agent manually by typing:

or by rebooting the platform agent server.

7. Make sure that the processes have started correctly by typing:

If the output is similar to the above, the processes are running.

8. Set the SMS IP address using setupsc.

Continue below.

/etc/init.d/spapom start
/etc/init.d/init.snmpdx stop
/etc/init.d/spama stop
/etc/init.snmpdx start
pkill -1 inetd

ps -ef | grep spa.snmp
root 15789 1 1 13:44:01 pts/2 0:00 /usr/j2se/bin/java

-Dcom.sun.spa.snmp.LOG_LEVEL=INFO -Djdmk.security.file=//etc
#
ps -ef | grep spa.wbem

root 278 1 0 Feb 24 ? 44:19 /usr/j2se/bin/java
 -Dcom.sun.spa.wbem.pomi.port=3333 -Xms64m -Xmx768m -Dcom.sun
#
netstat -a | grep mismi

*.mismi *.* 0 0 24576 0 LISTEN
 *.mismi *.* 0
0 24576 0 LISTEN
#

84 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Configuring the System Controller
After you have installed the SNMP software, you must set the SMS IP address on the
system controller to that of the platform agent server. To do this, log onto the system
controller’s console, run setupsc and add the IP address of the platform agent
server.

In the example below, the IP address is set to 10.5.1.1.

Press [ENTER] after each question to accept the current value until the following line
is displayed:

Enter the IP address and press [ENTER], then continue pressing [ENTER] in response
to the remaining questions.

Note – The setupsc command is described in the Sun Fire B1600 Blade System
Chassis Software Setup Guide.

Enter the SMS IP address

CODE EXAMPLE 10-1 Setting the SMS IP Address

hornet-sc>setupsc
Entering Interactive setup mode.
Use Ctrl-z to exit & save. Use Ctrl-c to abort.
Do you want to configure the enabled interfaces [y]?
Should the SC network interface be enabled [y]?
Should the SC telnet interface be enabled for new connections [y]?
Do you want to configure the network interface [y]?
Should the SC use DHCP to obtain its network configuration [n]?
Enter the SC IP address [129.156.174.140]:
Enter the SC IP netmask [255.255.255.0]:
Enter the SC IP gateway [129.156.174.1]:
Do you want to configure the SC private addresses [y]?
Enter the SSC0/SC IP private address [129.156.174.118]:
Enter the SSC1/SC IP private address [129.156.174.128]:
Do you want to enable a VLAN for the SC [n]?
Enter the SMS IP address [0.0.0.0]: 10.5.1.1
<truncated>

hornet-sc>
Chapter 10 85

Interface Options
The default installation provides management through SNMP acting as a sub-agent
of snmpdx. No user input is required during installation, although you can
customize the deployment after configuration.

By editing the configuration files, you can add Master Agent functionality to SNMP
and snmpdx.

Note – In all cases, the SNMP Access Control Lists (ACLs) have a default
configuration that prevents access. You must configure these to enable access (see
Chapter 11).

SNMP using snmpdx (Default)
This option registers the SNMP Mediator as a sub-agent of snmpdx, using an
automatically allocated UDP port number to which requests to the Mediator are
directed. These requests can be either through snmpdx, or direct, as shown by the
dotted line in FIGURE 10-1, if this is enabled in the Mediator ACL file (see
Chapter 12).

Note – Although default configuration is automatic, you must still configure the
ACL files for snmpdx and/or the Mediator to support your manager configuration.

TABLE 10-1 Port Summary for FIGURE 10-1

Key Function Parameter in spama.conf Default

1 Port to which snmpdx forwards requests to the SNMP
Mediator

SPAPM_REQ_PORT

2 Port to which the Mediator sends traps to the SNMP managers SPAPM_TRAP_PORT 162
86 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

FIGURE 10-1 Data Flow when SNMP is a Sub-Agent of snmpdx

snmpdx

SNMP
Mediator

SNMPv1 SNMPv2c

SNMPv1

1
1

2

POM

Traps

get/set

Key
Chapter 10 87

SNMP Plus Master Agent and snmpdx

This option adds Master AgentSNMPv3 security functionality to SNMP and
snmpdx. The snmpdx automatic startup is disabled and the Master Agent is
registered on port 161. A new port number is assigned automatically to snmpdx.

Traps from the Mediator are optionally translated by the Master Agent into SNMPv3
or sent directly.

Traps from snmpdx are only forwarded directly to SNMP managers and cannot be
translated by the Master Agent.

FIGURE 10-2 Data Flow When Master Agent is Employed

snmpdx

SNMP
Mediator

Master
Agent

SNMPv1
SNMPv2c

SNMPv1

1

3

2

POM

SNMPv1/2c/3

4

5
Traps

get/set

Key
88 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

TABLE 10-2 Port Summary for FIGURE 10-2

Key Function Parameter in spama.conf Default

1 Port to which snmpdx forwards requests to the SNMP
Mediator sub-agent

SPAPM_REQ_PORT

2 Port to which the Mediator sends traps direct to the
SNMP managers

SPAPM_TRAP_PORT 162

3 Port to which the Master Agent forwards requests to
snmpdx

SNMPDX_REQ_FORWARD_PORT

4 Port monitored by the Master Agent for requests MASTER_AGENT_REQ_PORT 161

5 Port to which the Master Agent sends traps to the SNMP
managers

SPAPM_TRAP_PORT 162
Chapter 10 89

Third-party Master Agent Plus SNMP
This option registers the SNMP Mediator as a sub-agent using a port number
allocated manually or by the third-party master agent. To enable direct access, you
must manually configure the Mediator ACL file as described in Chapter 12.

FIGURE 10-3 Data Flow When a Third-Party Master Agent is Employed

TABLE 10-3 Port Summary for FIGURE 10-3

Key Function Parameter in spama.conf Default

1 Port used by the SNMP Mediator enabling direct access or
to which the third-party master agent forwards requests to
the SNMP Mediator

SPAPM_REQ_PORT

2 Port used by the SNMP Mediator to send SNMPv2c traps
to the third-party master agent or directly to the SNMP
managers

SPAPM_TRAP_PORT

3rd Party

SNMP
Mediator

SNMPv? SNMPv2c

SNMPv2c

1

1

2

2

POM

Traps

get/set

Key
90 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

CHAPTER 11

Configuration Files

This chapter provides an overview of the files you can edit to configure the software.
It lists the configurable parameters and introduces the concept of Access Control.

Read this chapter before referring to Chapter 12, which explains how to configure
the basic SNMP options using the files described here.

This chapter contains the following sections:

■ “Configuration Files” on page 92

■ “General Configuration File” on page 92

■ “Access Control” on page 101

■ “Format of an ACL File” on page 102

■ “Mediator Configuration Files” on page 105

■ “Master Agent Configuration Files” on page 108

Note – For information about the SNMP packages and how to install them, refer to
Chapter 9 and Chapter 10.
91

Configuration Files
The following files, which are located in /etc/opt/SUNWspa/, determine the
configuration of SNMP:

■ General Configuration File

■ spama.conf—Defines how the Master Agent and the Mediator are configured

■ Mediator Configuration Files

■ spapm.acl—Defines the access control for the Mediator

■ spapm_snmpdx.acl—Defines the access control for the Mediator as a sub-
agent of snmpdx

■ Master Agent Configuration Files

If you are not using the Master Agent, these is no need to configure these files.

■ spama.acl—Defines the access control for the Master Agent

■ spama.uacl—Defines SNMPv3 user and context access control for the Master
Agent

■ spama.security—Defines the SNMPv3 users referenced in spama.uacl

These files are described in more detail in the following sections.

General Configuration File

spama.conf

The spama.conf file contains a number of configurable parameters, which are
described in the following section and TABLE 11-1. An example of a spama.conf file
is shown in CODE EXAMPLE 11-1.
92 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

General Options

START_MEDIATOR

Set this parameter to yes to run the Mediator, otherwise set to no (see also
FIGURE 10-1).

The default value is:

START_MEDIATOR=yes

START_MASTER_AGENT

If you want to use SNMPv3 security and you are not using a third-party master
agent to provide it, set this parameter to yes to start the Master Agent (see
FIGURE 10-2 and the accompanying table).

If you do not require SNMPv3 security and you are using another master agent
(including snmpdx), or you do not intend to use any master agent, set this
parameter to no (see also FIGURE 10-1 and FIGURE 10-3 and the accompanying tables).

The default value is:

START_MASTER_AGENT=no

AGENT_INTERFACE_NAME

If the Master Agent is enabled (see above), the value set here specifies a network
interface to which the Master Agent should bind, the protocol Mediator being bound
to localhost.

If the Master Agent is not enabled, the value set here defines the host name of the
network interface to which the Mediator binds. If you do not specify a value, the
default is for access to be by means of the default interface.

If you are using the Mediator as a sub-agent of, for example, snmpdx, set the value
to localhost.

The default value is:

AGENT_INTERFACE_NAME=localhost
Chapter 11 93

Master Agent Options

So that the Master Agent can work with snmpdx, the Master Agent startup script
stops snmpdx, takes over its SNMP port and restarts snmpdx as a sub-agent on
another port.

If the SNMPDX_REQ_FORWARD_PORT parameter has a null value, the Master Agent
startup script searches for a free port in the ephemeral anonymous range 32768
through 65535 and restarts snmpdx as a sub-agent on that port. The startup script
also searches /etc/services and does not use any of the ports listed there.

However, if you specify the SNMPDX_REQ_FORWARD_PORT value, the Master Agent
uses this port to forward requests to snmpdx in which case the Master Agent does
not check if the port is already in use.

MASTER_AGENT_REQ_PORT

This is the port on which the Master Agent receives requests from managers. For
most configurations, it is not necessary to change the value (see also FIGURE 10-2 and
the accompanying table).

The default value, if unspecified, is 161.

ENABLE_SNMPV2C_SETS

This parameter controls whether the Master Agent allows set operations to be
conducted using SNMPv1 or SNMPv2c. Setting the value to yes reduces security
substantially as the SNMPv1 and SNMPv2C protocols are intrinsically insecure.

The default value is:

ENABLE_SNMPV2C_SETS=no

SNMPDX_REQ_FORWARD_PORT

This parameter controls the port on which the Master Agent forwards requests to
snmpdx. If you do not specify a value, automatic configuration is performed by the
Master Agent (see the introduction to this section, and FIGURE 10-2 and the
accompanying table).

If you specify a value, you must also configure snmpdx manually to listen on this
port.

The default value is

SNMPDX_REQ_FORWARD_PORT=
94 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

SNMPV3_USER

This parameter determines which SNMPv3 user issues SNMPv3 traps.

The default value is:

SNMPV3_USER=defaultUser

Note – To send SNMPv3 traps, you must set SPAPM_TRAPS_ARE_V3=yes.

Protocol Mediator Options

SUB_AGENT

This parameter determines whether the Mediator or Master Agent is started by a
master agent such as snmpdx, instead of automatically on start up.

The default value is:

SUB_AGENT=yes

If you specify yes, you must start the Mediator by passing a <port> parameter as
follows:

where <port> is the UDP port on which the Mediator will listen for SNMP requests.
For example, when used with snmpdx, the invocation of the Mediator is controlled
by the following line in the /etc/snmp/conf/spapm.rsrc file:

Note – If SUB-AGENT=YES, the value of START_MASTER_AGENT is ignored. If you
enable Master Agent functionality, you must set SUB_AGENT to no.

If you specify no, the Mediator is launched on startup (by the startup script
/etc/rc3.d/S80spama), and the UDP port on which it listens for SNMP requests
is defined by the SPAPM_REQ_PORT setting described below.

/etc/init.d/spama start <port>

command = “etc/init.d/spama start $PORT”
Chapter 11 95

SPAPM_REQ_PORT

This parameter determines the port on which the Mediator receives requests when
SUB_AGENT is set to no. See FIGURE 10-1, FIGURE 10-2 and FIGURE 10-3 and the
accompanying tables.

The default value is:

SPAPM_REQ_PORT=

With the default setting, if START_MASTER_AGENT=yes, a port number is
automatically allocated. If START_MASTER_AGENT=no, the default port number
33000 is used.

It is intended that if START_MASTER_AGENT=no, you will set SPAPM_REQ_PORT to
the required value so that the Mediator can be accessed either by a local master
agent using a fixed port, or directly by remote SNMP managers.

SPAPM_TRAPS_ARE_V3

This parameter determines whether the Mediator traps are SNMPv3 or SNMPv2c.

The default value, which sets the traps to SNMPv2c, is:

SPAPM_TRAPS_ARE_V3=no

Note – If you enable SNMPv3 traps (SPAPM_TRAPS_ARE_V3=yes), you must also
set START_MASTER_AGENT=yes and START_MEDIATOR=yes.

SPAPM_TRAP_PORT

This parameter determines the port number to which Mediator traps are sent. See
FIGURE 10-1, FIGURE 10-2 and FIGURE 10-3 and the accompanying tables.

The default value is:

SPAPM_TRAP_PORT=162

SPAPM_TRAP_INTERFACE

This parameter determines the interface from which Mediator sends SNMP traps. If
this is not defined, traps are issued from the host’s default interface.
96 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Note – SNMPv2c traps are sent direct rather than through snmpdx.

The default value is undefined:

SPAPM_TRAP_INTERFACE=

SPAPM_OPTIONS

This parameter enables you to modify the behavior of the Mediator by specifying
one or more of the following options:

■ -a Send attribute change notifications

■ -s Send state change notifications

■ -c Send object creation notifications

■ -C Enable object creation notifications during initialization

■ -d Send object deletion notifications

■ -l Enable current problem list logs by default

The format and default value for this parameter are:

SPAPM_OPTIONS=”-ascCdl”

TABLE 11-1 Default Values in spama.conf

Parameter Value following Default Installation

START_MEDIATOR START_MEDIATOR=yes

START_MASTER_AGENT START_MASTER_AGENT=no

AGENT_INTERFACE_NAME AGENT_INTERFACE_NAME=localhost

MASTER_AGENT_REQ_PORT MASTER_AGENT_REQ_PORT=161
(also defaults to this value if unspecified)

ENABLE_SNMPV2C_SETS ENABLE_SNMPV2C_SETS=no

SNMPDX_REQ_FORWARD_PORT SNMPDX_REQ_FORWARD_PORT=

SNMPV3_USER SNMPV3_USER=defaultUser

SUB_AGENT SUB_AGENT=yes

SPAPM_REQ_PORT SPAPM_REQ_PORT=

SPAPM_TRAPS_ARE_V3 SPAPM_TRAPS_ARE_V3=no
Chapter 11 97

SPAPM_TRAP_PORT SPAPM_TRAP_PORT=162

SPAPM_TRAP_INTERFACE SPAPM_TRAP_INTERFACE=

SPAPM_OPTIONS SPAPM_OPTIONS=”-ascCdl”

CODE EXAMPLE 11-1 Example of a spama.conf File

#!/sbin/sh
#
#ident "@(#)spama.conf1.17 01/29/03 SMI"
#
Copyright 2003 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

#
This file is used to control the configuration of the Master Agent and
Protocol Mediator
#

#
Master Agent / Mediator configuration
#

###
General options
###

#
Set to "yes" if the mediator component should be started
#
START_MEDIATOR=yes

#
Set to "yes" to enable the master agent
#
START_MASTER_AGENT=no

#
Hostname of the network interface for the agent to bind to. If this
is not specified the agent will be accessible via the default
interface.
#
If the mediator is being used as a sub-agent this should be
set to localhost.
#

TABLE 11-1 Default Values in spama.conf (Continued)

Parameter Value following Default Installation
98 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

If the master agent is enabled, this setting applies to its interface,
the protocol mediator being bound to localhost.
AGENT_INTERFACE_NAME=localhost

###
Master Agent options
###

#
SNMP port for master agent to receive SNMP get/set requests.
#
This port number will be used to listen for SNMP get/set
requests.
#
If this value is blank, default will be 161 if START_MASTER_AGENT=yes
#
MASTER_AGENT_REQ_PORT=

#
set to "yes" to enable SNMPv1/SNMPv2c SET operations via the master agent.
#
ENABLE_SNMPV2C_SETS=no

#
SNMP sub-agent port to which non-SNMP Protocol Mediator (snmpdx) requests
will be sent.
#
If this port setting is blank (default), automatic configuration will be
performed. The port number for snmpdx will be dynamically determined
if snmpdx is already using the UDP port where the Master Agent listens
for SNMP get/set requests (by default UDP port 161) at Master Agent startup.
#
If this port setting is blank but snmpdx is not using the same port
as the Master Agent will listen for SNMP get/set requests, the Master
Agent will use the port number which is being used by snmpdx to forward
the SNMP set/get requests to snmpdx.
#
If this port is set, it is expected that the user should perform
the "listening" port configuration for the sub-agents and the Master
Agent will use this port number to forward non-SNMP Protocol Mediator
requests.
#
SNMPDX_REQ_FORWARD_PORT=

#
SNMPv3 user
#

CODE EXAMPLE 11-1 Example of a spama.conf File (Continued)
Chapter 11 99

The Mediator will use this user to send the V3 traps (if enabled with
SPAPM_TRAPS_ARE_V3).
#
If this value is blank, default will be ’defaultUser’.
SNMPV3_USER=

###
Protocol Mediator options
###

#
#
Sub-agent configuration
#
If the master agent is not being used (i.e. START_MASTER_AGENT=no), then
setting SUB_AGENT=yes indicates that the mediator should be started with a
port number argument by snmpdx or a third party master agent. Otherwise, set
to no if the mediator is to be started with a manually configured port
number.
#
If START_MASTER_AGENT=yes then this setting is ignored.
#
SUB_AGENT=yes

#
Mediator request port. If the START_MASTER_AGENT="no" and SUB_AGENT="no", the
default is 33000, otherwise it is dynamically allocated.
#
SPAPM_REQ_PORT=

#
set to yes to enable v3 mediator traps (requires START_MASTER_AGENT=yes and
START_MEDIATOR=yes)
#
SPAPM_TRAPS_ARE_V3=no

#
Default port for traps
#
SPAPM_TRAP_PORT=162

This is also used to define the interface to which SNMP traps will be
sent by the protocol mediator independently of the setting of
AGENT_INTERFACE_NAME. If not defined, traps will be issued from the
host’s default interface.
#
SPAPM_TRAP_INTERFACE=

CODE EXAMPLE 11-1 Example of a spama.conf File (Continued)
100 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Access Control
Access control is based on the IP address and community of the managers’ host
machine and the communities specified for each sub-agent. Access rights for
communities and host machines are defined in ACL files.

ACL files also define the hosts to which the agent sends traps. When a trap is sent,
the agent sends it to all hosts listed in the <trapInterestHostList> of the ACL file.

There are three ACL files:

■ spapm.acl controls access to the Mediator, either directly from management
applications or, more normally, from snmpdx. It also defines the required
recipients of SNMP traps.

■ spapm_snmpdx.acl controls access to the Mediator when this is configured as a
sub-agent of snmpdx.

■ spama.acl controls access through the SNMPv3 Master Agent

Access control, communities and trap forwarding parameters for SNMPv3 are
defined in spama.uacl and spama.security.

#
Agent option flags
#
-a Send attribute change notifications
-s Send state change notifications
-c Send object creation notifications
-C Enable object creation notifications during initialization
-d Send object deletion notifications
-l Enable current problem list logs by default
#
SPAPM_OPTIONS="-ascCdl"

CODE EXAMPLE 11-1 Example of a spama.conf File (Continued)
Chapter 11 101

Format of an ACL File
An ACL file contains an acl group defining community and manager access rights
and a trap group defining the community and hosts for sending traps. An ACL file
can also contain comment lines, denoted by a hash symbol (#) as the first character
on the line.

Note – There are certain differences in the syntax of the spapm_snmpdx.acl file.
See the comments in the script for details.

The acl Group
An acl group contains one or more lists of community configurations using the
following syntax:

The acl group in this file specifies the access rights for specific communities and
managers. It comprises a list of community configurations having the following
format:

The <communityList> is a list of SNMP community names to which this access
control applies. The community names in this list are separated by commas.

acl = {
<list1>
<list2>
. . .
<listN>

}

{
 communities = <communityList>
 access = <accessRights>
 managers = <hostList>
}

102 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

The <accessRights> specifies the rights to be granted to all managers running on the
machines specified in the managers item. There are two possible values:

■ read-write
■ read-only

The <hostList> item specifies the host machines of the managers to be granted the
access rights. The <hostList> is a comma-separated list of hosts, each of which can be
expressed as any one of the following:

■ A host name (for example, hubble)
■ An IP address (for example, 123.456.789.12)
■ A subnet mask (for example, 123!255!255!255)

Note – To distinguish between IP addresses and subnet masks in an ACL file, each
integer in a subnet mask is separated by an exclamation mark (!) instead of a dot.

CODE EXAMPLE 11-2 Example acl Group

acl = {
 {
 communities = public, private
 access = read-only
 managers = rag, tag, bobtail
 }
 {
 communities = tigger
 access = read-write
 managers = brittas
 }
}

Chapter 11 103

The trap Group
The trap group specifies the hosts to which the agent can send traps. Configuration
is necessary only if the Mediator is required to send SNMPv2 traps, not if the
Mediator is to send SNMPv3 traps by means of the SNMP Master Agent.

This group contains one or more trap community definitions using the following
syntax:

Each line defines the association between a set of hosts and the SNMP community
string in the traps to be sent to them. Each trap-community definition has the
following format:

The <trapCommunityString> item specifies the SNMP community string. It is
included in the traps sent to the hosts specified in the hosts item.

The <trapInterestHostList> item specifies a comma-separated list of hosts. Each host
must be identified by its name or complete IP address, as shown in the following
example:

trap = {
<community1>
<community2>

 ...
<communityN>

}

{
 trap-community = <trapCommunityString>
 hosts = <trapInterestHostList>
}

CODE EXAMPLE 11-3 Example trap Group

trap = {
 {
 trap-community = tigger
 hosts = gandalf, frodo
 }
}

104 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Mediator Configuration Files
This section describes the format of the:

“spapm.acl File” on page 105

“spapm_snmpdx.acl File” on page 106

spapm.acl File
The spapm.acl file defines the access control for the Protocol Mediator. The general
format of the file is described in “Format of an ACL File” on page 102. This section
contains information relating specifically to the spapm.acl file, and an example of
the file is shown in CODE EXAMPLE 11-4.

The file is located, by default, in /etc/opt/SUNWspa.

If an ACL file exists, the access rights it defines apply to all managers or platform
agent servers that access the agent through its SNMP adapter. If the ACL file does
not exist when the agents are started, all managers are granted full access to the
agent through the SNMP adapter and no traps are generated.

To enable access control and traps for the SNMP adapter, ensure that an ACL file
exists when any agents are started. As the ACL file contains security-related
information, assign it restricted access rights, readable only by root.

The acl and trap groups follow the formats described in “The acl Group” on
page 102 and “The trap Group” on page 104, respectively.

If the Mediator is registered as a sub-agent of a master agent (such as snmpdx), you
must specify localhost as the manager in the spapm.acl file as this is the origin
of SNMP packets forwarded by the master agent. When snmpdx is used, it forwards
community strings without change and therefore you must specify the communities
listed in this file in the spapm_snmpdx.acl file as well (see CODE EXAMPLE 11-4).

CODE EXAMPLE 11-4 Example spapm.acl File

#
@(#)spapm.acl 1.6 03/01/29 SMI
#
Copyright 2003 Sun Microsystems, Inc. All rights reserved.
#
Template ACL file for Sun SNMP Management Agent for Sun Fire B1600

acl = {
Chapter 11 105

The trap group defines where SNMPv2c notifications are sent.

spapm_snmpdx.acl File
In the default configuration, the Mediator runs as the sub-agent of snmpdx. You can
modify this file to enable access based on the source hostname. The communities
and access rights must match those in the spama.acl file.

The acl group in this file specifies the access rights for specific communities and
managers. It comprises a list of community configurations with the format:

■ communityList is a comma separated list of community names to which this access
control applies.

■ accessRights specifies the permissions granted to the managers named in the
hostList.

■ hostList is a comma-separated list of host names to be granted the specified
accessRights,

 {
 communities = public, private
 access = read-only
 managers = rag, tag, bobtail
 }
 {
 communities = tigger
 access = read-write
 managers = brittas
 }
}

trap = {
 {
 trap-community = tigger
 hosts = brittas
 }
}

{
communities = <communityList>
access = <accessRights>
managers = <hostList>
}

CODE EXAMPLE 11-4 Example spapm.acl File (Continued)
106 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

In the first example in CODE EXAMPLE 11-5, the systems rag, tag and bobtail are
configured for read-write access on the communities public and private. The
system brittas is configured for read-write access with the community tigger.

The second example applies to the configurations using the SNMPv3 Master Agent
(START_MASTER_AGENT=yes in spama.conf) where SNMP packets received by
snmpdx are seen to have originated on the localhost. Read-only access is configured
for the communities public and private. Read-write access is configured for the
community tigger. These communities are mapped from SNMPv3 contexts by the
Master Agent. Therefore, any SNMPv3 context for which this access is required must
have a corresponding community specified in this file.

CODE EXAMPLE 11-5 Example spapm_snmpdx.acl File

@(#)spapm_snmpdx.acl1.8 03/01/29 SMI
#
Copyright 2003 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
#
Template snmpdx Access Control file for Sun SNMP Management Agent for Sun
Fire B1600
#
Example 1:
#
acl = {
{
communities = public, private
access = read-only
managers = rag, tag, bobtail
}
{
communities = tigger
access = read-write
managers = rag, tag, bobtail
}
}
#
Example 2:
#
 acl = {
 {
 communities = public, private
 access = read-only
 managers = localhost
 }
 {
 communities = tigger
 access = read-write
 managers = localhost
Chapter 11 107

Master Agent Configuration Files
You should configure these files only if you are enabling the Master Agent
functionality (START_MASTER_AGENT=yes in spama.conf).

This section describes the format of the:

■ “spama.acl File” on page 108

■ “spama.uacl File” on page 109

■ “spama.security File” on page 110

spama.acl File
The spama.acl file defines the access control for the Master Agent. The general
format of the file is described in “Format of an ACL File” on page 102. This section
contains information relating specifically to the spama.acl file.

The file is located, by default, in /etc/opt/SUNWspa.

To enable access control and traps for the SNMP adapter, ensure that an ACL file
exists when any agents are started. As the ACL file contains security-related
information, assign it restricted access rights, readable only by root.

This file defines SNMPv1 and SNMPv2c access permissions, and also the recipients
for SNMP notifications. If SPAPM_TRAPS_ARE_V3=yes in spama.conf, the traps
are sent as SNMPv3 traps, otherwise they are sent as SNMPv2c traps.

 }
 }
#
Trap destinations are defined in spapm.acl and spama.acl.
This entry does not need to be edited.
trap = {
}

CODE EXAMPLE 11-5 Example spapm_snmpdx.acl File (Continued)
108 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

acl Group

If you are employing SNMPv3, you will probably want to prohibit write access by
SNMPv1 and SNMPv2c. Therefore, this acl typically allows only read-only access.

trap Group

The trap group for this file follows the format described in “The trap Group” on
page 104.

spama.uacl File
This file is used in conjunction with the spama.security file to enable SNMPv3
security when the Master Agent is active. The general format of the file is described
in “Format of an ACL File” on page 102. Additional configuration parameters are
explained in this section. An example of the file, with most of the comments
removed for clarity, is shown in CODE EXAMPLE 11-7.

The file is located, by default, in /etc/opt/SUNWspa.

acl Group

The acl group contains the following parameters:

■ context-names—This is a comma-separated list of context names.

■ access—The possible values are:
■ read-only

■ read-write

CODE EXAMPLE 11-6 Example acl Group

acl = {
 {
 communities = public, private
 access = read-only
 manager = localhost
 }
}

Chapter 11 109

■ security-level—The possible values are:

■ noAuthNoPrivacy

■ authNoPrivacy

■ authPrivacy

■ users— This is a comma-separated list of user names.

In the following example, access is granted for defaultUser and any request from
defaultUser in the context of public and null with a minimum security of
authNoPrivacy is authorized. All other SNMP requests are rejected.

There is no trap group in this file.

spama.security File
The spama.security file specifies the users that are allowed access to the Master
Agent, and the SNMPv3 encryption and authentication keys.

The file comprises a set of userEntry rows having the following format:

CODE EXAMPLE 11-7 Example spama.uacl File

#ident “@(#)spama.uacl 1.4 01/29/03 SMI”
#
Copyright 2003 Sun Microsystems, Inc. All rights reserved.
This software is the proprietary information of Sun Microsystems, Inc.
Use is subject to license terms.
#
Template ACL file
#
 acl = {
 {
 context-names = public,null
 access = read-write
 security-level=authNoPriv
 users = defaultUser
 }
 }

userEntry=<engine ID>,<user name>,<security name>,<authentication algorithm>,
<authentication key>, <privacy algorithm>, <privacy key>, <storage type>,<template>
110 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Caution – Do not edit any parameter other than the userEntry row in this file.

These fields are explained in TABLE 11-2.

TABLE 11-2 User Configurable Parameters in spama.security

Parameter Description

engine ID The ID of the SNMP engine to be used. It can be:

■ A hexadecimal string
■ a text string representing an engineID in the form

<address>:<port>:<IANA number>
■ The string localEngineID, which will be suitable in most

cases

user name The user name to which this entry applies

security name The security name to be mapped to this user name. Normally,
they should be identical.

authentication algorithm The authentication algorithm to be used. This can be one of the
following:
• usmHMACMD5AuthProtocol

• usmHMACSHHAuthProtocol

• usmNoAuthProtocol

authentication key The key to be used with the authentication algorithm. This can
be one of the following:
• A text password (minimum eight characters)
• A localized hexadecimal key, for example,
0x0098768905AB67EFAA855A453B665B12

privacy algorithm The privacy algorithm to be used. This can be one of the
following:
• usmDESPrivProtocol

• usmNoPrivProtocol (default if unspecified)

privacy key The key to be used with the privacy algorithm. This can be one
of the following:
• A text password (minimum eight characters)
• a localized hexadecimal key, for example,
0x0098768905AB67EFAA855A453B665B12

storage type The only acceptable value is 3, which is the default if
unspecified.

template The default is false (it is not necessary to change this value)
Chapter 11 111

An example of the file, with most of the comments removed for clarity, is shown in
CODE EXAMPLE 11-8.

The file is located, by default, in /etc/opt/SUNWspa.

The default spama.security file contains two sample users that you can modify and
uncomment to define your own users. The first specifies a user named
defaultUser with:

■ Authentication using the MD5 algorithm only

■ No privacy

■ The authentication password “mypassword”

The second specifies a user named defaultUser with:

■ Authentication using the MD5 algorithm and the authentication password
“mypassword”

■ Privacy using the DES algorithm and the privacy password “mypassword”

■ Privacy using the DES algorithm

CODE EXAMPLE 11-8 Example spama-security File

#ident “@(#)spama.security 1.7 01/29/03 SMI”
#
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
This software is the proprietary information of Sun Microsystems, Inc.
Use is subject to license terms.
#
Template security file

localEngineBoots=0

defaultUser configuration. Authentication only.
userEntry=localEngineID,defaultUser,,usmHMACMD5AuthProtocol,mypasswd

defaultUser configuration. Authentication and encryption.
userEntry=
localEngineID,defaultUser,null,usmHMACMD5AuthProtocol,mypasswd,usmDESPrivProt
ocol,mypasswd,3,
112 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

CHAPTER 12

Configuring the Software

This chapter describes the default configuration after installation, and explains how
to modify the files described in Chapter 11.

The chapter contains the following sections:

■ “Default Configuration” on page 113

■ “Manual Configuration for Direct Access” on page 114

■ “Mediator and the SNMPv3 Master Agent” on page 115

Default Configuration
The software installs with the following default configuration:

■ The Master Agent is disabled (START_MASTER_AGENT=no).

■ The Mediator is enabled (START_MEDIATOR_AGENT=yes).

■ The Mediator is configured as a sub-agent of snmpdx.

Note – For security reasons, you should configure the snmpdx ACL file to restrict
access to exclude all systems other than those monitoring the agent.

Access Control
To enable access control for the Mediator, configure the Mediator ACL file as
described in “spapm.acl File” on page 105.

If you are using snmpdx (default configuration), modify spapm_snmpdx.acl to set
up access permissions and spapm.acl to set up trap recipients.
113

Starting and Stopping the Mediator
Start the Mediator using the normal snmpdx startup up script:

Stop the Mediator using the Mediator script:

Manual Configuration for Direct Access
As snmpdx supports only SNMPv1, if you wish to use SNMPv2c specific get-bulk
operations and do not wish to use the Master Agent, you can configure the port used
by the Mediator to enable direct SNMPv2c access.

To configure the Mediator manually, make the following changes in spama.conf:

1. Set SUB_AGENT=no.

2. Set SPAPM_REQ_PORT to the required port number.

SNMPv2c requests sent to the Mediator must be sent to this port.

Mediator as a Sub-Agent of a Third-Party Master
Agent
To configure the Mediator as a sub-agent of a third-party master agent that supports
specification of a port number by means of a command line parameter:

1. Configure the Mediator ACL file to allow access from the localhost (see
“spapm.acl File” on page 105).

2. Configure your master agent to start the Mediator with the following invocation,
using an appropriate port number:

/etc/init.d/init.snmpdx start

/etc/init.d/spama stop

/etc/init.d/spama start <port>
114 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

3. Configure the master agent to forward requests to the following OID sub trees:

■ .iso.org.dod.internet.mgmt.mib-2.entityMIB

■ .iso.org.dod.internet.private.enterprises.sun.products.sunFire.sunPlatMIB

or numerically:

■ .1.3.6.1.2.1.47

■ .1.3.6.1.4.1.42.2.70.101

Mediator and the SNMPv3 Master Agent
To enable the Mediator and Master Agent you must make the following changes as
a minimum:

1. In the spama.conf file:

a. Set START_MASTER_AGENT=yes.

b. Set SUB_AGENT=no.

2. Configure the Mediator ACL file to enable access from the localhost as described
in “spapm.acl File” on page 105.

3. Configure snmpdx to enable access from localhost as described in
“spapm_snmpdx.acl File” on page 106.

4. Configure the Master Agent ACL file to enable access from the desired managers
as described in “spama.acl File” on page 108.

5. Configure the security files to define SNMPv3 users, context, and authentication
and encryption levels as described in “spama.acl File” on page 108 and
“spama.security File” on page 110.
Chapter 12 115

Starting and Stopping the Agents
Start the Mediator and Master Agent using the Mediator script:

Stop the Mediator and Master Agent using the Mediator script:

Forwarding SNMPv3 Traps
To configure the Master Agent to forward SNMPv3 traps from the Mediator, in the
spama.conf file (see “spama.conf” on page 92):

1. Set SPAPM_TRAPS_ARE_V3=yes.

2. Optionally, set the SNMPV3_USER.

Note – The trap user must be configured as an SNMPV3 user in spama.uacl and
spama.security.

/etc/init.d/spama start

/etc/init.d/spama stop
116 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

CHAPTER 13

Uninstalling the Software

This chapter explains how to uninstall the software.

Generally, all that is required to uninstall SNMP is to use the pkgrm command to
remove the packages you installed. This procedure removes all the relevant files and
links, and re-enables snmpdx.

Configuration changes made automatically by the SNMP software are restored to
their original state. However, if you modified any external file settings, such as the
snmpdx ACL file, you must restore these manually after removing the SNMP
software.

Note – The procedures listed below do not uninstall the Java SNMP API package,
SUNWjsnmp. If you want to reinstall the Solaris version of this package, you must
first remove the Java SNMP API.

Platform Agent and Target Agent
Packages
To remove the platform agent packages from the platform agent server, type:

Caution – Remove the SUNWjdrt and SUNWjsnmp packages with caution as they
are both system packages and may be used by other products.

pkgrm SUNWbgpmr SUNWbgpm SUNWjdrt SUNWjsnmp SUNWbgpjo \
SUNWbgodr SUNWbgod SUNWbgcmr SUNWbgcm SUNWbgpc SUNWbgptk
117

To remove the Target Platform packages from the Sun Fire B100s blade(s), type:

Domain Agent Packages
To remove the Domain Agent packages from the Sun Fire B100s blade(s), type:

Caution – Remove the SUNWjdrt and SUNWjsnmp packages with caution as they
are both system packages and may be used by other products.

pkgrm SUNWbgpr SUNWbgcm SUNWbgpc SUNWbgptk

pkgrm SUNWbgpmr SUNWbgpm SUNWjdrt SUNWjsnmp SUNWbgpji \
SUNWbgidr SUNWbgcmr SUNWngcm SUNWbgpc SUNWbgptk
118 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

CHAPTER 14

Troubleshooting

This chapter provides information to help you troubleshoot your system.

Problem

● There is no response from the SNMP agent when using the default configuration
(snmpdx).

1. Make sure the Mediator is running by typing:

If the response is similar to that above, the Mediator process is running.

Stop the Mediator and restart it by typing:.

2. Make sure the correct version of Java is installed by typing:

This should report version 1.4 or later. If this is not the case. install the Java 1.4 JDK
as described in “Java Environment” on page 70.

ps -ef | grep spa.snmp
 root 15789 1 1 13:44:01 pts/2 0:00 /usr/j2se/bin/java
-Dcom.sun.spa.snmp.LOG_LEVEL=INFO -Djdmk.security.file=//etc

/etc/init.d/spama stop
/etc/init.d/init.snmpdx start

/usr/j2se/bin/java -version
java version "1.4.1_03"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.1_03-b04)
Java HotSpot(TM) Client VM (build 1.4.1_03-b04, mixed mode)
119

3. Make sure the correct version of SUNWjsnmp is installed by typing:

If version 1.0 is shown, remove the SUNWjsnmp package and re-install the version in
the SUNWspa.*.tar.Z archive (see “Java SNMP API” on page 71).

4. Make sure the spama.conf file contains the following entries:

START_MASTER_AGENT=no

START_MEDIATOR=yes

SUB_AGENT=yes

5. Make sure the Mediator is registered correctly with snmpdx by typing:

The spapm entry above shows the Mediator is registered as a sub-agent of snmpdx.

6. Make sure that /etc/snmp/conf/spapm.reg and
/etc/snmp/conf/spapm.rsrc are not corrupted.

Stop the Mediator and restart it by typing:

7. Make sure that the permissions in the ACL files are set correctly.

■ spapm_snmpdx.acl defines access for SNMP manager being used.

■ spapm.acl defines access for localhost.

For more information, see Chapter 11.

Problem

● There is no instrumentation for Hard Disk Drive (HDD) or Ethernet MAC
addresses when using the platform agent.

This information is available only when the operating environment is running on the
target Sun Fire B100s blade.

pkginfo -l SUNWjsnmp | grep VERSION
 VERSION: 5.0

cat /var/snmp/snmpdx.st
spapm spapm 2516 34050
snmpd snmpd 2567 34053

/etc/init.d/spama stop
/etc/init.d/init.snmpdx start
120 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

1. Make sure that the Sun Fire B100s blade is booted.

2. Make sure the target instrumentation is running on the Sun Fire B100s blade by
typing:

If no port is listening, the target instrumentation is not running.

Start the instrumentation on the Sun Fire B100s blade by typing:

3. Make sure the correct version of Java is installed by typing:

This should report version 1.4 or greater. An incorrect version can cause the
instrumentation to start, but then fail after a short period.

If this is not the case. install the Java 1.4 JDK as described in “Java Environment” on
page 70.

Problem

● The agent is accessible, but there is no instrumentation for the monitored
platforms

1. Make sure the discovery daemon is running by typing:

The above output indicates that the discovery daemon is listening for requests from
the managed platform(s).

netstat -an | grep 1099
 *.1099 *.* 0 0 24576 0 LISTEN

/etc/init.d/spardp start

/usr/j2se/bin/java -version
java version "1.4.1_03"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.1_03-b04)
Java HotSpot(TM) Client VM (build 1.4.1_03-b04, mixed mode)

netstat -a | grep mismi
 *.mismi *.* 0 0 24576 0 LISTEN
 *.mismi *.* 0
0 24576 0 LISTEN
Chapter 14 121

a. Make sure that /etc/services has the following entry:

b. Make sure that /etc/inetd.conf has the following entry:

c. Make sure that /etc/inetd.conf is a symbolic link to
/etc/inet/inetd.conf by typing:

If the link does not exist, the update of the file will fail during the installation of the
SUNWbgodr package.

Correct the inetd configuration and restart by typing:

2. Make sure the platform has been discovered by typing:

The output shows that the discovery daemon is listening and that a connection to
the platform system controller (called <hornet-sc>) has been established.

If no connection is present, check the system controller setup as described in
“Configuring the System Controller” on page 85.

mismi 8265/tcp # MISMI Discovery

MISMIDISCOVERY - mismiDiscovery daemon
mismi stream tcp6 nowait root /opt/SUNWspa/bin/mismiDiscovery
mismiDiscovery

ls -l /etc/inetd.conf
lrwxrwxrwx 1 root root 17 Jan 7 17:08 /etc/inetd.conf ->
./inet/inetd.conf

pkill -1 inetd

netstat -a | grep mismi
 *.mismi *.* 0 0 24576 0 LISTEN
blade-174-119.36780 hornet-sc.mismi 8192 0 24820 0 ESTABLISHED
 *.mismi *.* 0
0 24576 0 LISTEN
122 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Problem

● SNMPv3 get and set requests time out.

■ Possible cause

Either the localEngineId or the number of localEngineBoots in the
spama.security file may have been edited or deleted.

■ Check

It is not straightforward to determine if the file has been edited.

■ Fix

Restart the agent as shown below, and then restart the management application to
resynchronize them.

Problem

● SNMP get and set requests time out

■ Possible cause

On a heavily loaded system it is possible for the snmpdx master agent to timeout its
requests to the SNMP Mediator. This timeout is currently set to 2s (2000000 s).

■ Check

It is not straightforward to determine if the timeout reported by a management
application has occurred between snmpdx and the SNMP Mediator, or between the
management application and snmpdx.

■ Fix

You can increase the timeout by editing the timeout property in the
/etc/snmp/conf/spapm.reg file. If you edit the file, restart the Mediator by
typing:

/etc/init.d/spama stop
/etc/init.d/spama start

/etc/init.d/spama stop
/etc/init.d/init.snmpdx start
Chapter 14 123

124 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

APPENDIX A

Installing J2RE 1.4 to Co-exist with
J2SE 1.3.1

This appendix describes how to install Java 2 Runtime Environment (J2RE) Standard
Edition 1.4 to co-exist with J2SE 1.3.1 on the platform agent server and B100s
domains, and how to modify the startup scripts to locate the installation.

The appendix contains the following sections:

■ “Installing J2RE 1.4” on page 125

■ “Editing the Startup Scripts” on page 127

Installing J2RE 1.4
To install J2RE 1.4 to co-exist with J2SE 1.3.1, as discussed in “Java Environment” on
page 70, follow the procedure below.

J2RE 1.4 is available as a self-extracting binary file from:

http://java.sun.com/j2se/1.4/download.html

Follow the instructions below to install J2RE. Further information on downloading
the file is available on the above web site.

Note – This product requires only 32-bit support, so it is not necessary to install the
64-bit supplement for the J2RE.
125

In the following steps, substitute the appropriate J2RE update version number in the
following steps for <ver>.

For example, if you are downloading update 1.4.0_01, the following command:

becomes:

1. Download and check the file size

The required file is:

j2re-1_4_<ver>-solaris-sparc.sh

Before you download a file, note its size, which is provided on the download page.
Once the download has completed, check that you have downloaded the full,
uncorrupted software file.

Make sure that you download the file to a location accessible to root (for example,
in /tmp).

2. Become root by running su and entering the super-user password.

3. Make sure that execute permissions are set on the self-extracting binary.

4. Change to the directory where the files must be installed.

5. Run the self-extracting binary.

A directory is created called /usr/j2re1.4.<ver>, which contains the J2RE.

chmod +x j2re-1_4_<version>-solaris-sparc.sh

chmod +x j2re-1_4_0_01-solaris-sparc.sh

chmod +x j2re-1_4_<ver>-solaris-sparc.sh

cd /usr
126 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

6. Make sure that the J2RE has installed correctly.

This should report version 1.4 or later. This example shows that the version is
1.4.1_01.

7. Delete the self-extracting binary.

8. Exit the root shell.

Editing the Startup Scripts
This section explains how to modify the startup scripts when you install J2RE 1.4.
The modifications

Read this section in conjunction with Chapter 10.

Domain Hardware Monitoring
These steps relate to Step 4 in “Installing Software for Domain Hardware
Monitoring” on page 79.

1. On each monitored B100s blade, edit each of the following startup scripts:

■ /etc/init.d/spaibdm

■ /etc/init.d/spapom

by replacing the line that reads

JAVA=/usr/j2se/bin/java

with

JAVA=/usr/j2re1.4.<ver>/bin/java

/usr/j2re1.4.1_01/bin/java -version
java version "1.4.1_01"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.1_01-
b01)
Java HotSpot(TM) Client VM (build 1.4.1_01-b01, mixed mode)
Appendix 127

2. On each monitored B100s blade, edit the following startup script:

■ /etc/init.d/spama

by replacing the line that reads

JAVA_JAVA=/usr/j2se/bin/java

with

JAVA_JAVA=/usr/j2re1.4.<ver>/bin.java

Platform Hardware Monitoring
Step 1 and Step 2 relate to Step 4 in “To Install the Software with Target
Instrumentation” on page 81, and Step 4 in “To Install the Software Without Target
Instrumentation” on page 83.

Step 3 relates only to Step 11 “To Install the Software Without Target
Instrumentation” on page 83.

1. On the platform agent server, edit each of the following startup script:

■ /etc/init.d/spapom

by replacing the line that reads

JAVA=/usr/j2se/bin/java

with

JAVA=/usr/j2re1.4.<ver>/bin/java

2. On the platform agent server, edit the following startup script:

/etc/init.d/spama

by replacing the line that reads

JAVA_JAVA=/usr/j2se/bin/java

with

JAVA_JAVA=/usr/j2re1.4.<ver>/bin.java
128 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

3. On each monitored B100s blade (target), edit the following startup script:

■ /etc/init.d/spardp

by replacing the line that reads

JAVA=/usr/j2se/bin/java

with

JAVA=/usr/j2re1.4.<ver>/bin/java
Appendix 129

130 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

Index
A
access control, 101, 113
Access Control List. See ACL
access rights, 9
ACL, 12, 86, 90, 101, 113, 114

format, 102
trap group, 104

acl group, 102
communities, 102
example, 103
managers, 102

addressable objects, 9
Administrative Domain class, 51, 55
agent, 6

domain, 3
platform, 3

Alarm class, 42
Alarm Record superclass, 60
alarm severity levels, 61
Alarm Table extension, 25
alarms, 14, 28
Attribute Value Change Record superclass, 63

B
Battery class, 40
Binary Sensor class, 45
Binary Sensor Table extension, 24

C
Chassis class, 49
CIM, 16
Circuit Pack class, 37
Circuit Pack Table extension, 24
class

definitions, 33
inheritance, 15

classes, 15
common information model. See CIM
Communications Alarm Record class, 29, 62
community strings, 9
Computer System Table extension, 27
configuration

default, 113
file, 12

configuring
instrumentation, 77
management interface, 77
SNMP, 12
system controller, 85

D
Discovery module, 75
Discrete Sensor class, 48
Discrete Sensor Table extension, 24
domain, 78
domain agent, 3, 68, 77
domain agent packages
131

removing, 118
domain hardware monitoring, 3, 68, 77

editing startup scripts, 127
installation, 79

downloading Java, 70

E
editing startup scripts

domain hardware monitoring, 127
platform hardware monitoring, 128

enabling the Mediator and Master Agent, 115
entityGeneral group, 18
entityLogical group, 18
entityMapping group, 18
ENTITY-MIB, 8, 17, 19, 22, 34
entityMIBTraps group, 18
entityPhysical group, 18
entLogicalTable, 22
entLPMappingTable, 22
entLPPhysicalIndex, 22
entPhysicalClass, 20, 21
entPhysicalContainedIn, 20
entPhysicalContainsTable, 20, 22
entPhysicalIndex, 20, 22
entPhysicalTable, 18, 19, 20, 21
Environmental Alarm Record class, 29, 62
Equipment Alarm Record class, 29, 62
Equipment class, 35
Equipment Holder class, 38
Equipment Holder Table extension, 24
Equipment Table extension, 24
Event Additional Record superclass, 59
Event Record classes, 58
Event Record superclass, 59
events, 14, 28

F
fan

characteristics, 8
speeds, 6

Fan class, 44

Fan Table extension, 25
firewall, 11
firmware revision, 35

G
general options in spama.conf, 93
get command, 7, 10
groups, 18

H
hardware

resources, 13
type, 34

hardware resource
fault reporting, 36
hierarchy, 34
location, 36

hardware revision, 33
hot-plugging event, 60

I
Indeterminate Alarm Record class, 29, 62
index

clause, 8
column, 8

inetd command, 75
inetd.conf file, 75
inheritance hierarchy, 31, 32, 52
installation packages, 72
installing J2RE 1.4, 125
installing the management software, 79
instance specifier, 8
instrumentation, 3

configuration, 77
Integer Attribute Value Change Record class, 28
interface options

SNMP with Master Agent and snmpdx, 88
SNMP with snmpdx, 86

internet standards, 5
132 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

J
J2RE 1.4

confirming installation, 127
downloading, 125
editing startup scripts, 127
installing, 125

Java
confirming installation, 71
confirming installed version, 119, 121
downloading, 70
environment, 70
SNMP API, 71

L
LEDs, 42
localhost, 93, 115
Log table, 28
log tables, 27
Logical class, 53
Logical Class Extension table, 27
Logical Entity class, 51, 53
logical model, 22
logical name, 33

M
managed objects, 13, 14
Management Information Base. See MIB
management interface, 13
management interface configuration, 77
manager, 6
manual configuration, 114
manufacturer's name, 34
Master Agent, 9, 11, 78, 86, 93, 113

options in spama.conf, 94
master agent

third-party, 90
Mediator, 4, 6, 12, 17, 86, 90, 93

configuring as a sub-agent, 114
confirming registration, 120
manual configuration, 114
options in spama.conf, 95
starting, 114

stopping, 114
MIB, 6

tables, 8
monitoring data, 35

N
network management station. See NMS
network protocol, 6
NMS, 6
notifications, 10, 14, 18, 23, 28, 57
Notifications class, 57
Numeric Sensor class, 46
numeric sensor reading, 46
Numeric Sensor Table extension, 24

O
Object Creation Record class, 28, 60
Object Deletion Record class, 28, 60
object identifier. See OID
OID, 7
OID Attribute Value Change Record class, 28

P
part number, 33
Physical class, 20
Physical Entity superclass, 33
Physical Entity table, 18, 20, 24
Physical Mapping table, 18, 20
physical model, 19
Physical Table extension, 24
platform agent, 3, 68, 78
platform agent packages

removing, 117
platform hardware monitoring, 68, 78

editing startup scripts, 128
installation

with target instrumentation, 81
without target monitoring, 83

platform model, 13
platform object manager, 75
133

pluggable removable unit, 37
port, 9, 11, 12, 86, 88, 94, 95, 96, 114
Power Supply class, 40
Power Supply Table extension, 25
Processing Alarm Record class, 62
Processing Error Alarm Record class, 29
processing fault, 62
properties, 15

Q
Quality of Service Alarm Record class, 29, 62

R
relationships, 13
replaceable hardware resource, 37
requirements

disk space, 69
Java environment, 70
operating environment, 69
operating environment patches, 69

routing tables, 6

S
security files, 12
Sensor superclass, 44
Sensor Table extension, 24
serial number, 33
set command, 7, 10
setupsc command, 84
shelf, 37
Simple Network Management Protocol. See SNMP
SNMP, 6

traps, 6
SNMP agent

troubleshooting, 119
SNMP management software, 72

installing, 79
package delivery, 73

snmpdx, 4, 10, 11, 78
snmpdx(1M), 10

SNMPv1, 5, 11
SNMPv2c, 5
SNMPv3, 6, 11, 67, 88, 93
SNMPv3 Master Agent, 4
software

alarms, 42
fault, 62
revision, 35

software installation
effect on system files, 75

Solaris master agent, 4
spama, 12
spama.acl, 12, 108
spama.conf, 92, 114, 116

default values, 97
general options, 93
Master Agent options, 94
Mediator options, 95

spama.security, 110
configurable parameters, 111

spama.securityl, 12
spama.uacl, 12, 109
spapm.acl, 105, 113
spapm.rsrc, 95
spapm_snmpdx.acl, 106, 113
starting the Mediator, 114
starting the Mediator and Master Agent, 116
startup script, 12, 95
state, 33
State Change Record class, 28, 64
stopping the Mediator, 114
stopping the Mediator and Master Agent, 116
String Attribute Value Change Record class, 28
subclasses, 15
sunPlat model, 14
SUN-PLATFORM-MIB, 8, 17, 22, 23, 27
superclass, 15
syntax

acl group, 102
trap group, 104

system controller, 3, 68
configuring, 85

system management options, 67
134 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

T
table

definition, 8
extensions, 8, 24

tables, 6
target, 78
target platform agent packages

removing, 118
timeout, 41
trap group

hosts, 104
trap-community, 104

trap notifications, 28
traps, 6, 23, 27, 88, 95, 96, 101, 113

default port, 96
forwarding, 116

troubleshooting
ACL permissions, 120
discovery daemon, 121
get and set requests, 123
Java version, 119, 121
Mediator registration, 120
platform discovery, 122
SNMP agent, 119
target instrumentation, 121

U
Unitary Computer System class, 51, 54
units of measurement, 46
upgrading the SNMP management software, 73

W
Watchdog class, 41
Watchdog Table extension, 25
135

136 Sun SNMP Management Agent Guide for Sun Fire B1600 • March 2003

	Contents
	Figures
	Tables
	Code Samples
	Preface
	How This Book Is Organized
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Accessing Sun Documentation
	Contacting Sun Technical Support
	Sun Welcomes Your Comments

	I Technical Description and Functionality
	Sun SNMP Management Agent Supplement
	Introduction to SNMP
	SNMP Versions
	SNMP Managers and Agents
	SNMP Management Information Base
	MIB Tables
	Access Control

	SNMP Master Agents
	SNMP Mediator and snmpdx

	Master Agent
	Functionality
	Configuration Overview

	The Platform Management Model
	Modeling the Sun Fire B1600 Platform
	Managed Objects
	Derivation of sunPlat Classes

	The Sun�Fire�B1600 MIBs
	SNMP Representation of the Model
	The Physical Model
	Classes

	The Logical Model
	Logical and Physical Hierarchy Mapping
	Event and Alarm Model
	The SUN-PLATFORM-MIB
	Physical Model Table Extensions
	Logical Model Table Extensions
	Event and Alarm Log Tables
	Event Records
	Events
	Alarms

	The Physical Model
	sunPlat Physical Class Hierarchy
	sunPlat Class Definitions
	Physical Entity
	sunPlat Equipment Class
	sunPlat Circuit Pack Class
	sunPlat Equipment Holder
	sunPlat Power Supply
	sunPlat Battery
	sunPlat Watchdog
	sunPlat Alarm
	sunPlat Fan
	sunPlat Sensor
	sunPlat Binary Sensor
	sunPlat Numeric Sensor
	sunPlat Discrete Sensor
	sunPlat Chassis

	The Logical Model
	sunPlat Logical Class Hierarchy
	SunPlat Logical Class Definitions
	Logical Entity
	Logical
	sunPlat Unitary Computer System
	sunPlat Administrative Domain

	The sunPlat Notifications
	sunPlat Notifications Class Hierarchy
	sunPlat Event Record Classes

	sunPlat Class Definitions
	sunPlat Event Record
	sunPlat Event Additional Record
	sunPlat Object Creation Record
	sunPlat Object Deletion Record

	sunPlat Alarm Record
	sunPlat Indeterminate Alarm Record
	sunPlat Communications Alarm Record
	sunPlat Environmental Alarm Record
	sunPlat Equipment Alarm Record
	sunPlat Processing Alarm Record
	sunPlat Quality of Service Alarm Record

	sunPlat Attribute Value Change Record
	sunPlat State Change Record

	2 Installation and Configuration
	The Management Software Components
	System Management Options
	Instrumentation

	System Requirements
	Operating Environment
	Disk Space Requirements
	Patches
	Solaris 8
	Solaris 9

	Java Environment
	Confirming Installation

	Java SNMP API

	Installation Packages
	Upgrading the Software

	Package Delivery
	Installing the Domain or Target Packages on the Sun�Fire�B100s

	Effect on System Files

	Installation
	Selecting the Installation
	Instrumentation Configuration
	Management Interface Configuration

	Installing the SNMP Software
	Installing Software for Domain Hardware Monitoring
	To Install the Software

	Installing Software for Platform Hardware Monitoring
	To Install the Software with Target Instrumentation
	To Install the Software Without Target Instrumentation

	Configuring the System Controller

	Interface Options
	SNMP using snmpdx (Default)
	SNMP Plus Master Agent and snmpdx
	Third-party Master Agent Plus SNMP

	Configuration Files
	Configuration Files
	General Configuration File
	spama.conf
	General Options
	Master Agent Options
	Protocol Mediator Options

	Access Control
	Format of an ACL File
	The acl Group
	The trap Group

	Mediator Configuration Files
	spapm.acl File
	spapm_snmpdx.acl File

	Master Agent Configuration Files
	spama.acl File
	acl Group
	trap Group

	spama.uacl File
	acl Group

	spama.security File

	Configuring the Software
	Default Configuration
	Access Control
	Starting and Stopping the Mediator

	Manual Configuration for Direct Access
	Mediator as a Sub-Agent of a Third-Party Master Agent

	Mediator and the SNMPv3 Master Agent
	Starting and Stopping the Agents
	Forwarding SNMPv3 Traps

	Uninstalling the Software
	Platform Agent and Target Agent Packages
	Domain Agent Packages

	Troubleshooting
	Installing J2RE 1.4 to Co-exist with J2SE 1.3.1
	Installing J2RE 1.4
	Editing the Startup Scripts
	Domain Hardware Monitoring
	Platform Hardware Monitoring

	Index

