
901 San Antonio Road
Palo Alto, CA 94303-4900 USA
650 960-1300 Fax 650 969-9131

SunATM™ Application

Programmer’s Interface and

Man Pages

Part No. 805-4477-10
August 1998, Revision A

Sun Microsystems, Inc.

Send comments about this document to: docfeedback@sun.com

Copyright 1998 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook, SunDocs, SunATM, and Solaris are trademarks, registered trademarks, or service marks of

Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered

trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture

developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1998 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook, SunDocs, SunATM, et Solaris sont des marques de fabrique ou des marques déposées, ou

marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et

sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant

les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y

COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE

UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE

GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents

1. Application Programmers’ Interface 1

Using the SunATM API with the q93b and the ATM Device Drivers 2

Q.93b Driver Interface 2

Establishing a Connection to the q93b Driver 3

Setting up an ATM Connection Over a Switched Virtual Circuit (SVC) 3

Call Setup 7

Release Procedure 7

Exception Conditions 7

Connecting, Sending, and Receiving Data with the ATM Device Driver 9

Raw Mode Connections 10

DLPI Encapsulated Connections 10

2. C Library Functions 13

atm_util(3) 19

qcc_bld(3) 28

qcc_create(3) 36

qcc_len(3) 45

qcc_pack(3) 48

qcc_parse(3) 52

qcc_set_ie(3) 60
iii

qcc_unpack(3) 66

qcc_util(3) 71

3. File Formats 75

aarconfig(4) 76

acl.cfg(4) 85

agent.cnf(4) 87

atmconfig(4) 89

context.cfg(4) 91

ilmi.cnf(4) 94

laneconfig(4) 95

mib.rt(4) 103

party.cfg(4) 105

view.cfg(4) 108

4. Special Files 111

ba(7) 112

q93b(7) 119

5. DDI and DKI Kernel Functions 123

qcc_bld(9F) 127

qcc_create(9F) 135

qcc_pack(9F) 144

qcc_parse(9F) 148

qcc_set_ie(9F) 156

qcc_unpack(9F) 162

6. Maintenance Commands 167

aarsetup(1M) 168

aarstat(1M) 171

atmadmin(1M) 173
iv SunATM Application Programmer’s Interface and Man Pages • August 1998

atmarp(1M) 178

atmgetmac(1M) 180

atmreg(1M) 181

atmsetup(1M) 183

atmsnmpd(1M) 185

atmsnoop(1M) 188

atmspeed(1M) 192

atmstat(1M) 194

ilmid(1M) 202

lanearp(1M) 205

lanesetup(1M) 208

lanestat(1M) 210

qccstat(1M) 214

Index 217
Contents v

vi SunATM Application Programmer’s Interface and Man Pages • August 1998

Figures

FIGURE 1-1 ATM Signalling 2

FIGURE 1-2 Message Format 5

FIGURE 1-3 Normal Call Setup and Tear Down 8
vii

viii SunATM Application Programmer’s Interface and Man Pages • August 1998

Tables

TABLE 1-1 Messages Between the User and the q93b Driver 3

TABLE 1-2 Fields in the M_PROTO mblock 5

TABLE 1-3 qcc Functions 6

TABLE 1-4 atm_util Function Overview 9

TABLE 2-1 C Library Functions 13

TABLE 3-1 File Format Man Pages 75

TABLE 4-1 Special Files Man Pages 111

TABLE 5-1 DDI and DKI Kernel Function Man Pages 123

TABLE 6-1 Maintenance Command Man Pages 167
ix

x SunATM Application Programmer’s Interface and Man Pages • August 1998

Code Samples

CODE EXAMPLE 2-1 atm_util(3) Man Page 19

CODE EXAMPLE 2-2 qcc_bld(3) Man Page 28

CODE EXAMPLE 2-3 qcc_create(3) Man Page 36

CODE EXAMPLE 2-4 qcc_len(3) Man Page 45

CODE EXAMPLE 2-5 qcc_pack(3) Man Page 48

CODE EXAMPLE 2-6 qcc_parse(3) Man Page 52

CODE EXAMPLE 2-7 qcc_set_ie(3) Man Page 60

CODE EXAMPLE 2-8 qcc_unpack(3) Man Page 66

CODE EXAMPLE 2-9 qcc_util(3) Man Page 71

CODE EXAMPLE 3-1 aarconfig(4) Man Page 76

CODE EXAMPLE 3-2 acl.cfg(4) Man Page 85

CODE EXAMPLE 3-3 agent.cnf(4) Man Page 87

CODE EXAMPLE 3-4 atmconfig(4) Man Page 89

CODE EXAMPLE 3-5 context.cfg(4) Man Page 91

CODE EXAMPLE 3-6 ilmi.cnf(4) Man Page 94

CODE EXAMPLE 3-7 laneconfig(4) Man Page 95

CODE EXAMPLE 3-8 mib.rt(4) Man Page 103

CODE EXAMPLE 3-9 party.cfg(4) Man Page 105

CODE EXAMPLE 3-10 view.cfg(4) Man Page 108
xi

CODE EXAMPLE 4-1 ba(7) Man Page 112

CODE EXAMPLE 4-2 q93b(7) Man Page 119

CODE EXAMPLE 5-1 qcc_bld(9F) Man Page 127

CODE EXAMPLE 5-2 qcc_create(9F) Man Page 135

CODE EXAMPLE 5-3 qcc_pack(9F) Man Page 144

CODE EXAMPLE 5-4 qcc_parse(9F) Man Page 148

CODE EXAMPLE 5-5 qcc_set_ie(9F) Man Page 156

CODE EXAMPLE 5-6 qcc_unpack(9F) Man Page 162

CODE EXAMPLE 6-1 aarsetup(1M) Man Page 168

CODE EXAMPLE 6-2 aarstat(1M) Man Page 171

CODE EXAMPLE 6-3 atmadmin(1M) Man Page 173

CODE EXAMPLE 6-4 atmarp(1M) Man Page 178

CODE EXAMPLE 6-5 atmgetmac(1M) Man Page 180

CODE EXAMPLE 6-6 atmreg(1M) Man Page 181

CODE EXAMPLE 6-7 atmsetup(1M) Man Page 183

CODE EXAMPLE 6-8 atmsnmpd(1M) Man Page 185

CODE EXAMPLE 6-9 atmsnoop(1M) Man Page 188

CODE EXAMPLE 6-10 atmspeed(1M) Man Page 192

CODE EXAMPLE 6-11 atmstat(1M) Man Page 194

CODE EXAMPLE 6-12 ilmid(1M) Man Page 202

CODE EXAMPLE 6-13 lanearp(1M) Man Page 205

CODE EXAMPLE 6-14 lanesetup(1M) Man Page 208

CODE EXAMPLE 6-15 lanestat(1M) Man Page 210

CODE EXAMPLE 6-16 qccstat(1M) Man Page 214
xii SunATM Application Programmer’s Interface and Man Pages • August 1998

Preface

SunATM Application Programmer’s Interface and Man Pages combines Appendix E,

“Application Programmer’s Interface,” of the SunATM 3.0 Installation and User’s
Guide (805-0331-10) and the man pages that were shipped with the SunATM™ 3.0

software.

Note – This manual does not contain any hardware or software installation

instructions. For these instructions, refer to the SunATM 3.0 Installation and User’s
Guide.

Using UNIX Commands

This document may not contain information on basic UNIX® commands and

procedures such as shutting down the system, booting the system, and configuring

devices.

See one or more of the following for this information:

■ Solaris 2.x Handbook for SMCC Peripherals

■ AnswerBook™ online documentation for the Solaris™ 2.x software environment

■ Other software documentation that you received with your system
xiii

Typographic Conventions

Shell Prompts

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output.

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output.

% su
Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized.

Command-line variable; replace

with a real name or value.

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be root to do this.

To delete a file, type rm filename.

TABLE P-2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
xiv SunATM Application Programmer’s Interface and Man Pages • August 1998

Related Documentation

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments

and suggestions. You can email your comments to us at:

smcc-docs@sun.com .

Please include the part number of your document in the subject line of your email.

TABLE P-3 Related Documentation

Application Title Part Number

Installation and Service SunATM 3.0 Installation and User’s
Guides

801-0331

Release Information SunATM 3.0 Release Notes 801-3472
xv

xvi SunATM Application Programmer’s Interface and Man Pages • August 1998

CHAPTER 1

Application Programmers’ Interface

The Application Programmers’ Interface (API) that is provided with this software

release is an interim API from Sun which can be used on Sun Platforms.

In the ATM environment, data is sent between hosts over Virtual Circuits (VCs). VCs

are point-to-point (or point-to-multipoint) connections between two or more ATM

hosts.

VCs can be created in one of two ways:

■ Manual configuration at each host and each intermediate network point, also

known as Permanent Virtual Circuits (PVC)

■ ATM signalling, also known as Switched Virtual Circuits (SVC)

The ATM Forum’s User Network Interface protocol is based on the ITU’s Q.2931

specification.

After the VC has been determined, the application must notify the SunATM ba
driver that it will be sending and receiving data on the new VC.

■ If using a PVC, this is the only configuration required on the Sun host.

■ If using an SVC, there are two required actions:

■ Create the SVC with the q93b driver.

■ Establish the data connection with the ba driver.

Note – For historical reasons, Q.93B and Q.2931 are used interchangeably.
1

Using the SunATM API with the q93b
and the ATM Device Drivers

The architecture illustrated in FIGURE 1-1 must be established on a SunATM system

in order to perform Q.2931 signalling and send data over established connections.

The ATM device driver, SSCOP modules, and q93b driver are “plumbed” at boot

time. The task remaining for application developers is to create the connections

between their application and the q93b and ATM device drivers.

Both the q93b and ATM device driver are STREAMS drivers; connecting to them is

for the most part no different than connecting to other STREAMS drivers. The

following sections describe the steps required to connect to each driver, use the

drivers to establish ATM connections, and send data over those connections.

For examples of user applications that use the SunATM API, see the sample

programs installed in /opt/SUNWatm/examples

FIGURE 1-1 ATM Signalling

Q.93b Driver Interface

The signalling API, called Q.2931 Call Control (qcc), consists of two sets of similar

functions: one for applications running in the kernel, and one for applications

running in user space. Each set provides functions to build and parse Q.2931

signalling messages, which are required to set up and tear down connections.

10

Kernel
App

APIAPI

SSCOP SSCOP

Q.93B Driver

ATM Device Driver (ba driver)

User
App
2 SunATM Application Programmer’s Interface and Man Pages • August 1998

One additional function is provided to assist applications in establishing appropriate

connections to the q93b driver. q_ioc_bind associates a service access point (SAP)

with the specified connection to the q93b driver. The SAP is used by the driver to

direct incoming messages to applications.

Establishing a Connection to the q93b Driver

The open(2) system call should be used first to obtain a file descriptor to the driver.

After opening the driver, q_ioc_bind should be called, associating in the q93b

driver a service access point (SAP) with this application. Finally, if the application is

a kernel driver, it should be linked above the q93b driver, using the I_LINK or

I_PLINK ioctl (refer to the streamio(7) man page for information about this ioctl).

Setting up an ATM Connection Over a Switched

Virtual Circuit (SVC)

After connecting to the q93b driver, either by directly calling the functions as a user

application, or by having a setup program connect your application driver as

described in the preceding section, the q93b driver is available to your application to

establish switched virtual circuits (SVCs) using the Q.2931 signalling protocol. The

Q.2931 message set is displayed in TABLE 1-1.

TABLE 1-1 Messages Between the User and the q93b Driver

Message Type Direction*

SETUP BOTH

SETUP_ACK UP

CALL_PROCEEDING BOTH

ALERTING BOTH

CONNECT BOTH

CONNECT_ACK UP

RELEASE DOWN

RELEASE_COMPLETE BOTH

STATUS_ENQUIRY DOWN

STATUS UP

*UP is from q93b to user;

DOWN is from user to q93b
Chapter 1 Application Programmers’ Interface 3

The q93b driver is an M-to-N mux STREAMS driver. Multiple application programs

can be plumbed above the driver, and multiple physical interfaces can be connected

below q93b. Applications can access any or all of the physical interfaces, and

messages received on the physical interfaces may be directed to any of the

applications. In order to direct messages through the q93b driver, messages from

applications must include a physical interface name to identify the outgoing

interface, and a SAP to identify the application to which the message should be

directed on the receiving host.

NOTIFY BOTH

RESTART BOTH

RESTART_ACK BOTH

ADD_PARTY BOTH

ADD_PARTY_ACK BOTH

ADD_PARTY_REJECT BOTH

PARTY_ALERTING BOTH

DROP_PARTY BOTH

DROP_PARTY_ACK BOTH

LEAF_SETUP_FAIL BOTH

LEAF_SETUP_REQ BOTH

TABLE 1-1 Messages Between the User and the q93b Driver

Message Type Direction*

*UP is from q93b to user;

DOWN is from user to q93b
4 SunATM Application Programmer’s Interface and Man Pages • August 1998

Messages sent to q93b by applications should be sent in the format illustrated in

FIGURE 1-2; kernel applications should use put(9f) to send the mblocks shown, and

user applications should send two corresponding strbufs using putmsg(2) .

FIGURE 1-2 Message Format

The structure that is included in the M_PROTO mblock is defined as the qcc_hdr_t
structure in the <atm/qcctypes.h> header file. In the second mblock, the

application should leave the Q.2931 header portion (9 bytes) of the Q.2931 message

blank; this information is filled in by the q93b driver. The application should also

reserve 16 bytes at the end of the second mblock for the layer 2 (Q.SAAL) protocol

performance. The qcc functions can be used to create messages in this format.

The following sections give a brief overview of Q.2931 signalling procedures, from

the perspective of an application using the SunATM API. For more details on the

procedures, refer to the ATM Forum’s User Network Interface Specification, version

3.0, 3.1, or 4.0. For further information on the qcc functions, which are outlined in

TABLE 1-3, see the appropriate man pages in Section 3 (for user applications) or

section 9F (for kernel applications). The man pages can be accessed under the

function group name, or any specific function name. For example, the man page

TABLE 1-2 Fields in the M_PROTO mblock

Message Explanation

Ifname A null-terminated string containing the device name

Call_ID A unique number from q93b per interface.

Type The same as the Q.2931 message type except there is a local Non-Q.2931

message type SETUP_ACK. The SETUP_ACK message is used to provide

the Call_ID to the user.

Error_Code The error returned from q93b when an erroneous message is received

from the user. The exact same mblock chain shall be returned to the user

with the Error_Code field set. The user must always clear this field

Call_Tag A number assigned by the calling application layer to a SETUP message.

When a SETUP_ACK is received from q93b, the Call_ID has been set; the

Call_Tag field can be used to identify the acknowledgment (ack) with the

original request. From that point on, the Call_ID value should be used to

identify the call.

Ifname

Call_ID

Type

Error_Code

M_PROTO M_DATA
mp

Q.2931 Message

(9) (16)

Information
Elements (IEs)

Call_Tag

R
S
V

Chapter 1 Application Programmers’ Interface 5

which documents the qcc_bld_* function group may be accessed by one of the

following at a command prompt: man qcc_bld , man qcc_bld_setup , or

man qcc_bld_connect . The message flow during typical call setup and tear down

is diagrammed in FIGURE 1-3.

TABLE 1-3 qcc Functions

Name Functionality Input Output

qcc_bld_* Creates and encodes a message;

enables customization of a limited

set of values, depending on the

message type. Configurable values

are passed in as parameters.

Parameter values Encoded Q.2931

message (in the format

shown in FIGURE 1-2)

qcc_parse_* Extracts a defined set of values

from an encoded message

Encoded Q.2931 message

(in the format shown in

FIGURE 1-2)

Parameter values

qcc_len_* Returns the maximum length of the

buffer that should be allocated for

the second strbuf in a Q.2931

message. Only applicable to user

space applications; the kernel API

allocates the buffers inside the

qcc_bld/qcc_pack functions.

none Maximum length of

the message.

qcc_create_* Creates a message structure with

the required values set. The

structure can then be further

customized using qcc_set_ie .

Default parameter values Message structure

(defined in

<atm/qcctypes.h>)

qcc_set_ie Updates or inserts values for an

information element into a message

structure.

Message structure and IE

structure (defined in

<atm/qcctypes.h>)

Updated message

structure

qcc_pack_* Takes a message structure and

encodes it into an actual Q.2931

message, consisting of the two

mblks (or strbufs) illustrated in

FIGURE 1-2.

Message structure (defined

in <atm/qcctypes.h>)

Encoded Q.2931

message (in the format

shown in FIGURE 1-2)

qcc_unpack_* The reverse of qcc_pack_* : takes

an encoded message and decodes

the data into a message structure.

Encoded Q.2931 message

(in the format shown in

FIGURE 1-2)

Message structure

(defined in

<atm/qcctypes.h>)

qcc_get_ie Extracts a single information

element structure from a message

structure.

Message structure and

empty IE structure (defined

in <atm/qcctypes.h>)

Updated IE structure
6 SunATM Application Programmer’s Interface and Man Pages • August 1998

Call Setup

When the user decides to make a call, the user sends a SETUP message down to

q93b and waits for a SETUP_ACK from q93b. The SETUP message should include a

Broadband Higher Layer Information (BHLI) information element which contains a

four-octet SAP identified as User Specific Information. The SAP is used to identify

the application to which the message should be directed by q93b on the receiving

host. After receiving a SETUP_ACK with a 0 error field, the user waits for either a

CALL_PROCEEDING, ALERTING, CONNECT, or RELEASE_COMPLETE message

from q93b (all other messages are ignored by q93b). After the CONNECT message is

received, the user can use the virtual channel.

When the user receives a SETUP message from q93b, the user responds with either a

CALL_PROCEEDING, ALERTING, CONNECT, or RELEASE_COMPLETE message

to q93b. After the CONNECT_ACK message is received, the user can use the virtual

channel.

Release Procedure

To clear an active call or a call in progress, the user should send a RELEASE message

down to q93b and wait for a RELEASE_COMPLETE from q93b. Any time the user

receives a RELEASE_COMPLETE message from q93b, the user releases the virtual

channel if the call is active or in progress.

q93b never sends a RELEASE message to the user; it will always send a

RELEASE_COMPLETE. The user only sends the RELEASE_COMPLETE message

when rejecting a call in response to a SETUP message from q93b. At any other time,

to reject or tear down a call, the user sends a RELEASE message to q93b.

Exception Conditions

If for any reason q93b cannot process a SETUP message received from a user, the

SETUP_ACK is returned with an error value set, and call setup is not continued. The

error value will be one of the cause codes specified in the ATM Forum UNI

standard.
Chapter 1 Application Programmers’ Interface 7

FIGURE 1-3 Normal Call Setup and Tear Down

SetUp

USER Q.93B SWITCH Q.93B USER

SetUpAck

SetUp

Null (0)1 Null(0)

Call Initiated (1)

Call Present (6)

CallProceeding*

CallProceeding*

Outgoing Call

Incoming Call
Proceeding (9)

Connect

Connect

Connect Request
(8)

Active (10) Active (10)

Release

Release_Complete

Release_Complete

Release Request
(11)

Null (0) Null (0)

SetUp

SetUp

Connect

Connect

ConnectAck

ConnectAck

Release

Release

Release_Complete

Release_Complete

ConnectAck

CallProceeding*

Proceeding (3)

1 XX(n): Q.2931 State Name (Q.2931 State Number)
* Optional
8 SunATM Application Programmer’s Interface and Man Pages • August 1998

Connecting, Sending, and Receiving
Data with the ATM Device Driver

Connecting to the ATM device driver involves several steps, which include several

ioctl calls. In order to create a more standardized interface for user space

applications, a set of atm_util functions is available to application writers. An

overview of those functions is provided in TABLE 1-4. For more detailed information,

refer to the atm_util(3) man page. The ba(7) man page contains a more detailed

discussion of the driver-supported IOCTLs.

TABLE 1-4 atm_util Function Overview

Name Functionality Kernel Equivalent

atm_open Open a stream to the ATM device driver Must be done by a user space setup

program

atm_close Close a stream to the ATM device driver Must be done by a user space setup

program

atm_attach Attach to a physical interface Must be done by a user space setup

program

atm_detach Detach from a physical interface Must be done by a user space setup

program

atm_bind Bind to a Service Access Point send DL_BIND_REQ

atm_unbind Unbind from a Service Access Point send DL_UNBIND_REQ

atm_setraw Set the encapsulation mode to raw Send DLIOCRAW

atm_add_vpci Associate a vpci with this connection A_ADDVC ioctl

atm_delete_vpci Dissociate a vpci from this connection A_DELVC ioctl

atm_allocate_bw Allocate constant bit rate bandwidth for

this connection

A_ALLOCBW ioctl

atm_allocate_cbr_bw Allocate constant bit rate bandwidth

with more granularity than

atm_allocate_bw

A_ALLOCBW_CBR ioctl

atm_allocate_vbr_bw Allocate variable bit rate bandwidth A_ALLOCBW_VBR ioctl

atm_release_bw Release previously allocated bandwidth A_RELSE_BW ioctl
Chapter 1 Application Programmers’ Interface 9

Note – In the following discussion, the user space function names are used. Refer to

TABLE 1-4 for the corresponding kernel space function or ioctl.

To establish a data path, the application must first open the ATM driver and attach

to a specific physical interface using atm_open() and atm_attach() . Next, the

connection should be associated with one or more VC(s), using atm_add_vpci() . If

a call has been established using Q.2931 signalling, the vpci provided to

atm_add_vpci() should be the vpci that was included in the Q.2931 signalling

messages received while establishing the call.

An encapsulation method must also be selected. The SunATM device driver

supports raw (null) and DLPI encapsulation. Messages sent in raw mode are sent as

data only, with just a four-byte vpci as a header; DLPI mode messages are LLC-

encapsulated. By default, a connection is in DLPI mode; to change the encapsulation

to raw, DLIOCRAW should be set using atm_setraw() . The remaining steps

depend on the encapsulation mode selected.

Raw Mode Connections

If raw mode is chosen, the only remaining configuration step is to allocate an

amount of bandwidth for the use of this connection, using atm_allocate_bw() ,

atm_allocate_cbr_bw() , or atm_allocate_vbr_bw() .

From the perspective of the application/driver interface, raw mode implies that only

a single message buffer (pointed to by dataptr in putmsg(2)) should be sent to the

driver, containing a 4-byte vpci followed by the data. When a message is received on

a vpci running in raw mode, it will be directed to an application based on the vpci.

When sending a received message up to the application, the driver will strip the

4-byte vpci from the message if the application has not set DLIOCRAW with a call to

atm_setraw; if DLIOCRAW has been set, the 4-byte vpci will be included in the

message sent up to the application.

DLPI Encapsulated Connections

If DLPI mode is chosen, a SAP must be associated with the connection using

atm_bind() . Optionally, a specific amount of bandwidth may be allocated for the

connection using atm_allocate_bw() , atm_allocate_cbr_bw() , or

atm_allocate_vbr_bw() . If bandwidth is not explicitly allocated, IP’s bandwidth

(which includes all available unallocated bandwidth) will be shared by the

connection.
10 SunATM Application Programmer’s Interface and Man Pages • August 1998

DLPI mode implies that two message buffers will be sent to the driver. The first,

pointed to by ctlptr in putmsg(3) , contains the dlpi message type, which is

dl_unitdata_req for transmit and dl_unitdata_ind for receive. The vpci is

included in this buffer as well; the format for the buffer is defined in the header file

<sys/dlpi.h> . The second buffer, pointed to by dataptr in putmsg(3) , contains

the data. When the driver receives the two buffers from the application, it will

remove the first buffer, add a LLC header containing the SAP which has been bound

to this stream to the data buffer, and transmit it. On receive, the LLC header is

stripped, the control buffer is added with the DLPI header, and the two buffers are

sent up to the application indicated by the SAP in the LLC header.
Chapter 1 Application Programmers’ Interface 11

12 SunATM Application Programmer’s Interface and Man Pages • August 1998

CHAPTER 2

C Library Functions

The man pages in this chapter describe the C library functions found in the SunATM

software. Function declarations can be obtained from the #include files indicated

on each man page.

TABLE 2-1 C Library Functions

Man Page Description Page Number

atm_util(3) SunATM driver utilities, including: page 19

atm_add_vpci(3) ,

atm_allocate_bw(3) ,

atm_allocate_cbr_bw(3) ,

atm_allocate_vbr_bw(3) ,

atm_attach(3) ,

atm_bind(3) ,

atm_close(3) ,

atm_delete_vpci(3) ,

atm_detach(3) ,

atm_open(3) ,

atm_release_bw(3) ,

atm_setraw(3) ,

atm_unbind(3)

qcc_bld(3) Build Q.2931 messages, with these commands: page 28

qcc_bld_add_party(3) ,

qcc_bld_add_party_ack(3) ,

qcc_bld_add_party_ack_datalen(3) ,
13

qcc_bld_add_party_datalen(3) ,

qcc_bld_add_party_reject(3) ,

qcc_bld_add_party_reject_datalen(3) ,

qcc_bld_call_proceeding(3) ,

qcc_bld_call_proceeding_datalen(3) ,

qcc_bld_connect(3) ,

qcc_bld_connect_ack_datalen(3) ,

qcc_bld_connect_datalen(3) ,

qcc_bld_drop_party(3) ,

qcc_bld_drop_party_ack(3) ,

qcc_bld_drop_party_ack_datalen(3) ,

qcc_bld_drop_party_datalen(3) ,

qcc_bld_release(3) ,

qcc_bld_release_complete(3) ,

qcc_bld_release_complete_datalen(3) ,

qcc_bld_release_datalen(3) ,

qcc_bld_restart(3) ,

qcc_bld_restart_ack(3) ,

qcc_bld_restart_ack_datalen(3) ,

qcc_bld_restart_datalen(3) ,

qcc_bld_setup(3) ,

qcc_bld_setup_datalen(3) ,

qcc_bld_status(3) ,

qcc_bld_status_datalen(3) ,

qcc_bld_status_enquiry(3) ,

qcc_bld_status_enquiry_datalen(3) ,

qcc_create(3) Create Q.2931 message structures, with these commands: page 36

qcc_create_add_party(3) ,

qcc_create_add_party_ack(3) ,

qcc_create_add_party_reject(3) ,

TABLE 2-1 C Library Functions (Continued)

Man Page Description Page Number
14 SunATM Application Programmer’s Interface and Man Pages • August 1998

qcc_create_call_proceeding(3) ,

qcc_create_connect(3) ,

qcc_create_connect_ack(3) ,

qcc_create_drop_party(3) ,

qcc_create_drop_party_ack(3) ,

qcc_create_release(3) ,

qcc_create_release_complete(3) ,

qcc_create_restart(3) ,

qcc_create_restart_ack(3) ,

qcc_create_setup(3) ,

qcc_create_status(3) ,

qcc_create_status_enq(3)

qcc_len(3) Get length of Q.2931 messages, with these commands: page 45

qcc_bld_add_party(3) ,

qcc_bld_add_party_ack(3) ,

qcc_bld_add_party_ack_datalen(3) ,

qcc_bld_add_party_datalen(3) ,

qcc_bld_add_party_reject(3) ,

qcc_bld_add_party_reject_datalen(3) ,

qcc_bld_call_proceeding(3) ,

qcc_bld_call_proceeding_datalen(3) ,

qcc_bld_connect(3) ,

qcc_bld_connect_ack_datalen(3) ,

qcc_bld_connect_datalen(3) ,

qcc_bld_drop_party(3) ,

qcc_bld_drop_party_ack(3) ,

qcc_bld_drop_party_ack_datalen(3) ,

qcc_bld_drop_party_datalen(3) ,

qcc_bld_release(3) ,

qcc_bld_release_complete(3) ,

TABLE 2-1 C Library Functions (Continued)

Man Page Description Page Number
Chapter 2 C Library Functions 15

qcc_bld_release_complete_datalen(3) ,

qcc_bld_release_datalen(3) ,

qcc_bld_restart(3) ,

qcc_bld_restart_ack(3) ,

qcc_bld_restart_ack_datalen(3) ,

qcc_bld_restart_datalen(3) ,

qcc_bld_setup(3) ,

qcc_bld_setup_datalen(3) ,

qcc_bld_status(3) ,

qcc_bld_status_datalen(3) ,

qcc_bld_status_enquiry(3) ,

qcc_bld_status_enquiry_datalen(3) ,

qcc_ctl_len(3) ,

qcc_len(3) ,

qcc_max_bld_datalen(3)

qcc_pack(3) Encode Q.2931 message structure information and pack into

streams buffers, with these commands:

page 48

qcc_pack_add_party(3) ,

qcc_pack_add_party_ack(3) ,

qcc_pack_add_party_reject(3) ,

qcc_pack_call_proceeding(3) ,

qcc_pack_connect(3) ,

qcc_pack_connect_ack(3) ,

qcc_pack_drop_party(3) ,

qcc_pack_drop_party_ack(3) ,

qcc_pack_release(3) ,

qcc_pack_release_complete(3) ,

qcc_pack_restart(3) ,

qcc_pack_restart_ack(3) ,

qcc_pack_setup(3) ,

qcc_pack_status(3) ,

TABLE 2-1 C Library Functions (Continued)

Man Page Description Page Number
16 SunATM Application Programmer’s Interface and Man Pages • August 1998

qcc_pack_status_enq(3)

qcc_parse(3) Parse Q.2931 messages, including: page 52

qcc_parse_add_party(3) ,

qcc_parse_add_party_ack(3) ,

qcc_parse_add_party_reject(3) ,

qcc_parse_call_proceeding(3) ,

qcc_parse_connect(3) ,

qcc_parse_drop_party(3) ,

qcc_parse_drop_party_ack(3) ,

qcc_parse_release(3) ,

qcc_parse_release_complete(3) ,

qcc_parse_restart(3) ,

qcc_parse_restart_ack(3) ,

qcc_parse_setup(3) ,

qcc_parse_status(3) ,

qcc_parse_status_enquiry(3) ,

qcc_get_hdr(3)

qcc_set_ie(3) Add or update Information Elements in a Q.2931 message

structure

page 60

qcc_unpack(3) Decode Q.2931 messages and unpack into message structures,

with these commands:

page 66

qcc_unpack(3) ,

qcc_unpack_add_party(3) ,

qcc_unpack_add_party_ack(3) ,

qcc_unpack_add_party_reject(3) ,

qcc_unpack_call_proceeding(3) ,

qcc_unpack_connect(3) ,

qcc_unpack_connect_ack(3) ,

qcc_unpack_drop_party(3) ,

qcc_unpack_drop_party_ack(3) ,

qcc_unpack_release(3) ,

TABLE 2-1 C Library Functions (Continued)

Man Page Description Page Number
Chapter 2 C Library Functions 17

qcc_unpack_release_complete(3) ,

qcc_unpack_restart(3) ,

qcc_unpack_restart_ack(3) ,

qcc_unpack_setup(3) ,

qcc_unpack_status(3) ,

qcc_unpack_status_enq(3)

qcc_util(3) Functional interfaces to q93b driver ioctls, including: page 71

q_ioc_bind,

q_ioc_bind_lijid,

q_ioc_unbind_lijid

TABLE 2-1 C Library Functions (Continued)

Man Page Description Page Number
18 SunATM Application Programmer’s Interface and Man Pages • August 1998

atm_util(3)

CODE EXAMPLE 2-1 atm_util(3) Man Page

atm_util(3) C Library Functions atm_util(3)

NAME
 atm_util, atm_open, atm_close, atm_attach, atm_detach,
 atm_bind, atm_unbind, atm_setraw, atm_add_vpci,
 atm_delete_vpci, atm_allocate_bw, atm_allocate_cbr_bw,
 atm_allocate_vbr_bw, atm_release_bw - Sun ATM driver utili-
 ties

SYNOPSIS
 cc [flag ...] file ... -latm [library ...]

 #include <atm/atm.h>

 int atm_open(register char *interface);

 int atm_close(int fd);

 int atm_attach(int fd, u_long ppa, int timeout);

 int atm_detach(int fd, int timeout);

 int atm_bind(int fd, u_long sap, int timeout);

 int atm_unbind(int fd, int timeout);

 int atm_setraw(int fd);

 int atm_add_vpci(int fd, vci_t vpci, int encap,
 int buf_type);

 int atm_delete_vpci(int fd, vci_t vpci);

 int atm_allocate_bw(int fd, int bw);

 int atm_allocate_cbr_bw(int fd, int bw);

 int atm_allocate_vbr_bw(int fd, int peakbw, int avgbw,
Chapter 2 C Library Functions 19

 int maxburst, int priority);

 int atm_release_bw(int fd);

MT-LEVEL
 Safe.

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with a SunATM adapter board.
 The libatm.a library, which is located in /opt/SUNWatm/lib, must
 be included at compile time as indicated in the synopsis.

DESCRIPTION
 These utilities perform various operations on the SunATM
 device driver, ba. They may be used by application programs
 that need to transmit and receive data over an ATM connec-
 tion to set up a data stream to the ATM driver.

 Data may be transmitted over a vc connection in one of two
 modes: raw mode, or dlpi mode. The default is dlpi mode. Raw
 mode may be requested by sending down a DLIOCRAW ioctl,
 which is accomplished with a call to atm_setraw(). The mode
 chosen defines the format in which data should be sent to
 the driver.

 Raw mode implies that only a single mblock will be sent to
 the driver, containing a four-byte vpci followed by the
 data. When a message is received on a vpci running in raw
 mode, the four-byte vpci will be sent up with the data.

 DLPI mode implies that two mblocks will be sent to the
 driver. The first, of type M_PROTO, contains the dlpi mes-
 sage type, which is dl_unitdata_req for transmit and
 dl_unitdata_ind for receive. The vpci is included in this
 mblock as well. The dl_unitdata_req and dl_unitdata_ind header

formats are defined in the header file <sys/dlpi.h>.
 The second mblock is of type M_DATA and con-

 tains the message. When the driver gets a message of this
 type from the upper layer, it will remove the first mblock,and
 transmit the message. On receive, the M_PROTO mblock is added,

 and the two-mblock structure is sent up to the user.

A method of encapsulation must also be chosen; the method of
encapsulation is specified when the VC is associated with a
stream (using the A_ADDVC ioctl or the atm_add_vpci() func-

CODE EXAMPLE 2-1 atm_util(3) Man Page (Continued)
20 SunATM Application Programmer’s Interface and Man Pages • August 1998

tion call). Currently, null and LLC encapsulation are sup-
ported. Null encapsulation implies that a message consists
only of data preceded by a four-byte vpci. This type of
encapsulation is most commonly used with raw mode. LLC
encapsulation implies that an LLC header precedes the data.
This header will include the SAP associated with the
application’s stream (using the atm_bind() function call).
This type of encapsulation is typically used with dlpi mode
traffic.

For LLC-encapsulated traffic, the driver will automatically
add the LLC header on transmit if the stream is running in
dlpi mode. The driver will also strip the LLC header from
incoming traffic before sending it up a dlpi mode stream.
In raw mode, however, the driver does not modify the packets
at all; this includes the LLC header. Thus, an application
using raw mode and LLC encapsulation must include its own
LLC headers on transmit and will receive data with the LLC
header intact.

Received packets are directed to application streams by the
driver based on the type of encapsulation. If a packet is
null-encapsulated, it will be sent up the stream associated
with the vpci on which the packet was received. If a packet
is LLC-encapsulated, it will be sent to the stream which has
bound (using atm_bind()) the SAP found in the LLC header.

NOTE: If the application is running in user space rather
than kernel space, the M_PROTO and M_DATA mblocks correspond
to the ctl and data buffers, respectively, which are passed
into putmsg(2) or received from getmsg(2).

 atm_open() opens a stream to the physical interface (i.e.
 ba0, ba1, etc.) passed in as a null-terminated string in
 interface. On success, the file descriptor (> 0) is
 returned.

 atm_close() closes the stream specified by its file descrip-
 tor, fd.

 atm_attach() associates a physical point of attachment, ppa,
 with an opened ba device specified by its file descriptor,
 fd. The ppa is usually defined as the physical interface
 number (0 for ba0, 1 for ba1, etc.). timeout may optionally
 be used to specify an amount of time in milliseconds to wait

CODE EXAMPLE 2-1 atm_util(3) Man Page (Continued)
Chapter 2 C Library Functions 21

 for the function to complete. The function will fail if it
 does not complete in the specified amount of time. Possible
 values for timeout are -1, which blocks until completion, 0,
 which returns immediately, or a number greater than 0 which
 specifies a number of milliseconds to wait. This value will
 be rounded up to an implementation-dependent minimum value,
 which is currently at approximately 100 ms.

 atm_detach() detaches the stream specified by its file
 descriptor fd from its ppa. Values of timeout apply as
 described in atm_attach().

 atm_allocate_bw() specifies a constant bit rate bandwidth
 amount in megabits per second (Mbps), passed in as bw. The
 amount of bandwidth specified will be allocated for
 transmitting data from the stream identified by the file
 descriptor fd. All unallocated bandwidth is assigned to IP
 and LLC-encapsulated traffic. This step is not necessary if a
 stream is only to be used to receive data; nor is it neces-
 sary to allocate bandwidth for a stream which is sending LLC-.

encapsulated traffic.
 By default, LLC-encapsulated traffic shares all unallocated
 bandwidth with IP. See the table below for the amount of
 bandwidth available to be allocated by the user. Bandwidth
 may be allocated to a finer granularity using
 atm_allocate_cbr_bw().

 atm_allocate_cbr_bw() specifies an amount of constant bit
 rate bandwidth in units of 64 kilobits per second (Kbps),
 passed in as bw. The amount of bandwidth specified will be
 allocated for transmitting data from the stream identified
 by the file descriptor fd. All unallocated bandwidth is
 assigned to IP and LLP-encapsulated traffic. Allocation of
 bandwidth is not necessary if a stream is only to be used to
 receive data; nor is it necessary to allocate bandwidth for
 a stream running in raw mode. By default, dlpi mode traffic
 shares all unallocated bandwidth with IP. See the table
 below for the amount of bandwidth available to be allocated
 by the user. Bandwidth may be allocated with less granular-
 ity (in units of megabits per second) using
 atm_allocate_bw().

 atm_allocate_vbr_bw() specifies an amount of variable bit
 rate bandwidth to allocate for the stream identified by the
 file descriptor fd. Variable bit rate traffic is implemented
 by the SunATM hardware according to the GCRA (Generic Cell

CODE EXAMPLE 2-1 atm_util(3) Man Page (Continued)
22 SunATM Application Programmer’s Interface and Man Pages • August 1998

 Rate Algorithm) as defined by the ATM Forum UNI 3.0 specifi-
 cation. The parameters peakbw and avgbw are passed in in
 units of 64 kilobits per second (Kbps), and represent the
 Peak Cell Rate and Sustainable Cell Rate, respectively. The
 Sustainable Cell Rate must be available within the bandwidth
 parameters of the hardware, which are described in the fol-
 lowing table. The maxburst parameter specifies the number of
 cells which may be sent back to back on the media,
 corresponding to the Maximum Burst Size in the UNI spec.
 Finally, priority may be AVBR_HIGH_PRI or AVBR_LO_PRI;
 AVBR_HIGH_PRI will always get the requested bandwidth, while
 AVBR_LO_PRI can starve if other users request all available
 bandwidth.

 Available Bandwidth
 --
 | Product | SunATM-155 | SunATM-622 |
 |----------------------+------------------+------------------|
 | Unit of Measure | Mbps | 64 Kbps | Mbps | 64 Kbps |
 |----------------------+--------+---------+--------+---------|
 | | | | | |
 | Total Bandwidth | 155 | 2480 | 622 | 9952 |
 | | | | | |
 |----------------------+--------+---------+--------+---------|
 | | | | | |
 | Cell Header/Phy | 20 | 320 | 88 | 1408 |
 | Layer Overhead | | | | |
 |----------------------+--------+---------+--------+---------|
 | | | | | |
 | Reserved by Software | 0.125 | 2 | 0.125 | 2 |
 | | | | | |
 |----------------------+--------+---------+--------+---------|
 | | | | | |
 | Available to User |134.875 | 2158 |533.875 | 8542 |
 | | | | | |
 --

 atm_release_bw() releases all bandwidth that has been previ-
 ously allocated to the stream identified by fd.

 atm_add_vpci() adds the given virtual path connection iden-
 tifier, vpci, to those recognized on the specified stream
 (identified by its file descriptor, fd). The type of encap-
 sulation that is being used on this connection must also be
 specified in encap; the possible values are NULL_ENCAP,
 LLC_ENCAP, and NLPID_ENCAP, as defined in <atm/atmioctl.h>.

CODE EXAMPLE 2-1 atm_util(3) Man Page (Continued)
Chapter 2 C Library Functions 23

 Finally, the buffer type must be specified in buf_type;
 definitions may also by found in <atm/atmioctl.h> for the
 possible types SMALL_BUF_TYPE, BIG_BUF_TYPE, and
 HUGE_BUF_TYPE.

 atm_delete_vpci() deletes given virtual path connection
 identifier, vpci, from the specified stream (identified by
 its file descriptor, fd).

 atm_bind() binds a service access point, sap, to an opened
 stream, specified by its file descriptor, fd. sap values of
 0x800 and 0x806 are reserved for IP and ARP traffic, respec-
 tively; the user shall not use these values. The sap is
 used by the driver to direct traffic to upper layers if LLC
 encapsulation is used. This function also has a timeout
 parameter; the values of timeout described in atm_attach()
 apply in atm_bind() as well.
 atm_unbind() disassociates a stream-to-sap binding. The
 stream is specified by its file descriptor, fd. Values of
 timeout apply as described in atm_attach().

 atm_setraw() indicates to the driver that the stream speci-
 fied by the file descriptor fd will be transmitting and
 receiving raw data which will be interpreted directly by the
 application at the stream head. The only header information
 included in messages passed down the stream will be the 4-
 byte virtual path connection identifier. When a message is
 received, the vpci will be used to direct the message to
 upper layers.

 The ordering of the atm utility function calls is important.
 After calling atm_open(), the order must be atm_attach(),
 followed by atm_add_vpci(). Next, depending on the type of
 encapsulation used on this stream, should be either
 atm_bind() for LLC encapsulation (dlpi mode) or atm_setraw()
 for null encapsulation (raw mode). Finally, bandwidth may be
 allocated with a call to atm_alloc_bw(), atm_alloc_cbr_bw(),
 or atm_alloc_vbr_bw(). All functions must be called only
 once per interface, with the exception of atm_add_vpci(),
 which may be called multiple times to support multiple
 vpcis.

RETURN VALUES
 All functions return -1 on error. With the exception of
 atm_open, which returns the file descriptor on success, all
 functions return 0 on success.

CODE EXAMPLE 2-1 atm_util(3) Man Page (Continued)
24 SunATM Application Programmer’s Interface and Man Pages • August 1998

EXAMPLES
 The following example opens a stream to ba0 and sets up that
 stream to communicate over vpci 0x100 at 10 Mbits/sec in raw
 mode.

 #include <stdio.h>
 #include <sys/types.h>
 #include <sys/stropts.h>
 #include <sys/errno.h>
 #include <atm/atm.h>

 main()
 {
 char interface[] = "ba0";
 int fd;
 int ppa;
 int bw = 10;
 int vpci = 0x100;
 char ctlbuf[256];
 char databuf[256];
 struct strbuf ctl, data;
 ctl.buf = ctlbuf;
 data.buf = databuf;
 ctl.maxlen = data.maxlen = 256;

 ppa = atoi(&interface[strlen (interface) - 1]);
 if ((fd = atm_open(interface)) < 0) {
 perror("open");
 exit(-1);
 }
 atm_attach(fd, ppa);

 if (atm_add_vpci(fd, vpci, LLC_ENCAP, BIG_BUF_TYPE) < 0) {
 perror("atm_add_vpci");
 exit(-1);
 }
 if (atm_setraw(fd) < 0) {
 perror("atm_setraw");
 exit(-1);
 }

 <construct a message to pass down in ctlbuf and databuf>

 if (putmsg(fd, &ctl, &data, 0) < 0) {
 perror("putmsg");

CODE EXAMPLE 2-1 atm_util(3) Man Page (Continued)
Chapter 2 C Library Functions 25

 exit(-1);
 }

 }

 The following example opens a stream to ba0 and sets up that
 stream to communicate over vpci 0x100, using sap 0x100, in
 dlpi mode.

 #include <stdio.h>
 #include <sys/types.h>
 #include <sys/stropts.h>
 #include <sys/errno.h>
 #include <sys/dlpi.h>
 #include <atm/atm.h>

 main()
 {
 char interface[] = "ba0";
 int fd;
 int ppa;
 int vpci = 0x100;
 int *vpcip;
 int sap = 0x100;
 char ctlbuf[256];
 char databuf[256];
 struct strbuf ctl, data;
 dl_unitdata_req_t *dludp;
 ctl.buf = ctlbuf;
 data.buf = databuf;
 ctl.maxlen = data.maxlen = 256;

 ppa = atoi(&interface[strlen (interface) - 1]);
 if ((fd = atm_open(interface)) < 0) {
 perror("open");
 exit(-1);
 }
 atm_attach(fd, ppa);

 if (atm_add_vpci(fd, vpci, LLC_ENCAP, BIG_BUF_TYPE) < 0) {
 perror("atm_add_vpci");
 exit(-1);
 }
 atm_bind(fd, sap);

 <construct the message in databuf>

CODE EXAMPLE 2-1 atm_util(3) Man Page (Continued)
26 SunATM Application Programmer’s Interface and Man Pages • August 1998

 ctllen = sizeof (dl_unitdata_req_t) + 4;
 memset(ctlbuf, 0, ctllen);
 dludp = (dl_unitdata_req_t *) ctlbuf;
 dludp->dlprimitive = DL_UNITDATA_REQ;
 dludp->dl_dest_addr_length = 4;
 dludp->dl_dest_addr_offset = sizeof (dl_unitdata_req_t);
 vpcip = (int *) &ctlbuf[sizeof (dl_unitdata_req_t)];
 *vpcip = vpci;

 if (putmsg(fd, &ctl, &data, 0) < 0) {
 perror("putmsg");
 exit(-1);
 }
 }

SEE ALSO
 dlpi(7), ba(7)

CODE EXAMPLE 2-1 atm_util(3) Man Page (Continued)
Chapter 2 C Library Functions 27

qcc_bld(3)

CODE EXAMPLE 2-2 qcc_bld(3) Man Page

qcc_bld(3) C Library Functions qcc_bld(3)

NAME
 qcc_bld, qcc_bld_setup, qcc_bld_alerting,
 qcc_bld_call_proceeding, qcc_bld_connect, qcc_bld_release,
 qcc_bld_release_complete, qcc_bld_status,
 qcc_bld_status_enquiry, qcc_bld_notify, qcc_bld_restart,
 qcc_bld_restart_ack, qcc_bld_add_party,
 qcc_bld_add_party_ack, qcc_bld_party_alerting,
 qcc_bld_add_party_reject, qcc_bld_drop_party,
 qcc_bld_drop_party_ack, qcc_bld_leaf_setup_fail,
 qcc_bld_leaf_setup_req - build Q.2931 messages

SYNOPSIS
 cc [flag ...] file ... -latm [library ...]

 #include <atm/types.h>
 #include <atm/qcc.h>

 int qcc_bld_setup(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int calltag, int vci,
 int forward_sdusize, int backward_sdusize,
 atm_addr_t *src_addrp, atm_addr_t *dst_addrp,
 int sap, int endpt_ref);

 int qcc_bld_alerting(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int vci, int endpt_ref);

 int qcc_bld_call_proceeding(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int vci, int endpt_ref);

 int qcc_bld_connect(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int vci,
 int forward_sdusize, int backward_sdusize,
 int endpt_ref);

 int qcc_bld_release(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int cause);
28 SunATM Application Programmer’s Interface and Man Pages • August 1998

 int qcc_bld_release_complete(strbuf_t *ctlp,
 strbuf_t *datap, char *ifname, int callid, int cause);

 int qcc_bld_status_enquiry(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int endpt_ref);

 int qcc_bld_status(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int callstate, int cause,
 int endpt_ref, int endpt_state);

 int qcc_bld_notify(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int contentlen,
 u_char *contentp, int endpt_ref);

 int qcc_bld_restart(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int vci, int rstall);

 int qcc_bld_restart_ack(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int vci, int rstall);

 int qcc_bld_add_party(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int forward_sdusize,
 int backward_sdusize, atm_address_t *src_addrp,
 atm_address_t *dst_addrp, int sap, int endpt_ref);

 int qcc_bld_add_party_ack(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int endpt_ref);

 int qcc_bld_party_alerting(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int endpt_ref);

 int qcc_bld_add_party_reject(strbuf_t *ctlp,
 strbuf_t *datap, char *ifname, int callid, int cause,
 int endpt_ref);

 int qcc_bld_drop_party(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int cause, int endpt_ref);

 int qcc_bld_drop_party_ack(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int cause, int endpt_ref);

 int qcc_bld_leaf_setup_fail(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int callid, int cause,
 atm_address_t *dst_addrp, int leaf_num);

CODE EXAMPLE 2-2 qcc_bld(3) Man Page (Continued)
Chapter 2 C Library Functions 29

 int qcc_bld_leaf_setup_req(strbuf_t *ctlp, strbuf_t *datap,
 char *ifname, int leaftag, atm_address_t *src_addrp,
 atm_address_t *dst_addrp, int lij_callid);

MT-LEVEL
 Safe.

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.
 The libatm.a library, which is located in /usr/lib, must be
 included at compile time as indicated in the synopsis.

DESCRIPTION
 These functions build the various messages that make up the
 Q.2931 protocol which is used for ATM signalling. A full
 description of the message format and use can be found in
 the ATM Forum's User Network Interface Specification, V3.0,
 V3.1, or V4.0. The messages built will conform to the ver-
 sion of the UNI Specification which is configured on the
 indicated interface. The functions may be used by processes
 which are running in user space.

 In general, no error checking is performed on the data that
 is passed in. Whatever data is passed in will be placed in
 the message that is built without examination. The only
 exceptions to this are mentioned in the function descrip-
 tions.

 Each function requires a minimum of 4 parameters: ctlp and
 datap, which are pointers to strbuf_t buffers; ifname, which
 is a string containing the physical interface (such as ba0);
 and an integer, either calltag or callid, depending on the
 message type. calltag is used in the setup message only; it
 is a reference number that is assigned by the calling appli-
 cation. callid is used in all other messages; it is
 assigned by the lower layer and will be sent up to the user,
 with the calltag, in the setup_ack message.

 ctlp and datap make up the control and data portions of the
 constructed message, corresponding to the M_PROTO and M_DATA
 blocks of the message that will be passed downstream. The
 buffer fields in the structures which ctlp and datap point
 to (ctlp->buf and datap->buf) must be allocated before cal-
 ling a qcc_bld* function; size information may be obtained
 using the qcc_bld_*_datalen() functions (see qcc_len(3)).

CODE EXAMPLE 2-2 qcc_bld(3) Man Page (Continued)
30 SunATM Application Programmer’s Interface and Man Pages • August 1998

 After successful return from a qcc_bld* function, the mes-
 sage may be passed down an open stream using the putmsg(2)
 function, with ctlp and datap as the buffer parameters for
 putmsg.

 Other parameters for each function depend on the type of
 information required for each message type, and are defined
 in the paragraphs describing each function call.

 After a message has been built, the user may add IEs that
 are not built into the message; however, the size informa-
 tion returned by the qcc_len functions only includes the IEs
 documented here. The user must allocate enough additional
 space and correct the message length value in the Q.2931
 header if additional IEs are required in the message.

 qcc_bld_setup() constructs a setup message containing some
 or all of the following Information Elements: AAL parame-
 ters, ATM user cell rate, broadband bearer capability,
 called party number, calling party number, quality of ser-
 vice parameter, and endpoint reference. The user must pass
 in the forward and backward sdu sizes for the AAL parameter
 IE, an ATM address for the destination for the called party
 number IE, and one for itself for the calling party number
 IE (atm_address_t format is defined in the <atm/qcc.h>
 header file). The value passed in the sap parameter is
 placed in a broadband higher layer IE. The higher layer IE
 indicates the sap to which received messages should be
 directed. If the user passes in a positive vci, a connection
 identifier IE will be included; if the user passes in a
 non-negative endpt_ref value (0 is valid), an endpoint
 reference IE is included. The endpoint reference IE indi-
 cates that this is a point-to-multipoint call.

 qcc_bld_alerting() is specific to UNI 4.0. It builds an
 alerting message containing a connection identifier IE if a
 positive vci is passed in, and an endpoint reference IE if a
 non-negative endpt_ref is passed in. An endpoint reference
 IE should only appear if the call is a point-to-multipoint
 call. The alerting message is only supported under UNI 4.0.

 qcc_bld_call_proceeding() includes a connection identifier
 IE if a positive vci is passed in, and an endpoint reference
 IE if a non-negative endpt_ref is passed in. An endpoint
 reference IE should only appear if the call is a point-to-
 multipoint call.

CODE EXAMPLE 2-2 qcc_bld(3) Man Page (Continued)
Chapter 2 C Library Functions 31

 qcc_bld_connect() includes an AAL parameters IE, requiring
 the forward_ and backward_sdusize values, a connection iden-
 tifier IE if a positive vci value is passed in, and an end-
 point reference IE if a non-negative endpt_ref value is
 passed in. An endpoint reference IE should only appear if
 the call is a point-to-multipoint call.

 qcc_bld_release() includes a cause IE for which the user
 must pass in a cause value. The possible values can be
 found in the <atm/qcc.h> header file. The same is true for
 qcc_bld_release_complete().

 qcc_bld_status_enquiry() includes only an endpoint reference
 IE if a non-negative endpt_ref value is passed in. An end-
 point reference IE should only appear if the call is a
 point-to-multipoint call.

 qcc_bld_status() includes a call state IE, requiring the
 user pass in the callstate parameter; possible values can be
 found in the <atm/qcc.h> header file. It also includes a
 cause IE; the cause value must also be passed in. Its pos-
 sible values may also be found in the <atm/qcc.h> header
 file. Finally, if the call is a point-to-multipoint call,
 endpoint reference and endpoint state IEs may also be
 included; they are included if a non-negative endpt_ref
 value is passed in. The endpt_state parameter is used in the
 endpoint state IE; possible party state values may be found
 in <atm/qcc.h>.

 qcc_bld_notify() is specific to UNI 4.0. It builds a notify
 message, including a notification indicator IE, which con-
 tains a buffer of user-defined information up to a maximum
 length of 16 bytes (defined by contentlen and contentp), and
 an endpoint reference IE if a non-negative endpt_ref value
 is passed in. An endpoint reference IE should only appear
 if the call is a point-to-multipoint call. The notify mes-
 sage is only valid under UNI 4.0.

 qcc_bld_restart() includes a restart indicator IE, which is
 used to determine whether an individual call or all calls on
 an interface should be restarted. If rstall is 0, only the
 call identified by vci should be restarted; in this case, a
 connection identifier IE will also be included. If rstall
 is non-zero, all calls will be restarted. The same format
 applies to the qcc_bld_restart_ack() function.

CODE EXAMPLE 2-2 qcc_bld(3) Man Page (Continued)
32 SunATM Application Programmer’s Interface and Man Pages • August 1998

 qcc_bld_add_party() constructs an add party message for a
 point-to-multipoint call. The message constructed will con-
 tain an AAL parameters IE, which includes the forward_ and
 backward_sdusize parameters, a calling party number IE,
 which includes the value pointed to by src_addrp, a called
 party number IE, which includes the value pointed to by
 dst_addrp, a broadband higher layer information IE, which
 includes the sap parameter, and an endpoint reference IE,
 which includes the endpt_ref parameter. The sap value in the
 broadband higher layer information IE indicates the sap to
 which the message should be passed by the receiving host.

 qcc_bld_add_party_ack() constructs an add party ack message
 which includes an endpoint reference IE, for which the
 endpt_ref parameter is required.

 qcc_bld_party_alerting() is specific to UNI 4.0. It builds
 a party alerting message, containing an endpoint reference
 IE, for which the endpt_ref parameter is required.

 qcc_bld_add_party_reject() includes a cause IE, containing
 the cause value passed in. The possible cause values may be
 found in the <atm/qcc.h> header file. An endpoint reference
 IE is also included, which requires the endpt_ref parameter.

 qcc_bld_drop_party() constructs a drop party message. The
 message constructed will contain two IEs: a cause IE, which
 requires the cause parameter, and an endpoint reference IE,
 which requires the endpt_ref parameter. Possible cause
 values may be found in the header file <atm/qcc.h>.

 qcc_bld_drop_party_ack() contains an endpoint reference IE,
 requiring the endpt_ref parameter, and optionally, a cause
 IE. The cause IE will be included if a positive cause value
 is passed in. Possible cause values may be found in the
 <atm/qcc.h> header file.

 qcc_bld_leaf_setup_fail() is specific to UNI 4.0. It con-
 tains a cause IE if a non-negative cause value is passed in;
 a called number IE if a non-null dst_addrp is passed in; and
 a leaf number IE, for which the leaf_num parameter is
 required. This message type is only valid under UNI 4.0.

 qcc_bld_leaf_setup_req() is specific to UNI 4.0. It con-
 tains Calling Number and Called Number IEs if non-null

CODE EXAMPLE 2-2 qcc_bld(3) Man Page (Continued)
Chapter 2 C Library Functions 33

 src_addrp and dst_addrp are passed in, respectively; it also
 contains a leaf initiated join call identifier IE for which
 lij_callid is required, and a leaf number IE. The leaf
 number is assigned by the q93b driver. Because the leaf
 number is assigned by the q93b driver, a mechanism similar
 to that used in the setup and setup_ack messages is used
 with the leaf number: the user must provide a 'leaftag'
 parameter in the call to qcc_bld_leaf_setup_req(); this tag
 is inserted in the calltag field of the qcc header. When
 the message is received and accepted by the q93b driver, a
 leaf_setup_ack message is returned, containing both the
 leaftag, in the calltag field of the qcc header, and the
 driver-assigned leaf number, in the callref field. The
 leaf_setup_req and leaf_setup_ack messages are the only mes-
 sages which will not contain a call reference value in the
 callref field; this is because the messages are not tied to
 a specific call. This message, and the leaf-initiated join
 functionality, are only supported under UNI 4.0.

RETURN VALUES
 All functions return 0 on success and -1 on error.

EXAMPLES
 The following code fragment builds a setup message and sends
 it downstream.

 #include <atm/limits.h>
 #include <atm/qcc.h>

 char ifname[QCC_MAX_IFNAME_LEN] = "ba0";
 int calltag = 0x1234;
 int vci = 0x100;
 int forward_sdusize = 0x2378;
 int backward_sdusize = 0x2378;
 int sap = 0x100;

 atm_addr_t src_addr = {
 0x45, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x0f, 0x00, 0x00, 0x00, 0x00,
 0x08, 0x00, 0x20, 0x1a, 0xe1, 0x53, 0x00
 };

 atm_addr_t dst_addr = {
 0x45, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x0f, 0x00, 0x00, 0x00, 0x00,
 0x08, 0x00, 0x20, 0x1a, 0xb6, 0xb9, 0x00

CODE EXAMPLE 2-2 qcc_bld(3) Man Page (Continued)
34 SunATM Application Programmer’s Interface and Man Pages • August 1998

 };

 struct strbuf ctl, data;
 char ctlbuf[QCC_MAX_CTL_LEN];
 char databuf[QCC_MAX_DATA_LEN];

 ctl.buf = ctlbuf;
 data.buf = databuf;
 ctl.maxlen = QCC_MAX_CTL_LEN;
 data.maxlen = QCC_MAX_DATA_LEN;

 if ((qcc_bld_setup(&ctl, &data, ifname, calltag, vci,
 forward_sdusize, backward_sdusize,
 &src_addr, &dst_addr, sap, -1)) < 0) {
 printf("qcc_bld_setup failed\n");
 exit (-1);
 }

 if (putmsg(fd, &ctl, &data, 0) < 0) {
 perror("putmsg");
 exit (-1);
 }

SEE ALSO
 qcc_len(3), qcc_parse(3), qcc_util(3), q93b(7)

 "ATM User-Network Interface Specification, V3.0," ATM Forum.
 "ATM User-Network Interface Specification, V3.1," ATM Forum.
 "ATM User-Network Interface Specification, V4.0," ATM Forum.

NOTES
 This API is an interim solution until the ATM Forum has
 standardized an API. At that time, Sun will implement that
 API, and support for the Q.2931 Call Control library may not
 be continued.

 The additional support of the UNI 4.0 signalling specifica-
 tion includes the addition of several new message types
 which are not supported in the earlier versions of the UNI
 specification. These message types, if sent on an interface
 configured for UNI 3.0 or 3.1, will be discarded by the q93b
 driver and will not be sent out to the network. The UNI
 4.0-specific messages are Alerting, Notify, Party Alerting,
 Leaf Setup Fail, and Leaf Setup Request, and are identified
 in the applicable function descriptions.

CODE EXAMPLE 2-2 qcc_bld(3) Man Page (Continued)
Chapter 2 C Library Functions 35

qcc_create(3)

CODE EXAMPLE 2-3 qcc_create(3) Man Page

qcc_create(3) C Library Functions qcc_create(3)

NAME
 qcc_create, qcc_create_setup, qcc_create_alerting,
 qcc_create_call_proceeding, qcc_create_connect,
 qcc_create_connect_ack, qcc_create_release,
 qcc_create_release_complete, qcc_create_status,
 qcc_create_status_enq, qcc_create_notify,
 qcc_create_restart, qcc_create_restart_ack,
 qcc_create_add_party, qcc_create_add_party_ack,
 qcc_create_party_alerting, qcc_create_add_party_reject,
 qcc_create_drop_party, qcc_create_drop_party_ack,
 qcc_create_leaf_setup_fail, qcc_create_leaf_setup_req -
 create Q.2931 message structures

SYNOPSIS
 cc [flag ...] file ... -latm [library ...]

 #include <atm/qcc.h>
 #include <atm/qcctypes.h>

 int qcc_create_setup(qcc_setup_t *msgp, char *ifname,
 int calltag, atm_address_t *dst_addrp);

 int qcc_create_alerting(qcc_alerting_t *msgp, char *ifname,
 int callid);

 int qcc_create_call_proceeding(qcc_call_proc_t *msgp,
 char *ifname, int callid);

 int qcc_create_connect(qcc_connect_t *msgp, char *ifname,
 int callid);

 int qcc_create_connect_ack(qcc_connect_ack_t *msgp,
 char *ifname, int callid);

 int qcc_create_release(qcc_release_t *msgp, char *ifname,
 int callid, int cause);
36 SunATM Application Programmer’s Interface and Man Pages • August 1998

 int qcc_create_release_complete(qcc_release_complete_t *
 msgp, char *ifname, int callid);

 int qcc_create_status_enq(qcc_status_enq_t *msgp,
 char *ifname, int callid);

 int qcc_create_status(qcc_status_t *msgp, char *ifname,
 int callid, int callstate, int cause);

 int qcc_create_notify(qcc_notify_t *msgp, char *ifname,
 int callid, int contentlen, u_char *contentp);

 int qcc_create_restart(qcc_restart_t *msgp, char *ifname,
 int callid, int indicator, int vci);

 int qcc_create_restart_ack(qcc_restart_ack_t *msgp,
 char *ifname, int callid, int indicator, int vci);

 int qcc_create_add_party(qcc_add_party_t *msgp,
 char *ifname, int callid, atm_address_t *dst_addrp,
 int endpt_ref);

 int qcc_create_add_party_ack(qcc_add_party_ack_t *msgp,
 char *ifname, int callid, int endpt_ref);

 int qcc_create_party_alerting(qcc_party_alerting_t *msgp,
 char *ifname, int callid, int endpt_ref);

 int qcc_create_add_party_reject(qcc_add_party_reject_t *
 msgp, char *ifname, int callid, int cause,
 int endpt_ref);

 int qcc_create_drop_party(qcc_drop_party_t *msgp,
 char *ifname, int callid, int cause, int endpt_ref);

 int qcc_create_drop_party_ack(qcc_drop_party_ack_t *msgp,
 char *ifname, int callid, int endpt_ref);

 int qcc_create_leaf_setup_fail(qcc_leaf_setup_fail_t *msgp,
 char *ifname, int callid, int cause,
 atm_address_t *dst_addrp, int leaf_num);

 int qcc_create_leaf_setup_req(qcc_leaf_setup_req_t *msgp,
 char *ifname, int leaftag, atm_address_t *src_addrp,
 atm_address_t *dst_addrp, int lij_callid);

CODE EXAMPLE 2-3 qcc_create(3) Man Page (Continued)
Chapter 2 C Library Functions 37

MT-LEVEL
 Safe.

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.
 The libatm.a library, which is located in /usr/lib, must be
 included at compile time as indicated in the synopsis.

DESCRIPTION
 These functions create message structures representing the
 various messages that make up the Q.2931 protocol, which is
 used for ATM signalling. A full description of the message
 format and use can be found in the ATM Forum's User Network
 Interface Specification, V3.0, V3.1, or V4.0. The content of
 the created message structures will conform to the version
 of the UNI Specification which is configured on the indi-
 cated interface. The functions may be used by processes
 which are running in user space.

 After a message structure has been created, non-default
 Information Elements (IEs) may be added or existing IEs may
 be changed using the qcc_set_ie(3) function. When the mes-
 sage structure has been completely specified, the
 corresponding qcc_pack(3) function should be called to
 translate the message structure into the correct encoded
 format, contained in streams buffers which may be passed to
 the putmsg(2) function.

 In general, no error checking is performed on the data that
 is passed in. Whatever data is passed in will be placed in
 the message that is built without examination. The only
 exceptions to this are mentioned in the function descrip-
 tions.

 Each function requires a minimum of 3 parameters: msgp,
 which is a pointer to the appropriate message structure
 type; ifname, which is a string containing the physical
 interface (such as ba0); and an integer, either calltag or
 callid, depending on the message type. calltag is used in
 the setup message only; it is a reference number that is
 assigned by the calling application. callid is used in all
 other messages; it is assigned by the lower layer and will
 be sent up to the user, with the calltag, in the setup_ack
 message.

CODE EXAMPLE 2-3 qcc_create(3) Man Page (Continued)
38 SunATM Application Programmer’s Interface and Man Pages • August 1998

 The structure to which msgp points must be allocated by the
 calling user. There is a unique structure for each message
 type; the message structures are defined in
 <atm/qcctypes.h>.

 Only the mandatory IEs for each message type are added to
 the message structure by the qcc_create call. The addi-
 tional parameters to the qcc_create functions allow the user
 to define most of the information contained in those manda-
 tory IEs; however, in some cases default values are assumed.
 Those values, as well as the additional parameters for each
 function, are indicated in the following paragraphs describ-
 ing each function call.

 qcc_create_setup() creates a setup message structure con-
 taining the following Information Elements: ATM traffic
 descriptor (called ATM cell rate in UNI 3.0), broadband
 bearer capability, called party number, and quality of ser-
 vice parameter. The user must pass in the destination ATM
 address for the called party number IE (atm_address_t format
 is defined in the <atm/types.h> header file). The following
 default values are used for the remaining Information Ele-
 ments:

 ATM Traffic Descriptor:
 best effort; line rate is used for the forward and
 backward peak rates

 Broadband Bearer Capability:
 Bearer Class X, no indication for traffic type and
 timing requirements, not susceptible to clipping,
 and point-to-point user plane

 Called Party Number:
 ATM Endsystem (NSAP) address type

 Quality of Service:
 Forward and backward class unspecified

 qcc_create_alerting() creates the structure for an alerting
 message, which is supported only under UNI 4.0. The alerting
 message contains no mandatory IEs; only the message header
 is filled in.

 qcc_create_call_proceeding() creates the structure for a

CODE EXAMPLE 2-3 qcc_create(3) Man Page (Continued)
Chapter 2 C Library Functions 39

 call proceeding message, which contains no mandatory IEs.
 Only the message header is filled in.

 qcc_create_connect() creates the structure for a connect
 message, which also contains no mandatory IEs. Again, only
 the required header is filled in. The same is true for
 qcc_create_connect_ack.

 qcc_create_release() creates a release message structure
 containing a cause IE, for which the user must pass in a
 cause value. The possible values can be found in the
 <atm/qccdefs.h> header file. By default, no diagnostic is
 included and the user location is assigned.

 qcc_create_release_complete() creates the structure for a
 release complete message, which contains no mandatory IEs.
 Only the message header is filled in.

 qcc_create_status_enquiry() creates a status enquiry message
 structure, which contains no mandatory IEs. Only the message
 header is filled in.

 qcc_create_status() builds a status message structure, con-
 taining two mandatory IEs: call state and cause. The user
 should pass in value for both the callstate and the cause;
 possible values may be found in the <atm/qccdefs.h> header
 file. In the cause IE, no diagnostic is included and the
 user location is assigned.

 qcc_create_notify() builds a notify message structure, which
 is only supported under UNI 4.0. The message contains a sin-
 gle mandatory IE, the notification indicator, which contains
 a buffer of user-specified data. The maximum size of the
 buffer is 16 bytes, defined as QCC_MAX_NOTIFICATION_LEN in
 <atm/qcc.h>. The user should allocate a buffer and pass in
 the buffer length, contentlen, and a pointer to the buffer,
 contentp.

 qcc_create_restart() creates a restart message structure,
 containing the mandatory restart indicator IE, and option-
 ally the connection identifier IE. The user should pass in
 a value for the restart indicator, either
 RESTART_INDICATED_VC or RESTART_ALL_VCS. If a non-zero vci
 parameter is passed in, the connection identifier IE is also
 included in the message, using a default vpci of 0 and the
 vci parameter value.

CODE EXAMPLE 2-3 qcc_create(3) Man Page (Continued)
40 SunATM Application Programmer’s Interface and Man Pages • August 1998

 qcc_create_add_party() constructs an add party message
 structure. It includes the mandatory called party number
 and endpoint reference IEs. The user should pass in a
 pointer to the called number and an endpoint reference
 value; for the called party number, ATM Endsystem (NSAP)
 address type is assumed.

 qcc_create_add_party_ack() fills in an add party ack message
 structure with the endpoint reference IE. The endpt_ref
 parameter value is used.

 qcc_create_party_alerting() creates a party alerting message
 structure with the endpoint reference IE, which uses the
 endpt_ref parameter. This message type is only supported
 under UNI 4.0.

 qcc_create_add_party_reject() fills the cause and endpoint
 reference IEs into an add party reject structure. The user
 should provide the cause and endpoint reference value; pos-
 sible cause values are defined in the <atm/qccdefs.h> header
 file. By default, no diagnostic is included and the user
 location is assigned in the cause IE.

 qcc_create_drop_party() fills the cause and endpoint refer-
 ence IEs into a drop party structure. The user should pass
 in the cause and endpoint reference values; possible cause
 values are defined in the <atm/qccdefs.h> header file. By
 default, no diagnostic is included and the user location is
 assigned in the cause IE.

 qcc_create_drop_party_ack() fills in only the mandatory end-
 point reference IE, requiring the endpt_ref parameter.

 qcc_create_leaf_setup_fail() creates a leaf setup fail mes-
 sage structure, with three mandatory IEs. The cause IE
 requires the cause parameter, which should be one of the
 cause values defined in <atm/qccdefs.h>; the called number
 IE requires the destination ATM address, dst_addrp; and the
 leaf number IE requires the leaf_num parameter. This mes-
 sage is only supported under UNI 4.0.

 qcc_create_leaf_setup_req() creates a leaf setup request
 message structure, with four mandatory IEs. Both the calling
 party and called party number IEs are required, using the
 source and destination ATM addresses, passed in in the

CODE EXAMPLE 2-3 qcc_create(3) Man Page (Continued)
Chapter 2 C Library Functions 41

 src_addrp and dst_addrp parameters, respectively. The leaf
 initiated join call identifier IE requires the lij_callid
 parameter. The final required IE, the leaf number IE, is
 inserted as a placeholder; the actual leaf number will be
 assigned and filled in by the q93b driver. It will be
 returned in the callref field of the qcc header of a
 leaf_setup_ack message, much as the call reference is
 returned in a setup_ack message in the setup case. Refer to
 the description of the qcc_bld_leaf_setup_req() function for
 more details on this process. This message is only sup-
 ported under UNI 4.0.

RETURN VALUES
 All functions return 0 on success and -1 on error.

EXAMPLES
 The following code fragment creates a setup message, adds an
 optional AAL Parameters IE, packs the message into streams
 buffers, and sends it downstream.

 #include <atm/limits.h>
 #include <atm/qcc.h>
 #include <atm/qcctypes.h>

 char ifname[QCC_MAX_IFNAME_LEN] = "ba0";
 int calltag = 0x1234;
 int forward_sdusize = 0x2378;
 int backward_sdusize = 0x2378;
 qcc_msg_t msgstruct;
 qcc_setup_t setup;
 qcc_ie_t iestruct;
 qcc_aal_params_t aal;
 struct strbuf ctl, data;
 char ctlbuf[QCC_MAX_CTL_LEN];
 char databuf[QCC_MAX_DATA_LEN];

 atm_addr_t dst_addr = {
 0x45, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x0f, 0x00, 0x00, 0x00, 0x00,
 0x08, 0x00, 0x20, 0x1a, 0xb6, 0xb9, 0x00
 };

 ctl.buf = ctlbuf;
 data.buf = databuf;
 ctl.maxlen = QCC_MAX_CTL_LEN;
 data.maxlen = QCC_MAX_DATA_LEN;

CODE EXAMPLE 2-3 qcc_create(3) Man Page (Continued)
42 SunATM Application Programmer’s Interface and Man Pages • August 1998

 if ((qcc_create_setup(&setup, ifname,
 calltag, dst_addr)) < 0) {
 printf("qcc_create_setup failed\n");
 exit (-1);
 }

 msgstruct.type = QCC_SETUP;
 msgstruct.msg.setup = &setup;

 aal.type = AAL_TYPE_5;
 aal.info.aal5.forward_max = forward_sdusize;
 aal.info.aal5.backward_max = backward_sdusize;
 aal.info.aal5.mode = MESSAGE_MODE;
 aal.info.aal5.sscs_type = SSCS_TYPE_NULL;

 iestruct.type = QCC_AAL_PARAMETERS;
 iestruct.ie.aal_params = &aal;

 if ((qcc_set_ie(&msgstruct, &iestruct)) < 0) {
 printf("qcc_set_ie failed\n");
 exit (-1);
 }

 if ((qcc_pack_setup(&ctl, &data,
 msgstruct.msg.setup)) < 0) {
 printf("qcc_pack_setup failed\n");
 exit (-1);
 }

 if (putmsg(fd, &ctl, &data, 0) < 0) {
 perror("putmsg");
 exit (-1);
 }

SEE ALSO
 qcc_set_ie(3), qcc_pack(3), qcc_unpack(3), qcc_parse(3),
 qcc_util(3), q93b(7)

 "ATM User-Network Interface Specification, V3.0," ATM Forum.
 "ATM User-Network Interface Specification, V3.1," ATM Forum.
 "ATM User-Network Interface Specification, V4.0," ATM Forum.

NOTES
 This API is an interim solution until the ATM Forum has
 standardized an API. At that time, Sun will implement that

CODE EXAMPLE 2-3 qcc_create(3) Man Page (Continued)
Chapter 2 C Library Functions 43

 API, and support for the Q.2931 Call Control library may not
 be continued.

 The additional support of the UNI 4.0 signalling specifica-
 tion includes the addition of several new message types
 which are not supported in the earlier versions of the UNI
 specification. These message types, if sent on an interface
 configured for UNI 3.0 or 3.1, will be discarded by the q93b
 driver and will not be sent out to the network. The UNI
 4.0-specific messages are Alerting, Notify, Party Alerting,
 Leaf Setup Fail, and Leaf Setup Request, and are identified
 in the applicable function descriptions.

CODE EXAMPLE 2-3 qcc_create(3) Man Page (Continued)
44 SunATM Application Programmer’s Interface and Man Pages • August 1998

qcc_len(3)

CODE EXAMPLE 2-4 qcc_len(3) Man Page

qcc_len(3) C Library Functions qcc_len(3)

NAME
 qcc_len, qcc_bld_setup_datalen, qcc_bld_alerting_datalen,
 qcc_bld_call_proceeding_datalen, qcc_bld_connect_datalen,
 qcc_bld_connect_ack_datalen, qcc_bld_release_datalen,
 qcc_bld_release_complete_datalen,
 qcc_bld_status_enquiry_datalen, qcc_bld_notify_datalen,
 qcc_bld_status_datalen, qcc_bld_restart_datalen,
 qcc_bld_restart_ack_datalen, qcc_bld_add_party_datalen,
 qcc_bld_add_party_ack_datalen,
 qcc_bld_party_alerting_datalen,
 qcc_bld_add_party_reject_datalen,
 qcc_bld_drop_party_datalen, qcc_bld_drop_party_ack_datalen,
 qcc_bld_leaf_setup_fail_datalen,
 qcc_bld_leaf_setup_req_datalen, qcc_max_bld_datalen,
 qcc_ctl_len - get length of Q.2931 messages

SYNOPSIS
 cc [flag ...] file ... -latm [library ...]

 #include <atm/qcc.h> #include <atm/limits.h>

 size_t qcc_bld_setup_datalen();

 size_t qcc_bld_alerting_datalen();

 size_t qcc_bld_call_proceeding_datalen();

 size_t qcc_bld_connect_datalen();

 size_t qcc_bld_connect_ack_datalen();

 size_t qcc_bld_release_datalen();

 size_t qcc_bld_release_complete_datalen();

 size_t qcc_bld_status_enquiry_datalen();
Chapter 2 C Library Functions 45

 size_t qcc_bld_notify_datalen();

 size_t qcc_bld_status_datalen();

 size_t qcc_bld_restart_datalen();

 size_t qcc_bld_restart_ack_datalen();

 size_t qcc_bld_add_party_datalen();

 size_t qcc_bld_add_party_ack_datalen();

 size_t qcc_bld_party_alerting_datalen();

 size_t qcc_bld_add_party_reject_datalen();

 size_t qcc_bld_drop_party_datalen();

 size_t qcc_bld_drop_party_ack_datalen();

 size_t qcc_bld_leaf_setup_fail_datalen();

 size_t qcc_bld_leaf_setup_req_datalen();

 size_t qcc_max_bld_datalen();

 size_t qcc_ctl_len();

MT-LEVEL
 Safe.

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.
 The libatm.a library, which is located in /usr/lib, must be
 included at compile time as indicated in the synopsis.

DESCRIPTION
 These functions may be used to determine appropriate buffer
 sizes for the control and data buffers that are passed into
 qcc_bld(3) functions. For the data buffer, the
 qcc_bld_*_datalen() functions will return the maximum size
 of a particular message type. qcc_max_bld_datalen() returns
 the maximum size of all Q.2931 message types. A buffer
 allocated for this size will be able to hold any message

CODE EXAMPLE 2-4 qcc_len(3) Man Page (Continued)
46 SunATM Application Programmer’s Interface and Man Pages • August 1998

 type. For the control buffer, qcc_ctl_len() will return the
 required size.

SEE ALSO
 qcc_bld(3), qcc_parse(3), q93b(7)

 "ATM User-Network Interface Specification, V3.0," ATM Forum.
 "ATM User-Network Interface Specification, V3.1," ATM Forum.
 "ATM User-Network Interface Specification, V4.0," ATM Forum.

NOTES
 The additional support of the UNI 4.0 signalling specifica-
 tion includes the addition of several new message types
 which are not supported in the earlier versions of the UNI
 specification. These message types will be ignored by the
 q93b driver if used on an interface which is configured for
 UNI 3.0 or 3.1. The UNI 4.0-specific messages are Alerting,
 Notify, Party Alerting, Leaf Setup Fail, and Leaf Setup
 Request.

CODE EXAMPLE 2-4 qcc_len(3) Man Page (Continued)
Chapter 2 C Library Functions 47

qcc_pack(3)

CODE EXAMPLE 2-5 qcc_pack(3) Man Page

qcc_pack(3) C Library Functions qcc_pack(3)

NAME
 qcc_pack, qcc_pack_setup, qcc_pack_alerting,
 qcc_pack_call_proceeding, qcc_pack_connect,
 qcc_pack_connect_ack, qcc_pack_release,
 qcc_pack_release_complete, qcc_pack_status,
 qcc_pack_status_enq, qcc_pack_notify, qcc_pack_restart,
 qcc_pack_restart_ack, qcc_pack_add_party,
 qcc_pack_add_party_ack, qcc_pack_party_alerting,
 qcc_pack_add_party_reject, qcc_pack_drop_party,
 qcc_pack_drop_party_ack, qcc_pack_leaf_setup_fail,
 qcc_pack_leaf_setup_req - encode Q.2931 message structure
 information and pack into streams buffers

SYNOPSIS
 cc [flag ...] file ... -latm [library ...]

 #include <atm/types.h>
 #include <atm/qcc.h>

 int qcc_pack_setup(strbuf_t *ctlp, strbuf_t *datap,
 qcc_setup_t *msgp);

 int qcc_pack_alerting(strbuf_t *ctlp, strbuf_t *datap,
 qcc_alerting_t *msgp);

 int qcc_pack_call_proceeding(strbuf_t *ctlp,
 strbuf_t *datap, qcc_call_proc_t *msgp);

 int qcc_pack_connect(strbuf_t *ctlp, strbuf_t *datap,
 qcc_connect_t *msgp);

 int qcc_pack_connect_ack(strbuf_t *ctlp, strbuf_t *datap,
 qcc_connect_ack_t *msgp);

 int qcc_pack_release(strbuf_t *ctlp, strbuf_t *datap,
 qcc_release_t *msgp);
48 SunATM Application Programmer’s Interface and Man Pages • August 1998

 int qcc_pack_release_complete(strbuf_t *ctlp,
 strbuf_t *datap, qcc_release_complete_t *msgp);

 int qcc_pack_status_enq(strbuf_t *ctlp, strbuf_t *datap,
 qcc_status_enq_t *msgp);

 int qcc_pack_status(strbuf_t *ctlp, strbuf_t *datap,
 qcc_status_t *msgp);

 int qcc_pack_notify(strbuf_t *ctlp, strbuf_t *datap,
 qcc_notify_t *msgp);

 int qcc_pack_restart(strbuf_t *ctlp, strbuf_t *datap,
 qcc_restart_t *msgp);

 int qcc_pack_restart_ack(strbuf_t *ctlp, strbuf_t *datap,
 qcc_restart_ack_t *msgp);

 int qcc_pack_add_party(strbuf_t *ctlp, strbuf_t *datap,
 qcc_add_party_t *msgp);

 int qcc_pack_add_party_ack(strbuf_t *ctlp, strbuf_t *datap,
 qcc_add_party_ack_t *msgp);

 int qcc_pack_party_alerting(strbuf_t *ctlp, strbuf_t *datap,
 qcc_party_alerting_t *msgp);

 int qcc_pack_add_party_reject(strbuf_t *ctlp,
 strbuf_t *datap, qcc_add_party_reject_t *msgp);

 int qcc_pack_drop_party(strbuf_t *ctlp, strbuf_t *datap,
 qcc_drop_party_t *msgp);

 int qcc_pack_drop_party_ack(strbuf_t *ctlp, strbuf_t *datap,
 qcc_drop_party_ack_t *msgp);

 int qcc_pack_leaf_setup_fail(strbuf_t *ctlp,
 strbuf_t *datap, qcc_leaf_setup_fail_t *msgp);

 int qcc_pack_leaf_setup_req(strbuf_t *ctlp, strbuf_t *datap,
 qcc_leaf_setup_req_t *msgp);

MT-LEVEL
 Safe.

CODE EXAMPLE 2-5 qcc_pack(3) Man Page (Continued)
Chapter 2 C Library Functions 49

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.
 The libatm.a library, which is located in /usr/lib, must be
 included at compile time as indicated in the synopsis.

DESCRIPTION
 These functions take message structures as input and encode
 the information contained in the structure to create a
 Q.2931 message, which is then packed into streams buffer
 structures. The Q.2931 protocol is used for ATM signalling;
 a full description of the message format and use can be
 found in the ATM Forum's User Network Interface Specifica-
 tion, V3.0, V3.1, or V4.0. The encoded messages will conform
 to the version of the UNI Specification which is configured
 on the indicated interface. The functions may be used by
 processes which are running in user space.

 Message structures should be filled using the qcc_create(3)
 and qcc_set_ie(3) functions before calling qcc_pack func-
 tions.

 In general, no error checking is performed on the data that
 is passed in. Whatever data is contained in the message
 structure will be placed in the encoded message without
 examination.

 Each function requires 3 parameters: ctlp and datap, which
 are pointers to strbuf_t buffers; and msgp, which is a
 pointer to the appropriate message structure.

 ctlp and datap make up the control and data portions of the
 constructed message, corresponding to the M_PROTO and M_DATA
 blocks of the message that will be passed downstream. The
 buffer fields in the structures which ctlp and datap point
 to (ctlp->buf and datap->buf) must be allocated before cal-
 ling a qcc_pack_* function; size information may be obtained
 using the qcc_bld_*_datalen() functions (see qcc_len(3)).
 After successful return from a qcc_pack_* function, the mes-
 sage may be passed down an open stream using the putmsg(2)
 function, with ctlp and datap as the buffer parameters for
 putmsg.

RETURN VALUES
 All functions return 0 on success and -1 on error.

CODE EXAMPLE 2-5 qcc_pack(3) Man Page (Continued)
50 SunATM Application Programmer’s Interface and Man Pages • August 1998

EXAMPLES
 For an example using qcc_pack_setup, see the example in the
 qcc_create(3) man page.

SEE ALSO
 qcc_len(3), qcc_create(3), qcc_set_ie(3), qcc_util(3),
 q93b(7)

 "ATM User-Network Interface Specification, V3.0," ATM Forum.
 "ATM User-Network Interface Specification, V3.1," ATM Forum.
 "ATM User-Network Interface Specification, V4.0," ATM Forum.

NOTES
 This API is an interim solution until the ATM Forum has
 standardized an API. At that time, Sun will implement that
 API, and support for the Q.2931 Call Control library may not
 be continued.

 The additional support of the UNI 4.0 signalling specifica-
 tion includes the addition of several new message types
 which are not supported in the earlier versions of the UNI
 specification. These message types will be ignored by the
 q93b driver if used on an interface which is configured for
 UNI 3.0 or 3.1. The UNI 4.0-specific messages are Alerting,
 Notify, Party Alerting, Leaf Setup Fail, and Leaf Setup
 Request.

CODE EXAMPLE 2-5 qcc_pack(3) Man Page (Continued)
Chapter 2 C Library Functions 51

qcc_parse(3)

CODE EXAMPLE 2-6 qcc_parse(3) Man Page

qcc_parse(3) C Library Functions qcc_parse(3)

NAME
 qcc_parse, qcc_parse_setup, qcc_parse_alerting,
 qcc_parse_call_proceeding, qcc_parse_connect,
 qcc_parse_release, qcc_parse_release_complete,
 qcc_parse_status_enquiry, qcc_parse_notify,
 qcc_parse_status, qcc_parse_restart, qcc_parse_restart_ack,
 qcc_parse_add_party, qcc_parse_add_party_ack,
 qcc_parse_party_alerting, qcc_parse_add_party_reject,
 qcc_parse_drop_party, qcc_parse_drop_party_ack,
 qcc_parse_leaf_setup_fail, qcc_parse_leaf_setup_req,
 qcc_get_hdr - parse Q.2931 messages

SYNOPSIS
 cc [flag ...] file ... -latm [library ...]

 #include <atm/types.h>
 #include <atm/qcc.h>

 int qcc_parse_setup(strbuf_t *datap, int *vcip,
 int *forward_sdusizep, int *backward_sdusizep,
 atm_addr_t *src_addrp, atm_addr_t *dst_addrp,
 int *sapp, int *endpt_refp);

 int qcc_parse_alerting(strbuf_t *datap, int *vcip,
 int *endpt_refp);

 int qcc_parse_call_proceeding(strbuf_t *datap, int *vcip,
 int *endpt_refp);

 int qcc_parse_connect(strbuf_t *datap, int *vcip,
 int *forward_sdusizep, int *backward_sdusizep,
 int *endpt_refp);

 int qcc_parse_release(strbuf_t *datap, int *causep);

 int qcc_parse_release_complete(strbuf_t *datap,
52 SunATM Application Programmer’s Interface and Man Pages • August 1998

 int *causep);

 int qcc_parse_status_enquiry(strbuf_t *datap,
 int *endpt_refp);

 int qcc_parse_notify(strbuf_t *datap, int *contentlenp,
 u_char *contentp, int *endpt_refp);

 int qcc_parse_status(strbuf_t *datap, int *callstatep,
 int *causep, int *endpt_refp, int *endpt_statep);

 int qcc_parse_restart(strbuf_t *datap, int *vcip,
 int *rstallp);

 int qcc_parse_restart_ack(strbuf_t *datap, int *vcip,
 int *rstallp);

 int qcc_parse_add_party(strbuf_t *datap,
 int *forward_sdusize, int *backward_sdusize,
 atm_address_t *src_addrp, atm_address_t *dst_addrp,
 int *sapp, int *endpt_refp);

 int qcc_parse_add_party_ack(strbuf_t *datap,
 int *endpt_refp);

 int qcc_parse_party_alerting(strbuf_t *datap,
 int *endpt_refp);

 int qcc_parse_add_party_reject(strbuf_t *datap, int *causep,
 int *endpt_refp);

 int qcc_parse_drop_party(strbuf_t *datap, int *causep,
 int *endpt_refp);

 int qcc_parse_drop_party_ack(strbuf_t *datap, int *causep,
 int *endpt_refp);

 int qcc_parse_leaf_setup_fail(strbuf_t *datap, int *causep,
 atm_address_t *dst_addrp, int *leaf_nump);

 int qcc_parse_leaf_setup_req(strbuf_t *datap,
 atm_address_t *src_addrp, atm_address_t *dst_addrp,
 int *lij_callidp, int *leaf_nump);

 qcc_hdr_t *qcc_get_hdr(strbuf_t *ctlp);

CODE EXAMPLE 2-6 qcc_parse(3) Man Page (Continued)
Chapter 2 C Library Functions 53

MT-LEVEL
 Safe.

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.
 The libatm.a library, which is located in /usr/lib, must be
 included at compile time as indicated in the synopsis.

DESCRIPTION
 These functions parse the various messages that make up the
 Q.2931 protocol which is used for ATM signalling. A full
 description of the message format and use can be found in
 the ATM Forum's User Network Interface Specification, V3.0,
 V3.1, or V4.0. Messages conforming to both versions will be
 parsed. The functions may be used by processes which are
 running in user space.

 Each function requires a minimum of 1 parameter: datap,
 which is a pointer to a strbuf_t buffer, or in the case of
 qcc_get_hdr, ctlp, which is also a pointer to a strbuf_t
 buffer.

 datap is the data portion of a STREAMS message, correspond-
 ing to the M_DATA block of the message that is received from
 downstream. After receiving a message using the getmsg(2)
 function, the message type may be examined and an appropri-
 ate parsing routing called to extract information from the
 signalling message.

 ctlp is the control portion of a STREAMS message,
 corresponding to the M_PROTO block of the message that is
 received from downstream. After receiving a message using
 the getmsg(2) function, qcc_get_hdr may be used to extract
 the Q.2931 header structure from the control buffer received
 from getmsg(2). The Q.2931 header type, qcc_hdr_t, is
 defined in <atm/types.h>.

 Other parameters for each function depend on the type of
 information that is available in each message type. In all
 cases, certain IEs are examined in each message, as indi-
 cated below. If those IEs exist, the data that is expected
 from them is retrieved, but no error message is sent if they
 do not exist; the value of the parameter is set to -1 for
 any data that was expected from that particular IE. Also,
 IEs that are not expected are ignored. If the user wishes to

CODE EXAMPLE 2-6 qcc_parse(3) Man Page (Continued)
54 SunATM Application Programmer’s Interface and Man Pages • August 1998

 ignore any of the parameters of a parse function, passing in
 a NULL pointer for that parameter is allowed so that space
 need not be allocated for the unnecessary parameter.

 qcc_parse_setup() parses a setup message containing the fol-
 lowing Information Elements: AAL parameters, ATM user cell
 rate, broadband bearer capability, called party number, cal-
 ling party number, quality of service parameter, connection
 identifier, broadband higher layer information, and endpoint
 reference. The endpoint reference IE is only included in
 setup messages for point-to-multipoint calls, The following
 table matches the data that is retrieved from the message
 with the IE from which it is parsed.

 DATA RETRIEVED INFORMATION ELEMENT
 vci connection identifier
 forward sdusize AAL parameters
 backward sdusize AAL parameters
 source address calling party number
 destination address called party number
 sap broadband higher layer
 endpoint reference id endpoint reference

 qcc_parse_alerting() parses an alerting message. The alert-
 ing message is new in UNI 4.0; if received on an interface
 configured for uni 3.0 or 3.1, it will be dropped by the
 q93b driver. The IEs examined by this function are the con-
 nection identifier IE, from which the vci is parsed, and the
 endpoint reference IE, from which the endpt_ref parameter is
 parsed. The endpoint reference IE is only included in
 alerting messages for point-to-multipoint calls.

 qcc_parse_call_proceeding() parses a call proceeding message
 containing a connection identifier IE, which is used to set
 the value of vci, and an endpoint reference IE, setting the
 value of endpt_ref. The endpoint reference IE is only
 included in call proceeding messages for point-to-multipoint
 calls.

 qcc_parse_connect() parses a connect message containing an
 AAL parameters IE, setting the forward and backward sdusize
 values, a connection identifier IE, setting the value of
 vci, and an endpoint reference IE, setting the value of
 endpt_ref. The endpoint reference IE is only included in
 connect messages for point-to-multipoint calls.

CODE EXAMPLE 2-6 qcc_parse(3) Man Page (Continued)
Chapter 2 C Library Functions 55

 qcc_parse_release() parses a cause IE, setting the cause
 value. A listing of the possible values can be found in the
 <atm/qcc.h> header file. The same is true for
 qcc_parse_release_complete.

 qcc_parse_status_enquiry() parses a status enquiry message
 containing an endpoint reference IE, setting the value of
 endpt_ref. The endpoint reference IE is only included when
 enquiring about a party state in a point-to-multipoint call.

 qcc_parse_status() parses a status message. The IEs that
 are parsed are call state, cause, endpoint reference, and
 endpoint state. The call state and cause IEs are used to
 set the value of the parameters callstate and cause; possi-
 ble values for both parameters may be found in the
 <atm/qcc.h> header file. The endpoint reference and endpoint
 state IEs will be used to set the values of the endpt_ref
 and endpt_state parameters; they are included if an enquiry
 is made about a party state in a point-to-multipoint call or
 to report an error condition in a point-to-multipoint call.

 qcc_parse_notify() parses a notify message, which is only
 supported under UNI 4.0. The notification indicator and end-
 point reference IEs are parsed; from the notification indi-
 cator, the contentlenp and contentp parameters are filled
 in, with the maximum buffer size copied being 16 bytes. If
 the size contained in the message is greater than 16 bytes
 (QCC_MAX_NOTIFICATION_LEN, defined in <atm/qcc.h>), the
 first 16 bytes are copied, contentlenp is set to contain the
 copied length of 16 bytes, and the overflow flag is set.
 From the endpoint reference IE, endpt_refp is filled in.
 The endpoint reference IE is only present on point-to-
 multipoint calls.

 qcc_parse_restart() parses a restart message containing two
 possible IEs: connection identifier and restart indicator.
 The restart indicator IE is used to set the value of rstall;
 this parameter indicates whether a particular vci or all
 vcis are to be restarted (rstall = 1 implies all vcis,
 rstall = 0 implies a particular vci). The connection iden-
 tifier identifies the particular vci. In this case, the
 value of the parameter vci is set to 0 if there is no con-
 nection identifier IE in the message. The same format
 applies to the qcc_parse_restart_ack() function.

 qcc_parse_add_party() parses an add party message containing

CODE EXAMPLE 2-6 qcc_parse(3) Man Page (Continued)
56 SunATM Application Programmer’s Interface and Man Pages • August 1998

 several possible IEs. They include AAL parameters, calling
 party number, called party number, broadband higher layer
 information, and endpoint reference. The following table
 matches the data that is retrieved from the message with the
 IE from which it is parsed.

 DATA RETRIEVED INFORMATION ELEMENT
 forward sdusize AAL parameters
 backward sdusize AAL parameters
 source address calling party number
 destination address called party number
 sap broadband higher layer
 endpoint reference id endpoint reference

 qcc_parse_add_party_ack() extracts an endpoint reference
 value from the endpoint reference IE in an add party ack
 message.

 qcc_parse_party_alerting() extracts an endpoint reference
 value from the endpoint reference IE in a party alerting
 message. This message is specific to UNI 4.0.

 qcc_parse_add_party_reject() parses an add party reject mes-
 sage possibly containing a cause IE, from which it extracts
 the cause value, and an endpoint reference IE, from which it
 extracts the endpoint reference value. Possible cause values
 may be found in the header file <atm/qcc.h>.

 qcc_parse_drop_party() extracts an endpoint reference value
 and a cause value from those respective IEs in a drop party
 message. The same is true for qcc_parse_drop_party_ack().

 qcc_parse_leaf_setup_fail() extracts a cause value (defined
 in <atm/qcc.h>) from the cause IE; a destination address
 from the called number IE; and a leaf number from the leaf
 number IE. The leaf setup fail message is specific to UNI
 4.0.

 qcc_parse_leaf_setup_req() parses a leaf setup request mes-
 sage, which is specific to UNI 4.0. The calling number and
 called number IEs are parsed, yielding the source and desti-
 nation ATM addresses, respectively; in addition, the leaf
 initiated join call identifier IE is parsed to obtain the
 leaf initiated join callid, and the leaf number IE is parsed
 for the leaf number.

CODE EXAMPLE 2-6 qcc_parse(3) Man Page (Continued)
Chapter 2 C Library Functions 57

 qcc_get_hdr() extracts the Q.2931 header from the control
 buffer received in getmsg(2). A pointer to this buffer,
 ctlp, is passed in to the function, and a pointer to the
 header of type qcc_hdr_t is returned on success. On failure,
 a null pointer is returned.

RETURN VALUES
 All functions, with the exception of qcc_get_hdr, return 0
 on success and -1 on error. The return values for
 qcc_get_hdr are described above.

EXAMPLES
 The following code fragment receives and parses a setup mes-
 sage.

 #include <atm/types.h>
 #include <atm/qcc.h>
 #include <atm/limits.h>

 void
 wait_for_setup(int fd);
 {
 int vci;
 int forward_sdusize;
 int backward_sdusize;
 int sap;
 int flags = 0;
 atm_addr_t src_addr;
 atm_addr_t dst_addr;
 qcc_hdr_t *hdrp;
 struct strbuf ctl, data;
 char ctlbuf[QCC_MAX_CTL_LEN];
 char databuf[QCC_MAX_DATA_LEN];

 ctl.buf = ctlbuf;
 data.buf = databuf;
 ctl.len = data.len = 0;
 ctl.maxlen = QCC_MAX_CTL_LEN;
 data.maxlen = QCC_MAX_DATA_LEN;

 if (getmsg(fd, &ctl, &data, &flags) < 0) {
 perror("getmsg");
 exit (-1);
 }

 hdrp = qcc_get_hdr(&ctl);

CODE EXAMPLE 2-6 qcc_parse(3) Man Page (Continued)
58 SunATM Application Programmer’s Interface and Man Pages • August 1998

 if ((hdrp) && (hdrp->type == QCC_SETUP)) {
 if ((qcc_parse_setup(&data, &vci, &forward_sdusize,
 &backward_sdusize, &src_addr,
 &dst_addr, &sap, NULL)) < 0) {
 printf("parse_setup failed\n");
 exit (-1);
 }
 printf("parse_setup: vci = 0x%x, sap = 0x%x\n",
 vci, sap);
 }
 }

SEE ALSO
 qcc_bld(3), qcc_len(3), qcc_util(3), q93b(7)

 "ATM User-Network Interface Specification, V3.0," ATM Forum.
 "ATM User-Network Interface Specification, V3.1," ATM Forum.
 "ATM User-Network Interface Specification, V4.0," ATM Forum.

NOTES
 This API is an interim solution until the ATM Forum has
 standardized an API. At that time, Sun will implement that
 API, and support for the Q.2931 Call Control library may not
 be continued.

 The additional support of the UNI 4.0 signalling specifica-
 tion includes the addition of several new message types
 which are not supported in the earlier versions of the UNI
 specification. These message types, if received on an
 interface configured for UNI 3.0 or 3.1, will be discarded
 by the q93b driver and will not be sent up to the user
 applications. The UNI 4.0-specific messages are Alerting,
 Notify, Party Alerting, Leaf Setup Fail, and Leaf Setup Req,
 and are identified in the applicable function descriptions.

CODE EXAMPLE 2-6 qcc_parse(3) Man Page (Continued)
Chapter 2 C Library Functions 59

qcc_set_ie(3)

CODE EXAMPLE 2-7 qcc_set_ie(3) Man Page

qcc_set_ie(3) C Library Functions qcc_set_ie(3)

NAME
 qcc_set_ie - add or update Information Elements in a Q.2931
 message structure

SYNOPSIS
 cc [flag ...] file ... -latm [library ...]

 #include <atm/qcc.h>
 #include <atm/qcctypes.h>

 int qcc_set_ie(qcc_msg_t *msgp, qcc_ie_t *iep);

MT-LEVEL
 Safe.

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.
 The libatm.a library, which is located in /usr/lib, must be
 included at compile time as indicated in the synopsis.

DESCRIPTION
 This function adds a new or changes an existing Information
 Element in Q.2931 messages. The Q.2931 protocol is used for
 ATM signalling. A full description of the message format
 and use can be found in the ATM Forum's User Network Inter-
 face Specification, V3.0 or V3.1. The function may be used
 by processes which are running in user space.

 A message structure should first be created using the
 appropriate qcc_create(3) function call. IEs may then be
 added or changed using qcc_set_ie. When the message struc-
 ture has been completely specified, the corresponding
 qcc_pack(3) function should be called to translate the mes-
 sage structure into the correct encoded format, contained in
 streams buffers which may be passed to the putmsg(2) func-
60 SunATM Application Programmer’s Interface and Man Pages • August 1998

 tion.

 In general, no error checking is performed on the data that
 is passed in. Whatever data is passed in will be placed in
 the message that is built without examination. The user
 should insure that the values passed in in the IE structure
 conform with the UNI version (3.0 or 3.1) that is running.

 The function requires 2 parameters: msgp, which is a pointer
 to the appropriate message structure; and iep, which is a
 pointer to the new IE structure. The message and IE struc-
 ture types are defined in the <atm/qcctypes.h> header file.

 The structure to which msgp points must be allocated by the
 calling user. The structure pointed to by iep should have
 the desired values filled in to its fields, and the "valid"
 field should be set to 1. A value of 0 in the "valid" field
 indicates that the IE should not be included in the message.

 The fields of each Information Element structure and their
 interpretations are described in the following paragraphs.
 Possible values for IE fields are defined in the
 <atm/qccdefs.h> header file.

 qcc_aal_params_t
 Currently, the only ATM Adaptation Layer supported on
 SunATM products is AAL 5. However, to allow for future
 changes, the aal parameters ie type consists of a field
 identifying the aal and a union of structures for each
 aal, called "info." The aal 5 structure contains 4
 fields: forward_max and backward_max for the SDU sizes,
 mode, and sscs_type. The sscs_type is only valid in UNI
 3.0; therefore, a value of 0 for sscs_type indicates
 that that field should not be included.

 qcc_traffic_desc_t
 The ATM Traffic Descriptor IE (called User Cell Rate in
 UNI 3.0) contains a large set of traffic parameter
 values. Two parameters do not have numeric values
 associated; they are either included or not. The are
 represented by two fields, best_effort and tagging,
 that are either set to 1 if the parameter is to be
 included or set to 0 if it is not. The remaining
 parameters all have numeric values associated with
 them. Since 0 is a valid value for these parameters,
 an additional field, params, is included in the IE

CODE EXAMPLE 2-7 qcc_set_ie(3) Man Page (Continued)
Chapter 2 C Library Functions 61

 structure which indicates which of these should be
 included in the message. Each parameter has a
 corresponding bit in the params field, which, when set,
 indicates that the parameter should be included. Flags
 are defined for this field in the <atm/qccdefs.h>
 header file.

 qcc_bbc_t
 The Broadband Bearer Capability IE fields correspond
 directly to the options for this IE. The fields are:

 class Bearer Class
 type Traffic Type
 timing Timing Requirements
 clipping Susceptibility to Clipping
 userplane User plane connection configuration

 qcc_bhli_t
 The Broadband High Layer Information IE structure con-
 tains 3 fields which specify the IE contents. They are
 type, which identifies the High Layer Information Type;
 infolen, which indicates the number of octets of high
 layer information is to be included in the message (the
 maximum is 8 octets), and finally an array of bytes
 called info which contains the information octets,
 called info. The octets should be placed in the first
 infolen elements of the array.

 qcc_blli_t
 The Broadband Low Layer Information IE contains 2
 fields to specify the IE contents. The first, layer,
 is an integer which specifies which layer protocol is
 being specified, layer 1, 2, or 3. The second is a
 union, with unique structures for layer 2 and layer 3.
 For both layer 2 and layer 3 IEs, the protocol value
 will be examined and the correct coding format will be
 used for that protocol. Therefore, only the applicable
 fields from the layer structure will be used for the
 specified protocol type.

 Layer 2 fields:
 protocol User information layer 2 protocol
 mode Mode of operation
 windowsize Window size (k)
 userspec User specified layer 2 protocol
 information

CODE EXAMPLE 2-7 qcc_set_ie(3) Man Page (Continued)
62 SunATM Application Programmer’s Interface and Man Pages • August 1998

 Layer 3 fields:
 protocol User information layer 3 protocol
 mode Mode of operation
 pktsize Default packet size
 windowsize Packet window size
 userspec User specified layer 3 protocol
 information
 ipi 8-bit Initial Protocol Identifier for
 ISO/IEC TR 9577
 oui 24-bit organization unique identifier
 for ISO/IEC TR 9577 and IEEE 802.1 SNAP
 pid 16-bit protocol identifier for ISO/IEC
 TR 9577 and IEEE 802.1 SNAP

 qcc_call_state_t
 There is only one informational field in the Call State
 IE structure: state, specifying the call state.

 qcc_called_num_t
 The Called Party Number IE structure contains a planid
 field, which specifies the Addressing/Numbering Plan
 Identification. The Type of Number is based on this
 value as well. There is also an address field, to
 specify a 20-byte address.

 qcc_called_subaddr_t
 The Called Party Subaddress IE structure contains a
 type field, which specifies the Type of Subaddress, and
 a 20-byte address field.

 qcc_calling_num_t
 In addition to the 20-byte address field, the Calling
 Party Number IE structure contains several fields to
 describe the intended interpretation of the address.
 They are:

 planid Addressing/Numbering Plan
 Identification
 presentation Presentation indicator
 screening Screening indicator

 qcc_calling_subaddr_t
 The structure for the Calling Party Subaddress IE is

CODE EXAMPLE 2-7 qcc_set_ie(3) Man Page (Continued)
Chapter 2 C Library Functions 63

 identical to that of the Called Party Subaddress IE.

 qcc_cause_t
 The Cause IE structure contains a location field and a
 cause field. In addition, it contains an array of 28
 octets, diag, for diagnostic information. The number of
 diagnostic octets included in the array should be
 specified in the diaglen field.

 qcc_conn_id_t
 The Connection Identifier IE structure contains a vpci
 and a vci field. Note that currently, the SunATM
 software only supports vpci 0, although any value may
 be placed in the vpci field and will be encoded into
 the message.

 qcc_qos_t
 The Quality of Service IE has 3 informational fields:
 codingstd, specifying the Coding Standard value; and
 forward_class and backward_class, specifying the For-
 ward and Backward QoS Class.

 qcc_restart_ind_t
 There is only one informational field in the Restart
 Indicator IE structure: class, whcih specifies the
 class of the facility to be restarted.

 qcc_transit_t
 The Transit Network Selection IE structure contains an
 array of up to four octets to specify the Carrier Iden-
 tification Code value.

 qcc_endpt_ref_t
 The Endpoint Reference IE structure contains an
 endptref field, which specifies the endpoint reference
 value.

 qcc_endpt_state_t
 The Endpoint State IE structure contains a state field,
 which identifies the endpoint state value.

RETURN VALUES
 The function returns 0 on success and -1 on error.

EXAMPLES
 See the Example section of the qcc_create(3) man page for an

CODE EXAMPLE 2-7 qcc_set_ie(3) Man Page (Continued)
64 SunATM Application Programmer’s Interface and Man Pages • August 1998

 example using qcc_set_ie.

SEE ALSO
 qcc_create(3), qcc_pack(3), qcc_unpack(3), qcc_parse(3),
 qcc_util(3), q93b(7)

 "ATM User-Network Interface Specification, V3.0," ATM Forum.

NOTES
 This API is an interim solution until the ATM Forum has
 standardized an API. At that time, Sun will implement that
 API, and support for the Q.2931 Call Control library may not
 be continued.

CODE EXAMPLE 2-7 qcc_set_ie(3) Man Page (Continued)
Chapter 2 C Library Functions 65

qcc_unpack(3)

CODE EXAMPLE 2-8 qcc_unpack(3) Man Page

qcc_unpack(3) C Library Functions qcc_unpack(3)

NAME
 qcc_unpack, qcc_unpack_setup, qcc_unpack_alerting,
 qcc_unpack_call_proceeding, qcc_unpack_connect,
 qcc_unpack_connect_ack, qcc_unpack_release,
 qcc_unpack_release_complete, qcc_unpack_status,
 qcc_unpack_status_enq, qcc_unpack_notify,
 qcc_unpack_restart, qcc_unpack_restart_ack,
 qcc_unpack_add_party, qcc_unpack_add_party_ack,
 qcc_unpack_party_alerting, qcc_unpack_add_party_reject,
 qcc_unpack_drop_party, qcc_unpack_drop_party_ack,
 qcc_unpack_leaf_setup_fail, qcc_unpack_leaf_setup_req -
 decode Q.2931 messages and unpack into message structures

SYNOPSIS
 cc [flag ...] file ... -latm [library ...]

 #include <atm/types.h>
 #include <atm/qcc.h>

 int qcc_unpack_setup(qcc_setup_t *msgp, strbuf_t *ctlp,
 strbuf_t *datap);

 int qcc_unpack_alerting(qcc_alerting *msgp, strbuf_t *ctlp,
 strbuf_t *datap);

 int qcc_unpack_call_proceeding(qcc_call_proc_t *msgp,
 strbuf_t *ctlp, strbuf_t *datap);

 int qcc_unpack_connect(qcc_connect_t *msgp, strbuf_t *ctlp,
 strbuf_t *datap);

 int qcc_unpack_connect_ack(qcc_connect_ack_t *msgp,
 strbuf_t *ctlp, strbuf_t *datap);

 int qcc_unpack_release(qcc_release_t *msgp, strbuf_t *ctlp,
 strbuf_t *datap);
66 SunATM Application Programmer’s Interface and Man Pages • August 1998

 int qcc_unpack_release_complete(qcc_release_complete_t *
 msgp, strbuf_t *ctlp, strbuf_t *datap);

 int qcc_unpack_status_enq(qcc_status_enq_t *msgp,
 strbuf_t *ctlp, strbuf_t *datap);

 int qcc_unpack_status(qcc_status_t *msgp, strbuf_t *ctlp,
 strbuf_t *datap);

 int qcc_unpack_notify(qcc_notify_t *msgp, strbuf_t *ctlp,
 strbuf_t *datap);

 int qcc_unpack_restart(qcc_restart_t *msgp, strbuf_t *ctlp,
 strbuf_t *datap);

 int qcc_unpack_restart_ack(qcc_restart_ack_t *msgp,
 strbuf_t *ctlp, strbuf_t *datap);

 int qcc_unpack_add_party(qcc_add_party_t *msgp,
 strbuf_t *ctlp, strbuf_t *datap);

 int qcc_unpack_add_party_ack(qcc_add_party_ack_t *msgp,
 strbuf_t *ctlp, strbuf_t *datap);

 int qcc_unpack_party_alerting(qcc_party_alerting_t *msgp,
 strbuf_t *ctlp, strbuf_t *datap);

 int qcc_unpack_add_party_reject(qcc_add_party_reject_t *
 msgp, strbuf_t *ctlp, strbuf_t *datap);

 int qcc_unpack_drop_party(qcc_drop_party_t *msgp,
 strbuf_t *ctlp, strbuf_t *datap);

 int qcc_unpack_drop_party_ack(qcc_drop_party_ack_t *msgp,
 strbuf_t *ctlp, strbuf_t *datap);

 int qcc_unpack_leaf_setup_fail(qcc_leaf_setup_fail_t *msgp,
 strbuf_t *ctlp, strbuf_t *datap);

 int qcc_unpack_leaf_setup_req(qcc_leaf_setup_req_t *msgp,
 strbuf_t *ctlp, strbuf_t *datap);

MT-LEVEL
 Safe.

CODE EXAMPLE 2-8 qcc_unpack(3) Man Page (Continued)
Chapter 2 C Library Functions 67

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.
 The libatm.a library, which is located in /usr/lib, must be
 included at compile time as indicated in the synopsis.

DESCRIPTION
 These functions take streams buffers containing encoded
 Q.2931 messages as input and decode the information, placing
 the extracted values into the appropriate message structure.
 The Q.2931 protocol is used for ATM signalling; a full
 description of the message format and use can be found in
 the ATM Forum's User Network Interface Specification, V3.0,
 V3.1, or V4.0. Messages conforming to both versions of the
 UNI standard will be decoded. The functions may be used by
 processes which are running in user space.

 In general, no error checking is performed on the data that
 is extracted from the message. Whatever data is found will
 be placed in the message structure without examination.

 Each function requires 3 parameters: msgp, which is a
 pointer to the appropriate message structure; and ctlp and
 datap, which are pointers to strbuf_t buffers.

 ctlp is the control portion of a received message,
 corresponding to the M_CTL block of the message that was
 received from downstream. datap is the data portion of the
 message, corresponding to the M_DATA block.

 The message structure pointed to by msgp should be allocated
 by the user program which calls a qcc_unpack function.

RETURN VALUES
 All functions return 0 on success and -1 on error. The
 returned message structure contains an entry for each possi-
 ble Information Element for that message type; if an Infor-
 mation Element is found in the received message, the "valid"
 field for that IE will be set to 1. If the IE was not
 found, the "valid" field will be 0.

EXAMPLES
 The following code fragment receives a setup message and
 prints elements in the message structure.

 #include <atm/types.h>

CODE EXAMPLE 2-8 qcc_unpack(3) Man Page (Continued)
68 SunATM Application Programmer’s Interface and Man Pages • August 1998

 #include <atm/qcc.h>
 #include <atm/limits.h>

 void
 wait_for_setup(int fd);
 {
 int flags = 0;
 int vci = -1;
 int sap = -1;
 qcc_hdr_t *hdrp;
 qcc_setup_t setup;
 struct strbuf ctl, data;
 char ctlbuf[QCC_MAX_CTL_LEN];
 char databuf[QCC_MAX_DATA_LEN];

 ctl.buf = ctlbuf;
 data.buf = databuf;
 ctl.len = data.len = 0;
 ctl.maxlen = QCC_MAX_CTL_LEN;
 data.maxlen = QCC_MAX_DATA_LEN;

 if (getmsg(fd, &ctl, &data, &flags) < 0) {
 perror("getmsg");
 exit (-1);
 }

 hdrp = qcc_get_hdr(&ctl);
 if ((hdrp) && (hdrp->type == QCC_SETUP)) {
 if ((qcc_unpack_setup(&setup, &ctl, &data)) < 0) {
 printf("parse_setup failed\n");
 exit (-1);
 }
 if (setup.conn_id.valid)
 vci = setup.conn_id.vci;
 if (setup.bhli.valid)
 memcpy((caddr_t) &sap,
 (caddr_t) setup.bhli.info, 4);

 printf("parse_setup: vci=0x%x, sap=0x%x\n",
 vci, sap);
 }
 }

SEE ALSO
 qcc_len(3), qcc_create(3), qcc_set_ie(3), qcc_pack(3),
 qcc_util(3), q93b(7)

CODE EXAMPLE 2-8 qcc_unpack(3) Man Page (Continued)
Chapter 2 C Library Functions 69

 "ATM User-Network Interface Specification, V3.0," ATM Forum.
 "ATM User-Network Interface Specification, V3.1," ATM Forum.
 "ATM User-Network Interface Specification, V4.0," ATM Forum.

NOTES
 This API is an interim solution until the ATM Forum has
 standardized an API. At that time, Sun will implement that
 API, and support for the Q.2931 Call Control library may not
 be continued.

 The additional support of the UNI 4.0 signalling specifica-
 tion includes the addition of several new message types
 which are not supported in the earlier versions of the UNI
 specification. These message types will be ignored by the
 q93b driver if used on an interface which is configured for
 UNI 3.0 or 3.1. The UNI 4.0-specific messages are Alerting,
 Notify, Party Alerting, Leaf Setup Fail, and Leaf Setup
 Request.

CODE EXAMPLE 2-8 qcc_unpack(3) Man Page (Continued)
70 SunATM Application Programmer’s Interface and Man Pages • August 1998

qcc_util(3)

CODE EXAMPLE 2-9 qcc_util(3) Man Page

qcc_util(3) C Library Functions qcc_util(3)

NAME
 qcc_util, q_ioc_bind, q_ioc_bind_lijid, q_ioc_unbind_lijid -
 functional interfaces to q93b driver ioctls

SYNOPSIS
 cc [flag ...] file ... -latm [library ...]

 #include <atm/qcc.h>

 int q_ioc_bind(int fd, int sap);

 int q_ioc_bind_lijid(int fd, int lijid);

 int q_ioc_unbind_lijid(int fd, int lijid);

MT-LEVEL
 Safe.

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.
 The libatm.a library, which is located in /usr/lib, must be
 included at compile time as indicated in the synopsis.

DESCRIPTION
 These functions may be used to provide information about the
 user application to the q93b driver.

 Before using these functions, a stream must be opened to the
 q93b driver, using the open(2) system call.

 q_ioc_bind() binds a service access point, sap, to an opened
 stream, specified by its file descriptor, fd. This step is
 required so that incoming SETUP messages are directed to the
 correct application by the q93b driver. Q.2931 SETUP mes-
 sages which are to be received by the application program
Chapter 2 C Library Functions 71

 must contain a Broadband Higher Layer Information IE identi-
 fying the sap to which the message should be directed.

 q_ioc_bind_lijid() binds a leaf-initiated join id, lijid, to
 an opened stream, specified by its file descriptor, fd.
 This functionality is in support of a new feature in UNI
 4.0, which allows endpoints to request to be added to
 specific point-to-multipoint calls, identified by the leaf-
 initiated join id. An application that wishes to be the
 root of a point-to-multipoint call which supports leaf-
 initiated join must associate its q93b stream with the
 call's leaf-initiated join id in one of two ways: by setting
 up a call in which the leaf-initiated join id is specified,
 or by calling this function.

 q_ioc_unbind_lijid() breaks the association between a leaf-
 initiated join id, lijid, and a stream, specified by its
 file descriptor, fd.

RETURN VALUES
 The functions return 0 on success and -1 on error.

EXAMPLES
 The following example opens a stream to q93b and binds it to
 sap 0x100.

 #include <atm/qcc.h>

 setup_q93b();
 {
 char qdriver[] = "/dev/q93b";
 int qfd;
 int sap = 0x100;

 if ((qfd = open(qdriver, O_RDWR, 0)) < 0) {
 perror("open");
 exit(-1);
 }

 if (q_ioc_bind(qfd, sap) < 0) {
 perror("q_ioc_bind");
 exit(-1);
 }
 }

SEE ALSO

CODE EXAMPLE 2-9 qcc_util(3) Man Page (Continued)
72 SunATM Application Programmer’s Interface and Man Pages • August 1998

 atm_util(3), qcc_bld(3), qcc_create(3), qcc_len(3),
 qcc_pack(3), qcc_parse(3), qcc_unpack(3), qcc_bld(9F),
 qcc_create(9F), qcc_len(9F), qcc_pack(9F), qcc_parse(9F),
 qcc_unpack(9F), q93b(7), ba(7)

CODE EXAMPLE 2-9 qcc_util(3) Man Page (Continued)
Chapter 2 C Library Functions 73

74 SunATM Application Programmer’s Interface and Man Pages • August 1998

CHAPTER 3

File Formats

The man pages in this chapter describe the configuration files in the SunATM

software.

TABLE 3-1 File Format Man Pages

Man Page Description Page Number

aarconfig(4) ATM Address Resolver configuration file page 76

acl.cfg(4) SunATM SNMP access-privileges database group

configuration file

page 85

agent.cnf(4) SunATM SNMP agent configuration file page 87

atmconfig(4) SunATM interface configuration file page 89

context.cfg(4) SunATM SNMP contexts database group configuration file page 91

ilmi.cnf(4) SunATM SNMP agent configuration file for ilmid(1M) page 94

laneconfig(4) LAN Emulation configuration file page 95

mib.rt(4) SunATM SNMP agent utility file page 103

party.cfg(4) SunATM SNMP party database group configuration file page 105

view.cfg(4) SunATM SNMP MIB-view database group configuration file page 108
75

aarconfig(4)

CODE EXAMPLE 3-1 aarconfig(4) Man Page

aarconfig(4) File Formats aarconfig(4)

NAME
 aarconfig - ATM Address Resolver configuration file

SYNOPSIS
 /etc/aarconfig

DESCRIPTION
 The aarconfig file is a local database that associates ATM
 addresses with IP addresses. The file is used by the ATM
 Address Resolution setup program, aarsetup(1M), which
 manages the downloading of local information into the ker-
 nel. If changes are made to the aarconfig file, aarsetup(1M)
 must be rerun for the changes to take effect.

 If an ATM ARP server does not exist on a subnet, an ATM/IP
 address pair must appear in each system's local aarconfig
 file in order for the system to communicate with that node.

 An ATM ARP server solves the problem of having to explicitly
 enter ATM/IP address pairs into a table at each node. When
 client interfaces come up, they register with the ARP
 server, which then sends an inverse ARP request to the
 client. The client responds with its IP address; the server
 then enters the information into its kernel-resident table.
 Clients may then resolve addresses with the server, using
 ARP requests. If an ATM ARP server is being used in a sub-
 net, clients only need local information and server informa-
 tion in their own configuration files.

 The format of an entry in aarconfig is:

 Interface Hostname ATM-Address VC Flags

 Items are separated by any number of SPACE and/or TAB char-
 acters. The first item is the physical interface on the
 local system which is attached to the subnet for this entry.
76 SunATM Application Programmer’s Interface and Man Pages • August 1998

 It should be of the form "device unit;" an example is ba0.
 Hostname can be an IP hostname or address in the standard
 dot notation. The ATM address is a 20 byte address; its
 format is hexadecimal bytes (2 characters) separated by one
 or more colons (additional colons may be used for readabil-
 ity, if desired). The VC field specifies the virtual con-
 nection identifier (VCI) for the connection to the host
 identified by this entry. The flag field gives information
 regarding the type of entry. Comment lines are allowed;
 they are indicated by a `#' at the beginning of the line.

 ATM addresses are 20 bytes. The first 13 bytes (called the
 prefix) are used by the switch for routing purposes; in gen-
 eral, they will be the same for addresses connected to the
 same switch. The prefix is assigned by the switch and will
 be sent to the host during address registration (performed
 by ILMI) when the ATM interface on the host system is con-
 figured. The predefined variable `prefix' (see Variables
 section below) will be assigned the value received by the
 host from the switch at configuration time; this value may
 be referenced in the aarconfig file as `$prefix'.

 The next 6 bytes (called the ESI) are used to uniquely iden-
 tify a host system; in most of the examples given, the
 system's hardware MAC address is used. The MAC address may
 be referenced in the aarconfig file as `$mac'. The final
 byte is a selector byte that may be used by the host for
 internal routing of data. Use of the predefined variable
 `sel' will guarantee that an appropriate value for the given
 interface will be used.

 Depending on the entry type, as determined by the flags
 field, some or all of the fields are required. All entries
 must have an interface and flags field; the host, atm
 address, and VC field vary depending on the entry type. An
 entry should never have both an ATM address field and a VC
 field; an ATM address indicates that Switched Virtual Cir-
 cuits (SVCs) should be used for connections, and a VC indi-
 cates that Permanent Virtual Circuits (PVCs) should be used.
 The following section defines each flag type, and lists
 which of the host, atm address, and VC fields are required
 for that type. An empty field should be indicated by a
 hyphen `-'.

OPTIONS
 Variables

CODE EXAMPLE 3-1 aarconfig(4) Man Page (Continued)
Chapter 3 File Formats 77

 Because the prefix portion of an ATM address specifies the
 ATM switch, a number of hosts specified in an aarconfig file
 may have ATM addresses who share the same prefix. To sim-
 plify setting up the aarconfig file, one can define vari-
 ables that contain part of an ATM address. A variable's name
 is an identifier consisting of a collection of no more than
 32 letters, digits, and underscores (`_'). The value associ-
 ated with the variable is denoted by a dollar sign (`$')
 followed immediately by the variable name.

 Variables may only be used in the ATM address field. They
 may not be used in any of the other fields in an entry.

 Multiple variables may be concatenated to represent a single
 ATM address expression. A colon must be used to concatenate
 the variables. Thus, if one variable, v1, is set to `11:22'
 and another, v2, is set to `33:44', the sequence $v1:$v2
 represents `11:22:33:44'. Hexadecimal numbers may also be
 included with variables in the expression. The expression
 `45:$v1:$v2' would have the value `45:11:22:33:44'.

 Variables are defined in the aarconfig file according to the
 following format:

 set VARIABLE = EXPRESSION

 where VARIABLE is the name of a variable and EXPRESSION is
 an expression concatenating one- or two-digit hexadecimal
 numbers and/or the values of variables that have been previ-
 ously defined. The equal sign is optional, but the variable
 and expression must be separated by either whitespace
 (spaces or tabs), an equal sign, or both.

 Several predefined variables are built in to the SunATM
 software. They include:

 prefix the 13-byte prefix associated with the local
 switch.

 mac the 6-byte MAC address associated with the
 local host or interface.

 sel the default 1-byte Selector for the local
 interface.

 macsel the concatenation of $mac:$sel.

CODE EXAMPLE 3-1 aarconfig(4) Man Page (Continued)
78 SunATM Application Programmer’s Interface and Man Pages • August 1998

 myaddress the concatenation of $prefix:$mac:$sel, result-
 ing in the default address for the local inter-
 face.

 anymac a wild card representing any 6-byte ESI. Should
 only be used in `a' entries.

 anymacsel a wild card representing any 7-byte ESI and
 Selector combination. Should only be used in
 `a' entries.

 sunmacselN the concatenation of one of a series of
 reserved MAC addresses and $sel to create a
 block of reserved 7-byte ESI and Selector com-
 binations which may be used in ATM ARP server
 addresses. N should be a decimal number in the
 range 0 - 199.

 localswitch_server
 the concatenation of $prefix, a unique reserved
 MAC address, and $sel. When used as a server
 address, restricts server access to clients
 connected to the local switch only.

 In most network configurations, the ATM address assigned to
 the local interface will be myaddress; using this variable
 in the `l' entry makes it possible to use identical aarcon-
 fig files on all clients using a given server.

 The sunmacselN variables may be used to create well-known
 server addresses which are not bound to a particular system.
 The prefix portion is not included so the addresses may be
 used on systems connected to different switches. The ESI
 portion of a sunmacselN variable is one of a range of
 reserved MAC addresses. The base address is
 08:00:20:75:48:10; to calculate the MAC address for any sun-
 macselN variable, simply add the value of N (converted to a
 hexadecimal number) to the base address. For example, the
 ESI portion of sunmacsel20 would be 08:00:20:75:48:10 + 0x14
 = 08:00:20:75:48:24.

 Finally, localswitch_server may be used as a well-known
 server address in an isolated net, that is, one in which
 server access is restricted to clients on the local switch.
 Thus any host with a network prefix other than that of the

CODE EXAMPLE 3-1 aarconfig(4) Man Page (Continued)
Chapter 3 File Formats 79

 local switch will be refused a connection to the ARP server
 if the ARP server's address is localswitch_server. The ESI
 portion of localswitch_server is the reserved MAC address
 08:00:20:75:48:08.

 Several rules apply to the use of variables in the aarconfig
 file:

 Two variables cannot follow each other in an expression
 without an intervening colon. Thus, $v1:$v2 is legal
 whereas $v1$v2 is not.

 Fields in each line in the aarconfig file are separated
 by whitespace. Therefore variables should not be
 separated from the rest of an ATM address with whi-
 tespace. For example, $v1: $v2 is illegal.

 Once a variable is defined by a set command, it may not
 be redefined later in the aarconfig file.

 The reserved variable names may not be set. They
 include `prefix', `mac', `sel', `macsel', `myaddress',
 `anymac', `anymacsel', `sunmacselN' (where N is a
 number between 0 and 199), and `localswitch_server'.

 Basic Configuration Flags
 l This flag identifies an entry for a local interface on
 an ARP client or system that does not use an ARP
 server.

 If SVCs are to be used at all on this interface, the
 ATM address is required; an empty ATM address field
 indicates PVCs only on this interface. The host should
 not be entered; the system will locate the hostname
 assigned to this physical interface. No VC should be
 entered either, since there will typically be multiple
 VCs over the local interface.

 L This flag identifies an entry for a local interface on
 an ARP server.

 The ATM address is required. No host or VC should be
 entered.

 t Adds this host to the local table.

CODE EXAMPLE 3-1 aarconfig(4) Man Page (Continued)
80 SunATM Application Programmer’s Interface and Man Pages • August 1998

 The host is required; either an ATM address or a VC
 field is required, depending on whether a SVC or a PVC
 connection is desired. If a mixture of SVC and PVC
 connections is desired, both an ATM address and a VC
 are allowed.

 s Specifies a connection to the ATM ARP Server. This
 identifies to the ARP client where it should make ARP
 (address resolution) requests for addresses that are
 not in its local table.

 Either the atm address in the case of a SVC connection,
 or the VC in the case of a PVC connection, should
 appear (but not both); the host should not appear.

 The required, optional, and illegal fields for the basic
 flag types are summarized in the following table:

 Interface Host ATM-Addr VCI FLAGS

 required illegal optional illegal l
 required illegal required illegal L
 required required or or* t
 required illegal xor xor** s

 * one or the other is required, but both are also legal.
 ** one or the other is required; both are illegal.

 Advanced Configuration Flags
 The basic configuration flags are sufficient for most stan-
 dard network configurations. However, since networks are
 rarely homogeneous, there may be cases in which, for intero-
 perability purposes, a network must be configured with dif-
 ferent characteristics than the defaults that are built into
 the SunATM adapter, or with unusual addressing schemes that
 require more than the basic configuration flags described
 above. The following flags may also be used in the aarcon-
 fig file to alter the default behavior when necessary.

 a On an ARP server, represents an ATM address that may
 have access to this ARP server. If no `a' entries
 appear in the server's aarconfig file, any ATM host may
 register with the ARP server. Including `a' entries
 restricts access to known hosts. The wildcard variables
 described in the variable section (`anymac' and

CODE EXAMPLE 3-1 aarconfig(4) Man Page (Continued)
Chapter 3 File Formats 81

 `anymacsel') may be used to specify groups of hosts
 connected to a common switch to be allowed access in a
 single entry, or specific addresses may listed. NOTE:
 If this value is changed, only a reboot will ensure
 that old addresses are not being cached.

 The host and VC should not appear; an ATM address is
 required.

 m Specifies manual address configuration mode. This indi-
 cates to the system that ILMI is not being used on the
 specified interface. Entries for non-ILMI interfaces
 may not use the $prefix variable, or variables which
 make use of $prefix (such as $myaddress and
 $localswitch_server), since ilmid will not be able to
 provide this information.

 Only the interface is required. The MAC address, ATM
 address, and VCI should not appear.

 The required, optional, and illegal fields for the advanced
 flag types are summarized in the following table:

 Interface Host ATM-Addr VCI FLAGS

 required illegal required illegal a
 required illegal illegal illegal m

EXAMPLES
 The following lines show the simplest case aarconfig files
 for a single-switch network in which ARP clients use the
 default address for their interface and all hosts are
 allowed access to the server:

 in the client's aarconfig:

 ba0 - $myaddress - l
 ba0 - $localswitch_server - s

 in the server's aarconfig:

 ba0 - $localswitch_server - L

CODE EXAMPLE 3-1 aarconfig(4) Man Page (Continued)
82 SunATM Application Programmer’s Interface and Man Pages • August 1998

 The following line defines the local interface for an ARP
 client which does not use the local MAC address for its ESI
 on its ba1 port:

 ba1 - $prefix:08:00:20:1a:e1:53:$sel - l

 The following lines would be placed in the aarconfig files
 on two machines connected back-to-back over PVC.

 in the aarconfig of host1:

 ba0 - - - l
 ba0 host2 - 100 t

 in the aarconfig of host2:

 ba0 - - - l
 ba0 host1 - 100 t

 The following lines would be placed in the aarconfig file on
 a server to restrict access to those hosts connected to the
 local switch or an explicitly identified remote switch. The
 server is using a predefined server address.

 set remote = 45:00:00:00:00:00:00:00:0f:01:02:03:04

 ba0 - $prefix:$sunmacsel0 - L

 ba0 - $prefix:$anymacsel - a

 ba0 - $remote:$anymacsel - a

SEE ALSO
 aarsetup(1M)

 M. Laubach, RFC 1577: Classical IP and ARP over ATM, Network
 Working Group.

NOTES
 In the current implementation, the entries must be grouped
 by type and in a particular order: the local (l or L) entry
 should be first, then the table (t) entries (if used), and
 finally server (s) entries. Other flag types may appear in
 any order. Also, the ordering need only be maintained among

CODE EXAMPLE 3-1 aarconfig(4) Man Page (Continued)
Chapter 3 File Formats 83

 entries for each physical interface; for example, all of the
 ba0 entries may appear first, and then all of the ba0
 entries. This requirement will likely be relaxed in future
 releases.

 Each entry should be entered on one line with no breaks or
 carriage returns.

CODE EXAMPLE 3-1 aarconfig(4) Man Page (Continued)
84 SunATM Application Programmer’s Interface and Man Pages • August 1998

acl.cfg(4)

CODE EXAMPLE 3-2 acl.cfg(4) Man Page

acl.cfg(4) File Formats acl.cfg(4)

NAME
 acl.cfg - SunATM SNMP access-privileges database group con-
 figuration file

SYNOPSIS
 /etc/opt/SUNWatm/snmp/acl.cfg

DESCRIPTION
 The acl.cfg file contains the access-privileges database for
 the SunATM SNMP agent, amtsnmpd(1M). The entries contained
 in this file are the conceptual rows of the aclTable (RFC
 1447).

 Each conceptual row contains the following entries:

 aclTarget The SNMPv2 party which is the target of an
 access control policy.

 aclSubject The SNMPv2 party which is the subject of an
 access control policy.

 aclResources The SNMPv2 context in an access control pol-
 icy.

 aclPrivileges An integer in the range of 0-255 which
 specify what management operations a particu-
 lar target party may perform with respect to
 a particular context when requested by a par-
 ticular subject party. These privileges are
 specified as a sum of values, where each
 value specifies a SNMPv2 PDU type by which
 the subject party may request a permitted
 operation.

 aclStorageType The storage type for this conceptual row in
 the aclTable. Takes on the values 1-4.
Chapter 3 File Formats 85

 aclStatus The status of this conceptual row in the
 aclTable. Takes on the values valid (1) and
 invalid (2).

 Each entry in the file is represented by 5 lines.

 aclTarget
 aclSubject
 aclResources
 aclStatus
 aclStorageType (decimal) aclPrivileges (hex)

 Symbolic names may be used as long as they appear in the
 mib.rt(4) file. Otherwise the dotted object ids must be
 used. ';' is the comment character. Comments may not be in
 between sections of an acl.

EXAMPLES
 The following is an example of a typical acl entry in the
 acl.cfg file.

 initialPartyId.127.0.0.1.1
 initialPartyId.127.0.0.1.2
 initialContextId.127.0.0.1.1
 001
 003 002b

 This entry defines the aclTarget, the aclSubject and the
 aclContext for this aclEntry, as well as an aclStatus of
 active (1), aclStorageType nonVolatile (3) and aclPrivileges
 Get, GetNext, GetBulk and Set (2b).

SEE ALSO
 atmsnmpd(1M), view.cfg(4), party.cfg(4), context.cfg(4),
 mib.rt(4)

CODE EXAMPLE 3-2 acl.cfg(4) Man Page (Continued)
86 SunATM Application Programmer’s Interface and Man Pages • August 1998

agent.cnf(4)

CODE EXAMPLE 3-3 agent.cnf(4) Man Page

agent.cnf(4) File Formats agent.cnf(4)

NAME
 agent.cnf - SunATM SNMP agent configuration file

SYNOPSIS
 /etc/opt/SUNWatm/snmp/agent.cnf

DESCRIPTION
 The agent.cnf file defines basic configuration information
 for the SunATM SNMP agent, amtsnmpd(1M).

 Each entry contains a keyword, followed by a parameter
 string. The keyword should be in the first position in the
 line, and an entry must be contained in a single line. The
 keyword may be separated from parameters by whitespace
 (spaces or tabs), and comments are denoted by a '#' charac-
 ter.

OPTIONS
 The following list contains the currently supported key-
 words.

 syscontact The value to be used to answer queries for
 sysContact.

 syslocation The value to be used to answer queries for
 sysLocation.

 trap A list of hosts which should receive traps
 (one or more hosts may be included).

 read-community The community name which should have read
 access.

 write-community The community name which should have write
 access. Write access implies read access.
Chapter 3 File Formats 87

 trap-community The community name to be used in traps.

SEE ALSO
 atmsnmpd(1M)

CODE EXAMPLE 3-3 agent.cnf(4) Man Page (Continued)
88 SunATM Application Programmer’s Interface and Man Pages • August 1998

atmconfig(4)

CODE EXAMPLE 3-4 atmconfig(4) Man Page

atmconfig(4) File Formats atmconfig(4)

NAME
 atmconfig - SunATM interface configuration file

SYNOPSIS
 /etc/atmconfig

DESCRIPTION
 The atmconfig file is a local database that defines the
 feature set required for each SunATM interface in a system.
 The file is used by the /etc/rc2.d/S00sunatm script, which
 runs at boot time to configure SunATM interfaces. If
 changes are made to the atmconfig file, the system must be
 rebooted for the changes to take effect.

 The format of an entry in atmconfig is:

 Physical UNI Ver/ C-IP LANE LANE
 Interface Framing Host Inst Host

 Items are separated by any number of SPACE and/or TAB char-
 acters. The first item is the physical interface on the
 local system. It should be of the form "device unit;" an
 example is ba0. UNI Version is the UNI version number that
 should be used on this interface; SunATM 2.1 supports 3.0
 and 3.1. This field can also be used to specify the framing
 interface to be used on a particular SunATM physical inter-
 face; both the SONET and SDH protocols are supported. The
 default framing is sonet unless /etc/system indicates other-
 wise. The third field is the Classical IP hostname for this
 interface, if Classical IP is to be run on this interface.
 The fourth and fifth fields are used if LAN Emulation is to
 be run on this interface; these fields are the LAN Emulation
 instance number (each LAN Emulation interface must have a
 unique number, and interfaces will appear in ifconfig as
 laneN, where N is the instance number), and the IP hostname
 for the LAN Emulation interface.
Chapter 3 File Formats 89

 Depending on the IP protocols to be supported, some or all
 of the fields are required. Every interface that is to be
 configured must have at least one entry in /etc/atmconfig
 which contains a minimum of the interface name and the UNI
 version. In addition, the Classical IP Hostname is required
 if Classical IP (RFC 1577) is to be supported; and the LANE
 Instance is required if LAN Emulation is to be supported.
 Further entries for the same interface may be included after
 the entry containing the UNI version to specify multiple LAN
 Emulation instances, multiple logical interfaces or the
 framing. Refer to Chapter 5 in the SunATM 2.1 Manual for
 further information on multiple entries. In all entries, an
 empty field should be indicated by a hyphen `-'.

EXAMPLES
 The following example shows the atmconfig file for a system
 with three SunATM interfaces. The first, ba0, supports UNI
 3.1 and LAN Emulation. The second, ba1, supports UNI 3.1
 and both Classical IP and LAN Emulation. The third inter-
 face, ba2, supports UNI 3.0 with Classical IP and uses SDH
 framing.

 #
 ba0 3.1 - 0 atm0
 #
 ba1 3.1 atm1 1 atm2
 #
 ba2 3.0 atm3 - -
 ba2 SDH - - -

SEE ALSO
 aarconfig(4), laneconfig(4)

NOTES
 Each entry should be entered on one line with no breaks or
 carriage returns.

CODE EXAMPLE 3-4 atmconfig(4) Man Page (Continued)
90 SunATM Application Programmer’s Interface and Man Pages • August 1998

context.cfg(4)

CODE EXAMPLE 3-5 context.cfg(4) Man Page

context.cfg(4) File Formats context.cfg(4)

NAME
 context.cfg - SunATM SNMP contexts database group configura-
 tion file

SYNOPSIS
 /etc/opt/SUNWatm/snmp/context.cfg

DESCRIPTION
 The context.cfg file contains the contexts database for the
 SunATM SNMP agent, amtsnmpd(1M). The entries contained in
 this file are the conceptual rows of the contextTable (RFC
 1447).

 Each conceptual row contains the following entries:

 contextIdentity A context identifier uniquely identify-
 ing a particular SNMPv2 context.

 contextLocal An indication of whether this context
 is realized by this SNMPv2 entity.
 Takes on the values true (1) or false
 (2).

 contextStorageType The storage type of this conceptual row
 in the contextTable. Takes on the
 values 1-4.

 contextStatus The status of this conceptual row in
 the contextTable. Takes on the values
 valid (1) and invalid (2).

 contextViewIndex If zero, this row refers to a context
 which identifies a proxy relationship;
 otherwise, this row refers to a context
 that identifies a MIB view of a locally
 accessible entity.
Chapter 3 File Formats 91

 contextLocalEntity If contextViewIndex is greater than
 zero, this value identifies the local
 entity whose management information is
 in this context's MIB view. The empty
 string indicates that the MIB view con-
 tains the entity's own local management
 information.

 contextLocalTime If contextViewIndex is greater than
 zero, this value identifies the tem-
 poral context of the management infor-
 mation in the MIB view.

 contextProxyDstParty If contextViewIndex is equal to zero,
 this value identifies a party that is
 the proxy destination of a proxy rela-
 tionship.

 contextProxySrcParty If contextViewIndex is equal to zero,
 this value identifies a party that is
 the proxy source of a proxy relation-
 ship.

 contextProxyContext If contextViewIndex is equal to zero,
 this value identifies the context of a
 proxy relationship.

 Each entry in the file is represented by 8 lines.

 contextIdentity
 contextStatus
 contextLocal contextStorageType contextViewIndex
 contextLocalEntity
 contextLocalTime
 contextProxyDstParty
 contextProxySrcParty
 contextProxyContext

 Symbolic names may be used as long as they appear in the
 mib.rt(4) file. Otherwise the dotted object ids must be
 used. ';' is the comment character. Comments may not be in
 between sections of a context.

EXAMPLES

CODE EXAMPLE 3-5 context.cfg(4) Man Page (Continued)
92 SunATM Application Programmer’s Interface and Man Pages • August 1998

 The following is an example of a typical context entry in
 the context.cfg file.

 initialContextId.127.0.0.1.1
 001
 001 003 00001
 <empty line>
 currentTime
 <empty line>
 <empty line>
 <empty line>

 This entry defines the contextIdentity object identifier for
 the specific contextEntry, contextStatus active (1), con-
 textLocal true (1), contextStorageType nonVolatile (3), con-
 textViewIndex the viewEntry with viewIndex 1, contextLo-
 calEntity with value the empty string, contextLocalTime with
 obcect identifier currentTime refering to management infor-
 mation at the current time, and no entries for contextProx-
 ySrcParty, contextProxySrcParty and contextProxyContext
 (empty lines).

SEE ALSO
 atmsnmpd(1M), view.cfg(4), party.cfg(4), acl.cfg(4),
 mib.rt(4)

CODE EXAMPLE 3-5 context.cfg(4) Man Page (Continued)
Chapter 3 File Formats 93

ilmi.cnf(4)

CODE EXAMPLE 3-6 ilmi.cnf(4) Man Page

ilmi.cnf(4) File Formats ilmi.cnf(4)

NAME
 ilmi.cnf - SunATM SNMP agent configuration file for
 ilmid(1M).

SYNOPSIS
 /etc/opt/SUNWatm/snmp/ilmi.cnf

DESCRIPTION
 The ilmi.cnf file defines the community name used by
 ilmid(1M) to send requests to the SunATM SNMP agent,
 atmsnmpd(1M).

 Each entry consists of a keyword followed by a parameter
 string. The keyword should be in the first position in the
 line, and an entry must be contained in a single line. The
 keyword may be separated from parameters by whitespace
 (spaces or tabs), and comments are denoted by a '#' charac-
 ter.

OPTIONS
 The following list contains the currently supported key-
 words.

 ilmi-community The community name to be used by
 ilmid(1M).

SEE ALSO
 atmsnmpd(1M)
94 SunATM Application Programmer’s Interface and Man Pages • August 1998

laneconfig(4)

CODE EXAMPLE 3-7 laneconfig(4) Man Page

laneconfig(4) File Formats laneconfig(4)

NAME
 laneconfig - LAN Emulation configuration file

SYNOPSIS
 /etc/laneconfig

DESCRIPTION
 The laneconfig file is a local database that associates MAC
 addresses with ATM addresses. The file is used by the LAN
 Emulation setup program, lanesetup(1M), which manages the
 downloading of the information found in laneconfig into the
 kernel. If changes are made to the laneconfig file,
 lanesetup(1M) must be rerun for the changes to take effect.

 The format of an entry in laneconfig is:

 Interface MAC-Address/ ATM-Address VC Flags
 ELAN Name

 Items are separated by any number of SPACE and/or TAB char-
 acters. The first item is the LAN Emulation interface on
 the local system which is attached to the subnet for this
 entry. It should be of the form "lane unit;" an example is
 lane0. The MAC address is the 6 byte physical MAC address;
 it should be specified as 6 hexadecimal bytes (2 characters)
 separated by one or more colons (additional colons may be
 used for readability, if desired). In some entries, the
 second field will be an Emulated LAN name, which is a char-
 acter string. The ATM address is a 20 byte address; its for-
 mat is the same colon-separated hexadecimal format used for
 the MAC address. The VC field specifies the virtual connec-
 tion identifier (VCI) for the connection to the host identi-
 fied by this entry. The flag field gives information
 regarding the type of entry. Comment lines are allowed;
 they are indicated by a `#' at the beginning of the line.
Chapter 3 File Formats 95

 ATM addresses are 20 bytes. The first 13 bytes (called the
 prefix) are used by the switch for routing purposes. The
 prefix is assigned by the switch and will be sent to the
 host when the ATM interface on the host system is config-
 ured. The predefined variable `prefix' (see Variables sec-
 tion below) will be assigned the value received by the host
 from the switch at configuration time; this value may be
 referenced in the laneconfig file as `$prefix'.

 The next 6 bytes (called the ESI) are used to uniquely iden-
 tify a host system; in most of the examples given, the
 system's hardware MAC address is used. The local MAC address
 may be referenced in the laneconfig file as `$mac'. The
 final byte is a selector byte that may be used by the host
 for internal routing of data. Use of the predefined variable
 `sel' will guarantee that an appropriate value for the given
 interface will be used.

 Depending on the entry type, as determined by the flags
 field, some or all of the fields are required. All entries
 must have an interface and flags field; the MAC Address/ELAN
 Name, ATM Address, and VC field vary depending on the entry
 type. The following sections describe the use of variables
 in the laneconfig file, and the flag types, listing which of
 the MAC Address/ELAN Name, ATM Address, and VC fields are
 required for that type. In all entries, an empty field
 should be indicated by a hyphen `-'.

OPTIONS
 Variables
 Because the prefix portion of an ATM address specifies the
 ATM switch, a number of hosts specified in an laneconfig
 file may have ATM addresses who share the same prefix. To
 simplify setting up the laneconfig file, one can define
 variables that contain part of an ATM address. A variable's
 name is an identifier consisting of a collection of no more
 than 32 letters, digits, and underscores (`_'). The value
 associated with the variable is denoted by a dollar sign
 (`$') followed immediately by the variable name.

 Variables may only be used in the ATM and MAC address
 fields. They may not be used in any of the other fields in
 an entry.

 Multiple variables may be concatenated to represent a single
 ATM address expression. A colon must be used to concatenate

CODE EXAMPLE 3-7 laneconfig(4) Man Page (Continued)
96 SunATM Application Programmer’s Interface and Man Pages • August 1998

 the variables. Thus, if one variable, v1, is set to `11:22'
 and another, v2, is set to `33:44', the sequence $v1:$v2
 represents `11:22:33:44'. Hexadecimal numbers may also be
 included with variables in the expression. The expression
 `45:$v1:$v2' would have the value `45:11:22:33:44'.

 Variables are defined in the laneconfig file according to
 the following format:

 set VARIABLE = EXPRESSION

 where VARIABLE is the name of a variable and EXPRESSION is
 an expression concatenating one- or two-digit hexadecimal
 numbers and/or the values of variables that have been previ-
 ously defined. The equal sign is optional, but the variable
 and expression must be separated by either whitespace
 (spaces or tabs), an equal sign, or both.

 Several predefined variables are built in to the SunATM
 software. They include:

 prefix the 13-byte prefix associated with the local
 switch.

 mac the 6-byte MAC address associated with the
 local host or interface.

 sel the default 1-byte Selector for the local
 interface.

 macsel the concatenation of $mac:$sel.

 myaddress the concatenation of $prefix:$mac:$sel, result-
 ing in the default address for the local inter-
 face.

 In most network configurations, the ATM address assigned to
 the local interface will be myaddress; using this variable
 in the `l' entry makes it possible to use identical lanecon-
 fig files on all LAN Emulation clients in a given ATM net-
 work.

 Several rules apply to the use of variables in the lanecon-
 fig file:

 Two variables cannot follow each other in an expression

CODE EXAMPLE 3-7 laneconfig(4) Man Page (Continued)
Chapter 3 File Formats 97

 without an intervening colon. Thus, $v1:$v2 is legal
 whereas $v1$v2 is not.

 Fields in each line in the laneconfig file are
 separated by whitespace. Therefore variables should
 not be separated from the rest of an ATM address with
 whitespace. For example, $v1: $v2 is illegal.

 Once a variable is defined by a set command, it may not
 be redefined later in the laneconfig file.

 The reserved variable names may not be set. They
 include `prefix', `mac', `sel', `macsel', and `myad-
 dress'.

 Basic Configuration Flags
 l This flag identifies an entry for a local interface on
 a LAN Emulation client.

 The ATM address is required. The MAC address should
 not be entered; the system will use the MAC address
 assigned to this physical interface. No VC should be
 entered either, since there will typically be multiple
 VCs over the local interface.

 t Adds this MAC-ATM address or MAC address-VC pair to the
 local table.

 The MAC address is required; either an ATM address or a
 VC field is required, depending on whether a SVC or a
 PVC connection is desired. If a mixture of SVC and PVC
 connections is desired, both an ATM address and a VC
 are allowed.

 n Specifies the name of the Emulated LAN. Most LAN Emu-
 lation Services will fill the Emulated LAN name in in
 configuration and join requests from LAN Emulation
 Clients, but this is not always the case. If your LAN
 Emulation Services do not provide Emulated LAN names
 for client requests, you can include the name in the
 laneconfig file.

 The Emulated LAN name is required; the ATM address and
 VC fields are illegal.

 The required, optional, and illegal fields for the basic

CODE EXAMPLE 3-7 laneconfig(4) Man Page (Continued)
98 SunATM Application Programmer’s Interface and Man Pages • August 1998

 flag types are summarized in the following table:

 --
 Interface MAC-Addr/ ATM-Addr VCI FLAGS
 ELAN Name
 --
 required illegal required illegal l
 required MAC-Addr req. xor xor* t
 required ELAN-Name req. illegal illegal n
 --
 * one or the other is required; both are illegal.

 Advanced Configuration Flags
 The basic configuration flags are sufficient for most stan-
 dard network configurations. However, since networks are
 rarely homogeneous, there may be cases in which, for intero-
 perability purposes, a network must be configured with dif-
 ferent characteristics than the defaults that are built into
 the SunATM adapter, or with unusual addressing schemes that
 require more than the basic configuration flags described
 above. The following flags may also be used in the lanecon-
 fig file to alter the default behavior when necessary.

 c Specifies an alternate LECS address. By default, the
 SunATM software uses ILMI to query the switch for the
 LECS address, then falls back to the well-known address
 if ILMI is not available or if the switch cannot pro-
 vide the LECS address via ILMI. If, however, you wish
 to specify an alternate LECS, or you wish to connect to
 the LECS over a PVC, you may provide the alternate ATM
 address or VCI in this entry. If you wish to make a PVC
 connection, the VCI must be 17, as required by the LAN
 Emulation standard.

 Either an ATM address or a VC field must appear; the
 MAC address should not appear.

 s Specifies the LES address or VCI, and instructs the
 system to contact the LES directly, and to use default
 subnet configuration information. This flag should be
 used if your ATM network does not have an LECS. By
 default (no `s' entry), the system first connects to
 the LECS, which provides the LES address and configura-
 tion information.

 Either the ATM address or a VC is required. The MAC

CODE EXAMPLE 3-7 laneconfig(4) Man Page (Continued)
Chapter 3 File Formats 99

 address should not appear.

 a Specifies an address that may have access to this host.
 If no `a' entries appear in the laneconfig file, access
 to the host is unrestricted. Including `a' entries
 allows access to be restricted to known hosts. As an
 alternative to listing individual addresses, the ATM
 address field may contain a prefix, followed by the
 wildcard $anymacsel, which matches any 7-byte
 ESI/Selector combination following the given prefix.
 This allows access by any host connected to the switch
 specified by the given prefix. NOTE: If this value is
 changed, only a reboot will ensure that old addresses
 are not being cached.

 An ATM address is required; neither the MAC address nor
 the VCI should appear.

 m Specifies manual address configuration mode. This indi-
 cates to the system that ILMI is not being used on the
 specified interface. Entries for non-ILMI interfaces
 may not use the $prefix variable, or variables which
 make use of $prefix (such as $myaddress and
 $localswitch_server), since ilmid will not be able to
 provide this information.

 Only the interface is required. The MAC address, ATM
 address, and VCI should not appear.

 M Specifies a larger MTU size. By default, the LAN Emu-
 lation software will be configured for a 1516-byte MTU.
 If a larger size is supported by and configured on your
 LAN Emulation services, it may be set in this entry.
 The valid values are 1516 (1500 bytes of data, 16 bytes
 of LANE header), 4544 (4528 bytes of data), and 9234
 (9218 bytes of data).

 The interface is required, and the MTU size should
 appear in the second field. The ATM address and VCI
 should not appear.

 The required, optional, and illegal fields for the advanced
 flag types are summarized in the following table:

 --
 Interface MAC-Addr/ ATM-Addr VCI FLAGS

CODE EXAMPLE 3-7 laneconfig(4) Man Page (Continued)
100 SunATM Application Programmer’s Interface and Man Pages • August 1998

 ELAN Name
 --
 required illegal xor xor* c
 required illegal xor xor* s
 required illegal required illegal a
 required illegal illegal illegal m
 required MTU size illegal illegal M
 --
 * one or the other is required; both are illegal.

EXAMPLES
 The following example shows a basic LAN Emulation Client's
 laneconfig file. The local information is provided, as well
 as the addresses of a frequently used server. The use of
 variables is also demonstrated.

 set srvr_mac = 08:00:20:01:02:03

 ba0 - $myaddress - l
 ba0 $srvr_mac $prefix:$srvr_mac - t

 The following example shows the laneconfig file for a LAN
 Emulation Client whose LECS requires that the client include
 the Emulated LAN name in its messages.

 ba1 - $myaddress - l
 ba1 elan1 - - n

 The following example shows the laneconfig file for a LAN
 Emulation Client whose ATM network does not include an LECS.

 set les_mac = 01:02:03:04:05:06

 ba0 - $myaddress - l
 ba0 - $prefix:$les_mac - s

SEE ALSO
 lanesetup(1M)

 ATM Forum, LAN Emulation Over ATM Specification Version 1.0,
 LAN Emulation SWG Drafting Group.

NOTES

CODE EXAMPLE 3-7 laneconfig(4) Man Page (Continued)
Chapter 3 File Formats 101

 Each entry should be entered on one line with no breaks or
 carriage returns.

CODE EXAMPLE 3-7 laneconfig(4) Man Page (Continued)
102 SunATM Application Programmer’s Interface and Man Pages • August 1998

mib.rt(4)

CODE EXAMPLE 3-8 mib.rt(4) Man Page

mib.rt(4) File Formats mib.rt(4)

NAME
 mib.rt - SunATM SNMP agent utility file.

SYNOPSIS
 /etc/opt/SUNWatm/snmp/mib.rt

DESCRIPTION
 The mib.rt file contains a listing of object identifiers
 used by atmsnmpd(1M) to translate the symbolic names found
 in acl.cfg(4), context.cfg(4), party.cfg(4) and view.cfg(4).

 Each line is of the form:

 $obj <object-identifier> <descriptor>

 where:

 <object-identifier> is a sequence of non-negative integers
 separated by dots, and identifies the OBJECT IDENTIFIER of
 the symbolic name used in the configuration files mentioned
 above.

 <descriptor> is the symbolic name associated with the OBJECT
 IDENTIFIER.

 For example:

 $obj 1.3.6.1.6 snmpV2

 Whenever you want to use some descriptor in the configura-
 tion files that is not defined in the mib.rt file, you could
 extend this file to contain it. All the ancestors of the
 name that you are defining must be specified as well. For
 example, in order to add internet (1.3.6) you must also
 define dod (1.3) and iso (1).
Chapter 3 File Formats 103

 atmsnmpd(1M) builds a representation of this file in memory
 when it is first started, so additions to this file or any
 of the configuration files will not take effect unless
 atmsnmpd(1M) is restarted.

SEE ALSO
 atmsnmpd(1M), acl.cfg(4), context.cfg(4), party.cfg(4),
 view.cfg(4)

CODE EXAMPLE 3-8 mib.rt(4) Man Page (Continued)
104 SunATM Application Programmer’s Interface and Man Pages • August 1998

party.cfg(4)

CODE EXAMPLE 3-9 party.cfg(4) Man Page

party.cfg(4) File Formats party.cfg(4)

NAME
 party.cfg - SunATM SNMP party database group configuration
 file

SYNOPSIS
 /etc/opt/SUNWatm/snmp/party.cfg

DESCRIPTION
 The party.cfg file contains the party database for the
 SunATM SNMP agent, amtsnmpd(1M). The entries contained in
 this file are the conceptual rows of the partyTable (RFC
 1447).

 Each conceptual row contains the following entries:

 partyIdentity A unique object identifier for the
 party.

 partyTDomain Indicates transport service by which
 the party receives network management
 traffic.

 partyTAddr The transport service address of the
 party. For snmpUDPDomain, the address
 is formatted as a 4-octet IP address
 concatenated with a 2-octet UDP port
 number.

 partyMaxMessageSize An integer in the range 484 to 65,507
 that represents the maximum message
 length in octets that this party will
 accept.

 partyLocal An indication of whether this party is
 local to the agent.
Chapter 3 File Formats 105

 partyAuthProtocol Object identifier of the authentication
 protocol, if any.

 partyAuthPrivate An encoding of the party's private
 authentication key, or value, needed to
 support the authentication prorocol.

 partyAuthLifetime A non-negative integer which is an
 upper bound of the lifetime of the mes-
 sage in seconds.

 partyPrivProtocol Object identifier of the privacy proto-
 col, if any.

 partyPrivPrivate An encoding of the party's private
 encryption key, needed to support the
 privacy protocol.

 partyStorageType The storage type for this conceptual
 row in the partyTable. Takes on the
 values 1-4.

 partyStatus The status of this conceptual row in
 the partyTable. Takes on the values
 valid (1) and invalid (2).

 partyAuthClock The authentication clock which
 represents the local notion of the
 current time specific to the party.
 This value must not be decremented
 unless the party's private authentica-
 tion key is changed simultaneously.

 authTimestamp Represents the time of the generation
 of the message according to the par-
 tyAuthClock of the SNMP party that ori-
 ginated it. The granularity of the
 clock, and therefore of this timestamp,
 is 1 second (RFC 1352).

 Each entry in the file is represented by 10 lines.

 partyIdentity
 partyStatus
 partyLocal partyStorageType partyMaxMessageSize
 partyAuthLifetime authTimestamp partyAuthClock

CODE EXAMPLE 3-9 party.cfg(4) Man Page (Continued)
106 SunATM Application Programmer’s Interface and Man Pages • August 1998

 partyTDomain
 partyTAddr
 partyAuthProtocol
 partyAuthPrivate (in hex)
 partyPrivProtocol
 partyPrivPrivate (in hex)

 Symbolic names may be used as long as they appear in the
 mib.rt(4) file. Otherwise the dotted object ids must be
 used. ';' is the comment character. Comments may not be in
 between sections of a party.

EXAMPLES
 The following is an example of a typical party entry in the
 party.cfg file.

 initialPartyId.127.0.0.1.1
 001
 001 003 01400
 000000000300 0000000000 0000000000
 snmpUDPDomain
 0000000000
 noAuth
 <empty line>
 noPriv
 <empty line>

 This entry defines the partyIdentity object identifier, par-
 tyStatus active (1), partyLocal true (1), partyStorageType
 nonVolatile (3), partyMaxMessageSize 1400 bytes, partyAuth-
 Lifetime 300 seconds, authTimestamp zero (no authenticated
 message from the party has been received), partyAuthClock
 zero, partyAuthProtocol noAuth (no authentication), par-
 tyPrivProtocol noPriv (the protocol without privacy), and no
 authentication keys (partyAuthPrivate and partyPrivPrivate
 are the empty strings).

SEE ALSO
 atmsnmpd(1M), view.cfg(4), acl.cfg(4), context.cfg(4),
 mib.rt(4)

CODE EXAMPLE 3-9 party.cfg(4) Man Page (Continued)
Chapter 3 File Formats 107

view.cfg(4)

CODE EXAMPLE 3-10 view.cfg(4) Man Page

view.cfg(4) File Formats view.cfg(4)

NAME
 view.cfg - SunATM SNMP MIB-view database group configuration
 file

SYNOPSIS
 /etc/opt/SUNWatm/snmp/view.cfg

DESCRIPTION
 The view.cfg file contains the MIB-view database for the
 SunATM SNMP agent, amtsnmpd(1M). The entries contained in
 this file are the conceptual rows of the viewTable (RFC
 1447).

 Each conceptual row contains the following entries:

 viewIndex A unique value for each MIB view.

 viewSubtree A MIB Subtree.

 viewMask The bit mask which, in combination with the
 corresponding instance of viewSubtree,
 defines a family of view subtrees.

 viewType Takes on the values included (1), excluded
 (2). Indicates whether the coresponding
 family of view subtrees defined by viewSub-
 tree and viewMask is included or excluded
 from the MIB view.

 viewStorageType The storage type for this conceptual row in
 the ViewTable. Takes on the values 1-4.

 viewStatus The status of this conceptual row in the
 viewTable. Takes on the values 1 (valid)
 and 2 (invalid).
108 SunATM Application Programmer’s Interface and Man Pages • August 1998

 Each entry in the file is represented by 4 lines.

 viewIndex:viewSubtree
 viewStatus
 viewStorageType viewType
 viewMask

 Symbolic names may be used as long as they appear in the
 mib.rt(4) file. Otherwise the dotted object ids must be
 used. ';' is the comment character. Comments may not be in
 between sections of a view.

EXAMPLES
 The following is an example of a typical view entry in the
 view.cfg file.

 1:dod
 001
 003 001
 <empty line>

 This entry defines a viewIndex (1) for the viewSubtree
 (dod), viewStatus active (1), viewStorageType nonVolatile
 (3), viewType included (1) and no viewMask (empty line)

SEE ALSO
 atmsnmpd(1M), acl.cfg(4), party.cfg(4), context.cfg(4),
 mib.rt(4)

CODE EXAMPLE 3-10 view.cfg(4) Man Page (Continued)
Chapter 3 File Formats 109

110 SunATM Application Programmer’s Interface and Man Pages • August 1998

CHAPTER 4

Special Files

The man pages in this chapter describe the various device and network interfaces

available with the SunATM software.

TABLE 4-1 Special Files Man Pages

Man Page Description Page Number

ba(7) SunATM device driver page 112

q93b(7) Multiplexing Driver supporting Q.2931 signalling page 119
111

ba(7)

CODE EXAMPLE 4-1 ba(7) Man Page

ba(7) Device and Network Interfaces ba(7)

NAME
 ba - Sun ATM device driver

SYNOPSIS
 #include <sys/stropts.h>
 #include <atm/atm.h>
 #include <atm/atmioctl.h>

DESCRIPTION
 The ba driver is a Solaris 2.x DDI/DKI compliant MT safe
 STREAMS device driver. It presents a DLPI interface to the
 upper layers and supports M_DATA fastpath and M_DATA raw.
 The hardware interface supports the SunATM-155 Fiber,
 SunATM-155 UTP, and SunATM-622 products.

 The two modes of operation that should be used by applica-
 tion programs are raw mode and dlpi mode. The default is
 dlpi mode. By sending down a DLIOCRAW ioctl the raw mode is
 requested. The mode chosen defines the format in which data
 should be sent to the driver.

 Raw mode implies that the four-byte vpci will be sent in the
 first mblk followed by data in the first and any subsequent
 mblks. When a message is received on a vpci running in raw
 mode, the four-byte vpci will be sent up with the data.

 DLPI mode implies that two or more mblocks will be sent to
 the driver. The first, of type M_PROTO, contains the dlpi
 message type, which is dl_unitdata_req for transmit and
 dl_unitdata_ind for receive. The vpci is included in this
 mblock as well. The dl_unitdata_req and dl_unitdata_ind header

formats are deined in the
 header file <sys/dlpi.h>. The second and subsequent mblocks
 are of type M_DATA and contain the message. When the driver
 gets the two mblocks from the upper layer, it will remove
 the first mblock, and transmit the message. On receive,
112 SunATM Application Programmer’s Interface and Man Pages • August 1998

 the M_PROTO mblock is added, and the two-mblock structure
 is sent up to the user.

A method of encapsulation must also be chosen; the method of
encapsulation is specified when the VC is associated with a stream
(using the A_ADDVC ioctl). Currently, null and LLC encapsulation
are supported. Null encapsulation implies that a message consists
only of data preceded by a four-byte vpci. This type of encapsulation
is most commonly used with raw mode. LLC encapsulation implies that
an LLC header precedes the data. This header will include the SAP
associated with the application’s stream (using DL_BIND_REQ). This
type of encapsulation is typically used with dlpi mode traffic.

For LLC-encapsulated traffic, the driver will automatically add the
LLC header on transmit if the stream is running in dlpi mode. The
driver will also strip the LLC header from incoming traffic before
sending it up a dlpi mode stream. In raw mode, however, the driver
does not modify the packets at all; this includes the LLC header.
Thus, an application using raw mode and LLC encapsulation must include
its own LLC headers on transmit and will receive data with the LLC
header intact.

Received packets are directed to application streams by the driver
based on the type of encapsulation. If a packet is null-encapsulated,
it will be sent up the stream associated with the vpci on which the
packet was received. If a packet is LLC-encapsulated, it will be
sent to the stream which has bound (using DL_BIND_REQ) the SAP found
in the LLC header.

 The driver supports several of the DLPI message types
 defined in the <sys/dlpi.h> header file. Specifically,
 users of the ba driver may use the DL_ATTACH_REQ,
 DL_DETACH_REQ, DL_BIND_REQ, DL_UNBIND_REQ, DL_UNITDATA_IND,
 and DL_UNITDATA_REQ. In addition, a Sun-specific dlpi ioctl
 is supported, DLIOCRAW. There is no data structure associ-
 ated with the DLIOCRAW ioctl; simply a strioctl struct with
 ic_cmd set to DLIOCRAW may be used to set a stream to raw
 mode.

 The driver also supports the ATM-specific ioctls described
 below. Definitions for the ioctl commands and structures
 may be found in <atm/atmioctl.h>.

IOCTLS
 The driver supports a set of ioctl functions which are
 called using the I_STR ioctl and strioctl structure as the

CODE EXAMPLE 4-1 ba(7) Man Page (Continued)
Chapter 4 Special Files 113

 argument. See the streamio(7) man page and the
 <sys/stropts.h> header file for more information on this
 type of ioctl call.

 The commands supported in the ic_cmd field of the strioctl
 structure are described in the following paragraphs. The
 structures that the ic_dp field should point to are also
 described for each command.

 A_ALLOCBW Allocate constant bit rate bandwidth for this
 stream. ic_dp should point to an a_allocbw_t
 structure, which is defined as:

 typedef struct {
 int bw;
 } a_allocbw_t;

 In this ioctl the bandwidth amount is
 expressed as an integer number of megabits
 per second (Mbps). See the table below for
 the amount of bandwidth available to be allo-
 cated by the user. All unallocated bandwidth
 is given to IP and dlpi mode traffic. The
 A_ALLOCBW ioctl is supported for compatibil-
 ity with software written for SunATM 1.0.
 The A_ALLOCBW_CBR ioctl provides a finer
 granularity in bandwidth allocation.

 A_ALLOCBW_CBR Allocate constant bit rate bandwidth for this
 stream. ic_dp should point to an
 a_allocbw_cbr_t structure, which is defined
 as:

 typedef struct {
 int bw;
 } a_allocbw_cbr_t;

 In this ioctl the bandwidth amount is
 expressed as an integer number of 64 kilobit
 per second (Kbps) units. See the table below
 for the amount of bandwidth available to be
 allocated by the user. All unallocated
 bandwidth is given to IP and dlpi mode
 traffic.

 A_ALLOCBW_VBR Allocate variable bit rate bandwidth for this

CODE EXAMPLE 4-1 ba(7) Man Page (Continued)
114 SunATM Application Programmer’s Interface and Man Pages • August 1998

 stream. ic_dp should point to an
 a_allocbw_vbr_t structure, which is defined
 as:

 typedef struct {
 int peak_bw;
 int avg_bw;
 int max_burst;
 int priority;
 } a_allocbw_vbr_t;

 A_ALLOCBW_VBR implements the GCRA (Generic
 Cell Rate Algorithm) as defined by the ATM
 Forum UNI 3.0 specification. peak_bw speci-
 fies (in 64 Kbps units) the Peak Cell Rate.
 avg_bw specifies (in 64 Kbps units) the Sus-
 tainable Cell Rate. max_burst specifies the
 number of cells which can be sent back to
 back on the media, the Maximum Burst Size
 from the UNI spec. priority can be
 AVBR_HIGH_PRI or AVBR_LO_PRI. AVBR_HIGH_PRI
 will always get their requested bandwidth,
 AVBR_LO_PRI can starve if other users request
 all available bandwidth.

 Note that the peak_bw, avg_bw, and max_burst
 parameters are enforced by the hardware dev-
 ice. Since the hardware is not infinitely
 programmable the driver may have to modify
 the requested B/W before programming the dev-
 ice. The driver will program the hardware
 avg_bw as close to the requested value as
 possible. peak_bw may be rounded down as
 necessary to meet the hardware granularity;
 the received peak_bw will always be less than
 or equal to the requested peak_bw, never
 greater. max_burst will be truncated at the
 maximum supported by the hardware; the
 received max_burst will always be less than
 or equal to the requested max_burst, never
 greater.

 See the table below for the amount of (sus-
 tained) bandwidth available to be allocated
 by the user. All unallocated bandwidth is
 given to IP and dlpi mode traffic.

CODE EXAMPLE 4-1 ba(7) Man Page (Continued)
Chapter 4 Special Files 115

 Available Bandwidth
 --
 | Product | SunATM-155 | SunATM-622 |
 |----------------------+------------------+------------------|
 | Unit of Measure | Mbps | 64 Kbps | Mbps | 64 Kbps |
 |----------------------+--------+---------+--------+---------|
 | | | | | |
 | Total Bandwidth | 155 | 2480 | 622 | 9952 |
 | | | | | |
 |----------------------+--------+---------+--------+---------|
 | | | | | |
 | Cell Header/Phy | 20 | 320 | 88 | 1408 |
 | Layer Overhead | | | | |
 |----------------------+--------+---------+--------+---------|
 | | | | | |
 | Reserved by Software | 0.64 | 1 | 0.64 | 1 |
 | | | | | |
 |----------------------+--------+---------+--------+---------|
 | | | | | |
 | Available to User |134.875 | 2158 |533.875 | 8542 |
 | | | | | |
 --

 A_RELSEBW Release bandwidth that was previously allo-
 cated for this stream. ic_dp should point to
 an a_allocbw_t structure.

 On successful completion, the ALLOCBW/RELSEBW ioctls return
 0 . Otherwise, -1 is returned and errno is set to one of the
 following values:

 EUNATCH The user has not attached to a ppa.

 EINVAL The requested bandwidth is negative or
 otherwise invalid.

 ENOSPC All useable bandwidth has already been
 allocated, or no bandwidth group is
 available.

 EDEADLK (VBR only) The requested peak rate is
 less than the requested average rate.
 The traffic parameters are impossible to

CODE EXAMPLE 4-1 ba(7) Man Page (Continued)
116 SunATM Application Programmer’s Interface and Man Pages • August 1998

 satisfy.

 A_ADDVC Add a vpci to those serviced by this stream,
 and specify the encapsulation type. The
 encapsulation type defines the format in
 which data will be sent to the driver: raw
 mode, indicated by NULL_ENCAP, implies a sin-
 gle mblock with only the four-byte vpci fol-
 lowed immediately by the data. dlpi mode,
 indicated by LLC_ENCAP, implies a two-mblock
 message, consisting of a M_PROTO mblock fol-
 lowed by a M_DATA mblock containing the data.
 The M_PROTO mblock will contain a dlpi mes-
 sage type (dl_unitdata_req or
 dl_unitdata_ind) and the vpci; the format may
 be found in <sys/dlpi.h>. For the A_ADDVC
 ioctl call, ic_dp points to an a_addVC_t
 structure, which is defined as:

 typedef struct {
 vci_t vp_vc; /* vpci to be added */
 int aal_type;/* null -> 0, */
 /* AAL5 -> 5 */
 int encap; /* encapsulation; see */
 /* <atm/atmioctl.h> for */
 /* possible values */
 int buf_type;/* if AAL5: */
 /* 0 -> small buf (9 k) */
 /* 1 -> big buf (9 k) */
 /* 2 -> huge buf (64 k) */
 /* if null AAL */
 /* -> # of cells */
 } a_addVC_t;

 A_DELVC Remove a vpci from those serviced by this
 stream. ic_dp points to an a_delVC_t struc-
 ture:

 typedef struct {
 vci_t vp_vc;
 } a_delVC_t;

CODE EXAMPLE 4-1 ba(7) Man Page (Continued)
Chapter 4 Special Files 117

 On successful completion, the ADDVC/DELVC ioctls return 0 .
 Otherwise, - 1 is returned and errno is set to one of the
 following values:

 EUNATCH The user has not attached to a ppa.

 EINVAL The encap argument is not valid, the
 aal_type is not valid, or the size is
 too large. The hardware controlled by
 the ba driver supports frames up to 64
 KBytes.

 E2BIG The VCI is outside the range supported
 by the hardware. The hardware con-
 trolled by the ba driver supports VCIs
 0-1023.

 EBUSY The requested VCI is in use by another
 process.

 ENOMEM Memory allocation failed. Resources for
 the HUGE_BUF_TYPE buffer ring are not
 allocated by the driver until a user
 requests them.

EXAMPLES
 The following code fragment demonstrates opening a ba device
 and allocating 128 Kbits/sec of bandwidth for that stream.
 The example shows the actual ioctl to set the bandwidth.
 There is a utility function in libatm, atm_allocate_cbr_bw,
 to make this task easier.

 #include <sys/types.h>
 #include <stropts.h>
 #include <sys/conf.h>
 #include <atm/atm.h>
 #include <atm/atmioctl.h>

 int
 main (int argc, char **argv)
 {
 char dev[0x20] = "/dev/ba0";
 int fd;

CODE EXAMPLE 4-1 ba(7) Man Page (Continued)
118 SunATM Application Programmer’s Interface and Man Pages • August 1998

q93b(7)

 int ppa = 0;
 a_allocbw_cbr_t ap;
 struct strioctl strioctl;

 if ((fd = atm_open(dev)) < 0) {
 exit(-1);
 }

 if (atm_attach(fd, ppa, -1) < 0) {
 exit(-1);
 }

 ap.bw = 2;

 strioctl.ic_cmd = A_ALLOCBW_CBR;
 strioctl.ic_timout = -1;
 strioctl.ic_len = sizeof (ap);
 strioctl.ic_dp = (caddr_t) ≈

 if (ioctl(fd, I_STR, &strioctl) < 0) {
 exit(-1);
 }
 }

SEE ALSO
 atm_util(3), dlpi(7), streamio(7)

CODE EXAMPLE 4-2 q93b(7) Man Page

q93b(7) Device and Network Interfaces q93b(7)

NAME
 q93b - Multiplexing Driver supporting Q.2931 signalling

SYNOPSIS

CODE EXAMPLE 4-1 ba(7) Man Page (Continued)
Chapter 4 Special Files 119

 #include <atm/qcc.h>
 #include <atm/qccioctl.h>

DESCRIPTION
 The q93b driver supports Q.2931 call control signalling as
 defined by the ATM Forum's User Network Interface, V3.0,
 V3.1, and V4.0. It is a multi-threaded, loadable, clonable,
 M-to-N multiplexing STREAMS driver. Its interface is
 defined by the Q.2931 message set, with some additions for
 synchronization between the driver and user process. A
 Q.2931 Call Control library is provided with the SUNWatma
 software package which provides a set of functions that may
 be used to build and parse q93b messages. See the qcc_* man
 pages for further information.

 The following table lists the messages types that are sup-
 ported. For sample message exchanges, see Appendix E in the
 SunATM Manual.

 TYPE | DIRECTION

 setup | both
 setup_ack* | to user
 call_proceeding | both
 alerting | both**
 connect | both
 connect_ack | to user
 release | to q93b
 release_complete | both
 status_enquiry | to q93b
 status | to user
 notify | both**
 restart | both
 restart_ack | both
 add_party | to q93b
 add_party_ack | to user
 add_party_alerting | to user**
 add_party_reject | to user
 drop_party | both
 drop_party_ack | to q93b
 leaf_setup_fail | both**
 leaf_setup_req | both**

 *private to the user/q93b interface
 **only supported in UNI 4.0

CODE EXAMPLE 4-2 q93b(7) Man Page (Continued)
120 SunATM Application Programmer’s Interface and Man Pages • August 1998

 Messages to the q93b driver should consist of two mblks, as
 shown below:
 M_PROTO M_DATA
 _____________ ___________________________
 --->| |--->| | | |
 | IF_Name | | Q.2931 Message | | |
 | Call_ID | | | | |
 | Type | | | | |
 | Error | | | Information | |
 | Call_Tag | | (9) | Elements | (16)|
 |_____________| |_____|_______________|_____|

 The 9 byte header on the M_DATA block consists of the Q.2931
 header information; the 16 byte trailer is allocated for use
 by the lower layers to enhance performance. This additional
 25 bytes is added to the variable length Information Element
 (IE) section when the qcc_len functions calculate the
 required buffer sizes for the message types. The Q.2931
 header is also filled in by the qcc_bld functions.

IOCTLS
 The q93b driver supports a q93b-specific STREAMS ioctl,
 Q93B_IOC. Several commands may be specified using this
 ioctl. The data structure used varies depending on the com-
 mand; see the <atm/qccioctl.h> header file for a definition
 of these structures. Functional interfaces for these ioctl
 commands are provided in the qcc library; see the qcc_util
 man page for descriptions of these functions.

 The following commands are supported:

 Q93B_IOC_BIND Binds a stream to the q93b driver to a speci-
 fied service access point (sap). The q93b
 driver uses the sap, which must be specified
 in the BHLI Information Element of a setup
 message, to determine to which of its user
 streams it will send an incoming setup mes-
 sage.

 Q93B_IOC_BIND_LIJID
 Binds a stream to a specified Leaf-Initiated
 Join ID. Leaf-initiated join is a new
 feature in UNI 4.0 signalling, which allows
 an endpoint to request to be added to a
 point-to-multipoint connection. The leaf-
 initiated join id is used by the endpoint to

CODE EXAMPLE 4-2 q93b(7) Man Page (Continued)
Chapter 4 Special Files 121

 identify the connection which it wishes to
 join. In order to be the root of a point-
 to-multipoint call which will support leaf-
 initiated join, a user application must asso-
 ciate its q93b stream with the leaf-initiated
 join id in one of two ways: by setting up a
 call in which the leaf-initiated join id is
 specified, or by sending this ioctl to the
 q93b driver.

 Q93B_IOC_UNBIND_LIJID
 Unbinds a Leaf-Initiated Join ID from a
 stream.

SEE ALSO
 qcc_bld(3), qcc_create(3), qcc_len(3), qcc_pack(3),
 qcc_parse(3), qcc_unpack(3), qcc_util(3), atm_util(3),
 qcc_bld(9F), qcc_create(9F), qcc_pack(9F), qcc_parse(9F),
 qcc_unpack(9F), ba(7)

 "ATM User-Network Interface Specification, V3.0," ATM Forum.

 "ATM User-Network Interface Specification, V3.1," ATM Forum.

 "ATM User-Network Interface Specification, V4.0," ATM Forum.

 "Data Link Provider Interface Specification, Rev. 2.0.0," 20
 Aug 1991, UNIX International.

 SunATM Manual

CODE EXAMPLE 4-2 q93b(7) Man Page (Continued)
122 SunATM Application Programmer’s Interface and Man Pages • August 1998

CHAPTER 5

DDI and DKI Kernel Functions

The man pages in this chapter describe the kernel functions available for use by the

SunATM device drivers.

TABLE 5-1 DDI and DKI Kernel Function Man Pages

Man Page Description Page Number

qcc_bld(9F) Build Q.2931 messages, with these commands: page 127

qcc_bld_setup(9F),

qcc_bld_alerting(9F),

qcc_bld_call_proceeding(9F),

qcc_bld_connect(9F),

qcc_bld_release(9F),

qcc_bld_release_complete(9F),

qcc_bld_status(9F),

qcc_bld_status_enquiry(9F),

qcc_bld_notify(9F),

qcc_bld_restart(9F),

qcc_bld_restart_ack(9F),

qcc_bld_add_party(9F),

qcc_bld_add_party_ack(9F),

qcc_bld_party_alerting(9F),

qcc_bld_add_party_reject(9F),

qcc_bld_drop_party(9F),

qcc_bld_drop_party_ack(9F),
123

qcc_bld_leaf_setup_fail(9F),

qcc_bld_leaf_setup_req(9F)

qcc_create(9F) Build Q.2931 messages, including: page 135

qcc_create_setup(9F),

qcc_create_alerting(9F),

qcc_create_call_proceeding(9F),

qcc_create_connect(9F),

qcc_create_connect_ack(9F),

qcc_create_release(9F),

qcc_create_release_complete(9F),

qcc_create_status(9F),

qcc_create_status_enq(9F),

qcc_create_notify(9F),

qcc_create_restart(9F),

qcc_create_restart_ack(9F),

qcc_create_add_party(9F),

qcc_create_add_party_ack(9F),

qcc_create_party_alerting(9F),

qcc_create_add_party_reject(9F),

qcc_create_drop_party(9F),

qcc_create_drop_party_ack(9F),

qcc_create_leaf_setup_fail(9F),

qcc_create_leaf_setup_req(9F)

qcc_pack(9F) Encode Q.2931 message structure information and pack into

streams buffers, with these commands:

page 144

qcc_pack_setup(9F),

qcc_pack_alerting(9F),

qcc_pack_call_proceeding(9F),

qcc_pack_connect(9F),

qcc_pack_connect_ack(9F),

qcc_pack_release(9F),

TABLE 5-1 DDI and DKI Kernel Function Man Pages (Continued)

Man Page Description Page Number
124 SunATM Application Programmer’s Interface and Man Pages • August 1998

qcc_pack_release_complete(9F),

qcc_pack_status(9F),

qcc_pack_status_enq(9F),

qcc_pack_notify(9F),

qcc_pack_restart(9F),

qcc_pack_restart_ack(9F),

qcc_pack_add_party(9F),

qcc_pack_add_party_ack(9F),

qcc_pack_party_alerting(9F),

qcc_pack_add_party_reject(9F),

qcc_pack_drop_party(9F),

qcc_pack_drop_party_ack(9F),

qcc_pack_leaf_setup_fail(9F),

qcc_pack_leaf_setup_req(9F)

qcc_parse(9F) Parse Q.2931 messages, with these commands: page 148

qcc_parse_setup(9F),

qcc_parse_alerting(9F),

qcc_parse_call_proceeding(9F),

qcc_parse_connect(9F),

qcc_parse_release(9F),

qcc_parse_release_complete(9F),

qcc_parse_status_enquiry(9F),

qcc_parse_notify(9F),

qcc_parse_status(9F),

qcc_parse_restar(9F),

qcc_parse_restart_ack(9F),

qcc_parse_add_party(9F),

qcc_parse_add_party_ack(9F),

qcc_parse_party_alerting(9F),

qcc_parse_add_party_reject(9F),

TABLE 5-1 DDI and DKI Kernel Function Man Pages (Continued)

Man Page Description Page Number
Chapter 5 DDI and DKI Kernel Functions 125

qcc_parse_drop_party(9F),

qcc_parse_drop_party_ack(9F),

qcc_parse_leaf_setup_fail(9F),

qcc_parse_leaf_setup_req(9F)

qcc_set_ie(9F) Add or update Information Elements in a Q.2931 message

structure

page 156

qcc_unpack(9F) Decode Q.2931 messages and unpack into message structures

with these commands:

page 162

qcc_unpack_setup(9F),

qcc_unpack_alerting(9F),

qcc_unpack_call_proceeding(9F),

qcc_unpack_connect(9F),

qcc_unpack_connect_ack(9F),

qcc_unpack_release(9F),

qcc_unpack_release_complete(9F),

qcc_unpack_status(9F),

qcc_unpack_status_enq(9F),

qcc_unpack_notify(9F),

qcc_unpack_restart(9F),

qcc_unpack_restart_ack(9F),

qcc_unpack_add_party(9F),

qcc_unpack_add_party_ack(9F),

qcc_unpack_party_alerting(9F),

qcc_unpack_add_party_reject(9F),

qcc_unpack_drop_party(9F),

qcc_unpack_drop_party_ack(9F),

qcc_unpack_leaf_setup_fail(9F),

qcc_unpack_leaf_setup_req(9F)

TABLE 5-1 DDI and DKI Kernel Function Man Pages (Continued)

Man Page Description Page Number
126 SunATM Application Programmer’s Interface and Man Pages • August 1998

qcc_bld(9F)

CODE EXAMPLE 5-1 qcc_bld(9F) Man Page

qcc_bld(9F) Kernel Functions for Drivers qcc_bld(9F)

NAME
 qcc_bld, qcc_bld_setup, qcc_bld_alerting,
 qcc_bld_call_proceeding, qcc_bld_connect, qcc_bld_release,
 qcc_bld_release_complete, qcc_bld_status,
 qcc_bld_status_enquiry, qcc_bld_notify, qcc_bld_restart,
 qcc_bld_restart_ack, qcc_bld_add_party,
 qcc_bld_add_party_ack, qcc_bld_party_alerting,
 qcc_bld_add_party_reject, qcc_bld_drop_party,
 qcc_bld_drop_party_ack, qcc_bld_leaf_setup_fail,
 qcc_bld_leaf_setup_req - build Q.2931 messages

SYNOPSIS
 cc -DKERNEL -D_KERNEL [flag ...] file ...

 #include <atm/types.h>
 #include <atm/qcc.h>

 char _depends_on[] = "drv/qcc";

 mblk_t *qcc_bld_setup(char *ifname, int calltag, int vci,
 int forward_sdusize, int backward_sdusize,
 atm_addr_t *src_addrp, atm_addr_t *dst_addrp,
 int sap, int endpt_ref);

 mblk_t *qcc_bld_alerting(char *ifname, int callid, int vci,
 int endpt_ref);

 mblk_t *qcc_bld_call_proceeding(char *ifname, int callid,
 int vci, int endpt_ref);

 mblk_t *qcc_bld_connect(char *ifname, int callid, int vci,
 int forward_sdusize, int backward_sdusize,
 int endpt_ref);

 mblk_t *qcc_bld_release(char *ifname, int callid,
 int cause);
Chapter 5 DDI and DKI Kernel Functions 127

 mblk_t *qcc_bld_release_complete(char *ifname, int callid,
 int cause);

 mblk_t *qcc_bld_status_enquiry(char *ifname, int callid,
 int endpt_ref);

 mblk_t *qcc_bld_status(char *ifname, int callid,
 int callstate, int cause, int endpt_ref,
 int endpt_state);

 mblk_t *qcc_bld_notify(char *ifname, int callid,
 int contentlen, u_char *contentp, int endpt_ref);

 mblk_t *qcc_bld_restart(char *ifname, int callid, int vci,
 int rstall);

 mblk_t *qcc_bld_restart_ack(char *ifname, int callid,
 int vci, int rstall);

 mblk_t *qcc_bld_add_party(char *ifname, int callid,
 int forward_sdusize, int backward_sdusize,
 atm_address_t *src_addrp,
 atm_address_t *dst_addrp, int sap, int endpt_ref);

 mblk_t *qcc_bld_add_party_ack(char *ifname, int callid,
 int endpt_ref);

 mblk_t *qcc_bld_party_alerting(char *ifname, int callid,
 int endpt_ref);

 mblk_t *qcc_bld_add_party_reject(char *ifname, int callid,
 int cause, int endpt_ref);

 mblk_t *qcc_bld_drop_party(char *ifname, int callid,
 int cause, int endpt_ref);

 mblk_t *qcc_bld_drop_party_ack(char *ifname, int callid,
 int cause, int endpt_ref);

 mblk_t *qcc_bld_leaf_setup_fail(char *ifname, int callid,
 int cause, atm_address_t *dst_addrp,
 int leaf_num);

 mblk_t *qcc_bld_leaf_setup_req(char *ifname, int leaftag,
 atm_address_t *src_addrp,

CODE EXAMPLE 5-1 qcc_bld(9F) Man Page (Continued)
128 SunATM Application Programmer’s Interface and Man Pages • August 1998

 atm_address_t *dst_addrp, int lij_callid);

MT-LEVEL
 Safe.

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.
 The -DKERNEL and -D_KERNEL flags must be included to indi-
 cate that the application should run in kernel space, and
 the qcc driver must be loaded (this requirement is expressed
 in the code using the "depends_on" line shown in the
 synopsis).

DESCRIPTION
 These functions build the various messages that make up the
 Q.2931 protocol which is used for ATM signalling. A full
 description of the message format and use can be found in
 the ATM Forum's User Network Interface Specification, V3.0,
 V3.1, or V4.0. The messages built will conform to the ver-
 sion of the UNI Specification which is configured on the
 indicated interface. The functions may be used by processes
 which are running in kernel space.

 In general, no error checking is performed on the data that
 is passed in. Whatever data is passed in will be placed in
 the message that is built without examination. The only
 exceptions to this are mentioned in the function descrip-
 tions.

 Two mblk_t structures are allocated and linked by each of
 the functions (their format is shown in the following
 diagram). The pointer that is returned points to the
 M_PROTO block, and may then be passed downstream with the
 putq(9F) command.

 M_PROTO M_DATA
 _____________ ___________________________
 --->| |--->| | | |
 | IF_Name | | Q.2931 Message | | |
 | Call_ID | | | | |
 | Type | | | | |
 | Error | | | Information | |
 | Call_Tag | | (9) | Elements | (16)|
 |_____________| |_____|_______________|_____|

CODE EXAMPLE 5-1 qcc_bld(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 129

 The parameters passed in to each function are used to fill
 in the data portions of these two mblks.

 Each function requires a minimum of 2 parameters: ifname,
 which is a string containing the physical interface (such as
 ba0); and an integer, either calltag or callid, depending on
 the message type. calltag is used in the setup message
 only; it is a reference number that is assigned by the cal-
 ling application. callid is used in all other messages; it
 is assigned by the lower layer and will be sent up to the
 user, with the calltag, in the setup_ack message.

 Other parameters for each function depend on the type of
 information required for each message type, and are defined
 in the paragraphs describing each function call.

 qcc_bld_setup() constructs a setup message containing the
 following Information Elements: AAL parameters, ATM user
 cell rate, broadband bearer capability, called party number,
 calling party number, quality of service parameter, and end-
 point reference. The user must pass in the forward and
 backward sdu sizes for the AAL parameter IE, an ATM address
 for the destination for the called party number IE, and one
 for itself for the calling party number IE (atm_address_t
 format is defined in the <atm/qcc.h> header file). The
 value passed in the sap parameter is placed in a broadband
 higher layer IE. The higher layer IE indicates the sap to
 which received messages should be directed. If the user
 passes in a positive vci, a connection identifier IE will be
 included; if the user passes in a non-negative endpt_ref (0
 is valid), an endpoint reference IE will be included. The
 endpoint reference IE indicates that this is a point-to-
 multipoint call.

 qcc_bld_alerting() is specific to UNI 4.0. It builds an
 alerting message containing a connection identifier IE if a
 positive vci is passed in, and an endpoint reference IE if a
 non-negative endpt_ref is passed in. An endpoint reference
 IE should only appear if the call is a point-to-multipoint
 call. The alerting message is only supported under UNI 4.0.

 qcc_bld_call_proceeding() includes a connection identifier
 IE if a positive vci is passed in, and an endpoint reference
 IE if a non-negative endpt_ref is passed in. An endpoint
 reference IE should only appear if the call is a point-to-
 multipoint call.

CODE EXAMPLE 5-1 qcc_bld(9F) Man Page (Continued)
130 SunATM Application Programmer’s Interface and Man Pages • August 1998

 qcc_bld_connect() includes an AAL parameters IE, requiring
 the forward_ and backward_sdusize values, a connection iden-
 tifier IE if a positive vci value is passed in, and an end-
 point reference IE if a non-negative endpt_ref value is
 passed in. An endpoint reference IE should only appear if
 the call is a point-to-multipoint call.

 qcc_bld_release() includes a cause IE for which the user
 must pass in a cause value. The possible values can be
 found in the <atm/qcc.h> header file. The same is true for
 qcc_bld_release_ complete().

 qcc_bld_status_enquiry() includes only an endpoint reference
 IE if a non-negative endpt_ref value is passed in. An end-
 point reference IE should only appear if the call is a
 point-to-multipoint call.

 qcc_bld_status() includes a call state IE, requiring the
 user pass in the callstate parameter; possible values can be
 found in the <atm/qcc.h> header file. It also includes a
 cause IE; the cause value must also be passed in. Its pos-
 sible values may also be found in the <atm/qcc.h> header
 file. Finally, if the call is a point-to-multipoint call,
 endpoint reference and endpoint state IEs may also be
 included; they are included if a non-negative endpt_ref
 value is passed in. The endpt_state parameter is used in the
 enpoint state IE; possible party state values may be found
 in <atm/qcc.h>.

 qcc_bld_notify() is specific to UNI 4.0. It builds a notify
 message, including a notification indicator IE, which con-
 tains a buffer of user-defined information up to a maximum
 length of 16 bytes (defined by contentlen and contentp), and
 an endpoint reference IE if a non-negative endpt_ref value
 is passed in. An endpoint reference IE should only appear

 if the call is a point-to-multipoint call. The notify mes-
 sage is only valid under UNI 4.0.

 qcc_bld_restart() includes a restart indicator IE, which is
 used to determine whether an individual call or all calls on
 an interface should be restarted. If rstall is 0, only the
 call identified by vci should be restarted; in this case, a
 connection identifier IE will also be included. If rstall
 is non-zero, all calls will be restarted. The same format

CODE EXAMPLE 5-1 qcc_bld(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 131

 applies to the qcc_bld_restart_ack() function.

 qcc_bld_add_party() constructs an add party message for a
 point-to-multipoint call. The message constructed will con-
 tain an AAL parameters IE, which includes the forward_ and
 backward_sdusize parameters, a calling party number IE,
 which includes the value pointed to by src_addrp, a called
 party number IE, which includes the value pointed to by
 dst_addrp, a broadband higher layer interface IE, which
 includes the sap parameter, and an endpoint reference IE,
 which includes the endpt_ref parameter. The sap value in the
 broadband higher layer information IE is used to indicate
 the sap to which the message should be passed by the receiv-
 ing host.

 qcc_bld_add_party_ack() constructs an add party ack message
 which includes an endpoint reference IE, for which the
 endpt_ref parameter is required.

 qcc_bld_party_alerting() is specific to UNI 4.0. It builds
 a party alerting message, containing an endpoint reference
 IE, for which the endpt_ref parameter is required.

 qcc_bld_add_party_reject() includes a cause IE, containing
 the cause value passed in. The possible cause values may be
 found in the <atm/qcc.h> header file. An endpoint reference
 IE is also included, which requires the endpt_ref parameter.

 qcc_bld_drop_party() constructs a drop party message. The
 message constructed will contain two IEs: a cause IE, which
 requires the cause parameter, and an endpoint reference IE,
 which requires the endpt_ref parameter. Possible cause
 values may be found in the header file <atm/qcc.h>.

 qcc_bld_drop_party_ack() contains an endpoint reference IE,
 requiring the endpt_ref parameter, and optionally, a cause
 IE. The cause IE will be included if a positive value is
 passed in in the cause parameter. Possible cause values may
 be found in the <atm/qcc.h> header file.

 qcc_bld_leaf_setup_fail() is specific to UNI 4.0. It con-
 tains a cause IE if a non-negative cause value is passed in;
 a called number IE if a non-null dst_addrp is passed in; and
 a leaf number IE, for which the leaf_num parameter is
 required. This message type is only valid under UNI 4.0.

CODE EXAMPLE 5-1 qcc_bld(9F) Man Page (Continued)
132 SunATM Application Programmer’s Interface and Man Pages • August 1998

 qcc_bld_leaf_setup_req() is specific to UNI 4.0. It con-
 tains Calling Number and Called Number IEs if non-null
 src_addrp and dst_addrp are passed in, respectively; it also
 contains a leaf initiated join call identifier IE for which
 lij_callid is required, and a leaf number IE. The leaf
 number is assigned by the q93b driver. Because the leaf
 number is assigned by the q93b driver, a mechanism similar
 to that used in the setup and setup_ack messages is used
 with the leaf number: the user must provide a 'leaftag'
 parameter in the call to qcc_bld_leaf_setup_req();this tag
 is inserted in the calltag field of the qcc header. When
 the message is received and accepted by the q93b driver, a
 leaf_setup_ack message is returned, containing both the
 leaftag, in the calltag field of the qcc header, and the
 driver-assigned leaf number, in the callref field. The
 leaf_setup_req and leaf_setup_ack messages are the only mes-
 sages which will not contain a call reference value in the
 callref field; this is because the messages are not tied to
 a specific call. This message, and the leaf-initiated join
 functionality, are only supported under UNI 4.0.

RETURN VALUES
 All functions return a pointer to an mblk_t. If the func-
 tion is not successful, the pointer will be NULL.

EXAMPLES
 The following code fragment builds a setup message and sends
 it downstream.

 #include <sys/stream.h>
 #include <atm/qcc.h>
 #include <atm/limits.h>

 char _depends_on[] = "drv/qcc";

 void
 send_setup(queue_t *q);
 {
 mblk_t *mp;
 char ifname[QCC_MAX_IFNAME_LEN] = "ba0";
 int calltag = 0x1234;
 int vci = 0x100;
 int forward_sdusize = 0x2378;
 int backward_sdusize = 0x2378;
 int sap = 0x100;

CODE EXAMPLE 5-1 qcc_bld(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 133

 atm_addr_t src_addr = {
 0x45, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x0f, 0x00, 0x00, 0x00, 0x00,
 0x08, 0x00, 0x20, 0x1a, 0xe1, 0x53, 0x00
 };

 atm_addr_t dst_addr = {
 0x45, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x0f, 0x00, 0x00, 0x00, 0x00,
 0x08, 0x00, 0x20, 0x1a, 0xb6, 0xb9, 0x00
 };

 mp = qcc_bld_setup(ifname, calltag, vci,
 forward_sdusize, backward_sdusize,
 &src_addr, &dst_addr, sap, -1);

 if (putq(q, mp) < 0) {
 perror("putq");
 exit (-1);
 }
 }

SEE ALSO
 qcc_util(3), qcc_parse(9F), q93b(7)

 "ATM User-Network Interface Specification, V3.0," ATM Forum.
 "ATM User-Network Interface Specification, V3.1," ATM Forum.
 "ATM User-Network Interface Specification, V4.0," ATM Forum.

NOTES
 This API is an interim solution until the ATM Forum has
 standardized an API. At that time, Sun will implement that
 API, and support for the Q.2931 Call Control library may not
 be continued.

 The additional support of the UNI 4.0 signalling specifica-
 tion includes the addition of several new message types
 which are not supported in the earlier versions of the UNI
 specification. These message types, if sent on an interface
 configured for UNI 3.0 or 3.1, will be discarded by the q93b
 driver and will not be sent out to the network. The UNI
 4.0-specific messages are Alerting, Notify, Party Alerting,
 Leaf Setup Fail, and Leaf Setup Request, and are identified
 in the applicable function descriptions.

CODE EXAMPLE 5-1 qcc_bld(9F) Man Page (Continued)
134 SunATM Application Programmer’s Interface and Man Pages • August 1998

qcc_create(9F)

CODE EXAMPLE 5-2 qcc_create(9F) Man Page

qcc_create(9F) Kernel Functions for Drivers qcc_create(9F)

NAME
 qcc_create, qcc_create_setup, qcc_create_alerting,
 qcc_create_call_proceeding, qcc_create_connect,
 qcc_create_connect_ack, qcc_create_release,
 qcc_create_release_complete, qcc_create_status,
 qcc_create_status_enq, qcc_create_notify,
 qcc_create_restart, qcc_create_restart_ack,
 qcc_create_add_party, qcc_create_add_party_ack,
 qcc_create_party_alerting, qcc_create_add_party_reject,
 qcc_create_drop_party, qcc_create_drop_party_ack,
 qcc_create_leaf_setup_fail, qcc_create_leaf_setup_req -
 create Q.2931 message structures

SYNOPSIS
 cc -DKERNEL -D_KERNEL [flag ...] file ...

 #include <atm/qcc.h>
 #include <atm/qcctypes.h>

 char _depends_on[] = "drv/qcc";

 int qcc_create_setup(qcc_setup_t *msgp, char *ifname,
 int calltag, atm_address_t *dst_addrp);

 int qcc_create_alerting(qcc_alerting_t *msgp, char *ifname,
 int callid);

 int qcc_create_call_proceeding(qcc_call_proc_t *msgp,
 char *ifname, int callid);

 int qcc_create_connect(qcc_connect_t *msgp, char *ifname,
 int callid);

 int qcc_create_connect_ack(qcc_connect_ack_t *msgp,
 char *ifname, int callid);
Chapter 5 DDI and DKI Kernel Functions 135

 int qcc_create_release(qcc_release_t *msgp, char *ifname,
 int callid, int cause);

 int qcc_create_release_complete(qcc_release_complete_t *
 msgp, char *ifname, int callid);

 int qcc_create_status_enq(qcc_status_enq_t *msgp,
 char *ifname, int callid);

 int qcc_create_status(qcc_status_t *msgp, char *ifname,
 int callid, int callstate, int cause);

 int qcc_create_notify(qcc_notify_t *msgp, char *ifname,
 int callid, int contentlen, u_char *contentp);

 int qcc_create_restart(qcc_restart_t *msgp, char *ifname,
 int callid, int indicator, int vci);

 int qcc_create_restart_ack(qcc_restart_ack_t *msgp,
 char *ifname, int callid, int indicator, int vci);

 int qcc_create_add_party(qcc_add_party_t *msgp,
 char *ifname, int callid, atm_address_t *dst_addrp,
 int endpt_ref);

 int qcc_create_add_party_ack(qcc_add_party_ack_t *msgp,
 char *ifname, int callid, int endpt_ref);

 int qcc_create_party_alerting(qcc_party_alerting_t *msgp,
 char *ifname, int callid, int endpt_ref);

 int qcc_create_add_party_reject(qcc_add_party_reject_t *
 msgp, char *ifname, int callid, int cause,
 int endpt_ref);

 int qcc_create_drop_party(qcc_drop_party_t *msgp,
 char *ifname, int callid, int cause, int endpt_ref);

 int qcc_create_drop_party_ack(qcc_drop_party_ack_t *msgp,
 char *ifname, int callid, int endpt_ref);

 int qcc_create_leaf_setup_fail(qcc_leaf_setup_fail_t *msgp,
 char *ifname, int callid, int cause,
 atm_address_t *dst_addrp, int leaf_num);

 int qcc_create_leaf_setup_req(qcc_leaf_setup_req_t *msgp,

CODE EXAMPLE 5-2 qcc_create(9F) Man Page (Continued)
136 SunATM Application Programmer’s Interface and Man Pages • August 1998

 char *ifname, int leaftag, atm_address_t *src_addrp,
 atm_address_t *dst_addrp, int lij_callid);

MT-LEVEL
 Safe.

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.
 The -DKERNEL and -D_KERNEL flags must be included to indi-
 cate that the application should run in kernel space, and
 the qcc driver must be loaded (this requirement is expressed
 in the code using the "depends_on" line shown in the
 synopsis).

DESCRIPTION
 These functions create message structures representing the
 various messages that make up the Q.2931 protocol, which is
 used for ATM signalling. A full description of the message
 format and use can be found in the ATM Forum's User Network
 Interface Specification, V3.0, V3.1, or V4.0. The content of
 the created message structures will conform to the version
 of the UNI Specification which is configured on the indi-
 cated interface. The functions may be used by processes
 which are running in kernel space.

 After a message structure has been created, non-default
 Information Elements (IEs) may be added or existing IEs may
 be changed using the qcc_set_ie(9F) function. When the mes-
 sage structure has been completely specified, the
 corresponding qcc_pack(9F) function should be called to
 translate the message structure into the correct encoded
 format, contained in message blocks which may be passed
 downstream using the putq(9F) function.

 In general, no error checking is performed on the data that
 is passed in. Whatever data is passed in will be placed in
 the message that is built without examination. The only
 exceptions to this are mentioned in the function descrip-
 tions.

 Each function requires a minimum of 3 parameters: msgp,
 which is a pointer to the appropriate message structure
 type; ifname, which is a string containing the physical
 interface (such as ba0); and an integer, either calltag or
 callid, depending on the message type. calltag is used in

CODE EXAMPLE 5-2 qcc_create(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 137

 the setup message only; it is a reference number that is
 assigned by the calling application. callid is used in all
 other messages; it is assigned by the lower layer and will
 be sent up to the user, with the calltag, in the setup_ack
 message.

 The structure to which msgp points must be allocated by the
 calling user. There is a unique structure for each message
 type; the message structures are defined in
 <atm/qcctypes.h>.

 Only the mandatory IEs for each message type are added to
 the message structure by the qcc_create call. The addi-
 tional parameters to the qcc_create functions allow the user
 to define most of the information contained in those manda-
 tory IEs; however, in some cases default values are assumed.
 Those values, as well as the additional parameters for each
 function, are indicated in the following paragraphs describ-
 ing each function call.

 qcc_create_setup() creates a setup message structure con-
 taining the following Information Elements: ATM traffic
 descriptor (called ATM cell rate in UNI 3.0), broadband
 bearer capability, called party number, and quality of ser-
 vice parameter. The user must pass in the destination ATM
 address for the called party number IE (atm_address_t format
 is defined in the <atm/types.h> header file). The following
 default values are used for the remaining Information Ele-
 ments:

 ATM Traffic Descriptor:
 best effort; line rate is used for the forward and
 backward peak rates

 Broadband Bearer Capability:
 Bearer Class X, no indication for traffic type and
 timing requirements, not susceptible to clipping,
 and point-to-point user plane

 Called Party Number:
 ATM Endsystem (NSAP) address type

 Quality of Service:
 Forward and backward class unspecified

 qcc_create_alerting() creates the structure for an alerting

CODE EXAMPLE 5-2 qcc_create(9F) Man Page (Continued)
138 SunATM Application Programmer’s Interface and Man Pages • August 1998

 message, which is supported only under UNI 4.0. The alerting
 message contains no mandatory IEs; only the message header
 is filled in.

 qcc_create_call_proceeding() creates the structure for a
 call proceeding message, which contains no mandatory IEs.
 Only the message header is filled in.

 qcc_create_connect() creates the structure for a connect
 message, which also contains no mandatory IEs. Again, only
 the required header is filled in. The same is true for
 qcc_create_connect_ack.

 qcc_create_release() creates a release message structure
 containing a cause IE, for which the user must pass in a
 cause value. The possible values can be found in the
 <atm/qccdefs.h> header file. By default, no diagnostic is
 included and the user location is assigned.

 qcc_create_release_complete() creates the structure for a
 release complete message, which contains no mandatory IEs.
 Only the message header is filled in.

 qcc_create_status_enquiry() creates a status enquiry message
 structure, which contains no mandatory IEs. Only the message
 header is filled in.

 qcc_create_status() builds a status message structure, con-
 taining two mandatory IEs: call state and cause. The user
 should pass in value for both the callstate and the cause;
 possible values may be found in the <atm/qccdefs.h> header
 file. In the cause IE, no diagnostic is included and the
 user location is assigned.

 qcc_create_notify() builds a notify message structure, which
 is only supported under UNI 4.0. The message contains a sin-
 gle mandatory IE, the notification indicator, which contains
 a buffer of user-specified data. The maximum size of the
 buffer is 16 bytes, defined as QCC_MAX_NOTIFICATION_LEN in
 <atm/qcc.h>. The user should allocate a buffer and pass in
 the buffer length, contentlen, and a pointer to the buffer,
 contentp.

 qcc_create_restart() creates a restart message structure,
 containing the mandatory restart indicator IE, and option-
 ally the connection identifier IE. The user should pass in

CODE EXAMPLE 5-2 qcc_create(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 139

 a value for the restart indicator, either
 RESTART_INDICATED_VC or RESTART_ALL_VCS. If a non-zero vci
 parameter is passed in, the connection identifier IE is also
 included in the message, using a default vpci of 0 and the
 vci parameter value.

 qcc_create_add_party() constructs an add party message
 structure. It includes the mandatory called party number
 and endpoint reference IEs. The user should pass in a
 pointer to the called number and an endpoint reference
 value; for the called party number, ATM Endsystem (NSAP)
 address type is assumed.

 qcc_create_add_party_ack() fills in an add party ack message
 structure with the endpoint reference IE. The endpt_ref
 parameter value is used.

 qcc_create_party_alerting() creates a party alerting message
 structure with the endpoint reference IE, which uses the
 endpt_ref parameter. This message type is only supported
 under UNI 4.0.

 qcc_create_add_party_reject() fills the cause and endpoint
 reference IEs into an add party reject structure. The user
 should provide the cause and endpoint reference value; pos-
 sible cause values are defined in the <atm/qccdefs.h> header
 file. By default, no diagnostic is included and the user
 location is assigned in the cause IE.

 qcc_create_drop_party() fills the cause and endpoint refer-
 ence IEs into a drop party structure. The user should pass
 in the cause and endpoint reference values; possible cause
 values are defined in the <atm/qccdefs.h> header file. By
 default, no diagnostic is included and the user location is
 assigned in the cause IE.

 qcc_create_drop_party_ack() fills in only the mandatory end-
 point reference IE, requiring the endpt_ref parameter.

 qcc_create_leaf_setup_fail() creates a leaf setup fail mes-
 sage structure, with three mandatory IEs. The cause IE
 requires the cause parameter, which should be one of the
 cause values defined in <atm/qccdefs.h>; the called number
 IE requires the destination ATM address, dst_addrp; and the
 leaf number IE requires the leaf_num parameter. This mes-
 sage is only supported under UNI 4.0.

CODE EXAMPLE 5-2 qcc_create(9F) Man Page (Continued)
140 SunATM Application Programmer’s Interface and Man Pages • August 1998

 qcc_create_leaf_setup_req() creates a leaf setup request
 message structure, with four mandatory IEs. Both the calling
 party and called party number IEs are required, using the
 source and destination ATM addresses, passed in in the
 src_addrp and dst_addrp parameters, respectively. The leaf
 initiated join call identifier IE requires the lij_callid
 parameter. The final required IE, the leaf number IE, is
 inserted as a placeholder; the actual leaf number will be
 assigned and filled in by the q93b driver. It will be
 returned in the callref field of the qcc header of a
 leaf_setup_ack message, much as the call reference is
 returned in a setup_ack message in the setup case. Refer to
 the description of the qcc_bld_leaf_setup_req() function for
 more details on this process. This message is only sup-
 ported under UNI 4.0.

RETURN VALUES
 All functions return 0 on success and -1 on error.

EXAMPLES
 The following code fragment creates a setup message, adds an
 optional AAL Parameters IE, packs the message into m_blks,
 and sends it downstream.

 #include <sys/stream.h>
 #include <atm/limits.h>
 #include <atm/qcc.h>
 #include <atm/qcctypes.h>

 char _depends_on[] = "drv/qcc";

 void
 send_setup(queue_t *q);
 {
 mblk_t *mp;
 char ifname[QCC_MAX_IFNAME_LEN] = "ba0";
 int calltag = 0x1234;
 int forward_sdusize = 0x2378;
 int backward_sdusize = 0x2378;
 qcc_msg_t msgstruct;
 qcc_setup_t setup;
 qcc_ie_t iestruct;
 qcc_aal_params_t aal;

 atm_addr_t dst_addr = {

CODE EXAMPLE 5-2 qcc_create(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 141

 0x45, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x0f, 0x00, 0x00, 0x00, 0x00,
 0x08, 0x00, 0x20, 0x1a, 0xb6, 0xb9, 0x00
 };

 if ((qcc_create_setup(&setup, ifname,
 calltag, dst_addr)) < 0) {
 printf("qcc_create_setup failed\n");
 exit (-1);
 }

 msgstruct.type = QCC_SETUP;
 msgstruct.msg.setup = &setup;

 aal.type = AAL_TYPE_5;
 aal.info.aal5.forward_max = forward_sdusize;
 aal.info.aal5.backward_max = backward_sdusize;
 aal.info.aal5.mode = MESSAGE_MODE;
 aal.info.aal5.sscs_type = SSCS_TYPE_NULL;

 iestruct.type = QCC_AAL_PARAMETERS;
 iestruct.ie.aal_params = &aal;

 if ((qcc_set_ie(&msgstruct, &iestruct)) < 0) {
 printf("qcc_set_ie failed\n");
 exit (-1);
 }

 if ((mp = qcc_pack_setup(&setup)) == NULL) {
 printf("qcc_pack_setup failed\n");
 exit (-1);
 }

 if (putq(q, mp) < 0) {
 perror("putq");
 exit (-1);
 }
 }

SEE ALSO
 qcc_util(3), qcc_set_ie(9F), qcc_pack(9F), qcc_unpack(9F),
 qcc_parse(9F), q93b(7)

 "ATM User-Network Interface Specification, V3.0," ATM Forum.
 "ATM User-Network Interface Specification, V3.1," ATM Forum.
 "ATM User-Network Interface Specification, V4.0," ATM Forum.

CODE EXAMPLE 5-2 qcc_create(9F) Man Page (Continued)
142 SunATM Application Programmer’s Interface and Man Pages • August 1998

NOTES
 This API is an interim solution until the ATM Forum has
 standardized an API. At that time, Sun will implement that
 API, and support for the Q.2931 Call Control library may not
 be continued.

 The additional support of the UNI 4.0 signalling specifica-
 tion includes the addition of several new message types
 which are not supported in the earlier versions of the UNI
 specification. These message types, if sent on an interface
 configured for UNI 3.0 or 3.1, will be discarded by the q93b
 driver and will not be sent out to the network. The UNI
 4.0-specific messages are Alerting, Notify, Party Alerting,
 Leaf Setup Fail, and Leaf Setup Request, and are identified
 in the applicable function descriptions.

CODE EXAMPLE 5-2 qcc_create(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 143

qcc_pack(9F)

CODE EXAMPLE 5-3 qcc_pack(9F) Man Page

qcc_pack(9F) Kernel Functions for Drivers qcc_pack(9F)

NAME
 qcc_pack, qcc_pack_setup, qcc_pack_alerting,
 qcc_pack_call_proceeding, qcc_pack_connect,
 qcc_pack_connect_ack, qcc_pack_release,
 qcc_pack_release_complete, qcc_pack_status,
 qcc_pack_status_enq, qcc_pack_notify, qcc_pack_restart,
 qcc_pack_restart_ack, qcc_pack_add_party,
 qcc_pack_add_party_ack, qcc_pack_party_alerting,
 qcc_pack_add_party_reject, qcc_pack_drop_party,
 qcc_pack_drop_party_ack, qcc_pack_leaf_setup_fail,
 qcc_pack_leaf_setup_req - encode Q.2931 message structure
 information and pack into streams buffers

SYNOPSIS
 cc -DKERNEL -D_KERNEL [flag ...] file ...

 #include <atm/types.h>
 #include <atm/qcc.h>

 char _depends_on[] = "drv/qcc";

 mblk_t *qcc_pack_setup(qcc_setup_t *msgp);

 mblk_t *qcc_pack_alerting(qcc_alerting_t *msgp);

 mblk_t *qcc_pack_call_proceeding(qcc_call_proc_t *msgp);

 mblk_t *qcc_pack_connect(qcc_connect_t *msgp);

 mblk_t *qcc_pack_connect_ack(qcc_connect_ack_t *msgp);

 mblk_t *qcc_pack_release(qcc_release_t *msgp);

 mblk_t *qcc_pack_release_complete(
 qcc_release_complete_t *msgp);
144 SunATM Application Programmer’s Interface and Man Pages • August 1998

 mblk_t *qcc_pack_status_enq(qcc_status_enq_t *msgp);

 mblk_t *qcc_pack_status(qcc_status_t *msgp);

 mblk_t *qcc_pack_notify(qcc_notify_t *msgp);

 mblk_t *qcc_pack_restart(qcc_restart_t *msgp);

 mblk_t *qcc_pack_restart_ack(qcc_restart_ack_t *msgp);

 mblk_t *qcc_pack_add_party(qcc_add_party_t *msgp);

 mblk_t *qcc_pack_add_party_ack(qcc_add_party_ack_t *msgp);

 mblk_t *qcc_pack_party_alerting(qcc_party_alerting_t *msgp);

 mblk_t *qcc_pack_add_party_reject(
 qcc_add_party_reject_t *msgp);

 mblk_t *qcc_pack_drop_party(qcc_drop_party_t *msgp);

 mblk_t *qcc_pack_drop_party_ack(qcc_drop_party_ack_t *msgp);

 mblk_t *qcc_pack_leaf_setup_fail(
 qcc_leaf_setup_fail_t *msgp);

 mblk_t *qcc_pack_leaf_setup_req(qcc_leaf_setup_req_t *msgp);

MT-LEVEL
 Safe.

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.
 The -DKERNEL and -D_KERNEL flags must be included to indi-
 cate that the application should run in kernel space, and
 the qcc driver must be loaded (this requirement is expressed
 in the code using the "depends_on" line shown in the
 synopsis).

DESCRIPTION
 These functions take message structures as input and encode
 the information contained in the structure to create a
 Q.2931 message, which is then packed into mblk_t structures.
 The Q.2931 protocol is used for ATM signalling; a full
 description of the message format and use can be found in

CODE EXAMPLE 5-3 qcc_pack(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 145

 the ATM Forum's User Network Interface Specification, V3.0,
 V3.1, or V4.0. The encoded messages will conform to the ver-
 sion of the UNI Specification which is configured on the
 indicated interface. The functions may be used by processes
 which are running in kernel space.

 Message structures should be filled using the qcc_create(9F)
 and qcc_set_ie(9F) functions before calling qcc_pack func-
 tions.

 In general, no error checking is performed on the data that
 is passed in. Whatever data is contained in the message
 structure will be placed in the encoded message without
 examination.

 Each function requires 1 parameter: msgp, which is a pointer
 to the appropriate message structure.

 Two mblk_t structures are allocated and linked by each of
 the functions (their format is shown in the following
 diagram). The pointer that is returned points to the
 M_PROTO block, and may then be passed downstream with the
 putq(9F) command.

 M_PROTO M_DATA
 _____________ ___________________________
 --->| |--->| | | |
 | IF_Name | | Q.2931 Message | | |
 | Call_ID | | | | |
 | Type | | | | |
 | Error | | | Information | |
 | Call_Tag | | (9) | Elements | (16)|
 |_____________| |_____|_______________|_____|

 The information in the message structure passed in to each
 function is used to fill in the data portions of these two
 mblks.

RETURN VALUES
 All functions return a pointer to an mblk_t. If the function
 is not successful, the pointer will be NULL.

EXAMPLES
 For an example using qcc_pack_setup, see the example in the
 qcc_create(9F) man page.

CODE EXAMPLE 5-3 qcc_pack(9F) Man Page (Continued)
146 SunATM Application Programmer’s Interface and Man Pages • August 1998

SEE ALSO
 qcc_util(3), qcc_create(9F), qcc_set_ie(9F), q93b(7)

 "ATM User-Network Interface Specification, V3.0," ATM Forum.
 "ATM User-Network Interface Specification, V3.1," ATM Forum.
 "ATM User-Network Interface Specification, V4.0," ATM Forum.

NOTES
 This API is an interim solution until the ATM Forum has
 standardized an API. At that time, Sun will implement that
 API, and support for the Q.2931 Call Control library may not
 be continued.

 The additional support of the UNI 4.0 signalling specifica-
 tion includes the addition of several new message types
 which are not supported in the earlier versions of the UNI
 specification. These message types will be ignored by the
 q93b driver if used on an interface which is configured for
 UNI 3.0 or 3.1. The UNI 4.0-specific messages are Alerting,
 Notify, Party Alerting, Leaf Setup Fail, and Leaf Setup
 Request.

CODE EXAMPLE 5-3 qcc_pack(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 147

qcc_parse(9F)

CODE EXAMPLE 5-4 qcc_parse(9F) Man Page

qcc_parse(9F) Kernel Functions for Drivers qcc_parse(9F)

NAME
 qcc_parse, qcc_parse_setup, qcc_parse_alerting,
 qcc_parse_call_proceeding, qcc_parse_connect,
 qcc_parse_release, qcc_parse_release_complete,
 qcc_parse_status_enquiry, qcc_parse_notify,
 qcc_parse_status, qcc_parse_restart, qcc_parse_restart_ack,
 qcc_parse_add_party, qcc_parse_add_party_ack,
 qcc_parse_party_alerting, qcc_parse_add_party_reject,
 qcc_parse_drop_party, qcc_parse_drop_party_ack,
 qcc_parse_leaf_setup_fail, qcc_parse_leaf_setup_req - parse
 Q.2931 messages

SYNOPSIS
 cc -DKERNEL -D_KERNEL [flag ...] file ...

 #include <atm/types.h>
 #include <atm/qcc.h>

 char _depends_on[] = "drv/qcc";

 int qcc_parse_setup(mblk_t *mp, int *vcip,
 int *forward_sdusizep, int *backward_sdusizep,
 atm_addr_t *src_addrp, atm_addr_t *dst_addrp,
 int *sapp, int *endpt_refp);

 int qcc_parse_alerting(mblk_t *mp, int *vcip,
 int *endpt_refp);

 int qcc_parse_call_proceeding(mblk_t *mp, int *vcip,
 int *endpt_refp);

 int qcc_parse_connect(mblk_t *mp, int *vcip,
 int *forward_sdusizep, int *backward_sdusizep,
 int *endpt_refp);

 int qcc_parse_release(mblk_t *mp, int *causep);
148 SunATM Application Programmer’s Interface and Man Pages • August 1998

 int qcc_parse_release_complete(mblk_t *mp,
 int *causep);

 int qcc_parse_status_enquiry(mblk_t *mp,
 int *endpt_refp);

 int qcc_parse_status(mblk_t *mp, int *callstatep,
 int *causep, int *endpt_refp, int *endpt_statep);

 int qcc_parse_notify(mblk_t *mp, int *contentlenp,
 u_char *contentp, int *endpt_refp);

 int qcc_parse_restart(mblk_t *mp, int *vcip,
 int *rstallp);

 int qcc_parse_restart_ack(mblk_t *mp, int *vcip,
 int *rstallp);

 int qcc_parse_add_party(mblk_t *mp, int *forward_sdusizep,
 int *backward_sdusizep, atm_address_t *src_addrp,
 atm_address_t *dst_addrp, int *sapp, int *endpt_refp);

 int qcc_parse_add_party_ack(mblk_t *mp, int *endpt_refp);

 int qcc_parse_party_alerting(mblk_t *mp, int *endpt_refp);

 int qcc_parse_add_party_reject(mblk_t *mp, int *causep,
 int *endpt_refp);

 int qcc_parse_drop_party(mblk_t *mp, int *causep,
 int *endpt_refp);

 int qcc_parse_drop_party_ack(mblk_t *mp, int *causep,
 int *endpt_refp);

 int qcc_parse_leaf_setup_fail(mblk_t *mp, int *causep,
 atm_address_t *dst_addrp, int *leaf_nump);

 int qcc_parse_leaf_setup_req(mblk_t *mp,
 atm_address_t *src_addrp, atm_address_t *dst_addrp,
 int *lij_callidp, int *leaf_nump);

MT-LEVEL
 Safe.

CODE EXAMPLE 5-4 qcc_parse(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 149

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.
 The -DKERNEL and -D_KERNEL flags must be included to indi-
 cate that the application should run in kernel space, and
 the qcc driver must be loaded (this requirement is expressed
 in the code using the "depends_on" line shown in the
 synopsis).

DESCRIPTION
 These functions parse the various messages that make up the
 Q.2931 protocol which is used for ATM signalling. A full
 description of the message format and use can be found in
 the ATM Forum's User Network Interface Specification, V3.0,
 V3.1, or V4.0. Messages conforming to both versions will be
 parsed. The functions may be used by processes which are
 running in kernel space.

 Each function requires a minimum of 1 parameter: mp, which
 is a pointer to a mblk_t structure, and is extracted from
 the following structure:

 M_PROTO M_DATA
 _____________ ___________________________
 --->| |--->| | | |
 | IF_Name | | Q.2931 Message | | |
 | Call_ID | | | | |
 | Type | | | | |
 | Error | | | Information | |
 | Call_Tag | | (9) | Elements | (16)|
 |_____________| |_____|_______________|_____|

 When a message is received from the q93b driver using the
 getq(9F) function, a pointer to the M_PROTO block shown
 above is returned. However, the q93b message which is
 parsed is contained in the M_DATA block, so the first param-
 eter passed to a qcc_parse function must be mp->b_cont,
 where mp is the pointer received by getq(). The M_PROTO
 block data may be examined to determine the message type,
 which indicates the parsing function that should be called.

 Other parameters for each function depend on the type of
 information that is available in each message type. In all
 cases, certain IEs are examined in each message, as indi-
 cated below. If those IEs exist, the data that is expected
 from them is retrieved, but no error message is sent if they

CODE EXAMPLE 5-4 qcc_parse(9F) Man Page (Continued)
150 SunATM Application Programmer’s Interface and Man Pages • August 1998

 do not exist; the value of the parameter is set to -1 for
 any data that was expected from that particular IE. Also,
 IEs that are not expected are ignored. If the user wishes to
 ignore any of the parameters of a parse function, passing in
 a NULL pointer for that parameter is allowed so that space
 need not be allocated for the unnecessary parameter.

 qcc_parse_setup() parses a setup message containing the fol-
 lowing Information Elements: AAL parameters, ATM user cell
 rate, broadband bearer capability, called party number, cal-
 ling party number, quality of service parameter, connection
 identifier, broadband higher layer information, and endpoint
 reference. The endpoint reference IE is only included in
 setup messages for point-to-multipoint calls. The following
 table matches the data that is retrieved from the message
 with the IE from which it is parsed.

 DATA RETRIEVED INFORMATION ELEMENT
 vci connection identifier
 forward sdusize AAL parameters
 backward sdusize AAL parameters
 source address calling party number
 destination address called party number
 sap broadband higher layer
 endpoint reference id endpoint reference

 qcc_parse_alerting() parses an alerting message. The alert-
 ing message is new in UNI 4.0; if received on an interface
 configured for uni 3.0 or 3.1, it will be dropped by the
 q93b driver. The IEs examined by this function are the con-
 nection identifier IE, from which the vci is parsed, and the
 endpoint reference IE, from which the endpt_ref parameter is
 parsed. The endpoint reference IE is only included in
 alerting messages for point-to-multipoint calls.

 qcc_parse_call_proceeding() parses a call proceeding message
 containing a connection identifier IE, which is used to set
 the value of vci, and an endpoint reference IE, setting the
 value of endpt_ref. The endpoint reference IE is only
 included in call proceeding messages for point-to-multipoint
 calls.

 qcc_parse_connect() parses a connect message containing an
 AAL parameters IE, setting the forward and backward sdusize
 values, a connection identifier IE, setting the value of
 vci, and an endpoint reference IE, setting the value of

CODE EXAMPLE 5-4 qcc_parse(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 151

 endpt_ref. The endpoint reference IE is only included in
 connect messages for point-to-multipoint calls.

 qcc_parse_release() parses a cause IE, setting the cause
 value. A listing of the possible values can be found in the
 <atm/qcc.h> header file. The same is true for
 qcc_parse_release_complete.

 qcc_parse_status_enquiry() parses a status enquiry message
 containing an endpoint reference IE, setting the value of
 endpt_ref. The endpoint reference IE is only included when
 enquiring about a party state in a point-to-multipoint call.

 qcc_parse_status() parses a status message. The IEs that
 are parsed are call state, cause, endpoint reference, and
 endpoint state. The call state and cause IEs are used to set
 the values of the parameters callstate and cause; possible
 values for both parameters may be found in the <atm/qcc.h>
 header file. The endpoint reference and endpoint state IEs
 will be used to set the values of the endpt_ref and
 endpt_state parameters; they are included if an enquiry is
 made about a party state in a point-to-multipoint call or to
 report an error condition in a point-to-multipoint call.

 qcc_parse_notify() parses a notify message, which is only
 supported under UNI 4.0. The notification indicator and end-
 point reference IEs are parsed; from the notification indi-
 cator, the contentlenp and contentp parameters are filled
 in, with the maximum buffer size copied being 16 bytes. If
 the size contained in the message is greater than 16 bytes
 (QCC_MAX_NOTIFICATION_LEN, defined in <atm/qcc.h>), the
 first 16 bytes are copied, contentlenp is set to contain the
 copied length of 16 bytes, and the overflow flag is set.
 From the endpoint reference IE, endpt_refp is filled in.
 The endpoint reference IE is only present on point-to-
 multipoint calls.

 qcc_parse_restart() parses a restart message containing two
 possible IEs: connection identifier and restart indicator.
 The restart indicator IE is used to set the value of rstall;
 this parameter indicates whether a particular vci or all
 vcis are to be restarted (rstall = 1 implies all vcis,
 rstall = 0 implies a particular vci). The connection iden-
 tifier identifies the particular vci. In this case, the
 value of the parameter vci is set to 0 if there is no con-
 nection identifier IE in the message. The same format

CODE EXAMPLE 5-4 qcc_parse(9F) Man Page (Continued)
152 SunATM Application Programmer’s Interface and Man Pages • August 1998

 applies to the qcc_parse_restart_ack() function.

 qcc_parse_add_party() parses an add party message containing
 sever possible IEs. They include AAL parameters, calling
 party number, called party number, broadband higher layer
 information, and endpoint reference. The following table
 matches the data that is retrieved from the message with the
 IE from which it is parsed.

 DATA RETRIEVED INFORMATION ELEMENT
 forward sdusize AAL parameters
 backward sdusize AAL parameters
 source address calling party number
 destination address called party number
 sap broadband higher layer
 endpoint reference id endpoint reference

 qcc_parse_add_party_ack() extracts an endpoint reference
 value from the endpoint reference IE in an add party ack
 message.

 qcc_parse_party_alerting() extracts an endpoint reference
 value from the endpoint reference IE in a party alerting
 message. This message is specific to UNI 4.0.

 qcc_parse_add_party_reject() parses an add party reject mes-
 sage possibly containing a cause IE, from which it extracts
 the cause value, and an endpoint reference IE, from which it
 extracts the endpoint reference value. Possible cause values
 may be found in the header file <atm/qcc.h>.

 qcc_parse_drop_party() extracts an endpoint reference value
 and a cause value from those respective IEs in a drop party
 message. Possible cause values may be found in the header
 file <atm/qcc.h>. The same parsing applies to
 qcc_parse_drop_party_ack().

 qcc_parse_leaf_setup_fail() extracts a cause value (defined
 in <atm/qcc.h>) from the cause IE; a destination address
 from the called number IE; and a leaf number from the leaf
 number IE. The leaf setup fail message is specific to UNI
 4.0.

 qcc_parse_leaf_setup_req() parses a leaf setup request mes-
 sage, which is specific to UNI 4.0. The calling number and
 called number IEs are parsed, yielding the source and desti-

CODE EXAMPLE 5-4 qcc_parse(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 153

 nation ATM addresses, respectively; in addition, the leaf
 initiated join call identifier IE is parsed to obtain the
 leaf initiated join callid, and the leaf number IE is parsed
 for the leaf number.

RETURN VALUES
 All functions return 0 on success and -1 on error.

EXAMPLES
 The following code fragment receives and parses a setup mes-
 sage.

 #include <sys/stream.h>
 #include <atm/qcc.h>
 #include <atm/limits.h>

 char _depends_on[] = "drv/qcc";

 void
 wait_for_setup(queue_t *q);
 {
 int vci;
 int forward_sdusize;
 int backward_sdusize;
 int sap;
 atm_addr_t src_addr;
 atm_addr_t dst_addr;
 mblk_t *mp;
 qcc_hdr_t *hdrp;

 do {
 if !(mp = getq(q)) {
 perror("getq");
 exit (-1);
 }
 hdrp = (qcc_hdr_t *)mp;
 } while (hdrp->type != QCC_SETUP);

 qcc_parse_setup(mp->b_cont, &vci, &forward_sdusize,
 &backward_sdusize, &src_addr,
 &dst_addr, &sap, NULL);
 printf("parse_setup: vci = 0x%x, sap = 0x%x0, vci, sap);
 }

SEE ALSO
 qcc_util(3), qcc_bld(9F), q93b(7)

CODE EXAMPLE 5-4 qcc_parse(9F) Man Page (Continued)
154 SunATM Application Programmer’s Interface and Man Pages • August 1998

 "ATM User-Network Interface Specification, V3.0," ATM Forum.
 "ATM User-Network Interface Specification, V3.1," ATM Forum.
 "ATM User-Network Interface Specification, V4.0," ATM Forum.

NOTES
 This API is an interim solution until the ATM Forum has
 standardized an API. At that time, Sun will implement that
 API, and support for the Q.2931 Call Control library may not
 be continued.

 The additional support of the UNI 4.0 signalling specifica-
 tion includes the addition of several new message types
 which are not supported in the earlier versions of the UNI
 specification. These message types, if received on an
 interface configured for UNI 3.0 or 3.1, will be discarded
 by the q93b driver and will not be sent up to the user
 applications. The UNI 4.0-specific messages are Alerting,
 Notify, Party Alerting, Leaf Setup Fail, and Leaf Setup Req,
 and are identified in the applicable function descriptions.

CODE EXAMPLE 5-4 qcc_parse(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 155

qcc_set_ie(9F)

CODE EXAMPLE 5-5 qcc_set_ie(9F) Man Page

qcc_set_ie(9F) Kernel Functions for Drivers qcc_set_ie(9F)

NAME
 qcc_set_ie - add or update Information Elements in a Q.2931
 message structure

SYNOPSIS
 cc -DKERNEL -D_KERNEL [flag ...] file ...

 #include <atm/qcc.h>
 #include <atm/qcctypes.h>

 char _depends_on[] = "drv/qcc";

 int qcc_set_ie(qcc_msg_t *msgp, qcc_ie_t *iep);

MT-LEVEL
 Safe.

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.
 The -DKERNEL and -D_KERNEL flags must be included to indi-
 cate that the application should run in kernel space, and
 the qcc driver must be loaded (this requirement is expressed
 in the code using the "depends_on" line shown in the
 synopsis).

DESCRIPTION
 This function adds a new or changes an existing Information
 Element in Q.2931 messages. The Q.2931 protocol is used for
 ATM signalling. A full description of the message format
 and use can be found in the ATM Forum's User Network Inter-
 face Specification, V3.0 or V3.1. The function may be used
 by processes which are running in kernel space.

 A message structure should first be created using the
 appropriate qcc_create(9F) function call. IEs may then be
156 SunATM Application Programmer’s Interface and Man Pages • August 1998

 added or changed using qcc_set_ie. When the message struc-
 ture has been completely specified, the corresponding
 qcc_pack(9F) function should be called to translate the mes-
 sage structure into the correct encoded format, contained in
 mblk_t structures which may be passed to the putq(9F) func-
 tion.

 In general, no error checking is performed on the data that
 is passed in. Whatever data is passed in will be placed in
 the message that is built without examination. The user
 should insure that the values passed in in the IE structure
 conform with the UNI version (3.0 or 3.1) that is running.

 The function requires 2 parameters: msgp, which is a pointer
 to the appropriate message structure; and iep, which is a
 pointer to the new IE structure. The message and IE
 structure types are defined in the <atm/qcctypes.h> header
 file.

 The structure to which msgp points must be allocated by the
 calling user. The structure pointed to by iep should have
 the desired values filled in to its fields, and the "valid"
 field should be set to 1. A value of 0 in the "valid" field
 indicates that the IE should not be included in the message.

 The fields of each Information Element structure and their
 interpretations are described in the following paragraphs.
 Possible values for IE fields are defined in the
 <atm/qccdefs.h> header file.

 qcc_aal_params_t
 Currently, the only ATM Adaptation Layer supported on
 SunATM products is AAL 5. However, to allow for future
 changes, the aal parameters ie type consists of a field
 identifying the aal and a union of structures for each
 aal, called "info." The aal 5 structure contains 4
 fields: forward_max and backward_max for the SDU sizes,
 mode, and sscs_type. The sscs_type is only valid in UNI
 3.0; therefore, a value of 0 for sscs_type indicates
 that that field should not be included.

 qcc_traffic_desc_t
 The ATM Traffic Descriptor IE (called User Cell Rate in
 UNI 3.0) contains a large set of traffic parameter
 values. Two parameters do not have numeric values
 associated; they are either included or not. The are

CODE EXAMPLE 5-5 qcc_set_ie(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 157

 represented by two fields, best_effort and tagging,
 that are either set to 1 if the parameter is to be
 included or set to 0 if it is not. The remaining
 parameters all have numeric values associated with
 them. Since 0 is a valid value for these parameters,
 an additional field, params, is included in the IE
 structure which indicates which of these should be
 included in the message. Each parameter has a
 corresponding bit in the params field, which, when set,
 indicates that the parameter should be included. Flags
 are defined for this field in the <atm/qccdefs.h>
 header file.

 qcc_bbc_t
 The Broadband Bearer Capability IE fields correspond
 directly to the options for this IE. The fields are:

 class Bearer Class
 type Traffic Type
 timing Timing Requirements
 clipping Susceptibility to Clipping
 userplane User plane connection configuration

 qcc_bhli_t
 The Broadband High Layer Information IE structure con-
 tains 3 fields which specify the IE contents. They are
 type, which identifies the High Layer Information Type;
 infolen, which indicates the number of octets of high
 layer information is to be included in the message (the
 maximum is 8 octets), and finally an array of bytes
 called info which contains the information octets,
 called info. The octets should be placed in the first
 infolen elements of the array.

 qcc_blli_t
 The Broadband Low Layer Information IE contains 2
 fields to specify the IE contents. The first, layer,
 is an integer which specifies which layer protocol is
 being specified, layer 1, 2, or 3. The second is a
 union, with unique structures for layer 2 and layer 3.
 For both layer 2 and layer 3 IEs, the protocol value
 will be examined and the correct coding format will be
 used for that protocol. Therefore, only the applicable
 fields from the layer structure will be used for the
 specified protocol type.

CODE EXAMPLE 5-5 qcc_set_ie(9F) Man Page (Continued)
158 SunATM Application Programmer’s Interface and Man Pages • August 1998

 Layer 2 fields:
 protocol User information layer 2 protocol
 mode Mode of operation
 windowsize Window size (k)
 userspec User specified layer 2 protocol
 information

 Layer 3 fields:
 protocol User information layer 3 protocol
 mode Mode of operation
 pktsize Default packet size
 windowsize Packet window size
 userspec User specified layer 3 protocol
 information
 ipi 8-bit Initial Protocol Identifier for
 ISO/IEC TR 9577
 oui 24-bit organization unique identifier
 for ISO/IEC TR 9577 and IEEE 802.1 SNAP
 pid 16-bit protocol identifier for ISO/IEC
 TR 9577 and IEEE 802.1 SNAP

 qcc_call_state_t
 There is only one informational field in the Call State
 IE structure: state, specifying the call state.

 qcc_called_num_t
 The Called Party Number IE structure contains a planid
 field, which specifies the Addressing/Numbering Plan
 Identification. The Type of Number is based on this
 value as well. There is also an address field, to
 specify a 20-byte address.

 qcc_called_subaddr_t
 The Called Party Subaddress IE structure contains a
 type field, which specifies the Type of Subaddress, and
 a 20-byte address field.

 qcc_calling_num_t
 In addition to the 20-byte address field, the Calling
 Party Number IE structure contains several fields to
 describe the intended interpretation of the address.
 They are:

 planid Addressing/Numbering Plan

CODE EXAMPLE 5-5 qcc_set_ie(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 159

 Identification
 presentation Presentation indicator
 screening Screening indicator

 qcc_calling_subaddr_t
 The structure for the Calling Party Subaddress IE is
 identical to that of the Called Party Subaddress IE.

 qcc_cause_t
 The Cause IE structure contains a location field and a
 cause field. In addition, it contains an array of 28
 octets, diag, for diagnostic information. The number of
 diagnostic octets included in the array should be
 specified in the diaglen field.

 qcc_conn_id_t
 The Connection Identifier IE structure contains a vpci
 and a vci field. Note that currently, the SunATM
 software only supports vpci 0, although any value may
 be placed in the vpci field and will be encoded into
 the message.

 qcc_qos_t
 The Quality of Service IE has 3 informational fields:
 codingstd, specifying the Coding Standard value; and
 forward_class and backward_class, specifying the For-
 ward and Backward QoS Class.

 qcc_restart_ind_t
 There is only one informational field in the Restart
 Indicator IE structure: class, whcih specifies the
 class of the facility to be restarted.

 qcc_transit_t
 The Transit Network Selection IE structure contains an
 array of up to four octets to specify the Carrier Iden-
 tification Code value.

 qcc_endpt_ref_t
 The Endpoint Reference IE structure contains an
 endptref field, which specifies the endpoint reference
 value.

 qcc_endpt_state_t
 The Endpoint State IE structure contains a state field,
 which identifies the endpoint state value.

CODE EXAMPLE 5-5 qcc_set_ie(9F) Man Page (Continued)
160 SunATM Application Programmer’s Interface and Man Pages • August 1998

RETURN VALUES
 The function returns 0 on success and -1 on error.

EXAMPLES
 See the Example section of the qcc_create(9F) man page for
 an example using qcc_set_ie.

SEE ALSO
 qcc_util(3), qcc_create(9F), qcc_pack(9F), qcc_unpack(9F),
 qcc_parse(9F), q93b(7)

 "ATM User-Network Interface Specification, V3.0," ATM Forum.

NOTES
 This API is an interim solution until the ATM Forum has
 standardized an API. At that time, Sun will implement that
 API, and support for the Q.2931 Call Control library may not
 be continued.

CODE EXAMPLE 5-5 qcc_set_ie(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 161

qcc_unpack(9F)

CODE EXAMPLE 5-6 qcc_unpack(9F) Man Page

qcc_unpack(9F) Kernel Functions for Drivers qcc_unpack(9F)

NAME
 qcc_unpack, qcc_unpack_setup, qcc_unpack_alerting,
 qcc_unpack_call_proceeding, qcc_unpack_connect,
 qcc_unpack_connect_ack, qcc_unpack_release,
 qcc_unpack_release_complete, qcc_unpack_status,
 qcc_unpack_status_enq, qcc_unpack_notify,
 qcc_unpack_restart, qcc_unpack_restart_ack,
 qcc_unpack_add_party, qcc_unpack_add_party_ack,
 qcc_unpack_party_alerting, qcc_unpack_add_party_reject,
 qcc_unpack_drop_party, qcc_unpack_drop_party_ack,
 qcc_unpack_leaf_setup_fail, qcc_unpack_leaf_setup_req -
 decode Q.2931 messages and unpack into message structures

SYNOPSIS
 cc -DKERNEL -D_KERNEL [flag ...] file ...

 #include <atm/types.h>
 #include <atm/qcc.h>

 char _depends_on[] = "drv/qcc";

 int qcc_unpack_setup(qcc_setup_t *msgp, mblk_t *ctlp,
 mblk_t *datap);

 int qcc_unpack_alerting(qcc_alerting *msgp, mblk_t *ctlp,
 mblk_t *datap);

 int qcc_unpack_call_proceeding(qcc_call_proc_t *msgp,
 mblk_t *ctlp, mblk_t *datap);

 int qcc_unpack_connect(qcc_connect_t *msgp, mblk_t *ctlp,
 mblk_t *datap);

 int qcc_unpack_connect_ack(qcc_connect_ack_t *msgp,
 mblk_t *ctlp, mblk_t *datap);
162 SunATM Application Programmer’s Interface and Man Pages • August 1998

 int qcc_unpack_release(qcc_release_t *msgp, mblk_t *ctlp,
 mblk_t *datap);

 int qcc_unpack_release_complete(qcc_release_complete_t *
 msgp, mblk_t *ctlp, mblk_t *datap);

 int qcc_unpack_status_enq(qcc_status_enq_t *msgp,
 mblk_t *ctlp, mblk_t *datap);

 int qcc_unpack_status(qcc_status_t *msgp, mblk_t *ctlp,
 mblk_t *datap);

 int qcc_unpack_notify(qcc_notify_t *msgp, mblk_t *ctlp,
 mblk_t *datap);

 int qcc_unpack_restart(qcc_restart_t *msgp, mblk_t *ctlp,
 mblk_t *datap);

 int qcc_unpack_restart_ack(qcc_restart_ack_t *msgp,
 mblk_t *ctlp, mblk_t *datap);

 int qcc_unpack_add_party(qcc_add_party_t *msgp,
 mblk_t *ctlp, mblk_t *datap);

 int qcc_unpack_add_party_ack(qcc_add_party_ack_t *msgp,
 mblk_t *ctlp, mblk_t *datap);

 int qcc_unpack_party_alerting(qcc_party_alerting_t *msgp,
 mblk_t *ctlp, mblk_t *datap);

 int qcc_unpack_add_party_reject(qcc_add_party_reject_t *
 msgp, mblk_t *ctlp, mblk_t *datap);

 int qcc_unpack_drop_party(qcc_drop_party_t *msgp,
 mblk_t *ctlp, mblk_t *datap);

 int qcc_unpack_drop_party_ack(qcc_drop_party_ack_t *msgp,
 mblk_t *ctlp, mblk_t *datap);

 int qcc_unpack_leaf_setup_fail(qcc_leaf_setup_fail_t *msgp,
 mblk_t *ctlp, mblk_t *datap);

 int qcc_unpack_leaf_setup_req(qcc_leaf_setup_req_t *msgp,
 mblk_t *ctlp, mblk_t *datap);

MT-LEVEL

CODE EXAMPLE 5-6 qcc_unpack(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 163

 Safe.

AVAILABILITY
 The functionality described in this man page is available in
 the SUNWatma package included with the SunATM adapter board.

DESCRIPTION
 These functions take streams buffers containing encoded
 Q.2931 messages as input and decode the information, placing
 the extracted values into the appropriate message structure.
 The Q.2931 protocol is used for ATM signalling; a full
 description of the message format and use can be found in
 the ATM Forum's User Network Interface Specification, V3.0,
 V3.1, or V4.0. Messages conforming to both versions of the
 UNI standard will be decoded. The functions may be used by
 processes which are running in kernel space.

 In general, no error checking is performed on the data that
 is extracted from the message. Whatever data is found will
 be placed in the message structure without examination.

 Each function requires 3 parameters: msgp, which is a
 pointer to the appropriate message structure; and ctlp and
 datap, which are pointers to mblk_t structures.

 Information extracted from the message is filled into the
 message structure pointed to by msgp. The user should allo-
 cate this structure before calling the qcc_unpack function.

 The ctlp and datap mblk_t pointers should be extracted from
 the following structure:

 M_PROTO M_DATA
 _____________ ___________________________
 --->| |--->| | | |
 | IF_Name | | Q.2931 Message | | |
 | Call_ID | | | | |
 | Type | | | | |
 | Error | | | Information | |
 | Call_Tag | | (9) | Elements | (16)|
 |_____________| |_____|_______________|_____|

 Header information is contained in the M_PROTO mblk, and the
 q93b message which is parsed is contained in the M_DATA
 block. When a message is received from the q93b driver using
 the getq(9F) function, a pointer to the M_PROTO block shown

CODE EXAMPLE 5-6 qcc_unpack(9F) Man Page (Continued)
164 SunATM Application Programmer’s Interface and Man Pages • August 1998

 above is returned. If that pointer is called mp, the pointer
 to the M_DATA mblk will be mp->b_cont. The M_PROTO block
 data may be examined to determine the message type, which
 indicates the parsing function that should be called.

RETURN VALUES
 All functions return 0 on success and -1 on error. The
 returned message structure contains an entry for each possi-
 ble Information Element for that message type; if an Infor-
 mation Element is found in the received message, the "valid"
 field for that IE will be set to 1. If the IE was not
 found, the "valid" field will be 0.

EXAMPLES
 The following code fragment receives a setup message and
 prints elements in the message structure.

 #include <sys/stream.h>
 #include <atm/types.h>
 #include <atm/qcc.h>
 #include <atm/limits.h>

 char _depends_on[] = "drv/qcc";

 void
 wait_for_setup(queue_t *q);
 {
 int vci = -1;
 int sap = -1;
 mblk_t *mp;
 qcc_hdr_t *hdrp;
 qcc_setup_t setup;

 do {
 if ((mp = getq(q)) == NULL) {
 perror("getq");
 exit (-1);
 }
 hdrp = (qcc_hdr_t *)mp;
 } while (hdrp->type != QCC_SETUP);

 if ((qcc_unpack_setup(&setup, mp, mp->b_cont)) < 0) {
 printf("unpack_setup failed\n");
 exit (-1);
 }
 if (setup.conn_id.valid)

CODE EXAMPLE 5-6 qcc_unpack(9F) Man Page (Continued)
Chapter 5 DDI and DKI Kernel Functions 165

 vci = setup.conn_id.vci;
 if (setup.bhli.valid)
 memcpy((caddr_t) &sap,
 (caddr_t) setup.bhli.info, 4);

 printf("parse_setup: vci=0x%x, sap=0x%x\n",
 vci, sap);
 }

SEE ALSO
 qcc_util(3), qcc_create(9F), qcc_set_ie(9F), qcc_pack(9F),
 q93b(7)

 "ATM User-Network Interface Specification, V3.0," ATM Forum.
 "ATM User-Network Interface Specification, V3.1," ATM Forum.
 "ATM User-Network Interface Specification, V4.0," ATM Forum.

NOTES
 This API is an interim solution until the ATM Forum has
 standardized an API. At that time, Sun will implement that
 API, and support for the Q.2931 Call Control library may not
 be continued.

 The additional support of the UNI 4.0 signalling specifica-
 tion includes the addition of several new message types
 which are not supported in the earlier versions of the UNI
 specification. These message types will be ignored by the
 q93b driver if used on an interface which is configured for
 UNI 3.0 or 3.1. The UNI 4.0-specific messages are Alerting,
 Notify, Party Alerting, Leaf Setup Fail, and Leaf Setup
 Request.

CODE EXAMPLE 5-6 qcc_unpack(9F) Man Page (Continued)
166 SunATM Application Programmer’s Interface and Man Pages • August 1998

CHAPTER 6

Maintenance Commands

The man pages in this section describe the SunATM commands that are used chiefly

for system maintenance and administration purposes.

TABLE 6-1 Maintenance Command Man Pages

Man Page Description Page Number

aarsetup(1M) ATM Address Resolution Table setup program page 168

aarstat(1M) Display Classical IP ATM address resolver status page 171

atmadmin(1M) ATM configuration program page 173

atmarp(1M) ATM to IP address resolution page 178

atmgetmac(1M) Get the MAC address assigned to an ATM interface page 180

atmreg(1M) ATM address registration page 181

atmsetup(1M) Configure an ATM device page 183

atmsnmpd(1M) ATM SNMP agent daemon page 185

atmsnoop(1M) Capture and inspect ATM network packets page 188

atmspeed(1M) Get and set the total link bandwidth of an ATM device page 192

atmstat(1M) Display ATM network interface information page 194

ilmid(1M) ATM Address Registration daemon page 202

lanearp(1M) MAC to ATM address resolution page 205

lanesetup(1M) LAN Emulation setup program page 208

lanestat(1M) Display status of LAN Emulation over ATM page 210

qccstat(1M) Display Q.2931 call control information page 214
167

aarsetup(1M)

CODE EXAMPLE 6-1 aarsetup(1M) Man Page

aarsetup(1M) Maintenance Commands aarsetup(1M)

NAME
 aarsetup - ATM Address Resolution Table setup program

SYNOPSIS
 /etc/opt/SUNWatm/bin/aarsetup [-nkpv] [filename]

AVAILABILITY
 SUNWatm

DESCRIPTION
 The aarsetup program reads a local ATM to IP address resolu-
 tion table from the /etc/aarconfig file and loads the infor-
 mation into the kernel. In addition, aarsetup will deter-
 mine whether it is executing on the client or the server and
 will configure the Classical IP kernel modules appropri-
 ately.

 If an ATM ARP server exists on a subnet, the configuration
 file on clients need only contain the system's local infor-
 mation and the server information. If an ATM ARP server is
 not being used, each system's configuration file must con-
 tain IP/ATM address resolution information for every host
 which it needs to contact. See the aarconfig(4) man page for
 details on the format of the configuration file.

 By default, the /etc/aarconfig file is read and downloaded
 into the local kernel table on startup. If the configura-
 tion file is modified later, aarsetup must be rerun to load
 the new information into the kernel.

OPTIONS
 -n Only parse the configuration table. Using this
 option, the syntax and information in the table
 can be checked to verify that it is acceptable to
 the aarsetup program without actually attempting
 to download any data. Physical interface informa-
168 SunATM Application Programmer’s Interface and Man Pages • August 1998

 tion entered in the table is compared with known
 configured interfaces; IP addresses must be on the
 correct subnet for the corresponding physical
 interface in an entry. In order to do this check-
 ing, the physical interface must be configured.
 The -k option will omit the network checks. Error
 messages will be printed if any problems are
 encountered.

 -k Only parse the configuration table, but do not
 check configured interfaces. Using this option,
 only the syntax of the configuration is checked;
 no verification of IP address information is per-
 formed. This enables a check of the configuration
 file before the physical interfaces have been con-
 figured.

 -p Prints to the standard output the table entries
 from the configuration file, with all variable
 expressions expanded. Does not download any infor-
 mation into the kernel.

 -v Verbose mode. Additional information is printed.

 filename A filename may be specified to download a confi-
 guration file other than /etc/aarconfig. Standard
 input, indicated with a hyphen `-', is a legal
 value for filename if the -n option is being used.

FILES
 /etc/aarconfig ATM to IP address registration confi-
 guration file. Contains entries which
 specify ATM and IP address pairs for
 systems.

SEE ALSO
 aarconfig(4)

 M. Laubach, RFC 1577: Classical IP and ARP over ATM, Network
 Working Group.

NOTES
 In this context, "server" and "client" refer to an ATM ARP
 server and nodes on the subnet which it serves, respec-
 tively.

CODE EXAMPLE 6-1 aarsetup(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 169

 aarsetup SHOULD NOT be put into the background (i.e. run
 with the command 'aarsetup &'). When executed, aarsetup will
 first perform some essential first steps, then put itself
 into the background without user intervention.

CODE EXAMPLE 6-1 aarsetup(1M) Man Page (Continued)
170 SunATM Application Programmer’s Interface and Man Pages • August 1998

aarstat(1M)

CODE EXAMPLE 6-2 aarstat(1M) Man Page

aarstat(1M) Maintenance Commands aarstat(1M)

NAME
 aarstat - display Classical IP ATM address resolver status

SYNOPSIS
 /etc/opt/SUNWatm/bin/aarstat interface

 /etc/opt/SUNWatm/bin/aarstat -a

AVAILABILITY
 SUNWatm

DESCRIPTION
 aarstat displays information about the state of the Classi-
 cal IP protocol on an ATM interface. The information pro-
 vided may be used to debug configuration problems, or to
 verify successful bring-up of a Classical IP interface.

 The only parameter is the physical interface, which will be
 of the form baN, where N is the instance number. Optionally,
 the -a flag may be used to request information for all
 interfaces.

 The following fields will be displayed for all Classical IP
 interfaces:

 setup_state The state of the Classical IP setup program,
 aarsetup. The possible values are setup-not-
 run, which means that aarsetup has not been
 run successfully for this interface; setup-
 started, which means that aarsetup is
 currently running; setup-finished, which
 means that aarsetup has successfully com-
 pleted; and interface-defunct, which means
 that the interface has been partially uncon-
 figured by removing its entries from the con-
 figuration files and re-running aarconfig.
Chapter 6 Maintenance Commands 171

 Interfaces whose state is interface-defunct
 will be removed from the kernel on reboot,
 assuming that the configuration files are not
 changed.

 arpcsmode The mode in which the Classical IP software
 is running. The possible values are stand-
 alone, server-being-modified, server,
 client-being-modified, and client. The first,
 stand-alone, indicates that the system is
 running as an ATM ARP client with no ATM ARP
 server configured. server-being-modified and
 client-being-modified indicate that aarsetup
 is currently running on the system; the con-
 figuration is not complete. Finally, server
 and client indicate that the system is an ATM
 ARP server or client, respectively.

 interface_state
 The state of the interface. The possible
 values are up and down.

 The following additional fields will be printed on systems
 running as ATM ARP clients:

 server_state The state of the connection to the ATM ARP
 server. The possible values for this field
 are no-connection, connecting, connected, and
 closing-connection, referring to phases of
 Q.2931 call control. When an interface is up
 and running Classical IP, the server state
 should be connected.

 server_vci This field will indicate the vci for the out-
 going connection to the ATM ARP server.

 configured_server_addr
 The atm address of the ATM ARP server.

SEE ALSO
 aarsetup(1M), aarconfig(4)

CODE EXAMPLE 6-2 aarstat(1M) Man Page (Continued)
172 SunATM Application Programmer’s Interface and Man Pages • August 1998

atmadmin(1M)

CODE EXAMPLE 6-3 atmadmin(1M) Man Page

atmadmin(1M) Maintenance Commands atmadmin(1M)

NAME
 atmadmin - ATM configuration program

SYNOPSIS
 /etc/opt/SUNWatm/bin/atmadmin [basedir]

AVAILABILITY
 SUNWatm

DESCRIPTION
 The ATM configuration program, atmadmin, is an interactive
 command-line interface. The program contains a hierarchy of
 menus, which divide the configuration into six main parameter

groups: System, Physical Layer, Signalling, ILMI, Classical IP
and LAN Emulation. All but the System parameter group are spec-
ific to individual SunATM interfaces, so you must configure

 the parameters in that group separately for each interface.
If you prefer, you may enter and change the SunATM configuration
information by editing the SunATM configuration files directly.

 By default, atmadmin looks for configuration files in the
 /etc directory. If they are not there, the alternate path
 may be specified as basedir. This may be desirable if you
 wish to create test files, but do not want to overwrite the
 existing files in /etc.

COMMON NAVIGATION COMMANDS
 Some basic commands are recognized throughout the menu
 hierarchy, and they may be used to navigate through the
 various menus. These commands are:

 m Return to the atmadmin main menu.

 p Return to the previous menu.
Chapter 6 Maintenance Commands 173

 x Exit atmadmin.

 ? Provide more information about the options on this
 menu.

PARAMETER GROUPS
 The atmadmin configuration program contains a series of
 menus where you can input or alter the configuration of
 specific SunATM software parameters. These menus, or parame-
 ter groups, are:

 System Parameter Group
 The system parameter group contains parameters
 that are not interface-specific, but apply to the
 entire system. This group contains only the SNMP
 Agent Status parameter.

 Parameters Possible Values Default Values Required?

 SNMP Agent agent/not_agent not_agent Yes
 Status

 SNMP Agent 0 <= n <= 6535 161 or 1000 For SNMP
 UDP port Agent

 Physical Layer Parameter Group
 The physical layer parameter group contains only the
 framing interface parameter.

 Parameters Possible Values Default Values Required?

 Framing SONET/SDH SONET Yes
 Interface

 Signalling Parameters
 The signalling parameter group contains only the UNI version
 parameter.

 Parameters Possible Values Default Values Required?

 UNI Version 3.0/3.1/4.0/none No default Yes

 ILMI Parameters

CODE EXAMPLE 6-3 atmadmin(1M) Man Page (Continued)
174 SunATM Application Programmer’s Interface and Man Pages • August 1998

 If your ATM switch does not support Interim Local Management
 Interface (ILMI), you can turn off the ILMI registration on
 your SunATM interface from the ILMI configuration menu.

 Parameters Possible Values Default Values Required?

 Use ILMI Yes/No Yes Yes

 Classical IP Parameter Group
 Several parameters define the Classical IP (CIP) configu-
 ration of a SunATM interface, and all of these parameters
 can be configured through the Classical IP parameter
 group menu.

 Parameters Possible Values Default Values Required?
 --
 IP hostname/ Valid IP hostname No default For CIP
 address and address

 Interface Client/Server/ No default For CIP
 Type Standalone

 Local Valid ATM address $myaddress For CIP
 ATM address

 ARP Server ATM address $localswitch_ For CIP
 server clients

 PVC 32 <= n < 1024 32 For CIP
 standalones

 Destination IP Valid IP hostname No default For CIP
 hostname/address and address standalones

 LAN Emulation Parameter Group
 After choosing to configure LAN Emulation (LANE) parameters,
 you will be asked to choose an existing (previously configured)
 LAN Emulation instance, or to create a new one in the LAN
 Emulation Instance menu.

CODE EXAMPLE 6-3 atmadmin(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 175

 Parameters Possible Values Default Values Required?
 --
 Instance 0 <= n <= 999 No default For LANE
 Number

 Per-Instance LAN Emulation Parameters
 This menu allows you to configure the per-instance LAN
 Emulation parameters.

 Parameters Possible Values Default Values Required?
 --
 IP hostname/ Valid IP hostname No default For IP
 address and address over LANE

 Local Valid ATM address $myaddress For LANE
 ATM address

 LECS no_lecs/
 Indicator lecs_present lecs_present For LANE

 LECS Valid ATM address A well-known For LANE,
 ATM address address lecs_present

 LES Valid ATM address No default For LANE,
 ATM address no_lecs

 Emulated Character string No default For
 LAN Name additional
 instance
 on a
 physical
 interface

 Additional Yes/No No For LANE
 IP addresses

 Per-Additional IP address
 With this menu you can configure logical interfaces in the
 SunATM LAN Emulation environment. Logical interfaces allow
 you to assign multiple IP addresses to a single LAN Emulation
 interface. The SunATM software will associate each logical
 interface with a unique IP hostname and address. All logical
 interfaces on a given physical interface will be associated
 with the same ATM and MAC addresses.

CODE EXAMPLE 6-3 atmadmin(1M) Man Page (Continued)
176 SunATM Application Programmer’s Interface and Man Pages • August 1998

 Parameters Possible Values Default Values Required?
 --
 Minor Instance 0 <= n <= 255 None For LANE,
 Number additional
 IP

 IP hostname/ Valid IP hostname No default For LANE,
 address and address additional
 IP

SEE ALSO
 aarconfig(4), aarsetup(1M), atmconfig(4), atmsetup(1M),
 laneconfig(4), lanesetup(1M),

CODE EXAMPLE 6-3 atmadmin(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 177

atmarp(1M)

CODE EXAMPLE 6-4 atmarp(1M) Man Page

atmarp(1M) Maintenance Commands atmarp(1M)

NAME
 atmarp - ATM to IP address resolution

SYNOPSIS
 /etc/opt/SUNWatm/bin/atmarp interface

 /etc/opt/SUNWatm/bin/atmarp interface [IP hostname | IP
 address]

 /etc/opt/SUNWatm/bin/atmarp interface - [ATM address]
 /etc/opt/SUNWatm/bin/atmarp -a

AVAILABILITY
 SUNWatm

DESCRIPTION
 The atmarp program may be used to display ATM and IP address
 pairs for a given ATM interface. The required parameter
 interface is a string of the form name unit, such as ba0.

 If only the interface is provided, as in the first form of
 the command, atmarp will print the ATM address and IP
 address for that physical interface, and an entry for each
 resolved IP address for that interface.

 If additional information is provided, it will be used to
 identify a device on the subnet to which interface is con-
 nected, and the corresponding address information will be
 printed. In the second form, when an IP address (in the
 standard dot notation) or IP hostname is provided, the ATM
 address for that node will be printed. In the third form,
 when an ATM address (in the colon-separated octet format
 used in /etc/aarconfig) is provided, the corresponding IP
 address will be printed. Note: in this third form of the
 command, a hyphen (-) must be included to indicate that an
 IP hostname/address is not being provided.
178 SunATM Application Programmer’s Interface and Man Pages • August 1998

 The -a option dumps the complete ATM ARP table, listing the
 ATM and IP address for each physical interface and a listing
 of the ATM address for each resolved IP address on that
 interface.

EXAMPLES
 muskogee# ./atmarp ba0
 Local IP addr = 192.168.144.108
 ATM addr = 47:00:00:00:00:00:00:00:00:00:00:CC:BA::08:00:20:82:BD:E1::00

 ARP Table for interface ba0:

 IP addr = 192.168.144.108
 ATM addr = 47:00:00:00:00:00:00:00:00:00:00:CC:BA::08:00:20:82:BD:E1::00

 IP addr = 192.168.144.109
 ATM addr = 47:00:00:00:00:00:00:00:00:00:00:CC:BA::08:00:20:84:E3:21::00

SEE ALSO
 ifconfig(1M), aarconfig(4), ba(7)

CODE EXAMPLE 6-4 atmarp(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 179

atmgetmac(1M)

CODE EXAMPLE 6-5 atmgetmac(1M) Man Page

atmgetmac(1M) Maintenance Commands atmgetmac(1M)

NAME
 atmgetmac - get the MAC address assigned to an ATM interface

SYNOPSIS
 /etc/opt/SUNWatm/bin/atmgetmac interface [count]

AVAILABILITY
 SUNWatm

DESCRIPTION
 atmgetmac retrieves MAC addresses of the specified ATM
 interface (specified in the form "device unit;" an example
 is ba0). If the board has multiple MAC addresses, only the
 first one will be returned. The remaining addresses follow
 sequentially after the first.

OPTIONS
 count This flag requests the number of MAC
 addresses assigned to the interface board.
 SunATM 2.0 boards have one assigned MAC
 address, while SunATM 2.1 and 3.0 boards have
 sixteen assigned MAC addresses.

SEE ALSO
 aarconfig(4), laneconfig(4)
180 SunATM Application Programmer’s Interface and Man Pages • August 1998

atmreg(1M)

CODE EXAMPLE 6-6 atmreg(1M) Man Page

atmreg(1M) Maintenance Commands atmreg(1M)

NAME
 atmreg - ATM address registration

SYNOPSIS
 /etc/opt/SUNWatm/bin/atmreg interface [-r | -d]
 atm_address

AVAILABILITY
 SUNWatm

DESCRIPTION
 atmreg communicates with the ILMI daemon, ilmid, which con-
 trols notifications to the switch of local address changes.
 The user may register new addresses, check the status of
 addresses, or de-register addresses. A list of all
 registered addresses for an interface is printed in the out-
 put of qccstat(1M).

 The first parameter is the physical interface name. This
 should be specified in the form "device unit;" an example is
 ba0. If neither of the optional flags is specified, the
 status of atm_address is printed. atm_address may be either
 20 or 7 colon-separated hexadecimal octets (2 characters),
 providing an entire ATM address or simply the local ESI and
 selector bytes. If only 7 bytes are provided, the default
 13-byte prefix assigned by the switch is assumed.

OPTIONS
 -r This flag specifies that the given address should be
 registered on this interface. As soon as the registra-
 tion request has been sent to the switch, the program
 will return; therefore, the output of qccstat(1M) or
 atmreg with no flag should be checked to verify that
 the address has been successfully registered. The
 switch will fail an address registration request if the
 same address has already been registered by a different
Chapter 6 Maintenance Commands 181

 host.

 -d This flag specifies that the given address should be
 de-registered on this interface. As is the case with
 the -r flag, the atmreg program will exit as soon as
 the request has been sent to the switch, and successful
 de-registration should be verified with either
 qccstat(1M) or atmreg.

EXAMPLES
 The following example shows three operations: first, the
 status of an address is checked on an interface, which indi-
 cates that the address is not registered. Next, registration
 of the address is requested. Finally, another status request
 is sent to verify that the address was successfully
 registered.

 muskogee# atmreg ba0 08:00:20:aa:bb:cc:00
 ATM address
 45:00:00:00:00:00:00:00:0f:00:00:00:00:08:00:20:aa:bb:cc:00
 is unknown on ba0.

 muskogee# atmreg ba0 -r 08:00:20:aa:bb:cc:00
 Requested registration of ATM address on ba0:
 45:00:00:00:00:00:00:00:0f:00:00:00:00:08:00:20:aa:bb:cc:00

 muskogee# atmreg ba0 08:00:20:aa:bb:cc:00
 ATM address
 45:00:00:00:00:00:00:00:0f:00:00:00:00:08:00:20:aa:bb:cc:00
 is registered on ba0.

SEE ALSO
 ilmid(1M), qccstat(1M)

CODE EXAMPLE 6-6 atmreg(1M) Man Page (Continued)
182 SunATM Application Programmer’s Interface and Man Pages • August 1998

atmsetup(1M)

CODE EXAMPLE 6-7 atmsetup(1M) Man Page

atmsetup(1M) Maintenance Commands atmsetup(1M)

NAME
 atmsetup - configure an ATM device

SYNOPSIS
 /etc/opt/SUNWatm/bin/atmsetup config_file

AVAILABILITY
 SUNWatm

DESCRIPTION
 atmsetup performs ATM configuration, based on the informa-
 tion found in the specifed configuration file. In general,
 the configuration file should be /etc/atmconfig; the speci-
 fied configuration file must have the same format as
 /etc/atmconfig.

 Configuration of a SunATM device is divided into two phases.
 The first consists of plumbing all devices, and IP setup
 (using ifconfig(1M)) for Classical IP interfaces. The
 second consists of IP setup for LAN Emulation interfaces,
 and is performed by lanesetup(1M).

 atmsetup is called with the appropriate options during the
 execution of the SunATM startup script, S00sunatm, which
 runs during system boot. Users should not call it from the
 command prompt.

RETURN VALUES
 On success, atmsetup returns a value indicating the presence
 of configured Classical IP interfaces: 0 indicates none, 1
 indicates Classical IP interfaces are present.

 -1 is returned on failure.

SEE ALSO
 ifconfig(1M), aarsetup(1M), lanesetup(1M), atmconfig(4)
Chapter 6 Maintenance Commands 183

NOTES
 Normally, this command is executed from
 /etc/rc2.d/S00sunatm. It should not be used from the com-
 mand prompt.

CODE EXAMPLE 6-7 atmsetup(1M) Man Page (Continued)
184 SunATM Application Programmer’s Interface and Man Pages • August 1998

atmsnmpd(1M)

CODE EXAMPLE 6-8 atmsnmpd(1M) Man Page

atmsnmpd(1M) Maintenance Commands atmsnmpd(1M)

NAME
 atmsnmpd - ATM SNMP agent daemon

SYNOPSIS
 /etc/opt/SUNWatm/bin/atmsnmpd [-n] [-p port] [-f port]
 [-t port] [-c config-file] [-T trace-level]

AVAILABILITY
 SUNWatm

DESCRIPTION
 The ATM SNMP agent daemon, atmsnmpd, provides a SNMP (Simple
 Network Management Protocol) agent which supports the ATM
 UNI and LAN Emulation Management Information Bases (MIBs)
 defined in the User Network Interface and LAN Emulation
 Specifications. This agent provides information to a Net-
 work Management System, such as SunNet Manager.

 Unless otherwise specified, all SNMP agents use the same
 port number, so a system can only support a single SNMP
 agent on a port. If other SNMP agents are installed on your
 system, atmsnmpd must be started with the -p and/or -f
 options. Alternatively the other agent may be configured to
 listen on a UDP port other than the default one. If this is
 not done, atmsnmpd will exit with an error or cause the
 other agent to fail.

 If you choose to configure your system as an ATM SNMP agent
 when installing the SUNWatm package, the software will be
 configured to automatically start atmsnmpd at boot time.
 Depending on the release of Solaris that you're using, the
 port on which the atmsnmpd will be started differs. Solaris
 2.6 and above will include a bundled version of an SNMP
 agent that will be started by default on port 161. This
 means that any other agent running on the system will have
 to listen to another UDP port acting as a subagent. This
Chapter 6 Maintenance Commands 185

 port can be configured by using the atmadmin program, and
 will use a default value of 1000 for a 2.6 release of
 Solaris and above, and a value of 161 otherwise.

 If you choose not to configure your system as an ATM SNMP
 agent, the software will still start atmsnmpd, but with the
 -n option (see below). This means that atmsnmpd will not
 listen for incoming requests on any UDP port, but will
 respond to requests coming from ilmid(1M).

 The default configuration information for the SunATM SNMP
 agent may be found in the daemon's configuration file,
 /etc/opt/SUNWatm/snmp/agent.cnf. Any changes to the
 defaults may be made in this file; atmsnmpd must be res-
 tarted for any changes to take effect. In particular, the
 default community values are public for read and private for
 write.

OPTIONS
 -p port Defines an alternative UDP port on which atmsnmpd
 listens for incoming requests. The default is UDP
 port 161 for releases of Solaris prior to 2.6, or
 1000 otherwise.

 -t port Defines an alternative UDP port on which atmsnmpd
 sends traps. The default is UDP port 162.

 -f port Defines a UDP port on which atmsnmpd forwards
 unknown incoming requests. If atmsnmpd gets a
 response back, it will forward it to the request-
 ing SNMP manager. The default action is no for-
 warding.

 -n atmsnmpd will not listen for incoming requests on
 any UDP port (either the default 161 or the one
 specified with -p). This option takes precedence
 over -p and is the option with which atmsnmpd is
 started if, during installation, it is not started
 as an SNMP agent. With this option, atmsnmpd is
 used for SNMP requests coming from ilmid(1M).

 -c config-file
 Defines a configuration file that is read when the
 agent starts up. If a configuration file is not
 specified the file /etc/opt/SUNWatm/snmp/agent.cnf
 is used.

CODE EXAMPLE 6-8 atmsnmpd(1M) Man Page (Continued)
186 SunATM Application Programmer’s Interface and Man Pages • August 1998

 -T trace-level
 Sets trace levels. A value of 0 disables all
 tracing and is the default. Levels 1
 through 3 represent increasing levels of trace
 output. Trace output is sent to the standard out-
 put in effect at the time atmsnmpd is
 started.

FILES
 /etc/opt/SUNWatm/snmp/agent.cnf(4)
 Contains SunATM SNMP agent con-
 figuration information

 /etc/opt/SUNWatm/snmp/acl.cfg(4)
 Contains entries for the access
 list control table

 /etc/opt/SUNWatm/snmp/context.cfg(4)
 Contains entries for the context
 table

 /etc/opt/SUNWatm/snmp/party.cfg(4)
 Contains entries for the party
 table

 /etc/opt/SUNWatm/snmp/view.cfg(4)
 Contains entries for the view
 table

SEE ALSO
 "ATM User-Network Interface Specification, V3.0, V3.1 or
 V4.0," ATM Forum.

 "LAN Emulation over ATM Specification, V1.0," ATM Forum.

NOTES
 atmsnmpd SHOULD NOT be put into the background (i.e. run
 with the command 'atmsnmpd &'). When executed, atmsnmpd will
 first perform some essential first steps, then put itself
 into the background without user intervention.

CODE EXAMPLE 6-8 atmsnmpd(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 187

atmsnoop(1M)

CODE EXAMPLE 6-9 atmsnoop(1M) Man Page

atmsnoop(1M) Maintenance Commands atmsnoop(1M)

NAME
 atmsnoop - capture and inspect ATM network packets

SYNOPSIS
 /etc/opt/SUNWatm/bin/atmsnoop [-aPDSvVNC] [-d device]
 [-s snaplen] [-c maxcount] [-i filename]
 [-o filename] [-n filename] [-t [r | a | d]]
 [-p first [, last]] [-I vc [, vc] [- vc]]
 [-X vc [, vc] [- vc]] [-x offset [, length]]
 [-q] [expression]

AVAILABILITY
 SUNWatm

DESCRIPTION
 atmsnoop captures packets from an ATM interface and displays
 their contents. The options and functionality are the same
 as the generic snoop command, with a few ATM-specific addi-
 tions. The options that are different from those described
 in the snoop(1M) man page are described here. For a full
 description of the basic options, see the snoop(1M) man
 page.

OPTIONS
 -d device Receive packets from the network using the
 interface specified by device. If no device
 is specified using the -d flag, atmsnoop will
 use ba0 by default.

 -I vc[,vc][-vc]
 Only display frames from the specified VC(s).
 A single VC, a list of VCs (vc,vc,vc), or a
 range of VCs (vc-vc) may be specified. Note
 that -I 5 directly contradicts the expression
 nosig; if both of these options appear in the
 command line, an error will be printed and
188 SunATM Application Programmer’s Interface and Man Pages • August 1998

 atmsnoop exits. The same is true for the
 combination of -I 16 and the expression
 noilmi. However, the combination of -I 5 and
 the expression noqsaal is allowed; this will
 result in the printing of VC 5 signaling mes-
 sages only.

 -X vc[,vc][-vc]
 Do not display frames from the specified
 VC(s). A single VC, a list of VCs (vc,vc,vc),
 or a range of VCs (vc-vc) may be specified.

 -q When capturing to a file (-o option) do not
 print a running count of the number of pack-
 ets captured. At high packet rates continu-
 ously printing the packet count uses
 significant CPU time, the -q option can
 improve atmsnoop's capture performance.

 expression Select packets either from the network or
 from a capture file. Only packets for which
 the expression is true will be selected. If
 no expression is provided it is assumed to be
 true.

 atmsnoop supports the boolean primitives and
 operators that are discussed in the snoop(1M)
 man page. In addition, it supports some atm-
 specific primitives that may also be used in
 filter expressions. They are:

 nosig
 When used as an argument to atmsnoop,
 nosig filters out of the output all pack-
 ets sent or received on the signalling VC,
 VC 5, which is used for signalling and
 QSAAL packets.

 noqsaal
 QSAAL packets are a subset of those seen
 on the signalling VC. When noqsaal is
 used as an argument to atmsnoop, it
 filters out only the QSAAL packets.

 noilmi
 ILMI packets (all VC 16 traffic) will be

CODE EXAMPLE 6-9 atmsnoop(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 189

 filtered out if noilmi appears as an argu-
 ment to atmsnoop.

 nollc
 The LLC protocol is used to encapsulate IP
 packets into ATM; if the primitive nollc
 appears as an argument to atmsnoop, all
 LLC packets will be filtered out of the
 output. LAN Emulation data frames will be
 filtered, since they are LLC encapsulated.

 nolane
 All LAN Emulation frames are filtered out.
 This includes both LAN Emulation control
 frames and data sent over LAN Emulation
 connections.

EXAMPLES
 Capture all non-ILMI packets on ba0 and display them as they
 are received:

 muskogee# atmsnoop -d ba0 noilmi
 Using device ba0 (promiscuous mode)
 TX: VC=5
 QSAAL: PDU_BGN N(MR)=40 N(UU)=0
 __
 TX: VC=5
 QSAAL: PDU_BGN N(MR)=40 N(UU)=0
 __
 TX: VC=5
 QSAAL: PDU_BGN N(MR)=40 N(UU)=0
 __
 ^Cmuskogee#

 Capture all non-QSAAL packets on ba0 and save them to a
 file:

 muskogee# atmsnoop -d ba0 -o save noqsaal
 Using device ba0 (promiscuous mode)
 ^Cmuskogee#

 Capture all packets and show the verbose summary output:

 muskogee# atmsnoop -d ba0 -V
 Using device ba0 (promiscuous mode)
 TX: VC=5

CODE EXAMPLE 6-9 atmsnoop(1M) Man Page (Continued)
190 SunATM Application Programmer’s Interface and Man Pages • August 1998

 QSAAL: PDU_POLL N(S)=7 N(PS)=271
 __
 RX: VC=5
 QSAAL: PDU_STAT N(R)=7 N(MR)=22 N(PS)=271
 __
 RX: VC=1005
 LLC Type=0x0800 (IP), size = 160 bytes
 IP D=192.1.1.5 S=192.1.1.8 LEN=148, ID=23478
 UDP D=2049 S=836 LEN=128
 RPC C XID=797246949 PROG=100003 (NFS) VERS=2 PROC=4
 NFS C LOOKUP FH=B609 dir_entry055
 __
 RX: VC=5
 QSAAL: PDU_POLL N(S)=7 N(PS)=270
 __
 TX: VC=5
 QSAAL: PDU_STAT N(R)=7 N(MR)=47 N(PS)=270
 __
 RX: VC=1007
 LLC Type=0x0800 (IP), size = 152 bytes
 IP D=192.1.1.5 S=192.1.1.12 LEN=140, ID=51245
 UDP D=2049 S=946 LEN=120
 RPC C XID=797034130 PROG=100003 (NFS) VERS=2 PROC=6
 NFS C READ FH=79DA at 0 for 8192
 __
 ^Cmuskogee#

SEE ALSO
 snoop(1M), ilmid(1M), q93b(7)

CODE EXAMPLE 6-9 atmsnoop(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 191

atmspeed(1M)

CODE EXAMPLE 6-10 atmspeed(1M) Man Page

atmspeed(1M) Maintenance Commands atmspeed(1M)

NAME
 atmspeed - get and set the total link bandwidth of an ATM
 device

SYNOPSIS
 /etc/opt/SUNWatm/bin/atmspeed interface [bandwidth]

AVAILABILITY
 SUNWatm

DESCRIPTION
 atmspeed gets and sets the link bandwidth (wire speed) of an
 ATM device, providing a mechanism to limit the total
 bandwidth of the ATM device. If no bandwidth is specified,
 the current link bandwidth is displayed in Megabits per
 second. If a bandwidth is specified, the link bandwidth is
 set to that amount; the total throughput of the link will be
 limited to the value specified. The specified bandwidth
 should be an integer number of Megabits per second, and
 should be less than the maximum bandwidth that may be allo-
 cated, which is 135 Mbits/sec in the SunATM-155 products and
 534 Mbits/sec in the SunATM-622 products. See the ATM dev-
 ice man pages (ba(7)) for information on the maximum device
 bandwidth.

EXAMPLES
 The following example shows how the bandwidth of an ATM dev-
 ice may be limited for a switch that can only handle 100
 Mbits/sec of traffic. After being set, the bandwidth is
 checked to verify the correct setting.

 muskogee# atmspeed ba0 100
 muskogee# atmspeed ba0
 100
 muskogee#
192 SunATM Application Programmer’s Interface and Man Pages • August 1998

SEE ALSO
 ba(7)

CODE EXAMPLE 6-10 atmspeed(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 193

atmstat(1M)

CODE EXAMPLE 6-11 atmstat(1M) Man Page

atmstat(1M) Maintenance Commands atmstat(1M)

NAME
 atmstat - display ATM network interface information

SYNOPSIS
 /etc/opt/SUNWatm/bin/atmstat interface [-d [-T]] [-t]
 [interval]

AVAILABILITY
 SUNWatm

DESCRIPTION
 atmstat displays statistics for an ATM interface. If only
 the interface is provided, as shown in the first form of the
 command, a one-line summary for each VC on the ATM interface
 is displayed. Information is given regarding the mode which
 is being used on each VC, the bandwidth group to which each
 VC is assigned, and the number of incoming and outgoing
 packets for each VC. The interface parameter should be a
 string of the form baN, where N is the unit number.

 Different output information is provided if one of the flags
 in the second or third forms is used. These optional flags
 can be used to display debugging information or bandwidth
 group information.

OPTIONS
 -d Display debugging information. The output consists
 of error and activity counters from the hardware
 device.

 -T Display timestamp information in addition to the
 debugging information provided with the -d option.
 Timestamps are generated by the driver at the time
 the statistics are copied from its internal data
 structures. This option is useful to correlate
 atmstat output with atmsnoop data.
194 SunATM Application Programmer’s Interface and Man Pages • August 1998

 -t Display the bandwidth group table for the inter-
 face. The bandwidth group table controls the mul-
 tiplexing of packets from multiple VCs into the
 transmit path.

 interval Display updated information every interval
 seconds. The display will continue until inter-
 rupted by the user.

EXAMPLES
 The following command displays a summary of VC information
 for ba0 every 5 seconds. Initially, there are three active
 VCs, the Q.2931 signalling VC 5, the ILMI address registra-
 tion VC 16, and the Classical IP connection to the arp
 server VC 32; during the display, a fourth VC is set up for
 IP traffic, using Classical IP.

 muskogee# atmstat ba0 5
 ba0 VC sap aal bufsize ipkts opkts encap BWG BW(Mb/s)

 5 sig 5 9264 492 1233 null 0 0.06
 16 ilmi 5 9264 22 23 null 0 0.06
 32 atmip 5 9264 2 3 llc 4 135.00

 ba0 VC sap aal bufsize ipkts opkts encap BWG BW(Mb/s)

 5 sig 5 9264 502 1243 null 0 0.06
 16 ilmi 5 9264 23 24 null 0 0.06
 32 atmip 5 9264 2 3 llc 4 135.00

 ba0 VC sap aal bufsize ipkts opkts encap BWG BW(Mb/s)

 5 sig 5 9264 514 1254 null 0 0.06
 16 ilmi 5 9264 23 24 null 0 0.06
 32 atmip 5 9264 4 6 llc 4 135.00
 33 atmip 5 9264 1 1 llc 4 135.00
 ^C
 muskogee#

 The fields of atmstat's display are:

 VC The Virtual Circuit to which this line of statis-
 tics applies. The VC is displayed as a decimal
 number.

CODE EXAMPLE 6-11 atmstat(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 195

 sap The service access point, if any, associated with
 this VC. If the value is for a non-IP data con-
 nection, it is displayed as a hexadecimal number.
 For IP connections, either atmip or lane is
 displayed, for Classical IP and LAN Emulation con-
 nections, respectively. Utility VCs used by the
 ATM software are also identified by name, rather
 than a numerical service access point.

 aal The ATM Adaptation Layer used on this VC.

 bufsize The buffer size, in bytes, being used.

 ipkts The number of incoming packets received on this VC
 since the VC was established.

 opkts The number of outgoing packets sent since the VC
 was established.

 encap The type of encapsulation being used.

 BWG Bandwidth group with which this VC is associated.

 BW(Mb/s) The total bandwidth (in Mbits per second) which is
 allocated for the BWG associated with this VC.

 The following command displays error and activity counters
 for the port ba0:

 muskogee# atmstat ba0 -dT
 timestamp 18:27:28.93043
 intrs 1697143 inits 2
 ipackets 1817576 opackets 47017
 ierrors 107 oerrors 0
 out of rbufs 0 out of tbufs 0
 canput fails 107 flow ctls 0
 copy receives 1817576 allocb fails 0
 too many bytes 0 rx overflows 0
 out of txds 0 bad crcs 0
 no receivers 0 err encaps 0
 err acks 0 txc overflows 0
 rx memnotav 0 rx statenotav 0
 rx badcells 0 rx flush count 65
 rx dirty count 0 rx targ kicks 0
 sbufnum 192 bbufnum 0
 IP disabled VCs 0 rx bogus len 0

CODE EXAMPLE 6-11 atmstat(1M) Man Page (Continued)
196 SunATM Application Programmer’s Interface and Man Pages • August 1998

 RX PFIFO full 0

 The fields of the atmstat -d display are:

 intrs The number of interrupts generated by the device.

 inits The number of times the hardware has been initial-
 ized.

 ipackets The number of packets which have arrived on any
 VCI.

 opackets The number of packets which have been sent on any
 VCI.

 ierrors The number of input errors.

 oerrors The number of output errors.

 out of rbufs
 The number of times the hardware signalled it had
 to drop a received packet due to no host memory
 buffer. This indicates that packets are arriving
 from the network faster than the driver can pro-
 cess them.

 out of tbufs
 The number of transmitted packets which were
 dropped because memory allocation failed. This
 indicates that the system is running low on
 memory.

 canput fails
 The number of received packets which were dropped
 by the driver because canput() failed. This indi-
 cates that packets are arriving from the network
 faster than software above the driver can process
 them.

 flow ctls The number of transmit packets which were dis-
 carded because there was no transmit descriptor
 available and the software queue was full.

 copy receives

CODE EXAMPLE 6-11 atmstat(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 197

 The number of received packets which were small
 enough that the driver copied them into a new mblk
 rather than sending up the hardware's buffer. It
 is faster to copy a small packet than allocate a
 new buffer for the hardware to DVMA to. This is
 not an error, the counter is for informational
 purposes.

 allocb fails
 The number of received packets which were dropped
 because allocb() failed. This indicates the system
 is running low on memory.

 too many bytes
 The number of times the driver started queueing
 transmit packets because there were already too
 many bytes given to the hardware. "too many" is
 defined as 4 Kbytes for every 64 Kbps of requested
 bandwidth for a particular VCI, and implements a
 flow control mechanism to keep low bandwidth con-
 nections from using too much system memory. This
 is not an error, the counter is for informational
 purposes.

 rx overflows
 The number of times a received packet was dropped
 because it overflowed the hardware buffer allo-
 cated for its reception. This generally indicates
 that cells are being dropped in the ATM network
 due to congestion, causing cells from different
 packets to become concatenated together into a
 giant packet.

 out of txds
 The number of times the driver started queueing
 transmit packets because there were no descriptors
 available on the hardware ring. This is not an
 error, the counter is for informational purposes.

 bad crcs The number of times a received packet was dropped
 because its AAL5 CRC was incorrect. This indicates
 a problem in the ATM network.

 no receivers
 The number of times a packet arrived on a VCI for
 which there was no user. Generally this is a race

CODE EXAMPLE 6-11 atmstat(1M) Man Page (Continued)
198 SunATM Application Programmer’s Interface and Man Pages • August 1998

 condition, the user which allocated that VCI hav-
 ing exited while packets were still in flight
 through the network.

 err encaps
 The number of recevied LLC packets which were
 dropped because the indicated SAP had no listener.

 err acks The number of bus errors which have occurred. The
 hardware must be reinitialized when this happens.
 Bus errors can result from excessive electrical
 noise, and indicate a hardware fault.

 txc overflows
 The number of times the hardware indicated its
 transmit completion ring was full. The hardware
 must be reinitialized when this happens. This
 indicates that packets are being transmitted way
 faster than the driver can clean up after them, or
 that the driver was unable to run for an extended
 period of time due to higher priority interrupts
 hogging the CPU.

 rx memnotav
 The number of times the hardware indicated its
 receive buffer memory was full. This indicates
 that packets are arriving from the network faster
 than the hardware can DMA them to host memory.
 This can happen sporadically if other devices on
 the bus consume too much bandwidth for a short
 period of time.

 rx statenotav
 The number of times the hardware indicated its
 receive control memory was full. This indicates
 that packets are arriving from the network faster
 than the hardware can process them.

 rx badcells
 The number of cells which arrived to the hardware
 destined for a VCI which was not turned on. This
 often happens with switches configured to use
 SPANS signalling, which sends cells to VCI 15
 looking for a SPANS-capable device.

 rx flush count

CODE EXAMPLE 6-11 atmstat(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 199

 The number of DMA states loaded into the RX con-
 trol memory. This is not an error, the counter is
 for informational purposes.

 rx dirty count
 The number of DMA states loaded into the RX con-
 trol memory when there was no clean state avail-
 able. The hardware has to flush one of the exist-
 ing states to external RAM. This indicates that
 the hardware is approaching its limits for the
 number of simultaneously active VCIs, but is still
 able to keep up. This is not an error, the counter
 is for informational purposes.

 rx targ kicks
 The number of times the driver had to instruct the
 hardware to move its targeted channels back to
 their private buffer rings. This indicates that
 either the incoming traffic load is truly monumen-
 tal, or that the driver was unable to run for an
 extended period due to a higher priority interrupt
 hogging the CPU. This is not an error, the counter
 is for informational purposes.

 sbufnum The number of buffers available to the hardware on
 the non-targeted buffer ring. This ring is used
 for VCIs requesting the small or big buffer size.
 This is not an error, the counter is for informa-
 tional purposes.

 bbufnum The number of buffers available to the hardware on
 the non-IP buffer ring. This ring is used for VCIs
 requesting the huge buffer size. Buffers for this
 ring are not allocated by the driver until a user
 requests the huge buffer ring. This is not an
 error, the counter is for informational purposes.

 IP disabled VCs
 The number of packets sent from the IP stream to
 VCIs the driver thinks are turned off. If the q93b
 link has recently gone down this is normal (a sim-
 ple race condition between IP and the driver). A
 large number of these errors would indicate a sig-
 nalling problem.

 rx bogus len

CODE EXAMPLE 6-11 atmstat(1M) Man Page (Continued)
200 SunATM Application Programmer’s Interface and Man Pages • August 1998

 The number of times a received packet was dropped
 because its claimed AAL5 length did not match the
 number of cells received by the hardware. This
 indicates a problem with some piece of ATM equip-
 ment sending cells to the adaptor; in particular
 misconfigured ATM analyzers can do this.

 rx PFIFO full
 The number of times a received packet was dropped
 because the queue used by the software to send
 them up to higher protocol layers was full. This
 indicates that there are so many hardware inter-
 rupts generated by devices in the system that the
 software interrupt is never able to run.

SEE ALSO
 ifconfig(1M), netstat(1M), ba(7)

CODE EXAMPLE 6-11 atmstat(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 201

ilmid(1M)

CODE EXAMPLE 6-12 ilmid(1M) Man Page

ilmid(1M) Maintenance Commands ilmid(1M)

NAME
 ilmid - ATM Address Registration daemon

SYNOPSIS
 /etc/opt/SUNWatm/bin/ilmid [-c] [-n] [-v] [-x]

AVAILABILITY
 SUNWatm

DESCRIPTION
 The ATM Address Registration daemon communicates with the
 switch to establish the 20-byte ATM address for the end sys-
 tem. It implements ILMI, which is the Interim Local Manage-
 ment Interface specified in the ATM User Network Specifica-
 tion. It uses the Simple Network Management Protocol (SNMP)
 for communication between an ATM switch and host.

 An ATM address is made up of a 13-byte network prefix, a 6-
 byte end system identifier (esi), and a 1-byte selector.
 Currently, the selector byte is not used in the SunATM
 implementation; it will be 00 in most cases. The network
 prefix is assigned by the switch and will be used by the
 switch for routing. The esi is the unique identification of
 the end system. A good choice for this is often the default
 MAC address for the interface. For all Sun products, the
 MAC address will begin with the octets 08:00:20.

 When the ilmi daemon is executed, it first registers the
 local MAC address for each interface, obtained from the ATM
 driver, with the switch. Part of the initial registration
 process involves obtaining the switch prefix, which ilmid
 reports to the ATM software. It then waits to receive mes-
 sages from user programs or the switch, and responds to
 those accordingly.

 Additional addresses may be registered in two different
202 SunATM Application Programmer’s Interface and Man Pages • August 1998

 ways. aarsetup(1M) and lanesetup(1M) register additional
 addresses that may appear in aarconfig(4) and laneconfig(4),
 respectively. There is also a user program, atmreg(1M),
 that may be used to register and de-register addresses, and
 also check the status of any address.

OPTIONS
 -c Clear address table. Normally, when ilmid is started,
 it obtains a list of all addresses that were previ-
 ously registered from the ATM software, and re-
 registers all of them. Using the -c option instructs
 ilmid instead to only register the default address
 for each interface, and clear all other addresses
 from the ATM software address table.

 -n No auto registration. By default, ilmid automatically
 registers a local address with the switch, which is
 made up of the switch prefix, the MAC address
 assigned to the board (or system if the board does
 not have its own), and a 0 selector. This option
 turns off that feature, so that the only addresses
 registered are those that appear in 'l' entries in
 /etc/aarconfig and/or /etc/laneconfig.

 -v Verbose mode. Print additional information regarding
 the communication with the switch.

 -x Print (to the console) the messages exchanged between
 the switch and end system in hexadecimal notation.

SEE ALSO
 atmreg(1M), aarsetup(1M), lanesetup(1M), aarconfig(4),
 laneconfig(4)

 "ATM User-Network Interface Specification, V3.0," ATM Forum.

 "ATM User-Network Interface Specification, V3.1," ATM Forum.

NOTES
 ilmid SHOULD NOT be put into the background (i.e. run with
 the command 'ilmid &'). When executed, ilmid will first per-
 form some essential first steps, then put itself into the
 background without user intervention. An exception is made
 if ilmid is run with debug flags (-x and/or -v); since those

CODE EXAMPLE 6-12 ilmid(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 203

 modes result in continuous output, ilmid will not put itself
 into the background if running with the -x or -v option.

CODE EXAMPLE 6-12 ilmid(1M) Man Page (Continued)
204 SunATM Application Programmer’s Interface and Man Pages • August 1998

lanearp(1M)

CODE EXAMPLE 6-13 lanearp(1M) Man Page

lanearp(1M) Maintenance Commands lanearp(1M)

NAME
 lanearp - MAC to ATM address resolution

SYNOPSIS
 /etc/opt/SUNWatm/bin/lanearp laneN

 /etc/opt/SUNWatm/bin/lanearp laneN [MAC address]

 /etc/opt/SUNWatm/bin/lanearp laneN - [ATM address]

 /etc/opt/SUNWatm/bin/lanearp -a

AVAILABILITY
 SUNWatm

DESCRIPTION
 The lanearp program may be used to display ATM and MAC
 address pairs for a given LAN Emulation interface. The
 required parameter laneN is a LAN Emulation inteface name,
 where N is the LAN Emulation instance number (specified in
 /etc/atmconfig). An example is lane0.

 If only the interface is provided, as in the first form of
 the command, lanearp will print the ATM address and MAC
 address for that LAN Emulation interface, and an entry for
 each resolved IP address for that interface.

 If additional information is provided, it will be used to
 identify a device on the subnet to which the LAN Emulation
 interface is connected, and the corresponding address infor-
 mation will be printed. In the second form, when an MAC
 address (in the colon-separated form used in the output of
 arp) is provided, the ATM address for that node will be
 printed. In the third form, when an ATM address (in the
 colon-separated octet format used in /etc/laneconfig) is
 provided, the corresponding MAC address will be printed.
Chapter 6 Maintenance Commands 205

 Note: in this third form of the command, a hyphen (-) must
 be included to indicate that a MAC address is not being pro-
 vided.

 The -a option dumps the complete LANE ARP table, listing the
 ATM and IP address for each LAN Emulation interface and a
 listing of the ATM address for each resolved IP address on
 that interface.

EXAMPLES
 sunatm1# lanearp -a
 LANE Interface lane2:
 Local MAC addr = 8:0:20:82:4f:f6
 ATM addr = 47:00:00:00:00:00:00:00:00:00:00:C0:01::08:00:20:82:4F:F6::00

 LE_ARP table:

 MAC addr = 0:e0:f9:c5:58:0
 ATM addr = 47:00:00:00:00:00:00:00:00:00:00:CC:00::00:E0:F9:C5:58:00::36

 MAC addr = 8:0:20:7e:58:6
 ATM addr = 47:00:00:00:00:00:00:00:00:00:00:C0:01::08:00:20:7E:58:06::00

 MAC addr = 8:0:20:82:4f:f6
 ATM addr = 47:00:00:00:00:00:00:00:00:00:00:C0:01::08:00:20:82:4F:F6::00

 MAC addr = ff:ff:ff:ff:ff:ff
 ATM addr = 47:00:00:00:00:00:00:00:00:00:00:C0:01::00:60:47:2C:3E:04::36

 LANE Interface lane1:
 Local MAC addr = 8:0:20:82:4f:f5
 ATM addr = 47:00:00:00:00:00:00:00:00:00:00:C0:01::08:00:20:82:4F:F5::00

 LE_ARP table:

 MAC addr = 0:e0:f9:c5:58:0
 ATM addr = 47:00:00:00:00:00:00:00:00:00:00:CC:00::00:E0:F9:C5:58:00::35

 MAC addr = 8:0:20:7e:58:5
 ATM addr = 47:00:00:00:00:00:00:00:00:00:00:C0:01::08:00:20:7E:58:05::00

 MAC addr = 8:0:20:82:4f:f5
 ATM addr = 47:00:00:00:00:00:00:00:00:00:00:C0:01::08:00:20:82:4F:F5::00

CODE EXAMPLE 6-13 lanearp(1M) Man Page (Continued)
206 SunATM Application Programmer’s Interface and Man Pages • August 1998

 MAC addr = ff:ff:ff:ff:ff:ff
 ATM addr = 47:00:00:00:00:00:00:00:00:00:00:C0:01::00:60:47:2C:3E:04::35

SEE ALSO
 arp(1M), ifconfig(1M), laneconfig(4),

CODE EXAMPLE 6-13 lanearp(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 207

lanesetup(1M)

CODE EXAMPLE 6-14 lanesetup(1M) Man Page

lanesetup(1M) Maintenance Commands lanesetup(1M)

NAME
 lanesetup - LAN Emulation setup program

SYNOPSIS
 /etc/opt/SUNWatm/bin/lanesetup [-pnvf] [-a filename] [
 filename]

AVAILABILITY
 SUNWatm

DESCRIPTION
 The lanesetup program reads local LAN Emulation configura-
 tion information from the /etc/laneconfig file and loads the
 information into the kernel.

 By default, the /etc/laneconfig file is read and downloaded
 into the local kernel table on startup. If the configura-
 tion file is modified later, lanesetup must be rerun to load
 the new information into the kernel.

OPTIONS
 -p Prints to the standard output the table entries
 from the configuration file, with all variable
 expressions expanded. Does not download any infor-
 mation into the kernel.

 -n Only parse the configuration table. Using this
 option, the syntax and information in the table
 can be checked to verify that it is acceptable to
 the lanesetup program without actually attempting
 to download any data. Physical interface informa-
 tion entered in the table is compared with known
 configured interfaces. Error messages will be
 printed if any problems are encountered.

 -v Verbose mode. Additional information is printed.
208 SunATM Application Programmer’s Interface and Man Pages • August 1998

 -f Also do the LAN Emulation interface plumbing.
 This is only done once, at boot time. The only
 time this option should be used is when lanesetup
 is called in the /etc/rc2.d/S00sunatm startup
 script.

 -a filename
 Used in conjunction with the -f option, this flag
 specifies the file from which plumbing information
 should be read (typically /etc/atmconfig).

 filename A filename may be specified to download a confi-
 guration file other than /etc/laneconfig. Stan-
 dard input, indicated with a hyphen `-', is a
 legal value for filename if the -n option is being
 used.

FILES
 /etc/laneconfig File that contains configuration infor-
 mation specific to the LAN Emulation
 interfaces. Read by lanesetup, which
 downloads the configuration information
 to the LAN Emulation kernel software.

SEE ALSO
 laneconfig(4)

 ATM Forum, LAN Emulation Over ATM Specification Version 1.0,
 LAN Emulation SWG Drafting Group

NOTES
 lanesetup SHOULD NOT be put into the background (i.e. run
 with the command 'lanesetup &'). When executed, lanesetup
 will first perform some essential first steps, then put
 itself into the background without user intervention.

CODE EXAMPLE 6-14 lanesetup(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 209

lanestat(1M)

CODE EXAMPLE 6-15 lanestat(1M) Man Page

lanestat(1M) Maintenance Commands lanestat(1M)

NAME
 lanestat - display status of LAN Emulation over ATM

SYNOPSIS
 /etc/opt/SUNWatm/bin/lanestat lane_interface

 /etc/opt/SUNWatm/bin/lanestat -a

AVAILABILITY
 SUNWatm

DESCRIPTION
 lanestat displays information about the state of the LAN
 Emulation protocol on an ATM interface. The information
 provided may be used to debug configuration problems, or to
 verify successful bring-up of a LAN Emulation interface.

 The only parameter is the LAN Emulation interface name,
 which will be of the form laneN, where N is the instance
 number. Optionally, the -a flag may be used to request
 information for all LAN Emulation interfaces.

 The following fields will be displayed:

 setup_state The state of the LAN Emulation setup program,
 lanesetup. The possible values are setup-
 not-run, which means that lanesetup has not
 been run successfully for this interface;
 setup-started, which means that lanesetup is
 currently running; setup-requested-join,
 which means that a join request has been sent
 to the LES, but a response has not yet been
 received; setup-finished, which means that
 lanesetup has successfully completed; and
 interface-defunct, which means that the
 interface has been partially unconfigured by
210 SunATM Application Programmer’s Interface and Man Pages • August 1998

 removing its entries from the configuration
 files and re-running laneconfig. Interfaces
 whose state is interface-defunct will be
 removed from the kernel on reboot, assuming
 that the configuration files are not changed.

 arpcsmode The mode in which the LAN Emulation software
 is running. The possible values are client-
 being-modified and client. client-being-
 modified indicates that lanesetup is
 currently running on the system; the confi-
 guration is not complete; client indicates
 that the system is a LAN Emulation client.

 proto_address The protocol address of this lane instance.

 atm_address The ATM address of this lane instance.

 lanestate The state of the LAN Emulation client. When a
 LAN Emulation client interface comes up, it
 must go through a process called "joining the
 LAN." The value in this field reflects the
 current stage in that process. For a
 description of the steps a client goes
 through to join a LAN, see section 5.3.1, LAN
 Emulation Services, in the SunATM 2.1 Manual.
 For a client that is up and running, the
 value of this field should be active.

 lecConfigSource
 The source of the LECS address used to con-
 figure this lane instance. The possible
 values are LocalInformation, which means the
 address is provided in the laneconfig file
 using the 'c' flag; getAddressViaIlmi, which
 means the address was provided by the switch
 via the ILMI daemon; usedWellKnownAddress,
 which means the well-known LECS address from
 the ATM Forum UNI standard was used;
 usedLecsPvc, which means the LECS VCI was
 provided in /etc/laneconfig using the 'c'
 flag; and didNotUseLecs, which means the LES
 address was provided in /etc/laneconfig using
 the 's' flag.

 driver name The ATM hardware device this lane instance

CODE EXAMPLE 6-15 lanestat(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 211

 runs over.

 lan_type The type of Emulated LAN. Possible values
 are unspecified, ethernet(802.3), token-
 ring(802.5), and <unknown>. Currently, SunATM
 supports only emulated LANs of type ether-
 net(802.3).

 elan_name The name of the Emulated LAN. Most LAN Emu-
 lation Servers will provide this information
 to the client when the client joins the LAN,
 but in some cases, such as in the case of
 multiple Emulated LANs, the user must provide
 this name in its requests to join. If this is
 the case in your configuration, see the
 description of the `n' flag in laneconfig(4).

 lecid A number assigned by the LES to uniquely
 identify this LAN Emulation client.

 max_frame_size_code
 size A code identifying the maximum SDU size of an
 Emulated LAN data frame; the actual size
 corresponding to the code is provided as
 well. This value is generally determined by
 the LAN Emulation Configuration Server.

 LECS_atm_address
 The atm address of the LECS for this lane
 instance.

 LES_atm_address
 The atm address of the LES for this lane
 instance.

 BUS_atm_address
 The atm address of the BUS for this lane
 instance.

 lecs_vci

 les_vci

 les_distribute_vci

 bus_vci

CODE EXAMPLE 6-15 lanestat(1M) Man Page (Continued)
212 SunATM Application Programmer’s Interface and Man Pages • August 1998

 bus_forward_vci
 The VCIs identifying the connections to the
 three servers providing LAN Emulation ser-
 vices for the emulated LAN. A VCI of 0 indi-
 cates that no connection exists. It is nor-
 mal for the LECS connection to be torn down
 during the process of joining the emulated
 LAN.

SEE ALSO
 lanesetup(1M), laneconfig(4)

CODE EXAMPLE 6-15 lanestat(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 213

qccstat(1M)

CODE EXAMPLE 6-16 qccstat(1M) Man Page

qccstat(1M) Maintenance Commands qccstat(1M)

NAME
 qccstat - display Q.2931 call control information

SYNOPSIS
 /etc/opt/SUNWatm/bin/qccstat interface [interval]

AVAILABILITY
 SUNWatm

DESCRIPTION
 qccstat displays signalling and link layer information for
 an ATM interface. The information includes the current link
 state, ATM addresses registered for the interface, and the
 state of all Q.2931 calls present on the interface.

 Without options, qccstat displays several lines of informa-
 tion for the specified interface. The interface parameter
 is a string of the form baN, where N is the unit number. If
 interval is given, the information will be updated and
 printed every interval seconds, repeating until interrupted
 by the user.

 If there are no calls present on the interface, several sum-
 mary lines are displayed. They include the following infor-
 mation:

 linkstate The DLPI link state, usually either
 DL_ACTIVE or DL_IDLE.

 outcalls The total number of outgoing calls on this
 interface.

 incalls The total number of incoming calls.

 sig The signalling version that is plumbed on
 this interface. Possible values are UNI3.0,
214 SunATM Application Programmer’s Interface and Man Pages • August 1998

 UNI3.1, and UNI4.0.

 registered addresses
 A list of the addresses that have been
 registered for this interface with the
 switch.

 If calls are present, three additional lines of information
 are provided for each call. These lines include the follow-
 ing information:

 callref The call reference for this call.

 vci The virtual circuit identifier, displayed
 in decimal.

 state The Q.2931 call state.

 dir The direction of the call. If this system
 initiated the call, the direction is OUTGO-
 ING; otherwise, the direction is INCOMING.

 sap The service access point (sap) associated
 with this call, displayed as a hexadecimal
 number.

 src The 20-byte source ATM address for the
 call, in the colon-separated octet format
 used in the aarconfig(4) file.

 dst The destination ATM address for the call.

EXAMPLES
 The following command displays Q.2931 call information for
 ba0 every 2 seconds. Initially, there are no active calls;
 during the display, a call is connected. The display is
 then terminated by the user.

 muskogee# qccstat ba0 2
 ba0: linkstate=DL_ACTIVE outcalls=0 incalls=0 sig=UNI3.0
 registered addresses:
 45:00:00:00:00:00:00:00:0f:00:00:00:00::08:00:20:75:a2:77:00

 ba0: linkstate=DL_ACTIVE outcalls=0 incalls=0 sig=UNI3.0
 registered addresses:
 45:00:00:00:00:00:00:00:0f:00:00:00:00::08:00:20:75:a2:77:00

CODE EXAMPLE 6-16 qccstat(1M) Man Page (Continued)
Chapter 6 Maintenance Commands 215

 ba0: linkstate=DL_ACTIVE outcalls=0 incalls=1 sig=UNI3.0
 registered addresses:
 45:00:00:00:00:00:00:00:0f:00:00:00:00::08:00:20:75:a2:77:00

 incoming calls:
 callref=1 vci=0x20 state=ACTIVE dir=INCOMING sap=0x800
 src=47:00:05:80:ff:e1:00:00:00:f1:24:0e:e8::08:00:20:10:0a:2d:00
 dst=47:00:05:80:ff:e1:00:00:00:f1:24:0e:e8::08:00:20:22:21:b1:00

 ^Cmuskogee#

SEE ALSO
 q93b(7), ba(7)

CODE EXAMPLE 6-16 qccstat(1M) Man Page (Continued)
216 SunATM Application Programmer’s Interface and Man Pages • August 1998

Index
A
allocating bandwidth, 10

API, 1

allocating bandwidth, 10

ATM signalling, 2

atm_util functions, 9

CBR allocation, 9

device driver

connecting, 9

receiving data, 9

sending data, 9

DLPI encapsulated connections, 10

message formats, 5

q93b and device drivers, 2

qcc functions, 6

raw mode connections, 10

VBR allocation, 10

Application Programmers Interface

See API

ATM

M_PROTO mblock fields, 5

q93b driver, 3

signalling, 2

switched virtual circuit, 3

atm_util functions, 9

C
Call_ID message, 5

Call_Tag message, 5

CBR, 9

constant bit rate, 9

D
DLPI encapsulated connections, 10

E
Error_Code message, 5

I
Ifname message, 5

P
permanent virtual circuits, 1

PVC, 1

Q
Q.2931, 1

Q.93B, 1

qcc functions, 6
Index 217

S
SVC, 1

switched virtual circuits, 1

T
Type message, 5

V
variable bit rate bandwidth, 9

VBR, 10
218 SunATM Application Programmer’s Interface and Man Pages • August 1998

	Preface
	Application Programmers’ Interface
	Using the SunATM API with the q93b and the ATM Device Drivers
	Q.93b Driver Interface
	Establishing a Connection to the q93b Driver
	Setting up an ATM Connection Over a Switched Virtual Circuit (SVC)
	Call Setup
	Release Procedure
	Exception Conditions

	Connecting, Sending, and Receiving Data with the ATM Device Driver
	Raw Mode Connections
	DLPI Encapsulated Connections

	C Library Functions
	atm_util(3)
	qcc_bld(3)
	qcc_create(3)
	qcc_len(3)
	qcc_pack(3)
	qcc_parse(3)
	qcc_set_ie(3)
	qcc_unpack(3)
	qcc_util(3)

	File Formats
	aarconfig(4)
	acl.cfg(4)
	agent.cnf(4)
	atmconfig(4)
	context.cfg(4)
	ilmi.cnf(4)
	laneconfig(4)
	mib.rt(4)
	party.cfg(4)
	view.cfg(4)

	Special Files
	ba(7)
	q93b(7)

	DDI and DKI Kernel Functions
	qcc_bld(9F)
	qcc_create(9F)
	qcc_pack(9F)
	qcc_parse(9F)
	qcc_set_ie(9F)
	qcc_unpack(9F)

	Maintenance Commands
	aarsetup(1M)
	aarstat(1M)
	atmadmin(1M)
	atmarp(1M)
	atmgetmac(1M)
	atmreg(1M)
	atmsetup(1M)
	atmsnmpd(1M)
	atmsnoop(1M)
	atmspeed(1M)
	atmstat(1M)
	ilmid(1M)
	lanearp(1M)
	lanesetup(1M)
	lanestat(1M)
	qccstat(1M)

	Index

