
Solaris WBEM Services
Administrator’s Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-1791–10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, and Solaris are trademarks, registered trademarks,
or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java, et Solaris sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface

1. Overview 19

About WBEM 19

About the Common Information Model 20

Basic CIM Elements 20

The CIM Models 21

CIM Extensions 22

Solaris WBEM Services 22

Software Components 23

Namespaces 25

Providers 26

Interoperability with Other WBEM Systems 27

Sun WBEM Software Development Kit 27

2. CIM Object Manager 29

About the CIM Object Manager 29

The init.wbem Command 30

Stopping the CIM Object Manager 31

H How to Stop the CIM Object Manager 31

Restarting the CIM Object Manager 31

3

H How to Restart the CIM Object Manager 31

Exception Messages 32

3. Administering Security 33

Overview 33

Authentication 34

Authorization 34

Using the Sun WBEM User Manager to Set Access Control 34

H How to Start Sun WBEM User Manager 35

H How to Grant Default Access Rights to a User 36

H How to Change Access Rights for a User 36

H How to Remove Access Rights for a User 36

H How to Set Access Rights for a Namespace 37

H How to Remove Access Rights for a Namespace 37

Using the APIs to Set Access Control 38

The Solaris_UserAcl Class 38

H How to Set Access Control on a User 39

The Solaris_NamespaceAcl Class 40

H How to Set Access Control on a Namespace 40

Exception Messages 41

4. MOF Compiler 43

About the MOF Compiler 43

The mofcomp Command 44

Compiling a MOF File 45

H How to Compile a MOF File 45

Examples 45

Security Advisory 47

5. Logging Events 49

About Logging 49

4 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Log Files 50

Log File Rules 50

Log File Format 51

Log Classes 52

Solaris_LogRecord 52

Solaris_LogService 52

Using the APIs to Enable Logging 53

Writing Data to a Log File 53

H How to Create an Instance of Solaris_LogRecord to Write
Data 54

Reading Data from a Log File 56

H How to Get an Instance of Solaris_LogRecord and Read
Data 57

Setting Logging Properties 60

Viewing Log Data 61

Starting Log Viewer 61

H How to Start Log Viewer 62

6. CIM Exception Messages 63

How CIM Exceptions are Generated 63

Parts of CIM Exceptions 63

Exception Message Example 64

For Developers: Error Message Templates 64

Finding Information About CIM Exceptions 65

Generated CIM Exceptions 65

A. Common Information Model (CIM) Terms and Concepts 87

CIM Concepts 87

Object-Oriented Modeling 87

Uniform Modeling Language 87

CIM Terms 88

Contents 5

Schema 88

Class and Instance 88

Property 89

Method 89

Domain 90

Qualifier and Flavor 90

Indication 90

Association 90

Reference and Range 90

Override 91

Core Model Concepts 91

System Aspects of the Core Model 91

System Classes Provided by the Core Model 92

System Associations Provided by the Core Model 93

Example of an Extension into the Core Model 94

Common Model Schemas 95

Systems 95

Devices 95

Applications 95

Networks 96

Physical 96

B. The Solaris Schema 97

Solaris Schema Files 97

The Solaris_Schema1.0.mof File 98

The Solaris_Core1.0.mof File 99

Solaris_ComputerSystem Definition 99

Solaris_SerialPortSetting and Logging Definitions 100

The Solaris_Application1.0.mof File 102

6 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Packages 103

Patches 105

The Solaris_System1.0.mof File 105

The Solaris_Device1.0.mof File 106

Solaris_Processor 106

Solaris_DiskDrive 107

Solaris_SerialPort 107

Solaris_PortConfiguration 108

The Solaris_Acl1.0.mof File 109

Glossary 111

Index 119

Contents 7

8 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Tables

TABLE P–1 Typographic Conventions

TABLE P–2 Shell Prompts

TABLE A–1 Core Model Elements 91

TABLE A–2 Core Model System Classes 92

TABLE A–3 Core Model Dependencies 94

TABLE B–1 Solaris Schema Files 97

TABLE B–2 Package Information You Can Provide 103

TABLE B–3 Patch Information You Can Provide 105

9

10 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Figures

Figure 1–1 Solaris WBEM Services Architecture 23

11

12 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Code Examples

CODE EXAMPLE 4–1 Solaris_System1.0 File 45

CODE EXAMPLE 4–2 Compiling a MOF File with Default Options 47

CODE EXAMPLE 4–3 Example of Unsafe Syntax 47

CODE EXAMPLE 5–1 Importing Classes 54

CODE EXAMPLE 5–2 Declaring the CreateLog Class and Values 54

CODE EXAMPLE 5–3 Specifying the Vector of Properties and their Values 55

CODE EXAMPLE 5–4 Declaring the New Instance of CIMObjectPath 55

CODE EXAMPLE 5–5 Setting the Instance and Properties 55

CODE EXAMPLE 5–6 Closing the Session 56

CODE EXAMPLE 5–7 Importing Classes 57

CODE EXAMPLE 5–8 Declaring the ReadLog Class 57

CODE EXAMPLE 5–9 Creating a Solaris Log Record 57

CODE EXAMPLE 5–10 Enumerating Instances 58

CODE EXAMPLE 5–11 Sending Property Values 58

CODE EXAMPLE 5–12 Returning an Error Message 59

CODE EXAMPLE 5–13 Closing the Session 60

CODE EXAMPLE 5–14 Setting Logging Properties 60

13

14 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Preface

The Solaris WBEM Services Administrator’s Guide explains Common Information
Model (CIM) concepts and describes how to administer Web-Based Enterprise
Management (WBEM) services in the SolarisTM operating environment.

Solaris WBEM Services software makes it easier for software developers to create
management applications that run on Solaris and makes the Solaris operating
environment easier to manage.

Who Should Use This Book
This book is written for system administrators who administer WBEM-enabled
environments.

Before You Read This Book
This book requires knowledge of the following:

� Object-oriented programming concepts

� JavaTM programming

� Common Information Model (CIM) concepts

� Network management concepts

If you are unfamiliar with these areas, you might find the following references useful:

15

� JavaTM How to Program

H. M. Deitel and P. J. Deitel, Prentice Hall, ISBN 0–13–263401–5

� The Java Class Libraries, Second Edition, Volume 1, Patrick Chan, Rosanna Lee,
Douglas Kramer, Addison-Wesley, ISBN 0–201–31002–3

� CIM Tutorial , provided by the Distributed Management Task Force

The following Web sites are useful resources when working with WBEM technologies.

� Distributed Management Task Force (DMTF)

See this site at www.dmtf.org for the latest developments on CIM, information
about various working groups, and contact information for extending the CIM
Schema.

� Rational Software

See this site at www.rational.com/uml for documentation on the Unified
Modeling Language (UML) and the Rose CASE tool.

How This Book Is Organized
Chapter 1 provides an overview of Solaris WBEM Services and Web-Based Enterprise
Management (WBEM).

Chapter 2 describes the CIM Object Manager and explains how to stop and start it.

Chapter 3 describes security features and how to set access rights on namespaces
and users.

Chapter 4 describes the command syntax for the mofc command and how to
compile a .mof file.

Chapter 5 describes the logging features.

Chapter 6 describes error messages generated by components of the Solaris WBEM
Services product.

Appendix A provides information about general Common Information Model (CIM)
concepts.

Appendix B describes the Solaris Schema files, Managed Object Format (MOF) files
that describe managed objects in the Solaris operating environment.

Glossary is a list of words and phrases found in this book and their definitions.

16 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun .

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com .

What Typographic Conventions Mean
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls −a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

Preface 17

TABLE P–1 Typographic Conventions (continued)

Typeface or
Symbol Meaning Example

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser
prompt

#

18 Solaris WBEM Services Administrator’s Guide ♦ February 2000

CHAPTER 1

Overview

This chapter provides an overview of Web-Based Enterprise Management (WBEM)
and Solaris WBEM Services, software that makes it easier for software developers to
create management applications that run on Solaris and make the Solaris operating
environment easier to manage.

This chapter covers the following topics.

� About WBEM

� About the Common Information Model

� Solaris WBEM Services Software

� Sun WBEM Software Development Kit

About WBEM
Web-Based Enterprise Management (WBEM) is an industry-wide initiative that
includes standards for web-based management of systems, networks, and devices on
multiple platforms. This standardization enables system administrators to manage
desktops, devices, and networks.

WBEM is designed to be compatible with all major existing management protocols,
including Simple Network Management Protocol (SNMP), Distributed Management
Interface (DMI), and Common Management Information Protocol (CMIP).

WBEM encompasses the following standards:

� Common Information Model (CIM) – Information model for describing managed
resources.

� Managed Object Format (MOF) – Language for defining CIM classes and instances.

19

� eXtensible Markup Language (XML) – Markup language for describing managed
resources on the web.

The Distributed Management Task Force (DMTF), a group representing corporations
in the computer and telecommunications industries, is leading the effort to develop
management standards. The goal of the DMTF is to develop an integrated approach
to managing networks across platforms and protocols, resulting in cost-effective
products that interoperate as flawlessly as possible. For information about DMTF
initiatives and outcomes, see the DMTF web site at www.dmtf.org .

About the Common Information Model
This section provides a brief introduction to basic CIM terms and concepts as they
are used in the Solaris WBEM Services product. For more information on CIM, see
Appendix A.

CIM is an object-oriented information model for describing managed resources, such
as, disks, CPUs, and operating systems. A CIM object is a representation, or model,
of a managed resource, such as a printer, disk drive, or CPU. CIM objects can be
shared by any WBEM-enabled system, device, or application.

Basic CIM Elements
CIM objects with similar properties and purposes are represented as CIM classes.
Properties are attributes that describe a unit of data for a class. An instance is a
representation of a managed object that belongs to a particular class. Instances contain
actual data. For example, solaris_computersystem is a CIM class that represents
the Solaris operating system. The Solaris operating environment running your system
is an instance of the solaris_computersystem class. ResetCapability and
InstallDate are examples of properties of the solaris_computersystem class.

CIM classes are grouped into meaningful collections called schemas. A schema is a
group of classes with a single owner. A class must belong to only one schema.
Schemas are used for administration and class naming. All class names must be
unique within a particular schema. The schema name is the determining factor in
differentiating classes and properties from others that may have the same name. The
naming of schema, class, and property follow this syntax:

Schemaname_classname.propertyname

20 Solaris WBEM Services Administrator’s Guide ♦ February 2000

The CIM Models
The Common Information Model categorizes information from general to specific.
Specific information, such as a representation of the Solaris environment, extends the
model. CIM consists of the following three layers of information:

� Core Model – A subset of CIM not specific to any platform.

� Common Model – Information model that visually depicts concepts, functionality,
and representations of entities related to specific areas of network management,
such as systems, devices, and applications.

� Extensions – Information models that support the CIM Schema and represent a
very specific platform, protocol, or corporate brand.

Collectively, the Core Model and the Common Model are referred to as the CIM
Schema.

The Core Model
The Core Model provides the underlying, general assumptions of the managed
environment—for example, that specific, requested data must be contained in a
location and distributed to requesting applications or users. These assumptions are
conveyed as a set of classes and associations that conceptually form the basis of the
managed environment. The Core Model is meant to introduce uniformity across
schemas intended to represent specific aspects of the managed environment.

For applications developers, the Core Model provides a set of classes, associations,
and properties that can be used as a starting point to describe managed systems and
determine how to extend the Common Model. The Core Model establishes a
conceptual framework for modeling the rest of the managed environment.

The Core Model provides classes and associations to extend specific information
about systems, applications, networks, devices, and other network features through
the Common Model and extensions.

The Common Model
Areas of network management depicted in the Common Model are independent of a
specific technology or implementation but provide the basis for the development of
management applications. This model provides a set of base classes for extension
into the area of five designated technology-specific schemas: Systems, Devices,
Applications, Networks, and Physical.

Overview 21

CIM Extensions
Extension schemas are built upon CIM to connect specific technologies to the model.
By extending CIM, a specific operating environment such as Solaris can be made
available to a greater number of users and administrators. Extension schemas provide
classes for software developers to build applications that manage and administer the
extended technology. The Solaris Schema is an extension of the CIM Schema.

Solaris WBEM Services
Solaris WBEM Services software provides Web-Based Enterprise Management
(WBEM) services on the Solaris 8 operating environment. These services make it
easier for software developers to create management applications that run in the
Solaris operating environment, and makes the Solaris operating environment easier
to manage.

Solaris WBEM Services software provides secure access and manipulation of
management data. The product includes a built-in Solaris provider that allows
management applications to access information about managed resources (devices
and software) in the Solaris operating environment.

The CIM Object Manager accepts connections from management applications using
either RMI or XML/HTTP protocols, and provides the following services to
connected clients:

� Management services, in the form of a CIM Object Manager that checks the
semantics and syntax of CIM data and distributes data between applications, the
CIM Repository, and managed resources.

� Security services that enable administrators to control user access to CIM
information.

� Logging services that consist of classes developers can use to create applications
that dynamically record event data to a log record and retrieve data from a log
record. Administrators can use this data to track and determine the cause of
events.

� XML services that convert XML data into CIM classes, enabling XML/HTTP-based
WBEM clients to communicate with the CIM Object Manager.

Once connected to a WBEM-enabled system, WBEM clients can request WBEM
operations, such as, creating, viewing, and deleting CIM classes and instances,
querying for properties that have a specified value, enumerating (getting a list of)
instances or classes in a specified class hierarchy.

22 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Software Components
Solaris WBEM Services software consists of software components that function at
three layers: Application, Management, and Provider. These components interact
with the operating system and hardware layers. Figure 1–1 shows the software
components and their interaction at each layer.

Java Virtual Machine

Management

Application

Provider

Operating System

Hardware

CIM
Repository

CIM Object Manager

Provider Interface

WBEM
Log Viewer

Sun WBEM
User Manager

MOF
Compiler

MOF
File

Public Java
Client and CIM API

XML/HTTP

JNI

RMI

Solaris Provider

Third Party
Providers

Third Party
Providers

Solaris Operating Environment

SPARC INTEL

Figure 1–1 Solaris WBEM Services Architecture

� Application Layer – WBEM clients process and display data from managed
resources. Solaris WBEM Services includes the following applications.

� WBEM Log Viewer – An application that displays log files. Using the log
viewer, a user can view details of a log record, including the name of the user

Overview 23

who issued a logged command and the client computer on which a logged
event occurred.

� Sun WBEM User Manager – An application that allows administrators to add
and delete authorized WBEM users and to set their access privileges to
managed resources.

� Managed Object Format (MOF) Compiler – Program that parses a file
containing MOF statements, converts the classes and instances defined in the
file to Java classes, and then adds the Java classes to the CIM Object Manager
Repository, a central storage area for management data.

MOF is a language for defining CIM classes and instances. MOF files are ASCII
text files that use the MOF language to describe CIM objects. A CIM object is a
representation, or model, of a managed resource, such as a printer, disk drive,
or CPU.

Many sites store information about managed resources in MOF files. Because
MOF can be converted to Java, applications that can run on any system with a
Java Virtual Machine can interpret and exchange this information. You can also
use the mofcomp command to compile MOF files at any time after installation.
For more information about MOF, see the DMTF web page at http://
www.dmtf.org .

� Management Layer – Components at this layer provide services to connected
WBEM clients.

� Client and CIM Application Programming Interfaces (APIs) – WBEM client
applications use these Java interfaces to request operations, such as creating or
viewing classes or instances of managed resources, from the CIM Object
Manager.

� Common Information Model (CIM) Object Manager – Software that manages
CIM objects on a WBEM system. A CIM object is a representation, or model, of
a managed resource, such as a printer, disk drive, or CPU. CIM objects are
stored internally as Java classes. The CIM Object Manager transfers information
between WBEM clients, the CIM Object Manager Repository, and managed
resources.

� CIM Object Manager Repository – Central storage area for CIM class and
instance definitions.

� Provider Interface – Providers use these interfaces to transfer information about
managed resources to the CIM Object Manager. The CIM Object Manager uses
the provider interfaces to transfer information to locally installed providers.

� Provider Layer – Providers act as intermediaries between the CIM Object Manager
and one or more managed resources. When the CIM Object Manager receives a
request from a WBEM client for data that is not available from the CIM Object
Manager Repository, it forward the request to the appropriate provider.

� Solaris Provider – Provides the CIM Object Manager instances of managed
resources in the Solaris operating environment. Providers get and set

24 Solaris WBEM Services Administrator’s Guide ♦ February 2000

information on managed devices. A native provider is a machine-specific
program written to run on a managed device. For example, a provider that
accesses data on a Solaris system will most likely include C functions to query
the Solaris system. The Java Native Interface is the native programming
interface for Java that is part of the JDK. By writing programs using the JNI,
you ensure that your code is completely portable across all platforms. The JNI
allows Java code that runs within a Java Virtual Machine (VM) to operate with
applications and libraries written in other languages, such as C, C++, and
assembly.

� Solaris Schema – A collection of classes that describe managed objects in the
Solaris operating environment. The CIM and Solaris Schema classes are stored
in the CIM Object Manager Repository. The CIM Schema is a collection of class
definitions used to represent managed objects that occur in every management
environment.

The Solaris Schema is a collection of class definitions that extend the CIM
Schema and represent managed objects in a typical Solaris operating
environment. Users can also use the mofcomp command to add CIM Schema,
Solaris Schema, or other classes to the CIM Object Manager Repository after
installation.

� Operating System Layer – The Solaris provider allows management applications to
access information about managed resources (devices and software) in the Solaris
operating environment.

� Hardware Layer – A management client can access management data on any
supported Solaris platform.

Namespaces
One or more schemas can be stored in directory-like structures called namespaces. A
CIM namespace is a directory-like structure that can contain other namespaces,
classes, instances, and qualifier types. The names of objects within a namespace must
be unique.

In Solaris WBEM Services, when WBEM client application connects to a particular
namespace, all subsequent operations occur within that namespace. When connected
to a namespace, the client can access the classes and instances in that namespace (if
they exist) and in any namespaces contained in that namespace. For example, if you
create a namespace called child in the root\cimv2 namespace, you could connect
to root\cimv2 and access the classes and instances in the root\cimv2 and
root\cimv2\child namespaces.

An application can connect to a namespace within a namespace. This is similar to
changing to a subdirectory within a directory. Once the application connects to the
new namespace, all subsequent operations occur within that namespace. If you open

Overview 25

a new connection to root\cimv2\child , you can access any classes and instances
in that namespace but cannot access the classes and instances in the parent
namespace, root\cimv2 .

Three namespaces are created by default during installation:

� root – The top-level namespace that contains other namespaces.

� root\cimv2 – Contains the default CIM classes and instances that represent
objects on your system, such as, LogicalDisk and Netcard . This is the default
namespace.

� root\security – Contains the security classes used by the CIM Object Manager
to represent access rights for users and namespaces.

Providers
When a WBEM client application accesses CIM data, the WBEM system validates the
user’s login information on the current host. By default, a user is granted read access
to the CIM and Solaris Schema. The CIM Schema describes managed objects on your
system in a standard format that all WBEM-enabled systems and applications can
interpret.

Providers are classes that communicate with managed objects to access data.
Providers forward this information to the CIM Object Manager for integration and
interpretation. When the CIM Object Manager receives a request from a management
application for data that is not available from the CIM Object Manager Repository, it
forwards the request to a provider.

The CIM Object Manager uses object provider application programming interfaces
(APIs) to communicate with providers.

When an application requests dynamic data from the CIM Object Manager, the CIM
Object Manager uses the provider interfaces to pass the request to the provider.

Providers perform the following functions in response to a request from the CIM
Object Manager:

� Map the native information format to CIM classes

� Get information from a device

� Pass the information to the CIM Object Manager in the form of CIM classes

� Map the information from CIM classes to native device format

� Get the required information from the CIM class

� Pass the information to the device in native device format

26 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Interoperability with Other WBEM Systems
A WBEM client and WBEM system can run on the same system or on different
systems. Multiple WBEM clients can establish connections to the same WBEM
system. A typical WBEM system can serve four or five WBEM clients.

Solaris WBEM Services supports the Version 1.0 Specification for CIM Operations
over HTTP. This specification uses XML to model CIM objects and messages. XML is
a standard markup language for describing data on the Web. This standard extends
XML markup to define CIM objects and operations. Because XML provides a
standard way of describing data that can be sent across the Web, any WBEM client
can access CIM data on any WBEM system that can parse XML data.

Sun WBEM Software Development Kit
The Sun WBEM Software Development Kit (SDK) contains the components required
to write management applications that can communicate with any WBEM-enabled
management device. Developers can also use this tool kit to write providers,
programs that communicate with managed objects to access data. All management
applications developed using Sun WBEM SDK run on the Java platform.

A WBEM client application is a program that uses Sun WBEM SDK APIs to
manipulate CIM objects. A client application typically uses the CIM API to construct
an object (for example, a namespace, class, or instance) and then initialize that object.
The application then uses the Client APIs to pass the object to the CIM Object
Manager and request a WBEM operation, such as creating a CIM namespace, class,
or instance.

The Sun WBEM SDK installs and runs in any Java environment. It may be used as a
stand-alone application or with Solaris WBEM Services. The Sun WBEM SDK is
available from the Sun Developer Connection at http://www.sun.com/
developers/tools/sw_overview.html#foundation .

Overview 27

28 Solaris WBEM Services Administrator’s Guide ♦ February 2000

CHAPTER 2

CIM Object Manager

The Common Information Model (CIM) Object Manager is software that transfers
CIM data between WBEM client applications and managed resources.

This chapter includes the following topics:

� About the CIM Object Manager

� The init.wbem Command

� Stopping the CIM Object Manager

� Restarting the CIM Object Manager

� Error Messages

About the CIM Object Manager
The CIM Object Manager manages CIM objects on a WBEM-enabled system. A CIM
object is a representation, or model, of a managed resource, such as a printer, disk
drive, or CPU. CIM objects are stored internally as Java classes.

When a WBEM client application accesses information about a CIM object, the CIM
Object Manager contacts either the appropriate provider for that object or the CIM
Object Manager Repository. Providers are classes that communicate with managed
objects to access data. When a WBEM client application requests data from a
managed resource that is not available from the CIM Object Manager Repository, the
CIM Object Manager forwards the request to the provider for that managed resource.
The provider dynamically retrieves the information.

At startup, the CIM Object Manager performs the following functions:

� Listens for RMI connections on RMI port 5987 and for XML/HTTP connections on
HTTP port 80

29

� Sets up a connection to the CIM Object Manager Repository

� Waits for incoming requests

During normal operations, the CIM Object Manager performs these functions:

� Performs security checks to authenticate user login and authorization to access
namespaces.

� Performs syntactical and semantic checking of CIM data operations to ensure that
they comply with the latest CIM Specification.

� Routes requests to the appropriate provider or to the CIM Object Manager
Repository. Delivers data from providers and from the CIM Object Manager
Repository to WBEM client applications.

� Delivers data from providers and from the CIM Object Manager Repository to
WBEM client applications.

A WBEM client application contacts the CIM Object Manager to establish a
connection when it needs to perform WBEM operations, such as creating a CIM class
or updating a CIM instance. When a WBEM client application connects to a CIM
Object Manager, it gets a reference to the CIM Object Manager, which it then uses to
request services and operations.

The init.wbem Command
/etc/init.d/init.wbem start | stop

The init.wbem utility is run automatically during installation and each time the
system is rebooted. This utility starts the CIM Boot Manager, cimomboot , a process
that listens for connection requests from WBEM clients. When a client requests a
connection, the cimomboot program starts the Common Information Model (CIM)
Object Manager. Generally, you do not need to stop the CIM Object Manager.
However, if you change an existing provider, you must stop and restart the CIM
Object Manager before using the updated provider.

The init.wbem command takes two arguments:

� start – Starts the CIM Boot Manager on the local host.

� stop – Stops the CIM Object Manager on the local host.

The init.wbem script is installed in the /etc/init.d directory. The init.wbem
script is executed at system reboot. It is also executed by
/etc/rc2.d/S90wbem start when init state 2 is entered, and by
/etc/rc0.d/K36wbem stop when init state 0 is entered.

30 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Stopping the CIM Object Manager
If you change a provider, you must stop and restart the CIM Object Manager before
using the updated provider.

How to Stop the CIM Object Manager

1. Become root by typing the following command at the system prompt:

% su

2. Type the root password when you are prompted.

3. Stop the CIM Object Manager by typing the following command:

init.wbem stop

The CIM Object Manager stops.

Restarting the CIM Object Manager
Use the init.wbem start command to restart the CIM Object Manager. The
init.wbem command starts the CIM Boot Manager, cimomboot , a process that
listens for connection requests from WBEM clients.

How to Restart the CIM Object Manager

1. Become root by typing the following command at the system prompt:

% su

CIM Object Manager 31

2. Type the root password when you are prompted.

3. Restart the CIM Boot Manager by typing the following command:

init.wbem start

The CIM Boot Manager starts and listens for connection requests from clients.
When a client requests a connection, the CIM Boot Manager starts the CIM Object
Manager.

Exception Messages
The CIM Object Manager generates exception messages to indicate incorrect MOF
syntax and semantics. For an explanation of exception messages, see Chapter 6.

32 Solaris WBEM Services Administrator’s Guide ♦ February 2000

CHAPTER 3

Administering Security

This chapter describes the security features enforced by the CIM Object Manager,
including the following topics:

� Overview

� Using the Sun WBEM User Manager to Set Access Control

� Using the APIs to Set Access Control

� CIM Exception Messages

Overview
The CIM Object Manager validates a user’s login information for the machine on
which the CIM Object Manager is running. A validated user is granted some form of
controlled access to the entire Common Information Model (CIM) Schema. The CIM
Object Manager does not provide security for system resources such as individual
classes and instances. However, the CIM Object Manager does allow control of global
permissions on namespace and access control on a per-user basis.

All security-related information is represented by instances of security classes located
in the root\security namespace and must remain there permanently.

The following security features protect access to CIM objects on a WBEM-enabled
system:

� Authentication - The process of verifying the identity of a user, device, or other
entity in a computer system, often as a prerequisite to allowing access to the
resources in a system.

� Authorization – The granting to a user, program, or process the right of access.

33

� Replay protection – A client cannot copy another client’s last message sent to a
CIM Object Manager. The CIM Object Manager uses the client keys to guarantee
that all subsequent communication in the client-server session is with the same
client that initiated the session and participated in the client-server authentication.

The CIM Object Manager protects against a client picking up and sending another
client’s message to the server by validating digitally signed secret session keys.
The CIM Object Manager will not accept an identical byte stream from a client
without a valid secret session key.

� Digital signature – The CIM Object Manager uses Java digital signature classes to
digitally sign the clients response to the server, however it does not digitally sign
the server’s response to a client.

Authentication
When a user logs in and enters a user name and password, the client encrypts the
password and sends the encrypted password to the CIM Object Manager. When the
user is authenticated, the CIM Object Manager sets up a client session. All
subsequent operations occur within that secure client session.

Authorization
When a user logs in and enters a user name and password, the client encrypts the
password and sends the encrypted password to the CIM Object Manager. When the
user is authenticated, the CIM Object Manager sets up a client session. All
subsequent operations occur within that secure client session.

Once the CIM Object Manager has authenticated the user’s identity, that identity can
be used to verify whether the user should be allowed to execute the application or
any of its tasks. The CIM Object Manager supports capability-based authorization,
which allows a privileged user to assign read and write access to specific users.
These authorizations are added to existing Solaris user accounts.

Using the Sun WBEM User Manager to
Set Access Control
The Sun WBEM User Manager allows privileged users to add and delete authorized
users and to set their access privileges. Use this application to manage user

34 Solaris WBEM Services Administrator’s Guide ♦ February 2000

authentication and access to CIM objects on a WBEM-enabled system. A user must
have a Solaris user account.

You can set access privileges on individual namespaces or for a user-namespace
combination. When you add a user and select a namespace, by default the user is
granted read access to CIM objects in the selected namespace. An effective way to
combine user and namespace access rights is to first restrict access to a namespace.
Then grant individual users read, read and write, or write access to that namespace.

You cannot set access rights on individual managed objects. However you can set
access rights for all managed objects in a namespace as well as on a per-user basis.

If you log in to the root account, you can set the following types of access to CIM
objects:

� Read Only – Allows read-only access to CIM Schema objects. Users with this
privilege can retrieve instances and classes, but cannot create, delete, or modify
CIM objects.

� Read/Write – Allows full read, write, and delete access to all CIM classes and
instances.

� Write – Allows write and delete, but not read access to all CIM classes and
instances.

� None – Allows no access to CIM classes and instances.

How to Start Sun WBEM User Manager

1. In a command window, type the command:

% /usr/sadm/bin/wbemadmin

The Sun WBEM User Manager starts, and the Login dialog box opens.
Context-help information is available in the Context Help panel when you click
on the fields in the dialog box.

2. In the Login dialog box, do the following:

� In the User Name field, type the user name.

You must have read access to the root\security namespace to log in. By
default, Solaris users have guest privileges, which grant them read access to
the default namespaces. Users with read access can view , but cannot change,
user privileges.

You must log in as root or a user with write access to the root\security
namespace to grant access rights to users.

Administering Security 35

� In the Password field, type the password for the user account.

3. Click OK.

The User Manager dialog box opens with a list of users and their access rights to
WBEM objects within the namespaces on the current host.

How to Grant Default Access Rights to a User

1. Start Sun WBEM User Manager.

2. In the Users Access portion of the dialog box, click Add.

A dialog box opens that lists the available namespaces.

3. Type the name of a Solaris user account in the User Name text entry field.

4. Select a namespace from the listed namespaces.

5. Click OK.

The user name is added to the User Manager dialog box.

6. Click OK to save the changes and close the User Manager dialog box. Click
Apply to save the changes and keep the dialog box open.

This action grants this user read access to CIM objects in the selected namespace.

How to Change Access Rights for a User

1. Start Sun WBEM User Manager.

2. Select the user whose access rights you want to change.

3. To grant the user read-only access, click the Read check box. To grant the user
write access, click the Write check box.

4. Click OK to save the changes and close the User Manager dialog box. Click
Apply to save the changes and keep the dialog box open.

How to Remove Access Rights for a User

1. Start Sun WBEM User Manager.

36 Solaris WBEM Services Administrator’s Guide ♦ February 2000

2. In the Users Access portion of the dialog box, select the user name for which
you want to remove access rights.

3. Click Delete to delete the user’s access rights to the namespace.

A confirmation dialog box asks you to confirm your decision to delete the user’s
access rights. Click OK to confirm.

4. Click OK to save the changes and close the User Manager dialog box. Click
Apply to save the changes and keep the dialog box open.

How to Set Access Rights for a Namespace

1. Start Sun WBEM User Manager.

2. In the Namespace Access portion of the dialog box, click Add.

A dialog box opens that lists the available namespaces.

3. Select the namespace for which you want to set access rights.

By default, users have read-only access to a namespace.

� To allow no access to the namespace, make sure the Read and Write check
boxes are not selected.

� To allow write access, click the Write check box.

� To allow read access, click the Read check box.

4. Click OK to save the changes and close the User Manager dialog box. Click
Apply to save the changes and keep the dialog box open.

How to Remove Access Rights for a Namespace

1. Start Sun WBEM User Manager.

2. In the Namespace Access portion of the dialog box, select the namespace for
which you want to remove access control, and then click Delete.

Access control is removed from the namespace, and the namespace is removed
from the list of namespaces on the User Manager dialog box.

3. Click OK to save the changes and close the User Manager dialog box. Click
Apply to save the changes and keep the dialog box open.

Administering Security 37

Using the APIs to Set Access Control
You can use the Sun WBEM SDK APIs to set access control on a namespace or on a
per-user basis. The following security classes are stored in the root\security
namespace:

� Solaris_Acl – Base class for Solaris Access Control Lists (ACL). This class
defines the string property capability and sets its default value to r (read only).

� Solaris_UserAcl – Represents the access control that a user has to the CIM
objects within the specified namespace.

� Solaris_NamespaceAcl – Represents the access control on a namespace.

You can set access control on individual users to the CIM objects within a namespace
by creating an instance of the Solaris_UserACL class and then using the APIs to
change the access rights for that instance. Similarly, you can set access control on
namespaces by creating an instance of the Solaris_NameSpaceACL class and then
using APIs, such as the setInstance method, to set the access rights for that
instance.

An effective way to combine the use of these two classes is to first use the
Solaris_NameSpaceACL class to restrict access to all users to the objects in a
namespace. Then use the Solaris_UserACL class to grant selected users access to
the namespace.

Note - Access Control Lists (ACL) are governed by a standard being developed by
the DMTF. Although the Solaris ACL schema are currently CIM-compliant, they will
need to change when the DMTF finalizes the ACL standard. Programs you write
using the Solaris ACL schema classes are subject to that risk.

The Solaris_UserAcl Class
The Solaris_UserAcl class extends the Solaris_Acl base class, from which it
inherits the string property capability with a default value r (read only).

You can set the capability property to any of the following values for access privileges.

Access Right Description

r Read

rw Read and Write

38 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Access Right Description

w Write

none No access

The Solaris_UserAcl class defines the following two key properties. Only one
instance of the namespace-username ACL pair can exist in a namespace.

Property Data Type Purpose

nspace string Identifies the namespace to
which this ACL applies.

username string Identifies the user to which
this ACL applies.

How to Set Access Control on a User

1. Create an instance of the Solaris_UserAcl class. For example:

...
/* Create a namespace object initialized with root\security
(name of namespace) on the local host. */

CIMNameSpace cns = new CIMNameSpace("", "root\security");

// Connect to the root\security namespace as root.
cc = new CIMClient(cns, "root", "root_password");

// Get the Solaris_UserAcl class
cimclass = cc.getClass(new CIMObjectPath("Solaris_UserAcl");

// Create a new instance of the Solaris_UserAcl
class ci = cimclass.newInstance();
...

2. Set the capability property to the desired access rights. For example:

Administering Security 39

...
/* Change the access rights (capability) to read/write for user Guest

on objects in the root\molly namespace.*/
ci.setProperty("capability", new CIMValue(new String("rw"));
ci.setProperty("nspace", new CIMValue(new String("root\molly"));
ci.setProperty("username", new CIMValue(new String("guest"));

...

3. Update the instance. For example:

...
// Pass the updated instance to the CIM Object Manager
cc.setInstance(new CIMObjectPath(), ci);
...

The Solaris_NamespaceAcl Class
The Solaris_NamespaceAcl extends the Solaris_Acl base class, from which it
inherits the string property capability with a default value r (read-only for GUESTand
all users). The Solaris_NamespaceAcl class defines the following key property.

Property Data Type Purpose

nspace string Identifies the namespace to
which this access control list
applies. Only one instance of
the namespace ACL can
exist in a namespace.

How to Set Access Control on a Namespace

1. Create an instance of the Solaris_namespaceAcl class. For example:

40 Solaris WBEM Services Administrator’s Guide ♦ February 2000

...
/* Create a namespace object initialized with root\security
(name of namespace) on the local host. */
CIMNameSpace cns = new CIMNameSpace("", "root\security");

// Connect to the root\security namespace as root.
cc = new CIMClient(cns, "root", "root_password");

// Get the Solaris_namespaceAcl class
cimclass = cc.getClass(new CIMObjectPath("Solaris_namespaceAcl");

// Create a new instance of the Solaris_namespaceAcl
class ci = cimclass.newInstance();
...

2. Set the capability property to the desired access rights. For example:

...
/* Change the access rights (capability) to read/write
to the root\molly namespace. */
ci.setProperty("capability", new CIMValue(new String("rw"));
ci.setProperty("nspace", new CIMValue(new String("root\molly"));
...

3. Update the instance. For example:

// Pass the updated instance to the CIM Object Manager
cc.setInstance(new CIMObjectPath(), ci);

Exception Messages
For a description of exception messages, see Chapter 6.

Administering Security 41

42 Solaris WBEM Services Administrator’s Guide ♦ February 2000

CHAPTER 4

MOF Compiler

This chapter describes the Managed Object Format (MOF) Compiler, including the
following topics.

� About the MOF Compiler

� The mofcomp Command

� Compiling a MOF File

About the MOF Compiler
The Managed Object Format (MOF) Compiler parses a file containing MOF
statements, converts the classes and instances defined in the file to Java classes, and
adds the Java classes to the CIM Object Manager Repository, a central storage area
for management data. The compiler loads the Java classes into the default
namespace, root\cimv2 , unless a #pragma namespace(‘‘ namespace_path’’)
statement appears in the MOF file.

The mofcomp command, which starts the MOF compiler, is executed before
installation to compile MOF files that describe the CIM and Solaris Schemas. The
CIM Schema is a collection of class definitions used to represent managed objects
that occur in every management environment. The Solaris Schema is a collection of
class definitions that extend the CIM Schema and represent managed objects in a
typical Solaris operating environment.

MOF is a language for defining CIM classes and instances. MOF files are ASCII text
files that use the MOF language to describe CIM objects. A CIM object is a computer
representation or model of a managed resource, such as a printer, disk drive, or CPU.

Many sites store information about managed resources in MOF files. Because MOF
can be converted to Java, Java applications that can run on any system with a Java

43

Virtual Machine can interpret and exchange this information. You can also use the
mofcomp command to compile MOF files at any time after installation.

The mofcomp Command
The mofcomp command compiles the specified MOF file into CIM classes and
instances that are stored in the CIM Object Manager Repository as Java classes and
passed to the CIM Object Manager.

You must run the mofcomp command as root or a user with write access to the
namespace in which you are compiling.

/usr/sadm/bin/mofcomp [−h] [−v] [−sc] [−si] [−sq] [−version] [−c

cimom_hostname] [−p password] [−u username] file

−h List the arguments to the mofcomp command.

−c Specify a system running the CIM Object Manager.

−p Specify a password for connecting to the CIM Object
Manager. Use this option for compilations that require
privileged access to the CIM Object Manager. If you
specify both −p and −u, you must type the password on
the command line, which can pose a security risk. A more
secure way to specify a password is to specify −u but not
−p, so that the compiler will prompt for the password.

−sc Run the compiler with the set class option, which updates
a class if it exists and contains no instances, and returns
an error if the class does not exist. If you do not specify
this option, the compiler adds a CIM class to the
connected namespace, and returns an error if the class
already exists.

−si Run the compiler with the set instance option, which
updates an instance if it exists, and returns an error if the
instance does not exist. If you do not specify this option,
the compiler adds a CIM instance to the connected
namespace, and returns an error if the instance already
exists.

−sq Run the compiler with the set qualifier types option,
which updates a qualifier type if it exists, and returns an
error if the qualifier type does not exist. If you do not

44 Solaris WBEM Services Administrator’s Guide ♦ February 2000

specify this option, the compiler adds a CIM qualifier
type to the connected namespace, and returns an error if
the qualifier type already exists.

−u Specify user name for connecting to the CIM Object
Manager. Use this option for compilations that require
privileged access to the CIM Object Manager. If you
specify both −p and −u, you must type the password on
the command line, which can pose a security risk. A more
secure way to specify a password is to specify −u but not
−p, so that the compiler will prompt for the password.

−v Run the compiler in verbose mode, which displays
compiler messages.

−version Display the version of the MOF compiler.

The mofcomp command will exit with 0 upon success and a positive integer upon
failure.

Compiling a MOF File
You can compile a MOF file with or without a .mof extension. The MOF files that
describe the CIM and Solaris Schemas are located in /usr/sadm/mof .

How to Compile a MOF File

1. To run the MOF Compiler without parameters, type the following command:

% mofcomp filename

For example, mofcomp /usr/sadm/mof/Solaris_Schema1.0.mof

The MOF file is compiled.

Examples
The following example shows the Solaris_System1.0.mof file, which describes
managed resources in the Solaris operating environment, such as processes,
operating systems, and file systems.

MOF Compiler 45

CODE EXAMPLE 4–1 Solaris_System1.0 File

// ===
// Title: Solaris System MOF specification 1.0
// Filename: Solaris_System1.0.mof
// Version: 1.0
// Author: Sun Microsystems, Inc.
// Date: 02/01/1999
// Description:
// ===

// ==
// Pragmas
// ==
#pragma Locale ("en-US")

// ==
// Solaris_Process
// ==
[Provider("com.sun.wbem.solarisprovider.Solaris"),

Description ("A Solaris process that is running.")
]
class Solaris_Process:CIM_Process
{

[Description (
"Time in user mode and kernel mode, in milliseconds."
"If this information is not available, a value of 0 should be used."),

Units("MilliSeconds")
]

uint64 UserKernelModeTime;
[Description (

"A string used to identify the Parent Process. A Process ID is a "
"kind of Process Handle."),

MaxLen (256)
]

string ParentHandle;
};

.

.

.
// ==
// Solaris_FileSystem
// ==

[Provider("com.sun.wbem.solarisprovider.Solaris"),
Description ("A Solaris FileSystem.")

]
class Solaris_FileSystem:CIM_FileSystem
{
};

The following example recompiles the Solaris_Schema1.0.mof file with the
default options, which returns an error each time the compiler attempts to add a
class that already exists. This example uses verbose mode (−v) and specifies the root
user account because that account has write access to the default namespace,

46 Solaris WBEM Services Administrator’s Guide ♦ February 2000

root\cimv2 . By default, the CIM elements defined in the
Solaris_Schema1.0.mof file will be added to the root\cimv2 namespace.

CODE EXAMPLE 4–2 Compiling a MOF File with Default Options

mofcomp -v -u root ../mof/Solaris_Schema1.0.mof
Starting MOF Compiler
java com.sun.wbem.compiler.mofc.CIM_Mofc -v -u root ../mof/
Solaris_Schema1.0.mof
Enter password:
Adding class Solaris_ComputerSystem
Warning at line 27 in file /usr/sadm/mof/Solaris_Core1.0.mof
- compilation proceeding ...
Semantic Error:
The following exception was thrown by setClass:

CIM_ERR_ALREADY_EXISTS:Element Solaris_ComputerSystem already exists.
Adding class Solaris_SerialPortSetting
Warning at line 39 in file /usr/sadm/mof/Solaris_Core1.0.mof
- compilation proceeding ...
Semantic Error:
The following exception was thrown by setClass:

CIM_ERR_ALREADY_EXISTS:Element Solaris_SerialPortSetting already exists.
Adding class Solaris_LogRecord
Warning at line 104 in file /usr/sadm/mof/Solaris_Core1.0.mof
- compilation proceeding ...
.
..
Semantic Error:
The following exception was thrown by setClass:

CIM_ERR_ALREADY_EXISTS:Element Solaris_NamespaceAcl already exists.
Adding class
Warning at line 39 in file /usr/sadm/mof/Solaris_Acl1.0.mof
- compilation proceeding ...
Semantic Error:
The following exception was thrown by setClass:

CIM_ERR_ALREADY_EXISTS:Element Solaris_UserAcl already exists.
Compilation succeeded.

Security Advisory

If you run a command with the -p or the -up parameters, and you include a
password, another user can run the ps command or the history command to find
your password.

Note - If you run a command that requires you to provide your password,
immediately change your password after running the command.

CODE EXAMPLE 4–3 Example of Unsafe Syntax

The following examples show use of the mofcomp command with the -p parameter:

MOF Compiler 47

mofcomp -p Log8Rif

and the -up parameters:

mofcomp -up molly Log8Rif

Change your password immediately after running the mofcomp command with the
option to specify a password.

48 Solaris WBEM Services Administrator’s Guide ♦ February 2000

CHAPTER 5

Logging Events

Logging is a service that enables WBEM administrators to track events to determine
how they occurred. Examples of events include recording the inaccessibility of a
serial port when one is provided; the mounting of a file system which generates an
error message; a system disk having reached capacity.

This chapter covers the following topics:

� About Logging

� Log Files

� Log Classes

� Using the APIs to Enable Logging

� Viewing Log Data

About Logging
The logging service records all those actions that the service provider has been
programmed to return and that are completed by Solaris WBEM Services
components. Informational and error content can be recorded to a log. For example,
if a user disables a serial port, this information can be logged automatically by a
serial port provider. Or, if a system error or other failure occurs, the administrator
can check the log record to trace the cause of the occurrence.

All components, applications, and providers start logging automatically, in response
to events. For example, the CIM Object Manager automatically logs events after it is
installed and started.

You can set up logging for applications and providers that you develop for the
WBEM environment. For information, see “Using the APIs to Enable Logging” on

49

page 53. You can view log data in the Log Viewer to debug the logging functionality
that you develop for applications.

Log Files
When you set up an application or a provider to log events, its events are recorded
in log files. All log records are stored in the path: /usr/sadm/wbem/log . Log files
use the following naming convention:

wbem_log.#

where # is a number appended to indicate the version of the log file. A log file
appended with a .1 , such as wbem_log.1 , is the most recently-saved version. A log
file appended with a .2 is the next oldest version. Larger file extensions, for
example, wbem_log.16 , indicate older versions of the file. Previous versions of the
log file and the most recent version co-exist as an archive in /usr/sadm/wbem/log .

Log files are renamed with a .1 file extension, and saved when one of the following
two conditions are met:

� The current file reaches the file size limit specified by the
Solaris_LogServiceProperties class. Default values are set in the
wbemService.properties file.

For information about how the properties of the
Solaris_LogServiceProperties class control how a log file is used, see “Log
File Rules” on page 50.

� The clearLog() method of the Solaris_LogService class is invoked on the
current log file

For information about the Solaris_LogService class and its methods, see
“Solaris_LogService” on page 52.

Log File Rules
The Solaris_LogServiceProperties class is defined in
Solaris_Core1.0.mof . The Solaris_LogServiceProperties class has
properties that control the following attributes of a log file:

� Directory where the log file is written

� Name of the log file

� Size allowed for a log file before it is renamed with a .1 file extension and saved.

50 Solaris WBEM Services Administrator’s Guide ♦ February 2000

� Number of log files you can have in the archive

� Ability to write log data to SysLog, the default logging system of the Solaris
operating environment

To specify any of these attributes for an application that writes data to a log file,
create a new instance of Solaris_LogServiceProperties and set the values of
its associated properties. See Code Example 5–14 for detailed information about how
to set property values of the new instance.

Log File Format
The logging service provides three categories of log records: application, system, and
security. Log records may be informational, or may record data derived from errors
or warnings. A standard set of fields are defined for the data that can be presented in
logs; however, logs do not necessarily use all fields. For example, an informational
log may provide a brief message describing an event. An error log may provide a
more detailed message.

Some log data fields are required to identify data in the CIM Repository. These fields
are properties flagged with a read-only key qualifier in the Solaris_LogRecord
class. You cannot set the values of these fields. You can, however, set the values of
any of the following fields in your log files:

� Category – Type of log record

� Severity – Severity of conditions that caused data to be written to a log file

� AppName – Name of the application from which the data was obtained

� UserName – Name of the individual who was using the application when log data
was generated

� ClientMachineName – Name of the computer on which an incident occurred that
generated log data.

� ServerMachineName – Name of the server on which an incident occurred that
generated log data

� SummaryMessage – Brief message describing the occurrence

� DetailedMessage – Detailed message describing the occurrence

� Data – Context information that applications and providers can present to
interpret a log message.

Logging Events 51

Log Classes
Logging uses two Solaris Schema classes: Solaris_LogRecord and
Solaris_LogService .

Solaris_LogRecord
Solaris_LogRecord is defined in Solaris_Core1.0.mof to model an entry in a
log file. When an application or provider calls the Solaris_LogRecord class in
response to an event, the Solaris_LogRecord class causes all data generated by
the event to be written to a log file. To see the definition of the
Solaris_LogRecord class as part of the Solaris Provider, view the
Solaris_Core1.0.mof file in a text editor of your choice. The
Solaris_Core1.0.mof file is located in /usr/sadm/mof .

Solaris_LogRecord uses a vector of properties and key qualifiers to specify
attributes of the events, system, user, and application or provider that generate data.
Read-only qualifier values are generated transparently for use between the
application and the CIM Repository. For example, the value RecordID uniquely
identifies the log entry but is not displayed as part of the log format when you view
generated data.

You can set the values of writable qualifier values. For example, you can set the
qualifier values of properties such as ClientMachineName and
ServerMachineName which identify the system on which an event occurs.

When the SysLogFlag property is set to true, then a detailed message of the log
record is automatically sent to the syslog daemon on UNIX systems.

Solaris_LogService
The Solaris_LogService class controls the operation of the logging service and
defines the ways in which log data is handled. This class has a set of methods that
an application can use to distribute data about a particular event to the CIM Object
Manager from the issuing application. The data becomes a trigger that generates a
response from the CIM Object Manager, such as a retrieval of data from the CIM
Repository.

The Solaris_LogService class uses the following methods:

� clearLog – Renames, and saves a current log file or deletes a saved log file

� getNumRecords – Returns the number of records in a particular log file

� listLogFiles – Returns a list of all log files stored in /usr/sadm/wbem/log

52 Solaris WBEM Services Administrator’s Guide ♦ February 2000

� getCurrentLogFileName – Returns the name of the most recent log file

� getNumLogFiles – Returns the number of log files stored in
/usr/sadm/wbem/log

� getLogFileSize – Returns the size, in megabytes, of a particular log file

� getSyslogSwitch – Enables log data to be sent to SysLog, the logging service of
the Solaris operating environment

� getLogStorageName – Returns the name of the host computer or device where
log files are stored

� getLogFileDir – Returns the path and name of the directory where log files are
stored

� setProperties – Enables you to set logging properties

You can view the definition of Solaris_LogService in the
Solaris_Core1.0.mof file by opening the file in a text editor of your choice. The
Solaris_Core1.0.mof file is located in /usr/sadm/mof .

Using the APIs to Enable Logging
Currently, you can view log file content in Log Viewer. However, you can develop
your own log viewer if you prefer to view log files in a customized manner. You can
use the logging application programming interfaces (APIs) to develop a log viewer.
The APIs enable you to:

� Write data from an application to a log file

� Read data from a log file to your log viewer

� Set logging properties that specify how logging is handled

Writing Data to a Log File
Enabling an application to write data to a log file involves the following main tasks:

� Creating a new instance of the Solaris_LogRecord class

� Specifying the properties that will be written to the log file and setting values for
the property qualifiers

� Setting the new instance and properties to print

Logging Events 53

How to Create an Instance of
Solaris_LogRecord to Write Data

1. Import all necessary Java classes. The classes listed in Code Example 5–1 are
the minimum classes that are required.

CODE EXAMPLE 5–1 Importing Classes

import java.rmi.*;
import com.sun.wbem.client.CIMClient;
import com.sun.wbem.cim.CIMInstance;
import com.sun.wbem.cim.CIMValue;
import com.sun.wbem.cim.CIMProperty;
import com.sun.wbem.cim.CIMNameSpace;
import com.sun.wbem.cim.CIMObjectPath;
import com.sun.wbem.cim.CIMClass;
import com.sun.wbem.cim.CIMException;
import com.sun.wbem.solarisprovider.*;
import java.util.*;

2. Declare the public class CreateLog and the following values:

� CIMClient value

� CIMObjectPath value

� CIMNameSpace value

CODE EXAMPLE 5–2 Declaring the CreateLog Class and Values

public class CreateLog {
public static void main(String args[]) throws CIMException {

if (args.length != 3) {
System.out.println("Usage: CreateLog host username password");
System.exit(1);

}

CIMClient cc = null;
CIMObjectPath cop = null;
try {

CIMNameSpace cns = new CIMNameSpace(args[0]);
cc = new CIMClient(cns, args[1], args[2]);

54 Solaris WBEM Services Administrator’s Guide ♦ February 2000

3. Specify the vector of properties to be returned. Set values for the properties of
the qualifiers.

CODE EXAMPLE 5–3 Specifying the Vector of Properties and their Values

Vector keys = new Vector();
CIMProperty logsvcKey;
logsvcKey = new CIMProperty("category");
logsvcKey.setValue(new CIMValue(new Integer(2)));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("severity");
logsvcKey.setValue(new CIMValue(new Integer(2)));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("AppName");
logsvcKey.setValue(new CIMValue("SomeApp"));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("UserName");
logsvcKey.setValue(new CIMValue("molly"));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("ClientMachineName");
logsvcKey.setValue(new CIMValue("dragonfly"));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("ServerMachineName");
logsvcKey.setValue(new CIMValue("spider"));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("SummaryMessage");
logsvcKey.setValue(new CIMValue("brief_description"));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("DetailedMessage");
logsvcKey.setValue(new CIMValue("detailed_description"));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("data");
logsvcKey.setValue(new CIMValue("0xfe 0x45 0xae 0xda"));
keys.addElement(logsvcKey);
logsvcKey = new CIMProperty("SyslogFlag");
logsvcKey.setValue(new CIMValue(new Boolean(true)));
keys.addElement(logsvcKey);

4. Declare the new instance of the CIMObjectPath for the log record.

CODE EXAMPLE 5–4 Declaring the New Instance of CIMObjectPath

CIMObjectPath logreccop = new CIMObjectPath("Solaris_LogRecord", keys);

5. Declare the new instance of Solaris_LogRecord . Set vector of properties to
write to a file.

Logging Events 55

CODE EXAMPLE 5–5 Setting the Instance and Properties

CIMInstance ci = new CIMInstance();
ci.setClassName("Solaris_LogRecord");
ci.setProperties(keys);
//System.out.println(ci.toString());
cc.setInstance(logreccop,ci);

}
catch (Exception e) {

System.out.println("Exception: "+e);
e.printStackTrace();

}

6. Close the session after data has been written to the log file.

CODE EXAMPLE 5–6 Closing the Session

// close session.
if(cc != null) {

cc.close();
}

}
}

Reading Data from a Log File
Enabling an application to read data from a log file to a log viewer involves the
following tasks:

� Enumerating instances of the Solaris_LogRecord class

� Getting the desired instance

� Printing properties of the instance to an output device, typically a user interface

56 Solaris WBEM Services Administrator’s Guide ♦ February 2000

How to Get an Instance of Solaris_LogRecord
and Read Data

1. Import all the necessary Java classes. The classes in Code Example 5–7 lists the
minimum required classes to be imported.

CODE EXAMPLE 5–7 Importing Classes

import java.rmi.*;
import com.sun.wbem.client.CIMClient;
import com.sun.wbem.cim.CIMInstance;
import com.sun.wbem.cim.CIMValue;
import com.sun.wbem.cim.CIMProperty;
import com.sun.wbem.cim.CIMNameSpace;
import com.sun.wbem.cim.CIMObjectPath;
import com.sun.wbem.cim.CIMClass;
import com.sun.wbem.cim.CIMException;
import com.sun.wbem.solarisprovider.*;
import java.util.*;
import java.util.Enumeration;

2. Declare the class ReadLog .

CODE EXAMPLE 5–8 Declaring the ReadLog Class

public class ReadLog
{
public static void main(String args[]) throws
CIMException
{
if (args.length != 3)
{
System.out.println("Usage: ReadLog host username
password");

System.exit(1);

3. Set client, objectpath, and namespace values of the ReadLog class.

Logging Events 57

CODE EXAMPLE 5–9 Creating a Solaris Log Record

}
CIMClient cc = null;

CIMObjectPath cop = null;
try { CIMNameSpace cns = new CIMNameSpace(args[0]);
cc = new CIMClient(cns, args[1], args[2]);
cop = new CIMObjectPath("Solaris_LogRecord");

4. Enumerate instances of Solaris_LogRecord .

CODE EXAMPLE 5–10 Enumerating Instances

Enumeration e = cc.enumInstances(cop, true);
for (; e.hasMoreElements();) {

5. Send property values to an output device.

CODE EXAMPLE 5–11 Sending Property Values

System.out.println("---------------------------------");
CIMObjectPath op = (CIMObjectPath)e.nextElement();
CIMInstance ci = cc.getInstance(op);
System.out.println("Record ID : " +

(((Long)ci.getProperty("RecordID").getValue().

getValue()).longValue()));
System.out.println("Log filename : " +

((String)ci.getProperty("FileName").getValue().
getValue()));

int categ = (((Integer)ci.getProperty("category").
getValue().getValue()).intValue());

if (categ == 0)
System.out.println("Category : Application Log");

else if (categ == 1)
System.out.println("Category : Security Log");

else if (categ == 2)
System.out.println("Category : System Log");

int severity = (((Integer)ci.getProperty
("severity").getValue().getValue()).intValue());

(continued)

58 Solaris WBEM Services Administrator’s Guide ♦ February 2000

(Continuation)

if (severity == 0)
System.out.println("Severity : Informational");

else if (severity == 1)
System.out.println("Severity : Warning Log!");

else if (severity == 2)
System.out.println("Severity : Error!!");

System.out.println("Log Record written by :" +
((String)ci.getProperty("AppName").getValue().
getValue()));

System.out.println("User : " + ((String)ci.
getProperty("UserName").getValue().getValue()));

System.out.println("Client Machine : " + ((String)ci.
getProperty("ClientMachineName").getValue().getValue()));

System.out.println("Server Machine : " + ((String)ci.
getProperty("ServerMachineName").getValue().getValue()));

System.out.println("Summary Message : " + ((String)
ci.getProperty("SummaryMessage").getValue().getValue()));

System.out.println("Detailed Message : " + ((String)
ci.getProperty("DetailedMessage").getValue().getValue()));

System.out.println("Additional data : " + ((String)
ci.getProperty("data").getValue().getValue()));

boolean syslogflag =((Boolean)ci.getProperty("syslogflag").getValue().
getValue()).booleanValue();

if (syslogflag == true) {
System.out.println("Record was written to syslog as well");
} else {
System.out.println("Record was not written to

syslog");
}
System.out.println("---------------------------------");

6. Return an error message to the user if an error condition occurs.

Logging Events 59

CODE EXAMPLE 5–12 Returning an Error Message

...
catch (Exception e) {

System.out.println("Exception: "+e);
e.printStackTrace(); }

…

7. Close the session when the data has been read from the file.

CODE EXAMPLE 5–13 Closing the Session

// close session.
if(cc != null) {

cc.close();
}

}
}

Setting Logging Properties
You can create an instance of the Solaris_LogServiceProperties class and set
property values for the instance to control how your application or provider handles
logging. The following example shows how to set logging properties. Properties are
stored in the /usr/sadm/bin/wbem/wbemservices.properties file.

CODE EXAMPLE 5–14 Setting Logging Properties

public class SetProps {
public static void main(String args[]) throws CIMException {

if (args.length != 3) {
System.out.println("Usage: SetProps host username password");
System.exit(1);

}

CIMClient cc = null;
try {

CIMNameSpace cns = new CIMNameSpace(args[0]);
cc = new CIMClient(cns, args[1], args[2]);

(continued)

60 Solaris WBEM Services Administrator’s Guide ♦ February 2000

(Continuation)

CIMObjectPath logpropcop = new CIMObjectPath("Solaris_Log
ServiceProperties");

Enumeration e = cc.enumInstances(logpropcop, true);
for (; e.hasMoreElements();) {

CIMObjectPath op = (CIMObjectPath)e.nextElement();
CIMInstance ci = cc.getInstance(op);
ci.setProperty("Directory", new CIMValue("/tmp/bar1/"));
ci.setProperty("FileSize", new CIMValue("10"));
ci.setProperty("NumFiles", new CIMValue("2"));
ci.setProperty("SyslogSwitch", new CIMValue("off"));
cc.setInstance(logpropcop,ci);

}
}
catch (Exception e) {

System.out.println("Exception: "+e);
e.printStackTrace();

}

// close session.
if(cc != null) {

cc.close();
}

}

Viewing Log Data
You can view all details of a log record in Log Viewer, an application that provides a
graphical user interface for viewing recorded data. During the installation of Solaris
WBEM Services, Log Viewer is installed in /usr/sadm/bin . To run, Log Viewer
requires that an application has created a log record.

Starting Log Viewer
After you have created a log record, you can start the Log Viewer.

Logging Events 61

How to Start Log Viewer

1. Change directories to the location of Log Viewer by typing the following
command:

cd /usr/sadm/bin

2. Start Log Viewer by typing the following command:

wbemlogviewer

62 Solaris WBEM Services Administrator’s Guide ♦ February 2000

CHAPTER 6

CIM Exception Messages

This chapter describes the exception messages generated by the CIM Object Manager
in the Solaris WBEM Services, including the following topics.

� How CIM Exceptions are Generated

� Parts of CIM Exceptions

� Finding Information About CIM Exceptions

� Generated CIM Exceptions

How CIM Exceptions are Generated
The CIM Object Manager generates exception messages that are used by all the
clients. The MOF Compiler appends a line to the exception indicating where in a
.mof file the error occurred. From these exceptions, client applications can generate
error messages that are more meaningful to the end-user.

CIM clients can be used as XML or RMI clients. Currently, XML supports only a
subset of these exceptions. If you choose to use an XML client, be aware that you
may not receive all the information contained in the exception message, and that you
may loose parameter information.

Parts of CIM Exceptions
CIM exception messages are made up of the following parts:

63

� Unique identifier – Character string that differentiates the error message from
other error messages

� One or more parameters – Placeholders for the specific classes, methods, and
qualifiers that are cited in the exception message

Exception Message Example
For example, the MOF Compiler may return the following exception message:

REF_REQUIRED
CIM_Docked

where

� REF_REQUIREDis the unique identifier.

� CIM_Docked is the parameter. A parameter can be replaced with the name of any
appropriate class, property, method, or qualifier.

This exception message can be turned into a more user-friendly message such as:

REF_REQUIRED
= Association class CIM_Docked needs
at least two refs. Error in line 12.

For Developers: Error Message Templates
WBEM provides exception templates for all possible error messages in the
ErrorMessages_en.properties file. In an exception template that requires
parameters, the first parameter is represented as {0} and the second parameter is
represented as {1} .

The following exception template is used in the previous example:

REF_REQUIRED = Association class {0} needs at least two refs.

64 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Finding Information About CIM
Exceptions
The following section provides a detailed explanation of each CIM exception. The
exception messages are organized by unique identifiers in alphabetical order. For each
exception message, the following types of information are provided, when applicable:

� Unique identifier, displayed as a heading

� Description of the parameters used in the exception message

� Example of the exception or message as it is displayed to a user, often the output
of the MOF compiler or the CIM WorkShop

� Cause, or reason why the exception message was generated, and background or
reference information that is helpful for understanding the error message

� Solution, including steps you can take to resolve the error are provided when
available

Generated CIM Exceptions
The following section lists and describes the CIM exceptions generated by the MOF
Compiler, CIM Object Manager, and WBEM client applications.

ABSTRACT_INSTANCE

Description

The ABSTRACT_INSTANCEexception has one parameter, which is the name of the
abstract class.

Example

ABSTRACT_INSTANCE= Abstract class ExampleClass cannot have instances.

Cause

A client application tried to create an instance for the specified class. However, the
specified class is an abstract class, and abstract classes cannot have instances.

Solution

Remove the programmed instances, as the client application cannot create such
instances.

CIM Exception Messages 65

CHECKSUM_ERROR

Description

The CHECKSUM_ERRORexception has no parameters.

Example

CHECKSUM_ERROR= Checksum not valid.

Cause

The message could not be sent because it was damaged or corrupted. The damage
could have occurred accidentally in transit or by a malicious third party.

Note - This error message is displayed when the CIM Object Manager receives an
invalid checksum. A checksum is the number of bits in a packet of data passed
over the network. This number is used by the sender and the receiver of the
information to ensure that the transmission is secure and that the data has not
been corrupted or intentionally modified during transit.

An algorithm is run on the data before transmission, and the checksum is
generated and included with the data to indicate the size of the data packet.
When the message is received, the receiver can recompute the checksum and
compare it to the sender’s checksum. If the checksums match, the transmission
was secure and the data was not corrupted or modified.

Solution

Resend the message.

CIM_ERR_ACCESS_DENIED

Description

The CIM_ERR_ACCESS_DENIEDexception does not have parameters.

Example

CIM_ERR_ACCESS_DENIED= Insufficient privileges.

Cause

This exception is displayed when a user does not have the appropriate privileges
to complete an action.

Solution

See your WBEM administrator to request privileges to complete the operation.

CIM_ERR_ALREADY_EXISTS

Instance 1: CIM_ERR_ALREADY_EXISTS

Description

66 Solaris WBEM Services Administrator’s Guide ♦ February 2000

This instance of the CIM_ERR_ALREADY_EXISTSexception has one parameter
which is replaced by the name of the duplicate element.

Example

CIM_ERR_ALREADY_EXISTS= Duplicate class CIM_Rack

Cause

The element you attempted to create uses the same name as an existing element.

Solution

In CIM WorkShop, search for existing elements to see the element names that are
in use, then create the element using a unique element name.

Instance 2: CIM_ERR_ALREADY_EXISTS

Description

This instance of the CIM_ERR_ALREADY_EXISTSerror message uses one
parameter, {0} , which is replaced by the name of the duplicate instance.

Example

CIM_ERR_ALREADY_EXISTS= Duplicate instance SolarisRack

Cause

The instance for a class you attempted to create uses the same name as an existing
instance.

Solution

In CIM WorkShop, search for existing instances to see the names that are in use,
then create the instance using a unique name.

Instance 3: CIM_ERR_ALREADY_EXISTS

Description

This instance of the CIM_ERR_ALREADY_EXISTSerror message uses one
parameter, {0} , which is replaced by the name of the duplicate namespace.

Example

CIM_ERR_ALREADY_EXISTS= Duplicate namespace root\cimv2

Cause

The namespace you attempted to create uses the same name as an existing
namespace.

Solution

Search for existing namespaces to see the names that are in use, then create the
namespace using a unique name.

CIM Exception Messages 67

Instance 4: CIM_ERR_ALREADY_EXISTS

Description

This instance of the CIM_ERR_ALREADY_EXISTSerror message uses one
parameter, {0} , which is replaced by the name of the duplicate qualifier type.

Example

CIM_ERR_ALREADY_EXISTS= Duplicate qualifier type Key

Cause

The qualifier type you attempted to create uses the same name as an existing
qualifier type of the property it modifies.

Solution

In CIM WorkShop, search for qualifier types that exist for the property to see the
names that are in use, then create the qualifier type using a unique name.

CIM_ERR_FAILED

Description

The CIM_ERR_FAILED exception has one parameter which is replaced by a
character string, a message that explains the error condition and its possible cause.

Example

CIM_ERR_FAILED=Invalid entry.

Cause

The CIM_ERR_FAILED exception is a generic message that can be displayed for a
large number of different error conditions.

Solution

Because CIM_ERR_FAILED is a generic exception, many types of conditions can
cause the message. The solution varies depending on the error condition.

CIM_ERR_INVALID_PARAMETER

Description

The CIM_ERR_INVALID_PARAMETERexception has one parameter which gives
more information about the parameter that caused the error.

Example

CIM_ERR_INVALID_PARAMETER= Class System has no schema prefix.

Cause

An operation was performed and the parameter was invalid. For example, a class
was created without providing a schema prefix in front of the class name. The

68 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Common Information Model requires that all classes are provided with a schema
prefix. For example, classes developed as part of the CIM Schema require a CIM
prefix: CIM_Container . Classes developed as part of the Solaris Schema require
a Solaris prefix: Solaris_System .

Solution

Provide the correct parameter. In the example above, the correct parameter would
be CIM_Container . Find all instances of the class missing the prefix and replace
them with the class name and prefix.

CIM_ERR_INVALID_SUPERCLASS

Description

The parameter CIM_ERR_INVALID_SUPERCLASShas two parameters:

� The name of the specified super class.

� The name of the sub class which caused the error.

Example

CIM_ERR_INVALID_SUPERCLASS= Superclass CIM_Chassis for class
CIM_Container does not exist.

Cause

A class is specified to belong to a particular superclass, but the superclass does
not exist. The specified superclass may be misspelled, or a non-existent superclass
name may have been specified accidentally in place of the intended superclass
name. Or, the superclass and the subclass may have been interpolated: the
specified superclass actually may be a subclass of the specified subclass. In the
previous example, CIM_Chassis is specified as the superclass of
CIM_Container , but CIM_Chassis is a subclass of CIM_Container .

Solution

Check the spelling and the name of the superclass to ensure it is correct. Ensure
that the superclass exists in the namespace.

CIM_ERR_NOT_FOUND

Instance 1: CIM_ERR_NOT_FOUND

Description

The CIM_ERR_NOT_FOUNDexception has one parameter which is replaced by the
name of the non-existent element.

Example

CIM_ERR_NOT_FOUND= Element Solaris_Device does not exist.

CIM Exception Messages 69

Cause

An element has been specified for a specific operation, for example delete, but the
element does not exist. The specified element may be misspelled, or a non-existent
element name may have been specified accidentally in place of the intended
element name.

Solution

Check the spelling and the name of the element to ensure that it is correct. Ensure
that the element exists in the namespace.

Instance 2: CIM_ERR_NOT_FOUND

Description

This instance of the error message CIM_ERR_NOT_FOUNDuses two parameters:

� {0} is replaced by the name of the specified instance

� {1} is replaced by the name of the specified class

Example

CIM_ERR_NOT_FOUND= Instance Solaris_EnterpriseData does not exist for
class Solaris_ComputerSystem .

Cause

The instance does not exist.

Solution

Create the instance.

Instance 3: CIM_ERR_NOT_FOUND

Description

This instance of the CIM_ERR_NOT_FOUNDerror message uses one parameter,
{0} , the name of the specified namespace.

Example

CIM_ERR_NOT_FOUND= Namespace verdant does not exist.

Cause

The specified namespace is not found. This error may occur if the name of the
namespace was entered incorrectly due to a typing error or spelling mistake.

Solution

Retype the name of the namespace. Ensure that typing and spelling are correct.

CLASS_REFERENCE

70 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Description

The CLASS_REFERENCEexception has two parameters.

� The name of the class that contains the reference.

� The name of the reference property.

Example

CLASS_REFERENCE= Class SolarisExample1 must be declared as an
association to have reference SolarisExample2

Cause

A class has been defined with a reference property. However, the class is not an
association. A class can only be defined to have a reference property if it is an
association.

Solution

Declare the class as an association by using the −association qualifier.

INVALID_CREDENTIAL

Description

The INVALID_CREDENTIAL exception does not have parameters.

Example

INVALID_CREDENTIAL = Invalid credentials.

Cause

This exception is displayed when an invalid password has been entered.

Solution

Retype the command and type the correct password.

INVALID_QUALIFIER_NAME

Description

The INVALID_QUALIFIER_NAME exception has one parameter which is replaced
by the Managed Object Format notation that depicts an empty qualifier name.

Example

INVALID_QUALIFIER_NAME = Invalid qualifier name ‘‘ ‘‘

Cause

A qualifier was created for a property, but a qualifier name was not specified.

Solution

CIM Exception Messages 71

Include the qualifier name in the context of the qualifier definition.

KEY_OVERRIDE

Description

The KEY_OVERRIDEexception has two parameters:

� The overriding property.

� The overridden property.

Example

KEY_OVERRIDE= Non-key Qualifier SolarisCard cannot override key Qualifier
SolarisLock .

Cause

The client has defined a class where a non-Key property is trying to override a
Key property. In CIM, all concrete classes require at least one Key property, and a
non-Key class cannot override a class that has a Key.

Solution

The operation is not allowed as specified in the CIM specification.

KEY_REQUIRED

Description

The KEY_REQUIREDexception has one parameter which is the name of the class
that requires the key.

Example

KEY_REQUIRED= Concrete (non-abstract) class ClassName needs at least one key.

Cause

A Key qualifier was not provided for a concrete class. In CIM, all non-abstract
classes, referred to as concrete classes, require at least one Key qualifier.

Solution

Create a Key qualifier for the class.

METHOD_OVERRIDDEN

Description

The METHOD_OVERRIDDENcommand has three parameters:

� The name of the overriding method.

� The name of the overridden method.

� The name of the method that has overridden the second parameter.

72 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Example

METHOD_OVERRIDDEN= Method Resume () cannot override Stop() which is
already overridden by Start()

Cause

A method is specified to override another method that has already been
overridden by a third method. Once a method has been overridden, it cannot be
overridden again.

Solution

This operation is illegal.

NEW_KEY

Description

The NEW_KEYexception has two parameters.

� The name of the key.

� The name of the class that is trying to define a new key.

Example

NEW_KEY= Class CIM_PhysicalPackage cannot define new key [Key]

Cause

A class is trying to define a new key when keys already have been defined in a
superclass. Once keys have been defined in a superclass, new keys cannot be
introduced into the subclasses.

Solution

No action can be taken.

NO_CIMOM

Description

The NO_CIMOMexception has one parameter, which is the name of the host that is
expected to be running the CIM Object Manager.

Example

NO_CIMOM = CIMOM mollynot detected.

Cause

The CIM Object Manager is not running on the specified host.

Solution

CIM Exception Messages 73

Start the CIM Object Manager by typing the command init.wbem start or
connect to a host that is running the CIM Object Manager.

NO_INSTANCE_PROVIDER

Description

The NO_INSTANCE_PROVIDERexception has two parameters:

� The name of the class for which the instance provider cannot be found.

� The name of the instance provider class that was specified.

Example

NO_INSTANCE_PROVIDER= Instance provider RPC_prop for class RPC_Agent
not found.

Cause

The Java class of the specified instance provider is not found. This error message
indicates that the class path of the CIM Object Manager does not contain one or
more of the following:

� Name of the provider class

� Parameters of the provider class

� CIM class for which the provider is defined

Solution

Make sure the instance provider is present in the CIM Object Manager class path.

NO_METHOD_PROVIDER

Description

The NO_METHOD_PROVIDERexception has two parameters:

� The name of the class for which the method provider cannot be found.

� The name of the method provider class that was specified.

Example

NO_METHOD_PROVIDER= Method provider Start_prop for class RPC_Agent
not found.

Cause

The Java class of the specified method provider is not found. This error message
indicates that the class path of the CIM Object Manager does not contain one or
more of the following:

74 Solaris WBEM Services Administrator’s Guide ♦ February 2000

� Name of the provider class

� Parameters of the provider class

� CIM class for which the provider is defined

Solution

Make sure the method provider is present in the CIM Object Manager class path.

NO_OVERRIDDEN_METHOD

Description

The NO_OVERRIDDEN_METHODexception has two parameters:

� The name of the overriding method.

� The name of the overridden method.

Example

NO_OVERRIDDEN_METHOD= Method Write overridden by Read does not exist in
class hierarchy.

Cause

The method of a subclass is trying to override a method of the superclass which
does not exist anywhere in the class hierarchy.

Solution

Ensure that the method exists in the class hierarchy

NO_OVERRIDDEN_PROPERTY

Description

The NO_OVERRIDDEN_PROPERTYexception has two parameters.

� The name of the overriding property.

� The name of the overridden property.

Example

NO_OVERRIDDEN_PROPERTY= Property A overridden by B does not exist in class
hierarchy.

Cause

The property of a subclass is trying to override the property of the superclass
which does not exist anywhere in the class hierarchy.

CIM Exception Messages 75

Solution

Ensure that the property exists in the superclass hierarchy.

NO_PROPERTY_PROVIDER

Description

The NO_PROPERTY_PROVIDERerror message uses two parameters:

� The name of the class for which the property provider cannot be found.

� The name of the property provider class that was specified.

Example

NO_PROPERTY_PROVIDER= Property provider Write_prop for class
RPC_Agent not found.

Cause

The Java class of the specified property provider is not found. This error message
indicates that the class specified in the path of the CIM Object Manager does not
contain the class specified in the second parameter.

Solution

Set the CIM Object Manager class path.

NO_QUALIFIER_VALUE

Description

The NO_QUALIFIER_VALUEexception has two parameters:

� The name of the qualifier causing the error.

� The element to which the qualifier refers. Depending on the qualifier, the
second parameter can be a class, property, method, or reference.

Example

NO_QUALIFIER_VALUE= Qualifier [SOURCE] for Solaris_ComputerSystem
has no value.

Cause

A qualifier was specified for a property or method, but values were not included
for the qualifier. For example, the qualifier VALUESrequires a string array to be
specified. If the VALUESqualifier is specified without the required string array, the
NO_QUALIFIER_VALUEerror message is displayed.

Solution

76 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Specify the required parameters for the qualifier. For information about what
attributes are required for which qualifiers, see the CIM Specification by the
Distributed Management Task Force at the following URL: http://dmtf.org/
spec/cims.html .

NO_SUCH_METHOD

Description

The NO_SUCH_METHODexception has two parameters:

� The name of the specified method

� The name of the specified class

Example

NO_SUCH_METHOD= Method Configure() does not exist in class
Solaris_ComputerSystem

Cause

Most likely, the method was not defined for the specified class. If the method is
defined for the specified class, another method name may have been misspelled or
typed differently in the definition.

Solution

Define the method for the specified class. Otherwise, ensure that the method name
and class name were typed correctly.

NO_SUCH_PRINCIPAL

Description

The NO_SUCH_PRINCIPALexception has one parameter which is the name of the
principal, a user account.

Example

NO_SUCH_PRINCIPAL= Principal molly not found.

Cause

The specified user account cannot be found. The user name may have been
mistyped upon login, or a user account has not been set up for the user.

Solution

Ensure that the user name is spelled and typed correctly upon login. Ensure that a
user account has been set up for the user.

NO_SUCH_QUALIFIER1

Description

CIM Exception Messages 77

The NO_SUCH_QUALIFIER1exception has one parameter which is the name of
the undefined qualifier.

Example

NO_SUCH_QUALIFIER1= Qualifier [LOCAL] not found.

Cause

The qualifier does not exist in the namespace.

Solution

Define the qualifier. For information about standard CIM qualifiers and the usage
of qualifiers in the CIM schema, see the CIM Specification by the Distributed
Management Task Force at the following URL: http://www.dmtf.org/spec/
cims.html .

NO_SUCH_QUALIFIER2

Description

The NO_SUCH_QUALIFIER2exception has two parameters:

� The name of the class, property, or method that the qualifier modifies.

� The name of the qualifier that cannot be found.

Example

NO_SUCH_QUALIFIER2= Qualifier [LOCAL] not found for
CIM_LogicalElement

Cause

A qualifier was specified to modify a property or method of a particular class. The
qualifier was not defined as part of the any schema. The qualifier is required to be
defined as part of the CIM schema or an extension schema to be recognized as a
valid qualifier.

Solution

Define the qualifier as part of the extension schema or use a standard CIM
qualifier. For information about standard CIM qualifiers and the usage of
qualifiers in the CIM schema, see the CIM Specification by the Distributed
Management Task Force at the URL, http://www.dmtf.org/spec/cims.html .

NO_SUCH_SESSION

Description

The NO_SUCH_SESSIONexception has one parameter which is the session
identifier.

Example

78 Solaris WBEM Services Administrator’s Guide ♦ February 2000

NO_SUCH_SESSION= No such session 4002 .

Cause

The exception is displayed when the client session cannot be found. The CIM
Object Manager removes the session for security reasons. Chapter 3.

Solution

Ensure that your CIM environment is secure.

NOT_HELLO

Description

The NOT_HELLOexception has no parameters.

Example

NOT_HELLO= Not a Hello message.

Cause

This error message is displayed if the data in the hello message—the first message
sent to the CIM Object Manager—is corrupted.

Solution

Try to reconnect.

NOT_INSTANCE_PROVIDER

Description

The NOT_INSTANCE_PROVIDERexception has two parameters:

� The name of the class for which the InstanceProvider is defined.

� The name of the offending Java class.

Example

NOT_INSTANCE_PROVIDER= device_prop_provider for class
Solaris_Provider does not implement InstanceProvider .

Cause

The path to the Java class specified as the provider does not implement the
InstanceProvider interface.

Solution

Ensure that the Java class in the second parameter implements the
InstanceProvider interface.

NOT_METHOD_PROVIDER

Description

CIM Exception Messages 79

The NOT_METHOD_PROVIDERexception has two parameters:

� The name of the method for which the MethodProvider interface is defined.

� The name of the offending Java class.

Example

NOT_METHOD_PROVIDER= Provider device_method_provider for class
Solaris_Provider does not implement MethodProvider .

Cause

The path to the Java method specified in the second parameter does not
implement the MethodProvider interface.

Solution

Ensure that the Java class in the second parameter implements the
MethodProvider interface.

NOT_PROPERTY_PROVIDER

Description

The NOT_PROPERTY_PROVIDERexception has two parameters:

� The name of the method for which the PropertyProvider interface is
defined.

� The name of the offending Java class.

Example

NOT_PROPERTY_PROVIDER= Provider device_property_provider for class
Solaris_Provider does not implement PropertyProvider .

Cause

The path to the Java class in the second parameter does not implement the
PropertyProvider interface.

Solution

Ensure that the Java class in the second parameter implements the
PropertyProvider interface.

NOT_RESPONSE

Description

The NOT_RESPONSEexception has no parameters.

Example

80 Solaris WBEM Services Administrator’s Guide ♦ February 2000

NOT_RESPONSE= Not a response message.

Cause

This exception is displayed when the data in a first response message from the
CIM Object Manager is corrupted.

Solution

Try to reconnect.

PROPERTY_OVERRIDDEN

Description

The PROPERTY_OVERRIDDENexception has three parameters:

� The name of the overriding property.

� The name of the overridden property.

� The name of the method that has overridden the second parameter.

Example

PROPERTY_OVERRIDDEN= Property Volume cannot override MaxCapacity
which is already overridden by RawCapacity

Cause

A property is specified to override another method that has already been
overridden by a third method. Once a property has been overridden, it cannot be
overridden again.

Solution

Specify a different property to override.

PS_UNAVAILABLE

Description

The PS_UNAVAILABLEexception has one parameter which is a message that
describes why the persistent store became unavailable.

Example

PS_UNAVAILABLE= The persistent store is unavailable.

Cause

When the repository becomes unavailable, the first parameter gives more
information on the cause.

Solution

CIM Exception Messages 81

As this exception is a general error condition, try to use the description details to
see what causes the error.

QUALIFIER_UNOVERRIDABLE

Description

The QUALIFIER_UNOVERRIDABLEerror message uses two parameters:

� {0} parameter is replaced by the name of the qualifier that is set with the
DisableOverride flavor.

� {1} parameter is replaced by the name of the qualifier that is set to be disabled
by {0}.

Example

QUALIFIER_UNOVERRIDABLE= Test cannot override qualifier Standard
because it has DisableOverride flavor.

Cause

The ability of the specified qualifier to override another qualifier is disabled
because the flavor of the specified qualifier has been set to DisableOverride or
Override=False .

Solution

Reset the ability of the qualifier to EnableOverride or to Override=True .

REF_REQUIRED

Description

The REF_REQUIREDexception has one parameter which is the name of the
association.

Example

REF_REQUIRED= Association class CIM_Chassis needs at least two references.

Cause

An association was defined without the necessary references. The rules of the
Common Information Model specify that an association must contain two or more
references.

Solution

Add the required references to the association in the first parameter.

SCOPE_ERROR

Description

The SCOPE_ERRORexception has three parameters:

82 Solaris WBEM Services Administrator’s Guide ♦ February 2000

� The name of the element the specified qualifier modifies.

� The name of the specified qualifier.

� The Meta element type of the first parameter.

Example

SCOPE_ERROR= Qualifier [UNITS] for CIM_Container does not have a
Property scope.

Cause

A qualifier was specified in a manner that conflicts with the requirements of the
scope definition. For example, in the CIM Specification, the [READ] qualifier is
defined with a scope property. Hence, if you use [READ] to qualify a class, you
will get a scope exception.

Note - The CIM Specification defines the types of CIM elements that a CIM
qualifier can modify. This definition of the way in which a qualifier can be used is
referred to as its scope. Most qualifiers, by definition, have a scope that directs
them to modify properties or methods or both. Many qualifiers have a scope that
directs them to modify parameters, classes, associations, indications, or schemas.

Solution

Confirm the scope of the specified qualifier. Refer to the section, “1.Qualifiers” of
the CIM Specification by the Distributed Management Task Force at the following
URL:http://www.dmtf.org/spec/cim_spec_v20 for the standard definitions
of CIM qualifiers. Use a different qualifier for the results you want to achieve, or
change your program to use the qualifier according to its CIM definition.

SIGNATURE_ERROR

Description

The SIGNATURE_ERRORexception has no parameters.

Example

SIGNATURE_ERROR= Signature not verified

Cause

This exception is displayed when a message is corrupted either accidentally or
maliciously. It differs from the checksum error in that the message has a valid
checksum, but the signature cannot be verified by the public key of the client. This
protection ensures that even though the session key has been compromised, only
the initial client which created the session is authenticated.

Solution

CIM Exception Messages 83

No action is provided for this message, which is displayed when a session has
been infringed upon by an intruder. For information about Solaris WBEM Services
security features, see Chapter 3.

TYPE_ERROR

Description

The TYPE_ERRORexception has five parameters:

� The name of the specified element, such as a property, method, or qualifier.

� The name of the class to which the specified element belongs.

� The type defined for the element.

� The type of value assigned.

� The actual value assigned.

Example

TYPE_ERROR= Cannot convert sint16 4 to a string for VolumeLabel in class
Solaris_DiskPartition

Cause

The value of a property or method parameter and its defined type are mismatched.

Solution

Match the value of the property or method with its defined type.

UNKNOWNHOST

Description

The UNKNOWNHOSTexception has one parameter which is the name of the host.

Example

UNKNOWNHOST= Unknown host molly

Cause

The client tried to connect to a host that cannot be located.

Solution

Check the spelling of the host name or contact your administrator.

VER_ERROR

Description

The VER_ERRORexception has one parameter which is the version number of the
CIM Object Manager to which the client tried to connect.

84 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Example

VER_ERROR= Unsupported version 0.

Cause

The CIM Object Manager you are trying to connect to does not support the client
version.

Solution

Either upgrade the client API or upgrade the CIM Object Manager.

CIM Exception Messages 85

86 Solaris WBEM Services Administrator’s Guide ♦ February 2000

APPENDIX A

Common Information Model (CIM)
Terms and Concepts

CIM Concepts
The following sections describe basic CIM terms and concepts that are essential to
understanding how network entities and management functions are described and
related within the context of CIM. For more detailed information about the Common
Information Model and object-oriented modeling practices, including how to model
your own schema, refer to the CIM Tutorial at http://dmtf.org/spec/
cim_tutorial provided by the Distributed Management Task Force.

Object-Oriented Modeling
CIM uses the principles of Object-Oriented Modeling, a way to represent an object,
entity, concept, or function that has a physical or logical existence. The goal of
Object-Oriented Modeling is to set a representation of a physical entity into a
framework, or model, to express the qualities and functions of the entity and its
relationships with other entities. In the context of CIM, Object-Oriented Modeling is
used to model hardware and software elements.

Uniform Modeling Language
Models are expressed in the form of visual representation and language. CIM
conventions for rendering the model are based on the diagrammatic concepts of
Uniform Modeling Language (UML). UML uses shapes to represent physical entities

87

and lines to represent relationships. For example, in UML, classes are represented as
rectangles. Each rectangle contains the name of the class it represents. A line between
two rectangles represents a relationship between the two. A line that forks to join
two classes to a higher-level class represents an association.

CIM diagrams add color to the diagrams to further express relationships:

� Red lines!Associations

� Blue lines!Inheritance relationships

� Green lines!Aggregation

CIM Terms
The following terms are innate to the CIM Schema.

Schema
The terms model, schema, and framework are synonymous. Each is an abstract
representation of an entity that has a physical or logical existence. In CIM, a schema
is a named collection of classes used for class naming and administration. Within a
schema, classes and their subclasses are represented hierarchically using the
following syntax: Schemaname_classname.propertyname . Each class name in a
schema must be unique. Solaris WBEM Services includes a Solaris Schema. It
contains all classes specific to the Solaris extension to CIM.

Class and Instance
In WBEM, a class is a collection of objects that represents the most basic unit of
management. For example, in Solaris WBEM Services, the three main functional
classes include CIMClass , CIMProperty , and CIMInstance .

Abstractly, classes are used to create managed objects. Class characteristics are
inherited by the child objects, or instances, that are created from a class. For example,
using CIMClass , you can create an instance,
CIMClass (Solaris_Computer_System) .

This instance of CIMClass answers the question, "What is the computer system?"
The value of the instance is Solaris_Computer_System . All instances of the same
class type are created from the same class template. In the example, the name of the
computer system provides a template to create managed objects of the type
Computer_System .

88 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Classes can be static or dynamic. Instances of static classes are stored by the CIM
Object Manager and can be retrieved from the CIM Repository when a request is
made. Instances of dynamic classes—classes containing data that changes regularly,
such as system usage—are created by provider applications as the data changes.

Custom Classes: Extensions to CIM
For extensions to CIM, custom classes can be developed to support managed objects
that are specific to their managed environment. The CIM Object Manager API
provides new classes to extend CIM for the Solaris operating environment.

Property
A property defines a characteristic of a class. For example, using the CIMProperty
class, you can define a key as a property of a particular CIM class. Values of
properties can be passed back from the CIM Object Manager as a string or as a
vector for a range of properties. Each property has a unique name and only one
domain—the class that owns the property. A property of a given class can be
overridden by a property of its subclass.

An example of a property is the CIMProperty , which denotes the properties of a
CIMClass .

Method
Like properties, methods belong to the class that owns them. A method is an action
the objects of a given class are programmed to complete. For example, the method
public String getName() returns the name of an instance as a concatenation
of its keys and their values. Collectively, these actions describe the behavior of the
class. Methods can belong only to the class that owns them. Within the context of a
class, each method must have a unique name. A method of a given class can be
overridden by a method of its subclass.

New classes inherit the definition of the method from the superclass, but not the
implemented method. The definition of the method, indicated by a qualifier, serves as
a placeholder in which a new implemented method can be provided. The CIM Object
Manager checks for methods by starting from the lowest-level class and moving up
the tree to the root class searching for a qualifier type that indicates a method.

Common Information Model (CIM) Terms and Concepts 89

Domain
Properties and methods are declared within a class. The class that owns the property
or method is referred to as the domain of the property or method.

Qualifier and Flavor
A CIM qualifier is a modifier used to characterize CIM classes, properties, methods,
and parameters. Qualifiers have unique attributes, including Name, Type, and Value,
that are inherited by new classes.

Indication
An indication, an object and a type of class, is created as a result of the occurrence of
an event. Indications can be arranged in a type hierarchy. Indications may have
properties, methods, and triggers. Triggers are system operations, such as a change
made to an existing class, or events that result in the creation of new instances of an
indication.

Association
An association is a class that represents a relationship between two or more classes.
Associations enable the creation of multiple relationship instances for a given class.
System components can be related in many different ways, and associations provide
a way of representing the relationships of these components.

Because of the way associations are defined, it is possible to establish a relationship
between classes without affecting any of the related classes. The addition of an
association does not affect the interface of the related classes. Only associations can
have references.

Reference and Range
A reference is a type of property that defines the roles of objects involved in an
association. The reference specifies the role name of the class in the context of the
association. The domain of a reference is an association. The range of a reference is a
character string that indicates the reference type.

90 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Override
The override relationship is used to indicate the substitution of a property or method
inherited from a subclass for a property or method inherited from the superclass. In
CIM, guidelines determine what qualifiers of properties and methods can be
overridden. For example, if the qualifier type of a class is flagged as a key, then the
key cannot be overridden, because CIM guidelines specify that a key property cannot
be overridden.

Core Model Concepts
The following sections provide descriptive information about the Core Model of CIM.

System Aspects of the Core Model
The Core Model provides classes and associations you can use to develop
applications in which systems and their functions are represented as managed objects.
These classes and associations embody the characteristics unique to all elements that
comprise a system: physical and logical elements. Physical characteristics refer to the
qualities of occupying space and conforming to the elementary laws of physics.
Logical characteristics represent abstractions used to manage and coordinate aspects
of the physical environment, such as system state or the capabilities of a system.

In the Core Model, logical elements can include the following.

TABLE A–1 Core Model Elements

Element Name Description

Systems A grouping of other logical elements. Because systems are
themselves logical elements, a system can be composed of other
systems.

Network Components Classes that provide a topological view of a network.

Services and Access
Points

Provide a mechanism for organizing the structures that provide
access to the capabilities of a system.

Devices An abstraction or emulation of a hardware entity, that may or
may not be realized in physical hardware.

Common Information Model (CIM) Terms and Concepts 91

The following sections describe the classes and associations provided by the Core
Model to emulate the qualities of systems.

System Classes Provided by the Core Model
The following table lists the classes that represent system aspects of the Core schema.
The instances of these classes will most often belong to the descendents of the objects
contained within the class.

TABLE A–2 Core Model System Classes

Class Name Description Example

Managed System

Element

Base class for the system
element hierarchy. Any
distinguishable component of
a system is a candidate for
inclusion in this class.

Software components, such as
files; and devices, such as disk
drives and controllers, and
physical components, such as
chips and cards.

Logical Element Base class for all the
components of the system that
represent abstract system
components

Profiles, processes, or system
capabilities in the form of
logical devices.

System Logical Element that
aggregates a set of
ManagedSystemElements. The
aggregation operates as a
functional whole. Within any
particular subclass of System,
there is a well-defined list of
Managed System Element
classes, whose instances must
be aggregated.

Local Area Network, Wide
Area Network, subnet, intranet

Service Logical Element that contains
the information necessary to
represent and manage the
functionality provided by a
Device and/or
SoftwareFeature. A Service is a
general-purpose object to
configure and manage the
implementation of
functionality. It is not the
functionality itself.

Printer, modem, fax machine

92 Solaris WBEM Services Administrator’s Guide ♦ February 2000

System Associations Provided by the Core Model
Associations are classes that define the relationships shared by other classes.
Association classes are flagged with an ASSOCIATION qualifier that denotes the
purpose of the class. An association class must have at least two references, the
names of the classes that share a particular relationship. Instances of an association
always belong to the association class.

Associations can have the following types of relationships:

� One to one

� One to many

� One to zero

� Aggregation, such as a containment relationship between a system and its parts

Associations express the relationship between a system and the managed elements
that make up the system. Two broad types of associations are used to define the
relationships between classes:

The CIM Schema defines two basic types of associations:

� Component associations, which indicate that one class is part of another

� Dependency associations, which indicate that a class cannot function or exist
without another class

These association types are abstract, which means that association classes do not
have instances alone. Instances must belong to one of their descendent classes.

Component Associations
Component associations express the relationship between the parts of a system and
the system itself. Component associations describe what elements make up a system.
Abstract classes that express component associations are used to create concrete
associations of this type in descendent classes. The descendent concrete associations
answer the question: "What composition relationships does the component, or class,
have with other components?"

In its most specialized role, the component association expresses the relationship
between a system and its logical and physical parts.

Dependency Associations
Dependency associations establish the relationships between objects that rely on one
another. The Core Model provides for the following types of dependencies:

� Functional – the dependent object cannot function without the object on which it
depends

Common Information Model (CIM) Terms and Concepts 93

� Existence – the dependent object cannot exist without the object on which it
depends

The following types of dependencies are included in the Core Model.

TABLE A–3 Core Model Dependencies

Dependency Association Description

HostedService An association between a Service and the System on which the functionality
resides. The cardinality of this association is one-to-many. A System may
host many Services. Services are weak with respect to their hosting System.

Generally speaking, a Service is hosted on the System where the
LogicalDevices or SoftwareFeatures that implement the Service are located.
The model does not represent Services hosted across multiple systems. This
is modeled as an ApplicationSystem that acts as an aggregation point for
Services that are each located on a single host.

HostedAccessPoint An association between a ServiceAccessPoint (SAP) and the System on which
it is provided. The cardinality of this association is one-to-many and is weak
with respect to the System. Each System may host many SAPs.

A feature of the model is that the access point of a service can be located on
the same or a different host from the system to which the service provides
access. This allows the model to depict both distributed systems (an
ApplicationSystem with component Service on multiple hosts) and
distributed access (a Service with access points hosted on other systems).

ServiceSAPDependency An association between a Service and a ServiceAccessPoint indicating that
the referenced SAP is required for the Service to provide its functionality.

SAPSAPDependency An association between a SAP and another SAP indicating that the latter is
required in order for the former to utilize or connect with its Service.

ServiceAccessBySAP An association that identifies the access points for a Service. For example, a
printer may be accessed by Netware, Apple Macintosh, or Windows
ServiceAccessPoints, potentially hosted on different Systems.

Example of an Extension into the Core Model
It is possible to develop many extensions into the Core Model. One possible
extension includes the addition of a Managed Element class as an abstraction of the
Managed System Element class. Descendents of this Managed Element class—classes

94 Solaris WBEM Services Administrator’s Guide ♦ February 2000

that represent objects outside the managed system domain, such as Users or
Administrators—may be added to the Core Model.

Common Model Schemas
The Common Model provides a set of base classes for the following
technology-specific schemas.

Systems
The Systems Model describes the computer, application, and network systems that
comprise the top-level system objects that make up the managed environment.

Devices
The Devices Model is a representation of the discrete logical units on the system that
provide the basic capabilities of the system, such as storage, processing,
communication, and input/output functions. There is a strong temptation to identify
the system devices with the physical components of the system. This approach is
incorrect because what is being managed is not the physical components themselves
but rather the operating system’s representation of the devices.

The representation provided by the operating system does not have a one-to-one
correspondence with the physical components of the system. For example, a modem
may correspond to a discrete physical component. It may just as well be provided by
a multi-function card that supports a LAN adapter as well as a modem, or the
modem may be provided by an ordinary process running on the system. It is very
important in using or making extensions to the model to understand this distinction
between Logical Devices and Physical Components and not to get them confused.

Applications
The CIM Application Management Model is an information model designed to
describe a set of details that is commonly required to manage software products and
applications. This model can be used for various application structures, ranging from
stand-alone desktop applications to a sophisticated, multiplatform, distributed,
Internet-based application. Likewise, the model can be used to describe a single
software product as well as a group of interdependent applications that form a
business system.

Common Information Model (CIM) Terms and Concepts 95

A fundamental characteristic of the application model is the idea of the application
life cycle. An application may be in one of four states: Deployable, Installable,
Executable, and Executing. The interpretation and characteristics of the various
objects used to represent applications are largely tied to the mechanisms used to
transform applications from one state to another.

Networks
The Networks Model represents the various aspects of the network environment.
This includes the topology of the network, the connectivity of the network, and the
various protocols and services necessary to drive and provide access to the network.

Physical
The Physical Model provides a representation of the actual physical environment.
Most of the managed environment is represented by logical objects, that is, objects
that represent informational aspects of the environment rather than actual physical
objects. Most of systems management is concerned with manipulating information
that represents and controls the state of the system. Any impact on the actual
physical environment (such as the movement of a read head on a physical drive, or
the starting of a fan) is likely to only happen as an indirect consequence of the
manipulation of the logical environment. As such, the physical environment is
typically not of direct concern.

Apart from anything else, physical parts of the system are not instrumented. Their
current state (and possibly even their very existence) can only be indirectly inferred
from other information about the system. In the CIM, the physical model is a
representation of this aspect of the environment and it is expected that it will differ
dramatically from system to system and over time as technology evolves. It is also
expected that the physical environment will always be very difficult to track and
instrument, spawning the opportunity for a separate specialty, that of deploying
applications, tools, and environments specifically aimed at providing information
about the physical aspect of the managed environment.

96 Solaris WBEM Services Administrator’s Guide ♦ February 2000

APPENDIX B

The Solaris Schema

During installation, the CIM Object Manager compiles MOF files that describe the
CIM Schema and the Solaris Schema in the directory /usr/sadm/mof/ . CIM
Schema files, which implement the Core and Common Models of the Common
Information Model, are denoted by the use of CIM in their associated file names. The
Solaris Schema files, denoted by the use of Solaris in their file names, provide the
implementation of the Solaris extension into the Common Information Model. This
appendix describes the Solaris Schema files.

� Solaris Schema Files

� The Solaris_Schema1.0.mof File

� The Solaris_Core1.0.mof File

� The Solaris_Application1.0.mof File

� The Solaris_System1.0.mof File

� The Solaris_Device1.0.mof File

� The Solaris_Acl1.0.mof File

Solaris Schema Files
The following table provides a brief overview of the Solaris Schema files located in
/usr/sadm/mof .

97

TABLE B–1 Solaris Schema Files

Solaris Schema File Description of What it Provides

Solaris_Schema1.0.mof Includes all the components of the Solaris Schema.
Specifies the order in which each MOF file of the
Solaris Schema runs.

Solaris_Core1.0.mof Enables WBEM core features to be implemented.
Enables you to set locales, qualifiers, and providers.

Solaris_Application1.0.mof Models Solaris packages and patches in CIM.

Solaris_System1.0.mof Models the Solaris Schema components for a
system, including the operating system and
processes of the system. Extends CIM Schema
definitions through the definition of
Solaris_Process and Solaris_OperatingSystem.

Solaris_Device1.0.mof Enables a description of your system’s processor to
make your computer work with the CIM Object
Manager.

Solaris_Acl1.0.mof Sets the base class and qualifiers for user ACLs.

For more detailed information about each file, see the following sections.

The Solaris_Schema1.0.mof File
The Solaris_Schema1.0.mof file is the high-level container of all other MOF files
comprised by the Solaris Schema. It lists the MOF files in the order in which they
must be compiled. The Java classes generated from each compilation are then sent to
the CIM Object Manager, where they are either enacted as events or sent to the CIM
Repository for storage as objects. The following code example shows the Include
statements in the order required for compilation.

// ===
// Title: Solaris Master MOF 1.0
// Filename: Solaris_Schema1.0.mof
// Version: 1.0
// Author: Sun Microsystems, Inc.
// Date: 02/01/1999
// Description:

(continued)

98 Solaris WBEM Services Administrator’s Guide ♦ February 2000

(Continuation)

// ===
// ===
// Includes
// ===
#pragma Include ("usr/sadm/mof/Solaris_Core1.0.mof")
#pragma Include ("usr/sadm/mof/Solaris_Application1.0.mof")
#pragma Include ("usr/sadm/mof/Solaris_System1.0.mof")
#pragma Include ("usr/sadm/mof/Solaris_Device1.0.mof")
//#pragma Include ("/opt/SUNWconn/wbem/schema/Solaris_Physical1.0.mof")
#pragma Include ("usr/sadm/mof/Solaris_Acl1.0.mof")

The compiler parses a line of the Solaris_Schema1.0.mof file, compiles the file
specified in the Include statement, and then parses the next line of the
Solaris_Schema1.0.mof file, until all included files are compiled.

The Solaris_Core1.0.mof File
The Solaris_Core1.0.mof file is the first of the Solaris Schema files to be
compiled after the Solaris_Schema 1.0.mof file. This file provides the
definitions of the Solaris_ComputerSystem and Solaris_SerialPortSetting
portions of the Solaris Provider, including LogRecord , Solaris_Product ,
Solaris_LogService , and so on.

Solaris_ComputerSystem Definition
The first section of Solaris_Core1.0.mof sets the definition of
Solaris_ComputerSystem as an extension of the
CIM_UnitaryComputerSystem class.

[Provider("com.sun.wbem.solarisprovider.Solaris")]
class Solaris_ComputerSystem:CIM_UnitaryComputerSystem
{
};

The Solaris Schema 99

Solaris_SerialPortSetting and Logging Definitions
The Solaris_SerialPortSetting definition extends the
CIM_SerialPortSetting class into the Solaris operating environment, then
defines the Solaris_LogRecord class, which defines the types of data that can be
written to WBEM system logs.

[Provider ("com.sun.wbem.solarisprovider.Solaris")]
class Solaris_SerialPortSetting:CIM_ElementSetting
{

[override("Element")]
Solaris_SerialPort REF Element;

[override("Setting")]
Solaris_SerialPortConfiguration REF Setting;

};

[Provider ("com.sun.wbem.solarisprovider.Solaris")]
class Solaris_LogRecord
{

WBEM system logs fall into three general categories: application logs, system logs,
and security logs. Log records may be assigned different severities, including
informational, warning, and error logs. For information about using the
Solaris_LogRecord call to enable logging in your applications, see “Using the
APIs to Enable Logging” on page 53 in Chapter 5.

All log records use a standard format that is defined in the Solaris_LogRecord
class. The properties of Solaris_LogRecord indicate the types of data that are
passed from an application into a log record. Some of the data passed is required by
the CIM Object Manager and CIM Repository to identify the recorded data. These
properties are flagged with a [read, key] qualifier to show that they are
read-only. You can view the data but not change the values of these properties. You
can change the values of properties assigned [read,write] qualifiers. The
following list shows the properties as they are assigned to Solaris_LogRecord in
Solaris_Core1.0.mof .

{
[read, key]
sint64 RecordID;

[read, key]
sint32 RecordHashCode;

[read, key]
string Filename;

[read]

(continued)

100 Solaris WBEM Services Administrator’s Guide ♦ February 2000

(Continuation)

datetime RecordDate;

[read, write]
sint32 category;

[read, write]
sint32 severity;

[read, write]
string AppName;

[read, write]
string UserName;

[read, write]
string ClientMachineName;

[read, write]
string ServerMachineName;

[read, write]
string SummaryMessage;

[read, write]
string DetailedMessage;
[read, write]
string data;

[read, write]
boolean SyslogFlag;

};

After properties are defined for Solaris_LogRecord , the Solaris_LogService
class is defined as an extension of CIM_Service . Solaris_LogService controls
the operation of the logging service.

[Provider ("com.sun.wbem.solarisprovider.Solaris")]
class Solaris_LogService : CIM_Service
{

Each of the functions specified by the Solaris_LogService class defines how data
is handled in a log file. For example, the clearLog function specifies that all data is
deleted from the log file and the log file is refreshed to accept new data.

The Solaris Schema 101

{
sint32 clearLog([IN] string fileName);

sint64 getNumRecords([IN] string fileName, [OUT] sint64 numRec);

sint32 listLogFiles([OUT]string logFiles[]);

sint32 getCurrentLogFileName([OUT] string fileName);

sint32 getNumLogFiles([OUT] sint32 numFiles);

sint64 getLogFileSize([OUT] sint64 fileSize);

sint32 getSyslogSwitch([OUT] string switch);

sint32 getLogStorageName([OUT] string fileName);

sint32 getLogFileDir([OUT] string dirName);

sint32 setProperties([IN] string data[]);
};

The Solaris_LogServiceProperties class controls the following characteristics
of a log file:

� Directory where the log file is written

� Name of the log file

� Date the log file was created

� Size allowed for a log file before it is renamed and saved

� Number of log files you can have in the archive

� Ability to write log data to SysLog, the default logging system of the Solaris
operating environment

The Solaris_Application1.0.mof
File
The Solaris_Application1.0.mof file provides the ability to set up packages
and patches for your applications that extend the Solaris Schema.

102 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Packages
The Solaris_Application1.0.mof file contains classes that represent standard
Solaris packages. These packages can be individually installed in and removed from
the Solaris operating environment.

The following table lists the attributes you can set for your application packages,
shows the field in which the package attribute is displayed when you run the
pkginfo command, and describes the package attribute.

TABLE B–2 Package Information You Can Provide

Package Attribute pkginfo field Description

Name PKGINST The name you assign to
your package. Names
typically take the form of
3-4 uppercase characters
indicating the vendor, and
up to 5 lowercase
characters to uniquely
identify the package.

Description DESC A brief description of the
package in the form of a
character string.

Caption NAME An additional brief
description of the package
in the form of a character
string.

Category CATEGORY Type of information
contained in the package,
for example, if the package
contains video, graphic, or
Java applications. The
category is formed by a
free-form string, that
usually contains the term,
system or application. The
category string can be
comprised of multiple
terms separated by
commas. Possible values
include: ALE, graphics, java,
video, JFP, SyMON.

The Solaris Schema 103

TABLE B–2 Package Information You Can Provide (continued)

Architecture ARCH System architecture to
which the package applies.
The Architecture attribute
can be a string or an
enumeration. Use all to
specify a generic text
package such as a package
that consists of man pages
sparc or i386 to
represent a binary
(represented by its
processor type)
sparc.sun4u to specify a
kernal (represented as a
subclass of its processor
type).

Base Directory BASEDIR Valid UNIX path that
indicates the top level
directory where the
package was installed.

Manufacturer VENDOR Manufacturer of the
product.

Build Number PSTAMP String showing the build
host name followed by a
time stamp.

Install Date N/A Date and time values that
indicate when the
operating system was
installed.

Package Status N/A One of three values that
indicate whether or not a
package is fully installed:
unknown , completely
installed , partially
installed .

Support Information HOTLINE Character string that
provides information about
who to call for support.

104 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Patches
The Solaris_Application1.0.mof file also enables you to provide fixes to
problems and updated versions of your applications in the form of patches. The
following table lists and describes the patch attributes that you can provide.

TABLE B–3 Patch Information You Can Provide

Patch Attribute Description

Obsolete Provides a description of patches that are obsolete or
that have been integrated into the current patch.

Required Lists the patches required to make the current patch
work.

Incompatible Lists patches that conflict with the current patch.

Manufacturer Lists the manufacturer’s name.

Installation Date Provides a date/time value indicating the date and
time that the patch was installed.

The Solaris_System1.0.mof File
The Solaris_System1.0.mof file defines the Solaris_Process and
Solaris_OperatingSystem classes.

// ==
// Solaris_Process
// ==

[Provider("Solaris"),
Description ("A Solaris process that is running.")

]
class Solaris_Process:CIM_Process
{
};

// ==
// Solaris_OperatingSystem
// ==

[Provider("Solaris"),
Description ("The Solaris Operating System.")

]

(continued)

The Solaris Schema 105

(Continuation)

class Solaris_OperatingSystem:CIM_OperatingSystem
{
};

The Solaris_Device1.0.mof File
The Solaris_Device1.0.mof file defines the following classes:

� Solaris_Processor class as an extension of CIM_Processor .

� Solaris_DiskDrive class as an extension of CIM_DiskDrive .

� Solaris_SerialPort is defined as an extension of CIM_SerialController .
Its configuration class, Solaris_SerialPortConfiguration is defined as an
extension of CIM_Setting .

Solaris_Processor
Solaris_Processor is defined as an extension of CIM_Processor with the
following properties.

class Solaris_Processor:CIM_Processor
{

string Name;
string Description;
string Architecture;
string ClockSpeed;
string SparcVersion;
uint32 D_Cache;
uint32 E_Cache;
uint32 I_Cache;

};

106 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Solaris_DiskDrive
Currently, the class definition is provided for Solaris_DiskDrive .

]
class Solaris_DiskDrive:CIM_DiskDrive
{

Solaris_SerialPort
The Solaris_SerialPort class is defined with Boolean properties that enable you
to control how serial port characteristics, such as baud rate and parity, are handled
by the port.

// ==
// Solaris_SerialPort
// ==

[Provider("com.sun.wbem.solarisprovider.Solaris"),
Description (

"This is the MOF file that defines a Solaris serial port.")
]

class Solaris_SerialPort:CIM_SerialController
{

[read]
boolean ServiceEnabled;

[read]
boolean SettableBaudRate;

[read]
boolean SettableDataBits;

[read]
boolean SettableFlowControl;

[read]
boolean SettableParity;

[read]
boolean SettableParityCheck;

[read]
boolean SettableStopBits;

[read]
boolean SupportsParityCheck;

[read]
boolean SupportsXOnXOff;

[read]
boolean SupportsXOnXOffSet;

[read]

(continued)

The Solaris Schema 107

(Continuation)

string PortMonitor;
[read]

string ServiceTag;
[read]

string Comment;
boolean DisablePortService();

};

Solaris_PortConfiguration
Solaris_PortConfiguration properties enable you to specify data values that a
user can view or modify.

[Provider ("Solaris")]
class Solaris_SerialPortConfiguration:CIM_Setting
{
[read, write]
boolean ServiceEnabled;
[read, write]
uint32 BaudRate;
[read, write]
string TerminalType;
[read, write]
boolean TTYFlag_Init;
[read, write]
boolean TTYFlag_Bidirectional;
[read, write]
boolean TTYFlag_CarrierConnect;
[read, write]
boolean SoftwareCarrier;
[read, write]
boolean CreateUtmp;
[read, write]
string LoginPrompt;
[read, write]
string Comment;
[read, key]
string ServiceTag;
[read, key]
string PortName;
[read]
string deviceName;
[read, write]
string PortmonTag;
[read, write]
string ServiceProgram;
[read, write]

(continued)

108 Solaris WBEM Services Administrator’s Guide ♦ February 2000

(Continuation)

string StreamsModules;
[read, write]
string Timeout; };

The Solaris_Acl1.0.mof File
This file specifies the Solaris WBEM Services security classes. It defines the base
classes for access control lists, users, and namespaces in the Solaris operating
environment. For information about this file, see “Using the APIs to Set Access
Control” on page 38 in Chapter 3. For information about Solaris WBEM Services
security features, see Chapter 3.

The Solaris Schema 109

110 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Glossary

This Glossary defines terms used in the Solaris WBEM Services documentation.
Many of these terms are familiar to developers, but have new or altered meaning in
the WBEM environment.

alias A symbolic reference in either a class or instance declaration to an
object located elsewhere in a MOF file. Alias names follow the same
rules as instance and class names. Aliases are typically used as
shortcuts to lengthy paths.

aggregation
relationship

A relationship in which one entity is made up of the aggregation of
some number of other entities.

association class A class that describes a relationship between two classes or between
instances of two classes. The properties of an association class
include pointers, or references, to the two classes or instances. All
WBEM classes can be included in one or more associations.

Backus-Naur Form
(BNF)

A metalanguage that specifies the syntax of programming languages.

cardinality The number of values that may apply to an attribute for a given
entity.

class A collection or set of objects that have similar properties and fulfill
similar purposes.

CIM Object
Manager Repository

A central storage area managed by the Common Information Model
Object Manager (CIM Object Manager). This repository contains the
definitions of classes and instances that represent managed objects
and the relationships among them.

CIM Schema A collection of class definitions used to represent managed objects
that occur in every management environment.

111

See also core model, common model, and extension schema.

The CIM is divided into the metamodel and the standard schema.
The metamodel describes what types of entities make up the
schema. It also defines how these entities can be combined into
objects that represent managed objects.

common model The second layer of the CIM schema, which includes a series of
domain-specific but platform-independent classes. The domains are
systems, networks, applications, and other management-related
data. The common model is derived from the core model.

See also extension schema.

core model The first layer of the CIM schema, which includes the top-level
classes and their properties and associations. The core model is both
domain- and platform-independent.

See also common model and extension schema.

Distributed
Management Task
Force (DMTF)

An industry-wide consortium committed to making personal
computers easier to use, understand, configure, and manage.

domain The class to which a property or method belongs. For example, if
status is a property of Logical Device, it is said to belong to the
Logical Device domain.

dynamic class A class whose definition is supplied by a provider at runtime as
needed. Dynamic classes are used to represent provider-specific
managed objects and are not stored permanently in the CIM Object
Manager Repository. Instead, the provider responsible for a
dynamic class stores information about its location. When an
application requests a dynamic class, the CIM Object Manager
locates the provider and forwards the request. Dynamic classes
support only dynamic instances.

dynamic instances An instance that is supplied by a provider when the need arises and
is not stored in the CIM Object Manager Repository. Dynamic
instances can be provided for either static or dynamic classes.
Supporting instances of a class dynamically allows a provider to
always supply up-to-the-minute property values.

enumeration Java term for getting a list of objects. Java provides an
Enumeration interface that has methods for enumerating a list of
objects. An individual object on this list to be enumerated is called
an element.

112 Solaris WBEM Services Administrator’s Guide ♦ February 2000

extension schema The third layer of the CIM Schema, which includes platform-specific
extensions of the CIM Schema such as Solaris and UNIX.

See also common model and core model.

flavor See qualifier flavor.

indication An operation executed as a result of some action such as the
creation, modification, or deletion of an instance, access to an
instance, or modification or access to a property. Indications can also
result from the passage of a specified period of time. An indication
typically results in an event.

inheritance The relationship that describes how classes and instances are
derived from parent classes or superclasses. A class can spawn a
new subclass, also called a child class. A subclass contains all the
methods and properties of its parent class. Inheritance is one of the
features that allows WBEM classes to function as templates for
actual managed objects in the WBEM environment.

instance A representation of a managed object that belongs to a particular
class, or a particular occurrence of an event. Instances contain actual
data.

instance provider A type of provider that supports instances of system- and
property-specific classes. Instance providers can support data
retrieval, modification, deletion, and enumeration. Instance
providers can also invoke methods.

See also property provider.

interface class The class used to access a set of objects. The interface class can be
an abstract class representing the scope of an enumeration.

See also enumeration and scope.

Interface Definition
Language (IDL)

A generic term for a language that lets a program or object written
in one language communicate with another program written in an
unknown language.

key A property that is used to provide a unique identifier for an instance
of a class. Key properties are marked with the Key qualifier.

Key qualifier A qualifier that must be attached to every property in a class that
serves as part of the key for that class.

113

managed object A hardware or software component that is represented as a WBEM
class. Information about managed objects is supplied by data and
event providers as well as the CIM Object Manager Repository.

Managed Object
Format (MOF)

A compiled language for defining classes and instances. The MOF
compiler (mofc) compiles .mof text files into Java classes and adds
the data to the CIM Object Manager Repository. MOF eliminates the
need to write code, thus providing a simple and fast technique for
modifying the CIM Object Manager Repository.

management
application

An application or service that uses information originating from one
or more managed objects in a managed environment. Management
applications retrieve this information through calls to the CIM Object
Manager API from the CIM Object Manager and from providers.

management
information base

A database of managed objects.

metamodel A CIM component that describes the entities and relationships
representing managed objects. For example, classes, instances, and
associations are included in the metamodel.

metaschema A formal definition of the Common Information Model, which
defines the terms used to express the model, its usage, and its
semantics.

method A function describing the behavior of a class. Including a method in
a class does not guarantee an implementation of the method.

MOF file A text file that contains definitions of classes and instances using the
Managed Object Format (MOF) language.

Named Element An entity that can be expressed as an object in the metaschema.

namespace A directory-like structure that can contain classes, instances, and
other namespaces.

object path A formatted string used to access namespaces, classes, and
instances. Each object on the system has a unique path which
identifies it locally or over the network. Object paths are
conceptually similar to Universal Resource Locators (URLs).

override Indicates that the property, method, or reference in the derived class
overrides the similar construct in the parent class in the inheritance
tree or in the specified parent class.

114 Solaris WBEM Services Administrator’s Guide ♦ February 2000

polymorphism The ability to alter methods and properties in a derived class
without changing their names or altering interfaces. For example, a
subclass can redefine the implementation of a method or property
inherited from its superclass. The property or method is thereby
redefined even if the superclass is used as the interface class.

Thus, the LogicalDevice class can define the variable status as a
string, and can return the values "on" or "off." The Modem subclass
of LogicalDevice can redefine (override) status by returning "on,"
"off," and "connected." If all LogicalDevices are enumerated, any
LogicalDevice that happens to be a modem can return the value
"connected" for the status property.

property A value used to characterize the instances of a class. Property names
cannot begin with a digit and cannot contain white space. Property
values must have a valid Managed Object Format (MOF) data type.

property provider A program that communicates with managed objects to access data
and event notifications from a variety of sources, such as the Solaris
operating environment or a Simple Network Management Protocol
(SNMP) SNMP device. Providers forward this information to the
CIM Object Manager for integration and interpretation.

qualifier A modifier containing information that describes a class, an
instance, a property, a method, or a parameter. The three categories
of qualifiers are: those defined by the Common Information Model
(CIM), those defined by WBEM (standard qualifiers), and those
defined by developers. Standard qualifiers are attached
automatically by the CIM Object Manager.

qualifier flavor An attribute of a CIM qualifier that governs the use of a qualifier.
WBEM flavors describe rules that specify whether a qualifier can be
propagated to derived classes and instances and whether or not a
derived class or instance can override the qualifier’s original value.

range A class that is referenced by a reference property.

reference A special string property type that is marked with the reference
qualifier, indicating that it is a pointer to other instances.

required property A property that must have a value.

schema A collection of class definitions that describe managed objects in a
particular environment.

115

scope An attribute of a CIM qualifier that indicates which CIM elements
can use the qualifier. Scope can only be defined in the Qualifier
Type declaration; it cannot be changed in a qualifier.

selective inheritance The ability of a descendant class to drop or override the properties
of an ancestral class.

Simple Network
Management
Protocol (SNMP)

A protocol of the Internet reference model used for network
management.

singleton class A WBEM class that supports only a single instance.

Solaris Schema A Sun extension to the CIM Schema that contains definitions of
classes and instances to represent managed objects that exist in a
typical Solaris operating environment.

standard schema A common conceptual framework for organizing and relating the
various classes representing the current operational state of a
system, network, or application. The standard schema is defined by
the Distributed Management Task Force (DMTF) in the Common
Information Model (CIM).

static class A WBEM class whose definition is persistent. The definition is
stored in the CIM Object Manager Repository until it is explicitly
deleted. The CIM Object Manager can provide definitions of static
classes without the help of a provider. Static classes can support
either static or dynamic instances.

static instance An instance that is persistently stored in the CIM Object Manager
Repository.

subclass A class that is derived from a superclass. The subclass inherits all
features of its superclass, but can add new features or redefine
existing ones.

subschema A part of a schema owned by a particular organization. The Win32
and Solaris Schemas are examples of subschemas.

superclass The class from which a subclass inherits.

transitive
dependency

In a relation having at least three attributes R (A, B, C), the situation
in which A determines B, B determines C, but B does not determine
A.

116 Solaris WBEM Services Administrator’s Guide ♦ February 2000

trigger A recognition of a state change (such as create, delete, update, or
access) of a class instance, and update or access of a property. The
WBEM implementation does not have an explicit object representing
a trigger. Triggers are implied either by the operations on basic
objects of the system (create, delete, and modify on classes, instances
and namespaces) or by events in the managed environment.

Unified Modeling
Language (UML)

A notation language used to express a software system using boxes
and lines to represent objects and relationships.

Unicode A 16-bit character set capable of encoding all known characters and
used as a worldwide character-encoding standard.

UTF-8 An 8-bit transformation format that may also serve as a
transformation format for Unicode character data.

virtual function
table (VTBL)

A table of function pointers, such as an implementation of a class.
The pointers in the VTBL point to the members of the interfaces that
an object supports.

Win32 Schema A Microsoft extension to the CIM Schema that contains definitions
of classes and instances to represent managed objects that exist in a
typical Win32 environment.

117

118 Solaris WBEM Services Administrator’s Guide ♦ February 2000

Index

A
access control

setting
on a namespace 4, 40
on a user 4, 39

Access Control Lists 38
Administration Tool

editing user access 4, 36
application programming interfaces (APIs)

logging 53
provider 26
security 38

authentication 34
authorization 34

C
CIM (Common Information Model)

base classes
Applications 95
Networks 96
Physical 96

basic concepts 87

basic terms
association 90
class 88
domain 90
flavor 90
indication 90
instance 88
method 89
override 91
property 89
qualifier 90
reference 90
schema 88

quick review 20 to 22
security 33
with Object-Oriented Modeling 87

CIM object
definition 20

CIM Object Manager
exceptions 63
how it uses providers 26
restarting 31
security 33
startup functions 29
stopping 31

CIM Schema 21
Common Model 21
Core Model 21

class
log record 52
log service 52
security 38

client session

119

security keys 34
commands

init.wbem 30
mofcomp 44
wbemadmin 35

Common Information Mode (CIM)l
basic terms

domain 90
with Object-Oriented Modeling 87

Common Information Model (CIM)
base classes

Applications 95
Networks 96
Physical 96

basic concepts 87
basic terms

association 90
class 88
flavor 90
indication 90
instance 88
method 89
override 91
property 89
qualifier 90
reference 90
schema 88

quick review 20 to 22
security 33

Common Model
base classes 21

devices 95
systems 95

compatibility with other standards 19
Core Model

dependencies 94
elements 91
system classes 92

D
digital signature 34
Distributed Management Task Force

(DMTF) 20
DMTF (Distributed Management Task

Force) 20
dynamic data 26

E
examples

compiling a MOF file 46
error message 64

exception messages 63

I
init.wbem command 30
interoperability 27

J
Java

conversion from Managed Object Format
(MOF) 24

Java Native Interface (JNI) 25
Java Native Interface (JNI) 25
JNI (Java Native Interface) 25

L
logging 49

format 51
reading data from a log file 56
writing to a log file 53

M
Managed Object Format

schema files
Solaris schema 97

Managed Object Format (MOF)
conversion to Java 24

method
setInstance 38

MOF (Managed Object Format)
conversion to Java 24

MOF Compiler
description 43

MOF file
example of compiling 46
how to compile 45
sample 45
security caution for compiling 47

mofcomp command
example 46
security caution 47

120 Solaris WBEM Services Administrator’s Guide ♦ February 2000

syntax 44

N
namespace

security 33
setting access control 38

namespaces
default 26
defined 25

P
privileges

granting defaults to users 36
Sun WBEM User Manager 34

provider
functions 26
restarting the CIM Object Manager 31
writing a native provider 24

R
replay protection 34

S
schema

CIM Schema 21
definition 20
Solaris schema 97

SDK (Software Development Kit) 27
security

Sun WBEM User Manager 34
security features

authentication 34
authorization 34

digitial signature 34
replay protection 34

software components 23
software development kit (SDK) 27
standards

supported by web-based enterprise
management (WBEM) 19

startup functions 29
Sun WBEM User Manager

default access rights 36
setting user privileges 34
starting 35

T
technology-specific schemas 95

U
Uniform Modeling Language 87

W
WBEM (web-based enterprise management)

compatibility 19
definition 19
supported standards 19

web-based enterprise management (WBEM)
compatibility 19
definition 19
supported standards 19

X
XML

interoperability 27

121

