
Solaris Volume Manager
Administration Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 806–6111–06
December 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011025@2471

Contents

Preface 19

1 Getting Started with Solaris Volume Manager 23

Getting Started With SVM 24

SVM Roadmap-Storage Capacity 24

SVM Roadmap-Availability 25

SVM Roadmap-I/O Performance 26

SVM Roadmap-Administration 26

SVM Roadmap-Troubleshooting 27

2 Storage Management Concepts 29

Introduction to Storage Management 29

Storage Hardware 29

RAID Levels 30

Configuration Planning Guidelines 31

Choosing Storage Mechanisms 31

Performance Issues 32

General Performance Guidelines 32

Optimizing for Random I/O and Sequential I/O 33

Random I/O 34

Sequential Access I/O 34

3 Solaris Volume Manager Overview 37

What Does Solaris Volume Manager Do? 37

3

How Does SVM Manage Storage? 37

How to Interact With SVM 38

� How to Access the Solaris Volume Manager Graphical User Interface 39

Solaris Volume Manager Requirements 40

Overview of SVM Elements 41

Volumes 41

State Database and State Database Replicas 45

Hot Spare Pools 46

Disk Sets 46

Solaris Volume Manager Configuration Guidelines 47

General Guidelines 47

File System Guidelines 47

Overview of Creating SVM Elements 48

Prerequisites for Creating SVM Elements 48

4 Configuring and Using SVM (Scenario) 49

Background 49

Hardware Configuration 49

Storage Configuration 50

Complete SVM Configuration 51

5 State Database (Overview) 53

About the SVM State Database and Replicas 53

Understanding the Majority Consensus Algorithm 54

Preliminary Information for Defining State Database Replicas 55

Recommendations for State Database Replicas 55

Suggestions for State Database Replicas 56

Handling State Database Replica Errors 57

Scenario—State Database Replicas 58

6 State Database (Tasks) 59

State Database Replicas (Task Map) 59

Creating State Database Replicas 60

� How to Create State Database Replicas 60

Maintaining State Database Replicas 62

� How to Check the Status of State Database Replicas 62

4 Solaris Volume Manager Administration Guide • December 2001 (Beta)

How to Delete State Database Replicas 63

7 RAID 0 (Stripe and Concatenation) Volumes (Overview) 65

Overview of RAID 0 Volumes 65

RAID 0 (Stripe) Volume 66

RAID 0 (Concatenation) Volume 68

RAID 0 (Concatenated Stripe) Volume 69

Preliminary Information for Creating RAID 0 Volumes 71

Requirements for Stripes and Concatenations 72

Suggestions for Stripes and Concatenations 72

Scenario—RAID 0 Volumes 73

8 RAID 0 (Stripe and Concatenation) Volumes (Tasks) 75

RAID 0 Volumes (Task Map) 75

Creating RAID 0 (Stripe) Volumes 76

� How to Create a RAID 0 (Stripe) Volume 76

Creating RAID 0 (Concatenation) Volumes 77

� How to Create a RAID 0 (Concatenation) Volume 77

Expanding Storage Space 78

� How to Expand Space for Existing Data 78

� How to Expand an Existing RAID 0 (stripe) Volume 80

Removing a RAID 0 Volume 81

� How to Remove a Volume 81

9 RAID 1 (Mirror) Volumes (Overview) 83

Overview of RAID 0 (Mirror) Volumes 83

Overview of Submirrors 84

Scenario—Mirror 84

Providing RAID 1+0 and RAID 0+1 85

Frequently Asked Questions about Mirrors 86

Mirror Configuration Guidelines 87

Mirror Options 88

Mirror Resynchronization 89

Full Mirror Resynchronization 89

Optimized Mirror Resynchronization 89

Partial Mirror Resynchronization 90

Contents 5

Pass Number 90

Preliminary Information for Mirrors 90

Preliminary Information for Creating Mirrors 91

Preliminary Information for Changing Mirror Options 91

How Booting Into Single-User Mode Affects Mirrors 92

Scenario—RAID 1 Volumes (Mirrors) 92

10 RAID 1 (Mirror) Volumes (Tasks) 93

RAID 1 Volumes (Task Map) 93

Creating a RAID 1 Volume 95

� How to Create a RAID 1 Volume From Unused Slices 95

� How to Create a RAID 1 Volume From a File System 96

Mirroring root (/) Special Considerations 101

How to Record the Path to the Alternate Boot Device 101

Booting From Alternate Boot Devices 102

Working with Submirrors 103

� How to Attach a Submirror 103

� How to Detach a Submirror 104

� How to Place a Submirror Offline and Online 105

� How to Enable a Slice in a Submirror 106

Maintaining Mirrors 107

� How to Check Mirror and Submirror Status 107

� How to Change a Mirror’s Options 109

� How to Expand a Mirror 110

Responding to Mirror Component Failures 112

� How to Replace a Slice in a Submirror 112

� How to Replace a Submirror 113

Removing Mirrors (Unmirroring) 114

� How to Unmirror a File System 114

� How to Unmirror a File System That Cannot Be Unmounted 115

Using a Mirror to Back Up Data 117

� How to Use a Mirror to Make an Online Backup 117

11 Soft Partitions (Overview) 121

Overview of Soft Partitioning 121

Preliminary Information about Soft Partitioning 122

6 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Requirements for Soft Partitioning 122

Suggestions for Soft Partitioning 122

Scenario—Soft Partitions 123

12 Soft Partitions (Tasks) 125

Soft Partitions (Task Map) 125

Creating Soft Partitions 126

� How to Create a Soft Partition 126

Maintaining Soft Partitions 127

� How to Check Status of a Soft Partition 127

� How to Expand (Grow) a Soft Partition 128

How to Remove a Soft Partition 129

Recovering from Soft Partition Errors 130

How to Recover Configuration Data for a Soft Partition 130

13 RAID 5 Volumes (Overview) 131

Overview of RAID 5 Volumes 131

Example—RAID 5 Volume 132

Example—Concatenated (Expanded) RAID 5 Volume 132

Preliminary Information for Creating RAID 5 Volumes 134

Requirements for RAID 5 Volumes 134

Suggestions for RAID 5 Volumes 134

Overview of Replacing and Enabling Slices in RAID 5 Volumes 135

Scenario—RAID 5 Volumes 136

14 RAID 5 Volumes (Tasks) 137

RAID 5 Volumes (Task Map) 137

Creating RAID 5 Volumes 138

� How to Create a RAID 5 Volume 138

Maintaining RAID 5 Volumes 139

� How to Check RAID 5 Volume Status 139

� How to Expand a RAID 5 Volume 141

� How to Enable a Slice in a RAID 5 Volume 142

� How to Replace a Slice in a RAID 5 Volume 143

Contents 7

15 Hot Spare Pools (Overview) 145

Overview of Hot Spares and Hot Spare Pools 145

Hot Spares 146

How Hot Spares Work 146

Hot Spare Pools 147

Scenario—Hot Spare Pool 147

Administering Hot Spare Pools 148

Scenario—Hot Spares 148

16 Hot Spare Pools (Tasks) 149

Hot Spare Pools (Task Map) 149

Creating a Hot Spare Pool 150

� How to Create a Hot Spare Pool 150

� How to Add Additional Slices to a Hot Spare Pool 151

Associating a Hot Spare Pool with Volumes 152

� How to Associate a Hot Spare Pool with a Volume 152

� How to Change the Associated Hot Spare Pool 153

Maintaining Hot Spare Pools 154

� How to Check Hot Spare Pool and Hot Spare Status 154

� How to Replace a Hot Spare in a Hot Spare Pool 155

� How to Delete a Hot Spare from a Hot Spare Pool 156

� How to Enable a Hot Spare 157

17 Transactional Volumes (Overview) 159

About File System Logging 159

Choosing A Logging Method 160

Transactional Volumes 160

Example—Transactional Volume 161

Example—Shared Logging Device 161

Understanding Transactional Volumes 162

Requirements for Working with Transactional Volumes 162

Suggestions for Working with Transactional Volumes 163

Scenario—Transactional Volumes 164

18 Transactional Volumes (Tasks) 165

Transactional Volumes (Task Map) 165

8 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Creating Transactional Volumes 166

� How to Create a Transactional Volume 166

Maintaining Transactional Volumes 170

� How to Check Transactional Volume Status 170

� How to Attach a Logging Device to a Transactional Volume 172

� How to Detach a Logging Device from a Transactional Volume 173

� How to Expand a Transactional Volume 174

� How to Remove a Transactional Volume 175

� How to Remove a Transactional Volume and Retain the Mount Device 176

Sharing Logging Devices 179

� How to Share a Logging Device Among File Systems 179

Recovering Transactional Volumes When Errors Occur 180

� How to Recover a Transactional Volume With a File System Panic 180

� How to Recover a Transactional Volume With Hard Errors 181

19 Disk Sets (Overview) 185

What Do Disk Sets Do? 185

How Does Solaris Volume Manager Manage Disk Sets? 186

Automatic Disk Formatting 187

Disk Set Name Requirements 188

Example—Two Shared Disk Sets 188

Understanding Disk Sets 189

Requirements for Disk Sets 189

Suggestions for Disk Sets 190

Administering Disk Sets 190

Reserving a Disk Set 191

Releasing a Disk Set 191

Scenario—Disk Sets 192

20 Disk Sets (Tasks) 193

Disk Sets (Task Map) 193

Creating Disk Sets 194

� How to Create a Disk Set 194

Expanding Disk Sets 195

� How to Add Drives to a Disk Set 195

� How to Add A Host to a Disk Set 197

Contents 9

� How to Create SVM Devices in a Disk Set 198

Maintaining Disk Sets 199

� How to Check the Status of a Disk Set 199

� How to Remove Disks from a Disk Set 200

� How to Take a Disk Set 201

� How to Release a Disk Set 202

� How to Delete a Host or Disk Set 203

21 Solaris Volume Manager Maintenance 205

Maintenance (Task Map) 205

Viewing the SVM Configuration 206

� How to View the SVM Volume Configuration 206

Renaming Volumes 209

Understanding Renaming Volumes 209

Switching (Exchanging) Volume Names 210

� How to Rename a Volume 210

Working with Configuration Files 212

� How to Create Configuration Files 212

� How to Initialize SVM from a Configuration File 212

Changing SVM Defaults 213

� How to Increase the Number of Default Volumes 214

How to Increase the Number of Default Disk Sets 215

Growing a File System 216

Preliminary Information for Expanding Slices and Volumes 216

� How to Grow a File System 217

Overview of Replacing and Enabling Slices in RAID 1 and RAID 5 Volumes 218

Enabling a Slice 218

Replacing a Slice with Another Available Slice 219

Maintenance vs. Last Erred States 219

Preliminary Information For Replacing and Enabling Slices in Mirrors and RAID5
Volumes 220

22 Solaris Volume Manager Best Practices 223

Deploying Small Servers 223

Using SVM with Networked Storage Devices 225

10 Solaris Volume Manager Administration Guide • December 2001 (Beta)

23 Monitoring and Error Reporting (Tasks) 227

SVM Monitoring and Reporting (Task Map) 228

Setting the mdmonitord Command for Periodic Error Checking 228

� How to Configure the mdmonitord Command for Periodic Error Checking
229

SVM SNMP Agent Overview 229

Configuring the SVM SNMP Agent 230

� How to Configure the SVM SNMP Agent 230

SVM SNMP Agent Limitations 232

Monitoring SVM with a cron Job 233

� How to Automate Checking for Errors in Volumes 233

24 Troubleshooting Solaris Volume Manager 243

Troubleshooting (Task Map) 243

Overview of Troubleshooting the System 244

Prerequisites for Troubleshooting the System 244

General Guidelines for Troubleshooting SVM 244

Solving Problems 245

General Troubleshooting Approach 245

Replacing Disks 245

� How to Replace a Failed Disk 245

Boot Problems 247

Preliminary Information for Boot Problems 248

� How to Recover From Improper /etc/vfstab Entries 248

Example—Recovering the root (/) Mirror 249

� How to Recover From a Boot Device Failure 250

Recovering from State Database Replica Failures 255

� How to Recover From Insufficient State Database Replicas 255

Repairing Transactional Volume Problems 258

File System Panics 258

Transactional Volume Errors 258

A Important Solaris Volume Manager Files 259

System and Startup Files 259

Manually Configured Files 260

Overview of the md.tab File 260

Contents 11

B SVM Quick Reference 263

Command Line Reference 263

C SVM CIM/WBEM API 265

Managing Solaris Volume Manager (SVM) 265

Glossary 267

Index 275

12 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Tables

TABLE 1–1 SVM Roadmap-Storage Capacity 24

TABLE 1–2 SVM Roadmap-Availablity 25

TABLE 1–3 SVM Roadmap-I/O Performance 26

TABLE 1–4 SVM Roadmap-Administration 26

TABLE 1–5 SVM Roadmap-Troubleshooting 27

TABLE 2–1 Choosing Storage Mechanisms 31

TABLE 2–2 Optimizing Redundant Storage 32

TABLE 3–1 Summary of SVM Elements 41

TABLE 3–2 Classes of Volumes 42

TABLE 3–3 Example Volume Names 45

TABLE 9–1 Mirror Read Policies 88

TABLE 9–2 Mirror Write Policies 88

TABLE 10–1 Submirror States 108

TABLE 10–2 Submirror Slice States 109

TABLE 14–1 RAID 5 States 140

TABLE 14–2 RAID 5 Slice States 140

TABLE 16–1 Hot Spare Pool States (Command Line) 155

TABLE 18–1 Transactional Volume States 171

TABLE 19–1 Example Volume Names 188

TABLE 24–1 Disk Replacement Decision Table 247

TABLE 24–2 Common SVM Boot Problems 248

TABLE B–1 Command Line Interface Commands 263

13

14 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Figures

FIGURE 3–1 View of the Enhanced Storage tool (Solaris Volume Manager) in the
Solaris Management Console 39

FIGURE 3–2 Relationship Among a Volume, Physical Disks, and Slices 43

FIGURE 4–1 Basic Hardware Diagram 50

FIGURE 4–2 Partition Diagram 50

FIGURE 7–1 Stripe Example 68

FIGURE 7–2 Concatenation Example 69

FIGURE 7–3 Concatenated Stripe Example 70

FIGURE 9–1 Mirror Example 84

FIGURE 9–2 RAID 1+ 0 Example 86

FIGURE 13–1 RAID 5 Volume Example 132

FIGURE 13–2 Expanded RAID 5 Volume Example 132

FIGURE 15–1 Hot Spare Pool Example 147

FIGURE 17–1 Transactional Volume Example 161

FIGURE 17–2 Shared Log Transactional Volume Example 161

FIGURE 19–1 Disk Sets Example 189

FIGURE 22–1 Small system configuration 223

15

16 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Examples

17

18 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Preface

The Solaris Volume Manager Administration Guide explains how to use Solaris Volume
Manager (SVM) to manage your system’s storage needs, including creating,
modifying, and using RAID 0 (concatenation and stripe) volumes, RAID 1 (mirror)
volumes, and RAID 5 volumes, in addition to soft partitions and transactional logging
devices.

Who Should Use This Book
System and storage administrators will use this book to identify the tasks that SVM
supports and how to use SVM to provide more reliable and accessible data.

How This Book Is Organized
The Solaris Volume Manager Administration Guide includes the following information:

Chapter 1 provides a detailed “roadmap” to the concepts and tasks described in this
book and should be used solely as a navigational aid to the book’s content.

Chapter 2 provides an introduction to general storage management concepts for those
readers who are new to this technology.

Chapter 3 describes the Solaris Volume Manager (SVM) product and introduces
essential product-related concepts.

19

Chapter 4 provides an overall scenario for working with the SVM product.

Chapter 5 describes concepts related to state databases and state database replicas.

Chapter 6 explains how to perform tasks related to state databases and state database
replicas.

Chapter 7 describes concepts related to RAID 0 volumes (stripes and concatenations).

Chapter 8 explains how to perform tasks related to RAID 0 volumes (stripes and
concatenations).

Chapter 9 describes concepts related to RAID 1 volumes (mirrors).

Chapter 10 explains how to perform tasks related to RAID 1 volumes (mirrors).

Chapter 11 describes concepts related to the Solaris Volume Manager soft partitioning
feature.

Chapter 12 explains how to perform soft partitioning tasks.

Chapter 13 describes concepts related to RAID 5 volumes.

Chapter 14 explains how to perform tasks related to RAID 5 volumes.

Chapter 15 describes concepts related to hot spares and hot spare pools.

Chapter 16 explains how to perform tasks related to hot spares and hot spare pools.

Chapter 17 describes concepts related to transactional volumes.

Chapter 18 explains how to perform tasks related to transactional volumes.

Chapter 19 describes concepts related to disk sets.

Chapter 20 explains how to perform tasks related to disk sets.

Chapter 21 explains some general maintenance tasks that are not related to a specific
SVM component.

Chapter 22 provides some “best practices” information about configuring and using
SVM.

Chapter 23 provides concepts and instructions for using the SVM SNMP agent and for
other error checking approaches.

Chapter 24 provides information about troubleshooting and solving common
problems in the SVM environment.

Appendix A lists important SVM files.

Appendix B provides tables that summarize commands and other helpful information.

20 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Appendix C provides a brief introduction to the CIM/WBEM API allowing open SVM
management from WBEM-compliant management tools.

Glossary defines words and phrases found in this book.

Related Books
Solaris Volume Manager is one of several system administration tools available for the
Solaris operating environment. Information about overall system administration
features and functions, as well as related tools is provided in the following
information products:

� System Administration Guide: Basic Administration
� System Administration Guide: Advanced Administration

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product documentation
from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on
Fatbrain.com at http://www1.fatbrain.com/documentation/sun.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Preface 21

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

22 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 1

Getting Started with Solaris Volume
Manager

Solaris Volume Manager Administration Guide describes how to set up and maintain
systems using Solaris Volume Manager to manage storage for high availability,
flexibility, and reliability.

This chapter serves as a high-level guide to find information for certain SVM tasks,
such as setting up storage capacity. It does not address all the tasks that you will need
to use SVM. Instead, it provides an easy way to find procedures describing how to
perform common tasks associated with the following SVM concepts:

� Storage Capacity
� Availability
� I/O Performance
� Administration
� Troubleshooting

23

Caution – If you do not use SVM correctly, you can destroy data. SVM provides a
powerful way to reliably manage your disks and data on them. However, you should
always maintain backups of your data, particularly before modifying an active SVM
configuration.

Getting Started With SVM

SVM Roadmap-Storage Capacity
TABLE 1–1 SVM Roadmap-Storage Capacity

Task Description For Instructions, Go To

Set up storage You can create storage that spans slices by
creating a RAID 0 or a RAID 5 volume. The
RAID 0 or RAID 5 volume can then be used
for a file system or any application, such as a
database that accesses the raw device

“How to Create a RAID 0 (Stripe)
Volume” on page 76

“How to Create a RAID 0
(Concatenation) Volume”
on page 77

“How to Create a RAID 1
Volume From Unused Slices”
on page 95“How to Create a
RAID 1 Volume From a File
System” on page 96“How to
Create a RAID 5 Volume”
on page 138

Expand an existing file
system

To increase the capacity of an existing file
system by creating a concatenation then
adding additional slices.

“How to Expand Space for
Existing Data” on page 78

Expand an existing RAID 0
(concatenation or stripe)
volume

To expand an existing RAID 0 volume,
concatenate additional slices to it. .

“How to Expand an Existing
RAID 0 (stripe) Volume”
on page 80

Expand a RAID 5 volume To expand the capacity of a RAID 5 volume,
concatenate additional slices to it

“How to Expand a RAID 5
Volume” on page 141

Increase the size of a UFS
(Unix file system) on a
expanded logical volume

To grow a file system, use the growfs
command to expand the size of a UFS while it
is mounted and without disrupting access to
the data.

“How to Grow a File System”
on page 217

24 Solaris Volume Manager Administration Guide • December 2001 (Beta)

TABLE 1–1 SVM Roadmap-Storage Capacity (Continued)
Task Description For Instructions, Go To

Subdivide slices or logical
volumes into smaller
partitions, breaking the 8 slice
hard partition limit

To subdivide logical volumes or slices, use soft
partitions.

“How to Create a Soft Partition”
on page 126

Create a file system You can create a file system on a RAID 0
(stripe or concatenation) RAID 1 (mirror),
RAID 5, or transactional volume, or on a soft
partition.

“Creating File Systems (Tasks)”
in System Administration Guide:
Basic Administration

SVM Roadmap-Availability
TABLE 1–2 SVM Roadmap-Availablity

Task Description For Instructions, Go To

Maximize data availability If you want maximum availability of your
data, use Solaris Volume Manager’s mirroring
feature to maintain multiple copies of your
data. You can create a mirror from unused
slices in preparation for data, or mirror an
existing file system, including root (/) and
/usr.

“How to Create a RAID 1
Volume From Unused Slices”
on page 95

“How to Create a RAID 1
Volume From a File System”
on page 96

Add data availability with
minimum hardware cost

To increase data availability with minimum of
hardware, use Solaris Volume Manager’s
RAID 5 Volume feature.

“How to Create a RAID 5
Volume” on page 138

Increase data availability for
an existing mirror or RAID 5
volume

To increase data availability for a RAID 1 or a
RAID 5 volume, create a hot spare pool then
associate it with a mirror’s submirrors, or a
RAID 5 volume.

“Creating a Hot Spare Pool”
on page 150 and “Associating a
Hot Spare Pool with Volumes”
on page 152

Increase file system
availability after reboot

To increase overall file system availability after
reboot, add UFS logging (transactional
volume) to the system. Logging a file system
reduces the amount of time that the fsck
command has to run when the system reboots.

“About File System Logging”
on page 159

Getting Started with Solaris Volume Manager 25

SVM Roadmap-I/O Performance
TABLE 1–3 SVM Roadmap-I/O Performance

Task Description For Instructions, Go To

Tune mirror read and
write policies

The read and write policies for a mirror can be specified
to improve performance for a given configuration.

“Mirror Read and Write
Policies” on page 88 and
“How to Change a Mirror’s
Options” on page 109

Optimize device
performance

Creating stripes optimizes performance of devices that
make up the stripe. The stripe’s interlace value can be
optimized for random or sequential access.

“Creating RAID 0 (Stripe)
Volumes” on page 76

Maintain device
performance within a
stripe

A concatenated stripe expands a stripe or concatenation
that has run out of space. A concatenation of stripes is
better for performance than a concatenation of slices.

“Expanding Storage Space”
on page 78

SVM Roadmap-Administration
TABLE 1–4 SVM Roadmap-Administration

Task Description For Instructions, Go To

Graphically
administer your
volume management
configuration

SVM is integrated with the Solaris Management Console
graphical user interface. Use it to administer volume
management configuration.

Online help from within SVM
(Enhanced Storage) node of
the Solaris Management
Console application

Graphically
administer slices and
file systems

Use the Solaris Management Console graphical user
interface to administer your disks and file systems,
performing such tasks as partitioning disks and
constructing UFS file systems.

Online help from within the
Solaris Management Console
application

Optimize Solaris
Volume Manager

SVM performance is dependent on a well-designed
configuration. Once created, the configuration needs
monitoring and tuning.

“Solaris Volume Manager
Configuration Guidelines”
on page 47 and “Working
with Configuration Files”
on page 212

Plan for future
expansion

Because file systems tend to run out of space, you can
plan for future growth by putting a file system into a
concatenation.

“Creating RAID 0
(Concatenation) Volumes”
on page 77 and “Expanding
Storage Space” on page 78

26 Solaris Volume Manager Administration Guide • December 2001 (Beta)

SVM Roadmap-Troubleshooting
TABLE 1–5 SVM Roadmap-Troubleshooting

Task Description For Instructions, Go To

Replace a failed slice The situation could arise when a failing slice in a volume
needs replacing. In the case of stripes and concatenation,
you have to use a new slice, delete and recreate the
volume, then restore data from a backup. Slices in RAID 1
and RAID 5 volumes can be replaced and resynchronized
without loss of data.

“Responding to Mirror
Component Failures”
on page 112

“How to Replace a Slice in a
RAID 5 Volume” on page 143

Recover from boot
problems

Special problems can arise when booting the system, due
to a hardware problem or operator error.

“How to Recover From
Improper /etc/vfstab
Entries” on page 248

“How to Recover From
Insufficient State Database
Replicas” on page 255

“How to Recover From a Boot
Device Failure” on page 250

Work with
transactional volume
problems

Problems with transactional volumes can occur on either
the master or logging device, and they can either be
caused by data or device problems. All transactional
volumes sharing the same logging device must be fixed
before they return to a usable state.

“How to Recover a
Transactional Volume With a
File System Panic” on page 180

“How to Recover a
Transactional Volume With
Hard Errors” on page 181

Getting Started with Solaris Volume Manager 27

28 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 2

Storage Management Concepts

This chapter provides a brief introduction to some common storage management
concepts. If you are already familiar with storage management concepts, you can
proceed directly to Chapter 3.

This chapter contains the following information:

� “Introduction to Storage Management” on page 29
� “Configuration Planning Guidelines” on page 31
� “Performance Issues” on page 32
� “Optimizing for Random I/O and Sequential I/O” on page 33

Introduction to Storage Management
Storage management is the means by which you control the devices on which the
active data on your system is kept. To be useful, active data must be available and
remain unchanged (persistent) even after unexpected events (hardware failure,
software failure, or other similar event).

Storage Hardware
There are many different devices on which data can be stored. The selection of devices
to best meet your storage needs depends primarily on three factors:

� Performance
� Availability
� Cost

29

If getting access to your information quickly is the primary issue that you face, you
might need to have more high-performance devices, which would then cost more
money. High-capacity devices (such as optical disks, for example), on the other hand,
let you store much larger amounts of data on each device, but have slower access
times.

You can use SVM to help manage the trade-offs in performance, availability and cost,
and can often mitigate many of the trade-offs completely with SVM.

SVM works well with any supported storage on your Solaris™ Operating
Environment system.

RAID Levels
RAID is an acronym for Redundant Array of Inexpensive (or Independent) Disks.
Basically, this term refers to a set of disks (called an array) that appears to the user as a
single large, fast, super-reliable disk drive. This array provides improved reliability,
response time, and/or storage capacity.

Technically, there are six RAID levels, 0-5, each referring to a method of distributing
data while ensuring data redundancy. (RAID level 0 does not provide data
redundancy, but is usually included as a RAID classification because it is the basis for
the majority of RAID configurations in use.) Very few storage environments support
RAID levels 2, 3, and 4, so they are not described here.

Solaris Volume Manager supports the following RAID levels:

� RAID Level 0—Although they do not provide redundancy, stripes and
concatenations are often referred to as RAID 0. Basically, data are spread across
relatively small, equally-sized fragments that are allocated alternately and evenly
across multiple physical disks. Any single drive failure can cause data loss. RAID 0
offers a high data transfer rate and high I/O throughput, but suffers lower
reliability and availability than a single disk

� RAID Level 1—Mirroring uses equal amounts of disk capacity to store data and a
copy (mirror) of it. Data are duplicated, or mirrored, over two or more physical
disks. Data can be read from both drives simultaneously (either drive can service
any request), providing improved performance. If one physical disk fails, you can
use the mirrored disk as you would the original.

SVM supports both RAID 0+1 and (transparently) RAID 1+0 mirroring, depending
on the underlying devices. See “Providing RAID 1+0 and RAID 0+1” on page 85
for details.

� RAID Level 5—RAID 5 uses striping to spread the data over the disks in an array.
RAID 5 also records parity information to provide some data redundancy. A RAID
level 5 volume can withstand the failure of an underlying slice without failing,
and, if used in conjunction with hot spares, can withstand multiple failures.

30 Solaris Volume Manager Administration Guide • December 2001 (Beta)

In the RAID 5 model, every stripe has one area that contains a parity stripe and
others that contain data. The parity is spread over all of the disks in the array,
reducing the write time for large independent writes because the writes do not
have to wait until a single parity disk can accept the data.

Configuration Planning Guidelines
When planning your storage management configuration, keep in mind that for any
given application there are trade-offs in performance, availability, and hardware costs. You
might need to experiment with the different variables to determine what works best
for your configuration.

This section provides guidelines for working with Solaris Volume Manager RAID 0
(concatenation and stripe) volumes, RAID 1 (mirror) volumes, RAID 5 volumes, soft
partitions, transactional (logging) volumes, and file systems constructed on volumes.

Choosing Storage Mechanisms
Before you implement your storage management approach, you need to decide what
kinds of storage devices to use. This set of guidelines compares and contrasts the
various storage mechanisms to help you choose among them. Additional sets of
guidelines apply to specific storage mechanisms as implemented in SVM – see specific
chapters about each volume type for details.

Note – The storage mechanisms listed are not mutually exclusive—you can use them
in combination to meet multiple goals. For example, you could create a RAID 1
volume for redundancy, then create soft partitions on it to increase the number of
discrete file systems that are possible.

TABLE 2–1 Choosing Storage Mechanisms

Requirements RAID 0
(Concatenation)

RAID 0 (Stripe) RAID 1 (Mirror) RAID 5 Soft Partitions

Redundant
data

No No Yes Yes No

Improved
Read
Performance

No Yes Depends on
underlying
device

Yes No

Storage Management Concepts 31

TABLE 2–1 Choosing Storage Mechanisms (Continued)
Requirements RAID 0

(Concatenation)
RAID 0 (Stripe) RAID 1 (Mirror) RAID 5 Soft Partitions

Improved
Write
Performance

Yes Yes No No Yes

More than 8
slices/device

No No No No Yes

TABLE 2–2 Optimizing Redundant Storage

RAID 1 (Mirror) RAID 5

Write operations Faster Slower

Random read Faster Slower

Hardware cost Higher Lower

� RAID 0 devices (stripes, concatenations), and soft partitions do not provide any
redundancy of data.

� Concatenation works well for small random I/O.

� Striping performs well for large sequential I/O and for random I/O distributions.

� Mirroring may improve read performance; write performance is always degraded.

� Because of the read-modify-write nature of RAID 5 volumes, volumes with greater
than about 20 percent writes should probably not be RAID 5. If data protection is
required, consider mirroring.

� RAID 5 writes will never be as fast as mirrored writes, which in turn will never be
as fast as unprotected writes.

� Soft partitions are useful for managing very large storage devices

Performance Issues

General Performance Guidelines
When designing your storage configuration, consider the following performance
guidelines:

32 Solaris Volume Manager Administration Guide • December 2001 (Beta)

� Striping generally has the best performance, but it offers no data protection. For
write-intensive applications, RAID 1 generally has better performance than RAID
5.

� RAID 1 and RAID 5 volumes both increase data availability, but they both
generally have lower performance, especially for write operations. Mirroring does
improve random read performance.

� RAID 5 volumes have a lower hardware cost than RAID 1 volumes, while RAID 0
volumes have no additional hardware cost.

� Identify the most frequently accessed data, and increase access bandwidth to that
data with mirroring or striping.

� Both stripes and RAID 5 volumes distribute data across multiple disk drives and
help balance the I/O load. In addition, RAID 1 volumes can also be used to help
balance the I/O load.

� Use available performance monitoring capabilities available and generic tools such
as the iostat command to identify the most frequently accessed data. Once
identified, the “access bandwidth” to this data can be increased using striping,
RAID 1 volumes or RAID 5 volumes.

� Soft partitioning performance can degrade when the soft partition size is changed
frequently.

� The stripe’s performance is better than that of the RAID5 volume, but stripes do
not provide data protection (redundancy).

� RAID 5 volume performance is lower than stripe performance for write operations,
because the RAID 5 volume requires multiple I/O operations to calculate and store
the parity.

� For raw random I/O reads, the stripe and the RAID 5 volume are comparable.
Both the stripe and RAID 5 volume split the data across multiple disks, and the
RAID 5 volume parity calculations aren’t a factor in reads except after a slice
failure.

� For raw random I/O writes, the stripe is superior to RAID 5 volumes.

Optimizing for Random I/O and
Sequential I/O
This section explains SVM strategies for optimizing your particular configuration.

In general, if you do not know if sequential or random I/O predominates on
filesystems you will be implementing on SVM volumes, do not implement these
performance tuning tips—they can degrade performance if improperly implemented.

Storage Management Concepts 33

The following optimization suggestions assume that you are optimizing a RAID 0
volume. In general, you would want to optimize a RAID 0 volume, then mirror that
volume to provide both optimal performance and data redundancy.

Random I/O
If you have a random I/O environment, such as those used for databases and
general-purpose file servers, you want all disk spindles to be busy most of the time
servicing I/O requests.

For example, assume that you have 40 Gb of storage for a database application. If you
stripe across four 10 Gb disk spindles, and if the I/O load is truly random and evenly
dispersed across the entire range of the table space, then each of the four spindles will
tend to be equally busy, which will generally improve performance.

The target for maximum random I/O performance on a disk is 35 percent or lower as
reported by the iostat command. Disk use in excess of 65 percent on a typical basis
is a problem. Disk use in excess of 90 percent is a significant problem. The solution to
having disk use values that are too high is to create a new RAID 0 volume with more
disks (spindles).

Note – Simply attaching additional disks to an existing volume will not improve
performance. You must create a new volume with the ideal parameters to optimize
performance.

The interlace size of the stripe doesn’t matter, because you just want to spread the data
across all the disks. Any interlace value greater than the typical I/O request will do.

Sequential Access I/O
You can optimize the performance of your configuration to take advantage of a
sequential I/O environment, such as DBMS servers dominated by full table scans and
NFS servers in very data-intensive environments, by setting the interlace value small
relative to the size of the typical I/O request.

For example, assume a typical I/O request size of 256 Kbyte and striping across 4
spindles. A good choice for stripe unit size in this example would be: 256 Kbyte / 4
= 64 Kbyte, or smaller

This will ensure that the typical I/O request is spread across multiple disk spindles,
thus increasing the sequential bandwidth.

34 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Note – Seek and rotation time are practically zero in the sequential case. When
optimizing sequential I/O, the internal transfer rate of a disk is most important.

Example: In sequential applications, typical I/O size is usually large (greater than 128
Kbyte, often greater than 1 Mbyte). Assume an application with a typical I/O request
size of 256 Kbyte and assume striping across 4 disk spindles. 256 Kbyte / 4 = 64 Kbyte.
So, a good choice for the interlace size would be 32 to 64 Kbyte.

Storage Management Concepts 35

36 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 3

Solaris Volume Manager Overview

This chapter explains the overall structure of Solaris Volume Manager (SVM). It
provides the following information:

� “What Does Solaris Volume Manager Do?” on page 37
� “Solaris Volume Manager Requirements” on page 40
� “Overview of SVM Elements” on page 41
� “Solaris Volume Manager Configuration Guidelines” on page 47
� “Overview of Creating SVM Elements” on page 48

What Does Solaris Volume Manager Do?
Solaris Volume Manager (SVM) is a software product that lets you manage large
numbers of disks and the data on those disks. Although there are many ways to use
SVM, most tasks include:

� Increasing storage capacity
� Increasing data availability
� Easing administration of large storage devices

In some instances, SVM can also improve I/O performance.

How Does SVM Manage Storage?
SVM uses virtual disks to manage physical disks and their associated data. In SVM, a
virtual disk is called a volume.

37

A volume is functionally identical to a physical disk in the view of an application or a
file system (such as UFS). SVM converts I/O requests directed at a volume into I/O
requests to the underlying member disks.

SVM volumes are built from slices (disk partitions) or from other SVM volumes. An
easy way to build volumes is to use the graphical user interface built into the Solaris
Management Console software. The Enhanced Storage tool within the Solaris
Management Console presents you with a view of all the volumes existing. By
following the steps in wizards, you can easily build any kind of SVM volumes or
components. You can also build and modify volumes using SVM command line
utilities.

If, for example, you want to create more storage capacity as a single volume, you
could use SVM to make the system treat a collection of many small slices as one larger
slice or device. After you have created a large volume from these slices, you can
immediately begin using it just as any “real” slice or device.

For a more detailed discussion of volumes, see “Volumes” on page 41.

SVM can increase the reliability and availability of data by using RAID 1 (mirror) and
RAID 5 volumes. SVM hot spares can provide another level of data availability for
mirrors and RAID 5 volumes.

Once you have set up your configuration, you can use the Enhanced Storage tool
within the Solaris Management Console to report on its operation.

How to Interact With SVM
Use one of these methods to interact with SVM:

� The Solaris Management Console provides a graphical user interface to volume
management functions. Use the Enhanced Storage tool within the Solaris
Management Console as illustrated in Figure 3–1 — This interface provides a
graphical view of SVM elements—volumes, hot spare pools, and state database
replicas. It offers wizard-based manipulation of SVM elements, enabling you to
quickly configure your disks or change an existing configuration.

� The command line—You can use several commands to perform volume
management functions. The SVM core commands begin with “meta,” for example
the metainit and metastat commands. For a list of SVM commands, see
Appendix B.

38 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Note – Do not attempt to administer Solaris Volume Manager with the command line
and the graphical user interface at the same time. Conflicting changes could be made
to the configuration, and the behavior would be unpredictable. You can use both tools
to administer SVM, but not concurrently.

FIGURE 3–1 View of the Enhanced Storage tool (Solaris Volume Manager) in the Solaris Management Console

� How to Access the Solaris Volume Manager
Graphical User Interface
The SVM graphical interface (Enhanced Storage) is part of the Solaris Management
Console. To access it, use the following instructions:

Solaris Volume Manager Overview 39

1. Start Solaris Management Console on the host system using the following
command:

% /usr/sbin/smc

2. Double-click This Computer to expand it.

3. Double-click Storage to expand it.

4. Double-click Enhanced Storage to load the Solaris Volume Manager tools.

5. If prompted to log in, log in as root or as a user that has equivalent access.

6. Double-click the appropriate icon to manage volumes, hot spare pools, state
database replicas, and disk sets.

Tip – All tools in the Solaris Management Console display information in the bottom
section of the page or at the left side of a wizard panel to help with the current task.
Choose Help at any time to find additional information about performing tasks in this
interface.

Solaris Volume Manager Requirements
Solaris Volume Manager requirements include the following:

� You must have root access to administer Solaris Volume Manager. Equivalent
privileges granted through the User Profile feature in the Solaris Management
Console allow administration through the Solaris Management Console, but only
root can use the SVM command line interface.

� Before you can create volumes using Solaris Volume Manager, state database
replicas must exist on the Solaris Volume Manager system. At least three replicas
should exist, and they should be placed on different controllers and disks for
maximum reliability. See “About the SVM State Database and Replicas”
on page 53 for more information about state database replicas, and “Creating
State Database Replicas” on page 60 for instructions on how to create state
database replicas.

40 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Overview of SVM Elements
The four basic types of components that you create with SVM are volumes, disk sets,
state database replicas, and hot spare pools. Table 3–1 gives an overview of these SVM
elements.

TABLE 3–1 Summary of SVM Elements

SVM Element Definition Purpose For More Information, See...

RAID 0 volumes (stripe,
concatenation,
concatenated stripe), RAID
1 volumes (mirror), RAID
5 volumes

A group of physical slices
that appear to the system
as a single, logical device

To increase storage
capacity. performance, or
data availability.

“Volumes” on page 41

Soft partitions Subdivisions of physical
slices or logical volumes to
provide smaller, more
manageable storage units

To improve manageability
of large storage volumes.

State database (state
database replicas)

A database that stores
information on disk about
the state of your SVM
configuration

SVM cannot operate until
you have created the state
database replicas.

“State Database and State
Database Replicas”
on page 45

Hot spare pool A collection of slices (hot
spares) reserved to be
automatically substituted
in case of slice failure in
either a submirror or
RAID5 volume

To increase data
availability for mirrors and
RAID5 volumes.

“Hot Spare Pools”
on page 46

Disk set A set of shared disk drives
in a separate namespace
that contain volumes and
hot spares and that can be
non-concurrently shared
by multiple hosts.

To provide data
redundancy and
availability and to provide
a separate namespace for
easier administration..

“Disk Sets” on page 46

Volumes
A volume is a name for a group of physical slices that appear to the system as a single,
logical device. Volumes are actually pseudo, or virtual, devices in standard UNIX
terms.

Solaris Volume Manager Overview 41

Note – Historically, the Solstice DiskSuite product referred to these as “metadevices”;
however for simplicity and standardization, this book refers to them as “volumes”.

Classes of Volumes
You create a volume as a RAID 0 (concatenation or stripe) volume, a RAID 1 (mirror)
volume, a RAID 5 volume, a soft partition, or a UFS logging volume. .

You can use either the Enhanced Storage tool within the Solaris Management Console
or the command line utilities to create and administer volumes.

Table 3–2 summarizes the types of volumes:

TABLE 3–2 Classes of Volumes

Volume Description

Stripe or
concatenation
(RAID 0)

Can be used directly, or as the basic building blocks for mirrors and
transactional devices. By themselves, RAID 0 volumes do not provide
data redundancy.

Mirror (RAID 1) Replicates data by maintaining multiple copies. A mirror is composed of
one or more RAID 0 volumes called submirrors.

RAID 5 Replicates data by using parity information. In the case of missing data,
the missing data can be regenerated using available data and the parity
information. A RAID 5 volume is composed of slices. One slice’s worth
of space is allocated to parity information, but it is distributed across all
slices in the RAID 5 volume.

Transactional Used to log a UFS file system. A transactional volume is composed of a
master device and a logging device. Both of these devices can be a slice,
simple volume, mirror, or RAID5 volume. The master device contains
the UFS file system.

Soft partition Divide a slice or logical volume into one or more smaller, extensible
volumes.

How Are Volumes Used?
You use volumes to increase storage capacity, performance, and data availability. In
some instances, volumes can also increase I/O performance. Functionally, volumes
behave the same way as slices. Because volumes look like slices, they are transparent
to end users, applications, and file systems. Like physical devices, volumes are
accessed through block or raw device names. The volume name changes, depending
on whether the block or raw device is used. See “Volume Names” on page 44 for
details about volume names.

42 Solaris Volume Manager Administration Guide • December 2001 (Beta)

You can use most file systems commands (mount, umount, ufsdump, ufsrestore,
and so forth) on volumes. You cannot use the format command, however. You can
read, write, and copy files to and from a volume, as long as the volume contains a
mounted file system.

Example—Volume Consisting of Two Slices
Figure 3–2 shows a volume “containing” two slices, one each from Disk A and Disk B.
An application or UFS will treat the volume as if it were one physical disk. Adding
more slices to the volume will increase its capacity.

Physical Disks A and B d0

c1t0d0s2

c0t0d0s2

c1t0d0s2

c0t0d0s2

Disk A

Disk B
d0

FIGURE 3–2 Relationship Among a Volume, Physical Disks, and Slices

Volume and Disk Space Expansion
SVM enables you to expand a volume by adding additional slices. You can use either
the Enhanced Storage tool within the Solaris Management Console or the command
line interface to add a slice to an existing volume.

You can expand a mounted or unmounted UFS file system contained within a volume
without having to halt or back up your system. (Nevertheless, backing up your data is
always a good idea.) After the volume is expanded, use the growfs command to
grow the file system.

Solaris Volume Manager Overview 43

Note – After a file system is expanded, it cannot be decreased. Decreasing the size of a
file system is a UFS limitation. Similarly, after a SVM partition has been increased in
size, it cannot be reduced.

Applications and databases using the raw volume must have their own method to
“grow” the added space so that the application or database can recognize it. SVM does
not provide this capability.

You can expand the disk space in volumes in the following ways:

� Adding one or more slices to a stripe or concatenation.
� Adding a slice or multiple slices to all submirrors of a mirror.
� Adding one or more slices to a RAID5 device.

The growfs Command

The growfs command expands a UFS file system without loss of service or data.
However, write-access to the volume is suspended while the growfs command is
running. You can expand the file system to the size of the slice or the volume that
contains the file system.

The file system can be expanded to use only part of the additional disk space by using
the -s size option to the growfs command.

Note – When expanding a mirror, space is added to the mirror’s underlying
submirrors. Likewise, when expanding a transactional volume, space is added to the
master device. The growfs command is then run on the mirror or the transactional
volume, respectively. The general rule is that space is added to the underlying devices,
and the growfs command is run on the top-level device.

Volume Names

Volume Name Requirements

There are a few rules that you need to follow when assigning names for volumes:

� Volume names begin with the letter “d” followed by a number (for example, d0).

� SVM has 128 default volume names from 0-127. The following table shows some
example volume names.

44 Solaris Volume Manager Administration Guide • December 2001 (Beta)

TABLE 3–3 Example Volume Names

/dev/md/dsk/d0 Block volume d0

/dev/md/dsk/d1 Block volume d1

/dev/md/rdsk/d126 Raw volume d126

/dev/md/rdsk/d127 Raw volume d127

� Instead of specifying the full volume name, such as /dev/md/dsk/d1, you can
use an abbreviated volume name, such as d1.

� Like physical slices, volumes have logical names that appear in the file system.
Logical volume names have entries in the /dev/md/dsk directory (for block
devices) and the /dev/md/rdsk directory (for raw devices).

� You can rename a volume, as long as the volume is not currently being used and
the new name is not being used by another volume. For more information, see
“Switching (Exchanging) Volume Names” on page 210

Volume Name Suggestions

Following a standard for your volume names can simplify administration, and enable
you at a glance to easily identify the volume type. Here are a few suggestions:

� Use ranges for each particular type of volume. For example, assign numbers 0-20
for mirrors, 21-40 for stripes and concatenations, and so on.

� Use a naming relationship for mirrors. For example, name mirrors with a number
ending in zero (0), and submirrors ending in one (1) and two (2). For example:
mirror-d10, submirrors d11 and d12; mirror-d20, submirrors d21 and d22, and so
on.

� Use a naming method that maps the slice number and disk number to volume
numbers.

State Database and State Database Replicas
The state database is a database that stores information on disk about the state of your
SVM configuration. The state database records and tracks changes made to your
configuration. SVM automatically updates the state database when a configuration or
state change occurs. Creating a new volume is an example of a configuration change.
A submirror failure is an example of a state change.

The state database is actually a collection of multiple, replicated database copies. Each
copy, referred to as a state database replica, ensures that the data in the database is

Solaris Volume Manager Overview 45

always valid. Having copies of the state database protects against data loss from single
points-of-failure. The state database tracks the location and status of all known state
database replicas.

SVM cannot operate until you have created the state database and its state database
replicas. It is necessary that a SVM configuration have an operating state database.

When you set up your configuration, you can locate the state database replicas either:

� On dedicated slices
� On slices that will later become part of volumes

SVM recognizes when a slice contains a state database replica, and automatically skips
over the portion of the slice reserved for the replica if the slice is used in a volume. The
part of a slice reserved for the state database replica should not be used for any other
purpose.

You can keep more than one copy of a state database on one slice, though you may
make the system more vulnerable to a single point-of-failure by doing so.

The system will continue to function correctly if all state database replicas are deleted,
but will lose all SVM configuration data if a reboot occurs with no existing state
database replicas on disk.

Hot Spare Pools
A hot spare pool is a collection of slices (hot spares) reserved by SVM to be automatically
substituted in case of a slice failure in either a submirror or RAID5 volume. Hot spares
provide increased data availability for mirrors and RAID5 volumes. You can create a
hot spare pool with either the Enhanced Storage tool within the Solaris Management
Console or the command line interface.

When errors occur, SVM checks the hot spare pool for the first available hot spare
whose size is equal to or greater than the size of the slice being replaced. If found,
SVM automatically resynchronizes the data. If a slice of adequate size is not found in
the list of hot spares, the submirror or RAID5 volume is considered to have failed. For
more information, see Chapter 15.

Disk Sets
A shared disk set, or simply disk set, is a set of disk drives containing state database
replicas, volumes and hot spares that can be shared exclusively but not at the same
time by multiple hosts.

46 Solaris Volume Manager Administration Guide • December 2001 (Beta)

A disk set provides for data availability in a clustered environment. If one host fails,
another host can take over the failed host’s disk set. (This type of configuration is
known as a failover configuration.)

For more information, see Chapter 19.

Solaris Volume Manager Configuration
Guidelines
A poorly designed SVM configuration can degrade performance. This section offers
tips for getting good performance from SVM.

General Guidelines
� Disk and controllers — Place drives in a volume on separate drive paths. For SCSI

drives, this means separate host adapters. Spreading the I/O load over several
controllers improves volume performance and availability.

� System files — Never edit or remove the /etc/lvm/mddb.cf or
/etc/lvm/md.cf files.

Make sure these files are backed up on a regular basis.

� Volume Integrity— After a slice is defined as a volume and activated, do not use it
for any other purpose.

� Maximum volumes — The maximum number of volumes supported is 8192
(though the default number of volumes is 128). To increase the number of default
volumes, edit the /kernel/drv/md.conf file. See “System and Startup Files”
on page 259 for more information on this file.

� Information about disks and partitions — Have a hardcopy of output from the
prtvtoc command and metastat -p in case you need to reformat a bad disk or
recreate your SVM configuration.

File System Guidelines
� Do not mount file systems on a volume’s underlying slice. If a slice is used for a

volume of any kind, you must not mount that slice as a file system. If possible,
unmount any physical device you intend to use as a volume before you activate it.
For example, if you create a transactional volume for a UFS, in the /etc/vfstab

Solaris Volume Manager Overview 47

file, you would specify the transactional volume name as the device to mount and
fsck.

Overview of Creating SVM Elements
When you create a SVM element, you assign physical slices to a logical SVM name.
The SVM elements that you can create include:

� State database replicas

� Volumes (RAID 0 (stripes, concatenations), RAID 1 (mirrors), RAID 5, soft
partitions, and transactional volumes)

� Hot spare pools

� Disk sets

Note – For suggestions on how to name volumes, see “Volume Names” on page 44.

Prerequisites for Creating SVM Elements
Here are the prerequisites for creating SVM elements:

� Create initial state database replicas. If you have not done so, see “Creating State
Database Replicas” on page 60.

� Identify slices that are available for use by SVM. If necessary, use the format
command, the fmthard command, or the Solaris Management Console to
repartition existing disks.

� Make sure you have root privilege.

� Have a current backup of all data.

� If using the graphical user interface, start the Solaris Management Console and
maneuver through it to get to the Solaris Volume Manager feature. For
information, see “How to Access the Solaris Volume Manager Graphical User
Interface” on page 39.

48 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 4

Configuring and Using SVM
(Scenario)

Throughout the Solaris Volume Manager Administration Guide, the examples relate to
a single storage configuration. This chapter explains what that configuration is and
provides a storage scenario for the rest of the book.

This chapter contains the following information:

� “Background” on page 49
� “Complete SVM Configuration” on page 51

Background
Throughout this book, all examples relate to a single configuration. Although this
configuration is small (to simplify the documentation), the concepts will scale to much
larger storage environments.

Hardware Configuration
The hardware system is as follows:

� Three physically separate controllers (c0 — IDE, c1—SCSI, and c2 — SCSI).

� Each SCSI controller connects to a MultiPack that contains six internal nine Gbyte
disks (c1t1 through c1t6 and c2t1 through c2t6),

� Each controller/terminator pair (cxtx) has 8.49 GBytes of storage space

� Storage space on c0t0d0 is split into seven partitions

49

An alternative way to understand this configuration is shown in the following
illustration.

FIGURE 4–1 Basic Hardware Diagram

Storage Configuration
The storage configuration before SVM is configured is as follows:

� The SCSI controller/terminator pairs (cntn) have approximately 20 GBytes of
storage space

� Storage space on each disk (for example, c1t1d0) is split into seven partitions
(cntnd0s0 through cntnd0s6) .

To partition a disk, follow the procedures explained in “Formatting a Disk” in
System Administration Guide: Basic Administration.

An alternative way to understand this configuration is shown in the following
illustration.

50 Solaris Volume Manager Administration Guide • December 2001 (Beta)

FIGURE 4–2 Partition Diagram

Complete SVM Configuration
Throughout this book, specific examples are provided with specific tasks. However, so
that you can better understand the examples throughout the book, the final
configuration is approximately as follows (as displayed by metastat(1M) with the
-p option):

Configuring and Using SVM (Scenario) 51

[root@lexicon:/]$ metastat -p
d50 -r c1t4d0s5 c1t5d0s5 c2t4d0s5 c2t5d0s5 c1t1d0s5 c2t1d0s5 -k -i 32b
d1 1 1 c1t2d0s3
d2 1 1 c2t2d0s3
d12 1 1 c1t1d0s0
d13 1 1 c2t1d0s0
d16 1 1 c1t1d0s1
d17 1 1 c2t1d0s1
d25 2 2 c1t1d0s3 c2t1d0s3 -i 32b \

1 c0t0d0s3
d31 1 2 c1t4d0s4 c2t4d0s4 -i 8192b
d80 -p d70 -o 1 -b 2097152
d81 -p d70 -o 2097154 -b 2097152
d82 -p d70 -o 4194307 -b 2097152
d83 -p d70 -o 6291460 -b 2097152
d84 -p d70 -o 8388613 -b 2097152
d85 -p d70 -o 10485766 -b 2097152
d70 -m d71 d72 1
d71 3 1 c1t3d0s3 \

1 c1t3d0s4 \
1 c1t3d0s5

d72 3 1 c2t3d0s3 \
1 c2t3d0s4 \
1 c2t3d0s5

d123 -p c1t3d0s6 -o 1 -b 204800
d124 -p c1t3d0s6 -o 204802 -b 204800
d125 -p c1t3d0s6 -o 409603 -b 204800
d126 -p c1t3d0s7 -o 3592 -b 20480
d127 -p c2t3d0s7 -o 3592 -b 1433600
hsp010
hsp014 c1t2d0s1 c2t2d0s1
hsp050 c1t2d0s5 c2t2d0s5
hsp070 c1t2d0s4 c2t2d0s4

See

52 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 5

State Database (Overview)

This chapter provides conceptual information about state database replicas. For
information about performing related tasks, see Chapter 6.

This chapter contains the following information:

� “About the SVM State Database and Replicas” on page 53
� “Understanding the Majority Consensus Algorithm” on page 54
� “Preliminary Information for Defining State Database Replicas” on page 55
� “Handling State Database Replica Errors” on page 57

About the SVM State Database and
Replicas
The Solaris Volume Manager state database contains configuration and status
information for all volumes, hot spares, and disk sets. SVM maintains multiple copies
(replicas) of the state database to provide redundancy and prevent the database from
being corrupted during a system crash (at most, only one database copy will be
corrupted).

The state database replicas ensure that the data in the state database is always valid.
When the state database is updated, each state database replica is also updated. The
updates take place one at a time (to protect against corrupting all updates if the
system crashes).

If your system loses a state database replica, SVM must figure out which state
database replicas still contain non-corrupted data. SVM determines this information
by a majority consensus algorithm. This algorithm requires that a majority (half + 1) of
the state database replicas be available before any of them are considered non-corrupt.

53

It is because of this majority consensus algorithm that you must create at least three
state database replicas when you set up your disk configuration. A consensus can be
reached as long as at least two of the three state database replicas are available.

During booting, SVM ignores corrupted state database replicas. In some cases SVM
tries to rewrite state database replicas that are bad. Otherwise they are ignored until
you repair them. If a state database replica becomes bad because its underlying slice
encountered an error, you will need to repair or replace the slice and then enable the
replica.

If all state database replicas are lost, you could, in theory, lose all data that is stored on
your SVM volumes. For this reason, it is good practice to create enough state database
replicas on separate drives and across controllers to prevent catastrophic failure. It is
also wise to save your initial SVM configuration information, as well as your disk
partition information.

See Chapter 6 for information on adding additional state database replicas to the
system, and on recovering when state database replicas are lost.

State database replicas are also used for mirror resynchronization regions. Too few
state database replicas relative to the number of mirrors may cause replica I/O to
impact mirror performance. That is, if you have a large number of mirrors, make sure
that you have a total of at least two state database replicas per mirrors.

Each state database replica occupies 4 Mbytes (8192 disk sectors) of disk storage by
default. Replicas can be stored on: a dedicated disk partition, a partition which will be
part of a volume, or a partition which will be part of a UFS logging device.

Note – Replicas cannot be stored on the root (/), swap, or /usr slices, or on slices
containing existing file systems or data. After the replicas have been stored, volumes
or filesystems may be placed on the same slice.

Understanding the Majority Consensus
Algorithm
Replicated databases have an inherent problem in determining which database has
valid and correct data. To solve this problem, SVM uses a majority consensus
algorithm. This algorithm requires that a majority of the database replicas agree with
each other before any of them are declared valid. This algorithm requires the presence
of at least three initial replicas which you create. A consensus can then be reached as
long as at least two of the three replicas are available. If there is only one replica and
the system crashes, it is possible that all volume configuration data may be lost.

54 Solaris Volume Manager Administration Guide • December 2001 (Beta)

To protect data, SVM will not function unless half of all state database replicas are
available. The algorithm, therefore, ensures against corrupt data.

The majority consensus algorithm provides the following:

� The system will stay running if at least half of the state database replicas are
available.

� The system will panic if fewer than half the state database replicas are available.

� The system will not reboot unless a majority (half + 1) of the total number of state
database replicas is available.

Note – When the number of state database replicas is odd, SVM computes the
majority by dividing the number in half, rounding down to the nearest integer, then
adding 1 (one). For example, on a system with seven replicas, the majority would be
four (seven divided by two is three and one-half, rounded down is three, plus one is
four).

Preliminary Information for Defining
State Database Replicas
In general, it is best to distribute state database replicas across slices, drives, and
controllers, to avoid single points-of-failure. You want a majority of replicas to survive
a single component failure. If you lose a replica (for example, due to a device failure),
it may cause problems running SVM or when rebooting the system. SVM requires half
of the replicas to be available to run, but a majority (half plus one) to reboot.

When working with state database replicas, consider the following
“Recommendations for State Database Replicas” on page 55 and “Suggestions for
State Database Replicas” on page 56.

Recommendations for State Database Replicas
� You should create state database replicas on a dedicated slice of at least 4Mb per

replica. Alternatively, you can create state database replicas on a slice that will be
used as part of a RAID 0, RAID 1, or RAID 5 volume, or soft partitions, or
transactional (master or logging) volumes. You must create the replicas before
adding the slice to the volume. SVM reserves the starting part of the slice for the
state database replica.

� You can create state database replicas on slices not in use.

State Database (Overview) 55

� You cannot create state database replicas on existing file systems, root (/), /usr,
and swap. If necessary, you can create a new slice (provided a slice name is
available) by allocating space from swap and put state database replicas on that
new slice.

� A minimum of three (3) state database replicas are recommended, up to a
maximum of 50 replicas per SVM configuration. The following guidelines are
recommended:

� For a system with only a single drive: put all 3 replicas in one slice.

� For a system with two to four drives: put two replicas on each drive.

� For a system with five or more drives: put one replica on each drive.

� All replicas are written when the configuration changes.

� If you have a mirror that will be used for small-sized random I/O (as in for a
database), be sure that you have at least two extra replicas per mirror on slices (and
preferably disks and controllers) unconnected to the mirror for best performance.

Suggestions for State Database Replicas
� You can add additional state database replicas to the system at any time. The

additional state database replicas help ensure SVM availability.

Note – If you upgraded from Solstice DiskSuite™to Solaris Volume Manager and
have state database replicas at the beginning of slices (as opposed to on separate
slices), do not delete existing replicas and replace them with new ones in the same
location.

The default state database replica size in SVM is 8192 blocks, while the default size
in Solstice DiskSuite was 1034 blocks. If you delete a default-size state database
replica from DiskSuite, then add a new default-size replica with SVM, you will
overwrite the first 7158 blocks of any filesystem occupying the rest of the shared
slice, thus destroying the data.

� When a state database replica is placed on a slice that becomes part of a volume,
the capacity of the volume is reduced by the space occupied by the replica(s). The
space used by a replica is rounded up to the next cylinder boundary and this space
is skipped by the volume.

� By default, the size of a state database replica is 4Mb or 8192 disk blocks of a slice.
Because your disk slices might not be that small, you might want to resize a slice to
hold the state database replica. For information on resizing a slice, see
“Administering Disks (Tasks)” in System Administration Guide: Basic Administration.

� If multiple controllers exist, replicas should be distributed as evenly as possible
across all controllers. This provides redundancy in case a controller fails and also

56 Solaris Volume Manager Administration Guide • December 2001 (Beta)

helps balance the load. If multiple disks exist on a controller, at least two of the
disks on each controller should store a replica.

Handling State Database Replica Errors
index-67

How does SVM handle failed replicas?
The system will stay running with at least half of the available replicas. The system
will panic when fewer than half of the replicas are available.

The system can reboot when at least one more than half of the replicas are available.
If fewer than a majority of replicas are available, you must reboot into single-user
mode and delete the bad replicas (using the metadb command).

For example, assume you have four replicas. The system will stay running as long
as two replicas (half the total number) are available. However, to reboot the system,
three replicas (half the total plus one) must be available.

In a two-disk configuration, you should always create at least two replicas on each
disk. For example, assume you have a configuration with two disks and you only
create three replicas (two on the first disk and one on the second disk). If the disk
with two replicas fails, SVM will stop functioning because the remaining disk only
has one replica and this is less than half the total number of replicas.

Note – If you create two replicas on each disk in a two-disk configuration, SVM
will still function if one disk fails. But because you must have one more than half of
the total replicas available for the system to reboot, you will be unable to reboot.

What happens if a slice that contains a state database replica fails?
The rest of your configuration should remain in operation. SVM finds a good state
database (as long as there are at least half plus one valid state database replicas).

What happens when state database replicas are repaired?
When you manually repair or enable state database replicas, SVM updates them
with valid data.

State Database (Overview) 57

Scenario—State Database Replicas
State database replicas provide redundant data about the overall SVM configuration.
The following example, drawing on the sample system described in Chapter 4,
describes how state database replicas can be distributed to provide adequate
redundancy.

The sample system has one internal IDE controller and drive, plus two SCSI
controllers, which each have 6 disks attached. With three controllers, the system can be
configured to avoid any single point of failure—any system with only two controllers
cannot avoid a single point of failure relative to SVM. By distributing replicas evenly
across all three controllers and across at least one disk on each controller (across two
disks if possible), the system can withstand any single hardware failure.

A minimal configuration could put a single state database replica on slice 7 of the root
disk, then an additional replica on slice 7 of one disk on each of the other two
controllers. To help protect against the admittedly remote possibility of media failure,
using two replicas on the root disk and then two on two different disks on each
controller, for a total of 6 replicas, provides more than adequate security.

To round out the total, add two additional replicas for each of the 6 mirrors, on
different disks than the mirrors. This results in a total of 18 replicas with two on the
root disk and eight on each of the SCSI controllers, distributed across the disks on each
controller.

58 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 6

State Database (Tasks)

This chapter provides information about performing tasks that are associated with
state database replicas. For information about the concepts involved in these tasks, see
Chapter 5.

State Database Replicas (Task Map)
The following task map identifies the procedures needed to manage SVM state
database replicas.

Task Description Instructions

Creating state database
replicas

Use metadb -a to create state
database replicas.

“How to Create State
Database Replicas”
on page 60

Checking the status of
state database replicas

Use metadb to check the status of
existing replicas.

“How to Check the Status
of State Database Replicas”
on page 62

Deleting state database
replicas.

Use metadb -d to delete state
database replicas.

“How to Delete State
Database Replicas”
on page 63

59

Creating State Database Replicas

� How to Create State Database Replicas
1. Check “Prerequisites for Creating SVM Elements” on page 48.

2. To create state database replicas, use one of the following methods:

Note – If you upgraded from Solstice DiskSuite™to Solaris Volume Manager and have
state database replicas at the beginning of slices (as opposed to on separate slices), do
not delete existing replicas and replace them with new ones in the same location.

The default state database replica size in SVM is 8192 blocks, while the default size in
Solstice DiskSuite was 1034 blocks. If you delete a default-size state database replica
from DiskSuite, then add a new default-size replica with SVM, you will overwrite the
first 7158 blocks of any filesystem occupying the rest of the shared slice, thus
destroying the data.

� From the Enhanced Storage tool within the Solaris Management Console, open the
State Database Replicas node. Choose Action->Create Replicas and follow the on
screen instructions. For more information, see the online help.

� Use the following form of the metadb command. See the metadb(1M) man page
for more information.

metadb -a -f ctds-of-slice

Use the -f flag to force creation of the initial replicas.

Example—Adding the First State Database Replica
metadb -a -f c0t20d0s7
metadb

flags first blk block count
...

a u 16 8192 /dev/dsk/c0t0d0s7

The -a option adds the additional state database replica to the system, and the -f
option forces creation of the first replica (and may be omitted when adding
supplemental replicas to the system). The metadb command without options reports
status of all replicas.

60 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Example—Adding Two State Database Replicas to the
Same Slice
metadb -a -c 2 c1t3d0s1
metadb

flags first blk block count
...

a u 16 8192 /dev/dsk/c1t3d0s1

a u 8208 8192 /dev/dsk/c1t3d0s1

The -a option adds additional state database replicas to the system. The -c 2 option
places two replicas on the specified slice. The metadb command checks that the
replicas are active, as indicated by the -a flag.

You can also specify the size of the state database replica with the -l option, followed
by the number of blocks. However, the default size of 8192 should be appropriate for
virtually all situations, including those with thousands of logical volumes.

Example—Adding State Database Replicas of Specific
Length
If you are replacing existing state database replicas, you might need to specify a
length. Particularly if you have existing state database replica (on a system upgraded
from Solstice DiskSuite, perhaps) that share a slice with a filesystem, you must replace
existing replicas with others of the same size or add new replicas in a different
location.

Note – Do not replace default length (1034 block) state database replicas from Solstice
DiskSuite with default length SVM replicas on a slice shared with a filesystem. If you
do, the new replicas will overwrite the beginning of your file system and corrupt it.

metadb -a -c 3 -l 1034 c0t0d0s7
metadb

flags first blk block count
...

a u 16 1034 /dev/dsk/c0t0d0s7
a u 1050 1034 /dev/dsk/c0t0d0s7

a u 2084 1034 /dev/dsk/c0t0d0s7

The -a option adds the additional state database replica to the system, and the -l
option specifies the length in blocks of the replica to add. The metadb command
without options reports status of all replicas.

State Database (Tasks) 61

Maintaining State Database Replicas

� How to Check the Status of State Database Replicas
� To check state database replica status, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
State Database Replicas node to view all existing state database replicas. For more
information, see the online help.

� Use the metadb command to view the status of state database replicas, adding the
-i option to see a key to the status flags. See the metadb(1M) man page for more
information.

Example—Checking Status of All State Database Replicas
metadb -i

flags first blk block count
a m p luo 16 8192 /dev/dsk/c0t0d0s7
a p luo 8208 8192 /dev/dsk/c0t0d0s7
a p luo 16400 8192 /dev/dsk/c0t0d0s7
a p luo 16 8192 /dev/dsk/c1t3d0s1
W p l 16 8192 /dev/dsk/c2t3d0s1
a p luo 16 8192 /dev/dsk/c1t1d0s3
a p luo 8208 8192 /dev/dsk/c1t1d0s3
a p luo 16400 8192 /dev/dsk/c1t1d0s3

r - replica does not have device relocation information
o - replica active prior to last mddb configuration change
u - replica is up to date
l - locator for this replica was read successfully
c - replica’s location was in /etc/lvm/mddb.cf
p - replica’s location was patched in kernel
m - replica is master, this is replica selected as input
W - replica has device write errors
a - replica is active, commits are occurring to this replica
M - replica had problem with master blocks
D - replica had problem with data blocks
F - replica had format problems
S - replica is too small to hold current data base

R - replica had device read errors

The characters in the front of the device name represent the status. A legend of all the
flags follows the status.

62 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Uppercase letters indicate a problem status. Lowercase letters indicate an “Okay”
status.

How to Delete State Database Replicas
You might need to delete state database replicas to maintain your SVM configuration.
For example, if you will be replacing disk drives, you would want to delete the state
database replicas before removing the drives so they are not considered to have errors
by SVM.

� To remove state database replicas, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
State Database Replicas node to view all existing state database replicas. Select
replicas to delete, then choose Edit->Delete to remove them. For more information,
see the online help.

� Use the following form of the metadb command:

metadb -d ctds-of-slice

Note that you need to provide the ctds number for each slice from which you want
the state database replica removed. See the metadb(1M) man page for more
information.

Example—Deleting State Database Replicas
metadb -d c0t0d0s7

You must add a -f flag to force deletion of the last replica on the system.

State Database (Tasks) 63

64 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 7

RAID 0 (Stripe and Concatenation)
Volumes (Overview)

This chapter describes RAID 0 volumes (both stripes and concatenations) available in
Solaris Volume Manager. For information about related tasks, see Chapter 8.

This chapter provides the following information:

� “Overview of RAID 0 Volumes” on page 65
� “Preliminary Information for Creating RAID 0 Volumes” on page 71
� “Scenario—RAID 0 Volumes” on page 73

Overview of RAID 0 Volumes
RAID 0 volumes, including both stripes and concatenations, are composed of slices
and enable you to expand disk storage capacity. They can be used either directly or as
the building blocks for RAID 1 volumes (mirrors), transactional volumes, and soft
partitions. There are three kinds of RAID 0 volumes:

� Striped volumes (or stripes)
� Concatenated volumes (or concatenations)
� Concatenated striped volumes (or concatenated stripes)

A stripe spreads data equally across all slices in the stripe, while a concatenated
volume writes data to the first available slice until it is full, then moves to the next
available slice. A concatenated stripe is simply a stripe that has been “grown” from its
original configuration by adding additional slices.

RAID 0 volumes allow you to quickly and simply expand disk storage capacity. The
drawback to these volumes is that they do not provide any data redundancy—unlike
RAID 1 or RAID 5 volumes. If a single slice fails on a RAID 0 volume, data is lost.

You can use a RAID 0 volume containing a single slice for any file system.

65

You can use a RAID 0 volume containing multiple slices for any file system except the
following:

� Root (/)

� /usr

� swap

� /var

� /opt

� Any file system accessed during an operating system upgrade or installation

Note – When you mirror root (/), /usr, swap, /var, or /opt, you put the file system
into a one-way concatenation (a concatenation of a single slice) that acts as a
submirror. This is mirrored by another submirror, which is also a concatenation.

RAID 0 (Stripe) Volume
A RAID 0 (stripe) volume is a volume that arranges data across two or more slices.
Striping alternates equally-sized segments of data across two or more slices, forming
one logical storage unit. These segments are interleaved round-robin, so that the
combined space is made alternately from each slice, in effect, shuffled like a deck of
cards.

Striping enables multiple controllers to access data at the same time (parallel access).
Parallel access can increase I/O throughput because all disks in the volume are busy
most of the time servicing I/O requests.

An existing file system cannot be converted directly to a stripe. To place an existing
file system on a stripe, you must back up the file system, create the stripe, then restore
the file system to the stripe.

For sequential I/O operations on a stripe, Solaris Volume Manager reads all the blocks
in a segment of blocks (called an interlace) on the first slice, then all the blocks in a
segment of blocks on the second slice, and so forth.

For sequential I/O operations on a concatenation, Solaris Volume Manager reads all
the blocks on the first slice, then all the blocks of the second slice, and so forth.

On both a concatenation and a stripe, all I/O occurs in parallel.

Interlace Values for Stripes
An interlace is the size, in Kbytes, Mbytes, or blocks, of the logical data chunks on a
stripe. Depending on the application, different interlace values can increase

66 Solaris Volume Manager Administration Guide • December 2001 (Beta)

performance for your configuration. The performance increase comes from several
disk arms doing I/O. When the I/O request is larger than the interlace size, you may
get better performance.

Note – RAID5 volumes also use an interlace value. See “Overview of RAID 5
Volumes” on page 131 for more information.

When you create a stripe, you can set the interlace value or use the SVM default
interlace value of 16 Kbytes. Once you have created the stripe, you cannot change the
interlace value (although you could back up the data on it, delete the stripe, create a
new stripe with a new interlace value, and then restore the data).

Scenario—RAID 0 (Stripe) Volume
Figure 7–1 shows a stripe built from three slices (disks).

When Solaris Volume Manager stripes data from the volume to the slices, it writes
data from chunk 1 to Disk A, from chunk 2 to Disk B, and from chunk 3 to Disk C.
Solaris Volume Manager then writes chunk 4 to Disk A, chunk 5 to Disk B, chunk 6 to
Disk C, and so forth.

RAID 0 (Stripe and Concatenation) Volumes (Overview) 67

The interlace value sets the size of each chunk. The total capacity of the stripe d2
equals the number of slices multiplied by the size of the smallest slice. (If each slice in
the example below were 2 Gbytes, d2 would equal 6 Gbytes.)

Chunk 2

Chunk 3

Chunk 5

Chunk 6

Chunk 1
Chunk 2
Chunk 3

Chunk 4
Chunk 5
Chunk 6

Physical
Disk A

Physical
Disk B

Physical
Disk C

DiskSuite
Software

Metadevice
d2

Chunk 1
Chunk 4

FIGURE 7–1 Stripe Example

RAID 0 (Concatenation) Volume
A concatenated volume, or concatenation, is a volume whose data is organized serially
and adjacently across disk slices, forming one logical storage unit.

Use a concatenation to get more storage capacity by combining the capacities of
several slices. You can add more slices to the concatenation as the demand for storage
grows.

A concatenation enables you to dynamically expand storage capacity and file system
sizes online. With a concatenation you can add slices even if the other slices are
currently active.

Note – To increase the capacity of a stripe, you would have to build a concatenated
stripe (see “RAID 0 (Concatenated Stripe) Volume” on page 69).

A concatenation can also expand any active and mounted UFS file system without
having to bring down the system. In general, the total capacity of a concatenation is
equal to the total size of all the slices in the concatenation. If a concatenation contains a
slice with a state database replica, the total capacity of the concatenation would be the
sum of the slices less the space reserved for the replica.

68 Solaris Volume Manager Administration Guide • December 2001 (Beta)

You can also create a concatenation from a single slice. You could, for example, create a
single-slice concatenation. Later, when you need more storage, you can add more
slices to the concatenation.

Note – You must use a concatenation to encapsulate root (/), swap, /usr, /opt, or
/var when mirroring these file systems.

Scenario—RAID 0 (Concatenation
Figure 7–2 illustrates a concatenation made of three slices (disks).

The data blocks, or chunks, are written sequentially across the slices, beginning with
Disk A. Disk A can be envisioned as containing logical chunks 1 through 4. Logical
chunk 5 would be written to Disk B, which would contain logical chunks 5 through 8.
Logical chunk 9 would be written to Drive C, which would contain chunks 9 through
12. The total capacity of volume d1 would be the combined capacities of the three
drives. If each drive were 2 Gbytes, volume d1 would have an overall capacity of 6
Gbytes.

Chunk 1
Chunk 2

...

...

...

Chunk 1

Chunk 9

Chunk 2

Chunk 4

Chunk 12

Chunk 12

Chunk 3

Chunk 10
Chunk 11

Physical
Disk A

Physical
Disk B

Physical
Disk C

DiskSuite
Software

Metadevice
d1

Chunk 5

Chunk 8

Chunk 6
Chunk 7

FIGURE 7–2 Concatenation Example

RAID 0 (Concatenated Stripe) Volume
A concatenated stripe is a stripe that has been expanded by adding additional slices
(stripes).

To set the interlace value for a concatenated stripe, at the stripe level, use either the
Enhanced Storage tool within the Solaris Management Console, or the metattach -i

RAID 0 (Stripe and Concatenation) Volumes (Overview) 69

command. Each stripe within the concatenated stripe can have its own interlace value.
When you create a concatenated stripe from scratch, if you do not specify an interlace
value for a particular stripe, it inherits the interlace value from the stripe before it.

Scenario—RAID 0 (Concatenated Stripe) Volume
Figure 7–3 illustrates that d10 is a concatenation of three stripes.

The first stripe consists of three slices, Disks A through C, with an interlace of 16
Kbytes. The second stripe consists of two slices Disks D and E, and uses an interlace of
32 Kbytes. The last stripe consists of a two slices, Disks F and G. Because no interlace
is specified for the third stripe, it inherits the value from the stripe before it, which in
this case is 32 Kbytes. Sequential data chunks are addressed to the first stripe until that
stripe has no more space. Chunks are then addressed to the second stripe. When this
stripe has no more space, chunks are addressed to the third stripe. Within each stripe,
the data chunks are interleaved according to the specified interlace value.

70 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Chunk 5

Chunk 6

Chunk 1
Chunk 2
Chunk 3

Chunk 4
Chunk 5
Chunk 6

Chunk 7

Chunk 10

Chunk 8
Chunk 11

Chunk 9
Chunk 12

Chunk 13

Chunk 14

Chunk 15

Chunk 16

Chunk 17

Chunk 18

Chunk 19

Chunk 20

Chunk 7
Chunk 8
Chunk 9

Chunk 10
...

Chunk 28

Chunk 21

Chunk 22

Chunk 23

Chunk 24

Chunk 25

Chunk 26

Chunk 27

Chunk 28

Physical
Disk C

Physical
Disk A

Physical
Disk B

Physical
Disk D

Physical
Disk E

Physical
Disk F

Physical
Disk G

Stripe 3

Stripe 1

Stripe 2 DiskSuite
Software

Metadevice
d10

FIGURE 7–3 Concatenated Stripe Example

Preliminary Information for Creating
RAID 0 Volumes

RAID 0 (Stripe and Concatenation) Volumes (Overview) 71

Requirements for Stripes and Concatenations
When working with RAID 0 volumes, consider the following:

� Use slices on the same controller but on different disks. Using stripes that are each
on different controllers can increase the number of simultaneous reads and writes
that can be performed.

� Do not create a stripe from an existing file system or data. Doing so will destroy
data. Instead, use a concatenation. (You can create a stripe from existing data, but
you must dump and restore the data to the volume.)

� Use the same size disk components. Striping different size disk components results
in unused disk space.

� Set up a stripe’s interlace value to better match the I/O requests made by the
system or applications.

� Because a stripe or concatenation does not contain replicated data, when such a
volume has a slice failure you must replace the slice, recreate the stripe or
concatenation, and restore data from a backup.

� When recreating a stripe or concatenation, use a replacement slice that has at least
the same size as the failed slice.

Suggestions for Stripes and Concatenations
� Concatenation uses less CPU cycles than striping. It performs well for small

random I/O and for even I/O distribution.

� When possible, distribute the slices of a stripe or concatenation across different
controllers and busses. Using stripes that are each on different controllers increases
the number of simultaneous reads and writes that can be performed.

� If a stripe is defined on a failing controller and there is another available controller
on the system, you can “move” the stripe to the new controller by moving the
disks to the controller and redefining the stripe.

� Number of stripes: Another way of looking at striping is to first determine the
performance requirements. For example, you may need 10.4 Mbyte/sec
performance for a selected application, and each disk may deliver approximately 4
Mbyte/sec. Based on this, then determine how many disk spindles you need to
stripe across:

10.4 Mbyte/sec / 4 Mbyte/sec = 2.6

Therefore, 3 disks would be needed.

72 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Scenario—RAID 0 Volumes
RAID 0 volumes provide the fundamental building block for aggregating storage or
building mirrors. The following example, drawing on the sample system described in
Chapter 4, describes how RAID 0 volumes can provide larger storage spaces and
allow you to construct a mirror of existing file systems, including root.

The sample system has a collection of relatively small (9Gb) disks, and it is entirely
possible that specific applications would require larger storage spaces. To create larger
spaces (and improve performance), the system administrator can create a stripe that
spans multiple disks. For example, each of c1t1d0, c1t2d0, c1t3d0 and c2t1d0,
c2t2d0, c2t3d0 could be formatted with a slice 0 spanning the entire disk. Then, a
stripe including all three of the disks from the same controller could provide
approximately 27Gb of storage as well as providing faster access. The second stripe,
from the second controller, can be used for redundancy, as described in Chapter 10
and specifically in the “Scenario—RAID 1 Volumes (Mirrors)” on page 92.

RAID 0 (Stripe and Concatenation) Volumes (Overview) 73

74 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 8

RAID 0 (Stripe and Concatenation)
Volumes (Tasks)

This chapter contains information about tasks related to RAID 0 volumes. For
information about related concepts, see Chapter 7.

RAID 0 Volumes (Task Map)
The following task map identifies the procedures needed to manage SVM RAID 0
Volumes.

Task Description Instructions

Creating RAID 0 (stripe)
volumes

Use metainit to create a new
volume.

“How to Create a RAID 0
(Stripe) Volume”
on page 76

Creating RAID 0
(concatenation) volumes

Use metainit to create a new
volume.

“How to Create a RAID 0
(Concatenation) Volume”
on page 77

How to expand storage
space

Use metainit to expand an existing
filesystem.

“How to Expand Space for
Existing Data” on page 78

How to expand an
existing volume

Use metainit to expand an existing
volume.

“How to Expand an
Existing RAID 0 (stripe)
Volume” on page 80

How to remove a RAID
0 volume

Use metainit -d to delete a volume. “How to Remove a
Volume” on page 81

75

Creating RAID 0 (Stripe) Volumes

Caution – Do not create a stripe from an existing file system or data. Doing so will
destroy data. To create a stripe from existing data, you must dump and restore the
data to the volume.

� How to Create a RAID 0 (Stripe) Volume
1. Check “Prerequisites for Creating SVM Elements” on page 48 and “Preliminary

Information for Creating RAID 0 Volumes” on page 71.

2. To create the stripe, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node. Choose Action->Create Volume, then follow the directions in the
wizard. For more information, see the online help.

� Use the following form of the metainit command:

metainit {stripe-name} {number-of-stripes} {slices-per-stripe}
{ctds-for-each-slice…} [-i interlace-value]

See the following examples and the metainit(1M) man page for more
information.

Example—Creating a Stripe of Three Slices
metainit d20 1 3 c0t1d0s2 c0t2d0s2 c0t3d0s2

d20: Concat/Stripe is setup

The stripe, d20, consists of a single stripe (the number 1) made of three slices (the
number 3). Because no interlace value is specified, the stripe uses the default of 16
Kbytes. The system confirms that the volume has been set up.

Example—Creating a RAID 0 (Stripe) Volumes of Two
Slices With a 32 Kbyte Interlace
metainit d10 1 2 c0t1d0s2 c0t2d0s2 -i 32k

d10: Concat/Stripe is setup

76 Solaris Volume Manager Administration Guide • December 2001 (Beta)

The stripe, d10, consists of a single stripe (the number 1) made of two slices (the
number 2). The -i option sets the interlace to 32 Kbytes. (The interlace cannot be
less than 8 Kbytes, nor greater than 100 Mbytes.) If interlace were not specified, the
stripe would use the default of 16 Kbytes. The system verifies that the volume has
been set up.

Where to Go From Here
To prepare the newly created stripe for a file system, see “Creating File Systems
(Tasks)” in System Administration Guide: Basic Administration. An application, such as a
database, that uses the raw device must have its own way of recognizing the stripe.

Creating RAID 0 (Concatenation)
Volumes

� How to Create a RAID 0 (Concatenation) Volume
1. Check “Prerequisites for Creating SVM Elements” on page 48 and “Preliminary

Information for Creating RAID 0 Volumes” on page 71.

2. To create the concatenation use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node. Choose Action->Create Volume, then follow the directions in the
wizard. For more information, see the online help.

� Use the following form of the metainit command:

metainit {concatenation-name} {number-of-stripes} { [slices-per-stripe] |
[ctds-for-each-slice]…}

For more information, see the following examples and the metainit(1M) man
page.

Example—Creating a Concatenation of One Slice
metainit d25 1 1 c0t1d0s2

d25: Concat/Stripe is setup

RAID 0 (Stripe and Concatenation) Volumes (Tasks) 77

This example creates a concatenation, d25, consisting of one stripe (the first number 1)
made of a single slice (the second number 1 in front of the slice). The system verifies
that the volume has been set up.

Note – This example creates a concatenation that may safely encapsulate existing data.

Example—Creating a Concatenation of Four Slices
metainit d40 4 1 c0t1d0s2 1 c0t2d0s2 1 c0t2d0s3 1 c0t2d1s3

d40: Concat/Stripe is setup

This example creates a concatenation called d40 consisting of four “stripes” (the
number 4) each made of a single slice (the number 1 in front of each slice). The system
verifies that the volume has been set up.

Where to Go From Here
To prepare the newly created concatenation for a file system, see “Creating File
Systems (Tasks)” in System Administration Guide: Basic Administration. An application,
such as a database, that uses the raw device must have its own way of recognizing the
concatenation.

Expanding Storage Space
To add space to a file system, create a concatenation. To add space to an existing stripe,
create a concatenated stripe.

� How to Expand Space for Existing Data
1. Check “Prerequisites for Creating SVM Elements” on page 48 and “Preliminary

Information for Creating RAID 0 Volumes” on page 71.

2. Unmount the file system.

3. To create a concatenation, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node. Choose Action->Create Volume, then follow the directions in the
wizard. For more information, see the online help.

78 Solaris Volume Manager Administration Guide • December 2001 (Beta)

� Use the following form of the metainit command:

metainit {concatenation-name} {number-of-stripes} { [slices-per-stripe] |
[ctds-for-each-slice]…}

For more information, see the metainit(1M) man page.

4. Edit the /etc/vfstab file so that the file system references the name of the
concatenation.

5. Remount the file system.

Example—Expanding a File System By Creating a
Concatenation
umount /docs
metainit d25 2 1 c0t1d0s2 1 c0t2d0s2
d25: Concat/Stripe is setup

(Edit the /etc/vfstab file so that the file system references the volume d25 instead of slice c0t1d0s2)
mount /docs

This example creates a concatenation called d25 out of two slices,
/dev/dsk/c0t1d0s2 (which contains a file system mounted on /docs) and
/dev/dsk/c0t2d0s2. The file system must first be unmounted.

Caution – The first slice in the metainit command must be the slice containing the
file system. If not, you will erase your data.

Next, the entry for the file system in the /etc/vfstab file is changed (or entered for
the first time) to reference the concatenation. For example, the following line:

/dev/dsk/c0t1d0s2 /dev/rdsk/c0t1d0s2 /docs ufs 2 yes -

should be changed to:

/dev/md/dsk/d25 /dev/md/rdsk/d25 /docs ufs 2 yes -

Finally, the file system is remounted.

Where to Go From Here
For a UFS (Unix File System), run the growfs command on the concatenation. See
“How to Grow a File System” on page 217.

An application, such as a database, that uses the raw concatenation must have its own
way of recognizing the concatenation, or of growing the added space.

RAID 0 (Stripe and Concatenation) Volumes (Tasks) 79

� How to Expand an Existing RAID 0 (stripe)
Volume
A concatenated stripe enables you to expand an existing stripe. For example, if a stripe
has run out of space, you can make it into a concatenated stripe , and expand it
without having to back up and restore data.

This procedure assumes that you are adding an additional stripe to an existing stripe.

1. Check “Prerequisites for Creating SVM Elements” on page 48 and “Preliminary
Information for Creating RAID 0 Volumes” on page 71.

2. To create a concatenated stripe, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node. Choose Action->Create Volume, then follow the directions in the
wizard. For more information, see the online help.

� To create a concatenated stripe from scratch from the command line, use the
following convoluted form of the metainit command:

metainit {concatenation-name} { {number-of-slices} | {ctds-for-each-slice…} |
[-i interlace-value]…}

See the metainit man page for more information.

� To concatenate existing stripes from the command line, use the following form of
the metattach command:

metattach {stripe-name} {ctds-of-slice-to-add…}

See “Example—Creating a Concatenated Stripe By Attaching a Single Slice”
on page 80, “Example—Creating a Concatenated Stripe By Adding Several Slices”
on page 81, and the metattach man page for more information.

Example—Creating a Concatenated Stripe By Attaching a
Single Slice
metattach d2 c1t2d0s2

d2: components are attached

This example attaches a slice to an existing stripe, d2. The system verifies that the slice
is attached.

80 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Example—Creating a Concatenated Stripe By Adding
Several Slices
metattach d25 c1t2d0s2 c1t2d1s2 c1t2d3s2

d25: components are attached

This example takes an existing three-way stripe, d25, and concatenates another
three-way stripe. Because no interlace value is given for the attached slices, they
inherit the interlace value configured for d25. The system verifies that the
Concat/Stripe object has been set up.

Note – Depending on the type of application, by attaching the same number of slices,
the volume might not experience a performance degradation.

Where To Go From Here
For a UFS, run the growfs command on the volume. See “How to Grow a File
System” on page 217.

An application, such as a database, that uses the raw volume must have its own way
of recognizing the volume, or of growing the added space.

To prepare a newly created concatenated stripe for a file system, see “Creating File
Systems (Tasks)” in System Administration Guide: Basic Administration.

Removing a RAID 0 Volume

� How to Remove a Volume
1. Make sure you have a current backup of all data and that you have root access to the

system.

2. Make sure you no longer need the volume.

If you delete a stripe or concatenation and reuse the slices that were part of the deleted
volume, all data on the volume is gone from the system.

3. Unmount the file system, if needed.

RAID 0 (Stripe and Concatenation) Volumes (Tasks) 81

4. To remove a volume, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node. Choose Edit->Delete, then follow the directions. For more
information, see the online help.

� To remove a volume from the command line, use the following format of the
metaclear command to delete the volume:

metaclear {volume-name}

See the following example and the metaclear(1M) man page for more
information.

Example—Removing a Concatenation
umount d8
metaclear d8
d8: Concat/Stripe is cleared

(Edit the /etc/vfstab file)

This example clears the concatenation d8 that also contains a mounted file system. The
file system must be unmounted before the volume can be cleared. The system displays
a confirmation message that the concatenation is cleared. If there is an entry in the
/etc/vfstab file for this volume, delete that entry. You do not want to confuse the
system by asking it to mount a file system on a non-existent volume.

82 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 9

RAID 1 (Mirror) Volumes (Overview)

This chapter explains essential concepts related to mirrors and submirrors. For
information about performing related tasks, see Chapter 10.

This chapter contains the following information:

� “Overview of RAID 0 (Mirror) Volumes” on page 83
� “Mirror Resynchronization” on page 89
� “Preliminary Information for Mirrors” on page 90
� “How Booting Into Single-User Mode Affects Mirrors” on page 92

Overview of RAID 0 (Mirror) Volumes
A RAID 0 volume, or mirror, is a volume that maintains identical copies of the data in
RAID 0 volumes (stripes or concatenations). Mirroring requires an investment in
disks. You need at least twice as much disk space as the amount of data you have to
mirror. Because Solaris Volume Manager must write to all submirrors, mirroring can
also increase the amount of time it takes for write requests to be written to disk.

After you configure a mirror, it can be used just as if it were a physical slice.

You can mirror any file system, including existing file systems. You can also use a
mirror for any application, such as a database.

83

Tip – Use Solaris Volume Manager’s hot spare feature with mirrors to keep data safe
and available. For information on hot spares, see Chapter 15 and Chapter 16.

Overview of Submirrors
The RAID 0 volumes that are mirrored are called submirrors. A mirror is made of one or
more RAID 0 volumes (stripes or concatenations).

A mirror can consist of up to three (3) submirrors. Practically, creating a two-way
mirror is usually sufficient. A third submirror enables you to make online backups
without losing data redundancy while one submirror is offline for the backup.

If you take a submirror “offline,” the mirror stops reading and writing to the
submirror. At this point, you could access the submirror itself, for example, to perform
a backup. However, the submirror is in a read-only state. While a submirror is offline,
Solaris Volume Manager keeps track of all writes to the mirror. When the submirror is
brought back online, only the portions of the mirror that were written
(resynchronization regions) are resynchronized. Submirrors can also be taken offline to
troubleshoot or repair physical devices which have errors.

Submirrors can be attached or detached from a mirror at any time, though at least one
submirror must remain attached at all times.

Normally, you create a mirror with only a single submirror.Then you attach a second
submirror after creating the mirror.

Scenario—Mirror
Figure 9–1 illustrates a mirror, d2, made of two volumes (submirrors) d20 and d21.

Solaris Volume Manager software makes duplicate copies of the data located on
multiple physical disks, and presents one virtual disk to the application. All disk
writes are duplicated; disk reads come from one of the underlying submirrors. The
total capacity of mirror d2 is the size of the smaller of the submirrors (if they are not
equal sized).

84 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Chunk 1

Chunk 3
Chunk 4

Chunk 2

Chunk 1

Chunk 3
Chunk 4

Chunk 2

Chunk 1

Chunk 3
Chunk 4

Chunk 2

(Metadevice d20)

(Metadevice d20)

(Metadevice d20)

DiskSuite
Software

FIGURE 9–1 Mirror Example

Providing RAID 1+0 and RAID 0+1
SVM supports both RAID 1+0 (which is like having mirrors that are then striped) and
RAID 0+1(stripes that are then mirrored) redundancy, depending on the context. The
SVM interface makes it appear that all RAID 1 devices are strictly RAID 0+1, but SVM
actually recognizes the underlying components and mirrors each individually.

For example, with a pure RAID 0+1 implementation and a two-way mirror comprising
three striped slices, a single slice failure would fail one side of the mirror, and,
assuming no hot spares were in use, a second slice failure would fail the mirror. Using
SVM, up to three slices could potentially fail without failing the mirror, because each
of the three striped slices are individually mirrored to their counterparts on the other
half of the mirror.

RAID 1 (Mirror) Volumes (Overview) 85

Consider this example:

Physical
Disk A

Physical
Disk B

Physical
Disk C

Physical
Disk D

Physical
Disk E

Physical
Disk F

(Stripe 1)

(Stripe 2)

Mirror
(Metadevice d1)

FIGURE 9–2 RAID 1+ 0 Example

Mirror d1 consists of two submirrors, each of which consists of three identical physical
disks and the same interlace value. A failure of three disks, A, B, and F can be tolerated
because the entire logical block range of the mirror is still contained on at least one
good disk.

If, however, disks A and D fail, a portion of the mirror’s data is no longer available on
any disk and access to these logical blocks will fail.

When a portion of a mirror’s data is unavailable due to multiple slice errors, access to
portions of the mirror where data is still available will succeed. Under this situation,
the mirror acts like a single disk that has developed bad blocks; the damaged portions
are unavailable, but the rest is available.

Frequently Asked Questions about Mirrors
Why would I use a mirror?

For maximum data availability. The trade-off is that a mirror requires twice the
number of slices (disks) as the amount of data to be mirrored.

How many submirrors can a mirror contain?
SVM allows you to create up to a three-way mirror (a mirror of three submirrors).
However, two-way mirrors usually provide sufficient data redundancy for most
applications, and are less expensive in terms of disk drive costs.

Why should I create a one-way mirror then attach additional submirrors?
If you have existing data that you are mirroring, you must create the primary
submirror, then attach additional submirrors so they can be updated with the data
contained in the primary submirror.

86 Solaris Volume Manager Administration Guide • December 2001 (Beta)

When should I create a two or three way mirrors with a single command?
If you have no existing data that you are mirroring and you are comfortable
destroying all data on all submirrors, you can speed the creation process by
creating all submirrors with a single command.

Mirror Configuration Guidelines
� Keep the slices of different submirrors on different disks and controllers. Data

protection is diminished considerably if slices of two or more submirrors of the
same mirror are on the same disk. Likewise, organize submirrors across separate
controllers, because controllers and associated cables tends to fail more often than
disks. This practice also improves mirror performance.

� Use the same type of disks and controllers in a single mirror. Particularly in old
SCSI or SMD storage devices, different models or brands of disk or controller can
have widely varying performance. Mixing the different performance levels in a
single mirror can cause performance to degrade significantly.

� Use the same size submirrors. Different size submirrors result in unused disk
space.

� Only mount the mirror device directly. Do not try and mount a submirror directly,
unless it is offline and mounted read-only. Do not mount a slice that is part of a
submirror; this could destroy data and crash the system.

� Mirroring might improve read performance, but write performance is always
degraded. Mirroring improves read performance only in threaded or asynchronous
I/O situations. No performance gain results if there is only a single thread reading
from the volume.

� Experimenting with the mirror read policies can improve performance. For
example, the default read mode is to alternate reads in a round-robin fashion
among the disks. This is the default because it tends to work best for UFS
multi-user, multi-process activity.

In some cases, the geometric read option improves performance by minimizing
head motion and access time. This option is most effective when there is only one
slice per disk, when only one process at a time is using the slice/file system, and
when I/O patterns are highly sequential or when all accesses are read.

To change mirror options, see “How to Change a Mirror’s Options” on page 109.

� Use the swap -l command to check for all swap devices. Slices specified as swap
must be mirrored separately.

� Use only similarly configured submirrors within a mirror. In particular, if you
create a mirror with an unlabeled submirror, you will be unable to attach any
submirrors that contain disk labels.

RAID 1 (Mirror) Volumes (Overview) 87

Mirror Options
The following options are available to optimize mirror performance:

� Mirror read policy
� Mirror write policy
� The order in which mirrors are resynchronized (pass number)

You can define mirror options when you initially create the mirror, or after a mirror
has been set up. For tasks related to changing these options, see “How to Change a
Mirror’s Options” on page 109.

Mirror Read and Write Policies
Solaris Volume Manager enables different read and write policies to be configured for
a mirror. Properly set read and write policies can improve performance for a given
configuration.

TABLE 9–1 Mirror Read Policies

Read Policy Description

Round Robin
(Default)

Attempts to balance the load across the submirrors. All reads are made
in a round-robin order (one after another) from all submirrors in a
mirror.

Geometric Enables reads to be divided among submirrors on the basis of a logical
disk block address. For instance, with a two-way submirror, the disk
space on the mirror is divided into two equally-sized logical address
ranges. Reads from one submirror are restricted to one half of the logical
range, and reads from the other submirror are restricted to the other
half. The geometric read policy effectively reduces the seek time
necessary for reads. The performance gained by this mode depends on
the system I/O load and the access patterns of the applications.

First Directs all reads to the first submirror. This should be used only when
the device(s) comprising the first submirror are substantially faster than
those of the second submirror.

TABLE 9–2 Mirror Write Policies

Write Policy Description

Parallel (Default) A write to a mirror is replicated and dispatched to all of the submirrors
simultaneously.

88 Solaris Volume Manager Administration Guide • December 2001 (Beta)

TABLE 9–2 Mirror Write Policies (Continued)
Write Policy Description

Serial Performs writes to submirrors serially (that is, the first submirror write
completes before the second is started). The serial option specifies that
writes to one submirror must complete before the next submirror write
is initiated. The serial option is provided in case a submirror becomes
unreadable, for example, due to a power failure.

Mirror Resynchronization
Mirror resynchronization is the process of copying data from one submirror to another
after submirror failures, system crashes, when a submirror has been taken offline and
brought back online, or after the addition of a new submirror.

While the resynchronization takes place, the mirror remains readable and writable by
users.

A mirror resynchronization ensures proper mirror operation by maintaining all
submirrors with identical data, with the exception of writes in progress.

Note – A mirror resynchronization is mandatory, and cannot be omitted. You do not
need to manually initiate a mirror resynchronization; it occurs automatically.

Full Mirror Resynchronization
When a new submirror is attached (added) to a mirror, all the data from another
submirror in the mirror is automatically written to the newly attached submirror. Once
the mirror resynchronization is done, the new submirror is readable. submirror
remains attached to a mirror until it is explicitly detached.

If the system crashes while a resynchronization is in progress, the resynchronization is
restarted when the system finishes rebooting.

Optimized Mirror Resynchronization
During a reboot following a system failure, or when a submirror that was offline is
brought back online, Solaris Volume Manager performs an optimized mirror
resynchronization. The metadisk driver tracks submirror regions and knows which

RAID 1 (Mirror) Volumes (Overview) 89

submirror regions may be out-of-sync after a failure. An optimized mirror
resynchronization is performed only on the out-of-sync regions. You can specify the
order in which mirrors are resynchronized during reboot, and you can omit a mirror
resynchronization by setting submirror pass numbers to 0 (zero). (See “Pass Number”
on page 90for information.)

Caution – A pass number of 0 (zero) should only be used on mirrors mounted as
read-only.

Partial Mirror Resynchronization
Following a replacement of a slice within a submirror, Solaris Volume Manager
performs a partial mirror resynchronization of data. Solaris Volume Manager copies the
data from the remaining good slices of another submirror to the replaced slice.

Pass Number
The pass number, a number in the range 0-9, determines the order in which a
particular mirror is resynchronized during a system reboot. The default pass number
is one (1). Smaller pass numbers are resynchronized first. If 0 is used, the mirror
resynchronization is skipped. A 0 should be used only for mirrors mounted as
read-only. Mirrors with the same pass number are resynchronized at the same time.

Preliminary Information for Mirrors
� Unmirroring – The Enhanced Storage tool within the Solaris Management Console

does not support unmirroring root (/), /opt, /usr, or swap, or any other file
system that cannot be unmounted while the system is running. Instead, use the
command line procedure for these file systems.

� Attaching – You can attach a submirror to a mirror without interrupting service.
You attach submirrors to mirrors to create two- and three-way mirrors.

� Detach vs. Offline – When you place a submirror offline, you prevent the mirror
from reading from and writing to the submirror, but you preserve the submirror’s
logical association to the mirror. While the submirror is offline, SVM keeps track of
all writes to the mirror and they are written to the submirror when it is brought
back online. By performing an optimized resynchronization, SVM only has to

90 Solaris Volume Manager Administration Guide • December 2001 (Beta)

resynchronize data that has changed, not the entire submirror. When you detach a
submirror, you sever its logical association to the mirror. Typically you place a
submirror offline to perform maintenance; you detach a submirror to remove it.

Preliminary Information for Creating Mirrors
� Before creating a mirror, create the RAID 0 volumes (stripe or concatenation) that

will make up the mirror.

� Any file system including root (/), swap, and /usr, or any application such as a
database, can use a mirror.

Caution – When creating a mirror for an existing file system, be sure that the initial
submirror contains the existing file system.

� When creating a mirror, first create a one-way mirror, then attach a second
submirror. This starts a resynchronization operation and ensures that data is not
corrupted.

� You can create a one-way mirror for a future two- or three-way mirror.

� You can create up to a three-way mirror. However, two-way mirrors usually
provide sufficient data redundancy for most applications, and are less expensive in
terms of disk drive costs. A three-way mirror enables you to take a submirror
offline and perform a backup while maintaining a two-way mirror for continued
data redundancy.

� Use the same size slices when creating submirrors. Using different size slices leaves
unused space in the mirror.

� Adding additional state database replicas before creating a mirror can improve the
mirror’s performance. As a general rule, add two additional replicas for each
mirror you add to the system.

Preliminary Information for Changing Mirror
Options
� You can change a mirror’s pass number, and read and write policies.
� Mirror options can be changed while the mirror is running.

RAID 1 (Mirror) Volumes (Overview) 91

How Booting Into Single-User Mode
Affects Mirrors
If a system with mirrors for root (/), /usr, and swap—the so-called “boot” file
systems—is booted into single-user mode (using the boot -s command), these
mirrors and possibly all mirrors on the system will appear in the “Needing
Maintenance” state when viewed with the metastat command. Furthermore, if
writes occur to these slices, the metastat command shows an increase in dirty
regions on the mirrors.

Though this appears to be potentially dangerous, there is no need for concern. The
metasync -r command, which normally occurs during boot to resynchronize
mirrors, is interrupted when the system is booted into single-user mode. Once the
system is rebooted, the metasync -r command will run and resynchronize all
mirrors.

If this is a concern, run the metasync -r command manually.

Scenario—RAID 1 Volumes (Mirrors)
RAID 1 volumes provide a means of constructing redundant volumes, in which a
partial or complete failure of one of the underlying RAID 0 volumes does not cause
data loss or interruption of access to the filesystems. The following example, drawing
on the sample system described in Chapter 4, describes how RAID 1 volumes can
provide redundant storage.

As described in “Interlace Values for Stripes” on page 66, the sample system has two
RAID 0 volumes, each of which is approximately 27Gb in size and spans three disks.
By creating a RAID 1 volume to mirror these two RAID 0 volumes, a fully redundant
storage space can provide resilient data storage.

Within this RAID 1 volume, the failure of one or the other of the disk controllers will
not interrupt access to the volume. Similarly, failure of up to three individual disks
may be tolerated without access interruption.

To provide additional protection against problems that could interrupt access, use hot
spares, as described in Chapter 15 and specifically in “How Hot Spares Work”
on page 146.

92 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 10

RAID 1 (Mirror) Volumes (Tasks)

This chapter explains how to perform storage management tasks related to mirrors.
For information about related concepts, see Chapter 9.

RAID 1 Volumes (Task Map)
The following task map identifies the procedures needed to manage SVM RAID 1
volumes.

Task Description Instructions

Create a mirror from
unused slices.

Use the SVM GUI or the metainit
commandto create a mirror from
unused slices.

“How to Create a RAID 1
Volume From Unused
Slices” on page 95

Create a mirror from an
existing file system.

Use the SVM GUI or the metainit
command to create a mirror from an
existing filesystem.

“How to Create a RAID 1
Volume From a File
System” on page 96

Record the path to the
alternate boot device for
a mirrored root.

Find the path to the alternative book
device and enter it in the boot
instructions.

“How to Record the Path to
the Alternate Boot Device”
on page 101

Attach a submirror. Use the SVM GUI or the metattach
command to attach a submirror.

“How to Attach a
Submirror” on page 103

Detach a submirror Use the SVM GUI or the metadetach
command to detach the submirror.

“How to Detach a
Submirror” on page 104

93

Task Description Instructions

Place a submirror online
or take a submirror
offline.

Use the SVM GUI or the metaonline
command to put a submirror online
and the SVM GUI or the
metaoffline command to take a
submirror offline..

“How to Place a Submirror
Offline and Online”
on page 105

Enable a slice within a
submirror.

Use the SVM GUI or the
metareplace command to enable a
slice in a submirror.

“How to Enable a Slice in a
Submirror” on page 106

Check mirror status. Use the SVM GUI or the metastat
command to check the status of RAID
1 volumes.

“How to Check Mirror and
Submirror Status”
on page 107

Change mirror options. Use the SVM GUI or the metaparam
command to change the options for a
specific RAID 1 volume.

“How to Change a Mirror’s
Options” on page 109

Expand a mirror. Use the SVM GUI or the metattach
command to expand the capacity of a
mirror.

“How to Expand a Mirror”
on page 110

Replace a slice within a
submirror.

Use the SVM GUI or the
metareplace command to replace a
slice in a submirror.

“How to Replace a Slice in
a Submirror” on page 112

Replace a submirror. Use the SVM GUI or the metattach
command to replace a submirror.

“How to Replace a
Submirror” on page 113

Remove a mirror
(unmirror).

Use the SVM GUI or the metadetach
command and the SVM GUI or the
metaclear command to unmirror a
file system.

“How to Unmirror a File
System” on page 114

Remove a mirror
(unmirror).

Use the SVM GUI or the metadetach
command and the SVM GUI or the
metaclear command to unmirror a
file system.

“How to Unmirror a File
System” on page 114

Remove a mirror
(unmirror) of a file
system that cannot be
unmounted.

Use the SVM GUI or the metadetach
command and the SVM GUI or the
metaclear command to unmirror a
file system that cannot be unmounted.

“How to Unmirror a File
System That Cannot Be
Unmounted” on page 115

Use a mirror to perform
backups.

Use the SVM GUI or the metaonline
command and the SVM GUI or the
metaoffline command to perform
backups with mirrors.

“How to Use a Mirror to
Make an Online Backup”
on page 117

94 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Creating a RAID 1 Volume

� How to Create a RAID 1 Volume From Unused
Slices

1. Check “Prerequisites for Creating SVM Elements” on page 48 and “Preliminary
Information for Creating Mirrors” on page 91.

2. Create two stripes or concatenations, which will be the submirrors.

See “How to Create a RAID 0 (Stripe) Volume” on page 76 or “How to Create a RAID
0 (Concatenation) Volume” on page 77.

3. To create the mirror, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose Action->Create Volume and follow the instructions on
screen. For more information, see the online help.

� Use the following form of the metainit command to create a one-way mirror:

metainit {mirror-name} [-m] {submirror-name…}

See the following examples and the metainit(1M) man page for more
information.

4. To add the second submirror, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose the mirror you want to modify. Choose
Action->Properties, then the Components tab and follow the instructions on screen.
For more information, see the online help.

� Use the following form of the metattach command:

metattach {mirror-name} {new-submirror-name…}

See the following examples and the metattach(1M) man page for more
information.

Example—Creating a Two-Way Mirror
metainit d51 1 1 c0t0d0s2
d51: Concat/Stripe is setup
metainit d52 1 1 c1t0d0s2
d52: Concat/Stripe is setup

RAID 1 (Mirror) Volumes (Tasks) 95

metainit d50 -m d51
d50: Mirror is setup
metattach d50 d52

d50: Submirror d52 is attached

This example creates a two-way mirror, d50. The metainit command creates two
submirrors (d51 and d52), which are concatenations. The metainit -m command
creates the one-way mirror from the d51 concatenation. The metattach command
attaches d52, creating a two-way mirror and causing a mirror resynchronization. (Any
data on the attached submirror is overwritten by the other submirror during the
resynchronization.) The system verifies that the objects are defined.

Where to Go From Here
To prepare a newly created mirror for a file system, see “Creating File Systems
(Tasks)” in System Administration Guide: Basic Administration. An application, such as a
database, that uses the raw volume must have its own way of recognizing the volume.

� How to Create a RAID 1 Volume From a File
System
Use this procedure to mirror an existing file system. If the file system can be
unmounted, the entire procedure can be completed without a reboot. For file systems
(like /) that cannot be unmounted, the system will have to be rebooted to complete the
procedure.

Note – When mirroring root (/), it is essential that you record the secondary root slice
name to reboot the system if the primary submirror fails. This information should be
written down, not recorded on the system, which may not be available. See Chapter 24
for details on recording the alternate boot device, and on booting from the alternate
boot device.

If you are mirroring root on an IA system, install the boot information on the alternate
boot disk before you create the RAID 0 or RAID 1 devices. See “Booting a System
(Tasks)” in System Administration Guide: Basic Administration.

In this procedure, an existing device is c1t0d0s0. A second device, c1t1d0s0, is
available for the second half of the mirror. The submirrors will be d1 and d2,
respectively, and the mirror will be d0.

1. Check “Prerequisites for Creating SVM Elements” on page 48 and “Preliminary
Information for Creating Mirrors” on page 91.

96 Solaris Volume Manager Administration Guide • December 2001 (Beta)

2. Identify the slice that contains the existing file system to be mirrored (c1t0d0s0 in
this example).

3. Create a new RAID 0 volume (concatenation) on the slice from the previous step
using one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose Action->Create Volume and follow the instructions on
screen. For more information, see the online help.

� Use the metainit raid-0-volume-name -f 1 1 ctds-of-slice command.

metainit d1 -f 1 1 c1t0d0s0

4. Create a second RAID 0 volume (concatenation) on an unused slice (c1t1d0s0 in this
example) to act as the second submirror. Use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose Action->Create Volume and follow the instructions on
screen. For more information, see the online help.

� Use the metainit second-raid-0-volume-name -f 1 1 ctds-of-slice command.

metainit d2 1 1 c1t1d0s0

5. Create a one-way mirror using one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose Action->Create Volume and follow the instructions on
screen. For more information, see the online help.

� Use the metainit -f mirror-name -m raid-0-volume-name command.

metainit d0 -m d1

See the metainit(1M) man page for more information.

6. Edit the /etc/vfstab file so that the file system mount instructions refer to the
mirror, not to the block device.

For more information about the/etc/vfstab file, see“Mounting File Systems (File)”
in System Administration Guide: Basic Administration.

7. Remount your newly mirrored file system according to one of the following
procedures:

� If you are mirroring your root file system, run the metaroot d0 command,
replacing d0 with the name of the mirror you just created, then reboot your system.

For more information, see the metaroot(1M) man page.

� If you are mirroring a file system that can be unmounted, then unmount and
remount the file system.

� If you are mirroring a (non-root) file system that cannot be unmounted, then reboot
your system.

RAID 1 (Mirror) Volumes (Tasks) 97

8. Use the metattach command to attach the second submirror.

metattach d0 d2

See the metattach(1M) man page for more information.

9. If you mirrored your root file system, record the alternate boot path.

See “How to Record the Path to the Alternate Boot Device” on page 101.

Caution – If there is any data you want to preserve, create a one-way mirror with the
metainit command then attach the additional submirrors with the metattach
command. When the metattach command is not used, no resynchronization
operations occur and data could become corrupted.

Also, do not create a two-way mirror for a file system without first unmounting the
file system and editing the /etc/vfstab file to reference the mirror volume.

Example—Creating a Two-Way Mirror (Unmountable File
System)
metainit -f d1 1 1 c1t0d0s0
d1: Concat/Stripe is setup
metainit d2 1 1 c1t1d0s0
d2: Concat/Stripe is setup
metainit d0 -m d1
d0: Mirror is setup
umount /master

(Edit the /etc/vfstab file so that the file system references the mirror)
mount /master
metattach d0 d2

d0: Submirror d2 is attached

The -f option forces the creation of the first concatenation, d1, which contains the
mounted file system /master on /dev/dsk/c1t0d0s0. The second concatenation,
d2, is created from /dev/dsk/c1t1d0s0. (This slice must be the same size or greater
than that of d1.) The metainit command with the -m option creates the one-way
mirror, d0, from d1.

Next, /master is unmounted and its entry changed in the /etc/vfstab file to
reference the mirror. For example, the following line:

/dev/dsk/c1t0d0s0 /dev/rdsk/c1t0d0s0 /master ufs 2 yes -

should be changed to:

/dev/md/dsk/d0 /dev/md/rdsk/d0 /master ufs 2 yes -

98 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Finally, the /master file system is remounted and submirror d2 attached to the
mirror, causing a mirror resynchronization. (The system verifies that the
concatenations and the mirror are set up, and that submirror d2 is attached.)

SPARC: Example—Creating a Mirror From root (/)
metainit -f d1 1 1 c0t0d0s0
d11: Concat/Stripe is setup
metainit d2 1 1 c0t1d0s0
d12: Concat/Stripe is setup
metainit d0 -m d1
d10: Mirror is setup
metaroot d0
lockfs -fa
reboot
...
metattach d10 d12
d10: Submirror d12 is attached
ls -l /dev/rdsk/c0t1d0s0
lrwxrwxrwx 1 root root 88 Feb 8 15:51 /dev/rdsk/c1t3d0s0 ->
../../devices/iommu@f,e0000000/vme@f,df010000/SUNW,pn@4d,1080000/ipi3sc@0,0/i

d@3,0:a,raw

The -f option forces the creation of the first concatenation, d1, which contains the
mounted file system root (/) on /dev/dsk/c0t0d0s0. The second concatenation, d2,
is created from /dev/dsk/c0t1d0s0. (This slice must be the same size or greater
than that of d11.) The metainit command with the -m option creates the one-way
mirror d0 using the concatenation that contains root (/). Next, the metaroot
command edits the /etc/vfstab and /etc/system files so that the system may be
booted with the root file system (/) on a volume. (It is a good idea to run the lockfs
-fa command before rebooting.) After a reboot, the submirror d2 is attached to the
mirror, causing a mirror resynchronization. (The system confirms that the
concatenations and the mirror are set up, and that submirror d2 is attached.) The ls
-l command is run on the root raw device to determine the path to the alternate root
device in case the system might later need to be booted from it.

Example—Creating a Two-way Mirror (Not unmountable
Filesystem —/usr)
metainit -f d12 1 1 c0t3d0s6
d12: Concat/Stripe is setup
metainit d22 1 1 c1t0d0s6
d22: Concat/Stripe is setup
metainit d2 -m d12
d2: Mirror is setup

(Edit the /etc/vfstab file so that /usr references the mirror)
reboot
...

RAID 1 (Mirror) Volumes (Tasks) 99

metattach d2 d22

d2: Submirror d22 is attached

The -f option forces the creation of the first concatenation, d12, which contains the
mounted file system /usr on /dev/dsk/c0t3d0s6. The second concatenation, d22,
is created from /dev/dsk/c1t0d0s6. (This slice must be the same size or greater
than that of d12.) The metainit command with the -m option creates the one-way
mirror d2 using the concatenation containing /usr. Next, the /etc/vfstab file must
be edited to change the entry for /usr to reference the mirror. For example, the
following line:

/dev/dsk/c0t3d0s6 /dev/rdsk/c0t3d0s6 /usr ufs 1 yes -

should be changed to:

/dev/md/dsk/d2 /dev/md/rdsk/d2 /usr ufs 1 yes -

After a reboot, the second submirror d22 is attached to the mirror, causing a mirror
resynchronization. (The system verifies that the concatenation and the mirror are set
up, and that submirror d22 is attached.)

Example—Creating a Mirror From swap
metainit -f d11 1 1 c0t0d0s1
d11: Concat/Stripe is setup
metainit d21 1 1 c1t0d0s1
d21: Concat/Stripe is setup
metainit d1 -m d11
d1: Mirror is setup

(Edit the /etc/vfstab file so that swap references the mirror)
reboot
...
metattach d1 d21

d1: Submirror d21 is attached

The -f option forces the creation of the first concatenation, d11, which contains the
mounted file system swap on /dev/dsk/c0t0d0s1. The second concatenation, d21,
is created from /dev/dsk/c1t0d0s1. (This slice must be the same size or greater
than that of d11.) The metainit command with the -m option creates the one-way
mirror d1 using the concatenation that contains swap. Next, if there is an entry for
swap in the /etc/vfstab file, it must be edited to reference the mirror. For example,
the following line:

/dev/dsk/c0t0d0s1 - - swap - no -

should be changed to:

/dev/md/dsk/d1 - - swap - no -

100 Solaris Volume Manager Administration Guide • December 2001 (Beta)

After a reboot, the second submirror d21 is attached to the mirror, causing a mirror
resynchronization. (The system verifies that the concatenations and the mirror are set
up, and that submirror d21 is attached.)

To save the crash dump when you have mirrored swap, use the dumpadm command to
configure the dump device as a volume. For instance, if the swap device is named
/dev/md/dsk/d2, use the dumpadm command to set this as the dump device.

Mirroring root (/) Special
Considerations
The process for mirroring root (/) is the same as mirroring any other file system you
cannot unmount. See “How to Create a RAID 1 Volume From a File System”
on page 96. The following sections outline special considerations and issues for
mirroring root file systems.

How to Record the Path to the Alternate Boot
Device
When mirroring root (/), you might need the path to the alternate boot device later if
the primary device fails. The process for finding and recording the alternate boot
device differs, depending on your system’s architecture. See “SPARC:
Example—Recording the Alternate Boot Device Path” on page 101 or “IA:
Example—Recording the Alternate Boot Device Path” on page 102.

SPARC: Example—Recording the Alternate Boot Device
Path
In this example, you would determine the path to the alternate root device by using
the ls -l command on the slice that is being attached as the second submirror to the
root (/) mirror.

ls -l /dev/rdsk/c1t3d0s0
lrwxrwxrwx 1 root root 55 Mar 5 12:54 /dev/rdsk/c1t3d0s0 -> \

../../devices/sbus@1,f8000000/esp@1,200000/sd@3,0:a

Here you would record the string that follows the /devices directory:
/sbus@1,f8000000/esp@1,200000/sd@3,0:a.

RAID 1 (Mirror) Volumes (Tasks) 101

On some newer Sun hardware, you will be required to change the /devicesdirectory
name from sd@ to disk@.

SVM users who are using a system with Open Boot Prom can use the OpenBoot
nvalias command to define a “backup root” device alias for the secondary root
mirror. For example:

ok nvalias backup_root /sbus@1,f8000000/esp@1,200000/sd@3,0:a

In the event of primary root disk failure, you then would only enter:

ok boot backup_root

IA: Example—Recording the Alternate Boot Device Path
In this example, you would determine the path to the alternate boot device by using
the ls -l command on the slice that is being attached as the second submirror to the
root (/) mirror.

ls -l /dev/rdsk/c1t0d0s0
lrwxrwxrwx 1 root root 55 Mar 5 12:54 /dev/rdsk/c1t0d0s0 -> ../.

./devices/eisa/eha@1000,0/cmdk@1,0:a

Here you would record the string that follows the /devices directory:
/eisa/eha@1000,0/cmdk@1,0:a

Booting From Alternate Boot Devices
If your primary submirror on a mirrored root fails, you will need to initiate the boot
from the other submirror. You can either configure the system to boot automatically
from the second side of the mirror, or can manually boot from the second side.

� How to Boot From the Alternate Device
See “Booting a System (Tasks)” in System Administration Guide: Basic Administration

102 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Working with Submirrors

� How to Attach a Submirror
1. Identify the concatenation or stripe to be used as a submirror.

It must be the same size (or larger) as the existing submirror in the mirror. If you have
not yet created a RAID 0 volume to be a submirror, see “Creating RAID 0 (Stripe)
Volumes” on page 76 or “Creating RAID 0 (Concatenation) Volumes” on page 77.

In this example, d0 is the mirror and d2 is the new submirror to be attached.

2. Make sure that you have root access and that you have a current backup of all data.

3. Use one of the following methods to attach a submirror.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, choose the mirror, then choose Action->Properties and click the
Components tab. Follow the instructions on screen. For more information, see the
online help.

� Use the metattach mirror concat/stripe command.

metattach d1 d2

See the metattach(1M) man page for more information.

Example—Attaching a Submirror
metastat d30
d30: mirror

Submirror 0: d60
State: Okay

...
metattach d30 d70
d30: submirror d70 is attached
metastat d30
d30: mirror

Submirror 0: d60
State: Okay

Submirror 1: d70
State: Resyncing

Resync in progress: 41 % done
Pass: 1
Read option: roundrobin (default)
Write option: parallel (default)
Size: 2006130 blocks

RAID 1 (Mirror) Volumes (Tasks) 103

...

This example shows the attaching of a submirror, d70, to a one-way mirror, d30,
creating a two-way mirror. The mirror d30 initially consists of submirror d60. d70 is a
concatenated volume. You verify that the status of the mirror is “Okay” with the
metastat command, then attach the submirror. When the metattach command is
run, the new submirror is resynchronized with the existing mirror. When you attach
an additional submirror to the mirror, the system displays a message. To verify that
the mirror is resynchronizing, use the metastat command.

� How to Detach a Submirror
1. Make sure that you have root access and that you have a current backup of all data.

2. Read “Preliminary Information for Mirrors” on page 90.

3. Use one of the following methods to detach a submirror.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, choose the mirror, then choose Action->Properties and click the
Components tab. Follow the instructions on screen. For more information, see the
online help.

� Use the metadetach command to detach a submirror from a mirror (detaching
submirror d2 from mirror d0 in this example).

metadetach d0 d2

See the metadetach(1M) man page for more information.

Example—Detaching a Submirror
metastat
d5: mirror

Submirror 0: d50
...
metadetach d5 d50

d5: submirror d50 is detached

In this example, mirror d5 has a submirror, d50, which is detached with the
metadetach command. The underlying slices from d50 are going to be reused
elsewhere. When you detach a submirror from a mirror, the system displays a
confirmation message.

104 Solaris Volume Manager Administration Guide • December 2001 (Beta)

� How to Place a Submirror Offline and Online
1. Make sure that you have root access and that you have a current backup of all data.

2. Read “Preliminary Information for Mirrors” on page 90.

3. Use one of the following methods to place a submirror online or offline.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, choose the mirror, then choose Action->Properties and click the
Components tab. Follow the instructions on screen. For more information, see the
online help.

� Use the metaoffline command to take offline a submirror. For example, to offline
d2 from mirror d0, use:

metaoffline d0 d2

See the metaoffline(1M) man page for more information.

� Use the metaonline command to bring a submirror online. For example, to bring
submirror d2 online on mirror d0, use:

metaonline d0 d2

See the metaonline(1M) man page for more information.

Example—Placing a Submirror Offline
metaoffline d10 d11

d10: submirror d11 is offlined

This takes submirror d11 offline from mirror d10. Reads will continue to be made
from the other submirror. The mirror will be out of sync as soon as the first write is
made. This inconsistency is corrected when the offlined submirror is brought back
online.

Example—Placing a Submirror Online
metaonline d10 d11

d10: submirror d11 is onlined

When ready (for example, after replacing a disk), the submirror d11 is brought back
online.

The metaonline command can only be used when a submirror was taken offline by
the metaoffline command. After the metaonline command runs, SVM
automatically begins resynchronizing the submirror with the mirror.

RAID 1 (Mirror) Volumes (Tasks) 105

Note – The metaoffline command’s functionality is similar to that offered by the
metadetach command, however the metaoffline command does not sever the
logical association between the submirror and the mirror.

� How to Enable a Slice in a Submirror
1. Make sure that you have root access and that you have a current backup of all data.

2. Read “Overview of Replacing and Enabling Slices in RAID 1 and RAID 5 Volumes”
on page 218 and “Preliminary Information for Mirrors” on page 90.

3.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, choose the mirror, then choose Action->Properties and click the
Components tab. Follow the instructions on screen. For more information, see the
online help.

� Use the metareplace command to enable a failed slice in a submirror. For
example, to enable slice c1t4d0s4 in submirror d31 of mirror d40, use:

metareplace -e d40 c1t4d0s4

The metareplace command automatically starts a resynchronization to get the
new slice in sync with the rest of the mirror.

See the metareplace(1M) man page for more information.

Example—Enabling a Slice in a Submirror
metareplace -e d11 c1t4d0s7

d11: device c1t4d0s7 is enabled

The mirror d11 has a submirror that contains slice, c1t4d0s7, which had a soft error.
The metareplace command with the -e option enables the failed slice.

Note – If a physical disk is defective, you can either replace it with another available
disk (and its slices) on the system as documented in “How to Replace a Slice in a
Submirror” on page 112“How to Replace a Slice in a Submirror (Command Line)” on
page 123, or repair/replace the disk, format it, and run the metareplace command
with the -e option as shown in this example.

106 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Maintaining Mirrors

� How to Check Mirror and Submirror Status
� Use one of the following methods to check mirror or submirror status.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, choose the mirror, then choose Action->Properties. Follow the
instructions on screen. For more information, see the online help.

� Run metastat(1M) on a mirror to see the state of each submirror, the pass
number, the read option, the write option, and the size of the total number of
blocks in mirror. For example, to check the status of the one-way mirror d70, use:

metastat d70
d70: Mirror

Submirror 0: d71
State: Okay

Pass: 1
Read option: roundrobin (default)
Write option: parallel (default)
Size: 12593637 blocks

d71: Submirror of d70
State: Okay
Size: 12593637 blocks
Stripe 0:

Device Start Block Dbase State Reloc Hot Spare
c1t3d0s3 0 No Okay Yes

Stripe 1:
Device Start Block Dbase State Reloc Hot Spare
c1t3d0s4 0 No Okay Yes

Stripe 2:
Device Start Block Dbase State Reloc Hot Spare

c1t3d0s5 0 No Okay Yes

See “How to Change a Mirror’s Options” on page 109 to change a mirror’s pass
number, read option, or write option.

Example—Checking Mirror Status
Here is sample mirror output from the metastat command.

metastat
d0: Mirror

Submirror 0: d1

RAID 1 (Mirror) Volumes (Tasks) 107

State: Okay
Submirror 1: d2
State: Okay

Pass: 1
Read option: roundrobin (default)
Write option: parallel (default)
Size: 5600 blocks

d1: Submirror of d0
State: Okay
Size: 5600 blocks
Stripe 0:

Device Start Block Dbase State Hot Spare
c0t2d0s7 0 No Okay

...

For each submirror in the mirror, the metastat command shows the state, an
“invoke” line if there is an error, the assigned hot spare pool (if any), size in blocks,
and information about each slice in the submirror.

Table 10–1 explains submirror states.

TABLE 10–1 Submirror States

State Meaning

Okay The submirror has no errors and is functioning correctly.

Resyncing The submirror is actively being resynchronized. An error has occurred
and been corrected, the submirror has just been brought back online, or
a new submirror has been added.

Needs Maintenance A slice (or slices) in the submirror has encountered an I/O error or an
open error. All reads and writes to and from this slice in the submirror
have been discontinued.

Additionally, for each stripe in a submirror, the metastat command shows the
“Device” (device name of the slice in the stripe); “Start Block” on which the slice
begins; “Dbase” to show if the slice contains a state database replica; “State” of the
slice; and “Hot Spare” to show the slice being used to hot spare a failed slice.

The slice state is perhaps the most important information when troubleshooting
mirror errors. The submirror state only provides general status information, such as
“Okay” or “Needs Maintenance.” If the submirror reports a “Needs Maintenance”
state, refer to the slice state. You take a different recovery action if the slice is in the
“Maintenance” or “Last Erred” state. If you only have slices in the “Maintenance”
state, they can be repaired in any order. If you have a slices in the “Maintenance” state
and a slice in the “Last Erred” state, you must fix the slices in the “Maintenance” state
first then the “Last Erred” slice. See “Overview of Replacing and Enabling Slices in
RAID 1 and RAID 5 Volumes” on page 218.

108 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Table 10–2 explains the slice states for submirrors and possible actions to take.

TABLE 10–2 Submirror Slice States

State Meaning Action

Okay The slice has no errors and is
functioning correctly.

None.

Resyncing The slice is actively being
resynchronized. An error has
occurred and been corrected, the
submirror has just been brought
back online, or a new submirror
has been added.

If desired, monitor the submirror status
until the resynchronization is done.

Maintenance The slice has encountered an I/O
error or an open error. All reads
and writes to and from this slice
have been discontinued.

Enable or replace the failed slice. See
“How to Enable a Slice in a Submirror”
on page 106, or “How to Replace a Slice in
a Submirror” on page 112. Note: The
metastat command will show an
invoke recovery message with the
appropriate action to take with the
metareplace command. You can also
use the metareplace -e command.

Last Erred The slice has encountered an I/O
error or an open error. However,
the data is not replicated elsewhere
due to another slice failure. I/O is
still performed on the slice. If I/O
errors result, the mirror I/O will
fail.

First, enable or replace slices in the
“Maintenance” state. See “How to Enable
a Slice in a Submirror” on page 106, or
“How to Replace a Slice in a Submirror”
on page 112. Usually, this error results in
some data loss, so validate the mirror after
it is fixed. For a file system, use the fsck
command to validate the “metadata” then
check the user-data. An application or
database must have its own method of
validating the metadata.

� How to Change a Mirror’s Options
1. Make sure that you have root access and that you have a current backup of all data.

2. Check “Preliminary Information for Changing Mirror Options” on page 91.

3. Use one of the following methods to change mirror options.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, choose the mirror, then choose Action->Properties. Follow the
instructions on screen. For more information, see the online help.

RAID 1 (Mirror) Volumes (Tasks) 109

� Use the metaparam command to display and change a mirror’s options. For
example, to change mirror d70 to “first”, rather than round-robin, for reading, use:

metaparam -r first d70

See “Mirror Options” on page 88 for a description of mirror options. Also see the
metaparam(1M) man page.

Example—Changing a Mirror’s Read Policy
metaparam -r geometric d30
metaparam d30
d30: mirror current parameters are:

Pass: 1
Read option: geometric (-g)

Write option: parallel (default)

The -r option changes a mirror’s read policy to geometric.

Example—Changing a Mirror’s Write Policy
metaparam -w serial d40
metaparam d40
d40: mirror current parameters are:

Pass: 1
Read option: roundrobin (default)

Write option: serial (-S)

The -w option changes a mirror’s write policy to serial.

Example—Changing a Mirror’s Pass Number
metaparam -p 5 d50
metaparam d50
d50: mirror current parameters are:

Pass: 5
Read option: roundrobin (default)

Write option: parallel (default)

The -p option changes a mirror’s pass number to five.

� How to Expand a Mirror
1. Make sure that you have root access and that you have a current backup of all data.

2. Read “Preliminary Information for Mirrors” on page 90.

110 Solaris Volume Manager Administration Guide • December 2001 (Beta)

3. Use one of the following methods to replace a failed slice in a mirror.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, choose the mirror, then choose Action->Properties and click the
Components tab. Follow the instructions on screen. For more information, see the
online help.

� Use the metattach command to attach additional slices to each submirror. For
example, to attach slice c1t4d0s6 to submirror d71, use:

metattach d71 c1t4d0s6

Each submirror in a mirror must be expanded. See the metattach(1M) man page
for more information.

Example—Expanding a Two-Way Mirror Containing a
Mounted File System
metastat
d8: Mirror

Submirror 0: d9
State: Okay

Submirror 1: d10
State: Okay

...
metattach d9 c0t2d0s5
d9: component is attached
metattach d10 c0t3d0s5

d10: component is attached

This example shows how to expand a mirrored mounted file system by concatenating
two disk drives to the mirror’s two submirrors. The mirror is named d8 and contains
two submirrors named d9 and d10.

Where to Go From Here
For a UFS, run the growfs(1M) command on the mirror volume. See “How to Grow
a File System” on page 217.

An application, such as a database, that uses the raw volume must have its own way
of growing the added space.

RAID 1 (Mirror) Volumes (Tasks) 111

Responding to Mirror Component
Failures

� How to Replace a Slice in a Submirror
1. Make sure that you have root access and that you have a current backup of all data.

2. Read “Overview of Replacing and Enabling Slices in RAID 1 and RAID 5 Volumes”
on page 218 and “Preliminary Information for Mirrors” on page 90.

3. Use one of the following methods to replace a slice in a mirror.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, choose the mirror, then choose Action->Properties and click the
Components tab. Follow the instructions on screen. For more information, see the
online help.

� Use the metareplace command to replace a slice in a submirror.

Example—Replacing a Failed Slice in a Mirror
metastat d6
d6: Mirror

Submirror 0: d16
State: Okay

Submirror 1: d26
State: Needs maintenance

...
d26: Submirror of d6

State: Needs maintenance
Invoke: metareplace d6 c0t2d0s2 <new device>

...
metareplace d6 c0t2d0s2 c0t2d2s2

d6: device c0t2d0s2 is replaced with c0t2d2s2

The metastat command confirms that mirror d6 has a submirror, d26, with a slice in
the “Needs maintenance” state. The metareplace command replaces the slice as
specified in the “Invoke” line of the metastat output with another available slice on
the system. The system confirms that the slice is replaced, and starts a
resynchronization of the submirror.

112 Solaris Volume Manager Administration Guide • December 2001 (Beta)

� How to Replace a Submirror
1. Make sure that you have root access and that you have a current backup of all data.

2. Read “Overview of Replacing and Enabling Slices in RAID 1 and RAID 5 Volumes”
on page 218 and “Preliminary Information for Mirrors” on page 90.

3. Use one of the following methods to replace a submirror.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, choose the mirror, then choose Action->Properties and click the
Components tab. Follow the instructions on screen. For more information, see the
online help.

� Use the metadetach, metaclear, metatinit, and metattach commands to
replace an entire submirror.

Example—Replacing a Submirror in a Mirror
metastat d20
d20: Mirror

Submirror 0: d21
State: Okay

Submirror 1: d22
State: Needs maintenance

...
metadetach -f d20 d22
d20: submirror d22 is detached
metaclear d22
d22: Concat/Stripe is cleared
metainit d22 2 1 c1t0d0s2 1 c1t0d1s2
d22: Concat/Stripe is setup
metattach d20 d22

d20: components are attached

The metastat command confirms that the two-way mirror d20 has a submirror, d22,
in the “Needs maintenance” state. In this case, the entire submirror will be cleared and
recreated. The metadetach command detaches the failed submirror from the mirror
using the -f option (this forces the detach to occur). The metaclear command clears
the submirror. The metainit command recreates submirror d22, with new slices. The
metattach command attaches the rebuilt submirror, and a mirror resynchronization
begins automatically.

Note – You temporarily lose the capability for data redundancy while the mirror is a
one-way mirror.

RAID 1 (Mirror) Volumes (Tasks) 113

Removing Mirrors (Unmirroring)

� How to Unmirror a File System
Use this procedure to unmirror a file system that can be unmounted while the system
is running. To unmirror root (/), /opt, /usr, or swap, or any other file system that
cannot be unmounted while the system is running. see “How to Unmirror a File
System That Cannot Be Unmounted” on page 115.

1. Make sure that you have root access and that you have a current backup of all data.

2. Read “Preliminary Information for Mirrors” on page 90.

3. Run the metastat command to verify that at least one submirror is in the “Okay”
state.

4. Unmount the file system.

5. Run the metadetach command on the submirror that will continue to be used for
the file system

For more information, see the metadetach(1M) man page.

6. Run the metaclear -r command on the mirror.

For more information, see the metaclear(1M)

7. Edit the /etc/vfstab file to use a nonmirror device, if the file system entry
appears here.

8. Remount the file system.

Example—Unmirroring the /var File System
metastat d4
d4: Mirror

Submirror 0: d2
State: Okay

Submirror 1: d3
State: Okay

...
umount /var
metadetach d4 d2
d4: submirror d2 is detached
metaclear -r d4

114 Solaris Volume Manager Administration Guide • December 2001 (Beta)

d4: Mirror is cleared
d3: Concat/Stripe is cleared

(Edit the /etc/vfstab file so that the entry for /var is changed from d4 to d2)
mount /var

/var is made of a two-way mirror named d4; its submirrors are d2 and d3, made of
slices /dev/dsk/c0t0d0s0 and /dev/dsk/c1t0d0s0, respectively. The metastat
command verifies that at least one submirror is in the “Okay” state. (A mirror with no
submirrors in the “Okay” state must be repaired first.) The file system is unmounted
then submirror d2 is detached. The metaclear -r command deletes the mirror and
the other submirror, d3.

Next, the entry for /var in the /etc/vfstab file is changed to reference the
submirror. For example, if d4 were the mirror and d2 the submirror, the following
line:

/dev/md/dsk/d4 /dev/md/rdsk/d4 /var ufs 2 yes -

should be changed to:

/dev/md/dsk/d2 /dev/md/rdsk/d2 /var ufs 2 yes -

By using the submirror name, you can continue to have the file system mounted on a
volume. Lastly, /var is remounted.

Note – By using d2 instead of d4 in the /etc/vfstab file, you have unmirrored the
mirror. Because d2 consists of a single slice, you can mount the file system on the slice
name (/dev/dsk/c0t0d0s0) if you do not want the device to support a volume.

� How to Unmirror a File System That Cannot Be
Unmounted
Use this task to unmirror file systems that cannot be unmounted during normal
system operation, including root (/), /usr, /opt, and swap.

1. Run the metastat command to verify that at least one submirror is in the “Okay”
state.

2. Run the metadetach command on the mirror that contains root (/), /usr, /opt, or
swap to make a one-way mirror.

3. For /usr, /opt, and swap: change the file system entry in the /etc/vfstab file to
use a non-SVM device (slice).

4. For root (/) only: running the metaroot command.

5. Reboot the system.

RAID 1 (Mirror) Volumes (Tasks) 115

6. Run the metaclear command to clear the mirror and submirrors.

Example—Unmirroring root (/)
metadetach d0 d20
d0: submirror d20 is detached
metaroot /dev/dsk/c0t3d0s0
reboot
...
metaclear -r d0
d0: Mirror is cleared
d10: Concat/Stripe is cleared
metaclear d20

d20: Concat/Stripe is cleared

In this example, root (/) is a two-way mirror named d0; its submirrors are d10 and
d20, which are made of slices /dev/dsk/c0t3d0s0 and /dev/dsk/c1t3d0s0,
respectively. The metastat command verifies that at least one submirror is in the
“Okay” state. (A mirror with no submirrors in the “Okay” state must first be repaired.)
Submirror d20 is detached to make d0 a one-way mirror. The metaroot command is
then run, using the rootslice from which the system is going to boot. This edits the
/etc/system and /etc/vfstab files to remove information specifying the
mirroring of root (/). After a reboot, the metaclear -r command deletes the mirror
and the other submirror, d10. The last metaclear command clears submirrror d20.

Example—Unmirroring swap
metastat d1
d1: Mirror

Submirror 0: d11
State: Okay

Submirror 1: d21
State: Okay

...
metadetach d1 d21
d1: submirror d21 is detached

(Edit the /etc/vfstab file to change the entry for swap from metadevice to slice name)
reboot
...
metaclear -r d1
d1: Mirror is cleared
d11: Concat/Stripe is cleared
metaclear d21

d21: Concat/stripe is cleared

In this example, swap is made of a two-way mirror named d1; its submirrors are d11
and d21, which are made of slices /dev/dsk/c0t3d0s1 and /dev/dsk/c1t3d0s1,
respectively. The metastat command verifies that at least one submirror is in the
“Okay” state. (A mirror with no submirrors in the “Okay” state must first be repaired.)

116 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Submirror d21 is detached to make d1 a one-way mirror. Next, the /etc/vfstab file
must be edited to change the entry for swap to reference the slice that is in submirror
d21. For example, if d1 was the mirror, and d21 the submirror containing slice
/dev/dsk/c0t3d0s1, the following line:

/dev/md/dsk/d1 - - swap - no -

should be changed to:

/dev/dsk/c0t3d0s1 - - swap - no -

After a reboot, the metaclear -r command deletes the mirror and the other
submirror, d11. The final metaclear command clears submirrror d21.

Using a Mirror to Back Up Data
Although Solaris Volume Manager is not meant to be a “backup product,” it does
provide a means for backing up mirrored data without unmounting the mirror or
taking the entire mirror offline, and without halting the system or denying users access
to data. This happens as follows: one of the submirrors is taken offline—temporarily
losing the mirroring—and backed up; that submirror is then placed online and
resynchronized as soon as the backup is complete.

� How to Use a Mirror to Make an Online Backup
You can use this procedure on any file system except root (/). Be aware that this type
of backup creates a “snapshot” of an active file system. Depending on how the file
system is being used when it is write-locked, some files and file content on the backup
may not correspond to the actual files on disk.

The following limitations apply to this procedure:

� If you use this procedure on a two-way mirror, be aware that data redundancy is
lost while one submirror is offline for backup. A three-way mirror does not have
this problem.

� There is some overhead on the system when the offlined submirror is brought back
online after the backup is complete.

The high-level steps in this procedure are:

� Write locking the file system (UFS only). Do not lock root (/).

� Using the metaoffline command to take one submirror offline from the mirror

RAID 1 (Mirror) Volumes (Tasks) 117

� Unlocking the file system

� Backing up the data on the offlined submirror

� Using the metaonline command to place the offlined submirror back online

Note – If you use these procedures regularly, put them into a script for ease of use.

1. Before beginning, run the metastat command to make sure the mirror is in the
“Okay” state.

A mirror that is in the “Maintenance” state should be repaired first.

2. For all file systems except root (/), lock the file system from writes.

/usr/sbin/lockfs -w mount point

Only a UFS needs to be write-locked. If the volume is set up as a raw device for
database management software or some other specific application, running lockfs is
not necessary. (You may, however, want to run the appropriate vendor-supplied utility
to flush any buffers and lock access.)

Caution – Write-locking root (/) causes the system to hang, so it should never be
performed.

3. Take one submirror offline from the mirror.

metaoffline mirror submirror

In this command:

mirror Is the volume name of the mirror.

submirror Is the volume name of the submirror (volume) being taken offline.

Reads will continue to be made from the other submirror. The mirror will be out of
sync as soon as the first write is made. This inconsistency is corrected when the
offlined submirror is brought back online in step 6.

There is no need to run the fsck command on the offlined file system.

4. Unlock the file system and allow writes to continue.

/usr/sbin/lockfs -u mount-point

You may need to perform necessary unlocking procedures based on
vendor-dependent utilities used in step 2 above.

118 Solaris Volume Manager Administration Guide • December 2001 (Beta)

5. Perform a backup of the offlined submirror. Use the ufsdump command or your
usual backup utility.

Note – To ensure a proper backup, use the raw volume, for example,
/dev/md/rdsk/d4. Using “rdsk” allows greater than 2 Gbyte access.

6. Place the submirror back online.

metaonline mirror submirror

SVM automatically begins resynchronizing the submirror with the mirror.

Example—Using a Mirror to Make an Online Backup
This example uses a mirror named d1, consisting of submirrors d2 and d3. d3 is taken
offline and backed up while d2 stays online. The file system on the mirror is /home1.

/usr/sbin/lockfs -w /home1
metaoffline d1 d3
d1: submirror d3 is offlined
/usr/sbin/lockfs -u /home1
(Perform backup using /dev/md/rdsk/d3)
metaonline d1 d3

d1: submirror d3 is onlined

RAID 1 (Mirror) Volumes (Tasks) 119

120 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 11

Soft Partitions (Overview)

This chapter provides information about soft partitioning. For information about the
related tasks, see Chapter 12.

This chapter contains the following information:

� “Overview of Soft Partitioning” on page 121
� “Preliminary Information about Soft Partitioning” on page 122

Overview of Soft Partitioning
As disks become larger, and disk arrays present ever larger logical devices to Solaris
systems, users need to be able to subdivide disks or logical volumes into more than 8
sections, often to create manageable file systems or partition sizes.

Note – Solaris Volume Manager can support up to 8192 logical volumes per disk set
(including the local, or unspecified, disk set), but is configured for 128 (d0–d127) by
default. To increase the number of logical volumes, see“Changing SVM Defaults”
on page 213. Do not increase the number of possible logical volumes far beyond the
number you will actually use, because SVM creates a device node (/dev/dsk/md/*)
and associated data structures for every metadevice permitted by the maximum value.
For small SVM configurations, these additional possible volumes can result in
substantial performance impact.

You use soft partitioning to divide a disk slice into as many divisions as needed. You
must provide a name for each division or soft partition, just like you do for other
storage volumes, such as stripes or mirrors. A soft partition, once named, can be

121

accessed by applications, including file systems, directly as long as it is not included in
another volume. Once included in a volume, the soft partition should no longer be
directly accessed.

Soft partitions can be placed directly above a disk slice, or on top of a mirror, stripe or
RAID5 volume. Nesting of a soft partition between volumes is not allowed. For
example, a soft partition built on a stripe with a mirror built on the soft partition is not
allowed.

Although a soft partition appears, to filesystems and other applications, to be a single
contiguous logical volume, it actually comprises a series of extents that may be located
at arbitrary locations on the underlying media. In addition to the soft partitions, extent
headers (also called system recovery data areas) on disk record information about the
soft partitions to facilitate recovery in the event of a catastrophic system failure.

Preliminary Information about Soft
Partitioning

Requirements for Soft Partitioning
� A soft partition may be used to subdivide a device that is larger than a terabyte;

however it will not produce a volume larger than a terabyte.

� Slices that are used for soft partitions cannot be used for other purposes without
losing data.

Suggestions for Soft Partitioning
� While it is technically possible to manually place extents of soft partitions at

arbitrary locations on disk, allow the system to place them automatically.

� When you partition a disk and build filesystems on the resulting slices, you cannot
later extend a slice without modifying or destroying the disk format. With soft
partitions, you can extend them up to the amount of space on the underlying
device without moving or destroying data on other soft partitions.

� Although you can build soft partitions on any slice, creating a single slice
occupying the entire disk and then creating soft partitions on that slice is the most
efficient way to use soft partitions at the disk level.

122 Solaris Volume Manager Administration Guide • December 2001 (Beta)

� To improve your ability to expand and manage storage space, build stripes on top
of your disk slices, then build soft partitions on the stripes. This allows you to add
new slices to the stripe later, then grow the soft partitions.

� For maximum flexibility and high availability, build RAID 1 (mirror) or RAID 5
volumes on disk slices, then soft partitions on the mirror or RAID 5 volume.

Scenario—Soft Partitions
Soft partitions provide tools with which to subdivide larger storage spaces into more
managable spaces. For example, in other scenarios (“Scenario—RAID 1 Volumes
(Mirrors)” on page 92 or “Requirements for RAID 5 Volumes” on page 134), large
storage aggregations provided redundant storage of many Gigabytes, but many
possibly scenarios would not require so much space—at least at first. Soft partitions
allow you to subdivide that storage space into more manageable sections, each of
which can have a complete filesystem. For example, you could create 1000 soft
partitions on top of a RAID 1 or RAID 5 volume so each of your users can have a
home directory on a separate filesystem (which would also obviate the need to
manage quotas and storage). If a user needs more space, simply grow the soft
partition.

Soft Partitions (Overview) 123

124 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 12

Soft Partitions (Tasks)

This chapter provides information about performing tasks that are associated with soft
partitioning. For information about the concepts involved in these tasks, see
Chapter 11.

This chapter contains the following procedures:

Soft Partitions (Task Map)
The following task map identifies the procedures needed to manage SVM soft
partitions.

Task Description Instructions

Create soft partitions. Use the SVM GUI or the metainit
command to create soft partitions.

“How to Create a Soft
Partition” on page 126

Check the status of soft
partitions.

Use the SVM GUI or the metastat
command to check the status of soft
partitions.

“How to Check Status of a
Soft Partition” on page 127

Expand soft partitions. Use the SVM GUI or the metattach
command to expand soft partitions.

“How to Expand (Grow) a
Soft Partition” on page 128

Remove soft partitions. Use the SVM GUI or the metaclear
command to remove soft partitions.

“How to Remove a Soft
Partition” on page 129

Recover configuration
data for a lost soft
partition.

Use the metarecover command to
recover configuration data for soft
partitions.

“How to Recover
Configuration Data for a
Soft Partition” on page 130

125

Creating Soft Partitions

� How to Create a Soft Partition
1. Check the “Preliminary Information about Soft Partitioning” on page 122.

2. Use one of the following methods to create a soft partition:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node. Choose Action->Create Volume, then follow the directions in the
wizard. For more information, see the online help.

� To create a soft partition, use the following form of the metainit command:

metainit [-s set] soft-partition -p [-e] component size

-s is used to specify which set is being used. If —s isn’t specified, the local
(default) disk set is used.

-e is used to specify that the entire disk should be reformatted to provide a slice 0,
taking most of the disk, and a slice 7 of a minimum of 4Mb in size to contain a state
database replica.

soft-partition is the name of the soft partition. The name is of the form dnnn, where
nnn is a number in the range of 0 to 8192.

component is the disk, slice, or (logical) volume from which to create the soft
partition. All existing data on the component is destroyed because the soft partition
headers are written at the beginning of the component.

size is the space to take for the soft partition. It is specified as a number followed
by:

� M or m for megabytes
� G or g for gigabytes
� T or t for terabyte
� B or b for sectors

See the following examples and the metainit(1M) man page for more information.

Example—Creating a Soft Partition
A simple soft partition can be created with:

126 Solaris Volume Manager Administration Guide • December 2001 (Beta)

metainit d20 -p c1t3d0s2 4g

This process creates a 4 Gb soft partition called d20 on c1t3d0s2.

To repartition disk c1t2d0, thus destroying any data on that disk, and create a new soft
partition, use:

metainit d7 -p -e c1t2d0 1G

Maintaining Soft Partitions
Maintaining soft partitions is no different from maintaining other logical volumes. The
following steps outline the necessary steps.

� How to Check Status of a Soft Partition
1. Read the “Preliminary Information about Soft Partitioning” on page 122.

2. Use one of the following methods to check the status of a soft partition:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node. Choose the soft partition you want to monitor, then
Action->Properties, then follow the directions on screen. For more information, see
the online help.

� To view the existing configuration, use the following format of the metastat
command:

metastat [-s set] soft-partition

Example—Checking Status of a Soft Partition
metastat d1
d1: soft partition

component: d100
state: OKAY
size: 42674285 blocks

Extent Start Block Block Count
0 10234 40674285
1 89377263 2000000

d100: Mirror
Submirror 0: d10
State: OKAY
Read option: roundrobin (default)
Write option: parallel (default)

Soft Partitions (Tasks) 127

Size: 426742857 blocks

d10: Submirror of d100
State: OKAY
Hot spare pool: hsp002
Size: 426742857 blocks
Stripe 0: (interlace: 32 blocks)

Device Start Block Dbase State Hot Spare
c3t3d0s0 0 No Okay

� How to Expand (Grow) a Soft Partition
When a soft partition is not contained in a (logical) volume, you can add space to it.
Free space is located and used to extend the partition. Data is not moved to keep
partitions contiguous.

1. Read the “Preliminary Information about Soft Partitioning” on page 122.

2. Use one of the following methods to expand a soft partition:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node. Choose the soft partition you want to expand, then
Action->Properties, then follow the directions on screen. For more information, see
the online help.

� To add space to a soft partition, use the following form of the metattach
command:

metattach [-s set] soft-partition size

soft-partition is the name of an existing soft partition.

size is the amount of space to add.

Example—Expanding a Soft Partition
You can attach space to the soft partition and then grow the file system sitting on it
while it is online:

mount /dev/md/dsk/d20 /home2
metattach d20 10g
growfs -M /home2 /dev/md/rdsk/d20

128 Solaris Volume Manager Administration Guide • December 2001 (Beta)

How to Remove a Soft Partition
1. Read the “Preliminary Information about Soft Partitioning” on page 122.

2. Use one of the following methods to delete a soft partition:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node. Choose the soft partition you want to expand, then
Action->Properties, then follow the directions on screen. For more information, see
the online help.

� To delete a soft partition, use one of the following forms of the metaclear
command:

metaclear [-s set] -p soft-partition
metaclear [-s set] -p component

where:

� soft-partition is the soft partition to delete.

� r specifies to recursively delete metadevices and hot spare pools, but not
metadevices on which others depend.

� p specifies to purge all soft partitions on the specified component, except those
which are open.

� component is the component from which to clear all of the soft partitions.

The first form is essentially the same as the regular metaclear, except the name of
the soft partition is used instead of a volume. The second form of the command is to
clear all soft partitions on an underlying device.

Example—Removing a Soft Partition
To delete all soft partitions on c1t4d2s0, use

metaclear -p c1t4d2s0

Soft Partitions (Tasks) 129

Recovering from Soft Partition Errors

How to Recover Configuration Data for a Soft
Partition
At the beginning of each soft partition extent a sector is used to mark the beginning of
the soft partition. These hidden sectors are called extent headers and do not appear in
the soft partition. In the event that all Solaris Volume Manager configuration is lost
due to some sort of catastrophe the data can be scanned to attempt to generate the
configuration.

This procedure is a last option to recover lost soft partition configuration information.
the metascan command should only be used when you have lost your metadb and
your md.cf file, and your md.tab is lost or out of date.

Note – This procedure only works to recover soft partition information, and does not
assist in recovering from other lost configurations or for recovering configuration
information for other SVM volumes.

Configuration information about your soft partitions is stored on your devices and in
your state database. Since either of these sources could be corrupt, you must tell
metascan which source is reliable.

First, use the metascan command to determine whether or not the two sources are in
agreement. If so, metascan cannot be used to make any changes. If metascan reports
an inconsistency, however, you must examine its output carefully to determine
whether the disk or the state database is corrupt, then use metascan to rebuild
configuration based on the appropriate source.

1. Read the “Preliminary Information about Soft Partitioning” on page 122.

2. Use the metarecover command to review the data and generate configuration
information about the soft partition.

metarecover component

component is the device to scan.

130 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 13

RAID 5 Volumes (Overview)

This chapter provides conceptual information about RAID 5 volumes. For information
about performing related tasks, see Chapter 14.

This chapter contains the following:

� “Overview of RAID 5 Volumes” on page 131
� “Preliminary Information for Creating RAID 5 Volumes” on page 134
� “Overview of Replacing and Enabling Slices in RAID 5 Volumes” on page 135

Overview of RAID 5 Volumes
RAID level 5 is similar to striping, but with parity data distributed across all disks. If a
disk fails, the data on the failed disk can be rebuilt from the distributed data and
parity information on the other disks. Within SVM, a RAID 5 volume is a volume that
supports RAID level 5.

A RAID 5 volume uses storage capacity equivalent to one slice in the volume to store
redundant information about user data stored on the remainder of the RAID 5
volume’s slices. The redundant information is distributed across all slices in the
volume. Like a mirror, a RAID 5 volume increases data availability, but with a
minimum of cost in terms of hardware. However, you cannot use a RAID 5 volume for
root (/), /usr, and swap, or existing file systems.

SVM automatically initializes a RAID 5 volume when you add a new slice, or
resynchronizes a RAID 5 volume when you replace an existing slice.SVM also
resynchronizes RAID 5 volumes during rebooting if a system failure or panic took
place.

131

Example—RAID 5 Volume
Figure 13–1 shows a RAID 5 volume, d40.

The first three data chunks are written to Disks A through C. The next chunk that is
written is a parity chunk, written to Drive D, which consists of an exclusive OR of the
first three chunks of data. This pattern of writing data and parity chunks results in
both data and parity spread across all disks in the RAID 5 volume. Each drive can be
read independently. The parity protects against a single disk failure. If each disk in this
example were 2 Gbytes, the total capacity of d40 would be 6 Gbytes. (One drive’s
worth of space is allocated to parity.)

Chunk 1 Chunk 2 Chunk 3
Chunk 4 Chunk 5

Chunk 1
Chunk 2
Chunk 3

P(1-3)
Chunk 6P(4-6)

Chunk 7 Chunk 8 Chunk 9P(7-9)
Chunk 10 Chunk 11 Chunk 12P(10-12)

Chunk 4
Chunk 5
Chunk 6
Chunk 7
Chunk 8
Chunk 9

Chunk 10
Chunk 11
Chunk 12

Physical
Disk A

Physical
Disk B

Physical
Disk C

Physical
Disk D

DiskSuite
Software

Metadevice d40

FIGURE 13–1 RAID 5 Volume Example

Example—Concatenated (Expanded) RAID 5
Volume
Figure 13–2 shows an example of an RAID 5 volume that initially consisted of four
disks (slices). A fifth disk has been dynamically concatenated to the volume to expand
it.

132 Solaris Volume Manager Administration Guide • December 2001 (Beta)

P(1-3, 13)
Chunk 6P(4-6, 14)

Chunk 7 Chunk 8 Chunk 9P(7-9, 15)
Chunk 10 Chunk 11 Chunk 12P(10-12, 16)

Chunk 4
Chunk 5
Chunk 6
Chunk 7
Chunk 8
Chunk 9
Chunk 10
Chunk 11
Chunk 12

Chunk 13
Chunk 14
Chunk 15
Chunk 16

Chunk 13
Chunk 14
Chunk 15
Chunk 16

Chunk 4
Chunk 1 Chunk 2

Chunk 5
Chunk 3

Chunk 1
Chunk 2
Chunk 3

Physical
Disk B

Physical
Disk A

Physical
Disk C

Physical
Disk D

Physical
Disk E

DiskSuite
Software

Metadevice d40

FIGURE 13–2 Expanded RAID 5 Volume Example

The parity areas are allocated when the initial RAID 5 volume is created. One slice
worth of space is allocated to parity, although the actual parity blocks are distributed
across all of the original slices to distribute I/O. When you concatenate additional
slices to the RAID, the additional space is devoted entirely to data; no new parity
blocks are allocated. The data on the concatenated slices is, however, included in the
parity calculations, so it is protected against single device failures.

Concatenated RAID 5 volumes are not suited for long-term use. Use a concatenated
RAID 5 volume until it is possible to reconfigure a larger RAID 5 volume and copy the
data to the larger volume.

RAID 5 Volumes (Overview) 133

Note – When you add a new slice to a RAID 5 volume, SVM “zeros” all the blocks in
that slice. This ensures that the parity will protect the new data. As data is written to
the additional space, SVM includes it in the parity calculations.

Preliminary Information for Creating
RAID 5 Volumes
When working with RAID 5 volumes, consider the “Requirements for RAID 5
Volumes” on page 134 and “Suggestions for RAID 5 Volumes” on page 134. Many
striping guidelines also apply to RAID 5 volume configurations. See “Requirements
for Stripes and Concatenations” on page 72.

Requirements for RAID 5 Volumes
� A RAID 5 volume must consist of at least three slices. The more slices a RAID 5

volume contains, however, the longer read and write operations take when a slice
fails.

� RAID 5 volumes cannot be striped, concatenated, or mirrored.

� Do not create a RAID 5 volume from a slice that contains an existing file system.
Doing so will erase the data during the RAID 5 initialization process.

� When you create a RAID 5 volume, you can define the interlace value. If not
specified, the interlace value is 16 Kbytes. This is reasonable for most applications.

� A RAID 5 volume (with no hot spares) can only handle a single slice failure.

� When creating RAID 5 volumes, use slices across separate controllers, because
controllers and associated cables tends to fail more often than disks.

� Use the same size disk slices. Creating a RAID 5 volume of different size slices
results in unused disk space.

Suggestions for RAID 5 Volumes
� Because of the complexity of parity calculations, volumes with greater than about

20 percent writes should probably not be RAID 5 volumes. If data redundancy on a
write-heavy volume is needed, consider mirroring.

134 Solaris Volume Manager Administration Guide • December 2001 (Beta)

� If the different slices in the RAID 5 volume reside on different controllers and the
accesses to the volume are primarily large sequential accesses, then setting the
interlace value to 32 Kbytes might improve performance.

� You can expand a RAID 5 volume by concatenating additional slices to the volume.
Concatenating a new slice to an existing RAID 5 will decrease the overall
performance of the volume because the data on concatenations is sequential; data
is not striped across all components. The original slices of the volume have data
and parity striped across all slices. This striping is lost for the concatenated slice,
although the data is still recoverable from errors because the parity is used during
the component I/O. The resulting RAID 5 volume continues to handle a single
slice failure.

Concatenated slices also differ in the sense that they do not have parity striped on
any of the regions. Thus, the entire contents of the slice are available for data.

Any performance enhancements for large or sequential writes are lost when slices
are concatenated.

� You can recreate a RAID 5 volume without having to “zero out” the data blocks. To
do this either:

� Use the metainit command with the -k option. The -k option recreates the
RAID 5 volume without initializing it, and sets the disk blocks to the OK state.
This option is potentially dangerous, as any errors that exist on disk blocks
within the volume will cause unpredictable behavior from SVM, including the
possibility of fabricated data.

� Initialize the device and restore data from tape. See the metainit man page for
more information.

Overview of Replacing and Enabling
Slices in RAID 5 Volumes
SVM has the capability to replace and enable slices within mirrors and RAID 5 volumes.
The issues and requirements for doing so are the same for mirrors and RAID 5
volumes. For more information, see “Overview of Replacing and Enabling Slices in
RAID 1 and RAID 5 Volumes” on page 218.

RAID 5 Volumes (Overview) 135

Scenario—RAID 5 Volumes
RAID 5 volumes allow you to have redundant storage without the overhead of RAID
1 volumes, which require two times the total storage space to provide redundancy. By
setting up a RAID 5 volume, you can provide redundant storage of greater capacity
than you could achieve with RAID 1 on the same set of disk slices, and, with the help
of hot spares (see Chapter 15 and specifically“How Hot Spares Work” on page 146),
nearly the same level of safety. The drawbacks are increased write time and markedly
impaired performance in the event of a slice failure, but those tradeoff may be
insignificant for many situations. The following example, drawing on the sample
system described in Chapter 4 describes how RAID 5 volumes can provide extra
storage capacity.

Other scenarios for RAID 0 and RAID 1 volumes used 6 slices (c1t1d0, c1t2d0,
c1t3d0, c2t1d0, c2t2d0, c2t3d0) on six disks, spread over two controllers, to
provide 27 Gb of redundant storage. By using the same slices in a RAID 5
configuration, 45 Gb of storage is available, and the configuration can withstand a
single slice failure without data loss or access interruption. By adding hot spares to the
configuration, the RAID 5 volume can withstand additional slice failures. The most
significant drawback to this approach is that a controller failure would result in data
loss to this RAID 5 volume, while it would not with the RAID 1 volume described in
“Scenario—RAID 1 Volumes (Mirrors)” on page 92.

136 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 14

RAID 5 Volumes (Tasks)

This chapter provides information about performing tasks that are associated with
RAID 5 volumes. For information about the concepts involved in these tasks, see
Chapter 13.

RAID 5 Volumes (Task Map)
The following task map identifies the procedures needed to manage SVM RAID 5
volumes.

Task Description Instructions

Create RAID 5 volumes Use the SVM GUI or the metainit
command to create RAID 5 volumes.

“How to Create a RAID 5
Volume” on page 138

Check RAID 5 volume
status

Use the SVM GUI or the metastat
command to check the status of RAID
5 volumes.

“How to Check RAID 5
Volume Status”
on page 139

Expand a RAID 5
volume

Use the SVM GUI or the metattach
command to expand RAID 5 volumes.

“How to Expand a RAID 5
Volume” on page 141

Enable a slice in a RAID
5 volume

Use the SVM GUI or the
metareplace command to enable
slices in RAID 5 volumes.

“How to Enable a Slice in a
RAID 5 Volume”
on page 142

Replace a slice in a
RAID 5 volume

Use the SVM GUI or the
metareplace command to enable
slices in RAID 5 volumes.

“How to Replace a Slice in
a RAID 5 Volume”
on page 143

137

Creating RAID 5 Volumes

� How to Create a RAID 5 Volume
1. Check “Prerequisites for Creating SVM Elements” on page 48 and “Preliminary

Information for Creating RAID 5 Volumes” on page 134.

2. To create the RAID 5 volume, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose Action->Create Volume and follow the steps in the
wizard. For more information, see the online help.

� Use the following form of the metainit command:

metainit name -r ctds-slice1 ctds-slice2 ctds-slice3

To specify an interlace value, add the -i interlace-value option. For more
information, see the metainit man page.

Example—Creating a RAID 5 Volume of Three Slices
metainit d45 -r c2t3d0s2 c3t0d0s2 c4t0d0s2

d45: RAID is setup

The RAID 5 volume d45 is created with the -r option from three slices. Because no
interlace is specified, d45 uses the default of 16 Kbytes. The system verifies that the
RAID 5 volume has been set up, and begins initializing the volume.

Note – You must wait for the initialization to finish before you can use the RAID 5
volume.

Where to Go From Here
To prepare the newly created RAID 5 volume for a file system, see “Creating File
Systems (Tasks)” in System Administration Guide: Basic Administration. An application,
such as a database, that uses the raw volume must have its own way of recognizing
the volume.

To associate a hot spare pool with a RAID 5 volume, see “How to Associate a Hot
Spare Pool with a Volume” on page 152.

138 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Maintaining RAID 5 Volumes

� How to Check RAID 5 Volume Status
� To check status on a RAID 5 volume, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node and view the status of the volumes. Choose a volume, then
Action->Properties to see more detailed information. For more information, see the
online help.

� Use the metastat command.

For each slice in the RAID 5 volume, the metastat command shows the “Device”
(device name of the slice in the stripe); “Start Block” on which the slice begins;
“Dbase” to show if the slice contains a state database replica; “State” of the slice;
and “Hot Spare” to show the slice being used to hot spare a failed slice.

Example—Viewing RAID 5 Volume Status
Here is sample RAID 5 volume output from the metastat command.

metastat
d10: RAID

State: Okay
Interlace: 32 blocks
Size: 10080 blocks

Original device:
Size: 10496 blocks

Device Start Block Dbase State Hot Spare
c0t0d0s1 330 No Okay
c1t2d0s1 330 No Okay

c2t3d0s1 330 No Okay

The metastat command output identifies the volume as a RAID 5 volume. For each
slice in the RAID 5 volume, it shows the name of the slice in the stripe, the block on
which the slice begins, an indicator that none of these slices contain a state database
replica, that all the slices are okay, and that none of the slices are hot spare
replacements for a failed slice.

RAID 5 Volume Status Information
Table 14–1 explains RAID 5 volume states.

RAID 5 Volumes (Tasks) 139

TABLE 14–1 RAID 5 States

State Meaning

Initializing Slices are in the process of having all disk blocks zeroed. This is
necessary due to the nature of RAID 5 volumes with respect to data and
parity interlace striping.

Once the state changes to the “Okay,” the initialization process is
complete and you are able to open the device. Up to this point,
applications receive error messages.

Okay The device is ready for use and is currently free from errors.

Maintenance A single slice has been marked as failed due to I/O or open errors
encountered during a read or write operation.

The slice state is perhaps the most important information when troubleshooting RAID
5 volume errors. The RAID 5 state only provides general status information, such as
“Okay” or “Needs Maintenance.” If the RAID 5 reports a “Needs Maintenance” state,
refer to the slice state. You take a different recovery action if the slice is in the
“Maintenance” or “Last Erred” state. If you only have a slice in the “Maintenance”
state, it can be repaired without loss of data. If you have a slice in the “Maintenance”
state and a slice in the “Last Erred” state, data has probably been corrupted. You must
fix the slice in the “Maintenance” state first then the “Last Erred” slice. See “Overview
of Replacing and Enabling Slices in RAID 1 and RAID 5 Volumes” on page 218.

Table 14–2 explains the slice states for a RAID 5 volume and possible actions to take.

TABLE 14–2 RAID 5 Slice States

State Meaning Action

Initializing Slices are in the process of
having all disk blocks
zeroed. This is necessary
due to the nature of RAID 5
volumes with respect to
data and parity interlace
striping.

Normally none. If an I/O error occurs
during this process, the device goes into
the “Maintenance” state. If the
initialization fails, the volume is in the
“Initialization Failed” state and the slice is
in the “Maintenance” state. If this
happens, clear the volume and recreate it.

Okay The device is ready for use
and is currently free from
errors.

None. Slices may be added or replaced, if
necessary.

Resyncing The slice is actively being
resynchronized. An error
has occurred and been
corrected, a slice has been
enabled, or a slice has been
added.

If desired, monitor the RAID 5 volume
status until the resynchronization is done.

140 Solaris Volume Manager Administration Guide • December 2001 (Beta)

TABLE 14–2 RAID 5 Slice States (Continued)
State Meaning Action

Maintenance A single slice has been
marked as failed due to I/O
or open errors encountered
during a read or write
operation.

Enable or replace the failed slice. See
“How to Enable a Slice in a RAID 5
Volume” on page 142, or “How to Replace
a Slice in a RAID 5 Volume” on page 143.
Note: The metastat command will show
an invoke recovery message with the
appropriate action to take with the
metareplace command.

Maintenance/ Last
Erred

Multiple slices have
encountered errors. The
state of the failed slices is
either “Maintenance” or
“Last Erred.” In this state,
no I/O is attempted on the
slice that is in the
“Maintenance” state, but
I/O is attempted to the slice
marked “Last Erred” with
the outcome being the
overall status of the I/O
request.

Enable or replace the failed slices. See
“How to Enable a Slice in a RAID 5
Volume” on page 142, or “How to Replace
a Slice in a RAID 5 Volume” on page 143.
Note: The metastat command will show
an invoke recovery message with the
appropriate action to take with the
metareplace command, which must be
run with the -f flag. This indicates that
data might be fabricated due to multiple
failed slices.

� How to Expand a RAID 5 Volume
1. Make sure that you have a current backup of all data and that you have root access

to the SVM environment.

2. Read “Preliminary Information for Creating RAID 5 Volumes” on page 134.

3. To attach additional slices to a RAID 5 volume, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then open the RAID 5 volume. Choose the Components pane, then
Attach Component and follow the instructions. For more information, see the
online help.

� Use the following form of the metattach command:

metattach name ctds-of-slice-to-add

See the metattach(1M) man page for more information.

RAID 5 Volumes (Tasks) 141

Note – In general, this is a short-term solution to a RAID 5 volume running out of
space. For performance reasons, it is best to have a “pure” RAID 5 volume.

Example—Adding a Slice to a RAID 5 Volume
metattach d2 c2t1d0s2

d2: column is attached

This example shows the addition of slice /dev/dsk/c2t1d0s2 to an existing RAID 5
volume named d2.

Where to Go From Here
For a UFS, run the growfs command on the RAID 5 volume. See “Volume and Disk
Space Expansion” on page 43“How to Grow a File System (Command Line)” on page
153.

An application, such as a database, that uses the raw volume must have its own way
of growing the added space.

� How to Enable a Slice in a RAID 5 Volume
1. Make sure that you have a current backup of all data and that you have root access

to the SVM environment.

2. To enable a failed slice in a RAID 5 volume, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then open the RAID 5 volume. Choose the Components pane, then
the failed component. Click Enable Component and follow the instructions. For
more information, see the online help.

� Use the following form of the metareplace command:

metareplace -e RAID 5-name ctds-of-new-slice

metareplace automatically starts a resynchronization to synchronize the new
slice with the rest of the RAID 5 volume.

Example—Enabling a Slice in a RAID 5 Volume
metareplace -e d20 c2t0d0s2

142 Solaris Volume Manager Administration Guide • December 2001 (Beta)

The RAID 5 volume d20 has a slice, c2t0d0s2, which had a soft error. The
metareplace command with the -e option enables the slice.

Note – If a disk drive is defective, you can either replace it with another available disk
(and its slices) on the system as documented in “How to Replace a Slice in a RAID 5
Volume” on page 143“How to Replace a RAID 5 Slice (Command Line)” on page 128,
or repair/replace the disk, format it, and run the metareplace command with the -e
option.

� How to Replace a Slice in a RAID 5 Volume
This task replaces a failed slice of a RAID 5 volume in which only one slice has failed.

Caution – Replacing a failed slice when multiple slices are in error may cause data to
be fabricated. The integrity of the data in this instance is questionable.

1. Make sure that you have a current backup of all data and that you have root access
to the SVM environment.

2. Use one of the following methods to determine which slice of the RAID 5 volume
needs to be replaced:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then open the RAID 5 volume. Choose the Components pane, then
view the status of the individual components. For more information, see the online
help.

� Use the metastat command.

Look for the keyword “Maintenance” to identify the failed slice.

3. Use one of the following methods to replaced the failed slice with another slice:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then open the RAID 5 volume. Choose the Components pane, then
the failed component. Click Replace Component and follow the instructions. For
more information, see the online help.

� Use the following form of the metareplace command:

metareplace RAID 5-name ctds-of-failed-slice ctds-of-new-slice

See the metareplace(1M)man page for more information.

4. To verify the status of the replacement slice, use one of the methods described in
step 2.

The replaced slice should indicate “Resyncing.”

RAID 5 Volumes (Tasks) 143

Example—Replacing a RAID 5 Slice
metastat d1
d1: RAID
State: Needs Maintenance

Invoke: metareplace d1 c0t14d0s6 <new device>
Interlace: 32 blocks
Size: 8087040 blocks

Original device:
Size: 8087520 blocks
Device Start Block Dbase State Hot Spare
c0t9d0s6 330 No Okay
c0t13d0s6 330 No Okay
c0t10d0s6 330 No Okay
c0t11d0s6 330 No Okay
c0t12d0s6 330 No Okay
c0t14d0s6 330 No Maintenance

metareplace d1 c0t14d0s6 c0t4d0s6
d1: device c0t14d0s6 is replaced with c0t4d0s6
metatstat d1
d1: RAID

State: Resyncing
Resync in progress: 98% done
Interlace: 32 blocks
Size: 8087040 blocks

Original device:
Size: 8087520 blocks
Device Start Block Dbase State Hot Spare
c0t9d0s6 330 No Okay
c0t13d0s6 330 No Okay
c0t10d0s6 330 No Okay
c0t11d0s6 330 No Okay
c0t12d0s6 330 No Okay

c0t4d0s6 330 No Resyncing

The metastat command displays the action to take to recover from the failed slice in
the d1 RAID 5 volume. After locating an available slice, the metareplace command
is run, specifying the failed slice first, then the replacement slice. (If no other slices are
available, run the metareplace command with the -e option to attempt to recover
from possible soft errors by resynchronizing the failed device.) If multiple errors exist,
the slice in the “Maintenance” state must first be replaced or enabled first. Then the
slice in the “Last Erred” state can be repaired. After the metareplace command, the
metastat command monitors the progress of the resynchronization. During the
replacement, the state of the volume and the new slice will be “Resyncing.” You can
continue to use the volume while it is in this state.

Note – You can use the metareplace command on non-failed devices to change a
disk (slice). This can be useful for tuning performance of RAID 5 volumes.

144 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 15

Hot Spare Pools (Overview)

This chapter explains hot spare pools. For information about performing related tasks,
see Chapter 16.

This chapter contains the following information:

� “Overview of Hot Spares and Hot Spare Pools” on page 145
� “How Hot Spares Work” on page 146
� “Administering Hot Spare Pools” on page 148

Overview of Hot Spares and Hot Spare
Pools
A hot spare pool is collection of slices (hot spares) that Solaris Volume Manager uses to
provide increased data availability for RAID 1 (mirror) and RAID 5 volumes. A hot
spare is reserved by SVM to be automatically substituted in case of a slice failure in
either a submirror or RAID 5 volume.

Note – Hot spares do not apply to RAID 0 volumes or one-way mirrors. For automatic
substitution to work, redundant data must be available.

A hot spare cannot be used to hold data or state database replicas while it is idle. A hot
spare must remain ready for immediate use in the event of a slice failure in the volume
with which it is associated. To use hot spares, you must invest in additional disks
beyond those the system actually requires to function.

145

Hot Spares
A hot spare is a slice (not a volume) that is functional and available, but not in use. It
is reserved, meaning that the hot spare stands ready to substitute for a failed slice in a
submirror or RAID 5 volume.

Hot spares provide protection from hardware failure because slices from RAID 1 or
RAID 5 volumes are automatically replaced and resynchronized when they fail. The
hot spare can be used temporarily until a failed submirror or RAID 5 volume slice can
be either fixed or replaced.

You create hot spares within hot spare pools. Individual hot spares can be included in
one or more hot spare pools. For example, you may have two submirrors and two hot
spares. The hot spares can be arranged as two hot spare pools, with each pool having
the two hot spares in a different order of preference. This enables you to specify which
hot spare is used first. It also improves availability by having more hot spares
available.

A submirror or RAID 5 volume can use only a hot spare whose size is equal to or
greater than the size of the failed slice in the submirror or RAID 5 volume. If, for
example, you have a submirror made of 1 Gbyte drives, a hot spare for the submirror
must be 1 Gbyte or greater.

How Hot Spares Work
When a slice in a submirror or RAID 5 volume fails, a slice from the associated hot
spare pool is used to replace it. SVM searches a hot spare pool for a hot spare based on
the order in which hot spares are added to a hot spare pool. The first hot spare found
that is large enough is used as a replacement. The order of hot spares in the hot spare
pools is not changed when a replacement occurs.

Tip – When you add hot spares to a hot spare pool, add them from smallest to largest.
This avoids potentially wasting “large” hot spares as replacements for small slices.

When the slice experiences an I/O error, the failed slice is placed in the “Broken” state.
To fix this condition, first repair or replace the failed hot spare slice. Then bring the
slice back to the “available” state by using the Enhanced Storage tool within the
Solaris Management Console or the metahs -e command.

When a submirror or RAID 5 volume is using a hot spare in place of an failed slice
and that failed slice is enabled or replaced, the hot spare is marked “available” in the
hot spare pool, and is ready for use.

146 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Hot Spare Pools
A hot spare pool is an ordered list (collection) of hot spares.

You can place hot spares into one or more pools to get the most security from the
fewest slices. Then, you can assign a hot spare pool to any number of submirror
volumes or RAID 5 volumes.

Note – You can assign a single hot spare pool to multiple submirrors or RAID 5
volumes. On the other hand, a submirror or a RAID 5 volume can be associated with
only one hot spare pool.

When errors occur, Solaris Volume Manager checks the hot spare pool for the first
available hot spare whose size is equal to or greater than the size of the slice being
replaced. If found, SVM changes the hot spare’s status to “In-Use” and automatically
resynchronizes the data. In the case of a mirror, the hot spare is resynchronized with
data from a good submirror. In the case of a RAID 5 volume, the hot spare is
resynchronized with the other slices in the volume. If a slice of adequate size is not
found in the list of hot spares, the submirror or RAID 5 volume that failed goes into a
failed state and hot spares remain unused. In the case of the submirror, it no longer
replicates the data which that slice represented. In the case of the RAID 5 volume, data
redundancy is no longer available.

Scenario—Hot Spare Pool
Figure 15–1 illustrates a hot spare pool, hsp000, that is associated with submirrors
d11 and d12 in mirror d1. If a slice in either submirror were to fail, a hot spare slice
would automatically be substituted for the failed slice. The hot spare pool itself is
associated with each submirror volume, not the mirror. The hot spare pool could also
be associated with other submirrors or RAID 5 volumes if desired.

Hot Spare Pools (Overview) 147

Chunk 1

Chunk 2
Chunk 3
Chunk 4

Chunk 1
Chunk 2

Chunk 3
Chunk 4

Chunk 2
Chunk 1

Chunk 3
Chunk 4

Mirror d1

(Metadevice d11) (Metadevice d12)

Hot Spare Pool hsp00

Slice 1 Slice 2

FIGURE 15–1 Hot Spare Pool Example

Administering Hot Spare Pools
SVM enables you to dynamically add, delete, replace, and enable hot spares within
hot spare pools. You can use either the Solaris Management Console or the command
line utilities to administer hot spares and hot spare pools. See Chapter 16 for details on
hot-spare-related tasks.

Scenario—Hot Spares
Hot spares provide extra protection for redundant volumes (RAID 1 and RAID 5) to
help guard against data loss. By associating hot spares with the underlying slices that
comprise your RAID 0 submirrors or RAID 5 configuration, you can have the system
automatically replace failed slices with good slices from the hot spare pool. Those
slices that were swapped into use are updated with the information they should have,
then can continue to function just like the original. You can replace them at your
convenience.

148 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 16

Hot Spare Pools (Tasks)

This chapter explains how to work with hot spares and hot spare pools. For
information about related concepts, see Chapter 15.

Hot Spare Pools (Task Map)
The following task map identifies the procedures needed to manage SVM hot spare
pools.

Task Description Instructions

Create a hot spare pool. Use the SVM GUI or the metahs
command to create a hot spare pool.

“How to Create a Hot
Spare Pool” on page 150

Add slices to a hot spare
pool.

Use the SVM GUI or the metahs
command to add slices to a hot spare
pool.

“How to Add Additional
Slices to a Hot Spare Pool”
on page 151

Attach a hot spare pool
to a volume.

Use the SVM GUI or the metaparam
command to attach a hot spare pool to
a volume.

“How to Associate a Hot
Spare Pool with a Volume”
on page 152

Change which hot spare
pool is associated with a
volume.

Use the SVM GUI or the metaparam
command to change which hot spare
pool is associated with a volume.

“How to Change the
Associated Hot Spare Pool”
on page 153

Check hot spare and hot
spare pool status.

Use the SVM GUI or the metahs
command to check the status of a hot
spare pool.

“How to Check Hot Spare
Pool and Hot Spare Status”
on page 154

149

Task Description Instructions

Replace a hot spare in a
hot spare pool.

Use the SVM GUI or the metahs
command to replace a hot spare in a
hot spare pool.

“How to Replace a Hot
Spare in a Hot Spare Pool”
on page 155

Delete a hot spare from
a hot spare pool.

Use the SVM GUI or the metahs
command to delete a hot spare from a
hot spare pool.

“How to Delete a Hot
Spare from a Hot Spare
Pool” on page 156

Enable a hot spare. Use the SVM GUI or the metahs
command to enable a hot spare in a
hot spare pool.

“How to Enable a Hot
Spare” on page 157

Creating a Hot Spare Pool

� How to Create a Hot Spare Pool
1. Check “Prerequisites for Creating SVM Elements” on page 48.

2. To create a hot spare pool, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Hot Spare Pools node, then choose Action->Create Hot Spare Pool. For more
information, see the online help.

� Use the following form of the metainit command:

metainit hot-spare-pool-name ctds-for-slice

where ctds-for-slice is repeated for each slice in the hot spare pool. See the
metainit(1M) man page for more information.

Example—Creating a Hot Spare Pool
metainit hsp001 c2t2d0s2 c3t2d0s2

hsp001: Hotspare pool is setup

The hot spare pool hsp001 contains two disks as the hot spares. The system confirms
that the hot spare pool has been set up.

150 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Caution – SVM will not warn you if you create a hot spare that is not large enough. If
the hot spare is not equal to, or larger than, the volume to which it is attached, the hot
spare will not work.

Where to Go From Here
To add more hot spares to the hot spare pool, see “How to Add Additional Slices to a
Hot Spare Pool” on page 151. After creating the hot spare pool, you need to associate it
with a submirror or RAID 5 volume. See “How to Associate a Hot Spare Pool with a
Volume” on page 152.

� How to Add Additional Slices to a Hot Spare Pool
1. Check “Prerequisites for Creating SVM Elements” on page 48.

2. To add a slice to an existing hot spare pool, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Hot Spare Pools node, then choose the hot spare pool you want to change. Choose
Action->Properties, then choose the Components panel. For more information, see
the online help.

� Use the following form of the metahs command:

metahs -a hot-spare-pool-name ctds-of-slice

Use -all for hot-spare-pool-name to add the slice to all hot spare pools. See the
metahs(1M) man page for more information.

Note – You can add a hot spare to one or more hot spare pools. When you add a hot
spare to a hot spare pool, it is added to the end of the list of slices in the hot spare
pool.

Example—Adding a Hot Spare Slice to One Hot Spare
Pool
metahs -a hsp001 /dev/dsk/c3t0d0s2

hsp001: Hotspare is added

The -a option adds the slice /dev/dsk/c3t0d0s2 to hot spare pool hsp001. The
system verifies that the slice has been added to the hot spare pool.

Hot Spare Pools (Tasks) 151

Example—Adding a Hot Spare Slice to All Hot Spare
Pools
metahs -a -all /dev/dsk/c3t0d0s2
hsp001: Hotspare is added
hsp002: Hotspare is added

hsp003: Hotspare is added

The -a and -all options add the slice /dev/dsk/c3t0d0s2 to all hot spare pools
configured on the system. The system verifies that the slice has been added to all hot
spare pools.

Associating a Hot Spare Pool with
Volumes

� How to Associate a Hot Spare Pool with a Volume
1. Check “Prerequisites for Creating SVM Elements” on page 48.

2. To associate a hot spare pool with a RAID5 volume or submirror, use one of the
following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes and choose a volume. Choose Action->Properties, then the Hot Spare Pool
panel and Attach HSP. For more information, see the online help.

� Use the following form of the metaparam command:

metaparam -h hot-spare-pool RAID5-or-submirror

See the metaparam(1M) man page for more information.

Example—Associating a Hot Spare Pool with Submirrors
metaparam -h hsp100 d10
metaparam -h hsp100 d11
metastat d0
d0: Mirror

Submirror 0: d10
State: Okay

Submirror 1: d11
State: Okay

152 Solaris Volume Manager Administration Guide • December 2001 (Beta)

...

d10: Submirror of d0
State: Okay
Hot spare pool: hsp100

...

d11: Submirror of d0
State: Okay
Hot spare pool: hsp100

...

The -h option associates a hot spare pool, hsp100, with two submirrors, d10 and
d11, of a mirror, d0. The metastat command shows that the hot spare pool is
associated with the submirrors.

Example—Associating a Hot Spare Pool with a RAID5
Volume
metaparam -h hsp001 d10
metastat d10
d10: RAID

State: Okay
Hot spare pool: hsp001

...

The -h option associates a hot spare pool named hsp001 with a RAID5 volume
named d10. The metastat command shows that the hot spare pool is associated with
the RAID5 volume.

� How to Change the Associated Hot Spare Pool
1. Check “Prerequisites for Creating SVM Elements” on page 48.

2. To change a volume’s associated hot spare pool, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node and choose the volume. Choose Action->Properties, then the Hot
Spare Pool panel. Detach the unwanted hot spare pool and detach the new hot
spare pool by following the instructions. For more information, see the online help.

� Use the following form of the metaparam command:

metaparam -h new-hot-spare-pool-name RAID5-volume-or-submirror-name

See the metaparam(1M) man page for more information.

Hot Spare Pools (Tasks) 153

Example—Changing the Hot Spare Pool Association
metastat d4
d4: RAID

State: Okay
Hot spare pool: hsp001

...
metaparam -h hsp002 d4
metastat d4
d4: RAID

State: Okay
Hot spare pool: hsp002

...

In this example, the hot spare pool hsp001 is currently associated with a RAID5
volume named d4. The hot spare pool association is changed to hsp002. The
metastat command shows the hot spare pool association before and after.

Maintaining Hot Spare Pools

� How to Check Hot Spare Pool and Hot Spare
Status

� To view the status of a hot spare pool and its hot spares, use one of the following
methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Hot Spare Pools node and select a hot spare pool. Choose Action->Properties to get
detailed status information. For more information, see the online help.

� Run the following form of the metastat command:

metastat hot-spare-pool-name

Example—Viewing Hot Spare Pool Status
Here is sample hot spare pool output from the metastat command.

metastat hsp001
hsp001: 1 hot spare

c1t3d0s2 Available 16800 blocks

154 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Hot Spare Pool Status Values
Table 16–1 explains hot spare pool states and possible actions to take.

TABLE 16–1 Hot Spare Pool States (Command Line)

State Meaning Action

Available The hot spares are running and ready to
accept data, but are not currently being
written to or read from.

None.

In-use Hot spares are currently being written to
and read from.

Diagnose how the hot spares are
being used. Then repair the slice
in the volume for which the hot
spare is being used.

Attention There is a problem with a hot spare or
hot spare pool, but there is no immediate
danger of losing data. This status is also
displayed if there are no hot spares in the
Hot Spare Pool or all the hot spares are in
use or any are broken.

Diagnose how the hot spares are
being used or why they are
broken. You can add more hot
spares to the hot spare pool if
desired.

� How to Replace a Hot Spare in a Hot Spare Pool
1. Make sure that you have a current backup of all data and that you have access to the

SVM environment.

2. Check the preliminary information.

3. Verify whether the hot spare is currently being used by using one of the following
methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Hot Spare Pools node and select a hot spare pool. Choose Action->Properties, then
the Hot Spares panel and follow the instructions. For more information, see the
online help.

� Use the following form of the metastat command:

metastat hot-spare-pool-name

See the metastat man page.

4. To replace the hot spare, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Hot Spare Pools node and select a hot spare pool. Choose Action->Properties, then
the Hot Spares panel and follow the instructions. For more information, see the

Hot Spare Pools (Tasks) 155

online help.

� Use the following form of the metahs command:

metahs -r hot-spare-pool-name current-hot-spare replacement-hot-spare

Use -r all to replace the hot spare in all assigned hot spare pools. See the
metahs(1M) man page for more information.

Example—Replacing a Hot Spare in One Hot Spare Pool
metastat hsp003
hsp003: 1 hot spare

c0t2d0s2 Broken 5600 blocks
metahs -r hsp003 c0t2d0s2 c3t1d0s2

hsp003: Hotspare c0t2d0s2 is replaced with c3t1d0s2

The metastat command makes sure that the hot spare is not in use. The metahs -r
command replaces hot spare /dev/dsk/c0t2d0s2 with /dev/dsk/c3t1d0s2 in
the hot spare pool hsp003.

Example—Replacing a Hot Spare in All Associated Hot
Spare Pools
metahs -r all c1t0d0s2 c3t1d0s2
hsp001: Hotspare c1t0d0s2 is replaced with c3t1d0s2
hsp002: Hotspare c1t0d0s2 is replaced with c3t1d0s2

hsp003: Hotspare c1t0d0s2 is replaced with c3t1d0s2

The keyword all replaces hot spare /dev/dsk/c1t0d0s2 with
/dev/dsk/c3t1d0s2 in all its associated hot spare pools.

� How to Delete a Hot Spare from a Hot Spare Pool
1. Make sure that you have a current backup of all data and that you have access to the

SVM environment.

2. Check the preliminary information.

3. Verify whether the hot spare is currently being used by using one of the following
methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Hot Spare Pools node and select a hot spare pool. Choose Action->Properties, then
the Hot Spares panel and follow the instructions. For more information, see the
online help.

156 Solaris Volume Manager Administration Guide • December 2001 (Beta)

� Use the following form of the metastat command:

metastat hot-spare-pool-name

See the metastat man page.

4. To delete the hot spare, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Hot Spare Pools node and select a hot spare pool. Choose Action->Properties, then
the Hot Spares panel and follow the instructions. For more information, see the
online help.

� Use the following form of the metahs command:

metahs -d hot-spare-pool-name current-hot-spare

See the metahs(1M) man page for more information.

Example—Deleting a Hot Spare from One Hot Spare Pool
metastat hsp003
hsp003: 1 hot spare

c0t2d0s2 Broken 5600 blocks

metahs -d hsp003 c0t2d0s2

The metastat command makes sure that the hot spare is not in use. The metahs -d
command deletes hot spare /dev/dsk/c0t2d0s2 in the hot spare pool hsp003.

� How to Enable a Hot Spare
1. Make sure that you have a current backup of all data and that you have root access

to the SVM environment.

2. Check the preliminary information.

3. To return a hot spare to the “available” state, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Hot Spare Pools node and select a hot spare pool. Choose Action->Properties, then
the Hot Spares panel and follow the instructions. For more information, see the
online help.

� Use the following form of the metahs command:

metahs -e ctds-of-slice

For more information, see the metahs(1M) man page.

Hot Spare Pools (Tasks) 157

Example—Enabling a Hot Spare
metahs -e c0t0d0s2

This example places the hot spare /dev/dsk/c0t0d0s2 in the available state after it
has been repaired. You do not need to specify a hot spare pool.

158 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 17

Transactional Volumes (Overview)

This chapter provides conceptual information about transactional volumes and UFS
logging. For information about performing related tasks, see Chapter 18.

This chapter includes the following information:

� “About File System Logging” on page 159
� “Understanding Transactional Volumes” on page 162
� “Scenario—Transactional Volumes” on page 164

About File System Logging
File system logging describes writing file system updates to a log before applying the
updates to a UFS file system. Once a transaction is recorded in the log, the transaction
information can be applied to the file system later. For example, if a user creates a new
directory, the mkdir command will be logged, then applied to the file system.

At reboot, the system discards incomplete transactions, but applies the transactions for
completed operations. The file system remains consistent because only completed
transactions are ever applied. Because the file system is never inconsistent, it does not
need checking by the fsck command.

A system crash can interrupt current system calls and introduce inconsistencies into an
unlogged UFS. If you mount a UFS without running the fsck command, these
inconsistencies can cause panics or corrupt data.

Checking large file systems takes a long time, because it requires reading and
verifying the file system data. With UFS logging, UFS file systems do not have to be
checked at boot time because the changes from unfinished system calls are discarded.

159

Choosing A Logging Method
UFS logging and transactional volumes provide the same ability to keep a log of file
system information. The only significant differences between the two are the
following.

� Transactional volumes can write log information onto physically separate devices,
while UFS logging combines logs and file systems on the same volume.

� UFS logging offers superior performance to transactional volumes in all cases.

� UFS logging allows logging of all UFS file systems, including root, while
transactional volumes cannot log the root file system.

To enable UFS logging, use the mount_ufs -logging option on the file system. For
more information about mounting file systems with UFS logging enabled, see
“Mounting File Systems (Command)” in System Administration Guide: Basic
Administration and the mount_ufs(1M).

To learn more about using transactional volumes, continue reading this document.

Note – If you are not currently using logging on UFS file systems and will be setting
up new logged file systems, choose UFS logging, rather than transactional volumes.

Transactional Volumes
A transactional volume is a volume that is used to manage file system logging, which is
essentially the same as UFS logging—the process of recording UFS updates in a log
before the updates are applied to the UNIX file system.

A transactional volume normally consists of two devices:

� The master device is a slice or volume that contains the file system that is being
logged.

� The logging device is a slice or volume that contains the log and can be shared by
several file systems. The log is a sequence of records, each of which describes a
change to a file system.

Caution – A logging device or a master device can be a physical slice or a volume.
However, to improve reliability and availability, use mirrors for logging devices. A
device error on a physical logging device could cause data loss. You can also use
mirrors or RAID 5 volumes as master devices.

Logging begins automatically when the transactional volume is mounted, provided
the transactional volume has a logging device. The master device can contain an

160 Solaris Volume Manager Administration Guide • December 2001 (Beta)

existing UFS file system (because creating a transactional volume does not alter the
master device), or you can create a file system on the transactional volume later.
Likewise, clearing a transactional volume leaves the UFS file system on the master
device intact.

After you configure a transactional volume, you can use it as though it were a physical
slice or another logical volume. For information about creating a transactional volume,
see “Creating Transactional Volumes” on page 166.

Example—Transactional Volume
Figure 17–1 shows a transactional volume, d1, which consists of a mirrored master
device, d3, and a mirrored logging device, d30

FIGURE 17–1 Transactional Volume Example

Example—Shared Logging Device
Figure 17–2 shows two transactional volumes, d1 and d2, sharing a mirrored logging
device, d30. Each master device is also a mirrored volume, as is the shared logging
device.

Transactional Volumes (Overview) 161

FIGURE 17–2 Shared Log Transactional Volume Example

Understanding Transactional Volumes
When working with transactional volumes, consider the following “Requirements for
Working with Transactional Volumes” on page 162 and “Suggestions for Working with
Transactional Volumes” on page 163.

Requirements for Working with Transactional
Volumes
Before you can work with transactional volumes, note the following requirements:

� Before creating transactional volumes, identify the slices or volume to be used as
the master devices and logging devices.

� Log any UFS file system except root (/).

� Use a mirrored log device for data redundancy.

� Do not place logs on heavily-used disks.

� Plan for a minimum of 1 Mbyte of storage space for logs. (Larger logs permit more
simultaneous file-system transactions.) Plan on using an additional 1 Mbyte of log
space per 100 Mbytes of file system data, up to a maximum recommended log size

162 Solaris Volume Manager Administration Guide • December 2001 (Beta)

of 64 Mbytes. Although the maximum possible log size is 1 Gbyte, logs larger than
64 Mbytes are rarely fully used and often waste storage space.

� The log device and the master device of the same transactional volume should be
located on separate drives and possibly separate controllers to help balance the I/O
load.

� Transactional volumes can share volume logging devices; however, heavily-used
file systems should have separate logs. The disadvantage to sharing a logging
device is that certain errors require that all file systems sharing the logging device
must be checked with the fsck command.

� Once you set up a transactional volume, you can share the logging device among
file systems.

� Logs (logging devices) are typically accessed frequently. For best performance,
avoid placing them on heavily-used disks. You may also want to place logs in the
middle of a disk, to minimize the average seek times when accessing the log.

� The larger the log size, the better the performance. Larger logs allow for greater
concurrency (more simultaneous file system operations per second).

Note – Mirroring logging devices is strongly recommended. Losing the data in a
logging device because of device errors can leave a file system in an inconsistent state
that fsck may not be able to fix without user intervention. Using a mirror for the
master device is a good idea to ensure data redundancy.

Suggestions for Working with Transactional
Volumes
� Generally, you should log your largest UFS file systems and the UFS file system

whose data changes most often. It is probably not necessary to log small file
systems with mostly read activity.

� If no slice is available for the logging device, you can still configure a transactional
volume. This may be useful if you plan to log exported file systems when you do
not have a spare slice for the logging device. When a slice is available, you only
need to attach it as a logging device.

� Consider sharing a logging device among file systems if your system does not have
many available slices, or if the file systems sharing the logging device are
read-mostly.

Transactional Volumes (Overview) 163

Caution – When one master device of a shared logging device goes into a failed state,
the logging device is unable to roll its changes forward. This causes all master devices
sharing the logging device to go into the hard error state.

Scenario—Transactional Volumes
Transactional volumes provide logging capabilities for UFS filesystems, much as UFS
Logging provides. The following example, drawing on the sample system described in
Chapter 4, describes how transactional volumes can help speed reboot by providing
filesystem logging.

Note – Unless your situation requires the special capabilities of transactional volumes,
specifically as the ability to log to a different device than the logged device, consider
using UFS logging instead. UFS logging provides superior performance to
transactional volumes.

The sample system has several logical volumes that should be logged to provide
maximum uptime and availability, including the / and swap mirrors. By configuring
transactional volumes to log to a third mirror, you can provide redundancy and speed
the reboot process.

164 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 18

Transactional Volumes (Tasks)

This chapter provides information about performing tasks that are associated with
transactional volumes. For information about the concepts involved in these tasks, see
Chapter 17.

Transactional Volumes (Task Map)
The following task map identifies the procedures needed to manage SVM
transactional volumes.

Task Description Instructions

Create a transactional
volume.

Use the SVM GUI or the metainit
command to create a transactional
volume.

“How to Create a
Transactional Volume”
on page 166

Check the status of
transactional volumes.

Use the SVM GUI or the metastat
command to check the status of a
transactional volume.

“How to Check
Transactional Volume
Status” on page 170

Attach a logging device
to a transactional
volume.

Use the SVM GUI or the metattach
command to attach a logging device.

“How to Attach a Logging
Device to a Transactional
Volume” on page 172

Detach a logging device
from a transactional
volume.

Use the SVM GUI or the metadetach
command to detach a logging device.

“How to Detach a Logging
Device from a
Transactional Volume”
on page 173

165

Task Description Instructions

Expand a transactional
volume.

Use the SVM GUI or the metattach
command to expand a transactional
volume.

“How to Expand a
Transactional Volume”
on page 174

Delete a tranactional
volume.

Use the SVM GUI or the metadetach
command and optionally the SVM
GUI or the metarename command to
delete a transactional volume.

“How to Remove a
Transactional Volume”
on page 175

Delete a tranactional
volume and retain the
mount point.

Use the SVM GUI or the metadetach
command to delete a transactional
volume.

“How to Remove a
Transactional Volume and
Retain the Mount Device”
on page 176

Share a logging device. Use the SVM GUI or the metainit
command to share a transactional
volume logging device.

“How to Share a Logging
Device Among File
Systems” on page 179

Recover a transactional
volume with a file
system panic.

Use the fsck command to recover a
transactional volume with a panic.

“How to Recover a
Transactional Volume With
a File System Panic”
on page 180

Recover a transactional
volume with hard
errors.

Use the fsck command to recover a
transactional volume with a panic.

“How to Recover a
Transactional Volume With
Hard Errors” on page 181

Creating Transactional Volumes

Note – UFS logging and transactional volumes provide the same ability to keep a log
of file system information. Transactional volumes write log information onto
physically separate devices which provides better error recovery capability while UFS
logging writes information onto the same device which provides better performance.
Depending on your environment, you may prefer to use UFS logging rather than
transactional volumes.

� How to Create a Transactional Volume
1. Check “Prerequisites for Creating SVM Elements” on page 48 and “Understanding

Transactional Volumes” on page 162.

166 Solaris Volume Manager Administration Guide • December 2001 (Beta)

2. If possible, unmount the UFS file system for which you want to enable logging.

umount /export

Note – If the file system cannot be unmounted, you can continue, but will have to
reboot the system before the transactional volume can be active.

3. Create the transactional volume using one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose Action->Create Volume and follow the instructions in
the wizard. For more information, see the online help.

� Use the following form of the metainit command:

metainit trans-volume -t master-device logging-device

The master and logging devices can be either slices or logical volumes. See the
metainit(1M) man page for more information.

For example, to create a transactional volume (d10) logging the file system on slice
c0t0d0s6 to a log on c0t0d0s7, use the following syntax:

metainit d10 -t c0t0d0s6 c0t0d0s7

Note – You can use the same logging device (c0t0d0s7 in this example) for several
master devices. Sharing logging devices is fully supported.

4. Edit the /etc/vfstab file so that the existing UFS file system information is
replaced with that of the created transactional volume name.

For example, if /export was on c0t0d0s6, and the new transactional volume is d10,
edit /etc/vfstab as shown here, so the mount points to the transactional volume
rather than to the raw disk slice:

#/dev/dsk/c0t0d0s5 /dev/rdsk/c0t0d0s5 /export ufs 2 yes -
/dev/md/dsk/d10 /dev/md/rdsk/d10 /export ufs 2 yes -

Transactional Volumes (Tasks) 167

5. If possible, remount the file system.

Note – If you are creating a transactional volume for a file system that cannot be
unmounted, such as /usr, then reboot the system now to remount the transactional
volume and start logging.

Example—Creating a Transactional Volume for a Slice
unmount /home1
metainit d63 -t c0t2d0s2 c2t2d0s1
d63: Trans is setup

(Edit the /etc/vfstab file so that the file system references the transactional volume
umount /home1

Slice /dev/dsk/c0t2d0s2 contains a file system mounted on /home1. The slice to
contain the logging device is /dev/dsk/c2t2d0s1. First, the file system is
unmounted. The metainit command with the -t option creates the transactional
volume, d63.

Next, the /etc/vfstab file must be edited to change the entry for the file system to
reference the transactional volume. For example, the following line:

/dev/dsk/c0t2d0s2 /dev/rdsk/c0t2d0s2 /home1 ufs 2 yes -

should be changed to:

/dev/md/dsk/d63 /dev/md/rdsk/d63 /home1 ufs 2 yes -

Logging becomes effective for the file system when it is remounted.

On subsequent reboots, instead of checking the file system, the fsck command
displays a logging message for the transactional volume:

reboot
...

/dev/md/rdsk/d63: is logging

Example—Creating a Transactional Volume For a Stripe
umount /home2
metainit d40 -t d2 c1t2d0s0
d40: Trans is setup

(Edit the /etc/vfstab file so that the file system references the transactional volume)
mount /home2

Stripe d2 contains a file system mounted on /home2. The slice to contain the logging
device is /dev/dsk/c1t2d0s0. First, the file system is unmounted. The metainit
command with the -t option creates the transactional volume, d40.

168 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Next, the /etc/vfstab file must be edited to change the entry for the file system to
reference the transactional volume. For example, the following line:

/dev/md/dsk/d2 /dev/md/rdsk/d2 /home2 ufs 2 yes -

should be changed to:

/dev/md/dsk/d40 /dev/md/rdsk/d40 /home2 ufs 2 yes -

Logging becomes effective for the file system when it is remounted.

On subsequent reboots, instead of checking the file system, the fsck command
displays a logging message for the volume:

reboot
...

/dev/md/rdsk/d40: is logging

Example—Creating a Transactional Volume for /usr
metainit -f d20 -t c0t3d0s6 c1t2d0s1
d20: Trans is setup

(Edit the /etc/vfstab file so that the file system references the transactional volume)
reboot

Slice /dev/dsk/c0t3d0s6 contains the /usr file system. The slice to contain the
logging device is /dev/dsk/c1t2d0s1. Because /usr cannot be unmounted, the
metainit command is run with the -f option to force the creation of the
transactional volume, d20. Next, the line in the /etc/vfstab file that mounts the file
system must be changed to reference the transactional volume. For example, the
following line:

/dev/dsk/c0t3d0s6 /dev/rdsk/c0t3d0s6 /usr ufs 1 no -

should be changed to:

/dev/md/dsk/d20 /dev/md/rdsk/d20 /usr ufs 1 no -

Logging becomes effective for the file system when the system is rebooted.

Example—Creating a Transactional Volume for a Logical
Volume
umount /home1
metainit d64 -t d30 d12
d64: Trans is setup

(Edit the /etc/vfstab file so that the file system references the transactional volume)
mount /home1

Transactional Volumes (Tasks) 169

Mirror d30 contains a file system mounted on /home1. The mirror to contain the
logging device is d12. First, the file system is unmounted. The metainit command
with the -t option creates the transactional volume, d64.

Next, the line in the /etc/vfstab file that mounts the file system must be changed to
reference the transactional volume. For example, the following line:

/dev/md/dsk/d30 /dev/md/rdsk/d30 /home1 ufs 2 yes -

should be changed to:

/dev/md/dsk/d64 /dev/md/rdsk/d64 /home1 ufs 2 yes -

Logging becomes effective for the file system when the file system is remounted.

On subsequent file system remounts or system reboots, instead of checking the file
system, the fsck command displays a logging message for the volume:

reboot
...

/dev/md/rdsk/d64: is logging

Note – To avoid having to edit /etc/vfstab, you can use the metarename(1M))
command to switch the name of the original logical volume and the new transactional
volume. For more information, see “Renaming Volumes” on page 209.

Maintaining Transactional Volumes

� How to Check Transactional Volume Status
� To check the status of a transactional volume, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then view the status of the volumes. Right-click a transactional
volume and choose Properties for more detailed status information. For more
information, see the online help.

� Use the metastat command.

For more information, see the metastat man page.

170 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Example—Checking Transactional Volume Status
Here is sample transactional volume output from the metastat command:

metastat
d20: Trans

State: Okay
Size: 102816 blocks
Master Device: c0t3d0s4
Logging Device: c0t2d0s3

Master Device Start Block Dbase
c0t3d0s4 0 No

c0t2d0s3: Logging device for d0
State: Okay
Size: 5350 blocks

Logging Device Start Block Dbase

c0t2d0s3 250 No

The metastat command also shows master and logging devices. For each device, the
following information is displayed: the “Device” (device name of the slice or volume);
“Start Block” on which the device begins; “Dbase” to show if the device contains a
state database replica; and for the logging device, the “State.”

Table 18–1 explains transactional volume states and possible actions to take.

TABLE 18–1 Transactional Volume States

State Meaning Action

Okay The device is functioning properly.
If mounted, the file system is
logging and will not be checked at
boot.

None.

Attaching The logging device will be
attached to the transactional
volume when the volume is closed
or unmounted. When this occurs,
the device is transitioned to the
Okay state.

See the metattach(1M) man page.

Detached The transactional volume does not
have a logging device . All benefits
from UFS logging are disabled.

The fsck command automatically checks
the device at boot time. See the fsck(1M)
man page.

Transactional Volumes (Tasks) 171

TABLE 18–1 Transactional Volume States (Continued)
State Meaning Action

Detaching The logging device will be
detached from the transactional
volume when the volume is closed
or unmounted. When this occurs,
the device transitions to the
Detached state.

See the metadetach(1M) man page.

Hard Error A device error or file system panic
has occurred while the device was
in use. An I/O error is returned for
every read or write until the device
is closed or unmounted. The first
open causes the device to
transition to the Error state.

Fix the transactional volume. See “How to
Recover a Transactional Volume With a
File System Panic” on page 180, or “How
to Recover a Transactional Volume With
Hard Errors” on page 181.

Error The device can be read and
written. The file system can be
mounted read-only. However, an
I/O error is returned for every
read or write that actually gets a
device error. The device does not
transition back to the Hard Error
state, even when a later device
error of file system panic occurs.

Fix the transactional volume. See “How to
Recover a Transactional Volume With a
File System Panic” on page 180, or “How
to Recover a Transactional Volume With
Hard Errors” on page 181. Successfully
completing the fsck (fsck(1M)) or
newfs (newfs(1M))commands transitions
the device into the Okay state. When the
device is in the Hard Error or Error state,
the fsck command automatically checks
and repairs the file system at boot time.
The newfs command destroys whatever
data may be on the device.

� How to Attach a Logging Device to a Transactional
Volume

1. Check “Prerequisites for Creating SVM Elements” on page 48 and “Understanding
Transactional Volumes” on page 162.

2. Unmount the UFS file system for which you want to enable logging.

3. Attach a logging device to the transactional volume using one of the following
methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose the transactional volume from the listing. Right-click
the volume, and choose Properties. For more information, see the online help.

� Use the following form of the metattach command:

metattach master-volume logging-volume

172 Solaris Volume Manager Administration Guide • December 2001 (Beta)

See the metattach(1M) man page for more information.

4. Remount the file system.

Example—Attaching a Logging Device to a Transactional
Volume
This example attaches a logging device, the slice (c1t1d0s1), to the transactional
volume d1, which is mounted on /fs2.

umount /fs2
metattach d1 c1t1d0s1
d1: logging device d0c1t1d0s1 is attached

mount /fs2

� How to Detach a Logging Device from a
Transactional Volume

1. Check “Prerequisites for Creating SVM Elements” on page 48 and “Understanding
Transactional Volumes” on page 162.

2. Unmount the UFS file system for which you want to disable logging or change the
logging device.

3. Detach the logging device from the transactional volume using one of the following
methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose the transactional volume from the listing. Right-click
the volume, and choose Properties. For more information, see the online help.

� Use the following form of the metadetach command:

metadetach master-volume logging-volume

See the metadetach(1M) man page for more information.

4. Remount the file system.

Example—Detaching a Logging Device from a
Transactional Volume
This example detaches a logging device, the slice (c1t1d0s1), from the transactional
volume d1, which is mounted on /fs2.

Transactional Volumes (Tasks) 173

umount /fs2
metadetach d1 c1t1d0s1
d1: logging device c1t1d0s1 is detached

mount /fs2

� How to Expand a Transactional Volume

Note – You can expand a master device within a transactional volume only when the
master is a volume (stripe, concatenation, or mirror).

1. Make sure that you have root access and that you have a current backup of all data.

2. Read “Understanding Transactional Volumes” on page 162.

3. If the master device is a volume (rather than a basic slice), attach additional slices to
the master device using one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose the transactional volume from the listing. Right-click
the volume, and choose Properties, then the Components panel. For more
information, see the online help.

� Use the following form of the metattach command:

metattach trans-component slice

See the metattach(1M)man page for more information.

Note – If the master device is a mirror, you need to attach additional slices to each
submirror.

4. If the master device is a slice, you cannot expand it directly. Instead, you must:

1. Clear the existing transactional volume.
2. Put the master device’s slice into a volume.
3. Recreate the transactional volume.

Once you have completed this process, you can expand the master device as explained
in the previous steps of this procedure.

174 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Example—Expanding a Mirrored Master Device Within a
Transactional Volume
metastat d10
d10: Trans

State: Okay
Size: 102816 blocks
Master Device: d0
Logging Device: d1

d0: Mirror
Submirror 0: d11
State: Okay

...
Submirror 1: d12
State: Okay

...
metattach d11 c0t2d0s5
d11: component is attached
metattach d12 c0t3d0s5

d12: component is attached

This example expands a transactional device, d10, whose master device consists of a
two-way mirror, d0, which contains two submirrors, d11 and d12. The metattach
command is run on each submirror. The system confirms that each slice was attached.

Where to Go From Here
For a UFS, run the growfs command on the transactional volume (not the master
device). See “How to Grow a File System” on page 217.

An application, such as a database, that uses the raw volume must have its own way
of growing the added space.

� How to Remove a Transactional Volume
1. Check “Prerequisites for Creating SVM Elements” on page 48 and “Understanding

Transactional Volumes” on page 162.

2. Unmount the UFS file system for which you want to remove the transactional
volume and disable logging.

3. Detach the logging device from the transactional volume using one of the following
methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose the transactional volume from the listing. Right-click
the volume, and choose Properties. For more information, see the online help.

Transactional Volumes (Tasks) 175

� Use the following form of the metadetach command:

metadetach master-volume logging-volume

See the metadetach(1M) man page for more information.

4. Remove (clear) the transactional volume using one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose the transactional volume from the listing. Right-click
the volume, and choose Delete. For more information, see the online help.

� Use the following form of the metaclear command:

metaclear master-volume

See the metaclear(1M) man page for more information.

5. If necessary, update /etc/vfstab to mount the underlying volume, rather than the
transactional volume you just cleared.

6. Remount the file system.

Example—Removing a Transactional Volume
This example removes a transactional volume d1, which was mounted on /fs2. The
underlying slice, c1t1d0s1, is mounted directly after this procedure.

umount /fs2
metaclear d1
d1: Trans is cleared

(Edit /etc/vfstab to update mount point for /fs2 to mount on c1t1d0s1, not d1)
mount /fs2

� How to Remove a Transactional Volume and
Retain the Mount Device
This procedure works only for situations in which the transactional volume and the
underlying device are both SVM logical volumes.

1. Check “Prerequisites for Creating SVM Elements” on page 48 and “Understanding
Transactional Volumes” on page 162.

2. Unmount the UFS file system for which you want to remove the transactional
volume and disable logging.

176 Solaris Volume Manager Administration Guide • December 2001 (Beta)

3. Detach the logging device from the transactional volume using one of the following
methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose the transactional volume from the listing. Right-click
the volume, and choose Properties. For more information, see the online help.

� Use the following form of the metadetach command:

metadetach master-volume logging-volume

See the metadetach(1M) man page for more information.

4. Exchange the name of the transactional volume with that of the master volume.

5. Remove (clear) the transactional volume using one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose the transactional volume from the listing. Right-click
the volume, and choose Delete. For more information, see the online help.

� Use the following form of the metaclear command:

metaclear master-volume

See the metaclear(1M) man page for more information.

6. Run the fsck command on the master volume.

When asked whether to fix the file system’s state in the superblock, respond y.

7. Remount the file system.

Example—Removing a Transactional Volume while
Retaining the Mount Device
This example begins with a transactional volume, d1, containing a mounted file
system, and ends up with the file system mounted on the transactional volume‘s
underlying master device, which will be d1.

metastat d1
d1: Trans

State: Okay
Size: 5600 blocks
Master Device: d21
Logging Device: d0

d21: Mirror
Submirror 0: d20
State: Okay

Submirror 1: d2
State: Okay

...

Transactional Volumes (Tasks) 177

d0: Logging device for d1
State: Okay
Size: 5350 blocks

umount /fs2
metadetach d1
d1: logging device d0 is detached
metarename -f -x d1 d21
d1 and d21 have exchanged identities
metastat d21
d21: Trans

State: Detached
Size: 5600 blocks
Master Device: d1

d1: Mirror
Submirror 0: d20
State: Okay

Submirror 1: d2
State: Okay

metaclear 21
fsck /dev/md/dsk/d1
** /dev/md/dsk/d1
** Last Mounted on /fs2
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups

FILE SYSTEM STATE IN SUPERBLOCK IS WRONG; FIX? y

3 files, 10 used, 2493 free (13 frags, 310 blocks, 0.5%
fragmentation)

mount /fs2

The metastat command confirms that the transactional volume, d1, is in the “Okay”
state. The file system is unmounted before detaching the transactional volume’s
logging device. The transactional volume and its mirrored master device are
exchanged using the -f (force) flag. Running the metastat command again confirms
that the exchange occurred. The transactional volume and the logging device (if
desired) are cleared, in this case, d21 and d0, respectively. Next, the fsck command is
run on the mirror, d1, and the prompt is answered with a y. After the fsck command
is done, the file system is remounted. Note that because the mount device for /fs2
did not change, the /etc/vfstab file does not require editing.

178 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Sharing Logging Devices

� How to Share a Logging Device Among File
Systems
This procedure assumes you have already set up a transactional volume with a log for
another file system.

1. Make sure that you have root access and that you have a current backup of all data.

2. If possible, unmount the file system for which you want to enable logging.

3. If you already have an existing logging device, detach it from the transactional
volume using one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose the transactional volume from the listing. Right-click
the volume, and choose Properties. For more information, see the online help.

� Use the following form of the metadetach command:

metadetach master-volume logging-volume

See the metadetach(1M) man page for more information.

4. Attach a logging device to the transactional volume using one of the following
methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node, then choose the transactional volume from the listing. Right-click
the volume, and choose Properties. For more information, see the online help.

� Use the following form of the metattach command:

metattach master-volume logging-volume

See the metattach(1M) man page for more information.

5. Edit the /etc/vfstab file to modify (or add) the entry for the file system to
reference the transactional volume.

6. Remount the file system. If the file system cannot be unmounted, reboot the system
to force your changes to take effect.

Transactional Volumes (Tasks) 179

Example—Sharing a Logging Device
umount /xyzfs
metainit d64 -t c0t2d0s4 d10
d64: Trans is setup

(Edit the /etc/vfstab file so that the entry for /xyzfs references the transactional volume d64)
mount /xyzfs
metastat
...
d10: Logging device for d63 d64

...

This example shares a logging device (d10) defined as the log for a previous
transactional volume, with a new transactional volume (d64). The file system to be set
up as the master device is /xyzfs and is using slice /dev/dsk/c0t2d0s4.
metainit -t specifies the configuration is a transactional volume. The
/etc/vfstab file must be edited to change (or enter for the first time) the entry for
the file system to reference the transactional volume. For example, the following line:

/dev/dsk/c0t2d0s4 /dev/rdsk/c0t2d0s4 /xyzfs ufs 2 yes -

should be changed to:

/dev/md/dsk/d64 /dev/md/rdsk/d64 /xyzfs ufs 2 yes -

The metastat command verifies that the log is being shared. Logging becomes
effective for the file system when the system is rebooted.

Upon subsequent reboots, instead of checking the file system, the fsck command
displays these messages for the two file systems:

/dev/md/rdsk/d63: is logging.

/dev/md/rdsk/d64: is logging.

Recovering Transactional Volumes When
Errors Occur

� How to Recover a Transactional Volume With a File
System Panic

� For file systems that the fsck command cannot repair, run the fsck command on
each transactional volume whose file systems share the affected logging device.

180 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Example—Recovering a Transactional Volume
fsck /dev/md/rdsk/ trans

Only after all of the affected transactional volumes have been checked and
successfully repaired will the fsck command reset the state of the failed transactional
volume to “Okay.”

� How to Recover a Transactional Volume With Hard
Errors
Use this procedure to transition a transactional volume to the “Okay” state.

See “How to Check Transactional Volume Status” on page 170 to check the status of a
transactional volume.

If either the master or log devices encounter errors while processing logged data, the
device transitions from the “Okay” state to the “Hard Error” state. If the device is in
the “Hard Error” or “Error” state, either a device error or file system panic occurred.
Recovery from both scenarios is the same.

Note – If a log (logging device) is shared, a failure in any of the slices in a
transactional volume will result in all slices or volumes associated with the
transactional volume switching to a failed state.

1. Make sure that you have root access and that you have a current backup of all data.

2. Read “Understanding Transactional Volumes” on page 162.

3. Run the lockfs command to determine which file systems are locked.

lockfs

Affected file systems will be listed with a lock type of hard. Every file system sharing
the same logging device will be hard locked.

4. Unmount the affected file system(s).

You can unmount locked file systems even if they were in use when the error
occurred. If the affected processes try to access an opened file or directory on the hard
locked or unmounted file system, an EIO error is returned.

5. (Optional) Back up any accessible data.

Before attempting to fix the device error, you may want to recover as much data as
possible. If your backup procedure requires a mounted file system (such as the tar
command or the cpio command), you can mount the file system read-only. If your
backup procedure does not require a mounted file system (such as the dump command

Transactional Volumes (Tasks) 181

or the volcopy command), you can access the transactional volume directly.

6. Fix the device error.

At this point, any attempt to open or mount the transactional volume for read/write
access starts rolling all accessible data on the logging device to the appropriate master
device(s). Any data that cannot be read or written is discarded. However, if you open
or mount the transactional volume for read-only access, the log is simply rescanned
and not rolled forward to the master device(s), and the error is not fixed. In other
words, all of the data on the master and logging devices remains unchanged until the
first read/write open or mount.

7. Run the fsck command to repair the file system, or the newfs command if you
need to restore data.

Run the fsck command on all of the transactional volumes sharing the same logging
device. When all of these transactional volumes have been repaired by the fsck
command, they then revert to the “Okay” state.

The newfs command will also transition the file system back to the “Okay” state, but
will destroy all of the data on the file system. The newfs command is generally used
when you plan to restore file systems from backup.

The fsck or newfs commands must be run on all of the transactional volumes
sharing the same logging device before these devices revert back to the “Okay” state.

8. Run the metastat command to verify that the state of the affected devices has
reverted to “Okay.”

Example—Logging Device Error
metastat d5
d5: Trans

State: Hard Error
Size: 10080 blocks
Master Device: d4
Logging Device: c0t0d0s6

d4: Mirror
State: Okay

...
c0t0d0s6: Logging device for d5

State: Hard Error
Size: 5350 blocks

...
fsck /dev/md/rdsk/d5
** /dev/md/rdsk/d5
** Last Mounted on /fs1
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts

182 Solaris Volume Manager Administration Guide • December 2001 (Beta)

** Phase 5 - Check Cyl groups
WARNING: md: logging device: /dev/dsk/c0t0d0s6 changed state to
Okay
4 files, 11 used, 4452 free (20 frags, 554 blocks, 0.4%
fragmentation)
metastat d5
d5: Trans

State: Okay
Size: 10080 blocks
Master Device: d4
Logging Device: c0t0d0s6

d4: Mirror
State: Okay

...

c0t0d0s6: Logging device for d5
State: Okay

...

This example fixes a transactional volume, d5, which has a logging device in the
“Hard Error” state. You must run the fsck command on the transactional volume
itself. This transitions the state of the transactional volume to “Okay.” The metastat
command confirms that the state is “Okay.”

Transactional Volumes (Tasks) 183

184 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 19

Disk Sets (Overview)

This chapter provides conceptual information about disk sets. For information about
performing related tasks, see Chapter 20.

This chapter includes the following information:

� “What Do Disk Sets Do?” on page 185
� “How Does Solaris Volume Manager Manage Disk Sets?” on page 186
� “Understanding Disk Sets” on page 189
� “Administering Disk Sets” on page 190
� “Scenario—Disk Sets” on page 192

What Do Disk Sets Do?
A shared disk set, or simply disk set, is a set of disk drives containing volumes and hot
spares that can be shared exclusively but not at the same time by multiple hosts.
Additionally, disk sets provide a separate namespace within which SVM volumes can
be managed.

A disk set supports data redundancy and availability. If one host fails, the other host
can take over the failed host’s disk set. (This type of configuration is known as a
failover configuration.) Although each host can control the set of disks, only one host
can control it at a time.

185

Note – Disk sets are intended for use with Sun Cluster, Solstice HA (High
Availability), or another supported third-party HA framework. SVM by itself does not
provide all the functionality necessary to implement a failover configuration.

How Does Solaris Volume Manager
Manage Disk Sets?
In addition to the shared disk set, each host has a local disk set. This consists of all of
the disks on a host not in a shared disk set. A local disk set belongs exclusively to a
specific host. The local disk set contains the state database for that specific host’s
configuration.

Volumes and hot spare pools in a shared disk set must be built on drives from within
that disk set. Once you have created a volume within the disk set, you can use it just
as you would a physical slice. However, disk sets do not support mounting file
systems from the /etc/vfstab file.

Similarly, volumes and hot spare pools in the local disk set can only consist of drives
from within the local disk set.

When you add disks to a disk set, SVM automatically creates the state database
replicas on the disk set. When a drive is accepted into a disk set, SVM may repartition
it so that the state database replica for the disk set can be placed on the drive (see
“Automatic Disk Formatting” on page 187).

Unlike local disk set administration, you do not need to create or delete disk set state
databases by hand. SVM places one state database replica (on Slice 7) on each drive
across all drives in the disk set.

Note – Although disk sets are supported in single-host configurations, they are
usually not appropriate for “local” (not dual-connected) use. Two common exceptions
to this generalization are using disk sets to provide a more managable namespace for
logical volumes, and to more easily manage storage on a SAN fabric (see
“Scenario—Disk Sets” on page 192).

A file system that resides on a volume in a disk set cannot be mounted automatically
at boot via the /etc/vfstab file. The necessary disk set RPC daemons (rpc.metad
and rpc.metamhd) do not start early enough in the boot process to permit this.
Additionally, the ownership of a disk set is lost during a reboot.

186 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Automatic Disk Formatting
When you add a new disk to a disk set, SVM checks the disk format and, if necessary,
reformats the disk to ensure that the disk has a slice 7 with adequate space for a state
database replica. The precise size of slice 7 depends on the disk geometry, but it will
be no less than 4 Mbytes, and probably closer to 6 Mbytes (depending on where the
cylinder boundaries lie). For example, the following output from the prtvtoc
command shows a disk before adding it to a disk set.

[root@lexicon:apps]$ prtvtoc /dev/rdsk/c1t6d0s0
* /dev/rdsk/c1t6d0s0 partition map
*
* Dimensions:
* 512 bytes/sector
* 133 sectors/track
* 27 tracks/cylinder
* 3591 sectors/cylinder
* 4926 cylinders
* 4924 accessible cylinders
*
* Flags:
* 1: unmountable
* 10: read-only
*
* First Sector Last
* Partition Tag Flags Sector Count Sector Mount Directory

0 2 00 0 4111695 4111694
1 3 01 4111695 1235304 5346998
2 5 01 0 17682084 17682083
3 0 00 5346999 4197879 9544877
4 0 00 9544878 4197879 13742756
5 0 00 13742757 3939327 17682083

Note – Drives are repartitioned when they are added to a disk set only if Slice 7 is not
set up correctly. A small portion of each drive is reserved in Slice 7 for use by SVM.
The remainder of the space on each drive is placed into Slice 0. Any existing data on
the disks is lost by repartitioning. After adding a drive to a disk set, it may be
repartitioned as necessary, with the exception that Slice 7 is not altered in any way.If
you have disk sets that you upgraded from Solstice DiskSuite™, the default state
database replica size on those sets will be 1034 blocks, not the 8192 block size from
Solaris Volume Manager, and slice 7 on the disks added under Solstice DiskSuite™
will be correspondingly smaller than slice 7 on disks added under SVM.

After adding the disk to a disk set, the output of prtvtoc looks like the following:

[root@lexicon:apps]$ prtvtoc /dev/rdsk/c1t6d0s0
* /dev/rdsk/c1t6d0s0 partition map
*
* Dimensions:
* 512 bytes/sector

Disk Sets (Overview) 187

* 133 sectors/track
* 27 tracks/cylinder
* 3591 sectors/cylinder
* 4926 cylinders
* 4924 accessible cylinders
*
* Flags:
* 1: unmountable
* 10: read-only
*
* First Sector Last
* Partition Tag Flags Sector Count Sector Mount Directory

0 0 00 10773 17671311 17682083
7 0 01 0 10773 10772

[root@lexicon:apps]$

If disks you add to a disk set have an acceptable slice 7 (starting at cylinder 0 and with
sufficient space for the state database replica), they will not be reformatted.

Disk Set Name Requirements
Disk set component names are similar to other SVM component names, but the disk
set name is part of the name. :

� Volume path names include the disk set name after /dev/md/ and before the
actual volume name in the path.

� The following table shows some example disk set volume names.

TABLE 19–1 Example Volume Names

/dev/md/blue/dsk/d0 Block volume d0 in disk set blue

/dev/md/blue/dsk/d1 Block volume d1 in disk set blue

/dev/md/blue/rdsk/d126 Raw volume d126 in disk set blue

/dev/md/blue/rdsk/d127 Raw volume d127 in disk set blue

Similarly, hot spare pools have the disk set name as part of the hot spare name.

Example—Two Shared Disk Sets
Figure 19–1 shows an example configuration using two disk sets.

In this configuration, Host A and Host B share disk sets A and B. They each have their
own local disk set, which is not shared. If Host A fails, Host B can take over control of

188 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Host A’s shared disk set (Disk set A). Likewise, if Host B fails, Host A can take control
of Host B’s shared disk set (Disk set B).

FIGURE 19–1 Disk Sets Example

Understanding Disk Sets
When working with disk sets, consider the following “Requirements for Stripes and
Concatenations” on page 72 and “Suggestions for Stripes and Concatenations”
on page 72.

Requirements for Disk Sets
� SVM must be configured on each host that will be connected to the disk set.

� Each host must have its local state database set up before you can create disk sets.

� To create and work with a disk set in a clustering environment, root must be a
member of Group 14, or the ./rhosts file must contain an entry for the other
hostname (on each host).

Disk Sets (Overview) 189

� To perform maintenance on a disk set, a host must be the owner of the disk set or
have reserved the disk set. (A host takes implicit ownership of the disk set by
putting the first drives into the set.)

� You cannot add a drive that is in use to a disk set. Before adding a drive, make sure
it is not currently being used for a file system, database, or any other application.

� Do not add a drive with existing data that you want to preserve to a disk set; the
process of adding it to the disk set repartitions the disk and destroys existing data.

� All disks that you plan to share between hosts in the disk set must be connected to
each host and must have the exact same path and name (major/minor number) on
each host. Specifically, a shared disk drive must be seen on both hosts at the same
device number (c#t#d#). The disk drive must also have the same major/minor
number. If the minor numbers are not the same on both hosts, typically you see the
message “drive c#t#d# is not common with host xxx” when adding drives to the
disk set. Finally, the shared disks must use the same driver name (ssd). See “How
to Add Drives to a Disk Set” on page 195 for more information on setting up
shared disk drives in a disk set.

Suggestions for Disk Sets
� The default total number of disk sets on a system is 4. You can increase this value

up to 32 by editing the /kernel/drv/md.conf file, as described in “How to
Increase the Number of Default Disk Sets” on page 215. The number of shared disk
sets is always one less than the md_nsets value, because the local set is included
in md_nsets.

� Unlike local volume administration, it is not necessary to create or delete state
database replicas manually on the disk set. SVM tries to balance a reasonable
number of replicas across all drives in a disk set.

� When drives are added to a disk set, SVM re-balances the state database replicas
across the remaining drives. Later, if necessary, you can change the replica layout
with the metadb command.

Administering Disk Sets
Disk sets may be created and configured using the SVM command line interface (the
metaset command) or the Enhanced Storage tool within the Solaris Management
Console.

After drives are added to a disk set, the disk set can be reserved (or taken) and released
by hosts in the disk set. When a disk set is reserved by a host, the other host in the

190 Solaris Volume Manager Administration Guide • December 2001 (Beta)

disk set cannot access the data on the drives in the disk set. To perform maintenance
on a disk set, a host must be the owner of the disk set or have reserved the disk set. A
host takes implicit ownership of the disk set by putting the first drives into the set.

Reserving a Disk Set
Before a host can use drives in a disk set, the host must reserve the disk set. There are
two methods of reserving a disk set:

� Safely - When you safely reserve a disk set, SVM checks to see if another host
currently has the set reserved. If another host has the disk set reserved, your host
will not be allowed to reserve the set.

� Forcibly - When you forcibly reserve a disk set, SVM reserves the disk set whether
or not another host currently has the set reserved. This method is generally used
when a host in the disk set is down or not communicating. All disks within the set
are taken over. The state database is read in on the host performing the reservation
and the shared volumes configured in the set become accessible. If the other host
had the disk set reserved at this point, it would panic due to reservation loss.

Normally, two hosts in a disk set cooperate with each other to ensure that drives in
a disk set are reserved by only one host at a time. A normal situation is defined as
both hosts up and communicating with each other.

The SVM system issues a command to each drive in the disk set to reserve it for
exclusive use by the current host. Each drive in the disk set is then probed once every
second to determine that it is still reserved.

Note – If a drive has been determined unexpectedly not to be reserved (perhaps
because another host using the disk set forcibly took the drive), the host will panic.
This behavior helps to minimize data loss which would occur if two hosts were to
simultaneously access the same drive.

For more information about taking a disk set, see“How to Take a Disk Set”
on page 201

Releasing a Disk Set
Sometimes it may be desirable to release a disk set. Releasing a disk set can be useful
when performing maintenance on the drives in the set. When a disk set is released, it
cannot be accessed by the host. If both hosts in a disk set release the set, neither host in
the disk set can access the drives in the set.

Disk Sets (Overview) 191

For more information about releasing a disk set, see “How to Release a Disk Set”
on page 202.

Scenario—Disk Sets
The following example, drawing on the sample system described in Chapter 4,
describes how disk sets should be used to manage storage residing on a SAN (Storage
Area Network) fabric.

Assume that the sample system has an additional controller that connects to a fiber
switch and SAN storage. Storage on the SAN fabric is not available to the system as
early in the boot process as other devices, such as SCSI and IDE disks, and SVM
would report logical volumes on the fabric as unavailable at book. However, by
adding the storage to a disk set, and then using the disk set tools to manage the
storage, this problem with boot time availability is avoided (and the fabric-attached
storage can be easily managed within a separate, disk set controlled, namespace from
the local storage).

192 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 20

Disk Sets (Tasks)

This chapter provides information about performing tasks that are associated with
disk sets. For information about the concepts involved in these tasks, see Chapter 19.

Disk Sets (Task Map)
The following task map identifies the procedures needed to manage SVM Disk Sets.

Task Description Instructions

Create a disk set. Use the SVM GUI or the metaset
command to create a disk set.

“How to Create a Disk Set”
on page 194

Add drives to a disk set. Use the SVM GUI or the metaset
command to add drives to a disk set.

“How to Add Drives to a
Disk Set” on page 195

Add a host to a disk set. Use the SVM GUI or the metaset
command to add a host to a disk set.

“How to Add A Host to a
Disk Set” on page 197

Create SVM volumes in
a disk set.

Use the SVM GUI or the metainit
command to create volumes in a disk
set.

“How to Create SVM
Devices in a Disk Set”
on page 198

Check the status of a
disk set.

Use the SVM GUI or the metaset and
the SVM GUI or the metastat
command to check the status of a disk
set.

“How to Check the Status
of a Disk Set” on page 199

193

Task Description Instructions

Remove disks from a
disk set.

Use the SVM GUI or the metaset
command to remove drives from a
disk set.

“How to Remove Disks
from a Disk Set”
on page 200

Take a disk set. Use the SVM GUI or the metaset
command to take a disk set.

“How to Take a Disk Set”
on page 201

Release a disk set. Use the SVM GUI or the metaset
command to release a disk set.

“How to Release a Disk
Set” on page 202

Delete a host from a disk
set.

Use the SVM GUI or the metaset
command to delete hosts from a disk
set.

“How to Delete a Host or
Disk Set” on page 203

Delete a disk set. Use the SVM GUI or the metaset
command to delete the last host from a
disk set, thus deleting the disk set.

“How to Delete a Host or
Disk Set” on page 203

Creating Disk Sets

� How to Create a Disk Set
1. Check “Understanding Disk Sets” on page 189.

2. To create a disk set, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Disk Sets node. Choose Action->Create Disk Set, then follow the directions in the
wizard. For more information, see the online help.

� To create a disk set from scratch from the command line, use the following form of
the metaset command:

metaset [-s diskset-name] [-a] [-h hostname]

-s diskset-name Specifies the name of a disk set on which the metaset
command will work.

-a Adds hosts to the named disk set. SVM supports a maximum
of two hosts per disk set.

194 Solaris Volume Manager Administration Guide • December 2001 (Beta)

-h host... Specifies one or more hosts to be added to a disk set. Adding
the first host creates the set. The second host can be added
later, but it is not accepted if all the drives within the set
cannot be found on the specified host. host is the same name
found in the /etc/nodename file.

See metaset(1M) for more information.

3. Check the status of the new disk set using the metaset command.

metaset

Example—Creating A Disk Set
[root@lexicon:working]$ metaset -s blue -a -h lexicon
[root@lexicon:working]$ metaset
Set name = blue, Set number = 1

Host Owner

lexicon

In this example, you create a shared disk sets called blue, from the host lexicon.
The metaset command shows the status. At this point, the set has no owner. The host
that adds disks to the set will become the owner by default.

Expanding Disk Sets

� How to Add Drives to a Disk Set
Only drives meeting the following conditions may be added to a disk set:

� The drive must not be in use in a volume or hot spare pool, or contain a state
database replica.

� The drive must not be currently mounted, swapped on, or otherwise opened for
use by an application.

1. Check “Understanding Disk Sets” on page 189.

2. To add drives to a disk set, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Disk Sets node. Select the disk set you want to modify, then right-click and choose

Disk Sets (Tasks) 195

Properties. Select the Disks tab, click Add Disk, then follow the directions in the
wizard. For more information, see the online help.

� To add drives to a disk set from the command line, use the following form of the
metaset command:

metaset [-s diskset-name] [a] [- c1t2d3]

-s disk-set Specifies the name of a disk set on which the metaset command
will work.

-a Adds drives to the named disk set.

See the metaset man page (metaset(1M)) for more information.

3. Add drives to the disk set.

metaset -s disk-set -a drive...

In this command:

-s disk-set Specifies the name of a disk set on which the metaset command will
work.

-a Adds drives to the named disk set.

drive... Specifies the drives to add to the disk set. Drive names are in the form
cxtxdx; no “sx” slice identifiers are at the end of the name. They need
to be the same on all hosts in the disk set.

The first host to add a drive to a disk set becomes the owner of the disk set.

Caution – Do not add a disk with data; the process of adding it to the disk set may
repartition the disk, destroying any data. For more information, see “Example—Two
Shared Disk Sets” on page 188

4. Use the metaset command to verify the status of the disk set and drives.

metaset

Example—Adding A Drive to a Disk Set
lexicon# metaset -s blue -a c1t6d0
lexicon# metaset
Set name = blue, Set number = 1

Host Owner
lexicon Yes

Drive Dbase

c1t6d0 Yes

196 Solaris Volume Manager Administration Guide • December 2001 (Beta)

In this example, the host name is lexicon. The shared disk set is blue. At this point,
only one disk has been added to the disk set blue.

Optionally, you could add multiple disks at once by listing each of them on the
command line. For example, you could use:

lexicon# metaset -s blue -a c1t6d0 c2t6d0

� How to Add A Host to a Disk Set
SVM supports a maximum of two hosts per disk set. This procedure explains how to
add another host to an existing disk set that only has one host.

1. Check “Understanding Disk Sets” on page 189.

2. To modify a disk set, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Disk Sets node and choose the disk set you want to modify. Select the disk set you
want to modify, then right-click and choose Properties. Select the Hosts tab, click
Add Host, then follow the directions in the wizard. For more information, see the
online help.

� To add hosts to a disk set from the command line, use the following form of the
metaset command:

metaset [-s diskset-name] [a] [-h hostname]

-s disk-set Specifies the name of a disk set on which metaset will work.

-a Adds drives to the named disk set.

See the metaset man page (metaset(1M)) for more information.

3. Add the host:

metaset -s disk-set -a -h host ...

In this command:

-s disk-set Specifies the name of a disk set on which the metaset command will
work.

-a Adds hosts to the named disk set.

-h host... Specifies one or more host names to be added to the disk set. Adding
the first host creates the set. The host name is the same name found in
the /etc/nodenamefile.

4. Verify that the host has been added to the disk set by using the metaset command
without any options.

metaset

Disk Sets (Tasks) 197

Example—Adding Another Host to a Disk Set
lexicon# metaset -s blue -a -h idiom
lexicon# metaset -s blue
Set name = blue, Set number = 1

Host Owner
lexicon Yes
idiom

Drive Dbase
c1t6d0 Yes

c2t6d0 Yes

This example adds host idiom to the disk set blue.

� How to Create SVM Devices in a Disk Set
After you create a disk set, you can create volumes and hot spare pools using the
drives you added to the disk set. You can use either the Enhanced Storage tool within
the Solaris Management Console or the command line utilities.

� To create volumes or other SVM devices within a disk set, use one of the following
methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes , State Database Replicas, or Hot Spare Pools node. Choose
Action->Create, then follow the directions in the wizard. For more information, see
the online help.

� Use the command line utilities with the same basic syntax you would without a
disk set, but add -s setname immediately after the command for every command.

Example—Creating SVM Volumes in a Disk Set
[root@lexicon:drv]$ metainit -s blue d11 1 1 c1t6d0s0
blue/d11: Concat/Stripe is setup
[root@lexicon:drv]$ metainit -s blue d12 1 1 c2t6d0s0
blue/d12: Concat/Stripe is setup
[root@lexicon:drv]$ metainit -s blue d10 -m d11
blue/d10: Mirror is setup
[root@lexicon:drv]$ metattach -s blue d10 d12
blue/d10: submirror blue/d12 is attached

[root@lexicon:drv]$ metastat -s blue
blue/d10: Mirror

Submirror 0: blue/d11
State: Okay

Submirror 1: blue/d12

198 Solaris Volume Manager Administration Guide • December 2001 (Beta)

State: Resyncing
Resync in progress: 0 % done
Pass: 1
Read option: roundrobin (default)
Write option: parallel (default)
Size: 17674902 blocks

blue/d11: Submirror of blue/d10
State: Okay
Size: 17674902 blocks
Stripe 0:

Device Start Block Dbase State Reloc Hot Spare
c1t6d0s0 0 No Okay

blue/d12: Submirror of blue/d10
State: Resyncing
Size: 17674902 blocks
Stripe 0:

Device Start Block Dbase State Reloc Hot Spare

c2t6d0s0 0 No Okay

This example creates a mirror, d10, in disk set blue, consisting of submirrors (RAID0
devices) d11 and d12.

Maintaining Disk Sets

� How to Check the Status of a Disk Set
� Use one of the following methods to check the status of a disk set.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Disk Sets node. Right-click the Disk Set you want to monitor, then choose
Properties from the menu. For more information, see the online help.

� Use the metaset command to view disk set status.

See metaset(1M)for more information.

Disk Sets (Tasks) 199

Note – Disk set ownership is only shown on the owning host.

Example—Checking Status of a Specified Disk Set
red# metaset -s blue

Set name = blue, Set number = 1

Host Owner
lexicon Yes

Drive Dbase
c1t6d0 Yes

c2t6d0 Yes

The metaset command with the -s option followed by the name of the blue disk set
displays status information for that disk set. By issuing the metaset command from
the owning host, lexicon, it is determined that lexicon is in fact the disk set owner.
The metaset command also displays drives in the disk set.

The metaset command by itself displays the status of all disk sets.

� How to Remove Disks from a Disk Set
Deleting a disk set requires that you first delete all drives from the disk set.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Disk Sets node. Right-click the Disk Set you want to release, then choose Properties
from the menu. Click the Disks tab and follow the instructions in the online help.

� Use the metaset -s setname -d drivename command to delete the disk from the
disk set.

-s disk-set Specifies the name of a disk set on which the metaset command
will work.

-d Deletes a disk from a disk set. .

See the metaset(1M) man page for more information.

� Verify that the disk has been deleted from the disk set by using the metaset -s
setname command.

metaset -s blue

200 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Example—Deleting a Disk from a Disk Set
lexicon# metaset -s blue -d c1t1d0
lexicon# metaset -s blue

Set name = blue, Set number = 1

Host Owner
lexicon
idiom

Drive Dbase
c1t6d0 Yes
c2t6d0 Yes

This example deletes the disk from the disk set blue.

� How to Take a Disk Set
� Use one of the following methods to take a disk set.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Disk Sets node. Right-click the Disk Set you want to take, then choose Take
Ownership from the menu. For more information, see the online help.

� Use the metaset -s setname -t command to take the disk set.

See the metasetmetaset(1M) man page for more information.

When one host in a disk set takes the disk set, the other host in the disk set cannot
access data on drives in the disk set.

The default behavior of the metaset command takes the disk set for your host
only if no other host has taken the disk set.

Use the -f option to forcibly take the disk set. This option takes the disk set
whether or not another host currently has the set. Use this method when a host in
the disk set is down or not communicating. If the other host had the disk set taken
at this point, it would panic due to loss of the disk set.

Note – Disk set ownership is only shown on the owning host.

Example—Taking a Disk Set
lexicon# metaset
...
Set name = blue, Set number = 1

Disk Sets (Tasks) 201

Host Owner
lexicon
idiom

...
lexicon# metaset -s blue -t
lexicon# metaset
...
Set name = blue, Set number = 1

Host Owner
lexicon Yes
idiom

...

In this example, host lexicon communicates with host idiom and ensures that host
idiom has released the disk set before host lexicon attempts to take the set.

Note – In this example, if host idiom owned the set blue, the “Owner” column in the
above output would still have been blank. The metaset command only shows
whether the issuing host owns the disk set, and not the other host.

Example—Taking a Disk Set Forcibly
metaset -s blue -t -f

In this example, the host taking the disk set does not communicate with the other host.
Instead, the drives in the disk set are taken without warning. If the other host had the
disk set, it would now panic due to loss of the disk set.

� How to Release a Disk Set
Releasing a disk set is useful when performing maintenance on the drives in the set.
When a disk set is released, it cannot be accessed by the host. If both hosts in a disk set
release the set, neither host in the disk set can access volumes or hot spare pools
defined in the set.

1. Read “Understanding Disk Sets” on page 189.

2. Use one of the following methods to release a disk set.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Disk Sets node. Right-click the Disk Set you want to release, then choose Release
Ownership from the menu. For more information, see the online help.

� Use the metaset -s setname -r command to release the disk set.

202 Solaris Volume Manager Administration Guide • December 2001 (Beta)

-s disk-set Specifies the name of a disk set on which the metaset command
will work.

-r Releases ownership of a disk set. The reservation of all the disks
within the set is removed. The volumes within the set are no longer
accessible.

See the metasetmetaset(1M) man page for more information.

Note – Disk set ownership is only shown on the owning host.

3. Release the disk set by using the metaset command

metaset -s setname -r

4. Verify that the disk set has been released on this host by using the metaset
command without any options.

metaset

Example—Releasing a Disk Set
lexicon# metaset -s blue -r
lexicon# metaset -s blue

Set name = blue, Set number = 1

Host Owner
lexicon
idiom

Drive Dbase
c1t6d0 Yes
c2t6d0 Yes

This example releases the disk set blue. Note that there is no owner of the disk set.
Viewing status from host lexicon could be misleading. A host can only determine if
it does or does not own a disk set. For example, if host idiom were to reserve the disk
set, it would not appear so from host lexicon; only host idiom would be able to
determine the reservation in this case.

� How to Delete a Host or Disk Set
Deleting a disk set requires that the disk set contains no drives and that no other hosts
are attached to the disk set. Deleting the last host will destroy the disk set.

Disk Sets (Tasks) 203

1. Use one of the following methods to delete a host from a disk set, or to delete a disk
set.

� From the Enhanced Storage tool within the Solaris Management Console, open the
Disk Sets node. Right-click the Disk Set you want to release, then choose Delete
from the menu. Follow the instructions in the online help.

� Use the metaset -s setname -d hostname command to delete the host and
remove the disk set if the host removed is the last host on the disk set.

-s disk-set Specifies the name of a disk set on which the metaset command
will work.

-d Deletes a host from a disk set. .

See the metasetmetaset(1M) man page for more information.

2. Verify that the host has been deleted from the disk set by using the metaset
command. Note that only the current (owning) host is shown. Other hosts have
been deleted.

metaset -s blue
Set name = blue, Set number = 1

Host Owner
lexicon Yes

Drive Dbase
c1t2d0 Yes
c1t3d0 Yes
c1t4d0 Yes
c1t5d0 Yes
c1t6d0 Yes

c2t1d0 Yes

Example—Deleting the Last Host from a Disk Set
lexicon# metaset -s blue -d lexicon
lexicon# metaset -s blue

metaset: lexicon: setname "blue": no such set

This example deletes the last host from the disk set blue.

204 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 21

Solaris Volume Manager Maintenance

This chapter provides information about performing general storage administration
maintenance tasks of Solaris Volume Manager SVM.

This is a list of the information in this chapter:

� “Maintenance (Task Map)” on page 205
� “Viewing the SVM Configuration” on page 206
� “Renaming Volumes” on page 209
� “Working with Configuration Files” on page 212
� “Changing SVM Defaults” on page 213
� “Growing a File System” on page 216
� “Overview of Replacing and Enabling Slices in RAID 1 and RAID 5 Volumes”

on page 218

Maintenance (Task Map)
The following task map identifies the procedures needed to perform SVM
maintenance.

Task Description Instructions

View the SVM
configuration

Use the SVM GUI or the metastat
command to view the system
configuration.

“How to View the SVM
Volume Configuration”
on page 206

Rename a volume. Use the SVM GUI or the metarename
command to rename a volume.

“How to Rename a
Volume” on page 210

205

Task Description Instructions

Create configuration
files.

Use the metastat -p command and
the metadb command to create
configuration files.

“How to Create
Configuration Files”
on page 212

Initialize SVM from
configuration files.

Use the metainit command to
initialize SVM from configuration files.

“How to Initialize SVM
from a Configuration File”
on page 212

Increase the number of
possible volumes.

Edit the /kernel/drv/md.conf file
to increase the number of possible
volumes.

“How to Increase the
Number of Default
Volumes” on page 214

Increase the number of
possible disk sets.

Edit the /kernel/drv/md.conf file
to increase the number of possible disk
sets.

“How to Increase the
Number of Default Disk
Sets” on page 215

Grow a file system. Use the growfs command to grow a
file system.

“How to Grow a File
System” on page 217

Enable slices. Use the SVM GUI or the
metareplace command to enable
slices.

“Enabling a Slice”
on page 218

Replace slices. Use the SVM GUI or the
metareplace command to replace
slices.

“Replacing a Slice with
Another Available Slice”
on page 219

Viewing the SVM Configuration

� How to View the SVM Volume Configuration
� To view the volume configuration, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node. For more information, see the online help.

� Use the following format of the metastat(1M) command:

metastat

206 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Tip – The metastat command does not sort output, so pipe the output of the
metastat -p command to the sort or grep commands for a more managable
listing of your configuration.

Example—Viewing the SVM Volume Configuration
metastat
d50: RAID

State: Okay
Interlace: 32 blocks
Size: 20985804 blocks

Original device:
Size: 20987680 blocks

Device Start Block Dbase State Reloc Hot Spare
c1t4d0s5 330 No Okay Yes
c1t5d0s5 330 No Okay Yes
c2t4d0s5 330 No Okay Yes
c2t5d0s5 330 No Okay Yes
c1t1d0s5 330 No Okay Yes
c2t1d0s5 330 No Okay Yes

d1: Concat/Stripe
Size: 4197879 blocks
Stripe 0:

Device Start Block Dbase Reloc
c1t2d0s3 0 No Yes

d2: Concat/Stripe
Size: 4197879 blocks
Stripe 0:

Device Start Block Dbase Reloc
c2t2d0s3 0 No Yes

d80: Soft Partition
Device: d70
State: Okay
Size: 2097152 blocks

Extent Start Block Block count
0 1 2097152

d81: Soft Partition
Device: d70
State: Okay
Size: 2097152 blocks

Extent Start Block Block count
0 2097154 2097152

d70: Mirror
Submirror 0: d71

Solaris Volume Manager Maintenance 207

State: Okay
Submirror 1: d72
State: Okay

Pass: 1
Read option: roundrobin (default)
Write option: parallel (default)
Size: 12593637 blocks

d71: Submirror of d70
State: Okay
Size: 12593637 blocks
Stripe 0:

Device Start Block Dbase State Reloc Hot Spare
c1t3d0s3 0 No Okay Yes

Stripe 1:
Device Start Block Dbase State Reloc Hot Spare
c1t3d0s4 0 No Okay Yes

Stripe 2:
Device Start Block Dbase State Reloc Hot Spare
c1t3d0s5 0 No Okay Yes

d72: Submirror of d70
State: Okay
Size: 12593637 blocks
Stripe 0:

Device Start Block Dbase State Reloc Hot Spare
c2t3d0s3 0 No Okay Yes

Stripe 1:
Device Start Block Dbase State Reloc Hot Spare
c2t3d0s4 0 No Okay Yes

Stripe 2:
Device Start Block Dbase State Reloc Hot Spare
c2t3d0s5 0 No Okay Yes

hsp010: is empty

hsp014: 2 hot spares
Device Status Length Reloc
c1t2d0s1 Available 617652 blocks Yes
c2t2d0s1 Available 617652 blocks Yes

hsp050: 2 hot spares
Device Status Length Reloc
c1t2d0s5 Available 4197879 blocks Yes
c2t2d0s5 Available 4197879 blocks Yes

hsp070: 2 hot spares
Device Status Length Reloc
c1t2d0s4 Available 4197879 blocks Yes
c2t2d0s4 Available 4197879 blocks Yes

Device Relocation Information:
Device Reloc Device ID

208 Solaris Volume Manager Administration Guide • December 2001 (Beta)

c1t2d0 Yes id1,sd@SSEAGATE_ST39204LCSUN9.0G3BV0N1S200002103AF29
c2t2d0 Yes id1,sd@SSEAGATE_ST39204LCSUN9.0G3BV0P64Z00002105Q6J7
c1t1d0 Yes id1,sd@SSEAGATE_ST39204LCSUN9.0G3BV0N1EM00002104NP2J
c2t1d0 Yes id1,sd@SSEAGATE_ST39204LCSUN9.0G3BV0N93J000071040L3S
c0t0d0 Yes id1,dad@s53554e575f4154415f5f53543339313430412525415933

Renaming Volumes

Understanding Renaming Volumes
The metarename command with the -x option can “switch” volumes that have a
parent-child relationship. For more information, see “How to Rename a Volume”
on page 210 and the metarename man page.

SVM enables you to rename many volumes at any time, as long as the name being
used is not in use by another volume, and as long as the volume itself is not in use.
You might rename volumes to maintain a naming scheme for your logical volumes or
to allow a transactional volume to use the same name as the underlying volume had
been using.

Renaming volumes or switching volume names is an administrative convenience for
management of volume names. For example, you could arrange all file system mount
points in a desired numeric range.

Before renaming a volume, make sure that it is not currently in use. For a file system,
make sure it is not mounted or being used as swap. Other applications using the raw
device, such as a database, should have their own way of stopping access to the data.

Specific considerations for renaming volumes include the following:

� You can rename any volume except the following:

� soft partitions
� volumes on which soft partitions are directly built
� a volume that is being used as a logging device
� hot spare pools

� Volumes within a disk set can be renamed. You cannot rename volumes to move
them from one disk set to another.

You can use either the Enhanced Storage tool within the Solaris Management Console
or the command line (the metarename command) to rename volumes.

Solaris Volume Manager Maintenance 209

Switching (Exchanging) Volume Names
When used with the -x option, the metarename command switches (exchanges) the
names of an existing layered volume and one of its subdevices. This includes a mirror
and one of its submirrors, or a transactional volume and its master device.

Note – You must use the command line to exchange volume names. This functionality
is currently unavailable in the SVM GUI, although you can rename a volume with
either the command line or the GUI.

The metarename -x command can make it easier to mirror or unmirror an existing
stripe or concatenation, and to create or remove a transactional volume of an existing
volume.

� You cannot switch (or rename) a volume that is currently in use. This includes
volumes used as mounted file systems, as swap, or as active storage for
applications or databases. Thus, before using the metarename command, stop all
access to the volume being renamed. For example, unmount a mounted file system
using a volume.

� You cannot switch volumes in a failed state, or volumes using a hot spare
replacement.

� A switch can only take place between volumes with a direct parent/child
relationship. You could not, for example, directly exchange a stripe in a mirror that
is a master device with the transactional volume.

� You must use the -f (force) flag when switching members of a transactional
device.

� You cannot switch (or rename) a logging device. The workaround is to either
detach the logging device, rename it, then reattach it to the transactional device; or
detach the logging device and attach another logging device of the desired name.

� Only volumes can be switched. You cannot switch slices or hot spares.

� How to Rename a Volume
1. Check the volume name requirements (“Volume Names” on page 44), and

“Understanding Renaming Volumes” on page 209.

2. Unmount the file system that uses the volume.

3. To rename the volume, use one of the following methods:

� From the Enhanced Storage tool within the Solaris Management Console, open the
Volumes node and select the volume you want to rename. Right-click the icon and
choose the Properties option, then follow the instructions on screen. For more

210 Solaris Volume Manager Administration Guide • December 2001 (Beta)

information, see the online help.

� Use the following format of the metarename command:

metarename old-volume-name new-volume-name

See metarename(1M) for more information.

4. Edit the /etc/vfstab file to refer to the new volume name.

5. Remount the file system.

Example—Renaming a Volume Used For a File System
umount /home
metarename d10 d100
d10: has been renamed to d100

(Edit the /etc/vfstab file so that the file system references the new volume)
mount /home

The volume d10 is renamed to volume d100. Because d10 contains a mounted file
system, the file system must be unmounted before the rename. If the volume is used
for a file system with an entry in the /etc/vfstab file, the entry must be changed to
reference the new volume name. For example, the following line:

/dev/md/dsk/d10 /dev/md/rdsk/d10 /docs ufs 2 yes -

should be changed to:

/dev/md/dsk/d100 /dev/md/rdsk/d100 /docs ufs 2 yes -

Remount the file system.

Solaris Volume Manager Maintenance 211

Note – If you have an existing mirror or transactional volume, you can use the
metarename -x command to remove the mirror or transactional volume and keep
data on an underlying volume. For a transactional volume, as long as the master
device is a volume (stripe/concatenation, mirror, or RAID 5 volume), you keep data
on that volume.

Working with Configuration Files

� How to Create Configuration Files
� Once you have defined all appropriate parameters for the SVM environment, use

the metastat -p command to create the /etc/lvm/md.tab file.

metastat -p > /etc/lvm/md.tab

This file contains all parameters for use by the metainit, and metahscommands in
case you need to set up several similar environments or recreate the configuration
after a system failure.

For more information about the md.tab file, see “Overview of the md.tab File”
on page 260.

� How to Initialize SVM from a Configuration File

Caution – Only use this procedure if you have experienced a complete loss of your
SVM configuration or you have no configuration yet and you want to create a
configuration from a saved configuration file.

If your system loses the information maintained in the state database (for example,
because the system was rebooted after deleting all state database replicas), and as long
as no volumes were created since the state database was lost,, you can use the
md.cf(4) and md.tab(4) files to recover your SVM configuration.

212 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Note – The md.cf file does not maintain information on active hot spares. Thus, if hot
spares were in use when the SVM configuration was lost, those volumes that were
hot-spared will likely be corrupted.

1. Recreate state database replicas.

See “Creating State Database Replicas” on page 60 for more information.

2. Create, or update the /etc/lvm/md.tab file.

� If you are attempting to recover the last known SVM configuration, copy the
md.cf file to the md.tab file.

� If you are creating a new SVM configuration based on a copy of md.tab that you
preserved, put a copy of your preserved file at /etc/lvm/md.tab.

3. Edit the “new” md.tab file so that:

� All mirrors are one-way mirrors. If a mirror’s submirrors are not the same size, be
sure to use the smallest submirror for this one-way mirror. Otherwise data could be
lost.

� RAID 5 volumes must be specified with the -k option, to prevent reinitialization of
the device. See the metainit(1M) man page for more information.

4. Run the following form of the metainit command to check the syntax of the
md.tab file entries:

metainit -n -a

5. Run the following form of the metainit command to recreate the volumes and hot
spare pools from the md.tab file:

metainit -a

6. As needed, run the metattach command to make the one-way mirrors into
multi-way mirrors.

7. Validate the data on the volumes.

Changing SVM Defaults
By default, the SVM configuration defaults to the following settings:

� 128 volumes per disk set
� 8192 block state database replicas

Solaris Volume Manager Maintenance 213

� 4 disk sets

These values can be changed if necessary, and the tasks in this section tell you how.

� How to Increase the Number of Default Volumes
This task describes how to increase the number of volumes from the default value of
128. If you need to configure more than the default, you can increase this value up to
8192.

Caution – If you lower this number at any point, any volume existing between the old
number and the new number may not be available, potentially resulting in data loss. If
you see a message such as “md: d200: not configurable, check
/kernel/drv/md.conf” you will need to edit the md.conf file as explained in this
task.

1. Check the prerequisites (“Prerequisites for Troubleshooting the System”
on page 244).

2. Edit the /kernel/drv/md.conf file.

3. Change the value of the nmd field. Values up to 8192 are supported.

4. Save your changes.

5. Perform a reconfiguration reboot to build the volume names.

boot -r

Example—md.conf File
Here is a sample md.conf file configured for 256 volumes.

#
#ident "@(#)md.conf 1.7 94/04/04 SMI"
#
Copyright (c) 1992, 1993, 1994 by Sun Microsystems, Inc.
#

name="md" parent="pseudo" nmd=256 md_nsets=4;

214 Solaris Volume Manager Administration Guide • December 2001 (Beta)

How to Increase the Number of Default Disk Sets
This task shows you how to increase the number of disk sets from the default value of
4.

Caution – Do not decrease this number if you have configured disk sets. Lowering
this number could make existing disk sets unavailable or unusable.

1. After checking “Prerequisites for Troubleshooting the System” on page 244, edit the
/kernel/drv/md.conf file.

2. Change the value of the md_nsets field. Values up to 32 are supported.

3. Save your changes.

4. Perform a reconfiguration reboot to build the volume names.

boot -r

Example—md.conf File
Here is a sample md.conf file configured for five shared disk sets. The value of
md_nsets is six, which results in five shared disk sets and the one local disk set.

#
#
#pragma ident "@(#)md.conf 2.1 00/07/07 SMI"
#
Copyright (c) 1992-1999 by Sun Microsystems, Inc.
All rights reserved.
#
name="md" parent="pseudo" nmd=128 md_nsets=6;
Begin MDD database info (do not edit)
mddb_bootlist1="sd:25:16:id1,sd@SSEAGATE_ST39204LCSUN9.0G3BV0KCN000002104NGTF/b
sd:25:1050:id1,sd@SSEAGATE_ST39204LCSUN9.0G3BV0KCN000002104NGTF/b sd:25:2084:id1
,sd@SSEAGATE_ST39204LCSUN9.0G3BV0KCN000002104NGTF/b sd:41:16:id1,sd@SSEAGATE_ST3
9204LCSUN9.0G3BV0M1F100002104MAH5/b sd:41:1050:id1,sd@SSEAGATE_ST39204LCSUN9.0G3
BV0M1F100002104MAH5/b sd:41:2084:id1,sd@SSEAGATE_ST39204LCSUN9.0G3BV0M1F10000210
4MAH5/b sd:145:16:id1,sd@SSEAGATE_ST39204LCSUN9.0G3BV0MRV500002105F3B8/b sd:145:
1050:id1,sd@SSEAGATE_ST39204LCSUN9.0G3BV0MRV500002105F3B8/b sd:145:2084:id1,sd@S
SEAGATE_ST39204LCSUN9.0G3BV0MRV500002105F3B8/b sd:161:16:id1,sd@SSEAGATE_ST39204
LCSUN9.0G3BV0NXGC00002105Q8AP/b sd:161:1050:id1,sd@SSEAGATE_ST39204LCSUN9.0G3BV0
NXGC00002105Q8AP/b sd:161:2084:id1,sd@SSEAGATE_ST39204LCSUN9.0G3BV0NXGC00002105Q
8AP/b sd:23:16:id1,sd@SSEAGATE_ST39204LCSUN9.0G3BV0N1S200002103AF29/h sd:23:1050
:id1,sd@SSEAGATE_ST39204LCSUN9.0G3BV0N1S200002103AF29/h";

End MDD database info (do not edit)

Solaris Volume Manager Maintenance 215

Growing a File System
� After a volume containing a file system is expanded (more space is added), if that

volume contains a UFS, you will also need to “grow” the file system to recognize
the added space.

� You must manually grow the file system with the growfs command.

� An application, such as a database, that uses the raw device must have its own
method to grow added space. SVM does not provide this functionality.

� The growfs command expands the file system, even while mounted. Write access
to the file system is not possible while the growfs command is running.

Preliminary Information for Expanding Slices and
Volumes

Note – Solaris Volume Manager volumes may be expanded, but not shrunk.

� A volume, regardless if it is used for a file system, application, or database, can be
expanded: This includes: RAID 0 (stripe and concatenation), RAID 1 (mirror), and
RAID 5 volumes as well as, soft partitions.

� In most cases, you can concatenate a volume that contains an existing file system
while the file system is in use. Then, as long as the file system is UFS, it can be
expanded (with the growfs command) to fill the larger space without interrupting
read access to the data.

� Once a file system is expanded, it cannot be shrunk. This is a limitation of UFS.

� Applications and databases using the raw device must have their own method to
“grow” the added space so that the application can recognize it. SVM does not
provide this capability.

� When a slice is added to a RAID5 volume, it becomes a concatenation to the
device. The new slice does not contain parity information. However, data on the
new slice is protected by the overall parity calculation that takes place for the
device.

� You can expand a logging device by adding additional slices. You do not need to
run the growfs command, as SVM automatically recognizes the additional space
on reboot.

� Soft partitions can be expanded by adding space from the underlying volume or
slice. All other volumes can be expanded by adding slices.

216 Solaris Volume Manager Administration Guide • December 2001 (Beta)

� How to Grow a File System
1. Check “Prerequisites for Creating SVM Elements” on page 48.

2. Use the growfs command to grow a UFS on a logical volume (d10 in this case).

growfs -M /dev/md/rdsk/d10

See the following example and the growfs(1M) man page for more information.

Example—Growing a File System
df -k
Filesystem kbytes used avail capacity Mounted on
...
/dev/md/dsk/d10 69047 65426 0 100% /home2
...
growfs -M /home2 /dev/md/rdsk/d10
/dev/md/rdsk/d10: 295200 sectors in 240 cylinders of 15 tracks, 82 sectors

144.1MB in 15 cyl groups (16 c/g, 9.61MB/g, 4608 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
32, 19808, 39584, 59360, 79136, 98912, 118688, 138464, 158240, 178016, 197792,
217568, 237344, 257120, 276896,
df -k
Filesystem kbytes used avail capacity Mounted on
...
/dev/md/dsk/d10 138703 65426 59407 53% /home2

...

A new slice was added to a concatenation, d10, which contains the mounted file
system /home2. The growfs command specifies the mount point with the -M option
to be /home2, which is expanded onto the raw volume /dev/md/rdsk/d10. The file
system will span the entire volume when the growfs command is complete. Use the
df -k command before and after to verify the total disk capacity.

The growfs command will “write-lock” (see lockfs) a mounted file system when
expanding. The length of time the file system is write-locked can be shortened by
expanding the file system in stages. For instance, to expand a 1 Gbyte file system to 2
Gbytes, the file system can be grown in 16 Mbyte stages using the -s option to specify
the total size of the new file system at each stage.

During the expansion, the file system is not available for write access because of
write-lock. Write accesses are transparently suspended and are restarted when the
growfs command unlocks the file system. Read accesses are not affected, though
access times are not kept while the lock is in effect.

Solaris Volume Manager Maintenance 217

Note – For mirror and transactional volumes, always run the growfs command on
the top-level volume, not a submirror or master device, even though space is added to
the submirror or master device.

Overview of Replacing and Enabling
Slices in RAID 1 and RAID 5 Volumes
SVM has the capability to replace and enable slices within RAID 1 (mirror) and RAID 5
volumes.

In SVM terms, replacing a slice is a way to substitute an available slice on the system
for a selected slice in a submirror or RAID 5 volume. You can think of this as logical
replacement, as opposed to physically replacing the slice. (See “Replacing a Slice with
Another Available Slice” on page 219.) Enabling a slice means to “activate” or
substitute a slice with itself (that is, the slice name is the same). (See “Enabling a Slice”
on page 218.)

Note – When recovering from disk errors, scan /var/adm/messages to see what
kind of errors occurred. If the errors are of a transitory nature and the disks
themselves do not have problems, try enabling the failed slices. You can also use the
format command to test a disk.

Enabling a Slice
You can enable a slice when any of the following conditions exist:

� SVM could not access the physical drive. This may have occurred, for example,
due to a power loss, or a loose drive cable. In this case, SVM puts the slices in the
“Maintenance” state. You need to make sure the drive is accessible (restore power,
reattach cables, and so on) then enable the slices in the volumes.

� You suspect that a physical drive is having transitory problems that are not
disk-related. You might be able to fix a slice in the “Maintenance” state by simply
enabling it. If this does not fix the problem, then you need to either physically
replace the disk drive and enable the slice, or “metareplace” the slice with another
available slice on the system.

When you physically replace a drive, be sure to partition it the same as old drive.
Note that after the drive has been physically replaced and partitioned like the old

218 Solaris Volume Manager Administration Guide • December 2001 (Beta)

one, the task to enable the failed slice(s) is the same as for the first condition
described above.

Note – Always check for state database replicas and hot spares on the drive being
replaced. Any state database replica shown to be in error should be deleted before
replacing the disk and added back (making sure the size is the same) before enabling
the slice. You should treat hot spares in the same manner.

Replacing a Slice with Another Available Slice
You use the metareplace command feature when replacing or swapping an existing
slice with a different slice that is available and not in use on the system.

You can use this method when any of the following conditions exist:

� A disk drive has problems, and you do not have a replacement drive but you do
have available slices elsewhere on the system.

You might want to do this if a replacement is absolutely necessary but you do not
want to shut down the system.

� You are seeing soft errors.

Physical disks may report soft errors even though SVM shows the
mirror/submirror or RAID5 volume in the “Okay” state. Replacing the slice in
question with another available slice enables you to perform preventative
maintenance and potentially prevent hard errors from occurring.

� You want to do performance tuning.

For example, by using the performance monitoring feature available from the
Enhanced Storage tool within the Solaris Management Console, you see that a
particular slice in a RAID 5 volume is experiencing a high load average, even
though it is in the “Okay” state. To balance the load on the volume, you can replace
that slice with one from a disk that is less utilized. You can perform this type of
replacement online without interrupting service to the volume.

Maintenance vs. Last Erred States
When a slice in a mirror or RAID 5 volume device experiences errors, SVM puts the
slice in the “Maintenance” state. No further reads or writes are performed to a slice in
the “Maintenance” state. Subsequent errors on other slices in the same volume are
handled differently, depending on the type of volume. A mirror may be able to tolerate
many slices in the “Maintenance” state and still be read from and written to. A RAID5
volume, by definition, can only tolerate a single slice in the “Maintenance” state.
When either a mirror or RAID5 volume has a slice in the “Last Erred” state, I/O is still

Solaris Volume Manager Maintenance 219

attempted to the slice marked “Last Erred.” This is because a “Last Erred” slice
contains the last good copy of data from SVM’s point of view. With a slice in the “Last
Erred” state, the volume behaves like a normal device (disk) and returns I/O errors to
an application. Usually, at this point some data has been lost.

Always replace slices in the “Maintenance” state first, followed by those in the “Last
Erred” state. After a slice is replaced and resynchronized, use the metastat
command to verify its state, then validate the data to make sure it is good.

Mirrors – If slices are in the “Maintenance” state, no data has been lost. You can safely
replace or enable the slices in any order. If a slice is in the “Last Erred” state, you
cannot replace it until you first replace all the other mirrored slices in the
“Maintenance” state. Replacing or enabling a slice in the “Last Erred” state usually
means that some data has been lost. Be sure to validate the data on the mirror after
repairing it.

RAID5 Volumes – A RAID5 volume can tolerate a single slice failure. You can safely
replace a single slice in the “Maintenance” state without losing data. If an error on
another slice occurs, it is put into the “Last Erred” state. At this point, the RAID5
volume is a read-only device; you need to perform some type of error recovery so that
the state of the RAID5 volume is stable and the possibility of data loss is reduced. If a
RAID5 volume reaches a “Last Erred” state, there is a good chance it has lost data. Be
sure to validate the data on the RAID5 volume after repairing it.

Preliminary Information For Replacing and
Enabling Slices in Mirrors and RAID5 Volumes
When replacing slices in a mirror or a RAID5 volume, follow these guidelines:

� Always replace slices in the “Maintenance” state first, followed by those in the
“Last Erred” state.

� After a slice is replaced and resynchronized, use the metastat command to verify
the volume’s state, then validate the data to make sure it is good. Replacing or
enabling a slice in the “Last Erred” state usually means that some data has been
lost. Be sure to validate the data on the volume after repairing it. For a UFS, run the
fsck command to validate the “metadata” (the structure of the file system) then
check the actual user data. (Practically, users will have to examine their files.) A
database or other application must have its own way of validating its internal data
structure.

� Always check for state database replicas and hot spares when replacing slices. Any
state database replica shown to be in error should be deleted before replacing the
physical disk and added back before enabling the slice. The same applies to hot
spares.

� RAID 5 Volumes – During slice replacement, data is recovered, either from a hot
spare currently in use, or using the RAID level 5 parity, when no hot spare in use.

220 Solaris Volume Manager Administration Guide • December 2001 (Beta)

� Mirrors – When you replace a slice, SVM automatically starts a resynchronization
of the new slice with the rest of the mirror. When the resynchronization completes,
the replaced slice becomes readable and writable. If the failed slice has been
replaced with data from a hot spare, the hot spare is placed in the “Available” state
and made available for other hot spare replacements.

� The new slice must be large enough to replace the old slice.

� As a precaution, back up all data before replacing “Last Erred” devices.

Note – A submirror or RAID5 volume may be using a hot spare in place of a failed
slice. When that failed slice is enabled or replaced using the procedures in this section,
the hot spare is marked “available” in the hot spare pool, and is ready for use.

Solaris Volume Manager Maintenance 221

222 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 22

Solaris Volume Manager Best Practices

This chapter provides general best practices information from a variety of real world
storage scenarios using SVM. In this section, you will see a typical configuration,
followed by an analysis, followed by a recommended (“Best Practices”) configuration
to meet the same needs.

� “Deploying Small Servers” on page 223
� “Using SVM with Networked Storage Devices” on page 225

Deploying Small Servers
Distributed computing environments, from ISPs to geographically distributed sales
offices to telecommunication service providers, often need to deploy similar or
identical servers at multiple locations. These servers could provide router or firewall
services, email services, DNS caches, Usenet (Network News) servers, DHCP services,
or other services best provided at a variety of locations. These small servers have
several features in common:

� High-reliability requirements
� High-availability requirements
� Routine hardware and performance requirements

As a starting point, consider a Netra with a single SCSI bus and two internal
disks—an off-the-shelf configuration, and a good starting point for this kind of
application. Solaris Volume Manager could easily be used to mirror some or all of the
slices, thus providing redundant storage to help guard against disk failure. See Figure
22–1 for an example.

223

FIGURE 22–1 Small system configuration

A configuration like this example might include mirrors for the /, /usr, swap, /var,
and /export filesystems, plus state database replicas (one per disk). As such, a failure
of either side of any of the mirrors would not necessarily result in system failure, and
up to 5 discrete failures could possibly be tolerated. However, the system is not
sufficiently protected against disk or slice failure—a variety of potential failures could
result in a complete system failure, requiring operator intervention.

While this configuration does help provide some protection against catastrophic disk
failure, it exposes several key possible single points of failure:

� The single SCSI controller represents a potential point of failure. If the controller
fails, the system will be down pending replacement of the part.

� The two disks do not provide adequate distribution of state database replicas. The
majority consensus algorithm requires that half of the state database replicas be
available for the system to continue to run, and half plus one replica for a reboot.
So, if one state database replica were on each disk and one disk or the slice
containing the replica failed, the system could not reboot (thus making a mirrored
root ineffective). If two or more state database replicas were on each disk, a single
slice failure would likely not be problematic, but a disk failure would still prevent
reboot. If different number of replicas were on each disk, one would have more
than half and one fewer than half. If the disk with fewer replicas failed, the system
could reboot and continue, but if the disk with more replicas failed, the system
would immediately panic.

224 Solaris Volume Manager Administration Guide • December 2001 (Beta)

By modifying this configuration with an additional SCSI controller card and hard
drive, the configuration can be far more resilient.

Using SVM with Networked Storage
Devices
SVM works well with networked storage devices, particularly those that provide
configurable RAID levels and flexible options. Usually, the combination of SVM and
other devices can result in performance and flexibility superior to either product
alone.

Generally, do not establish SVM RAID 5 volumes on any hardware storage devices
that provide redundancy (e.g., RAID 1, RAID 5). Unless you have a very unusual
situation, performance will suffer and you will be able to gain very little in terms of
redundancy or higher-availability

Configuring underlying hardware storage devices with RAID 5, on the other hand, is
very effective, as it provides a good foundation for SVM volumes. Hardware RAID 5
provides some additional redundancy for SVM mirrors, soft partitions, or other
devices.

Note – Do not configure similar software and hardware devices. For example, do not
build software RAID 1 volumes on top of hardware RAID 1 devices. Configuring
similar devices in hardware and software results in performance penalties without
offseting gains in reliability.

SVM RAID 1 volumes built on underlying hardware storage devices are not RAID
1+0, as SVM cannot understand the underlying storage well enough to offer RAID 1+0
capabilities.

Configuring soft partitions on top of an SVM RAID 1 volume, built in turn on a
hardware RAID 5 device is a very flexible and resilient configuration.

Solaris Volume Manager Best Practices 225

226 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 23

Monitoring and Error Reporting
(Tasks)

When Solaris Volume Manager (SVM) encounters a problem, such as being unable to
write to a volume due to physical errors at the slice level, it changes the status of the
volume so system administrators can stay informed. However, unless you regularly
check the status in the SVM GUI or by running the metastat command, you might
not see these status changes in a timely fashion.

This chapter provides information about various monitoring tools available for SVM,
including the SVM SNMP agent, which is a Solstice Enterprise Agent (SEA) subagent.
In addition to configuring the SVM SNMP agent to report SNMP traps, you can create
a shell script to actively monitor many SVM functions. This shell script can run as a
cron job and be valuable in identifying issues before they become problems.

This is a list of the information in this chapter:

� “SVM Monitoring and Reporting (Task Map)” on page 228
� “Setting the mdmonitord Command for Periodic Error Checking” on page 228
� “SVM SNMP Agent Overview” on page 229
� “Configuring the SVM SNMP Agent” on page 230
� “SVM SNMP Agent Limitations” on page 232
� “Monitoring SVM with a cron Job” on page 233

227

SVM Monitoring and Reporting (Task
Map)
The following task map identifies the procedures needed to manage SVM error
reporting.

Task Description Instructions

Set the mdmonitord
daemon to periodically
check for errors.

Set the error checking interval used by
the mdmonitord daemon by editing
the /etc/rc2.d/S95svm.sync file.

“Setting the mdmonitord
Command for Periodic
Error Checking”
on page 228

Configure the SVM
SNMP agent

Edit the configuration files in the
/etc/snmp/conf directory so SVM
will throw traps appropriately, to the
correct system.

“Configuring the SVM
SNMP Agent” on page 230

Monitor SVM with
scripts run by the cron
command.

Create or adapt a script to check for
errors, then run the script from the
cron command.

“Monitoring SVM with a
cron Job” on page 233

Setting the mdmonitord Command for
Periodic Error Checking
SVM includes the /usr/sbin/mdmonitord command, which is a program that
checks SVM volumes for errors. By default, this program checks all volumes for errors
only when an error is detected (for example, through a write error) on a volume.
However, you can set this program to actively check for errors at an interval you
specify.

228 Solaris Volume Manager Administration Guide • December 2001 (Beta)

� How to Configure the mdmonitord Command for
Periodic Error Checking
The /etc/rc2.d/S95svm.sync script starts the mdmonitord command at boot
time. Edit the /etc/rc2.d/S95svm.sync script to add a time interval for periodic
checking.

1. Become superuser.

2. Edit the /etc/rc2.d/S95svm.sync script and change the line that starts the
mdmonitord command by adding a - t flag and the number of seconds between
checks.

if [-x $MDMONITORD]; then
$MDMONITORD -t 3600
error=$?
case $error in
0) ;;
*) echo "Could not start $MDMONITORD. Error $error."

;;
esac

fi

3. Stop and restart the mdmonitord command to activate your changes.

/etc/rc2.d/S95svm.sync stop

/etc/rc2.d/S95svm.sync start

For more information, see mdmonitord(1M).

SVM SNMP Agent Overview
The SVM SNMP trap agent requires both the core SVM packages SUNWlvmr and
SUNWlvma and the Solaris Enterprise Agent (SEA) packages. Those packages include
the following:

� SUNWmibii
� SUNWsacom
� SUNWsadmi
� SUNWsasnm
� SUNWsasnx

These packages are part of the Solaris operating environment and are normally
installed by default unless the package selection was modified at install time or a
minimal set of packages was installed. After you confirm that all five SEA packages

Monitoring and Error Reporting (Tasks) 229

are available (by using the pkginfo pkgname command, as in pkginfo SUNWsasnx),
you need to configure the SVM SNMP agent, as described in the following section.

Configuring the SVM SNMP Agent
The SVM SNMP agent is not enabled by default. Use the following procedure to
enable SNMP traps.

� How to Configure the SVM SNMP Agent
1. Become superuser.

2. Move the /etc/snmp/conf/mdlogd.rsrc– configuration file to
/etc/snmp/conf/mdlogd.rsrc.

mv /etc/snmp/conf/mdlogd.rsrc- /etc/snmp/conf/mdlogd.rsrc

3. Edit the /etc/snmp/conf/mdlogd.acl file to specify which hosts should receive
SNMP traps. Look in the file for the following:

trap = {
{

trap-community = SNMP-trap
hosts = corsair
{

enterprise = "Solaris Volume Manager"
trap-num = 1, 2, 3

}

Change the line that containshosts = corsair to specify the host name that you
want to receive SVM SNMP traps. For example, to send SNMP traps to lexicon, you
would edit the line to hosts = lexicon. If you want to include multiple hosts,
provide a comma-delimited list of host names, as in hosts = lexicon, idiom.

4. Also edit the /etc/snmp/conf/snmpdx.acl file to specify which hosts should
receive the SNMP traps.

Find the block that begins with trap = and add the same list of hosts that you added
in the previous step. This section might be commented out with #’s. If so, you must
remove the # at the beginning of the required lines in this section. Additional lines in
the trap section are also commented out, but you can leave those alone or delete them
for clarity. After uncommenting required lines and updating the hosts line, this section
could look like this:

###################
trap parameters

230 Solaris Volume Manager Administration Guide • December 2001 (Beta)

###################

trap = {
{

trap-community = SNMP-trap
hosts =lexicon
{
enterprise = "sun"
trap-num = 0, 1, 2-5, 6-16

}
{
enterprise = "3Com"
trap-num = 4
}
{
enterprise = "snmp"
trap-num = 0, 2, 5
}
}
{
trap-community = jerry-trap
hosts = jerry, nanak, hubble
{
enterprise = "sun"
trap-num = 1, 3
}
{
enterprise = "snmp"
trap-num = 1-3
}
}

}

Note – Make sure that the opening and closing brackets ({}) match (you have the
same number of opening and closing brackets) in the
/etc/snmp/conf/snmpdx.acl file.

5. Add a new SVM section to the /etc/snmp/conf/snmpdx.acl file, inside the
section you uncommented in the previous step.

trap-community = SNMP-trap
hosts = lexicon
{
enterprise = "sun"
trap-num = 0, 1, 2-5, 6-16

}
{

enterprise = "Solaris Volume Manager"
trap-num = 1, 2, 3

}

Monitoring and Error Reporting (Tasks) 231

Note that the added four lines occur immediately following the enterprise =
“sun” block.

6. Append the following line to the /etc/snmp/conf/enterprises.oid file:

"Solaris Volume Manager" "1.3.6.1.4.1.42.104"

7. Stop and restart the Solaris Enterprise Agent server.

/etc/init.d/init.snmpdx stop
/etc/init.d/init.snmpdx start

Note – Whenever you upgrade your Solaris operating environment, you will probably
need to edit the/etc/snmp/conf/enterprises.oid file and append the line
above again, then restart the Solaris Enterprise Agent server.

After you have completed this procedure, your system will issue SNMP traps to the
host or hosts you specified. You will need to use an appropriate SNMP monitor, such
as the Solstice Enterprise Agent, to view the traps as they are issued.

Note – Set the mdmonitord command to probe your system regularly to help ensure
that you receive traps if problems arise. See “Setting the mdmonitord Command for
Periodic Error Checking” on page 228. Also, refer to “Monitoring SVM with a cron
Job” on page 233 for additional error checking options.

SVM SNMP Agent Limitations
The SVM SNMP agent has certain limitations, and will not issue traps for all SVM
problems that system administrators will likely need to know about. Specifically, the
agent issues traps only in the following instances:

� A RAID 1 or RAID 5 subcomponent goes into “needs maintenance” state

� A hot spare volume is swapped into service

� A hot spare volume starts to resynchronize

� A hot spare volume completes resynchronization

� A mirror is taken offline

� A disk set is taken by another host and the current host panics

Many problematic situations, such as an unavailable disk with RAID 0 devices or soft
partitions on it, will not result in SNMP traps, even when reads and writes to the

232 Solaris Volume Manager Administration Guide • December 2001 (Beta)

device are attempted. SCSI or IDE errors are generally reported in these cases, but
other SNMP agents will have to issue traps for those errors to be reported to a
monitoring console.

Monitoring SVM with a cron Job

� How to Automate Checking for Errors in Volumes
� To automatically check your SVM configuration for errors, create a script that can be

run periodically by the cron utility.

The following example shows a script that you can use for this purpose.

Note – This script serves as a starting point for automating SVM error checking. You
will probably need to modify this script for your own configuration.

#
#ident "@(#)metacheck.sh 1.3 96/06/21 SMI"
#!/bin/ksh
#!/bin/ksh -x
#!/bin/ksh -v
ident=’%Z%%M% %I% %E% SMI’
#
Copyright (c) 1999 by Sun Microsystems, Inc.
#
metacheck
#
Check on the status of the metadevice configuration. If there is a problem
return a non zero exit code. Depending on options, send email notification.
#
-h
help
-s setname
Specify the set to check. By default, the ’local’ set will be checked.
-m recipient [recipient...]
Send email notification to the specified recipients. This
must be the last argument. The notification shows up as a short
email message with a subject of
"Solaris Volume Manager Problem: metacheck.who.nodename.setname"
which summarizes the problem(s) and tells how to obtain detailed
information. The "setname" is from the -s option, "who" is from
the -w option, and "nodename" is reported by uname(1).
Email notification is further affected by the following options:
-f to suppress additional messages after a problem

Monitoring and Error Reporting (Tasks) 233

has been found.
-d to control the supression.
-w to identify who generated the email.
-t to force email even when there is no problem.
-w who
indicate who is running the command. By default, this is the
user-name as reported by id(1M). This is used when sending
email notification (-m).
-f
Enable filtering. Filtering applies to email notification (-m).
Filtering requires root permission. When sending email notification
the file /etc/lvm/metacheck.setname.pending is used to
controll the filter. The following matrix specifies the behavior
of the filter:
#
problem_found file_exists
yes no Create file, send notification
yes yes Resend notification if the current date
(as specified by -d datefmt) is
different than the file date.
no yes Delete file, send notification
that the problem is resolved.
no no Send notification if -t specified.
#
-d datefmt
Specify the format of the date for filtering (-f). This option
controls the how often re-notification via email occurs. If the
current date according to the specified format (strftime(3C)) is
identical to the date contained in the
/etc/lvm/metacheck.setname.pending file then the message is
suppressed. The default date format is "%D", which will send one
re-notification per day.
-t
Test mode. Enable email generation even when there is no problem.
Used for end-to-end verification of the mechanism and email addresses.
#
#
These options are designed to allow integration of metacheck
into crontab. For example, a root crontab entry of:
#
0,15,30,45 * * * * /usr/sbin/metacheck -f -w SVMcron \
-d ’\%D \%h’ -m notice@example.com 2148357243.8333033@pager.example.com
#
would check for problems every 15 minutes, and generate an email to
notice@example.com (and send to an email pager service) every hour when
there is a problem. Note the \ prior to the ’%’ characters for a
crontab entry. Bounced email would come back to root@nodename.
The subject line for email generated by the above line would be
Solaris Volume Manager Problem: metacheck.SVMcron.nodename.local
#

display a debug line to controlling terminal (works in pipes)
decho()
{

234 Solaris Volume Manager Administration Guide • December 2001 (Beta)

if ["$debug" = "yes"] ; then
echo "DEBUG: $*" < /dev/null > /dev/tty 2>&1
fi

}

if string $1 is in $2-* then return $1, else return ""
strstr()
{

typeset look="$1"
typeset ret=""

shift
decho "strstr LOOK .$look. FIRST .$1."

while [$# -ne 0] ; do
if ["$look" = "$1"] ; then

ret="$look"
fi
shift
done
echo "$ret"

}

if string $1 is in $2-* then delete it. return result
strdstr()
{

typeset look="$1"
typeset ret=""

shift
decho "strdstr LOOK .$look. FIRST .$1."

while [$# -ne 0] ; do
if ["$look" != "$1"] ; then

ret="$ret $1"
fi
shift
done
echo "$ret"

}

merge_continued_lines()
{

awk -e ’\
BEGIN { line = "";} \
$NF == "\\" { \

$NF = ""; \
line = line $0; \
next; \

} \
$NF != "\\" { \

if (line != "") { \
print line $0; \
line = ""; \
} else { \
print $0; \

Monitoring and Error Reporting (Tasks) 235

} \
}’

}

trim out stuff not associated with metadevices
find_meta_devices()
{

typeset devices=""

decho "find_meta_devices .$*."
while [$# -ne 0] ; do
case $1 in
d+([0-9])) # metadevice name

devices="$devices $1"
;;

esac
shift
done
echo "$devices"

}

return the list of top level metadevices
toplevel()
{

typeset comp_meta_devices=""
typeset top_meta_devices=""
typeset devices=""
typeset device=""
typeset comp=""

metastat$setarg -p | merge_continued_lines | while read line ; do
echo "$line"
devices=‘find_meta_devices $line‘
set -- $devices
if [$# -ne 0] ; then

device=$1
shift
check to see if device already refered to as component
comp=‘strstr $device $comp_meta_devices‘
if [-z $comp] ; then
top_meta_devices="$top_meta_devices $device"
fi
add components to component list, remove from top list
while [$# -ne 0] ; do
comp=$1
comp_meta_devices="$comp_meta_devices $comp"
top_meta_devices=‘strdstr $comp $top_meta_devices‘
shift
done

fi
done > /dev/null 2>&1
echo $top_meta_devices

}

236 Solaris Volume Manager Administration Guide • December 2001 (Beta)

#
- MAIN
#
METAPATH=/usr/sbin
PATH=//usr/bin:$METAPATH
USAGE="usage: metacheck [-s setname] [-h] [[-t] [-f [-d datefmt]] \

[-w who] -m recipient [recipient...]]"

datefmt="%D"
debug="no"
filter="no"
mflag="no"
set="local"
setarg=""
testarg="no"
who=‘id | sed -e ’s/^uid=[0-9][0-9]*(//’ -e ’s/).*//’‘

while getopts d:Dfms:tw: flag
do

case $flag in
d) datefmt=$OPTARG;
;;
D) debug="yes"
;;
f) filter="yes"
;;
m) mflag="yes"
;;
s) set=$OPTARG;
if ["$set" != "local"] ; then

setarg=" -s $set";
fi
;;
t) testarg="yes";
;;
w) who=$OPTARG;
;;
\?) echo $USAGE
exit 1
;;
esac

done

if mflag specified then everything else part of recipient
shift ‘expr $OPTIND - 1‘
if [$mflag = "no"] ; then

if [$# -ne 0] ; then
echo $USAGE
exit 1
fi

else
if [$# -eq 0] ; then
echo $USAGE
exit 1

Monitoring and Error Reporting (Tasks) 237

fi
fi
recipients="$*"

curdate_filter=‘date +$datefmt‘
curdate=‘date‘
node=‘uname -n‘

establish files
msg_f=/tmp/metacheck.msg.$$
msgs_f=/tmp/metacheck.msgs.$$
metastat_f=/tmp/metacheck.metastat.$$
metadb_f=/tmp/metacheck.metadb.$$
metahs_f=/tmp/metacheck.metahs.$$
pending_f=/etc/lvm/metacheck.$set.pending
files="$metastat_f $metadb_f $metahs_f $msg_f $msgs_f"

rm -f $files > /dev/null 2>&1
trap "rm -f $files > /dev/null 2>&1; exit 1" 1 2 3 15

Check to see if metadb is capable of running
have_metadb="yes"
metadb$setarg > $metadb_f 2>&1
if [$? -ne 0] ; then

have_metadb="no"
fi
grep "there are no existing databases" < $metadb_f > /dev/null 2>&1
if [$? -eq 0] ; then

have_metadb="no"
fi
grep "/dev/md/admin" < $metadb_f > /dev/null 2>&1
if [$? -eq 0] ; then

have_metadb="no"
fi

check for problems accessing metadbs
retval=0
if ["$have_metadb" = "no"] ; then

retval=1
echo "metacheck: metadb problem, can’t run ’$METAPATH/metadb$setarg’" \

>> $msgs_f
else

snapshot the state
metadb$setarg 2>&1 | sed -e ’1d’ | merge_continued_lines > $metadb_f
metastat$setarg 2>&1 | merge_continued_lines > $metastat_f
metahs$setarg -i 2>&1 | merge_continued_lines > $metahs_f

#
Check replicas for problems, capital letters in the flags
indicate an error, fields are seperated by tabs.
#
problem=‘awk < $metadb_f -F\t ’{if ($1 ~ /[A-Z]/) print $1;}’‘
if [-n "$problem"] ; then
retval=‘expr $retval + 64‘

238 Solaris Volume Manager Administration Guide • December 2001 (Beta)

echo "\
metacheck: metadb problem, for more detail run:\n\t$METAPATH/metadb$setarg -i" \

>> $msgs_f
fi

#
Check the metadevice state
#
problem=‘awk < $metastat_f -e \

’/State:/ {if ($2 != "Okay" && $2 != "Resyncing") print $0;}’‘
if [-n "$problem"] ; then
retval=‘expr $retval + 128‘
echo "\

metacheck: metadevice problem, for more detail run:" \
>> $msgs_f

refine the message to toplevel metadevices that have a problem
top=‘toplevel‘
set -- $top
while [$# -ne 0] ; do

device=$1
problem=‘metastat $device | awk -e \
’/State:/ {if ($2 != "Okay" && $2 != "Resyncing") print $0;}’‘
if [-n "$problem"] ; then
echo "\t$METAPATH/metastat$setarg $device" >> $msgs_f
find out what is mounted on the device
mp=‘mount|awk -e ’/\/dev\/md\/dsk\/’$device’[\t]/{print $1;}’‘
if [-n "$mp"] ; then

echo "\t\t$mp mounted on $device" >> $msgs_f
fi
fi
shift

done
fi

#
Check the hotspares to see if any have been used.
#
problem=""
grep "no hotspare pools found" < $metahs_f > /dev/null 2>&1
if [$? -ne 0] ; then
problem=‘awk < $metahs_f -e \

’/blocks/ { if ($2 != "Available") print $0;}’‘
fi
if [-n "$problem"] ; then
retval=‘expr $retval + 256‘
echo "\

metacheck: hot spare in use, for more detail run:\n\t$METAPATH/metahs$setarg -i" \
>> $msgs_f

fi
fi

If any errors occurred, then mail the report
if [$retval -ne 0] ; then

Monitoring and Error Reporting (Tasks) 239

if [-n "$recipients"] ; then
re=""
if [-f $pending_f] && ["$filter" = "yes"] ; then

re="Re: "
we have a pending notification, check date to see if we resend
penddate_filter=‘cat $pending_f | head -1‘
if ["$curdate_filter" != "$penddate_filter"] ; then
rm -f $pending_f > /dev/null 2>&1
else
if ["$debug" = "yes"] ; then

echo "metacheck: email problem notification still pending"
cat $pending_f

fi
fi

fi
if [! -f $pending_f] ; then

if ["$filter" = "yes"] ; then
echo "$curdate_filter\n\tDate:$curdate\n\tTo:$recipients" \

> $pending_f
fi
echo "\

Solaris Volume Manager: $node: metacheck$setarg: Report: $curdate" >> $msg_f
echo "\

--" >> $msg_f
cat $msg_f $msgs_f | mailx -s \
"${re}Solaris Volume Manager Problem: metacheck.$who.$set.$node" $recipients

fi
else
cat $msgs_f
fi

else
no problems detected,
if [-n "$recipients"] ; then
default is to not send any mail, or print anything.
echo "\

Solaris Volume Manager: $node: metacheck$setarg: Report: $curdate" >> $msg_f
echo "\

--" >> $msg_f
if [-f $pending_f] && ["$filter" = "yes"] ; then

pending filter exista, remove it and send OK
rm -f $pending_f > /dev/null 2>&1
echo "Problem resolved" >> $msg_f
cat $msg_f | mailx -s \
"Re: Solaris Volume Manager Problem: metacheck.$who.$node.$set" $recipients

elif ["$testarg" = "yes"] ; then
for testing, send mail every time even thought there is no problem
echo "Messaging test, no problems detected" >> $msg_f
cat $msg_f | mailx -s \
"Solaris Volume Manager Problem: metacheck.$who.$node.$set" $recipients

fi
else
echo "metacheck: Okay"
fi

fi

240 Solaris Volume Manager Administration Guide • December 2001 (Beta)

rm -f $files > /dev/null 2>&1

exit $retval

For information on invoking scripts by using the cron utility, see the cron(1M) man
page.

Monitoring and Error Reporting (Tasks) 241

242 Solaris Volume Manager Administration Guide • December 2001 (Beta)

CHAPTER 24

Troubleshooting Solaris Volume
Manager

This chapter describes how to solve problems related to Solaris Volume Manager
(SVM). It provides both general rules for solving problems and specific procedures for
solving some particular known problems.

This chapter includes the following information:

� “Troubleshooting (Task Map)” on page 243
� “Overview of Troubleshooting the System” on page 244
� “Solving Problems” on page 245
� “Monitoring SVM with a cron Job” on page 233
� “Replacing Disks” on page 245
� “Boot Problems” on page 247

Troubleshooting (Task Map)
The following task map identifies some procedures needed to manage SVM
Troubleshooting.

Task Description Instructions

Replace a failed disk. Update state database replicas and
logical volumes on the new disk.

“How to Replace a Failed
Disk” on page 245

Recover from improper
/etc/vfstab entries.

Use the fsck command on the mirror,
then edit the /etc/vfstab file so the
system will boot correctly. .

“How to Recover From
Improper /etc/vfstab
Entries” on page 248

243

Task Description Instructions

Recover from a boot
device failure.

Boot from a different submirror. “How to Recover From a
Boot Device Failure”
on page 250

Recover from insufficient
state database replicas

Delete bad replicas using the metadb
command.

“How to Recover From
Insufficient State Database
Replicas” on page 255

Overview of Troubleshooting the System
This chapter describes some Solaris Volume Manager problems and their appropriate
solution. It is not intended to be all-inclusive but rather to present common scenarios
and recovery procedures.

Prerequisites for Troubleshooting the System
To be able to solve storage management problems related to SVM, you need to :

� Have root privilege.
� Have a current backup of all data.

General Guidelines for Troubleshooting SVM
Have the following information on hand when troubleshooting SVM problems:

� Contents of the /etc/vfstab file

� Status of state database replicas, volumes, and hot spares, from the output of the
metadb and metastat commands

� Disk partition information, from the prtvtoc command (Sparc™ systems) or the
fdisk command (IA systems)

� Solaris version

� Solaris patches

� SVM patches

244 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Solving Problems
This section provides the following:

� A general process for resolving problems

� A table of known problems, with suggested solutions and pointers to where to find
additional information

General Troubleshooting Approach
Although there is no one procedure that will enable you to evaluate all problems, the
following process provides one general approach that might help.

1. Gather information about current configuration.

2. Look at the current status indicators. There should be information here that
indicates which component is faulty.

3. Check hardware for obvious points of failure. (Is everything connected properly?
Was there a recent electrical outage? Have you recently added or changed
equipment?)

Replacing Disks
This section describes how to replace disks in a SVM environment.

� How to Replace a Failed Disk
1. Identify the disk to be replaced by examining the /var/adm/messages file and the

metastat command output.

2. Locate any state database replicas that may have been placed on the problem disk.
Use the metadb command to find the replicas.

The metadb command may report errors for the replicas located on the failed disk. In
this example, c0t1d0 is the problem device.

metadb
flags first blk block count
a m u 16 1034 /dev/dsk/c0t0d0s4

Troubleshooting Solaris Volume Manager 245

a u 1050 1034 /dev/dsk/c0t0d0s4
a u 2084 1034 /dev/dsk/c0t0d0s4
W pc luo 16 1034 /dev/dsk/c0t1d0s4
W pc luo 1050 1034 /dev/dsk/c0t1d0s4

W pc luo 2084 1034 /dev/dsk/c0t1d0s4

The output above shows three state database replicas on Slice 4 of each of the local
disks, c0t0d0 and c0t1d0. The W in the flags field of the c0t1d0s4 slice indicates
that the device has write errors. Three replicas on the c0t0d0s4 slice are still good.

3. Record the slice name where the replicas reside and the number of replicas, then
delete the state database replicas.

The number of replicas is obtained by counting the number of appearances of a slice
in the metadb command output in step 2Step 2. In this example, the three state
database replicas that exist on c0t1d0s4 are deleted.

metadb -d c0t1d0s4

Caution – If, after deleting the bad state database replicas, you are left with three or
fewer, add more state database replicas before continuing. This will help ensure that
configuration information remains intact.

4. Locate any submirrors using slices on the problem disk and detach them.

The metastat command can show the affected mirrors. In this example, one
submirror, d10, is using c0t1d0s4. The mirror is d20.

metadetach d20 d10

d20: submirror d10 is detached

5. Delete hot spares on the problem disk.

metahs -d hsp000 c0t1d0s6

hsp000: Hotspare is deleted

6. Halt the system and boot to single-user mode.

halt
...
ok boot -s

...

7. Physically replace the problem disk.

8. Repartition the new disk.

Use the format command or the fmthard command to partition the disk with the
same slice information as the failed disk. If you have the prtvtoc output from the
failed disk, you can format the replacement disk with fmthard -s
/tmp/failed-disk-prtvtoc-output

246 Solaris Volume Manager Administration Guide • December 2001 (Beta)

9. If you deleted replicas in step 3, add the same number back to the appropriate slice.

In this example, /dev/dsk/c0t1d0s4 is used.

metadb -a c 3 c0t1d0s4

10. Depending on how the disk was used, you may have a variety of things to do. Use
the following table to decide what to do next.

TABLE 24–1 Disk Replacement Decision Table

If this Type of Device... Do the Following ...

Slice Use normal data recovery procedures.

Unmirrored RAID 0 volume or
Soft Partition

If the stripe/concatenation is used for a file system, run
newfs, mount the file system then restore data from backup.
If the stripe/concatenation is used for an application that uses
the raw device, that application must have its own recovery
procedures.

RAID 1 volume (Submirror) Run the metattach command to reattach a detached
submirror.

RAID 5 volume Run the metareplace command to re-enable the slice. This
causes the resynchronization to start.

Transactional volume Run the fsck command to repair the transactional volume.

11. Replace hot spares that were deleted, and add them to the appropriate hot spare
pool(s).

metahs -a hsp000 c0t0d0s6

hsp000: Hotspare is added

12. Validate the data.

Check the user/application data on all volumes. You may have to run an
application-level consistency checker or use some other method to check the data.

Boot Problems
Because SVM enables you to mirror root (/), swap, and /usr, special problems can
arise when you boot the system, either through hardware or operator error. The tasks
in this section are solutions to such potential problems.

Table 24–2 describes these problems and points you to the appropriate solution.

Troubleshooting Solaris Volume Manager 247

TABLE 24–2 Common SVM Boot Problems

System Does Not Boot Because ... For More Information, See ...

The /etc/vfstab file contains
incorrect information.

“How to Recover From Improper /etc/vfstab
Entries” on page 248

There are not enough state database
replicas.

“How to Recover From Insufficient State Database
Replicas” on page 255

A boot device (disk) has failed. “How to Recover From a Boot Device Failure”
on page 250

The boot mirror has failed.

Preliminary Information for Boot Problems
� If the volume driver takes a volume offline due to errors, unmount all file systems

on the disk where the failure occurred. Because each disk slice is independent,
multiple file systems may be mounted on a single disk. If the metadisk driver has
encountered a failure, other slices on the same disk will likely experience failures
soon. File systems mounted directly on disk slices do not have the protection of
metadisk driver error handling, and leaving such file systems mounted can leave
you vulnerable to crashing the system and losing data.

� Minimize the amount of time you run with submirrors disabled or offline. During
resyncing and online backup intervals, the full protection of mirroring is gone.

� How to Recover From Improper /etc/vfstab
Entries
If you have made an incorrect entry in the /etc/vfstab file, for example, when
mirroring root (/), the system will appear at first to be booting properly then fail. To
remedy this situation, you need to edit /etc/vfstab while in single-user mode.

The high-level steps to recover from improper /etc/vfstab file entries are:

1. Booting the system to single-user mode

2. Running the fsck command on the mirror volume

3. Remounting file system read-write

4. Optional: running the metaroot command for a root (/) mirror

5. Verifying that the /etc/vfstab file correctly references the volume for the file
system entry

6. Rebooting

248 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Example—Recovering the root (/) Mirror
In the following example, root (/) is mirrored with a two-way mirror, d0. The root (/)
entry in /etc/vfstab has somehow reverted back to the original slice of the file
system, but the information in /etc/system still shows booting to be from the
mirror d0. The most likely reason is that the metaroot command was not used to
maintain /etc/system and /etc/vfstab, or an old copy of /etc/vfstab was
copied back.

The incorrect /etc/vfstab file would look something like the following:

#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#
/dev/dsk/c0t3d0s0 /dev/rdsk/c0t3d0s0 / ufs 1 no -
/dev/dsk/c0t3d0s1 - - swap - no -
/dev/dsk/c0t3d0s6 /dev/rdsk/c0t3d0s6 /usr ufs 2 no -
#
/proc - /proc proc - no -
floppy - /dev/floppy floppy - no -

swap - /tmp tmpfs - yes -

Because of the errors, you automatically go into single-user mode when the machine is
booted:

ok boot
...
SunOS Release 5.5 Version Generic [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1995, Sun Microsystems, Inc.
configuring network interfaces: le0.
Hostname: antero
mount: /dev/dsk/c0t3d0s0 is not this fstype.
setmnt: Cannot open /etc/mnttab for writing

INIT: Cannot create /var/adm/utmp or /var/adm/utmpx

INIT: failed write of utmpx entry:" "

INIT: failed write of utmpx entry:" "

INIT: SINGLE USER MODE

Type Ctrl-d to proceed with normal startup,

(or give root password for system maintenance): <root-password>

At this point, root (/) and /usr are mounted read-only. Follow these steps:

Troubleshooting Solaris Volume Manager 249

1. Run the fsck command on the root (/) mirror.

Note – Be careful to use the correct volume for root.

fsck /dev/md/rdsk/d0
** /dev/md/rdsk/d0
** Currently Mounted on /
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
2274 files, 11815 used, 10302 free (158 frags, 1268 blocks,

0.7% fragmentation)

2. Remount root (/) read/write so you can edit the /etc/vfstab file.

mount -o rw,remount /dev/md/dsk/d0 /

mount: warning: cannot lock temp file </etc/.mnt.lock>

3. Run the metaroot command.

metaroot d0

This edits the /etc/system and /etc/vfstab files to specify that the root (/) file
system is now on volume d0.

4. Verify that the /etc/vfstab file contains the correct volume entries.

The root (/) entry in the /etc/vfstab file should appear as follows so that the entry
for the file system correctly references the mirror:

#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#
/dev/md/dsk/d0 /dev/md/rdsk/d0 / ufs 1 no -
/dev/dsk/c0t3d0s1 - - swap - no -
/dev/dsk/c0t3d0s6 /dev/rdsk/c0t3d0s6 /usr ufs 2 no -
#
/proc - /proc proc - no -
floppy - /dev/floppy floppy - no -

swap - /tmp tmpfs - yes -

5. Reboot.

The system returns to normal operation.

� How to Recover From a Boot Device Failure
If you have a root (/) mirror and your boot device fails, you’ll need to set up an
alternate boot device.

250 Solaris Volume Manager Administration Guide • December 2001 (Beta)

The high-level steps in this task are:

1. Booting from the alternate root (/) submirror
2. Determining the errored state database replicas and volumes
3. Repairing the problem disk
4. Restoring state database and volumes to their original state

In the following example, the boot device containing two of the six state database
replicas and the root (/), swap, and /usr submirrors fails.

Initially, when the boot device fails, you’ll see a message similar to the following. This
message may differ among various architectures.

Rebooting with command:
Boot device: /iommu/sbus/dma@f,81000/esp@f,80000/sd@3,0 File and args: kadb
kadb: kernel/unix
The selected SCSI device is not responding
Can’t open boot device

...

When you see this message, note the device. Then, follow these steps:

1. Boot from another root (/) submirror.

Since only two of the six state database replicas in this example are in error, you can
still boot. If this were not the case, you would need to delete the stale state database
replicas in single-user mode. This procedure is described in “How to Recover From
Insufficient State Database Replicas” on page 255.

When you created the mirror for the root (/) file system, you should have recorded the
alternate boot device as part of that procedure. In this example, disk2 is that alternate
boot device.

ok boot disk2
...
SunOS Release 5.5 Version Generic [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1995, Sun Microsystems, Inc.

Hostname: demo
...
demo console login: root
Password: <root-password>
Last login: Wed Dec 16 13:15:42 on console
SunOS Release 5.1 Version Generic [UNIX(R) System V Release 4.0]

...

2. Use the metadb command to determine that two state database replicas have failed.

metadb
flags first blk block count

M p unknown unknown /dev/dsk/c0t3d0s3
M p unknown unknown /dev/dsk/c0t3d0s3
a m p luo 16 1034 /dev/dsk/c0t2d0s3
a p luo 1050 1034 /dev/dsk/c0t2d0s3

Troubleshooting Solaris Volume Manager 251

a p luo 16 1034 /dev/dsk/c0t1d0s3

a p luo 1050 1034 /dev/dsk/c0t1d0s3

The system can no longer detect state database replicas on slice
/dev/dsk/c0t3d0s3, which is part of the failed disk.

3. Use the metastat command to determine that half of the root (/), swap, and /usr
mirrors have failed.

metastat
d0: Mirror

Submirror 0: d10
State: Needs maintenance

Submirror 1: d20
State: Okay

...

d10: Submirror of d0
State: Needs maintenance
Invoke: "metareplace d0 /dev/dsk/c0t3d0s0 <new device>"
Size: 47628 blocks
Stripe 0:
Device Start Block Dbase State Hot Spare
/dev/dsk/c0t3d0s0 0 No Maintenance

d20: Submirror of d0
State: Okay
Size: 47628 blocks
Stripe 0:
Device Start Block Dbase State Hot Spare
/dev/dsk/c0t2d0s0 0 No Okay

d1: Mirror
Submirror 0: d11
State: Needs maintenance

Submirror 1: d21
State: Okay

...

d11: Submirror of d1
State: Needs maintenance
Invoke: "metareplace d1 /dev/dsk/c0t3d0s1 <new device>"
Size: 69660 blocks
Stripe 0:
Device Start Block Dbase State Hot Spare
/dev/dsk/c0t3d0s1 0 No Maintenance

d21: Submirror of d1
State: Okay
Size: 69660 blocks
Stripe 0:
Device Start Block Dbase State Hot Spare
/dev/dsk/c0t2d0s1 0 No Okay

252 Solaris Volume Manager Administration Guide • December 2001 (Beta)

d2: Mirror
Submirror 0: d12
State: Needs maintenance

Submirror 1: d22
State: Okay

...

d2: Mirror
Submirror 0: d12
State: Needs maintenance

Submirror 1: d22
State: Okay

...

d12: Submirror of d2
State: Needs maintenance
Invoke: "metareplace d2 /dev/dsk/c0t3d0s6 <new device>"
Size: 286740 blocks
Stripe 0:
Device Start Block Dbase State Hot Spare
/dev/dsk/c0t3d0s6 0 No Maintenance

d22: Submirror of d2
State: Okay
Size: 286740 blocks
Stripe 0:
Device Start Block Dbase State Hot Spare

/dev/dsk/c0t2d0s6 0 No Okay

In this example, the metastat command shows that following submirrors need
maintenance:

� Submirror d10, device c0t3d0s0
� Submirror d11, device c0t3d0s1
� Submirror d12, device c0t3d0s6

4. Halt the system, replace the disk, and use the format command or the fmthard
command, to partition the disk as it was before the failure.

Tip – If the new disk is identical to the existing disk (the intact side of the mirror in
this example), use prtvtoc /dev/rdsk/c0t2d0s2 | fmthard - -s
/dev/rdsk/c0t3d0s2 to quickly format the new disk (c0t3d0 in this example)

halt
...
Halted
...
ok boot
...

format /dev/rdsk/c0t3d0s0

Troubleshooting Solaris Volume Manager 253

5. Reboot.

Note that you must reboot from the other half of the root (/) mirror. You should have
recorded the alternate boot device when you created the mirror.

halt
...

ok boot disk2

6. To delete the failed state database replicas and then add them back, use the metadb
command.

metadb
flags first blk block count

M p unknown unknown /dev/dsk/c0t3d0s3
M p unknown unknown /dev/dsk/c0t3d0s3
a m p luo 16 1034 /dev/dsk/c0t2d0s3
a p luo 1050 1034 /dev/dsk/c0t2d0s3
a p luo 16 1034 /dev/dsk/c0t1d0s3
a p luo 1050 1034 /dev/dsk/c0t1d0s3

metadb -d c0t3d0s3
metadb -c 2 -a c0t3d0s3
metadb

flags first blk block count
a m p luo 16 1034 /dev/dsk/c0t2d0s3
a p luo 1050 1034 /dev/dsk/c0t2d0s3
a p luo 16 1034 /dev/dsk/c0t1d0s3
a p luo 1050 1034 /dev/dsk/c0t1d0s3
a u 16 1034 /dev/dsk/c0t3d0s3

a u 1050 1034 /dev/dsk/c0t3d0s3

7. Use the metareplace command to re-enable the submirrors.

metareplace -e d0 c0t3d0s0
Device /dev/dsk/c0t3d0s0 is enabled

metareplace -e d1 c0t3d0s1
Device /dev/dsk/c0t3d0s1 is enabled

metareplace -e d2 c0t3d0s6

Device /dev/dsk/c0t3d0s6 is enabled

After some time, the resyncs will complete. You can now return to booting from the
original device.

254 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Recovering from State Database Replica
Failures

� How to Recover From Insufficient State Database
Replicas
If for some reason the state database replica quorum is not met, for example, due to a
drive failure, the system cannot be rebooted. This situation could follow a panic (when
SVM discovers that fewer than half the state database replicas are available) or could
occur if the system is rebooted with exactly half or fewer functional state database
replicas. In SVM terms, the state database has gone “stale.” This task explains how to
recover.

1. Boot the machine to determine which state database replicas are down.

2. Determine which state database replicas are down using one of the following
methods

� Use the following format of the metadb command:

metadb -i

3. If one or more disks are known to be unavailable, delete the replicas on those
disks. Otherwise, delete enough errored replicas (W, M, D, F, or R status flags
reported by metadb) to ensure that a majority of the existing replicas are not
errored.

Delete the state database replica on the bad disk using the metadb -d command.

4. Use one of the methods described in step 2 to verify that the replicas have been
deleted.

5. Reboot.

6. If necessary, you can replace the disk, format it appropriately, then add any state
database replicas needed to the disk, following the instructions “Creating State
Database Replicas” on page 60.

Once you have a replacement disk, halt the system, replace the failed disk, and once
again, reboot the system. Use the format command or the fmthard command to
partition the disk as it was before the failure.

Troubleshooting Solaris Volume Manager 255

Example—Recovering From Stale State Database Replicas
In the following example, a disk containing seven replicas has gone bad. This leaves
the system with only three good replicas, and the system panics, then cannot reboot.

panic[cpu0]/thread=70a41e00: md: state database problem

403238a8 md:mddb_commitrec_wrapper+6c (2, 1, 70a66ca0, 40323964, 70a66ca0, 3c)
%l0-7: 0000000a 00000000 00000001 70bbcce0 70bbcd04 70995400 00000002 00000000

40323908 md:alloc_entry+c4 (70b00844, 1, 9, 0, 403239e4, ff00)
%l0-7: 70b796a4 00000001 00000000 705064cc 70a66ca0 00000002 00000024 00000000

40323968 md:md_setdevname+2d4 (7003b988, 6, 0, 63, 70a71618, 10)
%l0-7: 70a71620 00000000 705064cc 70b00844 00000010 00000000 00000000 00000000

403239f8 md:setnm_ioctl+134 (7003b968, 100003, 64, 0, 0, ffbffc00)
%l0-7: 7003b988 00000000 70a71618 00000000 00000000 000225f0 00000000 00000000

40323a58 md:md_base_ioctl+9b4 (157ffff, 5605, ffbffa3c, 100003, 40323ba8, ff1b5470)
%l0-7: ff3f2208 ff3f2138 ff3f26a0 00000000 00000000 00000064 ff1396e9 00000000

40323ad0 md:md_admin_ioctl+24 (157ffff, 5605, ffbffa3c, 100003, 40323ba8, 0)
%l0-7: 00005605 ffbffa3c 00100003 0157ffff 0aa64245 00000000 7efefeff 81010100

40323b48 md:mdioctl+e4 (157ffff, 5605, ffbffa3c, 100003, 7016db60, 40323c7c)
%l0-7: 0157ffff 00005605 ffbffa3c 00100003 0003ffff 70995598 70995570 0147c800

40323bb0 genunix:ioctl+1dc (3, 5605, ffbffa3c, fffffff8, ffffffe0, ffbffa65)
%l0-7: 0114c57c 70937428 ff3f26a0 00000000 00000001 ff3b10d4 0aa64245 00000000

panic:
stopped at edd000d8: ta %icc,%g0 + 125
Type ’go’ to resume

ok boot -s
Resetting ...

Sun Ultra 5/10 UPA/PCI (UltraSPARC-IIi 270MHz), No Keyboard
OpenBoot 3.11, 128 MB memory installed, Serial #9841776.
Ethernet address 8:0:20:96:2c:70, Host ID: 80962c70.

Rebooting with command: boot -s
Boot device: /pci@1f,0/pci@1,1/ide@3/disk@0,0:a File and args: -s
SunOS Release 5.9 Version s81_39 64-bit

Copyright 1983-2001 Sun Microsystems, Inc. All rights reserved.
configuring IPv4 interfaces: hme0.
Hostname: dodo

metainit: dodo: stale databases

Insufficient metadevice database replicas located.

Use metadb to delete databases which are broken.
Ignore any "Read-only file system" error messages.
Reboot the system when finished to reload the metadevice database.
After reboot, repair any broken database replicas which were deleted.

256 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Type control-d to proceed with normal startup,
(or give root password for system maintenance): root password
single-user privilege assigned to /dev/console.
Entering System Maintenance Mode

Jun 7 08:57:25 su: ’su root’ succeeded for root on /dev/console
Sun Microsystems Inc. SunOS 5.9 s81_39 May 2002
metadb

flags first blk block count
a m p lu 16 8192 /dev/dsk/c0t0d0s7
a p l 8208 8192 /dev/dsk/c0t0d0s7
a p l 16400 8192 /dev/dsk/c0t0d0s7
M p 16 unknown /dev/dsk/c1t1d0s0
M p 8208 unknown /dev/dsk/c1t1d0s0
M p 16400 unknown /dev/dsk/c1t1d0s0
M p 24592 unknown /dev/dsk/c1t1d0s0
M p 32784 unknown /dev/dsk/c1t1d0s0
M p 40976 unknown /dev/dsk/c1t1d0s0
M p 49168 unknown /dev/dsk/c1t1d0s0

metadb -d c1t1d0s0
metadb: dodo: Bad address

metadb
flags first blk block count

a m p lu 16 8192 /dev/dsk/c0t0d0s7
a p l 8208 8192 /dev/dsk/c0t0d0s7
a p l 16400 8192 /dev/dsk/c0t0d0s7

#

The system paniced because it could no longer detect state database replicas on slice
/dev/dsk/c1t1d0s0, which is part of the failed disk or attached to a failed
controller. The first metadb -i command identifies the replicas on this slice as having
a problem with the master blocks.

When you delete the stale state database replicas, the root (/) file system is read-only.
You can ignore the mddb.cf error messages:

At this point, the system is again functional, although it probably has fewer state
database replicas than it should, and any volumes that used part of the failed storage
are also either failed, errored, or hot-spared; those issues should be addressed
promptly.

Troubleshooting Solaris Volume Manager 257

Repairing Transactional Volume
Problems
Because a transactional volume is a “layered” volume, consisting of a master device
and logging device, and because the logging device can be shared among file systems,
repairing a failed transactional volume requires special recovery tasks.

Any device errors or file system panics must be managed using the command line
utilities.

File System Panics
If a file system detects any internal inconsistencies while it is in use, it will panic the
system. If the file system is configured for logging, it notifies the transactional volume
that it needs to be checked at reboot. The transactional volume transitions itself to the
“Hard Error” state. All other transactional volumes sharing the same logging device
also go into the “Hard Error” state.

At reboot, fsck checks and repairs the file system and transitions the file system back
to the “Okay” state. fsck does this for all transactional volumes listed in the
/etc/vfstab file for the affected logging device.

Transactional Volume Errors
If a device error occurs on either the master device or the logging device while the
transactional volume is processing logged data, the device transitions from the “Okay”
state to the “Hard Error” state. If the device is either in the “Hard Error” or “Error”
state, either a device error has occurred, or a file system panic has occurred.

Note – Any devices sharing the failed logging device also go the “Error” state.

258 Solaris Volume Manager Administration Guide • December 2001 (Beta)

APPENDIX A

Important Solaris Volume Manager
Files

This appendix contains information about SVM files for reference purposes. It contains
the following:

� “System and Startup Files” on page 259
� “Manually Configured Files” on page 260

System and Startup Files
This section explains the files necessary for SVM to operate correctly. With the
exception of specialized configuration changes, you will not need to access or modify
these files.

� /etc/lvm/mddb.cf

Caution – Do not edit this file. Changing this file could corrupt your SVM
configuration.

The mddb.cf(4) file records the locations of state database replicas. When state
database replica locations change, SVM makes an entry in the mddb.cf file that
records the locations of all state databases.

� /etc/lvm/md.cf

The md.cf(4) file contains automatically generated configuration information for
the default (unspecified or local) disk set. When you change the SVM
configuration, SVM automatically updates the md.cf file (except for information
about hot spares in use).

259

Caution – Do not edit this file. Changing this file could corrupt your SVM
configuration or prevent you from being able to recover your SVM configuration.

If your system loses the information maintained in the state database, and as long
as no volumes were changed or created in the meantime, you can use the md.cf
file to recover. See “How to Initialize SVM from a Configuration File” on page 212.

� /kernel/drv/md.conf

The md.conf configuration file is read by SVM at startup. You can edit two fields
in this file: nmd, which sets the number of volumes (metadevices) that the
configuration can support, and md_nsets, which is the number of disk sets. The
default value for nmd is 128, which can be increased to 8192. The default value for
md_nsets is 4, which can be increased to 32. The total number of named disk sets
is always one less than the md_nsets value, because the default (unnamed or
local) disk set is included in md_nsets.

Note – Keep the value of nmd as low as possible. Memory structures exist for all
possible devices as determined by nmd, even if you have not created those devices.
For optimal performance, keep nmd only slightly higher than the number of
volumes you will use.

� /etc/rcS.d/S35svm.init

This file configures and starts SVM at boot and allows administrators to start and
stop the daemon.

� /etc/rc2.d/S95svm.sync

This file checks the SVM configuration at boot, starts resynchronization of mirrors
if necessary, and starts the active monitoring daemon (mdmonitord(1M)).

For more information on SVM system files, refer to the man pages.

Manually Configured Files

Overview of the md.tab File
The /etc/lvm/md.tab md.tab(4) file contains SVM configuration information
that can be used to reconstruct your SVM configuration, by using it as input to the

260 Solaris Volume Manager Administration Guide • December 2001 (Beta)

command line utilities metainit(1M), metadb(1M), and metahs(1M). Volumes,
groups of state database replicas, disk sets, and hot spare pools may have entries in
this file. See “How to Create Configuration Files” on page 212 to create this file (using
metastat -p > /etc/lvm/md.tab).

Note – The configuration information in the /etc/lvm/md.tab file may differ from
the current volumes, hot spares, and state database replicas in use. It is used manually,
by the system administrator, to capture the intended configuration. After SVM
configuration changes, recreate this file and preserve a backup copy.

Once you have created and updated the file, the metainit, metahs, and metadb
commands then activate the volumes, hot spare pools, and state database replicas
defined in the file.

In /etc/lvm/md.tab file, one complete configuration entry for a single volume
appears on each line using the syntax of the metainit, metadb, and metahs
commands.

You then run the metainit command with either the -a option, to activate all
volumes in the /etc/lvm/md.tab file, or with the volume name that corresponds to
a specific entry in the file.

Note – SVM does not write to or store configuration information in the
/etc/lvm/md.tab file. You must edit the file by hand and run the metainit,
metahs, or metadb commands to create SVM elements.

For more information, see md.tab(4) man page.

Important Solaris Volume Manager Files 261

262 Solaris Volume Manager Administration Guide • December 2001 (Beta)

APPENDIX B

SVM Quick Reference

This appendix provides quick access information about the features and functions
available with Solaris Volume Manager (SVM). It contains the following sections:

� “Command Line Reference” on page 263

Command Line Reference
Listed here are all the commands you can use to administer Solaris Volume Manager
(SVM). For more detailed information, see the man pages.

TABLE B–1 Command Line Interface Commands

SVM Command Description

growfs(1M) Expands a UFS file system in a non-destructive fashion.

metaclear(1M) Deletes active volumes and hot spare pools.

metadb(1M) Creates and deletes state database replicas.

metadetach(1M) Detaches a volume from a mirror, or a logging device from a
transactional volume.

metadevadm(1M) Checks device id configuration..

metahs(1M) Manages hot spares and hot spare pools.

metainit(1M) Configures volumes.

metaoffline(1M) Places submirrors offline.

metaonline(1M) Places submirrors online.

263

TABLE B–1 Command Line Interface Commands (Continued)
SVM Command Description

metaparam(1M) Modifies volume parameters.

metarecover(1M) Recovers configuration information for soft partitions

metarename(1M) Renames and switches volume names.

metareplace(1M) Replaces slices of submirrors and RAID5 volumes.

metaroot(1M) Sets up system files for mirroring root (/).

metaset(1M) Administers disk sets.

metastat(1M) Displays status for volumes or hot spare pools.

metasync(1M) Resyncs volumes during reboot.

metattach(1M) Attaches a volume to a mirror, or a logging device to a
transactional volume.

264 Solaris Volume Manager Administration Guide • December 2001 (Beta)

APPENDIX C

SVM CIM/WBEM API

Managing Solaris Volume Manager
(SVM)
The Solaris Volume Manager CIM/WBEM Application Programming Interface (API)
provides a public, standards-based programmatic interface to observe and configure
the Solaris Volume Manager. This API is based on the Distributed Management Task
Force (DMTF —see http://www.dmtf.org) Common Information Model (CIM).
CIM defines the data model, referred to as the "schema", which describes:

� the attributes of and the operations against SVM devices

� the relationships among the various SVM devices

� the relationships between the SVM devices and other aspects of the operating
system, such as filesystems

This model is made available through the Solaris Web Based Enterprise Management
(WBEM) SDK, which is a set of Java™-based API’s that allow access to system
management functionality represented by CIM.

For more information about the CIM/WBEM SDK, see the Solaris WBEM SDK
Developer’s Guide.

265

266 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Glossary

attach logging device To add a logging device to an existing transactional volume. If the
transactional volume is mounted, SVM attaches the log when the file
system is unmounted or the system is rebooted.

attach submirror To add a submirror to an existing mirror. SVM automatically resyncs
the submirror with other submirrors.

block A unit of data that can be transferred by a device, usually 512 bytes
long.

boot To start a computer program that clears memory, loads the operating
system, and otherwise prepares the computer.

byte A group of adjacent binary digits (bits) operated on by the computer as
a unit. The most common size byte contains eight binary digits.

concatenated volume See concatenation.

concatenated stripe A volume made of concatenated groups of striped slices.

concatenation In its simplest meaning, concatenation refers to the combining of two
or more data sequences to form a single data sequence. In SVM:

(1) Another word for concatenated volume.

(2) Creating a single logical device (volume) by sequentially
distributing disk addresses across disk slices.

The sequential (serial) distribution of disk addresses distinguishes a
concatenated volume from a striped volume.

configuration The complete set of hardware and software that makes up a storage
system. Typically, a configuration will contain disk controller
hardware, disks (divided into slices), and the software to manage the
flow of data to and from the disks.

267

controller Electronic circuitry that acts as a mediator between the CPU and the
disk drive, interpreting the CPU’s requests and controlling the disk
drive.

cylinder In a disk drive, the set of tracks with the same nominal distance from
the axis about which the disk rotates. See also sector.

detach logging device To remove a logging device from a transactional volume.

detach submirror To remove a submirror’s logical association from a mirror.

disk set A set of disk drives containing logical devices (volumes) and hot
spares that can be shared exclusively (but not concurrently) by two
hosts. Used in host fail-over solutions.

driver Software that translates commands between the CPU and the disk
hardware.

encapsulate To put an existing file system into a one-way concatenation. A one-way
concatenation consists of a single slice.

fault tolerance A computer system’s ability to handle hardware failures without
interrupting system performance or data availability.

formatting Preparing a disk to receive data. Formatting software organizes a disk
into logical units, like blocks, sectors, and tracks.

full mirror resync See resyncing.

Gbyte (Gigabyte), 1024 Mbytes (or 1,073,741,824 bytes).

head In a magnetic disk drive, an electromagnet that stores and reads data
to and from the platter. Controlled by a disk controller.

high-availability A term describing systems that can suffer one or more hardware
failures and rapidly make data access available.

hot spare A slice reserved to substitute automatically for a failed slice in a
submirror or RAID5 volume. A hot spare must be a physical slice, not
a volume.

hot spare pool A group of hot spares. A hot spare pool is associated with submirrors
or RAID5 volumes.

interlace (1) To distribute data in non-contiguous logical data units across disk
slices.

(2) A value: the size of the logical data segments in a striped volume or
RAID5 volume.

interleave See interlace.

Kbyte (Kilobyte), 1024 bytes.

latency The time it takes for a disk drive’s platter to come around to a specific
location for the read/write head. Usually measured in milliseconds.

268 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Latency does not include the time it takes for the read/write head to
position itself (head seek time).

local disk set A disk set that is not in a shared disk set and that belongs to a specific
host. The local disk set contains the state database for that specific
host’s configuration. Each host in a disk set must have a local disk set
to store its own local volume configuration.

logical An abstraction of something real. A logical disk, for example, can be an
abstraction of a large disk that is really made of several small disks.

logging Recording UFS updates in a log (the logging device) before the
updates are applied to the UNIX file system (the master device).

logging device The slice or volume that contains the log for a transactional volume.

master device The slice or volume that contains an existing or newly created UFS file
system for a transactional volume.

Mbyte (Megabyte), 1024 Kbytes.

md.cf A backup file of the SVM configuration that can be used for disaster
recovery. This file should not be edited or removed. It should be
backed up on a regular basis.

md.conf A configuration file that SVM uses when it loads. This file can be
edited to increase the number of volumes and disk sets supported by
the metadisk driver.

mddb.conf A file to track the locations of state database replicas. This file should
not be edited or removed.

md.tab An input file that you can use with the metainit, metadb, and
metahs commands to administer volumes and hot spare pools.

metadevice See volume.

metadisk driver A UNIX pseudo device driver that controls access to volumes,
enabling them to be used like physical disk slices. The metadisk driver
operates between the file system and application interfaces and the
device driver interface. It interprets information from both the UFS or
applications and the physical device drivers.

mirror A volume made of one or more other volumes called submirrors. It
replicates data by maintaining multiple copies.

mirroring Writing data to two or more disk drives at the same time. In SVM,
mirrors are logical storage objects that copy their data to other logical
storage objects called submirrors.

multi-way mirror A mirror that has at least two submirrors.

one-way mirror A mirror that consists of only one submirror. You create a one-way
submirror, for example, when mirroring slices that contain existing
data. A second submirror is then attached.

Glossary 269

online backup A backup taken from a mirror without unmounting the entire mirror
or halting the system. Only one of the mirror’s submirrors is taken
offline to complete the backup.

optimized mirror resync A resync of only the submirror regions that are out of sync at a system
reboot. The metadisk driver tracks submirror regions and can
determine which submirror regions are out of sync after a failure. See
resyncing.

parity A way for RAID5 configurations to provide data redundancy.
Typically, a RAID5 configuration stores data blocks and parity blocks.
In the case of a missing data block, the missing data can be
regenerated using the other data blocks and the parity block.

partial mirror resync A resync of only a replacement part of a submirror or RAID5 volume,
rather than the entire submirror or RAID5 volume.

See also full mirror resync.

See also optimized mirror resync.

partition On a SPARC system, a slice and partition are the same.

On an IA system, a slice and partition are distinct. A partition is a part
of a disk set aside for use by a particular operating system using the
fdisk command. Thus partitioning the disk enables it to be shared by
several different operating systems. Within a Solaris partition, you can
create normal Solaris slices.

See also slice.

platter The spinning disk that stores data inside a disk drive.

random I/O Databases and general-purpose file servers are examples of random
I/O environments. In random I/O, the time spent waiting for disk
seeks and rotational latency dominates I/O service time.

RAID Redundant Array of Inexpensive (or Independent) Disks. A classification of
different ways to back up and store data on multiple disk drives. There
are seven levels of RAID:

Level 0: Nonredundant disk array (striping)

Level 1: Mirrored disk array

Level 2: Memory-style Error Code Correction (ECC)

Level 3: Bit-Interleaved Parity

Level 4: Block-Interleaved Parity

Level 5: Block-Interleaved Distributed-Parity

270 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Level 6: P + Q Redundancy

SVM implements RAID levels 0, 1, and 5.

RAID 0+1 RAID 0+1 describes a mirroring scenario in which stripes are mirrored
to each other. With a pure RAID 0+1 configuration, the failure of a
single slice would fail the whole sub-mirror. Compare to RAID 1+0.
SVM supports RAID 0+1 only when RAID 1+0 is not possible.

RAID 1+0 RAID 1+0 describes a mirroring scenario in which multiple mirrors are
then striped together. This scenario provides greater data security, as a
failure of a single disk slice would fail only one half of one of the
submirrors, leaving most of the configuration’s redundancy intact.
SVM transparently supports RAID 1+0 whenever possible, even if the
configuration commands appear that a RAID 0+1 device has been
created.

resync region A division of a mirror that enables tracking changes by submirror
regions rather than over the entire mirror. Dividing the mirror into
resync regionss can reduce resync time.

resyncing The process of preserving identical data on mirrors or RAID5 volumes.

Mirrors are resynced by copying data from one submirror to another
after submirror failures, system crashes, or after adding a new
submirror.

RAID5 volumes are resynced during reboot if any operations that may
have been halted from a system panic, a system reboot, or a failure to
complete are restarted.

SCSI Small Computer Systems Interface. An interface standard for
peripheral devices and computers to communicate with each other.

sector The smallest divisions of a disk platter’s tracks. Usually 512 bytes.

See also block.

seek time The time it takes for a disk drive’s read/write head to find a specific
track on the disk platter. Seek time does not include latency nor the
time it takes for the controller to send signals to the read/write head.

shared disk set See disk set.

simple volume A term usually reserved for a concatenated volume, striped volume, or
concatenated stripe volume.

slice A part of each physical disk that is treated as a separate area for
storage of files in a single file system, or for an application such as a
database. Before you can create a file system on disk, you must
partition it into slices.

See also partition.

Glossary 271

state database A database, stored on disk, that records configuration and state of all
volumes and error conditions. This information is important to the
correct operation of SVM and it is replicated. See also state database
replica.

state database replica A copy of the state database. Keeping copies of the state database
protects against the loss of state and configuration information critical
to volume operations.

stripe (1) A volume created by striping (also called a striped volume).

(2) An interlaced slice that is part of a striped volume.

(3) To create striped volumes by interlacing data across slices.

striping Creating a single logical device (volume) by transparently distributing
logical data segments across slices. The logical data segments are
called stripes.

Striping is sometimes called interlacing because the logical data
segments are distributed by interleaving them across slices.

Striping is generally used to gain performance, enabling multiple
controllers to access data at the same time.

Compare striping with concatenation, where data is mapped
sequentially on slices.

submirror A volume that is part of a mirror.

See also mirror.

system (/etc/system) A file used to set system specifications. SVM uses this file, for example,
when mirroring the root (/) file system.

Tbyte (Terabyte), 1,024 Gbytes, or 1 trillion bytes (1,099,511,627,776 bytes).

three-way mirror A mirror made of three submirrors. This configuration enables a
system to tolerate a double-submirror failure. You can also do online
backups with the third submirror.

transactional volume A volume for UFS logging. A transactional volume includes one or
more other volumes or slices: a master device, containing a UFS file
system, and a logging device. After they are created, transactional
volumes are used like slices.

two-way mirror A mirror made of two submirrors. This configuration enables a system
to tolerate a single-submirror failure.

UFS UNIX file system.

272 Solaris Volume Manager Administration Guide • December 2001 (Beta)

UFS logging The process of recording UFS updates in a log (the logging device)
before the updates are applied to the UNIX file system (the master
device).

volume A group of physical slices accessed as a single logical device by
concatenation, striping, mirroring, setting up RAID5 volumes, or
logging physical devices. After they are created, volumes are used like
slices.

The volume maps logical block addresses to the correct location on one
of the physical devices. The type of mapping depends on the
configuration of the particular volume.

Also known as pseudo, or virtual device in standard UNIX terms.

Glossary 273

274 Solaris Volume Manager Administration Guide • December 2001 (Beta)

Index

A
adding hot spares, 152
alternate boot device

IA, 102
alternate boot path, 98

B
boot device

recovering from failure, 250
boot problems, 247
booting into single-user mode, 92

C
concatenated stripe

definition, 69
example with three stripes, 70
removing, 82

concatenated volume, See concatenation
concatenation

creating, 78
definition, 68
example with three slices, 69
expanding, 81
expanding UFS file system, 68
information for creating, 71
information for recreating, 72
removing, 82
usage, 68

configuration planning
guidelines, 31
overview, 31
trade-offs, 32

cron command, 241

D
disk set, 185

adding another host to, 197, 198
adding disks to, 186
adding drives to, 195, 197
administering, 190, 191
checking status, 199, 200, 201, 202, 204
creating, 195
definition, 41, 46
displaying owner, 200
example with two shared disk sets, 188
inability to use with /etc/vfstab file, 186
increasing the default number, 215
intended usage, 186
placement of replicas, 186
relationship to volumes and hot spare

pools, 186
releasing, 191, 200, 202, 203
reservation behavior, 191
reservation types, 191
reserving, 191, 201, 202
Solstice HA, 186
usage, 185

275

DiskSuite Tool, See graphical interface

E
enabling a hot spare, 157
enabling a slice in a RAID 5 volume, 142
enabling a slice in a submirror, 106
Enhanced Storage, See graphical interface
errors

checking for using a script, 233
/etc/lvm/md.cf file, 259
/etc/lvm/mddb.cf file, 259
/etc/rc2.d/S95lvm.sync file, 260
/etc/rcS.d/S35lvm.init file, 260
/etc/vfstab file, 115, 169, 180

recovering from improper entries, 248

F
failover configuration, 47, 185
file system

expanding by creating a concatenation, 79
expansion overview, 43, 44
growing, 217
guidelines, 47
panics, 258
unmirroring, 117

fmthard command, 253, 255
format command, 253, 255
fsck command, 169, 181, 182

G
general performance guidelines, 32
graphical interface

overview, 38
growfs command, 43, 44, 216, 218, 263
GUI

sample, 39

H
hot spare, 146

file system (continued)
adding to a hot spare pool, 152
conceptual overview, 146
enabling, 158
replacing in a hot spare pool, 156

hot spare pool, 46
administering, 148
associating, 153
basic operation, 46
changing association, 154
conceptual overview, 145, 147
creating, 151
definition, 41, 46
example with mirror, 147
states, 155

I
interfaces, See SVM interfaces
interlace

specifying, 76
I/O, 33
/kernel/drv/md.conf file, 214, 260

L
local disk set, 186
lockfs command, 118, 181
logging device

definition, 160
hard error state, 258
problems when sharing, 181
recovering from errors, 182
shared, 160, 163
sharing, 180
space required, 163

M
majority consensus algorithm, 54
master device

definition, 160
using a striped volume as, 168

md.cf file, 260

276 Solaris Volume Manager Administration Guide • December 2001 (Beta)

master device (continued)
recovering a Solaris Volume Manager
configuration, 212

md.tab file, 213
overview, 260

metaclear command, 82, 113, 114, 263
metadb command, 60, 61, 62, 246, 254, 263
metadetach command, 104, 113, 114, 263
metadevice, See volume
metahs command, 158, 263
metainit command, 167, 173, 176, 177, 179, 213,

263
metaoffline command, 105, 263
metaonline command, 105, 263
metaparam command, 110, 152, 153, 154, 264
metarename command, 211, 264
metareplace command, 106, 112, 143, 144, 254,

264
metaroot command, 264
metaset command, 195, 200, 264
metastat command, 108, 139, 171, 264
metasync command, 264
metattach command, 80, 98, 104, 111, 141, 175,

213, 264
mirror, 83

and disk geometries, 91
and online backup, 117
attaching a submirror, 104
changing options, 110
definition, 42
detach vs. offline, 91
example with two submirrors, 84
expanding, 111
explanation of error states, 220
guidelines, 87
information for creating, 91
information for replacing and enabling

slices, 220
maintenance vs. last erred, 219
maximum number of submirrors, 86
options, 88
overview of replacing and enabling

slices, 135, 218
resynchronization, 89, 90
sample status output, 107
three-way mirror, 91
two-way mirror, 95

mirroring
availability considerations, 86
file system that can be unmounted, 98
read and write performance, 32
root (/), /usr, and swap, 100
unused slices, 95

N
newfs command, 182

O
online backup, 117

P
pass number

and read-only mirror, 90
defined, 90

R
RAID

levels supported in SVM, 30
RAID 0 volume

definition, 65, 66
usage, 65

RAID 5 parity calculations, 134
RAID 5 volume

and interlace, 134
creating, 138
enabling a failed slice, 143
example with an expanded device, 132
example with four slices, 132
expanding, 142
initializing slices, 131
parity information, 131, 133
replacing a failed slice, 144
resynchronizing slices, 131

RAID5 volume
definition, 30, 42
explanation of error states, 220

Index 277

RAID5 volume (continued)
information for replacing and enabling
slices, 220
maintenance vs. last erred, 219
overview of replacing and enabling

slices, 218
random I/O, 33
raw volume, 77, 78, 96, 138
read policies overview, 88
releasing a disk set, 200, 202, 203
renaming volumes, 209
replica, 46
reserving a disk set, 201
resynchronization

full, 89
optimized, 89
partial, 90

root (/)
mirroring, 99
unmirroring, 115

S
SCSI disk

replacing, 245, 247
sequential I/O, 34
shared disk set, 46
simple volume

See RAID 0 volume
definition, 42

slices
adding to a RAID 5 volume, 142
expanding, 79

soft partition
checking status, 127
creating, 126
deleting, 129
expanding, 128
growing, 128
recovering configuration for, 130
removing, 129

soft partitioning
definition, 121
guidelines, 122
locations, 122
requirements, 122

Solaris Volume Manager
configuration guidelines, 47
recovering the configuration, 212

Solaris Volume Manager (SVM)
checking for errors, 229

state database
conceptual overview, 45, 54
corrupt, 54
definition, 41, 45
recovering from stale replicas, 255

state database replicas, 46
adding larger replicas, 63
basic operation, 54
creating additional, 60
creating multiple on a single slice, 55
definition, 46
errors, 57
location, 46, 55, 57
minimum number, 56
recovering from stale replicas, 255
two-disk configuration, 57
usage, 53

status, 200
stripe

creating, 76
definition, 66
example with three slices, 67
expanding, 81
information for creating, 71
information for recreating, 72
removing, 82

striped volume, See stripe
striping

definition, 66
submirror, 84

attaching, 84
detaching, 84
enabling a failed slice, 106
operation while offline, 84
placing offline and online, 105
replacing a failed slice, 112
replacing entire, 113

SVM, See Solaris Volume Manager
SVM elements

overview, 41
SVM interfaces

command line, 38

278 Solaris Volume Manager Administration Guide • December 2001 (Beta)

SVM interfaces (continued)
sample GUI, 39
Solaris Management Console, 38

swap
mirroring, 100
unmirroring, 117

system files, 259, 260

T
three-way mirror, 91
transactional volume

and /etc/vfstab file, 168
creating for a file system that can be

unmounted, 169
creating for a file system that cannot be

unmounted, 169
creating using metarename, 173, 176
creating using mirrors, 170
definition, 42
determining file systems to log, 163
example with mirrors, 161
example with shared logging device, 161
expanding, 175
guidelines, 162
recovering from errors, 183, 258
removing using metarename, 177
states, 171
usage, 161

troubleshooting
general guidelines, 244

U
UFS logging

definition, 159
/usr

logging, 169
mirroring, 99
unmirroring, 115

/var/adm/messages file, 218, 245

V
volume

checking status, 171
conceptual overview, 41
default number, 214
definition, 41
expanding disk space, 43
increasing the default number, 214
name switching, 210
naming conventions, 44, 188
renaming, 211
types, 42
uses, 42
using file system commands on, 43
virtual disk, 37

volume name switching, 45, 210

W
write policies overview, 88

X
x86

See IA

Index 279

280 Solaris Volume Manager Administration Guide • December 2001 (Beta)

