
Solaris WBEM Services
Administration Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 806–6827–06
December 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, Java, JavaSpaces, JDK, Solaris, Solaris Management Console, and Solstice Enterprise Agents are
trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks
are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, Java, JavaSpaces, JDK, Solaris, Solaris Management Console, et Solstice Enterprise Agents sont des
marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les
marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et
dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011025@2471

Contents

Preface 11

1 Overview 15

About WBEM 15

About the Common Information Model 16

Basic CIM Elements 16

The CIM Models 17

CIM Extensions 18

Solaris WBEM Services 18

Software Components 19

Namespaces 22

Providers 23

Interoperability with Other WBEM Systems 24

Sun WBEM Software Development Kit 24

2 CIM Object Manager 25

About the CIM Object Manager 25

The init.wbem Command 26

Solaris Management Console Server 27

System Booting 27

Stopping and Restarting the CIM Object Manager 27

Upgrading the CIM Object Manager Repository 28

� To Save the JavaSpaces Datastore 28

� To Convert WBEM Data 29

� To Merge WBEM Data 31

3

Exception Messages 32

3 SNMP Adapter for WBEM 33

How the SNMP Adapter for WBEM Works 33

How the Master Agent Routes a Request: SNMP Adapter for WBEM Compared to
the Sun SNMP Agent 34

Configuring the Adapter and Mapping SNMP to CIM Objects 35

Configuration Files 35

Mapping Files 38

Installing and Using the SNMP Adapter for WBEM 42

� To Install the SNMP Adapter for WBEM 43

� To Start the SNMP Adapter for WBEM 43

� To Disable the SNMP Adapter for WBEM 43

� To Force the SNMP Adapter for WBEM to Reread the Mapping File Directory
44

Troubleshooting Problems With the SNMP Adapter for WBEM 44

Sending and Receiving Requests 45

FIFO Cannot Be Opened 46

FIFO Cannot Be Created 48

WBEM Services Are Not Started 48

4 Administering Security 51

WBEM Security Mechanisms 51

Authentication 52

Role Assumption 52

Secure Messaging 53

Authorization 53

Auditing 54

Logging 55

Using Sun WBEM User Manager to Set Access Control 55

What You Can and Cannot Do With Sun WBEM User Manager 56

Using Sun WBEM User Manager 56

Using the Sun WBEM SDK APIs to Set Access Control 59

The Solaris_UserAcl Class 60

The Solaris_NamespaceAcl Class 61

Troubleshooting 62

4 Solaris WBEM Services Administration Guide • December 2001 (Beta)

If a Client (User) Cannot Be Authenticated by the CIM Object Manager on the
WBEM Server 62

If Other CIM Security Exception Errors Appear 65

If an Authorization Check Fails 65

5 MOF Compiler 67

The MOF Compiler 67

Definitions 67

How the MOF Compiler Works 67

Compiling a MOF File 68

The mofcomp Command 68

Security Advisory 69

Generating a MOF File From an SNMP MIB File 69

� To Generate a MOF File From an SNMP MIB File 70

6 System Logging 71

About Logging 71

Log Files 72

Log Message Format 72

Using a Client’s Application Programming Interface to Read and to Write Log
Messages 73

To Use a Client’s Application Programming Interface to Read and to Write Log
Messages 73

To Use a Client’s Application Programming Interface to Create Log Messages
75

To Use Provider Application Programming Interfaces to Write Log Messages
77

Viewing Log Data Through Log Viewer 78

Starting Log Viewer 78

A The Solaris Schema 81

Solaris Schema Files 81

The Solaris_Schema1.0.mof File 83

The Solaris_CIMOM1.0.mof File 83

The Solaris_Core1.0.mof File 85

The Solaris_Application1.0.mof File 85

The Solaris_System1.0.mof File 86

Contents 5

The Solaris_Device1.0.mof File 87

The Solaris_Acl1.0.mof File 88

The Solaris_Network1.0.mof File 88

The Solaris_Users1.0.mof File 88

The Solaris_Event1.0.mof File 89

The Solaris_SNMP1.0.mof File 89

The Solaris_LVM1.0.mof File 89

The Solaris_Project1.0.mof File 90

Glossary 93

Index 99

6 Solaris WBEM Services Administration Guide • December 2001 (Beta)

Tables

TABLE 2–1 Convert or Merge WBEM Data 28

TABLE 3–1 Contents of a Mapping File 40

TABLE A–1 Solaris Schema Files 82

7

8 Solaris WBEM Services Administration Guide • December 2001 (Beta)

Figures

FIGURE 1–1 Solaris WBEM Services Architecture 19

FIGURE 6–1 The Solaris Management Console Application, Log Viewer Selected
78

9

10 Solaris WBEM Services Administration Guide • December 2001 (Beta)

Preface

The Solaris WBEM Services Administration Guide explains Common Information Model
(CIM) concepts and describes how to administer Web-Based Enterprise Management
(WBEM) services in the Solaris™ operating environment.

Solaris WBEM Services software makes it easier for software developers to create
management applications that run on Solaris and makes the Solaris operating
environment easier to manage.

Who Should Use This Book
This book is written for system administrators who manage WBEM-enabled networks
and workstations, by running existing WBEM applications or writing new ones.

Before You Read This Book
This book requires knowledge of these topics:

� Object-oriented programming concepts

� Java™ programming

� WBEM Common Information Model (CIM) concepts

� Network management concepts

� Simple Network Management Protocol (SNMP) concepts, if you intend to
configure and use SNMP Adapter for WBEM

11

If you are unfamiliar with these areas, you might find the following references useful:

� Java™ How to Program

H. M. Deitel and P. J. Deitel, Prentice Hall, ISBN 0–13–263401–5

� The Java Class Libraries, Second Edition, Volume 1, Patrick Chan, Rosanna Lee,
Douglas Kramer, Addison-Wesley, ISBN 0–201–31002–3

� CIM Tutorial, provided by the Distributed Management Task Force

The following Web sites are useful resources when working with WBEM technologies.

� Distributed Management Task Force (DMTF)

See this site at www.dmtf.org for the latest developments on CIM, information
about various working groups, and contact information for extending the CIM
Schema.

� Rational Software

See this site at www.rational.com/uml for documentation on the Unified Modeling
Language (UML) and the Rose CASE tool.

How This Book Is Organized
Chapter 1 provides an overview of Solaris WBEM Services and Web-Based Enterprise
Management (WBEM).

Chapter 2 describes the CIM Object Manager. This chapter covers how to start and
how to stop the CIM Object Manager and how to upgrade the CIM Object Manager
Repository.

Chapter 3 describes the SNMP Adapter for WBEM, which enables existing SNMP
applications to access WBEM data and translates SNMP messages into corresponding
CIM properties and instances.

Chapter 4 describes WBEM security mechanisms, security features, and how to set
access rights for namespaces and users.

Chapter 5 describes the command syntax for the mofcomp command and how to
compile a .mof file.

Chapter 6 describes the logging features.

Appendix A describes the Solaris Schema files, Managed Object Format (MOF) files
that describe managed objects in the Solaris operating environment.

Glossary is a list of words and phrases found in this book and their definitions.

12 Solaris WBEM Services Administration Guide • December 2001 (Beta)

Ordering Sun™ Documents
Fatbrain.com, the Internet’s most comprehensive professional bookstore, stocks select
product documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on
Fatbrain.com at http://www1.fatbrain.com/documentation/sun.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

Preface 13

TABLE P–1 Typographic Conventions (Continued)
Typeface or Symbol Meaning Example

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

14 Solaris WBEM Services Administration Guide • December 2001 (Beta)

CHAPTER 1

Overview

This chapter provides an overview of Web-Based Enterprise Management (WBEM)
and Solaris WBEM Services, software that makes it easier for software developers to
create management applications that run on Solaris and make the Solaris operating
environment easier to manage.

This chapter covers the following topics:

� “About WBEM” on page 15
� “About the Common Information Model” on page 16
� “Solaris WBEM Services” on page 18
� “Sun WBEM Software Development Kit” on page 24

About WBEM
WBEM is an industry-wide initiative that includes standards for web-based
management of systems, networks, and devices on multiple platforms. This
standardization enables system administrators to manage desktops, devices, and
networks.

WBEM is designed to be compatible with all major existing management protocols,
including Simple Network Management Protocol (SNMP), Distributed Management
Interface (DMI), and Common Management Information Protocol (CMIP).

WBEM encompasses the following standards:

� Common Information Model (CIM) – Information model for describing managed
resources.

� Managed Object Format (MOF) – Language for defining CIM classes and instances.

15

� eXtensible Markup Language (XML) – Markup language for describing managed
resources on the web.

The Distributed Management Task Force (DMTF), a group that represents corporations
in the computer and telecommunications industries, is leading the effort to develop
management standards. The goal of the DMTF is to develop an integrated approach to
managing networks across platforms and protocols, and consequently promote
cost-effective products that interoperate as flawlessly as possible.

About the Common Information Model
This section provides a brief introduction to basic CIM terms and concepts as they are
used in the Solaris WBEM Services product.

CIM is an object-oriented information model for describing managed resources such
as disks, CPUs, and operating systems. A CIM object is a representation, or model, of a
managed resource, such as a printer, disk drive, or CPU. CIM objects can be shared by
any WBEM-enabled system, device, or application.

Basic CIM Elements
CIM objects with similar properties and purposes are represented as CIM classes.
Properties are attributes that describe a unit of data for a class. An instance is a
representation of a managed object that belongs to a particular class. Instances contain
actual data. For example, Solaris_ComputerSystem is a CIM class that represents
a computer that runs the Solaris operating environment. The Solaris software that runs
on your workstation is an instance of the Solaris_OperatingSystem class.
ResetCapability and InstallDate are examples of properties of the
Solaris_ComputerSystem class.

CIM classes are grouped into meaningful collections called schemas. A schema is a
group of classes with a single owner (an organization). A class must belong to only
one schema. Schemas are used for administration and class naming. All class names
must be unique within a particular schema. The schema name is the determining
factor in differentiating classes and properties from others that may have the same
name. The naming of schema, class, and property follow this syntax:

Schemaname_classname.propertyname

16 Solaris WBEM Services Administration Guide • December 2001 (Beta)

The CIM Models
The Common Information Model categorizes information from general to specific.
Specific information, such as a representation of the Solaris environment, extends the
model. CIM consists of the following three layers of information:

� Core Model – A subset of CIM not specific to any platform.

� Common Model – Information model that visually depicts concepts, functionality,
and representations of entities related to specific areas of network management,
such as systems, devices, and applications.

� Extensions – Information models that support the CIM Schema and represent a
very specific platform, protocol, or corporate brand.

Collectively, the Core Model and the Common Model are called CIM Schema.

The Core Model
The Core Model provides the underlying, general assumptions of the managed
environment—for example, that specific, requested data must be contained in a
location and distributed to requesting applications or users. These assumptions are
conveyed as a set of classes and associations that conceptually form the basis of the
managed environment. The Core Model is meant to introduce uniformity across
schemas intended to represent specific aspects of the managed environment.

For applications developers, the Core Model provides a set of classes, associations,
and properties that can be used as a starting point to describe managed systems and
determine how to extend the Common Model. The Core Model establishes a
conceptual framework for modeling the rest of the managed environment.

The Core Model provides classes and associations to extend specific information about
systems, applications, networks, devices, and other network features through the
Common Model and extensions.

The Common Model
Areas of network management depicted in the Common Model are independent of a
specific technology or implementation but provide the basis for the development of
management applications. This model provides a set of base classes for extension into
the area of five designated technology-specific schemas: Systems, Devices,
Applications, Networks, and Physical.

Overview 17

CIM Extensions
Extension schemas are built upon CIM to connect specific technologies to the model.
By extending CIM, a specific operating environment such as Solaris can be made
available to a greater number of users and administrators. Extension schemas provide
classes for software developers to build applications that manage and administer the
extended technology. The Solaris Schema is an extension of the CIM Schema.

Solaris WBEM Services
Solaris WBEM Services software provides WBEM services in the Solaris operating
environment. These services make it easier for software developers to create
management applications that run in the Solaris operating environment, and makes
the Solaris operating environment easier to manage.

Solaris WBEM Services software provides secure access and manipulation of
management data. The product includes a built-in Solaris provider that enables
management applications to access information about managed resources (devices
and software) in the Solaris operating environment.

The CIM Object Manager accepts connections from management applications that use
either the RMI or the XML/HTTP protocol, and provides the following services to
connected clients:

� Management services, in the form of a CIM Object Manager that checks the
semantics and syntax of CIM data and distributes data between applications, the
CIM Repository, and managed resources.

� Security services that enable administrators to control user access to CIM
information.

Security services, which you specify for WBEM through the Solaris Management
Console User tool, are described in System Administration Guide: Security Services.

� Logging services that consist of classes that developers can use to create
applications that dynamically record event data in, and retrieve data from, a log
record. Administrators use this data to track and determine the cause of events.

� XML services that convert XML data into CIM classes, enabling XML/HTTP-based
WBEM clients to communicate with the CIM Object Manager.

Once connected to a WBEM-enabled system, WBEM clients can request WBEM
operations, such as, creating, viewing, and deleting CIM classes and instances,
querying for properties that have a specified value, enumerating (getting a list of)
instances or classes in a specified class hierarchy.

18 Solaris WBEM Services Administration Guide • December 2001 (Beta)

Software Components
Solaris WBEM Services software consists of software components Application,
Management, and Provider. These components interact with the operating system and
hardware. Figure 1–1 shows the software components and how they interact.

Overview 19

Solaris Management
Console (SMC)

Java™ WBEM Client and CIM API
Java VM

Solaris™ Operating Environment

CIM Object
Manager

Java VM

MOF Compiler
(mofcomp)

Sun WBEM
Administration

Third Party
Indication
Reception

RMI
Indication
Reception

RMICIM-XML
/HTTP

Third
Party

Third Party
Indication
Reception

RMI
Indication
Reception

RMICIM-XML
/HTTP

Third
Party

Client
Protocol

Adapters

Indication
Delivery
Handlers

CIM Repository

Provider
Protocol

Adapters

Providers

Third
Party

Third Party
Providers

Native

Sun™
Providers

Java™

Third Party
Providers

Operating
System

SPARC™ IntelHardware

FIGURE 1–1 Solaris WBEM Services Architecture

� Application Layer – WBEM clients process and display data from managed
resources. Solaris WBEM Services includes the following applications.

20 Solaris WBEM Services Administration Guide • December 2001 (Beta)

� Sun WBEM User Manager and Solaris Management Console™ Users Tool –
Applications that allow system administrators to add and delete authorized
users and to set their access privileges to managed resources.

� Solaris Management Console Log Viewer – An application that displays log
files. A user can view details of a log record, including the name of the user who
issued a logged command and the client computer on which a logged event
occurred.

� Managed Object Format (MOF) Compiler – A program that parses a file
containing MOF statements, converts the classes and instances defined in the
file to Java classes, and then adds the Java classes to the CIM Object Manager
Repository, a central storage area for management data.

MOF is a language for defining CIM classes and instances. MOF files are ASCII
text files that use the MOF language to describe CIM objects. A CIM object is a
representation, or model, of a managed resource, such as a printer, disk drive,
or CPU.

Many sites store information about managed resources in MOF files. Because
MOF can be converted to Java, applications that can run on any system with a
Java virtual machine can interpret and exchange this information. You can also
use the mofcomp command to compile MOF files at any time after installation.
For more information about MOF, see the DMTF web page at
http://www.dmtf.org.

� Management Layer – Components at this layer provide services to connected
WBEM clients.

� Common Information Model (CIM) Object Manager – Software that manages
CIM objects on a WBEM system. CIM objects are stored internally as Java
classes. The CIM Object Manager transfers information between WBEM clients,
the CIM Object Manager Repository, and managed resources.

� CIM Object Manager Repository – Central storage area for CIM class and
instance definitions.

� Client and CIM Application Programming Interfaces (APIs) – WBEM client
applications use these Java interfaces to request operations, such as creating or
viewing classes or instances of managed resources, from the CIM Object
Manager.

� Provider Interface – Providers use these interfaces to transfer information about
managed resources to the CIM Object Manager. The CIM Object Manager uses
the provider interfaces to transfer information to locally installed providers.

� Provider Layer – Providers act as intermediaries between the CIM Object Manager
and one or more managed resources. When the CIM Object Manager receives a
request from a WBEM client for data that is not available from the CIM Object
Manager Repository, it forwards the request to the appropriate provider.

� Solaris Provider – Provides the CIM Object Manager with instances of managed
resources in the Solaris operating environment. Providers get and set
information on managed devices. A native provider is a machine-specific

Overview 21

program written to run on a managed device. For example, a provider that
accesses data on a Solaris system will probably include C functions to query the
Solaris system. The Java Native Interface (JNI) is the native programming
interface for Java that is part of the JDK™. By writing programs using the JNI,
you ensure that your code is completely portable across all platforms. The JNI
enables Java code that runs within a Java virtual machine to operate with
applications and libraries written in other languages, such as C, C++, and
assembly.

� Solaris Schema – A collection of classes that describe managed objects in the
Solaris operating environment. The CIM and Solaris Schema classes are stored
in the CIM Object Manager Repository. The CIM Schema is a collection of class
definitions used to represent managed objects that occur in every management
environment.

The Solaris Schema is a collection of class definitions that extend the CIM
Schema and represent managed objects in a typical Solaris operating
environment. Users can also use the MOF compiler (mofcomp) to add CIM
Schema, Solaris Schema, or other classes to the CIM Object Manager Repository.

� Operating System Layer – The Solaris provider enables management applications
to access information about managed resources (devices and software) in the
Solaris operating environment.

� Hardware Layer – A management client can access management data on any
supported Solaris platform.

Namespaces
One or more schemas can be stored in directory-like structures called namespaces. A
CIM namespace is a directory-like structure that can contain other namespaces,
classes, instances, and qualifier types. The names of objects within a namespace must
be unique.

In Solaris WBEM Services, when a WBEM client application connects to a particular
namespace, all subsequent operations occur within that namespace. When connected
to a namespace, the client can access the classes and instances in that namespace (if
they exist) and in any namespaces contained in that namespace. For example, if you
create a namespace called child in the root\cimv2 namespace, you could connect
to root\cimv2 and access the classes and instances in the root\cimv2 and
root\cimv2\child namespaces.

An application can connect to a namespace within a namespace. This is similar to
changing to a subdirectory within a directory. Once the application connects to the
new namespace, all subsequent operations occur within that namespace. If you open a
new connection to root\cimv2\child, you can access any classes and instances in
that namespace but cannot access the classes and instances in the parent namespace,
root\cimv2.

22 Solaris WBEM Services Administration Guide • December 2001 (Beta)

The following namespaces are created by default during installation.

� root – The top-level namespace that contains other namespaces.

� root\cimv2 – Contains the default CIM classes and instances that represent
objects on your system, such as, LogicalDisk and Netcard. This is the default
namespace.

� root\security – Contains the security classes used by the CIM Object Manager
to represent access rights for users and namespaces.

� root\snmp – Contains the classes for the SNMP Adapter for WBEM.

� root\system – Contains CIM Object Manager information and provider paths.

Providers
When a WBEM client application accesses CIM data, the WBEM system validates the
user’s login information on the current host. By default, a user is granted read access
to the CIM and Solaris Schema. The CIM Schema describes managed objects on your
system in a standard format that all WBEM-enabled systems and applications can
interpret.

Providers are classes that communicate with managed objects to access data. Providers
forward this information to the CIM Object Manager for integration and
interpretation. When the CIM Object Manager receives a request from a management
application for data that is not available from the CIM Object Manager Repository, it
forwards the request to a provider.

The CIM Object Manager uses object provider APIs to communicate with providers.
When an application requests dynamic data from the CIM Object Manager, the CIM
Object Manager uses the provider interfaces to pass the request to the provider.

Providers perform the following functions in response to a request from the CIM
Object Manager:

� Map the native information format to CIM classes

� Get information from a device

� Pass the information to the CIM Object Manager in the form of CIM classes

� Map the information from CIM classes to native device format

� Get the required information from the CIM class
� Pass the information to the device in native device format

Overview 23

Interoperability with Other WBEM Systems
A WBEM client and WBEM system can run on the same system or on different
systems. Multiple WBEM clients can establish connections to the same WBEM system.
A typical WBEM system can serve four or five WBEM clients.

Solaris WBEM Services supports the Version 1.0 Specification for CIM Operations over
HTTP. This specification uses XML to model CIM objects and messages. XML is a
standard markup language for describing data on the Web. This standard extends
XML markup to define CIM objects and operations. Because XML provides a standard
way of describing data that can be sent across the Web, any WBEM client can access
CIM data on any WBEM system that can parse XML data.

Sun™ WBEM Software Development Kit
The Sun WBEM Software Development Kit (SDK) contains the components required
to write management applications that can communicate with any WBEM-enabled
management device. Developers can also use this tool kit to write providers, programs
that communicate with managed objects to access data. All management applications
developed using the Java WBEM SDK run on the Java platform.

A WBEM client application is a program that uses Java WBEM SDK APIs to
manipulate CIM objects. A client application typically uses the CIM API to construct
an object (for example, a namespace, class, or instance) and then initialize that object.
The application then uses the Client APIs to pass the object to the CIM Object Manager
and request a WBEM operation, such as creating a CIM namespace, class, or instance.

The Java WBEM SDK installs and runs in the Java environment. It may be used as a
standalone application or with Solaris WBEM Services. You can download the Sun
WBEM SDK from http://www.sun.com/solaris/wbem.

24 Solaris WBEM Services Administration Guide • December 2001 (Beta)

CHAPTER 2

CIM Object Manager

The Common Information Model (CIM) Object Manager is software that transfers CIM
data between WBEM client applications and managed resources.

This chapter covers the following topics:

� “About the CIM Object Manager” on page 25
� “The init.wbem Command” on page 26
� “Upgrading the CIM Object Manager Repository” on page 28
� “Exception Messages” on page 32

About the CIM Object Manager
The CIM Object Manager manages CIM objects on a WBEM-enabled system. A CIM
object is a representation, or model, of a managed resource, such as a printer, disk
drive, or CPU. CIM objects are stored internally as Java classes.

When a WBEM client application accesses information about a CIM object, the CIM
Object Manager contacts either the appropriate provider for that object or the CIM
Object Manager Repository. Providers are classes that communicate with managed
objects to access data. When a WBEM client application requests data from a managed
resource that is not available from the CIM Object Manager Repository, the CIM Object
Manager forwards the request to the provider for that managed resource. The
provider dynamically retrieves the information.

At startup, the CIM Object Manager performs the following functions:

� Listens for RMI connections on RMI port 5987 and for XML/HTTP connections on
HTTP port 5988

� Sets up a connection to the CIM Object Manager Repository

25

� Waits for incoming requests

During normal operations, the CIM Object Manager performs these functions:

� Performs security checks to authenticate user login and authorization to access
namespaces

� Performs syntactical and semantic checking of CIM data operations to ensure that
they comply with the latest CIM Specification

� Routes requests to the appropriate provider or to the CIM Object Manager
Repository

� Delivers data from providers and from the CIM Object Manager Repository to
WBEM client applications

A WBEM client application contacts the CIM Object Manager to establish a connection
when it needs to perform WBEM operations, such as creating a CIM class or updating
a CIM instance. When a WBEM client application connects to the CIM Object
Manager, the WBEM client gets a reference to the CIM Object Manager, which it then
uses to request services and operations.

The init.wbem Command
Solaris automatically runs init.wbem(1M) during installation and every time you
reboot a system. The init.wbem command starts the CIM Object Manager and
Solaris Management Console server, both of which run combined in a single process.
You can also use init.wbem to stop the CIM Object Manager, to stop the Solaris
Management Console server, or to retrieve status from a server.

Generally, you do not need to stop the CIM Object Manager. However, if you change
an existing provider, you must stop and restart the CIM Object Manager before using
the updated provider.

You can specify three options with init.wbem:

� start – Starts the CIM Object Manager and Solaris Management Console server
on the local host

� stop – Stops the CIM Object Manager and Solaris Management Console server on
the local host

� status – Gets status for the CIM Object Manager and Solaris Management
Console server on the local host

26 Solaris WBEM Services Administration Guide • December 2001 (Beta)

Solaris Management Console Server
The Solaris Management Console software provides Solaris management applications
such as User Manager, Disk Manager, and Log Viewer. The Solaris Management
Console server provides tools for the console to download and performs common
services for the console and its tools, such as authentication, authorization, logging,
messaging, and persistence.

System Booting
The init.wbem command is located in the /etc/init.d directory. The file
/etc/rc2.d/S90wbem runs with the start option when initialization state 2 is
entered (normally at boot time). The files /etc/rc0.d/K36wbem,
/etc/rc1.d/K36wbem, and /etc/rcS.d/K36wbem runs with the stop option
when initialization states 0, 1, and S are entered (normally when the system halts, or
when the system enters either system administrator mode or single-user mode).

Stopping and Restarting the CIM Object Manager
If you change a provider, you must stop and restart the CIM Object Manager before
using the updated provider.

� To Stop the CIM Object Manager
1. Become superuser.

2. Stop the CIM Object Manager:

/etc/init.d/init.wbem stop

� To Restart the CIM Object Manager
1. Become superuser.

2. Restart the CIM Object Manager:

/etc/init.d/init.wbem start

CIM Object Manager 27

Upgrading the CIM Object Manager
Repository
You must update any proprietary custom Managed Object Format (MOF) data to the
new Reliable Log repository format that is used with WBEM Services 2.5 in Solaris 9.

Before you upgrade to the Solaris 9 operating environment, you might need to save
the JavaSpaces™ datastore. After you upgrade, you must convert or merge data,
depending on the version of the Solaris operating environment that you were running
on your system before you upgraded to the Solaris 9 operating environment.

Failure to convert or merge the data results in data loss.

Use the following table to determine whether or not to save the JavaSpaces software
before you upgrade and whether to convert or merge the WBEM data after you
upgrade to the Solaris 9 operating environment.

TABLE 2–1 Convert or Merge WBEM Data

Operating Environment Before Upgrading to
Solaris 9

Save JavaSpaces
Datastore Before You
Upgrade?

Convert or merge?

Solaris 8 (Solaris WBEM Services 2.0)

Solaris 8 6/00 (WBEM Services 2.2)

Solaris 8 10/00 (WBEM Services 2.2)

Yes Convert

Solaris 8 1/01 (WBEM Services 2.3)

Solaris 8 4/01 (WBEM Services 2.4)

Solaris 8 7/01 (WBEM Services 2.4)

Solaris 8 10/01 (WBEM Services 2.4)

Solaris 9 (Beta) (WBEM Services 2.5)

No Merge

� To Save the JavaSpaces Datastore
1. Become superuser.

28 Solaris WBEM Services Administration Guide • December 2001 (Beta)

2. Do you want to download the files that you will need, or do you want to save your
current JavaSpaces datastore?

Note – The safer method is to save your JavaSpaces datastore rather than to download
files.

� If you want to download the files, go to the next step.

� If you want to save your JavaSpaces datastore:

cp /usr/sadm/lib/wbem/outrigger.jar /usr/sadm/lib/wbem/outrigger.jar.tmp
cp /usr/sadm/lib/wbem/outrigger-dl.jar /usr/sadm/lib/wbem/outrigger-dl.jar.tmp
cp /usr/sadm/lib/wbem/transient-outrigger.jar \
/usr/sadm/lib/wbem/transient-outrigger.jar.tmp
cp /usr/sadm/lib/wbem/jini-core.jar /usr/sadm/lib/wbem/jini-core.jar.tmp
cp /usr/sadm/lib/wbem/jini-ext.jar /usr/sadm/lib/wbem/jini-ext.jar.tmp
cp /usr/sadm/lib/wbem/tools.jar /usr/sadm/lib/wbem/tools.jar.tmp
cp /usr/sadm/lib/wbem/pro.zip /usr/sadm/lib/wbem/pro.zip.tmp

3. Determine and record the version of the JDK™ that is currently installed on your
system:

/usr/bin/java -version
java version "1.2.1"
Solaris VM (build Solaris_JDK_1.2.1_04c, native threads, sunwjit)

Note – You must be running the same version of the JDK as you used when you
created the original JavaSpaces datastore to convert WBEM data.

� To Convert WBEM Data
Follow these steps to convert WBEM data.

1. Upgrade your system to the Solaris 9 operating environment.

2. Become superuser.

3. Stop the CIM Object Manager:

/etc/init.d/init.wbem stop

CIM Object Manager 29

Caution – Failure to stop the CIM Object Manager before running wbemconfig
convert might corrupt your data.

4. Did you save your current JavaSpaces datastore in “To Save the JavaSpaces
Datastore” on page 28?

� If yes, restore your JavaSpaces datastore:

cp /usr/sadm/lib/wbem/outrigger.jar.tmp /usr/sadm/lib/wbem/outrigger.jar
cp /usr/sadm/lib/wbem/outrigger-dl.jar.tmp /usr/sadm/lib/wbem/outrigger-dl.jar
cp /usr/sadm/lib/wbem/transient-outrigger.jar.tmp \
/usr/sadm/lib/wbem/transient-outrigger.jar
cp /usr/sadm/lib/wbem/jini-core.jar.tmp /usr/sadm/lib/wbem/jini-core.jar
cp /usr/sadm/lib/wbem/jini-ext.jar.tmp /usr/sadm/lib/wbem/jini-ext.jar
cp /usr/sadm/lib/wbem/tools.jar.tmp /usr/sadm/lib/wbem/tools.jar
cp /usr/sadm/lib/wbem/pro.zip.tmp /usr/sadm/lib/wbem/pro.zip

� If no, download and unzip the file UpgradeRepository.zip from
http://www.sun.com/solaris/wbem/.

UpgradeRepository.zip contains the .jar files that you need to later convert
the WBEM data.

5. In a directory other than the one in which the JDK you are currently using is
installed, obtain and install the JDK that you recorded in “To Save the JavaSpaces
Datastore” on page 28.

6. Change the symbolic link from the currently installed JDK in /usr/java to the
JDK you recorded in “To Save the JavaSpaces Datastore” on page 28. For example,
to change the currently installed JDK to Solaris_JDK_1.2.1_04c in /old_sdk,
type:

rm /usr/java
ln -s /old_sdk/Solaris_JDK_1.2.1_04c /usr/java

7. Convert the data in the JavaSpaces datastore to Reliable Log format:

/usr/sadm/lib/wbem/wbemconfig convert

The wbemconfig convert command successfully converts any proprietary custom
MOF data, but not any CIM or Solaris MOF data that you have modified. CIM and
Solaris MOF data that you have modified is destroyed.

30 Solaris WBEM Services Administration Guide • December 2001 (Beta)

Note – To recompile any modified CIM or Solaris MOF data in the new repository, use
the mofcomp command to compile the MOF files that contain the class definitions.

8. Change the symbolic link from /usr/java to the location of the JDK software that
ships with the Solaris 9 operating environment. For example, to change the
symbolic link from /usr/java1.2, type:

rm /usr/java
ln -s /usr/java1.2 /usr/java

9. Stop the CIM Object Manager:

/etc/init.d/init.wbem stop

10. Start the CIM Object Manager:

/etc/init.d/init.wbem start

The CIM Object Manager adds repository files that contain the converted data to the
directory /var/sadm/wbem/logr/, which the Solaris installer created when you
upgraded your system to Solaris 9.

� To Merge WBEM Data
Follow these steps to merge WBEM data.

1. Upgrade your system to the Solaris 9 operating environment.

2. Become superuser.

3. Stop the CIM Object Manager:

/etc/init.d/init.wbem stop

Caution – Failure to stop the CIM Object Manager before you run wbemconfig
convert might corrupt your data.

4. Merge the original data in the previous Reliable Log with the data in the Solaris 9
Reliable Log:

/usr/sadm/lib/wbem/wbemconfig convert

CIM Object Manager 31

Note – The wbemconfig convert command successfully converts any proprietary
custom MOF data, but not any CIM or Solaris MOF data that you have modified. CIM
and Solaris MOF data that you have modified is destroyed. To recompile any modified
CIM or Solaris MOF data in the new repository, use the mofcomp command to
compile the MOF files that contain the class definitions.

Exception Messages
The CIM Object Manager generates exception messages to indicate incorrect MOF
syntax and semantics. The Solaris WBEM SDK Developer’s Guide contains information
about exception messages.

32 Solaris WBEM Services Administration Guide • December 2001 (Beta)

CHAPTER 3

SNMP Adapter for WBEM

Intended for use by system administrators, the SNMP Adapter for WBEM enables
Simple Network Management Protocol (SNMP) management applications to access
system management information that is provided by Solaris WBEM Services.

Used with the Solstice Enterprise Agent (SEA) Master Agent snmpdx(1M), the SNMP
Adapter for WBEM maps SNMP requests into equivalent WBEM Common
Information Model (CIM) properties or instances.

The SNMP Adapter for WBEM also remaps the response from the CIM Object
Manager into an SNMP response, which is returned to the management application.

A mapping file contains the corresponding Object Identifier (OID), class name,
property name, and Abstract Syntax Notation One (ASN.1) type for each object. You
can create your own mapping files.

This chapter covers the following topics:

� “How the SNMP Adapter for WBEM Works” on page 33
� “Configuring the Adapter and Mapping SNMP to CIM Objects” on page 35
� “Installing and Using the SNMP Adapter for WBEM” on page 42
� “Troubleshooting Problems With the SNMP Adapter for WBEM” on page 44

How the SNMP Adapter for WBEM
Works
The Solaris operating environment initializes WBEM Services before starting the
Solstice Enterprise Agents Master Agent. By default, the SNMP Adapter for WBEM,

33

snmpXwbemd(1M), is disabled. However, once you enable it, the Solstice Enterprise
Agents Master Agent (snmpdx), starts the SNMP Adapter for WBEM automatically.

An SNMP Manager passes an SNMP Get-request to the Solstice Enterprise Agents
Master Agent. The Solstice Enterprise Agents Master Agent then sends the Get-request
to the SNMP Adapter for WBEM, which uses the mapping files in
/var/sadm/wbem/snmp/map to translate the objects in the Get-request into
corresponding CIM objects. The SNMP Adapter for WBEM also translates the CIM
objects into SNMP objects in a Get-response.

Note – At present, only Get-request and scalar objects are supported in Solaris 9.
Get-next-request, Get-bulk-request, and Set-request as well as other objects are not
currently supported.

The SNMP Adapter for WBEM searches this directory alphabetically for the first file to
which the extension .map is appended. The adapter then reads all mapping files in the
directory and caches their contents. The adapter uses the contents of these files to
translate the objects that are specified in the Get-request into corresponding CIM
objects. The SNMP Adapter for WBEM subsequently ignores duplicate OIDs in the
mapping files in the directory. For example, if this OID appears in
002SUNWlvma.map:

1.3.6.1.2.1.1.1.0 My_ComputerSystem Description SnmpString

and the same OID appears in 050SUNWwbcou.map, which the SNMP Adapter for
WBEM reads after 002SUNWlvma.map:

1.3.6.1.2.1.1.1.0 Solaris_ComputerSystem Description SnmpString

then, the adapter ignores the OID that is specified in 050SUNWwbcou.map.

The SNMP Adapter for WBEM subsequently generates a Get-response for each
Get-request that an SNMP Manager submits. If the SNMP Adapter for WBEM cannot
find a corresponding entry in any mapping file, the SNMP Adapter for WBEM returns
a Get-response error.

How the Master Agent Routes a Request: SNMP
Adapter for WBEM Compared to the Sun SNMP
Agent
Until the release of the SNMP Adapter for WBEM, when an SNMP Manager sent a
Get-request for an SNMP MIB-2 variable to the Solstice Enterprise Agents Master
Agent, the Master Agent routed the request to the Sun SNMP MIB-2 Agent
(mibiisa(1M)). Because the SNMP Adapter for WBEM also handles SNMP MIB-2

34 Solaris WBEM Services Administration Guide • December 2001 (Beta)

requests, however, what happens if the Sun SNMP Agent and the SNMP Adapter for
WBEM are both running at the same time? How does the Master Agent route a
request?

The Master Agent builds a node table based on the subtrees that are defined in each
subagent registration file. The mibiisa subagent registers the entire MIB-2 subtree
and the Sun Microsystems MIB subtree. The SNMP Adapter for WBEM registers the
MIB-2.system subtree and the hostRsrc subtree. The Master Agent does not allow
two agents to register the same subtree.

The Master Agent is described in the Solstice Enterprise Agents 1.0 User Guide.

At initialization, the Master Agent creates a node table that contains each subtree that
is registered. The Master Agent forwards each Get-request to the agent whose subtree
best matches the OID that is included in the request. A request for
mib-2.system.5.0, for example, is forwarded to the SNMP Adapter for WBEM. A
request for mib-2.interfaces.1.0, on the other hand, is forwarded to the
mibiisa subagent. If the OID is not defined within any subtree that is registered by
the Master Agent, the Master Agent returns an error in the Get-response.

The SNMP Adapter for WBEM supports SNMPv1 requests only.

Configuring the Adapter and Mapping
SNMP to CIM Objects

Configuration Files
The files you use to configure the SNMP Adapter for WBEM, which are located in
/etc/snmp/conf/, are described in the following sections.

In snmpXwbem.acl, you define the Access Control Language (ACL) policies that are
associated with the SNMP Adapter for WBEM, in this format:

#pragma ident "@(#)snmpXwbem.acl 1.2 01/04/18 SMI"
#Copyright (c) 2001 by Sun Microsystems, Inc.
#All rights reserved.

Configuration file of the SNMP subagent for WBEM

##################
access control
##################

SNMP Adapter for WBEM 35

The list of community names needed for read/write access
to the entire MIB.

If the list is empty, the only valid community name is "public"
and its access type is read-only
#
A * in the managers list indicates requests can be received from
any host.

acl = {
{

communities = public, private
access = read-only
managers = *

}
}

###################
trap parameters
###################
trap = {

}

A comma-separated list of communities and a comma-separated list of managers are
allowed. The access policies are read-only. An empty trap clause is required. Traps
are not supported by the SNMP Adapter for WBEM in Solaris 9.

In snmpXwbem.reg, you define the Object Identifier (OID) of the subtree for which
the SNMP Adapter for WBEM is responsible, in this format:

#pragma ident "@(#)snmpXwbem.reg 1.3 01/10/04 SMI"
#
#Copyright (c) 2001 by Sun Microsystems, Inc.
#All rights reserved.

Configuration file of the SNMP subagent for WBEM

##########
macros
##########

The following 3 macros are predefined:
#
mib-2 = 1.3.6.1.2.1
enterprise = 1.3.6.1.4.1
sun = 1.3.6.1.4.1.42
#
Your can define your own macros, so that you can
manipulate strings instead of OIDs in defining the agent.
See the "agent" section below.

macros = {
system = mib-2.1

36 Solaris WBEM Services Administration Guide • December 2001 (Beta)

hostRsrc = mib-2.25
}

##########
agent
##########

You must fill in at least the following fields:
#
- name: the name of your agent (for example, the executable
file name of your agent)
#
- subtrees: the list of OIDs / subtrees of OIDs your agent
supports. The listed items must be separated by
a comma.
#
You can also change or add the following fields:
#
- timeout: the number of micro-seconds the SNMP Relay will
wait for a response from your agent
#
- watch-dog-time: the number of seconds the SNMP Relay will wait to
test whether the subagent is active, if there has
been no activity for the watch-dog-time interval
#
- port: the UDP port number on which you will start
your agent

agents =
{

{
name = "WBEMsubagent"
subtrees = { system, hostRsrc }
timeout = 20000000
watch-dog-time = 240

}

}

The unit of measure for timeout is microseconds. The unit of measure for
watch-dog-time is seconds. By default, the Master Agent tries to start the SNMP
Adapter for WBEM every four minutes (or number of seconds to which
watch-dog-time is set).

Note – The Master Agent automatically determines the port to be used by the SNMP
Adapter for WBEM.

In snmpXwbem.rsrc-, you define a pointer to the registration file and you define
how the SNMP Master Agent is to start the SNMP Adapter for WBEM, in this format:

SNMP Adapter for WBEM 37

#pragma ident "@(#)snmpXwbem.rsrc- 1.2 01/04/18 SMI"
#Copyright (c) 2001 by Sun Microsystems, Inc.
#All rights reserved.

Configuration file of the SNMP subagent for WBEM

##########
agents
##########
resource =
{

{
registration_file = "/etc/snmp/conf/snmpXwbem.reg"
security = "/etc/snmp/conf/snmpXwbem.acl"
policy = "spawn"
type = "legacy"
command = "/usr/sadm/lib/wbem/snmpXwbemd -p $PORT"

}

}

Note – The Master Agent automatically determines the port to be used by the SNMP
Adapter for WBEM.

Mapping Files
When the Master Agent passes a Get-request to the SNMP Adapter for WBEM, the
adapter uses the mapping files in /var/sadm/wbem/snmp/map to translate the
Get-request into a CIM object request. The Solaris operating environment includes a
mapping file for you in this directory, but you can also define your own mapping file
for the CIM instrumentation you want to view through an SNMP Manager.

This section describes what you need to know to create an SNMP Adapter for WBEM
mapping file.

Contents of the Mapping File That Is Included in Solaris
This example shows the contents of the mapping file that the Solaris operating
environment includes for you:

#
#pragma ident "@(#)050SUNWwbcou.map 1.0 01/04/03 SMI"
#
Copyright (c) 2001 by Sun Microsystems, Inc.
All rights reserved.
#
*** Description of contents ***

38 Solaris WBEM Services Administration Guide • December 2001 (Beta)

#
First non-commented non-blank line contains required Version label.
Remaining non-commented non-blank lines are considered map entries
used as described below:
#
Column 1 - SNMP OID - Uniquely describes an SNMP variable
Column 2 - CIM Class Name - CIM class associated with this variable
Column 3 - CIM Property Name - CIM property that maps to SNMP OID variable
Column 4 - ASN.1 type - SNMP datatype that dictates how data is mapped
to/from SNMP requests. Supported types are: SnmpString, SnmpOid,
SnmpTimeticks, SnmpCounter, SnmpInt, SnmpGauge, SnmpIpAddress,
SnmpOpaque)
Column 5 and greater are ignored
#
Version 1.0

1.3.6.1.2.1.1.1.0 Solaris_ComputerSystem Description SnmpString
1.3.6.1.2.1.1.3.0 Solaris_OperatingSystem LastBootUpTime SnmpTimeticks
1.3.6.1.2.1.1.4.0 Solaris_ComputerSystem PrimaryOwnerContact SnmpString
1.3.6.1.2.1.1.5.0 Solaris_ComputerSystem Name SnmpString

1.3.6.1.2.1.25.1.5.0 Solaris_OperatingSystem NumberOfUsers SnmpGauge
1.3.6.1.2.1.25.1.6.0 Solaris_OperatingSystem NumberOfProcesses SnmpGauge
1.3.6.1.2.1.25.1.7.0 Solaris_OperatingSystem MaxNumberOfProcesses SnmpGauge
1.3.6.1.2.1.25.1.2.0 Solaris_OperatingSystem LocalDateTime SnmpString

The contents of this mapping file associate the SNMP MIB-2 System Group scalar
objects with their corresponding CIM objects:

MIB-2 System Group Scalar
Object

CIM Object

sysDescr Solaris_ComputerSystem.Description

sysUpTime Solaris_OperatingSystem.LastBootUpTime

sysContact Solaris_ComputerSystem.PrimaryOwnerContact

sysName Solaris_ComputerSystem.Name

The contents of this mapping file also associate the SNMP Host Resources MIB objects
with their corresponding CIM objects:

SNMP Host Resources MIB
Object

CIM Object

hrSystemNumUsers Solaris_OperatingSystem.NumberOfUsers

hrSystemProcesses Solaris_OperatingSystem.NumberOfProcesses

hrSystemMaxProcesses Solaris_OperatingSystem.MaxNumberOfProcesses

SNMP Adapter for WBEM 39

SNMP Host Resources MIB
Object

CIM Object

hrSystemDate Solaris_OperatingSystem.LocalDateTime

The syntax of the contents of a mapping file is described in “Syntax of the Contents of
a Mapping File” on page 40.

Note – At present, the only way to retrieve host resource data is through the CIM
Object Manager, as Solaris does not currently provide an SNMP Host Resource agent.

Syntax of a Mapping File Name
To ensure that the SNMP Adapter for WBEM reads your mapping file, name the file
according to this syntax:

alphanumeric-string.map

alphanumeric-string represents an alphanumeric string. For example, here is the name
of the mapping file that Solaris includes: 050SUNWwbcou.map.

You include the three digits to ensure that the SNMP Adapter for WBEM reads the
files in a more precise order (002SUNWlvma.map is read before 050SUNWwbcou.map,
for example).

Note – You must allow root to at least read the mapping files that you create.

% chmod 400 002SUNWlvma.map

Syntax of the Contents of a Mapping File
The following table describes the elements and the syntax of the contents of a
mapping file.

TABLE 3–1 Contents of a Mapping File

Element Description Required?

#
A comment, which is always ignored. No

40 Solaris WBEM Services Administration Guide • December 2001 (Beta)

TABLE 3–1 Contents of a Mapping File (Continued)
Element Description Required?

Version 1.0
The version of the mapping file. The text string
that specifies the version must be the first
uncommented line. If you do not specify a
version as shown, the mapping file is ignored.

Yes

1.3.6.1.2.1.1.1.0
The SNMP Object Identifier, or OID, which is
the key you want to extract from the SNMP
request. The SNMP OID describes an SNMP
variable. Because the SNMP Adapter for
WBEM currently supports scalars only, the
OID must end with the text string .0.

Yes

Solaris_ComputerSystem
The CIM class name that is associated with the
variable.

Yes

Description
The CIM property name that defines a
characteristic of the specified class and that
maps to the SNMP OID variable.

Yes

SNMP Adapter for WBEM 41

TABLE 3–1 Contents of a Mapping File (Continued)
Element Description Required?

SnmpString
The ASN.1 data type. Values you can specify
(including how they are mapped), are:
� SnmpString – move string, number, or

CIM LocalDateTime into SnmpString
� SnmpInt – move CIM number data types

(including a string in number format) into
SnmpInt (signed, 32-bit integer)

� SnmpCounter – move CIM number data
types (including string in number format)
into SnmpCounter (unsigned, 32-bit
integer)

� SnmpGauge – move CIM number data
types (including string in number format)
into SnmpGauge (unsigned, 32-bit integer)

� SnmpTimeticks – move the time
difference, represented in hundredths of a
second, into SnmpTimeticks (this value
is calculated by subtracting the CIM value
from the current time: sysUpTime, for
example, is calculated by subtracting
bootTime from currentTime)

� SnmpIpAddress – move string into
SnmpIpAddress (you must specify the
string in IP address format)

� SnmpOid – move string into SnmpOid
(you must specify the string in OID
format)

� SnmpOpaque – move vector of bytes into
SnmpOpaque

Yes

Installing and Using the SNMP Adapter
for WBEM
This section describes how to install, start, stop, and use the SNMP Adapter for
WBEM.

42 Solaris WBEM Services Administration Guide • December 2001 (Beta)

� To Install the SNMP Adapter for WBEM
� Install the Solaris operating environment on your system.

The SNMP Adapter for WBEM software is installed on your system along with the
Solaris software.

� To Start the SNMP Adapter for WBEM
When you’re ready to retrieve data from the CIM Object Manager through your
SNMP application, follow these steps to start the SNMP Adapter for WBEM.

1. Become superuser.

2. Stop the Master Agent.

/etc/init.d/init.snmpdx stop

3. Change directory to /etc/snmp/conf.

4. Move snmpXwbem.rsrc- into the SNMP Adapter for WBEM resource file.

mv snmpXwbem.rsrc- snmpXwbem.rsrc

5. Restart the Master Agent.

/etc/init.d/init.snmpdx start

� To Disable the SNMP Adapter for WBEM
You can disable the SNMP Adapter for WBEM to modify a file in /etc/snmp/conf
or when you are finished retrieving data from the CIM Object Manager. Follow these
steps to stop the SNMP Adapter for WBEM.

1. Become superuser.

2. Stop the Master Agent.

/etc/init.d/init.snmpdx stop

3. Stop the SNMP Adapter for WBEM.

/usr/bin/pkill -9 -x -u 0 snmpXwbemd

4. Change directory to /etc/snmp/conf.

5. Temporarily rename snmpXwbem.rsrc.

mv snmpXwbem.rsrc snmpXwbem.rsrc-

SNMP Adapter for WBEM 43

6. Restart the Master Agent.

/etc/init.d/init.snmpdx start

� To Force the SNMP Adapter for WBEM to Reread
the Mapping File Directory
After you place a new mapping file or update an existing mapping file in
/var/sadm/wbem/snmp/map, you must signal the SNMP Adapter for WBEM to
reread all mapping files in the directory. You specify the signal SIGHUP to signal the
adapter.

Follow these steps to force the SNMP Adapter for WBEM to reread all mapping files
(without having to restart the CIM Object Manager).

1. Become superuser.

2. Does a new mapping file or a new entry in a mapping file reference a subtree that is
not registered by the SNMP Adapter for WBEM?

� If yes, go to the next step.
� If no, go to step 5.

3. Update /etc/snmp/conf/snmpXwbem.reg so that it includes the new subtree.

4. Stop and restart the Master Agent.

/etc/init.d/init.snmpdx stop

/etc/init.d/init.snmpdx start

5. Signal the SNMP Adapter for WBEM that you have updated a mapping file.

/usr/bin/pkill -1 -x -u 0 snmpXwbemd

Troubleshooting Problems With the
SNMP Adapter for WBEM
The following sections provide a list of specific console error messages that you might
encounter when using the SNMP Adapter for WBEM.

If you encounter errors, problems, or unexpected results that are not described in this
section or, if you want to troubleshoot problems more precisely, use the Solaris
Management Console Log Viewer to view log data.

44 Solaris WBEM Services Administration Guide • December 2001 (Beta)

Instructions that describe how to start the Solaris Management Console Log Viewer
are presented in “Viewing Log Data Through Log Viewer” on page 78.

Sending and Receiving Requests

Error Message
ERROR: sending request to Adapter Service.

ERROR: receiving request from Adapter Service.

Cause
Either snmpXwbemd believes WBEM is enabled but cannot communicate with the
Adapter Service, or the request timed out.

� Solution
Send another request. If sending another request fails, verify that the request and
response FIFOs do not contain pending messages (that is, contain 0 bytes):

1. Type:

cd /var/sadm/wbem/snmp

2. Type:

ls -l

The request and response FIFOs are listed.

3. Does either FIFO contain pending messages (contain more than 0 bytes)?

If yes:

a. Stop the Master Agent.

/etc/init.d/init.snmpdx stop

b. To ensure that you need to stop WBEM, use the Solaris Management Console Log
Viewer to view log data and determine the problem.

Instructions that describe how to start the Solaris Management Console Log Viewer
are presented in “Viewing Log Data Through Log Viewer” on page 78.

SNMP Adapter for WBEM 45

c. If necessary, stop WBEM.

/etc/init.d/init.wbem stop

d. Change to the directory in which the FIFOs are located.

cd /var/sadm/wbem/snmp

e. Remove both FIFOs.

rm _adapter_rcv.fifo

rm _adapter_snd.fifo

f. Restart the Master Agent.

/etc/init.d/init.snmpdx start

g. If you stopped WBEM in step c, restart it.

/etc/init.d/init.wbem start

If no:

h. To ensure that you need to stop WBEM, use the Solaris Management Console Log
Viewer to view log data and determine the problem.

Instructions that describe how to start the Solaris Management Console Log Viewer
are presented in “Viewing Log Data Through Log Viewer” on page 78.

i. If necessary, stop WBEM.

/etc/init.d/init.wbem stop

j. If you stopped WBEM in step i, restart it.

/etc/init.d/init.wbem start

FIFO Cannot Be Opened

Error Message
ERROR: request FIFO cannot be opened.

ERROR: response FIFO cannot be opened.

Cause
A protocol problem occurred when the SNMP Adapter for WBEM received a request
or when the SNMP Adapter for WBEM processed a response.

46 Solaris WBEM Services Administration Guide • December 2001 (Beta)

� Solution
Send another request. If sending another request fails, verify that the request and
response FIFOs do not contain pending messages (that is, contain 0 bytes):

1. Type:

cd /var/sadm/wbem/snmp

2. Type:

ls -l

The request and response FIFOs are listed.

3. Does either FIFO contain pending messages (contain more than 0 bytes)?

If yes:

k. Stop the Master Agent.

/etc/init.d/init.snmpdx stop

l. To ensure that you need to stop WBEM, use the Solaris Management Console Log
Viewer to view log data and determine the problem.

Instructions that describe how to start the Solaris Management Console Log Viewer
are presented in “Viewing Log Data Through Log Viewer” on page 78.

m. If necessary, stop WBEM.

/etc/init.d/init.wbem stop

n. Change to the directory in which the FIFOs are located.

cd /var/sadm/wbem/snmp

o. Remove both FIFOs.

rm _adapter_rcv.fifo

rm _adapter_snd.fifo

p. Restart the Master Agent.

/etc/init.d/init.snmpdx start

q. If you stopped WBEM in step m, restart it.

/etc/init.d/init.wbem start

If no:

r. To ensure that you need to stop WBEM, use the Solaris Management Console Log
Viewer to view log data and determine the problem.

Instructions that describe how to start the Solaris Management Console Log Viewer
are presented in “Viewing Log Data Through Log Viewer” on page 78.

SNMP Adapter for WBEM 47

s. If necessary, stop WBEM.

/etc/init.d/init.wbem stop

t. If you stopped WBEM in step s, restart it.

/etc/init.d/init.wbem start

FIFO Cannot Be Created

Error Message
ERROR: FIFO cannot be created.

Cause
A system error occurred when the SNMP Adapter for WBEM attempted to create the
request or the response FIFO.

Solution
Verify that /var/sadm/wbem/snmp exists and has write access.

WBEM Services Are Not Started

Error Message
ERROR: WBEM Services are not started.

Cause
The Master Agent cannot detect if WBEM Services have started and are running.

48 Solaris WBEM Services Administration Guide • December 2001 (Beta)

Solution
Restart WBEM and wait the number of seconds to which watch-dog-time in
snmpXwbem.reg is set.

/etc/init.d/init.wbem start

After a period of time, the Master Agent starts the SNMP Adapter for WBEM
automatically. By default, the Master Agent tries to start the SNMP Adapter for WBEM
every four minutes (or number of seconds to which watch-dog-time is set).

Note – If you don’t want to wait for the Master Agent to start the SNMP Adapter for
WBEM automatically, stop and then restart the Master Agent.

/etc/init.d/init.snmpdx stop

/etc/init.d/init.snmpdx start

The Master Agent immediately starts the SNMP Adapter for WBEM.

SNMP Adapter for WBEM 49

50 Solaris WBEM Services Administration Guide • December 2001 (Beta)

CHAPTER 4

Administering Security

This chapter describes WBEM security mechanisms and the features that the CIM
Object Manager enforces. This chapter covers these topics:

� “WBEM Security Mechanisms” on page 51
� “Using Sun WBEM User Manager to Set Access Control” on page 55
� “Using the Sun WBEM SDK APIs to Set Access Control” on page 59
� “Troubleshooting” on page 62

WBEM Security Mechanisms
WBEM employs several mechanisms to ensure secure access to its data, including:

� Authentication, which is the process of specifying a client’s user identity to the
WBEM server, and then demonstrating that that client really is that particular user
by specifying the user’s credentials.

� Role Assumption, which is the process of assuming that a Solaris Role-Based
Access Control (RBAC) role identity is to be used by the WBEM server when it
checks authorization.

� Secure Messaging, which is the process of adding a secure message authenticator
to each client request message. This authenticator enables the WBEM server to
check the origin of the message and to determine if that message was modified
during its delivery to the WBEM server.

� Authorization, which is the process of verifying that an authenticated user or a role
identity has been granted access to the WBEM data that is managed by each
WBEM method call. You use the Solaris Management Console User tool and Sun
WBEM User Manager for authorization management.

51

� Auditing, which is the process of writing an audit record of a specific operation
that was performed by the WBEM server. These records track the changes that an
authenticated user makes to the management data on the WBEM server system.

� Logging, which is the writing of particular security related events in the WBEM
log. You can view the WBEM log with the Solaris Management Console Log
Viewer.

Each mechanism is described in more detail in the sections that follow.

Authentication
When a client application obtains a CIMClient handle to a CIM Object Manager
server, the client’s user identity must be authenticated by the CIM Object Manager on
the WBEM server. The user’s WBEM client must provide a Solaris user identity and its
accompanied login password. The identity and credential is used in a security
authentication exchange between the client and WBEM server to verify that the client
is a valid Solaris user who is allowed to log in to the WBEM server system.

If the WBEM server cannot verify the user identity and credential, and the user’s
identity is invalid, the WBEM server returns a CIM security exception with the
NO_SUCH_PRINCIPAL error. If the WBEM server cannot verify the user’s identity
and credential, and the user’s password is invalid for that user’s identity, the WBEM
server returns a CIM security exception with the INVALID_CREDENTIAL error.

Role Assumption
The Solaris implementation of WBEM supports the ability for a client to assume the
identity of a Solaris role when that client is authenticated by the CIM Object Manager
on the WBEM server. When the WBEM server uses RBAC authorizations to check
authorization permission, the WBEM server checks the permission that is granted to
the assumed role rather than the permission that is granted to the underlying user
identity. (RBAC roles are described in more detail in “Role-Based Access Control
(Overview)” in System Administration Guide: Security Services.)

The client must provide the Solaris role identity and password in addition to a Solaris
user identity and password when the client attempts to obtain a handle to the CIM
client. If the WBEM server cannot verify the Solaris role identity, the WBEM server
returns a CIM security exception with the NO_SUCH_ROLE error. If the role
password is invalid for the specified role identity, the WBEM server returns the
INVALID_CREDENTIAL error in the CIM security exception.

If both the role identity and role password are valid, but the user is not allowed to
assume the role, the WBEM server returns the CANNOT_ASSUME_ROLE error in the
CIM security exception.

52 Solaris WBEM Services Administration Guide • December 2001 (Beta)

A role identity can be assumed only when the user selects the CIM_RMI protocol. Role
assumption is not supported by the CIM_XML protocol.

Secure Messaging
In the CIM_RMI protocol, each request from the client to the WBEM server contains a
message authenticator that is:

1. Constructed from the data parameters in the message.

2. Encrypted with a session key established during the authentication exchange.

The WBEM server verifies this message authenticator, which guarantees that the
request came from the same client that was authenticated and that the message was
not modified or replayed during its communications to the server.

If the message was modified, replayed, or created by a source which was not the
original client, the WBEM server returns a CIM security exception with the
CHECKSUM_ERROR error. The WBEM server also writes a log message to the WBEM
log.

Authorization
The WBEM server uses the authenticated user or role identity for all authorization
checks on subsequent operations to the CIM client after the WBEM server obtains the
handle to the CIM client.

WBEM supports two types of authorization checking, based on:

� Access Control Lists (ACLs) that are maintained by the WBEM server for specific
namespaces.

� RBAC authorizations that are configured as part of the Solaris operating
environment.

The particular authorization checking mechanism that WBEM uses depends on how
the MOF class provider is implemented. The particular authorization checking
mechanism that WBEM uses for a specific MOF class operation depends on:

� The particular operation that WBEM executes.
� How the MOF class provider is implemented.

The classes defined in Solaris_Acl1.0.mof implement WBEM ACL-based security.
WBEM ACL-based security provides a default authorization scheme for Solaris
WBEM Services, and, under specific circumstances, applies to a particular set of CIM
operations. ACL-based security is uniquely provided by Solaris WBEM Services.

Administering Security 53

You use Sun WBEM User Manager (wbemadmin(1M)) to establish an ACL for a
specific namespace on the WBEM server. Sun WBEM User Manager enables you to
add user names, or role names, to the ACL for the namespace, and also enables you to
assign each user “read” or “write“ permission. Sun WBEM User Manager is described
in “Using Sun WBEM User Manager to Set Access Control” on page 55.

Write permission allows a user to modify the class metadata and instances of MOF
classes in that namespace. The local WBEM server root user identity is always granted
write permission to all namespaces on the server. All authenticated users without an
explicit ACL entry are granted read permission by default.

Operations that include the accessing of MOF class metadata, such as getClass, use the
WBEM ACLs. These operations include the checking of permissions that are granted
to the authenticated user by the ACL for the namespace that contains the MOF class.
You can set an RBAC role in an ACL entry, but the ACL entry is always checked
against the user identity rather than the role identity.

Operations that involve MOF class instances might include the checking of either
WBEM ACLs or RBAC authorizations.

You can also grant permissions to a user, or role identity, that allow that user to access
and modify the instances of MOF classes whose providers use the RBAC
authorizations. You grant these permissions by using the Rights tool in the Solaris
Management Console User tool. Granting permissions to a user is described in
“Creating or Changing a Rights Profile” in System Administration Guide: Security
Services.

If the instances for a MOF class are stored in the WBEM persistent data store, the CIM
Object Manager checks WBEM ACL for the namespace that contains the MOF class. If
the MOF class provider implementation accesses its own data store, or accesses system
data in the Solaris operating environment, the MOF class provider implementation
almost always uses RBAC authorization checking.

In general, if a MOF class definition contains a Provider qualifier, the provider
implementation usually makes RBAC authorization checks. If the MOF class definition
does not contain a Provider qualifier, the CIM Object Manager checks the ACL that
controls access to the namespace for the class to ensure that access is granted.

the instances of that class are stored in the WBEM persistent data store and the ACL
controlling access to the namespace for the class is checked for granted access.

Auditing
The WBEM server writes audit records for certain events during processing. For
example, the WBEM server writes audit records whenever the authentication of a
client succeeds or fails, and whenever an operation that modifies user information is
executed. The WBEM server uses the underlying Solaris Basic Security Module (BSM)

54 Solaris WBEM Services Administration Guide • December 2001 (Beta)

to write its audit records. You must enable the BSM auditing mechanism
(bsmconv(1M)) in the Solaris operating environment on the WBEM server to ensure
that audit information is recorded.

Note – If you are using Trusted Solaris™, you do not need to enable the BSM auditing
mechanism.

Logging
The WBEM server writes log records to the WBEM log for particular security events:
when an authenticated session for a client is established or when authorization
checking fails, for example. You can review the WBEM log in the Solaris Management
Console Log Viewer, which is described in Chapter 6.

You can identify security-related log events by the category Security log, which is
listed in the Category column. You can view only security log messages by selecting
the category Security on the Log Viewer filter dialog box. Most security log messages
include the user identity of the client and the name of the client host.

Using Sun WBEM User Manager to Set
Access Control
Sun WBEM User Manager enables you and other privileged users to:

� Add and delete authorized users.

� Set access privileges for authorized users.

� Manage user authentication and access to CIM objects on a WBEM-enabled system.

Administering Security 55

Note – The user for whom you specify access control must have a Solaris user
account.

What You Can and Cannot Do With Sun WBEM
User Manager
You can set access privileges for individual namespaces or for a combination of a user
and a namespace. When you add a user and select a namespace, the user is granted
read access to CIM objects in the selected namespace by default.

Note – An effective way to combine user and namespace access rights is to first restrict
access to a namespace, and then grant individual users read, read and write, or write
access to that namespace.

You cannot set access rights on individual managed objects. However you can set
access rights for all managed objects in a namespace as well as on a per-user basis.

If you log in as root, you can set the following types of access to CIM objects:

� Read Only – Allows read-only access to CIM Schema objects. Users with this
privilege can retrieve instances and classes, but cannot create, delete, or modify
CIM objects.

� Read/Write – Allows full read, write, and delete access to all CIM classes and
instances.

� Write – Allows write and delete, but not read access to all CIM classes and
instances.

� None – Allows no access to CIM classes and instances.

Using Sun WBEM User Manager
This section describes how to start and use Sun WBEM User Manager.

� How to Start Sun WBEM User Manager
1. In a command window, type:

/usr/sadm/bin/wbemadmin

Sun WBEM User Manager starts, and a Login dialog box opens.

56 Solaris WBEM Services Administration Guide • December 2001 (Beta)

Note – Context-help information is available in the Context Help panel when you
click on the fields in the Login dialog box.

2. Fill in the fields on the Login dialog box:

� In the User Name field, type the user name.

Note – You must have read access to the root\security namespace to log in. By
default, Solaris users have guest privileges, which grant them read access to the
default namespaces. Users with read access can view , but cannot change, user
privileges.

You must log in as root or a user with write access to the root\security
namespace to grant access rights to users.

� In the Password field, type the password for the user account.

3. Click OK.

The User Manager dialog box opens. The dialog box contains a list of users and their
access rights to WBEM objects within the namespaces on the current host.

� How to Grant Default Access Rights to a User
1. Start Sun WBEM User Manager.

2. In the Users Access portion of the dialog box, click Add.

A dialog box opens that lists the available namespaces.

3. Type the name of a Solaris user account in the User Name field.

4. Select a namespace from the listed namespaces.

5. Click OK.

The user name is added to the User Manager dialog box.

6. To save changes and close the User Manager dialog box, click OK. To save changes
and keep the dialog box open, click Apply.

The user that you specified is granted read access to CIM objects in the namespace
that you selected.

Administering Security 57

� How to Change Access Rights for a User
1. Start Sun WBEM User Manager.

2. Select the user whose access rights you want to change.

3. To grant the user read-only access, click the Read check box. To grant the user write
access, click the Write check box.

4. To save changes and close the User Manager dialog box, click OK. To save changes
and keep the dialog box open, click Apply.

� How to Remove Access Rights for a User
1. Start Sun WBEM User Manager.

2. In the Users Access portion of the dialog box, select the user name for which you
want to remove access rights.

3. Click Delete to delete the user’s access rights to the namespace.

A confirmation dialog box that prompts you to confirm your decision to delete the
user’s access rights opens.

4. To confirm, click OK.

5. To save changes and close the User Manager dialog box, click OK. To save changes
and keep the dialog box open, click Apply.

� How to Set Access Rights for a Namespace
1. Start Sun WBEM User Manager.

2. In the Namespace Access portion of the dialog box, click Add.

A dialog box opens. The dialog box lists the available namespaces.

3. Select the namespace for which you want to set access rights:

Note – By default, users have read-only access to a namespace.

� To allow no access to the namespace, make sure the Read and Write check boxes
are not selected.

� To allow write access, click the Write check box.

� To allow read access, click the Read check box.

58 Solaris WBEM Services Administration Guide • December 2001 (Beta)

4. To save changes and close the User Manager dialog box, click OK. To save changes
and keep the dialog box open, click Apply.

� How to Remove Access Rights for a Namespace
1. Start Sun WBEM User Manager.

2. In the Namespace Access portion of the dialog box, select the namespace for which
you want to remove access control, and then click Delete.

Access control is removed from the namespace, and the namespace is removed from
the list of namespaces on the Sun WBEM User Manager dialog box.

3. To save changes and close the User Manager dialog box, click OK. To save changes
and keep the dialog box open, click Apply.

Using the Sun WBEM SDK APIs to Set
Access Control
You can use Sun WBEM Software Development Kit Application Programming
Interfaces (SDK APIs) to set access control on a namespace or on a per-user basis.
These security classes are stored in the root\security namespace:

� Solaris_Acl – Base class for Solaris Access Control Lists (ACL). This class
defines the string property capability and sets its default value to r (read only).

� Solaris_UserAcl – Represents the access control that a user has to the CIM
objects within the specified namespace.

� Solaris_NamespaceAcl – Represents the access control on a namespace.

You can set access control for individual users to the CIM objects within a namespace
by creating an instance of the Solaris_UserACL class and then using the APIs to
change the access rights for that instance. Similarly, you can set access control for
namespaces by creating an instance of the Solaris_NameSpaceACL class and then
using APIs, such as the setInstance method, to set the access rights for that
instance.

An effective way to combine the use of these two classes is to use the
Solaris_NameSpaceACL class first to restrict access to all users to the objects in a
namespace. Then, you can use the Solaris_UserACL class to grant selected users
access to the namespace.

Administering Security 59

The Solaris_UserAcl Class
The Solaris_UserAcl class extends the Solaris_Acl base class, from which it
inherits the string property capability with a default value r (read only).

You can set the capability property to any one of these values for access privileges.

Access Right Description

r Read

rw Read and Write

w Write

none No access

The Solaris_UserAcl class defines the following two key properties. Only one
instance of the namespace and user name ACL pair can exist in a namespace.

Property Data Type Purpose

nspace string Identifies the namespace to
which this ACL applies.

username string Identifies the user to which
this ACL applies.

� To Set Access Control for a User
1. Create an instance of the Solaris_UserAcl class. For example:

...
/* Create a namespace object initialized with root\security
(name of namespace) on the local host. */

CIMNameSpace cns = new CIMNameSpace("", "root\security");

// Connect to the root\security namespace as root.
cc = new CIMClient(cns, user, user_passwd);

// Get the Solaris_UserAcl class
cimclass = cc.getClass(new CIMObjectPath("Solaris_UserAcl");

// Create a new instance of the Solaris_UserAcl
class ci = cimclass.newInstance();
...

60 Solaris WBEM Services Administration Guide • December 2001 (Beta)

2. Set the capability property to the desired access rights. For example:

...
/* Change the access rights (capability) to read/write for user Guest
on objects in the root\molly namespace.*/
ci.setProperty("capability", new CIMValue(new String("rw"));
ci.setProperty("nspace", new CIMValue(new String("root\molly"));
ci.setProperty("username", new CIMValue(new String("guest"));
...

3. Update the instance. For example:

...
// Pass the updated instance to the CIM Object Manager
cc.setInstance(new CIMObjectPath(), ci);
...

The Solaris_NamespaceAcl Class
The Solaris_NamespaceAcl extends the Solaris_Acl base class, from which it
inherits the string property capability with a default value r (read-only for all users).
The Solaris_NamespaceAcl class defines this key property.

Property Data Type Purpose

nspace string Identifies the namespace to
which this access control list
applies. Only one instance of
the namespace ACL can exist
in a namespace.

� To Set Access Control for a Namespace
1. Create an instance of the Solaris_namespaceAcl class. For example:

...
/* Create a namespace object initialized with root\security
(name of namespace) on the local host. */
CIMNameSpace cns = new CIMNameSpace("", "root\security");

// Connect to the root\security namespace as root.
cc = new CIMClient(cns, user, user_passwd);

// Get the Solaris_namespaceAcl class
cimclass = cc.getClass(new CIMObjectPath("Solaris_namespaceAcl");

// Create a new instance of the Solaris_namespaceAcl

Administering Security 61

class ci = cimclass.newInstance();
...

2. Set the capability property to the desired access rights. For example:

...
/* Change the access rights (capability) to read/write
to the root\molly namespace. */
ci.setProperty("capability", new CIMValue(new String("rw"));
ci.setProperty("nspace", new CIMValue(new String("root\molly"));
...

3. Update the instance. For example:

// Pass the updated instance to the CIM Object Manager
cc.setInstance(new CIMObjectPath(), ci);

Troubleshooting
This section describes what to do when:

� A client (user) cannot be authenticated by the CIM Object Manager on the WBEM
server.

� A role cannot be assumed.

� An ACCESS_DENIED error occurs.

If a Client (User) Cannot Be Authenticated by the
CIM Object Manager on the WBEM Server
If a client cannot be successfully authenticated by the CIM Object Manager on the
WBEM server, the WBEM server returns a CIM security exception when it attempts to
establish the CIM client handle in the client application. The exception contains an
error code that indicates why the authentication attempt failed.

If the WBEM server cannot verify the user identity and credential, and the user’s
identity is invalid, the WBEM server returns a CIM security exception with the
NO_SUCH_PRINCIPAL error. If the WBEM server cannot verify the user’s identity
and credential, and the user’s password is invalid for that user’s identity, the WBEM
server returns a CIM security exception with the INVALID_CREDENTIAL error.

If the WBEM server cannot verify the Solaris role identity, the WBEM server returns a
CIM security exception with the NO_SUCH_ROLE error. If the role password is
invalid for the specified role identity, the WBEM server returns the

62 Solaris WBEM Services Administration Guide • December 2001 (Beta)

INVALID_CREDENTIAL error in the CIM security exception. If both the role identity
and role password are valid, but the user is not allowed to assume the role, the WBEM
server returns the CANNOT_ASSUME_ROLE error in the CIM security exception.

These CIM security exceptions are described in more detail in the following table.

Error Probable Cause Solution

NO_SUCH_PRINCIPAL Specified user identity was
not a valid user identity in the
Solaris operating environment
on the WBEM server, or that
the user account for that user
identity either has no
password or is locked.

Check that the user is a valid
user identity, that is, can log in
to the Solaris operating
environment on the WBEM
server machine. The WBEM
server Solaris system might be
using user identities from a
name service configured on
the server, so you might need
to check the name service
tables.

INVALID_CREDENTIAL Password for the specified
user (or role, if assuming a
role identity) is not valid for
that user in the Solaris
operating environment on the
WBEM server.

Check that the user’s
password is correct.

Administering Security 63

Error Probable Cause Solution

NO_SUCH_ROLE Role identity that is assumed
in the authentication to the
WBEM server is not a valid
RBAC role in the Solaris
operating environment on the
WBEM server.

The role identity might be a
valid entry in the passwd
table on the server, but you
will not be able to log in to the
server under that identity
(Solaris does not allow you to
login directly to role
identities). So, you must check
the passwd table for the role
identity, and check the
user_attr table to ensure
that the role is defined as a
role type of user. Role
identities in the user_attr
table each contain an attribute
in the syntax type=role.

You can also check for a valid
user or role identity with the
Solaris Management Console
User tool. You can use User
Management to check for a
user and you can use Role
Management to check for a
role. However, when using the
User tool, you must know the
correct source of the tables on
the CIM Object Manager
server. In other words, if the
CIM Object Manager server is
using a name service such as
NIS, you must access the
master server for that name
service.

CANNOT_ASSUME_ROLE Role identity is valid, but the
specified user identity in the
authentication exchange is not
configured to assume that
role.

Explicitly assign users to roles
with the Administrative Role
tool in the Solaris
Management Console User
tool collection, which is
described in “Changing Role
Properties” in System
Administration Guide: Security
Services.

64 Solaris WBEM Services Administration Guide • December 2001 (Beta)

If Other CIM Security Exception Errors Appear
The WBEM server can return other error indications in the CIM security exception.
However, these indications typically indicate a system failure in the authentication
exchange. The WBEM client configuration might not be compatible with the WBEM
server configuration for the security options for the authentication exchange.

If these error indications appear, check that the WBEM installation on the client
machine contains the appropriate configuration property values for security in
WbemClient.properties. This file is usually located in the vendor extension
subdirectory in the WBEM installation directory:
/usr/sadm/lib/wbem/extension.

Also, check the client application CLASSPATH setting to ensure that sunwbem.jar
and the extension directory path name are on the class path.

If an Authorization Check Fails
If a client is not authorized to access or modify the data associated with a request to
the WBEM server, the WBEM server returns a CIM security exception for that request
with the ACCESS_DENIED error.

The ACCESS_DENIED error indicates that a WBEM request could not be completed
because the authenticated user or role has not been granted the appropriate access to
the data being managed by that request.

Check the security messages in the WBEM log for the failed request. Authorization
failure log messages specify Access denied in the Summary column. The User
column lists the name of the authenticated user or role name that was used in the
check, and the Source column lists the name of the provider that is making the check.
Note that the name of the provider that is listed in this column is a user-friendly
provider name, and not the provider implementation class name.

The detailed message contains the name of the permission that was being checked
(and which has not been granted to the user or role).

If the permission appears as namespace:right, the authorization check was using a name
space ACL. The authenticated user has not been granted that permission (read or
write) for that namespace.

Use Sun WBEM User Manager (wbemadmin) to grant the user the appropriate
permission. Sun WBEM User Manager is described in “Using Sun WBEM User
Manager to Set Access Control” on page 55.

If the permission appears as solaris.application.right, the authorization check was
using an RBAC authorization.

Administering Security 65

Use the Administrative Role tool in the Solaris Management Console User tool
collection, which is described in “Changing Role Properties” in System Administration
Guide: Security Services, to grant the rights that you want to the user or role.

66 Solaris WBEM Services Administration Guide • December 2001 (Beta)

CHAPTER 5

MOF Compiler

This chapter describes the Managed Object Format (MOF) Compiler, and covers the
following topics.

� “The MOF Compiler” on page 67
� “Compiling a MOF File” on page 68
� “Generating a MOF File From an SNMP MIB File” on page 69

The MOF Compiler

Definitions
Managed Object Format (MOF) is a language for defining CIM classes and instances.
MOF files are ASCII text files that use MOF to describe CIM objects. A CIM object is a
computer representation or model of a managed resource, such as a printer, disk drive,
or CPU.

How the MOF Compiler Works
Generally, the MOF Compiler:

� Parses a file containing MOF statements

� Converts the classes and instances defined in the file to Java classes

� Adds the Java classes to the CIM Object Manager Repository, which is a central
storage area that contains management data

67

The compiler loads the Java classes into the default namespace, root\cimv2, unless a
#pragma namespace(“namespace_path”) statement appears in the MOF file.

The Solaris installer runs the mofreg(1M) command, which starts the MOF compiler,
before installation to compile MOF files that describe the CIM and Solaris Schema. The
CIM Schema is a collection of class definitions used to represent managed objects that
occur in every management environment. The Solaris Schema is a collection of class
definitions that extend the CIM Schema and represent managed objects in a typical
Solaris operating environment. You can use the mofcomp(1M) command to compile
MOF files at any time after installation.

Many sites store information about managed resources in MOF files. Because MOF can
be converted to Java, Java applications can interpret and exchange this information on
any system on which a Java Virtual Machine is available.

Compiling a MOF File
You can compile a MOF file with or without a .mof extension. The MOF files that
describe the CIM and Solaris Schema are located in /usr/sadm/mof.

Note – You must become superuser before you recompile CIM_Schema25.mof or
Solaris_Schema1.0.mof.

The mofcomp Command
The mofcomp(1M) command compiles the specified MOF file into CIM classes and
instances. These CIM classes and instances are stored in the CIM Object Manager
Repository as Java classes, which are passed to the CIM Object Manager.

You must run the mofcomp command as root or as a user with write access to the
namespace in which you are compiling.

� To Compile a MOF File
� To compile a MOF file (without options), type:

mofcomp filename

Example:

mofcomp /usr/sadm/mof/Solaris_Application1.0.mof

68 Solaris WBEM Services Administration Guide • December 2001 (Beta)

The MOF file is compiled into the CIM Object Manager Repository.

Security Advisory
If you run the mofcomp command with the -p option or the -u and -p options, and
you include a password on the command line, another user can run the ps command
or the history command and see your password.

Note – If you run a command that requires you to provide your password,
immediately change your password after you run the command.

The following examples show the unsecure use of the mofcomp command.

% mofcomp -p Log8Rif /usr/sadm/mof/Solaris_Acl1.0.mof

% mofcomp -up molly Log8Rif /usr/sadm/mof/Solaris_Acl1.0.mof

Change your password immediately after you run the mofcomp command with either
the -p or -up options.

Generating a MOF File From an SNMP
MIB File
When you want to access Simple Network Management Protocol (SNMP) information
through the SNMP Provider, you use a Management Information Base (MIB) file to
generate a MOF file. The mib2mof(1M) command generates qualifiers that enable the
SNMP Provider to map CIM operations that are performed on the CIM classes in the
MOF file to SNMP operations.

Note – The SNMP Provider for WBEM supports SNMP traps. Traps are reported in
the CIM process indication event CIM_SNMPTrapIndication. When a client
subscribes to the provider for this event, the provider listens on port 162 for SNMP V1
and SNMP V2 traps. The information is copied from the trap to the indication and
then the indication is delivered to the client.

The MOF files that describe the CIM and Solaris Schema are located in
/usr/sadm/mof.

MOF Compiler 69

� To Generate a MOF File From an SNMP MIB File
1. Become superuser.

2. Type the command:

mib2mof SNMP_MIB_filename

Example:

mib2mof sysctl.mib

70 Solaris WBEM Services Administration Guide • December 2001 (Beta)

CHAPTER 6

System Logging

WBEM log files enable system administrators to track errors, warnings, and
informational messages that the management subsystem generates. The WBEM
logging service enables application developers and writers of providers to write log
messages to the log files. For example, you might want to write out log messages
when a system is not able to access a serial port, when a system successfully mounts a
file system, or when the number of processes that are running on a system exceeds the
allowed number.

This chapter covers the following topics:

� “About Logging” on page 71
� “Log Files” on page 72
� “Using a Client’s Application Programming Interface to Read and to Write Log

Messages” on page 73
� “Viewing Log Data Through Log Viewer” on page 78

About Logging
When a provider encounters a particular condition in the underlying managed system
that it wants to record, the provider requests that the logging service, through an
application programming interface, store information in the WBEM log file. Providers
can not only log errors or warnings, but can also log informational messages as well.
Log files provide the administrator with a tool to trace the cause of failures by
providing a way to trace the history of the actions, errors, and warnings that led to the
failure.

Providers can write log messages using the application programming interfaces that
are described in “Using a Client’s Application Programming Interface to Read and to
Write Log Messages” on page 73. The application programming interface also

71

provides a way to forward log messages to syslogd(1M), the default logging system
in the Solaris operating environment. You can view log messages in the Solaris
Management Console Log Viewer.

Log Files
By default, all log messages are stored in files in /var/sadm/wbem/log. The size to
which each log file can grow is limited. When a log file reaches this limit, WBEM
automatically backs up the log file and creates a new log file in its place. The number
of log files and the number of backed up log files that can exist at one time is limited.

You can manually back up the active log file by invoking ClearLog() in the
Solaris_MessageLog class.

The names of the log files, the directory in which to store the log files, the file size
limit, the number of files to store, and whether to forward messages to syslogd(1M)
are properties that you can configure. You manipulate these properties by modifying
the properties in the singleton instance of the Solaris_LogServiceProperties
class.

Log Message Format
The format of each log entry is defined by the Solaris_LogEntry class, which is a
subclass of CIM_LogRecord. You can find CIM_LogRecord in
Solaris_Device1.0.mof.

A log message comprises the following elements:

� Category – Type of message: application, system, or security

� Severity – Severity of the condition that caused the message to be written:
informational, warning, or error

� Application – Name of the application (or the provider) that is writing the log
message

� User – Name of the user who was using the application when the log message was
generated

� Client Machine – Name and Internetworking Protocal (IP) address of the
system that User was using when the log message was generated

� Server Machine – The name of the system on which the incident that generated
the log message occurred

� Summary Message – A descriptive summary of the incident

72 Solaris WBEM Services Administration Guide • December 2001 (Beta)

� Detailed Message – A detailed description of the incident

� Data – Any contextual information that might provide a better understanding of
the incident

� SyslogFlag – A boolean flag that specifies whether or not to send the message to
syslogd(1M)

Using a Client’s Application
Programming Interface to Read and to
Write Log Messages

To Use a Client’s Application Programming
Interface to Read and to Write Log Messages
You can use the Solaris Management Console Log Viewer to view the contents of the
log file, as described in “Viewing Log Data Through Log Viewer” on page 78. You
can also set up a client to use the client’s application programming interface to read
and to write log messages.

� To Read From the Log File
� Use this code sample as a guide to set up a client to read from the log file.

import javax.wbem.client.*;
import javax.wbem.cim.*;
import javax.wbem.security.*;

import java.rmi.*;
import java.util.*;
import java.io.*;
import java.lang.*;
import java.util.Enumeration;

/**
* This example displays a list of log records.
*/
public class ReadLog {

public static void main(String args[]) throws CIMException {

System Logging 73

String protocol = CIMClient.CIM_RMI;
if (args.length < 3) {
System.out.println("Usage: ReadLog host username password [rmi|http]");
System.exit(1);
}
CIMClient cc = null;
CIMObjectPath cop = null;
CIMObjectPath serviceObjPath = null;
Vector inVec = new Vector();
Vector outVec = new Vector();
try {

CIMNameSpace cns = new CIMNameSpace(args[0]);
UserPrincipal up = new UserPrincipal(args[1]);
PasswordCredential pc = new PasswordCredential(args[2]);
if (args.length == 4 && args[3].equalsIgnoreCase("http")) {

protocol = CIMClient.CIM_XML;
}
cc = new CIMClient(cns, up, pc, protocol);

cop = new CIMObjectPath("Solaris_LogEntry");
Enumeration e = cc.enumerateInstances(cop, true, false,

false, false, null);
for (; e.hasMoreElements();) {

System.out.println("---------------------------------");
CIMInstance ci = (CIMInstance)e.nextElement();
System.out.println("Log filename : " +

((String)ci.getProperty("LogName").getValue().getValue()));
int categ =

(((Integer)ci.getProperty("Category").getValue().getValue()).intValue());
if (categ == 0)

System.out.println("Category : Application Log");
else if (categ == 1)

System.out.println("Category : Security Log");
else if (categ == 2)

System.out.println("Category : System Log");
int severity =

(((Integer)ci.getProperty("Severity").getValue().getValue()).intValue());
if (severity == 0)

System.out.println("Severity : Informational");
else if (severity == 1)

System.out.println("Severity : Warning Log!");
else if (severity == 2)

System.out.println("Severity : Error!!");
System.out.println("Log Record written by :" +

((String)ci.getProperty("Source").getValue().getValue()));
System.out.println("User : " +

((String)ci.getProperty("UserName").getValue().getValue()));
System.out.println("Client Machine : " +

((String)ci.getProperty("ClientMachineName").getValue().getValue()));
System.out.println("Server Machine : " +

((String)ci.getProperty("ServerMachineName").getValue().getValue()));
System.out.println("Summary Message : " +

((String)ci.getProperty("SummaryMessage").getValue().getValue()));
System.out.println("Detailed Message : " +

74 Solaris WBEM Services Administration Guide • December 2001 (Beta)

((String)ci.getProperty("DetailedMessage").getValue().getValue()));
System.out.println("Additional data : " +

((String)ci.getProperty("RecordData").getValue().getValue()));
boolean syslogflag = ((Boolean)ci.getProperty

("SyslogFlag").getValue().getValue()).booleanValue();
if (syslogflag == true) {

System.out.println("Record was written to syslog");
} else {

System.out.println("Record was not written to syslog");
}
System.out.println("---------------------------------");
}

}
catch (Exception e) {

System.out.println("Exception: "+e);
e.printStackTrace();

}

// close session.
if (cc != null) {

cc.close();
}
}

}

To Use a Client’s Application Programming
Interface to Create Log Messages
You can also set up a client to use the client’s application programming interface to
create log messages.

� To Create Log Messages
� Use this code sample as a guide to set up a client to create log messages.

import javax.wbem.client.*;
import javax.wbem.cim.*;
import javax.wbem.security.*;

import java.rmi.*;
import java.util.*;
import java.io.*;
import java.lang.*;
import java.util.Enumeration;

/**
* This example writes out a new log message.
*/

System Logging 75

public class CreateLog {
public static void main(String args[]) throws CIMException {

if (args.length < 3) {
System.out.println("Usage: CreateLog host username password " +

"[rmi|http]");
System.exit(1);

}

String protocol = CIMClient.CIM_RMI;
CIMClient cc = null;
CIMObjectPath cop = null;
BufferedReader d = new BufferedReader(new InputStreamReader(System.in));
String input_line = "";
System.out.print("How many log records do you want to write? ");
int num_recs = 0;

try {
num_recs = Integer.parseInt(d.readLine());

} catch (Exception ex) {
ex.printStackTrace();
System.exit(1);

}
try {

CIMNameSpace cns = new CIMNameSpace(args[0]);
UserPrincipal up = new UserPrincipal(args[1]);
PasswordCredential pc = new PasswordCredential(args[2]);
if (args.length == 4 && args[3].equalsIgnoreCase("http")) {

protocol = CIMClient.CIM_XML;
}
cc = new CIMClient(cns, up, pc, protocol);

Vector keys = new Vector();
CIMProperty logsvcKey = null;

System.out.println("Please enter the record Category: ");
System.out.println("\t(0)application, (1)security, (2)system");
logsvcKey = new CIMProperty("category");
input_line = d.readLine();
logsvcKey.setValue(new CIMValue(Integer.valueOf(input_line)));
keys.addElement(logsvcKey);
System.out.println("Please enter the record Severity: ");
System.out.println("\t(0)Informational, (1)Warning, (2)Error");
logsvcKey = new CIMProperty("severity");
input_line = d.readLine();
logsvcKey.setValue(new CIMValue(Integer.valueOf(input_line)));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("Source");
System.out.println("Please enter Application Name: ");
logsvcKey.setValue(new CIMValue(d.readLine()));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("SummaryMessage");
System.out.println("Please enter a summary message: ");

76 Solaris WBEM Services Administration Guide • December 2001 (Beta)

logsvcKey.setValue(new CIMValue(d.readLine()));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("DetailedMessage");
System.out.println("Please enter a detailed message: ");
logsvcKey.setValue(new CIMValue(d.readLine()));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("RecordData");
logsvcKey.setValue(

new CIMValue("0xfe 0x45 0xae 0xda random data"));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("SyslogFlag");
logsvcKey.setValue(new CIMValue(new Boolean(true)));
keys.addElement(logsvcKey);
CIMObjectPath logreccop =

new CIMObjectPath("Solaris_LogEntry", keys);
CIMClass logClass = cc.getClass(logreccop);
CIMInstance ci = logClass.newInstance();
ci.setClassName("Solaris_LogEntry");
ci.setProperties(keys);
// System.out.println(ci.toString());
for (int i = 0; i < num_recs; i++) {

cc.createInstance(logreccop, ci);
}

}
catch (Exception e) {

System.out.println("Exception: "+e);
e.printStackTrace();

}

// close session.
if (cc != null) {

cc.close();
}
}

}

To Use Provider Application Programming
Interfaces to Write Log Messages
The code that you use to generate log messages from a provider are similar to the code
that is shown in “To Use a Client’s Application Programming Interface to Create Log
Messages” on page 75. Instead of using a CIMClient object to access the CIM object
manager, you use a cimomhandle object. The provider must create an instance of the
Solaris_LogEntry class and use the cimomhandle object to send the instance to
the provider for the Solaris_LogEntry class.

System Logging 77

Viewing Log Data Through Log Viewer
You can view all details of a log record in the Solaris Management Console Log
Viewer.

Starting Log Viewer
After you have created a log record, you can start the Solaris Management Console
application and Log Viewer. A log record is automatically created when you start the
Solaris Management Console software.

� To Start the Solaris Management Console Application and
Log Viewer

1. Type the command:

% smc

2. In the Navigation panel, double-click This Computer (or single-click the
expand/compress icon next to This Computer).

A tree of commands is displayed below This Computer.

3. Double-click System Status.

The Log Viewer icon is displayed.

4. Click the Log Viewer icon.

Log Viewer starts.

78 Solaris WBEM Services Administration Guide • December 2001 (Beta)

FIGURE 6–1 The Solaris Management Console Application, Log Viewer Selected

System Logging 79

80 Solaris WBEM Services Administration Guide • December 2001 (Beta)

APPENDIX A

The Solaris Schema

During installation, the CIM Object Manager compiles MOF files that describe the
CIM Schema and the Solaris Schema in the directory /usr/sadm/mof/. CIM Schema
files, which implement the Core and Common Models of the Common Information
Model, are denoted by the use of CIM in their associated file names. The Solaris
Schema files, denoted by the use of Solaris in their file names, provide the
implementation of the Solaris extension into the Common Information Model. This
appendix describes the Solaris Schema files.

Documentation of the Solaris providers listed in this chapter is included in the MOF
file in which the provider is specified.

� “The Solaris_Schema1.0.mof File” on page 83
� “The Solaris_CIMOM1.0.mof File” on page 83
� “The Solaris_Core1.0.mof File” on page 85
� “The Solaris_Application1.0.mof File” on page 85
� “The Solaris_System1.0.mof File” on page 86
� “The Solaris_Device1.0.mof File” on page 87
� “The Solaris_Acl1.0.mof File” on page 88
� “The Solaris_Network1.0.mof File” on page 88
� “The Solaris_Users1.0.mof File” on page 88
� “The Solaris_Event1.0.mof File” on page 89
� “The Solaris_SNMP1.0.mof File” on page 89
� “The Solaris_LVM1.0.mof File” on page 89
� “The Solaris_Project1.0.mof File” on page 90

Solaris Schema Files
This table provides a brief overview of the Solaris Schema files in /usr/sadm/mof.

81

TABLE A–1 Solaris Schema Files

Solaris schema file What this schema file provides

Solaris_Schema1.0.mof Lists all of the MOF files of the Solaris Schema, in
#pragma Include statements. Specifies the order
in which the MOF files are read and compiled.

Solaris_CIMOM1.0.mof Contains all the system properties that the CIM
Object Manager uses.

Solaris_Core1.0.mof Enables WBEM core features to be implemented.
Enables you to set locales, qualifiers, and providers.

Solaris_Application1.0.mof Models Solaris packages and patches in CIM.

Solaris_System1.0.mof Models the Solaris Schema components for a system,
including the operating system and processes of the
system. Extends CIM Schema definitions through
the definition of the Solaris_Process and
Solaris_OperatingSystem classes.

Solaris_Device1.0.mof Enables a description of your system’s processor,
serial ports, printing devices, and time settings to
make your computer work with the CIM Object
Manager.

Solaris_Acl1.0.mof Sets the base class and qualifiers for user ACLs.

Solaris_Network1.0.mof Defines classes pertaining to network domains, IP
subnets, and naming services (including NIS, NIS+,
LDAP, DNS, and server /etc files).

Solaris_Users1.0.mof Defines classes for working with user accounts.

Solaris_Event1.0.mof Defines a single class, Solaris_RMIDelivery,
which is a subclass of CIM_IndicationHandler.
This class is defined to facilitate the delivery of
indications to management clients over Sun
Microsystems’ implementation of the CIM Remote
Method Invocation (RMI) protocol.

Solaris_SNMP1.0.mof Defines classes that pertain to configuration
information for an SNMP device.

Solaris_LVM1.0.mof Defines classes that pertain to storage devices

Solaris_Project.0.mof Defines classes that model the Solaris project
database.

The following sections describe the contents of each schema file in more detail.

82 Solaris WBEM Services Administration Guide • December 2001 (Beta)

The Solaris_Schema1.0.mof File
The Solaris_Schema1.0.mof file is the high-level container of all other MOF files
comprised by the Solaris Schema. This file lists the MOF files in the order in which
you must compile them.

The Java classes that you generate from each compilation are then sent to the CIM
Object Manager, where they are either enacted as events or sent to the CIM Repository
for storage as objects. The following listing of the Solaris_Schema1.0.mof file
shows the Include statements in the order that is required for compilation.

/*
Title Solaris Master MOF 1.0
Description include pragmas for all other mofs
Date 03/10/01
Version 1.1
Copyright (c) 2000 Sun Microsystems, Inc. All Rights Reserved.
*/

#pragma Include ("Solaris_Core1.0.mof")
#pragma Include ("Solaris_Application1.0.mof")
#pragma Include ("Solaris_System1.0.mof")
#pragma Include ("Solaris_Device1.0.mof")
#pragma Include ("Solaris_Network1.0.mof")
#pragma Include ("Solaris_Users1.0.mof")
#pragma Include ("Solaris_Project1.0.mof")
#pragma Include ("Solaris_Event1.0.mof")
#pragma Include ("Solaris_CIMOM1.0.mof")
#pragma Include ("Solaris_SNMP1.0.mof")

// This must be the last include since it changes the CIM namespace

#pragma Include ("Solaris_Acl1.0.mof")

The compiler parses a line of the Solaris_Schema1.0.mof file, compiles the file
specified in the Include statement, and then parses the next line of the
Solaris_Schema1.0.mof file, until all included files are compiled.

The Solaris_CIMOM1.0.mof File
The Solaris_CIMOM1.0.mof file contains all the system properties used by the CIM
Object Manager.

/*
Title : Solaris CIMOM mof specification

The Solaris Schema 83

Description: Models the system properties used by the CIMOM
Date: 05/09/00
Version: 1.0
Copyright (c) 2000 Sun Microsystems, Inc. All Rights Reserved.
*/
#pragma namespace ("root/system")

Qualifier Abstract : boolean = false,
Scope(class, association, indication),
Flavor(DisableOverride, Restricted);

Qualifier Association : boolean = false,
Scope(class, association),
Flavor(DisableOverride);

Qualifier Key : boolean = false,
Scope(property, reference),
Flavor(DisableOverride);

Qualifier Override : string = null,
Scope(property, method, reference);

Qualifier Description : string = null,
Scope(any),
Flavor(Translatable);

Qualifier Expensive : boolean = false,
Scope(property, reference, method, class, association);

Qualifier In : boolean = true,
Scope(parameter);

Qualifier Provider : string = null,
Scope(any);

[Provider("internal"),
Description("Each instance becomes part of the classpath")
]
class Solaris_ProviderPath {

[key]
string pathurl;

};

[Provider("internal"),
Description("This class represents the CIMOM")
]
class Solaris_CIMOM {

[key]
string name;

[Description("Shuts down the CIMOM")]
sint8 shutdown();

};

84 Solaris WBEM Services Administration Guide • December 2001 (Beta)

The Solaris_Core1.0.mof File
The Solaris_Core1.0.mof file is the first of the Solaris Schema files to be compiled
after the Solaris_Schema1.0.mof file. This file provides the definition of the
Solaris_ComputerSystem class of the Solaris Provider, and also the
Solaris_LogRecord, Solaris_LogService,
Solaris_LogServiceProperties, and Solaris_LogServiceSetting classes.

The Solaris_Application1.0.mof
File
The Solaris_Application1.0.mof file enables you to set up packages and
patches for your applications that extend the Solaris Schema.

The Solaris_Application1.0.mof file defines the following classes:

� Solaris_Package
� Solaris_Patch
� Solaris_SoftwareFeature
� Solaris_SoftwareElement
� Solaris_InstalledSoftwareElement

In addition, the Solaris_Application1.0.mof file defines the following
association classes:

� Solaris_ProductSoftwareFeatures
� Solaris_SoftwareFeatureSoftwareElements
� Solaris_SoftwareFeatureDependency
� Solaris_SoftwareElementDependency
� Solaris_ProductSoftwareFeatureDependency
� Solaris_ProductSoftwareElementDependency
� Solaris_SoftwareFeatureSoftwareElementDependency
� Solaris_SoftwareElementProductDependency
� Solaris_SoftwareElementSoftwareFeatureDependency
� Solaris_ProductSoftwareElements
� Solaris_SoftwareFeatureParentChild
� Solaris_SoftwareFeatureProductDependency

The Solaris Schema 85

The Solaris_System1.0.mof File
The Solaris_System1.0.mof file defines the following classes:

� Solaris_Process
� Solaris_OperatingSystem
� Solaris_InstalledOS
� Solaris_RunningOS
� Solaris_OSProcess
� Solaris_DataFile
� Solaris_LocalFileSystem
� Solaris_UFS
� Solaris_HSFS
� Solaris_NFS
� Solaris_Directory
� Solaris_ScheduledJob
� Solaris_ScheduledJob_Cron
� Solaris_JobScheduler
� Solaris_JobScheduler_Cron
� Solaris_CpuUtilizationInformation
� Solaris_CpuVminfo
� Solaris_CpuSysinfo
� Solaris_DiskIOInformation
� Solaris_DisklessClient
� Solaris_OsService
� Solaris_Eeprom
� Solaris_EepromSetting

In addition, the Solaris_System1.0.mof file defines the following association
classes:

� Solaris_NFSExport
� Solaris_Mount
� Solaris_NFSMount
� Solaris_UFSMount
� Solaris_HSFSMount
� Solaris_OwningJobScheduler
� Solaris_HostedJobScheduler
� Solaris_SystemDevice
� Solaris_EepromElementSetting

86 Solaris WBEM Services Administration Guide • December 2001 (Beta)

The Solaris_Device1.0.mof File
The Solaris_Device1.0.mof file defines the following classes:

� Solaris_Processor
� Solaris_DiskDrive
� Solaris_DiskPartition
� Solaris_CpuUtilizationPerformanceMonitor
� Solaris_CpuVminfoPerformanceMonitor
� Solaris_CpuSysinfoPerformanceMonitor
� Solaris_DiskIOPerformanceMonitor
� Solaris_SerialPort
� Solaris_SerialPortConfiguration
� Solaris_SerialPortSetting
� Solaris_Environment
� Solaris_Printer
� Solaris_PrintJob
� Solaris_PrintService
� Solaris_PrintQueue
� Solaris_TimeZone
� Solaris_PrintSAP
� Solaris_EthernetAdapter
� Solaris_Keyboard
� Solaris_SoundDevice
� Solaris_MessageLog
� Solaris_MessageLogRecord
� Solaris_LogEntry
� Solaris_SyslogRecord
� Solaris_RecordInLog
� Solaris_LogInDataFile
� Solaris_LogServiceProperties
� Solaris_LogServiceSetting
� Solaris_MessageLogSetting

In addition, the Solaris_Device1.0.mof file defines these association classes:

� Solaris_MediaPresent
� Solaris_QueueForPrintService
� Solaris_OwningPrintQueue
� Solaris_PrinterServicingQueue
� Solaris_SystemTimeZone

The Solaris Schema 87

The Solaris_Acl1.0.mof File
The Solaris_Acl1.0.mof file specifies the Solaris WBEM Services security classes.
This file defines these base classes for access control lists, users, and namespaces:

� Solaris_Acl
� Solaris_UserAcl
� Solaris_NamespaceAcl

The Solaris_Network1.0.mof File
The Solaris_Network1.0.mof file defines classes that pertain to network domains,
IP subnets, and naming services (including NIS, NIS+, LDAP, DNS, and server /etc
files). This file defines these classes:

� Solaris_AdminDomain
� Solaris_SystemAdminDomain
� Solaris_NisAdminDomain
� Solaris_NisplusAdminDomain
� Solaris_LdapAdminDomain
� Solaris_DnsAdminDomain
� Solaris_IPProtocolEndpoint
� Solaris_IPSubnet

The Solaris_Users1.0.mof File
The Solaris_Users1.0.mof file defines these classes:

� Solaris_UserAccount
� Solaris_UserGroup
� Solaris_UserTemplate
� Solaris_UserHomeDirectory
� Solaris_AuthorizationAttribute
� Solaris_ExecutionProfile
� Solaris_ProfileAttribute
� Solaris_MailBox
� Solaris_EmailAlias

88 Solaris WBEM Services Administration Guide • December 2001 (Beta)

The Solaris_Event1.0.mof File
The Solaris_Event1.0.mof file defines one class Solaris_RMIDelivery, which
is a subclass of CIM_IndicationHandler. This class is defined to facilitate the
delivery of indications to management clients over Sun’s implementation of the CIM
RMI protocol. Applications that use this protocol create delivery end points by
creating an instance of the Solaris_RMIDelivery class. At present, clients can
subscribe for events as defined in the Distributed Management Task Force (DMTF)
CIM Specification v2.5 Events Model (you must be a member of DMTF to access this
specification). CIM_Events25.mof defines the event classes.

At present, this feature is available only to clients that connect over RMI, and not to
clients that connect over Hypertext Transfer Protocol (HTTP).

The Solaris_SNMP1.0.mof File
The Solaris_SNMP1.0.mof file defines classes that pertain to configuration
information for an SNMP device. The Solaris_SNMP1.0.mof file defines these
classes:

� Solaris_SNMPSystem
� Solaris_SNMPSystemConf
� Solaris_SNMPGroupConf

The Solaris_LVM1.0.mof File
The Solaris_LVM1.0.mof file defines classes that pertain to storage devices, such
as:

� State database replicas within a slice
� Range of extents within a storage extent that can be used for data
� Stripes
� Concatenated stripes
� Mirrors
� RAID Level 5 devices
� UFS logging file systems

The Solaris Schema 89

� Spare pools
� Disk sets
� Storage volumes

The Solaris_LVM1.0.mof file defines these classes:

� Solaris_VMStateDatabase
� Solaris_VMExtent
� Solaris_VMStripe
� Solaris_VMConcat
� Solaris_VMMirror
� Solaris_VMRaid5
� Solaris_VMTrans
� Solaris_VMHotSparePool
� Solaris_VMDiskSet
� Solaris_VMStorageVolume

In addition, the Solaris_LVM1.0.mof file defines the following association classes:

� Solaris_VMConcatComponent
� Solaris_VMDriveInDiskSet
� Solaris_VMExtentBasedOn
� Solaris_VMExtentInDiskSet
� Solaris_VMHostInDiskSet
� Solaris_VMHotSpareInUse
� Solaris_VMHotSpares
� Solaris_VMMirrorSubmirrors
� Solaris_VMRaid5Component
� Solaris_VMStatistics
� Solaris_VMStripeComponent
� Solaris_VMTransLog
� Solaris_VMTransMaster
� Solaris_VMUsesHotSparePool
� Solaris_VMVolumeBasedOn

The Solaris_Project1.0.mof File
The Solaris_Project1.0.mof file defines classes that models the Solaris project
database.

The Solaris_Project1.0.mof file defines the class Solaris_Project. In
addition, the Solaris_Project1.0.mof file defines the following association
classes:

� Solaris_ProjectUser

90 Solaris WBEM Services Administration Guide • December 2001 (Beta)

� Solaris_ProjectGroup

The Solaris Schema 91

92 Solaris WBEM Services Administration Guide • December 2001 (Beta)

Glossary

This Glossary defines terms used in the Solaris WBEM Services documentation. Many
of these terms are familiar to developers, but have new or altered meaning in the
WBEM environment.

alias A symbolic reference in either a class or instance declaration to an
object located elsewhere in a MOF file. Alias names follow the same
rules as instance and class names. Aliases are typically used as
shortcuts to lengthy paths.

aggregation relationship A relationship in which one entity is made up of the aggregation of
some number of other entities.

association class A class that describes a relationship between two classes or between
instances of two classes. The properties of an association class include
pointers, or references, to the two classes or instances. All WBEM
classes can be included in one or more associations.

Backus-Naur Form
(BNF)

A metalanguage that specifies the syntax of programming languages.

cardinality The number of values that may apply to an attribute for a given entity.

class A collection or set of objects that have similar properties and fulfill
similar purposes.

CIM Object Manager
Repository

A central storage area managed by the Common Information Model
Object Manager (CIM Object Manager). This repository contains the
definitions of classes and instances that represent managed objects and
the relationships among them.

CIM Schema A collection of class definitions used to represent managed objects that
occur in every management environment.

See also core model, common model, and extension schema.

The CIM is divided into the metamodel and the standard schema. The
metamodel describes what types of entities make up the schema. It

93

also defines how these entities can be combined into objects that
represent managed objects.

common model The second layer of the CIM schema, which includes a series of
domain-specific but platform-independent classes. The domains are
systems, networks, applications, and other management-related data.
The common model is derived from the core model.

See also extension schema.

core model The first layer of the CIM schema, which includes the top-level classes
and their properties and associations. The core model is both domain-
and platform-independent.

See also common model and extension schema.

Distributed
Management Task Force
(DMTF)

An industry-wide consortium committed to making personal
computers easier to use, understand, configure, and manage.

domain The class to which a property or method belongs. For example, if
status is a property of LogicalDevice, it is said to belong to the
LogicalDevice domain.

dynamic class A class whose definition is supplied by a provider at runtime as
needed. Dynamic classes are used to represent provider-specific
managed objects and are not stored permanently in the CIM Object
Manager Repository. Instead, the provider responsible for a dynamic
class stores information about its location. When an application
requests a dynamic class, the CIM Object Manager locates the provider
and forwards the request. Dynamic classes support only dynamic
instances.

dynamic instances An instance that is supplied by a provider when the need arises and is
not stored in the CIM Object Manager Repository. Dynamic instances
can be provided for either static or dynamic classes. Supporting
instances of a class dynamically allows a provider to always supply
up-to-the-minute property values.

enumeration Java term for getting a list of objects. Java provides an Enumeration
interface that has methods for enumerating a list of objects. An
individual object on this list to be enumerated is called an element.

extension schema The third layer of the CIM Schema, which includes platform-specific
extensions of the CIM Schema such as Solaris and UNIX.

See also common model and core model.

flavor See qualifier flavor.

indication An operation executed as a result of some action such as the creation,
modification, or deletion of an instance, access to an instance, or

94 Solaris WBEM Services Administration Guide • December 2001 (Beta)

modification or access to a property. Indications can also result from
the passage of a specified period of time. An indication typically
results in an event.

inheritance The relationship that describes how classes and instances are derived
from parent classes or superclasses. A class can spawn a new subclass,
also called a child class. A subclass contains all the methods and
properties of its parent class. Inheritance is one of the features that
allows WBEM classes to function as templates for actual managed
objects in the WBEM environment.

instance A representation of a managed object that belongs to a particular class,
or a particular occurrence of an event. Instances contain actual data.

instance provider A type of provider that supports instances of system- and
property-specific classes. Instance providers can support data retrieval,
modification, deletion, and enumeration. Instance providers can also
invoke methods.

See also property provider.

interface class The class used to access a set of objects. The interface class can be an
abstract class representing the scope of an enumeration.

See also enumeration and scope.

Interface Definition
Language (IDL)

A generic term for a language that lets a program or object written in
one language communicate with another program written in an
unknown language.

key A property that is used to provide a unique identifier for an instance of
a class. Key properties are marked with the Key qualifier.

key qualifier A qualifier that must be attached to every property in a class that
serves as part of the key for that class.

managed object A hardware or software component that is represented as a WBEM
class. Information about managed objects is supplied by data and
event providers as well as the CIM Object Manager Repository.

Managed Object Format
(MOF)

A compiled language for defining classes and instances. The MOF
compiler (mofcomp) compiles .mof text files into Java classes and
adds the data to the CIM Object Manager Repository. MOF eliminates
the need to write code, thus providing a simple and fast technique for
modifying the CIM Object Manager Repository.

management application An application or service that uses information originating from one or
more managed objects in a managed environment. Management
applications retrieve this information through calls to the CIM Object
Manager API from the CIM Object Manager and from providers.

management
information base

A database of managed objects.

Glossary 95

metamodel A CIM component that describes the entities and relationships
representing managed objects. For example, classes, instances, and
associations are included in the metamodel.

metaschema A formal definition of the Common Information Model, which defines
the terms used to express the model, its usage, and its semantics.

method A function describing the behavior of a class. Including a method in a
class does not guarantee an implementation of the method.

MOF file A text file that contains definitions of classes and instances using the
Managed Object Format (MOF) language.

Named Element An entity that can be expressed as an object in the metaschema.

namespace A directory-like structure that can contain classes, instances, and other
namespaces.

object path A formatted string used to access namespaces, classes, and instances.
Each object on the system has a unique path which identifies it locally
or over the network. Object paths are conceptually similar to Universal
Resource Locators (URLs).

override Indicates that the property, method, or reference in the derived class
overrides the similar construct in the parent class in the inheritance
tree or in the specified parent class.

polymorphism The ability to alter methods and properties in a derived class without
changing their names or altering interfaces. For example, a subclass
can redefine the implementation of a method or property inherited
from its superclass. The property or method is thereby redefined even
if the superclass is used as the interface class.

Thus, the LogicalDevice class can define the variable status as a
string, and can return the values "on" or "off." The Modem subclass of
LogicalDevice can redefine (override) status by returning "on,"
"off," and "connected." If all LogicalDevice classes are enumerated,
any LogicalDevice that represents a modem can return the value
"connected" for the status property.

property A value used to characterize the instances of a class. Property names
cannot begin with a digit and cannot contain white space. Property
values must have a valid Managed Object Format (MOF) data type.

property provider A program that communicates with managed objects to access data
and event notifications from a variety of sources, such as the Solaris
operating environment or a Simple Network Management Protocol
(SNMP) device. Providers forward this information to the CIM Object
Manager for integration and interpretation.

qualifier A modifier containing information that describes a class, an instance, a
property, a method, or a parameter. The three categories of qualifiers

96 Solaris WBEM Services Administration Guide • December 2001 (Beta)

are: those defined by the Common Information Model (CIM), those
defined by WBEM (standard qualifiers), and those defined by
developers. Standard qualifiers are attached automatically by the CIM
Object Manager.

qualifier flavor An attribute of a CIM qualifier that governs the use of a qualifier.
WBEM flavors describe rules that specify whether a qualifier can be
propagated to derived classes and instances and whether or not a
derived class or instance can override the qualifier’s original value.

range A class that is referenced by a reference property.

reference A special string property type that is marked with the reference
qualifier, indicating that it is a pointer to other instances.

required property A property that must have a value.

schema A collection of class definitions that describe managed objects in a
particular environment.

scope An attribute of a CIM qualifier that indicates which CIM elements can
use the qualifier. Scope can only be defined in the Qualifier Type
declaration; it cannot be changed in a qualifier.

selective inheritance The ability of a descendant class to drop or override the properties of
an ancestral class.

Simple Network
Management Protocol
(SNMP)

A protocol of the Internet reference model used for network
management.

singleton class A WBEM class that supports only a single instance.

Solaris Schema A Sun extension to the CIM Schema that contains definitions of classes
and instances to represent managed objects that exist in a typical
Solaris operating environment.

standard schema A common conceptual framework for organizing and relating the
various classes representing the current operational state of a system,
network, or application. The standard schema is defined by the
Distributed Management Task Force (DMTF) in the Common
Information Model (CIM).

static class A WBEM class whose definition is persistent. The definition is stored
in the CIM Object Manager Repository until it is explicitly deleted. The
CIM Object Manager can provide definitions of static classes without
the help of a provider. Static classes can support either static or
dynamic instances.

static instance An instance that is persistently stored in the CIM Object Manager
Repository.

Glossary 97

subclass A class that is derived from a superclass. The subclass inherits all
features of its superclass, but can add new features or redefine existing
ones.

subschema A part of a schema owned by a particular organization. The Win32 and
Solaris Schema are examples of subschema.

superclass The class from which a subclass inherits.

transitive dependency In a relation having at least three attributes R (A, B, C), the situation in
which A determines B, B determines C, but B does not determine A.

trigger A recognition of a state change (such as create, delete, update, or
access) of a class instance, and update or access of a property. The
WBEM implementation does not have an explicit object representing a
trigger. Triggers are implied either by the operations on basic objects of
the system (create, delete, and modify on classes, instances and
namespaces) or by events in the managed environment.

Unified Modeling
Language (UML)

A notation language used to express a software system using boxes
and lines to represent objects and relationships.

Unicode A 16-bit character set capable of encoding all known characters and
used as a worldwide character-encoding standard.

UTF-8 An 8-bit transformation format that may also serve as a transformation
format for Unicode character data.

virtual function table
(VTBL)

A table of function pointers, such as an implementation of a class. The
pointers in the VTBL point to the members of the interfaces that an
object supports.

Win32 Schema A Microsoft extension to the CIM Schema that contains definitions of
classes and instances to represent managed objects that exist in a
typical Win32 environment.

98 Solaris WBEM Services Administration Guide • December 2001 (Beta)

Index

A
access control

setting
on a namespace, 61
on a user, 60

application programming interfaces (APIs)
provider, 23
security, 59

C
CIM (Common Information Model)

overview, 16, 17, 18
CIM object

definition, 16
CIM Object Manager

how it uses providers, 23
restarting, 27
startup functions, 25
stopping, 27

CIM Schema, 17
Common Model, 17
Core Model, 17

class
security, 59

commands
init.wbem, 26
mib2mof, 70
mofcomp, 68
wbemadmin, 56

Common Information Model (CIM)
overview, 16, 17, 18

Common Model
base classes, 17

compatibility with other standards, 15

D
Distributed Management Task Force

(DMTF), 16
dynamic data, 23

E
error messages, 45, 46, 48

I
init.wbem command, 26
interoperability, 24

J
Java

conversion from Managed Object Format
(MOF), 21

Java Native Interface (JNI), 22

99

L
logging, 71

M
Managed Object Format (MOF)

See also MOF file
conversion to Java, 21
Solaris schema, 81

method, setInstance, 59
MIB file, how to generate a MOF file from, 69
mib2mof command, syntax, 70
MOF Compiler, description, 67
MOF file

how to compile, 68
how to generate, 69
security caution for compiling, 69

mofcomp command
security caution, 69
syntax, 68

N
namespace

setting access control, 59
namespaces

default, 23
defined, 22

P
privileges

granting default access to users, 57
Sun WBEM User Manager, 55

provider
functions, 23
restarting the CIM Object Manager, 27
writing native provider, 21

S
schema

CIM Schema, 17

schema (continued)
definition, 16
Solaris schema, 81

security
Sun WBEM User Manager, 55

software components, 19
software development kit (SDK), 24
standards, supported by WBEM, 15
startup functions, 25
Sun WBEM User Manager

changing user access rights, 58
default access rights, 57
removing namespace access rights, 59
removing user access rights, 58
setting namespace access rights, 58
setting user privileges, 55
starting, 56

T
troubleshooting, 45, 46, 48

W
WBEM (web-based enterprise management)

compatibility, 15
definition, 15
supported standards, 15

X
XML

interoperability, 24

100 Solaris WBEM Services Administration Guide • December 2001 (Beta)

