
Application Packaging Developer’s
Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 806–7008–06
December 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, SunOS, JumpStart, and Solaris are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, SunOS, JumpStart et Solaris sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011025@2471

Contents

Preface 9

1 Designing a Package 13

Where to Find Packaging Tasks 13

What Are Packages? 14

Package Components 14

Required Package Components 15

Optional Package Components 16

Things to Think About Before Building a Package 17

Make Packages Installable Remotely 18

Optimize for Client-Server Configurations 18

Package by Functional Boundaries 18

Package Along Royalty Boundaries 18

Package by System Dependencies 19

Eliminate Overlap in Packages 19

Package Along Localization Boundaries 19

Packaging Commands, Files, and Scripts 19

2 Building a Package 23

The Process of Building a Package Task Map 23

Package Environment Variables 24

General Rules on Using Environment Variables 25

Package Environment Variables Summary 25

Creating a pkginfo File 26

Defining a Package Instance 27

3

Defining a Package Name (NAME) 28

Defining a Package Category (CATEGORY) 29

� How to Create a pkginfo File 29

Organizing a Package’s Contents 30

� How to Organize A Package’s Contents 30

Creating a prototype File 31

The Format of the prototype File 32

Creating a prototype File From Scratch 37

Creating a prototype File With the pkgproto Command 38

Fine-Tuning a prototype File Created With the pkgproto Command 39

Adding Functionality to a prototype File 41

� How to Create a prototype File Using the pkgproto Command 44

Building a Package 46

Using the Simplest pkgmk Command 46

The pkgmap File 46

� How to Build a Package 47

3 Enhancing the Functionality of a Package 51

Creating Information Files and Installation Scripts Task Map 51

Creating Information Files 52

Defining Package Dependencies 53

� How to Define Package Dependencies 53

Writing a Copyright Message 56

� How to Write a Copyright Message 56

Reserving Additional Space on a Target System 57

� How to Reserve Additional Space on a Target System 57

Creating Installation Scripts 59

Script Processing During Package Installation 60

Script Processing During Package Removal 60

Package Environment Variables Available to Scripts 61

Obtaining Package Information for a Script 62

Exit Codes for Scripts 63

Writing a request Script 63

� How to Write a request Script 65

Gathering Data With the checkinstall Script 66

� How to Gather File System Data 67

Writing Procedure Scripts 69

4 Application Packaging Developer’s Guide • December 2001

� How to Write Procedure Scripts 70

Writing Class Action Scripts 70

� How to Write Class Action Scripts 77

4 Verifying and Transferring a Package 79

Verifying and Transferring a Package Task Map 79

Installing Software Packages 80

The Installation Software Database 80

Interacting with the pkgadd Command 81

Installing Packages on Standalones or Servers in a Homogeneous Environment
81

� How to Install a Package on a Standalone or Server 81

Verifying the Integrity of a Package 82

� How to Verify the Integrity of Your Package 83

Displaying Additional Information About Installed Packages 84

The pkgparam Command 84

� How to Obtain Information With the pkgparam Command 85

The pkginfo Command 86

� How to Obtain Information With the pkginfo Command 89

Removing a Package 90

� How to Remove a Package 90

Transferring a Package to a Distribution Medium 90

� How to Transfer Your Package to a Distribution Medium 91

5 Package Creation Case Studies 93

Soliciting Input From the Administrator 93

Techniques 94

Approach 94

Case Study Files 95

Creating a File at Installation and Saving It During Removal 97

Techniques 97

Approach 97

Case Study Files 99

Defining Package Compatibilities and Dependencies 100

Techniques 101

Approach 101

Case Study Files 101

Contents 5

Modifying a File Using Standard Classes and Class Action Scripts 103

Techniques 103

Approach 103

Case Study Files 104

Modifying a File Using the sed Class and a postinstall Script 106

Techniques 106

Approach 106

Case Study Files 107

Modifying a File Using The build Class 108

Techniques 108

Approach 108

Case Study Files 109

Modifying crontab Files During Installation 110

Techniques 110

Approach 111

Case Study Files 111

Installing and Removing a Driver With Procedure Scripts 113

Techniques 114

Approach 114

Case Study Files 114

Installing a Driver Using the sed Class and Procedure Scripts 116

Techniques 116

Approach 117

Case Study Files 117

6 Advanced Package Creation Techniques 123

Specifying the Base Directory 123

The Administrative Defaults File 124

Using the BASEDIR Parameter 125

Using Parametric Base Directories 126

Managing the Base Directory 127

Accommodating Relocation 128

Walking Base Directories 129

Supporting Relocation in a Heterogeneous Environment 136

Traditional Approach 137

Beyond Tradition 141

Making Packages Installable Remotely 146

6 Application Packaging Developer’s Guide • December 2001

Example—Installing to a Client 147

Example—Installing to a Server or Standalone 147

Example—Mounting Shared File Systems 148

Patching Packages 148

The checkinstall Script 150

The preinstall Script 154

The Class Action Script 158

The postinstall Script 162

The patch_checkinstall Script 168

The patch_postinstall Script 170

Upgrading Packages 171

The request Script 171

The postinstall Script 172

Glossary 175

Index 179

Contents 7

8 Application Packaging Developer’s Guide • December 2001

Preface

The Application Packaging Developer’s Guide provides step-by-step instructions and
relevant background information for designing, building, and verifying packages. This
guide also includes information on and examples of advanced techniques that you
may find helpful during the package creation process.

Who Should Use This Book
This book is intended for application developers whose responsibilities include
designing and building packages.

Though much of the book is directed towards novice package developers, it also
contains information useful to more experienced package developers.

9

Note – The Solaris operating environment runs on two types of hardware, or
platforms—SPARC and IA. The Solaris operating environment runs on both 64–bit
and 32–bit address spaces. The information in this document pertains to both
platforms and address spaces unless called out in a special chapter, section, note,
bullet, figure, table, example, or code example.

How This Book Is Organized
The following table describes the chapters in this book.

Chapter Name Chapter Description

Chapter 1 Describes package components, package design criteria, and
related commands, files, and scripts.

Chapter 2 Describes the process and required tasks for building a
package, and provides step-by-step instructions for each
task.

Chapter 3 Describes how to add optional features to a package, and
provides step-by-step instructions for each.

Chapter 4 Describes how to verify the integrity of a package and
transfer a package to a distribution medium.

Chapter 5 Provides case studies for creating packages.

Chapter 6 Describes various advanced package creation techniques.

Glossary Contains a list of words and phrases found in this book and
their definitions

Related Books
The following documentation, available through retail book sellers, may provide
additional background information on building System V packages.

� System V Application Binary Interface
� System V Application Binary Interface - SPARC Processor Supplement
� System V Application Binary Interface - Intel386 Processor Supplement

10 Application Packaging Developer’s Guide • December 2001

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product documentation
from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on
Fatbrain.com at http://www1.fatbrain.com/documentation/sun.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

Preface 11

TABLE P–1 Typographic Conventions (Continued)
Typeface or Symbol Meaning Example

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

12 Application Packaging Developer’s Guide • December 2001

CHAPTER 1

Designing a Package

Before you build a package, you need to know which files you need to create and the
commands you need to execute. You also need to consider your application software’s
requirements, and the needs of your customer—the administrators who will be
installing your package. This chapter discusses the files, commands, and criteria you
should know and think about, before building a package.

This is a list of the overview information in this chapter.

� “Where to Find Packaging Tasks” on page 13
� “What Are Packages?” on page 14
� “Package Components” on page 14
� “Things to Think About Before Building a Package” on page 17
� “Packaging Commands, Files, and Scripts” on page 19

Where to Find Packaging Tasks
Use these references to find step-by-step instructions for building and verifying
packages.

� “The Process of Building a Package Task Map” on page 23
� “Creating Information Files and Installation Scripts Task Map” on page 51
� “Verifying and Transferring a Package Task Map” on page 79

13

What Are Packages?
Application software is delivered in units called packages. A package is a collection of
files and directories required for a software product, and is usually designed and built
by the application developer after completing the development of the application
code. A software product needs to be built into one or more packages so that it can
easily be transferred to a distribution medium, be mass produced, and installed by
administrators.

Package Components
The components of a package fall into two categories: package objects, the application
files to be installed, and control files, which control how, where, and if the package is
installed.

The control files are also divided into two categories: information files and installation
scripts. Some of these control files are required and some are optional.

To package your applications, you must first create the required components, and any
optional components, that make up your package. Then you can build the package
using the pkgmk command.

To build a package, you must provide the following:

� Package objects (the application software files)
� Two required information files (the pkginfo and prototype files)
� Optional information files and installation scripts

The figure below describes the contents of a package.

14 Application Packaging Developer’s Guide • December 2001

Optional Information Files
(compver, depend,

Optional Installation Scripts
(request, checkinstall,

Procedure, and Class Action)

space, copyright)

Required Components

The
pkginfo

File

The
prototype

File

Package
Objects

FIGURE 1–1 The Contents of a Package

Required Package Components
You must create the following components before you build your package:

� Package Objects

These are the components that make up the application. They can be:

� Files (executable or data)
� Directories
� Named pipes
� Links
� Devices

� The pkginfo file

The pkginfo file is a required package information file defining parameter values
such as the package abbreviation, the full package name, and the package
architecture. For more information, see “Creating a pkginfo File” on page 26 and
the pkginfo(4) man page.

Designing a Package 15

Note – There are two pkginfo(1) man pages. The first is a section 1 command,
which displays information about installed packages. The second is a section 4 file,
which describes the characteristics of a package. When accessing the man pages, be
sure to specify from which section you want the man page. For example: man -s 4
pkginfo

� The prototype file

The prototype file is a required package information file that lists the
components of the package. It describes the location, attributes, and file type for
each component within a package.

In the prototype file, there is one entry for each package object, information file,
and installation script. An entry consists of several fields of information describing
the object. For more information, see “Creating a prototype File” on page 31
and the prototype(4) man page.

Optional Package Components

Package Information Files
There are four optional package information files you can include in your package:

� The compver file

Defines previous versions of the package that are compatible with this version.

� The depend file

Indicates other packages with which this package has special relationships.

� The space file

Defines disk space requirements for the target environment, beyond what is
needed by the objects defined in the prototype file. For example, additional
space might be needed for files that are dynamically created at installation time.

� The copyright file

Defines the text for a copyright message displayed at the time of package
installation.

Each package information file should have an entry in the prototype file. See
“Creating Information Files” on page 52 for more information on creating these files.

16 Application Packaging Developer’s Guide • December 2001

Package Installation Scripts
Installation scripts are not required. However, you can provide scripts that perform
customized actions during the installation of your package. An installation script has
the following characteristics.

� It is composed of Bourne shell commands.
� Its file permissions should be set to 0644.
� It does not need to contain the shell identifier (#! /bin/sh).

The four script types are as follows:

� The request script

The request script requests input from the administrator installing the package.

� The checkinstall script

The checkinstall script performs special file system verification.

Note – The checkinstall script is only available with the Solaris™ 2.5 and
compatible releases.

� Procedure scripts

Procedure scripts define actions that occur at particular points during package
installation and removal. There are four procedure scripts you can create with
these predefined names: preinstall, postinstall, preremove, and
postremove.

� Class Action scripts

Class Action scripts define a set of actions to be performed on a group of objects.

See “Creating Installation Scripts” on page 59 for a more information on installation
scripts.

Things to Think About Before Building a
Package
Before building a package, you need to decide whether your product is going to be
made up of one or more packages. (Note that many small packages take longer to
install than one big package.) Although it is a good idea to create a single package, it is
not always possible. If you decide to build more than one package, you need to

Designing a Package 17

determine how to segment the application code. This section provides a list of criteria
to use when planning to build packages.

Many of the good packaging criteria present trade-offs among themselves. It will often
be difficult to satisfy all requirements equally. These criteria are presented in order of
importance; however, this sequence is meant to serve as a flexible guide depending on
the circumstances. Although each of these criteria is important, it is up to you to
optimize these requirements to produce a good set of packages.

For more design ideas, see Chapter 6.

Make Packages Installable Remotely
All packages must be installable remotely. Being installable remotely means that the
administrator installing your package might be trying to install it on a client system,
not necessarily to the root file system where the pkgadd command is being executed.

Optimize for Client-Server Configurations
Consider the various types of system software configurations (for example, standalone
and server) when laying out packages. Good packaging design divides the affected
files to optimize installation of each configuration type. For example, the contents of
root (/) and usr should be segmented so that server configurations can easily be
supported.

Package by Functional Boundaries
Packages should be self-contained and distinctly identified with a set of functionality.
For example, a package containing UFS should contain all UFS utilities and be limited
to only UFS binaries.

Packages should be organized from a customer’s point of view into functional units.

Package Along Royalty Boundaries
Put code that requires royalty payments due to contractual agreements in a dedicated
package or group of packages. Do not disperse the code into more packages than
necessary.

18 Application Packaging Developer’s Guide • December 2001

Package by System Dependencies
Keep system-dependent binaries in dedicated packages. For example, the kernel code
should be in a dedicated package with each implementation architecture
corresponding to a distinct package instance. This rule also applies to binaries for
different architectures. For example, binaries for SPARC™ based system would be in
one package and binaries for an IA based system would be in another.

Eliminate Overlap in Packages
When constructing packages, eliminate duplicate files whenever possible.
Unnecessary duplication of files results in support and version difficulties. If your
product has multiple packages, repeatedly compare the contents of these packages for
redundancies.

Package Along Localization Boundaries
Localization-specific items should be in their own package. An ideal packaging model
would have a product’s localizations delivered as one package per locale.
Unfortunately, in some cases organizational boundaries may conflict with the
functional and product boundaries criteria.

International defaults can also be delivered in a package. This would isolate the files
necessary for localization changes and standardize delivery format of localization
packages.

Packaging Commands, Files, and Scripts
The purpose of this section is to describe the commands, files, and scripts you might
use when manipulating packages. They are described in man pages and in detail
throughout this book, in relation to the specific task they perform.

The table below shows the commands available to help you build, verify, install, and
obtain information about a package.

Designing a Package 19

TABLE 1–1 Packaging Commands

Function Command Description For More Information, Go To ...

Create packages pkgproto(1) Generate a prototype
file for input to the pkgmk
command

“Creating a prototype File With the
pkgproto Command” on page 38

pkgmk(1) Create an installable
package

“Building a Package” on page 46

Install, remove, and
transfer packages

pkgadd(1M) Install a software package
onto a system

“Installing Software Packages”
on page 80

pkgask(1M) Store answers to a request
script

“Design Rules for request Scripts”
on page 64

pkgtrans(1) Copy packages onto a
distribution medium

“Transferring a Package to a
Distribution Medium” on page 90

pkgrm(1M) Remove a package from a
system

“Removing a Package” on page 90

Obtain information
about packages

pkgchk(1M) Check consistency of a
software package

“Verifying the Integrity of a Package”
on page 82

pkginfo(1) Display software package
information

“The pkginfo Command” on page 86

pkgparam(1) Display package
parameter values

“The pkgparam Command”
on page 84

Modify installed
packages

installf(1M) Incorporate a new
package object into an
already installed package

“Design Rules for Procedure Scripts”
on page 69 and Chapter 5

removef(1M) Remove a package object
from an already installed
package

“Design Rules for Procedure Scripts”
on page 69

The table below shows the information files available to help you build a package.

TABLE 1–2 Package Information Files

Files Description For More Information, Go To ...

admin(4) Package installation defaults file “The Administrative Defaults
File” on page 124

compver(4) Package compatibility file “Defining Package
Dependencies” on page 53

copyright(4) Package copyright information file “Writing a Copyright
Message” on page 56

20 Application Packaging Developer’s Guide • December 2001

TABLE 1–2 Package Information Files (Continued)
Files Description For More Information, Go To ...

depend(4) Package dependencies file “Defining Package
Dependencies” on page 53

pkginfo(4) Package characteristics file “Creating a pkginfo File”
on page 26

pkgmap(4) Package contents description file “The pkgmap File”
on page 46

prototype(4) Package information file “Creating a prototype File”
on page 31

space(4) Package disk space requirements file “Reserving Additional Space
on a Target System”
on page 57

The table below describes optional installation scripts that you can write that affect if
and how a package is installed.

TABLE 1–3 Package Installation Scripts

Scripts Description For More Information, Go To ...

request Solicit information from the installer. “Writing a request Script”
on page 63

checkinstall Gather file system data. “Gathering Data With the
checkinstall Script”
on page 66

preinstall Perform any custom installation
requirements before class installation.

“Writing Procedure Scripts”
on page 69

postinstall Perform any custom installation
requirements after all volumes are
installed.

“Writing Procedure Scripts”
on page 69

preremove Perform any custom removal
requirements before class removal.

“Writing Procedure Scripts”
on page 69

postremove Perform any custom removal
requirements after all classes have been
removed.

“Writing Procedure Scripts”
on page 69

Class Action Perform a series of actions on a specific
group of objects.

“Writing Class Action Scripts”
on page 70

Designing a Package 21

22 Application Packaging Developer’s Guide • December 2001

CHAPTER 2

Building a Package

This chapter describes a process, as well as the tasks, on how to build a package. Some
of these tasks are required and some are optional. The required tasks are the minimum
of what you must do to create a package, and are discussed in detail in this chapter.
For information on the optional tasks, which enable you to add more features to your
package, see Chapter 3 and Chapter 6.

This is a list of the overview information in this chapter.

� “The Process of Building a Package Task Map” on page 23
� “Package Environment Variables” on page 24
� “Creating a pkginfo File” on page 26
� “Organizing a Package’s Contents” on page 30
� “Creating a prototype File” on page 31
� “Building a Package” on page 46

The Process of Building a Package Task
Map
The table below describes a process for you to follow when building packages,
especially if you are inexperienced at building them. Although it is not mandatory for
you to complete the first four tasks in the exact order listed, it will make your package
building experience easier if you do. Once you are an experienced package designer,
you can shuffle the sequence of these tasks to your preference.

As an experienced package designer, you can automate the package building process
using the make command and makefiles. For more information, see make(1S).

23

TABLE 2–1 The Process of Building a Package Task Map

Task Description For Instructions, Go To ...

1. Create a pkginfo File You must create the pkginfo file to describe
the characteristics of your package.

“How to Create a pkginfo File”
on page 29

2. Organize Package Contents You should arrange your package components
into a hierarchical directory structure.

“Organizing a Package’s
Contents” on page 30

3. Create Information Files Optional. Define package dependencies,
include a copyright message, and reserve
additional space on a target system.

Chapter 3

4. Create Installation Scripts Optional. Customize the installation and
removal processes of a package.

Chapter 3

5. Create a prototype File Describe each object in your package in a
prototype file.

“Creating a prototype File”
on page 31

6. Build the Package Build your package using the pkgmk
command.

“Building a Package”
on page 46

7. Verify and Transfer the
Package

Verify the integrity of a package before
copying it to a distribution medium.

Chapter 4

Package Environment Variables
You can use variables in the required information files, pkginfo and prototype, as
well as an option to the pkgmk command (which is used to build a package). As each
of these files and commands are discussed in this chapter, more context-sensitive
information on variables is provided. However, before you begin building your
package, you should understand the different types of variables and how they can
affect a package’s successful creation.

There are two types of variables:

� Build variables

Build variables begin with a lowercase letter and are evaluated at build time (as the
package is being built with the pkgmk command).

� Install variables

Install variables begin with an uppercase letter and are evaluated at install time (as
the package is being installed with the pkgadd command).

24 Application Packaging Developer’s Guide • December 2001

General Rules on Using Environment Variables
In the pkginfo file, a variable definition is of the form PARAM=value, where the first
letter of PARAM is an uppercase letter. These variables are evaluated only at install
time, and if any cannot be evaluated, the pkgadd command will abort with an error.

In the prototype file, a variable definition can take the form !PARAM=value or
$variable. Both PARAM and variable can begin with either an uppercase or lowercase
letter; however, only variables whose values are known at build time will be
evaluated. This means that if PARAM or variable is a build or install variable whose
value is not known at build time, the pkgmk command will abort with an error.

You can also include the option PARAM=value as an option to the pkgmk command.
This option works the same as in the prototype file, except that its scope is global to
the entire package. The !PARAM=value definition in a prototype file is local to that
file and the part of the package it defines.

If PARAM is an install variable, and variable is an install or build variable with a
known value, the pkgmk command inserts the definition into the pkginfo file so that
it will be available at install time. However, it will not evaluate PARAM in any path
names specified in the prototype file.

Package Environment Variables Summary
The table below summarizes variable specification formats, location, and scope.

TABLE 2–2 Package Environment Variables Summary

Variable Defined In
The ...

Variable Definition
Format

Variable Type
Being Defined

When The Variable
Is Resolved

Where The
Variable Is
Resolved

The Variable May
Be Used As Part Of
The ...

pkginfo file PARAM=value Build Ignored at build
time

N/A None

Install Install time In the pkgmap
file

owner, group,
path, or link
target

prototype file !PARAM=value Build Build time In the
prototype file
and any
included files

mode, owner,
group, or path

Install Build time In the
prototype file
and any
included files

!search and
!command
commands only

Building a Package 25

TABLE 2–2 Package Environment Variables Summary (Continued)
Variable Defined In
The ...

Variable Definition
Format

Variable Type
Being Defined

When The Variable
Is Resolved

Where The
Variable Is
Resolved

The Variable May
Be Used As Part Of
The ...

pkgmk command
line

PARAM=value Build Build time In the
prototype file

mode, owner,
group, or path

Install Build time In the
prototype file

!search
command only

Install time In the pkgmap
file

owner, group,
path, or link
target

Creating a pkginfo File
The pkginfo file is an ASCII file that describes the characteristics of a package along
with information that helps control the flow of installation.

Each entry in the pkginfo file is a line that establishes the value of a parameter using
the format PARAM=value. PARAM can be any of the standard parameters described in
pkginfo(4), and there is no required order in which the parameters must be specified.

Note – Each value can be enclosed with single or double quotation marks (for
example, ’value’ or “value”). If value contains any characters that are considered special
to a shell environment, you should use quotation marks. The examples and case
studies in this book do not use quotation marks. See pkginfo(4) for an example that
uses double quotation marks.

You can also create your own package parameters by assigning a value to them in the
pkginfo file. Your parameters must begin with a capital letter followed by either
uppercase or lowercase letters. An uppercase letter indicates that the parameter
(variable) will be evaluated at install time (as opposed to build time). For information
on the difference between install and build variables, see “Package Environment
Variables” on page 24.

Note – Trailing whitespace after any parameter value is ignored.

There are five parameters that you must define in a pkginfo file: PKG, NAME, ARCH,
VERSION, and CATEGORY. Three additional parameters: PATH, PKGINST, and
INSTDATE are inserted automatically when the package is built. These eight

26 Application Packaging Developer’s Guide • December 2001

parameters should not be modified. For information on the remaining parameters, see
the pkginfo(4) man page.

Defining a Package Instance
The same package can have different versions, be compatible with different
architectures, or both. Each variation of a package is known as a package instance. A
package instance is determined by combining the definitions of the PKG, ARCH, and
VERSION parameters in the pkginfo file.

The pkgadd command assigns a package identifier to each package instance at
installation time. The package identifier is the package abbreviation with a numerical
suffix, for example SUNWadm.2. This identifier distinguishes a package instance from
any other package, including instances of the same package.

Defining a Package Abbreviation (PKG)
A package abbreviation is a short name for a package that is defined via the PKG
parameter in the pkginfo file, and must:

� Be alphanumeric, but the first cannot be numeric.

� Be nine or fewer characters.

� Not be one of the reserved abbreviations install, new, and all.

Note – The first four characters should be unique to your company, such as your
company’s stock symbol. For example, packages built by Sun Microsystems™ all
have “SUNW” as the first four characters of their package abbreviation.

An example package abbreviation entry in a pkginfo file might be:

PKG=SUNWcadap

Specifying a Package Architecture (ARCH)
The ARCH parameter in the pkginfo file identifies which architectures are associated
with the package. The architecture name has a maximum length of 16 alphanumeric
characters. If a package is associated with more than one architecture, specify them in
a comma-separated list.

For example, a package architecture specification in a pkginfo file might be:

ARCH=sparc

Building a Package 27

Specifying a Package Instruction Set Architecture
(SUNW_ISA)
The SUNW_ISA parameter in the pkginfo file identifies which instruction set
architecture is associated with a Sun Microsystems package. The values are:

� sparcv9, for a package containing 64–bit objects
� sparc, for a package containing 32–bit objects

For example, the SUNW_ISA value in a pkginfo file for a package containing 64–bit
objects would be:

SUNW_ISA=sparcv9

If SUNW_ISA is not set, the default instruction set architecture of the package is set to
the value of the ARCH parameter.

Specifying a Package Version (VERSION)
The VERSION parameter in the pkginfo file identifies the version of the package. The
version has a maximum length of 256 ASCII characters, and cannot begin with a left
parenthesis.

An example version specification in a pkginfo file might be:

VERSION=release 1.0

Defining a Package Name (NAME)
A package name is the full name of the package, which is defined via the NAME
parameter in the pkginfo file.

Because system administrators often use package names to determine whether or not
a package needs to be installed, it is important to write clear, concise, and complete
package names. Package names should:

� State when a package is needed (for example, to provide certain commands or
functionality, or state if it is needed for specific hardware).

� State what the package is used for (for example, the development of device
drivers).

� Include a description of the package abbreviation mnemonic, using key words that
indicate the abbreviation is a short form of the description (for example, the
package name for the package abbreviation SUNWbnuu is “Basic Networking
UUCP Utilities, (Usr)”).

� Name the partition into which the package is installed.

28 Application Packaging Developer’s Guide • December 2001

� Use terms consistently with their industry meaning.

� Take advantage of the 256 character limit.

An example package name defined in a pkginfo file might be:

NAME=Chip designers need CAD application software to design
abc chips. Runs only on xyz hardware and is installed in the

usr partition.

Defining a Package Category (CATEGORY)
The CATEGORY parameter in the pkginfo file specifies in which categories a package
belongs. At a minimum, a package must belong to either the system or
application category. Category names:

� Are alphanumeric.
� Have a maximum length of 16 characters.
� Are case insensitive.

If a package belongs to more than one category, specify them in a comma-separated
list.

An example CATEGORY specification in a pkginfo file might be:

CATEGORY=system

� How to Create a pkginfo File
1. Using your favorite text editor, create a file named pkginfo.

You can create this file anywhere on your system.

2. Edit the file and define the five required parameters.

The five required parameters are: PKG, ARCH, VERSION, NAME, and CATEGORY. For
more information on these parameters, see “Creating a pkginfo File” on page 26.

3. Add any other parameters that you like to the file.

Create your own parameters or see pkginfo(4) for information on the standard
parameters.

4. Save your changes and quit the editor.

Building a Package 29

Where to Go Next
If you are ready to go to the next task, see “How to Organize A Package’s Contents”
on page 30.

Example—Creating a pkginfo File
This example shows the contents of a valid pkginfo file, with the five required
parameters defined, as well as the BASEDIR parameter. The BASEDIR parameter is
discussed in more detail in “The path Field” on page 33.

PKG=SUNWcadap
NAME=Chip designers need CAD application software to design abc chips.
Runs only on xyz hardware and is installed in the usr partition.
ARCH=sparc
VERSION=release 1.0
CATEGORY=system

BASEDIR=/opt

Organizing a Package’s Contents
Organize your package objects in a hierarchical directory structure that mimics how
you want them to be on the target system after installation. If you do this step before
you create a prototype file, you can save yourself some time and effort when
creating that file.

� How to Organize A Package’s Contents
1. Determine how many packages you need to create and determine which package

objects shall be located in each package.

For help in completing this step, see “Things to Think About Before Building a
Package” on page 17.

2. For each package you need to build, make a directory.

You can create this directory anywhere on your system and name it anything you like.
The examples in this chapter assume that a package directory has the same name as
the package abbreviation.

$ cd /home/jane

$ mkdir SUNWcadap

30 Application Packaging Developer’s Guide • December 2001

3. For each package, organize package objects into a directory structure beneath their
corresponding package directory, which mimics how they will be located on the
target system.

For example, the CAD application package, SUNWcadap, requires the following
directory structure.

man srcfiles

windex man1

file3.1 file4.1

file5 file6

/home/jane

SUNWcadap

lib

file2

demo

file1

4. Decide where you will keep your information files and, if appropriate, make a
directory to keep them in one location.

This example assumes that the example pkginfo file from “How to Create a
pkginfo File” on page 29 was created in Jane’s home directory.

$ cd /home/jane
$ mkdir InfoFiles
$ mv pkginfo InfoFiles

Where to Go Next
If you are ready to go to the next task, see “How to Create a prototype File Using
the pkgproto Command” on page 44.

Creating a prototype File
The prototype file is an ASCII file used to specify information about the objects in a
package. Each entry in the prototype file describes a single object, such as a data file,
directory, source file, or executable object. Entries in a prototype file consist of
several fields of information separated by white space. Note that the fields must
appear in a specific order. Comment lines begin with a pound sign (#) and are ignored.

Building a Package 31

You can create a prototype file with a text editor or by using the pkgproto
command. When you first create this file, it is probably easier to do so with the
pkgproto command, because it creates the file based on the directory hierarchy you
created previously. If you have not organized your files as described in “Organizing a
Package’s Contents” on page 30, you have the cumbersome task of creating the
prototype file from scratch with your favorite text editor. However, even when you
create the prototype file using the pkgproto command, you will most likely need
to make modifications to the file with your favorite text editor, so it is important to
understand the format and contents of this file.

The Format of the prototype File
The format for each line in the prototype file is:

partftypeclasspathmajorminorgroup

part Is an optional, numeric field that enables you to group
package objects into parts. The default value is part 1.

ftype Is a one-character field that specifies the object’s type. See
“The ftype Field” on page 33.

class Is the installation class to which the object belongs. See “The
class Field” on page 33.

path Is the absolute or relative path name indicating where the
package object will reside on the target system. See “The path
Field” on page 33.

major Is the major device number for block or character special
devices.

minor Is the minor device number for block or character special
devices.

mode Is the octal mode of the object (for example, 0644). See “The
mode Field” on page 36.

owner Is the owner of the object (for example, bin or root). See
“The owner Field” on page 37.

group Is the group to which the object belongs (for example, bin or
sys). See “The group Field” on page 37.

Usually, only the ftype, class, path, mode, owner, and group fields are defined, and are
described in the following sections. See prototype(4) for additional information on
these fields.

32 Application Packaging Developer’s Guide • December 2001

The ftype Field
The ftype, or file type, field is a one-character field that specifies a package object’s
type. Valid file types are described in the table below.

TABLE 2–3 Valid File Types in the prototype File

Use ftype ... To Define A ...

f Standard executable or data file

e File to be edited upon installation or removal (may be shared by
several packages)

v Volatile file (whose contents are expected to change, like a log file)

d Directory

x Exclusive directory accessible only by this package (may contain
unregistered logs or database information)

l Linked file

p Named pipe

c Character special device

b Block special device

i Information file or installation script

s Symbolic link

The class Field
The class field names the class to which an object belongs. Using classes is an optional
package design feature, and is discussed in detail in “Writing Class Action Scripts”
on page 70.

If you do not use classes, an object belongs to the none class, and when you execute
the pkgmk command to build your package, it will insert the CLASSES=none
parameter in the pkginfo file for you. Files with file type i should leave the class
field blank.

The path Field
The path field is used to define where the package object will reside on the target
system. You may indicate the location with either an absolute path name (for example,
/usr/bin/mail) or a relative path name (for example, bin/mail). Using an
absolute path name means that the object’s location on the target system is defined by

Building a Package 33

the package and cannot be changed. Package objects with relative path names indicate
that the object is relocatable.

A relocatable object is one that does not need an absolute path location on the target
system. Instead, its location is determined during the installation process.

All or some of a package’s objects can be defined as relocatable. You should decide if
package objects will have fixed locations (such as start-up scripts in /etc) or be
relocatable before you write any installation scripts and before you create the
prototype file.

There are two kinds of relocatable objects, collectively relocatable and individually
relocatable.

Collectively Relocatable Objects

Collectively relocatable objects are located relative to a common installation base
called the base directory. A base directory is defined in the pkginfo file, using the
BASEDIR parameter. For example, a relocatable object in the prototype file named
tests/generic requires that the pkginfo file define the default BASEDIR
parameter. For example:

BASEDIR=/opt

This means that when the object is installed, it will be located in
/opt/tests/generic.

Note – /opt is the only directory to which software that is not part of base Solaris may
be delivered.

Use collectively relocatable objects whenever possible. In general, the major part of a
package can be relocatable with a few files (such as those in /etc or /var) specified
as absolute. However, if a package contains many different relocations, consider
dividing your package into multiple packages, each with a different BASEDIR value in
its pkginfo file.

Individually Relocatable Objects

Individually relocatable objects are not restricted to the same directory location as
collectively relocatable objects. To define an individually relocatable object, you need
to specify an install variable in the path field in the prototype file, and then create a
request script to prompt the installer for the relocatable base directory, or a
checkinstall script to determine the path name from file system data. For more

34 Application Packaging Developer’s Guide • December 2001

information on request scripts, see “Writing a request Script” on page 63 and for
information on checkinstall scripts, see “How to Gather File System Data”
on page 67.

Note – Individually relocatable objects are difficult to manage and should be avoided.
This is because they could result in widely scattered package components that may be
difficult to isolate when installing multiple versions or architectures of the package.
Try to use collectively relocatable objects whenever possible.

Parametric Path Names

A parametric path name is a path name that includes a variable specification. For
example, /opt/$PKGINST/filename is a parametric path name because of the
$PKGINST variable specification. A default value for the variable specification must be
defined in the pkginfo file. The value may then be changed by a request or
checkinstall script.

A variable specification in a path must begin or end the path name, or be bounded by
slashes (/). For example, valid parametric path names look like:

$PARAM/tests
tests/$PARAM/generic

/tests/$PARAM

The variable specification, once defined, may cause the path to be evaluated as
absolute or relocatable. For example, given this entry in a prototype file:

f none $DIRLOC/tests/generic

and this entry in the pkginfo file:

DIRLOC=/myopt

the path name, $DIRLOC/tests/generic, will evaluate to the absolute path name
/myopt/tests/generic, regardless of whether the BASEDIR parameter is set in the
pkginfo file.

However, if the pkginfo file contains these entries

DIRLOC=firstcut

BASEDIR=/opt

then the path name, $DIRLOC/tests/generic, will evaluate to the relocatable path
name /opt/firstcut/tests/generic.

For more information on parametric path names, see “Using Parametric Base
Directories” on page 126.

Building a Package 35

A Brief Word on an Object’s Source and Destination Locations

The path name field in the prototype file defines where the object will be located on
the target system. However, if you did not organize your package’s objects on your
system in a directory structure that mimics their location on the target system (see
“Organizing a Package’s Contents” on page 30, then you also need to specify their
present location in the prototype file.

If your development area is not structured in the same way that you want your
package structured, you can use the path1=path2 format in the path field, where path1 is
the location it should have on the target system, and path2 is the location it has on
your system.

You can also use the path1=path2 path name format with path1 as a relocatable object
name and path2 a full path name to that object on your system.

Note – path1 may not contain undefined build variables, but may contain undefined
install variables. path2 may not contain any undefined variables, although both build
and install variables may be used. For information on the difference between install
and build variables, see “Package Environment Variables” on page 24.

Links must use the path1= path2 format since they are created by the pkgadd
command. As a general rule, path2 of a link should never be absolute, but should
instead be relative to the directory portion of path1.

An option to using the path1=path2 format is to use the !search command. For more
information, see “Providing a Search Path for the pkgmk Command” on page 43.

The mode Field
The mode field may contain an octal number, a question mark (?), or a variable
specification. An octal number specifies the mode of the object when it is installed on
the target system. A ? means that the mode will be unchanged as the object is
installed, implying that the object of the same name already exists on the target
system.

A variable specification of the form $mode, where the first letter of the variable must be
a lowercase letter, means that this field will be set as the package is built. Note that
this variable must be defined at build time in either the prototype file or as an
option to the pkgmk command. For information on the difference between install and
build variables, see “Package Environment Variables” on page 24.

Files with file type i (information file), l (hard link), and s (symbolic link), should
leave this field blank.

36 Application Packaging Developer’s Guide • December 2001

The owner Field
The owner field may contain a user name, a question mark (?), or a variable
specification. A user name has a maximum of 14 characters and should be a name that
already exists on the target system (such as, bin or root). A ? means that the owner
will be unchanged as the object is installed, implying that the object of the same name
already exists on the target system.

A variable specification can be of the form $Owner or $owner, where the first letter of
the variable is either an uppercase letter or a lowercase letter. If the variable begins
with a lowercase letter, it must be defined as the package is built, either in the
prototype file or as an option to the pkgmk command. If the variable begins with an
uppercase letter, the variable specification will be inserted into the pkginfo file as a
default value, and may be redefined at install time via a request script. For
information on the difference between install and build variables, see “Package
Environment Variables” on page 24.

Files with file type i (information file) and l (hard link) should leave this field blank.

The group Field
The group field may contain a group name, a question mark (?), or a variable
specification. A group name has a maximum of 14 characters and should be a name
that already exists on the target system (such as, bin or sys). A ? means that the
group will be unchanged as the object is installed, implying that the object of the same
name already exists on the target system.

A variable specification can be of the form $Group or $group, where the first letter of
the variable is either an uppercase letter or a lowercase letter. If the variable begins
with a lowercase letter, it must be defined as the package is built, either in the
prototype file or as an option to the pkgmk command. If the variable begins with an
uppercase letter, the variable specification will be inserted into the pkginfo file as a
default value, and may be redefined at install time via a request script. For
information on the difference between install and build variables, see “Package
Environment Variables” on page 24.

Files with file type i (information file) and l (hard link) should leave this field blank.

Creating a prototype File From Scratch
If you want to create a prototype file from scratch, you can do so with your favorite
text editor, adding one entry per package object. See “The Format of the prototype
File” on page 32 andprototype(4) for more information on the format of the file.

Building a Package 37

However, after you have defined each package object, you might want to include
some of the features described in “Adding Functionality to a prototype File”
on page 41.

Creating a prototype File With the pkgproto
Command
You can use the pkgproto command to build a basic prototype file, as long as you
have organized your package directory structure as described in “Organizing a
Package’s Contents” on page 30. For example, using the sample directory structure
and pkginfo file described in previous sections, the commands for creating the
prototype file are:

$ cd /home/jane

$ pkgproto ./SUNWcadap > InfoFiles/prototype

The prototype file looks like:

d none SUNWcadap 0755 jane staff
d none SUNWcadap/demo 0755 jane staff
f none SUNWcadap/demo/file1 0555 jane staff
d none SUNWcadap/srcfiles 0755 jane staff
f none SUNWcadap/srcfiles/file5 0555 jane staff
f none SUNWcadap/srcfiles/file6 0555 jane staff
d none SUNWcadap/lib 0755 jane staff
f none SUNWcadap/lib/file2 0644 jane staff
d none SUNWcadap/man 0755 jane staff
f none SUNWcadap/man/windex 0644 jane staff
d none SUNWcadap/man/man1 0755 jane staff
f none SUNWcadap/man/man1/file4.1 0444 jane staff

f none SUNWcadap/man/man1/file3.1 0444 jane staff

Note – The actual owner and group of the person building the package is recorded by
the pkgproto command. A good technique is to use the chown -R and the chgrp
-R commands, setting the owner and group as intended before running the pkgproto
command.

This prototype file is not yet complete. See “Fine-Tuning a prototype File Created
With the pkgproto Command” on page 39 for information on completing this file.

38 Application Packaging Developer’s Guide • December 2001

Fine-Tuning a prototype File Created With the
pkgproto Command
Although the pkgproto command is useful in creating an initial prototype file, it
does not create entries for every package object that needs to be defined, or make
complete entries. The pkgproto command does not:

� Create complete entries for objects with file types v (volatile files), e (editable files),
x (exclusive directories), or i (information files or installation scripts).

� Support multiple classes with a single invocation.

Therefore, you probably need to modify the prototype file to include at least some
of these object definitions, possibly redefine path names and other field settings, and
include some of the features described in “Adding Functionality to a prototype File”
on page 41.

Creating Object Entries With File Types v, e, x, and i

At the very least, you need to modify the prototype file to add objects with file type
i. If you stored your information files and installation scripts in the first level of your
package directory (for example, /home/jane/SUNWcadap/pkginfo), then an entry
in the prototype file would look like:

i pkginfo

If you did not store your information files and installation scripts in the first level of
your package directory, then you need to specify their source location. For example:

i pkginfo=/home/jane/InfoFiles/pkginfo

Or, you can use the !search command to specify the location for the pkgmk
command to look when building the package. See “Providing a Search Path for the
pkgmk Command” on page 43 for more information.

To add entries for objects with file types v, e, and x, follow the format described in
“The Format of the prototype File” on page 32, or refer to prototype(4).

Building a Package 39

Note – Remember to always assign a class to files with a file type of e (editable) and
have an associated class action script for that class. Otherwise, the files will be
removed during package removal, even if the path name is shared with other
packages.

Using Multiple Class Definitions
If you use the pkgproto command to create your basic prototype file, you can
assign all of the package objects to the none class or one, specific class. As shown in
“Creating a prototype File With the pkgproto Command” on page 38, the basic
pkgproto command assigns all objects to the none class. To assign all objects to a
specific class, you can use the -c option. For example:

$ pkgproto -c classname /home/jane/SUNWcadap > /home/jane/InfoFiles/prototype

If you use multiple classes, you may need to manually edit the prototype file and
modify the class field for each object. If you use classes, you also need to define the
CLASSES parameter in the pkginfo file and write class action scripts. As mentioned
previously, using classes is an optional feature and is discussed in detail in “Writing
Class Action Scripts” on page 70.

Example—Fine-Tuning a prototype File Created Using
the pkgproto Command
Given the prototype file created by the pkgproto command in “Creating a
prototype File With the pkgproto Command” on page 38, there are several
modifications that need to be made.

� There needs to be an entry for the pkginfo file.

� The path fields need to be modified to be the path1=path2 format, since the package
source is in /home/jane. (Since the package source is a hierarchical directory, and
the !search command does not search recursively, it may be easier to use the
path1=path2 format.)

� The owner and group fields should contain the names of existing users and groups
on the target system. That is, the owner jane will result in an error since this
owner is not part of the SunOS™ operating system.

The modified prototype file looks like:

i pkginfo=/home/jane/InfoFiles/pkginfo
d none SUNWcadap=/home/jane/SUNWcadap 0755 root sys
d none SUNWcadap/demo=/home/jane/SUNWcadap/demo 0755 root bin
f none SUNWcadap/demo/file1=/home/jane/SUNWcadap/demo/file1 0555 root bin
d none SUNWcadap/srcfiles=/home/jane/SUNWcadap/srcfiles 0755 root bin
f none SUNWcadap/srcfiles/file5=/home/jane/SUNWcadap/srcfiles/file5 0555 root bin

40 Application Packaging Developer’s Guide • December 2001

f none SUNWcadap/srcfiles/file6=/home/jane/SUNWcadap/srcfiles/file6 0555 root bin
d none SUNWcadap/lib=/home/jane/SUNWcadap/lib 0755 root bin
f none SUNWcadap/lib/file2=/home/jane/SUNWcadap/lib/file2 0644 root bin
d none SUNWcadap/man=/home/jane/SUNWcadap/man 0755 bin bin
f none SUNWcadap/man/windex=/home/jane/SUNWcadap/man/windex 0644 root other
d none SUNWcadap/man/man1=/home/jane/SUNWcadap/man/man1 0755 bin bin
f none SUNWcadap/man/man1/file4.1=/home/jane/SUNWcadap/man/man1/file4.1 0444 bin bin

f none SUNWcadap/man/man1/file3.1=/home/jane/SUNWcadap/man/man1/file3.1 0444 bin bin

Adding Functionality to a prototype File
Besides defining every package object in the prototype file, you can also:

� Define additional objects to be created at install time.
� Create links at install time.
� Distribute packages over multiple volumes.
� Nest prototype files.
� Set a default value for the mode, owner, and group fields.
� Provide a search path for the pkgmk command.
� Set environment variables.

See the following sections for information on making these changes.

Defining Additional Objects to Be Created at Install Time
You can use the prototype file to define objects that are not actually delivered on the
installation medium. During installation, using the pkgadd command, these objects
are created with the required file types, if they do not already exist at the time of
installation.

To specify that an object be created on the target system, add an entry for it in the
prototype file with the appropriate file type.

For example, if you want a directory created on the target system, but do not want to
deliver it on the installation medium, make the following entry for the directory in the
prototype file:

d none /directory 0644 root other

If you want to create an empty file on the target system, an entry for the file in the
prototype file might look like:

f none filename=/dev/null 0644 bin bin

The only objects that must be delivered on the installation medium are regular files
and edit scripts (file types e, v, f) and the directories required to contain them. Any

Building a Package 41

additional objects are created without reference to the delivered objects, directories,
named pipes, devices, hard links, and symbolic links.

Creating Links at Install Time
To create links during package installation, define the following in the prototype file
entry for the linked object:

� Its file type as l (a link) or s (a symbolic link).

� Its path name with the format path1=path2 where path1 is the destination and path2
is the source file. As a general rule, path2 of a link should never be absolute, but
should instead be relative to the directory portion of path1. For example, a
prototype file entry defining a symbolic link could be:

s none etc/mount=../usr/etc/mount

Relative links would be specified in this manner whether the package is installed as
absolute or relocatable.

Distributing Packages Over Multiple Volumes
When you build your package with the pkgmk command, it performs the calculations
and actions necessary to organize a multiple volume package. A multiple volume
package is called a segmented package.

However, you can use the optional part field in the prototype file to define in which
part you want an object to be located. A number in this field overrides the pkgmk
command and forces the placement of the component into the part given in the field.
Note that there is a one-to-one correspondence between parts and volumes for
removable media formatted as file systems. If the volumes are preassigned by the
developer, the pkgmk command will issue an error if there is insufficient space on any
volume.

Nesting prototype Files
You can create multiple prototype files and then include them, using the !include
command in the prototype file. You might want to do this for easier maintenance.

In the following example there are three prototype files, the main one (prototype)
being edited, and the two (proto2 and proto3) that are being included.

!include /source-dir/proto2
!include /source-dir/proto3

42 Application Packaging Developer’s Guide • December 2001

Setting Default Values for the mode, owner, and group
Fields
To set default values for the mode, owner, and group fields for specific package objects,
you can insert the !default command into the prototype file. For example,

!default 0644 root other

Note – This command’s range starts from where it is inserted and extends to the end
of the file, but does not span to included files.

However, for directories (file type d) and editable files (file type e) that you know exist
on target systems (like /usr or /etc/vfstab), make sure that the mode, owner, and
group fields in the prototype file are set to question marks (?). That way you will not
destroy existing settings that a site administrator may have modified.

Providing a Search Path for the pkgmk Command
If the source location for package objects is different than their destination location,
and you do not want to use the path1=path2 format as described in “A Brief Word on
an Object’s Source and Destination Locations” on page 36, then you can use the
!search command in the prototype file. For example, if you created a directory,
pkgfiles, in your home directory, and it contains all of your information files and
installation scripts, you can specify that that directory be searched when the package
is built with the pkgmk command.

The command in the prototype file would look like:

!search /home-dir/pkgfiles

Note – Search requests do not span to included files. In addition, a search is limited to
the specific directories listed, and will not search recursively.

Set Environment Variables
You can also add commands to the prototype file of the form !PARAM=value.
Commands of this form define variables in the current environment. If you have
multiple prototype files, the scope of this command is local to the prototype file
where it is defined.

The variable PARAM can begin with either a lowercase or uppercase letter, but its
value must be known at build time, or the pkgmk command will abort with an error.

Building a Package 43

For more information on the difference between build and install variables, see
“Package Environment Variables” on page 24.

� How to Create a prototype File Using the
pkgproto Command

Note – It is easier to create information files and installation scripts before creating a
prototype file. However, this is not required, and you can always edit the
prototype file after changing your package contents. For more information on
information files and installation scripts, see Chapter 3.

1. Determine which package objects will be absolute and which will be relocatable, if
not done already.

For information that will help you complete this task, see “The path Field” on page 33.

2. Organize your package’s objects to mimic their location on the target system.

If you already organized your packages as described in “Organizing a Package’s
Contents” on page 30, note that you may need to make some changes based on your
decisions in step 1. If you have not organized your package yet, you should do so now
(otherwise you cannot use the pkgproto command to create a basic prototype file).

3. If your package has collectively relocatable objects, edit the pkginfo file to set the
BASEDIR parameter to the appropriate value.

For example:

BASEDIR=/opt

For information on collectively relocatable objects, see “Collectively Relocatable
Objects” on page 34.

4. If your package has individually relocatable objects, create a request script to
prompt the installer for the appropriate path name or a checkinstall script to
determine the appropriate path from file system data.

For Information On ... See ...

Creating a request script “How to Write a request Script” on page 65

Creating a checkinstall script “How to Gather File System Data”
on page 67

Individually relocatable objects “Individually Relocatable Objects” on page 34

44 Application Packaging Developer’s Guide • December 2001

5. Change the owner and group on all of your package components to be the intended
owner and group on the target systems.

Use the chown -R and the chgrp -R commands on your package directory and
information files directory.

6. Execute the pkgproto command to create a basic prototype file.

The pkgproto command scans your directories to create a basic file. For example:

$ cd package-directory
$ pkgproto ./package-directory > prototype

Like the pkginfo file, the prototype file can be located anywhere on your system.
However, it might be a good idea to keep your information files and installation
scripts in one place, for easy access and maintenance. For additional information on
the pkgproto command, see the pkgproto(1) man page.

7. Edit the prototype file using your favorite text editor, and add entries for files of
type v, e, x, and i.

For information on the specific changes you may need to make, see “Fine-Tuning a
prototype File Created With the pkgproto Command” on page 39.

8. Optional. If you are using multiple classes, edit the prototype and pkginfo files
using your favorite text editor to make the necessary changes, and create
corresponding class action scripts.

For information on the specific changes you may need to make, see “Fine-Tuning a
prototype File Created With the pkgproto Command” on page 39 and “Writing
Class Action Scripts” on page 70.

9. Edit the prototype file using your favorite text editor to redefine path names and
change other field settings.

For more information, see “Fine-Tuning a prototype File Created With the
pkgproto Command” on page 39.

10. Optional. Edit the prototype file using your favorite text editor to add
functionality to your prototype file.

For more information, see “Adding Functionality to a prototype File” on page 41.

11. Save your changes and quit the editor.

Where to Go Next
If you are ready to go to the next task, see “How to Build a Package” on page 47.

Building a Package 45

Building a Package
Use the pkgmk command to build your package. This command takes all of the objects
defined in the prototype file, puts them into directory format, creates the pkgmap
file (replacing the prototype file), and produces an installable package to be used as
input to the pkgadd command.

Using the Simplest pkgmk Command
The simplest form of this command is the pkgmk command itself, without any
options. Before using the pkgmk command without options, make sure your current
working directory contains the package’s prototype file. The output of the
command, files and directories, are written to the /var/spool/pkg directory.

The pkgmap File
When you build a package with the pkgmk command, it creates a pkgmap file that
replaces the prototype file. The pkgmap file from the previous example looks like:

$ more pkgmap
: 1 3170
1 d none SUNWcadap 0755 root sys
1 d none SUNWcadap/demo 0755 root bin
1 f none SUNWcadap/demo/file1 0555 root bin 14868 45617 837527496
1 d none SUNWcadap/lib 0755 root bin
1 f none SUNWcadap/lib/file2 0644 root bin 1551792 62372 837527499
1 d none SUNWcadap/man 0755 bin bin
1 d none SUNWcadap/man/man1 0755 bin bin
1 f none SUNWcadap/man/man1/file3.1 0444 bin bin 3700 42989 837527500
1 f none SUNWcadap/man/man1/file4.1 0444 bin bin 1338 44010 837527499
1 f none SUNWcadap/man/windex 0644 root other 157 13275 837527499
1 d none SUNWcadap/srcfiles 0755 root bin
1 f none SUNWcadap/srcfiles/file5 0555 root bin 12208 20280 837527497
1 f none SUNWcadap/srcfiles/file6 0555 root bin 12256 63236 837527497
1 i pkginfo 140 10941 837531104

$

The format of this file is very similar to that of the prototype file. However, the
pkgmap file includes the following information.

� The first line indicates the number of volumes that the package spans, and the
approximate size the package will be when installed.

46 Application Packaging Developer’s Guide • December 2001

For example, : 1 3170 indicates that the package spans one volume and will use
approximately 3170 512-byte blocks when it is installed.

� There are three additional fields defining the size, checksum, and modification time
for each package object.

� The package objects are listed in alphabetical order by class and by path name to
enhance the time it takes to install the package.

� How to Build a Package
1. Create a pkginfo file, if not done already.

For step-by-step instructions, see “How to Create a pkginfo File” on page 29.

2. Create a prototype file, if not done already.

For step-by-step instructions, see “How to Create a prototype File Using the
pkgproto Command” on page 44.

3. Make your current working directory the same directory that contains your
package’s prototype file.

4. Build the package.

$ pkgmk [-o] [-a arch] [-b base-src-dir] [-d device]
[-f filename] [-l limit] [-p pstamp] [-r rootpath]
[-v version] [PARAM=value] [pkginst]

-o Overwrites the existing version of the package.

-a arch Overrides the architecture information in the pkginfo file.

-b base-src-dir Requests that base-src-dir be added to the beginning of
relocatable path names when the pkgmk command is
searching for objects on the development system.

-d device Specifies that the package should be copied onto device, which
may be a an absolute directory path name, diskette, or
removable disk.

-f filename Names a file, filename, that is used as your prototype file.
The default names are prototype or Prototype.

-l limit Specifies the maximum size, in 512-byte blocks, of the output
device.

-p pstamp Overrides the production stamp definition in the pkginfo
file.

-r rootpath Requests that the root directory rootpath be used to locate
objects on the development system.

Building a Package 47

-v version Overrides the version information in the pkginfo file.

PARAM=value Sets global environment variables. Variables beginning with
lowercase letters are resolved at build time. Those beginning
with uppercase letters are placed into the pkginfo file for use
at install time.

pkginst Specifies a package by its package abbreviation or a specific
instance (for example, SUNWcadap.4)

For more information, see pkgmk(1).

5. Verify the contents of the package.

$ pkgchk -d pkg-dir pkg-abbrev
Checking uninstalled directory format package pkg-abbrev
from pkg-dir
Checking control scripts.
Checking package objects.
Checking is complete.

$

-d device-name Specifies the location of the package. Note that device-name can
be a full directory path name or the identifiers for a tape,
floppy disk, or removable disk.

pkgid Is the name of one or more packages (separated by spaces) to
be checked. If omitted, pkgchk checks all available packages.

The pkgchk command prints what aspects of the package are being checked and
displays warnings or errors, as appropriate. For more information on the pkgchk
command, see “Verifying the Integrity of a Package” on page 82.

Note – Errors should be considered very seriously; it may mean that a script needs
fixing. However, a warning may just be a comment on the style of a script. Check it
and move on if you disagree with the output from the pkgchk command.

Where to Go Next
If you want to add any optional information files and installation scripts to your
package, see Chapter 3. Otherwise, after you build the package, you should verify its
integrity. Chapter 4 explains how to do this, and provides step-by-step instructions on
how to transfer your verified package to a distribution medium.

48 Application Packaging Developer’s Guide • December 2001

Example—Building a Package
This example uses the prototype file created in “Fine-Tuning a prototype File
Created With the pkgproto Command” on page 39.

$ cd /home/jane/InfoFiles
$ pkgmk
Building pkgmap from package prototype file.
Processing pkginfo file.
WARNING: parameter set to "system990708093144"
WARNING: parameter set to "none"
Attempting to volumize 13 entries in pkgmap.
part 1 -- 3170 blocks, 17 entries
Packaging one part.
/var/spool/pkg/SUNWcadap/pkgmap
/var/spool/pkg/SUNWcadap/pkginfo
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/demo/file1
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/lib/file2
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/man/man1/file3.1
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/man/man1/file4.1
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/man/windex
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/srcfiles/file5
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/srcfiles/file6
Validating control scripts.
Packaging complete.

$

Example—Specifying a Source Directory for Relocatable
Files
If your package contains relocatable files, you can use the -b base-src-dir option to the
pkgmk command to specify a path name to be added to the beginning of the
relocatable path names while the package is being created. This is useful if you haven’t
used the path1=path2 format for relocatable files or specified a search path with the
!search command in the prototype file.

For example, to build a package using the sample prototype file created by the
pkgproto command (see “Creating a prototype File With the pkgproto
Command” on page 38), without modifying the path fields, and just adding an entry
for the pkginfo file, the pkgmk command is:

$ cd /home/jane/InfoFiles
$ pkgmk -o -b /home/jane
Building pkgmap from package prototype file.
Processing pkginfo file.
WARNING: parameter set to "system960716102636"
WARNING: parameter set to "none"
Attempting to volumize 13 entries in pkgmap.
part 1 -- 3170 blocks, 17 entries
Packaging one part.

Building a Package 49

/var/spool/pkg/SUNWcadap/pkgmap
/var/spool/pkg/SUNWcadap/pkginfo
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/demo/file1
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/lib/file2
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/man/man1/file3.1
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/man/man1/file4.1
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/man/windex
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/srcfiles/file5
/var/spool/pkg/SUNWcadap/reloc/SUNWcadap/srcfiles/file6
Validating control scripts.

Packaging complete.

In this example, the package is built in the default directory, /var/spool/pkg, by
specifying the -o option (to overwrite the package we created in “Example—Building
a Package” on page 49).

Example—Specifying Different Source Directories for
Information Files and Package Objects
If you put package information files (such as pkginfo and prototype) and the
package objects in two different directories, you can create your package by using the
-b base-src-dir and -r rootpath options to the pkgmk command. If you have your
package objects in a directory called /product/pkgbin and the other package
information files in a directory called /product/pkgsrc, you could use the
following command to place the package in the /var/spool/pkg directory:

$ pkgmk -b /product/pkgbin -r /product/pkgsrc -f /product/pkgsrc/prototype

Optionally, you could use this command to do the same:

$ cd /product/pkgsrc

$ pkgmk -o -b /product/pkgbin

In this example, the pkgmk command uses the current working directory to find the
remaining parts of the package (like the prototype and pkginfo information files).

50 Application Packaging Developer’s Guide • December 2001

CHAPTER 3

Enhancing the Functionality of a
Package

This chapter describes how to create optional information files and installation scripts
for a package. While Chapter 2 discussed the minimum requirements for making a
package, this chapter discusses additional functionality that you can build into a
package, based on the criteria you considered when planning how to design your
package (for more information, see “Things to Think About Before Building a
Package” on page 17).

This is a list of the overview information in this chapter.

� “Creating Information Files and Installation Scripts Task Map” on page 51
� “Creating Information Files” on page 52
� “Creating Installation Scripts” on page 59

Creating Information Files and
Installation Scripts Task Map
The table below lists and describes the optional features you can build into a package.

TABLE 3–1 Creating Information Files and Installation Scripts Task Map

Task Description For Instructions, Go To ...

1. Create Information Files Define Package Dependencies

A definition of package dependencies allows
you to specify whether your package is
compatible with previous versions, dependent
on other packages, or whether other packages
are dependent on yours.

“How to Define Package
Dependencies” on page 53

51

TABLE 3–1 Creating Information Files and Installation Scripts Task Map (Continued)
Task Description For Instructions, Go To ...

Provide a Copyright Message

A copyright file provides legal protection for
your software application.

“How to Write a Copyright
Message” on page 56

Create Additional Space on the Target System.

A space file sets aside blocks on the target
system, which enables you to create files
during installation that are not defined in the
pkgmap file.

“How to Reserve Additional
Space on a Target System”
on page 57

2. Create Installation Scripts Obtain Information From the Installer

A request script enables you to obtain
information from the person installing your
package.

“How to Write a request
Script” on page 65

Gather File System Data Needed For Installation

A checkinstall script enables you to
perform an analysis of the target system and
set up the correct environment for, or cleanly
halt, the installation.

“How to Gather File System
Data” on page 67

Write Procedure Scripts

Enables you to provide customized installation
instructions during specific phases of the
installation or removal process.

“How to Write Procedure
Scripts” on page 70

Write Class Action Scripts

Enables you to specify a set of instructions to
be executed during package installation and
removal on specific groups of package objects.

“How to Write Class Action
Scripts” on page 77

Creating Information Files
This section discusses optional package information files. With these files you can
define package dependencies, provide a copyright message, and reserve additional
space on a target system.

52 Application Packaging Developer’s Guide • December 2001

Defining Package Dependencies
You need to determine whether your package has dependencies on other packages
and if any other packages depend on yours. Package dependencies and
incompatibilities can be defined with two of the optional package information files,
compver and depend. Delivering a compver file lets you name previous versions of
your package that are compatible with the one being installed. Delivering a depend
file lets you define three types of dependencies associated with your package. These
dependency types are:

� A prerequisite package – meaning your package depends on the existence of another
package

� A reverse dependency – meaning another package depends on the existence of your
package

Note – Use the reverse dependency type only when a package that cannot deliver
a depend file relies on your package.

� An incompatible package – meaning your package is incompatible with the named
package

The depend file resolves only very basic dependencies. If your package depends upon
a specific file or its contents or behavior, the depend file does not supply adequate
precision. In this case, a request script or the checkinstall script should be used
for detailed dependency checking. The checkinstall script is also the only script
capable of cleanly halting the package installation process.

Note – Be certain that your depend and compver files have entries in the prototype
file. The file type should be i (for package information file).

Refer to depend(4) and compver(4) for more information.

� How to Define Package Dependencies
1. Make the directory containing your information files the current working directory.

Enhancing the Functionality of a Package 53

2. If previous versions of your package exist and you need to specify that your new
package is compatible with them, create a file named compver with your favorite
text editor.

List the versions with which your package is compatible, using this format:

string string . . .

string Is identical to the value assigned to the VERSION parameter in
the pkginfo file, for each compatible package.

3. Save your changes and quit the editor.

4. If your package depends on the existence of other packages, other packages depend
on the existence of your package, or your package is incompatible with another
package, create a file named depend with your favorite text editor.

Add an entry for each dependency, using this format:

type pkg-abbrev pkg-name
(arch) version
(arch) version . . .

type Defines the dependency type. Must be one of the following
characters: P (prerequisite package), I (incompatible package),
or R (reverse dependency).

pkg-abbrev Specifies the package abbreviation, such as SUNWcadap.

pkg-name Specifies the full package name, such as Chip designers
need CAD application software to design abc
chips. Runs only on xyz hardware and is
installed in the usr partition.

(arch) Optional. Specifies the type of hardware on which the
package runs. For example, sparc or x86. If you specify an
architecture, you must use the parentheses as delimiters.

version Optional. Specifies the value assigned to the VERSION
parameter in the pkginfo file.

For more information, see depend(4).

5. Save your changes and quit the editor.

6. Complete one of the following tasks:

� If you want to create additional information files and installation scripts, skip to
the next task, “How to Write a Copyright Message” on page 56.

54 Application Packaging Developer’s Guide • December 2001

� If you have not created your prototype file, complete the procedure “How to
Create a prototype File Using the pkgproto Command” on page 44, and skip to
step 7.

� If you have already created your prototype file, edit it and add an entry for each
file you just created.

7. Build your package.

See “How to Build a Package” on page 47, if needed.

Where to Go Next
After you build the package, install it to confirm that it installs correctly and verify its
integrity. Chapter 4 explains how to do this and provides step-by-step instructions on
how to transfer your verified package to a distribution medium.

Example—compver File
In this example, there are four versions of a package: 1.0, 1.1, 2.0, and the new
package, 3.0, which is compatible with all the three previous versions. The compver
file for the newest version might look like:

release 3.0
release 2.0
version 1.1

1.0

Note – The entries do not have to be in sequential order. However, they should exactly
match the definition of the VERSION parameter in each package’s pkginfo file. In this
example, the package designers used different formats in the first three versions.

Example—depend File
This example assumes that the sample package, SUNWcadap, requires that the
SUNWcsr and SUNWcsu packages already be installed on a target system. The depend
file for SUNWcadap looks like:

P SUNWcsr Core Solaris, (Root)

P SUNWcsu Core Solaris, (Usr)

Enhancing the Functionality of a Package 55

Writing a Copyright Message
You need to decide whether your package should display a copyright message while it
is being installed. If so, create the copyright file.

Note – You should include a copyright file to provide legal protection for your
software application. It might be a good idea to check with the legal department of
your company for the exact wording of the message.

To deliver a copyright message, you must create a file named copyright. During
installation, the message is displayed exactly as it appears in the file (with no
formatting). See copyright(4) for more information.

Note – Be certain that your copyright file has an entry in the prototype file. Its file
type should be i (for package information file).

� How to Write a Copyright Message
1. Make the directory containing your information files the current working directory.

2. Create a file named copyright with your favorite text editor.

Enter the text of the copyright message exactly as you want it to appear as your
package is installed.

3. Save your changes and quit the editor.

4. Complete one of the following tasks.

� If you want to create additional information files and installation scripts, skip to
the next task, “How to Reserve Additional Space on a Target System” on page 57.

� If you have not created your prototype file, complete the procedure “How to
Create a prototype File Using the pkgproto Command” on page 44, and skip to
step 5.

� If you have already created your prototype file, edit it and add an entry for the
information file you just created.

5. Build your package.

See “How to Build a Package” on page 47, if needed.

56 Application Packaging Developer’s Guide • December 2001

Where to Go Next
After you build the package, install it to confirm that it installs correctly and verify its
integrity. Chapter 4 explains how to do this and provides step-by-step instructions on
how to transfer your verified package to a distribution medium.

Example—copyright File
For example, a partial copyright message might look like:

Copyright (c) 1999 Company Name
All Rights Reserved

This product is protected by copyright and distributed under

licenses restricting copying, distribution and decompilation.

Reserving Additional Space on a Target System
You need to determine whether your package needs additional disk space on the
target system (space in addition to that required by the package objects). If so, create
the space information file. This is different than creating empty files and directories at
installation time as discussed in “Defining Additional Objects to Be Created at Install
Time” on page 41.

While the pkgadd command ensures that there is enough disk space to install your
package based on the object definitions in the pkgmap file, a package may require
additional disk space beyond that needed by the objects defined in the pkgmap file.
For example, your package might create a file after installation, which may contain a
database, log files, or some other growing file that consumes disk space. To be sure
that there is space set aside for it, you should include a space file specifying the disk
space requirements. The pkgadd command checks for the additional space specified
in a space file. Refer to space(4) for more information.

Note – Be certain that your space file has an entry in the prototype file. Its file type
should be i (for package information file).

� How to Reserve Additional Space on a Target
System

1. Make the directory containing your information files the current working directory.

Enhancing the Functionality of a Package 57

2. Create a file named space with your favorite text editor.

Enter any additional disk space requirements needed by your package, using this
format:

pathname blocks inodes

pathname Specifies a directory name, which may or may not be the
mount point for a file system.

blocks Specifies the number of 512-byte blocks that you want
reserved.

inodes Specifies the number of required inodes.

For more information, see space(4).

3. Save your changes and quit the editor.

4. Complete one of the following tasks.

� If you want to create installation scripts, skip to the next task, “How to Write a
request Script” on page 65.

� If you have not created your prototype file, complete the procedure in “How to
Create a prototype File Using the pkgproto Command” on page 44, and skip to
step 5.

� If you have already created your prototype file, edit it and add an entry for the
information file you just created.

5. Build your package.

See “How to Build a Package” on page 47, if needed.

Where to Go Next
After you build the package, install it to confirm that it installs correctly and verify its
integrity. Chapter 4 explains how to do this and provides step-by-step instructions on
how to transfer your verified package to a distribution medium.

Example—space File
This example space file specifies that 1000 512-byte blocks and 1 inode be set aside in
/opt on the target system.

/opt 1000 1

58 Application Packaging Developer’s Guide • December 2001

Creating Installation Scripts
This section discusses optional package installation scripts. The pkgadd command
automatically performs all the actions necessary to install a package using the package
information files as input. You do not have to supply any package installation scripts.
However, if you want to create customized installation procedures for your package,
you can do so with installation scripts. Installation scripts:

� Must be executable by the Bourne shell (sh).
� Must contain Bourne shell commands and text.
� Do not need to contain the #!/bin/sh shell identifier.
� Need not be an executable file.

There are four types of installation scripts with which you can perform customized
actions:

� The request script

The request script solicits data from the administrator installing a package for
assigning or redefining environment variables.

� The checkinstall script

The checkinstall script examines the target system for needed data, can set or
modify package environment variables, and determines whether or not the
installation proceeds.

Note – The checkinstall script is available starting with the Solaris 2.5 and
compatible releases.

� Procedure scripts

Procedure scripts identify a procedure to be invoked before or after the installation
or removal of a package. The four procedure scripts are preinstall,
postinstall, preremove, and postremove.

� Class action scripts

Class action scripts define an action or set of actions that should be applied to a
class of files during installation or removal. You can define your own classes or use
one of the four standard classes (sed, awk, build, and preserve).

Enhancing the Functionality of a Package 59

Script Processing During Package Installation
The type of scripts you use depends on when the action of the script is needed during
the installation process. As a package is installed, the pkgadd command performs the
following steps:

1. Executes the request script.

This is the only point at which your package can solicit input from the
administrator installing the package.

2. Executes the checkinstall script.

The checkinstall script gathers file system data and can create or alter
environment variable definitions to control the subsequent installation. For more
information on package environment variables, see “Package Environment
Variables” on page 24.

3. Executes the preinstall script.

4. Installs package objects, for each class to be installed.

Installation of these files occurs class by class, and class action scripts are executed
accordingly. The list of classes operated on and the order in which they should be
installed is initially defined with the CLASSES parameter in your pkginfo file.
However, your request script or checkinstall script can change the value of
the CLASSES parameter. For more information on how classes are processed
during installation, see “How Classes Are Processed During Installation”
on page 71.

a. Creates symbolic links, devices, named pipes, and required directories.

b. Installs the regular files (file types e, v, f), based on their class.

The class action script is passed only regular files to install. All other package
objects are created automatically from information in the pkgmap file.

c. Creates all hard links.

5. Executes the postinstall script.

Script Processing During Package Removal
When a package is being removed, the pkgrm command performs these steps:

1. Executes the preremove script.

2. Removes the package objects, for each class.

Removal also occurs class by class. Removal scripts are processed in the reverse
order of installation, based on the sequence defined in the CLASSES parameter. For
more information on how classes are processed during installation, see “How
Classes Are Processed During Installation” on page 71.

a. Removes hard links.

60 Application Packaging Developer’s Guide • December 2001

b. Removes regular files.
c. Removes symbolic links, devices, and named pipes.

3. Executes the postremove script.

The request script is not processed at the time of package removal. However, its
output (a list of environment variables) is retained in the installed package and made
available to removal scripts.

Package Environment Variables Available to Scripts
The following groups of environment variables are available to all installation scripts.
Some of the environment variables can be modified by a request or checkinstall
script.

� The request or checkinstall script can set or modify any of the standard
parameters in the pkginfo file except for the required parameters. The standard
installation parameters are described in detail in pkginfo(4).

Note – The BASEDIR parameter can only be modified starting with the Solaris 2.5
and compatible releases.

� You can define your own installation environment variables by assigning values to
them in the pkginfo file. Such environment variables must be alphanumeric with
initial capital letters. Any of these environment variables can be changed by a
request or checkinstall script.

� Both a request script and a checkinstall script can define new environment
variables by assigning values to them and putting them in the installation
environment.

� The table below lists environment variables that are available to all installation
scripts through the environment. None of these can be modified by a script.

TABLE 3–2 Package Environment Variables Available to Scripts

Environment Variable Description

CLIENT_BASEDIR The base directory with respect to the target system. While BASEDIR is the
variable to use if you are referring to a specific package object from the install
system (most likely a server), CLIENT_BASEDIR is the path to include in files
placed on the client system. CLIENT_BASEDIR exists if BASEDIR exists and is
identical to BASEDIR if there is no PKG_INSTALL_ROOT.

Enhancing the Functionality of a Package 61

TABLE 3–2 Package Environment Variables Available to Scripts (Continued)
Environment Variable Description

INST_DATADIR The directory where the package now being read is located. If the package is
being read from a tape, this will be the location of a temporary directory where
the package has been transferred into directory format. In other words,
assuming there is no extension to the package name (for example,
SUNWstuff.d), the request script for the current package would be found at
$INST_DATADIR/$PKG/install.

PATH The search list used by sh to find commands on script invocation. PATH is
usually set to /sbin:/usr/sbin:/usr/bin:/usr/sadm/install/bin

PKGINST The instance identifier of the package being installed. If another instance of the
package is not already installed, the value is the package abbreviation (for
example, SUNWcadap). Otherwise, it is the package abbreviation followed by a
suffix, such as SUNWcadap.4.

PKGSAV The directory where files can be saved for use by removal scripts or where
previously saved files can be found. Available only in the Solaris 2.5 and
compatible releases.

PKG_INSTALL_ROOT The root file system on the target system where the package is being installed.
It exists only if the pkgadd and pkgrm commands were invoked with the -R
option. This conditional existence facilitates its use in procedure scripts in the
form ${PKG_INSTALL_ROOT}/somepath.

PKG_NO_UNIFIED Is an environment variable that gets set if the pkgadd and pkgrm commands
were invoked with the -M and -R options. This environment variable is passed
to any package installation script or package command that is part of the
package environment.

UPDATE This environment variable does not exist under most installation environments.
If it does exist (with the value yes), it means that a package with the same
name, version, and architecture is already installed on the system or that this
package is overwriting an installed package of the same name at the direction
of the administrator. In these events, the original base directory is always used.

Obtaining Package Information for a Script
Two commands can be used from scripts to solicit information about a package:

� The pkginfo command returns information about software packages, such as the
instance identifier and package name.

� The pkgparam command returns values for requested environment variables.

See pkginfo(1), pkgparam(1), and Chapter 4 for more information.

62 Application Packaging Developer’s Guide • December 2001

Exit Codes for Scripts
Each script must exit with one of the exit codes shown in the following table.

TABLE 3–3 Installation Script Exit Codes

Code Meaning

0 Successful completion of script.

1 Fatal error. Installation process is terminated at this point.

2 Warning or possible error condition. Installation continues. A warning message is
displayed at the time of completion.

3 The pkgadd command is cleanly halted. Only the checkinstall script returns
this code,

10 System should be rebooted when installation of all selected packages is completed.
(This value should be added to one of the single-digit exit codes described above.)

20 System should be rebooted immediately upon completing installation of the
current package. (This value should be added to one of the single-digit exit codes
described above.)

See Chapter 5 for examples of exit codes returned by installation scripts.

Note – All installation scripts delivered with your package should have an entry in the
prototype file. The file type should be i (for package installation script).

Writing a request Script
The request script is the only way your package can interact directly with the
administrator installing it. It can be used, for example, to ask the administrator if
optional pieces of a package should be installed.

The output of a request script must be a list of environment variables and their
values. This list can include any of the parameters you created in the pkginfo file and
the CLASSES and BASEDIR parameters. The list can also introduce environment
variables that have not been defined elsewhere (although the pkginfo file should
always provide default values, when practical). For more information on package
environment variables, see “Package Environment Variables” on page 24.

When your request script assigns values to a environment variable, it must then
make those values available to the pkgadd command and other package scripts.

Enhancing the Functionality of a Package 63

request Script Behaviors
� The request script cannot modify any files. It only interacts with administrators

installing the package and creates a list of environment variable assignments based
upon that interaction. To enforce this restriction, the request script is executed as
the non-privileged user install if that user exists; otherwise it is executed as the
non-privileged user nobody. The request script does not have superuser
authority.

� The pkgadd command calls the request script with one argument that names the
script’s response file (the file that stores the administrator’s responses).

� The request script is not executed during package removal. However, the
environment variables assigned by the script are saved and are available during
removal.

Design Rules for request Scripts
� There can be only one request script per package and it must be named

request.

� The environment variable assignments should be added to the installation
environment for use by the pkgadd command and other packaging scripts by
writing them to the response file (known to the script as $1).

� System environment variables and standard installation environment variables,
except for the CLASSES and BASEDIR parameters, cannot be modified by a
request script. Any of the other environment variables you created can be
changed.

Note – A request script can only modify the BASEDIR parameter starting with
the Solaris 2.5 and compatible releases.

� Every environment variable that the request script may manipulate should be
assigned a default value in the pkginfo file.

� The format of the output list should be PARAM=value. For example:

CLASSES=none class1

� The administrator’s terminal is defined as standard input to the request script.

� Do not perform any special analysis of the target system in a request script. It is
risky to test the system for the presence of certain binaries or behaviors, and set
environment variables based upon that analysis, because there is no guarantee that
the request script will actually be executed at install time. The administrator
installing the package may provide a response file that will insert the environment
variables without ever calling the request script. If the request script is also
evaluating the target file system, that evaluation may not happen. An analysis of

64 Application Packaging Developer’s Guide • December 2001

the target system for special treatment is best left to the checkinstall script.

Note – If it is possible that the administrators who will be installing your package will
be using the JumpStart™ product, then the installation of your package must not be
interactive. This implies that either you should not provide a request script with
your package, or you need to communicate to the administrator that they should use
the pkgask command, prior to installation, to store their responses to the request
script. For more information on the pkgask command, see pkgask(1M).

� How to Write a request Script
1. Make the directory containing your information files the current working directory.

2. Create a file named request with your favorite text editor.

3. Save your changes and quit the editor when you are done.

4. Complete one of the following tasks.

� If you want to create additional installation scripts, skip to the next task, “How to
Gather File System Data” on page 67.

� If you have not created your prototype file, complete the procedure “How to
Create a prototype File Using the pkgproto Command” on page 44, and skip to
step 5.

� If you have already created your prototype file, edit it and add an entry for the
installation script you just created.

5. Build your package.

See “How to Build a Package” on page 47, if needed.

Where to Go Next
After you build the package, install it to confirm that it installs correctly and verify its
integrity. Chapter 4 explains how to do this and provides step-by-step instructions on
how to transfer your verified package to a distribution medium.

Example—Writing a request Script
When a request script assigns values to environment variables, it must make those
values available to the pkgadd command. This example shows a request script
segment that performs this task for the four environment variables CLASSES,

Enhancing the Functionality of a Package 65

NCMPBIN, EMACS, and NCMPMAN. (These were defined in an interactive session with
the administrator earlier in the script.)

make environment variables available to installation
service and any other packaging script we might have

cat >$1 <<!
CLASSES=$CLASSES
NCMPBIN=$NCMPBI
EMACS=$EMACS
NCMPMAN=$NCMPMAN

!

Gathering Data With the checkinstall Script
The checkinstall script is executed shortly after the optional request script. It
runs as the user install, if such a user exists, or the user nobody. The
checkinstall script does not have the authority to change file system data; it is
strictly a data gatherer. However, based on the information it gathers, it can create or
modify environment variables in order to control the course of the resulting
installation. It is also capable of cleanly halting the installation process.

The checkinstall script is intended to perform basic checks on a file system that
would not be normal for the pkgadd command. For example, it can be used to check
ahead to determine if any files from the current package are going to overwrite
existing files, or manage general software dependencies (the depend file only
manages package-level dependencies).

Unlike the request script, the checkinstall script is executed whether or not a
response file is provided; and, its presence does not brand the package as
“interactive.” This means that the checkinstall script can be used in situations
where a request script is forbidden or administrative interaction is not practical.

Note – The checkinstall script is available starting with the Solaris 2.5 and
compatible releases.

checkinstall Script Behaviors
� The checkinstall script cannot modify any files. It only analyzes the state of the

system and creates a list of environment variable assignments based upon that
interaction. To enforce this restriction, the checkinstall script is executed as the
non-privileged user install if that user exists; otherwise it is executed as the
non-privileged user nobody. The checkinstall script does not have superuser
authority.

66 Application Packaging Developer’s Guide • December 2001

� The pkgadd command calls the checkinstall script with one argument that
names the script’s response file (the file that stores the administrator’s responses).

� The checkinstall script is not executed during package removal. However, the
environment variables assigned by the script are saved and are available during
removal.

Design Rules for checkinstall Scripts
� There can be only one checkinstall script per package and it must be named

checkinstall.

� The environment variable assignments should be added to the installation
environment for use by the pkgadd command and other packaging scripts by
writing them to the response file (known to the script as $1).

� System environment variables and standard installation environment variables,
except for the CLASSES and BASEDIR parameters, cannot be modified by a
checkinstall script. Any of the other environment variables you created can be
changed.

� Every environment variable that the checkinstall script may manipulate
should be assigned a default value in the pkginfo file.

� The format of the output list should be PARAM=value. For example:

CLASSES=none class1

� Administrator interaction is not permitted during execution of a checkinstall
script. All administrator interaction is restricted to the request script.

� How to Gather File System Data
1. Make the directory containing your information files the current working directory.

2. Create a file named checkinstall with your favorite text editor.

3. Save your changes and quit the editor when you are done.

4. Complete one of the following tasks.

� If you want to create additional installation scripts, skip to the next task, “How to
Write Procedure Scripts” on page 70.

� If you have not created your prototype file, complete the procedure “How to
Create a prototype File Using the pkgproto Command” on page 44, and skip to
step 5.

� If you have already created your prototype file, edit it and add an entry for the
installation script you just created.

Enhancing the Functionality of a Package 67

5. Build your package.

See “How to Build a Package” on page 47, if needed.

Where to Go Next
After you build the package, install it to confirm that it installs correctly and verify its
integrity. Chapter 4 explains how to do this and provides step-by-step instructions on
how to transfer your verified package to a distribution medium.

Example—Writing a checkinstall Script
This example checkinstall script checks to see if database software needed by the
SUNWcadap package is installed.

checkinstall script for SUNWcadap
#
This confirms the existence of the required specU database

First find which database package has been installed.
pkginfo -q SUNWspcdA # try the older one

if [$? -ne 0]; then
pkginfo -q SUNWspcdB # now the latest

if [$? -ne 0]; then # oops
echo "No database package can be found. Please install the"
echo "SpecU database package and try this installation again."
exit 3 # Suspend

else
DBBASE="‘pkgparam SUNWsbcdB BASEDIR‘/db" # new DB software

fi
else

DBBASE="‘pkgparam SUNWspcdA BASEDIR‘/db" # old DB software
fi

Now look for the database file we will need for this installation
if [$DBBASE/specUlatte]; then

exit 0 # all OK
else

echo "No database file can be found. Please create the database"
echo "using your installed specU software and try this"
echo "installation again."
exit 3 # Suspend

fi

68 Application Packaging Developer’s Guide • December 2001

Writing Procedure Scripts
The procedure scripts provide a set of instructions to be performed at particular points
in package installation or removal. The four procedure scripts must be named one of
the predefined names, depending on when the instructions are to be executed, and are
executed without arguments.

� The preinstall script

Runs before class installation begins. No files should be installed by this script.

� The postinstall script

Runs after all volumes have been installed.

� The preremove script

Runs before class removal begins. No files should be removed by this script.

� The postremove script

Runs after all classes have been removed.

Procedure Script Behaviors
Procedure scripts are executed as uid=root and gid=other.

Design Rules for Procedure Scripts
� Each script should be able to be executed more than once since it is executed once

for each volume in a package. This means that executing a script any number of
times with the same input produces the same results as executing the script only
once.

� Each procedure script that installs a package object not in the pkgmap file must use
the installf command to notify the package database that it is adding or
modifying a path name. After all additions or modifications are complete, this
command should be invoked with the -f option. Only postinstall and
postremove scripts may install package objects in this way. See installf(1M)
and Chapter 5 for more information.

� Administrator interaction is not permitted during execution of a procedure script.
All administrator interaction is restricted to the request script.

� Each procedure script that removes files not installed from the pkgmap file must
use the removef command to notify the package database that it is removing a
path name. After removal is complete, this command should be invoked with the
-f option. See removef(1M) and Chapter 5 for details and examples.

Enhancing the Functionality of a Package 69

Note – The installf and removef commands must be used because procedure
scripts are not automatically associated with any path names listed in the pkgmap
file.

� How to Write Procedure Scripts
1. Make the directory containing your information files the current working directory.

2. Create one or more procedure scripts with your favorite text editor.

A procedure script must be named one of the predefined names: preinstall,
postinstall, preremove, or postremove.

3. Save your changes and quit the editor.

4. Complete one of the following tasks.

� If you want to create class action scripts, skip to the next task, “How to Write Class
Action Scripts” on page 77.

� If you have not created your prototype file, complete the procedure “How to
Create a prototype File Using the pkgproto Command” on page 44, and skip to
step 5.

� If you have already created your prototype file, edit it and add an entry for each
installation script you just created.

5. Build your package.

See “How to Build a Package” on page 47, if needed.

Where to Go Next
After you build the package, install it to confirm that it installs correctly and verify its
integrity. Chapter 4 explains how to do this and provides step-by-step instructions on
how to transfer your verified package to a distribution medium.

Writing Class Action Scripts

Defining Object Classes
Object classes allow a series of actions to be performed on a group of package objects
at installation or removal. You assign objects to a class in the prototype file. All

70 Application Packaging Developer’s Guide • December 2001

package objects must be given a class, although the class of none is used by default
for objects that require no special action.

The installation parameter CLASSES, defined in the pkginfo file, is a list of classes to
be installed (including the none class).

Note – Objects defined in the pkgmap file that belong to a class not listed in this
parameter in the pkginfo file will not be installed.

The CLASSES list determines the order of installation. Class none is always installed
first, if present, and removed last. Since directories are the fundamental support
structure for all other file system objects, they should all be assigned to the none class.
Exceptions can be made, but as a general rule, the none class is safest. The reason for
this is to ensure that the directories are created before the objects they will contain and
also to ensure that no attempt is made to delete a directory before it has been emptied.

How Classes Are Processed During Installation
The following list describes the system actions that occur when a class is installed. The
actions are repeated once for each volume of a package as that volume is being
installed.

1. The pkgadd command creates a path name list.

The pkgadd command creates a list of path names upon which the action script
will operate. Each line of this list contains source and destination path names,
separated by a space. The source path name indicates where the object to be
installed resides on the installation volume and the destination path name
indicates the location on the target system where the object should be installed. The
contents of the list are restricted by the following criteria:

� The list contains only path names belonging to the associated class.

� If the attempt to create the package object fails, directories, named pipes,
character devices, block devices, and symbolic links are included in the list with
the source path name set to /dev/null. Normally they will be automatically
created by the pkgadd command (if not already in existence) and given proper
attributes (mode, owner, group) as defined in the pkgmap file.

� Linked files where the file type is l are not included in the list under any
circumstances. Hard links in the given class are created in item 4.

2. If no class action script is provided for installation of a particular class, the path
names in the generated list are copied from the volume to the appropriate target
location.

3. If there is a class action script, the script is executed.

Enhancing the Functionality of a Package 71

The class action script is invoked with standard input containing the list generated
in item 1. If this is the last volume of the package, or there are no more objects in
this class, the script is executed with the single argument of ENDOFCLASS.

Note – Even if there are no regular files of this class anywhere in the package, the
class action script will be called at least once with an empty list and the
ENDOFCLASS argument.

4. The pkgadd command performs a content and attribute audit and creates hard
links.

After successfully executing items 2 or 3, the pkgadd command audits both
content and attribute information for the list of path names. The pkgadd command
creates the links associated with the class automatically. Detected attribute
inconsistencies are corrected for all path names in the generated list.

How Classes Are Processed During Removal
Objects are removed class by class. Classes that exist for a package but that are not
listed in the CLASSES parameter are removed first (for example, an object installed
with the installf command). Classes listed in the CLASSES parameter are removed
in reverse order. The none class is always removed last. The following list describes
the system actions that occur when a class is removed:

1. The pkgrm command creates a path name list.

The pkgrm command creates a list of installed path names that belong to the
indicated class. Path names referenced by another package are excluded from the
list unless their file type is e (meaning the file should be edited upon installation or
removal).

If the package being removed modified any files of type e during installation, it
should remove just the lines it added. Do not delete a non-empty editable file; just
remove the lines the package added.

2. If there is no class action script, the path names are deleted.

If your package has no removal class action script for the class, all the path names
in the list generated by the pkgrm command are deleted.

Note – Files with a file type of e (editable), which are not assigned to a class and an
associated class action script, will be removed at this point, even if the path name is
shared with other packages.

3. If there is a class action script, the script is executed.

72 Application Packaging Developer’s Guide • December 2001

The pkgrm command invokes the class action script with standard input for the
script containing the list generated in item 1.

4. The pkgrm command performs an audit.

After successfully executing the class action script, the pkgrm command removes
knowledge of the path names from the package database unless a path name is
referenced by another package.

The Class Action Script
The class action script defines a set of actions to be executed during installation or
removal of a package. The actions are performed on a group of path names based on
their class definition. (See Chapter 5 for examples of class action scripts.)

The name of a class action script is based on the class on which it should operate and
whether those operations should occur during package installation or removal. The
two name formats are as follows:

Name Format Description

i.class Operates on path names in the indicated class during package
installation.

r.class Operates on path names in the indicated class during package
removal.

For example, the name of the installation script for a class named manpage would be
i.manpage and the removal script would be named r.manpage.

Note – This file name format is not used for files belonging to the sed, awk, or build
system classes. For more information on these special classes, see “The Special System
Classes” on page 74.

Class Action Script Behaviors
� Class action scripts are executed as uid=root and gid=other.

� A script is executed for all files in the given class on the current volume (for
example, floppy disk).

� The pkgadd and pkgrm commands create a list of all objects listed in the pkgmap
file that belong to the class. As a result, a class action script can act only upon path
names defined in the pkgmap that belong to a particular class.

� When a class action script is executed for the last time (that is, no more files are
found belonging to that class), the class action script will be executed once with the

Enhancing the Functionality of a Package 73

keyword argument ENDOFCLASS.

� Administrator interaction is not permitted during execution of a class action script.

Design Rules for Class Action Scripts
� If a package spans more than one volume, the class action script is executed once

for each volume that contains at least one file belonging to a class. Consequently,
each script must be able to be executed more than once. This means that executing
a script any number of times with the same input must produce the same results as
executing the script only once.

� When a file is part of a class that has a class action script, the script must install the
file. The pkgadd command does not install files for which a class action script
exists, although it does verify the installation.

� A class action script should never add, remove, or modify a path name or system
attribute that does not appear in the list generated by the pkgadd command. For
more information on this list, see item 1 in “How Classes Are Processed During
Installation” on page 71.

� When your script sees the ENDOFCLASS argument, put post-processing actions
(like clean up) into your script.

� All administrator interaction is restricted to the request script. Do not try to
obtain information from the administrator using a class action script.

The Special System Classes
The system provides four special classes. They are:

� The sed class

Provides a method for using sed instructions to edit files upon package
installation and removal.

� The awk class

Provides a method for using awk instructions to edit files upon package
installation and removal.

� The build class

Provides a method to dynamically construct or modify a file using Bourne shell
commands.

� The preserve class

Provides a method to preserve files that should not be overwritten by future
package installations.

74 Application Packaging Developer’s Guide • December 2001

If there are several files in a package that require special processing that can be fully
defined through sed, awk, or sh commands, installation will be faster by using the
system classes rather than multiple classes and their corresponding class action
scripts.

The sed Class Script

The sed class provides a method to modify an existing object on the target system.
The sed class action script executes automatically at installation if a file belonging to
class sed exists. The name of the sed class action script should be the same as the
name of the file on which the instructions will be executed.

A sed class action script delivers sed instructions in the format shown in the figure
below.

comment, which may appear on any line in the file

!install
sed(1) instructions which will be invoked during
installation of the object

[address [,address]] function [arguments]

. . .

!remove

sed(1) instructions to be invoked during the removal process

[address [,address]] function [arguments]

Two commands indicate when instructions should be executed. The sed instructions
that follow the !install command are executed during package installation and
those that follow the !remove command are executed during package removal. It
does not matter which order these commands are used in the file.

For more information on sed instructions, see sed(1). For examples of sed class
action scripts, see Chapter 5.

The awk Class Script

The awk class provides a method to modify an existing object on the target system.
Modifications are delivered as awk instructions in an awk class action script.

The awk class action script is executed automatically at installation if a file belonging
to class awk exists. Such a file contains instructions for the awk class script in the
format shown in the figure below.

Enhancing the Functionality of a Package 75

comment, which may appear on any line in the file

!install

awk(1) program to install changes

. . . (awk program)

!remove

awk1(1) program to remove changes

. . . (awk program)

Two commands indicate when instructions should be executed. The awk instructions
that follow the !install command are executed during package installation, and
those that follow the !remove command are executed during package removal. It
does not matter in which order these commands are used in the file.

The name of the awk class action script should be the same as the name of the file on
which the instructions will be executed.

The file to be modified is used as input to awk and the output of the script ultimately
replaces the original object. Environment variables may not be passed to the awk
command with this syntax.

For more information on awk instructions, see awk(1).

The build Class Script

The build class creates or modifies a package object file by executing Bourne shell
instructions. These instructions are delivered as the package object, which runs
automatically at installation if it belongs to the build class.

The name of the build class action script should be the same as the name of the file
on which the instructions will be executed, and must be executable by the sh
command. The script’s output becomes the new version of the file as it is built or
modified. If the script produces no output, the file will not be created or modified.
Therefore, the script can modify or create the file itself.

For example, if a package delivers a default file, /etc/randomtable, and if the file
does not already exist on the target system, the prototype file entry might be:

e build /etc/randomtable ? ? ?

and the package object, /etc/randomtable, might look like this:

!install
randomtable builder
if [-f $PKG_INSTALL_ROOT/etc/randomtable]; then

echo "/etc/randomtable is already in place.";

76 Application Packaging Developer’s Guide • December 2001

else
echo "# /etc/randomtable" > $PKG_INSTALL_ROOT/etc/randomtable
echo "1121554 # first random number" >> $PKG_INSTALL_ROOT/etc/randomtable

fi

!remove
randomtable deconstructor
if [-f $PKG_INSTALL_ROOT/etc/randomtable]; then

the file can be removed if it’s unchanged
if [egrep "first random number" $PKG_INSTALL_ROOT/etc/randomtable]; then

rm $PKG_INSTALL_ROOT/etc/randomtable;
fi

fi

See Chapter 5 for another example using the build class.

The preserve Class Script

The preserve class preserves a package object file by determining whether or not an
existing file should be overwritten when the package is installed. Two possible
scenarios when using a preserve class script are:

� If the file to be installed does not already exist in the target directory, the file will be
installed normally.

� If the file to be installed exists in the target directory, a message describing the file
exists is displayed, and the file is not installed.

Both scenario outcomes are considered successful by the preserve script. A failure
occurs only, when in the second scenario, the file is unable to be copied to the target
directory.

Starting with the Solaris 7 release, the i.preserve script and a copy of this script,
i.CONFIG.prsv, can be found in the /usr/sadm/install/scripts directory
with the other class action scripts.

Modify the script to include the filename or filenames you would like to preserve.

� How to Write Class Action Scripts
1. Make the directory containing your information files the current working directory.

2. Assign the package objects in the prototype file the desired class names. For
example, assigning objects to an application and manpage class would look like:

f manpage /usr/share/man/manl/myappl.1l

f application /usr/bin/myappl

Enhancing the Functionality of a Package 77

3. Modify the CLASSES parameter in the pkginfo file to contain the class names you
want to use in your package. For example, entries for the application and
manpage classes would look like:

CLASSES=manpage application none

Note – The none class is always installed first and removed last, regardless of where it
appears in the definition of the CLASSES parameter.

4. If you are a creating class action script for a file belonging to the sed, awk, or build
class, make the directory containing the package object your current working
directory.

5. Create the class action scripts or package objects (for files belonging to the sed,
awk, or build class). An installation script for a class named application would
be named i.application and a removal script would be named r.application.

Remember, when a file is part of a class that has a class action script, the script must
install the file. The pkgadd command does not install files for which a class action
script exists, although it does verify the installation. And, if you define a class but do
not deliver a class action script, the only action taken for that class is to copy
components from the installation medium to the target system (the default pkgadd
behavior).

6. Complete one of the following tasks.

� If you have not created your prototype file, complete the procedure “How to
Create a prototype File Using the pkgproto Command” on page 44, and skip to
step 7.

� If you have already created your prototype file, edit it and add an entry for each
installation script you just created.

7. Build your package.

See “How to Build a Package” on page 47, if needed.

Where to Go Next
After you build the package, install it to confirm that it installs correctly and verify its
integrity. Chapter 4 explains how to do this and provides step-by-step instructions on
how to transfer your verified package to a distribution medium.

78 Application Packaging Developer’s Guide • December 2001

CHAPTER 4

Verifying and Transferring a Package

This chapter describes how to verify your package’s integrity and transfer it to a
distribution medium, such as floppy disk or a CD-ROM.

This is a list of the overview information in this chapter:

� “Verifying and Transferring a Package Task Map” on page 79
� “Installing Software Packages” on page 80
� “Verifying the Integrity of a Package” on page 82
� “Displaying Additional Information About Installed Packages” on page 84
� “Removing a Package” on page 90
� “Transferring a Package to a Distribution Medium” on page 90

Verifying and Transferring a Package
Task Map
The table below describes the steps you should follow in order to verify your
package’s integrity and transfer it to a distribution medium.

TABLE 4–1 Verifying and Transferring a Package Task Map

Task Description For Instructions, Go To ...

1. Build Your Package Build your package on disk. Chapter 2

2. Install Your Package Test your package by installing it and making
sure that it installs without errors.

“How to Install a Package on a
Standalone or Server”
on page 81

79

TABLE 4–1 Verifying and Transferring a Package Task Map (Continued)
Task Description For Instructions, Go To ...

2. Verify Your Package’s
Integrity

Use the pkgchk command to verify the
integrity of your package.

“How to Verify the Integrity of
Your Package” on page 83

3. Obtain Other Package
Information

Optional. Use the pkginfo and pkgparam
commands to perform package-specific
verification.

“Displaying Additional
Information About Installed
Packages” on page 84

4. Remove the Installed
Package

Use the pkgrm command to remove your
installed package from the system.

“How to Remove a Package”
on page 90

5. Transfer Your Package to a
Distribution Medium

Use the pkgtrans command to transfer your
package (in package format) to a distribution
medium.

“How to Transfer Your Package
to a Distribution Medium”
on page 91

Installing Software Packages
Software packages are installed using the pkgadd command. This command transfers
the contents of a software package from the distribution medium or directory and
installs it onto a system.

This section provides basic installation instructions for installing your package in
order to verify that it installs correctly.

The Installation Software Database
Information for all packages installed on a system is kept in the installation software
database. There is an entry for every object in a package, with information such as the
component name, where it resides, and its type. An entry contains a record of the
package to which a component belongs; other packages that might reference the
component; and information such as path name, where the component resides and the
component type. Entries are added and removed automatically by the pkgadd and
pkgrm commands. You can view the information in the database by using the pkgchk
and the pkginfo commands.

Two types of information are associated with each package component. The attribute
information describes the component itself. For example, the component’s access
permissions, owner ID, and group ID are attribute information. The content
information describes the contents of the component, such as file size and time of last
modification.

80 Application Packaging Developer’s Guide • December 2001

The installation software database keeps track of the package status. A package can be
either fully installed (it has successfully completed the installation process), or
partially installed (it did not successfully complete the installation process).

When a package is partially installed, portions of a package may have been installed
before installation was terminated; thus, part of the package is installed, and recorded
in the database, and part is not. When you reinstall the package, you are prompted to
start at the point where installation stopped because the pkgadd command can access
the database and detect which portions have already been installed. You can also
remove the portions that have been installed, based on the information in the
installation software database using the pkgrm command.

Interacting with the pkgadd Command
If the pkgadd command encounters a problem, it first checks the installation
administration file for instructions. (See admin(4) for more information.) If no
instructions exist, or if the relevant parameter in the administration file is set to ask,
the pkgadd displays a message describing the problem and prompts for a reply. The
prompt is usually Do you want to continue with this installation?. You
should respond with yes, no, or quit.

If you have specified more than one package, no stops installation of the package
being installed but pkgadd continues with installation of the other packages. quit
indicates that pkgadd should stop installation of all packages.

Installing Packages on Standalones or Servers in a
Homogeneous Environment
This section describes how to install packages on a standalone or a server system in a
homogeneous environment.

� How to Install a Package on a Standalone or Server
1. Build your package.

See “Building a Package” on page 46, if needed.

2. Log in to the system as superuser.

Verifying and Transferring a Package 81

3. Add the software package to the system.

pkgadd -d device-name [pkg-abbrev...]

-d device-name Specifies the location of the package. Note that device-name can
be a full directory path name or the identifiers for a tape,
floppy disk, or removable disk.

pkg-abbrev Is the name of one or more packages (separated by spaces) to
be added. If omitted, pkgadd installs all available packages.

Where to Go Next
If you are ready to go to the next task, see “How to Verify the Integrity of Your
Package” on page 83.

Example—Installing Packages on Standalones and Servers
To install a software package named pkgA from a tape device named /dev/rmt/0,
you would enter the following command:

pkgadd -d /dev/rmt/0 pkgA

You can also install multiple packages at the same time, as long as you separate
package names with a space, as follows:

pkgadd -d /dev/rmt/0 pkgA pkgB pkgC

If you do not name the device on which the package resides, the command checks the
default spool directory (/var/spool/pkg). If the package is not there, the installation
fails.

Verifying the Integrity of a Package
The pkgchk command enables you to check the integrity of packages, whether they
are installed on a system or in package format (ready to be installed with the pkgadd
command). It confirms package structure or the installed files and directories, or
displays information about package objects. The pkgchk command can list or check
the following:

� The package installation scripts.

� The contents or attributes, or both, of objects currently installed on the system.

82 Application Packaging Developer’s Guide • December 2001

� The contents of a spooled, uninstalled package.

� The contents or attributes, or both, of objects described in the specified pkgmap file.

For more information about this command, refer to pkgchk(1M).

The pkgchk command performs two kinds of checks. It checks file attributes (the
permissions and ownership of a file and major/minor numbers for block or character
special devices) and the file contents (the size, checksum, and modification date). By
default, the command checks both the file attributes and the file contents.

The pkgchk command also compares the file attributes and contents of the installed
package against the installation software database. The entries concerning a package
may have been changed since the time of installation; for example, another package
may have changed a package component. The database reflects that change.

� How to Verify the Integrity of Your Package
1. Install your package.

See “How to Install a Package on a Standalone or Server” on page 81, if needed.

2. Verify the integrity of your package.

pkgchk [-v] [-R root-path] [pkg-abbrev...]

-v Lists files as they are processed.

-R root-path Specifies the location of the client system’s root file system.

pkg-abbrev Is the name of one or more packages (separated by spaces) to
be checked. If omitted, pkgchk checks all available packages.

Where to Go Next
If you are ready to go to the next task, see “How to Obtain Information With the
pkginfo Command” on page 89.

Examples—Verifying the Integrity of a Package
This example shows the command you should use to verify the integrity of an
installed package.

$ pkgchk pkg-abbrev
$

Verifying and Transferring a Package 83

If there are errors, the pkgchk command prints them. Otherwise, it does not print
anything and returns an exit code of 0. If you do not supply a package abbreviation,
then it will check all of the packages on the system.

Alternately, you could use the -v option, which will print a list of files in the package
if there are no errors. For example:

$ pkgchk -v SUNWcadap
/opt/SUNWcadap
/opt/SUNWcadap/demo
/opt/SUNWcadap/demo/file1
/opt/SUNWcadap/lib
/opt/SUNWcadap/lib/file2
/opt/SUNWcadap/man
/opt/SUNWcadap/man/man1
/opt/SUNWcadap/man/man1/file3.1
/opt/SUNWcadap/man/man1/file4.1
/opt/SUNWcadap/man/windex
/opt/SUNWcadap/srcfiles
/opt/SUNWcadap/srcfiles/file5
/opt/SUNWcadap/srcfiles/file6

$

If you need to verify a package that is installed on a client system’s root file system,
use this command:

$ pkgchk -v -R root-path pkg-abbrev

Displaying Additional Information
About Installed Packages
You can use two other commands to display information about installed packages:

� The pkgparam command displays parameter values.

� The pkginfo command displays information from the installation software
database.

The pkgparam Command
The pkgparam command enables you to display the values associated with the
parameters you specified on the command line. The values are retrieved from either

84 Application Packaging Developer’s Guide • December 2001

the pkginfo file for a specific package, or from the file you name. One parameter
value is shown per line. You can display the values only or the parameters and their
values.

� How to Obtain Information With the pkgparam
Command

1. Install your package.

See “How to Install a Package on a Standalone or Server” on page 81, if needed.

2. Display additional information about your package.

pkgparam [-v] pkg-abbrev [param...]

-v Displays the name of the parameter and its value.

pkg-abbrev Is the name of a specific package.

param Specifies one or more parameters whose value is displayed.

Where to Go Next
If you are ready to go to the next task, see “How to Remove a Package” on page 90.

Examples—Obtaining Information With the pkgparam
Command
For example, to display values only, use this command.

$ pkgparam SUNWcadap
none
/opt
US/Mountain
/sbin:/usr/sbin:/usr/bin:/usr/sadm/install/bin
/usr/sadm/sysadm
SUNWcadap
Chip designers need CAD application software to design abc
chips. Runs only on xyz hardware and is installed in the usr
partition.
system
release 1.0
SPARC
venus990706083849
SUNWcadap
/var/sadm/pkg/SUNWcadap/save

Verifying and Transferring a Package 85

Jul 7 1999 09:58

$

To display parameters and their values, use the following command.

$ pkgparam -v SUNWcadap
pkgparam -v SUNWcadap
CLASSES=’none’
BASEDIR=’/opt’
TZ=’US/Mountain’
PATH=’/sbin:/usr/sbin:/usr/bin:/usr/sadm/install/bin’
OAMBASE=’/usr/sadm/sysadm’
PKG=’SUNWcadap’
NAME=’Chip designers need CAD application software to design abc chips.
Runs only on xyz hardware and is installed in the usr partition.’
CATEGORY=’system’
VERSION=’release 1.0’
ARCH=’SPARC’
PSTAMP=’venus990706083849’
PKGINST=’SUNWcadap’
PKGSAV=’/var/sadm/pkg/SUNWcadap/save’
INSTDATE=’Jul 7 1999 09:58’

$

Or, if you want to display the value of a specific parameter, use this format:

$ pkgparam SUNWcadap BASEDIR
/opt

$

For more information, refer to pkgparam(1).

The pkginfo Command
You can display information about installed packages with the pkginfo command.
This command has several options that enable you to customize both the format and
the contents of the display.

You can request information about any number of package instances.

The Default pkginfo Display
When the pkginfo command is executed without options, it displays the category,
package instance, and package name of all packages that have been completely
installed on your system. The display is organized by categories as shown in the
following example.

$ pkginfo
.

86 Application Packaging Developer’s Guide • December 2001

.

.
system SUNWinst Install Software
system SUNWipc Interprocess Communications
system SUNWisolc XSH4 conversion for ISO Latin character sets
application SUNWkcspf KCMS Optional Profiles
application SUNWkcspg KCMS Programmers Environment
application SUNWkcsrt KCMS Runtime Environment
.
.
.

$

Customizing the Format of the pkginfo Display
You can get a pkginfo display in any of three formats: short, extracted, and long.

The short format is the default. It shows only the category, package abbreviation, and
full package name, as shown in “The Default pkginfo Display” on page 86.

The extracted format shows the package abbreviation, package name, package
architecture (if available), and package version (if available). Use the -x option to
request the extracted format as shown in the next example.

$ pkginfo -x
.
.
.
SUNWipc Interprocess Communications

(sparc) 11.8.0,REV=1999.08.20.12.37
SUNWisolc XSH4 conversion for ISO Latin character sets

(sparc) 1.0,REV=1999.07.10.10.10
SUNWkcspf KCMS Optional Profiles

(sparc) 1.1.2,REV=1.5
SUNWkcspg KCMS Programmers Environment

(sparc) 1.1.2,REV=1.5
.
.
.

$

Using the -l option produces a display in the long format showing all of the available
information about a package, as in the following example.

$ pkginfo -l SUNWcadap
PKGINST: SUNWcadap

NAME: Chip designers need CAD application software to
design abc chips. Runs only on xyz hardware and is installed
in the usr partition.
CATEGORY: system

ARCH: SPARC
VERSION: release 1.0

Verifying and Transferring a Package 87

BASEDIR: /opt
PSTAMP: system980706083849

INSTDATE: Jul 7 1999 09:58
STATUS: completely installed
FILES: 13 installed pathnames

6 directories
3 executables

3121 blocks used (approx)

$

Parameter Descriptions for the pkginfo Long Format
The table below describes the package parameters that can be displayed for each
package. A parameter and its value are displayed only when the parameter has a
value assigned to it.

TABLE 4–2 Package Parameters

Parameter Description

ARCH The architecture supported by this package.

BASEDIR The base directory in which the software package resides (shown if the
package is relocatable).

CATEGORY The software category, or categories, of which this package is a member (for
example, system or application).

CLASSES A list of classes defined for a package. The order of the list determines the
order in which the classes are installed. Classes listed first will be installed
first (on a media by media basis). This parameter may be modified by the
request script.

DESC Text that describes the package.

EMAIL The electronic mail address for user inquiries.

HOTLINE Information on how to receive hotline help about this package.

INTONLY Indicates that the package should only be installed interactively when set to
any non-NULL value.

ISTATES A list of allowable run states for package installation (for example, S s 1).

MAXINST The maximum number of package instances that should be allowed on a
machine at the same time. By default, only one instance of a package is
allowed.

NAME The package name, generally text describing the package abbreviation.

88 Application Packaging Developer’s Guide • December 2001

TABLE 4–2 Package Parameters (Continued)
ORDER A list of classes defining the order in which they should be put on the

medium. Used by the pkgmk command in creating the package. Classes not
defined in this parameter are placed on the medium using the standard
ordering procedures.

PKGINST Abbreviation for the package being installed.

PSTAMP The production stamp for this package

RSTATES A list of allowable run states for package removal (for example, S s 1).

ULIMIT If set, this parameter is passed as an argument to the ulimit command,
which establishes the maximum size of a file during installation. This
applies only to files created by procedure scripts.

VENDOR The name of the vendor who supplied the software package.

VERSION The version of this package.

VSTOCK The vendor-supplied stock number.

For detailed information about the pkginfo command, refer to the pkginfo(1) man
page.

� How to Obtain Information With the pkginfo
Command

1. Install your package.

See “How to Install a Package on a Standalone or Server” on page 81, if needed.

2. Display additional information about your package.

pkginfo [-x | -l] [pkg-abbrev]

-x Displays package information in extracted format.

-l Displays package information in long format.

pkg-abbrev Is the name of a specific package. If omitted, the pkginfo
command displays information about all installed packages,
in the default format.

Where to Go Next
If you are ready to go to the next task, see “How to Remove a Package” on page 90.

Verifying and Transferring a Package 89

Removing a Package
Because the pkgrm command updates information in the software products database,
it is important when you remove a package to use the pkgrm command—even though
you might be tempted to use the rm command instead. For example, you could use
the rm command to remove a binary executable file, but that is not the same as using
pkgrm to remove the software package that includes that binary executable. Using the
rm command to remove a package’s files will corrupt the software products database.
(If you really only want to remove one file, you can use the removef command,
which will update the software product database correctly. See removef(1) for more
information.)

� How to Remove a Package
1. Log in to the system as superuser.

2. Remove an installed package.

pkgrm pkg-abbrev ...

pkg-abbrev Is the name of one or more packages (separated by spaces). If
omitted, pkgrm removes all available packages.

3. Verify that the package has successfully been removed, use the pkginfo command.

$ pkginfo | egrep pkg-abbrev

If pkg-abbrev is installed, the pkginfo command returns a line of information about it.
Otherwise, pkginfo returns the system prompt.

Transferring a Package to a Distribution
Medium
The pkgtrans command moves packages and performs package format translations.
You can use the pkgtrans command to perform the following translations for an
installable package:

� File system format to datastream format

90 Application Packaging Developer’s Guide • December 2001

� Datastream format to file system format
� One file system format to another file system format

� How to Transfer Your Package to a Distribution
Medium

1. Build your package, creating a directory format package, if you have not already
done so.

For more information, see “How to Build a Package” on page 47.

2. Install your package to verify that it installs correctly.

See “How to Install a Package on a Standalone or Server” on page 81, if needed.

3. Verify your package’s integrity.

See “How to Verify the Integrity of Your Package” on page 83, “How to Obtain
Information With the pkgparam Command” on page 85, and “How to Obtain
Information With the pkginfo Command” on page 89, if needed.

4. Remove the installed package from the system.

See “How to Remove a Package” on page 90, if needed.

5. Transfer the package (in package format) to a distribution medium.

To perform a basic translation, execute the following command:

$ pkgtrans device1 device2 [pkg-abbrev...]

device1 Is the name of the device where the package currently resides.

device2 Is the name of the device onto which the translated package will be
written.

[pkg-abbrev] Is one or more package abbreviations.

If no package names are given, all packages residing in device1 are translated and
written to device2.

Verifying and Transferring a Package 91

Note – If more than one instance of a package resides on device1, you must use an
instance identifier for the package. For a description of a package identifier, see
“Defining a Package Instance” on page 27. When an instance of the package being
translated already exists on device2, the pkgtrans command does not perform the
translation. You can use the -o option to tell the pkgtrans command to overwrite
any existing instances on the destination device and the -n option to tell it to create a
new instance if one already exists. Note that this check does not apply when device2
supports a datastream format.

Where to Go Next
At this point you have completed the steps necessary to design, build, verify, and
transfer your package. If you are interested in looking at some case studies, see
Chapter 5. If you are interested in advanced package design ideas, see Chapter 6.

92 Application Packaging Developer’s Guide • December 2001

CHAPTER 5

Package Creation Case Studies

This chapter provides case studies to show packaging scenarios such as installing
objects conditionally, determining at run time how many files to create, and modifying
an existing data file during package installation and removal.

Each case study begins with a description, followed by a list of the packaging
techniques used, a narrative description of the approach taken when using those
techniques, and sample files and scripts associated with the case study.

This is a list of the case studies in this chapter:

� “Soliciting Input From the Administrator” on page 93
� “Creating a File at Installation and Saving It During Removal” on page 97
� “Defining Package Compatibilities and Dependencies” on page 100
� “Modifying a File Using Standard Classes and Class Action Scripts” on page 103
� “Modifying a File Using the sed Class and a postinstall Script” on page 106
� “Modifying a File Using The build Class” on page 108
� “Modifying crontab Files During Installation” on page 110
� “Installing and Removing a Driver With Procedure Scripts” on page 113
� “Installing a Driver Using the sed Class and Procedure Scripts” on page 116

Soliciting Input From the Administrator
The package in this case study has three types of objects. The administrator may
choose which of the three types to install and where to locate the objects on the
installation machine.

93

Techniques
This case study demonstrates the following techniques:

� Using parametric path names (variables in object path names) that are used to
establish multiple base directories

For information on parametric path names, see “Parametric Path Names”
on page 35.

� Using a request script to solicit input from the administrator

For information on request scripts, see “Writing a request Script” on page 63.

� Setting conditional values for an installation parameter

Approach
To set up the selective installation in this case study, you must complete the following
tasks:

� Define a class for each type of object that can be installed.

In this case study, the three object types are the package executables, the man
pages, and the emacs executables. Each type has its own class: bin, man, and
emacs, respectively. Notice that in the prototype file all the object files belong to
one of these three classes.

� Initialize the CLASSES parameter in the pkginfo file to null.

Normally when you define a class, you should list that class in the CLASSES
parameter in the pkginfo file. Otherwise, no objects in that class are installed. For
this case study, the parameter is initially set to null, which means no objects will
get installed. The CLASSES parameter will be changed by the request script,
based on the choices of the administrator. This way, the CLASSES parameter is set
to only those object types that the administrator wants installed.

Note – Usually it is a good idea to set parameters to a default value. If this package
had components common to all three object types, you could assign them to the
none class, and then set the CLASSES parameter equal to none.

� Insert parametric path names into the prototype file.

The request script sets these environment variables to the value that the
administrator provides. Then, the pkgadd command resolves these environment
variables at installation time and knows where to install the package.

The three environment variables used in this example are set to their default in the
pkginfo file and serve the following purposes:

� $NCMPBIN defines the location for object executables

94 Application Packaging Developer’s Guide • December 2001

� $NCMPMAN defines the location for man pages
� $EMACS defines the location for emacs executables

The example prototype file shows how to define the object path names with
variables.

� Create a request script to ask the administrator which parts of the package
should be installed and where they should be placed.

The request script for this package asks the administrator two questions:

� Should this part of the package be installed?

When the answer is yes, the appropriate class name is added to the CLASSES
parameter. For example, when the administrator chooses to install the man
pages associated with this package, the class man is added to the CLASSES
parameter.

� If so, where should this part of the package be placed?

The appropriate environment variable is set to the response to this question. In
the man page example, the variable $NCMPMAN is set to the response value.

These two questions are repeated for each of the three object types.

At the end of the request script, the parameters are made available to the
installation environment for the pkgadd command and any other packaging
scripts. The request script does this by writing these definitions to the file
provided by the calling utility. For this case study, no other scripts are provided.

When looking at the request script for this case study, notice that the questions
are generated by the data validation tools ckyorn and ckpath. For more
information on these tools, see ckyorn(1) and ckpath(1).

Case Study Files

The pkginfo File
PKG=ncmp
NAME=NCMP Utilities
CATEGORY=application, tools
BASEDIR=/
ARCH=SPARC
VERSION=RELEASE 1.0, Issue 1.0
CLASSES=""
NCMPBIN=/bin
NCMPMAN=/usr/man

EMACS=/usr/emacs

Package Creation Case Studies 95

The prototype File
i pkginfo
i request
x bin $NCMPBIN 0755 root other
f bin $NCMPBIN/dired=/usr/ncmp/bin/dired 0755 root other
f bin $NCMPBIN/less=/usr/ncmp/bin/less 0755 root other
f bin $NCMPBIN/ttype=/usr/ncmp/bin/ttype 0755 root other
f emacs $NCMPBIN/emacs=/usr/ncmp/bin/emacs 0755 root other
x emacs $EMACS 0755 root other
f emacs $EMACS/ansii=/usr/ncmp/lib/emacs/macros/ansii 0644 root other
f emacs $EMACS/box=/usr/ncmp/lib/emacs/macros/box 0644 root other
f emacs $EMACS/crypt=/usr/ncmp/lib/emacs/macros/crypt 0644 root other
f emacs $EMACS/draw=/usr/ncmp/lib/emacs/macros/draw 0644 root other
f emacs $EMACS/mail=/usr/ncmp/lib/emacs/macros/mail 0644 root other
f emacs $NCMPMAN/man1/emacs.1=/usr/ncmp/man/man1/emacs.1 0644 root other
d man $NCMPMAN 0755 root other
d man $NCMPMAN/man1 0755 root other
f man $NCMPMAN/man1/dired.1=/usr/ncmp/man/man1/dired.1 0644 root other
f man $NCMPMAN/man1/ttype.1=/usr/ncmp/man/man1/ttype.1 0644 root other

f man $NCMPMAN/man1/less.1=/usr/ncmp/man/man1/less.1 0644 inixmr other

The request Script
trap ’exit 3’ 15
determine if and where general executables should be placed
ans=‘ckyorn -d y \
-p "Should executables included in this package be installed"
‘ || exit $?
if ["$ans" = y]
then

CLASSES="$CLASSES bin"
NCMPBIN=‘ckpath -d /usr/ncmp/bin -aoy \
-p "Where should executables be installed"
‘ || exit $?

fi
determine if emacs editor should be installed, and if it should
where should the associated macros be placed
ans=‘ckyorn -d y \
-p "Should emacs editor included in this package be installed"
‘ || exit $?
if ["$ans" = y]
then

CLASSES="$CLASSES emacs"
EMACS=‘ckpath -d /usr/ncmp/lib/emacs -aoy \
-p "Where should emacs macros be installed"
‘ || exit $?

fi

Note that a request script can exit without leaving any files on the file system. For
installations on Solaris versions prior to 2.5 and compatible versions (where no
checkinstall script may be used) the request script is the correct place to test the

96 Application Packaging Developer’s Guide • December 2001

file system in any manner necessary to ensure that the installation will succeed. When
the request script exits with code 1, the installation will quit cleanly.

These example files show the use of parametric paths to establish multiple base
directories. However, the preferred method involves use of the BASEDIR parameter
which is managed and validated by the pkgadd command. Whenever multiple base
directories are used, take special care to provide for installation of multiple versions
and architectures on the same platform.

Creating a File at Installation and Saving
It During Removal
This case study creates a database file at installation time and saves a copy of the
database when the package is removed.

Techniques
This case study demonstrates the following techniques:

� Using classes and class action scripts to perform special actions on different sets of
objects

For more information, see “Writing Class Action Scripts” on page 70.

� Using the space file to inform the pkgadd command that extra space is required
to install this package properly

For more information on the space file, see “Reserving Additional Space on a
Target System” on page 57.

� Using the installf command to install a file not defined in the prototype and
pkgmap files

Approach
To create a database file at installation and save a copy on removal for this case study,
you must complete the following tasks:

� Define three classes.

The package in this case study requires the following three classes be defined in the
CLASSES parameter:

Package Creation Case Studies 97

� The standard class of none, which contains a set of processes belonging in the
subdirectory bin.

� The admin class, which contains an executable file config and a directory
containing data files.

� The cfgdata class, which contains a directory.

� Make the package collectively relocatable.

Notice in the prototype file that none of the path names begins with a slash or an
environment variable. This indicates that they are collectively relocatable.

� Calculate the amount of space the database file requires and create a space file to
deliver with the package. This file notifies the pkgadd command that the package
requires extra space and specifies how much.

� Create a class action script for the admin class (i.admin).

The sample script initializes a database using the data files belonging to the admin
class. To perform this task, it does the following:

� Copies the source data file to its proper destination

� Creates an empty file named config.data and assigns it to a class of
cfgdata

� Executes the bin/config command (delivered with the package and already
installed) to populate the database file config.data using the data files
belonging to the admin class

� Executes the installf -f command to finalize installation of config.data

No special action is required for the admin class at removal time so no removal
class action script is created. This means that all files and directories in the admin
class are removed from the system.

� Create a removal class action script for the cfgdata class (r.cfgdata).

The removal script makes a copy of the database file before it is deleted. No special
action is required for this class at installation time, so no installation class action
script is needed.

Remember that the input to a removal script is a list of path names to remove. Path
names always appear in reverse alphabetical order. This removal script copies files
to the directory named $PKGSAV. When all the path names have been processed,
the script then goes back and removes all directories and files associated with the
cfgdata class.

The outcome of this removal script is to copy config.data to $PKGSAV and then
remove the config.data file and the data directory.

98 Application Packaging Developer’s Guide • December 2001

Case Study Files

The pkginfo File
PKG=krazy
NAME=KrAzY Applications
CATEGORY=applications
BASEDIR=/opt
ARCH=SPARC
VERSION=Version 1

CLASSES=none cfgdata admin

The prototype File
i pkginfo
i request
i i.admin
i r.cfgdata
d none bin 555 root sys
f none bin/process1 555 root other
f none bin/process2 555 root other
f none bin/process3 555 root other
f admin bin/config 500 root sys
d admin cfg 555 root sys
f admin cfg/datafile1 444 root sys
f admin cfg/datafile2 444 root sys
f admin cfg/datafile3 444 root sys
f admin cfg/datafile4 444 root sys

d cfgdata data 555 root sys

The space File
extra space required by config data which is
dynamically loaded onto the system

data 500 1

The i.admin Class Action Script
PKGINST parameter provided by installation service
BASEDIR parameter provided by installation service
while read src dest
do

cp $src $dest || exit 2
done
if this is the last time this script will be executed

Package Creation Case Studies 99

during the installation, do additional processing here.
if ["$1" = ENDOFCLASS]
then
our config process will create a data file based on any changes
made by installing files in this class; make sure the data file
is in class ‘cfgdata’ so special rules can apply to it during
package removal.

installf -c cfgdata $PKGINST $BASEDIR/data/config.data f 444 root
sys || exit 2
$BASEDIR/bin/config > $BASEDIR/data/config.data || exit 2
installf -f -c cfgdata $PKGINST || exit 2

fi

exit 0

This illustrates a rare instance in which installf is appropriate in a class action
script. Because a space file has been used to reserve room on a specific file system,
this new file may be safely added even though it is not included in the pkgmap file.

The r.cfgdata Removal Script
the product manager for this package has suggested that
the configuration data is so valuable that it should be
backed up to $PKGSAV before it is removed!
while read path
do
path names appear in reverse lexical order.

mv $path $PKGSAV || exit 2
rm -f $path || exit 2

done

exit 0

Defining Package Compatibilities and
Dependencies
The package in this case study uses optional information files to define package
compatibilities and dependencies, and to present a copyright message during
installation.

100 Application Packaging Developer’s Guide • December 2001

Techniques
This case study demonstrates the following techniques:

� Using the copyright file
� Using the compver file
� Using the depend file

For more information on these files, see “Creating Information Files” on page 52.

Approach
To meet the requirements in the description, you must:

� Create a copyright file.

A copyright file contains the ASCII text of a copyright message. The message
shown in the sample file is displayed on the screen during package installation.

� Create a compver file.

The pkginfo file shown in the next figure defines this package version as version
3.0. The compver file defines version 3.0 as being compatible with versions 2.3, 2.2,
2.1, 2.1.1, 2.1.3 and 1.7.

� Create a depend file.

Files listed in a depend file must already be installed on the system when a
package is installed. The example file has 11 packages which must already be on
the system at installation time.

Case Study Files

The pkginfo File
PKG=case3
NAME=Case Study #3
CATEGORY=application
BASEDIR=/opt
ARCH=SPARC
VERSION=Version 3.0

CLASSES=none

Package Creation Case Studies 101

The copyright File
Copyright (c) 1999 company_name
All Rights Reserved.
THIS PACKAGE CONTAINS UNPUBLISHED PROPRIETARY SOURCE CODE OF
company_name.
The copyright notice above does not evidence any

actual or intended publication of such source code

The compver File
Version 3.0
Version 2.3
Version 2.2
Version 2.1
Version 2.1.1
Version 2.1.3

Version 1.7

The depend File
P acu Advanced C Utilities
Issue 4 Version 1
P cc C Programming Language
Issue 4 Version 1
P dfm Directory and File Management Utilities
P ed Editing Utilities
P esg Extended Software Generation Utilities
Issue 4 Version 1
P graph Graphics Utilities
P rfs Remote File Sharing Utilities
Issue 1 Version 1
P rx Remote Execution Utilities
P sgs Software Generation Utilities
Issue 4 Version 1
P shell Shell Programming Utilities
P sys System Header Files

Release 3.1

102 Application Packaging Developer’s Guide • December 2001

Modifying a File Using Standard Classes
and Class Action Scripts
This case study modifies an existing file during package installation using standard
classes and class action scripts. It uses one of three modification methods. The other
two methods are described in “Modifying a File Using the sed Class and a
postinstall Script” on page 106 and “Modifying a File Using The build Class”
on page 108. The file modified is /etc/inittab.

Techniques
This case study demonstrates how to use installation and removal class action scripts.
For more information, see “Writing Class Action Scripts” on page 70.

Approach
To modify /etc/inittab during installation, using classes and class action scripts,
you must complete the following tasks:

� Create a class.

Create a class called inittab. You must provide an installation and a removal
class action script for this class. Define the inittab class in the CLASSES
parameter in the pkginfo file.

� Create an inittab file.

This file contains the information for the entry that you will add to
/etc/inittab. Notice in the prototype file figure that inittab is a member of
the inittab class and has a file type of e for editable.

� Create an installation class action script (i.inittab).

Remember that class action scripts must produce the same results each time they
are executed. The class action script performs the following procedures:

� Checks if this entry has been added before

� If it has, removes any previous versions of the entry

� Edits the inittab file and adds the comment lines so you know where the
entry is from

� Moves the temporary file back into /etc/inittab

� Executes the init q command when it receives the ENDOFCLASS indicator

Package Creation Case Studies 103

Note that the init q command can be performed by this installation script. A
one-line postinstall script is not needed by this approach.

� Create a removal class action script (r.inittab).

The removal script is very similar to the installation script. The information added
by the installation script is removed and the init q command is executed.

This case study is more complicated than the next one; see “Modifying a File Using
the sed Class and a postinstall Script” on page 106. Instead of providing two files,
three are needed and the delivered /etc/inittab file is actually just a place holder
containing a fragment of the entry to be inserted. This could have been placed into the
i.inittab file except that the pkgadd command must have a file to pass to the
i.inittab file. Also, the removal procedure must be placed into a separate file
(r.inittab). While this method works fine, it is best reserved for cases involving
very complicated installations of multiple files. See “Modifying crontab Files During
Installation” on page 110.

The sed program used in “Modifying a File Using the sed Class and a postinstall
Script” on page 106 supports multiple package instances since the comment at the end
of the inittab entry is based on package instance. The case study in “Modifying a
File Using The build Class” on page 108 shows a more streamlined approach to
editing /etc/inittab during installation.

Case Study Files

The pkginfo File
PKG=case5
NAME=Case Study #5
CATEGORY=applications
BASEDIR=/opt
ARCH=SPARC
VERSION=Version 1d05

CLASSES=inittab

The prototype File
i pkginfo
i i.inittab
i r.inittab

e inittab /etc/inittab ? ? ?

104 Application Packaging Developer’s Guide • December 2001

The i.inittab Installation Class Action Script
PKGINST parameter provided by installation service
while read src dest
do
remove all entries from the table that
associated with this PKGINST
sed -e "/^[^:]*:[^:]*:[^:]*:[^#]*#$PKGINST$/d" $dest >
/tmp/$$itab ||
exit 2
sed -e "s/$/#$PKGINST" $src >> /tmp/$$itab ||
exit 2
mv /tmp/$$itab $dest ||
exit 2
done
if ["$1" = ENDOFCLASS]
then
/sbin/init q ||
exit 2
fi

exit 0

The r.inittab Removal Class Action Script
PKGINST parameter provided by installation service
while read src dest
do
remove all entries from the table that
are associated with this PKGINST
sed -e "/^[^:]*:[^:]*:[^:]*:[^#]*#$PKGINST$/d" $dest >
/tmp/$$itab ||
exit 2
mv /tmp/$$itab $dest ||
exit 2
done
/sbin/init q ||
exit 2

exit 0

The inittab File
rb:023456:wait:/usr/robot/bin/setup

Package Creation Case Studies 105

Modifying a File Using the sed Class
and a postinstall Script
This case study modifies a file which exists on the installation machine during
package installation. It uses one of three modification methods. The other two
methods are described in “Modifying a File Using Standard Classes and Class Action
Scripts” on page 103 and “Modifying a File Using The build Class” on page 108. The
file modified is /etc/inittab.

Techniques
This case study demonstrates the following techniques:

� Using the sed class

For more information on the sed class, see “The sed Class Script ” on page 75.

� Using a postinstall script

For more information on this script, see “Writing Procedure Scripts” on page 69.

Approach
To modify /etc/inittab at the time of installation, using the sed class, you must
complete the following tasks:

� Add the sed class script to the prototype file.

The name of a script must be the name of the file that will be edited. In this case,
the file to be edited is /etc/inittab and so the sed script is named
/etc/inittab. There are no requirements for the mode, owner, and group of a
sed script (represented in the sample prototype by question marks). The file
type of the sed script must be e (indicating that it is editable).

� Set the CLASSES parameter to include the sed class.

As shown in the example file, sed is the only class being installed. However, it
could be one of any number of classes.

� Create a sed class action script.

Your package cannot deliver a copy of /etc/inittab that looks the way you
need it to, since /etc/inittab is a dynamic file and you have no way of
knowing how it will look at the time of package installation. However, using a sed
script allows you to modify the /etc/inittab file during package installation.

106 Application Packaging Developer’s Guide • December 2001

� Create a postinstall script.

You need to execute the init q command to inform the system that
/etc/inittab has been modified. The only place you can perform that action in
this example is in a postinstall script. Looking at the example postinstall
script, you will see that its only purpose is to execute the init q command.

This approach to editing /etc/inittab during installation has one drawback; you
have to deliver a full script (the postinstall script) simply to perform the init q
command.

Case Study Files

The pkginfo File
PKG=case4
NAME=Case Study #4
CATEGORY=applications
BASEDIR=/opt
ARCH=SPARC
VERSION=Version 1d05

CLASSES=sed

The prototype File
i pkginfo
i postinstall

e sed /etc/inittab ? ? ?

The sed Class Action Script (/etc/inittab)
!remove
remove all entries from the table that are associated
with this package, though not necessarily just
with this package instance
/^[^:]*:[^:]*:[^:]*:[^#]*#ROBOT$/d
!install
remove any previous entry added to the table
for this particular change
/^[^:]*:[^:]*:[^:]*:[^#]*#ROBOT$/d
add the needed entry at the end of the table;
sed(1) does not properly interpret the ’$a’
construct if you previously deleted the last
line, so the command

Package Creation Case Studies 107

$a\
rb:023456:wait:/usr/robot/bin/setup #ROBOT
will not work here if the file already contained
the modification. Instead, you will settle for
inserting the entry before the last line!
$i\

rb:023456:wait:/usr/robot/bin/setup #ROBOT

The postinstall Script
make init re-read inittab
/sbin/init q ||
exit 2

exit 0

Modifying a File Using The build Class
This case study modifies a file which exists on the installation machine during
package installation. It uses one of three modification methods. The other two
methods are described in “Modifying a File Using Standard Classes and Class Action
Scripts” on page 103 and “Modifying a File Using the sed Class and a postinstall
Script” on page 106. The file modified is /etc/inittab.

Techniques
This case study demonstrates how to use the build class. For more information on
the build class, see “The build Class Script ” on page 76.

Approach
This approach to modifying /etc/inittab uses the build class. A build class
script is executed as a shell script and its output becomes the new version of the file
being executed. In other words, the data file /etc/inittab that is delivered with
this package will be executed and the output of that execution will become
/etc/inittab.

108 Application Packaging Developer’s Guide • December 2001

The build class script is executed during package installation and package removal.
The argument install is passed to the file if it is being executed at installation time.
Notice in the sample build class script that installation actions are defined by testing
for this argument.

To edit /etc/inittab using the build class, you must complete the following tasks:

� Define the build file in the prototype file.

The entry for the build file in the prototype file should place it in the build class
and define its file type as e. Be certain that the CLASSES parameter in the pkginfo
file is defined as build.

� Create the build class script.

The sample build class script performs the following procedures:

� Edits the /etc/inittab file to remove any existing changes for this package.
Notice that the file name /etc/inittab is hardcoded into the sed command.

� If the package is being installed, adds the new line to the end of
/etc/inittab. A comment tag is included in this new entry to describe where
that entry came from.

� Executes the init q command.

This solution addresses the drawbacks described in the case studies in “Modifying a
File Using Standard Classes and Class Action Scripts” on page 103 and “Modifying a
File Using the sed Class and a postinstall Script” on page 106. Only one short file
is needed (beyond the pkginfo and prototype files). The file works with multiple
instances of a package since the PKGINST parameter is used, and no postinstall
script is required since the init q command can be executed from the build class
script.

Case Study Files

The pkginfo File
PKG=case6
NAME=Case Study #6
CATEGORY=applications
BASEDIR=/opt
ARCH=SPARC
VERSION=Version 1d05

CLASSES=build

Package Creation Case Studies 109

The prototype File
i pkginfo

e build /etc/inittab ? ? ?

The Build File
PKGINST parameter provided by installation service
remove all entries from the existing table that
are associated with this PKGINST
sed -e "/^[^:]*:[^:]*:[^:]*:[^#]*#$PKGINST$/d" /etc/inittab ||
exit 2
if ["$1" = install]
then
add the following entry to the table
echo "rb:023456:wait:/usr/robot/bin/setup #$PKGINST" ||
exit 2
fi
/sbin/init q ||
exit 2

exit 0

Modifying crontab Files During
Installation
This case study modifies crontab files during package installation.

Techniques
This case study demonstrates the following techniques:

� Using classes and class action scripts

For more information, see “Writing Class Action Scripts” on page 70.

� Using the crontab command within a class action script

110 Application Packaging Developer’s Guide • December 2001

Approach
The most efficient way to edit more than one file during installation is to define a class
and provide a class action script. If you used the build class approach, you would
need to deliver one build class script for each crontab file edited. Defining a cron
class provides a more general approach. To edit crontab files with this approach, you
must:

� Define the crontab files that are to be edited in the prototype file.

Create an entry in the prototype file for each crontab file that will be edited.
Define the class as cron and the file type as e for each file. Use the actual name of
the file to be edited.

� Create the crontab files for the package.

These files contain the information you want added to the existing crontab files
of the same name.

� Create an installation class action script for the cron class.

The sample i.cron script performs the following procedures:

� Determines the user ID (UID).

The i.cron script sets the variable user to the base name of the cron class
script being processed. That name is the UID. For example, the base name of
/var/spool/cron/crontabs/root is root, which is also the UID.

� Executes crontab using the UID and the -l option.

Using the -l option tells crontab to send the contents of the crontab file for
the defined user to the standard output.

� Pipes the output of the crontab command to a sed script that removes any
previous entries added with this installation technique.

� Puts the edited output into a temporary file.

� Adds the data file for the root UID (that was delivered with the package) to the
temporary file and adds a tag so you will know where these entries came from.

� Executes crontab with the same UID and gives it the temporary file as input.

� Create a removal class action script for the cron class.

The r.cron script is the same as the installation script except there is no procedure
to add information to the crontab file.

These procedures are performed for every file in the cron class.

Case Study Files
The i.cron and r.cron scripts described below are executed by superuser. Editing
another user’s crontab file as superuser may have unpredictable results. If necessary,
change the following entry in each script:

Package Creation Case Studies 111

crontab $user < /tmp/$$crontab ||

to

su $user -c "crontab /tmp/$$crontab" ||

The pkginfo Command
PKG=case7
NAME=Case Study #7
CATEGORY=application
BASEDIR=/opt
ARCH=SPARC
VERSION=Version 1.0

CLASSES=cron

The prototype File
i pkginfo
i i.cron
i r.cron
e cron /var/spool/cron/crontabs/root ? ? ?

e cron /var/spool/cron/crontabs/sys ? ? ?

The i.cron Installation Class Action Script
PKGINST parameter provided by installation service
while read src dest
do
user=‘basename $dest‘ ||
exit 2
(crontab -l $user |
sed -e "/#$PKGINST$/d" > /tmp/$$crontab) ||
exit 2
sed -e "s/$/#$PKGINST/" $src >> /tmp/$$crontab ||
exit 2
crontab $user < /tmp/$$crontab ||
exit 2
rm -f /tmp/$$crontab
done

exit 0

The r.cron Removal Class Action Script
PKGINST parameter provided by installation service
while read path

112 Application Packaging Developer’s Guide • December 2001

do
user=‘basename $path‘ ||
exit 2
(crontab -l $user |
sed -e "/#$PKGINST$/d" > /tmp/$$crontab) ||
exit 2
crontab $user < /tmp/$$crontab ||
exit 2
rm -f /tmp/$$crontab
done

exit

crontab File #1
41,1,21 * * * * /usr/lib/uucp/uudemon.hour > /dev/null
45 23 * * * ulimit 5000; /usr/bin/su uucp -c
"/usr/lib/uucp/uudemon.cleanup" >
/dev/null 2>&1

11,31,51 * * * * /usr/lib/uucp/uudemon.poll > /dev/null

crontab File #2
0 * * * 0-6 /usr/lib/sa/sa1
20,40 8-17 * * 1-5 /usr/lib/sa/sa1

5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A

Note – If editing of a group of files will increase total file size by more than 10K,
supply a space file so the pkgadd command can allow for this increase. For more
information on the space file, see “Reserving Additional Space on a Target System”
on page 57.

Installing and Removing a Driver With
Procedure Scripts
This package installs a driver.

Package Creation Case Studies 113

Techniques
This case study demonstrates the following techniques:

� Installing and loading a driver with a postinstall script
� Unloading a driver with a preremove script

For more information on these scripts, see “Writing Procedure Scripts” on page 69.

Approach
� Create a request script.

The request script determines where the administrator wants the driver objects
to be installed, by questioning the administrator and assigning the answer to the
$KERNDIR parameter.

The script ends with a routine to make the two parameters CLASSES and KERNDIR
available to the installation environment and the postinstall script.

� Create a postinstall script.

The postinstall script actually performs the driver installation. It is executed
after the two files buffer and buffer.conf have been installed. The
postinstall file shown for this example performs the following actions:

� Uses the add_drv command to load the driver into the system.

� Creates a link for the device using the installf command.

� Finalizes the installation using the installf -f command.

� Creates a preremove script.

The preremove script uses the rem_drv command to unload the driver from
the system, and then removes the link /dev/buffer0.

Case Study Files

The pkginfo File
PKG=bufdev
NAME=Buffer Device
CATEGORY=system
BASEDIR=/
ARCH=INTEL
VERSION=Software Issue #19

CLASSES=none

114 Application Packaging Developer’s Guide • December 2001

The prototype File
To install a driver at the time of installation, you must include the object and
configuration files for the driver in the prototype file.

In this example, the executable module for the driver is named buffer; the add_drv
command operates on this file. The kernel uses the configuration file, buffer.conf,
to help configure the driver.

i pkginfo
i request
i postinstall
i preremove
f none $KERNDIR/buffer 444 root root

f none $KERNDIR/buffer.conf 444 root root

Looking at the prototype file for this example, notice the following:

� Since no special treatment is required for the package objects, you can put them
into the standard none class. The CLASSES parameter is set to none in the
pkginfo file.

� The path names for buffer and buffer.conf begin with the variable
$KERNDIR. This variable is set in the request script and allows the administrator
to decide where the driver files should be installed. The default directory is
/kernel/drv.

� There is an entry for the postinstall script (the script that will perform the
driver installation).

The request Script
trap ’exit 3’ 15
determine where driver object should be placed; location
must be an absolute path name that is an existing directory
KERNDIR=‘ckpath -aoy -d /kernel/drv -p \
“Where do you want the driver object installed”‘ || exit $?

make parameters available to installation service, and
so to any other packaging scripts
cat >$1 <<!

CLASSES=’$CLASSES’
KERNDIR=’$KERNDIR’
!

exit 0

Package Creation Case Studies 115

The postinstall Script
KERNDIR parameter provided by ‘request’ script
err_code=1 # an error is considered fatal
Load the module into the system
cd $KERNDIR
add_drv -m ’* 0666 root sys’ buffer || exit $err_code
Create a /dev entry for the character node
installf $PKGINST /dev/buffer0=/devices/eisa/buffer*:0 s

installf -f $PKGINST

The preremove Script
err_code=1 # an error is considered fatal
Unload the driver
rem_drv buffer || exit $err_code
remove /dev file
removef $PKGINST /dev/buffer0 ; rm /dev/buffer0

removef -f $PKGINST

Installing a Driver Using the sed Class
and Procedure Scripts
This case study describes how to install a driver using the sed class and procedure
scripts. It is also different from the previous case study (see “Installing and Removing
a Driver With Procedure Scripts” on page 113) because this package is made up of
both absolute and relocatable objects.

Techniques
This case study demonstrates the following techniques:

� Building a prototype file with both absolute and relocatable objects.

For more information on building a prototype file, see “Creating a prototype
File” on page 31.

� Using a postinstall script

For more information on this script, see “Writing Procedure Scripts” on page 69.

� Using a preremove script

For more information on this script, see “Writing Procedure Scripts” on page 69.

116 Application Packaging Developer’s Guide • December 2001

� Using a copyright file

For more information on this file, see “Writing a Copyright Message” on page 56.

Approach
� Create a prototype file containing both absolute and relocatable package objects.

This is discussed in detail in “The prototype File” on page 118.

� Add the sed class script to the prototype file.

The name of a script must be the name of the file that will be edited. In this case,
the file to be edited is /etc/devlink.tab and so the sed script is named
/etc/devlink.tab. There are no requirements for the mode, owner, and group
of a sed script (represented in the sample prototype by question marks). The file
type of the sed script must be e (indicating that it is editable).

� Set the CLASSES parameter to include the sed class.

� Create a sed class action script (/etc/devlink.tab).

� Create a postinstall script.

The postinstall script needs to execute the add_drv command to add the
device driver to the system.

� Create a preremove script.

The preremove script needs to execute the rem_drv command to remove the
device driver from the system, prior to the package being removed.

� Create a copyright file.

A copyright file contains the ASCII text of a copyright message. The message
shown in the sample file is displayed on the screen during package installation.

Case Study Files

The pkginfo File
PKG=SUNWsst
NAME=Simple SCSI Target Driver
VERSION=1
CATEGORY=system
ARCH=sparc
VENDOR=Sun Microsystems
BASEDIR=/opt

CLASSES=sed

Package Creation Case Studies 117

The prototype File
For example, this case study uses the hierarchical layout of the package objects shown
in the figure below.

pkg

kernel

SUNWsst

drv

sst.conf

sstest.c

usr

include

sys

scsi

targets

sst_def.h

pkginfo
postinstall
preremove
copyright

sst

etc

devlink.tab

FIGURE 5–1 Hierarchical Package Directory Structure

The package objects are installed in the same places as they are in the pkg directory
above. The driver modules (sst and sst.conf) are installed into
/usr/kernel/drv and the include file is installed into
/usr/include/sys/scsi/targets. The sst, sst.conf, and sst_def.h files
are absolute objects. The test program, sstest.c, and its directory SUNWsst are
relocatable; their installation location is set by the BASEDIR parameter.

The remaining components of the package (all the control files) go in the top directory
of the package on the development machine, except the sed class script. This is called
devlink.tab after the file it modifies, and goes into etc, the directory containing
the real devlink.tab file.

From the pkg directory, run the pkgproto command as follows:

find usr SUNWsst -print | pkgproto > prototype

The output from the above command looks like this:

d none usr 0775 pms mts
d none usr/include 0775 pms mts
d none usr/include/sys 0775 pms mts
d none usr/include/sys/scsi 0775 pms mts
d none usr/include/sys/scsi/targets 0775 pms mts

118 Application Packaging Developer’s Guide • December 2001

f none usr/include/sys/scsi/targets/sst_def.h 0444 pms mts
d none usr/kernel 0775 pms mts
d none usr/kernel/drv 0775 pms mts
f none usr/kernel/drv/sst 0664 pms mts
f none usr/kernel/drv/sst.conf 0444 pms mts
d none SUNWsst 0775 pms mts

f none SUNWsst/sstest.c 0664 pms mts

This prototype file is not yet complete. To complete this file, you need to make the
following modifications:

� Insert the entries for the control files (file type i), because they have a different
format than the other package objects.

� Remove entries for directories that already exist on the target system.

� Change the access permission and ownership for each entry.

� Prepend a slash to the absolute package objects.

This is the final prototype file:

i pkginfo
i postinstall
i preremove
i copyright
e sed /etc/devlink.tab ? ? ?
f none /usr/include/sys/scsi/targets/sst_def.h 0644 bin bin
f none /usr/kernel/drv/sst 0755 root sys
f none /usr/kernel/drv/sst.conf 0644 root sys
d none SUNWsst 0775 root sys

f none SUNWsst/sstest.c 0664 root sys

The questions marks in the entry for the sed script indicate that the access permissions
and ownership of the existing file on the installation machine should not be changed.

The sed Class Action Script (/etc/devlink.tab)
In the driver example, a sed class script is used to add an entry for the driver to the
file /etc/devlink.tab. This file is used by the devlinks command to create
symbolic links from /dev into /devices. This is the sed script:

sed class script to modify /etc/devlink.tab
!install
/name=sst;/d
$i\
type=ddi_pseudo;name=sst;minor=character rsst\\A1

!remove

/name=sst;/d

Package Creation Case Studies 119

The pkgrm command does not run the removal part of the script. You may need to
add a line to the preremove script to run sed directly to remove the entry from the
/etc/devlink.tab file.

The postinstall Installation Script
In this example, all the script needs to do is run the add_drv command.

Postinstallation script for SUNWsst
This does not apply to a client.
if [$PKG_INSTALL_ROOT = "/" -o -z $PKG_INSTALL_ROOT]; then

SAVEBASE=$BASEDIR
BASEDIR=””; export BASEDIR
/usr/sbin/add_drv sst
STATUS=$?
BASEDIR=$SAVEBASE; export BASEDIR
if [$STATUS -eq 0]
then

exit 20
else

exit 2
fi

else
echo "This cannot be installed onto a client."
exit 2

fi

The add_drv command uses the BASEDIR parameter, so the script has to unset
BASEDIR before running the command, and restore it afterwards.

One of the actions of the add_drv command is to run devlinks, which uses the
entry placed in /etc/devlink.tab by the sed class script to create the /dev entries
for the driver.

The exit code from the postinstall script is significant. The exit code 20 tells the
pkgadd command to tell the user to reboot the system (necessary after installing a
driver), and the exit code 2 tells the pkgadd command to tell the user that the
installation partially failed.

The preremove Removal Script
In the case of this driver example, it removes the links in /dev and runs the rem_drv
command on the driver.

Pre removal script for the sst driver
echo “Removing /dev entries”
/usr/bin/rm -f /dev/rsst*

echo “Deinstalling driver from the kernel”

120 Application Packaging Developer’s Guide • December 2001

SAVEBASE=$BASEDIR
BASEDIR=””; export BASEDIR
/usr/sbin/rem_drv sst
BASEDIR=$SAVEBASE; export BASEDIR

exit

The script removes the /dev entries itself; the /devices entries are removed by the
rem_drv command.

The copyright File
This is a simple ASCII file containing the text of a copyright notice. The notice is
displayed at the beginning of package installation exactly as it appears in the file.

Copyright (c) 1999 Drivers-R-Us, Inc.
10 Device Drive, Thebus, IO 80586

All rights reserved. This product and related documentation is
protected by copyright and distributed under licenses
restricting its use, copying, distribution and decompilation.
No part of this product or related documentation may be
reproduced in any form by any means without prior written

authorization of Drivers-R-Us and its licensors, if any.

Package Creation Case Studies 121

122 Application Packaging Developer’s Guide • December 2001

CHAPTER 6

Advanced Package Creation
Techniques

The full capabilities of System V packaging as implemented in the Solaris operating
environment provide a powerful tool for the installation of software products. As a
package designer, you can take advantage of these capabilities. Packages that are not
part of the Solaris operating environment (unbundled packages) may use the class
mechanism to customize server/client installations. Relocatable packages can be
designed to accommodate the desires of the administrator. A complex product can be
delivered as a set of composite packages that automatically resolve package
dependencies. Upgrading and patching may be customized by the package designer.
Patched packages can be delivered in the same way as unpatched packages, and the
backout archives can also be included in the product.

This is a list of the overview information in this chapter.

� “Specifying the Base Directory” on page 123
� “Accommodating Relocation” on page 128
� “Supporting Relocation in a Heterogeneous Environment” on page 136
� “Making Packages Installable Remotely” on page 146
� “Patching Packages” on page 148
� “Upgrading Packages” on page 171

Specifying the Base Directory
You can use several methods to specify where a package will be installed, and it is
important to be able to change the installation base dynamically at install time. If this
is accomplished correctly, an administrator can install multiple versions and multiple
architectures without complications.

This section discusses common methods first, followed by approaches that enhance
installations to heterogeneous systems.

123

The Administrative Defaults File
Administrators responsible for installing packages can use administration files to
control package installation. However, as a package designer, you need to know about
administration files and how an administrator can alter your intended package
installation.

An administration file tells the pkgadd command whether to perform any of the
checks or prompts that it normally does. Consequently, administrators should fully
understand a package’s installation process and the scripts involved before using
administration files.

A basic administrative defaults file is shipped with the SunOS operating system in
/var/sadm/install/admin/default. This is the file that establishes the most
basic level of administrative policy as regards the installation of software products.
The file looks like this as shipped:

#ident "@(#)default
1.4 92/12/23 SMI" /* SVr4.0 1.5.2.1 */
mail=
instance=unique
partial=ask
runlevel=ask
idepend=ask
rdepend=ask
space=ask
setuid=ask
conflict=ask
action=ask

basedir=default

The administrator may edit this file to establish new default behaviors, or create a
different administration file and specify its existence by using the -a option to the
pkgadd command.

Eleven parameters can be defined in an administration file, but not all need to be
defined. For more information, see admin(4).

The basedir parameter specifies how the base directory will be derived when a
package is installed. Most administrators leave this as default, but basedir can be
set to one of the following:

� ask, which means always ask the administrator for a base directory

� An absolute path name

� An absolute path name containing the $PKGINST construction, which means
always install to a base directory derived from the package instance

124 Application Packaging Developer’s Guide • December 2001

Note – If the pkgadd command is called with the argument -a none, it always asks
the administrator for a base directory. Unfortunately, this also sets all parameters in the
file to the default value of quit, which can result in additional problems.

Becoming Comfortable With Uncertainty
An administrator has control over all packages being installed on a system by using an
administration file. Unfortunately, an alternate administrative defaults file is often
provided by the package designer, bypassing the wishes of the administrator.

Package designers sometimes include an alternate administration file so that they, not
the administrator, control a package’s installation. Because the basedir entry in the
administrative defaults file overrides all other base directories, it provides a simple
method for selecting the appropriate base directory at install time. In all versions of
the Solaris operating environment prior to the Solaris 2.5 release, this was considered
the simplest method for controlling the base directory.

However, it is necessary for you to accept the administrator’s desires regarding the
installation of the product. Providing a temporary administrative defaults file for the
purpose of controlling the installation leads to mistrust on the part of administrators.
You should use a request script and checkinstall script to control these
installations under the supervision of the administrator. If the request script
faithfully involves the administrator in the process, System V packaging will serve
both administrators and package designers.

Using the BASEDIR Parameter
The pkginfo file for any relocatable package must include a default base directory in
the form of an entry like this:

BASEDIR=absolute_path

This is only the default base directory; it can be changed by the administrator during
installation.

While some packages require more than one base directory, the advantage to using
this parameter to position the package is because the base directory is guaranteed to
be in place and writable as a valid directory by the time installation begins. The correct
path to the base directory for the server and client is available to all procedure scripts
in the form of reserved environment variables, and the pkginfo -r SUNWstuf
command displays the current installation base for the package.

In the checkinstall script, BASEDIR is the parameter exactly as defined in the
pkginfo file (it has not been conditioned yet). In order to inspect the target base

Advanced Package Creation Techniques 125

directory, the ${PKG_INSTALL_ROOT}$BASEDIR construction is required. This
means that the request or checkinstall script can change the value of BASEDIR
in the installation environment with predictable results. By the time the preinstall
script is called, the BASEDIR parameter is the fully conditioned pointer to the actual
base directory on the target system, even if the system is a client.

Note – The request script utilizes the BASEDIR parameter differently for different
releases of the SunOS operating system. In order to test a BASEDIR parameter in a
request script, the following code should be used to determine the actual base
directory in use.

request script
constructs base directory
if [${CLIENT_BASEDIR}]; then

LOCAL_BASE=$BASEDIR
else

LOCAL_BASE=${PKG_INSTALL_ROOT}$BASEDIR

fi

Using Parametric Base Directories
If a package requires multiple base directories, you can establish them with parametric
path names. This method has become quite popular, although it has the following
drawbacks.

� A package with parametric path names usually behaves like an absolute package
but is treated by the pkgadd command like a relocatable package. The BASEDIR
parameter must be defined even if it is not used.

� The administrator cannot ascertain the installation base for the package using the
System V utilities (the pkginfo -r command will not work).

� The administrator cannot use the established method to relocate the package (it is
called relocatable but it acts absolute).

� Multiple architecture or multiple version installations require contingency
planning for each of the target base directories which often means multiple
complex class action scripts.

While the parameters that determine the base directories are defined in the pkginfo
file, they may be modified by the request script. That is one of the primary reasons
for the popularity of this approach. The drawbacks, however are chronic and you
should consider this configuration a last resort.

126 Application Packaging Developer’s Guide • December 2001

Examples—Using Parametric Base Directories

The pkginfo File
pkginfo file
PKG=SUNWstuf
NAME=software stuff
ARCH=sparc
VERSION=1.0.0,REV=1.0.5
CATEGORY=application
DESC=a set of utilities that do stuff
BASEDIR=/
EZDIR=/usr/stuf/EZstuf
HRDDIR=/opt/SUNWstuf/HRDstuf
VENDOR=Sun Microsystems, Inc.
HOTLINE=Please contact your local service provider
EMAIL=
MAXINST=1000
CLASSES=none

PSTAMP=hubert980707141632

The pkgmap File
: 1 1758
1 d none $EZDIR 0775 root bin
1 f none $EZDIR/dirdel 0555 bin bin 40 773 751310229
1 f none $EZDIR/usrdel 0555 bin bin 40 773 751310229
1 f none $EZDIR/filedel 0555 bin bin 40 773 751310229
1 d none $HRDDIR 0775 root bin
1 f none $HRDDIR/mksmart 0555 bin bin 40 773 751310229
1 f none $HRDDIR/mktall 0555 bin bin 40 773 751310229
1 f none $HRDDIR/mkcute 0555 bin bin 40 773 751310229
1 f none $HRDDIR/mkeasy 0555 bin bin 40 773 751310229
1 d none /etc ? ? ?
1 d none /etc/rc2.d ? ? ?
1 f none /etc/rc2.d/S70dostuf 0744 root sys 450 223443
1 i pkginfo 348 28411 760740163
1 i postinstall 323 26475 751309908
1 i postremove 402 33179 751309945
1 i preinstall 321 26254 751310019

1 i preremove 320 26114 751309865

Managing the Base Directory
Any package that is available in multiple versions or for multiple architectures should
be designed to walk the base directory, if needed. Walking a base directory means that
if a previous version or a different architecture of the package being installed already

Advanced Package Creation Techniques 127

exists in the base directory, the package being installed resolves this issue, perhaps by
creating a new base directory with a slightly different name. The request and
checkinstall scripts in the Solaris 2.5 and compatible releases have the ability to
modify the BASEDIR environment variable. This is not true for any prior version of
the Solaris operating environment.

Even in older versions of the Solaris operating environment, the request script had
the authority to redefine directories within the installation base. The request script
can do this in a way that still supports most administrative preferences.

Accommodating Relocation
While you can select base directories for various packages that are guaranteed unique
to an architecture and version, this leads to unnecessary levels of directory hierarchy.
For example, for a product designed for SPARC and IA based processors, you could
organize the base directories by processor and version as shown below.

Base Directory Version and Processor

/opt/SUNWstuf/sparc/1.0 Version 1.0, SPARC

/opt/SUNWstuf/sparc/1.2 Version 1.2, SPARC

/opt/SUNWstuf/IA/1.0 Version 1.0, IA

This is okay and it does work, but you are treating names and numbers as though they
mean something to the administrator. A better approach is to do this automatically
after explaining it to the administrator and obtaining permission.

This means that you can do the whole job in the package without requiring the
administrator to do it manually. You can assign the base directory arbitrarily and then
transparently establish the appropriate client links in a postinstall script. You can
also use the pkgadd command to install all or part of the package to the clients in the
postinstall script. You can even ask the administrator which users or clients need
to know about this package and automatically update PATH environment variables
and /etc files. This is completely acceptable as long as whatever the package does
upon installation, it undoes upon removal.

128 Application Packaging Developer’s Guide • December 2001

Walking Base Directories
You can take advantage of two methods for controlling the base directory at install
time. The first is best for new packages that will install only to Solaris 2.5 and
compatible releases; it provides very useful data for the administrator and supports
multiple installed versions and architectures and requires minimal special work. The
second method can be used by any package and makes use of the request script’s
inherent control over build parameters to ensure successful installations.

Using the BASEDIR Parameter
The checkinstall script can select the appropriate base directory at install time,
which means that the base directory can be placed very low in the directory tree. This
example increments the base directory sequentially, leading to directories of the form
/opt/SUNWstuf, /opt/SUNWstuf.1, and /opt/SUNWstuf.2. The administrator
can use the pkginfo command to determine which architecture and version are
installed in each base directory.

If the SUNWstuf package (containing a set of utilities that do stuff) uses this method,
its pkginfo and pkgmap files would look like this.

The pkginfo File
pkginfo file
PKG=SUNWstuf
NAME=software stuff
ARCH=sparc
VERSION=1.0.0,REV=1.0.5
CATEGORY=application
DESC=a set of utilities that do stuff
BASEDIR=/opt/SUNWstuf
VENDOR=Sun Microsystems, Inc.
HOTLINE=Please contact your local service provider
EMAIL=
MAXINST=1000
CLASSES=none daemon

PSTAMP=hubert990707141632

The pkgmap File
: 1 1758
1 d none EZstuf 0775 root bin
1 f none EZstuf/dirdel 0555 bin bin 40 773 751310229
1 f none EZstuf/usrdel 0555 bin bin 40 773 751310229
1 f none EZstuf/filedel 0555 bin bin 40 773 751310229
1 d none HRDstuf 0775 root bin
1 f none HRDstuf/mksmart 0555 bin bin 40 773 751310229

Advanced Package Creation Techniques 129

1 f none HRDstuf/mktall 0555 bin bin 40 773 751310229
1 f none HRDstuf/mkcute 0555 bin bin 40 773 751310229
1 f none HRDstuf/mkeasy 0555 bin bin 40 773 751310229
1 d none /etc ? ? ?
1 d none /etc/rc2.d ? ? ?
1 f daemon /etc/rc2.d/S70dostuf 0744 root sys 450 223443
1 i pkginfo 348 28411 760740163
1 i postinstall 323 26475 751309908
1 i postremove 402 33179 751309945
1 i preinstall 321 26254 751310019
1 i preremove 320 26114 751309865
1 i i.daemon 509 39560 752978103

1 i r.daemon 320 24573 742152591

Example—Analysis Scripts That Walk a BASEDIR
Assume that the IA version of SUNWstuf is already installed on the server in
/opt/SUNWstuf. When the administrator uses the pkgadd command to install the
SPARC version, the request script needs to detect the existence of the IA version and
interact with the administrator regarding the installation.

Note – The base directory could be walked without administrator interaction in a
checkinstall script, but if arbitrary operations like this happen too often,
administrators lose confidence in the process.

The request script and checkinstall script for a package that handle this
situation might look like this.

The request Script
request script
for SUNWstuf to walk the BASEDIR parameter.

PATH=/usr/sadm/bin:${PATH} # use admin utilities

GENMSG="The base directory $LOCAL_BASE already contains a \
different architecture or version of $PKG."

OLDMSG="If the option \"-a none\" was used, press the \
key and enter an unused base directory when it is requested."

OLDPROMPT="Do you want to overwrite this version? "

OLDHELP="\"y\" will replace the installed package, \"n\" will \
stop the installation."

SUSPEND="Suspending installation at user request using error \

130 Application Packaging Developer’s Guide • December 2001

code 1."

MSG="This package could be installed at the unused base directory $WRKNG_BASE."

PROMPT="Do you want to use to the proposed base directory? "

HELP="A response of \"y\" will install to the proposed directory and continue,
\"n\" will request a different directory. If the option \"-a none\" was used,
press the key and enter an unused base directory when it is requested."

DIRPROMPT="Select a preferred base directory ($WRKNG_BASE) "

DIRHELP="The package $PKG will be installed at the location entered."

NUBD_MSG="The base directory has changed. Be sure to update \
any applicable search paths with the actual location of the \
binaries which are at $WRKNG_BASE/EZstuf and $WRKNG_BASE/HRDstuf."

OldSolaris=""
Changed=""
Suffix="0"

#
Determine if this product is actually installed in the working
base directory.
#
Product_is_present () {

if [-d $WRKNG_BASE/EZstuf -o -d $WRKNG_BASE/HRDstuf]; then
return 1

else
return 0

fi
}

if [${BASEDIR}]; then
This may be an old version of Solaris. In the latest Solaris
CLIENT_BASEDIR won’t be defined yet. In older version it is.
if [${CLIENT_BASEDIR}]; then

LOCAL_BASE=$BASEDIR
OldSolaris="true"

else # The base directory hasn’t been processed yet
LOCAL_BASE=${PKG_INSTALL_ROOT}$BASEDIR

fi

WRKNG_BASE=$LOCAL_BASE

See if the base directory is already in place and walk it if
possible

while [-d ${WRKNG_BASE} -a Product_is_present]; do
There is a conflict
Is this an update of the same arch & version?
if [${UPDATE}]; then

exit 0 # It’s out of our hands.
else

Advanced Package Creation Techniques 131

So this is a different architecture or
version than what is already there.
Walk the base directory
Suffix=‘expr $Suffix + 1‘
WRKNG_BASE=$LOCAL_BASE.$Suffix
Changed="true"

fi
done

So now we can propose a base directory that isn’t claimed by
any of our other versions.

if [$Changed]; then
puttext "$GENMSG"
if [$OldSolaris]; then

puttext "$OLDMSG"
result=‘ckyorn -Q -d "a" -h "$OLDHELP" -p "$OLDPROMPT"‘
if [$result="n"]; then

puttext "$SUSPEND"
exit 1 # suspend installation

else
exit 0

fi
else # The latest functionality is available

puttext "$MSG"
result=‘ckyorn -Q -d "a" -h "$HELP" -p "$PROMPT"‘
if [$? -eq 3]; then

echo quitinstall >> $1
exit 0

fi

if [$result="n"]; then
WRKNG_BASE=‘ckpath -ayw -d "$WRKNG_BASE" \
-h "$DIRHELP" -p "$DIRPROMPT"‘

else if [$result="a"]
exit 0

fi
fi
echo "BASEDIR=$WRKNG_BASE" >> $1
puttext "$NUBD_MSG"

fi
fi

exit 0

The checkinstall Script
checkinstall
script for SUNWstuf to politely suspend

grep quitinstall $1
if [$? -eq 0]; then

exit 3 # politely suspend installation
fi

132 Application Packaging Developer’s Guide • December 2001

exit 0

This approach would not work very well if the base directory was simply /opt. This
package has to call out the BASEDIR more precisely since /opt would be difficult to
walk. In fact, depending on the mount scheme, it may not be possible. The example
walks the base directory by creating a new directory under /opt, which does not
introduce any problems.

This example uses a request script and a checkinstall script even though
versions of Solaris prior to the 2.5 release cannot run a checkinstall script. The
checkinstall script in this example is used for the purpose of politely halting the
installation in response to a private message in the form of the string “quitinstall.” If
this script executes under the Solaris 2.3 release, the checkinstall script is ignored
and the request script halts the installation with an error message.

Remember that prior to the Solaris 2.5 and compatible releases, the BASEDIR
parameter is a read-only parameter and cannot be changed by the request script. For
this reason, if an old version of the SunOS operating system is detected (by testing for
a conditioned CLIENT_BASEDIR environment variable), the request script has only
two options—continue or quit.

Using Relative Parametric Paths
If your software product might be installed on older versions of the SunOS operating
system, the request script needs to do all the necessary work. This approach can also
be used to manipulate multiple directories. If additional directories are required, they
still need to be included under a single base directory in order to provide an easily
administrable product. While the BASEDIR parameter does not provide the level of
granularity available in the latest Solaris release, your package can still walk the base
directory by using the request script to manipulate parametric paths. This is how the
pkginfo and pkgmap files might look.

The pkginfo File
pkginfo file
PKG=SUNWstuf
NAME=software stuff
ARCH=sparc
VERSION=1.0.0,REV=1.0.5
CATEGORY=application
DESC=a set of utilities that do stuff
BASEDIR=/opt
SUBBASE=SUNWstuf
VENDOR=Sun Microsystems, Inc.
HOTLINE=Please contact your local service provider
EMAIL=

Advanced Package Creation Techniques 133

MAXINST=1000
CLASSES=none daemon

PSTAMP=hubert990707141632

The pkgmap File
: 1 1758
1 d none $SUBBASE/EZstuf 0775 root bin
1 f none $SUBBASE/EZstuf/dirdel 0555 bin bin 40 773 751310229
1 f none $SUBBASE/EZstuf/usrdel 0555 bin bin 40 773 751310229
1 f none $SUBBASE/EZstuf/filedel 0555 bin bin 40 773 751310229
1 d none $SUBBASE/HRDstuf 0775 root bin
1 f none $SUBBASE/HRDstuf/mksmart 0555 bin bin 40 773 751310229
1 f none $SUBBASE/HRDstuf/mktall 0555 bin bin 40 773 751310229
1 f none $SUBBASE/HRDstuf/mkcute 0555 bin bin 40 773 751310229
1 f none $SUBBASE/HRDstuf/mkeasy 0555 bin bin 40 773 751310229
1 d none /etc ? ? ?
1 d none /etc/rc2.d ? ? ?
1 f daemon /etc/rc2.d/S70dostuf 0744 root sys 450 223443
1 i pkginfo 348 28411 760740163
1 i postinstall 323 26475 751309908
1 i postremove 402 33179 751309945
1 i preinstall 321 26254 751310019
1 i preremove 320 26114 751309865
1 i i.daemon 509 39560 752978103

1 i r.daemon 320 24573 742152591

This example is not perfect. A pkginfo -r command returns /opt for the
installation base, which is pretty ambiguous. Many packages are in /opt, but at least
it is a meaningful directory. Just like the previous example, this next example fully
supports multiple architectures and versions. The request script can be tailored to
the needs of the specific package and resolve whatever dependencies are applicable.

Example—A request Script That Walks a Relative
Parametric Path
request script
for SUNWstuf to walk a parametric path

PATH=/usr/sadm/bin:${PATH} # use admin utilities

MSG="The target directory $LOCAL_BASE already contains \
different architecture or version of $PKG. This package \
could be installed at the unused target directory $WRKNG_BASE."

PROMPT="Do you want to use to the proposed directory? "

HELP="A response of \"y\" will install to the proposed directory \
and continue, \"n\" will request a different directory. If \

134 Application Packaging Developer’s Guide • December 2001

the option \"-a none\" was used, press the <RETURN> key and \
enter an unused base directory when it is requested."

DIRPROMPT="Select a relative target directory under $BASEDIR/"

DIRHELP="The package $PKG will be installed at the location entered."

SUSPEND="Suspending installation at user request using error \
code 1."

NUBD_MSG="The location of this package is not the default. Be \
sure to update any applicable search paths with the actual \
location of the binaries which are at $WRKNG_BASE/EZstuf \
and $WRKNG_BASE/HRDstuf."

Changed=""
Suffix="0"

#
Determine if this product is actually installed in the working
base directory.
#
Product_is_present () {

if [-d $WRKNG_BASE/EZstuf -o -d $WRKNG_BASE/HRDstuf]; then
return 1

else
return 0

fi
}

if [${BASEDIR}]; then
This may be an old version of Solaris. In the latest Solaris
CLIENT_BASEDIR won’t be defined yet. In older versions it is.
if [${CLIENT_BASEDIR}]; then

LOCAL_BASE=$BASEDIR/$SUBBASE
else # The base directory hasn’t been processed yet

LOCAL_BASE=${PKG_INSTALL_ROOT}$BASEDIR/$SUBBASE
fi

WRKNG_BASE=$LOCAL_BASE

See if the base directory is already in place and walk it if
possible
while [-d ${WRKNG_BASE} -a Product_is_present]; do

There is a conflict
Is this an update of the same arch & version?
if [${UPDATE}]; then

exit 0 # It’s out of our hands.
else

So this is a different architecture or
version than what is already there.
Walk the base directory
Suffix=‘expr $Suffix + 1‘

Advanced Package Creation Techniques 135

WRKNG_BASE=$LOCAL_BASE.$Suffix
Changed="true"

fi
done

So now we can propose a base directory that isn’t claimed by
any of our other versions.
if [$Changed]; then

puttext "$MSG"
result=‘ckyorn -Q -d "a" -h "$HELP" -p "$PROMPT"‘
if [$? -eq 3]; then

puttext "$SUSPEND"
exit 1

fi

if [$result="n"]; then
WRKNG_BASE=‘ckpath -lyw -d "$WRKNG_BASE" -h "$DIRHELP" \
-p "$DIRPROMPT"‘

elif [$result="a"]; then
exit 0

else
exit 1

fi
echo SUBBASE=$SUBBASE.$Suffix >> $1
puttext "$NUBD_MSG"

fi
fi

exit 0

Supporting Relocation in a
Heterogeneous Environment
The original concept behind System V packaging assumed one architecture per
system. The concept of a server did not play a role in the design. Now, of course, a
single server may provide support for several architectures, which means there may
be several copies of the same software on a server, each for a different architecture.
While Solaris packages are sequestered within recommended file system boundaries
(for example, / and /usr), with product databases on the server as well as each client,
not all installations necessarily support this division. Certain implementations support
an entirely different structure and imply a common product database. While pointing
the clients to different versions is straightforward, actually installing System V
packages to different base directories can introduce complications for the
administrator.

136 Application Packaging Developer’s Guide • December 2001

When you design your package, you should also consider the common methods
administrators use for introducing new software versions. Administrators often seek
to install and test the latest version side-by-side with the currently installed version.
The procedure involves installing the new version to a different base directory than
the current version and directing a handful of non-critical clients to the new version as
a test. As confidence builds, the administrator redirects more and more clients to the
new version. Eventually, the administrator retains the old version only for
emergencies and then finally deletes it.

What this means is that packages destined for modern heterogeneous systems must
support true relocation in the sense that the administrator may put them any
reasonable place on the file system and still see full functionality. The Solaris 2.5 and
compatible releases provide a number of useful tools which allow multiple
architectures and versions to install cleanly to the same system. Solaris 2.4 and
compatible versions also support true relocation but accomplishing the task is not
quite as obvious.

Traditional Approach

Relocatable Packages
The System V ABI implies that the original intention behind the relocatable package
was to make installing the package more convenient for the administrator. Now the
need for relocatable packages goes much further. Convenience is not the only issue,
rather it is quite possible that during the installation an active software product is
already installed in the default directory. A package that is not designed to deal with
this situation either overwrites the existing product or fails to install. However, a
package designed handle multiple architectures and multiple versions can install
smoothly and offer the administrator a wide range of options that are fully compatible
with existing administrative traditions.

In some ways the problem of multiple architectures and the problem of multiple
versions is the same. It must be possible to install a variant of the existing package
side by side with other variants, and direct clients or standalone consumers of
exported file systems to any one of those variants, without degraded functionality.
While Sun has established methods for dealing with multiple architectures on a server,
the administrator may not adhere to those recommendations. All packages need to be
capable of complying with the administrators’ reasonable wishes regarding
installation.

Advanced Package Creation Techniques 137

Example-A Traditional Relocatable Package
This example shows what a traditional relocatable package may look like. The
package is to be located in /opt/SUNWstuf, and its pkginfo file and pkgmap file
might look like this.

The pkginfo File
pkginfo file
PKG=SUNWstuf
NAME=software stuff
ARCH=sparc
VERSION=1.0.0,REV=1.0.5
CATEGORY=application
DESC=a set of utilities that do stuff
BASEDIR=/opt
VENDOR=Sun Microsystems, Inc.
HOTLINE=Please contact your local service provider
EMAIL=
MAXINST=1000
CLASSES=none

PSTAMP=hubert990707141632

The pkgmap File
: 1 1758
1 d none SUNWstuf 0775 root bin
1 d none SUNWstuf/EZstuf 0775 root bin
1 f none SUNWstuf/EZstuf/dirdel 0555 bin bin 40 773 751310229
1 f none SUNWstuf/EZstuf/usrdel 0555 bin bin 40 773 751310229
1 f none SUNWstuf/EZstuf/filedel 0555 bin bin 40 773 751310229
1 d none SUNWstuf/HRDstuf 0775 root bin
1 f none SUNWstuf/HRDstuf/mksmart 0555 bin bin 40 773 751310229
1 f none SUNWstuf/HRDstuf/mktall 0555 bin bin 40 773 751310229
1 f none SUNWstuf/HRDstuf/mkcute 0555 bin bin 40 773 751310229
1 f none SUNWstuf/HRDstuf/mkeasy 0555 bin bin 40 773 751310229
1 i pkginfo 348 28411 760740163
1 i postinstall 323 26475 751309908
1 i postremove 402 33179 751309945
1 i preinstall 321 26254 751310019

1 i preremove 320 26114 751309865

This is referred to as the traditional method because every package object is installed
to the base directory defined by the BASEDIR parameter from the pkginfo file. For
example, the first object in the pkgmap file is installed as the directory
/opt/SUNWstuf.

138 Application Packaging Developer’s Guide • December 2001

Absolute Packages
An absolute package is one that installs to a particular root (/) file system. These
packages are difficult to deal with from the standpoint of multiple versions and
architectures. As a general rule, all packages should be relocatable. There are, however
very good reasons to include absolute elements in a relocatable package.

Example-A Traditional Absolute Package
If the SUNWstuf package was an absolute package, the BASEDIR parameter should
not be defined in the pkginfo file, and the pkgmap file would look like this.

The pkgmap File
: 1 1758
1 d none /opt ? ? ?
1 d none /opt/SUNWstuf 0775 root bin
1 d none /opt/SUNWstuf/EZstuf 0775 root bin
1 f none /opt/SUNWstuf/EZstuf/dirdel 0555 bin bin 40 773 751310229
1 f none /opt/SUNWstuf/EZstuf/usrdel 0555 bin bin 40 773 751310229
1 f none /opt/SUNWstuf/EZstuf/filedel 0555 bin bin 40 773 751310229
1 d none /opt/SUNWstuf/HRDstuf 0775 root bin
1 f none /opt/SUNWstuf/HRDstuf/mksmart 0555 bin bin 40 773 751310229
1 f none /opt/SUNWstuf/HRDstuf/mktall 0555 bin bin 40 773 751310229
1 f none /opt/SUNWstuf/HRDstuf/mkcute 0555 bin bin 40 773 751310229
1 f none /opt/SUNWstuf/HRDstuf/mkeasy 0555 bin bin 40 773 751310229
1 i pkginfo 348 28411 760740163
1 i postinstall 323 26475 751309908
1 i postremove 402 33179 751309945
1 i preinstall 321 26254 751310019

1 i preremove 320 26114 751309865

In this example, if the administrator specified an alternate base directory during
installation, it would be ignored by the pkgadd command. This package always
installs to /opt/SUNWstuf of the target system.

The -R argument to the pkgadd command works as expected. For example,

pkgadd -d . -R /export/opt/client3 SUNWstuf

installs the objects in /export/opt/client3/opt/SUNWstuf; but that is the closest
this package comes to being relocatable.

Notice the use of the question mark (?) for the /opt directory in the pkgmap file. This
indicates that the existing attributes should not be changed. It does not mean “create
the directory with default attributes,” although under certain circumstances that may
happen. Any directory that is specific to the new package must specify all attributes
explicitly.

Advanced Package Creation Techniques 139

Composite Packages
Any package containing relocatable objects is referred to as a relocatable package. This
can be misleading because a relocatable package may contain absolute paths in its
pkgmap file. Using a root (/) entry in a pkgmap file can enhance the relocatable
aspects of the package. Packages that have both relocatable and root entries are called
composite packages.

Example-A Traditional Solution
Assume that one object in the SUNWstuf package is a startup script executed at run
level 2. The file /etc/rc2.d/S70dostuf needs to be installed as a part of the
package, but it cannot be placed into the base directory. Assuming that a relocatable
package is the only solution, the pkginfo and a pkgmap might look like this.

The pkginfo File
pkginfo file
PKG=SUNWstuf
NAME=software stuff
ARCH=sparc
VERSION=1.0.0,REV=1.0.5
CATEGORY=application
DESC=a set of utilities that do stuff
BASEDIR=/
VENDOR=Sun Microsystems, Inc.
HOTLINE=Please contact your local service provider
EMAIL=
MAXINST=1000
CLASSES=none

PSTAMP=hubert990707141632

The pkgmap File
: 1 1758
1 d none opt/SUNWstuf/EZstuf 0775 root bin
1 f none opt/SUNWstuf/EZstuf/dirdel 0555 bin bin 40 773 751310229
1 f none opt/SUNWstuf/EZstuf/usrdel 0555 bin bin 40 773 751310229
1 f none opt/SUNWstuf/EZstuf/filedel 0555 bin bin 40 773 751310229
1 d none opt/SUNWstuf/HRDstuf 0775 root bin
1 f none opt/SUNWstuf/HRDstuf/mksmart 0555 bin bin 40 773 751310229
1 f none opt/SUNWstuf/HRDstuf/mktall 0555 bin bin 40 773 751310229
1 f none opt/SUNWstuf/HRDstuf/mkcute 0555 bin bin 40 773 751310229
1 f none opt/SUNWstuf/HRDstuf/mkeasy 0555 bin bin 40 773 751310229
1 d none etc ? ? ?
1 d none etc/rc2.d ? ? ?
1 f none etc/rc2.d/S70dostuf 0744 root sys 450 223443

140 Application Packaging Developer’s Guide • December 2001

1 i pkginfo 348 28411 760740163
1 i postinstall 323 26475 751309908
1 i postremove 402 33179 751309945
1 i preinstall 321 26254 751310019

1 i preremove 320 26114 751309865

There is not much difference between this approach and that of the absolute package.
In fact, this would be better off as an absolute package—if the administrator provided
an alternate base directory for this package, it would not work!

In fact, only one file in this package needs to be root-relative, the rest could be moved
anywhere. How to solve this problem through the use of a composite package is
discussed throughout the remainder of this section.

Beyond Tradition
The approach described in this section does not apply to all packages, but it does
result in improved performance during installation to an heterogeneous environment.
Very little of this applies to packages that are delivered as part of the Solaris operating
environment (bundled packages); however, unbundled packages can practice
non-traditional packaging.

The reason behind encouraging relocatable packages is to support this requirement:

When a package is added or removed, the existing desirable behaviors of installed software
products will be unchanged.

Unbundled packages should reside under /opt so as to assure that the new package
does not interfere with existing products.

Another Look at Composite Packages
There are two rules to follow when constructing a functional composite package:

� Establish the base directory based upon where the vast majority of the package
objects go.

� If a package object goes into a common directory that is not the base directory (for
example, /etc), specify it as an absolute path name in the prototype file.

In other words, since “relocatable” means the object can be installed anywhere and
still work, no startup script run by init at boot time can be considered relocatable!
While there is nothing wrong with specifying /etc/passwd as a relative path in the
delivered package, there is only one place it can go.

Advanced Package Creation Techniques 141

Making Absolute Path Names Look Relocatable
If you are going to construct a composite package, the absolute paths must operate in
a manner which does not interfere with existing installed software. A package that can
be entirely contained in /opt gets around this problem since there are no existing files
in the way. When a file in /etc is included in the package, you must ensure that the
absolute path names behave in the same way that is expected from relative path
names. Consider the following two examples.

Example—Modifying a File

Description

An entry is being added to a table, or the object is a new table which is likely to be
modified by other programs or packages.

Implementation

Define the object as file type e and belonging to the build, awk, or sed class. The
script that performs this task must remove itself as effectively as it adds itself.

Example

An entry needs to be added to /etc/vfstab in support of the new solid state hard
disk.

The entry in the pkgmap file might be

1 e sed /etc/vfstab ? ? ?

The request script asks the operator if /etc/vfstab should be modified by the
package. If the operator answers “no” then the request script will print instructions on
how to do the job manually and will execute

echo "CLASSES=none" >> $1

If the operator answers “yes” then it executes

echo "CLASSES=none sed" >> $1

which activates the class action script that will make the necessary modifications. The
sed class means that the package file /etc/vfstab is a sed program which contains
both the install and remove operations for the same-named file on the target system.

142 Application Packaging Developer’s Guide • December 2001

Example—Creating a New File

Description

The object is an entirely new file that is unlikely to be edited at a later time or, it is
replacing a file owned by another package.

Implementation

Define the package object as file type f and install it using a class action script capable
of undoing the change.

Example

A brand new file is required in /etc to provide the necessary information to support
the solid state hard disk, named /etc/shdisk.conf. The entry in the pkgmap file
might look like this:

.

.

.
1 f newetc /etc/shdisk.conf
.
.

.

The class action script i.newetc is responsible for installing this and any other files
that need to go into /etc. It checks to make sure there is not another file there. If there
is not, it will simply copy the new file into place. If there is already a file in place, it
will back it up before installing the new file. The script r.newetc removes these files
and restores the originals, if required. Here is the key fragment of the install script.

i.newetc
while read src dst; do

if [-f $dst]; then
dstfile=‘basename $dst‘
cp $dst $PKGSAV/$dstfile

fi
cp $src $dst

done

if ["${1}" = "ENDOFCLASS"]; then
cd $PKGSAV
tar cf SAVE.newetc .
$INST_DATADIR/$PKG/install/squish SAVE.newetc

fi

Advanced Package Creation Techniques 143

Notice that this script uses the PKGSAV environment variable to store a backup of the
file to be replaced. When the argument ENDOFCLASS is passed to the script, that is the
pkgadd command informing the script that these are the last entries in this class, at
which point the script archives and compresses the files that were saved using a
private compression program stored in the install directory of the package.

While the use of the PKGSAV environment variable is not reliable during a package
update; if the package is not updated (through a patch, for instance) the backup file is
secure. The following remove script includes code to deal with the other issue—the
fact that older versions of the pkgrm command do not pass the scripts the correct path
to the PKGSAV environment variable.

The removal script might look like this.

r.newetc

make sure we have the correct PKGSAV
if [-d $PKG_INSTALL_ROOT$PKGSAV]; then

PKGSAV="$PKG_INSTALL_ROOT$PKGSAV"
fi

find the unsquish program
UNSQUISH_CMD=‘dirname $0‘/unsquish

while read file; do
rm $file

done

if ["${1}" = ENDOFCLASS]; then
if [-f $PKGSAV/SAVE.newetc.sq]; then

$UNSQUISH_CMD $PKGSAV/SAVE.newetc
fi

if [-f $PKGSAV/SAVE.newetc]; then
targetdir=dirname $file # get the right directory
cd $targetdir

tar xf $PKGSAV/SAVE.newetc
rm $PKGSAV/SAVE.newetc

fi

fi

This script uses a private uninstalled algorithm (unsquish) which is in the install
directory of the package database. This is done automatically by the pkgadd
command at install time. All scripts not specifically recognized as install-only by the
pkgadd command are left in this directory for use by the pkgrm command. You
cannot count on where that directory is, but you can depend on the directory being
flat and containing all appropriate information files and installation scripts for the
package. This script finds the directory by virtue of the fact that the class action script
is guaranteed to be executing from the directory that contains the unsquish program.

144 Application Packaging Developer’s Guide • December 2001

Notice, also, that this script does not just assume the target directory is /etc. It may
actually be /export/root/client2/etc. The correct directory could be
constructed in one of two ways.

� Use the ${PKG_INSTALL_ROOT}/etc construction, or

� Take the directory name of a file passed by the pkgadd command (which is what
this script does).

By using this approach for each absolute object in the package, you can be sure that
the current desirable behavior is unchanged or at least recoverable.

Example—A Composite Package
This is an example of the pkginfo and pkgmap files for a composite package.

The pkginfo File
PKG=SUNWstuf
NAME=software stuff
ARCH=sparc
VERSION=1.0.0,REV=1.0.5
CATEGORY=application
DESC=a set of utilities that do stuff
BASEDIR=/opt
VENDOR=Sun Microsystems, Inc.
HOTLINE=Please contact your local service provider
EMAIL=
MAXINST=1000
CLASSES=none daemon

PSTAMP=hubert990707141632

The pkgmap File
: 1 1758
1 d none SUNWstuf/EZstuf 0775 root bin
1 f none SUNWstuf/EZstuf/dirdel 0555 bin bin 40 773 751310229
1 f none SUNWstuf/EZstuf/usrdel 0555 bin bin 40 773 751310229
1 f none SUNWstuf/EZstuf/filedel 0555 bin bin 40 773 751310229
1 d none SUNWstuf/HRDstuf 0775 root bin
1 f none SUNWstuf/HRDstuf/mksmart 0555 bin bin 40 773 751310229
1 f none SUNWstuf/HRDstuf/mktall 0555 bin bin 40 773 751310229
1 f none SUNWstuf/HRDstuf/mkcute 0555 bin bin 40 773 751310229
1 f none SUNWstuf/HRDstuf/mkeasy 0555 bin bin 40 773 751310229
1 d none /etc ? ? ?
1 d none /etc/rc2.d ? ? ?
1 e daemon /etc/rc2.d/S70dostuf 0744 root sys 450 223443
1 i i.daemon 509 39560 752978103
1 i pkginfo 348 28411 760740163

Advanced Package Creation Techniques 145

1 i postinstall 323 26475 751309908
1 i postremove 402 33179 751309945
1 i preinstall 321 26254 751310019
1 i preremove 320 26114 751309865

1 i r.daemon 320 24573 742152591

While S70dostuf belongs to the daemon class, the directories that lead up to it
(which are already in place at install time) belong to the none class. Even if the
directories were unique to this package, you should leave them in the none class. The
reason for this is that the directories need to be created first and deleted last, and this
is always true for the none class. The pkgadd command creates directories; they are
not copied from the package and they are not passed to a class action script to be
created. Instead, they are created by the pkgadd command before it calls the install
class action script, and the pkgrm command deletes directories after completion of the
removal class action script.

This means that if a directory in a special class contains objects in the class none,
when the pkgrm command attempts to remove the directory, it fails because the
directory will not be empty in time. If an object of class none is to be inserted into a
directory of some special class, that directory will not exist in time to accept the object.
The pkgadd command will create the directory on-the-fly during installation of the
object and may not be able to synchronize the attributes of that directory when it
finally sees the pkgmap definition.

Note – When assigning a directory to a class, always remember the order of creation
and deletion.

Making Packages Installable Remotely
All packages must be installable remotely. Installable remotely means you do not
assume the administrator installing your package is installing to the root (/) file
system of the system running the pkgadd command. If, in one of your procedure
scripts, you need to get to the /etc/vfstab file of the target system, you need to use
the PKG_INSTALL_ROOT environment variable. In other words, the path name
/etc/vfstab will get you to the /etc/vfstab file of the system running the
pkgadd command, but the administrator may be installing to a client at
/export/root/client3. The path ${PKG_INSTALL_ROOT}/etc/vfstab is
guaranteed to get you to the target file system.

146 Application Packaging Developer’s Guide • December 2001

Example—Installing to a Client
In this example, the SUNWstuf package is installed to client3, which is configured
with /opt in its root (/) file system. One other version of this package is already
installed on client3, and the base directory is set to basedir=/opt/$PKGINST
from an administration file, thisadmin. (For more information on administration
files, see “The Administrative Defaults File” on page 124.) The pkgadd command
executed on the server is:

pkgadd -a thisadmin -R /export/root/client3 SUNWstuf

The table below lists the environment variables and their values that are passed to the
procedure scripts.

TABLE 6–1 Values Passed to Procedure Scripts

Environment Variable Value

PKGINST SUNWstuf.2

PKG_INSTALL_ROOT /export/root/client3

CLIENT_BASEDIR /opt/SUNWstuf.2

BASEDIR /export/root/client3/opt/SUNWstuf.2

Example—Installing to a Server or Standalone
To install to the server or a standalone system under the same circumstances as the
previous example, the command is:

pkgadd -a thisadmin SUNWstuf

The table below lists the environment variables and their values that are passed to the
procedure scripts.

TABLE 6–2 Values Passed to Procedure Scripts

Environment Variable Value

PKGINST SUNWstuf.2

PKG_INSTALL_ROOT Not defined.

CLIENT_BASEDIR /opt/SUNWstuf.2

BASEDIR /opt/SUNWstuf.2

Advanced Package Creation Techniques 147

Example—Mounting Shared File Systems
Assume that the SUNWstuf package creates and shares a file system on the server at
/export/SUNWstuf/share. When the package is installed to the client systems,
their /etc/vfstab files need to be updated to mount this shared file system. This is a
situation where you can use the CLIENT_BASEDIR variable.

The entry on the client needs to present the mount point with reference to the client’s
file system. This line should be constructed correctly whether the installation is from
the server or from the client. Assume that the server’s system name is $SERVER. You
can go to $PKG_INSTALL_ROOT/etc/vfstab and, using the sed or awk commands,
construct the following line for the client’s /etc/vfstab file.

$SERVER:/export/SUNWstuf/share - $CLIENT_BASEDIR/usr nfs - yes ro

For example, for the server universe and the client system client9, the line in the
client system’s /etc/vfstab file would look like:

universe:/export/SUNWstuf/share - /opt/SUNWstuf.2/usr nfs - yes ro

Using these parameters correctly, the entry always mounts the client’s file system,
whether it is being constructed locally or from the server.

Patching Packages
A patch to a package is just a sparse package designed to overwrite certain files in the
original. There is no real reason for shipping a sparse package except to save space on
the delivery medium. You could also ship the entire original package with a few files
changed, or provide access to the modified package over a network. As long as only
those new files are actually different (the other files were not recompiled), the pkgadd
command installs the differences. Review the following guidelines regarding patching
packages.

� A patch must not change the intended delivered behavior of the package—it is not
a mechanism for installing new features. A patch is used to repair objects installed
on the system.

� If the system is complex enough, it is wise to establish a patch identification system
which assures that no two patches replace the same file in an attempt to correct
different aberrant behaviors. For instance, Sun patch base numbers are assigned
mutually exclusive sets of files for which they are responsible.

� It is necessary to be able to back out a patch.

148 Application Packaging Developer’s Guide • December 2001

It is crucial that the version number of the patch package be the same as that of the
original package. This is true because a patch must not add functionality. You should
keep track of the patch status of the package using a separate pkginfo file entry of
the form

PATCH=patch_number

If the package version is changed for a patch, you create another instance of the
package and it becomes extremely difficult to manage the patched product. This
method of progressive instance patching carried certain advantages in the early
releases of the Solaris operating environment, but makes management of more
complicated systems tedious.

As far as the packages that make up the Solaris operating environment are concerned,
there should be only one copy of the package in the package database, although there
may be multiple patched instances. In order to remove an object from an installed
package (using the removef command) you need to figure out what instances own
that file.

However, if your package (that is not part of the Solaris operating environment) needs
to determine the patch level of a particular package that is part of the Solaris operating
environment, this becomes a problem to be resolved here. The installation scripts can
be quite large without significant impact since they are not stored on the target file
system. Using class action scripts and various other procedure scripts, you can save
changed files using the PKGSAV environment variable (or to some other, more
permanent directory) in order to allow backing out installed patches. You can also
monitor patch history by setting appropriate environment variables through the
request scripts. The scripts in the next sections assume that there may be multiple
patches whose numbering scheme carries some meaning when applied to a single
package. In this case, individual patch numbers represent a subset of functionally
related files within the package. Two different patch numbers cannot change the same
file.

In order to make a regular sparse package into a patch package, the scripts described
in the following sections can simply be folded into the package. All of them are
recognizable as standard package components with the exception of the last two
which are named patch_checkinstall and patch_postinstall. Those two
scripts can be incorporated into the backout package, if you want to include the ability
to back out the patch. The scripts are fairly simple and their various tasks are
straightforward.

Advanced Package Creation Techniques 149

Note – This method of patching can be used to patch client systems, but client root
directories on the server must have the correct permissions to allow reading by the
user install or nobody.

The checkinstall Script
The checkinstall script verifies that the patch is appropriate for this particular
package. Once that is confirmed, it constructs the patch list and the patch info list, and
then inserts them into the response file for incorporation into the package database.

A patch list is the list of patches that have affected the current package. This list of
patches is recorded in the installed package in the pkginfo file with a line that might
look like this:

PATCHLIST=patch_id patch_id ...

A patch info list is the list of patches on which the current patch is dependent. This list
of patches is also recorded in the pkginfo file with a line that might look like this.

PATCH_INFO_103203-01=Installed... Obsoletes:103201-01 Requires: \ Incompatibles: 120134-01

Note – These lines (and their format) are declared as a public interface. Any company
that ships patches for Solaris packages should update this list appropriately. When a
patch is delivered, each package within the patch contains a checkinstall script
that performs this task. That same checkinstall script also updates some other
patch-specific parameters. This is the new patch architecture, which is called Direct
Instance Patching.

In this example, both the original packages and their patches exist in the same
directory. The two original packages are named SUNWstuf.v1 and SUNWstuf.v2,
and their patches are named SUNWstuf.p1 and SUNWstuf.p2. What this means is
that it could be very difficult for a procedure script to figure out what directory these
files came from, since everything in the package name after the dot (“.”) is stripped for
the PKG parameter, and the PKGINST environment variable refers to the installed
instance not the source instance. So the procedure scripts can find the source directory,
the checkinstall script (which is always executed from the source directory) makes
the inquiry and passes the location on as the variable SCRIPTS_DIR. If there had been
only one package in the source directory called SUNWstuf, then the procedure scripts
could have found it using $INSTDIR/$PKG.

checkinstall script to control a patch installation.
directory format options.
#
@(#)checkinstall 1.6 96/09/27 SMI
#

150 Application Packaging Developer’s Guide • December 2001

Copyright (c) 1995 by Sun Microsystems, Inc.
All rights reserved
#

PATH=/usr/sadm/bin:$PATH

INFO_DIR=‘dirname $0‘
INFO_DIR=‘dirname $INFO_DIR‘ # one level up

NOVERS_MSG="PaTcH_MsG 8 Version $VERSION of $PKG is not installed on this system."
ALRDY_MSG="PaTcH_MsG 2 Patch number $Patch_label is already applied."
TEMP_MSG="PaTcH_MsG 23 Patch number $Patch_label cannot be applied until all \
restricted patches are backed out."

Read the provided environment from what may have been a request script
. $1

Old systems can’t deal with checkinstall scripts anyway
if ["$PATCH_PROGRESSIVE" = "true"]; then

exit 0
fi

#
Confirm that the intended version is installed on the system.
#
if ["${UPDATE}" != "yes"]; then

echo "$NOVERS_MSG"
exit 3

fi

#
Confirm that this patch hasn’t already been applied and
that no other mix-ups have occurred involving patch versions and
the like.
#
Skip=0
active_base=‘echo $Patch_label | nawk ’

{ print substr($0, 1, match($0, "Patchvers_pfx")-1) } ’‘
active_inst=‘echo $Patch_label | nawk ’

{ print substr($0, match($0, "Patchvers_pfx")+Patchvers_pfx_lnth) } ’‘

Is this a restricted patch?
if echo $active_base | egrep -s "Patchstrict_str"; then

is_restricted="true"
All restricted patches are backoutable
echo "PATCH_NO_UNDO=" >> $1

else
is_restricted="false"

fi

for patchappl in ${PATCHLIST}; do
Is this an ordinary patch applying over a restricted patch?
if [$is_restricted = "false"]; then

if echo $patchappl | egrep -s "Patchstrict_str"; then

Advanced Package Creation Techniques 151

echo "$TEMP_MSG"
exit 3;

fi
fi

Is there a newer version of this patch?
appl_base=‘echo $patchappl | nawk ’

{ print substr($0, 1, match($0, "Patchvers_pfx")-1) } ’‘
if [$appl_base = $active_base]; then

appl_inst=‘echo $patchappl | nawk ’
{ print substr($0, match($0, "Patchvers_pfx")\

+Patchvers_pfx_lnth) } ’‘
result=‘expr $appl_inst \> $active_inst‘
if [$result -eq 1]; then

echo "PaTcH_MsG 1 Patch number $Patch_label is \
superceded by the already applied $patchappl."

exit 3
elif [$appl_inst = $active_inst]; then

Not newer, it’s the same
if ["$PATCH_UNCONDITIONAL" = "true"]; then

if [-d $PKGSAV/$Patch_label]; then
echo "PATCH_NO_UNDO=true" >> $1

fi
else

echo "$ALRDY_MSG"
exit 3;

fi
fi

fi
done

Construct a list of applied patches in order
echo "PATCHLIST=${PATCHLIST} $Patch_label" >> $1

#
Construct the complete list of patches this one obsoletes
#
ACTIVE_OBSOLETES=$Obsoletes_label

if [-n "$Obsoletes_label"]; then
Merge the two lists
echo $Obsoletes_label | sed ’y/\ /\n/’ | \
nawk -v PatchObsList="$PATCH_OBSOLETES" ’
BEGIN {

printf("PATCH_OBSOLETES=");
PatchCount=split(PatchObsList, PatchObsComp, " ");

for(PatchIndex in PatchObsComp) {
Atisat=match(PatchObsComp[PatchIndex], "@");
PatchObs[PatchIndex]=substr(PatchObsComp[PatchIndex], \

0, Atisat-1);
PatchObsCnt[PatchIndex]=substr(PatchObsComp\

[PatchIndex], Atisat+1);
}

152 Application Packaging Developer’s Guide • December 2001

}
{

Inserted=0;
for(PatchIndex in PatchObs) {

if (PatchObs[PatchIndex] == $0) {
if (Inserted == 0) {

PatchObsCnt[PatchIndex]=PatchObsCnt\
[PatchIndex]+1;

Inserted=1;
} else {

PatchObsCnt[PatchIndex]=0;
}

}
}
if (Inserted == 0) {

printf ("%s@1 ", $0);
}
next;

}
END {

for(PatchIndex in PatchObs) {
if (PatchObsCnt[PatchIndex] != 0) {

printf("%s@%d ", PatchObs[PatchIndex], \
PatchObsCnt[PatchIndex]);

}
}
printf("\n");

} ’ >> $1
Clear the parameter since it has already been used.
echo "Obsoletes_label=" >> $1

Pass it’s value on to the preinstall under another name
echo "ACTIVE_OBSOLETES=$ACTIVE_OBSOLETES" >> $1

fi

#
Construct PATCH_INFO line for this package.
#

tmpRequire=‘nawk -F= ’ $1 ~ /REQUIR/ { print $2 } ’ $INFO_DIR/pkginfo ‘
tmpIncompat=‘nawk -F= ’ $1 ~ /INCOMPAT/ { print $2 } ’ $INFO_DIR/pkginfo ‘

if [-n "$tmpRequire"] && [-n "$tmpIncompat"]
then

echo "PATCH_INFO_$Patch_label=Installed: ‘date‘ From: ‘uname -n‘ \
Obsoletes: $ACTIVE_OBSOLETES Requires: $tmpRequire \
Incompatibles: $tmpIncompat" >> $1

elif [-n "$tmpRequire"]
then

echo "PATCH_INFO_$Patch_label=Installed: ‘date‘ From: ‘uname -n‘ \
Obsoletes: $ACTIVE_OBSOLETES Requires: $tmpRequire \

Incompatibles: " >> $1
elif [-n "$tmpIncompat"]
then

Advanced Package Creation Techniques 153

echo "PATCH_INFO_$Patch_label=Installed: ‘date‘ From: ‘uname -n‘ \
Obsoletes: $ACTIVE_OBSOLETES Requires: Incompatibles: \

$tmpIncompat" >> $1
else

echo "PATCH_INFO_$Patch_label=Installed: ‘date‘ From: ‘uname -n‘ \
Obsoletes: $ACTIVE_OBSOLETES Requires: Incompatibles: " >> $1

fi

#
Since this script is called from the delivery medium and we may be using
dot extensions to distinguish the different patch packages, this is the
only place we can, with certainty, trace that source for our backout
scripts. (Usually $INST_DATADIR would get us there).
#
echo "SCRIPTS_DIR=‘dirname $0‘" >> $1

If additional operations are required for this package, place
those package-specific commands here.

#XXXSpecial_CommandsXXX#

exit 0

The preinstall Script
The preinstall script initializes the prototype file, information files, and
installation scripts for the backout package to be constructed. This script is very simple
and the remaining scripts in this example only allow a backout package to describe
regular files.

If you wanted to restore symbolic links, hard links, devices, and named pipes in a
backout package, you could modify the preinstall script to use the pkgproto
command to compare the delivered pkgmap file with the installed files, and then
create a prototype file entry for each non-file to be changed in the backout package.
The method you should use is similar to the method in the class action script.

The scripts patch_checkinstall and patch_postinstall are inserted into the
package source tree from the preinstall script. These two scripts undo what the
patch does.

This script initializes the backout data for a patch package
directory format options.
#
@(#)preinstall 1.5 96/05/10 SMI
#
Copyright (c) 1995 by Sun Microsystems, Inc.
All rights reserved
#

PATH=/usr/sadm/bin:$PATH

154 Application Packaging Developer’s Guide • December 2001

recovery="no"

if ["$PKG_INSTALL_ROOT" = "/"]; then
PKG_INSTALL_ROOT=""

fi

Check to see if this is a patch installation retry.
if ["$INTERRUPTION" = "yes"]; then

if [-d "$PKG_INSTALL_ROOT/var/tmp/$Patch_label.$PKGINST"] || [-d \
"$PATCH_BUILD_DIR/$Patch_label.$PKGINST"]; then

recovery="yes"
fi

fi

if [-n "$PATCH_BUILD_DIR" -a -d "$PATCH_BUILD_DIR"]; then
BUILD_DIR="$PATCH_BUILD_DIR/$Patch_label.$PKGINST"

else
BUILD_DIR="$PKG_INSTALL_ROOT/var/tmp/$Patch_label.$PKGINST"

fi

FILE_DIR=$BUILD_DIR/files
RELOC_DIR=$BUILD_DIR/files/reloc
ROOT_DIR=$BUILD_DIR/files/root
PROTO_FILE=$BUILD_DIR/prototype
PKGINFO_FILE=$BUILD_DIR/pkginfo
THIS_DIR=‘dirname $0‘

if ["$PATCH_PROGRESSIVE" = "true"]; then
If this is being used in an old-style patch, insert
the old-style script commands here.

#XXXOld_CommandsXXX#

exit 0
fi

#
Unless specifically denied, initialize the backout patch data by
creating the build directory and copying over the original pkginfo
which pkgadd saved in case it had to be restored.
#
if ["$PATCH_NO_UNDO" != "true"] && ["$recovery" = "no"]; then

if [-d $BUILD_DIR]; then
rm -r $BUILD_DIR

fi

If this is a retry of the same patch then recovery is set to
yes. Which means there is a build directory already in
place with the correct backout data.

if ["$recovery" = "no"]; then
mkdir $BUILD_DIR
mkdir -p $RELOC_DIR
mkdir $ROOT_DIR

Advanced Package Creation Techniques 155

fi

#
Here we initialize the backout pkginfo file by first
copying over the old pkginfo file and themn adding the
ACTIVE_PATCH parameter so the backout will know what patch
it’s backing out.
#
NOTE : Within the installation, pkgparam returns the
original data.
#
pkgparam -v $PKGINST | nawk ’

$1 ~ /PATCHLIST/ { next; }
$1 ~ /PATCH_OBSOLETES/ { next; }
$1 ~ /ACTIVE_OBSOLETES/ { next; }
$1 ~ /Obsoletes_label/ { next; }
$1 ~ /ACTIVE_PATCH/ { next; }
$1 ~ /Patch_label/ { next; }
$1 ~ /UPDATE/ { next; }
$1 ~ /SCRIPTS_DIR/ { next; }
$1 ~ /PATCH_NO_UNDO/ { next; }
$1 ~ /INSTDATE/ { next; }
$1 ~ /PKGINST/ { next; }
$1 ~ /OAMBASE/ { next; }
$1 ~ /PATH/ { next; }
{ print; } ’ > $PKGINFO_FILE

echo "ACTIVE_PATCH=$Patch_label" >> $PKGINFO_FILE
echo "ACTIVE_OBSOLETES=$ACTIVE_OBSOLETES" >> $PKGINFO_FILE

And now initialize the backout prototype file with the
pkginfo file just formulated.
echo "i pkginfo" > $PROTO_FILE

Copy over the backout scripts including the undo class
action scripts
for script in $SCRIPTS_DIR/*; do

srcscript=‘basename $script‘
targscript=‘echo $srcscript | nawk ’

{ script=$0; }
/u\./ {

sub("u.", "i.", script);
print script;
next;

}
/patch_/ {

sub("patch_", "", script);
print script;
next;

}
{ print "dont_use" } ’‘

if ["$targscript" = "dont_use"]; then
continue

fi

156 Application Packaging Developer’s Guide • December 2001

echo "i $targscript=$FILE_DIR/$targscript" >> $PROTO_FILE
cp $SCRIPTS_DIR/$srcscript $FILE_DIR/$targscript

done
#
Now add entries to the prototype file that won’t be passed to
class action scripts. If the entry is brand new, add it to the
deletes file for the backout package.
#
Our_Pkgmap=‘dirname $SCRIPTS_DIR‘/pkgmap
BO_Deletes=$FILE_DIR/deletes

nawk -v basedir=${BASEDIR:-/} ’
BEGIN { count=0; }
{

token = $2;
ftype = $1;

}
$1 ~ /[#\!:]/ { next; }
$1 ~ /[0123456789]/ {

if (NF >= 3) {
token = $3;
ftype = $2;

} else {
next;

}
}
{ if (ftype == "i" || ftype == "e" || ftype == "f" || ftype == \

"v" || ftype == "d") { next; } }
{

equals=match($4, "=")-1;
if (equals == -1) { print $3, $4; }
else { print $3, substr($4, 0, equals); }

}
’ < $Our_Pkgmap | while read class path; do

#
NOTE: If pkgproto is passed a file that is
actually a hard link to another file, it
will return ftype "f" because the first link
in the list (consisting of only one file) is
viewed by pkgproto as the source and always
gets ftype "f".
#
If this isn’t replacing something, then it
just goes to the deletes list.
#
if valpath -l $path; then

Chk_Path="$BASEDIR/$path"
Build_Path="$RELOC_DIR/$path"
Proto_From="$BASEDIR"

else # It’s an absolute path
Chk_Path="$PKG_INSTALL_ROOT$path"
Build_Path="$ROOT_DIR$path"
Proto_From="$PKG_INSTALL_ROOT"

fi

Advanced Package Creation Techniques 157

#
Hard links have to be restored as regular files.
Unlike the others in this group, an actual
object will be required for the pkgmk.
#
if [-f "$Chk_Path"]; then

mkdir -p ‘dirname $Build_Path‘
cp $Chk_Path $Build_Path
cd $Proto_From
pkgproto -c $class "$Build_Path=$path" 1>> \

$PROTO_FILE 2> /dev/null
cd $THIS_DIR

elif [-h "$Chk_Path" -o \
-c "$Chk_Path" -o \
-b "$Chk_Path" -o \
-p "$Chk_Path"]; then

pkgproto -c $class "$Chk_Path=$path" 1>> \
$PROTO_FILE 2> /dev/null

else
echo $path >> $BO_Deletes

fi
done

fi

If additional operations are required for this package, place
those package-specific commands here.

#XXXSpecial_CommandsXXX#

exit 0

The Class Action Script
The class action script creates a copy of each file that replaces an existing file and adds
a corresponding line to the prototype file for the backout package. This is all done
with fairly simple nawk scripts. The class action script receives a list of
source/destination pairs consisting of ordinary files that do not match the
corresponding installed files. Symbolic links and other non-files must be dealt with in
the preinstall script.

This class action script copies the files being replaced
into a package being constructed in $BUILD_DIR. This class
action script is only appropriate for regular files that
are installed by simply copying them into place.
#
For special package objects such as editable files, the patch
producer must supply appropriate class action scripts.
#
directory format options.
#
@(#)i.script 1.6 96/05/10 SMI

158 Application Packaging Developer’s Guide • December 2001

#
Copyright (c) 1995 by Sun Microsystems, Inc.
All rights reserved
#

PATH=/usr/sadm/bin:$PATH

ECHO="/usr/bin/echo"
SED="/usr/bin/sed"
PKGPROTO="/usr/bin/pkgproto"
EXPR="/usr/bin/expr" # used by dirname
MKDIR="/usr/bin/mkdir"
CP="/usr/bin/cp"
RM="/usr/bin/rm"
MV="/usr/bin/mv"

recovery="no"
Pn=$$
procIdCtr=0

CMDS_USED="$ECHO $SED $PKGPROTO $EXPR $MKDIR $CP $RM $MV"
LIBS_USED=""

if ["$PKG_INSTALL_ROOT" = "/"]; then
PKG_INSTALL_ROOT=""

fi

Check to see if this is a patch installation retry.
if ["$INTERRUPTION" = "yes"]; then

if [-d "$PKG_INSTALL_ROOT/var/tmp/$Patch_label.$PKGINST"] ||
\
[-d "$PATCH_BUILD_DIR/$Patch_label.$PKGINST"]; then

recovery="yes"
fi

fi

if [-n "$PATCH_BUILD_DIR" -a -d "$PATCH_BUILD_DIR"]; then
BUILD_DIR="$PATCH_BUILD_DIR/$Patch_label.$PKGINST"

else
BUILD_DIR="$PKG_INSTALL_ROOT/var/tmp/$Patch_label.$PKGINST"

fi

FILE_DIR=$BUILD_DIR/files
RELOC_DIR=$FILE_DIR/reloc
ROOT_DIR=$FILE_DIR/root
BO_Deletes=$FILE_DIR/deletes
PROGNAME=‘basename $0‘

if ["$PATCH_PROGRESSIVE" = "true"]; then
PATCH_NO_UNDO="true"

fi

Since this is generic, figure out the class.
Class=‘echo $PROGNAME | nawk ’ { print substr($0, 3) }’‘

Advanced Package Creation Techniques 159

Since this is an update, $BASEDIR is guaranteed to be correct
BD=${BASEDIR:-/}

cd $BD

#
First, figure out the dynamic libraries that can trip us up.
#
if [-z "$PKG_INSTALL_ROOT"]; then

if [-x /usr/bin/ldd]; then
LIB_LIST=‘/usr/bin/ldd $CMDS_USED | sort -u | nawk ’

$1 ~ /\// { continue; }
{ printf "%s ", $3 } ’‘

else
LIB_LIST="/usr/lib/libc.so.1 /usr/lib/libdl.so.1

\
/usr/lib/libw.so.1 /usr/lib/libintl.so.1 /usr/lib/libadm.so.1 \
/usr/lib/libelf.so.1"

fi
fi

#
Now read the list of files in this class to be replaced. If the file
is already in place, then this is a change and we need to copy it
over to the build directory if undo is allowed. If it’s a new entry
(No $dst), then it goes in the deletes file for the backout package.
#
procIdCtr=0
while read src dst; do

if [-z "$PKG_INSTALL_ROOT"]; then
Chk_Path=$dst
for library in $LIB_LIST; do

if [$Chk_Path = $library]; then
$CP $dst $dst.$Pn
LIBS_USED="$LIBS_USED $dst.$Pn"
LD_PRELOAD="$LIBS_USED"
export LD_PRELOAD

fi
done

fi

if ["$PATCH_PROGRESSIVE" = "true"]; then
If this is being used in an old-style patch, insert
the old-style script commands here.

#XXXOld_CommandsXXX#
echo >/dev/null # dummy

fi

if ["${PATCH_NO_UNDO}" != "true"]; then
#
Here we construct the path to the appropriate source
tree for the build. First we try to strip BASEDIR. If

160 Application Packaging Developer’s Guide • December 2001

there’s no BASEDIR in the path, we presume that it is
absolute and construct the target as an absolute path
by stripping PKG_INSTALL_ROOT. FS_Path is the path to
the file on the file system (for deletion purposes).
Build_Path is the path to the object in the build
environment.
#
if ["$BD" = "/"]; then

FS_Path=‘$ECHO $dst | $SED s@"$BD"@@‘
else

FS_Path=‘$ECHO $dst | $SED s@"$BD/"@@‘
fi

If it’s an absolute path the attempt to strip the
BASEDIR will have failed.
if [$dst = $FS_Path]; then

if [-z "$PKG_INSTALL_ROOT"]; then
FS_Path=$dst
Build_Path="$ROOT_DIR$dst"

else
Build_Path="$ROOT_DIR‘echo $dst | \

sed s@"$PKG_INSTALL_ROOT"@@‘"
FS_Path=‘echo $dst | \

sed s@"$PKG_INSTALL_ROOT"@@‘
fi

else
Build_Path="$RELOC_DIR/$FS_Path"

fi

if [-f $dst]; then # If this is replacing something
cd $FILE_DIR
#
Construct the prototype file entry. We replace
the pointer to the filesystem object with the
build directory object.
#
$PKGPROTO -c $Class $dst=$FS_Path | \

$SED -e s@=$dst@=$Build_Path@ >> \
$BUILD_DIR/prototype

Now copy over the file
if ["$recovery" = "no"]; then

DirName=‘dirname $Build_Path‘
$MKDIR -p $DirName
$CP -p $dst $Build_Path

else
If this file is already in the build area skip it
if [-f "$Build_Path"]; then

cd $BD
continue

else
DirName=‘dirname $Build_Path‘
if [! -d "$DirName"]; then

$MKDIR -p $DirName

Advanced Package Creation Techniques 161

fi
$CP -p $dst $Build_Path

fi
fi

cd $BD
else # It’s brand new

$ECHO $FS_Path >> $BO_Deletes
fi

fi

If special processing is required for each src/dst pair,
add that here.
#
#XXXSpecial_CommandsXXX#
#

$CP $src $dst.$$$procIdCtr
if [$? -ne 0]; then

$RM $dst.$$$procIdCtr 1>/dev/null 2>&1
else

$MV -f $dst.$$$procIdCtr $dst
for library in $LIB_LIST; do

if ["$library" = "$dst"]; then
LD_PRELOAD="$dst"
export LD_PRELOAD

fi
done

fi
procIdCtr=‘expr $procIdCtr + 1‘

done

If additional operations are required for this package, place
those package-specific commands here.

#XXXSpecial_CommandsXXX#

#
Release the dynamic libraries
#
for library in $LIBS_USED; do

$RM -f $library
done

exit 0

The postinstall Script
The postinstall script creates the backout package using the information provided
by the other scripts. Since the pkgmk and pkgtrans commands do not require the
package database, they can be executed within a package installation.

162 Application Packaging Developer’s Guide • December 2001

In the example, undoing the patch is permitted by constructing a stream format
package in the save directory (using the PKGSAV environment variable). It is not
obvious, but this package must be in stream format, because the save directory gets
moved around during a pkgadd operation. If the pkgadd command is applied to a
package in its own save directory, assumptions about where the package source is at
any given time become very unreliable. A stream format package is unpacked into a
temporary directory and installed from there. (A directory format package would
begin installing from the save directory and find itself suddenly relocated during a
pkgadd fail-safe operation.)

To determine which patches are applied to a package, use this command:

$ pkgparam SUNWstuf PATCHLIST

With the exception of PATCHLIST, which is a Sun public interface, there is nothing
significant in the parameter names in this example. Instead of PATCH you could use
the traditional SUNW_PATCHID and the various other lists such as PATCH_EXCL and
PATCH_REQD could be renamed accordingly.

If certain patch packages depend upon other patch packages which are available from
the same medium, the checkinstall script could determine this and create a script
to be executed by the postinstall script in the same way that the upgrade example
(see “Upgrading Packages” on page 171) does.

This script creates the backout package for a patch package
#
directory format options.
#
@(#) postinstall 1.6 96/01/29 SMI
#
Copyright (c) 1995 by Sun Microsystems, Inc.
All rights reserved
#

Description:
Set the TYPE parameter for the remote file
#
Parameters:
none
#
Globals set:
TYPE

set_TYPE_parameter () {
if [${PATCH_UNDO_ARCHIVE:?????} = "/dev"]; then

handle device specific stuff
TYPE="removable"

else
TYPE="filesystem"

fi
}

Advanced Package Creation Techniques 163

#
Description:
Build the remote file that points to the backout data
#
Parameters:
$1: the un/compressed undo archive
#
Globals set:
UNDO, STATE

build_remote_file () {
remote_path=$PKGSAV/$Patch_label/remote
set_TYPE_parameter
STATE="active"

if [$1 = "undo"]; then
UNDO="undo"

else
UNDO="undo.Z"

fi

cat > $remote_path << EOF
Backout data stored remotely
TYPE=$TYPE
FIND_AT=$ARCHIVE_DIR/$UNDO
STATE=$STATE
EOF
}

PATH=/usr/sadm/bin:$PATH

if ["$PKG_INSTALL_ROOT" = "/"]; then
PKG_INSTALL_ROOT=""

fi

if [-n "$PATCH_BUILD_DIR" -a -d "$PATCH_BUILD_DIR"]; then
BUILD_DIR="$PATCH_BUILD_DIR/$Patch_label.$PKGINST"

else
BUILD_DIR="$PKG_INSTALL_ROOT/var/tmp/$Patch_label.$PKGINST"

fi

if [! -n "$PATCH_UNDO_ARCHIVE"]; then
PATCH_UNDO_ARCHIVE="none"

fi

FILE_DIR=$BUILD_DIR/files
RELOC_DIR=$FILE_DIR/reloc
ROOT_DIR=$FILE_DIR/root
BO_Deletes=$FILE_DIR/deletes
THIS_DIR=‘dirname $0‘
PROTO_FILE=$BUILD_DIR/prototype
TEMP_REMOTE=$PKGSAV/$Patch_label/temp

if ["$PATCH_PROGRESSIVE" = "true"]; then

164 Application Packaging Developer’s Guide • December 2001

remove the scripts that are left behind
install_scripts=‘dirname $0‘
rm $install_scripts/checkinstall \

$install_scripts/patch_checkinstall $install_scripts/patch_postinstall

If this is being used in an old-style patch, insert
the old-style script commands here.

#XXXOld_CommandsXXX#

exit 0
fi
#
At this point we either have a deletes file or we don’t. If we do,
we create a prototype entry.
#
if [-f $BO_Deletes]; then

echo "i deletes=$BO_Deletes" >> $BUILD_DIR/prototype
fi

#
Now delete everything in the deletes list after transferring
the file to the backout package and the entry to the prototype
file. Remember that the pkgmap will get the CLIENT_BASEDIR path
but we have to actually get at it using the BASEDIR path. Also
remember that removef will import our PKG_INSTALL_ROOT
#
Our_Deletes=$THIS_DIR/deletes
if [-f $Our_Deletes]; then

cd $BASEDIR

cat $Our_Deletes | while read path; do
Reg_File=0

if valpath -l $path; then
Client_Path="$CLIENT_BASEDIR/$path"
Build_Path="$RELOC_DIR/$path"
Proto_Path=$BASEDIR/$path

else # It’s an absolute path
Client_Path=$path
Build_Path="$ROOT_DIR$path"
Proto_Path=$PKG_INSTALL_ROOT$path

fi

Note: If the file isn’t really there, pkgproto
doesn’t write anything.
LINE=‘pkgproto $Proto_Path=$path‘
ftype=‘echo $LINE | nawk ’{ print $1 }’‘
if [$ftype = "f"]; then

Reg_File=1
fi

if [$Reg_File = 1]; then
Add source file to the prototype entry

Advanced Package Creation Techniques 165

if ["$Proto_Path" = "$path"]; then
LINE=‘echo $LINE | sed -e s@$Proto_Path@$Build_Path@2‘

else
LINE=‘echo $LINE | sed -e s@$Proto_Path@$Build_Path@‘

fi

DirName=‘dirname $Build_Path‘
make room in the build tree
mkdir -p $DirName
cp -p $Proto_Path $Build_Path

fi

Insert it into the prototype file
echo $LINE 1>>$PROTO_FILE 2>/dev/null

Remove the file only if it’s OK’d by removef
rm ‘removef $PKGINST $Client_Path‘ 1>/dev/null 2>&1

done
removef -f $PKGINST

rm $Our_Deletes
fi

#
Unless specifically denied, make the backout package.
#
if ["$PATCH_NO_UNDO" != "true"]; then

cd $BUILD_DIR # We have to build from here.

if ["$PATCH_UNDO_ARCHIVE" != "none"]; then
STAGE_DIR="$PATCH_UNDO_ARCHIVE"
ARCHIVE_DIR="$PATCH_UNDO_ARCHIVE/$Patch_label/$PKGINST"
mkdir -p $ARCHIVE_DIR
mkdir -p $PKGSAV/$Patch_label

else
if [-d $PKGSAV/$Patch_label]; then

rm -r $PKGSAV/$Patch_label
fi
STAGE_DIR=$PKGSAV
ARCHIVE_DIR=$PKGSAV/$Patch_label
mkdir $ARCHIVE_DIR

fi

pkgmk -o -d $STAGE_DIR 1>/dev/null 2>&1
pkgtrans -s $STAGE_DIR $ARCHIVE_DIR/undo $PKG 1>/dev/null 2>&1
compress $ARCHIVE_DIR/undo
retcode=$?
if ["$PATCH_UNDO_ARCHIVE" != "none"]; then

if [$retcode != 0]; then
build_remote_file "undo"

else
build_remote_file "undo.Z"

fi
fi

166 Application Packaging Developer’s Guide • December 2001

rm -r $STAGE_DIR/$PKG

cd ..
rm -r $BUILD_DIR
remove the scripts that are left behind
install_scripts=‘dirname $0‘
rm $install_scripts/checkinstall $install_scripts/patch_\

checkinstall $install_scripts/patch_postinstall
fi

#
Since this apparently worked, we’ll mark as obsoleted the prior
versions of this patch - installpatch deals with explicit obsoletions.
#
cd ${PKG_INSTALL_ROOT:-/}
cd var/sadm/pkg

active_base=‘echo $Patch_label | nawk ’
{ print substr($0, 1, match($0, "Patchvers_pfx")-1) } ’‘

List=‘ls -d $PKGINST/save/${active_base}*‘
if [$? -ne 0]; then

List=""
fi

for savedir in $List; do
patch=‘basename $savedir‘
if [$patch = $Patch_label]; then

break
fi

If we get here then the previous patch gets deleted
if [-f $savedir/undo]; then

mv $savedir/undo $savedir/obsolete
echo $Patch_label >> $savedir/obsoleted_by

elif [-f $savedir/undo.Z]; then
mv $savedir/undo.Z $savedir/obsolete.Z
echo $Patch_label >> $savedir/obsoleted_by

elif [-f $savedir/remote]; then
‘grep . $PKGSAV/$patch/remote | sed ’s/STATE=.*/STATE=obsolete/

’ > $TEMP_REMOTE‘
rm -f $PKGSAV/$patch/remote
mv $TEMP_REMOTE $PKGSAV/$patch/remote
rm -f $TEMP_REMOTE
echo $Patch_label >> $savedir/obsoleted_by

elif [-f $savedir/obsolete -o -f $savedir/obsolete.Z]; then
echo $Patch_label >> $savedir/obsoleted_by

fi
done

If additional operations are required for this package, place
those package-specific commands here.

#XXXSpecial_CommandsXXX#

Advanced Package Creation Techniques 167

exit 0

The patch_checkinstall Script
checkinstall script to validate backing out a patch.
directory format option.
#
@(#)patch_checkinstall 1.2 95/10/10 SMI
#
Copyright (c) 1995 by Sun Microsystems, Inc.
All rights reserved
#

PATH=/usr/sadm/bin:$PATH

LATER_MSG="PaTcH_MsG 6 ERROR: A later version of this patch is applied."
NOPATCH_MSG="PaTcH_MsG 2 ERROR: Patch number $ACTIVE_PATCH is not installed"
NEW_LIST=""

Get OLDLIST
. $1

#
Confirm that the patch that got us here is the latest one installed on
the system and remove it from PATCHLIST.
#
Is_Inst=0
Skip=0
active_base=‘echo $ACTIVE_PATCH | nawk ’

{ print substr($0, 1, match($0, "Patchvers_pfx")-1) } ’‘
active_inst=‘echo $ACTIVE_PATCH | nawk ’

{ print substr($0, match($0, "Patchvers_pfx")+1) } ’‘
for patchappl in ${OLDLIST}; do

appl_base=‘echo $patchappl | nawk ’
{ print substr($0, 1, match($0, "Patchvers_pfx")-1) } ’‘

if [$appl_base = $active_base]; then
appl_inst=‘echo $patchappl | nawk ’

{ print substr($0, match($0, "Patchvers_pfx")+1) } ’‘
result=‘expr $appl_inst \> $active_inst‘
if [$result -eq 1]; then

puttext "$LATER_MSG"
exit 3

elif [$appl_inst = $active_inst]; then
Is_Inst=1
Skip=1

fi
fi
if [$Skip = 1]; then

Skip=0
else

168 Application Packaging Developer’s Guide • December 2001

NEW_LIST="${NEW_LIST} $patchappl"
fi

done

if [$Is_Inst = 0]; then
puttext "$NOPATCH_MSG"
exit 3

fi

#
OK, all’s well. Now condition the key variables.
#
echo "PATCHLIST=${NEW_LIST}" >> $1
echo "Patch_label=" >> $1
echo "PATCH_INFO_$ACTIVE_PATCH=backed out" >> $1

Get the current PATCH_OBSOLETES and condition it
Old_Obsoletes=$PATCH_OBSOLETES

echo $ACTIVE_OBSOLETES | sed ’y/\ /\n/’ | \
nawk -v PatchObsList="$Old_Obsoletes" ’

BEGIN {
printf("PATCH_OBSOLETES=");
PatchCount=split(PatchObsList, PatchObsComp, " ");

for(PatchIndex in PatchObsComp) {
Atisat=match(PatchObsComp[PatchIndex], "@");
PatchObs[PatchIndex]=substr(PatchObsComp[PatchIndex], \

0, Atisat-1);
PatchObsCnt[PatchIndex]=substr(PatchObsComp\

[PatchIndex], Atisat+1);
}

}
{

for(PatchIndex in PatchObs) {
if (PatchObs[PatchIndex] == $0) {

PatchObsCnt[PatchIndex]=PatchObsCnt[PatchIndex]-1;
}

}
next;

}
END {

for(PatchIndex in PatchObs) {
if (PatchObsCnt[PatchIndex] > 0) {

printf("%s@%d ", PatchObs[PatchIndex], PatchObsCnt\
[PatchIndex]);

}
}
printf("\n");

} ’ >> $1

remove the used parameters
echo "ACTIVE_OBSOLETES=" >> $1
echo "Obsoletes_label=" >> $1

Advanced Package Creation Techniques 169

exit 0

The patch_postinstall Script
This script deletes the used backout data for a patch package
and removes the deletes file entries.
#
directory format options.
#
@(#)patch_postinstall 1.2 96/01/29 SMI
#
Copyright (c) 1995 by Sun Microsystems, Inc.
All rights reserved
#
PATH=/usr/sadm/bin:$PATH
THIS_DIR=‘dirname $0‘

Our_Deletes=$THIS_DIR/deletes

#
Delete the used backout data
#
if [-f $Our_Deletes]; then

cat $Our_Deletes | while read path; do
if valpath -l $path; then

Client_Path=‘echo "$CLIENT_BASEDIR/$path" | sed s@//@/@‘
else # It’s an absolute path

Client_Path=$path
fi
rm ‘removef $PKGINST $Client_Path‘

done
removef -f $PKGINST

rm $Our_Deletes
fi

#
Remove the deletes file, checkinstall and the postinstall
#
rm -r $PKGSAV/$ACTIVE_PATCH
rm -f $THIS_DIR/checkinstall $THIS_DIR/postinstall

exit 0

170 Application Packaging Developer’s Guide • December 2001

Upgrading Packages
The process of upgrading a package is very different from that of overwriting a
package. While there are special tools to support the upgrade of standard packages
delivered as part of the Solaris operating environment, an unbundled package can be
designed to support its own upgrade—several previous examples described packages
that look ahead and control the precise method of installation under the direction of
the administrator. You can design the request script to support direct upgrade of a
package as well. If the administrator chooses to have one package install so as to
completely replace another, leaving no residual obsolete files, the package scripts can
do this.

The request script and postinstall script in this example provide a simple
upgradable package. The request script communicates with the administrator and
then sets up a simple file in the /tmp directory to remove the old package instance.
(Although the request script creates a file (which is forbidden), it is okay because
everyone has access to /tmp).

The postinstall script then executes the shell script in /tmp, which executes the
necessary pkgrm command against the old package and then deletes itself.

This example illustrates a basic upgrade. It is less than fifty lines of code including
some fairly long messages. It could be expanded to backout the upgrade or make
other major transformations to the package as required by the designer.

The design of the user interface for an upgrade option must be absolutely sure that the
administrator is fully aware of the process and has actively requested upgrade rather
than parallel installation. There is nothing wrong with performing a well understood
complex operation like upgrade as long as the user interface makes the operation
clear.

The request Script
request script
control an upgrade installation

PATH=/usr/sadm/bin:$PATH
UPGR_SCRIPT=/tmp/upgr.$PKGINST

UPGRADE_MSG="Do you want to upgrade the installed version ?"

UPGRADE_HLP="If upgrade is desired, the existing version of the \
package will be replaced by this version. If it is not \
desired, this new version will be installed into a different \
base directory and both versions will be usable."

Advanced Package Creation Techniques 171

UPGRADE_NOTICE="Conflict approval questions may be displayed. The \
listed files are the ones that will be upgraded. Please \
answer \"y\" to these questions if they are presented."

pkginfo -v 1.0 -q SUNWstuf.*

if [$? -eq 0]; then
See if upgrade is desired here
response=‘ckyorn -p "$UPGRADE_MSG" -h "$UPGRADE_HLP"‘
if [$response = "y"]; then

OldPkg=‘pkginfo -v 1.0 -x SUNWstuf.* | nawk ’ \
/SUNW/{print $1} ’‘
Initiate upgrade
echo "PATH=/usr/sadm/bin:$PATH" > $UPGR_SCRIPT
echo "sleep 3" >> $UPGR_SCRIPT
echo "echo Now removing old instance of $PKG" >> \
$UPGR_SCRIPT
if [${PKG_INSTALL_ROOT}]; then

echo "pkgrm -n -R $PKG_INSTALL_ROOT $OldPkg" >> \
$UPGR_SCRIPT

else
echo "pkgrm -n $OldPkg" >> $UPGR_SCRIPT

fi
echo "rm $UPGR_SCRIPT" >> $UPGR_SCRIPT
echo "exit $?" >> $UPGR_SCRIPT

Get the original package’s base directory
OldBD=‘pkgparam $OldPkg BASEDIR‘
echo "BASEDIR=$OldBD" > $1
puttext -l 5 "$UPGRADE_NOTICE"

else
if [-f $UPGR_SCRIPT]; then

rm -r $UPGR_SCRIPT
fi

fi
fi

exit 0

The postinstall Script
postinstall
to execute a simple upgrade

PATH=/usr/sadm/bin:$PATH
UPGR_SCRIPT=/tmp/upgr.$PKGINST

if [-f $UPGR_SCRIPT]; then
sh $UPGR_SCRIPT &

fi

172 Application Packaging Developer’s Guide • December 2001

exit 0

Advanced Package Creation Techniques 173

174 Application Packaging Developer’s Guide • December 2001

Glossary

application binary
interface

Definition of the binary system interface between compiled
applications and the operating system on which they run.

ABI See application binary interface (ABI).

base directory The location where relocatable objects will be installed. It is defined in
the pkginfo file, using the BASEDIR parameter.

build time The time during which a package is being built with the pkgmk
command.

build variable A variable that begins with a lowercase letter and is evaluated at build
time.

class A name that is used to group package objects. See also class action
script.

class action script A file that defines a set of actions to be performed on a group of
package objects.

collectively relocatable
object

A package object that is located relative to a common installation base.
See also base directory.

composite package A package that contains both relocatable and absolute path names.

compver file A method of specifying package backward-compatibility.

control file File that controls how, where, and if a package is to be installed. See
information file and installation script.

copyright The right to own and sell intellectual property, such as software,
source code, or documentation. Ownership must be stated on the
CD-ROM and insert text, whether the copyright is owned by SunSoft,
or by another party. Copyright ownership is also acknowledged in
SunSoft documentation.

depend file A method of resolving basic package dependencies. See also compver
file.

175

incompatible package A package that is incompatible with the named package. See also
depend file.

individually relocatable
object

A package object that is not restricted to the same directory location as
a collectively relocatable object. It is defined using an install variable in
the path field in the prototype file, and the installation location is
determined via a request script or a checkinstall script.

information file A file that can define package dependencies, provide a copyright
message, or reserve space on a target system.

installation script A script that enables you to provide customized installation
procedures for a package.

install time The time during which a package is being installed with the pkgadd
command.

install variable A variable that begins with an uppercase letter and is evaluated at
install time.

package A collection of files and directories required for a software application.

package abbreviation A short name for a package that is defined via the PKG parameter in
the pkginfo file.

package identifier A numerical suffix added to a package abbreviation by the pkgadd
command.

package instance A variation of a package, which is determined by combining the
definitions of the PKG, ARCH, and VERSION parameters in the
pkginfo file for the package.

package object Another name for an application file that is contained in a package to
be installed on a target system.

parametric path name A path name that includes a variable specification.

patch list A list of patches that affect the current package. This list of patches is
recorded in the installed package in the pkginfo file.

prerequisite package A package that depends on the existence of another package. See also
depend file.

procedure script A script that defines actions that occur at a particular point during
package installation and package removal.

relocatable A package object defined in a prototype file with a relative path
name.

relocatable object A package object that does not need an absolute path location on a
target system. Instead, its location is determined during the
installation process. See also collectively relocatable object and
individually relocatable object.

176 Application Packaging Developer’s Guide • December 2001

reverse dependency A condition when another package depends on the existence of your
package. See also depend file.

segmented A package that does not fit on a single volume, such as a floppy disk.

tar Tape archive retrieval. Solaris command for adding or extracting files
from a media.

Glossary 177

178 Application Packaging Developer’s Guide • December 2001

Index

A
absolute package, 139

traditional example, 139
administrative defaults file, 124
awk class, 74

script, 75

B
base directory, 34, 123

in the administrative defaults file, 124
using parametric path names, 126
using the BASEDIR parameter, 125
walking the, 128, 129

example, 132, 136
build class, 74

in a case study, 110
script, 76

in a case study, 110
build time, 24
build variable

description, 24
building a package, 46

the process, 23
bundled packages, 141

C
checking package installation, 82

the process, 79

checkinstall script, 17, 53, 59, 60, 125, 128,
129, 133, 150
and environment variables, 61
design rules, 67
how to write a, 67
writing a, 66

class action script, 17, 59, 60, 73, 158
behaviors, 73
design rules, 74
how to write a, 77
in a case study, 100, 105, 112, 113
naming conventions, 73

classes, See object classes
collectively relocatable object, 34
composite, 140
composite package

example, 142, 143, 145
rules for constructing, 141
traditional example, 140

compver file, 16
description, 53
example, 55
how to write, 53
in a case study, 102

control files, description, See also information
files and installation scripts

copyright file, 16
example, 57
how to write, 56
in a case study, 102, 121
writing a, 56

179

D
depend file, 16

description, 53
example, 55
how to write, 53
in a case study, 102

E
exit codes for scripts, 63

G
guidelines, packaging, 18

I
incompatible package, 53
individually relocatable object, 34, 35
install time, 24
install variable

description, 24
installation environment variables, 61
installation scripts

and environment variables, 61
characteristics, 17
creating, 59
exit codes, 63
obtaining package information, 62
processing of, 60
requirements for, 59
types of, 17, 59

installation software database, 80
installf command, 69, 72

in a case study, 100, 116
installing classes, 71
installing packages on a standalone or server

example, 147
installing packages to clients

example, 147

L
links

defining in a prototype file, 36, 42

M
mounting shared file systems

example, 148

O
object classes, 33, 71

installing, 60, 71
removing, 60, 72
system, 59, 74

awk, 74
build, 74
sed, 74

P
package

absolute, 139
base directory, 34
checking installation, 82

the process, 79
commands, 19
components, 14
composite, 140
control files

information files, 14
installation scripts, 14

defining dependencies, 53
description, 14
design criteria, 18
environment variables, 24, 62
how to build, 47
how to install, 81
how to organize, 30
information files, 20
installation scripts, 21
object, 15

classes, 71

180 Application Packaging Developer’s Guide • December 2001

package, object (continued)
See also object classes
path names, 34, 36
relocatable, 34

optional components, 16
organization, 30
patching, 148
relocatable, 138
required components, 15
status, 81
transferring to media, 90
upgrading, 171

package abbreviation
description, 27
requirements, 27

package components, 14
optional, 16
required, 15

package dependencies
how to define, 53

package identifier
description, 27

package instance
description, 27

packaging guidelines, 18
parametric path name, 94, 126, 133

description, 35
example, 127
in a case study, 95

patch list, 150
patching packages, 148
pkgadd command, 71, 80

and class installation, 71
and directories, 146
and disk space, 57
and installation problems, 81
and installation scripts, 59
and package identifiers, 27
and patching packages, 148
and request scripts, 63
and script processing, 60
and the administrative defaults file, 124
and the installation software database, 80
standalone systems and, 90

pkgask command, 65
pkgchk command, 48, 80, 82
pkginfo command, 62, 80, 86

pkgadd command (continued)
and package parameters, 88
customizing the output, 87

pkginfo file, 14, 127, 129, 134, 138, 140, 145
creating a, 26
description, 15, 26
determining the base directory, 125
example, 30
how to create, 29
in a case study, 95, 99, 101, 104, 107, 109,

112, 114, 117
required parameters, 27
using environment variables in, 24

pkgmap file, 46, 57, 60, 69, 71, 73, 83, 97, 127,
130, 134, 138, 139, 141, 146

pkgmk command, 14, 24, 33, 39, 42, 43, 44, 88,
162
building a package, 46

pkgparam command, 62, 84, 162
pkgproto command, 49, 154

creating a prototype file, 32
in a case study, 118

pkgrm command, 120, 144, 171
and class removal, 72
and directories, 146
and script processing, 60
and the installation software database, 80
basic procedure, 90
rm command vs., 90

pkgtrans command, 90, 162
postinstall script, 60, 69, 162, 171, 173

in a case study, 108, 116, 120
installing package objects, 69

postremove script, 61, 69
removing package objects, 69

preinstall script, 60, 69, 154
preremove script, 60, 69

in a case study, 116, 120
prerequisite package, 53
procedure scripts, 17, 59

behaviors, 69
design rules, 69
how to write, 70
predefined names of, 17, 59, 69
writing, 69

prototype file, 14
adding functionality to, 41

Index 181

procedure scripts (continued)
creating links at install time, 42
creating objects at install time, 41
distributing packages over multiple

volumes, 42
nesting prototype files, 42
setting default values, 43
setting environment variables, 43
specifying a search path, 43

creating, 31
creating a

from scratch, 38
with the pkgproto command, 38

description, 16, 31
fine-tuning a, 39

example, 40
format of, 32
how to create, 44
in a case study, 96, 99, 104, 107, 110, 112,

115, 118
using environment variables in, 24
valid file types, 33

R
relocatable object, 34
relocatable package, 137

traditional example, 138
relocation

supporting in a heterogeneous
environment, 136

removef command, 69, 90, 149
in a case study, 116

removing classes, 72
request script, 17, 53, 59, 60, 93, 125, 128,

129, 132, 149, 171, 172
and environment variables, 61
and package removal, 61
behaviors, 64, 66
design rules, 64
example, 66, 68
how to write a, 65
in a case study, 97, 115
writing a, 63

reserving additional space on a target
system, 57

reverse dependency, 53

S
scripts, See installation scripts
sed class

script, 75
in a case study, 108, 119

software package, See package
space file, 16, 57

example, 58
how to create a, 57
in a case study, 99

system object classes, 74

T
transferring a package to a distribution

medium, 90

U
unbundled packages, 141
upgrading packages, 171

V
verifying package installation, 82

the process, 79

182 Application Packaging Developer’s Guide • December 2001

