
KCMS CMM Developer’s Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 816–1327–06
December 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011025@2471

Contents

Preface 9

Preface 15

1 Class Descriptions 17

In This Chapter 17

KCMS Class Hierarchy 18

KcsShareable Class 19

KcsLoadable Class 20

UIDs and Sharing 20

Example 21

Derivatives 21

KcsIO Class 22

KcsFile Class 23

KcsMemoryBlock Class 23

KcsSolarisFile Class 23

KcsXWindow Class 23

KcsChunkSet Class 24

KcsProfile Class 26

KcsProfileFormat Class 27

KcsAttributeSet Class 27

Using a KcsAttributeSet Object 28

KcsXform Class 29

KcsXformSeq Class 30

KcsStatus Class 30

3

KcsSwapObj Class 31

2 CMM : A Runtime Derivative 33

In This Chapter 33

Development Environment Requirements 34

Requirements For Creating a CMM 34

Why You Might Derive From or Extend a KCMS Class 35

KcsIO 35

KcsProfile 36

KcsProfileFormat 36

KcsXform 37

KcsStatus 37

Deriving Classes at Runtime 37

Runtime Derivation Coding Requirements 38

Runtime Derivation Code Examples 38

Wrapper Functions 38

External Entry Points 39

Instantiation 41

Initialization and Cleanup 42

Configuration Requirements 42

CMM Filename Convention 42

CMM Makefile 43

Creating OWconfig File Entries 43

Updating the OWconfig File 47

Version Numbering 50

Profiles 50

ICC Profile Header 50

Naming and Installing Profiles 51

3 KCMS Framework Operations 55

In This Chapter 55

KCMS Framework Architecture 55

KcsProfile 56

KcsProfileFormat 57

KcsAttributeSet 57

KcsXform 58

4 KCMS CMM Developer’s Guide • December 2001 (Beta)

KCMS Framework Flow Examples 58

KCMS Framework Primary Operations 60

Loading a Profile From the Solaris File System 61

Loading an X11 Window System Profile 68

Connecting Two Loaded Profiles 68

Evaluating Data Without Optimization 69

Evaluating Data With Optimization 70

Freeing a Profile 71

Attributes 71

Characterization and Calibration 73

Saving a Profile to the Same Description 75

Saving a Profile to a Different Description 75

4 KcsIO Derivative 77

In This Chapter 77

External Entry Points 78

Mandatory 78

Optional 78

Example 79

Member Function Override Rules 80

Examples To Help You Create Your KcsIO Derivative 81

5 KcsProfile Derivative 83

In This Chapter 83

External Entry Points 84

Mandatory 84

Optional 84

Example 84

Member Function Override Rules 85

Attribute Sets 87

KcsProfileFormat Instance 87

Transformations 88

Constructors and Destructors 89

Creation Methods 90

Save Methods 90

Using connect() 91

Contents 5

Examples 94

Characterization and Calibration 94

6 KcsProfileFormat Derivative 97

In This Chapter 97

External Entry Points 98

Mandatory 98

Optional 98

Examples 98

Member Function Override Rules 100

Attributes 101

Transformations 101

Loading 102

Error Protocols 102

Protected Derivatives 103

Base Class Support 103

Retrievable Objects 103

7 KcsXform Derivative 105

In This Chapter 105

External Entry Points 106

Mandatory 106

Optional 106

Example 106

Member Function Override Rules 107

Technology 108

KcsXform Attributes 109

Optimization 109

Loading 110

Save Types 110

Universal 111

Private 111

Example 112

Composition 112

Evaluation 113

Evaluation Helper Methods 113

6 KCMS CMM Developer’s Guide • December 2001 (Beta)

KcsXformSeq Derivatives 114

Constructs and Destructors 114

Saving 115

Loading and Constructing the List 115

Connections 115

Optimization 115

Composition 116

Evaluation 116

Validation 117

The List 117

8 KcsStatus Extension 119

Example 120

Header File 120

Localizing Messages 121

Application Module 121

Developer 122

A Supported Devices 123

Supported Devices 123

Index 125

Contents 7

8 KCMS CMM Developer’s Guide • December 2001 (Beta)

Preface

The KCMS CMM Developer’s Guide describes how to create a Kodak Color
Management System (KCMS™) color management module (CMM). It provides
information on how to use the KCMS foundation library, which is a graphics porting
interface (GPI) implemented in C++. These C++ interfaces link the device-independent
layer of the KCMS library with the CMM and enable the flow of data from the
application to the CMM.

Use this manual with the KCMS CMM Reference Manual, which provides detailed
information on all C++ classes in the KCMS foundation library.

Who Should Use This Guide
Use this guide if you are a C++ programmer interested in:

� Writing your own color management module (CMM)
� Creating your own profile format
� Adding attributes or tags to the ICC profile format
� Overriding various class methods

Before You Read This Guide
Check all of the following for any KCMS-specific or system release-specific
information that you might need:

9

� You should be familiar with the Kodak Color Management System (KCMS) API,
which is part of the Software Developer’s Kit (SDK). See the following manual:

� KCMS Application Developer’s Guide

� You should also have an understanding of C++ and Solaris™ dynamic loading
technology. Solaris dynamic loading is discussed in the Linker and Libraries
Guideand in the following manual pages:

� ld()(1)
� dlopen(3)
� dlclose()(3)
� dlerror()(3)
� dlsym()(3)

� A basic understanding of color science is also assumed. Color science references are
included in the Bibliography of the KCMS Application Developer’s Guide.

� See the on-line SUNWrdm packages for information on bugs and issues,
engineering news, and patches. For Solaris installation bugs and for late-breaking
bugs, news, and patch information, see the Solaris 9 Installation Guide and the
Solaris 9 Installation Guide manuals.

� For SPARC systems, consult the updates your hardware manufacturer may have
provided.

How This Guide Is Organized
Chapter 1 briefly describes each of the relevant classes in the KCMS CMM class
hierarchy.

Chapter 2 describes how to create a CMM that is a runtime derivative. It also discusses
each of the KCMS classes from which you can derive or extend.

Chapter 3 provides examples of how some of the C++ methods interface with the
KCMS framework API.

Chapter 4 describes how to derive from the KcsIO base class.

Chapter 5 describes how to derive from the KcsProfile base class.

Chapter 6 describes how to derive from the KcsProfileFormat base class.

Chapter 7 describes how to derive from the KcsXform base class.

Chapter 8 describes how to extend the KcsStatus base class.

10 KCMS CMM Developer’s Guide • December 2001 (Beta)

Appendix A describes how to name and install your own profile.

Related Books
The following is a list of recommended books that can help you accomplish the tasks
described in this guide:

� KCMS CMM Reference Manual (part of DDK)

� KCMS Application Developer’s Guide

� KCMS Calibrator Tool Loadable Interface Guide (part of SDK)

� ICC Profile Format Specification (located on-line in
/usr/openwin/demo/kcms/docs/icc.ps). For the most current version of the
ICC specification, see the web site at http://www.color.org.

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product documentation
from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on
Fatbrain.com at http://www1.fatbrain.com/documentation/sun.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Preface 11

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

12 KCMS CMM Developer’s Guide • December 2001 (Beta)

Equivalent Terms In This Guide
For historic reasons, this guide uses several equivalent Kodak and ICC terms. The
terms evolved at different times. Development of the ICC specification introduced new
ICC terms with meanings the same as (or similar to) already existing Kodak terms.

You should be familiar with the terms listed in the table below, as you will encounter
them in the ICC specification and KCMS color management documentation, as well as
in the KCMS header files and example programs. The terms are defined as they are
introduced in this guide.

TABLE P–3 Equivalent ICC and Kodak Terms

Kodak Term ICC Term

attribute tag

device color profile (DCP) input, display, or output profile

effects color profile (ECP) abstract profile

complete color profile (CCP) device link profile

profile format Id or magic number profile file signature

reference color space (RCS) profile connection space (PCS)

Note – The text in this guide uses the term attribute instead of tag, (but code examples
and header files may use tag for the historic reasons previously mentioned.

Preface 13

14 KCMS CMM Developer’s Guide • December 2001 (Beta)

New Features

The following information is about features provided in this release of the KCMS
product.

KCMS is Multithread Safe
In this release, KCMS supports multithreaded programs.

OWconfig File Modification
The procedure for updating the OWconfig file has changed. Using the interactive
program called OWconfig_sample, you can insert and remove configuration entries
in the OWconfig file.

15

16 KCMS CMM Developer’s Guide • December 2001 (Beta)

CHAPTER 1

Class Descriptions

In This Chapter
This chapter introduces you to the KCMS framework classes. The chapter assumes
your familiarity with the KCMS architecture. See Figure 1–1.

As a brief review, the KCMS architecture consists of components supplied by SunSoft
(shown in gray in the figure) and other components (shown in white) that the
developer can add. Towards the top of the figure, you see the KCMS “C” application
programming interface (API). It consists of a group of functions that allow an
application to communicate with the KCMS framework to manipulate profiles in a
device-independent manner. The KCMS “C”API is described in detail in the SDK
manual KCMS Application Developer’s Guide. This manual assumes that you are
familiar with the API functions.

The color management module (CMM), shown below the KCMS framework, is the
component that ultimately does the color management. The default CMM includes all
the classes described in this chapter.

Other CMMs use different techniques for evaluating color data, which can result in
differences in quality, profile size, and speed of color manipulations. To add a new
third-party CMM to the framework, you can only derive from four of the classes
described in this chapter and you can extend one. Collectively, these classes are
referred to as the C++ CMM interface in the figure. Although you can only derive
from a few classes, you need to understand the inner workings of all the classes to
understand what is being inherited in the implementation of the CMM you write.

17

KCMS Framework

Application

Graphics
Library

Imaging
Library

Default Color
Management
Module (CMM)

Third-Party
CMM

Third-Party
CMM

“C++” CMM Interface (DDK)

“C” API (SDK)

Profiles

FIGURE 1–1 KCMS Architecture

KCMS Class Hierarchy
Figure 1-2 shows all relevant classes in the KCMS framework. Each class is described
in this chapter.

For descriptions of the enumerations and protected and public members of each class,
see the KCMS CMM Reference Manual

Note that, when you write a CMM, you can only derive from the KcsIO,
KcsProfile, KcsProfileFormat, and KcsXform classes, and you can extend
KcsStatus. How you can use these particular classes in the design of your CMM is
described in greater detail in subsequent chapters in this manual. The remainder of the
classes your CMM uses are the default classes.

18 KCMS CMM Developer’s Guide • December 2001 (Beta)

KcsShareable

KcsLoadable KcsIO

KcsFile

KcsChunkSet KcsChunkMap

KcsSolarisFile KcsXWindow KcsRemoteFile

KcsTechUCP

KcsAttributeSetKcsProfile

KcsProfileKCMS

KcsStatus KcsSwapObj

KcsMemoryBlock

KcsProfileFormat

KcsProfileFormatInterColor3_0

KcsXform

KcsXformSeq

FIGURE 1–2 KCMS Class Hierarchy

KcsShareable Class
The KcsShareable class allows derivatives to be shared by other objects in the
system. This class uses reference counting. It follows all of the typical C++ semantics,
except you should use the dettach() method instead of calling the destructor
~KcsShareable(). The dettach() method calls the destructor only if it is the last
object sharing the derivative.

Using a shareable derivative is similar to using a non-shareable objects with the
following exceptions:

� When you want to use a shareable object with another instance, you must use
attach() rather than the constructor.

� Use the dettach() method instead of the delete() method to delete a sharable
object.

The abstraction provided by this class is simple yet powerful. With only a few
methods you can share objects. Every time you want to share an object, the usage
count is incremented. Any time a shared object is detached, the usage count is
decremented.

Class Descriptions 19

KcsLoadable Class
The KcsLoadable class allows derivatives to be saved and generated from a static
store and possibly minimized and regenerated from that original store at a later time.

If a class cannot regenerate itself at runtime, it must generate itself fully on
construction. With KcsLoadable class derivatives, you must allocate and deallocate
loadable objects if those objects require regeneration and are not supported by the
contained class.

All derived objects return KCS_NOT_RUNTIME_LOADABLE whenever regeneration is
unsupported. KCS_NOT_RUNTIME_LOADABLE indicates that you must use the
constructor and destructor methods to regenerate at runtime.

To relax the requirements on a derivative, assume it is loadable and do not provide
any special generation support. That is, allocate the object, load it when necessary,
unload it when it is not needed and assume everything worked. In this case, ignore
the KCS_NOT_RUNTIME_LOADABLE status message returned by the load() and
unload() methods.

If the object does not support regeneration it returns KCS_NOT_RUNTIME_LOADABLE
when issued a load() or unload() command. The object remains loaded in memory
so it is not necessary to observe this protocol unless more flexibility is required for
performance reasons.

UIDs and Sharing
All KcsLoadable classes have unique identifiers (UIDs). The combination of a
chunkSet and a chunkId allows you to save the state of KcsLoadable derivatives
for later use. To do this, either minimize and regenerate by calling unload() and
load(), or save the UID of the instance and reallocate the instance with the
UID-based constructor.

Because classes that contain other loadable objects use the same chunkSet, you must
save the chunkId within your own data store. To explain this further, an example
with an KcsXform class is used; see Chapter 7 for more information. For example, a
sequence transformation saves its array of transform chunkIds in the same
chunkset as it does its own state. The KcsXformSeq class has an array of pointers to
KcsXforms when it is allocated in memory.

Since all of these transforms have unique identifiers, the KcsXformSeq class places
the UID of each transform in an array and saves it. Once this sequence is constructed
and told to load, (the chunkId is passed into the constructor) it gets the chunk and,

20 KCMS CMM Developer’s Guide • December 2001 (Beta)

for each transform chunkId, it calls the KcsXform::createXform(uid)()
constructor. This constructor allocates the transform associated with that chunkId.

All loadable derivatives should support construction based on this chunkSet and
chunkId combination. Loadable objects are shared by using a UID map table kept in
the static KcsLoadable data member. When a new loadable object is created, this
UID map table is searched first to see if an object with a particular ChunkSet and
ChunkId has already been instantiated. If so, the pointer to that object is returned; if
not, a new object is created and entered into the table.

Example
*aStat = KcsLoadable::LoadCreator(Kcs2Id(’P’, ’f’, ’m’, ’t’),
Kcs2Id(’K’, ’C’, ’M’, ’S’), Kcs2Id(’0’, ’1’, ’\0’, ’\0’),
Kcs2Id(’B’, ’l’, ’n’, ’k’),

(void * (**)())&sCreateFunction, &sDLHandle);

This LoadCreator() example returns a function pointer in sCreateFunction that
is cast and called with the arguments as follows:

KcsProfileFormat::KcsProfileFormat(KcsStatus *aStat,
KcsId aCmmId, KcsVersion aCmmVersion, KcsId aProfileId,

KcsVersion aProfVersion)

KcsEkPfmticc30.so.1 is a KcsProfileFormat derivative whose method’s object
code is contained in the file mapped from the arguments to the LoadCreator()
method. The B, l, n, and k arguments are qualifiers for the constructor to use. In this
case it is the Id-based constructor that generates a blank profile format. This call makes
runtime loadabilty of derivatives platform independent. If aDerivId is a non-ASCII
printable character, it is treated as BCD for these reasons: the ICC identifies their
versions in BCD, and the runtime derivatives naming conventions need to conform to
file naming conventions. Therefore, the operating system cannot use anything
nonprintable to name files. If available, the method calls the initialization entry points
upon the first load of the sharable. Currently, when an object is loaded, it is not
unloaded until the program exits. The dlopen(3x) call returns a pointer to the same
handle when it is opened.

Derivatives
Use a KcsIO class derivative for a static store. These derivatives can be memory
based, disk based, and network based. The object does not care where the information
is actually stored. The KcsIO base class has a file-like interface. Loadable derivatives
also use the KcsChunkSet abstraction. This provides a random access bit bucket that
is built on top of the KcsIO hierarchy.

Class Descriptions 21

Once a loadable object is minimized (or unloaded), a derived object regenerates or
reloads itself in the manner described below.

The derivation implements the unload() method to minimize the state of the object
in memory. Then in the load() method, it restores the state of the object to that
described by the chunkSet and iChunkId member fields of the loadable base class.
If in the unloaded state, it returns an error to signal that a load() call in this state is
not adequate for all methods. Additionally, for methods that need access to the state, it
loads the minimum state according to the specific derivative’s load hints. Then it
continues the original method’s functionality.

It is assumed that if hints are allowed for loading, the derivative overloads the
load() method to allow the hints to be passed to its contained object’s load()
method.

KcsIO Class
The KcsIO class provides a generic input/output (I/O) interface to access data in a
static store like files on a disk or in memory. The KcsIO class provides a common
interface for device-, platform-, and transport-independent I/O operations such as
read and write. It is a derivative of the KcsShareable class. The KcsFile,
KcsMemoryBlock, KcsSolarisFile, and KcsXwindow are derivatives of the
KcsIO class that provide I/O for more specific types of data storage.

The KcsIO class is primarily provided for operating system vendors to access profiles
in devices that cannot be created by deriving from other classes in the system. For
example, you may require access to profiles in a printer that have properties not
accessible in other classes—if you could not mmap(2) the printer memory.

Note – You must derive from the KcsIO class if you require device-, platform- or
transport-dependent I/O operations.

See Chapter 4 for detailed information.

22 KCMS CMM Developer’s Guide • December 2001 (Beta)

KcsFile Class
The KcsFile class is a KcsIO base class derivative that allows an implementation of
the I/O interface to store its data on a physical disk mounted on the platform in use. It
takes an open file as the argument for its constructor and allows sequential and
random access file manipulation.

KcsFile is useful for embedding profiles in other files.

KcsMemoryBlock Class
The KcsMemoryBlock class is a KcsIO base class derivative that allows you to read
from and write to a block of memory.

KcsSolarisFile Class
The KcsSolarisFile class is a KcsIO base class derivative that supports searching
for profiles located in known directories and accessing files located on remote
machines. It also loads and saves profiles. This class contains a pointer to a KcsIO
object of type KcsFile or KcsRemoteFile. This pointer is then used in all of the I/O
methods for the class.

KcsSolarisFile cannot be used for embedding profiles and is dynamically loaded
at runtime.

KcsXWindow Class
The KcsXWindow class is a KcsIO base class derivative that provides the interface
between X11 Window System visuals and corresponding profile data. This class takes
as arguments a pointer to a display structure, a pointer to a visual structure, and a
screen number. It translates this information into either a local or remote display and

Class Descriptions 23

creates a KcsFile or KcsRemoteFile pointer. The I/O pointer is then used in all of
the derived I/O methods for the class.

KcsXWindow is dynamically loaded at runtime.

KcsChunkSet Class
The KcsChunkSet class provides an interface to access chunks (or blocks) of data in a
static store (such as a file on disk).

Chunks are separated blocks of data that contain any type of data. The KcsChunkSet
class does not know what the data is in the blocks. It provides functions to manipulate
the blocks, such as arranging and resizing them.

24 KCMS CMM Developer’s Guide • December 2001 (Beta)

A chunk set has two components: a chunk map and the chunks. As shown in Figure
1–3, the chunk map is a table containing an array of descriptions of each chunk. Each
chunk map entry contains the chunk Id (a unique identifier for that block), the offset,
and the chunk size.

Chunk Map Chunk Set

chunk Id

offset1

size1

chunk Id

offset2

size2

...

offset1

offset1 + size1

offset2

offset2 + size2

chunk Id

offsetn

sizen

FIGURE 1–3 Chunk Set Layout

The ICC profile format is directly analogous to the KcsChunkSet.

Some KcsChunkSet class features are:

� It identifies each chunk by a unique chunkId.

� All objects based on KcsChunkSets can be uniquely identified with a combination
of KcsChunkSet and chunkId.

� It uses a ChunkMap object to keep track of each chunk’s size and the offset of the
chunk within the static store.

� It knows nothing about the contents of a chunk.

� It uses an I/O object and tells its I/O object the offset and number of bytes to read
or write. Then the I/O object does the actual reading or writing.

� If the size of one chunk changes, it adjusts the location of other chunks in static
store as necessary to accommodate the change.

Class Descriptions 25

� It relieves other classes from keeping track of specific offsets within the static store.

� It regenerates loadable objects from the static store.

The KcsChunkSet method can be used for various reasons. For example, you need
the chunk Id(s) to access data directly. Use KcsChunkSet to read or write a particular
chunk Id. You do not need the specific offsets within the static store, but you do need
to know the chunk Id(s). You can also specify to write a chunk at a specific static store
location. You may want to do this for format conventions that require specific data be
stored at a specific location within the static store. In this case, KcsChunkSet moves
other chunks to accommodate this request.

KcsProfile Class
The KcsProfile class is a base class that represents a color profile. It is a set of
attributes that describe the profile and a set of transformations that allow it to perform
the appropriate color changes.

The KcsProfile class is hierarchically derived from the KcsLoadable and
KcsShareable classes. This means that profiles can be shared by other objects, and
are loadable.

The hierarchy below the base KcsProfile class represents different types of profiles
in terms of their techniques, rather than their type. For example, both of the different
profile types—Effects Color Profile (ECP) and Device Color Profile (DCP)—can be
represented by the same derivative. However, a KCMS profile that uses multi-channel
linear interpolation must be a different derivative than an XYZ profile that uses
XYZ-based transformations and techniques. Profile types can easily be differentiated
by the combination and actual values of the attributes contained within the data. The
KcsProfile class determines which transformation technologies a specific profile
needs and instantiates the appropriate KcsXform derivatives. For a list of attributes
and their possible values see the SDK manual KCMS Application Developer’s Guide and
the ICC specification located on-line in /opt/SUNWsdk/kcms/doc/icc.ps. For the
most current version of the ICC specification, see the web site at
http://www.color.org

The KcsProfile class provides data and necessary KcsXforms to describe,
characterize, and calibrate a color-managed input and output device or any
point-processible special effect, such as an image filter. It coordinates and determines
the loading, saving, and execution of the transformation for all profile types.

26 KCMS CMM Developer’s Guide • December 2001 (Beta)

Note – You must derive from the KcsProfile class if you want your ICC profiles
containing your CMM Id to be used as a loadable module instead of the default profile
format.

See Chapter 5 for detailed information.

KcsProfileFormat Class
The KcsProfileFormat class allows any of its derivatives to map a profile from a
static store into the traditional pieces that make up a profile. All of these pieces are
presented to its users as objects in the KCMS framework. Therefore, you can load, set,
and get these profile-based objects without regard to the actual format of the data in
the store.

Note – You can define your own profile format with this class. If you are using ICC
profiles, it is recommended that you use the KcsProfileFormatInterColor3_0
class, because it deals with ICC profiles.

See Chapter 6 for more information.

KcsAttributeSet Class

Note – KcsAttributeSet is an alias to the KcsTags class as indicated in
kcstags.h. This is for historical reasons only.

The KcsAttributeSet class provides a general-purpose interface for an
attribute-value pair array. You can associate attributes with different structures.

This object is an associative array—a way of mapping unique identifiers to a variety of
data structures. A KcsAttributeSet object stores and deletes attributes. Attributes
are identifiers and associated data. For a complete discussion of attributes and their
properties, see the SDK document KCMS Application Developer’s Guide and the ICC
Profile Format Specification.

Class Descriptions 27

The KcsAttributeSet class is a subclass of the KcsLoadable class.

The KcsAttributeSet class does not override any functionality provided by its
parent, but it does provide additional functionality. All access to a KcsAttributeSet
object is controlled through a set of public methods of the KcsAttributeSet class.

The KcsAttributeSet class contains a pointer to a ChunkSet object that stores the
KcsAttributeSet data. The KcsAttributeSet object uses its ChunkSet, if one is
supplied when a KcsAttributeSet object is created, to read and write data to
whatever static store is being accessed by the supplied ChunkSet.

Using a KcsAttributeSet Object
A KcsAttributeSet object is created when you need to map identifiers to variable
data structures such as ICC tags (that is, integers, floats, strings, and dates). There are
two ways to create a non-empty KcsAttributeSet object. The method you choose
depends on the origin of the data used to populate the KcsAttributeSet object. The
origin can be a supplied chunk or character buffer.

If you do not want to create a KcsAttributeSet object with data from a chunk, you
can create a KcsAttributeSet object using a character buffer (the
KcsAttributeSet object contains a null chunk set). The only issue you must be
aware of in this case is that, in order to save the KcsAttributeSet object, you need
to have set the internal chunk set pointer of that KcsAttributeSet object to a valid
chunk set and gotten a chunk Id from that chunk set. If the chunk has not been set,
then attempting to save the KcsAttributeSet object results in a
KCS_UNINITIALIZED_CHUNKSET error.

Using a KcsAttributeSet object, you can perform the following operations:

� Insert new data
� Remove data
� Update data

All three operations performed on the KcsAttributeSet data are accomplished by
calling setAttribute(), a public method of the KcsAttributeSet class. The
operation performed is decided by the parameters supplied to the setAttribute()
method and the state of the KcsAttributeSet object when the method is called.
Conceptually, only two parameters to the method are important: an identifier and a
structure used to contain the variable data associated with that identifier.

To insert new data into a KcsAttributeSet object call setAttribute() with an
identifier not currently used and information stored within the KcsAttributeSet
object. For example, assume the structure contains the character string “today is my
birthday” as variable data and that the identifier equals 30. After successful
completion of a call to setAttribute(), an association between “today is my
birthday” and 30 is stored within the object.

28 KCMS CMM Developer’s Guide • December 2001 (Beta)

To remove data from a KcsAttributeSet object call setAttribute() with the
identifier of the data you want to delete and assign the information structure
parameter to NULL.

To update data in a KcsAttributeSet object call setAttribute() with an
identifier currently used and new information stored within the information structure.
For example, assume that the information structure contains the integer data “100 200
300“ as variable data and that the identifier is set to 30. After successful completion of
a call to setAttribute(), the association of 30 with “today is my birthday” would
be replaced with the association of 30 with “100 200 300” in the object.

Several methods give you information about the KcsAttributeSet data as a whole,
as well as information about specific associations that make up the
KcsAttributeSet data. The returnCurrentNumberOfAttributes() method
provides the number of associations currently stored within a KcsAttributeSet
object. The getAttribute() method provides information associated with a specific
identifier. The getTag() method returns the nth identifier stored within the data. The
setChunkSet() method allows the chunk pointer associated with an instance of a
KcsAttributeSet object to be reassigned to a new or different chunk; this method is
needed to save KcsAttributeSet data for a KcsAttributeSet object with which
no chunk has been supplied. The getAttributeInfo() method provides detailed
information associated with an identifier such as the type of data (for example, string,
integer, float) and the number of tokens found within the variable data.

KcsAttributeSet data is loaded into a KcsAttributeSet object when a
non-empty KcsAttributeSet object is constructed. The save() method is used to
store the KcsAttributeSet data. As mentioned earlier, a KcsAttributeSet object
must have a valid chunk in order for the KcsAttributeSet data to be saved.

See the KCMS CMM Reference Manual for detailed information on all of the
KcsAttributeSet class member functions.

KcsXform Class
The KcsXform class represents a set of classes that perform n->m component
transformations. These transformations do not need to conform to any single type of
transformation. The implementation of a KcsXform derivative is irrelevant as long as
the derivative transforms in compliance with the base class interface. Some of the most
helpful methods are:

� connect()
� compose()
� optimize()
� save()

Class Descriptions 29

� evaluate()

All transformations have a number of properties and methods. When using a
transform derivative, you can: construct it, load it, save it, associate and inquire
storage information, set and retrieve attributes and information about the transform,
compose another transformation from it, and most importantly evaluate or transform
data.

Note – You must derive from the KcsXform class to augment color data processing on
the KCMS framework.

See Chapter 7 for more information.

KcsXformSeq Class
The KcsXformSeq class is a KcsXform base class that allows other incompatible
KcsXform derivatives to connect for serial evaluations. It has methods to append()
and insert() transformations into an existing sequence and constructors that can
instantiate from an array of KcsXform pointers. The derivation from the KcsXform
base class allows a sequence of KcsXforms to act like a single KcsXform from the
perspective of the rest of the architecture.

KcsStatus Class
The KcsStatus class provides communication of status codes, errors, and
customizable textual descriptions of the state. You can dynamically add your own
error messages with internationalized text strings associated with them.

You can extend methods in this class to add your own error messages. See Chapter 8
for information on how to add your own error messages.

30 KCMS CMM Developer’s Guide • December 2001 (Beta)

KcsSwapObj Class
The KcsSwapObj class provides an interface to swap data between BIG_ENDIAN and
LITTLE_ENDIAN hardware architectures. Use this interface for cross-platform
compatibility.

Class Descriptions 31

32 KCMS CMM Developer’s Guide • December 2001 (Beta)

CHAPTER 2

CMM : A Runtime Derivative

In This Chapter
This chapter provides an overview of the requirements necessary to create your CMM
as a runtime derivative. It briefly discusses the classes from which you can derive to
create your CMM, namely

� KcsIO
� KcsProfile
� KcsProfileFormat
� KcsXform

In addition, the chapter discusses the extendable class, KcsStatus class.

The chapter starts by identifying the requirements for creating a CMM. Then, it
suggests reasons you might derive from (or extend) each of the aforementioned classes
to customize your CMM. The chapter approaches runtime derivation prerequisites
from the perspective of program coding as well as configuration requirements. The
chapter concludes with a discussion of profile requirements, since the primary reason
for writing a custom CMM is to create profiles that it can manipulate.

Subsequent chapters detail how to create class derivatives.

33

Development Environment
Requirements
The KCMS packages are automatically placed in a protected directory when you load
them with the pkgadd(3) command. Copy the packages to a writable directory for
development use.

To compile programs, you must use version 4.2 of the Sun™ Visual Workshop™ C++
compiler, which is included with Sun Visual Workshop C++ 3.0.

Requirements For Creating a CMM
A CMM is defined as:

� Color management techniques
� Data structures
� Profiles

The following steps summarize the requirements for creating a CMM that is a runtime
derivative:

1. Understand the KCMS framework, its general principles, and the SDK “C”
interface.

This manual assumes your understanding of the KCMS framework “C” API functions
described in the SDK manual KCMS Application Developer’s Guide. Chapter 3 in this
manual, shows you how the KCMS classes implement the framework.

2. Determine your color management requirements and whether you need to derive
from or extend any of the KCMS framework classes to meet those requirements.

This chapter suggests ways you can use each of the derivable KCMS classes to meet
the special requirements of your CMM. See “Why You Might Derive From or Extend a
KCMS Class” on page 35 for details.

3. Understand the ICC profile format.

If you want to use the ICC format with different color manipulations, you should
familiarize yourself with the ICC profile format. For further discussion, see “Profiles”
on page 50.

4. Understand the runtime mechanism for derivatives.

See “Deriving Classes at Runtime” on page 37.

34 KCMS CMM Developer’s Guide • December 2001 (Beta)

5. Understand the CMM naming conventions and the OWconfig file.

See “Configuration Requirements” on page 42.

6. Implement your KCMS framework runtime extensions.

This manual as well as the KCMS CMM Reference Manual describe the foundation
library interfaces. You may also find it helpful to refer to the SDK manual KCMS
Application Developer’s Guide for information on the KCMS framework API.

7. Test your CMM.

In addition to testing your CMM, you can verify that it adheres to the KCMS
framework. See the DDK manual KCMS Test Suite User’s Guide for details on an
optional facility to do this.

8. Follow registration requirements for your CMM.

If your profiles are ICC compliant and you intend to make them and/or your CMM
available to the public, you must register your CMM Id with the ICC. If your CMM
creates attributes for public use, these also must be registered (you don’t need to
register private attributes). And finally, if you derive from the KcsXform class (see
“KcsIO Example” on page 44), you must register transform Ids. For details on CMM
registration requirements and who to contact, see the ICC profile format specification.
The specification to which this version of KCMS conforms is a PostScript file located
on-line in /usr/openwin/demo/kcms/docs/icc.ps. Check the web site at
http://www.color.org for the most up-to-date version of the specification.

Why You Might Derive From or Extend
a KCMS Class
The following sections give helpful information on why you might derive from or
extend a particular KCMS class.

KcsIO
If you have special I/O considerations, you might want to create a KcsIO class
derivative. It is a simple I/O protocol that most devices support. For example, this
version of KCMS includes an X11 Window System derivative
(kcsSUNWIOxwin.so.1) and a Solaris file derivative (kcsSUNWIOsolf.so.1). The
code for the latter is included in the /opt/SUNWddk/kcms/src directory.

CMM : A Runtime Derivative 35

The framework supports file-, memory-, and network-based derivatives. Objects use a
static store to read from or write to data; a common type of static store is a file on disk.
A static store is a hardware- or platform-independent mechanism for generation and
regeneration. Generation is the first time data is read from a static store and an object is
instantiated from that data; the data is constructed from the saved state. Regeneration,
or loading occurs when a derivative brings back all of its state and functionality, after
it has been minimized, from its static store. With minimization and regeneration the
object is already instantiated. A minimized object contains sufficient information to
generate itself from a static store [typically just its unique identifier(UID)].

See Chapter 4 for information on creating a KcsIO class derivative.

KcsProfile
Derive a new KcsProfile class for characterization and calibration, additional
functionality, or new transformation derivatives. Usually, this involves overriding one
of the update methods to actually produce a new KcsXform derivative. Once the
transformation is saved to the static store, the runtime load mechanism automatically
handles it from then on, as long as the CMM is installed on the loading system. Since
you can supply profiles directly that contain new KcsXform derivatives, the only
derivative necessary to supply is the one derived from the KcsXform class. However,
if the profile used to contain these new KcsXform derivatives is the KcsProfile
derivative, it overwrites the new KcsXform type with one of its own when calibrated.

See Chapter 5 for information on creating a KcsProfile class derivative.

KcsProfileFormat
You can create a KcsProfileFormat class derivative to support an existing non-ICC
profile format, a new profile format, or possibly a set of data that is not an ICC profile
(for example, a tag encoded TIFF file). To build a KcsAttributeSet instance within
a KcsProfileFormat instance and a set of KcsXform derivatives, enough
information in a properly tagged TIFF image might exist.

The CMM Id and version must be in a known location in the profile header. This is
always the case with the ICC profile format. See “ICC Profile Header” on page 50 for
details. Other profile formats must be formatted to conform to this requirement so that
the KCMS framework can form the keys to locate the format’s runtime loadable
module.

See Chapter 6 for information on creating a KcsProfileFormat class derivative.

36 KCMS CMM Developer’s Guide • December 2001 (Beta)

KcsXform
Typically you create a KcsXform class derivative when you create a CMM. The
KcsXform is the most common derivative, since most color management suppliers
have their own type of transformation technology. Most color technology involves
manipulating matrixes and transforms. This class allows you to define a transform
and its methods.

See Chapter 7 for information on creating a KcsXform class derivative.

KcsStatus
The KcsStatus class represents a consistent object-oriented way of returning results
from all the KCMS methods. It enables each of the following to be represented:

� Error and warning values
� Error text descriptions
� Error conversions to and from a KcsStatusId
� Error comparisons
� External mappings through the KCMS C API
� Message extraction for language localization

You do not actually derive from the KcsStatus class: you extend it. You override an
error and warning message function to provide your own error and warning
messages. It is recommended that you override KcsStatus functions with message
extraction for language localization. You are not required to provide your own
messages. The KCMS-framework error and warning messages may be sufficient.

See Chapter 8 for information on extending the KcsStatus class.

Deriving Classes at Runtime
The KCMS framework uses a model that allows derivation of classes at runtime. This
model changes and augments the default functionality in the pre-compiled shared
library. The KCMS framework uses the Solaris runtime-loader interface. See the
dlopen(3X) and dlsym(3X) man pages for more information. The runtime derivation
model uses C-based routines to load, unload, initialize, terminate, and allocate at
runtime.

To enable runtime derivation, you must code your CMM according to special
requirements and configure each derived class it contains. Each of these topics is

CMM : A Runtime Derivative 37

addressed in the sections below. See “Runtime Derivation Coding Requirements”
on page 38 and “Configuration Requirements” on page 42.

Runtime Derivation Coding
Requirements
This section describes what you need to do in the code of each of your CMM
derivatives so that the derivative can be executed at runtime.

Runtime Derivation Code Examples
For code examples showing how to use the wrapper functions and entry points
described in the sections below, see the chapter describing that derived class. The
chapters are:

� Chapter 4
� Chapter 5
� Chapter 6
� Chapter 7

In addition, see the sample programs in /opt/SUNWddk/kcms/src. The directory
contains brief sample programs that illustrate all the coding requirements described in
this section.

Wrapper Functions
To allocate an object at runtime, you use wrapper functions. Wrapper functions are
implemented in C and perform a C++-to-C conversion. The allocation routines return
a pointer to the base class object that indicates to the C++ compiler what is returned,
but not the definitions. As in typical C, you can reference symbols in a sharable library
because the functions are defined as extern C {}.

These functions are written in C++ and call new() (or its equivalent alternative). Since
the shareable object code has all of the header information from the base class, the
derivative is constructed properly and has the same structure as statically-linked code.

38 KCMS CMM Developer’s Guide • December 2001 (Beta)

External Entry Points
You need to provide the KCMS framework with an external entry point to load each of
your derivatives as an executable. The symbols are loaded and the derivative is called
by the framework to access your derivative’s functionality.

The types of entry points for a runtime derivative are:

� mandatory
� optional
� base-class specific

In the paragraphs that follow, XXXX refers to the base class identifier from which it is
being derived. XXXX can only have the following values:

� IO
� Prof
� Pfm
� Xfrm
� Stat

Mandatory
For each runtime derivative, you must supply a C-based variable and an external
entry point. Respectively, these are:

� KcsDLOpenXXXXCount()
� KcsCreateXXXX()

Note – The KcsDLOpenStatusCount()variable is the only requirement for
extending the KcsStatus class.

KcsDLOpenXXXXCount()

extern long KcsDLOpenXXXXCount();

KcsDLOpenXXXXCount() is the number of times the shareable object was opened. It
is equivalent to the number of times the shareable object is being shared. The CMM
should not set this variable. It is controlled by the KCMS framework.

KcsCreateXXXX()

KcsXXXX *KcsCreateXXXX(KcsStatus *, XXXX creationargs);

KcsCreateXXXX() is one of possibly many creation entry points. This entry point
maps directly to the static createXXXX() methods of the base class from which it is

CMM : A Runtime Derivative 39

being derived. The arguments following KcsStatus * are specific to the base class
and are described in the appropriate class chapter. See the chapters describing the
KcsIO, KcsProfile, KcsProfileFormat, and KcsXform classes (Chapter 4
through Chapter 7 respectively). The CMM must support all declared
createXXXX() methods; otherwise, applications receive CMM errors from calls to
load().

Optional
Runtime derivatives can supply the following external entry points:

� KcsInitXXXX()
� KcsCleanupXXXX()

Note – It is highly recommended that you use the KcsInitXXXX() entry point to
verify the version of the versions so that your CMM can use the profile data properly.

KcsInitXXXX()
KcsStatus KcsInitXXXX(long libMajor, long libMinor,

long *myMajor, long *myMinor);

If you supply the KcsInitXXXX() entry point, the KCMS framework calls it when
the shareable object is loaded for the first time. This initializes and derives private
allocations before any creation method is called. KcsInitXXXX() checks for minor
version numbering. See “Configuration Requirements” on page 42 for more
information.

KcsCleanupXXXX()

KcsStatus KcsCleanupXXXX();

If you supply the KcsCleanupXXXX() entry point, the KCMS framework calls it
when the shareable object is unloaded for the last time (when KcsDLOpen
XXXXCount = 0). This cleans up shareable objects when they are no longer needed.

Base-Class Specific
Each base class also provides additional necessary and optional entry points. See the
chapters describing the KcsIO, KcsProfile, KcsProfileFormat, and KcsXform
classes (Chapter 4 through Chapter 7 respectively), for detailed explanations.

40 KCMS CMM Developer’s Guide • December 2001 (Beta)

Instantiation
You instantiate KCMS framework objects or any runtime derivations of that object
with the following methods:

� createXXXX()
� attach()
� new()

createXXXX()
You allocate an object with the createXXXX() method. This method combines
sharing of the object with runtime derivative support. With chunk set-based objects,
this function searches for a match through allocated objects. If it finds a match, it
attaches to that object and returns its address. If it does not find a match or the object
is not chunk set based, it searches for a match through objects in the runtime-loadable
object files.

To maximize the runtime nature of the KCMS framework, it is recommended that you
use the createXXXX() method whenever possible within your CMM derivative. It
enables derivatives statically linked into an application or included directly in the
KCMS framework’s shared object libraries (such as, libkcs) to use the correct and
latest version of your CMM derivative.

Note that the KcsStatus class extension is an exception to this recommendation. It
passes back a status string rather than a pointer to a derivative, and only two C
functions are written.

attach()

You use the attach() method to share an object. If an object already exists, it can be
shared in memory with this method. You can share the object with other users of that
object. Any changes in the object are applied to objects that share it. If you share an
object, make sure that object does not change while your derivative is attached to it.

new()

To get a new object of a specified type or a KCMS framework derivative, you use the
new() method. This allows a runtime derivative to actually override a built-in type
after it has been released.

CMM : A Runtime Derivative 41

Initialization and Cleanup
The KcsLoadable class loads a runtime derivative’s binaries when a create()
method is used. It generates the shared object’s configuration file keywords based on
class, derivative, and version identifiers. It retrieves the module name and loads the
library. See “Creating OWconfig File Entries” on page 43 for further information.

The KcsLoadable class then locates the KcsDLOpenXXXXCount() variable. If
KcsDLOpenXXXX()Count = 0, it locates and loads the KcsInitXXXX() entry
point and, if available, calls it. Then the KcsCreateXXXX() entry point is located
and loaded. If everything is successful, the KcsCreateXXXX()entry point is called.

When the last of a specific derivative type is deallocated and the
KcsCleanupXXXX() entry point is available, it is located, loaded, and called.

Configuration Requirements
This section tells you what you need to know to load your CMM. It explains how to
name derived classes and how to update the OWconfig file for each derived class in
your CMM.

CMM Filename Convention
A module (or CMM) name should follow this convention:

kcs<STOCK SYMBOL><CLASS><unique identifier>.so.<version>

Table 2–1 describes each field in the CMM filename.

TABLE 2–1 CMM Filename Description

Filename Field Description

kcs Color management framework.

stock symbol Short mnemonic used by the stock market or a unique identifier.

class Class from which the module is derived (IO, Prof, Pfmt, Xform, or
Stat).

unique identifier Four-character identifier that distinguishes multiple modules derived
from the same class.

.so Shared object library.

42 KCMS CMM Developer’s Guide • December 2001 (Beta)

TABLE 2–1 CMM Filename Description (Continued)
Filename Field Description

version Number compared to the KCS_MAJOR_VERSION number (incremented
by SunSoft for every major release; for bundling CMMs only).

Note – The version number in the #define and the version number in the module
name must match. See icc.h for an example.

Table 2–2 lists a few KCMS CMM filenames.

TABLE 2–2 KCMS CMM Filenames

CMM Filename Description

kcsSUNWIOsolf.so.1 Solaris File CMM component

kcsSUNWIOxwin.so.1 X11 Window System CMM component

kcsSUNWStatsolm.so.1 Solaris Message CMM component, which
accompanies each of the above CMM files for
messages

CMM Makefile
You must install your CMM in /usr/openwin/etc/devhandlers. To copy the file
into this directory, you must be superuser and you must set the file permissions to 755
so that it is executable.

See the sample makefile in /opt/SUNWddk/kcms/src for an illustration of how
CMMs are compiled and installed, and how the CMM library names are associated
with the CMM modules.

Creating OWconfig File Entries
You must include OWconfig library in the CMM linking. To link in this library, enter
-lowconfig on the link command line . The OWconfig library is bundled with
Solaris in /usr/openwin/lib/libowconfig.so. It provides routines to access the
OWconfig file, which gets the name of the CMM class derivative you want to
dynamically load.

To advertise its existence of your CMM class derivative to the KCMS framework, you
must add the name of the derivative to the OWconfig file.

CMM : A Runtime Derivative 43

A generic OWconfig entry looks like this:

class=”KCS_IO” name=”solf”

kcsLoadableModule=”kcsSUNWIOsolf.so.1”;

Table 2–3 describes each field.

TABLE 2–3 OWconfig File Entry Description

OWconfig File Entry Description

class KCS_<class name>.

name Four- or eight-character identifier that matches the identifier
in your code.

kcsLoadableModule Entire module name.

The above is just an example of the OWconfig file structure. You need to add an
OWconfig file entry for each class you derive from or extend in your CMM. Examples
of these entries are shown in the following paragraphs.

KcsIO Example
If you derive from the KcsIO class, you need to provide a KcsIO class entry such as
the example entries below:

#KcsIO class, Solaris profiles
class=”KCS_IO” name=”solf”

kcsLoadableModule=”KcsSUNWIOsolf.so.1”;

#KcsIO class, X11
window system profiles
class=”KCS_IO” name=”xwin”

kcsLoadableModule=”kcsSUNWIOxwin.so.1”;

Note the name strings in the above examples. The KcsProfileType enumeration in
kcstypes.h contains a type field that is a 4-character array described in hexadecimal
form as a long, for example:

typedef enum {
KcsFileProfile = 0x46696C65, /*File*/
KcsMemoryProfile = 0x4D426C00, /*MBl*/

#ifdef KCS_ON_SOLARI
KcsWindowProfile = 0x7877696E, /*xwin*/
KcsSolarisProfile = 0x736F6C66, /*solf*/ #else
KcsWindowProfile = 0x57696E64, /*Wind*/

#endif /* KCS_ON_SOLARIS */
KcsProfileTypeEnd = 0x7FFFFFFF,
KcsProfileTypeMax = KcsForceAlign

}KcsProfileType;

44 KCMS CMM Developer’s Guide • December 2001 (Beta)

The OWconfig library turns the type field back into a string corresponding to the
name field entry and searches all of the appropriate OWconfig class entries for that
string.

KcsProfile Example
If you derive from the KcsProfile class, you need to provide a KcsProfile class
entry such as the example entries below:

#KcsProfile Class, Solaris default is KCMS
#Default profile
class, CMM Id == Profile Format class=”KCS_Prof” name=”dflt”

kcsLoadableModule=”kcsEkProfkcms.so.1”;

#KCMS profile, CMM Id == Profile Format
class=”KCS_Prof” name=”KCMS”

kcsLoadableModule=”kcsEKProfkcms.so.1”;

The key to loading a new version is the CMM Id (also called CMM Type), which is
contained in bytes 4 through 7 in the ICC profile header). (See “ICC Profile Header”
on page 50 for details.) If there is not a match, the default entry dflt is used. You
must load the proper CMM Id into the new profile’s CMM Id attribute field for
recognition of the module.

The default loadable KcsProfile module is the Solaris-supplied default.

The KcsProfile class is the base class that can contain transformations (KcsXform
class) and a profile format (KcsProfileFormat class). Since the Kodak KcsProfile
class is built into the library, you can use this mechanism to extend the calibration and
characterization interface.

KcsProfileFormat Example
If you derive from the KcsProfileFormat class, you need to provide a
KcsProfileFormat class entry such as the example entries below:

#Profile format class, default is ICC
#Default profile format, ICC, default CMM
class=”KCS_Pfmt” name=”acspdflt”

kcsLoadableModule=”kcsEKPfmticc30.so.1”;

#ICC profile format, KCMS CMM
class=”KCS_Pfmt” name=”acspKCMS”

kcsLoadableModule=”kcsEKPfmticc30.so.1”;

The profile format is determined from the profile file signature (also known as the
magic number), which is contained in bytes 36-39 in the ICC profile header), and CMM
Id (bytes 4-7 in the header). (See “ICC Profile Header” on page 50.) A check is

CMM : A Runtime Derivative 45

performed to ensure that an ICC profile uses the magic number of the file. If another
format is used, the magic number is used to load the module.

All profiles that are ICC profile format files should have a magic number equal to
acsp, and they must have the ICC header included. The CMM Id is used to match the
profile format with the correct derivative. If no match is found, the default entry
(dflt) is used; therefore, you can use the supplied default profile format class for ICC
profiles.

The name field syntax is: <Profile magic number><CMM Id>

The OWconfig file entry must match the resulting name. This also gives color
management vendors the opportunity to support pre-ICC format profiles, provided
they include the ICC header.

KcsXform Example
If you derive from the KcsXForm class, you need to provide a KcsXForm class entry
such as the example entries below:

#ICC interpolation table 8 bit, default CMM
class=”KCS_Xfrm” name=”mft1dflt”

kcsLoadableModule=”kcsEKXfrmucp.so.1”;

#ICC interpolation table 16 bit, default CMM
class=”KCS_Xfrm” name=”mft2dflt”

kcsLoadableModule=”kcsEKXfrmucp.so.1”;

#ICC interpolation table 8 bit, default CMM
class=”KCS_Xfrm” name=”mft1KCMS”

kcsLoadableModule=”kcsEKXfrmucp.so.1”;

#ICC interpolation table 16 bit, default CMM
class=”KCS_Xfrm” name=”mft2KCMS”

kcsLoadableModule=”kcsEKXfrmucp.so.1”;

#KCMS universal color processor table
class=”KCS_Xfrm” name=”ucpKCMS”

kcsLoadableModule=”kcsEKXfrmucp.so.1”;

The name field is a combination of a unique 4-character transform identifier and the
CMM Id. (The transform identifier must be registered with the ICC if the profile and
CMM are to be made available to the public.) The library turns name back into a string
and searches all of the appropriate OWconfig class entries.

Inside an ICC profile, the type of transform is defined by a type identifier that
indicates whether it is an 8- or 16-multi function table, indicated by the signature
element of either the Lut8Type (mft1) or Lut16Type (mft2). Default values
have been supplied for these cases: mft1dflt and mft2dflt.

46 KCMS CMM Developer’s Guide • December 2001 (Beta)

KcsStatus Example
If you extend the KcsStatus class, you need to provide a KcsStatus class entry
such as the example below:

#Extending error messages
class=”KCS_STAT” name-”solm”

kcsLoadableModule=”kcsSUNWSTATsolm.so.1”;

The name field is a 4-character string that uniquely identifies your set of error and
warning messages.

To add your own error messages, supply a single “C” routine that translates your
error value into an error string. Also supply a messages.po file for localization
purposes. See Chapter 8 for detailed information.

If an OwnerId variable is set with the status message, the KcsStatus class
dynamically loads the matching OwnerId that was set by the dynamically loaded
class. The OwnerID is described in Chapter 8.

Updating the OWconfig File
Using the interactive program called OWconfig_sample, which is provided with the
DDK, you can insert and remove configuration entries (class, name, and
kcsLoadableModule) in the OWconfig file.

To update OWconfig file entries, you must be root. If you are not root or the
/etc/openwin/server/etc path does not exist, the following error is generated:

OWconfile file not created/updated.

Check that you are root and /etc/openwin/server/etc exists.

Start the OWconfig_sample program as follows:

example% su

example# ./OWconfig_sample

� Inserting Entries
The following is an example of how to insert a configuration entry into the OWconfig
file. Sample user responses are enclosed in brackets ([]).

EXAMPLE 2–1 Inserting an OWconfig File Entry

ATTENTION:You must be root to update the OWconfig file.
Are you inserting an OWconfig entry? y/n

[y]

CMM : A Runtime Derivative 47

EXAMPLE 2–1 Inserting an OWconfig File Entry (Continued)

You will be asked to supply a class, a name and
a kcsLoadableModule to create an entry such as the
following:
class = “SUN_Xfrm” name = “acspdndp”
kcsLoadable Module = “sunSUNWxfrmdndp.so.1”
Please see the KCMS CMM Developer’s Guide for information

Enter the profile class name in the form of XXX_IO,
XXX_Prof, XXX_Prfmt, XXX_Xfrm, or XXX_Stat. XXX is
your unique cmm identifier, which must match the class
name of your derived class.

[KCS_Prof]

Enter the name of your cmm - it must match the name
in your derived class.

[dndp]

Enter the name of your dynamically loadable module.

[kcsSUNWProfdndp.so.1]

This is your OWconfig entry. OK? y/n

class = KCS_Prof name = dndp
kcsLoadableModule = kcsSunWProfdndp.so.1

[y]

Do you have more entries to create? y/n

[n]

The OWconfig_sample program above appends the entry to the OWconfig file.

Try inserting the entry shown in the above example:

1. Run the OWconfig_sample program. Be sure you are root.

See “Updating the OWconfig File” on page 47.

2. Insert the user responses shown in Example 2–1.

3. Check for the entry at the end of the OWconfig file.

The new configuration entry is appended to the end of the
/usr/openwin/server/etc/OWconfig file. For local machine use only, the
/etc/openwin/server/etc/OWconfig file is updated.

48 KCMS CMM Developer’s Guide • December 2001 (Beta)

� Removing Entries
The following is an example of how to remove a configuration entry from the
OWconfig file. Sample user responses are enclosed in brackets ([]).

EXAMPLE 2–2 Removing An OWconfig File Entry

ATTENTION:You must be root to update the OWconfig file.
Are you inserting an OWconfig entry? y/n

[n]

To remove an OWconfig entry:

Enter the unique class name for your module for removal
from the OWconfig file. The class name would be in the
form XXX_IO, XXX_Prof, XXX_Pfrmt, or XXX_Stat

[KCS_Prof]

Enter the unique cmm name for your module for removal
from the OWconfig file.

[dndp]

This is the OWconfig entry to remove. OK? y/n

class = KCS_Prof name = dndp

[y]

Do you have more entries to remove? y/n

[n]

The OWconfig_sample program removes the last entry in the OWconfig file.

Try removing the entry you inserted following Example 2–1:

1. Run the OWconfig_sample program again. Be sure you are root.

See “Updating the OWconfig File” on page 47.

2. Fill in the user responses shown in Example 2–2.

3. Check the OWconfig file.

The entry should no longer appear at the end of the file.

CMM : A Runtime Derivative 49

Version Numbering
Once OWconfigGetAttribute() returns the module name, the version number is
parsed out of the module name and compared to the global library version number
located in kcsos.h to determine if this version can be executed.

Note – The major version number in the module name must match the global variable
located in the header file kcsrpc.h for an example.

Profiles
This chapter would not be complete without a discussion on profiles. You write a
CMM to create profile(s) that meet your special requirements. This section describes
the KCMS profile standard. It makes recommendations regarding the portability of the
profiles your CMM creates. Finally, it explains how to set up the profiles so that your
CMM can use them.

KCMS uses the ICC profile format as the default profile format. The ICC profile format
specification to which this version of KCMS conforms is located on-line in
/usr/openwin/demo/kcms/docs/icc.ps. (For the most current version of the
ICC specification, check the web site at http://www.color.org.) By supporting the
ICC specification, the profiles your CMM creates can be used on all participating
vendors’ color management systems.

Much of the work in processing and handling ICC format profiles is included by
default in the framework. To speed your development cycle, use as much of this
default technology as possible. You can develop your own profile format within the
framework.

Note – It is strongly recommended that you extend the ICC profile format rather than
develop your own. If you do not use the ICC profile format your profiles will not be
easily ported to other platforms.

ICC Profile Header
Table 2–4 shows the ICC profile header. For details on the profile header fields, see the
ICC profile format specification. The KCMS-specific header is defined in icc.h, and
KCMS attributes are registered with the ICC. (The profile header and all attribute

50 KCMS CMM Developer’s Guide • December 2001 (Beta)

structures and definitions that pertain to KCMS also are described in Chapter 5,
“Profile Attributes,” in the SDK manual KCMS Application Developer’s Guide.)

Note that the CMM Id must in a fixed place (bytes 4-7) in the header.

TABLE 2–4 ICC Profile Header Format

Byte offset Content

0-3 Profile size

4-7 CMM type (CMM Id)

8-11 Profile version number

12-15 Profile/device class

16-19 Color space of data

20-23 Profile connection space (PCS) (CIEXYZ or CIELAB only)

24-35 Date and time this profile was first created

36-39 ‘acsp’ (61637370h) profile file signature (magic number)

40-43 Primary platform target for the profile

44-47 Flags indicating various options for CMM such as distributed processing
and caching

48-51 Device manufacturer of the device for which this profile is created

52-55 Device model number of the device for which this profile is created

56-63 Device attributes unique to the particular device setup such as media
type

64-67 Rendering intent

68-79 XYZ values of the illuminant of the PCS.

80-83 Profile creator identifier

84-127 Reserved for future use

Naming and Installing Profiles
Any profile you want to include in the KCMS library must be named according to
specified conventions to avoid name clashes and promote portability. The paragraphs
below explain how to name and install your profile so that it can be automatically
used in the KCMS framework.

CMM : A Runtime Derivative 51

Naming Profiles
The KCMS profile name is a filename with the following naming convention:

<CMM ID><stock symbol><device>.<type>

Table 2–5 describes the fields in the profile filename:

TABLE 2–5 Profile Filename Description

Profile Filename Field Description

CMM ID A mnemonic. Solaris-supplied profiles use kcms as the CMM ID. Choose
your own mnemonic for profiles you create.

stock symbol Short mnemonic used by the stock market for your company or a unique
identifier.

device Unique string identifying the device or color space. See Table A–1 for
devices supported by Solaris.

type ICC profile format standard filename suffixes. See Table 2–6.

Profile Filename Suffixes
Table 2–6 describes the various filename suffixes for profiles for the Solaris
environment.

TABLE 2–6 Profile Filename Suffixes

Filename Suffix (type) Description

inp Input devices (scanners, digital cameras and Photo CDs)

mon Display devices (CRTs and LCDs)

out Output devices such as printers

spc Color space conversion transformations

link Device link transformations

abst Abstract transformations for special color effects

Installing Profiles
If you use the file type KcsSolarisFile in the KcsLoadProfile() function, you
must install profiles where the KCMS framework can locate them . The KCMS
framework searches for profiles in the following directories in the order listed below:

1. Local current directory

52 KCMS CMM Developer’s Guide • December 2001 (Beta)

Typically a CMM creates profiles in the directory in which it is being run.

2. Directories specified by the KCMS_PROFILES environment variable

KCMS_PROFILES is a colon-separated list of directory paths to profiles. You can set
this variable on a per-user or work-group basis. You may want to use this variable
to set the path to temporary profiles your CMM creates.

3. /etc/openwin/devdata/profiles

This directory contains the local or machine-specific copies of configured profiles,
for example, X Window System visual profiles.

4. /usr/openwin/etc/devdata/profiles

This directory always contains read-only files.

Note – All profiles for distribution (whether you create them or they are supplied with
the Solaris operating system) should be written as superuser and read only to protect
them from being overwritten.

Note – If you use the file type KcsFile in the KcsLoadProfile() function, when
the application opens the profile, you can name it anything you want.

Supported Devices
For a list of the devices supported by the KCMS framework, see Appendix A.

CMM : A Runtime Derivative 53

54 KCMS CMM Developer’s Guide • December 2001 (Beta)

CHAPTER 3

KCMS Framework Operations

In This Chapter
The Kodak Color Management System (KCMS) is a flexible and powerful framework
for developing color management technology. You can add attributes to the current list
and incorporate new color processing technology.

This chapter provides an overview of the KCMS framework architecture. It introduces
you to how the framework works by showing excerpts form KCMS “C” API programs
and comparing these excerpts to the underlying framework actions.

KCMS Framework Architecture
Figure 3–1 illustrates the KCMS framework architecture. It provides an overview of
how the KCMS classes are used to implement the KCMS framework. Basically, the
framework is implemented by manipulating an array of KcsProfile objects within a
set of “C” wrapper functions. The “C” wrapper functions are C-to-C++ calls that make
up the KCMS API. Use this figure as a general reference as you read this chapter.

55

KcsProfile Object Array

KcsAttributeSet

Array of Pointers
to KcsXforms

KcsProfileFormat

(load(), save())
Methods

Associated KcsIO Objects

KcsChunkSet

(load(), save())
 Methods

KcsProfile

KcsProfileFormat

KCMS “C” Wrapper Functions (API)

“C”

“C++”Framework

Application

FIGURE 3–1 KCMS Framework Architecture

KcsProfile
KcsProfile objects are created from a static store which is a KcsIO object.
KcsProfile objects are described using one of the types in the KcsProfileDesc
structure which is defined in the kcstypes.h header file. Objects can read from and
write to data in a static store. Examples of a static store include a file and memory.
KcsProfile objects generated internally by the framework use a KcsMemoryBlock
object.

The KcsProfile class static member function, createProfile() reads the CMM
Id from the static store and generates a pointer to the KcsProfile derivative. The

56 KCMS CMM Developer’s Guide • December 2001 (Beta)

CMM Id is located at byte 4 in the ICC profile format. If the CMM Id has no associated
runtime derivative, the default KcsProfile derivative, KcsProfileKCMS, is used.

Note – The CMM Id must be in a set location in the file that is the same location as
used by the ICC profile format. For details, see “ICC Profile Header” on page 50.

The KcsProfile class contains a set of public member functions that correspond to
the KCMS “C” API functions shown in the following table.

TABLE 3–1 Mapping of API Functions to KcsProfile Class Member Functions

KCMS API Function KcsProfile Member Functions

KcsLoadProfile() load()

KcsSaveProfile() save()

KcsSetAttribute() setAttribute()

KcsGetAttribute() getAttribute()

KcsConnectProfiles() connect()

KcsEvaluate() evaluate()

KcsUpdateProfile() updateXforms()

KcsProfileFormat
Each KcsProfile base class contains a pointer to a KcsProfileFormat object. This
allows the architecture to link different profile formats and keep the KcsProfile
class independent of the actual profile format. The KcsProfileFormat object is
created based on the profile format Id (also called profile file signature) and profile
version number. The ICC profile format Id is acsp, located at byte 36 in the profile
header. (See “ICC Profile Header” on page 50.) The version number is derived from
the profile version number; ICC profile byte 8. The framework uses the version
number with the profile format Id so that it can handle different versions of profile
formats. For non-ICC profile formats the format Id and version number must be at the
same byte location in the static store.

KcsAttributeSet
Each KcsProfileFormat base class contains a pointer to a KcsAttributeSet
object and handles all of the functionality for attributes.Using the KcsIO class
associated with the parent KcsProfile, the KcsAttributeSet object can load itself

KCMS Framework Operations 57

from the static store. KcsAttributeSet does not use the KcsIO class directly; it uses
the KcsChunkSet utility class to access the static store. KcsChunkSet knows how to
handle the mapping from desired information blocks to its actual location in the static
store. KcsChunkSet and KcsIO have no knowledge of the contents of the data. That
is left to the calling class.

KcsXform
The KcsXform base class contains an array of pointers to KcsXforms. The primary
function of KcsXform (or transformation) is to manipulate color data. KcsXform also
uses the KcsChunkSet class to load from and save to static store.

KCMS Framework Flow Examples
The following examples will help you better understand the flow of control and data
between the KCMS “C” API and the KCMS framework. Use Figure 3–1 as a reference.

Loading a Profile
This example explains what the KCMS framework does when an application makes a
KCMS “C” API call to load a profile.

1. Using the KcsIO derivative, the framework determines the CMM Id of the profile.

2. The framework calls the KcsProfile::createProfile() static method and
loading starts. It uses the CMM Id of the profile as a key to determine the
particular KcsProfile derivative to load. The CMM Id is associated with the
dynamically loadable module using entries in the OWconfig file.

Once dynamically loaded, the module returns a pointer to a KcsProfile object. If
the particular CMM Id has no match in the OWconfig file, the framework uses the
default KcsProfile derivative, KcsProfileKCMS. There is a special CMM Id
key dflt entry in the OWconfig file, so that your CMM can override the default
KcsProfile class. (See “KcsProfile Example” on page 45 for details.) If you
want your CMM to override the default KcsProfile class, it must duplicate all of
the functionality that the default class handles.

3. The framework calls the load() method on the KcsProfile object pointer that
was created in step 2. This causes a KcsProfileFormat object pointer to be
created using an entry in the OWconfig file. Then the KcsProfileFormat object
loads itself.

The profile format Id (also called the profile signature or magic number, which
starts at byte 36 of the ICC profile format) is used as the key to this entry in the
OWconfig file. (For details on the ICC profile format, see “ICC Profile Header”

58 KCMS CMM Developer’s Guide • December 2001 (Beta)

on page 50.)

4. The KcsProfileFormat object contains pointers to a KcsAttributeSet object
and an array of pointers to KcsXform objects. The framework also creates these
objects and calls their load() methods so they load themselves from the static
store.

Your CMM can derive directly from the KcsAttributeSet object, since it is
statically linked into the KCMS framework. The KcsXform array has an
OWconfig entry that uses a 4-byte identifier as a key. For ICC-based profiles, use
the 8- and 16-bit LUT tags, mft1 and mft2. (See “KcsXform Example” on page 46
for details.)

5. If all pieces of the profile load successfully, the framework returns a KCS_SUCCESS
status to the calling application.

Getting Attributes
Once a profile is loaded (see “Loading a Profile” on page 58), an application can call
the KcsGetAttribute() “C” API function to retrieve the profile’s attributes. The
following outlines the flow of control at the framework level to obtain the profile’s
attributes (see Figure 3–2):

1. For the appropriate object in the KcsProfile object array, the framework calls its
getAttribute() method.

2. The KcsProfileXXXX::getAttribute() calls its
KcsProfileFormat::getAttribute() method.

3. This in turn calls its KcsAttributeSet::getAttribute() method.

KCMS Framework Operations 59

4. The KcsAttributeSet::getAttribute() method gets the attribute and
returns it back up the chain to the API layer.

KcsProfile::getAttribute()

KcsProfileFormat::getAttribute()

KcsGetAttribute()

KcsAttributeSet::getAttribute()

Application Interface

KCMS Framework

FIGURE 3–2 KcsGetAttribute() Flow Example

A similar flow of control is true for the other KCMS “C” API calls.

KCMS Framework Primary Operations
The remainder of this chapter describes how the KCMS framework operates from the
perspective of the KCMS “C” API. Code examples show KCMS “C” API calls that
perform the following tasks:

� Loading profiles
� Connecting profiles
� Evaluating data
� Freeing profiles
� Getting and setting attributes
� Accessing characterization and calibration data
� Saving profiles

Within the primary framework, events are illustrated and described in sequence to
explain what actually takes place when each “C” API call is made.

60 KCMS CMM Developer’s Guide • December 2001 (Beta)

Loading a Profile From the Solaris File System
The framework must have a profile with which to operate. Example 3–1 is a KCMS
“C” API code excerpt that loads a scanner profile with a file name.

EXAMPLE 3–1 Loading a Profile from the Solaris File System

KcsProfileId scannerProfile;
KcsProfileDesc scannerDesc;
KcsStatusId status;
char *in_prof= “kcmsEKmtk600zs”;

scannerDesc.type = KcsSolarisProfile;
scannerDesc.desc.solarisFile.fileName = in_prof;
scannerDesc.desc.solarisFile.hostName = NULL;
scannerDesc.desc.solarisFile.oflag = O_RDONLY;
scannerDesc.desc.solarisFile.mode = 0;

/* Load the scanner profiles */
status = KcsLoadProfile(&scannerProfile, &scannerDesc,

KcsLoadAllNow);
if (status != KCS_SUCCESS) {

fprintf(stderr,”scanner KcsLoadProfile failed error =
0x%x\n”, status);

return(-1); }

In the example, the KCMS API layer calls KcsLoadProfile() to inform the KCMS
framework that a profile description of type KcsSolarisProfile is to be loaded.
The name of the profile and the options for opening that file are also specified using
the solarisFile entry in the KcsProfileDesc structure.

KCMS Framework Operations 61

KcsLoadProfile(&profileId, &scannerDesc)

scannerDesc.type = KcsSolarisFile;
scannerDesc.desc.solarisFile.fileName = argv[1];
scannerDesc.desc.solarisFile.hostName = NULL;
scannerDesc.desc.solarisFile.oflag = O_RDONLY;
scannerDesc.desc.solarisFile.mode = 0;

*profileId = getNewValidProfileIndex();

KcsIO::createIO(status, desc);

loadable

myIO =

new KcsFile

desc->type

KCS_IO

desc->type

namekcsSUNWIOsolf.so.1

dlopen()

dlsym()create_func =

create_func()

new KcsSolarisFile

Loadable CMM Module

KcsLoadable::LoadCreator()

libowconfig

createIO()

myProfile = KcsProfile::createProfile(status, myIO)

API Layer

Framework

= KcsLoadProfile, “C” Wrapper
= KCMS Framework

= libowconfig/OWconfig usage

= Loadable CMM Module

= Application software

FIGURE 3–3 Creating a KcsIO Object

Creating a KcsIO Object
As a result of the call to KcsLoadProfile() the framework creates a KcsIO object.

62 KCMS CMM Developer’s Guide • December 2001 (Beta)

Figure 3–3 illustrates how the KcsLoadProfile() API call is implemented. The
legend indicates the source of each call (KCMS “C” API layer, framework, “C”
wrapper). In addition, the legend shows where the OWconfig file and the loadable
CMM module fit into the overall scheme of loading the profile to creating a KcsIO
object.

Looking ahead for a moment, Figure 3–4, Figure 3–5, and Figure 3–6 show the
progression of framework calls that ultimately load the profile as chunks of data and
return the profile Id to the calling application.

Returning now to Figure 3-3, the KCMS framework and the dynamic loading
mechanism perform the following task sequence when KcsLoadProfile() is called:

1. The framework gets a new profile Id. The framework maintains a dynamically
allocated global array of profiles. The getNewValidProfileIndex() method
allocates a new profile entry.

2. The framework creates a KcsIO pointer. (All profiles access their data using the
KcsIO independent access mechanism.) The KcsIO pointer is created based on the
type field of the KcsProfileDesc structure pointer passed in from
KcsLoadProfile().

Two externally available types are built into the libkcs library, KcsFile and
KcsMemoryBlock. A third derivative, KcsRemoteFile, is used with the
KcsSolarisFile and KcsXWindow classes. In this particular example,
KcsSolarisFile is not built into the libkcs library, so the dynamic loading
mechanism creates one.

3. The dynamic loading mechanism turns the KcsProfileDesc->type structure
pointer field into a 4-character string and searches entries in the OWconfig file for
the entries that correspond to loadable KcsIO classes. If it finds a match, it
dynamically loads the KcsIO module. This action supplies the framework with a
shared object to load. (See “KcsIO Example” on page 44 for details.)

The KcsIO module contains calls to a list of known function names. The
framework uses dlsym(3X) to bring these functions into the framework to create
and load a pointer to a KcsIO derivative.

4. Once the KcsSolarisFile object pointer is loaded, the framework uses the
fileName, hostName, and open(2) arguments to search for the profile. First, it
checks the hostName to see if the file is on a local or remote machine. Depending
on the location, the KcsSolarisFile object reuses the existing KcsIO class
derivatives.

If the file is on a local machine, the fileName is opened using open(2), and a
KcsFile object pointer is created. If, however, the file is located on a remote
machine, the fileName and hostName are passed to KcsRemoteFile and a
KcsRemoteFile object pointer is created.

As shown in Example 3–2, the KcsFile or KcsRemoteFile pointer that the
KcsSolarisFile file object contains is then used to override the KcsIO methods
of the same name.

KCMS Framework Operations 63

EXAMPLE 3–2 Overriding KcsIO Methods With KcsSolarisFile

// Just call myIO

version of the call
KcsStatus
KcsSolarisFile::relRead(
const long aBytesWanted, void *aBuffer, const char *aCallersName)
{

KcsStatus status;

status = myIO->relRead(aBytesWanted, aBuffer, aCallersName);
return (status);

}

Creating a KcsProfile Object
Once a KcsIO object has been created, the profile can be loaded. Figure 3–4 illustrates
creating a KcsProfile object.

64 KCMS CMM Developer’s Guide • December 2001 (Beta)

KCS_PROF

 cmmId = ICC Profile byte 4

namekcsSUNWPROF<cmmId>.so.1

dlopen()

dlsym()create_func =

create_func()
new KcsProfile<cmm Id>

Loadable CMM Module

Find Loadable Module()

libowconfig

createProf

loadable

cmmId

KcsColorSenseProfile

myProfile = KcsProfile::createProfile(status, myIO)

myProfile->load()

FIGURE 3–4 Creating a KcsProfile Object

In Figure 3-4, the first step to loading the profile is to create a new KcsProfile object
with the createProfile() static KcsProfile method. This method uses the CMM
Id of the profile, which is located in a fixed place (bytes 4-7) in the profile header. (See
“ICC Profile Header” on page 50 for details.) The CMM Id determines the
KcsProfile derivative to be created. If the CMM Id has no corresponding entry in
the OWconfig file, the default KcsProfile class is created.

KCMS Framework Operations 65

Creating a KcsProfileFormat Object
Once a KcsProfile object has been created, you can ask it to load itself using the
generated KcsIO. Figure 3–5 illustrates the process.

myProfile->load()

 myFormat = KcsProfileFormat::createProfileFormat()

KCS_PFMT

loadable
namekcsSUNWPfmt<formatId>.so.1

dlopen()

dlsym()create_func =

create_func()

Find Loadable Module()

libowconfigformatId = ICC Profile Byte 36

Loadable CMM Module

formatId

createPfmt

new KcsProfile<format Id>

myFormat->load()

FIGURE 3–5 Creating a KcsProfileFormat Object

In Figure 3–5, the KcsProfile object creates a KcsProfileFormat object pointer
using createProfileFormat(). Then createProfileFormat() searches the
OWconfig file for loadable entries based on the profile format Id. For ICC profiles, the
profile format Id (also called the profile file signature) is always acsp. (See “ICC
Profile Header” on page 50 for details.) Once the KcsProfileFormat object is
created, the library generates a KcsAttributeSet object and an array of pointers to
KcsXform objects.

66 KCMS CMM Developer’s Guide • December 2001 (Beta)

Loading a KcsProfileFormat Object
The pointers to objects contained within the KcsProfileFormat object load
themselves using the KcsChunkSet class. Figure 3–6 illustrates the process.

myAttr = new KcsAttributeSet();
myAttr->load();

if (xform_in_profile) {

xform = createXform(xformId)

loadable

KCS_XFORM

name

libowconfig

xformId

dlopen()

dlsym()create_func =

create_func()

createXform

Loadable CMM

Module

new KcsXform<id>

xform->load();
}

Find Loadable Module()

myFormat->load()

FIGURE 3–6 Loading a KcsProfileFormat Object

In Figure 3–6, the KcsChunkSet class returns the blocks of data from the file, which
were requested by the KcsAttributeSet and KcsXform objects. These objects
interpret the block of data, turning it into tables for processing color data or sets of
attributes. The KcsIO and KcsChunkSet classes do not interpret the data.

If the Solaris file system profile is successfully loaded, the framework increments the
number of entries in the global profile array, and the profile Id is returned to the
application.

KCMS Framework Operations 67

Loading an X11 Window System Profile
In the next example, the framework loads a profile associated with a particular X11
Window System visual. The KcsXWindow object converts the display, visual, and
screen information into a profile loaded into the KCMS framework. Example 3–3 is a
KCMS “C” API code excerpt that shows this.

EXAMPLE 3–3 Loading an X11 Window System Profile

if ((dpy = XOpenDisplay(hostname)) == NULL) {
fprintf(stderr, “Couldn’t open the X display \n”);
exit(1);

}

profileDesc.type = KcsWindowProfile;
profileDesc.desc.xwin.dpy = dpy;
profileDesc.desc.xwin.visual = DefaultVisual(dpy,

DefaultScreen(dpy));
profileDesc.desc.xwin.screen = DefaultScreen(dpy);

status = KcsLoadProfile(&profile, &profileDesc,
KcsLoadAttributesNow);

if (status != KCS_SUCCESS) {
status = KcsGetLastError(&errDesc);
fprintf(stderr,”KcsLoadProfile failed error = %s\n”,

errDesc.desc);
exit(1);

}

The only difference between this example and Example 3–2, is the type of KcsIO class
loaded. That example showed how to load a KcsSolarisFile object rather than a
KcsXWindow object.

Connecting Two Loaded Profiles
Example 3–4 is a “C” API code excerpt that shows how to connect two profiles
together once they have been loaded.

EXAMPLE 3–4 Connecting Two Loaded Profiles

profileSequence[0] = scannerProfile;
profileSequence[1] = monitorProfile;
status = KcsConnectProfiles(&completeProfile,
2, profileSequence, op, &failedProfileNum);
if (status != KCS_SUCCESS) {

fprintf(stderr, “Connect Profiles failed in profile number
%d\n”, failedProfileNum);

KcsFreeProfile(monitorProfile);

68 KCMS CMM Developer’s Guide • December 2001 (Beta)

EXAMPLE 3–4 Connecting Two Loaded Profiles (Continued)

KcsFreeProfile(scannerProfile);
return(-1);

}

The KCMS framework implements the K()csConnectProfiles() API call as
follows:

1. It calls getNewValidProfileIndex()method to get a new valid index for the
connected profile from the dynamically allocated global array of profiles.

2. The new connected profile needs a KcsIO class to handle its I/O. Currently, this is
stored in memory only, so it creates a KcsMemoryBlock object.

3. It creates a KcsProfile object that can link together sequences of profiles.

4. It attaches each profile in the sequence with attach() to the newly created
KcsProfile object. The attach()method reference counts the objects. (Note that
all classes are reference counted through inheritance from the KcsShareable
class.)

5. Once attached, the KcsAttributeSet object composes the attributes from the
two KcsProfile members in the array into a single set of attributes for the newly
created profile object.

6. It links the KcsXform array so that the “into” and “out of” profile connection
space (PCS) transforms of each KcsProfile object (profile) can be connected.
When color data is processed through this sequence, it moves from input profile to
PCS and from PCS to output profile.

7. Once connected, it returns the new profile Id to the calling application for later
reference, and generally cleans up the classes.

Evaluating Data Without Optimization
The evaluation path of data is different for unoptimized and optimized sequences.
Figure 3–7 shows both paths.

KCMS Framework Operations 69

Scanner Monitor MonitorScanner Profile Connection
SpaceImage Profile Profile Image

Optimized
Scanner to Monitor
Profile

FIGURE 3–7 Optimized And Unoptimized Evaluation

In the unoptimized case, when evaluate() is called, the color data is moved from
input space to PCS and from PCS to output space. This is achieved by passing the data
through the appropriate KcsXform object in the KcsXform object array. The KCMS
“C” API code excerpt shown in Example 3–5 evaluates data without optimization.

EXAMPLE 3–5 Evaluating Data Without Optimization

/* set up the pixel layout and color correct the image */
if (depth == 24)

setupPixelLayout24(&pixelLayoutIn, image_in);
else

setupPixelLayout8(&pixelLayoutIn, red, green, blue,
maplength);

status = KcsEvaluate(completeProfile, op, &pixelLayoutIn,
&pixelLayoutIn);

if (status != KCS_SUCCESS) {
fprintf(stderr, “EvaluateProfile failed\n”);
KcsFreeProfile(monitorProfile);
KcsFreeProfile(scannerProfile);
KcsFreeProfile(completeProfile);
return(-1);

}

Evaluating Data With Optimization
When a profile sequence is optimized for speed, a set of tables is generated that does
not require the color data to be passed through the PCS. As a result, the connected
profile contains a composed KcsXform object that moves data directly from input
space to output space. (Composition reduces multiple transforms into a single
transform.) The KCMS “C” API code excerpt shown in Example 3–6 evaluates data
with optimization for speed.

70 KCMS CMM Developer’s Guide • December 2001 (Beta)

EXAMPLE 3–6 Evaluating Data With Optimization for Speed

status = KcsOptimizeProfile(completeProfile, KcsOptSpeed,
KcsLoadAllNow);

if (status != KCS_SUCCESS) {
fprintf(stderr, “OptimizeProfile failed\n”);
KcsFreeProfile(monitorProfile);
KcsFreeProfile(scannerProfile);
return(-1);

}

/* set up the pixel layout and color correct the image */
setupPixelLayout24(&pixelLayoutIn, image_in);

status = KcsEvaluate(completeProfile, op, &pixelLayoutIn,
&pixelLayoutIn);

if (status != KCS_SUCCESS) {
fprintf(stderr, “EvaluateProfile failed\n”);
KcsFreeProfile(monitorProfile);
KcsFreeProfile(scannerProfile);
KcsFreeProfile(completeProfile);
return(-1);

}

Freeing a Profile
Freeing a profile causes each of the objects pointed to by the profile Id in the
framework’s global array to release all of its associated data. If a given object is a
shared or reference-counted object, the memory is released only if the reference count
drops to zero.

Freeing a profile loaded via KcsSolarisProfile or KcsXWindowProfile closes
the associated file descriptor or remote procedure call (RPC) connection if the file is
located on a remote machine. Use the KcsFreeProfile(profile)() KCMS “C”
API call to free a profile.

Attributes
The examples below show how to get and set attributes.

Setting an Attribute
When setting an attribute, the KcsProfile object in the KcsProfile object array
passes the setting of the attribute to the KcsAttributeSet object contained in its

KCMS Framework Operations 71

KcsProfileFormat object. This is illustrated in Figure 3–2 and in the KCMS API
code excerpt shown in Example 3–7.

EXAMPLE 3–7 Setting an Attribute

/* double2icFixed converts a double float to a signed 15 16 fixed point
* number */
/* Set white point */
test_double[] = 0.2556;
test_double[1] = 0.600189;
test_double[2] = 0.097794;
attrValue.base.countSupplied = 1 attrValue.base.type = icSigXYZType;
attrValue.base.sizeof(icXYZNumber);
attrValue.val.icXYZ.[0].X = double2icfixed(test_double[0],

icSigS15Fixed16ArrayType);
attrValue.val.icXYZ.[0].Y = double2icfixed(test_double[1],

icSigS15Fixed16ArrayType);
attrValue.val.icXYZ.[0].Z = double2icfixed(test_double[2],

icSigS15Fixed16ArrayType);
rc = KcsSetAttribute(profileid, icSigMediaWhitepointTag, &attrValue);
if (rc != KCS_SUCCESS {

KcsGetLastError(&errDesc);
fprintf(stderr, “unable to set whitepoint: %s\n”, errDesc.desc);
KcsFreeProfile(profileid);
return (-1);

}

Getting an Attribute
When getting an attribute, the KcsProfile object in the array passes the getting of
the attribute to the KcsAttributeSet object contained in its KcsProfileFormat
object (replacing set with get). This is illustrated in Figure 3–2 and in the KCMS API
code excerpt shown in Example 3–8.

EXAMPLE 3–8 Getting an Attribute

/* Get the colorants */
/* icfixed2double converts signed 15.16 fixed point number to a double
* float */
/*Red */
attrValuePtr = (KcsAttributeValue *) malloc(sizeof(KcsAttributeBase) +

sizeof(icXYZNumber));
attrValuePtr->base.type = icSigXYZArrayType;
attrValuePtr->base.countSupplied = 1;
status = KcsGetAttribute(profileid, icSigRedColorantTag, attrValuePtr);
if (status != KCS_SUCCESS) {

status = KcsGetLastError(&errDesc);
printf(“GetAttribute error: $s\n”, errDesc.desc);
KcsFreeProfile(profileid);
exit(1);

}

72 KCMS CMM Developer’s Guide • December 2001 (Beta)

EXAMPLE 3–8 Getting an Attribute (Continued)

XYZval = (icXYZNumber *)attrValuePtr->val.icXYZ.data;
printf(“Red X=%f Y=%f Z=%f\n”,

icfixed2double(XYZval->X, icSigS15Fixed16ArrayType),
icfixed2double(XYZval->Y, icSigS15Fixed16ArrayType),

icfixed2double(XYZval->Z, icSigS15Fixed16ArrayType),

Characterization and Calibration
Characterization and calibration are accessed using the following KCMS “C” API calls:

� KcsCreateProfile()
� KcsUpdateProfile()
� KcsSetAttribute()
� KcsSaveProfile()

See the SDK manual KCMS Application Developer’s Guide for more information on these
calls.

The KcsProfile base class contains virtual methods to characterize and calibrate
two types of devices: scanners and monitors. You must decide whether to override the
base functionality to take characterization and calibration data and turn it into the
appropriate KcsXform data.

Note – Currently, the default CMM supports monitor and scanner characterization
and calibration only. It does not support printer characterization and calibration.
However enabling hooks exist in the source so you can write a CMM that supports
printers.

Attributes are set using the normal mechanisms. The KCMS “C” API code excerpt in
Example 3–9 shows characterization and calibration.

EXAMPLE 3–9 Characterization and Calibration

KcsCalibrationData *calData;
KcsCharacterizationData *charData;
float Luminance_float_out[3][256];
double test_double[3];

/* this is a test which does not use real data - just a gamma curve for the
* calibration structure and the same curve *.75 for the characterization curve. */

/*create luminance tables with a gamma = 2.22 */
for (j=0; j<levels; j++) {

input_val = j * (1.0/255.0);
Luminance_float_out[0][j] = pow(input_val, 2.22);

KCMS Framework Operations 73

EXAMPLE 3–9 Characterization and Calibration (Continued)

Luminance_float_out[1][j] = pow(input_val, 2.22);
Luminance_float_out[2][j] = pow(input_val, 2.22);

}
/* Fill out the measurement structures - The illuminant must be D50 */
test_double[0] = 0.9642;
test_double[1] = 1.0;
test_double[2] = 0.8249;
sizemeas = (int) (sizeof(KcsMeasurementBase) + sizeof(long) +

sizeof(KcsMeasurementSample) * levels);
charData =

(KcsCharacterizationData *) malloc(sizemeas);
charData->base.countSupplied = levels;
charData->base.numInComp = 3;
charData->base.numOutComp = 3;
charData->base.inputSpace = KcsCIEXYZ;
charData->base.outputSpace = KcsRGB;
for (i=0; i< levels; i++) {

charData->val.patch[i].weight = 1.0;
charData->val.patch[i].standardDeviation = 0.0;
charData->val.patch[i].sampleType = KcsChromatic;

charData->val.patch[i].input[KcsRGB_R] = (float)i/255;
charData->val.patch[i].input[KcsRGB_G] = (float)i/255;
charData->val.patch[i].input[KcsRGB_B] = (float)i/255;
charData->val.patch[i].input[3] = 0.0;

charData->val.patch[i].output[KcsRGB_R] = (Luminance_float_out[0][i])/0.75;
charData->val.patch[i].output[KcsRGB_G] = (Luminance_float_out[1][i])/0.75;
charData->val.patch[i].output[KcsRGB_B] = (Luminance_float_out[2][i])/0.75;
charData->val.patch[i].output[3] = 0.0;

}
charData->val.patch[0].sampleType = KcsBlack;
charData->val.patch[255].sampleType = KcsWhite;

sizemeas = (int) (sizeof(KcsMeasurementBase) + sizeof(long) +
sizeof(KcsMeasurementSample) * levels);

calData = (KcsCalibrationData *) malloc(sizemeas);

calData->base.countSupplied = levels;
calData->base.numInComp = 3;
calData->base.numOutComp = 3;
calData->base.inputSpace = KcsRGB;
calData->base.outputSpace = KcsRGB;
for (i=0; i< levels; i++) {

calData->val.patch[i].weight = 1.0;
calData->val.patch[i].standardDeviation = 0.0;
calData->val.patch[i].sampleType = KcsChromatic;

calData->val.patch[i].input[KcsRGB_R] = (float)i/255;
calData->val.patch[i].input[KcsRGB_G] = (float)i/255;
calData->val.patch[i].input[KcsRGB_B] = (float)i/255;

74 KCMS CMM Developer’s Guide • December 2001 (Beta)

EXAMPLE 3–9 Characterization and Calibration (Continued)

calData->val.patch[i].input[3] = 0.0;

calData->val.patch[i].output[KcsRGB_R] = Luminance_float_out[0][i];
calData->val.patch[i].output[KcsRGB_G] = Luminance_float_out[1][i];
calData->val.patch[i].output[KcsRGB_B] = Luminance_float_out[2][i];
calData->val.patch[i].output[3] = 0.0;

}
calData->val.patch[0].sampleType = KcsBlack;
calData->val.patch[255].sampleType = KcsWhite;

printf(“Update a profile with characterization and calibration data.\n”);
rc = KcsUpdateProfile(profileid, charData, calData, NULL);
if(rc != KCS_SUCCESS) {

KcsGetLastError(&errDesc);
fprintf(stderr,

“unable to update profile: %s\n”, errDesc.desc);
KcsFreeProfile(profileid);
return(-1);

}

Saving a Profile to the Same Description
Saving a profile to the same description is the same as loading in reverse. Each object
pointed to or contained within the KcsProfile object is instructed, with its own save
mechanisms, to write the data needed to reconstruct itself out to static store. In this
case, the description is identical to that used to load the profile, so the current KcsIO
associated with the profile is used. Example 3–10 is a KCMS “C” API code excerpt that
saves a profile to the same description.

EXAMPLE 3–10 Saving a Profile to the Same Description

status = KcsSaveProfile(profileid, NULL);
if(status != KCS_SUCCESS) {

status = KcsGetLastError(&errDesc);
printf(“SaveProfile error: %s\n”, errDesc.desc);

}

Saving a Profile to a Different Description
To save a profile to a different description, load a new KcsIO so that the KcsProfile
object can save itself. This is accomplished with the same mechanism as that described
in steps 2 to 5 of “Creating a KcsIO Object” on page 62 . Example 3–11 is a KCMS “C”
API code excerpt that saves a profile to a different description.

KCMS Framework Operations 75

EXAMPLE 3–11 Saving a Profile to a Different Description

/* Application opens the file */
if ((sfd = open(argv[2], O_RDWR|O_CREAT, 0666)) == -1) {

perror (“save open failed”);
exit (1);

}

desc.type = KcsFileProfile;
desc.desc.file.openFileId = sfd;
desc.desc.file.offset = 0;
status = KcsSaveProfile(profileid, &desc);
if(status != KCS_SUCCESS) {

status = KcsGetLastError(&errDesc);
printf(“SaveProfile error: %s\n”, errDesc.desc);

}

76 KCMS CMM Developer’s Guide • December 2001 (Beta)

CHAPTER 4

KcsIO Derivative

In This Chapter
This chapter discusses the following topics to help you create a KcsIO class derivative
that is dynamically loadable at runtime:

� External entry points with an example

� Member function override rules

� Pointer to the KcsSolarisFile class source code to use as an example of a
KcsIO derivative

77

Figure 4–1 shows the relationship of the KcsIO class to the parent classes in the KCMS
class hierarchy. See Figure 1–2 for an illustration of all the relevant KCMS classes.

KcsShareable

KcsIO

FIGURE 4–1 KcsIO Derivative

External Entry Points
The KCMS framework uses external entry points to load your derivative as an
executable. The mandatory and optional entry points are described.

Mandatory
When you derive from a KcsIO class, the mandatory external entry points are:

extern long KcsDLOpenIOCount;
KcsIO *KcsCreateIO(KcsStatus *aStat,

const KcsProfileDesc *aDesc);

The KcsCreateIO() method creates an instance of a KcsIO derivative. The instance
is determined by aDesc->type, which contains the derivative portion of the class
identifier (see “Creating OWconfig File Entries” on page 43).

Optional
When you derive from a KcsIO class, the optional external entry points are:

KcsStatusId KcsInitIO();

KcsStatusId KcsCleanupIO();

78 KCMS CMM Developer’s Guide • December 2001 (Beta)

Example
The following example shows you how to use the entry points when creating a KcsIO
derivative.

EXAMPLE 4–1 KcsIO Class Entry Points Example

/* External loadable interface */
extern “C”

extern long KcsDLOpenIOCount;
KcsStatus KcsInitIO();
KcsIO *KcsCreateIO(KcsStatus *aStatus,

const KcsProfileDesc *aDesc);
KcsStatus KcsCleanupIO();

//Loadable stuff
//external DL open count to support runtime derivation
extern long KcsDLOpenIOCount = 0;

/* Runtime derivable routine */
KcsIO *
KcsCreateIO(KcsStatus *aStat, const KcsProfileDesc *Desc)
{

//Create the new derivative
return(new KcsSolarisFile(aStat,

aDesc->desc.solarisFile.fileName, aDesc->desc.solarisFile.hostName,
aDesc->desc.solarisFile.oflag, aDesc->desc.solarisFile.mode);

}

KcsStatus
KcsInitIO(long libMajor, long libMinor, long *myMajor, long *myMinor)
{

// Set up the return values
*myMajor = KCS_MAJOR_VERSION;
*myMinor = KCS_MINOR_VERSION;

//Check the major version
if (libMajor != KCS_MAJOR_VERSION)
return (KCS_CMM_MAJOR_VERSION_MISMATCH);

//Currently, if minor version of library is less than the KCMS
// minor version, return an error.
if (libMinor != KCS_MINOR_VERSION)

return (KCS_CMM_MINOR_VERSION_MISMATCH);

//Library guarantees if your minor version number is greater than
//KCMS minor version number, it will handle it. No more init.
return(KCS_SUCCESS);

}

KcsStatus KcsCleanupIO()
{

/* Clean up is performed in the destructor */
return (KCS_SUCCESS);

KcsIO Derivative 79

EXAMPLE 4–1 KcsIO Class Entry Points Example (Continued)

}

Member Function Override Rules
The following table tells you which KcsIO member functions you must override and
can override when deriving from this class. The member functions indicated with an
“X” in the Must column are required to successfully derive from this base class. All of
these member functions are defined in the kcsio.h header file and the KCMS CMM
Reference Manual.

TABLE 4–1 KcsIO Member Function Override Rules

Member Function

Override Rules

Must Can

getEOF() X

getType() X

isEqual() X

KcsIO() X

~KcsIO() X

relRead() X

relWrite() X

setCursorPos() X

setEOF() X

setOffset() X

80 KCMS CMM Developer’s Guide • December 2001 (Beta)

Examples To Help You Create Your
KcsIO Derivative
The KcsSolarisFile class is a derivative of the KcsIO class. You can use any of the
KcsSolarisFile files (or any of the other KcsIO derivatives) as good sources of
example code for creating your KcsIO derivative. You can find the files on-line in
/usr/opt/SUNWddk/kcms/src. The kcssolfi.cc and kcssolfi.h files in this
directory are actual SunSoft source code that supports enhanced file access on Solaris.
This source code is directly tied into the kcstypes.h header file. The
kcssolfitest.h header file explains how to include this derivative without
changing the KCMS header file.

KcsIO Derivative 81

82 KCMS CMM Developer’s Guide • December 2001 (Beta)

CHAPTER 5

KcsProfile Derivative

In This Chapter
This chapter discusses the following topics to help you create a KcsProfile class
derivative that is dynamically loadable at runtime:

� External entry points with an example
� Member function override rules
� Helpful information on attributes and the KcsProfileFormat instance

Figure 5–1 shows the relationship of the KcsProfile class to the parent classes in the
KCMS class hierarchy. See Figure 1–2 for an illustration of all the relevant KCMS
classes.

KcsShareable

KcsProfile

KcsLoadable

FIGURE 5–1 KcsProfile Derivative

83

External Entry Points
The KCMS framework uses external entry points to load your derivative as an
executable. The mandatory and optional entry points are described.

Mandatory
When you derive from a KcsProfile class and create a KcsProfile instance you
must provide these mandatory external entry points:

extern long KcsDLOpen ProfCount;
KcsProfile * KcsCreateProf(KcsStatus *sStat, KcsIO *aIO);
KcsProfile * KcsCreateProBlnk(KcsStatus *aStat, KcsId aCmmID,

KcsVersion aCmmVersion, KcsId aProfId,

KcsVersion aProfVersion);

The KcsCreateProf() entry point creates an instance of a KcsProfile derivative
that is determined by the profile’s CMM Id within aIO.

The KcsCreateProfBlnk() entry point creates an instance of a KcsProfile
derivative that is determined by aCmmID and aCmmVersion. This is how an empty
profile is created from scratch. The aProfId argument specifies which
KcsProfileFormat derivative to use.

Optional
When you derive from a KcsProfile class, the optional entry points are:

KcsStatusId KcsInitProf();

KcsStatusId KcsCleanupProf();

Example
Example 5–1 shows you how to use the entry points when creating a KcsProfile
instance.

EXAMPLE 5–1 KcsProfile Class Entry Points Example

/* Required entry points */
extern long KcsDLOpenProfCount = 0;

/* Construct a profile object using KcsIO */

84 KCMS CMM Developer’s Guide • December 2001 (Beta)

EXAMPLE 5–1 KcsProfile Class Entry Points Example (Continued)

KcsProfile * KcsCreateProf(KcsStatus *aStat, KcsIO *aIO)
{

//Create the new derivative
return (new KcsProfileKCMS(aStat, aIO));

}
/* Construct an in-memory profile object using the ids */
KcsProfile * KcsCreateProfBlnk(KcsStatus *aStat, KcsId aCmmId,

KcsVersion aCmmVersion, KcsId aProfId,
KcsVersion aProfVersion)

{
//Create the new derivative
return(new KcsProfileKCMS (aStat, aCmmId, aCmmVersion,

aProfId, aProfVersion));
}
/* Optional entry points */
KcsStatus KcsInitProf(long libMajor, long libMinor, long *myMajor,

long *myMinor)
{

// Set up the return values
*myMajor = KCS_MAJOR_VERSION;
*myMinor = KCS_MINOR_VERSION;

//Check the major version
if (libMajor != KCS_MAJOR_VERSION)

return (KCS_CMM_MAJOR_VERSION_MISMATCH);

//Currently, if minor version of library is less than the KCMS
// minor version, return an error.
if (libMinor != KCS_MINOR_VERSION)

return (KCS_CMM_MINOR_VERSION_MISMATCH);

//Library guarantees if your minor version number is greater than
//KCMS minor version number, it will handle it. No more init.
return(KCS_SUCCESS);

}

KcsStatus KcsCleanupProf()
{

/* Clean up is performed in the destructor */
return;

}

Member Function Override Rules
The following table tells you which KcsProfile member functions you must
override and can override when deriving from this class. The member functions

KcsProfile Derivative 85

indicated with an “X” in the Must column are required to successfully derive from this
base class. All of these member functions are defined in the kcsprofi.h header file
and the KCMS CMM Reference Manual.

TABLE 5–1 KcsProfile Member Function Override Rules

Member Function

Override Rules

Must Can Do Not

connect() X

createEmptyProfile() X

evaluate() X

getAttribute() X

initDataMember() X

isColorSenseCMM() X

KcsProfile() X

~KcsProfile() X

load() X

optimize()() X

propagateAttributes2Xforms() X

save() X

save() X

setAttribute() X

setOpAndCont() X

setTimeAttribute() X

setXform() X

unload() X

updateMonitorXforms() X

updatePrinterXforms() X

updateScannerXforms() X

updateXforms() X

XformIsNOP() X

86 KCMS CMM Developer’s Guide • December 2001 (Beta)

Attribute Sets
Attributes can include the following information:

� Profile’s manufacturer name

� Input and output color spaces

� Calibration data

� Device’s colorimetric information (for example, monitor’s white point, 8- or 16-bit
lookup table data)

The attribute set is represented by the KcsAttrAttributesSet object. The
KcsProfile class getAttribute() and setAttribute() methods map directly
to the KcsAttrAttributesSet object’s getAttribute() and setAttribute()
methods.

Before performing any operation, the KcsProfile base class loads what is necessary
for that operation. For example, the getAttribute() method always loads the
attribute set before it accesses the KcsAttributeSet instance. It also tries to unload
data based on the unload hints you supplied.

The base class overrides the following list of attribute set values with the
getAttribute() and setAttribute() methods:

� Attribute number
� Attribute set
� Profile length
� Pixel layout supported
� Supported operations
� CMM version
� ICC profile version

If getAttribute() or setAttribute() intercepts one of these attributes, it does
not use the KcsAttributeSet class. Instead it uses a KcsProfile class derivative;
otherwise, it is passed to the KcsAttrAttributesSet object.

KcsProfileFormat Instance
In addition to overriding attribute set values, the KcsProfile base class uses a
KcsProfileFormat instance. (See the protected KcsProfile pointer iFormat in
the kcsprofi.h header file.) KcsProfile uses the KcsProfileFormat object to:

KcsProfile Derivative 87

� Make the version number of profile data in static store transparent
� Provide support for special profile formats a CMM might need
� Allow compatibility with new and old supported profile formats

The KcsProfileFormat object supports a consistent interface to attributes and
transformations as objects. For example, if the profile format is the ICC format, the
derivative of the KcsProfile class can use the KcsProfileFormat derivation
supplied with the KCMS framework.

Transformations
Transformations are represented by an array of pointers to instances of the KcsXform
class hierarchy. This array is indexed by the enum type KcsXformType.

The logical transformation types are listed in Table 5–2.

Note – In Table 5-2, RCS refers to reference color space. This Kodak term is equivalent to
profile connection space (PCS).

TABLE 5–2 Logical Transformation Types

KcsXformType Values Logical Transformation Type Description

KcsSftIntoRCS = 0 into-RCS Input color space to the output color space which can
be one of the standard references.

KcsXftOutofRCS = 1 outof-RCS Output color space (possibly one of the standards) to
the input color space.

KcsSftFwdEffect = 2 forward-RCS-effect An effect that goes from a color space to that same
color space.

KcsXftRvsEffect = 3 reverse-RCS-effect Inverse of forward-RCS-effect.

KcsXftFwdSimulate =
4

simulation-RCS Special processing done to device’s output, if
simulation is desired on another device. If there is not a
simulation-RCS transformation, the KCMS framework
defaults to connecting the outof-RCS to the into-RCS
transformations, which generates an RCS-to-RCS
transformation that approximates the simulation. This
results in a clip close to the simulation normally seen
on devices. Currently, profiles do not supply
simulation-RCS transformations by default. This
connection technique fails on profiles that perform
gamut-mapping.

88 KCMS CMM Developer’s Guide • December 2001 (Beta)

TABLE 5–2 Logical Transformation Types (Continued)
KcsXformType Values Logical Transformation Type Description

KcsXftFwdGamut = 5 gamut-test-RCS Provides all gamut testing for the device. The
gamut-test-RCS transformation output is a set of 8-bit
values representing how much this particular data is
out of gamut for all n components.

KcsXftFwdComplete =
6

complete-forward
transform

Profile’s transformation from a source device to a
destination device. It includes any intermediate effects
connected to the chain.

KcsXftRvsComplete =
7

complete-reverse transform Goes from the destination device backwards through
any of the inverse effects and then into the color space
of the input device.

KcsXftRcsSimulate =
8

complete-simulate
transform

Maps the pixels from the source device through the
destination device, its simulation transformation, and
ultimately to the destination device (the device on
which you are viewing the data).

KcsXftRCSGamut = 9 complete-gamut transform Gamut test for whole chain.

The set of types in Table 5–2 refer to RCS. However, the KCMS framework supports a
non-RCS model where there is no RCS. The only mandate is that CMMs support the
standard references (CIEXYZ and CIELAB) and that the color spaces match between
connections. (Even this mandate is not strictly applied since the KcsProfile base
class connect() method automatically inserts profiles if that creates a match).

Instead of referring to the into-RCS transformation as going from a non-RCS into a
RCS, the ICC specification describes a transformation from an input color space to an
output color space. The output may be one of the standard references if it is a device
profile.

Transformation Type Methods
The methods supplied to the evaluate() method of the derived class choose which
KcsXform instance to use. The KcsForward(), KcsReverse(), KcsSimuate(),
and KcsGamutTest() methods map directly to the corresponding complete
transformation types.

Constructors and Destructors
KcsProfile includes two types of constructors: an I/O-based constructor and an
identifier-based constructor.

KcsProfile Derivative 89

The I/O-based constructor takes something that is out in static store and instantiates
the profile based on the data contained within it. That I/O object can represent file,
memory, network, or any other I/O derivative. This relates back to the save methods
where the state is saved through an I/O object. This constructor generates a
KcsProfile derivative from a saved state.

The identifier-based constructor indicates the CMM Id, CMM version, ProfileId,
and the profile version. This constructor allows creation of an empty profile and
determines which CMM to use, which profile format to use, and which CMM version
to use. They are defaulted to create the latest ICC CMM, with the latest KCMS profile
format version.

Both constructors allocate or create a profile format object. Then they take the
ChunkSet of that profile format object and use that to set their own ChunkSet. This
is how KcsProfile and KcsProfileFormat objects link their KcsChunkSet
objects during construction. This happens in the base class, so derivatives do not need
to do this unless they have special requirements such as requiring a special derivation
of the ChunkSet object.

Creation Methods
Each profile constructor corresponds to two createProfile() methods. Both
methods use the runtime mechanism in the KcsLoadable class to dynamically load
themselves at runtime. During creation of an identifier-based profile, a
createProfile() method automatically loads the runtime module, which allocates
the correct derivative. It then calls createEmptyProfile() for initialization.

Save Methods
KcsProfile includes two types of save() methods: a blind save and an
I/O-basedsave.

The blind save() method saves the profile to the current location. No arguments are
required and the timelastsaved attribute is set. The iFormat save() is called.
(iFormat is a pointer to the KcsProfileFormat instance in the KcsProfile base
class. See “KcsProfileFormat Instance” on page 87 for details.) The
KcsProfileFormat class saves the profile (with iFormat) because only that class
knows the content of the data.

The I/O-based save() method constructs a new chunk set by

1. Replacing the one currently there
2. Doing a blind save to the new chunk set
3. Resetting everything back

90 KCMS CMM Developer’s Guide • December 2001 (Beta)

This save method also creates an empty profile by calling the
createEmptyProfile() method.

Since the I/O-based save means save the data to something different, or something
new, save() must reset all the default data to a loadable empty profile with no
attributes and no transformations.

All load() and save() methods are based on chunk sets. All chunk sets are based
on I/O objects. Therefore, indirectly, save() uses the I/O object to get its data from
static store. See Chapter 4 for details.

The I/O-based save() is not virtual because it just wraps around the virtual blind
save() method.

Using connect()
The connect() method is one of the most demanding methods of the KcsProfile
class. It uses all of the profiles that are in the list sequence, as well as the
opAndHints operation, to determine which transformations to generate and how to
generate them. It also checks a number of internal rules to ensure those connections
are possible. For example, it checks to see that color spaces are compatible. The KCMS
profile model does not include a specific reference. Some color management solutions
do, but the KCMS framework checks the consistency of the connections. As illustrated
in Figure 5–2, the connected sequence shares the Xforms (through the class) of those in
the list.

KcsProfile Derivative 91

ATTR
Set 1

Xform1

ATTR
Set 1+2

Xform Seq 1 (#=2)

ATTR
Set 2

Xform2

Xform4

Xform3

Xform Seq 2 (#=2)

outof-RCS

into-RCS

outof

into

Profile B

Profile A->B

outof-RCS

into-RCS

Profile A

FIGURE 5–2 Sequences Sharing Xforms

The KCMS framework also does automatic insertion of profiles if those color spaces
do not match properly. For example, if you want to connect a KCMS profile that uses
KCMS RGB as its connection space with an XYZ profile that uses CIE Lab as its
connection space, connect() looks for a KCMS RGB-to-CIE Lab profile and
automatically inserts it into the list. The rest of the connection proceeds as if that
profile was in the list when called.

The connect() method searches through all KCMS profiles so more can be installed
to add to the flexibility of this mechanism. opAndHints allows you to trim result to
contain only the operations wanted for future use. For example, if you only want to
perform a forward operation, then supply only KcsForward--even if there is enough
information to connect and create a reverse operation. The default behavior in the base
class is to not create the KcsReverseOp transformation. The method only creates
what you tell it to create. The only exception is attributes. All profiles need attributes;
otherwise, result is useless. It is recommended that derivatives keep consistent with
this policy.

92 KCMS CMM Developer’s Guide • December 2001 (Beta)

When the base KcsProfile connects profiles and creates a new one, it does not
create a connection of profiles. One profile is generated with the KcsProfile
elements: attributes, transformations, and a format object. The connect() method
uses sequences of transformations to fill in the results transformation array. The
sequences are generated based on the content of the profile in the list sequence.

As shown in Figure 5–2, if you give a list consisting of an input device with an output
device as the only profiles listed, the connect() method takes the into-RCS
transformation of the input device, connects it with the outof-RCS transformation of
the output device, and creates a sequence. The method then assigns that sequence to
the complete-Forward index of a result. If KcsForwardOp is the only operation
specified in opAndHints, that is the only sequence generated. Figure 5–2 also
illustrates KcsReverseOp.

The connect() method also goes through a composition of all the attributes in all the
profiles in the sequence list. A set of attribute rules, a composition method in the
KcsAttributeSet class, and the base class connect() method feed the list of
attributes from profile objects in the list to the KcsAttributeSet composition
method.

By default, when connecting the simulation transformations for the resulting profile,
the connect() method looks for the simulation-RCS transformation to accomplish
the simulation part of the chain. If connect() doesn’t find one and the outof-RCS
and into-RCS transformations of the simulated device are available, it makes a
simulation sequence that contains these transformations in place of the
simulation-RCS transformation. This results in a clipping close to the simulation
normally seen on devices.

KcsProfile Derivative 93

Examples
Use Figure 5–3 with the two examples described below to better understand the
connect() method and RCS simulation.

Scanner into-RCS Printer simulate-RCS Monitor outof-RCS

Printer outof-RCS Printer into-RCSScanner into-RCS Monitor outof-RCS

FIGURE 5–3 Into- and Out-of-RCS Transformations

With Printer RCS Transformation
Three profiles exist in the sequence list: a scanner, a printer, and a monitor. A value
of (KcsForwardOp|KcsSimulateOp) for opAndHints indicates to the
KcsProfile::connect() method that data in the scanner color space is ready to go
into the printer color space and then transform so it can be previewed on the monitor
supplied. The complete simulation transformation is a sequence of the into-RCS
transformation of the scanner profile, the simulate-RCS transformation of the printer
profile, and the outof-RCS transformation of the monitor profile.

Without Printer RCS Transformation
If RCS simulation is not available in the printer profile, the connect() method
connects the transformations by first connecting the into-RCS transformation of the
scanner profile to the outof-RCS transformation of the printer profile, then to the
into-RCS transformation of the printer profile, and then to the outof-RCS
transformation in the monitor profile. Note that for the printer simulation
transformation, the simulate-RCS is replaced with the combination outof-RCS and
into-RCS transformations. This clips color to the simulated device.

If the simulated profile has neither the simulate-RCS nor the into-RCS and outof-RCS
combination, connect() returns a KCS_NOT_ENOUGH_DATA_4_OP error.

Characterization and Calibration
Characterization and calibration are handled through the update methods of the
KcsProfile class, namely

� updateMonitorXforms()

94 KCMS CMM Developer’s Guide • December 2001 (Beta)

� updatePrinterXforms()
� updateScannerXforms()
� updateXforms()

These methods either characterize or calibrate, depending on the content of those
tables.

The base class implementation of updateMonitorXforms(),
updatePrinterXforms(), and() updateScannerXforms() returns errors
indicating that this particular profile does not support calibration or characterization,
depending upon which data are supplied. The KcsProfile base class implements
updateXforms() to provide some general-purpose device typing, yet executes the
device-specific update mechanism in the derivations. This allows you to put your
characterization and calibration techniques in your KcsProfile derivative while
using the base class to determine which type of device is actually being updated.

KcsProfile Derivative 95

96 KCMS CMM Developer’s Guide • December 2001 (Beta)

CHAPTER 6

KcsProfileFormat Derivative

In This Chapter
This chapter discusses the following to help you create a KcsProfileFormat class
derivative that is dynamically loadable at runtime:

� External entry points with an example

� Member function override rules

� Helpful information on attributes, transformations, loading and what you need to
consider with a protected KcsProfileFormat derivative

Figure 6–1 shows the relationship of the KcsProfileFormat class to the parent
classes in the KCMS class hierarchy. See Figure 1–2 for an illustration of all the
relevant KCMS classes.

KcsShareable

KcsLoadable

KcsProfileFormat

FIGURE 6–1 KcsProfileFormat Derivative

97

External Entry Points
The KCMS framework uses external entry-points to load your derivative as an
executable. The mandatory and optional entry points are described.

Mandatory
When you derive from a KcsProfileFormat class, the mandatory external entry
points are:

extern long KcsDLOpenPfmtCount;
KcsProfileFormat *KcsCreatePfmt(KcsStatus *sStat, KcsIO *aIO);
KcsProfileFormat *KcsCreatePfmtBlnk(KcsStatus *aStat,

KcsId aCmmId, KcsVersion aCmmVersion, KcsId aProfId,

KcsVersion aProfVersion);

KcsCreatePfmt() creates an instance of a KcsProfileFormat derivative. The
derivative is determined by the version information contained within the data
represented by aIO. This corresponds to the KcsLoadProfile() call.

KcsCreatePfmtBlnk() creates an instance of a KcsProfileFormat derivative that
is determined by aProfId. This creates a blank profile version instance with no
objects associated with the returned instance. It initializes the CMM type identifier, the
CMM version, and the profile version from aCmmId, aCmmVersion, and
aProfVersion, respectively.

Optional
When you derive from a KcsProfileFormat class, the optional “C” based entry
points are:

KcsStatus KcsInitPfmt();

KcsStatus KcsCleanupPfmt();

Examples
The following example shows you how to use the entry points when creating a
KcsProfileFormat derivative.

98 KCMS CMM Developer’s Guide • December 2001 (Beta)

EXAMPLE 6–1 KcsProfileFormat Class Entry Points Example

extern long KcsDLOpenPfmtCount = 0;

/* Global initialization - constructor can be used */
KcsStatus
KcsInitPfmt(long libMajor, long libMinor, long *myMajor, long *myMinor)
{

// Set up the return values
*myMajor = KCS_MAJOR_VERSION;
*myMinor = KCS_MINOR_VERSION;

//Check the major version
if (libMajor != KCS_MAJOR_VERSION)

return (KCS_CMM_MAJOR_VERSION_MISMATCH);

//Currently, if minor version of library is less than the KCMS
// minor version, return an error.
if (libMinor != KCS_MINOR_VERSION)

return (KCS_CMM_MINOR_VERSION_MISMATCH);

//Library guarantees if your minor version number is greater than
//KCMS minor version number, it will handle it. No more init.
return(KCS_SUCCESS);

}

/* Clean up global initialization */
KcsStatus
KcsCleanupPfmt()
{

KcsStatus sStat;
return(KCS_SUCCESS);

}

/* Create a profile format derivative based on information passed in,
* there is profile data associated with it. Corresponds to the
* KcsCreateProfile() API call. */
KcsProfileFormat *
KcsCreatePfmtBlnk(KcsStatus *aStat, KcsId aCmmId,

KcsVersion aCmmVersion, KcsId aProfId, KcsVersion aProfileVersion)
{

//Create the new derivative
return(new KcsProfileFormatInterColor3_0(aStat, aCmmId,

aCmmVersion, aProfId, aProfileVersion));
}

/* Create a profile format derivative using the supplied IO.
* Corresponds to the KcsLoadProfile() API call. */
KcsProfileFormat * KcsCreatePfmt(KcsStatus *aStat, KcsIO *aIO)
{

//Create the new derivative
return(new KcsProfileFormatInterColor3_0(aStat, aIO));

}

KcsProfileFormat Derivative 99

Member Function Override Rules
The following table tells you which KcsProfileFormat member functions you must
override and can override when deriving from this class. The member functions
indicated with an “X” in the Must column are required to successfully derive from this
base class. All of these member functions are defined in the kcspfmt.h header file
and the KCMS CMM Reference Manual.

TABLE 6–1 KcsProfileFormat Member Function Override Rules

Member Function

Override Rules

Must Can

deleteXform() X

dirtyAttrCache() X

dirtyXformCache() X

generateLoadWhat() X

generateXformAttributes() X

getObject() X

getObject() X

getSaveSize() X

initEmptyFormat() X

isSupported() X

KcsProfileFormat() X

~KcsProfileFormat() X

load() X

loadObjectMap() X

postAttrCompose() X

save() X

saveNew() X

saveObjectMap() X

setCmmId() X

setObject() X

100 KCMS CMM Developer’s Guide • December 2001 (Beta)

TABLE 6–1 KcsProfileFormat Member Function Override Rules (Continued)

Member Function

Override Rules

Must Can

unload() X

unloadWhenMatch() X

Attributes
All attributes of a profile are in the KcsAttributeSet object returned from the
getObject() method. (Note that KcsProfileFormat includes two public
getObject() methods. The method discussed here gets the KcsAttributeSet: the
other, discussed in “Transformations” on page 101 below, returns a KcsXform.) This
attribute instance includes public attributes from all of the formats, regardless of
where they reside in the data store. The returned attributes’ object of this class
contains all of the attributes that describe this profile--including all attributes in the
public sections of the various profile formats as well as any private attributes.

Do not confuse these attributes with those associated with individual transformations.
Attributes associated with individual transformations are stored in the profile’s data
store but are not added to the attributes object returned from the getObject()
method of this class. Since this class uses the KcsChunkSet object, it can separate out
these attributes from the transformation attributes. The KcsProfile base class
informs the KcsXforms it loads about any attributes needed to construct themselves.

Transformations
As many transformation slots exist as there are valid operations for a profile. Use the
getObject(KcsXformType)() overloaded method to retrieve the correct
KcsXform*. (KcsProfileFormat includes two public getObject() methods. Use
the one that returns the specified KcsXform.)

Like attributes, it does not matter whether the KcsXform wanted is in a public header
or in a private part of the profile. This class abstracts out the placement and type. A
profile format with a mixture of public and private parts for transformation
representation is supported.

KcsProfileFormat Derivative 101

Loading
Like most loadable derivatives, use the load() method to force a specific load state. It
takes the hints supplied and loads the instance based on those hints. The
KcsProfileFormat class loads those objects and any supporting data returned from
the getObject() methods.

If a request is made that requires the loading of unloaded state, the instance goes to
static store and loads what is required to accomplish the request. It is up to you
whether the objects loaded stay loaded between getObject() calls.

You can cache any object returned from the getObject() methods. This means that
the load() and save() methods must be propagated to the cached object. Since this
class keeps its own cache of objects and it is expected to be optimized, let
KcsProfileFormat handle all caching and call getObject() before that particular
object is needed.

Error Protocols
The load() method can take a loadhint with multiple bits set. The following error
protocols are used:

� If the only error the derivative receives during load is
KCS_PFMT_NO_DATA_SUPPORT_4_REQUEST and everything loads successfully,
return KCS_SUCCESS.

Say, for example, you ask for a forward complete and the derivative also tries to
load the reverse complete (for optimization). If the reverse receives an error but
forward succeeds, KCS_SUCCESS is returned.

� If nothing requested is available, return
KCS_PFMT_NO_DATA_SUPPORT_4_REQUEST.

� Any other errors that occur should be returned, and the object should unload itself
before exiting. A failure during load() (other than
KCS_PFMT_NO_DATA_SUPPORT_4_REQUEST) results in an object for which the
loadhints requested are unloaded.

102 KCMS CMM Developer’s Guide • December 2001 (Beta)

Protected Derivatives
Differences in physical profile formats is hidden by abstracting the physical pieces of
all profile parts into a standard set of objects that represent them. This can be a
problem when a new profile format contains a new part that cannot be represented by
any of the objects. It is neither a transformation nor an attribute.

If the new derivation can support the existing objects, you can use a new derivation
with getObject(). If you need a new object type, see if the derivation supports the
new object. Any new profile format that supports this new object is derived from that
new format derivative instead of the base class.

If you use the KcsChunkSet class appropriately in your new derivative,
implemention is minimal. The base class allows the minimum derivative to only
override the save() method by having the derivative assign chunks with hard-coded
offsets for the pieces of a profile during save(). Then load() automatically loads the
pieces from the hard-coded offsets by using the chunk set mechanism. If, however,
your derivative’s pieces are split into smaller pieces, you must override load() to
gather the smaller pieces into the original objects.

Base Class Support
The base class supports the caching objects and transformation map saving. It contains
the KcsXform * array, an KcsAttribute * and supports the getObject() and
setObject() overloads. Most derivative profile formats implement these virtuals:
initEmptyFormat(), isSupported(), load(), and save().

A derivative can define and use the base class data elements protected during
load(), and the base class passes them to you.

Retrievable Objects
To find out if a part of an instance is supported, the derivative needs to support the
pure virtual method isSupported(KcsLoadHint). This method returns
KCS_SUCCESS for only its loadable parts and, if the request is not supported. It takes
a loadhint that indicates what can be returned from all getObject() overloads;
this includes whether the forward xform is supported as well as any new parts.

An unsupported object is represented by a NULL in one of the object pointers
(attributes or xforms) and it returns KCS_PFMT_NO_DATA_SUPPORT_4_REQUEST.

KcsProfileFormat Derivative 103

104 KCMS CMM Developer’s Guide • December 2001 (Beta)

CHAPTER 7

KcsXform Derivative

In This Chapter
This chapter discusses the following topics to help you create a KcsXform class
derivative that is dynamically loadable at runtime:

� External entry points with an example

� Member function override rules

� Helpful information and hints on using many of the KcsXform member functions

� KcsXformSeq derivative

Figure 7–1 shows the relationship of the KcsXform class to the parent classes in the
KCMS class hierarchy. See Figure 1–2 for an illustration of all the relevant KCMS
classes.

KcsShareable

KcsXform

KcsLoadable

FIGURE 7–1 KcsXform Derivative

105

External Entry Points
The KCMS framework uses external entry points to load your derivative as an
executable. The mandatory and optional entry points are described.

Mandatory
When you derive from a KcsXform class, the mandatory external entry points are:

extern long KcsDLOpenXfrmCount;
KcsXform * KcsCreateXfrm(KcsStatus *aStat,

KcsChunkSet *aChunkSet, KcsChunkId aChunkId,

KcsAttributeSet *aAttrSet);

KcsCreateXfrm() creates an instance of a KcsXform derivative.

Optional
When you derive from a KcsXform class, the optional entry points are:

KcsStatus KcsInitXfrm();

KcsStatus KcsCleanupXfrm();

Example
The following example shows you how to use the entry points when creating a
KcsXform derivative.

EXAMPLE 7–1 KcsXform Class Entry Points Example

extern long KcsDLOpenXfrmCount = 0;

/* Global initialization */
KcsStatus
KcsInitXfrm(long libMajor, long libMinor, long *myMajor, long *myMinor)
{

// Set up the return values
*myMajor = KCS_MAJOR_VERSION;
*myMinor = KCS_MINOR_VERSION;

//Check the major version
if (libMajor != KCS_MAJOR_VERSION)

return (KCS_CMM_MAJOR_VERSION_MISMATCH);

106 KCMS CMM Developer’s Guide • December 2001 (Beta)

EXAMPLE 7–1 KcsXform Class Entry Points Example (Continued)

//Currently, if minor version of library is less than the KCMS
// minor version, return < an error.
if (libMinor KCS_MINOR_VERSION)

return (KCS_CMM_MINOR_VERSION_MISMATCH);

//Library guarantees if your minor version number is greater than
//KCMS minor version number, it will handle it. No more init.
return(KCS_SUCCESS);

}

KcsXform * KcsCreateXfrm(KcsStatus *aStat, KcsChunkSet *aCS,
KcsChunkId aChunkId, KcsAttributeSet *aAttrSet)

{
//Create the new derivative
return(new KcsTechUCP(aStat, KcsLoadAllow, aCS, aChunkId,

aAttrSet));
}

/* Global clean up */
KcsStatus
KcsCleanupXfrm()
{

KcsStatus sStat;
return(KCS_SUCCESS);

}

Member Function Override Rules
The following table tells you which KcsXform member functions you must override
and can override when deriving from this“” class. The member functions indicated
with an X in the Must column are required to successfully derive from this base class.
All of these member functions are defined in the kcsxform.h header file and the
KCMS CMM Reference Manual.

TABLE 7–1 KcsXform Member Function Override Rules

Member Function

Override Rules

Must Can

compose() X

connect() X

KcsXform Derivative 107

TABLE 7–1 KcsXform Member Function Override Rules (Continued)

Member Function

Override Rules

Must Can

connectSink() X

connectSource() X

connectXform() X

convertXform() X

eval() X

getAttrSet() X

getLoadOrder() X

getSaveOrder() X

KcsXform() X

~KcsXform() X

loadU() X

numberOfCallbacks() X

optimize() X

saveU() X

setAttrSet() X

setCallbackInterval() X

setComponentDepth() X

setDefaultAttributes() X

setNumComponents() X

validateLayouts() X

Technology
In the KCMS framework environment, the term technology means algorithms, code,
and data used to implement a specific method of color transformations. All supported
technologies must supply certain uniform functionality. You can do this in C++ by
having a KcsXform base class with pure virtual methods. Each technology is
implemented in a derived class that must implement the required virtual methods.

108 KCMS CMM Developer’s Guide • December 2001 (Beta)

With transformation conversion, a technology or base class can default to a specific
derivative with the functionality that best meets that technology. For example, the
KcsXform base class is aware of only one type of KcsXform derivative that can save
universally. Therefore, the default saveU() method converts whatever technology it
has into a KcsTechUCP. Then it asks the converted KcsXform to do the saveU().

KcsXform Attributes
KcsXforms contain their own KcsAttributeSets. They are passed in through all
constructors and default to NULL. The KcsAttributeSets are copied and are not
shared by default: they are set by their constructor callers. All derivative constructors
are updated.

The KcsProfile base class copies some standard attributes to the appropriate
KcsXform. Access is through methods that set and get the attribute set; therefore, all
access to these attributes are equal to the interface to KcsAttributeSets.

Optimization
Transformation optimization includes one or more compositions, but this is not always
the case. That is why optimize() is separate from composition. Generally stated,
optimizing an object makes it smaller, faster, more precise, or some combination of the
above. It is up to the derivative to figure out what is best for its situation. For example,
if your derivative contains a resource such as extra tables for quality purposes and the
derivative is requested to optimize for space and speed, it may very well throw away
those extra tables.

During a save, this same derivative may not want to get rid of these extra tables.
Instead, it either can use the hierarchical method described in save or reread the tables
back into memory and save them again. It is up to the derivative. The choice might
depend on the size of the table or some error constraint on the transform. See
“KcsXformSeq Derivatives” on page 114 for information on how a derivative always
composes and keeps that transformation for evaluation. Also note that it keeps the
original transformations in the list unless it is also told to optimize for size, after which
it will get rid of them.

If your derivative discards a resource in the process of optimizing and subsequently
attempts to retrieve it, that resource may no longer be available. Ultimately it is up to

KcsXform Derivative 109

the derivative to decide when and how to make that determination. It may (and
probably will) change between releases of that derivative as well.

Optimization must be defined by the derivative if that functionality is needed. Only
the derivative instances understand how best to optimize. The derivative can refuse
any optimization request. It also can prioritize the types of optimization if more than
one bit is set. For example, if the instance is told to optimize for space and speed and
speed means to add space, then if you consider it appropriate, have your derivative
add the space to support the speed increase.

Loading
Defer some loading functionality to other objects in the KCMS framework, because the
objects can minimize and load more efficiently. With the KcsXform class, the object
does not need to implement the load in all derivatives for the first time. This means
that the profile instance has the objects (in this case the KcsXform derivatives) load
and unload themselves, but it still has to load and minimize objects through
construction and destruction to make up for those KcsXform derivatives that do not
load and minimize.

The KcsXform base class provides the default load virtual methods that return the
KCS_NOT_RUNTIME_LOADABLE error. This error allows the KcsProfile class, or any
other KcsXform container, to check for this error condition and to use another
approach if necessary.

Note – Currently, not all technologies provide their own loading mechanism; use the
base class functionality.

Save Types
Since there is more than one way to save, derivatives can specify the order in which its
pieces get saved. The save types consist of bit sets and are:

� Universal

KcsXform derivative saves and loads an industry-standard— formatICC 3.2.

� Private

110 KCMS CMM Developer’s Guide • December 2001 (Beta)

KcsXform derivative saves and loads the standard framework through an
unformatted chunk of data.

� Universal as Private

KcsXform derivative saves and loads data in a chunk, but uses the universal
format. This type allows the KcsProfileFormat derivative to map a chunk set’s
chunk Id to the data in universal format so that the KcsXform class can use the
getChunk() method. This save type sets its own bit and the universal bit, since it
saves universally.

These choices are available with an extensible protocol in which:

� Derivatives are passed what the caller has as possibilities.

� Derivatives only save in the order they care about.

� The caller is obligated to the order returned by the derivative.

Obligation can be broken if the caller supplies a new set of possibilities, or the
caller never saves.

� Private pieces are always supported.

This implementation is necessary for backward compatibility.

Universal
The KcsXform base class supports saving in the universal format. The save()
method converts the object to ICC 3.0 to icLutX form. You need to provide allocation
of the *aLut argument. When complete, the converted date is copied to the *aLut
variable. This method is used by other objects during save(). The ICC 3.2 profile
format derivative calls KcsXform during its save to convert the KcsXform object into
the appropriate ICC transformation attribute. If not overridden, the KcsXform base
class converts the transformation into a KcsXform derivative that supports the
save() method and returns its conversion. If a derivative needs more control over
this type of save, then it must override this method.

Private
Private saving uses the chunk set and chunk Id associated with the instance to save.
The derivative only needs to package all of its data into a contiguous piece of memory
and pass the address and its chunk Id to the object’s chunk set. If this is too limiting,
you can split the derivative’s pieces into different chunks, each with its own chunk Id.
The only caveat is that the instance must then place all of those chunk Ids into one
chunk, which is ultimately saved as the top of the object.

This approach is appropriate when the object has many data structures that it does not
want to store into one contiguous memory block. It also helps with loading if all the

KcsXform Derivative 111

pieces are not needed all the time. This is the overall approach taken by the KCMS
framework where the KcsProfile class has a table of chunkIds, one of which is the
attribute chunkId for this profile. When loading attributes only, it is faster to use
getchunk() and load just the attribute object than it is to use getchunk() and load
the entire set of objects that represent a profile.

Example
ICC has both universal and private places for transformation data. The
InterColorProfileFormat asks for the load order and gives a list of universal
plus private. The Universal Color Processor (UCP) derivative responds with
universalAsPrivate. Since the derivative knows that UCPs can do this, it asks any
KcsXform derivative that does not save in the universal format to convert itself into a
UCP. This follows the second way to break an obligation, since the
InterColorProfileFormat actually converts the transformation to another kind
and saves the converted one. It never saves the original.

The typdefs are as follows:

typedef long KcsLoadSaveSet;
#define KcsNoParts ((KcsLoadSaveSet)0x00000000)
#define KcsPrivatePart ((KcsLoadSaveSet)0x00000001)
#define KcsUniversalPart ((KcsLoadSaveSet)0x00000002)
#define KcsUniversalisPrivate

((KcsLoadSaveSet)((0x80000000)|KcsUniversalPart|KcsPrivatePart))

Composition
Some technologies convert from another technology (Xform *). For example, CS1.0
logTech can generate an instance of itself from any other (KcsXform *) derivative. It
does this by calling the compose() method, which takes a (KcsXform *) and returns
a (KcsXform **). To use this technique, you should supply a callback function
because it can be a slow operation.

The KCMS framework uses this protocol to implement a sequence KcsXform
derivative that can take many transformations and treat them as one by sequentially
evaluating the chain. Since the KcsXformSeq class is a KcsXform derivative, one
LogTech can be generated that represents the complete connection. This has
tremendous speed and quality advantages.

The KcsXform base class performs composition using the default CMM.

112 KCMS CMM Developer’s Guide • December 2001 (Beta)

Evaluation
When a KcsXform is instantiated, it is ready to transform n->m component data
(unless it is in the process of being built). Since it can handle many different data
formats, the KCMS framework encapsulates the description of the data to be
transformed into a data structure called KcsPixelLayout. This structure is an array
of component descriptions. See the KCMS Application Developer’s Guide for more
information on KcsPixelLayout.

The KcsPixelLayout structure is used by the eval() methods to describe the
information to be transformed. When using an eval()method(), supply a source
PixelLayout, a destination PixelLayout, and a callback function. The
eval()method takes the data described by the source layout, transforms it, and puts
it into the buffer described by the destination layout. If the evaluation is going to take
a long time, the callback function is repeatedly called until evaluation is complete.

The layouts can describe the same buffer (a technique called in-place transformation). In
this case, the eval() method detects it is the same buffer and optimizes for
performance. The layouts can also specify different buffers, in which case the data is
moved as well as transformed. You can even supply two layouts which differ in
composition (for example, planar RGB and chunky CMYK), and the data is moved
and transformed from RGB to CMYK as well as has its composition transformed from
planar to chunky. The evaluation methods accomplish this with minimal steps.
Evaluation is most efficient when given large buffers of data to transform.

If the transformation is not compatible with the layout(s), it returns an error. For
example, if an RGB->CMYK KcsXform * is given two 3-component descriptions, it
would return an error if the destination is expecting 4-component data.

If your data can be represented in different formats, get the value of the attribute
KcsAttrPixelLayoutSupported to see what the most efficient pixel layout is for
that KcsXform derivative.

Evaluation Helper Methods
KcsXform includes only one pure virtual eval() method. It is the one with two pixel
layouts and a callback as arguments. Other eval() methods are overloaded in the
base KcsXform class to allow other data types to fit a long on each side of the xform,
for example,

(long *) -> (long *)

and

KcsXform Derivative 113

aRGB->aR’G’B’

The base class takes all the overloaded methods and creates a pixel layout for each
method. Then it calls the pure virtual method. Therefore, derivatives only need to
implement one eval() method.

When starting an evaluation, the derivative can use any of the helper functions
provided for pixel layout usage. The convertLayouts() method takes any layout
and transforms it into any other. If a derivative can only handle chunky, the derivative
may want to convert a non-chunky derivative to chunky before the evaluation is
started.

KcsXformSeq Derivatives
The KcsXformSeq class is a KcsXform derivative that allows a list or concatenation
of transformations to act as one KcsXform. It is an alias to an ordered transformation
collection that allows all normal list management in addition to all of the required
KcsXform protocols. It also allows a hierarchy of KcsXform instances by providing
the ability to sequence the list. Evaluating through a sequence of KcsXforms is like
serially running each transform, with successive transformations taking input from the
output of its predecessor and ending with the last one putting its output into the
destination location.

Constructs and Destructors
You can construct a KcsXformSeq with any of the following:

� An empty constructor

Like all constructors, this one has a status object passed by reference to simplify
constructor failure recovery.

� A chunk set/chunk Id constructor

This constructor also provides the required load hints.

� A special sequence constructor

This constructor takes a status object and load hints just like all KcsXforms, but it
also accepts an array of KcsXform *s and a count (numXforms) so that you can
generate sequences from scratch.

114 KCMS CMM Developer’s Guide • December 2001 (Beta)

Saving
Saving trickles down throughout the whole connected hierarchy. Any change to any
transformation in the sequence is saved when the sequence is saved. This happens
because the sequence shares the transformations passed to it. The instance also gets
the chunk Ids from each transformation in the list. It then packs these and other state
information into a memory block and does a setChunk() to allow lookup of this
transformation list upon a load request to the sequence.

When requested to save in universal format (see “Universal” on page 111 for details),
the sequence does a composition that generates one transformation that is saved in
this format.

Loading and Constructing the List
A KcsXformSeq instance saves its transformations as a list of chunk Ids to later
instantiate when needed. For every chunk Id in its own chunk, getChunkXform()
takes the current chunk set and chunk Ids and, through the chunk set protocol of
createXform(), allocates the transformation represented by that unique
combination.

Connections
KcsXformSeq is the only class in the KCMS framework that supports connection
(and connection is the only reason the KcsXformSeq class exists). The base
KcsXform class uses a sequence derivative in its connect() method.

To make a connection, you can call either of two KcsXformSeq constructors (or use a
combination of the two): one constructor takes a list of transformation pointers; the
other creates a sequence of 0s. Then edit the transformations list with the list()
methods. See “Validation” on page 117 for additional information on the connection
method.

Optimization
When a sequence is told to optimize itself, first it optimizes each transformation in the
chain individually. Then it composes all the transformations into one KcsTechUCP
transformation. Finally it uses that composed KcsTechUCP to do future evaluations.
Overall optimization is provided with optimization and composition of the individual
transformations in the list.

KcsXform Derivative 115

The KcsXformSeq class performs composition by asking each transformation in the
list to compose. If none comply, it uses the base class method to compose. It attempts
to compose from the rightmost to leftmost. By doing so, the harder-to-model devices
(typically printers, which are on the right) get composed first.

If you request to optimize for size, KcsXformSeq detaches all of the original list. After
optimizing for size, the only way to regenerate the original list is to build it again.

Composition
The KcsXformSeq class uses the compose() method to implement optimization.
Since the KcsXformSeq class is a KcsXform derivative, you can generate one
KcsTechUCP that represents the complete connection. This offers performance and
quality advantages.

Evaluation
Evaluation of a KcsXformSeq instance is done with either the optimized or
non-optimized technique.

Optimized evaluation uses the composed transformation it constructed when told to
optimize. It keeps a pointer to that optimized transformation in its private section.
When asked to evaluate, it passes the information down to the optimized
transformation.

Unoptimized evaluation is used when the sequence is not optimized. This
implementation evaluates the data through the list of transformations sequentially.
Between transformations, a buffer is used to hold the temporary calculations. The first
step evaluates from the source buffer, while the last step evaluates into the destination
buffer.

Up to two different extra buffers are used between non-endpoint transformations,
depending on the layout of the data. They are swapped between eval()s. If the
composition of the transformations is different (for example, chunky and planar), two
buffers are needed. If the implementation did not use this technique, the data from one
complete pixel (or component set) overrides a different (set of) pixel. The eval()
method always alternates between two buffer pointers. Both buffer pointers point to
the same buffer if an output buffer for a transformation is compatible with the input
buffer for the next transformation. This can be optimized further if all buffer layouts
describe a buffer that is compatible with the destination buffer supplied by the caller.
In this case, the buffer pointers point to the destination buffer described. And if the
caller is using the same buffer for source and destination, everything ultimately uses
one buffer. Such buffers are KcsMemoryBlocks that can be resized.

116 KCMS CMM Developer’s Guide • December 2001 (Beta)

Validation
Each time a connection is made, it is validated against a set of rules defined in
thisKcsXformSeq class. The rules use the current set of attributes as well as the
current state of all of the transformations in the connection.

If the sequence rules pass, the sequence passes itself down to all the validation
methods of each KcsXform in the list. In this way, all KcsXforms are allowed to
determine if a connection can be made. If an error occurs in any single KcsXform, the
connection is refused.

The List
The list of transformations is represented by a memory block of pointers to
KcsXforms. The size of the block is incremented by a constant each time the current
block fills with pointers. A few methods access and edit the list.

Note that a NULL parent starts the list based on this sequence. You must pass the last
parent found into the next call to getNextXform() and use the same object for
invocations of this method. getNextXform() returns KCS_END_OF_XFORMS when it
reaches the end of the transformations in the sequence. All getNextXform() calls are
sequential. Any sharing of an object must take this into account. Otherwise, if the calls
to getNextXform() are not synchronized, two different results may occur.
getNextXform() works correctly when called on a sequence that is a part of another
sequence: it runs through that subsequence only.

For example, given sequence A (a->B->e) and sequence B (c->d) where a, c, d, and
e are primitive transformation types: A->GetNext(). If GetNextXform() is called
(starting with a NULL parent **) until it returns KCS_END_OF_SEQUENCE, it returns
transformations in the following order: a, c, d, e, B->GetNext(). If called (starting
with a NULL parent **) until it returns KCS_END_OF_SEQUENCE, it returns
transformations in the following order: c, d. It also skips over all sequences of 0
transformations as if they are not even there.

KcsXform Derivative 117

118 KCMS CMM Developer’s Guide • December 2001 (Beta)

CHAPTER 8

KcsStatus Extension

Every API function returns a KcsStatusId to inform the application when it has
executed successfully or, if it has not, why it has failed. If a function successfully
executes, it returns the status code KCS_SUCCESS. If the application’s user cancels a
function before its completion, the function returns the status code
KCS_OPERATION_CANCELLED. API calls can also return warning messages. See the
SDK manual KCMS Application Developer’s Guide for more details.

The KcsStatus extension returns a status message string. Provide a maximum of two
functions depending upon whether or not you want custom errors and warnings in
your software.

extern long KcsDLOpenStatCount;
char * findErrDesc(KcsStatus statId);

char * findWarningDesc(KcsStatus statId);

findErrDesc() creates an instance of the function connecting the custom error
codes with your string descriptions.

findWarningDesc() creates an instance of the function connecting the custom
warning codes with your string descriptions.

You can add your own findErrDesc() and findWarningDesc() functions and
provide a header file with your own error and warning numbers and strings. Use
custom status codes in your software and identify them with an OwnerId value so
that your dynamically loadable status module is used for messages rather than the
KCMS default messages. The OwnerId is a long that you set in your loadable module
to identify your error and warning messages.

119

Example
Use these on-line files as a reference for this example:

/opt/SUNWddk/kcms/src/kcssolmsg.cp
/opt/SUNWddk/kcms/src/kcssolmsg.h

The following is an excerpt from the kcssolmsg.cc file. Use it as a template when
extending the KcsStatus class.

EXAMPLE 8–1 KcsStatus Class Example

...
char *
findErrDesc(KcsStatusId statId)
{
#ifndef KCSSOLMSG_STRINGS
#define KCSSOLMSG_STRINGS

setlocale (LC_MESSAGES,””);
bindtextdomain(“kcssolmsg.strings”,”/usr/lib/locale”);

#endif
switch (statId)
{

case KCS_SOLARIS_FILE_NOT_FOUND:
return(dgettext(“kcssolmsg_strings”,”Could not find Solaris file type \

profile”));
case KCS_X11_WINDOW_PROF_ERROR:

return(dgettext(“kcssolmsg_strings”,”Error in X11 window profile”));

...

Header File
In addition to the two functions, findErrDesc() and findWarningDesc(), you
need to provide a header file to incorporate status messages into your code. The
header file should contain the following:

#define <identifier> <status number>

This define links a status identifier (for example, KCS_SOLARIS_FILE_NAME_NULL)
with a hexadecimal status identification number (for example, 0x4203). You can
assign numbers to your own status numbers that are not used by the KCMS library
and only in the following specified ranges:

� Warning range: 0x1007 - 0x3ffe

120 KCMS CMM Developer’s Guide • December 2001 (Beta)

� Error range: 0x4122 - 0x6ffe

The header file should also contain your OwnerID (for example, SolMsgOwner) by
which these messages are distinguished from the KCMS default messages.

The setId() function is one of the KcsStatus class methods.

status->setId(KCS_SOLARIS_FILE_NOT_FOUND, SolMsgOwner);

It sets an ID (OwnerID) that tells the KcsStatus class function, getDescription(),
that it is not a KCMS library error and to search the OWconfig file for a dynamically
loadable module containing the matching error descriptions.

This example also contains code that prepares the message strings for language
localization. You must setlocale(3C) and bindtextdomain(3I) once, so choose a unique
define with which to ifdef these functions. Also choose a message file name for the
message extraction script, xgettext(3I), in the makefile.

Localizing Messages
Note that the message strings are arguments in the dgettext(3I) function that
marks these strings for inclusion in the kcssolmsg_strings.po file upon running
xgettext() on this code file.

These are very terse notes on what the application or library should contain and what
you should run to create a file of messages ready to be translated into the local
language.

See setlocale(3C), bindtextdomain(3I), gettext(3I), dgettext(3I),and
msgfmt(1) for information on internationalization and localization.

Application Module
The application, or library module must include the following code:

#include <locale.h>
#include <libintl.h>
setlocale(“LC_MESSAGES”, “<language>”);
bindtestdomain(“string_file_name”,”directory”);
dgettext(“string_file_name”, “message”);

where

language is one of the language locale directories in /usr/lib/locale

KcsStatus Extension 121

directory is the location of the installed translated message file, string_file_name

message is the message string to translate

Developer
As the CMM developer, you must do the following tasks to create a file of messages to
translate into the local language:

1. Use the -lintl linker option when building.

2. Run xgettext on files using the dgettext() function.

3. Edit the resulting .po file to translate the messages into the appropriate language.

4. Run msgfmt on the .po file to create a .mo file.

5. Move the .mo file to the appropriate directory, such as
/usr/openwin/lib/locale/<language>/LC_MESSAGES.

The application should then pick up the translated messages.

122 KCMS CMM Developer’s Guide • December 2001 (Beta)

APPENDIX A

Supported Devices

Supported Devices
Table A–1 lists the types of devices by manufacturer and model and profile filename.
All of these devices are supported by the KCMS framework.

Note – Most of the color space conversion profiles listed in Table A–1 support KCMS
integration into Sun’s XIL™ Imaging Library.

TABLE A–1 Supported Devices

Device Type Manufacturer and Model Profile Filename

SPARC Monitors Sony Multiscan 16 or 19 inch kcmsEKsony16.mon

Sony 20 inch P4 kcmsEKsony.mon

Sony 17 inch N1 kcmsEKsony17.mon

Sony 16 inch P3 kcmsEKsony16.mon

Nokia 15 inch kcmsEKnokia15.mon

x86 Monitor ViewSonic 17 inch kcmsEKvs17.mon

Other Monitors Apple 13 inch kcmsEKappl13.mon

Generic EBU 1.8 Gamma kcmsEKebu18.mon

Generic P22 monitor, 1.8 gamma, dim ambient kcmsEKp22g187d.mon

Input Hewlett Packard ScanJet IIc kcmsEKhpsjtw.inp

Kodak PhotoCD Color Negative kcmsEKphcdcn.inp

123

TABLE A–1 Supported Devices (Continued)
Device Type Manufacturer and Model Profile Filename

Kodak PhotoCD Ektachrome kcmsEKphcdek.inp

Epson ES-800C Scanner kcmsEKepsn1p.inp

Epson ES-800C Scanner kcmsEKepsn3p.inp

Kodak RFS 2035 Scanner kcmsEKk2035.inp

Nikon LS-3510 AF Scanner kcmsEKls3510.inp

UMAX PowerLook Scanner kcmsEKumax_a.inp

Hewlett-Packard ScanJet IICX kcmsEKhpsjt35b.inp

Microtek MT600Z kcmsEKmt600zek.inp

Output Sun SunPics NeWSprint CL+ kcmsEKsunnws.out

Canon BJC-800 Printer kcmsEKbjc800.out

Output Kodak PS 1 Printer kcmsEKcewps1.out

Hewlett Packard DeskJet/DeskWriter 550C Printer kcmsEKhp550c.out

Tektronix Phaser III PXi Printer kcmsEKtpiiic0.out

Kodak XL7700/XL7720 Printer kcmsEKx17700.out

Kodak XKS8300 Printer kcmsEKxls830.out

Fargo Primera Printer kcmsEKprimer.out

QMS ColorScript 100 Model 30/30i Printer kcmsEKqms30i.out

Color Space Conversions Kodak RGB to CIELAB kcmsEKRGB709.spc

Sun YCC601 to CIELAB kcmsSUNWYCC601.spc

Sun YCC709 to CIELAB kcmsSUNWYCC709.spc

Sun YCC601 linear to CIELAB kcmsSUNWYCC601L.spc

Sun YCC709 linear to CIELAB kcmsSUNWYCC709L.spc

Sun RGB linear to CIELAB kcmsSUNWRGBL.spc

Sun Photo YCC to CIELAB kcmsSUNWPhotoYCC.spc

Sun CMYK to CIELAB kcmsSUNWCMYK.spc

Sun CMY to CIELAB kcmsSUNWCMY.spc

Sun Y linear to CIELAB kcmsSUNWYlinear.spc

124 KCMS CMM Developer’s Guide • December 2001 (Beta)

Index

A
associative array, 27
attach(), 69
attachXXXX() method, 41
attribute sets, 87

B
base class identifiers, 39

C
calibration, 73
characterization, 73
class

derivable, descriptions of, 35, 37
class descriptions, 17, 31
cleanup, 42
CMM

create, how to steps, 34, 35
definition, 34
filename convention, 42

version number must match note, 43
load, how to, 42, 51
makefile, 43
makefile location, 43
runtime derivative, how to create, 33, 50

compiling programs, 34
complete-forward transform, 89
complete-gamut transform, 89

complete-reverse transform, 89
complete-simulate transform, 89
compose(), 116
connect() method, 91
createEmptyProfile(), 91
createProfile(), 57
createXXXX() method, 41

D
development environment requirements, 34
dlsym(3X), 63

E
evaluation

optimized versus unoptimized diagram, 70
external entry points

base-class specific, definition of, 40
class mnemonics note, 39
definition of, 39, 40
mandatory, definition of, 39
optional, definition of, 40

external entry points, mandatory, 39
external entry points, optional, 40

F
findErrDesc(), 119

125

findWarningDesc(), 119
forward-RCS-effect, 88

G
gamut-test-RCS, 89
getNewValidProfileIndex() method, 63
getObject(), 101

I
ICC profile format

CMM Id location note, 57
description of, 50
do not create, extend note, 50

initialization, 42
instantiation, 41

attachXXXX() method, 41
createXXXX() method, 41
new() method, 41

into-RCS, 88
isSupported(), 103

K
KCMS development environment

requirements, 34
KCMS framework

API calls to KcsProfile member functions,
mapping of, 57

architecture, 55, 60
architecture diagram, 56
connecting profiles example, 68
evaluating data with optimization

example, 70
evaluating data without optimization

example, 69
flow examples, 58, 60
freeing a profile example, 71
getting an attribute example, 72
getting attributes example, 59
primary operations examples, 60, 76
profile format, description of, 50
profile, loading example, 58, 59

KCMS framework (continued)
relates to KcsProfile class, 56
relates to KcsProfileFormat class, 57
relates to KcsXform class, 58
relats to KcsAttributeSet class, 58
saving a profile, 75
setting an attribute example, 72

KcsAttributeSet class
alias to KcsTags class note, 27
description, 27, 29
KcsAttribute object, using, 28, 29
object use, 28
relates to KCMS framework, 58

KcsChunkSet class
and ICC profile format, 25
description, 24, 26

KcsCleanupXXXX(), 40
KcsConnectProfiles(), 69
KcsCreateXXXX(), 39, 40
KcsDLOpenStatCount, 119
KcsDLOpenXXXXCount(), 39
KCS_END_OF_XFORMS, 117
KcsFile class

description, 23
KcsFreeProfile(), 71
KcsGetAttribute(), 59
KcsInitXXXX(), 40
KcsIO class

creating a derivative, 77, 81
derivative information, 35
derivative, KcsSolarisFile source files as

example, 81
description, 22
external entry points, 78, 80
member function override rules, 80

KcsIO object
create diagram, 62
create example, 62, 64

KcsLoadable class
derivatives, 21
description, 20, 22
example, 21
sharing, 20

KcsLoadable classes
UIDs, 20

KcsMemoryBlock class
description, 23

126 KCMS CMM Developer’s Guide • December 2001 (Beta)

KCS_NOT_RUNTIME_LOADABLE, 110
use of, 20

KCS_OPERATION_CANCELLED, 119
KCS_PFMT_NO_DATA_SUPPORT_4_REQUEST, 103
KcsProfile class

attribute sets, 87
characterization and calibration, 94
connect() method, 91
constructors and destructors, 89
creating a derivative, 83, 95
creators, 90
derivative information, 36
description, 26, 27
examples, 94
external entry points, 84, 85
KcsProfileFormat instance, 87, 95
member function override rules, 86
member functions to KCMS API calls,

mapping of, 57
must derive if using ICC profile note, 27
printer RCS transformation examples, 94
relates to KCMS framework, 56
save methods, 90
sequences sharing xforms diagram, 92
transforms, 88

KcsProfile object
create diagram, 65
create example, 64, 65

KcsProfileFormat class
attributes, 101
base class support, 103
creating a derivative, 97, 103
derivative information, 36
description, 27
error protocols, 102
external entry points, 98, 99
loading, 102
member function override rules, 100
member override rules, 107
protected derivatives, 103
relates to KCMS framework, 57
retrievable objects, 103
transforms, 101

KcsProfileFormat object
create diagram, 66
create example, 66
load diagram, 67

KcsProfileFormat object (continued)
load example, 67

KcsProfileKCMS derivative, 57
KcsProfileType, 44
KcsShareable class

description, 19
KcsSolarisFile class

description, 23
source files, use as an example, 81

KcsSolarisFile object
load example, 68

kcssolmsg_strings.po file, 121
KcsStatus class

creating an extension, 119, 122
description, 30
example, 120
extension information, 37
header file, 120
localizing messages, 121

KcsStatusId, 119
KCS_SUCCESS, 119
KcsXform class

composition, 112
creating a derivative, 105, 117
derivative information, 37
description, 29
evaluation, 113, 114
evaluation helper methods, 113
external entry points, 106, 107
load and minimization mechanism, 110, 112
loading, 110
optimization, 109
relates to KCMS framework, 58
save type example, 112
save types, 110, 112

private, 111
universal, 111
universal as private, 111

saving, 110
technology, 108
Xform attributes, 109

KcsXformSeq class, 114, 117
composition, 116
connections, 115
constructors and destructors, 114
description, 30
evaluation, 116

Index 127

KcsXformSeq class (continued)
list of xforms, 117
loading, 115
optimization, 115
saving, 115
validation, 117

KcsXWindow class
description, 24

L
load(), 102
localizing messages, 121

M
makefile, CMM, 43

N
naming derived classes, 42
new() method, 41

O
optimization, 109
out-of-RCS, 88
OWconfig file

KcsProfileFormat class example, 45
OWconfig file

insert entry, 47, 49
KcsIO class example, 44
KcsProfile class example, 45
KcsStatus class example, 47
KcsXform class example, 46
structure of, 43
version numbering, 50

OWconfigGetAttribute(), 50

P
private saving, 111

profile
filename suffixes, 52
installing, 52
naming convention, 52
supported device, 123

R
RCS transformations examples, 94
reverse-RCS-effect, 88
RGB-to-CIE Lab profile, 92
runtime derivation

allocating objects, 38
code examples, 38
external entry points, 39
initialization and cleanup, 42
instantiation, 41
using wrapper functions, 38

runtime derivation requirements, 38, 42

S
simulation-RCS, 88
static store, 56

definition of, 36
generation, 36
regeneration, 36

T
technology, 108
transforms, 88, 89

complete-forward transform, 89
complete-gamut transform, 89
complete-reverse transform, 89
complete-simulate transform, 89
forward-RCS-effect, 88
gamut-test-RCS, 89
into-RCS, 88
KcsForward(), 89
KcsGamutTest(), 89
KcsProfileFormat class, 101
KcsReverse(), 89
KcsSimuate(), 89

128 KCMS CMM Developer’s Guide • December 2001 (Beta)

transforms (continued)
methods, 89
out-of-RCS, 88
reverse-RCS-effect, 88
simulation-RCS, 88
types, logical, 88

U
updating OWconfig, 42

W
wrapper functions, 38, 55
wrapper functions, using to allocate objects, 38

X
XformType values, 89
xgettext(), 121

Index 129

130 KCMS CMM Developer’s Guide • December 2001 (Beta)

