
901 San Antonio Road
Palo Alto, CA 94303-4900 USA
650 960-1300 Fax 650 969-9131

Sun StorEdge™ Media Central

Client Programmer’s Guide

Part No. 806-1798-10
October 1999, Revision A

Sun Microsystems, Inc.

Send comments about this document to: docfeedback@sun.com

Please
Recycle

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and

decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization

of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:

Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, VideoBeans, Java, Sun StorEdge, NFS, and Solaris are trademarks,

registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license

and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks

are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à

Netscape Communicator™ : Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, VideoBeans, Java, Sun StorEdge, NFS , et Solaris sont des marques de

fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques

SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et

dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y

COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE

UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE

GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents

Preface xiii

1. Introducing Media Central Clients 1

Media Central Clients and Servers 1

Video Server Objects 3

VideoBeans Objects and their Proxies 3

Factories 3

Event Channels 4

2. Hello, World Examples 5

Introducing the Examples 5

HelloFactories: Listing Factories 6

HelloBean: Using a Factory and a Proxy 8

HelloEvent: Handling Events 11

HelloVtr: Playing a Video Tape 17

3. Infrastructure Classes and Services 21

Properties 21

Common Classes 22

MediaContent and ContentLib 22

LatencyInfo 23
iii

Timecode 24

Events and Event Channels 24

Factories and Naming 27

Access Control 28

Resource Recovery 28

Standard Proxy Methods 29

Exceptions 30

4. VideoBeans Catalog 33

Player 33

Methods 35

Events 35

Recorder 36

Methods 37

Events 38

ContentLib 38

Methods 39

Events 39

Importer 40

Methods 40

Events 40

Exporter 41

Methods 41

Events 41

Migrator 42

Methods 42

Events 42

Vtr 42
iv Sun StorEdge Media Central Client Programmer’s Guide • October 1999

Methods 43

Events 43

5. Javadoc Guide 45

com.sun.videobeans.directory 45

com.sun.videobeans.util 46

com.sun.videobeans 46

com.sun.videobeans.beans 46

com.sun.videobeans.event 47

com.sun.videobeans.security 47

com.sun.broadcaster.vssmbeans 47

com.sun.broadcaster.vssmproxy 48

com.sun.broadcaster.vtrproxy 49

Index 51
Contents v

vi Sun StorEdge Media Central Client Programmer’s Guide • October 1999

Figures

FIGURE 1-1 Media Central Client/Server Architecture 2

FIGURE 1-2 Media Central Client/Server Calling Relationships 3
vii

viii Sun StorEdge Media Central Client Programmer’s Guide • October 1999

Tables

TABLE 3-1 MediaContent Metadata 22

TABLE 3-2 ContentLib Methods for MediaContent Objects 23

TABLE 3-3 Event Codes 24

TABLE 3-4 Standard Proxy Methods 29

TABLE 4-1 Principal Player Methods 35

TABLE 4-2 Principal Recorder Methods 37

TABLE 4-3 Principal ContentLib Methods 39

TABLE 4-4 Principal Importer Methods 40

TABLE 4-5 Principal Exporter Methods 41

TABLE 4-6 Principal Migrator Methods 42

TABLE 4-7 Principal Vtr Methods 43
ix

x Sun StorEdge Media Central Client Programmer’s Guide • October 1999

Code Samples

CODE EXAMPLE 2-1 HelloFactories.java Source 6

CODE EXAMPLE 2-2 HelloBean.java Source 8

CODE EXAMPLE 2-3 HelloEvent.java Source 11

CODE EXAMPLE 2-4 HelloVtr.java Source 17
xi

xii Sun StorEdge Media Central Client Programmer’s Guide • October 1999

Preface

The Sun StorEdge Media Central Client Programmer’s Guide is for Java™ programmers

who want to write applications that use the Sun StorEdge™ Media Central video file

server.

Before You Read This Book

Read the Sun StorEdge Media Central Release Notes in conjunction with this guide.

Limitations and problems described in the Release Notes override instructions and

features described in this guide.

Using UNIX Commands

This document may not contain information on basic UNIX® commands and

procedures such as shutting down the system, booting the system, and configuring

devices.

See one or more of the following for this information:

■ Solaris Handbook for Sun Peripherals

■ AnswerBook2™ online documentation for the Solaris™ operating environment

■ Other software documentation that you received with your system
xiii

Typographic Conventions

Shell Prompts

TABLE P-1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Command-line variable; replace

with a real name or value

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

To delete a file, type rm filename.

TABLE P-2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
xiv Sun StorEdge Media Central Client Programmer’s Guide • October 1999

Related Documentation

For the latest Media Central information, consult the product web site:

http://www.sun.com/storage/media-central

Accessing Sun Documentation Online
The docs.sun.com sm web site enables you to access Sun technical documentation

on the Web. You can browse the docs.sun.com archive or search for a specific book

title or subject at:

http://docs.sun.com

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments

and suggestions. You can email your comments to us at:

docfeedback@sun.com

Please include the part number (806-1798-10) of your document in the subject line of

your email.

TABLE P-3 Related Documentation

Application Title Part Number

Installation Sun StorEdge Media Central Installation
and Configuration Guide

806-1800-05

Using Client and Server

Software

Sun StorEdge Media Central User’s Guide 806-1799-05

All Sun StorEdge Media Central Release Notes 806-1797-05
Preface xv

xvi Sun StorEdge Media Central Client Programmer’s Guide • October 1999

CHAPTER 1

Introducing Media Central Clients

This chapter introduces the main elements of a Sun StorEdge™ Media Central client.

A Media Central client is a Java class or program that interacts with one or more

Media Central servers to accomplish a task or provide a user with a service.

The chapter covers these topics:

■ “Media Central Clients and Servers” on page 1

■ “Video Server Objects” on page 3

If you want to see examples of very simple clients before you read this introduction,

skip to Chapter 2.

Note – The application programming interfaces (APIs) described in this guide are

subject to change without notice.

Media Central Clients and Servers

The Media Central software architecture follows the client/server model. The

following figure shows the general arrangement. A user interacts with one or more

clients that typically provide graphical interfaces to server operations. For examples

of clients, see the Sun StorEdge Media Central User’s Guide.
1

FIGURE 1-1 Media Central Client/Server Architecture

There are two kinds of Media Central servers. A video server (often called simply “a

server”) captures, stores, and streams video clips, and controls video devices such as

encoders. A video server constitutes a dedicated, real-time system that runs on a

general-purpose operating system (the Solaris™ operating environment) and

hardware (Sun servers). The asset server (also called, in a programming context, the

user metadata server) cooperates with video servers to provide descriptive,

searchable information on clips, such as title and creator. The asset server is an

optional component; it can run on any Sun system that is not also hosting a video

server. The asset server uses a database server that supports the Java™ Database

Connectivity (JDBC™) protocol.

A client can communicate with any Media Central video server on the network; that

server and its video equipment can be next door or in another building. Servers use

the network to communicate among themselves. To a client, a video server is a

collection of Java objects that are callable via the Java remote method invocation

(RMI) service (see the following figure). For example, to schedule a video server to

play a clip to a decoder, a client calls Player.startStreamAt() . A server can also

call client objects to notify them of events; for example, that a Player has finished

playing.

User

Video

Network

Encoders

Asset
database

Decoders

Client

Client

Video
clips

Video
clips

Encoders Decoders

User

server

Video
server

Asset
server
2 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

FIGURE 1-2 Media Central Client/Server Calling Relationships

Video Server Objects

A Media Central video server’s client facilities are represented in objects that clients

call across the network. Video servers provide four main kinds of objects for clients.

VideoBeans Objects and their Proxies

A VideoBeans™ object is an interface to a physical or virtual device. A ContentLib
VideoBeans object, for example, represents a server’s video file system; it holds

video clips. (To a user, a ContentLib is a Clip Folder.) A Player is another kind of

VideoBeans object; it streams a video clip from a ContentLib to a decoder. There

are currently seven kinds of VideoBeans objects; more may be added.

Clients call VideoBeans methods indirectly through objects called proxies. Proxies

insulate VideoBeans objects from network management and provide services that are

independent of VideoBeans type. To a client, a proxy for a VideoBeans object is the

VideoBeans object.

Factories

To use a VideoBeans object, a client needs a proxy for it; to obtain a proxy, a client

calls a factory object’s createBean() method. A factory returns a reference to a

proxy. On each server, there is a factory for each VideoBeans object that represents a

Client
Naming

“Main”

Event
consumer

Factories

Proxies VideoBeans

Server

Event
channels

Clients call VideoBeans objects
indirectly through proxies.

objects
Chapter 1 Introducing Media Central Clients 3

piece of hardware. For example, a decoder device is represented by a Player
VideoBeans object. If there are eight decoders attached to a host, there is a Player
factory for each of them. Because decoders are single-user devices, a Player factory

will create a Player instance only if no Player instance already exists. When a

Player client is finished with a Player , it closes the Player to signal the factory

that it can create another instance.

Some VideoBeans objects represent virtual rather than physical devices; an

Importer , for example, copies a UNIX file into a ContentLib clip. Unlike a

Player , an Importer VideoBeans object does not have a dedicated underlying

hardware device; the single Importer factory will create multiple Importer
instances if asked.

Factories have names, which are URLs. For example, on video server host alpha , a

Player factory might have this name:

vbm://alpha/Player/VELA.MPEG.2000-04001.0

The protocol portion of the URL (vbm) stands for VideoBeans Manager. The trailing

numeric part of the URL (04001.0) distinguishes this Player factory from other

Player factories on the same server. Because factory names can be awkward to

remember and understand, they can be given aliases with the Media Central

Administrator. The same factory might have this alias:

vbm://alpha/Alias/Decoder1

To obtain a reference for a factory, a client passes the factory’s URL to the Naming
class’s lookup() method. (The Naming class is a client-side class that has only static

methods, so the client needs no reference to a Naming instance.) The Naming class

has other methods that list factories by type or list all factories on a server or on all

servers in the network.

Event Channels

VideoBeans objects post objects called events to signal changes in their state. For

example, when a Player VideoBeans object stops, it posts a STOPPEDevent.

“Posting an event” means calling a method in all event channels that have registered

interest in that kind of event, passing the event as an argument. The event channels,

in turn, call methods in registered client objects, passing them the events. The client

objects that channels invoke are called event consumers; they implement a single

method called handleEvent() , which the Media Central software arranges to have

called in it own thread. By intermediating the flow of events between VideoBeans

objects and clients, event channels ensure that VideoBeans objects are not held up by

network or other delivery problems. Event channels also give developers a great

deal of flexibility; clients can create any number of channels, can register a channel

with any number of VideoBeans objects, and can register their consumers with any

combination of channels created by themselves or other clients.
4 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

CHAPTER 2

Hello, World Examples

This chapter contains simple client programming examples. It covers these topics:

■ “Introducing the Examples” on page 5

■ “HelloFactories: Listing Factories” on page 6

■ “HelloBean: Using a Factory and a Proxy” on page 8

■ “HelloEvent: Handling Events” on page 11

■ “HelloVtr: Playing a Video Tape” on page 17

Introducing the Examples

The examples in this chapter are very simple, similar in concept to the “Hello,

world” example from Kernighan and Ritchie’s The C Programming Language. Each

example includes a description of its logic, the Java code, and sample runs in the C

shell and the Bourne shell.

If the examples have been installed, they are located in this directory:

installdir/doc/example

The default value for installdir is /opt/MediaCentral . You install the examples

when you install the Media Central documentation; see the Sun StorEdge Media
Central Installation and Configuration Guide for details.
5

HelloFactories: Listing Factories

The program shown in the following code example asks a Media Central video

server to list its factories.

HelloFactories takes a single argument, the name of a video server host. It passes the

host name to Naming.setBootstrap() , which sets up the naming facility on a

server. It then obtains the types and URLs of the VideoBeans factories on the server

and prints them.

The following examples show how to compile and run the HelloFactories example in

the C shell and the Bourne shell. Observe the following:

■ HelloFactories.java is assumed to be in the current directory.

■ installdir stands for the directory in which the Media Central client software is

installed. By default, the directory is /opt/MediaCentral .

CODE EXAMPLE 2-1 HelloFactories.java Source

// HelloFactories.java

import com.sun.videobeans.directory.*;

public class HelloFactories

{

 public static void main(String[] args)

 {

if (args.length>0)

 Naming.setBootstrap(args[0]);

try {

 String[] types = Naming.listTypes(“vbm”, false);

 for (int i=0; i<types.length; i++)

{

 System.out.println(“type = “ + types[i]);

 String[] urls = Naming.list(“vbm”, types[i], false);

 for (int j=0; j<urls.length; j++)

System.out.println(“ URL = “ + urls[j]);

}

}

catch (Exception e) { e.printStackTrace(); }

 }

}

6 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

■ host stands for a machine running a Media Central video server.

C shell:

Bourne shell:

% setenv CLASSPATH .: installdir/classes/bw.jar
% javac HelloFactories.java
% java HelloFactories host
type = Exporter

URL = vbm:// host/Exporter/Vssmx
type = Importer

URL = vbm:// host/Importer/Vssmx
type = MetadataManager

URL = vbm:// host/MetadataManager/synchronizer
type = Migrator

URL = vbm:// host/Migrator/Vssmx
...

$ CLASSPATH=.: installdir/classes/bw.jar
$ export CLASSPATH
$ javac HelloFactories.java
$ java HelloFactories host
type = Exporter

URL = vbm:// host/Exporter/Vssmx
type = Importer

URL = vbm:// host/Importer/Vssmx
type = MetadataManager

URL = vbm:// host/MetadataManager/synchronizer
type = Migrator

URL = vbm:// host/Migrator/Vssmx
...
Chapter 2 Hello, World Examples 7

HelloBean: Using a Factory and a Proxy

The following code example shows a minimal Media Central client. It finds a

Player factory, obtains a proxy for a Player from the factory, calls a proxy method,

and displays the result.

CODE EXAMPLE 2-2 HelloBean.java Source

// HelloBean.java

import com.sun.broadcaster.vssmproxy.*;

import java.rmi.RemoteException;

import com.sun.videobeans.security.*;

import com.sun.videobeans.directory.Naming;

import com.sun.broadcaster.vssmbeans.TimecodeFormat;

/* Connect to a Player factory, instantiate a Player proxy

 * and retrieve a property of the Player

 */

public class HelloBean

{

 public static void main(String args[])

 {

if (args.length < 1)

 {

System.err.println(“HelloBean <VBM Player URL>”);

System.err.println(“ URL Example : “+

 “vbm://<hostname>/Player/VELA.MPEG.2000-0401.0”);

return;

 }

HelloBean test = new HelloBean();

test.runTest(args[0]);

System.exit(0);

 }

 public void runTest(java.lang.String player_url)

 {

try {

 // Connect to a Factory of the specified Player

 PlayerFactory fact =
(PlayerFactory)Naming.lookup(player_url);
8 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

When you invoke HelloBean , you pass a URL argument that names a Player
factory. To get a reference to the Player factory object, runTest() calls

Naming.lookup() , passing the URL.

Note – This example, for simplicity, passes artificial fixed values for user, host, and

password to the GranteeContext constructor. These values work in the current

Media Central release, which does not implement a security policy. A future Media

Central release will require actual user, host, and password values. Developers

should write client code that passes legitimate values to minimize disruption when

the Media Central software implements security.

 // A real client should pass genuine userid, hostname,
password

 GranteeContext ctx =

new GranteeContextImpl(“user”, “host”, “pword”);

 Credential cdt = fact.createCredential(ctx);

 // Get a Player proxy

 PlayerProxy player = fact.createBean(cdt);

 // Set the time code format first

 player.setDefaultTimecodeFormat(TimecodeFormat.VITC);

 // Get a property value: TimecodeFormat

 TimecodeFormat tc = player.getDefaultTimecodeFormat();

 String tcf = tc.toIDString();

 System.out.println(“TimecodeFormat = “+ tcf);

 // Close the Player so someone else can use it

 player.close();

}

catch (RemoteException re) {

 System.out.println(“RemoteException: “+ re);

 re.printStackTrace();

 System.exit(0);

}

catch (java.io.IOException ie) {

 ie.printStackTrace();

 System.exit(0);

}

 }

}

CODE EXAMPLE 2-2 HelloBean.java Source (Continued)
Chapter 2 Hello, World Examples 9

Having created a credential, the program calls the factory’s createBean() method

to get a reference to the Player proxy. Then the program sets the proxy’s

DefaultTimecodeFormat property, asks the proxy for the value of the same

property, and prints it. Finally, the program closes the Player proxy to free

resources allocated to it by the server and to allow another client to create a proxy

for the same Player .

Before running HelloBean, as described next, use the Administrator to set the

TimecodeFormat property of the Decoder VideoBean whose URL you will pass to

HelloBean. (Users see Player VideoBeans objects as Decoders.) The Sun StorEdge
Media Central User’s Guide describes the Administrator.

The following examples show how to compile and run the HelloBean example in the

C shell and the Bourne shell. Observe the following:

■ HelloBean.java is assumed to be in the current directory.

■ installdir stands for the directory in which the Media Central client software is

installed. By default it is /opt/MediaCentral .

■ host stands for a machine running a Media Central server with a Vela decoder.

■ Your host may not have a decoder named VELA.MPEG.2000-0401.0 . To get a

list of your host’s factories, compile and run the program described in

“HelloFactories: Listing Factories” on page 6.

C shell:

Bourne shell:

% setenv CLASSPATH .: installdir/classes/bw.jar
% javac HelloBean.java
% java HelloBean vbm:// host/Player/VELA.MPEG.2000-0401.0
TimecodeFormat = VITC

$ CLASSPATH=.: installdir/classes/bw.jar
$ export CLASSPATH
$ javac HelloBean.java
$ java HelloBean vbm:// host/Player/VELA.MPEG.2000-0401.0
TimecodeFormat = VITC
10 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

HelloEvent: Handling Events

The following code example shows the essentials of client event handling. The

program creates a MediaContent (clip) and deletes it. Creation triggers three events

(CREATED, RESIZED, and METADATA_CHANGED); deletion triggers one event

(REMOVED). The program displays the contents of the four events that the

ContentLib generates.

CODE EXAMPLE 2-3 HelloEvent.java Source

// HelloEvent.java

import com.sun.broadcaster.vssmproxy.*;

import com.sun.videobeans.directory.Naming;

import com.sun.videobeans.event.*;

import com.sun.videobeans.security.*;

import java.rmi.RemoteException;

public class HelloEvent

{

 public static void main(String args[])

 {

if (args.length < 1)

{

System.err.println(“HelloEvent <ContentLib URL>”);

System.err.println(“ <URL> = vbm://<host>/ContentLib/<type>/<name>”);

return;

}

HelloEvent test = new HelloEvent();

test.runTest(args[0]);

System.exit(0);

 }

 public void runTest(java.lang.String urlstr)

 {

ContentLibFactory fact = null;

// Bind to the Factory

try {

 fact = (ContentLibFactory)Naming.lookup(urlstr);

 }

catch (java.io.IOException e) {
Chapter 2 Hello, World Examples 11

 System.out.println(“ContentLibFactory was not found in registry”);

 System.exit(0);

 }

ContentLibProxy lib = null;

try {

 // A real client should pass genuine userid, hostname, password

 GranteeContext ctx =

new GranteeContextImpl(“user”, “host”, “pword”);

 Credential cdt = fact.createCredential(ctx);

 // open the contentlib

 lib = fact.createBean(cdt);

 System.out.println(“ ContentLib is opened”);

 // register event channel with the ContentLib

 Channel ch = fact.getEventChannel(“test”, “contentlib”, 1);

 lib.registerEventChannel(ch, null);

 // register event with MyCallBack class

 MyCallBack cb = new MyCallBack();

 ConsumerImpl consumer = new ConsumerImpl(cb);

 ChannelHelper helper = new ChannelHelper(ch);

 String cookie = new String(“It is me”);

 helper.registerConsumer(consumer, cookie);

 // name of the MediaContent

 String myname = new String(“HelloEvent-test”);

 // create new MediaContent - ContentLib.CREATED event

 System.out.println(“ Create a MediaContent”);

 lib.createMediaContent(myname, 100);

 // wait for the event

 java.lang.Thread.sleep(5000);

 // delete the clip

 System.out.println(“ Delete the MediaContent”);

 lib.deleteMediaContent(myname);

 // close it

 lib.close();

 }

CODE EXAMPLE 2-3 HelloEvent.java Source (Continued)
12 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

This example is essentially identical to HelloBean up through getting a reference to a

ContentLib (instead of a Player) proxy.

Note – This example, like HelloBean, passes artificial credential data; a real client

should pass real data obtained from its user.

The rest of the program, which is the part that deals with events, proceeds as

follows:

1. The client gets an event channel from the ContentLib factory.

2. The client registers the event channel with the ContentLib proxy so the

ContentLib VideoBeans object will send events to the channel.

3. The client instantiates the client’s event consumer, a class called MyCallBack ,

which implements the ConsumerCallBack interface. The event channel delivers

events by calling this object’s handleEvent() method.

catch (java.lang.InterruptedException e)

 { /* ignore exception thrown by sleep() */ }

catch (RemoteException e) {

 System.out.println(“testContentLib(): RemoteException: “ + e);

 e.printStackTrace();

 }

 }

 /** inner class to monitor event

 */

 private class MyCallBack implements ConsumerCallBack

 {

public void handleEvent(java.io.Serializable sender, Event ev)

{

 System.out.println(“ !!!! Got an Event type = “ + ev.type);

 System.out.println(“ !!!! code = “ + ev.code);

 System.out.println(“ !!!! Time = “ + ev.time);

 System.out.println(“ !!!! Info = “ + ev.info);

 System.out.println(“ !!!! cookie = “ + ev.cookie);

 System.out.println(“ !!!! sender = “ + sender);

}

 }

}

CODE EXAMPLE 2-3 HelloEvent.java Source (Continued)
Chapter 2 Hello, World Examples 13

4. The client creates a ConsumerImpl for the MyCallBack object. The ConsumerImpl
does housekeeping work that the client developer does not need to know about.

5. The client creates a ChannelHelper for the event channel. The ChannelHelper is

another housekeeping object.

6. The client creates a cookie, a string that will be returned with events from this

channel-VideoBeans object combination. Although not needed in this example, a

cookie is a useful identifier when events from different VideoBeans objects are

multiplexed through a common channel.

7. The client registers the ConsumerImpl and the cookie with the ChannelHelper .

8. The event channel calls MyCallBack.handleEvent() when the ContentLib
sends an event to the channel. The program directs its ContentLib proxy to

create a MediaContent and then sleeps to give the ContentLib time to perform

the operation and emit the CREATEDevent. When the sleep concludes, the main

method closes the ContentLib proxy, which signals the server to release

resources allocated to it.

9. Shortly after the main method calls lib.createMediaContent() , the program’s

MyCallBack.handleEvent() is invoked and prints the fields in the event it is

passed. In particular, it prints the cookie created earlier by the main method:

cookie = It is me . Notice that handleEvent() is short and does not call a

server method.

The following examples show how to compile and run the HelloBean example in the

C shell and the Bourne shell. Observe the following:

■ HelloEvent.java is assumed to be in the current directory.

■ installdir stands for the directory in which the Media Central client software is

installed. By default it is /opt/MediaCentral .

■ host stands for a machine running a Media Central video server.

■ ContentLibName stands for the name of the ContentLib ; use the Administrator to

discover this name. In the Administrator, ContentLib s are called Clip Folders.
14 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

C shell:

% setenv CLASSPATH .: installdir/classes/bw.jar
% javac HelloEvent.java
% java HelloEvent vbm:// host/ContentLib/vsma/ ContentLibName
 ContentLib is opened
 Create a MediaContent
 !!!! Got an Event type = 0
 !!!! code = 1
 !!!! Time = 934421989490534479
!!!! Info = com.sun.broadcaster.vssmbeans.VssmEvent[source=null]

 !!!! cookie = It is me
 !!!! sender =
com.sun.broadcaster.vssmproxy.ContentLibProxyImpl[RemoteStub [ref:
[endpoint:[firwood:33764](local),objID:[2]]]]
 !!!! Got an Event type = 0
 !!!! code = 4
 !!!! Time = 934421989490944432
!!!! Info = com.sun.broadcaster.vssmbeans.VssmEvent[source=null]

 !!!! cookie = It is me
 !!!! sender =
com.sun.broadcaster.vssmproxy.ContentLibProxyImpl[RemoteStub [ref:
[endpoint:[firwood:33764](local),objID:[3]]]]
 !!!! Got an Event type = 0
 !!!! code = 5
 !!!! Time = 934421989490985617
!!!! Info = com.sun.broadcaster.vssmbeans.VssmEvent[source=null]

 !!!! cookie = It is me
 !!!! sender =
com.sun.broadcaster.vssmproxy.ContentLibProxyImpl[RemoteStub [ref:
[endpoint:[firwood:33764](local),objID:[4]]]]
 Delete the MediaContent
 !!!! Got an Event type = 0
 !!!! code = 2
 !!!! Time = 934421996818420255
!!!! Info = com.sun.broadcaster.vssmbeans.VssmEvent[source=null]

 !!!! cookie = It is me
 !!!! sender =
com.sun.broadcaster.vssmproxy.ContentLibProxyImpl[RemoteStub [ref:
[endpoint:[firwood:33764](local),objID:[5]]]]
Chapter 2 Hello, World Examples 15

Bourne shell:

$ CLASSPATH=.: installdir/classes/bw.jar
$ export CLASSPATH
$ javac HelloEvent.java
$ java HelloEvent vbm:// host/ContentLib/vsma/ ContentLibName
 ContentLib is opened
 Create a MediaContent
 !!!! Got an Event type = 0
 !!!! code = 1
 !!!! Time = 934421989490534479
!!!! Info = com.sun.broadcaster.vssmbeans.VssmEvent[source=null]

 !!!! cookie = It is me
 !!!! sender =
com.sun.broadcaster.vssmproxy.ContentLibProxyImpl[RemoteStub [ref:
[endpoint:[firwood:33764](local),objID:[2]]]]
 !!!! Got an Event type = 0
 !!!! code = 4
 !!!! Time = 934421989490944432
!!!! Info = com.sun.broadcaster.vssmbeans.VssmEvent[source=null]

 !!!! cookie = It is me
 !!!! sender =
com.sun.broadcaster.vssmproxy.ContentLibProxyImpl[RemoteStub [ref:
[endpoint:[firwood:33764](local),objID:[3]]]]
 !!!! Got an Event type = 0
 !!!! code = 5
 !!!! Time = 934421989490985617
!!!! Info = com.sun.broadcaster.vssmbeans.VssmEvent[source=null]

 !!!! cookie = It is me
 !!!! sender =
com.sun.broadcaster.vssmproxy.ContentLibProxyImpl[RemoteStub [ref:
[endpoint:[firwood:33764](local),objID:[4]]]]
 Delete the MediaContent
 !!!! Got an Event type = 0
 !!!! code = 2
 !!!! Time = 934421996818420255
!!!! Info = com.sun.broadcaster.vssmbeans.VssmEvent[source=null]

 !!!! cookie = It is me
 !!!! sender =
com.sun.broadcaster.vssmproxy.ContentLibProxyImpl[RemoteStub [ref:
[endpoint:[firwood:33764](local),objID:[5]]]]
16 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

HelloVtr: Playing a Video Tape

The HelloVtr example is similar to HelloBean but it calls methods on a Vtr instead

of a Player , emphasizing the essential commonality of VideoBeans objects. When

invoked with the URL of a Vtr factory, the program starts the VTR, runs it for 30

seconds, and stops it. The program produces no output.

CODE EXAMPLE 2-4 HelloVtr.java Source

// HelloVtr.java

import com.sun.videobeans.*;

import com.sun.videobeans.security.*;

import com.sun.videobeans.directory.*;

import com.sun.videobeans.util.*;

import com.sun.broadcaster.vtrproxy.*;

import com.sun.broadcaster.vtrbeans.*;

public class HelloVtr {

 public static void main(String[] args)

 {

if (args.length < 1) {

 System.err.println(“HelloVtr <VBM Vtr URL>”);

 return;

}

HelloVtr test = new HelloVtr();

test.runTest(args[0]);

System.exit(0);

 }

 public void runTest(String Vtr_url)

 {

try {

 // Connect to factory of Vtr passed on command line

 VtrFactory vtrFactory =
(VtrFactory)Naming.lookup(Vtr_url);

 // Create GranteeContext and retrieve Credential

 // A real client should pass genuine userid, hostname,
password
Chapter 2 Hello, World Examples 17

The following examples show how to compile and run the HelloVtr example in the

C shell and the Bourne shell. Observe the following:

■ Load a tape into the VTR before starting the program.

■ HelloVtr.java is assumed to be in the current directory.

■ installdir stands for the directory in which the Media Central client software is

installed. By default it is /opt/MediaCentral .

■ host stands for a machine running a Media Central video server.

■ VtrName stands for the name of a Vtr VideoBeans component; use the

Administrator to discover the name of a Vtr component.

C shell:

 GranteeContext ctx

= new GranteeContextImpl(“user”, “host”, “pword”);

 Credential cdt = vtrFactory.createCredential(ctx);

 // Get a Vtr proxy

 VtrProxy vtr = vtrFactory.createBean(cdt);

 // Play for 30 seconds, stop, and eject

 vtr.play();

 java.lang.Thread.sleep(30000);

 vtr.stop();

 java.lang.Thread.sleep(5000);

 vtr.close();

 }

catch (Exception e)

 {

e.printStackTrace();

 }

 }

}

% setenv CLASSPATH .: installdir/MediaCentral/classes/bw.jar
% javac HelloVtr.java
% java HelloVtr vbm:// host/Vtr/ VtrName
%

CODE EXAMPLE 2-4 HelloVtr.java Source (Continued)
18 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

Bourne shell:

$ CLASSPATH=.: installdir/MediaCentral/classes/bw.jar
$ export CLASSPATH
$ javac HelloVtr.java
$ java HelloVtr vbm:// host/Vtr/ VtrName
$

Chapter 2 Hello, World Examples 19

20 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

CHAPTER 3

Infrastructure Classes and Services

This chapter describes Media Central classes and services that are independent of

VideoBeans type in these sections:

■ “Properties” on page 21

■ “Common Classes” on page 22

■ “Events and Event Channels” on page 24

■ “Factories and Naming” on page 27

■ “Access Control” on page 28

■ “Resource Recovery” on page 28

■ “Standard Proxy Methods” on page 29

■ “Exceptions” on page 30

Chapter 4 describes the methods that are particular to each VideoBeans type.

Properties

VideoBeans components have properties that affect the operation of the hardware or

software they represent. Programmers can set property values with methods

provided by the beans. For example, the Player bean has a

setOutputAudioLevel() method. If you do not set the value of a property, the

value is what was last set with the Administrator. See the Sun StorEdge Media Central
User’s Guide for a description of the Administrator and the properties that can be set

with it.
21

Common Classes

A few classes are used by several VideoBeans objects as parameters or returned by

them as results. They are:

■ MediaContent

■ ContentLib

■ LatencyInfo

■ Timecode

MediaContent and ContentLib

A MediaContent object is a video clip plus the following descriptive attributes,

which are collectively called metadata:

TABLE 3-1 MediaContent Metadata

Attribute Description

name Clip title, such as "Casablanca" (Names with spaces are not

recommended because they complicate URL references.)

streamType Stream type, such as "mpeg:/2/ts" (MPEG 2 transport stream)

lengthInBytes Number of bytes in the clip

duration Clip’s running time, expressed as a com.sun.bpg.util.Time ,

which can be converted to and from many formats

bitRate Rate, in bits per second, at which the clip is to be streamed
22 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

Creating a MediaContent allocates space for it in the video file system but does not

fill the space. Use a Recorder VideoBeans object to load video data into a

MediaContent . MediaContent s are stored in ContentLib VideoBeans objects. Each

MediaContent ’s name must be unique within its ContentLib . The following table

lists common ContentLib methods that operate on MediaContent objects.

A MediaContent can be shared by multiple readers (such as Player s) and at most

one writer (such as a Recorder).

Note – If a client wants to play a MediaContent that is being recorded, the client

must lag the writer by 2.5 * LatencyInfo.setupDelay . (“LatencyInfo ” on

page 23 describes setupDelay). This delay ensures that the writer’s data reaches the

disk before the Media Central software fetches it for the reader.

LatencyInfo

A com.sun.broadcaster.vssmbeans.LatencyInfo object describes three kinds of

video file system latency. The values are expressed in nanoseconds and are a

function of a host’s hardware configuration (faster hardware has less latency):

■ setupDelay – the time required to prepare the video file system to transfer a

clip—to set up buffers, for example. You must allow for this delay when setting

up a transfer to occur at a particular time.

■ tearDownDelay – the time required to clean up the video file system after

transferring a clip. You must allow for this delay and setupDelay when stopping

and starting a Player or Recorder bean in quick succession.

■ transferDelay – for use in a future Media Central implementation

You do not need to consider setupDelay or tearDownDelay when playing a

sequence of staged clips; the video file system overlaps the interclip delays with

other file processing. setupDelay and TearDownDelay are only evident for the first

and last clips.

TABLE 3-2 ContentLib Methods for MediaContent Objects

ContentLib Method Description

createMediaContent() Creates an empty MediaContent with a name and a
lengthInBytes .

enumMediaContents() Lists the MediaContent s in a ContentLib .

setMediaContentInfo() Changes MediaContent attribute values.
Chapter 3 Infrastructure Classes and Services 23

Timecode

A com.sun.videobeans.util.Timecode object specifies a TimeCodeType and

hours, minutes, seconds, and frames. The TimecodeType can have these values:

■ NTSC DROP (NTSC drop frame)

■ NTSC NON DROP (NTSC non-drop frame)

■ PAL

■ MPAL DROP (PAL drop frame)

■ MPAL NON DROP (PAL non-drop [29.97 frames/sec.] frame)

Events and Event Channels

VideoBeans objects post event objects to signal changes in their state. Each event

object has an identifying code containing one of the values shown in the following

table. (Not all VideoBeans objects emit all of the events listed in the table; Chapter 4

details the event codes for each VideoBeans type.) You must include the VideoBeans

class name to refer to an event code value. For example:

if (ev.code == Player.ON) ...

TABLE 3-3 Event Codes

Event
VideoBeans
Object Description

ON Recorder ,

Player
The VideoBeans object’s hardware has been

switched on.

OFF Recorder ,

Player
The VideoBeans object’s hardware has been

switched off.

STARTED Recorder ,

Player
The VideoBeans object has started.

STOPPED Recorder,
Player

The VideoBeans object has stopped.

SWITCHED Player The Player has switched clips.

ERROR Recorder,
Player

The VideoBeans object has detected an error.

CREATED ContentLib A MediaContent has been created.
24 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

Clients can ignore events, learn of all events posted by all VideoBeans objects, or

designate particular events posted by particular VideoBeans objects as of interest. To

learn of an event, a client instantiates an object called an event consumer, which

implements the Media Central ConsumerCallBack interface, and registers the event

consumer with an event channel. An event channel is a server object that mediates

the propagation of events from VideoBeans objects to client event consumers.

To post an event, a VideoBeans object creates an event object and passes it to an

event channel. For each event consumer registered with it, the event channel invokes

the consumer’s handleEvent() method, passing the event and a sender reference.

Clients can use this reference to identify the source of an event by comparing the

sender to references for proxies they hold. The handleEvent() method runs in its

own thread which is set up by the Media Central software. Typically, the method

updates some state (such as turning an indicator light green upon receipt of a

STARTEDevent), and returns.

Note – Event handlers should be short and must not call VideoBeans methods. If an

event handler needs to perform a lengthy operation, implement it in another thread.

Communication between VideoBeans objects and clients via event channels can be

one-to-one, one-to-many, or many-to-many. Any number of clients can register event

consumers with any event channel or channels; the channel calls every registered

event consumer when it receives an event. Similarly, clients can connect one event

channel to one VideoBeans object or to multiple VideoBeans objects.

When a client registers an event consumer with an event channel, the client provides

a “cookie”; the channel returns the cookie with the events it passes to that consumer.

If a client registers one consumer with several channels, the consumer can

distinguish the channel that invoked it if the client registers a different cookie value

with each channel.

To obtain an event channel, call factory’s getEventChannel() passing:

■ type – a client-defined string

METADATA_CHANGED ContentLib A MediaContent ’s metadata (attributes) has been

changed.

REMOVED ContentLib A MediaContent has been removed.

RENAMED ContentLib A MediaContent has been renamed.

RESIZED ContentLib A MediaContent has been resized.

COMPLETED Recorder The clip’s operational metadata has been

generated.

TABLE 3-3 Event Codes (Continued)

Event
VideoBeans
Object Description
Chapter 3 Infrastructure Classes and Services 25

■ name – a client-defined string; the combination of type and name identifies a

channel

■ nclients – the number of clients you expect to use this channel; this is a hint that

the factory uses to optimize channel performance. If the number of clients using

the channel substantially exceeds nclients , performance may be sub-optimal; if

nclients exceeds the number of clients, server resources allocated for the

channel will be wasted. The nclients argument has no effect on channel

function; it is only a performance-tuning mechanism.

If a channel of the type and name exists, the factory returns a reference to it; if a

channel of that type and name does not exist, the factory creates the channel and

returns a reference to it. A client can use any factory’s getEventChannel() method;

for example, if a client wants a channel for Player events, it can get an event channel

from any Player factory or from any Recorder factory or any other factory.

An event channel persists until the server running it terminates.

The following pseudocode summarizes the essentials of event handling:

1. Channel ch = aFactory.getEventChannel(); Client gets an event channel

from a factory. Arguments give the channel type and name; clients can choose any

values for these.

2. aProxy.registerEventChannel(ch); Client registers the channel with the

proxy whose VideoBeans object posts the events the client wants to receive. An

array argument can specify the subset of event IDs the client wants to receive.

3. MyCallback myConsumer = new MyEventConsumer(); Client instantiates its

consumer class that implements ConsumerCallBack .

4. ConsumerImpl consumer = new ConsumerImpl(myConsumer); Client passes

its consumer object to a housekeeping object constructor.

5. ChannelHelper helper = new ChannelHelper(ch); Client passes the

channel to another housekeeping object constructor.

6. helper.registerConsumer(consumer, cookie); Client registers its event

consumer object with the channel that is to invoke it. cookie is a client identifier

that is meaningful to the consumer; the channel will return the cookie with each

event.

7. VideoBeans object associated with aProxy posts an event.

8. Event channel ch , running on the video server, remotely invokes client’s

myConsumer.handleEvent() passing a sender and an event . The sender is a

reference to the sending VideoBeans object’s proxy. The event contains the

cookie the client passed to helper.registerConsumer() , the event code (for

example, STARTED), the posting VideoBeans object’s type, and info , which

contains a com.sun.bpg.vsmbeans.VssmEvent .
26 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

For a simple example of a client that receives an event, see Chapter 2.

Factories and Naming

VideoBeans factories produce VideoBeans proxies, which clients call to record clips,

play them back, and so on. A VideoBeans factory may reflect limitations of the

hardware associated with its VideoBeans object. For example, a Recorder

VideoBeans object controls an encoder, which is a device that can have only one user

at a time. If a client asks a Recorder factory (there is one Recorder factory per

encoder) to create a Recorder proxy, the factory will throw an exception if the

underlying encoder is already in use.

Factories are identified by URLs. Factory URLs that have the following form:

vbm:// host[: port]/ VideoBeansType/ FactoryInstance

The elements of a factory URL are defined as follows:

■ host – The host whose Media Central video server manages the VideoBeans

factory

■ port – Optionally, the port on which the Media Central server listens for requests;

the default port is 3058.

■ VideoBeansType: – One of the following:

■ ContentLib

■ Recorder

■ Player

■ Importer

■ Exporter

■ Migrator

■ VTR

■ Alias

■ FactoryInstance: – Distinguishes among factories for the same type of VideoBeans

object; for example, a host with eight decoders has eight Player factories

Alias is a pseudo-VideoBeans type that indicates that FactoryInstance is a nickname.

Aliases are handy for VideoBeans objects whose FactoryInstance names are generated

by the Media Central software. For example, it is easier for most users to remember

the alias Monitor1 than VELA.MPEG.2000-0401.0 . Use the Administrator to create

aliases for factories; it is described in the Sun StorEdge Media Central User’s Guide.
Chapter 3 Infrastructure Classes and Services 27

To obtain the URLs of the factories on a video server, use the static Naming class

methods. Naming.listTypes() returns a list of VideoBeans types, such as Player
and ContentLib . Naming.list() returns a list of all factories of a given type. If

you have a factory URL, obtain a reference to the factory by calling

Naming.lookup() , passing the factory URL. To obtain a VideoBeans proxy from a

factory, create a credential as described in “Access Control” on page 28 and pass it in

a call to the factory’s createBean() method.

Access Control

Media Central access control centers on an object called a Credential . A client

obtains a credential by first constructing an object called a GranteeContext with a

userid, password, and host name. The host name specifies the host running the

Media Central video server that the client wants to use; a client needs a credential

for each server it uses. The client passes the GranteeContext to any factory’s

createCredential() method. The factory returns a credential which the client

passes in subsequent createBean() calls; the one credential can be used with all

factories on the server from which the credential was obtained. When the client

invokes a factory’s createBean() method, the factory evaluates the credential to

see if the client user is allowed to create the proxy, in other words, is entitled to use

the VideoBeans object. If the factory does not accept the credential passed by the

client, it throws a com.sun.videobeans.security.SecurityException instead of

returning a proxy.

Note – In the current Media Central release, a user credential passed to

createBean() is always accepted; a more meaningful security policy may be

implemented in a future release. Client developers must nevertheless observe the

security conventions in Release 1 because a GranteeContext is also used for

recovering resources, as described in “Resource Recovery” on page 28.

Resource Recovery

Media Central video servers use GranteeContext s for access control and resource

recovery. (See “Access Control” on page 28 for a description of Media Central access

control.) When a client asks a factory to create a proxy, the client passes the factory a

GranteeContext , which the factory retains. A GranteeContext has an isAlive()
method, which the server associated with the factory periodically invokes until the

client closes the proxy. If the invocation fails, the server knows that the client has
28 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

exited or died, so the server releases the resources it has allocated in behalf of the

client. In particular, it releases hardware resources. Releasing a decoder associated

with a Player proxy, for example, frees the decoder for use by another client.

Note – Automatic resource recovery takes 1–5 minutes. Clients should close()
VideoBeans proxies when they are finished to release resources immediately.

Standard Proxy Methods

All VideoBeans proxies provide the methods described in the following table.

Chapter 4 describes the type-specific VideoBeans methods.

TABLE 3-4 Standard Proxy Methods

Method Description

getType() Returns the VideoBeans object’s standard (unlocalized)

type, for example Player or Recorder . Whether the

client is running in Tokyo or Toledo, getType()
returns the same value for a given proxy type.

getTypeName() Returns a localized version of the VideoBeans object’s

type that is suitable for display to a user. The value

varies according to the client’s locale.

getName() Returns a VideoBeans object’s standard (unlocalized)

name, for example, VELA.MPEG.2000-0401.0 .

getAliasName() Returns a VideoBeans object’s alias, if it has one, or its

standard (unlocalized) name.

getFactoryURL() Returns the VideoBeans object factory’s URL.

registerEventChannel() Registers an event channel with a proxy so the proxy’s

VideoBeans object will send events to the channel. A

subset of event types can be specified.

unregisterEventChannel() Unregisters an event channel so it stops receiving events

from a VideoBeans object.
Chapter 3 Infrastructure Classes and Services 29

Most VideoBeans methods are synchronous: They return when they have completed

the requested operation. A few VideoBeans objects also have asynchronous methods

that start or schedule an operation and then return—without waiting for the

operation to complete. Asynchronous method names begin with start ; for example,

PlayerProxy.startStreamAt() schedules playback for a future time.

A client can have at most one asynchronous operation outstanding per VideoBeans

object. For example, if a client calls a Player ’s startStreamAt() method, it must

not call that method or another asynchronous method on the same Player until the

playback scheduled by startStreamAt() has completed.

There are two ways for a client to learn that an asynchronous operation has

completed:

■ Calling examineResult() blocks the client until the operation has completed and

then returns either nothing or the exception thrown by the VideoBeans object.

■ Calling waitTilFinished() blocks the client until the operation has completed

without risking catching a VideoBeans exception. When you are ready to risk

catching the VideoBeans exception, call examineResult() .

Exceptions

Most Media Central server methods throw java.rmi.RemoteException . Some

methods throw subclasses of j ava.rmi.RemoteException as follows:

■ Several Naming methods throw

com.sun.videobeans.directory.NamingException .

■ The factory createBean() methods throw

com.sun.videobeans.security.SecurityException .

waitTilFinished() Blocks the client until the outstanding asynchronous

operation has completed.

examineResult() Blocks the client until the outstanding asynchronous

operation has completed and then catches an exception

propagated from the proxy or nothing.

close() Releases the proxy so the underlying VideoBeans object

can be used by another client, and resources allocated to

the proxy can be reclaimed by its server.

TABLE 3-4 Standard Proxy Methods (Continued)

Method Description
30 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

■ Proxy registerEventChannel() and unregisterEventChannel() methods

throw com.sun.videobeans.NoSuchChannelException , which is a subclass of

com.sun.videobeans.VideoBeanException .
Chapter 3 Infrastructure Classes and Services 31

32 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

CHAPTER 4

VideoBeans Catalog

This chapter describes the following Media Central VideoBeans classes:

■ “Player ” on page 33

■ “Recorder ” on page 36

■ “ContentLib ” on page 38

■ “Importer ” on page 40

■ “Exporter ” on page 41

■ “Migrator ” on page 42

■ “Vtr ” on page 42

A VideoBeans object represents a physical device, such as an encoder, or a virtual

device. To use a VideoBeans object, you obtain a proxy by calling the createBean()
method in the VideoBeans object’s factory object. A proxy provides an interface to its

underlying VideoBeans object’s public methods and also implements the

VideoBeans-type-independent methods described in “Standard Proxy Methods” on

page 29.

Player
A Player streams one or more MediaContent s (clips) from a ContentLib to a

decoder, starting immediately or at a time you specify. There is a Player factory for

each decoder; each factory has a different name. A decoder is not a sharable device,

so at any instant there can be at most one Player proxy instance for a given

decoder. If a Player factory is asked to create a proxy when one exists, it throws

com.sun.videobeans.security.VideoBeanException . A client should close a

Player proxy when it is no longer needed so another client can create a proxy for

the Player , and so the server will release resources allocated to the proxy.
33

A Player maintains an internal queue of VideoFileSegment objects, which consist

of a MediaContent and a from offset and a to offset. The MediaContent names the

clip to be played, and the offsets specify the subset of the clip. A client adds

VideoFileSegment s to the back of the queue. A Player streams the

VideoFileSegment at the front of the queue and removes it when playing is

complete.

The Player ’s startStreamAt() method schedules the Player to play the first clip

in its queue. However, before a Player can play this clip, it must perform some

setup operations. The Player ’s getLatencyInfo() method returns the time

required to perform these operations (the setupDelay). You can explicitly direct the

Player to set itself up with the startPrerollAt() method, or you can let the

startStreamAt() method implicitly perform the setup before it begins streaming.

If you do not precede startStreamAt() with startPrerollAt() , you must allow

for the setupDelay in the time you pass to startStreamAt() .

For example, suppose setupDelay is five seconds and you want to start playing at

11:30:00. You can schedule startPreroll() at 11:29:55 (or earlier) to do the setup,

then schedule startStreamAt() 11:30:00. If you startStreamAt() 11:30:00

without having called startPreroll() first, startStreamAt() will incur the

setupDelay and will actually begin streaming at 11:30:05.

A typical client uses a Player as follows:

1. The client obtains a PlayerProxy by calling PlayerFactory.createBean() .

2. The client optionally sets the output formats and levels (alternatively, you can

rely on a user to set them with the Administrator described in Sun StorEdge Media
Central User’s Guide).

3. The client queues the video file segments to be played.

4. The client schedules the Player to set itself up to play the first segment (preroll).

5. The client waits for the setup to complete.

6. The client schedules the Player to begin playing the segments in the queue.

7. The client waits for the playing to complete.
34 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

Methods

The following table lists the most frequently used Player methods. Consult the

Javadoc files for the signatures of these methods and other less frequently used

Player methods.

Events

A Player posts Player.ON , Player.OFF , Player.STARTED , Player.STOPPED ,

Player.ERROR , and Player.SWITCHED events.

TABLE 4-1 Principal Player Methods

Method Description

getLatencyInfo() Returns the setupDelay and teardownDelay values; you must allow

for these delays when you schedule a Player .

stage() Adds a MediaClip to the Player queue. You can specify a subset of the

clip in the from and to parameters.

removeLast() Negates the previous stage() call, removing the most recently staged

clip from the Player queue.

getList() Returns the contents of the Player queue as an enumeration of

VideoFileSegment s, which contain a MediaContent , a from , and a

to .

startStreamAt() Use this method to schedule the playing of the staged clip(s).

startStreamAt() is an asynchronous operation; use

waitTilFinished() or examineResult() to block until the operation

has completed. To make the operation to start immediately, pass a

timeOfDay of 0.

stopAt() Call this method to cancel or abort a startStreamAt() and empty the

Player queue. If you pass 0 as timeOfDay , playing will stop

immediately if it has started, or it will not start if it has not started.

setOutputAudioLevel() Use this method to set the output audio level in decibels.

setOutputTimecodeFormat() Use this method to set the output timecode to LTC (longitudinal

timecode), or VITC (vertical interval timecode).
Chapter 4 VideoBeans Catalog 35

Recorder
A Recorder captures the output of an encoder into a MediaContent . There is one

RecorderFactory per encoder. An encoder is not a sharable device, so at any

instant it can be represented by at most one Recorder proxy instance. If a

Recorder factory is asked to create a proxy when one exists, it throws

com.sun.videobeans.security.VideoBeanException . A client should close a

Recorder proxy when it is no longer needed so another client can create a proxy for

the Recorder , and so server resources allocated to the proxy can be reclaimed.

A Recorder does not create the MediaContent it writes into; create the

MediaContent , if necessary, with ContentLib.createMediaContent() as

described in “Methods” on page 39. To specify the name of the target

MediaContent , create a VideoFileSegment object. A VideoFileSegment has a

URL that names the MediaContent , and a to offset that defines the portion of the

MediaContent to be overwritten. (MediaContent s are freely overwritable.)

The Recorder ’s startStreamAt() method schedules the Recorder to begin

recording. However, before a Recorder can record, it must perform some setup

operations. The Recorder ’s getLatencyInfo() method returns the time required

to perform these operations (the setupDelay). You can explicitly direct the

Recorder to set itself up with the startPrerollAt() method, or you can let the

startStreamAt() method implicitly perform the setup before it begins recording. If

you do not precede startStreamAt() with startPrerollAt() , you must allow for

the setupDelay in the time you pass to startStreamAt() .

For example, suppose setupDelay is five seconds and you want to start recording at

11:30:00. You can schedule startPreroll() at 11:29:55 (or earlier) to do the setup,

then schedule startStreamAt() 11:30:00. If you startStreamAt() 11:30:00

without having called startPreroll() first, startStreamAt() will incur the

setupDelay and will actually begin recording at 11:30:05.

A typical client uses a Recorder as follows:

1. The client obtains a RecorderProxy by calling

RecorderFactory.createBean().

2. The client creates a MediaContent (see “ContentLib ” on page 38) to store the

received data if it does not already exist.

3. The client optionally sets the Recorder input format parameters (you may

instead rely on the user to have set them with the Administrator).

4. The client creates a VideoFileSegment which names the target MediaContent
and offset.

5. The client optionally calls startPrerollAt() to schedule the setup.
36 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

6. The client calls waitTilFinished() or examineResult() to block until the setup

is complete.

7. The client calls startStreamAt() to schedule the recording.

8. The client calls waitTilFinished() or examineResult() to block until the

recording is complete.

Methods

The following table lists the most frequently used Recorder methods. Consult the

Javadoc files for the signatures of these methods and other less frequently used

Recorder methods.

TABLE 4-2 Principal Recorder Methods

Method Description

getLatencyInfo() Returns the setupDelay and teardownDelay values; you must allow

for these delays when you schedule a Recorder .

setOutputFileSegment() Use this method to specify the MediaContent , and offset into it, where

the VideoFileSegment is to be stored. You can overwrite any portion of

a MediaClip ; the method assumes that you know what you are doing.

getOutputFileSegment() Returns the VideoFileSegment previously set with

setOutputFileSegment() .

startStreamAt() Use this method to schedule the recording of the segment. To make the

operation to start immediately, pass a timeOfDay of 0.

stopAt() Call this method to cancel or abort a startStreamAt() . If you pass 0 as

timeOfDay , playing will stop immediately if it has started, or will not

start if it has not started.

setInputVideoFormat() Use this method to set the input video format to NTSC, PAL, SDI,

SECAM, YC, or YUV.

setInputAudioLevel() Use this method to set the output audio level in decibels.

setInputAudioFormat() Use this method to set the output audio format to one of the following:

• AES EBU

• RCA BAL (RCA balanced)

• RCA UNBAL (RCA unbalanced)

setInputTimecodeFormat() Use this method to set the output timecode to one of the following:

• AUTO TC (auto timecode)

• LTC (longitudinal timecode)

• TT1 (tape timer 1)

• TT2 (tape timer 2)

• VITC (vertical interval timecode)
Chapter 4 VideoBeans Catalog 37

Events

A Recorder posts Recorder.ON , Recorder.OFF , Recorder.STARTED ,

Recorder.ERROR , Recorder.COMPLETED, and Recorder.STOPPED events.

ContentLib
A ContentLib represents a server’s video file system. There is one instance per

host, but it can be shared among clients, each of which must obtain its own

ContentLib proxy from the server’s ContentLib factory. The default

ContentLib factory name is:

vbm:// host[:port]/ContentLib/vsma/ host

However, the trailing host can be set to something different when the Media Central

software is installed on the server.

A ContentLib holds clips (MediaContent objects). The MediaContent s in a

ContentLib are distinguished by their names. A ContentLib ’s namespace is flat:

compared to a UNIX file system, a ContentLib has one “directory,” which is

always “the current directory.” Unlike UNIX files, MediaContent s are not

setVideoFrameRate() Use this method to set the video frame rate to one of the following:

• R23_976 (24 x 1000/1001 frames/sec.)

• R24 (24 frames/sec.)

• R25 (25 frames/sec.)

• R29_97 (30 x 1000/1001 frames/sec.)

• R30 (30 frames/sec.)

• R50 (50 frames/sec.)

• R59_94 (60 x 1000/1001 frames/sec.)

• R60 (60 frames/sec.).

setAudioCompressionRate() Use this method to set the audio compression rate.

setAudioSamplingRate() Use this method to set the audio sampling rate frequency to 32, 44.1, or

48 KHz.

setVideoCompressionRate() Use this method to set the video compression rate.

setMuxCompressionRate() Use this method to set the multiplexor compression rate.

getBytesWritten() Returns the size of the data captured so far.

TABLE 4-2 Principal Recorder Methods (Continued)

Method Description
38 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

automatically grown to accommodate the data recorded into them. For performance

reasons, the entire MediaContent must be preallocated. Make a MediaContent
long enough to hold the data you plan to record into it; when you have finished

recording, you can release unused space by resizing the MediaContent .

Methods

The following table lists the most frequently used ContentLib methods. Consult

the Javadoc files for the signatures of these methods and other less frequently used

ContentLib methods.

Events

A ContentLib posts ContentLib.CREATED , ContentLib.METADATA_CHANGED ,

ContentLib.RENAMED , ContentLib.REMOVED , and ContentLib.RESIZED events.

These events are associated with MediaContent s in the ContentLib , not the

ContentLib itself.

TABLE 4-3 Principal ContentLib Methods

Method Description

getMaxRate() Use this method to obtain the maximum aggregate bit rate that the host can

guarantee.

enumMediaContents() Returns an array of MediaContents .

getMediaContent() Returns a reference to the MediaContent you name in the argument.

getInfo() Returns a ContentLibID object whose variables include the size of the

ContentLib and the space that has been used.

createMediaContent() Creates an empty MediaContent with a name and length you specify.

deleteMediaContent() Deletes a MediaContent .

setMediaContentInfo(
)

Sets MediaContent attribute values (metadata), such as bit rate and duration.

renameMediaContent() Renames a MediaContent .

resizeMediaContent() Resizes a MediaContent . Use this method after recording to shrink an over-

allocated MediaContent to the number of bytes actually used. Use

Recorder.getBytesWritten() to learn how much of a ContentLib has

been written.
Chapter 4 VideoBeans Catalog 39

Importer
An Importer creates a MediaContent and writes encoded data into it from either:

■ A local or NFS™ file. Specify the file as a URL; for example file:/x/y .

■ A TCP or UDP port on the same host. (TCP is slower but reliable; UDP is faster

but does not guarantee data integrity.) An Exporter (see “Exporter ” on

page 41) on another host supplies the data the Importer reads, thus copying a

MediaContent between ContentLib s. Specify the same port for Importer and

Exporter as URLs:

udp:// hostname: port or tcp:// hostname: port.

There is one Importer factory. It can create multiple Importer instances but the

instances cannot not use the same ports. The Importer factory is named:

vbm:// host[: port]/Importer/Vssmx

Methods

The following table lists the most frequently used Importer methods. Consult the

Javadoc files for the signatures of these methods and other less frequently used

Importer methods.

Events

An Importer posts Importer.STARTED , and Importer.STOPPED events.

TABLE 4-4 Principal Importer Methods

Method Description

setImportRate() Set this to the maximum bandwidth, in bits per second, you want the

operation to consume; it will consume less if the supplier runs slower.

startImporting() Creates a MediaContent of the name and length specified in arguments,

and begins importing from the specified file or port. Start the Importer

before the Exporter if you are copying between servers.

abort() Aborts an importing operation. Aborting does not erase data that has

already been written, and it may leave the data in a corrupted state.
40 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

Exporter
An Exporter writes a MediaContent ’s data to either:

■ A local or NFS file; the Exporter will create the file if it does not exist. Specify

the file as a URL; for example, file:/x/y .

■ A TCP or UDP port on the another host. (TCP is slower and reliable; UDP is faster

but does not guarantee data integrity.) An Importer reads the data the Exporter

sends, thus copying a MediaContent between ContentLib s. Specify the port as

a URL; for example, udp:// hostname: port or tcp:// hostname: port. Specify the

same port for Importer and Exporter .

There is one Exporter factory. It will create multiple Exporter instances but the

instances must not use the same ports. The Exporter factory is named:

vbm:// host[: port]/Exporter/Vssmx

Methods

The following table lists the most frequently used Exporter methods. Consult the

Javadoc files for the signatures of these methods and other less frequently used

Exporter methods.

Events

An Exporter posts Exporter.STARTED and Exporter.STOPPED events.

TABLE 4-5 Principal Exporter Methods

Method Description

setExportRate() Sets the rate, in bits per second, according to the amount of available

bandwidth you want the transfer to consume. The Exporter will run at

the slower of this rate and the Importe r’s rate.

startExporting() Begins writing a MediaContent of the name and length specified in

arguments, to a specified file or port. Start the Importer before the

Exporter if you are copying between servers.

abort() Aborts an exporting operation. Aborting does not erase data that has

already been written, and may leave it in a corrupted state.
Chapter 4 VideoBeans Catalog 41

Migrator
A Migrator makes copy of a MediaContent within a ContentLib .

There is one Migrator factory. It will create multiple Migrator instances. The

Migrator factory is named:

vbm:// host[: port]/Migrator/Vssmx

Methods

The following table lists the most frequently used Migrator methods. Consult the

Javadoc files for the signatures of these methods and other less frequently used

Migrator methods.

Events

A Migrator posts Migrator.STARTED and Migrator.STOPPED events.

Vtr
A Vtr controls a video tape recorder (VTR) that is connected to a Media Central

server by a V-LAN controller.

There is a Vtr factory for each video tape recorder. An VTR is not a sharable device,

so at any instant it can be represented by at most one Vtr proxy instance. If a Vtr
factory is asked to create a proxy when one exists, it throws

TABLE 4-6 Principal Migrator Methods

Method Description

setMigrationRate() Sets the amount of bandwidth, in bps, you are willing for the operation

to consume.

startMigrating() Begins copying a MediaContent . This is an asynchronous operation.

abort() Aborts a migrating operation. Aborting does not erase data that has

already been written, and may leave it in a corrupted state.
42 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

com.sun.videobeans.security.VideoBeanException . A client should close a

Vtr proxy when it is no longer needed so another client can create a proxy for the

Vtr , and so server resources allocated to the proxy can be reclaimed.

Methods

The following table lists the most frequently used Vtr methods. Consult the Javadoc

files for the signatures of these methods and other less frequently used Vtr methods.

Events

A Vtr does not post events.

TABLE 4-7 Principal Vtr Methods

Method Description

play() Plays the tape.

stop() Stops the tape.

fastForward() Fast forwards the tape.

rewind() Rewinds the tape.

goToTimeCode Moves the tape to the timecode passed as an argument.

getPositionTimeCode() Returns the timecode representing the tape’s current position

still() Pauses the tape.

record() Begins recording the tape.
Chapter 4 VideoBeans Catalog 43

44 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

CHAPTER 5

Javadoc Guide

The low-level documentation of Media Central client packages is provided in

Javadoc files. This chapter introduces the following packages:

■ “com.sun.videobeans.directory ” on page 45

■ “com.sun.videobeans.util ” on page 46

■ “com.sun.videobeans ” on page 46

■ “com.sun.videobeans.beans ” on page 46

■ “com.sun.videobeans.event ” on page 47

■ “com.sun.videobeans.security ” on page 47

■ “com.sun.broadcaster.vssmbeans ” on page 47

■ “com.sun.broadcaster.vssmproxy ” on page 48

■ “com.sun.broadcaster.vtrproxy ” on page 49

The starting page for the Javadoc files is installdir/doc/api/index.html . The

default installation directory is /opt/MediaCentral .

com.sun.videobeans.directory
The directory package contains the Naming class, which all clients use to obtain

references to factories. It also defines NamingException , which some Naming
methods throw.

Ignore the other classes in this package; they are used internally.
45

com.sun.videobeans.util
The util package contains these widely used classes:

■ Timecode is a time representation expressed in hours, minutes, seconds, and

frames.

■ Time is an encapsulated representation of time used by VideoBeans. The class

provides methods for converting a Time to and from several other formats, for

example, java.util.Date , nanoseconds, PCR (27 MHz ticks) and Timecode .

Client developers can minimize conversions when calling VideoBean methods by

using Time objects to represent time in their code.

When you convert a Time to a Timecode , the fraction of a frame, if any, is

truncated, losing data that was present in the Time . Do not assume, therefore, that

you can convert a value in nanoseconds to a Time , convert the Time to a

Timecode , and then recover the original nanosecond value by converting the

Timecode back to a Time and the Time to nanoseconds. That will be true only if

the nanosecond value converts to an integral number of frames. If you need the

original nanosecond value, keep it; do not assume you can re-create it from a

Timecode .

Ignore other classes in the util package; they are used internally.

com.sun.videobeans
This package defines:

■ VideoBeanProxy interface, which all proxies implement

■ VideoBeanFactory interface, which all factories implement

■ VideoBeanException class, and its subclass NoSuchChannelException , which

is thrown by proxy register and unregister event channel methods.

Ignore other classes and interfaces in this package; they are used internally.

com.sun.videobeans.beans
This package has no definitions of interest to client developers.
46 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

com.sun.videobeans.event
This package defines:

■ ChannelHelper class, which you must instantiate for each event channel your

client uses

■ ConsumerCallBack interface, which your event consumer class must implement;

a channel calls this interface’s handleEvent() method to pass an event to a

consumer.

■ ConsumerImpl class, which you must instantiate for each event consumer object

you instantiate.

■ Event class, which defines the fields contained in events.

Ignore the other interfaces and classes in this package which are for internal use.

com.sun.videobeans.security
This package defines:

■ Credential interface, which, although opaque, is what factory

createCredential() methods create and what factory createBean() methods

require

■ GranteeContextImp l, which a client instantiates as a prerequisite to obtaining a

Credential

■ SecurityException , which factory createBean() methods throw when they

reject a Credential

com.sun.broadcaster.vssmbeans
This package defines many classes that enumerate permissible data values as

static final variables. For example, the AudioSamplingRate class defines

variables named R32K, R44_1K, and R48K. When you need to know the permitted

values for a parameter or return value, look for a class in this package. Note in

particular that the event codes produced by VideoBeans classes are defined here, for

example, Player.OFF , and ContentLib.CREATED .

Developers can use the following classes:
Chapter 5 Javadoc Guide 47

■ com.sun.broadcaster.vssmbeans.AbstractVideoFormat
■ com.sun.broadcaster.vssmbeans.AccessMode
■ com.sun.broadcaster.vssmbeans.AudioFormat
■ com.sun.broadcaster.vssmbeans.AudioSamplingRate
■ com.sun.broadcaster.vssmbeans.AudioProfile
■ com.sun.broadcaster.vssmbeans.ContentLibID
■ com.sun.broadcaster.vssmbeans.DeviceBusyException
■ com.sun.broadcaster.vssmbeans.FileAccessException
■ com.sun.broadcaster.vssmbeans.InvalidURLException
■ com.sun.broadcaster.vssmbeans.LatencyInfo
■ com.sun.broadcaster.vssmbeans.MediaContent
■ com.sun.broadcaster.vssmbeans.MetadataLevel
■ com.sun.broadcaster.vssmbeans.SplicerMode
■ com.sun.broadcaster.vssmbeans.SplicerModeOption
■ com.sun.broadcaster.vssmbeans.StreamType
■ com.sun.broadcaster.vssmbeans.TICKS_PER_SECOND
■ com.sun.broadcaster.vssmbeans.TimecodeFormat
■ com.sun.broadcaster.vssmbeans.VideoFileSegment
■ com.sun.broadcaster.vssmbeans.VideoFormat
■ com.sun.broadcaster.vssmbeans.VideoFrameRate
■ com.sun.broadcaster.vssmbeans.VideoProfile
■ com.sun.broadcaster.vssmbeans.VssmEvent
■ com.sun.broadcaster.vssmbeans.VSSMException

Ignore all other classes defined in this package; they are for internal use.

com.sun.broadcaster.vssmproxy
This package defines the proxy and factory interfaces for most of the VideoBeans

classes. In the factory interfaces, only call createBean() methods; ignore the other

factory methods. Ignore the classes defined in this package. The following methods

are not supported:

■ ContentLib.getMaxRate()

■ Player.jog()

■ Player.streamNextAt()

■ Recorder.pauseAt() , Recorder.pauseOn() ,

Recorder.startPrerollAt() , Recorder.startStreamOn() ,

Recorder.startStreamAt()
48 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

com.sun.broadcaster.vtrproxy
This package defines the proxy and factory methods for Vtr VideoBeans objects. Use

only the methods listed in TABLE 4-7; other methods in this package are not

supported.
Chapter 5 Javadoc Guide 49

50 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

Index
A
access control, 28

asset server, defined, 2

C
client

communicating with video server, 2

defined, 1

com.sun.broadcaster.vssmbeans
package, 47

com.sun.broadcaster.vssmproxy
package, 48

com.sun.broadcaster.vtrproxy package, 49

com.sun.videobeans.beans package, 46

com.sun.videobeans.directory package, 45

com.sun.videobeans.event package, 47

com.sun.videobeans.security package, 47

com.sun.videobeans.util package, 46

ContentLib VideoBeans object, 23

events, 39

general description, 38

MediaContent naming, 38

principal methods, 39

credential, 28

E
event

codes, 24

consumer, 4, 25

consumer, handleEvent() method, 25

cookie, 25

defined, 4

event channel, 25

communication patterns, 25

defined, 4

obtaining, 25

persistence, 26

usage summary, 26

examples

HelloBean, 8

HelloEvent, 11

HelloFactories, 6

HelloVtr, 17

Exporter VideoBeans object

events, 41

general description, 41

principal methods, 41

F
factory

alias, 4, 51

defined, 3

names, 4

obtaining a server’s URLs, 28

URLs, 27
Index 51

H
HelloBean example, 8

HelloEvent example, 11

HelloFactories example, 6

HelloVtr example, 17

I
Importer VideoBeans object

events, 40

general description, 40

principal methods, 40

L
LatencyInfo object, 23

M
Media Central web site, xv

MediaContent object, 22

metadata, defined, 22

Migrator VideoBeans object

events, 42

general description, 42

principal methods, 42

P
Player VideoBeans object

events, 35

general description, 33

principal methods, 35

queue operation, 34

setup and scheduling, 34

usage summary, 34

proxy

asynchronous methods, 30

closing to recover resources, 29

defined, 3

exceptions, 30

standard methods, 29

R
Recorder VideoBeans object

events, 38

general description, 36

principal methods, 37

setup and scheduling, 36

usage summary, 36

S
setupDelay , 23

T
tearDownDelay , 23

Timecode object, 24

V
video server, defined, 2

VideoBeans object

defined, 3

invoking through proxy, 3

properties, 21

Vtr VideoBeans object

events, 43

general description, 42

principal methods, 43
52 Sun StorEdge Media Central Client Programmer’s Guide • October 1999

	Sun StorEdge™ Media Central Client Programmer’s Guide
	Contents
	1. Introducing Media Central Clients�1
	2. Hello, World Examples�5
	3. Infrastructure Classes and Services�21
	4. VideoBeans Catalog�33
	5. Javadoc Guide�45

	Figures
	Tables
	Code Samples
	Preface

	Before You Read This Book
	Using UNIX Commands
	Typographic Conventions
	TABLE�P�1 Typographic Conventions

	Shell Prompts
	TABLE�P�2 Shell Prompts

	Related Documentation
	TABLE�P�3 Related Documentation

	Accessing Sun Documentation Online
	Sun Welcomes Your Comments
	1
	Introducing Media Central Clients

	Media Central Clients and Servers
	FIGURE�1�1 Media Central Client/Server Architecture
	FIGURE�1�2 Media Central Client/Server Calling Relationships

	Video Server Objects
	VideoBeans Objects and their Proxies
	Factories
	Event Channels
	2
	Hello, World Examples

	Introducing the Examples
	HelloFactories: Listing Factories
	CODE�EXAMPLE�2�1 HelloFactories.java Source �

	HelloBean: Using a Factory and a Proxy
	CODE�EXAMPLE�2�2 HelloBean.java Source �

	HelloEvent: Handling Events
	CODE�EXAMPLE�2�3 HelloEvent.java Source �
	1. The client gets an event channel from the ContentLib factory.
	2. The client registers the event channel with the ContentLib proxy so the ContentLib VideoBeans ...
	3. The client instantiates the client’s event consumer, a class called MyCallBack, which implemen...
	4. The client creates a ConsumerImpl for the MyCallBack object. The ConsumerImpl does housekeepin...
	5. The client creates a ChannelHelper for the event channel. The ChannelHelper is another houseke...
	6. The client creates a cookie, a string that will be returned with events from this channel-Vide...
	7. The client registers the ConsumerImpl and the cookie with the ChannelHelper.
	8. The event channel calls MyCallBack.handleEvent() when the ContentLib sends an event to the cha...
	9. Shortly after the main method calls lib.createMediaContent(), the program’s MyCallBack.handleE...

	HelloVtr: Playing a Video Tape
	CODE�EXAMPLE�2�4 HelloVtr.java Source �
	3
	Infrastructure Classes and Services

	Properties
	Common Classes
	MediaContent and ContentLib
	TABLE�3�1 MediaContent Metadata
	TABLE�3�2 ContentLib Methods for MediaContent Objects

	LatencyInfo
	Timecode

	Events and Event Channels
	TABLE�3�3 Event Codes �
	1. Channel ch = aFactory.getEventChannel(); Client gets an event channel from a factory. Argument...
	2. aProxy.registerEventChannel(ch); Client registers the channel with the proxy whose VideoBeans ...
	3. MyCallback myConsumer = new MyEventConsumer(); Client instantiates its consumer class that imp...
	4. ConsumerImpl consumer = new ConsumerImpl(myConsumer); Client passes its consumer object to a h...
	5. ChannelHelper helper = new ChannelHelper(ch); Client passes the channel to another housekeepin...
	6. helper.registerConsumer(consumer, cookie); Client registers its event consumer object with the...
	7. VideoBeans object associated with aProxy posts an event.
	8. Event channel ch, running on the video server, remotely invokes client’s myConsumer.handleEven...

	Factories and Naming
	Access Control
	Resource Recovery
	Standard Proxy Methods
	TABLE�3�4 Standard Proxy Methods �

	Exceptions
	4
	VideoBeans Catalog

	Player
	1. The client obtains a PlayerProxy by calling PlayerFactory.createBean().
	2. The client optionally sets the output formats and levels (alternatively, you can rely on a use...
	3. The client queues the video file segments to be played.
	4. The client schedules the Player to set itself up to play the first segment (preroll).
	5. The client waits for the setup to complete.
	6. The client schedules the Player to begin playing the segments in the queue.
	7. The client waits for the playing to complete.
	Methods
	TABLE�4�1 Principal Player Methods �

	Events

	Recorder
	1. The client obtains a RecorderProxy by calling RecorderFactory.createBean().
	2. The client creates a MediaContent (see “ContentLib” on page�38) to store the received data if ...
	3. The client optionally sets the Recorder input format parameters (you may instead rely on the u...
	4. The client creates a VideoFileSegment which names the target MediaContent and offset.
	5. The client optionally calls startPrerollAt() to schedule the setup.
	6. The client calls waitTilFinished() or examineResult() to block until the setup is complete.
	7. The client calls startStreamAt() to schedule the recording.
	8. The client calls waitTilFinished() or examineResult() to block until the recording is complete.
	Methods
	TABLE�4�2 Principal Recorder Methods �

	Events

	ContentLib
	Methods
	TABLE�4�3 Principal ContentLib Methods �

	Events

	Importer
	Methods
	TABLE�4�4 Principal Importer Methods �

	Events

	Exporter
	Methods
	TABLE�4�5 Principal Exporter Methods �

	Events

	Migrator
	Methods
	TABLE�4�6 Principal Migrator Methods �

	Events

	Vtr
	Methods
	TABLE�4�7 Principal Vtr Methods �

	Events
	5
	Javadoc Guide

	com.sun.videobeans.directory
	com.sun.videobeans.util
	com.sun.videobeans
	com.sun.videobeans.beans
	com.sun.videobeans.event
	com.sun.videobeans.security
	com.sun.broadcaster.vssmbeans
	com.sun.broadcaster.vssmproxy
	com.sun.broadcaster.vtrproxy
	Index

	A
	C
	E
	F
	H
	I
	L
	M
	P
	R
	S
	T
	V

