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Preface

The Multithreaded Programming Guide describes the multithreaded programming
interfaces for POSIX and Solaris threads in the SolarisTM Operating Environment.
This guide shows application programmers how to create new multithreaded
programs and how to add multithreading to existing programs.

Although this guide covers both the POSIX and Solaris threads implementations,
most topics assume a POSIX threads interest. Information applying to only Solaris
threads is covered in a special chapter.

To understand this guide, a reader must be familiar with

� A UNIX
®

SVR4 system—preferably the Solaris Operating Environment.

� The C programming language—multithreading is implemented through the
libthread library

� The principles of concurrent programming (as opposed to sequential
programming)—multithreading requires a different way of thinking about
function interactions. Some books you might want to read are:

� Algorithms for Mutual Exclusion by Michel Raynal (MIT Press, 1986)

� Concurrent Programming by Alan Burns & Geoff Davies (Addison-Wesley, 1993)

� Distributed Algorithms and Protocols by Michel Raynal (Wiley, 1988)

� Operating System Concepts by Silberschatz, Peterson, & Galvin (Addison-Wesley,
1991)

� Principles of Concurrent Programming by M. Ben-Ari (Prentice-Hall, 1982)
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Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun .

How This Guide Is Organized
Chapter 1 gives a structural overview of threads implementation in this release.

Chapter 2 discusses the general POSIX threads library routines, emphasizing creating
a thread with default attributes.

Chapter 3 covers creating a thread with nondefault attributes.

Chapter 4 covers the threads library synchronization routines.

Chapter 5 discusses changes to the operating environment to support multithreading.

Chapter 6 covers multithreading safety issues.

Chapter 7 covers the basics of compiling and debugging multithreaded applications.

Chapter 8 describes some of the tools available for gathering performance and
debugging information about your multithreaded programs.

Chapter 9 covers the Solaris threads (as opposed to POSIX threads) interfaces.

Chapter 10 discusses issues that affect programmers writing multithreaded
applications.

Appendix A shows how code can be designed for POSIX threads.

Appendix B shows an example of building a barrier in Solaris threads.

Appendix C lists the safety levels of library routines.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com .
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What Typographic Conventions Mean
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls −a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Preface 17



TABLE P–2 Shell Prompts (continued)

Shell Prompt

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser
prompt

#

18 Multithreaded Programming Guide ♦ February 2000



CHAPTER 1

Covering Multithreading Basics

The word multithreading can be translated as multiple threads of control or multiple flows
of control. While a traditional UNIX process always has contained and still does
contain a single thread of control, multithreading (MT) separates a process into many
execution threads, each of which runs independently.

Multithreading your code can

� Improve application responsiveness

� Use multiprocessors more efficiently

� Improve program structure

� Use fewer system resources

This chapter explains some multithreading terms, benefits, and concepts. If you are
ready to start using multithreading, skip to Chapter 2.

� “Defining Multithreading Terms” on page 19

� “Meeting Multithreading Standards” on page 21

� “Benefiting From Multithreading” on page 21

� “Understanding Basic Multithreading Concepts” on page 22

Defining Multithreading Terms
Table 1–1 introduces some of the terms used in this book.
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TABLE 1–1 Multithreading Terms

Term Definition

Process The UNIX environment (such as file descriptors, user ID,
and so on) created with the fork(2) system call, which is
set up to run a program.

Thread A sequence of instructions executed within the context of a
process.

pthreads (POSIX threads) A POSIX 1003.1c compliant threads interface.

Solaris threads A Sun MicrosystemsTM threads interface that is not POSIX
compliant. A predecessor of pthreads.

Single-threaded Restricting access to a single thread.

Multithreaded Allowing access to two or more threads.

User- or Application-level
threads

Threads managed by the threads library routines in user (as
opposed to kernel) space.

Lightweight processes Threads in the kernel that execute kernel code and system
calls (also called LWPs).

Bound threads Threads that are permanently bound to LWPs.

Unbound threads A default Solaris thread that context switches very quickly
without kernel support.

Attribute object Contains opaque data types and related manipulation
functions used to standardize some of the configurable
aspects of POSIX threads, mutual exclusion locks (mutexes),
and condition variables.

Mutual exclusion locks Functions that lock and unlock access to shared data.

Condition variables Functions that block threads until a change of state.

Counting semaphore A memory-based synchronization mechanism.

Parallelism A condition that arises when at least two threads are
executing simultaneously.

Concurrency A condition that exists when at least two threads are making
progress. A more generalized form of parallelism that can
include time-slicing as a form of virtual parallelism.
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Meeting Multithreading Standards
The concept of multithreaded programming goes back to at least the 1960s. Its
development on UNIX systems began in the mid-1980s. While there is agreement
about what multithreading is and the features necessary to support it, the interfaces
used to implement multithreading have varied greatly.

For several years a group called POSIX (Portable Operating System Interface) 1003.4a
has been working on standards for multithreaded programming. The standard has
now been ratified. This Multithreaded Programming Guide is based on the POSIX
standards: P1003.1b final draft 14 (realtime), and P1003.1c final draft 10
(multithreading).

This guide covers both POSIX threads (also called pthreads) and Solaris threads.
Solaris threads were available in the Solaris 2.4 release, and are not functionally
different from POSIX threads. However, because POSIX threads are more portable
than Solaris threads, this guide covers multithreading from the POSIX perspective.
Subjects specific to Solaris threads only are covered in the Chapter 9.

Benefiting From Multithreading
Improving Application Responsiveness
Any program in which many activities are not dependent upon each other can be
redesigned so that each activity is defined as a thread. For example, the user of a
multithreaded GUI does not have to wait for one activity to complete before starting
another.

Using Multiprocessors Efficiently
Typically, applications that express concurrency requirements with threads need not
take into account the number of available processors. The performance of the
application improves transparently with additional processors.

Numerical algorithms and applications with a high degree of parallelism, such as
matrix multiplications, can run much faster when implemented with threads on a
multiprocessor.
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Improving Program Structure
Many programs are more efficiently structured as multiple independent or
semi-independent units of execution instead of as a single, monolithic thread.
Multithreaded programs can be more adaptive to variations in user demands than
single-threaded programs.

Using Fewer System Resources
Programs that use two or more processes that access common data through shared
memory are applying more than one thread of control.

However, each process has a full address space and operating environment state. The
cost of creating and maintaining this large amount of state information makes each
process much more expensive than a thread in both time and space.

In addition, the inherent separation between processes can require a major effort by
the programmer to communicate between the threads in different processes, or to
synchronize their actions.

Combining Threads and RPC
By combining threads and a remote procedure call (RPC) package, you can exploit
nonshared-memory multiprocessors (such as a collection of workstations). This
combination distributes your application relatively easily and treats the collection of
workstations as a multiprocessor.

For example, one thread might create child threads. Each of these children could
then place a remote procedure call, invoking a procedure on another workstation.
Although the original thread has merely created threads that are now running in
parallel, this parallelism involves other computers.

Understanding Basic Multithreading
Concepts
Concurrency and Parallelism
In a multithreaded process on a single processor, the processor can switch execution
resources between threads, resulting in concurrent execution.
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In the same multithreaded process in a shared-memory multiprocessor environment,
each thread in the process can run on a separate processor at the same time, resulting
in parallel execution.

When the process has fewer or as many threads as there are processors, the threads
support system in conjunction with the operating environment ensure that each
thread runs on a different processor.

For example, in a matrix multiplication that has the same number of threads and
processors, each thread (and each processor) computes a row of the result.

Looking at Multithreading Structure
Traditional UNIX already supports the concept of threads—each process contains a
single thread, so programming with multiple processes is programming with
multiple threads. But a process is also an address space, and creating a process
involves creating a new address space.

Creating a thread is much less expensive when compared to creating a new process,
because the newly created thread uses the current process address space. The time it
takes to switch between threads is much less than the time it takes to switch between
processes, partly because switching between threads does not involve switching
between address spaces.

Communicating between the threads of one process is simple because the threads
share everything—address space, in particular. So, data produced by one thread is
immediately available to all the other threads.

The interface to multithreading support is through a subroutine library, libpthread
for POSIX threads, and libthread for Solaris threads. Multithreading provides
flexibility by decoupling kernel-level and user-level resources.

User-Level Threads
Threads are the primary programming interface in multithreaded programming.
User-level threads1 are handled in user space and avoid kernel context switching
penalties. An application can have hundreds of threads and still not consume many
kernel resources. How many kernel resources the application uses is largely
determined by the application.

Threads are visible only from within the process, where they share all process
resources like address space, open files, and so on. The following state is unique to
each thread.

� Thread ID

1. User-level threads are named to distinguish them from kernel-level threads, which are the concern of systems
programmers, only. Because this book is for application programmers, kernel-level threads are not discussed.
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� Register state (including PC and stack pointer)

� Stack

� Signal mask

� Priority

� Thread-private storage

Because threads share the process instructions and most of the process data, a change
in shared data by one thread can be seen by the other threads in the process. When a
thread needs to interact with other threads in the same process, it can do so without
involving the operating environment.

By default, threads are very lightweight. But, to get more control over a thread (for
instance, to control scheduling policy more), the application can bind the thread.
When an application binds threads to execution resources, the threads become kernel
resources (see “System Scope (Bound Threads)” on page 26 for more information).

To summarize, user-level threads are:

� Inexpensive to create because they do not need to create their own address space.
They are bits of virtual memory that are allocated from your address space at run
time.

� Fast to synchronize because synchronization is done at the application level, not at
the kernel level.

� Easily managed by the threads library; either libpthread or libthread .

Lightweight Processes
The threads library uses underlying threads of control called lightweight processes that
are supported by the kernel. You can think of an LWP as a virtual CPU that executes
code or system calls.

You usually do not need to concern yourself with LWPs to program with threads.
The information here about LWPs is provided as background, so you can understand
the differences in scheduling scope, described on “Process Scope (Unbound
Threads)” on page 25.

Note - The LWPs in the Solaris 2, Solaris 7, and Solaris 8 operating environments are
not the same as the LWPs in the SunOSTM 4.0 LWP library, which are not supported
in the Solaris 2, Solaris 7, and Solaris 8 operating environments.

Much as the stdio library routines such as fopen() and fread() use the open()
and read() functions, the threads interface uses the LWP interface, and for many of
the same reasons.

Lightweight processes (LWPs) bridge the user level and the kernel level. Each
process contains one or more LWP, each of which runs one or more user threads.
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(See Figure 1–1.) The creation of a thread usually involves just the creation of some
user context, but not the creation of an LWP.

= LWP= Thread

 

User

Kernel

Threads Library

unbound threads bound threads

Figure 1–1 User-level Threads and Lightweight Processes

Each LWP is a kernel resource in a kernel pool, and is allocated (attached) and
de-allocated (detached) to a thread on a per thread basis. This happens as threads are
scheduled or created and destroyed.

Scheduling
POSIX specifies three scheduling policies: first-in-first-out (SCHED_FIFO),
round-robin (SCHED_RR), and custom (SCHED_OTHER). SCHED_FIFOis a
queue-based scheduler with different queues for each priority level. SCHED_RRis
like FIFO except that each thread has an execution time quota.

Both SCHED_FIFOand SCHED_RRare POSIX Realtime extensions. SCHED_OTHERis
the default scheduling policy.

See “LWPs and Scheduling Classes” on page 150 for information about the
SCHED_OTHERpolicy, and about emulating some properties of the POSIX
SCHED_FIFOand SCHED_RRpolicies.

Two scheduling scopes are available: process scope for unbound threads and system
scope for bound threads. Threads with differing scope states can coexist on the same
system and even in the same process. In general, the scope sets the range in which
the threads scheduling policy is in effect.

Process Scope (Unbound Threads)
Unbound threads are created PTHREAD_SCOPE_PROCESS. These threads are
scheduled in user space to attach and detach from available LWPs in the LWP pool.
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LWPs are available to threads in this process only; that is threads are scheduled on
these LWPs.

In most cases, threads should be PTHREAD_SCOPE_PROCESS. This allows the threads
to float among the LWPs, and this improves threads performance (and is equivalent
to creating a Solaris thread in the THR_UNBOUNDstate). The threads library decides,
with regard to other threads, which threads get serviced by the kernel.

System Scope (Bound Threads)
Bound threads are created PTHREAD_SCOPE_SYSTEM. A boundthread is
permanently attached to an LWP.

Each bound thread is bound to an LWP for the lifetime of the thread. This is
equivalent to creating a Solaris thread in the THR_BOUNDstate. You can bind a thread
to give it an alternate signal stack or to use special scheduling attributes with
Realtime scheduling. All scheduling is done by the operating environment.

Note - In neither case, bound or unbound, can a thread be directly accessed by or
moved to another process.

Cancellation
Thread cancellation allows a thread to terminate the execution of any other thread in
the process. The target thread (the one being cancelled) can keep cancellation
requests pending and can perform application-specific cleanup when it acts upon the
cancellation notice.

The pthreads cancellation feature permits either asynchronous or deferred
termination of a thread. Asynchronous cancellation can occur at any time; deferred
cancellation can occur only at defined points. Deferred cancellation is the default
type.

Synchronization
Synchronization allows you to control program flow and access to shared data for
concurrently executing threads.

The four synchronization models are mutex locks, read/write locks, condition
variables, and semaphores.

� Mutex locks allow only one thread at a time to execute a specific section of code,
or to access specific data.
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� Read/write locks permit concurrent reads and exclusive writes to a protected
shared resource. To modify a resource, a thread must first acquire the exclusive
write lock. An exclusive write lock is not permitted until all read locks have been
released.

� Condition variables block threads until a particular condition is true.

� Counting semaphores typically coordinate access to resources. The count is the
limit on how many threads can have access to a semaphore. When the count is
reached, the semaphore blocks.

Using the 64–bit Architecture
For application developers, the major difference between the Solaris 64–bit and
32–bit operating environments is the C–language data type model used. The 64–bit
data type uses the LP64 model where longs and pointers are 64–bits wide. All other
fundamental data types remain the same as the in the 32–bit implementation. The
32–bit data type uses the ILP32 model where ints , longs , and pointers are 32–bits.

The following summary briefly describes the major features and considerations for
using the 64–bit environment:

� Large Virtual Address Space

In the 64-bit environment, a process can have up to 64 bits of virtual address
space, or 18 exabytes. This is 4 billion times the current 4 Gbyte maximum of a
32-bit process. Because of hardware restrictions, however, some platforms might
not support the full 64 bits of address space.

Large address space increases the number of threads that can be created with the
default stack size (1 Mbyte on 32 bits, 2 Mbytes on 64 bits). The number of threads
with the default stack size is approximately 2000 threads on a 32–bit system and
8000 billion on a 64–bit system.

� Kernel Memory Readers

Because the kernel is an LP64 object that uses 64-bit data structures internally,
existing 32-bit applications that use libkvm , /dev/mem , or /dev/kmem do not
work properly and must be converted to 64-bit programs.

� /proc Restrictions

A 32-bit program that uses /proc is able to look at 32-bit processes, but is unable
to understand a 64-bit process; the existing interfaces and data structures that
describe the process are not large enough to contain the 64-bit quantities involved.
Such programs must be recompiled as 64-bit programs to work for both 32-bit and
64-bit processes.

� 64–bit Libraries
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32–bit applications are required to link with 32–bit libraries, and 64–bit
applications are required to link with 64–bit libraries. With the exception of those
libraries that have become obsolete, all of the system libraries are provided in both
32–bit and 64–bit versions. However, no 64–libraries are provided in static form.

� 64–bit Arithmetic

Though 64–bit arithmetic has long been available in previous 32–bit Solaris
releases, the 64–bit implementation now provides full 64–bit machine registers for
integer operations and parameter passing.

� Large Files

If an application requires only large file support, then it can remain 32-bit and use
the Large Files interface. It is, however, recommended that the application be
converted to 64-bit to take full advantage of 64-bit capabilities.
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CHAPTER 2

Basic Threads Programming

The Threads Library
This chapter introduces the basic threads programming routines from the POSIX
threads library, libpthread(3T) . This chapter covers default threads, or threads
with default attribute values, which are the kind of threads that are most often used
in multithreaded programming.

Chapter 3, Thread Create Attributes, explains how to create and use threads with
nondefault attributes.

Note - Attributes are specified only at thread creation time; they cannot be altered
when the thread is being used.

The POSIX (libpthread) routines introduced here have programming interfaces that
are similar to the original (libthread ) Solaris multithreading library.

The following brief roadmap directs you to the discussion of a particular task and its
associated man page.

� “Create a Default Thread” on page 30

� “Wait for Thread Termination” on page 31

� “Detaching a Thread” on page 34

� “Create a Key for Thread-Specific Data” on page 35

� “Delete the Thread-Specific Data Key” on page 36

� “Set the Thread-Specific Data Key” on page 37

� “Get the Thread-Specific Data Key” on page 37

� “Get the Thread Identifier” on page 40
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� “Compare Thread IDs” on page 41

� “Initializing Threads” on page 41

� “Yield Thread Execution” on page 42

� “Set the Thread Priority” on page 42

� “Get the Thread Priority” on page 43

� “Send a Signal to a Thread” on page 44

� “Access the Signal Mask of the Calling Thread” on page 45

� “Forking Safely” on page 46

� “Terminate a Thread” on page 46

� “Cancel a Thread” on page 49

� “Enable or Disable Cancellation” on page 50

� “Set Cancellation Type” on page 50

� “Create a Cancellation Point” on page 51

� “Push a Handler Onto the Stack” on page 52

� “Pull a Handler Off the Stack” on page 52

Create a Default Thread
When an attribute object is not specified, it is NULL, and the default thread is created
with the following attributes:

� Unbound

� Nondetached

� With a default stack and stack size

� With the parent’s priority

You can also create a default attribute object with pthread_attr_init( ) , and
then use this attribute object to create a default thread. See the section “Initialize
Attributes” on page 55 for details.

pthread_create(3T)
Use pthread_create (3T) to add a new thread of control to the current process.

Prototype:
int pthread_create(pthread_t * tid, const pthread_attr_t * tattr,

void*(* start_routine)(void *), void * arg);

#include <pthread.h>

30 Multithreaded Programming Guide ♦ February 2000



pthread_attr_t ( ) tattr;
pthread_t tid;
extern void *start_routine(void * arg);
void * arg;
int ret;

/* default behavior*/
ret = pthread_create( &tid, NULL, start_routine, arg);

/* initialized with default attributes */
ret = pthread_attr_init( &tattr);
/* default behavior specified*/
ret = pthread_create( &tid, &tattr, start_routine, arg);

The pthread_create() function is called with attr having the necessary state
behavior. start_routine is the function with which the new thread begins execution.
When start_routine returns, the thread exits with the exit status set to the value
returned by start_routine (see “pthread_create(3T)” on page 30).

When pthread_create() is successful, the ID of the thread created is stored in the
location referred to as tid.

Creating a thread using a NULL attribute argument has the same effect as using a
default attribute; both create a default thread. When tattr is initialized, it acquires the
default behavior.

Return Values
pthread_create() returns a zero and exits when it completes successfully. Any
other returned value indicates that an error occurred. When any of the following
conditions are detected, pthread_create() fails and returns the corresponding
value.

EAGAIN

A system limit is exceeded, such as when too many LWPs have been created.

EINVAL

The value of tattr is invalid.

Wait for Thread Termination

pthread_join(3T)
Use pthread_join (3T) to wait for a thread to terminate.

Prototype:
int pthread_join(thread_t tid, void ** status);

Basic Threads Programming 31



#include <pthread.h>

pthread_t tid;
int ret;
int status;

/* waiting to join thread "tid" with status */
ret = pthread_join( tid, & status);

/* waiting to join thread "tid" without status */
ret = pthread_join( tid, NULL);

The pthread_join( ) function blocks the calling thread until the specified thread
terminates.

The specified thread must be in the current process and must not be detached. For
information on thread detachment, see “Set Detach State” on page 57.

When status is not NULL, it points to a location that is set to the exit status of the
terminated thread when pthread_join() returns successfully.

Multiple threads cannot wait for the same thread to terminate. If they try to, one
thread returns successfully and the others fail with an error of ESRCH.

After pthread_join( ) returns, any stack storage associated with the thread can be
reclaimed by the application.

Return Values

Returns a zero when it completes successfully. Any other returned value indicates
that an error occurred. When any of the following conditions are detected,
pthread_join( ) fails and returns the corresponding value.

ESRCH

tid is not a valid, undetached thread in the current process.

EDEADLK

tid specifies the calling thread.

EINVAL

The value of tid is invalid.

The pthread_join( ) routine takes two arguments, giving you some flexibility in
its use. When you want the caller to wait until a specific thread terminates, supply
that thread’s ID as the first argument.

If you are interested in the exit code of the defunct thread, supply the address of an
area to receive it.
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Remember that pthread_join() works only for target threads that are
nondetached. When there is no reason to synchronize with the termination of a
particular thread, then that thread should be detached.

Think of a detached thread as being the thread you use in most instances and reserve
nondetached threads for only those situations that require them.

A Simple Threads Example
In Code Example 2–1, one thread executes the procedure at the top, creating a helper
thread that executes the procedure fetch() , which involves a complicated database
lookup and might take some time.

The main thread wants the results of the lookup but has other work to do in the
meantime. So it does those other things and then waits for its helper to complete its
job by executing pthread_join( ) .

An argument, pbe, to the new thread is passed as a stack parameter. This can be done
here because the main thread waits for the spun-off thread to terminate. In general,
though, it is better to use malloc(3C) to allocate storage from the heap instead of
passing an address to thread stack storage, because this address might disappear or
be reassigned if the thread terminated.

CODE EXAMPLE 2–1 A Simple Threads Program

void mainline (...)
{

struct phonebookentry *pbe;
pthread_attr_t tattr;
pthread_t helper;
int status;

pthread_create(&helper, NULL, fetch, &pbe);

/* do something else for a while */

pthread_join(helper, &status);
/* it’s now safe to use result */

}

void fetch(struct phonebookentry *arg)
{

struct phonebookentry *npbe;
/* fetch value from a database */

npbe = search (prog_name)
if (npbe != NULL)

*arg = *npbe;
pthread_exit(0);

}

struct phonebookentry {
char name[64];
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char phonenumber[32];
char flags[16];

}

Detaching a Thread

pthread_detach(3T)
pthread_detach (3T) is an alternative to pthread_join(3T)() to reclaim

storage for a thread that is created with a detachstate attribute set to
PTHREAD_CREATE_JOINABLE.

Prototype:
int pthread_detach(thread_t tid);

#include <pthread.h>

pthread_t tid;
int ret;

/* detach thread tid */
ret = pthread_detach( tid);

The pthread_detach() function is used to indicate to the implementation that
storage for the thread tid can be reclaimed when the thread terminates. If tid has not
terminated, pthread_detach() does not cause it to terminate. The effect of
multiple pthread_detach() calls on the same target thread is unspecified.

Return Values
pthread_detach() returns a zero when it completes successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
is detected, pthread_detach() fails and returns the corresponding value.

EINVAL

tid is not a valid thread.

ESRCH

tid is not a valid, undetached thread in the current process.
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Create a Key for Thread-Specific Data
Single-threaded C programs have two basic classes of data—local data and global
data. For multithreaded C programs a third class is added—thread-specific data (TSD).
This is very much like global data, except that it is private to a thread.

Thread-specific data is maintained on a per-thread basis. TSD is the only way to
define and refer to data that is private to a thread. Each thread-specific data item is
associated with a key that is global to all threads in the process. Using the key, a
thread can access a pointer (void *) that is maintained per-thread.

pthread_key_create(3T)
Use pthread_key_create (3T) to allocate a key that is used to identify
thread-specific data in a process. The key is global to all threads in the process, and
all threads initially have the value NULL associated with the key when it is created.

pthread_key_create( ) is called once for each key before the key is used. There is
no implicit synchronization.

Once a key has been created, each thread can bind a value to the key. The values are
specific to the thread and are maintained for each thread independently. The
per-thread binding is deallocated when a thread terminates if the key was created
with a destructor function.

Prototype:
int pthread_key_create(pthread_key_t * key,

void (*destructor) (void *));

#include <pthread.h>

pthread_key_t key;
int ret;

/* key create without destructor */
ret = pthread_key_create(& key, NULL);

/* key create with destructor */
ret = pthread_key_create(& key, destructor);

When pthread_key_create( ) returns successfully, the allocated key is stored in
the location pointed to by key. The caller must ensure that the storage and access to
this key are properly synchronized.

An optional destructor function, destructor , can be used to free stale storage.
When a key has a non-NULL destructor function and the thread has a non-NULL
value associated with that key, the destructor function is called with the current
associated value when the thread exits. The order in which the destructor
functions are called is unspecified.
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Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. When any of the following conditions occur,
pthread_keycreate() fails and returns the corresponding value.

EAGAIN

The key name space is exhausted.

ENOMEM

Not enough virtual memory is available in this process to create a new key.

Delete the Thread-Specific Data Key

pthread_key_delete(3T)
Use pthread_key_delete (3T) to destroy an existing thread-specific data key. Any
memory associated with the key can be freed because the key has been invalidated
and will return an error if ever referenced. There is no comparable function in Solaris
threads.

Prototype:
int pthread_key_delete(pthread_key_t key);

#include <pthread.h>

pthread_key_t key;
int ret;

/* key previously created */
ret = pthread_key_delete( key);

Once a key has been deleted, any reference to it with the pthread_setspecific()
or pthread_getspecific() call results in the EINVAL error.

It is the responsibility of the programmer to free any thread-specific resources before
calling the delete function. This function does not invoke any of the destructors.

Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. When the following condition occurs, pthread_key_create( )
fails and returns the corresponding value.

EINVAL
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The key value is invalid.

Set the Thread-Specific Data Key

pthread_setspecific(3T)
Use pthread_setspecific (3T) to set the thread-specific binding to the specified
thread-specific data key.

Prototype:
int pthread_setspecific(pthread_key_t key, const void * value);

#include <pthread.h>

pthread_key_t key;
void * value;
int ret;

/* key previously created */
ret = pthread_setspecific( key, value);

Return Values
pthread_setspecific() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, pthread_setspecific() fails and returns the corresponding value.

ENOMEM

Not enough virtual memory is available.

EINVAL

key is invalid.

Note - pthread_setspecific() does not free its storage. If a new binding is set,
the existing binding must be freed; otherwise, a memory leak can occur..

Get the Thread-Specific Data Key

pthread_getspecific(3T)
Use pthread_getspecific (3T) to get the calling thread’s binding for key, and
store it in the location pointed to by value.
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Prototype:
int pthread_getspecific(pthread_key_t key);

#include <pthread.h>

pthread_key_t key;
void * value;

/* key previously created */
value = pthread_getspecific( key);

Return Values
No errors are returned.

Global and Private Thread-Specific Data Example
Code Example 2–2 shows an excerpt from a multithreaded program. This code is
executed by any number of threads, but it has references to two global variables,
errno and mywindow, that really should be references to items private to each thread.

CODE EXAMPLE 2–2 Thread-Specific Data—Global but Private

body() {
...

while (write(fd, buffer, size) == -1) {
if (errno != EINTR) {

fprintf(mywindow, "%s\n", strerror(errno));
exit(1);

}
}

...

}

References to errno should get the system error code from the routine called by this
thread, not by some other thread. So, references to errno by one thread refer to a
different storage location than references to errno by other threads.

The mywindow variable is intended to refer to a stdio stream connected to a
window that is private to the referring thread. So, as with errno , references to
mywindow by one thread should refer to a different storage location (and, ultimately,
a different window) than references to mywindow by other threads. The only
difference here is that the threads library takes care of errno , but the programmer
must somehow make this work for mywindow.

The next example shows how the references to mywindow work. The preprocessor
converts references to mywindow into invocations of the _mywindow() procedure.
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This routine in turn invokes pthread_getspecific() , passing it the
mywindow_key global variable (it really is a global variable) and an output parameter,
win, that receives the identity of this thread’s window.

CODE EXAMPLE 2–3 Turning Global References Into Private References

thread_key_t mywin_key;

FILE *_mywindow(void) {
FILE *win;

pthread_getspecific(mywin_key, &win);
return(win);

}

#define mywindow _mywindow()

void routine_uses_win( FILE *win) {
...

}

void thread_start(...) {
...
make_mywin();
...
routine_uses_win( mywindow )
...

}

The mywin_key variable identifies a class of variables for which each thread has its
own private copy; that is, these variables are thread-specific data. Each thread calls
make_mywin() to initialize its window and to arrange for its instance of mywindow
to refer to it.

Once this routine is called, the thread can safely refer to mywindow and, after
_mywindow() , the thread gets the reference to its private window. So, references to
mywindow behave as if they were direct references to data private to the thread.

Code Example 2–4 shows how to set this up.

CODE EXAMPLE 2–4 Initializing the Thread-Specific Data

void make_mywindow(void) {
FILE **win;
static pthread_once_t mykeycreated = PTHREAD_ONCE_INIT;

pthread_once(&mykeycreated, mykeycreate);

win = malloc(sizeof(*win));
create_window(win, ...);

pthread_setspecific(mywindow_key, win);

}

void mykeycreate(void) {
pthread_keycreate(&mywindow_key, free_key);
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}

void free_key(void *win) {
free(win);

}

First, get a unique value for the key, mywin_key. This key is used to identify the
thread-specific class of data. So, the first thread to call make_mywin( ) eventually
calls pthread_keycreate() , which assigns to its first argument a unique key. The
second argument is a destructor function that is used to deallocate a thread’s
instance of this thread-specific data item once the thread terminates.

The next step is to allocate the storage for the caller’s instance of this thread-specific
data item. Having allocated the storage, a call is made to the create_window()
routine, which sets up a window for the thread and sets the storage pointed to by
win to refer to it. Finally, a call is made to pthread_setspecific() , which
associates the value contained in win (that is, the location of the storage containing
the reference to the window) with the key.

After this, whenever this thread calls pthread_getspecific( ) , passing the global
key, it gets the value that was associated with this key by this thread when it called
pthread_setspecific() .

When a thread terminates, calls are made to the destructor functions that were set
up in pthread_key_create( ) . Each destructor function is called only if the
terminating thread established a value for the key by calling
pthread_setspecific() .

Get the Thread Identifier

pthread_self(3T)
Use pthread_self (3T) to get the ID of the calling thread.

Prototype:
pthread_t pthread_self(void);

#include <pthread.h>

pthread_t tid;

tid = pthread_self();

Return Values

Returns the ID of the calling thread.
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Compare Thread IDs

pthread_equal(3T)
Use pthread_equal (3T) to compare the thread identification numbers of two
threads.

Prototype:
int pthread_equal(pthread_t tid1, pthread_t tid2);

#include <pthread.h>

pthread_t tid1, tid2;
int ret;

ret = pthread_equal( tid1, tid2);

Return Values
Returns a nonzero value when tid1 and tid2 are equal; otherwise, zero is returned.
When either tid1 or tid2 is an invalid thread identification number, the result is
unpredictable.

Initializing Threads

pthread_once(3T)
Use pthread_once (3T) to call an initialization routine the first time
pthread_once(3T) is called. Subsequent calls to pthread_once() have no effect.

Prototype:
int pthread_once(pthread_once_t *once_control,

void ( *init_routine)(void));

#include <pthread.h>

pthread_once_t once_control = PTHREAD_ONCE_INIT;
int ret;

ret = pthread_once(& once_control, init_routine);

The once_control parameter determines whether the associated initialization routine
has been called.
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Return Values
pthread_once() returns zero after completing successfully. Any other returned
value indicates that an error occurred. When the following condition occurs,
pthread_once() fails and returns the corresponding value.

EINVAL

once_control or init_routine is NULL.

Yield Thread Execution

sched_yield(3R)
Use sched_yield (3R) to cause the current thread to yield its execution in favor of
another thread with the same or greater priority.

Prototype:
int sched_yield(void);

#include <sched.h>

int ret;

ret = sched_yield();

Return Values
Returns zero after completing successfully. Otherwise -1 is returned and errno is set
to indicate the error condition.

ENOSYS

sched_yield(3R) is not supported in this implementation.

Set the Thread Priority

pthread_setschedparam(3T)
Use pthread_setschedparam (3T) to modify the priority of an existing thread.
This function has no effect on scheduling policy.

Prototype:
int pthread_setschedparam(pthread_t tid, int policy,

const struct sched_param * param);
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#include <pthread.h>

pthread_t tid;
int ret;
struct sched_param param;
int priority;

/* sched_priority will be the priority of the thread */
sched_param.sched_priority = priority;

/* only supported policy, others will result in ENOTSUP */
policy = SCHED_OTHER;

/* scheduling parameters of target thread */
ret = pthread_setschedparam( tid, policy, &param);

Return Values
pthread_setschedparam() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When either of the following
conditions occurs, the pthread_setschedparam() function fails and returns the
corresponding value.

EINVAL

The value of the attribute being set is not valid.

ENOTSUP

An attempt was made to set the attribute to an unsupported value.

Get the Thread Priority

pthread_getschedparam(3T)
pthread_getschedparam (3T) gets the priority of the existing thread.

Prototype:
int pthread_getschedparam(pthread_t tid, int policy,

struct schedparam * param);

#include <pthread.h>

pthread_t tid;
sched_param param;
int priority;
int policy;
int ret;

/* scheduling parameters of target thread */
ret = pthread_getschedparam ( tid, & policy, & param);
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/* sched_priority contains the priority of the thread */
priority = param.sched_priority;

Return Values
pthread_getschedparam() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition occurs,
the function fails and returns the corresponding value.

ESRCH

The value specified by tid does not refer to an existing thread.

Send a Signal to a Thread

pthread_kill(3T)
Use pthread_kill (3T) to send a signal to a thread.

Prototype:
int pthread_kill(thread_t tid, int sig);

#include <pthread.h>
#include <signal.h>

int sig;
pthread_t tid;
int ret;

ret = pthread_kill( tid, sig);

pthread_kill( ) sends the signal sig to the thread specified by tid. tid must be a
thread within the same process as the calling thread. The sig argument must be from
the list given in signal(5).

When sig is zero, error checking is performed but no signal is actually sent. This can
be used to check the validity of tid.

Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. When either of the following conditions occurs,
pthread_kill( ) fails and returns the corresponding value.

EINVAL
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sig is not a valid signal number.

ESRCH

tid cannot be found in the current process.

Access the Signal Mask of the Calling Thread

pthread_sigmask(3T)
Use pthread_sigmask (3T) to change or examine the signal mask of the calling
thread.

Prototype:
int pthread_sigmask(int how, const sigset_t * new, sigset_t * old);

#include <pthread.h>
#include <signal.h>

int ret;
sigset_t old, new;

ret = pthread_sigmask(SIG_SETMASK, & new, & old); /* set new mask */
ret = pthread_sigmask(SIG_BLOCK, & new, & old); /* blocking mask */
ret = pthread_sigmask(SIG_UNBLOCK, & new, & old); /* unblocking */

how determines how the signal set is changed. It can have one of the following values:

� SIG_BLOCK—Add new to the current signal mask, where new indicates the set of
signals to block.

� SIG_UNBLOCK—Delete new from the current signal mask, where new indicates the
set of signals to unblock.

� SIG_SETMASK—Replace the current signal mask with new, where new indicates
the new signal mask.

When the value of new is NULL, the value of how is not significant and the signal
mask of the thread is unchanged. So, to inquire about currently blocked signals,
assign a NULL value to the new argument.

The old variable points to the space where the previous signal mask is stored, unless
it is NULL.
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Return Values
Returns a zero when it completes successfully. Any other returned value indicates
that an error occurred. When the following condition occurs, pthread_sigmask()
fails and returns the corresponding value.

EINVAL

The value of how is not defined.

Forking Safely

pthread_atfork(3T)
See the discussion about pthread_atfork (3T) in “The
Solution—pthread_atfork(3T)” on page 146.

Prototype:

int pthread_atfork(void (* prepare) (void), void (* parent) (void),
void (* child) (void) );

Terminate a Thread

pthread_exit(3T)
Use pthread_exit (3T) to terminate a thread.

Prototype:
void pthread_exit(void * status);

#include <pthread.h>

int status;

pthread_exit(& status); /* exit with status */

The pthread_exit() function terminates the calling thread. All thread-specific data
bindings are released. If the calling thread is not detached, then the thread’s ID and
the exit status specified by status are retained until the thread is waited for (blocked).
Otherwise, status is ignored and the thread’s ID can be reclaimed immediately. For
information on thread detachment, see “Set Detach State” on page 57.
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Return Values
The calling thread terminates with its exit status set to the contents of status if status
is not NULL.

Finishing Up
A thread can terminate its execution in the following ways:

� By returning from its first (outermost) procedure, the threads start routine; see
pthread_create(3T)

� By calling pthread_exit() , supplying an exit status

� By termination with POSIX cancel functions; see pthread_cancel()

The default behavior of a thread is to linger until some other thread has
acknowledged its demise by “joining” with it. This is the same as the default
pthread_create() attribute being non-detached; see pthread_detach(3T) . The
result of the join is that the joining thread picks up the exit status of the dying thread
and the dying thread vanishes.

An important special case arises when the initial thread — the one calling
main() ,— returns from calling main() or calls exit(3C) . This action causes the
entire process to be terminated, along with all its threads. So take care to ensure that
the initial thread does not return from main( ) prematurely.

Note that when the main thread merely calls pthread_exit(3T) , it terminates
only itself—the other threads in the process, as well as the process, continue to exist.
(The process terminates when all threads terminate.)

Cancellation
The POSIX threads library introduces the ability to cancel threads to threads
programming. Cancellation allows a thread to terminate the execution of any other
thread, or all threads, in the process. Cancellation is an option when all further
operations of a related set of threads are undesirable or unnecessary. A good method
is to cancel all threads, restore the process to a consistent state, and then return to the
point of origin.

One example of thread cancellation is an asynchronously generated cancel condition,
such as, when a user requesting to close or exit some running application. Another
example is the completion of a task undertaken by a number of threads. One of the
threads might ultimately complete the task while the others continue to operate.
Since they are serving no purpose at that point, they all should be cancelled.

There are dangers in performing cancellations. Most deal with properly restoring
invariants and freeing shared resources. A thread that is cancelled without care might
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leave a mutex in a locked state, leading to a deadlock. Or it might leave a region of
memory allocated with no way to identify it and therefore no way to free it.

The pthreads library specifies a cancellation interface that permits or forbids
cancellation programmatically. The library defines the set of points at which
cancellation can occur (cancellation points). It also allows the scope of cancellation
handlers, which provide clean up services, to be defined so that they are sure to
operate when and where intended.

Placement of cancellation points and the effects of cancellation handlers must be
based on an understanding of the application. A mutex is explicitly not a
cancellation point and should be held only the minimal essential time.

Limit regions of asynchronous cancellation to sequences with no external
dependencies that could result in dangling resources or unresolved state conditions.
Take care to restore cancellation state when returning from some alternate, nested
cancellation state. The interface provides features to facilitate restoration:
pthread_setcancelstate(3T) preserves the current cancel state in a referenced
variable; pthread_setcanceltype(3T) preserves the current cancel type in the
same way.

Cancellations can occur under three different circumstances:

� Asynchronously

� At various points in the execution sequence as defined by the standard

� At discrete points specified by the application

By default, cancellation can occur only at well-defined points as defined by the
POSIX standard.

In all cases, take care that resources and state are restored to a condition consistent
with the point of origin.

Cancellation Points
Be careful to cancel a thread only when cancellation is safe. The pthreads standard
specifies several cancellation points, including:

� Programmatically establish a thread cancellation point through a
pthread_testcancel(3T) call.

� Threads waiting for the occurrence of a particular condition in
pthread_cond_wait(3T) or pthread_cond_timedwait(3T) .

� Threads waiting for termination of another thread in pthread_join(3T) .

� Threads blocked on sigwait(2) .

� Some standard library calls. In general, these are functions in which threads can
block; see the man page cancellation(3T) for a list.
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Cancellation is enabled by default. At times you might want an application to
disable cancellation. This has the result of deferring all cancellation requests until
they are enabled again.

See “pthread_setcancelstate(3T)” on page 50 for information about disabling
cancellation.

Cancel a Thread

pthread_cancel(3T)
Use pthread_cancel (3T) to cancel a thread.

Prototype :

int pthread_cancel(pthread_t thread);

#include <pthread.h>

pthread_t thread;
int ret;

ret = pthread_cancel( thread);

How the cancellation request is treated depends on the state of the target thread.
Two functions, pthread_setcancelstate(3T) and
pthread_setcanceltype(3T) , determine that state.

Return Values
pthread_cancel() returns zero after completing successfully. Any other returned
value indicates that an error occurred. When the following condition occurs, the
function fails and returns the corresponding value.

ESRCH

No thread could be found corresponding to that specified by the given thread ID.
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Enable or Disable Cancellation

pthread_setcancelstate(3T)
Use pthread_setcancelstate (3T) to enable or disable thread cancellation. When
a thread is created, thread cancellation is enabled by default.

Prototype :

int pthread_setcancelstate(int state, int * oldstate);

#include <pthread.h>

int oldstate;
int ret;

/* enabled */
ret = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, & oldstate);

/* disabled */
ret = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, & oldstate);

Return Values
pthread_setcancelstate() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When the following condition
occurs, the pthread_setcancelstate( ) function fails and returns the
corresponding value.

EINVAL

The state is not PTHREAD_CANCEL_ENABLEor PTHREAD_CANCEL_DISABLE.

Set Cancellation Type

pthread_setcanceltype(3T)
Use pthread_setcanceltype (3T) to set the cancellation type to either deferred or
asynchronous mode. When a thread is created, the cancellation type is set to deferred
mode by default. In deferred mode, the thread can be cancelled only at cancellation
points. In asynchronous mode, a thread can be cancelled at any point during its
execution. Using asynchronous mode is discouraged.

Prototype :

int pthread_setcanceltype(int type, int * oldtype);
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#include <pthread.h>

int oldtype;
int ret;

/* deferred mode */
ret = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, & oldtype);

/* async mode*/
ret = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, & oldtype);

Return Values
pthread_setcanceltype() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition occurs,
the function fails and returns the corresponding value.

EINVAL

The type is not PTHREAD_CANCEL_DEFERREDor
PTHREAD_CANCEL_ASYNCHRONOUS.

Create a Cancellation Point

pthread_testcancel(3T)
Use pthread_testcancel (3T) to establish a cancellation point for a thread.

Prototype :

void pthread_testcancel(void);

#include <pthread.h>

pthread_testcancel();

The pthread_testcancel( ) function is effective when thread cancellation is
enabled and in deferred mode. Calling this function while cancellation is disabled
has no effect.

Be careful to insert pthread_testcancel() only in sequences where it is safe to
cancel a thread. In addition to programmatically establishing cancellation points
through the pthread_testcancel() call, the pthreads standard specifies several
cancellation points. See “Cancellation Points” on page 48 for more details.

There is no return value.
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Push a Handler Onto the Stack
Use cleanup handlers to restore conditions to a state consistent with that at the point
of origin, such as cleaning up allocated resources and restoring invariants. Use the
pthread_cleanup_push(3T) and pthread_cleanup_pop(3T) functions to
manage the handlers.

Cleanup handlers are pushed and popped in the same lexical scope of a program.
They should always match; otherwise compiler errors will be generated.

pthread_cleanup_push(3T)
Use pthread_cleanup_push (3T) to push a cleanup handler onto a cleanup stack
(LIFO).

Prototype :

void pthread_cleanup_push(void(* routine)(void *), void * args);

#include <pthread.h>

/* push the handler "routine" on cleanup stack */
pthread_cleanup_push ( routine, arg);

Pull a Handler Off the Stack

pthread_cleanup_pop(3T)
Use pthread_cleanup_pop (3T) to pull the cleanup handler off the cleanup stack.

A nonzero argument in the pop function removes the handler from the stack and
executes it. An argument of zero pops the handler without executing it.

pthread_cleanup_pop() is effectively called with a nonzero argument if a thread
either explicitly or implicitly calls pthread_exit(3T) or if the thread accepts a cancel
request.

Prototype :
void pthread_cleanup_pop(int execute);

#include <pthread.h>

/* pop the "func" out of cleanup stack and execute "func" */
pthread_cleanup_pop (1);

/* pop the "func" and DONT execute "func" */
pthread_cleanup_pop (0);

There are no return values.
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CHAPTER 3

Thread Create Attributes

The previous chapter covered the basics of threads creation using default attributes.
This chapter discusses setting attributes at thread creation time.

Note that only pthreads uses attributes and cancellation, so the API covered in this
chapter is for POSIX threads only. Otherwise, the functionality for Solaris threads and
pthreads is largely the same. (See Chapter 9, Programming With Solaris Threads,
for more information about similarities and differences.)

� “Initialize Attributes” on page 55

� “Destroy Attributes” on page 56

� “Set Detach State” on page 57

� “Get Detach State” on page 58

� “Set Stack Guard Size” on page 59

� “Get Stack Guard Size” on page 60

� “Set Scope” on page 60

� “Get Scope” on page 61

� “Set Thread Concurrency Level” on page 62

� “Get Thread Concurrency Level” on page 63

� “Set Scheduling Policy” on page 63

� “Get Scheduling Policy” on page 65

� “Set Inherited Scheduling Policy” on page 65

� “Get Inherited Scheduling Policy” on page 66

� “Set Scheduling Parameters” on page 67

� “Get Scheduling Parameters” on page 68

� “Set Stack Size” on page 69
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� “Get Stack Size” on page 70

� “Set Stack Address” on page 72

� “Get Stack Address” on page 74

Attributes
Attributes are a way to specify behavior that is different from the default. When a
thread is created with pthread_create(3T) or when a synchronization variable is
initialized, an attribute object can be specified. The defaults are usually sufficient.

Note - Attributes are specified only at thread creation time; they cannot be altered
while the thread is being used.

An attribute object is opaque, and cannot be directly modified by assignments. A set
of functions is provided to initialize, configure, and destroy each object type.

Once an attribute is initialized and configured, it has process-wide scope. The
suggested method for using attributes is to configure all required state specifications
at one time in the early stages of program execution. The appropriate attribute object
can then be referred to as needed.

Using attribute objects has two primary advantages.

� First, it adds to code portability.

Even though supported attributes might vary between implementations, you need
not modify function calls that create thread entities because the attribute object is
hidden from the interface.

If the target port supports attributes that are not found in the current port,
provision must be made to manage the new attributes. This is an easy porting task
though, because attribute objects need only be initialized once in a well-defined
location.

� Second, state specification in an application is simplified.

As an example, consider that several sets of threads might exist within a process,
each providing a separate service, and each with its own state requirements.

At some point in the early stages of the application, a thread attribute object can
be initialized for each set. All future thread creations will then refer to the attribute
object initialized for that type of thread. The initialization phase is simple and
localized, and any future modifications can be made quickly and reliably.

Attribute objects require attention at process exit time. When the object is initialized,
memory is allocated for it. This memory must be returned to the system. The
pthreads standard provides function calls to destroy attribute objects.

54 Multithreaded Programming Guide ♦ February 2000



Initialize Attributes

pthread_attr_init(3T)
Use pthread_attr_init (3T) to initialize object attributes to their default values.
The storage is allocated by the thread system during execution.

Prototype :

int pthread_attr_init(pthread_attr_t * tattr);

#include <pthread.h>

pthread_attr_t tattr;
int ret;

/* initialize an attribute to the default value */
ret = pthread_attr_init(& tattr);

Table 3–1 shows the default values for attributes (tattr) .

TABLE 3–1 Default Attribute Values for tattr

Attribute Value Result

scope PTHREAD_SCOPE_PROCESS New thread is unbound – not
permanently attached to LWP.

detachstate PTHREAD_CREATE_JOINABLE Exit status and thread are
preserved after the thread
terminates.

stackaddr NULL New thread has
system-allocated stack address.

stacksize 1 megabyte New thread has system-defined
stack size.

priority New thread inherits parent
thread priority.
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TABLE 3–1 Default Attribute Values for tattr (continued)

Attribute Value Result

inheritsched PTHREAD_INHERIT_SCHED New thread inherits parent
thread scheduling priority.

schedpolicy SCHED_OTHER New thread uses Solaris-defined
fixed priority scheduling;
threads run until preempted by
a higher-priority thread or until
they block or yield.

Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. If the following condition occurs, the function fails and returns the
corresponding value.

ENOMEM

Returned when there is not enough memory to initialize the thread attributes
object.

Destroy Attributes

pthread_attr_destroy(3T)
Use pthread_attr_destroy (3T) to remove the storage allocated during
initialization. The attribute object becomes invalid.

Prototype:
int pthread_attr_destroy(pthread_attr_t * tattr);

#include <pthread.h>

pthread_attr_t tattr;
int ret;

/* destroy an attribute */
ret = pthread_attr_destroy(& tattr);
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Return Values

pthread_attr_destroy() returns zero after completing successfully. Any other
returned value indicates that an error occurred. If the following condition occurs, the
function fails and returns the corresponding value.

EINVAL

Indicates that the value of tattr was not valid.

Set Detach State

pthread_attr_setdetachstate(3T)
When a thread is created detached (PTHREAD_CREATE_DETACHED), its thread ID
and other resources can be reused as soon as the thread terminates. Use
pthread_attr_setdetachstate (3T) when the calling thread does not want to
wait for the thread to terminate.

When a thread is created nondetached (PTHREAD_CREATE_JOINABLE), it is assumed
that you will be waiting for it. That is, it is assumed that you will be executing a
pthread_join(3T)() on the thread.

Whether a thread is created detached or nondetached, the process does not exit until
all threads have exited. See “Finishing Up” on page 47 for a discussion of process
termination caused by premature exit from main() .

Prototype :

int pthread_attr_setdetachstate(pthread_attr_t * tattr,int detachstate);

#include <pthread.h>

pthread_attr_t tattr;
int ret;

/* set the thread detach state */
ret = pthread_attr_setdetachstate(& tattr,PTHREAD_CREATE_DETACHED);

Note - When there is no explicit synchronization to prevent it, a newly created,
detached thread can die and have its thread ID reassigned to another new thread
before its creator returns from pthread_create() .

For nondetached (PTHREAD_CREATE_JOINABLE) threads, it is very important that
some thread join with it after it terminates—otherwise the resources of that thread
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are not released for use by new threads. This commonly results in a memory leak. So
when you do not want a thread to be joined, create it as a detached thread.

CODE EXAMPLE 3–1 Creating a Detached Thread

#include <pthread.h>

pthread_attr_t tattr;
pthread_t tid;
void * start_routine;
void arg
int ret;

/* initialized with default attributes */
ret = pthread_attr_init( )(& tattr);
ret = pthread_attr_setdetachstate( )(& tattr,PTHREAD_CREATE_DETACHED);
ret = pthread_create( )(& tid, &tattr, start_routine, arg);

Return Values

pthread_attr_setdetachstate( ) returns zero after completing successfully.
Any other returned value indicates that an error occurred. If the following condition
occurs, the function fails and returns the corresponding value.

EINVAL

Indicates that the value of detachstate or tattr was not valid.

Get Detach State

pthread_attr_getdetachstate(3T)
Use pthread_attr_getdetachstate (3T) to retrieve the thread create state,
which can be either detached or joined.

Prototype :

int pthread_attr_getdetachstate(const pthread_attr_t *tattr,
int *detachstate;

#include <pthread.h>

pthread_attr_t tattr;
int detachstate;
int ret;

/* get detachstate of thread */
ret = pthread_attr_getdetachstate (& tattr, & detachstate);
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Return Values
pthread_attr_getdetachstate( ) returns zero after completing successfully.
Any other returned value indicates that an error occurred. If the following condition
occurs, the function fails and returns the corresponding value.

EINVAL

Indicates that the value of detachstate is NULL or tattr is invalid.

Set Stack Guard Size

pthread_attr_setguardsize(3T)
pthread_attr_setguardsize (3T) sets the guardsize of the attr object.

The guardsize argument provides protection against overflow of the stack pointer. If a
thread’s stack is created with guard protection, the implementation allocates extra
memory at the overflow end of the stack as a buffer against stack overflow of the
stack pointer. If an application overflows into this buffer an error results (possibly in
a SIGSEGVsignal being delivered to the thread).

The guardsize attribute is provided to the application for two reasons:

1. Overflow protection can potentially result in wasted system resources. An
application that creates a large number of threads, and knows its threads will
never overflow their stack, can save system resources by turning off guard areas.

2. When threads allocate large data structures on stack, a large guard area may be
needed to detect stack overflow.

If guardsize is zero, a guard area will not be provided for threads created with attr. If
guardsize is greater than zero, a guard area of at least size guardsize bytes is provided
for each thread created with attr. By default, a thread has an implementation-defined,
non-zero guard area.

A conforming implementation is permitted to round up the value contained in
guardsize to a multiple of the configurable system variable PAGESIZE (see
PAGESIZE in sys/mman.h ). If an implementation rounds up the value of guardsize
to a multiple of PAGESIZE, a call to pthread_attr_getguardsize() specifying
attr will store, in guardsize, the guard size specified in the previous call to
pthread_attr_setguardsize() .

#include <pthread.h>

int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);

Return Value
pthread_attr_setguardsize() fails if:
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EINVAL

The argument attr is invalid, the argument guardsize is invalid, or the argument
guardsize contains an invalid value.

Get Stack Guard Size

pthread_attr_getguardsize(3T)
pthread_attr_getguardsize (3T) gets the guardsize of the attr object.

A conforming implementation is permitted to round up the value contained in
guardsize to a multiple of the configurable system variable PAGESIZE (see PAGESIZE
in sys/mman.h ). If an implementation rounds up the value of guardsize to a multiple
of PAGESIZE, a call to pthread_attr_getguardsize() specifying attr will store,
in guardsize, the guard size specified in the previous call to
pthread_attr_setguardsize() .

#include <pthread.h>

int pthread_attr_getguardsize(const pthread_attr_t *attr, size_t *guardsize);

Return Value
pthread_attr_getguardsize() fails if:

EINVAL

The argument attr is invalid, the argument guardsize is invalid, or the argument
guardsize contains an invalid value,.

Set Scope

pthread_attr_setscope(3T)
Use pthread_attr_setscope (3T) to create a bound thread
(PTHREAD_SCOPE_SYSTEM) or an unbound thread (PTHREAD_SCOPE_PROCESS).

Note - Both thread types are accessible only within a given process.

Prototype :

int pthread_attr_setscope(pthread_attr_t * tattr,int scope);
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#include <pthread.h>

pthread_attr_t tattr;
int ret;

/* bound thread */
ret = pthread_attr_setscope(& tattr, PTHREAD_SCOPE_SYSTEM);

/* unbound thread */
ret = pthread_attr_setscope(& tattr, PTHREAD_SCOPE_PROCESS);

Notice that there are three function calls in this example: one to initialize the
attributes, one to set any variations from the default attributes, and one to create the
pthreads.

#include <pthread.h>

pthread_attr_t attr;
pthread_t tid;
void start_routine;
void arg;
int ret;

/* initialized with default attributes */
ret = pthread_attr_init ( &tattr);

/* BOUND behavior */
ret = pthread_attr_setscope( &tattr, PTHREAD_SCOPE_SYSTEM);
ret = pthread_create ( &tid, &tattr, start_routine, arg);

Return Values

pthread_attr_setscope() returns zero after completing successfully. Any other
returned value indicates that an error occurred. If the following conditions occur, the
function fails and returns the corresponding value.

EINVAL

An attempt was made to set tattr to a value that is not valid.

Get Scope

pthread_attr_getscope(3T)
Use pthread_attr_getscope (3T) to retrieve the thread scope, which indicates
whether the thread is bound or unbound.

Prototype :

int pthread_attr_getscope(pthread_attr_t *tattr, int *scope);
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#include <pthread.h>

pthread_attr_t tattr;
int scope;
int ret;

/* get scope of thread */
ret = pthread_attr_getscope(& tattr, & scope);

Return Values

pthread_attr_getscope() returns zero after completing successfully. Any other
returned value indicates that an error occurred. If the following condition occurs, the
function fails and returns the corresponding value.

EINVAL

The value of scope is NULL or tattr is invalid.

Set Thread Concurrency Level

pthread_setconcurrency(3T)
Unbound threads in a process might or might not be required to be simultaneously
active. By default, the threads implementation ensures that a sufficient number of
threads are active so that the process can continue to make progress. While this
conserves system resources, it might not produce the most effective level of
concurrency.

pthread_setconcurrency (3T) allows an application to inform the threads
implementation of its desired concurrency level, new_level. The actual level of
concurrency provided by the implementation as a result of this function call is
unspecified. (For Solaris threads, see “thr_setconcurrency(3T)” on page 204.)

If new_level is zero, the implementation maintains the concurrency level at its
discretion as if pthread_setconcurrency() was never called.

When an application calls pthread_setconcurrency( ) , it is informing the
implementation of its desired concurrency level. The implementation uses this as a
hint, not a requirement.

#include <pthread.h>

int pthread_setconcurrency(int new_level);

Return Value

pthread_setconcurrency() fails if:
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EINVAL

The value specified by new_level is negative.

EAGAIN

The value specified by new_level would cause a system resource to be exceeded.

Get Thread Concurrency Level

pthread_getconcurrency(3T)
pthread_getconcurrency (3T) returns the value set by a previous call to

pthread_setconcurrency() . If the pthread_setconcurrency( ) function was
not previously called, pthread_getconcurrency( ) returns zero to indicate that
the implementation is maintaining the concurrency level. (For Solaris threads, see
“thr_getconcurrency(3T)” on page 205.)

#include <pthread.h>

int pthread_getconcurrency(void);

Return Value

pthread_getconcurrency() always returns the concurrency level set by a
previous call to pthread_setconcurrency() . If pthread_setconcurrency()
has never been called, pthread_getconcurrency() returns zero.

Set Scheduling Policy

pthread_attr_setschedpolicy(3T)
Use pthread_attr_setschedpolicy (3T) to set the scheduling policy. The POSIX
draft standard specifies scheduling policy attributes of SCHED_FIFO
(first-in-first-out), SCHED_RR(round-robin), or SCHED_OTHER(an
implementation-defined method).

� SCHED_FIFO

First-In-First-Out; threads scheduled to this policy, if not preempted by a higher
priority, will proceed until completion. Threads whose contention scope is system
(PTHREAD_SCOPE_SYSTEM) are in real-time (RT) scheduling class and the calling
process must have an effective user id of 0. SCHED_FIFOfor threads that have a
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contention scope of process (PTHREAD_SCOPE_PROCESS)is based on the TS
scheduling class.

� SCHED_RR

Round-Robin; threads scheduled to this policy, if not preempted by a higher
priority, will execute for a time period determined by the system. Threads
whosethat have a contention scope of system (PTHREAD_SCOPE_SYSTEM)are in
real-time (RT) scheduling class and the calling process must have an effective user
id of 0. SCHED_RRfor threads that have a contention scope of process
(PTHREAD_SCOPE_PROCESS) is based on the TS scheduling class.

SCHED_FIFOand SCHED_RRare optional in POSIX, and are supported for real time
bound threads only.

Currently, only the Solaris SCHED_OTHER, time-sharing, default value is supported in
pthreads. For a discussion of scheduling, see the section “Scheduling” on page 25.

Prototype :

int pthread_attr_setschedpolicy(pthread_attr_t * tattr, int policy);

#include <pthread.h>

pthread_attr_t tattr;
int policy;
int ret;

/* set the scheduling policy to SCHED_OTHER */
ret = pthread_attr_setschedpolicy(& tattr, SCHED_OTHER);

Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. When either of the following conditions occurs, the function fails
and returns the corresponding value.

EINVAL

An attempt was made to set tattr to a value that is not valid.

ENOTSUP

An attempt was made to set the attribute to an unsupported value.
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Get Scheduling Policy

pthread_attr_getschedpolicy(3T)
Use pthread_attr_getschedpolicy (3T) to retrieve the scheduling policy.
Currently, only the Solaris-based SCHED_OTHERdefault value is supported in
pthreads.

Prototype :

int pthread_attr_getschedpolicy(pthread_attr_t * tattr, int *policy);

#include <pthread.h>

pthread_attr_t tattr;
int policy;
int ret;

/* get scheduling policy of thread */
ret = pthread_attr_getschedpolicy (& tattr, & policy);

Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. If the following condition occurs, the function fails and returns the
corresponding value.

EINVAL

The parameter policy is NULL or tattr is invalid.

Set Inherited Scheduling Policy

pthread_attr_setinheritsched(3T)
Use pthread_attr_setinheritsched (3T) to set the inherited scheduling policy.

An inherit value of PTHREAD_INHERIT_SCHED(the default) means that the
scheduling policies defined in the creating thread are to be used, and any scheduling
attributes defined in the pthread_create() call are to be ignored. If
PTHREAD_EXPLICIT_SCHEDis used, the attributes from the pthread_create()
call are to be used.

Prototype :

int pthread_attr_setinheritsched(pthread_attr_t * tattr, int inherit);
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#include <pthread.h>

pthread_attr_t tattr;
int inherit;
int ret;

/* use the current scheduling policy */
ret = pthread_attr_setinheritsched(& tattr, PTHREAD_EXPLICIT_SCHED);

Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. When either of the following conditions occurs, the function fails
and returns the corresponding value.

EINVAL

An attempt was made to set tattr to a value that is not valid.

ENOTSUP

An attempt was made to set the attribute to an unsupported value.

Get Inherited Scheduling Policy

pthread_attr_getinheritsched(3T)
pthread_attr_getinheritsched (3T) returns the scheduling policy set by

pthread_attr_setinheritsched() .

Prototype :

int pthread_attr_getinheritsched(pthread_attr_t * tattr, int *inherit);

#include <pthread.h>

pthread_attr_t tattr;
int inherit;
int ret;

/* get scheduling policy and priority of the creating thread */
ret = pthread_attr_getinheritsched (& tattr, & inherit);

Return Values

Returns zero after completing successfully. Any other returned value indicates that
an error occurred. If the following condition occurs, the function fails and returns the
corresponding value.
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EINVAL

The parameter inherit is NULL or tattr is invalid.

Set Scheduling Parameters

pthread_attr_setschedparam(3T)
pthread_attr_setschedparam (3T) sets the scheduling parameters.

Scheduling parameters are defined in the param structure; only priority is
supported. Newly created threads run with this priority.

� SCHED_FIFO

First-In-First-Out; threads scheduled to this policy, if not preempted by a higher
priority, will proceed until completion. Threads that have a contention scope of
system (PTHREAD_SCOPE_SYSTEM) are in real-time (RT) scheduling class and the
calling process must have an effective user id of 0. SCHED_FIFOfor threads that
have a contention scope of process (PTHREAD_SCOPE_PROCESS)is based on the
TS scheduling class.

� SCHED_RR

Round-Robin; threads scheduled to this policy, if not pre-empted by a higher
priority, will execute for a time period determined by the system. Threads that
have a contention scope of system (PTHREAD_SCOPE_SYSTEM)are in real-time
(RT) scheduling class and the calling process must have an effective user id of 0.
SCHED_RRfor threads that have a contention scope of process
(PTHREAD_SCOPE_PROCESS) is based on the TS scheduling class.

Prototype :

int pthread_attr_setschedparam(pthread_attr_t * tattr,
const struct sched_param *param);

#include <pthread.h>

pthread_attr_t tattr;
int newprio;
sched_param param;
newprio = 30;

/* set the priority; others are unchanged */
param.sched_priority = newprio;

/* set the new scheduling param */
ret = pthread_attr_setschedparam (& tattr, & param);
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Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. If the following conditions occur, the function fails and returns the
corresponding value.

EINVAL

The value of param is NULL or tattr is invalid.

You can manage pthreads priority two ways. You can set the priority attribute before
creating a child thread, or you can change the priority of the parent thread and then
change it back.

Get Scheduling Parameters

pthread_attr_getschedparam(3T)
pthread_attr_getschedparam (3T) returns the scheduling parameters defined by

pthread_attr_setschedparam() .

Prototype :

int pthread_attr_getschedparam(pthread_attr_t * tattr,
const struct sched_param *param);

#include <pthread.h>

pthread_attr_t attr;
struct sched_param param;
int ret;

/* get the existing scheduling param */
ret = pthread_attr_getschedparam (& tattr, & param);

Return Values
pthread_attr_setschedparam() returns zero after completing successfully. Any
other returned value indicates that an error occurred. If the following condition
occurs, the function fails and returns the corresponding value.

EINVAL

The value of param is NULL or tattr is invalid.
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Creating a Thread With a Specified Priority

You can set the priority attribute before creating the thread. The child thread is
created with the new priority that is specified in the sched_param structure (this
structure also contains other scheduling information).

It is always a good idea to get the existing parameters, change the priority, xxx the
thread, and then reset the priority.

Code Example 3–2 shows an example of this.

CODE EXAMPLE 3–2 Creating a Prioritized Thread

#include <pthread.h>
#include <sched.h>

pthread_attr_t tattr;
pthread_t tid;
int ret;
int newprio = 20;
sched_param param;

/* initialized with default attributes */
ret = pthread_attr_init (& tattr);

/* safe to get existing scheduling param */
ret = pthread_attr_getschedparam (& tattr, & param);

/* set the priority; others are unchanged */
param.sched_priority = newprio;

/* setting the new scheduling param */
ret = pthread_attr_setschedparam (& tattr, & param);

/* with new priority specified */
ret = pthread_create (& tid, & tattr, func, arg);

Set Stack Size

pthread_attr_setstacksize(3T)
pthread_attr_setstacksize (3T) sets the thread stack size.

The stacksize attribute defines the size of the stack (in bytes) that the system will
allocate. The size should not be less than the system-defined minimum stack size.
See “About Stacks” on page 71 for more information.

Prototype :

int pthread_attr_setstacksize(pthread_attr_t * tattr, int size);

#include <pthread.h>
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pthread_attr_t tattr;
int size;
int ret;

size = (PTHREAD_STACK_MIN + 0x4000);

/* setting a new size */
ret = pthread_attr_setstacksize(& tattr, size);

In the example above, size contains the number of bytes for the stack that the new
thread uses. If size is zero, a default size is used. In most cases, a zero value works
best.

PTHREAD_STACK_MINis the amount of stack space required to start a thread. This
does not take into consideration the threads routine requirements that are needed to
execute application code.

Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. If the following condition occurs, the function fails and returns the
corresponding value.

EINVAL

The value returned is less than the value of PTHREAD_STACK_MIN, or exceeds a
system-imposed limit, or tattr is not valid.

Get Stack Size

pthread_attr_getstacksize(3T)
pthread_attr_getstacksize (3T) returns the stack size set by

pthread_attr_setstacksize() .

Prototype :

int pthread_attr_getstacksize(pthread_attr_t * tattr, size_t *size);

#include <pthread.h>

pthread_attr_t tattr;
int size;
int ret;

/* getting the stack size */
ret = pthread_attr_getstacksize(& tattr, & size);
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Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. If the following condition occurs, the function fails and returns the
corresponding value.

EINVAL

The value returned is less than the value of PTHREAD_STACK_MIN, or exceeds a
system-imposed limit.

About Stacks
Typically, thread stacks begin on page boundaries and any specified size is rounded
up to the next page boundary. A page with no access permission is appended to the
top of the stack so that most stack overflows result in sending a SIGSEGVsignal to
the offending thread. Thread stacks allocated by the caller are used as is.

When a stack is specified, the thread should also be created
PTHREAD_CREATE_JOINABLE. That stack cannot be freed until the
pthread_join(3T) call for that thread has returned, because the thread’s stack
cannot be freed until the thread has terminated. The only reliable way to know if
such a thread has terminated is through pthread_join(3T) .

Generally, you do not need to allocate stack space for threads. The threads library
allocates 1 Mbyte of virtual memory for each thread’s stack with no swap space
reserved. (The library uses the MAP_NORESERVEoption of mmap() to make the
allocations.)

Each thread stack created by the threads library has a red zone. The library creates
the red zone by appending a page to the top of a stack to catch stack overflows. This
page is invalid and causes a memory fault if it is accessed. Red zones are appended
to all automatically allocated stacks whether the size is specified by the application
or the default size is used.

Note - Because runtime stack requirements vary, you should be absolutely certain
that the specified stack will satisfy the runtime requirements needed for library calls
and dynamic linking.

There are very few occasions when it is appropriate to specify a stack, its size, or
both. It is difficult even for an expert to know if the right size was specified. This is
because even a program compliant with ABI standards cannot determine its stack
size statically. Its size is dependent on the needs of the particular runtime
environment in which it executes.
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Building Your Own Stack
When you specify the size of a thread stack, be sure to account for the allocations
needed by the invoked function and by each function called. The accounting should
include calling sequence needs, local variables, and information structures.

Occasionally you want a stack that is a bit different from the default stack. An
obvious situation is when the thread needs more than one megabyte of stack space.
A less obvious situation is when the default stack is too large. You might be creating
thousands of threads and not have enough virtual memory to handle the gigabytes
of stack space that this many default stacks require.

The limits on the maximum size of a stack are often obvious, but what about the
limits on its minimum size? There must be enough stack space to handle all of the
stack frames that are pushed onto the stack, along with their local variables, and so
on.

You can get the absolute minimum limit on stack size by calling the macro
PTHREAD_STACK_MIN, which returns the amount of stack space required for a
thread that executes a NULL procedure. Useful threads need more than this, so be
very careful when reducing the stack size.

#include <pthread.h>

pthread_attr_t tattr;
pthread_t tid;
int ret;

int size = PTHREAD_STACK_MIN + 0x4000;

/* initialized with default attributes */
ret = pthread_attr_init(& tattr);

/* setting the size of the stack also */
ret = pthread_attr_setstacksize(& tattr, size);

/* only size specified in tattr*/
ret = pthread_create(& tid, & tattr, start_routine, arg);

When you allocate your own stack, be sure to append a red zone to its end by
calling mprotect(2) .

Set Stack Address

pthread_attr_setstackaddr(3T)
pthread_attr_setstackaddr (3T) sets the thread stack address.

The stackaddr attribute defines the base of the thread’s stack. If this is set to non-null
(NULL is the default) the system initializes the stack at that address.
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Prototype :

int pthread_attr_setstackaddr(pthread_attr_t * tattr,void * stackaddr);

#include <pthread.h>

pthread_attr_t tattr;
void * base;
int ret;

base = (void *) malloc(PTHREAD_STACK_MIN + 0x4000);

/* setting a new address */
ret = pthread_attr_setstackaddr(& tattr, base);

In the previous example, base contains the address for the stack that the new thread
uses. If base is NULL, then pthread_create(3T) allocates a stack for the new
thread with at least PTHREAD_STACK_MINbytes.

Return Values

Returns zero after completing successfully. Any other returned value indicates that
an error occurred. If the following condition occurs, the function fails and returns the
corresponding value.

EINVAL

The value of base or tattr is incorrect.

This example shows how to create a thread with a custom stack address.

#include <pthread.h>

pthread_attr_t tattr;
pthread_t tid;
int ret;
void * stackbase;

stackbase = (void *) malloc(size);

/* initialized with default attributes */
ret = pthread_attr_init(& tattr);

/* setting the base address in the attribute */
ret = pthread_attr_setstackaddr(& tattr, stackbase);

/* only address specified in attribute tattr */
ret = pthread_create(& tid, & tattr, func, arg);

This example shows how to create a thread with both a custom stack address and a
custom stack size.

#include <pthread.h>
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pthread_attr_t tattr;
pthread_t tid;
int ret;
void * stackbase;

int size = PTHREAD_STACK_MIN + 0x4000;
stackbase = (void *) malloc( size);

/* initialized with default attributes */
ret = pthread_attr_init(& tattr);

/* setting the size of the stack also */
ret = pthread_attr_setstacksize(& tattr, size);

/* setting the base address in the attribute */
ret = pthread_attr_setstackaddr(& tattr, stackbase);

/* address and size specified */
ret = pthread_create(& tid, & tattr, func, arg);

Get Stack Address

pthread_attr_getstackaddr(3T)
pthread_attr_getstackaddr (3T) returns the thread stack address set by

pthread_attr_setstackaddr() .

Prototype :

int pthread_attr_getstackaddr(pthread_attr_t * tattr,void * * stackaddr);

#include <pthread.h>

pthread_attr_t tattr;
void * base;
int ret;

/* getting a new address */
ret = pthread_attr_getstackaddr (& tattr, *base);

Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. If the following condition occurs, the function fails and returns the
corresponding value.

EINVAL

The value or base or tattr is incorrect.
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CHAPTER 4

Programming with Synchronization
Objects

This chapter describes the synchronization types available with threads and
discusses when and how to use synchronization.

� “Mutual Exclusion Lock Attributes” on page 76

� “Using Mutual Exclusion Locks” on page 93

� “Condition Variable Attributes” on page 105

� “Using Condition Variables” on page 110

� “Semaphores” on page 122

� “Read-Write Lock Attributes” on page 130

� “Set Mutex Attribute’s Priority Ceiling” on page 87

� “Synchronization Across Process Boundaries” on page 139

� “Interprocess Locking Without the Threads Library” on page 141

� “Comparing Primitives” on page 141

Synchronization objects are variables in memory that you access just like data.
Threads in different processes can communicate with each other through
synchronization objects placed in threads-controlled shared memory, even though the
threads in different processes are generally invisible to each other.

Synchronization objects can also be placed in files and can have lifetimes beyond that
of the creating process.

The available types of synchronization objects are:

� Mutex Locks

� Condition Variables

� Semaphores
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Here are situations that can benefit from the use of synchronization:

� When synchronization is the only way to ensure consistency of shared data.

� When threads in two or more processes can use a single synchronization object
jointly. Note that the synchronization object should be initialized by only one of
the cooperating processes, because reinitializing a synchronization object sets it to
the unlocked state.

� When synchronization can ensure the safety of mutable data.

� When a process can map a file and have a thread in this process get a record’s
lock. Once the lock is acquired, any other thread in any process mapping the file
that tries to acquire the lock is blocked until the lock is released.

� Even when accessing a single primitive variable, such as an integer. On machines
where the integer is not aligned to the bus data width or is larger than the data
width, a single memory load can use more than one memory cycle. While this
cannot happen on the SPARC

®
Platform Edition architecture, portable programs

cannot rely on this.

Note - On 32-bit architectures a long long is not atomic1 and is read and written as
two 32-bit quantities. The types int , char , float , and pointers are atomic on
SPARC Platform Edition machines and Intel Architecture machines.

Mutual Exclusion Lock Attributes
Use mutual exclusion locks (mutexes) to serialize thread execution. Mutual exclusion
locks synchronize threads, usually by ensuring that only one thread at a time executes
a critical section of code. Mutex locks can also preserve single-threaded code.

To change the default mutex attributes, you can declare and initialize an attribute
object. Often, the mutex attributes are set in one place at the beginning of the
application so they can be located quickly and modified easily. Table 4–1 lists the
functions discussed in this section that manipulate mutex attributes.

1. An atomic operation cannot be divided into smaller operations.
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TABLE 4–1 Mutex Attributes Routines

Operation Destination Discussion

Initialize a mutex mttribute object “pthread_mutexattr_init(3T)” on page 78

Destroy a mutex attribute object “pthread_mutexattr_destroy(3T)” on page 79

Set the scope of a mutex “pthread_mutexattr_setpshared(3T)” on page 80

Get the scope of a mutex “pthread_mutexattr_getpshared(3T)” on page 81

Set the mutex type attribute “pthread_mutexattr_settype(3T)” on page 81

Get the mutex type attribute “pthread_mutexattr_gettype(3T)” on page 83

Set mutex attribute’s protocol “pthread_mutexattr_setprotocol(3T)” on page 83

Get mutex attribute’s protocol “pthread_mutexattr_getprotocol(3T)” on page 86

Set mutex attribute’s priority ceiling “pthread_mutexattr_setprioceiling(3T)” on page 87

Get mutex attribute’s priority ceiling “pthread_mutexattr_getprioceiling(3T)” on page 88

Set mutex’s priority ceiling “pthread_mutex_setprioceiling(3T)” on page 89

Get mutex’s priority ceiling “pthread_mutex_getprioceiling(3T)” on page 90

Set mutex’s robust attribute

Get mutex’s robust attribute

The differences between Solaris threads and POSIX threads, when defining the scope
of a mutex, are shown in Table 4–2.
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TABLE 4–2 Mutex Scope Comparison

Solaris POSIX Definition

USYNC_PROCESS PTHREAD_PROCESS_SHARED Use to synchronize
threads in this and
other processes

USYNC_PROCESS_ROBUST No POSIX equivalent Use to robustly
synchronize threads
between processes

USYNC_THREAD PTHREAD_PROCESS_PRIVATE Use to synchronize
threads in this
process only

Initialize a Mutex Attribute Object

pthread_mutexattr_init(3T)
Use pthread_mutexattr_init (3T) to initialize attributes associated with this
object to their default values. Storage for each attribute object is allocated by the
threads system during execution.

The default value of the pshared attribute when this function is called is
PTHREAD_PROCESS_PRIVATE, which means that the initialized mutex can be used
within a process.

Prototype:
int pthread_mutexattr_init(pthread_mutexattr_t * mattr);

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;

/* initialize an attribute to default value */
ret = pthread_mutexattr_init(& mattr);

mattr is an opaque type that contains a system-allocated attribute object. The
possible values of mattr’s scope are PTHREAD_PROCESS_PRIVATE(the default) and
PTHREAD_PROCESS_SHARED.

Before a mutex attribute object can be reinitialized, it must first be destroyed by a
call to pthread_mutexattr_destroy(3T) . The pthread_mutexattr_init()
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call results in the allocation of an opaque object. If the object is not destroyed, a
memory leak will result.

Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. If either of the following conditions occurs, the function fails and
returns the corresponding value.

ENOMEM

There is not enough memory to initialize the mutex attributes object.

Destroy a Mutex Attribute Object

pthread_mutexattr_destroy(3T)
pthread_mutexattr_destroy (3T) deallocates the storage space used to maintain

the attribute object created by pthread_mutexattr_init() .

Prototype:
int pthread_mutexattr_destroy(pthread_mutexattr_t * mattr)

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;

/* destroy an attribute */
ret = pthread_mutexattr_destroy(& mattr);

Return Values
pthread_mutexattr_destroy() returns zero after completing successfully. Any
other returned value indicates that an error occurred. If the following condition
occurs, the function fails and returns the corresponding value.

EINVAL

The value specified by mattr is invalid.
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Set the Scope of a Mutex

pthread_mutexattr_setpshared(3T)
pthread_mutexattr_setpshared (3T) sets the scope of the mutex variable.

The scope of a mutex variable can be either process private (intraprocess) or system
wide (interprocess). If the mutex is created with the pshared attribute set to the
PTHREAD_PROCESS_SHAREDstate, and it exists in shared memory, it can be shared
among threads from more than one process. This is equivalent to the
USYNC_PROCESSflag in mutex_init() in the original Solaris threads.

Prototype:
int pthread_mutexattr_setpshared(pthread_mutexattr_t * mattr,

int pshared);

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;

ret = pthread_mutexattr_init(& mattr);
/*

* resetting to its default value: private
*/

ret = pthread_mutexattr_setpshared(& mattr,
PTHREAD_PROCESS_PRIVATE);

If the mutex pshared attribute is set to PTHREAD_PROCESS_PRIVATE, only those
threads created by the same process can operate on the mutex.

Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. If the following condition occurs, the function fails and returns the
corresponding value.

EINVAL

The value specified by mattr is invalid.
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Get the Scope of a Mutex

pthread_mutexattr_getpshared(3T)
pthread_mutexattr_getpshared (3T) returns the scope of the mutex variable

defined by pthread_mutexattr_setpshared() .

Prototype:
int pthread_mutexattr_getpshared(pthread_mutexattr_t * mattr,

int * pshared);

#include <pthread.h>

pthread_mutexattr_t mattr;
int pshared, ret;

/* get pshared of mutex */
ret = pthread_mutexattr_getpshared(& mattr, & pshared);

Get the current value of pshared for the attribute object mattr. It is either
PTHREAD_PROCESS_SHAREDor PTHREAD_PROCESS_PRIVATE.

Return Values
Returns zero after completing successfully. Any other returned value indicates that
an error occurred. If the following condition occurs, the function fails and returns the
corresponding value.

EINVAL

The value specified by mattr is invalid.

Set the Mutex Type Attribute

pthread_mutexattr_settype(3T)
#include <pthread.h>

int pthread_mutexattr_settype(pthread_mutexattr_t *attr , int type);

pthread_mutexattr_settype (3T) sets the mutex type attribute. The default value
of the type attribute is PTHREAD_MUTEX_DEFAULT.

The type argument specifies the type of mutex. Valid mutex types include:

PTHREAD_MUTEX_NORMAL
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This type of mutex does not detect deadlock. A thread attempting to relock this
mutex without first unlocking it will deadlock. Attempting to unlock a mutex
locked by a different thread results in undefined behavior. Attempting to unlock
an unlocked mutex results in undefined behavior.

PTHREAD_MUTEX_ERRORCHECK

This type of mutex provides error checking. A thread attempting to relock this
mutex without first unlocking it will return with an error. A thread attempting to
unlock a mutex which another thread has locked will return with an error. A
thread attempting to unlock an unlocked mutex will return with an error.

PTHREAD_MUTEX_RECURSIVE

A thread attempting to relock this mutex without first unlocking it will succeed in
locking the mutex. The relocking deadlock which can occur with mutexes of type
PTHREAD_MUTEX_NORMALcannot occur with this type of mutex. Multiple locks of
this mutex require the same number of unlocks to release the mutex before
another thread can acquire the mutex. A thread attempting to unlock a mutex
which another thread has locked will return with an error. A thread attempting to
unlock an unloc ked mutex will return with an error. This type of mutex is only
supported for mutexes whose process shared attribute is
PTHREAD_PROCESS_PRIVATE.

PTHREAD_MUTEX_DEFAULT

Attempting to recursively lock a mutex of this type results in undefined
behaviour. Attempting to unlock a mutex of this type which was not locked by the
calling thread results in undefined behaviour. Attempting to unlock a mutex of
this type which is not locked results in undefined behaviour. An implementation
is allowed to map this mutex to one of the other mutex types. (For Solaris threads,
PTHREAD_PROCESS_DEFAULTis mapped to PTHREAD_PROCESS_NORMAL.)

Return Values
If successful, the pthread_mutexattr_settype function returns zero. Otherwise,
an error number is returned to indicate the error.

EINVAL

The value type is invalid.

EINVAL

The value specified by attr is invalid.
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Get the Mutex Type Attribute

pthread_mutexattr_gettype(3T)
#include <pthread.h>

int pthread_mutexattr_gettype(pthread_mutexattr_t *attr , int *type);

pthread_mutexattr_gettype (3T) gets the mutex type attribute set by
pthread_mutexattr_settype() . The default value of the type attribute is
PTHREAD_MUTEX_DEFAULT.

The type argument specifies the type of mutex. Valid mutex types include:

� PTHREAD_MUTEX_NORMAL

� PTHREAD_MUTEX_ERRORCHECK

� PTHREAD_MUTEX_RECURSIVE

� PTHREAD_MUTEX_DEFAULT

For a description of each type, see “pthread_mutexattr_settype(3T)” on page 81.

Set Mutex Attribute’s Protocol

pthread_mutexattr_setprotocol(3T)
pthread_mutexattr_setprotocol(3T) sets the protocol attribute of a mutex attribute
object.

#include <pthread.h>

int pthread_mutexattr_setprotocol(pthread_mutexattr_t * attr, int protocol);

attr points to a mutex attribute object created by an earlier call to
pthread_mutexattr_init() .

protocol defines the protocol applied to the mutex attribute object.

The value of protocol, defined in pthread.h , can be: PTHREAD_PRIO_NONE,
PTHREAD_PRIO_INHERIT, or PTHREAD_PRIO_PROTECT.

� PTHREAD_PRIO_NONE

A thread’s priority and scheduling are not affected by the mutex ownership.

� PTHREAD_PRIO_INHERIT
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This protocol value affects a thread’s (such as thrd1 ) priority and scheduling
when higher-priority threads block on one or more mutexes owned by thrd1
where those mutexes are initialized with PTHREAD_PRIO_INHERIT. thrd1 runs
with the higher of its priority or the highest priority of any thread waiting on any
of the mutexes owned by thrd1 .

If thrd1 blocks on a mutex owned by another thread, thrd3 , the same priority
inheritance effect recursively propagates to thrd3 .

Use PTHREAD_PRIO_INHERITto avoid priority inversion. Priority inversion
occurs when a low-priority thread holds a lock that a higher-priority thread wants.
Because the higher-priority thread cannot continue until the lower-priority thread
releases the lock, each thread is treated as if it had the inverse of its intended
priority.

If the symbol _POSIX_THREAD_PRIO_INHERITis defined, for a mutex initialized
with the protocol attribute value PTHREAD_PRIO_INHERIT, the following actions
occur in the Solaris Operating Environment when the owner of that mutex dies:

Note - The behavior on owner death depends on the value of the robustness
argument of pthread_mutexattr_setrobust_np() .

� The mutex is unlocked.

� The next owner of the mutex acquires it with an error return of EOWNERDEAD.

� The next owner of the mutex should try to make the state protected by the
mutex consistent—the state might have been left inconsistent when the
previous owner died. If the owner is successful in making the state consistent,
call pthread_mutex_init( ) for the mutex and unlock the mutex.

Note - If pthread_mutex_init( ) is called on a previously initialized, but not
yet destroyed mutex, the mutex is not reiintialized.

� If the owner is unable to make the state consistent, do not call
pthread_mutex_init() , but unlock the mutex. In this event, all waiters will
be woken up and all subsequent calls to pthread_mutex_lock( ) will fail to
acquire the mutex and return an error code of ENOTRECOVERABLE. You can
now make the mutex state consistent by calling pthread_mutex_destroy( )
to uninitialize the mutex and calling pthread_mutex_init( ) to reinitialize
it.

� If the thread that acquired the lock with EOWNERDEADdies, the next owner
acquires the lock with an error code of EOWNERDEAD.

� PTHREAD_PRIO_PROTECT

This protocol value affects a thread’s (such as thrd2 ) priority and scheduling
when the thread owns one or more mutexes initialized with
PTHREAD_PRIO_PROTECT. thrd2 runs with the higher of its priority or the
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highest-priority ceiling of all mutexes it owns. Higher-priority threads blocked on
any of the mutexes, owned by thrd2 , have no effect on the scheduling of thrd2 .

When a thread owns a mutex that is intialized with PTHREAD_PRIO_INHERITor
PTHREAD_PRIO_PROTECT, and that thread’s original priority changes, such as by a
call to sched_setparam() , the scheduler does not move the thread to the tail of
the scheduling queue at it’s new priority. Similarly, when a thread unlocks a mutex
that is intialized with PTHREAD_PRIO_INHERITor PTHREAD_PRIO_PROTECT, and
that thread’s original priority changes, the scheduler does not move the thread to the
tail of the scheduling queue at it’s new priority.

If a thread simultaneously owns several mutexes initialized with a mix of
PTHREAD_PRIO_INHERITand PTHREAD_PRIO_PROTECT, it executes at the highest
priority obtained by either of these protocols.

Return Values
On successful completion, pthread_mutexattr_setprotocol( ) returns 0. Any
other returned value indicates that an error occurred.

If either of the following conditions occurs, pthread_mutexattr_setprotocol( )
fails and returns the corresponding value.

ENOSYS

Neither of the options _POSIX_THREAD_PRIO_INHERITand
_POSIX_THREAD_PRIO_PROTECTis defined and the implementation does not
support the function.

ENOTSUP

The value specified by protocol is an unsupported value.

If either of the following conditions occurs, pthread_mutexattr_setprotocol( )
might fail and return the corresponding value.

EINVAL

The value specified by attr or protocol is not valid.

EPERM

The caller does not have the privilege to perform the operation.
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Get Mutex Attribute’s Protocol

pthread_mutexattr_getprotocol(3T)
pthread_mutexattr_getprotocol(3T) gets the protocol attribute of a mutex attribute
object.

#include <pthread.h>

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t * attr, int * protocol);

attr points to a mutex attribute object created by an earlier call to
pthread_mutexattr_init() .

protocol contains the protocol attribute: PTHREAD_PRIO_NONE,
PTHREAD_PRIO_INHERIT, or PTHREAD_PRIO_PROTECT.

Return Values
On successful completion, pthread_mutexattr_getprotocol( ) returns 0. Any
other returned value indicates that an error occurred.

If the following condition occurs, pthread_mutexattr_getprotocol( ) fails and
returns the corresponding value.

ENOSYS

Neither of the options, _POSIX_THREAD_PRIO_INHERITnor
_POSIX_THREAD_PRIO_PROTECTis defined and the implementation does not
support the function.

If either of the following conditions occurs, pthread_mutexattr_getprotocol( )
might fail and return the corresponding value.

EINVAL

The value specified by attr is invalid.

EPERM

The caller does not have the privilege to perform the operation.
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Set Mutex Attribute’s Priority Ceiling

pthread_mutexattr_setprioceiling(3T)
pthread_mutexattr_setprioceiling(3T) sets the priority ceiling attribute of a mutex
attribute object.

#include <pthread.h>

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t * attr, int prioceiling, int * oldceiling);

attr points to a mutex attribute object created by an earlier call to
pthread_mutexattr_init() .

Note - The attr mutex attribute object includes the priority ceiing attribute only if the
symbol _POSIX_THREAD_PRIO_PROTECTis defined.

prioceiling specifies the priority ceiling of initialized mutexes. The ceiling defines the
minimum priority level at which the critical section guarded by the mutex is
executed. prioceiling will be within the maximum range of priorities defined by
SCHED_FIFO. To avoid priority inversion, prioceiling will be set to a priority higher
than or equal to the highest priority of all the threads that might lock the particular
mutex.

oldceiling contains the old priority ceiling value.

Return Values
On successful completion, pthread_mutexattr_setprioceiling() returns 0.
Any other returned value indicates that an error occurred.

If any of the following conditions occurs,
pthread_mutexattr_setprioceiling() fails and returns the corresponding
value.

ENOSYS

The option _POSIX_THREAD_PRIO_PROTECTis not defined and the
implementation does not support the function.

If either of the following conditions occurs,
pthread_mutexattr_setprioceiling() might fail and return the
corresponding value.

EINVAL

The value specified by attr or prioceiling is invalid.

EPERM
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The caller does not have the privilege to perform the operation.

Get Mutex Attribute’s Priority Ceiling

pthread_mutexattr_getprioceiling(3T)
pthread_mutexattr_getprioceiling(3T) gets the priority ceiling attribute of a mutex
attribute object.

#include <pthread.h>

int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t * attr, int * prioceiling);

attr designates the attribute object created by an earlier call to
pthread_mutexattr_init() .

Note - The attr mutex attribute object includes the priority ceiing attribute only if the
symbol _POSIX_THREAD_PRIO_PROTECTis defined.

pthread_mutexattr_getprioceiling() returns the priority ceiling of
initialized mutexes in prioceiling. The ceiling defines the minimum priority level at
which the critical section guarded by the mutex is executed. prioceiling will be within
the maximum range of priorities defined by SCHED_FIFO. To avoid priority
inversion, prioceiling will be set to a priority higher than or equal to the highest
priority of all the threads that might lock the particular mutex.

Return Values
On successful completion, pthread_mutexattr_getprioceiling() returns 0.
Any other returned value indicates that an error occurred.

If any of the following conditions occurs,
pthread_mutexattr_getprioceiling() fails and returns the corresponding
value.

ENOSYS

The option _POSIX_THREAD_PRIO_PROTECTis not defined and the
implementation does not support the function.

If either of the following conditions occurs,
pthread_mutexattr_getprioceiling() might fail and return the
corresponding value.

EINVAL
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The value specified by attr is invalid.

EPERM

The caller does not have the privilege to perform the operation.

Set Mutex’s Priority Ceiling

pthread_mutex_setprioceiling(3T)
pthread_mutex_setprioceiling(3T) sets the priority ceiling of a mutex.

#include <pthread.h>

int pthread_mutex_setprioceiling(pthread_mutexatt_t * mutex, int prioceiling, int * old_ceiling);

pthread_mutex_setprioceiling() changes the priority ceiling, prioceiling, of a
mutex, mutex. pthread_mutex_setprioceiling( ) locks the mutex if it is
unlocked, or blocks until it can successfully lock the mutex, changes the priority
celing of the mutex and releases the mutex. The process of locking the mutex need
not adhere to the priority protect protocol.

Note - The mutex attribute object, mutex, includes the priority ceiing attribute only if
the symbol _POSIX_THREAD_PRIO_PROTECTis defined.

If pthread_mutex_setprioceiling() succeeds, the previous value of the
priority ceiling is returned in old_ceiling. If pthread_mutex_setprioceiling( )
fails, the mutex priority ceiling remains unchanged.

Return Values
On successful completion, pthread_mutex_setprioceiling() returns 0. Any
other returned value indicates that an error occurred.

If the following condition occurs, pthread_mutexatt_setprioceiling() fails
and returns the corresponding value.

ENOSYS

The option _POSIX_THREAD_PRIO_PROTECTis not defined and the
implementation does not support the function.

If any of the following conditions occurs, pthread_mutex_setprioceiling( )
might fail and return the corresponding value.

EINVAL
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The priority requested by prioceiling is out of range.

EINVAL

The value specified by mutex does not refer to a currently existing mutex.

ENOSYS

The implementation does not support the priority ceiling protocol for mutexes.

EPERM

The caller does not have the privilege to perform the operation.

Get Mutex’s Priority Ceiling

pthread_mutex_getprioceiling(3T)
pthread_mutex_getprioceiling(3T) gets the priority ceiling of a mutex.

#include <pthread.h>

int pthread_mutex_getprioceiling(const pthread_mutexatt_t * mutex, int * prioceiling);

pthread_mutex_getprioceiling() returns the priority ceiling, prioceiling of a
mutex mutex.

Return Values
On successful completion, pthread_mutex_getprioceiling() returns 0. Any
other returned value indicates that an error occurred.

If any of the following conditions occurs, pthread_mutexatt_getprioceiling()
fails and returns the corresponding value.

ENOSYS

The option _POSIX_THREAD_PRIO_PROTECTis not defined and the
implementation does not support the function.

If any of the following conditions occurs, pthread_mutex_getprioceiling( )
might fail and return the corresponding value.

EINVAL

The value specified by mutex does not refer to a currently existing mutex.

ENOSYS
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The implementation does not support the priority ceiling protocol for mutexes.

EPERM

The caller does not have the privilege to perform the operation.

Set Mutex’s Robust Attribute

pthread_mutexattr_setrobust_np(3T)
pthread_mutexattr_setrobust_np(3T) sets the robust attribute of a mutex attribute object.

#include <pthread.h>

int pthread_mutexattr_setrobust_np(pthread_mutexatt_t * attr, int * robustness);

Note - pthread_mutexattr_setrobust_np() applies only if the symbol
_POSIX_THREAD_PRIO_INHERIT is defined.

attr points to the mutex attribute object previously created by a call to
pthread_mutexattr_init() .

robustness defines the behavior when the owner of the mutex dies. The value of
robustness, defined in pthread.h , is PTHREAD_MUTEX_ROBUST_NPor
PTHREAD_MUTEX_STALLED_NP. The default value is
PTHREAD_MUTEX_STALLED_NP.

� PTHREAD_MUTEX_ROBUST_NP

When the owner of the mutex dies, all subsequent calls to
pthread_mutex_lock() are blocked from progress in an unspecified manner.

� PTHREAD_MUTEX_STALLED_NP

When the owner of the mutex dies, the mutex is unlocked. The next owner of this
mutex acquires it with an error return of EOWNWERDEAD.

Note - Your application must check the return code from pthread_mutex_lock( )
for a mutex of this type.

� The new owner of this mutex should make the state protected by the mutex
consistent; this state might have been left inconsistent when the previous
owner died.

� If the new owner is able to make the state consistent, call
pthread_mutex_consistent_np() for the mutex, and unlock the mutex.
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� If the new owner is not able to make the state consistent, do not call
pthread_mutex_consistent_np() for the mutex, but unlock the mutex.

All waiters are woken up and all subsequent calls to
pthread_mutex_lock() fail to acquire the mutex. The return code is
ENOTRECOVERABLE. The mutex can be made consistent by calling
pthread_mutex_destroy() to unitialize the mutex, and calling
pthread_mutex_int( ) to reinitialize it.

If the thread that acquire the lock with EOWNERDEADdied, the next owner acquires
the lock with an EOWNERDEADreturn code.

Return Values

On successful completion, pthread_mutexattr_setrobust_np() returns 0. Any
other returned value indicates that an error occurred.

If any of the following conditions occurs, pthread_mutexattr_setrobust_np()
fails and returns the corresponding value.

ENOSYS

The option _POSIX_THREAD_PRIO__INHERIT is not defined or the
implementation does not support pthread_mutexattr_setrobust_np() .

ENOTSUP

The value specified by robustness is not supported.

pthread_mutexattr_setrobust_np() might fail if:

EINVAL

The value specified by attr or robustness is invalid.

Get Mutex’s Robust Attribute

pthread_mutexattr_getrobust_np(3T)
pthread_mutexattr_getrobust_np(3T) gets the robust attribute of a mutex attribute
object.

#include <pthread.h>

int pthread_mutexattr_getrobust_np(pthread_mutexatt_t * attr, int * robustness);
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Note - pthread_mutexattr_getrobust_np() applies only if the symbol
_POSIX_THREAD_PRIO_INHERIT is defined.

attr points to the mutex attribute object previously created by a call to
pthread_mutexattr_init() .

robustness is the value of the robust attribute of a mutex attribute object.

Return Values
On successful completion, pthread_mutexattr_getrobust_np() returns 0. Any
other returned value indicates that an error occurred.

If any of the following conditions occurs, pthread_mutexattr_getrobust_np()
fails and returns the corresponding value.

ENOSYS

The option _POSIX_THREAD_PRIO__INHERIT is not defined or the
implementation does not support pthread_mutexattr_getrobust_np() .

ENOTSUP

The value specified by robustness is not supported.

pthread_mutexattr_getrobust_np() might fail if:

EINVAL

The value specified by attr or robustness is invalid.

Using Mutual Exclusion Locks
Table 4–3 lists the functions discussed in this chapter that manipulate mutex locks.

TABLE 4–3 Routines for Mutual Exclusion Locks

Operation Destination Discussion

Initialize a mutex

Lock a mutex pthread_mutex_lock(3T)
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TABLE 4–3 Routines for Mutual Exclusion Locks (continued)

Operation Destination Discussion

Unlock a mutex “pthread_mutex_unlock(3T)” on page 98

Lock with a nonblocking mutex “pthread_mutex_trylock(3T)” on page 99

Destroy a mutex “pthread_mutex_destroy(3T)” on page 101

The default scheduling policy, SCHED_OTHER, does not specify the order in which
threads can acquire a lock. When multiple threads are waiting for a mutex, the order
of acquisition is undefined. When there is contention, the default behavior is to
unblock threads in priority order.

Initialize a Mutex

pthread_mutex_init(3T)
Use pthread_mutex_init (3T) to initialize the mutex pointed at by mp to its
default value (mattr is NULL), or to specify mutex attributes that have already been
set with pthread_mutexattr_init() . (For Solaris threads, see “mutex_init(3T)”
on page 221.)

Prototype:
int pthread_mutex_init(pthread_mutex_t * mp,

const pthread_mutexattr_t * mattr);

#include <pthread.h>

pthread_mutex_t mp = PTHREAD_MUTEX_INITIALIZER;
pthread_mutexattr_t mattr;
int ret;

/* initialize a mutex to its default value */
ret = pthread_mutex_init(& mp, NULL);

/* initialize a mutex */
ret = pthread_mutex_init(& mp, & mattr);

When the mutex is initialized, it is in an unlocked state. The mutex can be in
memory shared between processes or in memory private to a process.
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Note - The mutex memory must be cleared to zero before initialization.

The effect of mattr being NULL is the same as passing the address of a default mutex
attribute object, but without the memory overhead.

Statically defined mutexes can be initialized directly to have default attributes with
the macro PTHREAD_MUTEX_INITIALIZER.

A mutex lock must not be reinitialized or destroyed while other threads might be
using it. Program failure will result if either action is not done correctly. If a mutex is
reinitialized or destroyed, the application must be sure the mutex is not currently in
use.

Return Values
pthread_mutex_init( ) returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following
conditions occurs, the function fails and returns the corresponding value.

EBUSY

The implementation has detected an attempt to reinitialize the object referenced
by mp (a previously initialized, but not yet destroyed mutex).

EINVAL

The mattr attribute value is invalid. The mutex has not been modified.

EFAULT

The address for the mutex pointed at by mp is invalid.

Make Mutex Consistent

pthread_mutex_consistent_np(3T)
#include <pthread.h>
int pthread_mutex_consistent_np(pthread_mutex_t * mutex);

Note - pthread_mutex_consistent_np() applies only if the symbol
_POSIX_THREAD_PRIO_INHERIT is defined and for mutexes that are initialized
with the protocol attribute value PTHREAD_PRIO_INHERIT.

Programming with Synchronization Objects 95



If the owner of a mutex dies, the mutex can become inconsistent.

pthread_mutex_consistent_np makes the mutex object, mutex, consistent after the death
of its owner.

Call pthread_mutex_lock() to acquire the inconstent mutex. The EOWNWERDEAD
return value indicates an inconsistent mutex.

Call pthread_mutex_consistent_np() while holding the mutex acquired by a
previuos call to pthread_mutex_lock( ) .

Because the critical section protected by the mutex might have been left in an
inconsistent state by the dead owner, make the mutex consistent only if you are able
to make the critical section protected by the mutex consistent.

Calls to pthread_mutex_lock( ) , pthread_mutex_unlock() , and
pthread_mutex_trylock( ) for a consistent mutex behave in the normal manner.

The behavior of pthread_mutex_consistent_np() for a mutex that is not
inconsistent, or that is not held, is undefined.

Return Values
pthread_mutex_consistent_np() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When any of the
following conditions occurs, the function fails and returns the corresponding value.

pthread_mutex_consistent_np() fails if:

ENOSYS

The option _POSIX_THREAD_PRIO_INHERIT is not defined or the
implementation does not support pthread_mutex_consistent_np() .

pthread_mutex_consistent_np() might fail if:

EINVAL

The value specified by mutex is invalid.

Lock a Mutex

pthread_mutex_lock(3T)
Prototype:
int pthread_mutex_lock(pthread_mutex_t * mutex);

#include <pthread.h>
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pthread_mutex_t mutex;
int ret;

ret = pthread_ mutex_lock(& mp); /* acquire the mutex */

Use pthread_mutex_lock (3T) to lock the mutex pointed to by mutex. When
pthread_mutex_lock( ) returns, the mutex is locked and the calling thread is the
owner. If the mutex is already locked and owned by another thread, the calling
thread blocks until the mutex becomes available. (For Solaris threads, see
“mutex_lock(3T)” on page 223.)

If the mutex type is PTHREAD_MUTEX_NORMAL, deadlock detection is not provided.
Attempting to relock the mutex causes deadlock. If a thread attempts to unlock a
mutex that it has not locked or a mutex that is unlocked, undefined behaviour results.

If the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking is
provided. If a thread attempts to relock a mutex that it has already locked, an error
will be returned. If a thread attempts to unlock a mutex that it has not locked or a
mutex that is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex maintains the
concept of a lock count. When a thread successfully acquires a mutex for the first
time, the lock count is set to one. Every time a thread relocks this mutex, the lock
count is incremented by one. Each time the thread unlocks the mutex, the lock count
is decremented by one. When the lock count reaches zero, the mutex becomes
available for other threads to acquire. If a thread attempts to unlock a mutex that it
has not locked or a mutex which is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock the
mutex results in undefined behavior. Attempting to unlock the mutex if it was not
locked by the calling thread results in undefined behavior. Attempting to unlock the
mutex if it is not locked results in undefined behavior.

Return Values
pthread_mutex_lock( ) returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following
conditions occurs, the function fails and returns the corresponding value.

EAGAIN

The mutex could not be acquired because the maximum number of recursive locks
for mutex has been exceeded.

EDEADLK

The current thread already owns the mutex.

If the symbol _POSIX_THREAD_PRIO_INHERIT is defined, the mutex is initialized
with the protocol attribute value PTHREAD_PRIO_INHERIT, and the robustness
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argument of pthread_mutexattr_setrobust_np() is
PTHREAD_MUTEX_ROBUST_NPthe function fails and returns:

EOWNERDEAD

The last owner of this mutex died while holding the mutex. This mutex is now
owned by the caller. The caller must attempt to make the state protected by the
mutex consistent.

If the caller is able to make the state consistent, call
pthread_mutex_consistent_np() for the mutex and unlock the mutex.
Subsequent calls to pthread_mutex_lock( ) will behave normally.

If the caller is unable to make the state consistent, do not call
pthread_mutex_init( ) for the mutex, but unlock the mutex. Subsequent calls
to pthread_mutex_lock() fail to acquire the mutex and return an
ENOTRECOVERABLEerror code.

If the owner that acquired the lock with EOWNERDEADdies, the next owner
acquires the lock with EOWNERDEAD.

ENOTRECOVERABLE

The mutex you are trying to acquire is protecting state left irrecoverable by the
mutex’s previous owner that died while holding the lock. The mutex has not been
acquired. This condition can occur when the lock was previously acquired with
EOWNERDEADand the owner was unable to cleanup the state and had unlocked
the mutex without making the mutex state consistent.

ENOMEM

The limit on the number of simultaneously held mutexes has been exceeded.

Unlock a Mutex

pthread_mutex_unlock(3T)
Use pthread_mutex_unlock (3T) to unlock the mutex pointed to by mutex. (For
Solaris threads, see “mutex_unlock(3T)” on page 223.)

Prototype:
int pthread_mutex_unlock(pthread_mutex_t * mutex);

#include <pthread.h>

pthread_mutex_t mutex;
int ret;
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ret = pthread_mutex_unlock(& mutex); /* release the mutex */

pthread_mutex_unlock() releases the mutex object referenced by mutex. The
manner in which a mutex is released is dependent upon the mutex’s type attribute. If
there are threads blocked on the mutex object referenced by mutex when
pthread_mutex_unlock() is called, resulting in the mutex becoming available, the
scheduling policy is used to determine which thread shall acquire the mutex. (In the
case of PTHREAD_MUTEX_RECURSIVEmutexes, the mutex becomes available when
the count reaches zero and the calling thread no longer has any locks on this mutex).

Return Values
pthread_mutex_unlock() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following
conditions occurs, the function fails and returns the corresponding value.

EPERM

The current thread does not own the mutex.

Lock With a Nonblocking Mutex

pthread_mutex_trylock(3T)
Use pthread_mutex_trylock (3T) to attempt to lock the mutex pointed to by
mutex. (For Solaris threads, see “mutex_trylock(3T)” on page 224.)

Prototype:
int pthread_mutex_trylock(pthread_mutex_t * mutex);

#include <pthread.h>

pthread_mutex_t mutex;
int ret;

ret = pthread_mutex_trylock(& mutex); /* try to lock the mutex */

pthread_mutex_trylock( ) is a nonblocking version of
pthread_mutex_lock( ) . If the mutex object referenced by mutex is currently
locked (by any thread, including the current thread), the call returns immediately.
Otherwise, the mutex is locked and the calling thread is the owner.
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Return Values

pthread_mutex_trylock( ) returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following
conditions occurs, the function fails and returns the corresponding value.

EBUSY

The mutex could not be acquired because the mutex pointed to by mutex was
already locked.

EAGAIN

The mutex could not be acquired because the maximum number of recursive locks
for mutex has been exceeded.

If the symbol _POSIX_THREAD_PRIO_INHERIT is defined, the mutex is initialized
with the protocol attribute value PTHREAD_PRIO_INHERIT, and the robustness
argument of pthread_mutexattr_setrobust_np() is
PTHREAD_MUTEX_ROBUST_NPthe function fails and returns:

EOWNERDEAD

The last owner of this mutex died while holding the mutex. This mutex is now
owned by the caller. The caller must attempt to make the state protected by the
mutex consistent.

If the caller is able to make the state consistent, call
pthread_mutex_consistent_np() for the mutex and unlock the mutex.
Subsequent calls to pthread_mutex_lock( ) will behave normally.

If the caller is unable to make the state consistent, do not call
pthread_mutex_init( ) for the mutex, but unlock the mutex. Subsequent calls
to pthread_mutex_trylock() fail to acquire the mutex and return an
ENOTRECOVERABLEerror code.

If the owner that acquired the lock with EOWNERDEADdies, the next owner
acquires the lock with EOWNERDEAD.

ENOTRECOVERABLE

The mutex you are trying to acquire is protecting state left irrecoverable by the
mutex’s previous owner that died while holding the lock. The mutex has not been
acquired. This condition can occur when the lock was previously acquired with
EOWNERDEADand the owner was unable to cleanup the state and had unlocked
the mutex without making the mutex state consistent.

ENOMEM

The limit on the number of simultaneously held mutexes has been exceeded.
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Destroy a Mutex

pthread_mutex_destroy(3T)
Use pthread_mutex_destroy (3T) to destroy any state associated with the mutex
pointed to by mp. (For Solaris threads, see “mutex_destroy(3T)” on page 223.)

Prototype:
int pthread_mutex_destroy(pthread_mutex_t * mp);

#include <pthread.h>

pthread_mutex_t mp;
int ret;

ret = pthread_mutex_destroy(& mp); /* mutex is destroyed */

Note that the space for storing the mutex is not freed.

Return Values
pthread_mutex_destroy( ) returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following
conditions occur, the function fails and returns the corresponding value.

EINVAL

The value specified by mp does not refer to an initialized mutex object.

Mutex Lock Code Examples
Code Example 4–1 shows some code fragments with mutex locking.

CODE EXAMPLE 4–1 Mutex Lock Example

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void
increment_count()
{

pthread_mutex_lock(&count_mutex);
count = count + 1;

pthread_mutex_unlock(&count_mutex);
}

long long
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get_count()
{

long long c;

pthread_mutex_lock(&count_mutex);
c = count;

pthread_mutex_unlock(&count_mutex);
return (c);

}

The two functions in Code Example 4–1 use the mutex lock for different purposes.
The increment_count( ) function uses the mutex lock simply to ensure an atomic
update of the shared variable. The get_count( ) function uses the mutex lock to
guarantee that the 64-bit quantity count is read atomically. On a 32-bit architecture, a
long long is really two 32-bit quantities.

Reading an integer value is an atomic operation because integer is the common word
size on most machines.

Using Locking Hierarchies
You will occasionally want to access two resources at once. Perhaps you are using
one of the resources, and then discover that the other resource is needed as well.
There could be a problem if two threads attempt to claim both resources but lock the
associated mutexes in different orders. For example, if the two threads lock mutexes
1 and 2 respectively, then a deadlock occurs when each attempts to lock the other
mutex. Code Example 4–2 shows possible deadlock scenarios.

CODE EXAMPLE 4–2 Deadlock

Thread 1 Thread 2

pthread_mutex_lock(&m1);

/* use resource 1 */

pthread_mutex_lock(&m2);

/* use resources1 and 2 */

pthread_mutex_unlock(&m2);

pthread_mutex_unlock(&m1);

pthread_mutex_lock(&m2);

/* use resource 2 */

pthread_mutex_lock(&m1);

/* use resources 1 and 2 */

pthread_mutex_unlock(&m1);

pthread_mutex_unlock(&m2);
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The best way to avoid this problem is to make sure that whenever threads lock
multiple mutexes, they do so in the same order. This technique is known as lock
hierarchies: order the mutexes by logically assigning numbers to them.

Also, honor the restriction that you cannot take a mutex that is assigned n when you
are holding any mutex assigned a number greater than n.

Note - The lock_lint tool can detect the sort of deadlock problem shown in this
example. The best way to avoid such deadlock problems is to use lock hierarchies.
When locks are always taken in a prescribed order, deadlock should not occur.

However, this technique cannot always be used—sometimes you must take the
mutexes in an order other than prescribed. To prevent deadlock in such a situation,
use pthread_mutex_trylock() . One thread must release its mutexes when it
discovers that deadlock would otherwise be inevitable.

CODE EXAMPLE 4–3 Conditional Locking

Thread 1 Thread 2

pthread_mutex_lock(&m1);
pthread_mutex_lock(&m2);

/* no processing */

pthread_mutex_unlock(&m2);

pthread_mutex_unlock(&m1 );

for (; ;)

{ pthread_mutex_lock(&m2);

if(pthread_mutex_trylock(&m1)==0)

/* got it! */

break;

/* didn’t get it */

pthread_mutex_unlock(&m2);

}

/* get locks; no processing */

pthread_mutex_unlock(&m1);

pthread_mutex_unlock(&m2);

In Code Example 4–3, thread 1 locks mutexes in the prescribed order, but thread 2
takes them out of order. To make certain that there is no deadlock, thread 2 has to
take mutex 1 very carefully; if it were to block waiting for the mutex to be released,
it is likely to have just entered into a deadlock with thread 1.

To ensure this does not happen, thread 2 calls pthread_mutex_trylock() , which
takes the mutex if it is available. If it is not, thread 2 returns immediately, reporting
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failure. At this point, thread 2 must release mutex 2, so that thread 1 can lock it, and
then release both mutex 1 and mutex 2.

Nested Locking With a Singly Linked List
Code Example 4–4 and Code Example 4–5 show how to take three locks at once, but
prevent deadlock by taking the locks in a prescribed order.

CODE EXAMPLE 4–4 Singly Linked List Structure

typedef struct node1 {
int value;
struct node1 *link;
pthread_mutex_t lock;

} node1_t;

node1_t ListHead;

This example uses a singly linked list structure with each node containing a mutex.
To remove a node from the list, first search the list starting at ListHead (which itself is
never removed) until the desired node is found.

To protect this search from the effects of concurrent deletions, lock each node before
any of its contents are accessed. Because all searches start at ListHead, there is never a
deadlock because the locks are always taken in list order.

When the desired node is found, lock both the node and its predecessor since the
change involves both nodes. Because the predecessor’s lock is always taken first, you
are again protected from deadlock. Code Example 4–5 shows the C code to remove
an item from a singly linked list.

CODE EXAMPLE 4–5 Singly Linked List With Nested Locking

node1_t *delete(int value)
{

node1_t *prev, *current;

prev = &ListHead;
pthread_mutex_lock(&prev->lock);

while ((current = prev->link) != NULL) {
pthread_mutex_lock(&current->lock);
if (current->value == value) {

prev->link = current->link;
pthread_mutex_unlock(&current->lock);

pthread_mutex_unlock(&prev->lock);
current->link = NULL;
return(current);

}
pthread_mutex_unlock(&prev->lock);
prev = current;

}
pthread_mutex_unlock(&prev->lock);
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return(NULL);
}

Nested Locking With a Circular Linked List

Code Example 4–6 modifies the previous list structure by converting it into a circular
list. There is no longer a distinguished head node; now a thread might be associated
with a particular node and might perform operations on that node and its neighbor.
Note that lock hierarchies do not work easily here because the obvious hierarchy
(following the links) is circular.

CODE EXAMPLE 4–6 Circular Linked List Structure

typedef struct node2 {
int value;
struct node2 *link;
pthread_mutex_t lock;

} node2_t;

Here is the C code that acquires the locks on two nodes and performs an operation
involving both of them.

CODE EXAMPLE 4–7 Circular Linked List With Nested Locking

void Hit Neighbor(node2_t *me) {
while (1) {

pthread_mutex_lock(&me->lock);
if (pthread_mutex_lock(&me->link->lock)!= 0) {

/* failed to get lock */
pthread_mutex_unlock(&me->lock);
continue;

}
break;

}
me->link->value += me->value;
me->value /=2;
pthread_mutex_unlock(&me->link->lock);
pthread_mutex_unlock(&me->lock);

}

Condition Variable Attributes
Use condition variables to atomically block threads until a particular condition is
true. Always use condition variables together with a mutex lock.
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With a condition variable, a thread can atomically block until a condition is satisfied.
The condition is tested under the protection of a mutual exclusion lock (mutex).

When the condition is false, a thread usually blocks on a condition variable and
atomically releases the mutex waiting for the condition to change. When another
thread changes the condition, it can signal the associated condition variable to cause
one or more waiting threads to wake up, acquire the mutex again, and reevaluate the
condition.

Condition variables can be used to synchronize threads among processes when they
are allocated in memory that can be written to and is shared by the cooperating
processes.

The scheduling policy determines how blocking threads are awakened. For the
default SCHED_OTHER, threads are awakened in priority order.

The attributes for condition variables must be set and initialized before the condition
variables can be used. The functions that manipulate condition variable attributes are
listed in Table 4–4.

TABLE 4–4 Condition Variable Attributes

Operation Destination Discussion

Initialize a condition variable attribute “pthread_condattr_init(3T)” on page 107

Remove a condition variable attribute “pthread_condattr_destroy(3T)” on page 108

Set the scope of a condition variable “pthread_condattr_setpshared(3T)” on page 109

Get the scope of a condition variable “pthread_condattr_getpshared(3T)” on page 110

The differences between Solaris and POSIX threads, when defining the scope of a
condition variable, are shown in Table 4–5.
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TABLE 4–5 Condition Variable Scope Comparison

Solaris POSIX Definition

USYNC_PROCESS PTHREAD_PROCESS_SHARED Use to synchronize
threads in this and other
processes

USYNC_THREAD PTHREAD_PROCESS_PRIVATE Use to synchronize
threads in this process
only

Initialize a Condition Variable Attribute

pthread_condattr_init(3T)
Use pthread_condattr_init (3T) to initialize attributes associated with this
object to their default values. Storage for each attribute object is allocated by the
threads system during execution. The default value of the pshared attribute when this
function is called is PTHREAD_PROCESS_PRIVATE, which means that the initialized
condition variable can be used within a process.

Prototype:
int pthread_condattr_init(pthread_condattr_t * cattr);

#include <pthread.h>
pthread_condattr_t cattr;
int ret;

/* initialize an attribute to default value */
ret = pthread_condattr_init(& cattr);

cattr is an opaque data type that contains a system-allocated attribute object. The
possible values of cattr’s scope are PTHREAD_PROCESS_PRIVATE(the default) and
PTHREAD_PROCESS_SHARED.

Before a condition variable attribute can be reused, it must first be reinitialized by
pthread_condattr_destroy(3T). The pthread_condattr_init() call returns a
pointer to an opaque object. If the object is not destroyed, a memory leak will result.
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Return Values
pthread_condattr_init( ) returns zero after completing successfully. Any other
returned value indicates that an error occurred. When either of the following
conditions occurs, the function fails and returns the corresponding value.

ENOMEM

There is not enough memory to initialize the thread attributes object.

EINVAL

The value specified by cattr is invalid.

Remove a Condition Variable Attribute

pthread_condattr_destroy(3T)
Use pthread_condattr_destroy (3T) to remove storage and render the attribute
object invalid.

Prototype:
int pthread_condattr_destroy(pthread_condattr_t * cattr);

#include <pthread.h>
pthread_condattr_t cattr;
int ret;

/* destroy an attribute */
ret

= pthread_condattr_destroy(& cattr);

Return Values
pthread_condattr_destroy( ) returns zero after completing successfully. Any
other returned value indicates that an error occurred. If the following condition
occurs, the function fails and returns the corresponding value.

EINVAL

The value specified by cattr is invalid.
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Set the Scope of a Condition Variable

pthread_condattr_setpshared(3T)
pthread_condattr_setpshared (3T) sets the scope of a condition variable to

either process private (intraprocess) or system wide (interprocess). If the condition
variable is created with the pshared attribute set to the PTHREAD_PROCESS_SHARED
state, and it exists in shared memory, it can be shared among threads from more than
one process. This is equivalent to the USYNC_PROCESSflag in mutex_init( ) in the
original Solaris threads.

If the mutex pshared attribute is set to PTHREAD_PROCESS_PRIVATE(default value),
only those threads created by the same process can operate on the mutex. Using
PTHREAD_PROCESS_PRIVATEresults in the same behavior as with the
USYNC_THREADflag in the original Solaris threads cond_init( ) call, which is that
of a local condition variable. PTHREAD_PROCESS_SHAREDis equivalent to a global
condition variable.

Prototype:
int pthread_condattr_setpshared(pthread_condattr_t * cattr,

int pshared);

#include <pthread.h>

pthread_condattr_t cattr;
int ret;

/* all processes */
ret = pthread_condattr_setpshared(& cattr, PTHREAD_PROCESS_SHARED);

/* within a process */
ret = pthread_condattr_setpshared(& cattr, PTHREAD_PROCESS_PRIVATE);

Return Values
pthread_condattr_setpshared() returns zero after completing successfully.
Any other returned value indicates that an error occurred. If the following condition
occurs, the function fails and returns the corresponding value.

EINVAL

The value of cattr is invalid, or the pshared value is invalid.
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Get the Scope of a Condition Variable

pthread_condattr_getpshared(3T)
pthread_condattr_getpshared (3T) gets the current value of pshared for the

attribute object cattr. The value is either PTHREAD_PROCESS_SHAREDor
PTHREAD_PROCESS_PRIVATE.

Prototype:
int pthread_condattr_getpshared(const pthread_condattr_t * cattr,

int * pshared);

#include <pthread.h>

pthread_condattr_t cattr;
int pshared;
int ret;

/* get pshared value of condition variable */
ret = pthread_condattr_getpshared(& cattr, & pshared);

Return Values
pthread_condattr_getpshared() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When the following
condition occurs, the function fails and returns the corresponding value.

EINVAL

The value of cattr is invalid.

Using Condition Variables
This section explains using condition variables. Table 4–6 lists the functions that are
available.

TABLE 4–6 Condition Variables Functions

Operation Destination Discussion

Initialize a condition variable “pthread_cond_init(3T)” on page 111

Block on a condition variable “pthread_cond_wait(3T)” on page 112
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TABLE 4–6 Condition Variables Functions (continued)

Operation Destination Discussion

Unblock a specific thread “pthread_cond_signal(3T)” on page 114

Block until a specified event “pthread_cond_timedwait(3T)” on page 115

Unblock all threads “pthread_cond_broadcast(3T)” on page 116

Destroy condition variable state “pthread_cond_destroy(3T)” on page 118

Initialize a Condition Variable

pthread_cond_init(3T)
Use pthread_cond_init (3T) to initialize the condition variable pointed at by cv to
its default value (cattr is NULL), or to specify condition variable attributes that are
already set with pthread_condattr_init() . The effect of cattr being NULL is the
same as passing the address of a default condition variable attribute object, but
without the memory overhead. (For Solaris threads, see “cond_init(3T)” on page 224.)

Prototype:
int pthread_cond_init(pthread_cond_t * cv,

const pthread_condattr_t * cattr);

#include <pthread.h>

pthread_cond_t cv;
pthread_condattr_t cattr;
int ret;

/* initialize a condition variable to its default value */
ret = pthread_cond_init(& cv, NULL);

/* initialize a condition variable */
ret = pthread_cond_init(& cv, & cattr);

Statically defined condition variables can be initialized directly to have default
attributes with the macro PTHREAD_COND_INITIALIZER. This has the same effect
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as dynamically allocating pthread_cond_init( ) with null attributes. No error
checking is done.

Multiple threads must not simultaneously initialize or reinitialize the same condition
variable. If a condition variable is reinitialized or destroyed, the application must be
sure the condition variable is not in use.

Return Values
pthread_cond_init( ) returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following
conditions occurs, the function fails and returns the corresponding value.

EINVAL

The value specified by cattr is invalid.

EBUSY

The condition variable is being used.

EAGAIN

The necessary resources are not available.

ENOMEM

There is not enough memory to initialize the condition variable.

Block on a Condition Variable

pthread_cond_wait(3T)
Use pthread_cond_wait (3T) to atomically release the mutex pointed to by mp
and to cause the calling thread to block on the condition variable pointed to by cv.
(For Solaris threads, see “cond_wait(3T)” on page 225.)

Prototype:
int pthread_cond_wait(pthread_cond_t * cv,pthread_mutex_t * mutex);

#include <pthread.h>

pthread_cond_t cv;
pthread_mutex_t mp;
int ret;

/* wait on condition variable */
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ret = pthread_cond_wait(& cv, & mp);

The blocked thread can be awakened by a pthread_cond_signal() , a
pthread_cond_broadcast() , or when interrupted by delivery of a signal.

Any change in the value of a condition associated with the condition variable cannot
be inferred by the return of pthread_cond_wait( ) , and any such condition must
be reevaluated.

The pthread_cond_wait( ) routine always returns with the mutex locked and
owned by the calling thread, even when returning an error.

This function blocks until the condition is signaled. It atomically releases the
associated mutex lock before blocking, and atomically acquires it again before
returning.

In typical use, a condition expression is evaluated under the protection of a mutex
lock. When the condition expression is false, the thread blocks on the condition
variable. The condition variable is then signaled by another thread when it changes
the condition value. This causes one or all of the threads waiting on the condition to
unblock and to try to acquire the mutex lock again.

Because the condition can change before an awakened thread returns from
pthread_cond_wait( ) , the condition that caused the wait must be retested before
the mutex lock is acquired. The recommended test method is to write the condition
check as a while() loop that calls pthread_cond_wait( ) .

pthread_mutex_lock();
while(condition_is_false)

pthread_cond_wait();
pthread_mutex_unlock();

No specific order of acquisition is guaranteed when more than one thread blocks on
the condition variable.

Note - pthread_cond_wait( ) is a cancellation point. If a cancel is pending and
the calling thread has cancellation enabled, the thread terminates and begins
executing its cleanup handlers while continuing to hold the lock.

Return Values

pthread_cond_wait( ) returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition occurs,
the function fails and returns the corresponding value.

EINVAL

The value specified by cv or mp is invalid.
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Unblock a Specific Thread

pthread_cond_signal(3T)
Use pthread_cond_signal (3T) to unblock one thread that is blocked on the
condition variable pointed to by cv. (For Solaris threads, see “cond_signal(3T)” on
page 226.)

Prototype:
int pthread_cond_signal(pthread_cond_t * cv);

#include <pthread.h>

pthread_cond_t cv;
int ret;

/* one condition variable is signaled */
ret = pthread_cond_signal(& cv);

Call pthread_cond_signal() under the protection of the same mutex used with
the condition variable being signaled. Otherwise, the condition variable could be
signaled between the test of the associated condition and blocking in
pthread_cond_wait( ) , which can cause an infinite wait.

The scheduling policy determines the order in which blocked threads are awakened.
For SCHED_OTHER, threads are awakened in priority order.

When no threads are blocked on the condition variable, calling
pthread_cond_signal() has no effect.

Return Values
pthread_cond_signal() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition occurs,
the function fails and returns the corresponding value.

EINVAL

cv points to an illegal address.

Code Example 4–8 shows how to use pthread_cond_wait( ) and
pthread_cond_signal() .

CODE EXAMPLE 4–8 Using pthread_cond_wait( ) and pthread_cond_signal( )

pthread_mutex_t count_lock;
pthread_cond_t count_nonzero;
unsigned count;

decrement_count()
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{
pthread_mutex_lock(&count_lock);
while (count == 0)

pthread_cond_wait(&count_nonzero, &count_lock);
count = count - 1;
pthread_mutex_unlock(&count_lock);

}

increment_count()
{

pthread_mutex_lock(&count_lock);
if (count == 0)

pthread_cond_signal(&count_nonzero);
count = count + 1;
pthread_mutex_unlock(&count_lock);

}

Block Until a Specified Event

pthread_cond_timedwait(3T)
Prototype:
int pthread_cond_timedwait(pthread_cond_t * cv,

pthread_mutex_t * mp, const struct timespec * abstime);

#include <pthread.h>
#include <time.h>

pthread_cond_t cv;
pthread_mutex_t mp;
timestruct_t abstime;
int ret;

/* wait on condition variable */
ret = pthread_cond_timedwait(& cv, & mp, & abstime);

Use pthread_cond_timedwait (3T) as you would use pthread_cond_wait( ) ,
except that pthread_cond_timedwait() does not block past the time of day
specified by abstime. pthread_cond_timedwait( ) always returns with the mutex
locked and owned by the calling thread, even when it is returning an error. (For
Solaris threads, see “cond_timedwait(3T)” on page 226.)

The pthread_cond_timedwait() function blocks until the condition is signaled
or until the time of day, specified by the last argument, has passed.

Note - pthread_cond_timedwait() is also a cancellation point.
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Return Values
pthread_cond_timedwait() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When either of the following
conditions occurs, the function fails and returns the corresponding value.

EINVAL

cv or abstime points to an illegal address.

ETIMEDOUT

The time specified by abstime has passed.

The timeout is specified as a time of day so that the condition can be retested
efficiently without recomputing the value, as shown in Code Example 4–9.

CODE EXAMPLE 4–9 Timed Condition Wait

pthread_timestruc_t to;
pthread_mutex_t m;
pthread_cond_t c;
...
pthread_mutex_lock(&m);
to.tv_sec = time(NULL) + TIMEOUT;
to.tv_nsec = 0;
while (cond == FALSE) {

err = pthread_cond_timedwait(&c, &m, &to);
if (err == ETIMEDOUT) {

/* timeout, do something */
break;

}
}
pthread_mutex_unlock(&m);

Unblock All Threads

pthread_cond_broadcast(3T)
Prototype:
int pthread_cond_broadcast(pthread_cond_t * cv);

#include <pthread.h>

pthread_cond_t cv;
int ret;

/* all condition variables are signaled */
ret = pthread_cond_broadcast(& cv);
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Use pthread_cond_broadcast (3T) to unblock all threads that are blocked on the
condition variable pointed to by cv, specified by pthread_cond_wait() . When no
threads are blocked on the condition variable, pthread_cond_broadcast() has
no effect. (For Solaris threads, see “cond_broadcast(3T)” on page 227.)

Return Values
pthread_cond_broadcast() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When the following condition
occurs, the function fails and returns the corresponding value.

EINVAL

cv points to an illegal address.

Condition Variable Broadcast Example
Since pthread_cond_broadcast() causes all threads blocked on the condition to
contend again for the mutex lock, use it with care. For example, use
pthread_cond_broadcast() to allow threads to contend for varying resource
amounts when resources are freed, as shown in Code Example 4–10.

CODE EXAMPLE 4–10 Condition Variable Broadcast

pthread_mutex_t rsrc_lock;
pthread_cond_t rsrc_add;
unsigned int resources;

get_resources(int amount)
{

pthread_mutex_lock(&rsrc_lock);
while (resources < amount) {

pthread_cond_wait(&rsrc_add, &rsrc_lock);
}
resources -= amount;
pthread_mutex_unlock(&rsrc_lock);

}

add_resources(int amount)
{

pthread_mutex_lock(&rsrc_lock);
resources += amount;
pthread_cond_broadcast(&rsrc_add);
pthread_mutex_unlock(&rsrc_lock);

}

Note that in add_resources() it does not matter whether resources is updated first
or if pthread_cond_broadcast() is called first inside the mutex lock.
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Call pthread_cond_broadcast() under the protection of the same mutex that is
used with the condition variable being signaled. Otherwise, the condition variable
could be signaled between the test of the associated condition and blocking in
pthread_cond_wait( ) , which can cause an infinite wait.

Destroy Condition Variable State

pthread_cond_destroy(3T)
Use pthread_cond_destroy (3T) to destroy any state associated with the condition
variable pointed to by cv. (For Solaris threads, see “cond_destroy(3T)” on page 225.)

Prototype:
int pthread_cond_destroy(pthread_cond_t * cv);

#include <pthread.h>

pthread_cond_t cv;
int ret;

/* Condition variable is destroyed */
ret = pthread_cond_destroy(& cv);

Note that the space for storing the condition variable is not freed.

Return Values

pthread_cond_destroy() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following
conditions occur, the function fails and returns the corresponding value.

EINVAL

The value specified by cv is invalid.

The Lost Wake-Up Problem
Calling pthread_cond_signal() or pthread_cond_broadcast() when the
thread does not hold the mutex lock associated with the condition can lead to lost
wake-up bugs.

A lost wake-up occurs when:

� A thread calls pthread_cond_signal( ) or pthread_cond_broadcast() .
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� And another thread is between the test of the condition and the call to
pthread_cond_wait( ) .

� And no threads are waiting.

The signal has no effect, and therefore is lost.

The Producer/Consumer Problem
This problem is one of the small collection of standard, well-known problems in
concurrent programming: a finite-size buffer and two classes of threads, producers
and consumers, put items into the buffer (producers) and take items out of the buffer
(consumers).

A producer must wait until the buffer has space before it can put something in, and a
consumer must wait until something is in the buffer before it can take something out.

A condition variable represents a queue of threads waiting for some condition to be
signaled.

Code Example 4–11 has two such queues, one (less) for producers waiting for a slot
in the buffer, and the other (more) for consumers waiting for a buffer slot containing
information. The example also has a mutex, as the data structure describing the
buffer must be accessed by only one thread at a time.

CODE EXAMPLE 4–11 The Producer/Consumer Problem and Condition Variables

typedef struct {
char buf[BSIZE];
int occupied;
int nextin;
int nextout;
pthread_mutex_t mutex;
pthread_cond_t more;
pthread_cond_t less;

} buffer_t;

buffer_t buffer;

As Code Example 4–12 shows, the producer thread acquires the mutex protecting the
buffer data structure and then makes certain that space is available for the item
being produced. If not, it calls pthread_cond_wait( ) , which causes it to join the
queue of threads waiting for the condition less, representing there is room in the buffer,
to be signaled.

At the same time, as part of the call to pthread_cond_wait( ) , the thread releases
its lock on the mutex. The waiting producer threads depend on consumer threads to
signal when the condition is true (as shown in Code Example 4–12). When the
condition is signaled, the first thread waiting on less is awakened. However, before
the thread can return from pthread_cond_wait( ) , it must acquire the lock on the
mutex again.
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This ensures that it again has mutually exclusive access to the buffer data structure.
The thread then must check that there really is room available in the buffer; if so, it
puts its item into the next available slot.

At the same time, consumer threads might be waiting for items to appear in the
buffer. These threads are waiting on the condition variable more. A producer thread,
having just deposited something in the buffer, calls pthread_cond_signal() to
wake up the next waiting consumer. (If there are no waiting consumers, this call has
no effect.)

Finally, the producer thread unlocks the mutex, allowing other threads to operate on
the buffer data structure.

CODE EXAMPLE 4–12 The Producer/Consumer Problem—the Producer

void producer(buffer_t *b, char item)
{

pthread_mutex_lock(&b->mutex);

while (b->occupied >= BSIZE)
pthread_cond_wait(&b->less, &b->mutex);

assert(b->occupied < BSIZE);

b->buf[b->nextin++] = item;

b->nextin %= BSIZE;
b->occupied++;

/* now: either b->occupied < BSIZE and b->nextin is the index
of the next empty slot in the buffer, or
b->occupied == BSIZE and b->nextin is the index of the
next (occupied) slot that will be emptied by a consumer
(such as b->nextin == b->nextout) */

pthread_cond_signal(&b->more);

pthread_mutex_unlock(&b->mutex);
}

Note the use of the assert( ) statement; unless the code is compiled with NDEBUG
defined, assert() does nothing when its argument evaluates to true (that is,
nonzero), but causes the program to abort if the argument evaluates to false (zero).
Such assertions are especially useful in multithreaded programs—they immediately
point out runtime problems if they fail, and they have the additional effect of being
useful comments.

The comment that begins /* now: either b->occupied ... could better be
expressed as an assertion, but it is too complicated as a Boolean-valued expression
and so is given in English.

Both the assertion and the comments are examples of invariants. These are logical
statements that should not be falsified by the execution of the program, except
during brief moments when a thread is modifying some of the program variables
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mentioned in the invariant. (An assertion, of course, should be true whenever any
thread executes it.)

Using invariants is an extremely useful technique. Even if they are not stated in the
program text, think in terms of invariants when you analyze a program.

The invariant in the producer code that is expressed as a comment is always true
whenever a thread is in the part of the code where the comment appears. If you
move this comment to just after the mutex_unlock() , this does not necessarily
remain true. If you move this comment to just after the assert( ) , this is still true.

The point is that this invariant expresses a property that is true at all times, except
when either a producer or a consumer is changing the state of the buffer. While a
thread is operating on the buffer (under the protection of a mutex), it might
temporarily falsify the invariant. However, once the thread is finished, the invariant
should be true again.

Code Example 4–13 shows the code for the consumer. Its flow is symmetric with that
of the producer.

CODE EXAMPLE 4–13 The Producer/Consumer Problem—the Consumer

char consumer(buffer_t *b)
{

char item;
pthread_mutex_lock(&b->mutex);
while(b->occupied <= 0)

pthread_cond_wait(&b->more, &b->mutex);

assert(b->occupied > 0);

item = b->buf[b->nextout++];
b->nextout %= BSIZE;
b->occupied--;

/* now: either b->occupied > 0 and b->nextout is the index
of the next occupied slot in the buffer, or
b->occupied == 0 and b->nextout is the index of the next
(empty) slot that will be filled by a producer (such as
b->nextout == b->nextin) */

pthread_cond_signal(&b->less);
pthread_mutex_unlock(&b->mutex);

return(item);
}
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Semaphores
Semaphores are a programming construct designed by E. W. Dijkstra in the late
1960s. Dijkstra’s model was the operation of railroads: consider a stretch of railroad
in which there is a single track over which only one train at a time is allowed.

Guarding this track is a semaphore. A train must wait before entering the single
track until the semaphore is in a state that permits travel. When the train enters the
track, the semaphore changes state to prevent other trains from entering the track. A
train that is leaving this section of track must again change the state of the
semaphore to allow another train to enter.

In the computer version, a semaphore appears to be a simple integer. A thread waits
for permission to proceed and then signals that it has proceeded by performing a P
operation on the semaphore.

The semantics of the operation are such that the thread must wait until the
semaphore’s value is positive, then change the semaphore’s value by subtracting one
from it. When it is finished, the thread performs a V operation, which changes the
semaphore’s value by adding one to it. It is crucial that these operations take place
atomically—they cannot be subdivided into pieces between which other actions on
the semaphore can take place. In the P operation, the semaphore’s value must be
positive just before it is decremented (resulting in a value that is guaranteed to be
nonnegative and one less than what it was before it was decremented).

In both P and V operations, the arithmetic must take place without interference. If
two V operations are performed simultaneously on the same semaphore, the net
effect should be that the semaphore’s new value is two greater than it was.

The mnemonic significance of P and V is unclear to most of the world, as Dijkstra is
Dutch. However, in the interest of true scholarship: P stands for prolagen, a made-up
word derived from proberen te verlagen, which means try to decrease. V stands for
verhogen, which means increase. This is discussed in one of Dijkstra’s technical notes,
EWD 74.

sem_wait (3R) and sem_post (3R) correspond to Dijkstra’s P and V operations.
sem_trywait (3R) is a conditional form of the P operation: if the calling thread
cannot decrement the value of the semaphore without waiting, the call returns
immediately with a nonzero value.

There are two basic sorts of semaphores: binary semaphores, which never take on
values other than zero or one, and counting semaphores, which can take on arbitrary
nonnegative values. A binary semaphore is logically just like a mutex.

However, although it is not enforced, mutexes should be unlocked only by the
thread holding the lock. There is no notion of “the thread holding the semaphore,”
so any thread can perform a V (or sem_post(3R)) operation.
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Counting semaphores are about as powerful as conditional variables (used in
conjunction with mutexes). In many cases, the code might be simpler when it is
implemented with counting semaphores rather than with condition variables (as
shown in the next few examples).

However, when a mutex is used with condition variables, there is an implied
bracketing—it is clear which part of the program is being protected. This is not
necessarily the case for a semaphore, which might be called the go to of concurrent
programming—it is powerful but too easy to use in an unstructured, indeterminate
way.

Counting Semaphores
Conceptually, a semaphore is a nonnegative integer count. Semaphores are typically
used to coordinate access to resources, with the semaphore count initialized to the
number of free resources. Threads then atomically increment the count when
resources are added and atomically decrement the count when resources are
removed.

When the semaphore count becomes zero, indicating that no more resources are
present, threads trying to decrement the semaphore block wait until the count
becomes greater than zero.

TABLE 4–7 Routines for Semaphores

Operation Destination Discussion

Initialize a semaphore “sem_init(3R)” on page 124

Increment a semaphore “sem_post(3R)” on page 126

Block on a semaphore count “sem_wait(3R)” on page 126

Decrement a semaphore count “sem_trywait(3R)” on page 127

Destroy the semaphore state “sem_destroy(3R)” on page 128

Because semaphores need not be acquired and released by the same thread, they can
be used for asynchronous event notification (such as in signal handlers). And,
because semaphores contain state, they can be used asynchronously without
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acquiring a mutex lock as is required by condition variables. However, semaphores
are not as efficient as mutex locks.

By default, there is no defined order of unblocking if multiple threads are waiting for
a semaphore.

Semaphores must be initialized before use, but they do not have attributes.

Initialize a Semaphore

sem_init(3R)
Prototype:
int sem_init(sem_t * sem, int pshared, unsigned int value);

#include <semaphore.h>

sem_t sem;
int pshared;
int ret;
int value;

/* initialize a private semaphore */
pshared = 0;
value = 1;
ret = sem_init(& sem, pshared, value);

Use sem_init (3R) to initialize the semaphore variable pointed to by sem to value
amount. If the value of pshared is zero, then the semaphore cannot be shared
between processes. If the value of pshared is nonzero, then the semaphore can be
shared between processes. (For Solaris threads, see “sema_init(3T)” on page 227.)

Multiple threads must not initialize the same semaphore.

A semaphore must not be reinitialized while other threads might be using it.

Return Values

sem_init( ) returns zero after completing successfully. Any other returned value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL

The value argument exceeds SEM_VALUE_MAX.

ENOSPC
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A resource required to initialize the semaphore has been exhausted. The limit on
semaphores SEM_NSEMS_MAXhas been reached.

EPERM

The process lacks the appropriate privileges to initialize the semaphore.

Initializing Semaphores With Intraprocess Scope
When pshared is 0, the semaphore can be used by all the threads in this process only.

#include <semaphore.h>

sem_t sem;
int ret;
int count = 4;

/* to be used within this process only */
ret = sem_init(& sem, 0, count);

Initializing Semaphores With Interprocess Scope
When pshared is nonzero, the semaphore can be shared by other processes.

#include <semaphore.h>

sem_t sem;
int ret;
int count = 4;

/* to be shared among processes */
ret = sem_init(& sem, 1, count);

Named Semaphores
The functions sem_open(3R) , sem_getvalue(3R) , sem_close(3R) , and
sem_unlink(3R) are available to open , retrieve , close , and remove named
semaphores. Using sem_open() , you can create a semaphore that has a name
defined in the file system name space.

Named semaphores are like process shared semaphores, except that they are
referenced with a pathname rather than a pshared value.

For more information about named semaphores, see sem_open(3R) ,
sem_getvalue(3R) , sem_close(3R) , and sem_unlink(3R) .
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Increment a Semaphore

sem_post(3R)
Prototype:
int sem_post(sem_t * sem);

#include <semaphore.h>

sem_t sem;
int ret;

ret = sem_post(& sem); /* semaphore is posted */

Use sem_post (3R) to atomically increment the semaphore pointed to by sem. When
any threads are blocked on the semaphore, one of them is unblocked. (For Solaris
threads, see “sema_post(3T)” on page 228.)

Return Values

sem_post() returns zero after completing successfully. Any other returned value
indicates that an error occurred. When the following condition occurs, the function
fails and returns the corresponding value.

EINVAL

sem points to an illegal address.

Block on a Semaphore Count

sem_wait(3R)
Prototype:
int sem_wait(sem_t * sem);

#include <semaphore.h>

sem_t sem;
int ret;

ret = sem_wait(& sem); /* wait for semaphore */

Use sem_wait (3R) to block the calling thread until the count in the semaphore
pointed to by sem becomes greater than zero, then atomically decrement it.
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Return Values
sem_wait( ) returns zero after completing successfully. Any other returned value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL

sem points to an illegal address.

EINTR

A signal interrupted this function.

Decrement a Semaphore Count

sem_trywait(3R)
Prototype:
int sem_trywait(sem_t * sem);

#include <semaphore.h>

sem_t sem;
int ret;

ret = sem_trywait(& sem); /* try to wait for semaphore*/

Use sem_trywait (3R) to try to atomically decrement the count in the semaphore
pointed to by sem when the count is greater than zero. This function is a nonblocking
version of sem_wait( ) ; that is it returns immediately if unsuccessful.

Return Values
sem_trywait( ) returns zero after completing successfully. Any other returned
value indicates that an error occurred. When any of the following conditions occurs,
the function fails and returns the corresponding value.

EINVAL

sem points to an illegal address.

EINTR

A signal interrupted this function.

EAGAIN
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The semaphore was already locked, so it cannot be immediately locked by the
sem_trywait( ) operation.

Destroy the Semaphore State

sem_destroy(3R)
Prototype:
int sem_destroy(sem_t * sem);

#include <semaphore.h>

sem_t sem;
int ret;

ret = sem_destroy(& sem); /* the semaphore is destroyed */

Use sem_destroy (3R) to destroy any state associated with the semaphore pointed
to by sem. The space for storing the semaphore is not freed. (For Solaris threads, see
“sema_destroy(3T)” on page 229.)

Return Values
sem_destroy() returns zero after completing successfully. Any other returned
value indicates that an error occurred. When the following condition occurs, the
function fails and returns the corresponding value.

EINVAL

sem points to an illegal address.

The Producer/Consumer Problem, Using
Semaphores
The data structure in Code Example 4–14 is similar to that used for the condition
variables example (see Code Example 4–11). Two semaphores represent the number
of full and empty buffers and ensure that producers wait until there are empty
buffers and that consumers wait until there are full buffers.

CODE EXAMPLE 4–14 The Producer/Consumer Problem With Semaphores

typedef struct {
char buf[BSIZE];
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sem_t occupied;
sem_t empty;
int nextin;
int nextout;
sem_t pmut;
sem_t cmut;

} buffer_t;

buffer_t buffer;

sem_init(&buffer.occupied, 0, 0);

sem_init(&buffer.empty,0, BSIZE);
sem_init(&buffer.pmut, 0, 1);
sem_init(&buffer.cmut, 0, 1);
buffer.nextin = buffer.nextout = 0;

Another pair of (binary) semaphores plays the same role as mutexes, controlling
access to the buffer when there are multiple producers and multiple empty buffer
slots, and when there are multiple consumers and multiple full buffer slots. Mutexes
would work better here, but would not provide as good an example of semaphore
use.

CODE EXAMPLE 4–15 The Producer/Consumer Problem—the Producer

void producer(buffer_t *b, char item) {
sem_wait(&b->empty);

sem_wait(&b->pmut);

b->buf[b->nextin] = item;
b->nextin++;
b->nextin %= BSIZE;

sem_post(&b->pmut);

sem_post(&b->occupied);
}

CODE EXAMPLE 4–16 The Producer/Consumer Problem—the Consumer

char consumer(buffer_t *b) {
char item;

sem_wait(&b->occupied);

sem_wait(&b->cmut);

item = b->buf[b->nextout];
b->nextout++;
b->nextout %= BSIZE;

sem_post(&b->cmut);

sem_post(&b->empty);
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return(item);
}

Read-Write Lock Attributes
Read-write locks permit concurrent reads and exclusive writes to a protected shared
resource. The read-write lock is a single entity that can be locked in read or write
mode. To modify a resource, a thread must first acquire the exclusive write lock. An
exclusive write lock is not permitted until all read locks have been released.

Database access can be synchronized with a read-write lock. Read-write locks
support concurrent reads of database records because the read operation does not
change the record’s information. When the database is to be updated, the write
operation must acquire an exclusive write lock.

To change the default read-write lock attributes, you can declare and initialize an
attribute object. Often, the read-write lock attributes are set up in one place at the
beginning of the application so they can be located quickly and modified easily. The
following table lists the functions discussed in this section that manipulate read-write
lock attributes.

See “Similar Synchronization Functions—Read-Write Locks” on page 206 for the
Solaris threads implementation of read-write locks.

TABLE 4–8 Routines for Read-Write Lock Attributes

Operation Destination Discussion

Initialize a read-write lock
attribute “pthread_rwlockattr_init(3T)” on page 131

Destroy a read-write lock
attribute “pthread_rwlockattr_destroy(3T)” on page 131

Set a read-write lock attribute “pthread_rwlockattr_setpshared(3T)” on page 132

Get a read-write lock attribute “pthread_rwlockattr_getpshared(3T)” on page 132
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Initialize a Read-Write Lock Attribute

pthread_rwlockattr_init(3T)
#include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

pthread_rwlockattr_init (3T) initializes a read-write lock attributes object attr
with the default value for all of the attributes defined by the implementation.

Results are undefined if pthread_rwlockattr_init is called specifying an
already initialized read-write lock attributes object. After a read-write lock attributes
object has been used to initialize one or more read-write locks, any function affecting
the attributes object (including destruction) does not affect any previously initialized
read-write locks.

Return Values
If successful, pthread_rwlockattr_init( ) returns zero. Otherwise, an error
number is returned to indicate the error.

ENOMEM

Insufficient memory exists to initialize the rwlock attributes object.

Destroy a Read-Write Lock Attribute

pthread_rwlockattr_destroy(3T)
#include <pthread.h>

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

pthread_rwlockattr_destroy (3T) destroys a read-write lock attributes object.
The effect of subsequent use of the object is undefined until the object is
re-initialized by another call to pthread_rwlockattr_init( ) An implementation
can cause pthread_rwlockattr_destroy() to set the object referenced by attr to
an invalid value.

Return Values
If successful, pthread_rwlockattr_destroy() returns zero. Otherwise, an error
number is returned to indicate the error.
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EINVAL

The value specified by attr is invalid.

Set a Read-Write Lock Attribute

pthread_rwlockattr_setpshared(3T)
#include <pthread.h>

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int pshared);

pthread_rwlockattr_setpshared (3T) sets the process-shared read-write lock
attribute.

PTHREAD_PROCESS_SHARED

Permits a read-write lock to be operated on by any thread that has access to the
memory where the read-write lock is allocated, even if the read-write lock is
allocated in memory that is shared by multiple processes.

PTHREAD_PROCESS_PRIVATE

The read-write lock will only be operated upon by threads created within the same
process as the thread that initialized the read-write lock; if threads of differing
processes attempt to operate on such a read-write lock, the behavior is undefined.
The default value of the process-shared attribute is PTHREAD_PROCESS_PRIVATE.

Return Value
If successful, pthread_rwlockattr_setpshared() returns zero. Otherwise, an
error number is returned to indicate the error.

EINVAL

The value specified by attr or pshared is invalid.

Get a Read-Write Lock Attribute

pthread_rwlockattr_getpshared(3T)
#include <pthread.h>
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int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *attr, int *pshared);

pthread_rwlockattr_getpshared (3T) gets the process-shared read-write lock
attribute.

pthread_rwlockattr_getpshared() obtains the value of the process-shared
attribute from the initialized attributes object referenced by attr.

Return Value

If successful, pthread_rwlockattr_getpshared() returns zero. Otherwise, an
error number is returned to indicate the error.

EINVAL

The value specified by attr or pshared is invalid.

Using Read-Write Locks
After the attributes for a read-write lock are configured, you initialize the read-write
lock itself. The following functions are used to initialize or destroy, lock or unlock, or
try to lock a read-write lock. The following table lists the functions discussed in this
section that manipulate read-write locks.

TABLE 4–9 Routines that Manipulate Read-Write Locks

Operation Destination Discussion

Initialize a read-write lock “pthread_rwlock_init(3T)” on page 134

Read lock on read-write lock “pthread_rwlock_rdlock(3T)” on page 135

Read lock with a nonblocking
read-write lock “pthread_rwlock_tryrdlock(3T)” on page 136

Write lock on read-write lock “pthread_rwlock_wrlock(3T)” on page 136

Write lock with a nonblocking
read-write lock “pthread_rwlock_trywrlock(3T)” on page 137
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TABLE 4–9 Routines that Manipulate Read-Write Locks (continued)

Operation Destination Discussion

Unlock a read-write lock “pthread_rwlock_unlock(3T)” on page 138

Destroy a read-write lock “pthread_rwlock_destroy(3T)” on page 139

Initialize a Read-Write Lock

pthread_rwlock_init(3T)
#include <pthread.h>

int pthread_rwlock_init(pthread_rwlock_t *rwlock, const pthread_rwlockattr_t *attr);

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

Use pthread_rwlock_init (3T) to initialize the read-write lock referenced by
rwlock with the attributes referenced by attr. If attr is NULL, the default read-write
lock attributes are used; the effect is the same as passing the address of a default
read-write lock attributes object. Once initialized, the lock can be used any number
of times without being re-initialized. On successful initialization, the state of the
read-write lock becomes initialized and unlocked. Results are undefined if
pthread_rwlock_init() is called specifying an already initialized read-write
lock. Results are undefined if a read-write lock is used without first being initialized.
(For Solaris threads, see “rwlock_init(3T)” on page 206.)

In cases where default read-write lock attributes are appropriate, the macro
PTHREAD_RWLOCK_INITIALIZERcan be used to initialize read-write locks that are
statically allocated. The effect is equivalent to dynamic initialization by a call to
pthread_rwlock_init() with the parameter attr specified as NULL, except that
no error checks are performed.

Return Value

If successful, pthread_rwlock_init() returns zero. Otherwise, an error number
is returned to indicate the error.

If pthread_rwlock_init() fails, rwlock is not initialized and the contents of
rwlock are undefined.
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EINVAL

The value specified by attr or rwlock is invalid.

Read Lock on Read-Write Lock

pthread_rwlock_rdlock(3T)
#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock );

pthread_rwlock_rdlock (3T) applies a read lock to the read-write lock referenced
by rwlock. The calling thread acquires the read lock if a writer does not hold the lock
and there are no writers blocked on the lock. It is unspecified whether the calling
thread acquires the lock when a writer does not hold the lock and there are writers
waiting for the lock. If a writer holds the lock, the calling thread will not acquire the
read lock. If the read lock is not acquired, the calling thread blocks (that is, it does
not return from the pthread_rwlock_rdlock() ) until it can acquire the lock.
Results are undefined if the calling thread holds a write lock on rwlock at the time
the call is made.

Implementations are allowed to favor writers over readers to avoid writer starvation.
(For instance, the Solaris threads implementation favors writers over readers. See
“rw_rdlock(3T)” on page 208.)

A thread can hold multiple concurrent read locks on rwlock (that is, successfully call
pthread_rwlock_rdlock( ) n times) If so, the thread must perform matching
unlocks (that is, it must call pthread_rwlock_unlock( ) n times).

Results are undefined if pthread_rwlock_rdlock( ) is called with an
uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for reading, on return
from the signal handler the thread resumes waiting for the read-write lock for
reading as if it was not interrupted.

Return Value

If successful, pthread_rwlock_rdlock() returns zero. Otherwise, an error
number is returned to indicate the error.

EINVAL

The value specified by attr or rwlock is invalid.
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Read Lock With a Nonblocking Read-Write Lock

pthread_rwlock_tryrdlock(3T)
#include <pthread.h>

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

pthread_rwlock_tryrdlock (3T) applies a read lock as in
pthread_rwlock_rdlock( ) with the exception that the function fails if any
thread holds a write lock on rwlock or there are writers blocked on rwlock. (For
Solaris threads, see “rw_tryrdlock(3T)” on page 208.)

Return Value
pthread_rwlock_tryrdlock( ) returns zero if the lock for reading on the
read-write lock object referenced by rwlock is acquired. Otherwise an error number is
returned to indicate the error.

EBUSY

The read-write lock could not be acquired for reading because a writer holds the
lock or was blocked on it.

Write Lock on Read-Write Lock

pthread_rwlock_wrlock(3T)
#include <pthread.h>

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock );

pthread_rwlock_wrlock (3T) applies a write lock to the read-write lock
referenced by rwlock. The calling thread acquires the write lock if no other thread
(reader or writer) holds the read-write lock rwlock. Otherwise, the thread blocks (that
is, does not return from the pthread_rwlock_wrlock( ) call) until it can acquire
the lock. Results are undefined if the calling thread holds the read-write lock
(whether a read or write lock) at the time the call is made.

Implementations are allowed to favor writers over readers to avoid writer starvation.
(For instance, the Solaris threads implementation favors writers over readers. See
“rw_wrlock(3T)” on page 209.)

Results are undefined if pthread_rwlock_wrlock() is called with an
uninitialized read-write lock.
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If a signal is delivered to a thread waiting for a read-write lock for writing, upon
return from the signal handler the thread resumes waiting for the read-write lock for
writing as if it was not interrupted.

Return Value
pthread_rwlock_rwlock( ) returns zero if the lock for writing on the read-write
lock object referenced by rwlock is acquired. Otherwise an error number is returned
to indicate the error.

Write Lock With a Nonblocking Read-Write Lock

pthread_rwlock_trywrlock(3T)
#include <pthread.h>

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

pthread_rwlock_trywrlock (3T) applies a write lock like
pthread_rwlock_wrlock( ) , with the exception that the function fails if any
thread currently holds rwlock (for reading or writing). (For Solaris threads, see
“rw_trywrlock(3T)” on page 210.)

Results are undefined if pthread_rwlock_trywrlock() is called with an
uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for writing, on return
from the signal handler the thread resumes waiting for the read-write lock for
writing as if it was not interrupted.

Return Value
If successful, pthread_rwlock_trywrlock() returns zero if the lock for writing
on the read-write lock object referenced by rwlock is acquired. Otherwise, an error
number is returned to indicate the error.

EBUSY

The read-write lock could not be acquired for writing because it is already locked
for reading or writing.
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Unlock a Read-Write Lock

pthread_rwlock_unlock(3T)
#include <pthread.h>

pthread_rwlock_unlock (3T) releases a lock held on the read-write lock object
referenced by rwlock. Results are undefined if the read-write lock rwlock is not held
by the calling thread. (For Solaris threads, see “rw_unlock(3T)” on page 210.)

If pthread_rwlock_unlock is called to release a read lock from the read-write
lock object and there are other read locks currently held on this read-write lock
object, the read-write lock object remains in the read locked state. If
pthread_rwlock_unlock( ) releases the calling thread’s last read lock on this
read-write lock object, then the calling thread is no longer one of the owners of the
object. If pthread_rwlock_unlock( ) releases the last read lock for this read-write
lock object, the read-write lock object will be put in the unlocked state with no
owners.

If pthread_rwlock_unlock() is called to release a write lock for this read-write
lock object, the read-write lock object will be put in the unlocked state with no
owners.

If the call to the pthread_rwlock_unlock( ) results in the read-write lock object
becoming unlocked and there are multiple threads waiting to acquire the read-write
lock object for writing, the scheduling policy is used to determine which thread
acquires the read-write lock object for writing. If there are multiple threads waiting
to acquire the read-write lock object for reading, the scheduling policy is used to
determine the order in which the waiting threads acquire the read-write lock object
for reading. If there are multiple threads blocked on rwlock for both read locks and
write locks, it is unspecified whether the readers acquire the lock first or whether a
writer acquires the lock first.

Results are undefined if pthread_rwlock_unlock() is called with an
uninitialized read-write lock.

Return Value
If successful, pthread_rwlock_unlock() returns zero. Otherwise, an error
number is returned to indicate the error.
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Destroy a Read-Write Lock

pthread_rwlock_destroy(3T)
#include <pthread.h>

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

pthread_rwlock_destroy (3T) destroys the read-write lock object referenced by
rwlock and releases any resources used by the lock. The effect of subsequent use of
the lock is undefined until the lock is re-initialized by another call to
pthread_rwlock_init() An implementation can cause
pthread_rwlock_destroy() to set the object referenced by rwlock to an invalid
value. Results are undefined if pthread_rwlock_destroy() is called when any
thread holds rwlock. Attempting to destroy an uninitialized read-write lock results in
undefined behavior. A destroyed read-write lock object can be re-initialized using
pthread_rwlock_init() ; the results of otherwise referencing the read-write lock
object after it has been destroyed are undefined. (For Solaris threads, see
“rwlock_destroy(3T)” on page 211.)

Return Value
If successful, pthread_rwlock_destroy() returns zero. Otherwise, an error
number is returned to indicate the error.

EINVAL

The value specified by attr or rwlock is invalid.

Synchronization Across Process
Boundaries
Each of the synchronization primitives can be set up to be used across process
boundaries. This is done quite simply by ensuring that the synchronization variable is
located in a shared memory segment and by calling the appropriate init() routine,
after the primitive has been initialized with its shared attribute set as interprocess.
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Producer/Consumer Problem Example
Code Example 4–17 shows the producer/consumer problem with the producer and
consumer in separate processes. The main routine maps zero-filled memory (that it
shares with its child process) into its address space.

A child process is created that runs the consumer. The parent runs the producer.

This example also shows the drivers for the producer and consumer. The
producer_driver( ) simply reads characters from stdin and calls producer() .
The consumer_driver( ) gets characters by calling consumer() and writes them
to stdout .

The data structure for Code Example 4–17 is the same as that used for the condition
variables example (see Code Example 4–4). Two semaphores represent the number of
full and empty buffers and ensure that producers wait until there are empty buffers
and that consumers wait until there are full buffers.

CODE EXAMPLE 4–17 Synchronization Across Process Boundaries

main() {
int zfd;
buffer_t *buffer;
pthread_mutexattr_t mattr;
pthread_condattr_t cvattr_less, cvattr_more;

zfd = open("/dev/zero", O_RDWR);
buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),

PROT_READ|PROT_WRITE, MAP_SHARED, zfd, 0);
buffer->occupied = buffer->nextin = buffer->nextout = 0;

pthread_mutex_attr_init(&mattr);
pthread_mutexattr_setpshared(&mattr,

PTHREAD_PROCESS_SHARED);

pthread_mutex_init(&buffer->lock, &mattr);
pthread_condattr_init(&cvattr_less);
pthread_condattr_setpshared(&cvattr_less, PTHREAD_PROCESS_SHARED);
pthread_cond_init(&buffer->less, &cvattr_less);
pthread_condattr_init(&cvattr_more);
pthread_condattr_setpshared(&cvattr_more,

PTHREAD_PROCESS_SHARED);
pthread_cond_init(&buffer->more, &cvattr_more);

if (fork() == 0)
consumer_driver(buffer);

else
producer_driver(buffer);

}

void producer_driver(buffer_t *b) {
int item;

while (1) {
item = getchar();
if (item == EOF) {

producer(b, ‘\0’);

140 Multithreaded Programming Guide ♦ February 2000



break;
} else

producer(b, (char)item);
}

}

void consumer_driver(buffer_t *b) {
char item;

while (1) {
if ((item = consumer(b)) == ’\0’)

break;
putchar(item);

}
}

Interprocess Locking Without the
Threads Library
Although not generally recommended, you can use Solaris threads to do interprocess
locking without using the threads library. If this is something you want to do, see the
instructions in “Using LWPs Between Processes” on page 230.

Comparing Primitives
The most basic synchronization primitive in threads is the mutual exclusion lock. So,
it is the most efficient mechanism in both memory use and execution time. The basic
use of a mutual exclusion lock is to serialize access to a resource.

The next most efficient primitive in threads is the condition variable. The basic use of
a condition variable is to block on a change of state; that is it provides a thread wait
facility. Remember that a mutex lock must be acquired before blocking on a
condition variable and must be unlocked after returning from
pthread_cond_wait( ) . The mutex lock must also be held across the change of
state that occurs before the corresponding call to pthread_cond_signal( ) .

The semaphore uses more memory than the condition variable. It is easier to use in
some circumstances because a semaphore variable functions on state rather than on
control. Unlike a lock, a semaphore does not have an owner. Any thread can
increment a semaphore that has blocked.

The read-write lock permits concurrent reads and exclusive writes to a protected
resource. The read-write lock is a single entity that can be locked in read or write
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mode. To modify a resource, a thread must first acquire the exclusive write lock. An
exclusive write lock is not permitted until all read locks have been released.

142 Multithreaded Programming Guide ♦ February 2000



CHAPTER 5

Programming With the Operating
Environment

This chapter describes how multithreading interacts with the Solaris operating
environment and how the operating environment has changed to support
multithreading.

� “Process Creation—exec(2)and exit(2) Issues” on page 148

� “Timers, Alarms, and Profiling” on page 148

� “Nonlocal Goto—setjmp(3C) and longjmp(3C)” on page 150

� “Resource Limits” on page 150

� “LWPs and Scheduling Classes” on page 150

� “Extending Traditional Signals” on page 154

� “I/O Issues” on page 164

Process Creation—Forking Issues
The default handling of the fork() function in the Solaris operating environment is
somewhat different from the way fork() is handled in POSIX threads, although the
Solaris operating environment does support both mechanisms.

Table 5–1 compares the differences and similarities of Solaris and pthreads fork( )
handling. When the comparable interface is not available either in POSIX threads or
in Solaris threads, the ‘—’ character appears in the table column.
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TABLE 5–1 Comparing POSIX and Solaris fork() Handling

Solaris Operating Environment
Interface POSIX Threads Interface

Fork-one model fork1(2) fork(2)

Fork-all model fork(2) —

Fork safety — pthread_atfork(3T)

The Fork-One Model
As shown in Table 5–1, the behavior of the pthreads fork(2) function is the same
as that of the Solaris fork1(2) function. Both the pthreads fork(2) function and
the Solaris fork1(2) create a new process, duplicating the complete address space
in the child, but duplicating only the calling thread in the child process.

This is useful when the child process immediately calls exec() , which is what
happens after most calls to fork() . In this case, the child process does not need a
duplicate of any thread other than the one that called fork( ) .

In the child, do not call any library functions after calling fork() and before calling
exec() because one of the library functions might use a lock that was held in the
parent at the time of the fork() . The child process might execute only
Async-Signal-Safe operations until one of the exec() handlers is called.

The Fork-One Safety Problem and Solution
In addition to all of the usual concerns such as locking shared data, a library should
be well behaved with respect to forking a child process when only one thread is
running (the one that called fork() ). The problem is that the sole thread in the
child process might try to grab a lock that is held by a thread that wasn’t duplicated
in the child.

This is not a problem most programs are likely to encounter. Most programs call
exec() in the child right after the return from fork() . However, if the program
wishes to carry out some actions in the child before the call to exec() , or never
calls exec() , then the child could encounter deadlock scenarios.

Each library writer should provide a safe solution, although not providing a fork-safe
library is not a large concern because this condition is rare.
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For example, assume that T1 is in the middle of printing something (and so is
holding a lock for printf( ) ), when T2 forks a new process. In the child process, if
the sole thread (T2) calls printf( ) , it promptly deadlocks.

The POSIX fork( ) or Solaris fork1() duplicates only the thread that calls it.
(Calling the Solaris fork( ) duplicates all threads, so this issue does not come up.)

To prevent deadlock, ensure that no such locks are being held at the time of forking.
The most obvious way to do this is to have the forking thread acquire all the locks
that could possibly be used by the child. Because you cannot do this for locks like
those in printf() (because printf() is owned by libc), you must ensure that
printf( ) is not being used at fork() time.

To manage the locks in your library:

� Identify all the locks used by the library.

� Identify the locking order for the locks used by the library. (If a strict locking order
is not used, then lock acquisition must be managed carefully.)

� Arrange to acquire those locks at fork time. In Solaris threads this must be done
manually, obtaining the locks just before calling fork1() , and releasing them
right after.

In the following example, the list of locks used by the library is {L1,...Ln }, and the
locking order for these locks is also L1...Ln .

mutex_lock(L1);
mutex_lock(L2);
fork1(...);
mutex_unlock(L1);
mutex_unlock(L2);

In pthreads, you can add a call to pthread_atfork(f1, f2, f3) in your
library’s .init( ) section, where f1() , f2() , f3() are defined as follows:

f1() /* This is executed just before the process forks. */
{

mutex_lock(L1); |
mutex_lock(...); | -- ordered in lock order
mutex_lock(Ln); |
} V

f2() /* This is executed in the child after the process forks. */
{
mutex_unlock(L1);
mutex_unlock(...);
mutex_unlock(Ln);
}

f3() /* This is executed in the parent after the process forks. */
{
mutex_unlock(L1);
mutex_unlock(...);
mutex_unlock(Ln);
}
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Another example of deadlock would be a thread in the parent process—other than
the one that called Solaris fork1(2) —that has locked a mutex. This mutex is copied
into the child process in its locked state, but no thread is copied over to unlock the
mutex. So, any thread in the child that tries to lock the mutex waits forever.

Virtual Forks–vfork(2)
The standard vfork(2) function is unsafe in multithreaded programs. vfork(2) is
like fork1(2) in that only the calling thread is copied in the child process. As in
nonthreaded implementations, vfork() does not copy the address space for the
child process.

Be careful that the thread in the child process does not change memory before it calls
exec(2) . Remember that vfork() gives the parent address space to the child. The
parent gets its address space back after the child calls exec() or exits. It is
important that the child not change the state of the parent.

For example, it is dangerous to create new threads between the call to vfork() and
the call to exec() . This is an issue only if the fork-one model is used, and only if
the child does more than just call exec() . Most libraries are not fork safe, so use
pthread_atfork() to implement fork safety.

The Solution—pthread_atfork(3T)
Use pthread_atfork() to prevent deadlocks whenever you use the fork-one
model.

#include <pthread.h>

int pthread_atfork(void (* prepare) (void), void (* parent) (void),
void (* child) (void) );

The pthread_atfork() function declares fork() handlers that are called before
and after fork( ) in the context of the thread that called fork() .

� The prepare handler is called before fork( ) starts.

� The parent handler is called after fork() returns in the parent.

� The child handler is called after fork() returns in the child.

Any one of these can be set to NULL. The order in which successive calls to
pthread_atfork() are made is significant.

For example, a prepare handler could acquire all the mutexes needed, and then the
parent and child handlers could release them. This ensures that all the relevant locks
are held by the thread that calls the fork function before the process is forked,
preventing the deadlock in the child.

Using the fork all model avoids the deadlock problem described in “The Fork-One
Safety Problem and Solution” on page 144.
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Return Values
pthread_atfork() returns a zero when it completes successfully. Any other
returned value indicates that an error occurred. If the following condition is detected,
pthread_atfork(3T) fails and returns the corresponding value.

ENOMEM

Insufficient table space exists to record the fork handler addresses.

The Fork-All Model
The Solaris fork(2) function duplicates the address space and all the threads (and
LWPs) in the child. This is useful, for example, when the child process never calls
exec(2) but does use its copy of the parent address space. The fork-all functionality
is not available in POSIX threads.

Note that when one thread in a process calls Solaris fork(2) , threads that are
blocked in an interruptible system call return EINTR.

Also, be careful not to create locks that are held by both the parent and child
processes. This can happen when locks are allocated in memory that is sharable (that
is use mmap() with the MAP_SHAREDflag). Note that this is not a problem if the
fork-one model is used.

Choosing the Right Fork
You determine whether fork() has a “fork-all” or a “fork-one” semantic in your
application by linking with the appropriate library. Linking with −lthread gives
you the “fork-all” semantic for fork( ) , and linking with −lpthread gives the
“fork-one” semantic for fork() (see Figure 7–1 for an explanation of compiling
options).

Cautions for Any Fork
Be careful when using global state after a call to any fork( ) function.

For example, when one thread reads a file serially and another thread in the process
successfully calls one of the forks, each process then contains a thread that is reading
the file. Because the seek pointer for a file descriptor is shared after a fork() , the
thread in the parent gets some data while the thread in the child gets the other. This
introduces gaps in the sequential read accesses.
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Process Creation—exec(2)and exit(2)
Issues
Both the exec(2) and exit(2) system calls work as they do in single-threaded
processes except that they destroy all the threads in the address space. Both calls
block until all the execution resources (and so all active threads) are destroyed.

When exec( ) rebuilds the process, it creates a single lightweight process (LWP) .
The process startup code builds the initial thread. As usual, if the initial thread
returns, it calls exit() and the process is destroyed.

When all the threads in a process exit, the process exits. A call to any exec()
function from a process with more than one thread terminates all threads, and loads
and executes the new executable image. No destructor functions are called.

Timers, Alarms, and Profiling
The “End of Life” announcements for per-LWP timers (see timer_create(3R) )
and per-thread alarms (see alarm(2) or setitimer(2) ) were made in the Solaris
2.5 release. Both features are now supplemented with the per-process variants
described in this section.

Originally, each LWP had a unique realtime interval timer and alarm that a thread
bound to the LWP could use. The timer or alarm delivered one signal to the thread
when the timer or alarm expired.

Each LWP also had a virtual time or profile interval timer that a thread bound to the
LWP could use. When the interval timer expired, either SIGVTALRMor SIGPROF, as
appropriate, was sent to the LWP that owned the interval timer.

Per-LWP POSIX Timers
In the Solaris 2.3 and 2.4 releases, the timer_create(3R) function returned a timer
object with a timer ID meaningful only within the calling LWP and with expiration
signals delivered to that LWP. Because of this, the only threads that could use the
POSIX timer facility were bound threads.

Even with this restricted use, POSIX timers in the Solaris 2.3 and 2.4 releases for
multithreaded applications were unreliable about masking the resulting signals and
delivering the associated value from the sigvent structure.
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Beginning with the Solaris 2.5 release, an application that is compiled defining the
macro _POSIX_PER_PROCESS_TIMERS, or with a value greater that 199506L for
the symbol _POSIX_C_SOURCE, can create per-process timers.

Applications compiled with a release before the Solaris 2.5 release, or without the
feature test macros, will continue to create per-LWP POSIX timers. In some future
release, calls to create per-LWP timers will return per-process timers.

The timer IDs of per-process timers are usable from any LWP, and the expiration
signals are generated for the process rather than directed to a specific LWP.

The per-process timers are deleted only by timer_delete(3R) or when the process
terminates.

Per-Thread Alarms
In the Solaris Operating Environment 2.3 and 2.4 releases, a call to alarm(2) or
setitimer(2) was meaningful only within the calling LWP. Such timers were
deleted automatically when the creating LWP terminated. Because of this, the only
threads that could use alarm() or setitimer( ) were bound threads.

Even with this restricted use, alarm() and setitimer( ) timers in Solaris
Operating Environment 2.3 and 2.4 multithreaded applications were unreliable about
masking the signals from the bound thread that issued these calls. When such
masking was not required, then these two system calls worked reliably from bound
threads.

With the Solaris Operating Environment 2.5 release, an application linking with
−lpthread (POSIX) threads will get per-process delivery of SIGALRMwhen calling
alarm(). The SIGALRMgenerated by alarm() is generated for the process rather than
directed to a specific LWP. Also, the alarm is reset when the process terminates.

Applications compiled with a release before the Solaris Operating Environment 2.5
release, or not linked with −lpthread , will continue to see a per-LWP delivery of
signals generated by alarm() and setitimer() .

In some future release, calls to alarm() or to setitimer( ) with the ITIMER_REAL
flag will cause the resulting SIGALRMto be sent to the process. For other flags,
setitmer() will continue to be per-LWP. Flags other than the ITIMER_REAL flag,
used by setitimer() , will continue to result in the generated signal being
delivered to the LWP that issued the call, and so are usable only from bound threads.

Profiling
You can profile each LWP with profil(2) , giving each LWP its own buffer, or
sharing buffers between LWPs. Profiling data is updated at each clock tick in LWP
user time. The profile state is inherited from the creating LWP.
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Nonlocal Goto—setjmp(3C) and
longjmp(3C)
The scope of setjmp() and longjmp( ) is limited to one thread, which is fine most
of the time. However, this does mean that a thread that handles a signal can
longjmp() only when setjmp() is performed in the same thread.

Resource Limits
Resource limits are set on the entire process and are determined by adding the
resource use of all threads in the process. When a soft resource limit is exceeded, the
offending thread is sent the appropriate signal. The sum of the resources used in the
process is available through getrusage(3B).

LWPs and Scheduling Classes
As mentioned in the “Scheduling” section of the “Chapter 1, Covering
Multithreading Basics”, the Solaris pthreads implementation supports only the
SCHED_OTHERscheduling policy. The others are optional under POSIX.

The POSIX SCHED_FIFOand SCHED_RRpolicies can be duplicated or emulated
using the standard Solaris mechanisms. These scheduling mechanisms are described
in this section.

The Solaris kernel has three classes of scheduling. The highest-priority scheduling
class is Realtime (RT). The middle-priority scheduling class is system . The system
class cannot be applied to a user process. The lowest-priority scheduling class is
timeshare (TS), which is also the default class.

Scheduling class is maintained for each LWP. When a process is created, the initial
LWP inherits the scheduling class and priority of the creating LWP in the parent
process. As more LWPs are created to run unbound threads, they also inherit this
scheduling class and priority.

All unbound threads in a process have the same scheduling class and priority. Each
scheduling class maps the priority of the LWP it is scheduling to an overall
dispatching priority according to the configurable priority of the scheduling class.
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Bound threads have the scheduling class and priority of their underlying LWPs. Each
bound thread in a process can have a unique scheduling class and priority that is
visible to the kernel. Bound threads are scheduled with respect to all other LWPs in
the system.

Thread priorities regulate access to LWP resources. By default LWPs are in the
timesharing class. For compute-bound multithreading, thread priorities are not very
useful. For multithreaded applications that do a lot of synchronization using the MT
libraries, thread priorities become more meaningful.

The scheduling class is set by priocntl(2). How you specify the first two arguments
determines whether just the calling LWP or all the LWPs of one or more processes
are affected. The third argument of priocntl( ) is the command, which can be one
of the following.

� PC_GETCID. Get the class ID and class attributes for a specific class.

� PC_GETCLINFO. Get the class name and class attributes for a specific class.

� PC_GETPARMS. Get the class identifier and the class-specific scheduling
parameters of a process, an LWP with a process, or a group of processes.

� PC_SETPARMS. Set the class identifier and the class-specific scheduling parameters
of a process, an LWP with a process, or a group of processes.

Use priocntl( ) only on bound threads. To affect the priority of unbound threads,
use pthread_setprio(3T).

Timeshare Scheduling
Timeshare scheduling distributes the processing resource fairly among the LWPs in
this scheduling class. Other parts of the kernel can monopolize the processor for
short intervals without degrading response time as seen by the user.

The priocntl(2) call sets the nice(2) level of one or more processes. The
priocntl( ) call also affects the nice() level of all the timesharing class LWPs in
the process. The nice() level ranges from 0 to +20 normally and from -20 to +20 for
processes with superuser privilege. The lower the value, the higher the priority.

The dispatch priority of time shared LWPs is calculated from the instantaneous CPU
use rate of the LWP and from its nice() level. The nice() level indicates the
relative priority of the LWPs to the timeshare scheduler.

LWPs with a greater nice( ) value get a smaller, but nonzero, share of the total
processing. An LWP that has received a larger amount of processing is given lower
priority than one that has received little or no processing.
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Realtime Scheduling
The Realtime class (RT) can be applied to a whole process or to one or more LWPs in
a process. This requires superuser privilege.

Unlike the nice(2) level of the timeshare class, LWPs that are classified Realtime
can be assigned priorities either individually or jointly. A priocntl(2) call affects
the attributes of all the Realtime LWPs in the process.

The scheduler always dispatches the highest-priority Realtime LWP. It preempts a
lower-priority LWP when a higher-priority LWP becomes runnable. A preempted
LWP is placed at the head of its level queue.

A Realtime LWP retains control of a processor until it is preempted, it suspends, or
its Realtime priority is changed. LWPs in the RT class have absolute priority over
processes in the TS class.

A new LWP inherits the scheduling class of the parent process or LWP. An RT class
LWP inherits the parent’s time slice, whether finite or infinite.

An LWP with a finite time slice runs until it terminates, blocks (for example, to wait
for an I/O event), is preempted by a higher-priority runnable Realtime process, or
the time slice expires.

An LWP with an infinite time slice ceases execution only when it terminates, blocks,
or is preempted.

LWP Scheduling and Thread Binding
The threads library automatically adjusts the number of LWPs in the pool used to
run unbound threads. Its objectives are:

� To prevent the program from being blocked by a lack of unblocked LWPs.

For example, if there are more runnable unbound threads than LWPs and all the
active threads block in the kernel in indefinite waits (such as while reading a tty),
the process cannot progress until a waiting thread returns.

� To make efficient use of LWPs.

For example, if the library creates one LWP for each thread, many LWPs will
usually be idle and the operating environment is overloaded by the resource
requirements of the unused LWPs.

Keep in mind that LWPs are time sliced, not threads. This means that when there is
only one LWP, there is no time slicing within the process—threads run on the LWP
until they block (through interthread synchronization), are preempted, or terminate.

You can assign priorities to threads with pthread_setprio(3T) ; lower-priority
unbound threads are assigned to LWPs only when no higher-priority unbound
threads are available. Bound threads, of course, do not compete for LWPs because
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they have their own. Note that the thread priority that is set with
pthread_setprio( ) regulates threads access to LWPs, not to CPUs.

Bind threads to your LWPs to get precise control over whatever is being scheduled.
This control is not possible when many unbound threads compete for an LWP.

In particular, a lower-priority unbound thread could be on a higher-priority LWP
and running on a CPU, while a higher-priority unbound thread assigned to a
lower-priority LWP is not running. In this sense, thread priorities are just a hint
about access to CPUs.

Realtime threads are useful for getting a quick response to external stimuli. Consider
a thread used for mouse tracking that must respond instantly to mouse clicks. By
binding the thread to an LWP, you guarantee that there is an LWP available when it
is needed. By assigning the LWP to the Realtime scheduling class, you ensure that
the LWP is scheduled quickly in response to mouse clicks.

SIGWAITING—Creating LWPs for Waiting
Threads
The library usually ensures that there are enough LWPs in its pool for a program to
proceed.

When all the LWPs in the process are blocked in indefinite waits (such as blocked
reading from a tty or network), the operating environment sends the new signal,
SIGWAITING, to the process. This signal is handled by the threads library. When the
process contains a thread that is waiting to run, a new LWP is created and the
appropriate waiting thread is assigned to it for execution.

The SIGWAITING mechanism does not ensure that an additional LWP is created
when one or more threads are compute bound and another thread becomes
runnable. A compute-bound thread can prevent multiple runnable threads from
being started because of a shortage of LWPs.

This can be prevented by calling thr_setconcurrency (3T). While using
thr_setconcurrency() with POSIX threads is not POSIX compliant, its use is
recommended to avoid LWP shortages for unbound threads in some computationally
intensive situations. (The only way to be completely POSIX compliant and avoid LWP
shortages is to create only PTHREAD_SCOPE_SYSTEMbound threads.)

See “Thread Concurrency (Solaris Threads Only)” on page 243 for more information
about using the thr_setconcurrency(3T) function.

In Solaris threads, you can also use THR_NEW_LWPin calls to thr_create (3T) to
create another LWP.
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Aging LWPs
When the number of active threads is reduced, some of the LWPs in the pool are no
longer needed. When there are more LWPs than active threads, the threads library
destroys the unneeded LWPs. The library ages LWPs—they are deleted when they
are unused for a “long” time; the default is five minutes.

Extending Traditional Signals
The traditional UNIX signal model is extended to threads in a fairly natural way. The
key characteristics are that the signal disposition is process-wide, but the signal mask
is per-thread. The process-wide disposition of signals is established using the
traditional mechanisms (signal(2) , sigaction(2) , and so on).

When a signal handler is marked SIG_DFL or SIG_IGN , the action on receipt of the
signal (exit, core dump, stop, continue, or ignore) is performed on the entire
receiving process, affecting all threads in the process. For these signals that don’t
have handlers, the issue of which thread picks the signal is unimportant, because the
action on receipt of the signal is carried out on the whole process. See signal(5)
for basic information about signals.

Each thread has its own signal mask. This lets a thread block some signals while it
uses memory or another state that is also used by a signal handler. All threads in a
process share the set of signal handlers set up by sigaction(2) and its variants.

A thread in one process cannot send a signal to a specific thread in another process.
A signal sent by kill(2) or sigsend(2) to a process is handled by any one of the
receptive threads in the process.

Unbound threads cannot use alternate signal stacks. A bound thread can use an
alternate stack because the state is associated with the execution resource. An
alternate stack must be enabled for the signal through sigaction(2) , and declared
and enabled through signaltstack(2) .

An application can have per-thread signal handlers based on the per-process signal
handlers. One way is for the process-wide signal handler to use the identifier of the
thread handling the signal as an index into a table of per-thread handlers. Note that
there is no thread zero.

Signals are divided into two categories: traps and exceptions (synchronously
generated signals) and interrupts (asynchronously generated signals).

As in traditional UNIX, if a signal is pending, additional occurrences of that signal
have no additional effect—a pending signal is represented by a bit, not by a counter.
In other words, signal delivery is idempotent.
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As is the case with single-threaded processes, when a thread receives a signal while
blocked in a system call, the thread might return early, either with the EINTR error
code, or, in the case of I/O calls, with fewer bytes transferred than requested.

Of particular importance to multithreaded programs is the effect of signals on
pthread_cond_wait (3T). This call usually returns in response to a
pthread_cond_signal (3T) or a pthread_cond_broadcast (3T), but, if the
waiting thread receives a traditional UNIX signal, it returns with the error code
EINTR. See “Interrupted Waits on Condition Variables (Solaris Threads Only)” on
page 162 for more information.

Synchronous Signals
Traps (such as SIGILL , SIGFPE, SIGSEGV) result from something a thread does to
itself, such as dividing by zero or explicitly sending itself a signal. A trap is handled
only by the thread that caused it. Several threads in a process can generate and
handle the same type of trap simultaneously.

Extending the idea of signals to individual threads is easy for synchronous
signals—the signal is dealt with by the thread that caused the problem.

However, if the thread has not chosen to deal with the problem, such as by
establishing a signal handler with sigaction(2) , the handler is invoked on the
thread that receives the synchronous signal.

Because such a synchronous signal usually means that something is seriously wrong
with the whole process, and not just with a thread, terminating the process is often a
good choice.

Asynchronous Signals
Interrupts (such as SIGINT and SIGIO ) are asynchronous with any thread and result
from some action outside the process. They might be signals sent explicitly by other
threads, or they might represent external actions such as a user typing Control-c .
Dealing with asynchronous signals is more complicated than dealing with
synchronous signals.

An interrupt can be handled by any thread whose signal mask allows it. When more
than one thread is able to receive the interrupt, only one is chosen.

When multiple occurrences of the same signal are sent to a process, then each
occurrence can be handled by a separate thread, as long as threads are available that
do not have it masked. When all threads have the signal masked, then the signal is
marked pending and the first thread to unmask the signal handles it.
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Continuation Semantics
Continuation semantics are the traditional way to deal with signals. The idea is that
when a signal handler returns, control resumes where it was at the time of the
interruption. This is well suited for asynchronous signals in single-threaded
processes, as shown in Code Example 5–1.

This is also used as the exception-handling mechanism in some programming
languages, such as PL/1.

CODE EXAMPLE 5–1 Continuation Semantics

unsigned int nestcount;

unsigned int A(int i, int j) {
nestcount++;

if (i==0)
return(j+1)

else if (j==0)
return(A(i-1, 1));

else
return(A(i-1, A(i, j-1)));

}

void sig(int i) {
printf("nestcount = %d\n", nestcount);

}

main() {
sigset(SIGINT, sig);
A(4,4);

}

Operations on Signals

pthread_sigsetmask(3T)
pthread_sigsetmask(3T) does for a thread what sigprocmask(2) does for a
process—it sets the thread ’s signal mask. When a new thread is created, its initial
mask is inherited from its creator.

The call to sigprocmask() in a multithreaded process is equivalent to a call to
pthread_sigsetmask() . See the sigprocmask (2) page for more information.

pthread_kill(3T)
pthread_kill (3T) is the thread analog of kill(2) —it sends a signal to a specific

thread.This, of course, is different from sending a signal to a process. When a signal
is sent to a process, the signal can be handled by any thread in the process. A signal
sent by pthread_kill( ) can be handled only by the specified thread.
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Note than you can use pthread_kill( ) to send signals only to threads in the
current process. This is because the thread identifier (type thread_t) is local in
scope—it is not possible to name a thread in any process but your own.

Note also that the action taken (handler, SIG_DFL, SIG_IGN ) on receipt of a signal
by the target thread is global, as usual. This means, for example, that if you send
SIGXXX to a thread, and the SIGXXX signal disposition for the process is to kill the
process, then the whole process is killed when the target thread receives the signal.

sigwait(2)
For multithreaded programs, sigwait(2) is the preferred interface to use, because it
deals so well with aysynchronously generated signals.

sigwait() causes the calling thread to wait until any signal identified by its set
argument is delivered to the thread. While the thread is waiting, signals identified by
the set argument are unmasked, but the original mask is restored when the call
returns.

All signals identified by the set argument must be blocked on all threads, including
the calling thread; otherwise, sigwait() might not work correctly.

Use sigwait( ) to separate threads from asynchronous signals. You can create one
thread that is listening for asynchronous signals while your other threads are created
to block any asynchronous signals that might be set to this process.

New sigwait() Implementations

Two versions of sigwait( ) are available beginning with the Solaris Operating
Environment 2.5 release: the new Solaris Operating Environment 2.5 version, and the
POSIX.1c version. New applications and libraries should use the POSIX standard
interface, as the Solaris Operating Environment version might not be available in
future releases.

Note - The new Solaris Operating Environment 2.5 sigwait() does not override the
signal’s ignore disposition. Applications relying on the older sigwait(2) behavior
can break unless you install a dummy signal handler to change the disposition from
SIG_IGN to having a handler, so calls to sigwait( ) for this signal catch it.

The syntax for the two versions of sigwait() is shown below.

#include <signal.h>

/* the Solaris 2.5 version*/
int sigwait(sigset_t * set);

/* the POSIX.1c version */
int sigwait(const sigset_t * set, int * sig);

Programming With the Operating Environment 157



When the signal is delivered, the POSIX.1c sigwait() clears the pending signal
and places the signal number in sig. Many threads can call sigwait() at the same
time, but only one thread returns for each signal that is received.

With sigwait() you can treat asynchronous signals synchronously—a thread that
deals with such signals simply calls sigwait() and returns as soon as a signal
arrives. By ensuring that all threads (including the caller of sigwait() ) have such
signals masked, you can be sure that signals are handled only by the intended
handler and that they are handled safely.

By always masking all signals in all threads, and just calling sigwait() as
necessary, your application will be much safer for threads that depend on signals.

Usually, you use sigwait( ) to create one or more threads that wait for signals.
Because sigwait() can retrieve even masked signals, be sure to block the signals of
interest in all other threads so they are not accidentally delivered.

When the signals arrive, a thread returns from sigwait() , handles the signal, and
waits for more signals. The signal-handling thread is not restricted to using
Async-Signal-Safe functions and can synchronize with other threads in the usual
way. (The Async-Signal-Safe category is defined in “MT Interface Safety Levels” on
page 170.)

Note - sigwait() should never be used with synchronous signals.

sigtimedwait(2)
sigtimedwait(2) is similar to sigwait(2) except that it fails and returns an
error when a signal is not received in the indicated amount of time.

Thread-Directed Signals
The UNIX signal mechanism is extended with the idea of thread-directed signals.
These are just like ordinary asynchronous signals, except that they are sent to a
particular thread instead of to a process.

Waiting for asynchronous signals in a separate thread can be safer and easier than
installing a signal handler and processing the signals there.

A better way to deal with asynchronous signals is to treat them synchronously. By
calling sigwait(2) , discussed in “sigwait(2)” on page 157, a thread can wait until a
signal occurs.

CODE EXAMPLE 5–2 Asynchronous Signals and sigwait(2)

main() {
sigset_t set;
void runA(void);
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int sig;

sigemptyset(&set);
sigaddset(&set, SIGINT);
pthread_sigsetmask(SIG_BLOCK, &set, NULL);
pthread_create(NULL, 0, runA, NULL, PTHREAD_DETACHED, NULL);

while (1) {
sigwait(&set, &sig);
printf("nestcount = %d\n", nestcount);
printf("received signal %d\n", sig);

}
}

void runA() {
A(4,4);
exit(0);

}

This example modifies the code of Code Example 5–1: the main routine masks the
SIGINT signal, creates a child thread that calls the function A of the previous
example, and then issues sigwait() to handle the SIGINT signal.

Note that the signal is masked in the compute thread because the compute thread
inherits its signal mask from the main thread. The main thread is protected from
SIGINT while, and only while, it is not blocked inside of sigwait() .

Also, note that there is never any danger of having system calls interrupted when
you use sigwait() .

Completion Semantics
Another way to deal with signals is with completion semantics.

Use completion semantics when a signal indicates that something so catastrophic has
happened that there is no reason to continue executing the current code block. The
signal handler runs instead of the remainder of the block that had the problem. In
other words, the signal handler completes the block.

In Code Example 5–3, the block in question is the body of the then part of the if
statement. The call to setjmp(3C) saves the current register state of the program in
jbuf and returns 0, thereby executing the block.

CODE EXAMPLE 5–3 Completion Semantics

sigjmp_buf jbuf;
void mult_divide(void) {

int a, b, c, d;
void problem();

sigset(SIGFPE, problem);
while (1) {

if (sigsetjmp(&jbuf) == 0) {
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printf("Three numbers, please:\n");
scanf("%d %d %d", &a, &b, &c);
d = a*b/c;
printf("%d*%d/%d = %d\n", a, b, c, d);

}
}

}

void problem(int sig) {
printf("Couldn’t deal with them, try again\n");
siglongjmp(&jbuf, 1);

}

If a SIGFPE (a floating-point exception) occurs, the signal handler is invoked.

The signal handler calls siglongjmp(3C) , which restores the register state saved in
jbuf, causing the program to return from sigsetjmp() again (among the registers
saved are the program counter and the stack pointer).

This time, however, sigsetjmp(3C) returns the second argument of
siglongjmp() , which is 1. Notice that the block is skipped over, only to be
executed during the next iteration of the while loop.

Note that you can use sigsetjmp(3C) and siglongjmp(3C) in multithreaded
programs, but be careful that a thread never does a siglongjmp() using the results
of another thread’s sigsetjmp() .

Also, sigsetjmp() and siglongjmp() save and restore the signal mask, but
setjmp(3C) and longjmp(3C) do not.

It is best to use sigsetjmp() and siglongjmp() when you work with signal
handlers.

Completion semantics are often used to deal with exceptions. In particular, the Sun
AdaTM programming language uses this model.

Note - Remember, sigwait(2) should never be used with synchronous signals.

Signal Handlers and Async-Signal Safety
A concept similar to thread safety is Async-Signal safety. Async-Signal-Safe
operations are guaranteed not to interfere with operations that are being interrupted.

The problem of Async-Signal safety arises when the actions of a signal handler can
interfere with the operation that is being interrupted.

For example, suppose a program is in the middle of a call to printf(3S) and a
signal occurs whose handler itself calls printf( ) . In this case, the output of the two
printf( ) statements would be intertwined. To avoid this, the handler should not
call printf( ) itself when printf( ) might be interrupted by a signal.
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This problem cannot be solved by using synchronization primitives because any
attempted synchronization between the signal handler and the operation being
synchronized would produce immediate deadlock.

Suppose that printf() is to protect itself by using a mutex. Now suppose that a
thread that is in a call to printf() , and so holds the lock on the mutex, is
interrupted by a signal.

If the handler (being called by the thread that is still inside of printf() ) itself calls
printf( ) , the thread that holds the lock on the mutex will attempt to take it again,
resulting in an instant deadlock.

To avoid interference between the handler and the operation, either ensure that the
situation never arises (perhaps by masking off signals at critical moments) or invoke
only Async-Signal-Safe operations from inside signal handlers.

Because setting a thread’s mask is an inexpensive user-level operation, you can
inexpensively make functions or sections of code fit in the Async-Signal-Safe category.

The only routines that POSIX guarantees to be Async-Signal-Safe are listed in Table
5–2. Any signal handler can safely call in to one of these functions.

TABLE 5–2 Async-Signal-Safe Functions

_exit( ) fstat( ) read( ) sysconf( )

access() getegid( ) rename() tcdrain( )

alarm() geteuid( ) rmdir( ) tcflow()

cfgetispeed() getgid() setgid() tcflush( )

cfgetospeed() getgroups( ) setpgid() tcgetattr( )

cfsetispeed() getpgrp( ) setsid() tcgetpgrp( )

cfsetospeed() getpid() setuid() tcsendbreak()

chdir( ) getppid( ) sigaction() tcsetattr( )

chmod() getuid() sigaddset() tcsetpgrp( )

chown() kill( ) sigdelset() time( )
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TABLE 5–2 Async-Signal-Safe Functions (continued)

close() link( ) sigemptyset( ) times()

creat( ) lseek() sigfillset( ) umask()

dup2( ) mkdir( ) sigismember( ) uname()

dup() mkfifo( ) sigpending( ) unlink()

execle() open( ) sigprocmask() utime()

execve() pathconf( ) sigsuspend( ) wait( )

fcntl( ) pause() sleep() waitpid( )

fork( ) pipe( ) stat( ) write( )

Interrupted Waits on Condition Variables (Solaris
Threads Only)
When a signal is delivered to a thread while the thread is waiting on a condition
variable, the old convention (assuming that the process is not terminated) is that
interrupted calls return EINTR.

The ideal new condition would be that when cond_wait(3T) and
cond_timedwait(3T) return, the lock has been retaken on the mutex.

This is what is done in Solaris threads: when a thread is blocked in cond_wait( ) or
cond_timedwait( ) and an unmasked, caught signal is delivered to the thread, the
handler is invoked and the call to cond_wait( ) or cond_timedwait( ) returns
EINTR with the mutex locked.

This implies that the mutex is locked in the signal handler because the handler might
have to clean up after the thread. While this is true in the Solaris Operating
Environment 2.5 release, it might change in the future, so do not rely on this
behavior.
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Note - In POSIX threads, pthread_cond_wait(3T) returns from signals, but this
is not an error, pthread_cond_wait( ) returns zero as a spurious wake-up.

Handler cleanup is illustrated by Code Example 5–4.

CODE EXAMPLE 5–4 Condition Variables and Interrupted Waits

int sig_catcher() {
sigset_t set;
void hdlr();

mutex_lock(&mut);

sigemptyset(&set);
sigaddset(&set, SIGINT);
sigsetmask(SIG_UNBLOCK, &set, 0);

if (cond_wait(&cond, &mut) == EINTR) {
/* signal occurred and lock is held */
cleanup();
mutex_unlock(&mut);
return(0);

}
normal_processing();
mutex_unlock(&mut);
return(1);

}

void hdlr() {
/* lock is held in the handler */
...

}

Assume that the SIGINT signal is blocked in all threads on entry to sig_catcher()
and that hdlr() has been established (with a call to sigaction(2) ) as the handler
for the SIGINT signal. When an unmasked and caught instance of the SIGINT signal
is delivered to the thread while it is in cond_wait() , the thread first reacquires the
lock on the mutex, then calls hdlr( ) , and then returns EINTR from cond_wait() .

Note that whether SA_RESTARThas been specified as a flag to sigaction() has
no effect here; cond_wait(3T) is not a system call and is not automatically
restarted. When a caught signal occurs while a thread is blocked in cond_wait( ) ,
the call always returns EINTR. Again, the application should not rely on an
interrupted cond_wait( ) reacquiring the mutex, because this behavior could
change in the future.
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I/O Issues
One of the attractions of multithreaded programming is I/O performance. The
traditional UNIX API gave you little assistance in this area—you either used the
facilities of the file system or bypassed the file system entirely.

This section shows how to use threads to get more flexibility through I/O
concurrency and multibuffering. This section also discusses the differences and
similarities between the approaches of synchronous I/O (with threads) and
asynchronous I/O (with and without threads).

I/O as a Remote Procedure Call
In the traditional UNIX model, I/O appears to be synchronous, as if you were
placing a remote procedure call to the I/O device. Once the call returns, then the I/O
has completed (or at least it appears to have completed—a write request, for
example, might merely result in the transfer of the data to a buffer in the operating
environment).

The advantage of this model is that it is easy to understand because, as a
programmer you are very familiar with the concept of procedure calls.

An alternative approach not found in traditional UNIX systems is the asynchronous
model, in which an I/O request merely starts an operation. The program must
somehow discover when the operation completes.

This approach is not as simple as the synchronous model, but it has the advantage of
allowing concurrent I/O and processing in traditional, single-threaded UNIX
processes.

Tamed Asynchrony
You can get most of the benefits of asynchronous I/O by using synchronous I/O in a
multithreaded program. Where, with asynchronous I/O, you would issue a request
and check later to determine when it completes, you can instead have a separate
thread perform the I/O synchronously. The main thread can then check (perhaps by
calling pthread_join(3T)) for the completion of the operation at some later time.
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Asynchronous I/O
In most situations there is no need for asynchronous I/O, since its effects can be
achieved with the use of threads, with each thread doing synchronous I/O.
However, in a few situations, threads cannot achieve what asynchronous I/O can.

The most straightforward example is writing to a tape drive to make the tape drive
stream. Streaming prevents the tape drive from stopping while it is being written to
and moves the tape forward at high speed while supplying a constant stream of data
that is written to tape.

To do this, the tape driver in the kernel must issue a queued write request when the
tape driver responds to an interrupt that indicates that the previous tape-write
operation has completed.

Threads cannot guarantee that asynchronous writes will be ordered because the
order in which threads execute is indeterminate. Specifying the order of a write to a
tape, for example, is not possible.

Asynchronous I/O Operations
#include <sys/asynch.h>

int aioread(int fildes, char * bufp, int bufs, off_t offset,

int whence, aio_result_t * resultp);

int aiowrite(int filedes, const char * bufp, int bufs,
off_t offset, int whence, aio_result_t * resultp);

aio_result_t *aiowait(const struct timeval * timeout);

int aiocancel(aio_result_t * resultp);

aioread(3) and aiowrite(3) are similar in form to pread(2) and pwrite(2) ,
except for the addition of the last argument. Calls to aioread( ) and aiowrite()
result in the initiation (or queueing) of an I/O operation.

The call returns without blocking, and the status of the call is returned in the
structure pointed to by resultp. This is an item of type aio_result_t that contains
the following:

int aio_return;
int aio_errno;

When a call fails immediately, the failure code can be found in aio_errno .
Otherwise, this field contains AIO_INPROGRESS, meaning that the operation has
been successfully queued.
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You can wait for an outstanding asynchronous I/O operation to complete by calling
aiowait(3) . This returns a pointer to the aio_result_t structure supplied with
the original aioread(3) or aiowrite(3) call.

This time aio_result_t contains whatever read(2) or write(2) would have
returned if one of them had been called instead of the asynchronous version. If the
read() or write() is successful, aio_return contains the number of bytes that
were read or written; if it was not successful, aio_return is -1, and aio_errno
contains the error code.

aiowait() takes a timeout argument, which indicates how long the caller is willing
to wait. As usual, a NULL pointer here means that the caller is willing to wait
indefinitely, and a pointer to a structure containing a zero value means that the caller
is unwilling to wait at all.

You might start an asynchronous I/O operation, do some work, then call
aiowait() to wait for the request to complete. Or you can use SIGIO to be
notified, asynchronously, when the operation completes.

Finally, a pending asynchronous I/O operation can be cancelled by calling
aiocancel( ) . This routine is called with the address of the result area as an
argument. This result area identifies which operation is being cancelled.

Shared I/O and New I/O System Calls
When multiple threads are performing I/O operations at the same time with the
same file descriptor, you might discover that the traditional UNIX I/O interface is
not thread safe. The problem occurs with nonsequential I/O. This uses the
lseek(2) system call to set the file offset, which is then used in the next read(2)
or write(2) call to indicate where in the file the operation should start. When two
or more threads are issuing lseeks() to the same file descriptor, a conflict results.

To avoid this conflict, use the pread(2) and pwrite(2) system calls.

#include <sys/types.h>
#include <unistd.h>

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

ssize_t pwrite(int filedes, void *buf, size_t nbyte,
off_t offset);

These behave just like read(2) and write(2) except that they take an additional
argument, the file offset. With this argument, you specify the offset without using
lseek(2), so multiple threads can use these routines safely for I/O on the same file
descriptor.
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Alternatives to getc(3S) and putc(3S)
An additional problem occurs with standard I/O. Programmers are accustomed to
routines such as getc(3S) and putc(3S) being very quick—they are implemented
as macros. Because of this, they can be used within the inner loop of a program with
no concerns about efficiency.

However, when they are made thread safe they suddenly become more
expensive—they now require (at least) two internal subroutine calls, to lock and
unlock a mutex.

To get around this problem, alternative versions of these routines are supplied,
getc_unlocked(3S) and putc_unlocked(3S) .

These do not acquire locks on a mutex and so are as quick as the original,
nonthread-safe versions of getc(3S) and putc(3S) .

However, to use them in a thread-safe way, you must explicitly lock and release the
mutexes that protect the standard I/O streams, using flockfile(3S) and
funlockfile(3S) . The calls to these latter routines are placed outside the loop, and
the calls to getc_unlocked( ) or putc_unlocked() are placed inside the loop.
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CHAPTER 6

Safe and Unsafe Interfaces

This chapter defines MT-safety levels for functions and libraries.

� “Thread Safety” on page 169

� “MT Interface Safety Levels” on page 170

� “Async-Signal-Safe Functions” on page 173

� “MT Safety Levels for Libraries” on page 173

Thread Safety
Thread safety is the avoidance of data races—situations in which data are set to
either correct or incorrect values, depending upon the order in which multiple
threads access and modify the data.

When no sharing is intended, give each thread a private copy of the data. When
sharing is important, provide explicit synchronization to make certain that the
program behaves in a deterministic manner.

A procedure is thread safe when it is logically correct when executed simultaneously
by several threads. At a practical level, it is convenient to recognize three levels of
safety.

� Unsafe

� Thread safe - Serializable

� Thread safe - MT-Safe

An unsafe procedure can be made thread safe and serializable by surrounding it
with statements to lock and unlock a mutex. Code Example 6–1 shows three
simplified implementations of fputs() , initially thread unsafe.
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Next is a serializable version of this routine with a single mutex protecting the
procedure from concurrent execution problems. Actually, this is stronger
synchronization than is usually necessary. When two threads are sending output to
different files using fputs() , one need not wait for the other—the threads need
synchronization only when they are sharing an output file.

The last version is MT-safe. It uses one lock for each file, allowing two threads to
print to different files at the same time. So, a routine is MT-safe when it is thread
safe and its execution does not negatively affect performance.

CODE EXAMPLE 6–1 Degrees of Thread Safety

/* not thread-safe */
fputs(const char *s, FILE *stream) {

char *p;
for (p=s; *p; p++)

putc((int)*p, stream);
}

/* serializable */
fputs(const char *s, FILE *stream) {

static mutex_t mut;
char *p;
mutex_lock(&m);
for (p=s; *p; p++)

putc((int)*p, stream);

mutex_unlock(&m);
}

/* MT-Safe */
mutex_t m[NFILE];
fputs(const char *s, FILE *stream) {

static mutex_t mut;
char *p;
mutex_lock(&m[fileno(stream)]);
for (p=s; *p; p++)

putc((int)*p, stream);
mutex_unlock(&m[fileno(stream)]0;

}

MT Interface Safety Levels
The threads man pages, man(3t) , use the safety level categories listed in Table 6–1 to
describe how well an interface supports threads (these categories are explained more
fully in the Intro(3) reference manual page).
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TABLE 6–1 Interface Safety Levels

Category Description

Safe This code can be called from a multithreaded
application

Safe with exceptions See the NOTES sections of these pages for a
description of the exceptions.

Unsafe This interface is not safe to use with
multithreaded applications unless the
application arranges for only one thread at a
time to execute within the library.

MT-Safe This interface is fully prepared for
multithreaded access in that it is both safe
and it supports some concurrency.

MT-Safe with exceptions See the NOTES sections of these pages in the
man(3t): Library Routines for a list of the
exceptions.

Async-Signal-Safe This routine can safely be called from a
signal handler. A thread that is executing an
Async-Signal-Safe routine does not deadlock
with itself when it is interrupted by a signal.

Fork1–Safe This interface releases locks it has held
whenever the Solaris fork1(2) or the POSIX
fork(2) is called.

See the table in Appendix C, MT Safety Levels: Library Interfaces, for the safety
levels of interfaces from the man(3): Library Routines. Check the man page to be sure
of the level.

Some functions have purposely not been made safe for the following reasons.

� Making the interface MT-Safe would have negatively affected the performance of
single-threaded applications.

� The library has an Unsafe interface. For example, a function might return a pointer
to a buffer in the stack. You can use reentrant counterparts for some of these
functions. The reentrant function name is the original function name with “_r ”
appended.
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Caution - There is no way to be certain that a function with a name not ending in
“_r ” is MT-Safe other than by checking its reference manual page. Use of a function
identified as not MT-Safe must be protected by a synchronizing device or by
restriction to the initial thread.

Reentrant Functions for Unsafe Interfaces
For most functions with Unsafe interfaces, an MT-Safe version of the routine exists.
The name of the new MT-Safe routine is always the name of the old Unsafe routine
with “_r ” appended. The Table 6–2 “_r ” routines are supplied in the Solaris
environment.

TABLE 6–2 Reentrant Functions

asctime_r(3c) gethostbyname_r(3n) getservbyname_r(3n)

ctermid_r(3s) gethostent_r(3n) getservbyport_r(3n)

ctime_r(3c) getlogin_r(3c) getservent_r(3n)

fgetgrent_r(3c) getnetbyaddr_r(3n) getspent_r(3c)

fgetpwent_r(3c) getnetbyname_r(3n) getspnam_r(3c)

fgetspent_r(3c) getnetent_r(3n) gmtime_r(3c)

gamma_r(3m) getnetgrent_r(3n) lgamma_r(3m)

getauclassent_r(3) getprotobyname_r(3n) localtime_r(3c)

getauclassnam_r(3) getprotobynumber_r(3n) nis_sperror_r(3n)

getauevent_r(3) getprotoent_r(3n) rand_r(3c)

getauevnam_r(3) getpwent_r(3c) readdir_r(3c)

getauevnum_r(3) getpwnam_r(3c) strtok_r(3c)

getgrent_r(3c) getpwuid_r(3c) tmpnam_r(3s)

getgrgid_r(3c) getrpcbyname_r(3n) ttyname_r(3c)
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TABLE 6–2 Reentrant Functions (continued)

getgrnam_r(3c) getrpcbynumber_r(3n)

gethostbyaddr_r(3n) getrpcent_r(3n)

Async-Signal-Safe Functions
Functions that can safely be called from signal handlers are Async-Signal-Safe. The
POSIX standard defines and lists Async-Signal-Safe functions (IEEE Std 1003.1-1990,
3.3.1.3 (3)(f), page 55). In addition to the POSIX Async-Signal-Safe functions, these
three functions from the Solaris threads library are also Async- Signal-Safe.

� sema_post(3T)

� thr_sigsetmask(3T), similar to pthread_sigmask(3T)

� thr_kill(3T), similar to pthread_kill(3T)

MT Safety Levels for Libraries
All routines that can potentially be called by a thread from a multithreaded program
should be MT-Safe.

This means that two or more activations of a routine must be able to correctly execute
concurrently. So, every library interface that a multithreaded program uses must be
MT-Safe.

Not all libraries are now MT-Safe. The commonly used libraries that are MT-Safe are
listed in Table 6–3. Additional libraries will eventually be modified to be MT-Safe.

TABLE 6–3 Some MT-Safe Libraries

Library Comments

lib/libc Interfaces that are not safe have thread-safe interfaces of the
form *_r (often with different semantics)

lib/libdl_stubs To support static switch compiling
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TABLE 6–3 Some MT-Safe Libraries (continued)

Library Comments

lib/libintl Internationalization library

lib/libm Math library compliant with System V Interface Definition,
Edition 3, X/Open and ANSI C

lib/libmalloc Space-efficient memory allocation library; see malloc(3X)

lib/libmapmalloc Alternative mmap(2) -based memory allocation library; see
mapmalloc(3X)

lib/libnsl The TLI interface, XDR, RPC clients and servers, netdir ,
netselect and getXXbyYY interfaces are not safe, but
have thread-safe interfaces of the form getXXbyYY_r

lib/libresolv Thread-specific errno support

lib/libsocket Socket library for making network connections

lib/libw Wide character and wide string functions for supporting
multibyte locales

lib/straddr Network name-to-address translation library

lib/libX11 X11 Windows library routines

lib/libC C++ runtime shared objects

Unsafe Libraries
Routines in libraries that are not guaranteed to be MT-Safe can safely be called by
multithreaded programs only when such calls are single threaded.
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CHAPTER 7

Compiling and Debugging

This chapter describes how to compile and debug multithreaded programs.

� “Compiling a Multithreaded Application” on page 175

� “Debugging a Multithreaded Program” on page 181

Compiling a Multithreaded Application
Many options are available for header files, define flags, and linking.

Preparing for Compilation
The following items are required to compile and link a multithreaded program.
Except for the C compiler, all should come with your Solaris operating environment.

� A standard C compiler

� Include files:

� <thread.h> and <pthread.h>
� <errno.h> , <limits.h> , <signal.h> , <unistd.h>

� The regular Solaris linker, ln(1)

� The Solaris threads library (libthread ), the POSIX threads library
(libpthread ), and possibly the POSIX realtime library (libposix4 ) for
semaphores

� MT-safe libraries (libc , libm , libw , libintl , libnsl , libsocket ,
libmalloc , libmapmalloc , and so on)
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Choosing Solaris or POSIX Semantics
Certain functions, including the ones listed in Table 7–1, have different semantics in
the POSIX 1003.1c standard than in the Solaris 2.4 Operating Environment release,
which was based on an earlier POSIX draft. Function definitions are chosen at
compile time. See the man Pages(3): Library Routines for a description of the
differences in expected parameters and return values.

TABLE 7–1 Functions With POSIX/Solaris Semantic Differences

sigwait(2)

ctime_r(3C) asctime_r(3C)

ftrylockfile(3S) - new getlogin_r(3C)

getgrnam_r(3C) getgrgid_r(3C)

getpwnam_r(3C) getpwuid_r(3C)

readdir_r(3C) ttyname_r(3C)

The Solaris fork(2) function duplicates all threads (fork-all behavior), while the POSIX
fork(2) function duplicates only the calling thread (fork-one behavior), as does the
Solaris fork1() function.

The handling of an alarm(2) is also different: a Solaris alarm goes to the thread’s
LWP, while a POSIX alarm goes to the whole process (see “Per-Thread Alarms” on
page 149).

Including <thread.h> or <pthread.h>
The include file <thread.h> , used with the -lthread library, compiles code that
is upward compatible with earlier releases of the Solaris Operating Environment.
This library contains both interfaces—those with Solaris semantics and those with
POSIX semantics. To call thr_setconcurrency(3T) with POSIX threads, your
program needs to include <thread.h> .

The include file <pthread.h> , used with the -lpthread library, compiles code that
is conformant with the multithreading interfaces defined by the POSIX 1003.1c
standard. For complete POSIX compliance, the define flag _POSIX_C_SOURCE
should be set to a (long ) value ≥ 199506 :
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cc [ flags ] file ... -D_POSIX_C_SOURCE=N ( where N 199506L )

You can mix Solaris threads and POSIX threads in the same application, by including
both <thread.h> and <pthread.h> , and linking with either the -lthread or
-lpthread library.

In mixed use, Solaris semantics prevail when compiling with −D_REENTRANTand
linking with -lthread , whereas POSIX semantics prevail when compiling with
−D_POSIX_C_SOURCEand linking with -lpthread .

Defining _REENTRANTor _POSIX_C_SOURCE
For POSIX behavior, compile applications with the −D_POSIX_C_SOURCEflag set ≥
199506L . For Solaris behavior, compile multithreaded programs with the
−D_REENTRANTflag. This applies to every module of an application.

For mixed applications (for example, Solaris threads with POSIX semantics), compile
with the −D_REENTRANTand −D_POSIX_PTHREAD_SEMANTICSflags.

To compile a single-threaded application, define neither the −D_REENTRANTnor the
−D_POSIX_C_SOURCEflag. When these flags are not present, all the old definitions
for errno , stdio , and so on, remain in effect.

Note - Compile single-threaded applications, not linked with either of the thread
libraries (libthread.so.1 or libpthread.so.1 ), without the −D_REENTRANT
flag. This eliminates performance degradation incurred when macros, such as
putc(3s) , are converted into reentrant function calls.

To summarize, POSIX applications that define -D_POSIX_C_SOURCEget the POSIX
1003.1c semantics for the routines listed in Table 7–1. Applications that define only
−D_REENTRANTget the Solaris semantics for these routines. Solaris applications that
define −D_POSIX_PTHREAD_SEMANTICSget the POSIX semantics for these routines,
but can still use the Solaris threads interface.

Applications that define both -D_POSIX_C_SOURCEand −D_REENTRANTget the
POSIX semantics.

Linking With libthread or libpthread
For POSIX threads behavior, load the libpthread library. For Solaris threads
behavior, load the libthread library. Some POSIX programmers might want to link
with −lthread to preserve the Solaris distinction between fork() and fork1() .
All that -lpthread really does is to make fork() behave the same way as the
Solaris fork1() call, and change the behavior of alarm(2) .
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To use libthread , specify −lthread before −lc on the ld command line, or last
on the cc command line.

To use libpthread , specify −lpthread before −lc on the ld command line, or last
on the cc command line.

Do not link a nonthreaded program with −lthread or −lpthread . Doing so
establishes multithreading mechanisms at link time that are initiated at runtime.
These slow down a single-threaded application, waste system resources, and produce
misleading results when you debug your code.

Figure 7–1 summarizes the compile options.

Choose
semantics

POSIX

mixed
usage

Solaris

cc [ flags] file... -D_POSIX_C_SOURCE= n  

cc [ flags] file... -D_REENTRANT 

[-lposix4] -lthread

cc [ flags] file... -D_REENTRANT -lthread

[-lposix4] -lpthread

-D_POSIX_PTHREAD_SEMANTICS

Figure 7–1 Compilation Flowchart

In mixed usage, you need to include both thread.h and pthread.h .

All calls to libthread and libpthread are no-ops if the application does not link
−lthread or −lpthread . The runtime library libc has many predefined
libthread and libpthread stubs that are null procedures. True procedures are
interposed by libthread or libpthread when the application links both libc
and the thread library.

The behavior of the C library is undefined if a program is constructed with an ld
command line that includes the following incorrect fragment:

.o’s ... -lc -lthread ... (this is incorrect)
or

.o’s ... -lc -lpthread ... (this is incorrect)
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Note - For C++ programs that use threads, use the −mt option, rather than
−lthread , to compile and link your application. The −mt option links with
libthread and ensures proper library linking order. Using −lthread might cause
your program to core dump.

Linking With -lposix4 for POSIX Semaphores
The Solaris semaphore routines, sema_*(3T) , are contained in the libthread
library. By contrast, you link with the -lposix4 library to get the standard
sem_*(3R) POSIX 1003.1c semaphore routines described in “Semaphores” on page
122.

Link Old With New
Table 7–2 shows that multithreaded object modules should be linked with old object
modules only with great caution.

TABLE 7–2 Compiling With and Without the _REENTRANTFlag

The File Type Compiled Reference And Return

Old object files
(nonthreaded) and
new object files

Without the
_REENTRANTor
_POSIX_C_SOURCEflag

Static storage The traditional
errno

New object files With the _REENTRANTor
_POSIX_C_SOURCEflag

__errno , the new
binary entry point

The address of the
thread’s definition
of errno

Programs using TLI
in libnsl1

With the _REENTRANTor
_POSIX_C_SOURCEflag
(required)

__t_errno , a new
entry point

The address of the
thread’s definition
of t_errno .

1. Include tiuser.h to get the TLI global error variable.
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Linking With the Alternate One-level
libthread Library
The standard Solaris threads implementation is built upon a two-level threading
model in which user-level threads are multiplexed over possibly fewer lightweight
processes, or LWPs. An LWP is the fundamental unit of execution that is dispatched
to a processor by the operating system. A mechanism is provided in the standard
implementation for associating threads one-to-one with LWPs (the THR_BOUNDand
PTHREAD_SCOPE_SYSTEMflags) for writing applications with one-level semantics.

The Solaris 8 Operating Environment provides an alternate threads implementation
of a one-level model in which user-level threads are associated one-to-one with
LWPs. This implementation is simpler than the standard implementation and may be
beneficial to some multithreaded applications. It provides exactly the same interfaces,
both for POSIX threads and Solaris threads, as the standard implementation.

To link with the alternate implementation, use the following run-path −R option
when linking the program.

For POSIX threads use:

cc -mt ... -lpthread ... -R /usr/lib/lwp (32-bit)
cc -mt ... -lpthread ... -R /usr/lib/lwp/64 (64-bit)

For Solaris threads use:

cc -mt ... -R /usr/lib/lwp (32-bit)
cc -mt ... -R /usr/lib/lwp/64 (64-bit)

For multithreaded programs that have been previously linked with the standard
threads library, the environment variable LD_LIBRARY_PATHand
LD_LIBRARY_PATH_64can be set as follows to bind the program at run time to the
alternate threads library:

LD_LIBRARY_PATH=/usr/lib/lwp
LD_LIBRARY_PATH=/usr/lib/lwp:/usr/lib/lwp/64
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Note that if an LD_LIBRARY_PATHenvironment variable is in effect for a secure
process, then only the trusted directories specified by this variable will be used to
augment the runtime linker’s search rules.

When using the alternate one-level threads implementation, the library might create
more LWPs than the standard implementation using unbound threads. LWPs
consume operating system memory in contrast to threads, which consume only
user-level memory. Thus, a multithreaded application linked with this library that
creates thousands of threads would create an equal number of LWPs and might run
the system out of resources required to support the application.

Debugging a Multithreaded Program
Common Oversights
The following list points out some of the more frequent oversights that can cause
bugs in multithreaded programs.

� Passing a pointer to the caller’s stack as an argument to a new thread.

� Accessing global memory (shared changeable state) without the protection of a
synchronization mechanism.

� Creating deadlocks caused by two threads trying to acquire rights to the same pair
of global resources in alternate order (so that one thread controls the first resource
and the other controls the second resource and neither can proceed until the other
gives up).

� Trying to reacquire a lock already held (recursive deadlock).

� Creating a hidden gap in synchronization protection. This is caused when a code
segment protected by a synchronization mechanism contains a call to a function
that frees and then reacquires the synchronization mechanism before it returns to
the caller. The result is that it appears to the caller that the global data has been
protected when it actually has not.

� Mixing UNIX signals with threads—it is better to use the sigwait(2) model for
handling asynchronous signals.

� Using setjmp(3B) and longjmp(3B) , and then long-jumping away without
releasing the mutex locks.

� Failing to reevaluate the conditions after returning from a call to
*_cond_wait(3T) or *_cond_timedwait(3T) .

� Forgetting that default threads are created PTHREAD_CREATE_JOINABLEand
must be reclaimed with pthread_join(3T) ; note, pthread_exit(3T) does not
free up its storage space.
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� Making deeply nested, recursive calls and using large automatic arrays can cause
problems because multithreaded programs have a more limited stack size than
single-threaded programs.

� Specifying an inadequate stack size, or using non-default stacks.

And, note that multithreaded programs (especially those containing bugs) often
behave differently in two successive runs, given identical inputs, because of
differences in the thread scheduling order.

In general, multithreading bugs are statistical instead of deterministic. Tracing is
usually a more effective method of finding order of execution problems than is
breakpoint-based debugging.

Tracing and Debugging With the TNF Utilities
Use the TNF utilities (included as part of the Solaris system) to trace, debug, and
gather performance analysis information from your applications and libraries. The
TNF utilities integrate trace information from the kernel and from multiple user
processes and threads, and so are especially useful for multithreaded code.

With the TNF utilities, you can easily trace and debug multithreaded programs. See
the TNF utilities chapter in the Programming Utilities Guide for detailed information
on using prex(1) , tnfdump(1) , and other TNF utilities.

Using truss(1)
See truss(1) for information on tracing system calls and signals.

Using adb(1)
When you bind all threads in a multithreaded program, a thread and an LWP are
synonymous. Then you can access each thread with the following adb commands
that support multithreaded programming.

TABLE 7–3 MT adb Commands

pid :A Attaches to process # pid. This stops the process and all its LWPs.

:R Detaches from process. This resumes the process and all its LWPs.

$L Lists all active LWPs in the (stopped) process.
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TABLE 7–3 MT adb Commands (continued)

n:l Switches focus to LWP # n.

$l Shows the LWP currently focused.

num:i Ignores signal number num.

These commands to set conditional breakpoints are often useful.

TABLE 7–4 Setting adb Breakpoints

[ label],[ count]:b [ expression] Breakpoint is detected when expression equals
zero

foo,ffff:b <g7-0xabcdef Stop at foo when g7 = the hex value
0xABCDEF

Using dbx
With the dbx utility you can debug and execute source programs written in C++,
ANSI C, and FORTRAN. dbx accepts the same commands as the Debugger, but uses
a standard terminal (TTY) interface. Both dbx and the Debugger support debugging
multithreaded programs. For a full overview of dbx and Debugger features see the
dbx(1) reference manual page and the Using Sun Workshop user’s guide.

All the dbx options listed in Table 7–5 can support multithreaded applications.

TABLE 7–5 dbx Options for MT Programs

Option Meaning

cont at line [sig signo id] Continues execution at line with signal signo. The id, if
present, specifies which thread or LWP to continue.
The default value is all.

lwp Displays current LWP. Switches to given LWP [lwpid].

lwps Lists all LWPs in the current process.
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TABLE 7–5 dbx Options for MT Programs (continued)

Option Meaning

next ... tid Steps the given thread. When a function call is skipped,
all LWPs are implicitly resumed for the duration of that
function call. Nonactive threads cannot be stepped.

next ... lid Steps the given LWP. Does not implicitly resume all
LWPs when skipping a function. The LWP on which
the given thread is active. Does not implicitly resume
all LWP when skipping a function.

step... tid Steps the given thread. When a function call is skipped,
all LWPs are implicitly resumed for the duration of that
function call. Nonactive threads cannot be stepped.

step... lid Steps the given LWP. Does not implicitly resume all
LWPs when skipping a function.

stepi... lid The given LWP.

stepi... tid The LWP on which the given thread is active.

thread Displays current thread. Switches to thread tid. In all
the following variations, an optional tid implies the
current thread.

thread -info [ tid ] Prints everything known about the given thread.

thread -locks [ tid ] Prints all locks held by the given thread.

thread -suspend [ tid ] Puts the given thread into suspended state.

thread -continue [ tid ] Unsuspends the given thread.

thread -hide [ tid ] Hides the given (or current) thread. It will not appear
in the generic threads listing.

thread -unhide [ tid ] Unhides the given (or current) thread.

allthread-unhide Unhides all threads.

threads Prints the list of all known threads.
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TABLE 7–5 dbx Options for MT Programs (continued)

Option Meaning

threads-all Prints threads that are not usually printed (zombies).

all|filterthreads-mode Controls whether threads prints all threads or filters
them by default.

auto|manualthreads-mode Enables automatic updating of the thread listing.

threads-mode Echoes the current modes. Any of the previous forms
can be followed by a thread or LWP ID to get the
traceback for the specified entity.
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CHAPTER 8

Tools for Enhancing MT Programs

Sun provides several tools for enhancing the performance of MT programs. This
chapter describes two of them.

LockLint verifies the consistent use of mutex and readers/writer locks in
multithreaded ANSI C programs.

LockLint performs a static analysis of the use of mutex and readers/writer locks, and
looks for inconsistent use of these locking techniques. In looking for inconsistent use
of locks, LockLint detects the most common causes of data races and deadlocks.

LoopTool

LoopTool, along with its companion program LoopReport, profiles loops for
FORTRAN programs; it provides information about programs parallelized by
SPARCompiler FORTRAN MP. LoopTool displays a graph of loop runtimes, shows
which loops were parallelized, and provides compiler hints as to why a loop was not
parallelized.

LoopReport creates a summary table of all loop runtimes correlated with compiler
hints about why a loop was not parallelized.

This chapter presents scenarios showing how each tool is used:

� Scenario One (“Scenario: Checking a Program With LockLint” on page 188) shows
the use of LockLint to check a Mandelbrot program’s use of locks.

� Scenario Two (“Scenario: Parallelizing Loops With LoopTool” on page 191) shows
the use of LoopTool to parallelize portions of a library.
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Scenario: Checking a Program With
LockLint
A program can run efficiently but still contain potential problems. One such problem
occurs when two threads try to access the same data simultaneously. This can lead to:

� Deadlocks — When two threads are mutually waiting for the other to release a
lock.

� Data races — When two or more threads have overlapping read/write access to
data, causing unexpected data values. For example, suppose Thread A writes the
variable calc, goes off and does something else, and then comes back to read calc;
in the meantime Thread B writes to calc and changes its value to something
Thread A does not “expect.”

Figure 8–1 shows how to use LockLint to see if data is adequately protected.

Compile to produce
LL database

Perform LL
analysis

Examine output
from LL —

Is it displaying
only unsafe data?

Yes — Fix code

No — make
assertions about
displayed data

Figure 8–1 The LockLint Usage Flowchart

1. Compile the program with LockLint instrumentation.

The compiler has an option to produce a version of the program that LockLint
can use for analysis.

2. Create a LockLint shell and load the instrumented program.

You can use this shell as you would any other, including running scripts.

3. Save the executable’s state.

LockLint is designed to run iteratively. You run it over and over, making
progressively stronger assertions about the data it is analyzing, until you find a
problem or are satisfied that the data is safe.
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Note - Analyzing the program with LockLint changes its state; that is, once
you’ve done an analysis, you can’t add further assertions. By saving and restoring
the state, you can run the analysis over and over, with different assertions about
the program’s data.

4. Analyze the program.

The analyze command performs consistency checks on the program’s data.

5. Search for unsafe data.

Having run the analysis, you can look for unprotected elements (see Code
Example 8–1).

The held=[] indicates that variables did not have locks consistently held on
them while they were accessed. An asterisk preceding the held=[] indicates that
these variables were written to. An asterisk, therefore, means that LockLint
“believes” the data is not safe.

CODE EXAMPLE 8–1 Fragment of Initial LockLint Output

$ lock_lint analyze
$ lock_lint vars -h | grep held
:arrow_cursor *held={ }
:bottom_row *held={ }
:box_height *held={ }
:box_width *held={ }
:box_x *held={ }
:busy_cursor *held={ }
:c_text *held={ }
:calc_mandel *held={ }
:calc_type *held={ }
:canvas *held={ }
:canvas_proc/drag *held={ }
:canvas_proc/x *held={ }
[. . . ]
:gap *held={ }
:gc *held={ }
:next_row *held={ }
:now.tv_sec held={ }
:now.tv_usec held={ }
:p_text *held={ }
:panel *held={ }
:picture_cols *held={ }
:picture_id *held={ }
:picture_rows *held={ }
:picture_state *held={ }
:pw *held={ }
:ramp.blue *held={ }
:ramp.green *held={ }
:ramp.red *held={ }
:rectangle_selected *held={ }
:row_inc *held={ }
:run_button *held={ }
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[ . . . ]

However, this analysis is limited in its usefulness because many of the variables
displayed do not need to be protected (such as variables that are not written to,
except when they’re initialized). By excluding some data from consideration, and
having LockLint repeat its analyses, you can narrow your search to the
unprotected variables that you are interested in.

6. Restore the program to its saved state.

To be able to run the analysis again, pop the state back to what it was before the
program was last analyzed.

7. Refine the analysis by excluding some data.

For example, you can ignore variables that aren’t written to—since they don’t
change, they won’t cause data races. And you can ignore places where the
variables are initialized (if they’re not visible to other threads).

You can ignore the variables that you know are safe by making assertions about
them. In the code example below, the following is done:

� Initialization functions are ignored because no data is overwritten at
initialization.

� Some variables are asserted to be read-only.

For illustration, this is done on the command line in verbose mode. After you
become familiar with the command syntax, you can use aliases and shell scripts
to make the task easier.

$ lock_lint ignore CreateXStuff run_proc canvas_proc main
$ lock_lint assert read only bottom_row
$ lock_lint assert read only calc_mandel
etc.

8. Analyze the program again, and search for unsafe data.

The list of unsafe data is considerably reduced, as shown in Code Example 8–2.

CODE EXAMPLE 8–2 Unsafe Data Reported by LockLint

$ lock_lint vars -h | grep held
:bottom_row held={ }
:calc_mandel held={ }
:colors held={ }
:corner_i held={ }
:corner_r held={ }
:display held={ }
:drawable held={ }
:frame held={ }
:gap held={ }
:gc held={ }
:next_row held={
mandel_display.c:next_row_lock }

190 Multithreaded Programming Guide ♦ February 2000



:picture_cols held={ }
:picture_id held={ }
:picture_rows *held={ }
:picture_state *held={ }
:row_inc held={ }

Only two variables were written to (picture_rows and picture_state) and are flagged
by LockLint as inconsistently protected.

The analysis also flags the variable next_row, which the calculator threads use to
find the next chunk of work to be done. However, as the analysis states, this
variable is consistently protected.

Alter your source code to properly protect picture_rows and picture_state.

Scenario: Parallelizing Loops With
LoopTool
IMSL is a popular math library used by many FORTRAN and C programmers.1 One
of its routines is a good candidate for parallelizing with LoopTool.

This example is a FORTRAN program called l2trg.f() . (It computes LU
factorization of a single-precision general matrix.) The program is compiled without
any parallelization, then checked to see how long it takes to run with the time(1)
command.

CODE EXAMPLE 8–3 Original Times for l2trg.f() (Not Parallelized)

$ f77 l2trg.f -cg92 -03 -lmsl
$ /bin/time a.out
real 44.8
user 43.5
sys 1.0

To look at the program with LoopTool, recompile with the LoopTool instrumentation,
using the −Zlp option.

$ f77 l2trg.f -cg92 -03 -Zlp -lmsl

Start LoopTool. Figure 8–2 shows the initial Overview screen.

1. IMSL is a registered trademark of IMSL, Inc. This example is used with permission.
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Figure 8–2 LoopTool View Before Parallelization

Most of the program’s time is spent in three loops; each loop indicated by a
horizontal bar.

The LoopTool user interface displays various screens triggered by cursor movement
and mouse actions. In the Overview window:

Put the cursor over a loop to get its line number.

Click the loop to open a window that displays the loop’s source code.

In the example, a click on the middle horizontal bar displays the source code for the
middle loop. The source code reveals that loops are nested.

Figure 8–3 shows the Source and Hints window for the middle loop.

Figure 8–3 LoopTool (Source and Hints Window)

In this case, LoopTool gives the Hints message:

The variable ‘‘fac’’ causes a data dependency in this loop

In the source code, you can see that fac is calculated in the nested, innermost loop
(9030):

C update the remaining rectangular
C block of U, rows j to j+3 and
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C columns j+4 to n

DO 9020 K=NTMP, J + 4, -1
T1 = FAC(M0,K)
FAC(M0,K) = FAC(J,K)
FAC(J,K) = T1
T2 = FAC(M1,K) + T1*FAC(J+1,J)
FAC(M1,K) = FAC(J+1,K)
FAC(J+1,K) = T2
T3 = FAC(M2,K) + T1*FAC(J+2,J) + T2*FAC(J+2,J+1)
FAC(M2,K) = FAC(J+2,K)
FAC(J+2,K) = T3
T4 = FAC(M3,K) + T1*FAC(J+3,J) + T2*FAC(J+3,J+1) +

& T3*FAC(J+3,J+2)
FAC(M3,K) = FAC(J+3,K)
FAC(J+3,K) = T4

C rank 4 update of the lower right
C block from rows j+4 to n and columns
C j+4 to n

DO 9030 I=KBEG, NTMP
FAC(I,K) = FAC(I,K) + T1*FAC(I,J) + T2*FAC(I,J+1) +

& T3*FAC(I,J+2) + T4*FAC(I,J+3)
9030 CONTINUE
9020 CONTINUE

The loop index, I, of the innermost loop is used to access rows of the array fac. So the
innermost loop updates the Ith row of fac. Since updating these rows does not
depend on updates of any other rows of fac, it’s safe to parallelize this loop.

The calculation of fac is speeded up by parallelizing loop 9030, so there should be a
significant performance improvement. Force explicit parallelization by inserting a
DOALL directive in front of loop 9030:

C$PAR DOALL
(Add DOALL directive here)

DO 9030 I=KBEG, NTMP
FAC(I,K) = FAC(I,K) + T1*FAC(I,J) + T2*FAC(I,J+1) +

& T3*FAC(I,J+2) + T4*FAC(I,J+3)
9030 CONTINUE

Now you can recompile the FORTRANcode, run the program, and compare the new
time with the original times. More specifically, Code Example 8–3 shows the use of
all the processors on the machine by setting the PARALLELenvironment variable
equal to 2, and forces explicit parallelization of that loop with the −explicitpar
compiler option.

Finally, run the program and compare its time with that of the original times (shown
in Code Example 8–4).

CODE EXAMPLE 8–4 Post-Parallelization Times for l2trg.f()

$ setenv PARALLEL 2
( 2 is the # of processors on the machine)
$ f77 l2trg.f -cg92 -03 -explicitpar -imsl
$ /bin/time a.out
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real 28.4
user 53.8
sys 1.1

The program now runs over a third faster. (The higher number for user reflects the
fact that there are now two processes running.) Figure 8–4 shows the LoopTool
Overview window. You see that, in fact, the innermost loop is now parallel.

            

Loop 9039,
now parallelized

Figure 8–4 LoopTool View After Parallelization

For More Information
To find out more about information about multithreaded tools see the following
manuals:

LockLint User’s Guide 801-6692-10

LoopTool User’s Guide 801-6693-10
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CHAPTER 9

Programming With Solaris Threads

This chapter compares the Application Programming Interface (API) for Solaris and
POSIX threads, and explains the Solaris features that are not found in POSIX threads.

� “Comparing APIs for Solaris Threads and POSIX Threads” on page 195

� “Unique Solaris Threads Functions” on page 202

� “Similar Synchronization Functions—Read-Write Locks” on page 206

� “Similar Solaris Threads Functions” on page 212

� “Similar Synchronization Functions—Mutual Exclusion Locks” on page 221

� “Similar Synchronization Functions—Condition Variables” on page 224

� “Similar Synchronization Functions—Semaphores” on page 227

� “Special Issues for fork() and Solaris Threads” on page 232

Comparing APIs for Solaris Threads
and POSIX Threads
The Solaris threads API and the pthreads API are two solutions to the same problem:
building parallelism into application software. Although each API is complete in
itself, you can safely mix Solaris threads functions and pthread functions in the same
program.

The two APIs do not match exactly, however. Solaris threads supports functions that
are not found in pthreads, and pthreads includes functions that are not supported in
the Solaris interface. For those functions that do match, the associated arguments
might not, although the information content is effectively the same.
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By combining the two APIs, you can use features not found in one to enhance the
other. Similarly, you can run applications using Solaris threads, exclusively, with
applications using pthreads, exclusively, on the same system.

Major API Differences
Solaris threads and pthreads are very similar in both API action and syntax. The
major differences are listed in Table 9–1.

TABLE 9–1 Unique Solaris Threads and pthreads Features

Solaris Threads (libthread) POSIX Threads (libpthread)

thr_ prefix for threads function names;
sema_ prefix for semaphore function
names

pthread_ prefix for pthreads function names;
sem_ prefix for semaphore function names

Readers/Writer locks Attribute objects (these replace many Solaris
arguments or flags with pointers to pthreads
attribute objects)

Ability to create “daemon” threads Cancellation semantics

Suspending and continuing a thread Scheduling policies

Setting concurrency (requesting a new
LWP): determining concurrency level

Function Comparison Table
The following table compares Solaris threads functions with pthreads functions. Note
that even when Solaris threads and pthreads functions appear to be essentially the
same, the arguments to the functions can differ.

When a comparable interface is not available either in pthreads or Solaris threads, a
hyphen ‘-’ appears in the column. Entries in the pthreads column that are followed
by “POSIX 1003.4” or “POSIX.4” are part of the POSIX Realtime standard
specification and are not part of pthreads.
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TABLE 9–2 Solaris Threads and POSIX pthreads Comparison

Solaris Threads (libthread) pthreads (libpthread)

thr_create( ) pthread_create()

thr_exit() pthread_exit( )

thr_join() pthread_join()

thr_yield() sched_yield( ) POSIX.4

thr_self() pthread_self( )

thr_kill( ) pthread_kill( )

thr_sigsetmask() pthread_sigmask()

thr_setprio( ) pthread_setschedparam()

thr_getprio( ) pthread_getschedparam()

thr_setconcurrency() pthread_setconcurrency( )

thr_getconcurrency() pthread_getconcurrency( )

thr_suspend() -

thr_continue() -

thr_keycreate() pthread_key_create()

- pthread_key_delete()

thr_setspecific() pthread_setspecific()

thr_getspecific() pthread_getspecific()
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TABLE 9–2 Solaris Threads and POSIX pthreads Comparison (continued)

Solaris Threads (libthread) pthreads (libpthread)

- pthread_once()

- pthread_equal()

- pthread_cancel()

- pthread_testcancel( )

- pthread_cleanup_push()

- pthread_cleanup_pop()

- pthread_setcanceltype()

- pthread_setcancelstate( )

mutex_lock( ) pthread_mutex_lock()

mutex_unlock() pthread_mutex_unlock()

mutex_trylock() pthread_mutex_trylock()

mutex_init( ) pthread_mutex_init( )

mutex_destroy() pthread_mutex_destroy()

cond_wait() pthread_cond_wait( )

cond_timedwait() pthread_cond_timedwait( )

cond_signal( ) pthread_cond_signal()

cond_broadcast() pthread_cond_broadcast( )
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TABLE 9–2 Solaris Threads and POSIX pthreads Comparison (continued)

Solaris Threads (libthread) pthreads (libpthread)

cond_init() pthread_cond_init( )

cond_destroy() pthread_cond_destroy()

rwlock_init( ) pthread_rwlock_init( )

rwlock_destroy() pthread_rwlock_destroy( )

rw_rdlock() pthread_rwlock_rdlock()

rw_wrlock() pthread_rwlock_wrlock()

rw_unlock() pthread_rwlock_unlock()

rw_tryrdlock() pthread_rwlock_tryrdlock()

rw_trywrlock() pthread_rwlock_trywrlock()

- pthread_rwlockattr_init( )

- pthread_rwlockattr_destroy()

- pthread_rwlockattr_getpshared()

- pthread_rwlockattr_setpshared()

sema_init() sem_init() POSIX 1003.4

sema_destroy() sem_destroy( ) POSIX 1003.4

sema_wait() sem_wait() POSIX 1003.4

sema_post() sem_post() POSIX 1003.4
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TABLE 9–2 Solaris Threads and POSIX pthreads Comparison (continued)

Solaris Threads (libthread) pthreads (libpthread)

sema_trywait( ) sem_trywait( ) POSIX 1003.4

fork1( ) fork( )

- pthread_atfork()

fork( ) (multiple thread copy) -

- pthread_mutexattr_init( )

- pthread_mutexattr_destroy()

type( ) argument in cond_init( ) pthread_mutexattr_setpshared()

- pthread_mutexattr_getpshared()

- pthread_mutex_attr_settype()

- pthread_mutex_attr_gettype()

- pthread_condattr_init()

- pthread_condattr_destroy()

type( ) argument in cond_init( ) pthread_condattr_setpshared( )

- pthread_condattr_getpshared( )

- pthread_attr_init( )

- pthread_attr_destroy()

THR_BOUND flag in thr_create( ) pthread_attr_setscope()

- pthread_attr_getscope()
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TABLE 9–2 Solaris Threads and POSIX pthreads Comparison (continued)

Solaris Threads (libthread) pthreads (libpthread)

- pthread_attr_setguardsize()

- pthread_attr_getguardsize()

stack_size( ) argument in
thr_create( )

pthread_attr_setstacksize()

- pthread_attr_getstacksize()

stack_addr( ) argument in
thr_create( )

pthread_attr_setstackaddr()

- pthread_attr_getstackaddr()

THR_DETACH flag in thr_create( ) pthread_attr_setdetachstate( )

- pthread_attr_getdetachstate( )

- pthread_attr_setschedparam()

- pthread_attr_getschedparam()

- pthread_attr_setinheritsched()

- pthread_attr_getinheritsched()

- pthread_attr_setsschedpolicy( )

- pthread_attr_getschedpolicy( )

To use the Solaris threads functions described in this chapter, you must link with the
Solaris threads library −lthread ).

Where functionality is virtually the same for both Solaris threads and for pthreads,
(even though the function names or arguments might differ), only a brief example
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consisting of the correct include file and the function prototype is presented. Where
return values are not given for the Solaris threads functions, see the appropriate
pages in man(3): Library Routines for the function return values.

For more information on Solaris related functions, see the related pthreads
documentation for the similarly named function.

Where Solaris threads functions offer capabilities that are not available in pthreads, a
full description of the functions is provided.

Unique Solaris Threads Functions
� “Suspend Thread Execution” on page 202

� “Continue a Suspended Thread” on page 203

� “Set Thread Concurrency Level” on page 204

� “Get Thread Concurrency” on page 205

Suspend Thread Execution

thr_suspend(3T)
thr_suspend (3T) immediately suspends the execution of the thread specified by

target_thread. On successful return from thr_suspend() , the suspended thread is
no longer executing.

Once a thread is suspended, subsequent calls to thr_suspend() have no effect.
Signals cannot awaken the suspended thread; they remain pending until the thread
resumes execution.

#include <thread.h>

int thr_suspend(thread_t tid);

In the following synopsis, pthread_t tid as defined in pthreads is the same as
thread_t tid in Solaris threads. tid values can be used interchangeably either by
assignment or through the use of casts.

thread_t tid; /* tid from thr_create() */

/* pthreads equivalent of Solaris tid from thread created */
/* with pthread_create() */
pthread_t ptid ;

int ret;
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ret = thr_suspend (tid);

/* using pthreads ID variable with a cast */
ret = thr_suspend((thread_t) ptid);

Return Values
thr_suspend() returns zero after completing successfully. Any other returned
value indicates that an error occurred. When the following condition occurs,
thr_suspend() fails and returns the corresponding value.

ESRCH

tid cannot be found in the current process.

Continue a Suspended Thread

thr_continue(3T)
thr_continue (3T) resumes the execution of a suspended thread. Once a suspended

thread is continued, subsequent calls to thr_continue() have no effect.

#include <thread.h>

int thr_continue(thread_t tid);

A suspended thread will not be awakened by a signal. The signal stays pending until
the execution of the thread is resumed by thr_continue() .

pthread_t tid as defined in pthreads is the same as thread_t tid in Solaris
threads. tid values can be used interchangeably either by assignment or through the
use of casts.

thread_t tid; /* tid from thr_create()*/

/* pthreads equivalent of Solaris tid from thread created */
/* with pthread_create()*/
pthread_t ptid;

int ret;

ret = thr_continue( tid);

/* using pthreads ID variable with a cast */
ret = thr_continue((thread_t) ptid)
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Return Values
thr_continue() returns zero after completing successfully. Any other returned
value indicates that an error occurred. When the following condition occurs,
thr_continue() fails and returns the corresponding value.

ESRCH

tid cannot be found in the current process.

Set Thread Concurrency Level
By default, Solaris threads attempt to adjust the system execution resources (LWPs)
used to run unbound threads to match the real number of active threads. While the
Solaris threads package cannot make perfect decisions, it at least ensures that the
process continues to make progress.

When you have some idea of the number of unbound threads that should be
simultaneously active (executing code or system calls), tell the library through
thr_setconcurrency() . To get the number of threads being used, use
thr_getconcurrency() .

thr_setconcurrency(3T)
thr_setconcurrency (3T) provides a hint to the system about the required level

of concurrency in the application. The system ensures that a sufficient number of
threads are active so that the process continues to make progress.

#include <thread.h>

int new_level;
int ret;

ret = thr_setconcurrency( new_level);

Unbound threads in a process might or might not be required to be simultaneously
active. To conserve system resources, the threads system ensures by default that
enough threads are active for the process to make progress, and that the process will
not deadlock through a lack of concurrency.

Because this might not produce the most effective level of concurrency,
thr_setconcurrency() permits the application to give the threads system a hint,
specified by new_level, for the desired level of concurrency.

The actual number of simultaneously active threads can be larger or smaller than
new_level.
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Note that an application with multiple compute-bound threads can fail to schedule
all the runnable threads if thr_setconcurrency() has not been called to adjust
the level of execution resources.

You can also affect the value for the desired concurrency level by setting the
THR_NEW_LWPflag in thr_create() . This effectively increments the current level
by one.

Return Values
Returns a zero when it completes successfully. Any other returned value indicates
that an error occurred. When any of the following conditions is detected,
thr_setconcurrency() fails and returns the corresponding value.

EAGAIN

The specified concurrency level would cause a system resource to be exceeded.

EINVAL

The value for new_level is negative.

Get Thread Concurrency

thr_getconcurrency(3T)
Use thr_getconcurrency (3T) to get the current value of the concurrency level
previously set by thr_setconcurrency() . Note that the actual number of
simultaneously active threads can be larger or smaller than this number.

#include <thread.h>

int thr_getconcurrency(void)

Return Value
thr_getconcurrency() always returns the current value for the desired
concurrency level.
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Similar Synchronization
Functions—Read-Write Locks
Read-write locks allow simultaneous read access by many threads while restricting
write access to only one thread at a time.

� “Initialize a Read-Write Lock” on page 206

� “Acquire a Read Lock” on page 208

� “Try to Acquire a Read Lock” on page 208

� “Acquire a Write Lock” on page 209

� “Try to Acquire a Write Lock” on page 210

� “Unlock a Read-Write Lock” on page 210

� “Destroy Read-Write Lock State” on page 211

When any thread holds the lock for reading, other threads can also acquire the lock
for reading but must wait to acquire the lock for writing. If one thread holds the lock
for writing, or is waiting to acquire the lock for writing, other threads must wait to
acquire the lock for either reading or writing.

Read-write locks are slower than mutexes, but can improve performance when they
protect data that are not frequently written but that are read by many concurrent
threads.

Use read-write locks to synchronize threads in this process and other processes by
allocating them in memory that is writable and shared among the cooperating
processes (see mmap(2)) and by initializing them for this behavior.

By default, the acquisition order is not defined when multiple threads are waiting for
a read-write lock. However, to avoid writer starvation, the Solaris threads package
tends to favor writers over readers.

Read-write locks must be initialized before use.

Initialize a Read-Write Lock

rwlock_init(3T)
#include <synch.h> (or #include <thread.h> )

int rwlock_init(rwlock_t * rwlp, int type, void * arg);
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Use rwlock_init (3T) to initialize the read-write lock pointed to by rwlp and to set
the lock state to unlocked. type can be one of the following (note that arg is currently
ignored). (For POSIX threads, see “pthread_rwlock_init(3T)” on page 134.)

� USYNC_PROCESSThe read-write lock can be used to synchronize threads in this
process and other processes. arg is ignored.

� USYNC_THREADThe read-write lock can be used to synchronize threads in this
process, only. arg is ignored.

Multiple threads must not initialize the same read-write lock simultaneously.
Read-write locks can also be initialized by allocation in zeroed memory, in which
case a type of USYNC_THREADis assumed. A read-write lock must not be
reinitialized while other threads might be using it.

Initializing Read-Write Locks With Intraprocess Scope
#include <thread.h>

rwlock_t rwlp;
int ret;

/* to be used within this process only */
ret = rwlock_init(& rwlp, USYNC_THREAD, 0);

Initializing Read-Write Locks With Interprocess Scope
#include <thread.h>

rwlock_t rwlp;
int ret;

/* to be used among all processes */
ret = rwlock_init(& rwlp, USYNC_PROCESS, 0);

Return Values
rwlock_init( ) returns zero after completing successfully. Any other returned
value indicates that an error occurred. When any of the following conditions occurs,
the function fails and returns the corresponding value.

EINVAL

Invalid argument.

EFAULT

rwlp or arg points to an illegal address.
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Acquire a Read Lock

rw_rdlock(3T)
#include <synch.h> (or #include <thread.h> )

int rw_rdlock(rwlock_t * rwlp);

Use rw_rdlock (3T) to acquire a read lock on the read-write lock pointed to by
rwlp. When the read-write lock is already locked for writing, the calling thread
blocks until the write lock is released. Otherwise, the read lock is acquired. (For
POSIX threads, see “pthread_rwlock_rdlock(3T)” on page 135.)

Return Values
rw_rdlock() returns zero after completing successfully. Any other returned value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL

Invalid argument.

EFAULT

rwlp points to an illegal address.

Try to Acquire a Read Lock

rw_tryrdlock(3T)
#include <synch.h> (or #include <thread.h> )

int rw_tryrdlock(rwlock_t * rwlp);

Use rw_tryrdlock (3T) to attempt to acquire a read lock on the read-write lock
pointed to by rwlp. When the read-write lock is already locked for writing, it returns
an error. Otherwise, the read lock is acquired. (For POSIX threads, see
“pthread_rwlock_tryrdlock(3T)” on page 136.)
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Return Values
rw_tryrdlock( ) returns zero after completing successfully. Any other returned
value indicates that an error occurred. When any of the following conditions occurs,
the function fails and returns the corresponding value.

EINVAL

Invalid argument.

EFAULT

rwlp points to an illegal address.

EBUSY

The read-write lock pointed to by rwlp was already locked.

Acquire a Write Lock

rw_wrlock(3T)
#include <synch.h> (or #include <thread.h> )

int rw_wrlock(rwlock_t * rwlp);

Use rw_wrlock (3T) to acquire a write lock on the read-write lock pointed to by
rwlp. When the read-write lock is already locked for reading or writing, the calling
thread blocks until all the read locks and write locks are released. Only one thread at
a time can hold a write lock on a read-write lock. (For POSIX threads, see
“pthread_rwlock_wrlock(3T)” on page 136.)

Return Values
rw_wrlock() returns zero after completing successfully. Any other returned value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL

Invalid argument.

EFAULT

rwlp points to an illegal address.
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Try to Acquire a Write Lock

rw_trywrlock(3T)
#include <synch.h> (or #include <thread.h> )

int rw_trywrlock(rwlock_t * rwlp);

Use rw_trywrlock (3T) to attempt to acquire a write lock on the read-write lock
pointed to by rwlp. When the read-write lock is already locked for reading or
writing, it returns an error. (For POSIX threads, see “pthread_rwlock_trywrlock(3T)”
on page 137.)

Return Values
rw_trywrlock( ) returns zero after completing successfully. Any other returned
value indicates that an error occurred. When any of the following conditions occurs,
the function fails and returns the corresponding value.

EINVAL

Invalid argument.

EFAULT

rwlp points to an illegal address.

EBUSY

The read-write lock pointed to by rwlp was already locked.

Unlock a Read-Write Lock

rw_unlock(3T)
#include <synch.h> (or #include <thread.h> )

int rw_unlock(rwlock_t * rwlp);

Use rw_unlock (3T) to unlock a read-write lock pointed to by rwlp. The read-write
lock must be locked and the calling thread must hold the lock either for reading or
writing. When any other threads are waiting for the read-write lock to become
available, one of them is unblocked. (For POSIX threads, see
“pthread_rwlock_unlock(3T)” on page 138.)
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Return Values
rw_unlock() returns zero after completing successfully. Any other returned value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL

Invalid argument.

EFAULT

rwlp points to an illegal address.

Destroy Read-Write Lock State

rwlock_destroy(3T)
#include <synch.h> (or #include <thread.h> )

int rwlock_destroy(rwlock_t * rwlp);

Use rwlock_destroy (3T) to destroy any state associated with the read-write lock
pointed to by rlwp. The space for storing the read-write lock is not freed. (For POSIX
threads, see “pthread_rwlock_destroy(3T)” on page 139.)

Return Values
rwlock_destroy() returns zero after completing successfully. Any other returned
value indicates that an error occurred. When any of the following conditions occurs,
the function fails and returns the corresponding value.

EINVAL

Invalid argument.

EFAULT

rwlp points to an illegal address.

Read-Write Lock Example
Code Example 9–1 uses a bank account to demonstrate read-write locks. While the
program could allow multiple threads to have concurrent read-only access to the
account balance, only a single writer is allowed. Note that the get_balance() function
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needs the lock to ensure that the addition of the checking and saving balances occurs
atomically.

CODE EXAMPLE 9–1 Read-Write Bank Account

rwlock_t account_lock;
float checking_balance = 100.0;
float saving_balance = 100.0;
...
rwlock_init(&account_lock, 0, NULL);
...

float
get_balance() {

float bal;

rw_rdlock(&account_lock);
bal = checking_balance + saving_balance;
rw_unlock(&account_lock);
return(bal);

}

void
transfer_checking_to_savings(float amount) {

rw_wrlock(&account_lock);
checking_balance = checking_balance - amount;
saving_balance = saving_balance + amount;
rw_unlock(&account_lock);

}

Similar Solaris Threads Functions

Operation Destination Discussion

Create a thread “thr_create(3T)” on page 213

Get the minimal stack size “thr_min_stack(3T)” on page 216

Get the thread identifier “thr_self(3T)” on page 217

Yield thread execution “thr_yield(3T)” on page 217

Send a signal to a thread “thr_kill(3T)” on page 217
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Operation Destination Discussion

Access the signal mask of the calling thread “thr_sigsetmask(3T)” on page 217

Terminate a thread “thr_exit(3T)” on page 218

Wait for thread termination “thr_join(3T)” on page 218

Create a thread-specific data key “thr_keycreate(3T)” on page 219

Set the thread-specific data key “thr_setspecific(3T)” on page 219

Get the thread-specific data key “thr_getspecific(3T)” on page 220

Set the thread priority “thr_setprio(3T)” on page 220

Get the thread priority “thr_getprio(3T)” on page 221

Create a Thread
The thr_create(3T) routine is one of the most elaborate of all the Solaris threads
library routines.

thr_create(3T)
Use thr_create (3T) to add a new thread of control to the current process. (For
POSIX threads, see “pthread_create(3T)” on page 30.)

Note that the new thread does not inherit pending signals, but it does inherit priority
and signal masks.

#include <thread.h>

int thr_create(void * stack_base, size_t stack_size,
void *(* start_routine) (void *), void * arg, long flags,
thread_t * new_thread);

size_t thr_min_stack(void);
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stack_base—Contains the address for the stack that the new thread uses. If stack_base
is NULL then thr_create() allocates a stack for the new thread with at least
stack_size bytes.

stack_size—Contains the size, in number of bytes, for the stack that the new thread
uses. If stack_size is zero, a default size is used. In most cases, a zero value works
best. If stack_size is not zero, it must be greater than the value returned by
thr_min_stack() .

There is no general need to allocate stack space for threads. The threads library
allocates 1 Mbyte of virtual memory for each thread’s stack with no swap space
reserved. (The library uses the −MAP_NORESERVEoption of mmap(2) to make the
allocations.)

start_routine—Contains the function with which the new thread begins execution.
When start_routine( ) returns, the thread exits with the exit status set to the
value returned by start_routine (see “thr_exit(3T)” on page 218).

arg—Can be anything that is described by void , which is typically any 4-byte value.
Anything larger must be passed indirectly by having the argument point to it.

Note that you can supply only one argument. To get your procedure to take multiple
arguments, encode them as one (such as by putting them in a structure).

flags---( ) Specifies attributes for the created thread. In most cases a zero value
works best.

The value in flags is constructed from the bitwise inclusive OR of the following:

� THR_SUSPENDED—Suspends the new thread and does not execute start_routine
until the thread is started by thr_continue() . Use this to operate on the thread
(such as changing its priority) before you run it. The termination of a detached
thread is ignored.

� THR_DETACHED—Detaches the new thread so that its thread ID and other
resources can be reused as soon as the thread terminates. Set this when you do not
want to wait for the thread to terminate.

Note - When there is no explicit synchronization to prevent it, an unsuspended,
detached thread can die and have its thread ID reassigned to another new thread
before its creator returns from thr_create() .

� THR_BOUND—Permanently binds the new thread to an LWP (the new thread is a
bound thread).

� THR_NEW_LWP—Increases the concurrency level for unbound threads by one. The
effect is similar to incrementing concurrency by one with
thr_setconcurrency(3T) , although THR_NEW_LWPdoes not affect the level set
through the thr_setconcurrency() function. Typically, THR_NEW_LWPadds a
new LWP to the pool of LWPs running unbound threads.
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� When you specify both THR_BOUNDand THR_NEW_LWP, two LWPs are typically
created—one for the bound thread and another for the pool of LWPs running
unbound threads.

� THR_DAEMON—Marks the new thread as a daemon. The process exits when all
nondaemon threads exit. Daemon threads do not affect the process exit status and
are ignored when counting the number of thread exits.

A process can exit either by calling exit() or by having every thread in the process
that was not created with the THR_DAEMONflag call thr_exit(3T) . An
application, or a library it calls, can create one or more threads that should be
ignored (not counted) in the decision of whether to exit. The THR_DAEMONflag
identifies threads that are not counted in the process exit criterion.

new_thread—Points to a location (when new_thread is not NULL) where the ID of the
new thread is stored when thr_create( ) is successful. The caller is responsible for
supplying the storage this argument points to. The ID is valid only within the calling
process.

If you are not interested in this identifier, supply a zero value to new_thread.

Return Values
Returns a zero and exits when it completes successfully. Any other returned value
indicates that an error occurred. When any of the following conditions is detected,
thr_create() fails and returns the corresponding value.

EAGAIN

A system limit is exceeded, such as when too many LWPs have been created.

ENOMEM

Not enough memory was available to create the new thread.

EINVAL

stack_base is not NULL and stack_size is less than the value returned by
thr_min_stack.()

Stack Behavior
Stack behavior in Solaris threads is generally the same as that in pthreads. For more
information about stack setup and operation, see “About Stacks” on page 71.

You can get the absolute minimum on stack size by calling thr_min_stack( ) ,
which returns the amount of stack space required for a thread that executes a null
procedure. Useful threads need more than this, so be very careful when reducing the
stack size.
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You can specify a custom stack in two ways. The first is to supply a NULL for the
stack location, thereby asking the runtime library to allocate the space for the stack,
but to supply the desired size in the stacksize parameter to thr_create() .

The other approach is to take overall aspects of stack management and supply a
pointer to the stack to thr_create() . This means that you are responsible not only
for stack allocation but also for stack deallocation—when the thread terminates, you
must arrange for the disposal of its stack.

When you allocate your own stack, be sure to append a red zone to its end by
calling mprotect(2) .

Get the Minimal Stack Size

thr_min_stack(3T)
Use thr_min_stack (3T) to get the minimum stack size for a thread.

#include <thread.h>

size_t thr_min_stack(void);

thr_min_stack() returns the amount of space needed to execute a null thread (a
null thread is a thread that is created to execute a null procedure).

A thread that does more than execute a null procedure should allocate a stack size
greater than the size of thr_min_stack() .

When a thread is created with a user-supplied stack, the user must reserve enough
space to run the thread. In a dynamically linked execution environment, it is difficult
to know what the thread minimal stack requirements are.

Most users should not create threads with user-supplied stacks. User-supplied stacks
exist only to support applications that require complete control over their execution
environments.

Instead, users should let the threads library manage stack allocation. The threads
library provides default stacks that should meet the requirements of any created
thread.
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Get the Thread Identifier

thr_self(3T)
Use thr_self (3T) to get the ID of the calling thread. (For POSIX threads, see
“pthread_self(3T)” on page 40.)

#include <thread.h>

thread_t thr_self(void);

Yield Thread Execution

thr_yield(3T)
thr_yield (3T) causes the current thread to yield its execution in favor of another

thread with the same or greater priority; otherwise it has no effect. There is no
guarantee that a thread calling thr_yield( ) will do so.

#include <thread.h>

void thr_yield(void);

Send a Signal to a Thread

thr_kill(3T)
thr_kill (3T) sends a signal to a thread. (For POSIX threads, see “pthread_kill(3T)”

on page 44.)

#include <thread.h>
#include <signal.h>

int thr_kill(thread_t target_thread, int sig);

Access the Signal Mask of the Calling Thread

thr_sigsetmask(3T)
Use thr_sigsetmask (3T) to change or examine the signal mask of the calling
thread.

#include <thread.h>
#include <signal.h>
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int thr_sigsetmask(int how, const sigset_t * set, sigset_t * oset);

Terminate a Thread

thr_exit(3T)
Use thr_exit (3T) to terminate a thread. (For POSIX threads, see
“pthread_exit(3T)” on page 46.)

#include <thread.h>

void thr_exit(void * status);

Wait for Thread Termination

thr_join(3T)
Use thr_join (3T) to wait for a thread to terminate. (For POSIX threads, see
“pthread_join(3T)” on page 31.)

#include <thread.h>

int thr_join(thread_t tid, thread_t * departedid, void ** status);

Join specific
#include <thread.h>

thread_t tid;
thread_t departedid;
int ret;
int status;

/* waiting to join thread "tid" with status */
ret = thr_join( tid, & departedid, (void**)& status);

/* waiting to join thread "tid" without status */
ret = thr_join( tid, & departedid, NULL);

/* waiting to join thread "tid" without return id and status */
ret = thr_join( tid, NULL, NULL);

When the tid is (thread_t)0 , then thread_join() waits for any undetached
thread in the process to terminate. In other words, when no thread identifier is
specified, any undetached thread that exits causes thread_join() to return.
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Join any
#include <thread.h>

thread_t tid;
thread_t departedid;
int ret;
int status;

/* waiting to join thread "tid" with status */
ret = thr_join(NULL, & departedid, (void **)& status);

By indicating NULL as thread id in the Solaris thr_join() , a join will take place
when any non detached thread in the process exits. The departedid will indicate the
thread ID of exiting thread.

Create a Thread-Specific Data Key
Except for the function names and arguments, thread specific data is the same for
Solaris as it is for POSIX. The synopses for the Solaris functions are given in this
section.

thr_keycreate(3T)
thr_keycreate (3T) allocates a key that is used to identify thread-specific data in a

process. (For POSIX threads, see “pthread_key_create(3T)” on page 35.)

#include <thread.h>

int thr_keycreate(thread_key_t * keyp,
void (* destructor) (void * value));

Set the Thread-Specific Data Key

thr_setspecific(3T)
thr_setspecific (3T) binds value to the thread-specific data key, key, for the

calling thread. (For POSIX threads, see “pthread_setspecific(3T)” on page 37.)

#include <thread.h>

int thr_setspecific(thread_key_t key, void * value);
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Get the Thread-Specific Data Key

thr_getspecific(3T)
thr_getspecific (3T) stores the current value bound to key for the calling thread

into the location pointed to by valuep. (For POSIX threads, see
“pthread_getspecific(3T)” on page 37.)

#include <thread.h>

int thr_getspecific(thread_key_t key, void ** valuep);

Set the Thread Priority
In Solaris threads, if a thread is to be created with a priority other than that of its
parent’s, it is created in SUSPEND mode. While suspended, the threads priority is
modified using the thr_setprio(3T) function call; then it is continued.

An unbound thread is usually scheduled only with respect to other threads in the
process using simple priority levels with no adjustments and no kernel involvement.
Its system priority is usually uniform and is inherited from the creating process.

thr_setprio(3T)
thr_setprio (3T) changes the priority of the thread, specified by tid, within the

current process to the priority specified by newprio. (For POSIX threads, see
“pthread_setschedparam(3T)” on page 42.)

#include <thread.h>

int thr_setprio(thread_t tid, int newprio)

By default, threads are scheduled based on fixed priorities that range from zero, the
least significant, to the largest integer. The tid will preempt lower-priority threads,
and will yield to higher-priority threads.

thread_t tid;
int ret;
int newprio = 20;

/* suspended thread creation */
ret = thr_create(NULL, NULL, func, arg, THR_SUSPEND, &tid);

/* set the new priority of suspended child thread */
ret = thr_setprio( tid, newprio);

/* suspended child thread starts executing with new priority */
ret = thr_continue( tid);

220 Multithreaded Programming Guide ♦ February 2000



Get the Thread Priority

thr_getprio(3T)
Use thr_getprio (3T) to get the current priority for the thread. Each thread
inherits a priority from its creator. thr_getprio() stores the current priority, tid, in
the location pointed to by newprio. (For POSIX threads, see
“pthread_getschedparam(3T)” on page 43.)

#include <thread.h>

int thr_getprio(thread_t tid, int * newprio)

Similar Synchronization
Functions—Mutual Exclusion Locks
� “Initialize a Mutex” on page 221

� “Destroy a Mutex” on page 223

� “Acquire a Mutex” on page 223

� “Release a Mutex” on page 223

� “Try to Acquire a Mutex” on page 224

Initialize a Mutex

mutex_init(3T)
#include <synch.h> (or
#include <thread.h >)

int mutex_init(mutex_t * mp, int type, void * arg));

Use mutex_init (3T) to initialize the mutex pointed to by mp. The type can be one
of the following (note that arg is currently ignored). (For POSIX threads, see
“Initialize a Mutex” on page 94.)

� USYNC_PROCESSThe mutex can be used to synchronize threads in this and other
processes.
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� USYNC_PROCESS_ROBUSTThe mutex can be used to robustly synchronize threads
in this and other processes.

� USYNC_THREADThe mutex can be used to synchronize threads in this process
only.

When a process dies while holding a USYNC_PROCESSlock, subsequent requestors
of that lock hang. This is a problem for systems which share locks with client
processes because the client processes can be abnormally killed. To avoid the
problem of hanging on a lock held by a dead process, use USYNC_PROCESS_ROBUST
to lock the mutex. USYNC_PROCESS_ROBUSTadds two capabilities:

� In the case of process death, all owned locks held by that process are unlocked.

� The next requestor for any of the locks owned by the dead process receives the
lock, but with an error return indicating that the previous owner died while
holding the lock..

Mutexes can also be initialized by allocation in zeroed memory, in which case a type
of USYNC_THREADis assumed.

Multiple threads must not initialize the same mutex simultaneously. A mutex lock
must not be reinitialized while other threads might be using it.

Mutexes With Intraprocess Scope
#include <thread.h>

mutex_t mp;
int ret;

/* to be used within this process only */
ret = mutex_init(& mp, USYNC_THREAD, 0);

Mutexes With Interprocess Scope
#include <thread.h>

mutex_t mp;
int ret;

/* to be used among all processes */
ret = mutex_init(& mp, USYNC_PROCESS, 0);

Mutexes With Interprocess Scope-Robust
#include <thread.h>

mutex_t mp;
int ret;

/* to be used among all processes */
ret = mutex_init(& mp, USYNC_PROCESS_ROBUST, 0);
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Destroy a Mutex

mutex_destroy(3T)
#include <thread.h>

int mutex_destroy (mutex_t * mp);

Use mutex_destroy (3T) to destroy any state associated with the mutex pointed to
by mp. Note that the space for storing the mutex is not freed. (For POSIX threads, see
“pthread_mutex_destroy(3T)” on page 101.)

Acquire a Mutex

mutex_lock(3T)
#include <thread.h>

int mutex_lock(mutex_t * mp);

Use mutex_lock (3T) to lock the mutex pointed to by mp. When the mutex is
already locked, the calling thread blocks until the mutex becomes available (blocked
threads wait on a prioritized queue). (For POSIX threads, see
“pthread_mutex_lock(3T)” on page 96.)

Release a Mutex

mutex_unlock(3T)
#include <thread.h>

int mutex_unlock(mutex_t * mp);

Use mutex_unlock (3T) to unlock the mutex pointed to by mp. The mutex must be
locked and the calling thread must be the one that last locked the mutex (the owner).
(For POSIX threads, see “pthread_mutex_unlock(3T)” on page 98.)
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Try to Acquire a Mutex

mutex_trylock(3T)
#include <thread.h>

int mutex_trylock(mutex_t * mp);

Use mutex_trylock (3T) to attempt to lock the mutex pointed to by mp. This
function is a nonblocking version of mutex_lock() . (For POSIX threads, see
“pthread_mutex_trylock(3T)” on page 99.)

Similar Synchronization
Functions—Condition Variables
� “Initialize a Condition Variable” on page 224

� “Destroy a Condition Variable” on page 225

� “Wait for a Condition” on page 225

� “Wait for an Absolute Time” on page 226

� “Signal One Condition Variable” on page 226

� “Signal All Condition Variables” on page 227

Initialize a Condition Variable

cond_init(3T)
#include <thread.h>

int cond_init(cond_t * cv, int type, int arg);

Use cond_init (3T) to initialize the condition variable pointed to by cv. The type
can be one of the following (note that arg is currently ignored). (For POSIX threads,
see “pthread_condattr_init(3T)” on page 107.)

� USYNC_PROCESSThe condition variable can be used to synchronize threads in
this and other processes. arg is ignored.

� USYNC_THREADThe condition variable can be used to synchronize threads in this
process only. arg is ignored.
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Condition variables can also be initialized by allocation in zeroed memory, in which
case a type of USYNC_THREADis assumed.

Multiple threads must not initialize the same condition variable simultaneously. A
condition variable must not be reinitialized while other threads might be using it.

Condition Variables With Intraprocess Scope
#include <thread.h>

cond_t cv;
int ret;

/* to be used within this process only */
ret = cond_init( cv, USYNC_THREAD, 0);

Condition Variables With Interprocess Scope
#include <thread.h>

cond_t cv;
int ret;

/* to be used among all processes */
ret = cond_init(& cv, USYNC_PROCESS, 0);

Destroy a Condition Variable

cond_destroy(3T)
#include <thread.h>

int cond_destroy(cond_t * cv);

Use cond_destroy (3T) to destroy state associated with the condition variable
pointed to by cv. The space for storing the condition variable is not freed. (For POSIX
threads, see “pthread_condattr_destroy(3T)” on page 108.)

Wait for a Condition

cond_wait(3T)
#include <thread.h>

int cond_wait(cond_t * cv, mutex_t * mp);
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Use cond_wait (3T) to atomically release the mutex pointed to by mp and to cause
the calling thread to block on the condition variable pointed to by cv. The blocked
thread can be awakened by cond_signal() , cond_broadcast() , or when
interrupted by delivery of a signal or a fork( ) . (For POSIX threads, see
“pthread_cond_wait(3T)” on page 112.)

Wait for an Absolute Time

cond_timedwait(3T)
#include <thread.h>

int cond_timedwait(cond_t * cv, mutex_t * mp, timestruct_t abstime)

Use cond_timedwait (3T) as you would use cond_wait() , except that
cond_timedwait( ) does not block past the time of day specified by abstime. (For
POSIX threads, see “pthread_cond_timedwait(3T)” on page 115.)

cond_timedwait( ) always returns with the mutex locked and owned by the
calling thread even when returning an error.

The cond_timedwait( ) function blocks until the condition is signaled or until the
time of day specified by the last argument has passed. The timeout is specified as the
time of day so the condition can be retested efficiently without recomputing the
time-out value.

Signal One Condition Variable

cond_signal(3T)
#include <thread.h>

int cond_signal(cond_t * cv);

Use cond_signal (3T) to unblock one thread that is blocked on the condition
variable pointed to by cv. Call this function under protection of the same mutex used
with the condition variable being signaled. Otherwise, the condition could be
signaled between its test and cond_wait( ) , causing an infinite wait.
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Signal All Condition Variables

cond_broadcast(3T)
#include <thread.h>

int cond_broadcast(cond_t * cv);

Use cond_broadcast (3T) to unblock all threads that are blocked on the condition
variable pointed to by cv. When no threads are blocked on the condition variable
then cond_broadcast() has no effect.

Similar Synchronization
Functions—Semaphores
Semaphore operations are the same in both the Solaris Operating Environment and
the POSIX environment. The function name changed from sema_ in the Solaris
Operating Environment to sem_ in pthreads.

� “Initialize a Semaphore” on page 227

� “Increment a Semaphore” on page 228

� “Block on a Semaphore Count” on page 228

� “Decrement a Semaphore Count” on page 229

� “Destroy the Semaphore State” on page 229

Initialize a Semaphore

sema_init(3T)
#include <thread.h>

int sema_init(sema_t * sp, unsigned int count, int type,
void * arg);

Use sema_init (3T) to initialize the semaphore variable pointed to by sp by count
amount. type can be one of the following (note that arg is currently ignored).

USYNC_PROCESSThe semaphore can be used to synchronize threads in this process
and other processes. Only one process should initialize the semaphore. arg is ignored.
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USYNC_THREADThe semaphore can be used to synchronize threads in this process,
only. arg is ignored.

Multiple threads must not initialize the same semaphore simultaneously. A
semaphore must not be reinitialized while other threads might be using it.

Semaphores With Intraprocess Scope
#include <thread.h>

sema_t sp;
int ret;
int count;
count = 4;

/* to be used within this process only */
ret = sema_init(& sp, count, USYNC_THREAD, 0);

Semaphores With Interprocess Scope
#include <thread.h>

sema_t sp;
int ret;
int count;
count = 4;

/* to be used among all the processes */
ret = sema_init (& sp, count, USYNC_PROCESS, 0);

Increment a Semaphore

sema_post(3T)
#include <thread.h>

int sema_post(sema_t * sp);

Use sema_post (3T) to atomically increment the semaphore pointed to by sp. When
any threads are blocked on the semaphore, one is unblocked.

Block on a Semaphore Count

sema_wait(3T)
#include <thread.h>
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int sema_wait(sema_t * sp);

Use sema_wait (3T) to block the calling thread until the count in the semaphore
pointed to by sp becomes greater than zero, then atomically decrement it.

Decrement a Semaphore Count

sema_trywait(3T)
#include <thread.h>

int sema_trywait(sema_t * sp);

Use sem_trywait (3R) to atomically decrement the count in the semaphore pointed
to by sp when the count is greater than zero. This function is a nonblocking version
of sema_wait() .

Destroy the Semaphore State

sema_destroy(3T)
#include <thread.h>

int sema_destroy(sema_t * sp);

Use sema_destroy (3T) to destroy any state associated with the semaphore pointed
to by sp. The space for storing the semaphore is not freed.

Synchronization Across Process
Boundaries
Each of the synchronization primitives can be set up to be used across process
boundaries. This is done quite simply by ensuring that the synchronization variable
is located in a shared memory segment and by calling the appropriate init routine
with type set to USYNC_PROCESS.

If this has been done, then the operations on the synchronization variables work just
as they do when type is USYNC_THREAD.
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mutex_init(&m, USYNC_PROCESS, 0);

rwlock_init(&rw, USYNC_PROCESS, 0);

cond_init(&cv, USYNC_PROCESS, 0);

sema_init(&s, count, USYNC_PROCESS, 0);

Using LWPs Between Processes
Using locks and condition variables between processes does not require using the
threads library. The recommended approach is to use the threads library interfaces,
but when this is not desirable, then the _lwp_mutex_* and _lwp_cond_*
interfaces can be used as follows:

1. Allocate the locks and condition variables as usual in shared memory (either with
shmop(2) or mmap(2)).

2. Then initialize the newly allocated objects appropriately with the
USYNC_PROCESStype. Because no interface is available to perform the
initialization (_lwp_mutex_init(2) and _lwp_cond_init(2) do not exist), the objects
can be initialized using statically allocated and initialized dummy objects.

For example, to initialize lockp :

lwp_mutex_t *lwp_lockp;
lwp_mutex_t dummy_shared_mutex = SHAREDMUTEX;

/* SHAREDMUTEX is defined in /usr/include/synch.h */
...
...
lwp_lockp = alloc_shared_lock();
*lwp_lockp = dummy_shared_mutex;

Similarly, for condition variables:

lwp_cond_t *lwp_condp;
lwp_cond_t dummy_shared_cv = SHAREDCV;

/* SHAREDCV is defined in /usr/include/synch.h */
...
...
lwp_condp = alloc_shared_cv();
*lwp_condp = dummy_shared_cv;

Producer/Consumer Problem Example
Code Example 9–2 shows the producer/consumer problem with the producer and
consumer in separate processes. The main routine maps zero-filled memory (that it
shares with its child process) into its address space. Note that mutex_init() and
cond_init( ) must be called because the type of the synchronization variables is
USYNC_PROCESS.
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A child process is created that runs the consumer. The parent runs the producer.

This example also shows the drivers for the producer and consumer. The
producer_driver () simply reads characters from stdin and calls producer ().
The consumer_driver () gets characters by calling consumer () and writes them to
stdout .

The data structure for Code Example 9–2 is the same as that used for the solution
with condition variables (see “Nested Locking With a Singly Linked List” on page
104).

CODE EXAMPLE 9–2 The Producer/Consumer Problem, Using USYNC_PROCESS

main() {
int zfd;
buffer_t *buffer;

zfd = open(‘‘/dev/zero’’, O_RDWR);
buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),

PROT_READ|PROT_WRITE, MAP_SHARED, zfd, 0);
buffer->occupied = buffer->nextin = buffer->nextout = 0;

mutex_init(&buffer->lock, USYNC_PROCESS, 0);
cond_init(&buffer->less, USYNC_PROCESS, 0);
cond_init(&buffer->more, USYNC_PROCESS, 0);
if (fork() == 0)

consumer_driver(buffer);
else

producer_driver(buffer);
}

void producer_driver(buffer_t *b) {
int item;

while (1) {
item = getchar();
if (item == EOF) {

producer(b, ‘\0’);
break;

} else
producer(b, (char)item);

}
}

void consumer_driver(buffer_t *b) {
char item;

while (1) {
if ((item = consumer(b)) == ’\0’)

break;
putchar(item);

}
}

A child process is created to run the consumer; the parent runs the producer.
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Special Issues for fork() and Solaris
Threads
Solaris threads and POSIX threads define the behavior of fork() differently. See
“Process Creation—exec(2)and exit(2) Issues” on page 148 for a thorough discussion
of fork() issues.

Solaris libthread supports both fork( ) and fork1() . The fork() call has
“fork-all” semantics—it duplicates everything in the process, including threads and
LWPs, creating a true clone of the parent. The fork1() call creates a clone that has
only one thread; the process state and address space are duplicated, but only the
calling thread is cloned.

POSIX libpthread supports only fork() , which has the same semantics as
fork1() in Solaris threads.

Whether fork() has “fork-all” semantics or “fork-one” semantics is dependent on
which library is used. Linking with −lthread assigns “fork-all” semantics to
fork() , while linking with −lpthread assigns “fork-one” semantics to fork() .

See “Linking With libthread or libpthread” on page 177 for more details.
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CHAPTER 10

Programming Guidelines

This chapter gives some pointers on programming with threads. Most pointers apply
to both Solaris and POSIX threads, but where functionality differs, it is noted.
Changing from single-threaded thinking to multithreaded thinking is emphasized in
this chapter.

� “Rethinking Global Variables” on page 233

� “Providing for Static Local Variables” on page 234

� “Synchronizing Threads” on page 235

� “Avoiding Deadlock” on page 238

� “Following Some Basic Guidelines” on page 240

� “Creating and Using Threads” on page 240

� “Working With Multiprocessors” on page 244

� “Summary” on page 249

Rethinking Global Variables
Historically, most code has been designed for single-threaded programs. This is
especially true for most of the library routines called from C programs. The
following implicit assumptions were made for single-threaded code:

� When you write into a global variable and then, a moment later, read from it,
what you read is exactly what you just wrote.

� This is also true for nonglobal, static storage.

� You do not need synchronization because there is nothing to synchronize with.
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The next few examples discuss some of the problems that arise in multithreaded
programs because of these assumptions, and how you can deal with them.

Traditional, single-threaded C and UNIX have a convention for handling errors
detected in system calls. System calls can return anything as a functional value (for
example, write() returns the number of bytes that were transferred). However, the
value -1 is reserved to indicate that something went wrong. So, when a system call
returns -1 , you know that it failed.

CODE EXAMPLE 10–1 Global Variables and errno

extern int errno;
...
if (write(file_desc, buffer, size) == -1) {

/* the system call failed */
fprintf(stderr, ‘‘something went wrong, ‘‘

‘‘error code = %d\n’’, errno);
exit(1);

}
...

Rather than return the actual error code (which could be confused with normal
return values), the error code is placed into the global variable errno . When the
system call fails, you can look in errno to find out what went wrong.

Now consider what happens in a multithreaded environment when two threads fail
at about the same time, but with different errors. Both expect to find their error codes
in errno , but one copy of errno cannot hold both values. This global variable
approach simply does not work for multithreaded programs.

Threads solves this problem through a conceptually new storage
class—thread-specific data. This storage is similar to global storage in that it can be
accessed from any procedure in which a thread might be running. However, it is
private to the thread—when two threads refer to the thread-specific data location of
the same name, they are referring to two different areas of storage.

So, when using threads, each reference to errno is thread specific because each
thread has a private copy of errno . This is achieved in this implementation by
making errno a macro that expands to a function call.

Providing for Static Local Variables
Code Example 10–2 shows a problem similar to the errno problem, but involving
static storage instead of global storage. The function gethostbyname(3N) is called
with the computer name as its argument. The return value is a pointer to a structure
containing the required information for contacting the computer through network
communications.
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CODE EXAMPLE 10–2 The gethostbyname() Problem

struct hostent *gethostbyname(char *name) {
static struct hostent result;

/* Lookup name in hosts database */
/* Put answer in result */

return(&result);
}

Returning a pointer to a local variable is generally not a good idea, although it works
in this case because the variable is static. However, when two threads call this
variable at once with different computer names, the use of static storage conflicts.

Thread-specific data could be used as a replacement for static storage, as in the
errno problem, but this involves dynamic allocation of storage and adds to the
expense of the call.

A better way to handle this kind of problem is to make the caller of
gethostbyname() supply the storage for the result of the call. This is done by
having the caller supply an additional argument, an output argument, to the routine.
This requires a new interface to gethostbyname() .

This technique is used in threads to fix many of these problems. In most cases, the
name of the new interface is the old name with “_r ” appended, as in
gethostbyname_r(3N) .

Synchronizing Threads
The threads in an application must cooperate and synchronize when sharing the data
and the resources of the process.

A problem arises when multiple threads call something that manipulates an object.
In a single-threaded world, synchronizing access to such objects is not a problem, but
as Code Example 10–3 illustrates, this is a concern with multithreaded code. (Note
that the printf(3S) function is safe to call for a multithreaded program; this
example illustrates what could happen if printf() were not safe.)

CODE EXAMPLE 10–3 The printf( ) Problem

/* thread 1: */
printf("go to statement reached");

/* thread 2: */
printf("hello world");

printed on display:
go to hello
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Single-Threaded Strategy
One strategy is to have a single, application-wide mutex lock that is acquired
whenever any thread in the application is running and is released before it must
block. Since only one thread can be accessing shared data at any one time, each
thread has a consistent view of memory.

Because this is effectively a single-threaded program, very little is gained by this
strategy.

Reentrance
A better approach is to take advantage of the principles of modularity and data
encapsulation. A reentrant function is one that behaves correctly if it is called
simultaneously by several threads. Writing a reentrant function is a matter of
understanding just what behaves correctly means for this particular function.

Functions that are callable by several threads must be made reentrant. This might
require changes to the function interface or to the implementation.

Functions that access global state, like memory or files, have reentrance problems.
These functions need to protect their use of global state with the appropriate
synchronization mechanisms provided by threads.

The two basic strategies for making functions in modules reentrant are code locking
and data locking.

Code Locking
Code locking is done at the function call level and guarantees that a function
executes entirely under the protection of a lock. The assumption is that all access to
data is done through functions. Functions that share data should execute under the
same lock.

Some parallel programming languages provide a construct called a monitor that
implicitly does code locking for functions that are defined within the scope of the
monitor. A monitor can also be implemented by a mutex lock.

Functions under the protection of the same mutex lock or within the same monitor
are guaranteed to execute atomically with respect to each other.

Data Locking
Data locking guarantees that access to a collection of data is maintained consistently.
For data locking, the concept of locking code is still there, but code locking is around
references to shared (global) data, only. For a mutual exclusion locking protocol, only
one thread can be in the critical section for each collection of data.
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Alternatively, in a multiple readers, single writer protocol, several readers can be
allowed for each collection of data or one writer. Multiple threads can execute in a
single module when they operate on different data collections and do not conflict on
a single collection for the multiple readers, single writer protocol. So, data locking
typically allows more concurrency than does code locking. (Note that Solaris threads
has “Readers/Writer Lock” functionality built in.)

What strategy should you use when using locks (whether implemented with
mutexes, condition variables, or semaphores) in a program? Should you try to
achieve maximum parallelism by locking only when necessary and unlocking as
soon as possible (fine-grained locking)? Or should you hold locks for long periods to
minimize the overhead of taking and releasing them (coarse-grained locking)?

The granularity of the lock depends on the amount of data it protects. A very
coarse-grained lock might be a single lock to protect all data. Dividing how the data
is protected by the appropriate number of locks is very important. Too fine a grain of
locking can degrade performance. The overhead associated with acquiring and
releasing locks can become significant when there are too many locks.

The common wisdom is to start with a coarse-grained approach, identify bottlenecks,
and add finer-grained locking where necessary to alleviate the bottlenecks. This is
reasonably sound advice, but use your own judgment about finding the balance
between maximizing parallelism and minimizing lock overhead.

Invariants
For both code locking and data locking, invariants are important to control locking
complexity. An invariant is a condition or relation that is always true.

The definition is modified somewhat for concurrent execution: an invariant is a
condition or relation that is true when the associated lock is being set. Once the lock
is set, the invariant can be false. However, the code holding the lock must reestablish
the invariant before releasing the lock.

An invariant can also be a condition or relation that is true when a lock is being set.
Condition variables can be thought of as having an invariant that is the condition.

CODE EXAMPLE 10–4 Testing the Invariant With assert(3X)

mutex_lock(&lock);
while((condition)==FALSE)

cond_wait(&cv,&lock);
assert((condition)==TRUE);

.

.

.
mutex_unlock(&lock);

The assert( ) statement is testing the invariant. The cond_wait() function does
not preserve the invariant, which is why the invariant must be reevaluated when the
thread returns.

Programming Guidelines 237



Another example is a module that manages a doubly linked list of elements. For
each item on the list a good invariant is the forward pointer of the previous item on
the list that should also point to the same thing as the backward pointer of the
forward item.

Assume this module uses code-based locking and therefore is protected by a single
global mutex lock. When an item is deleted or added the mutex lock is acquired, the
correct manipulation of the pointers is made, and the mutex lock is released.
Obviously, at some point in the manipulation of the pointers the invariant is false,
but the invariant is reestablished before the mutex lock is released.

Avoiding Deadlock
Deadlock is a permanent blocking of a set of threads that are competing for a set of
resources. Just because some thread can make progress does not mean that there is
not a deadlock somewhere else.

The most common error causing deadlock is self deadlock or recursive deadlock: a
thread tries to acquire a lock it is already holding. Recursive deadlock is very easy to
program by mistake.

For example, if a code monitor has every module function grabbing the mutex lock
for the duration of the call, then any call between the functions within the module
protected by the mutex lock immediately deadlocks. If a function calls some code
outside the module which, through some circuitous path, calls back into any method
protected by the same mutex lock, then it will deadlock too.

The solution for this kind of deadlock is to avoid calling functions outside the
module when you don’t know whether they will call back into the module without
reestablishing invariants and dropping all module locks before making the call. Of
course, after the call completes and the locks are reacquired, the state must be
verified to be sure the intended operation is still valid.

An example of another kind of deadlock is when two threads, thread 1 and thread 2,
each acquires a mutex lock, A and B, respectively. Suppose that thread 1 tries to
acquire mutex lock B and thread 2 tries to acquire mutex lock A. Thread 1 cannot
proceed and it is blocked waiting for mutex lock B. Thread 2 cannot proceed and it is
blocked waiting for mutex lock A. Nothing can change, so this is a permanent
blocking of the threads, and a deadlock.

This kind of deadlock is avoided by establishing an order in which locks are
acquired (a lock hierarchy). When all threads always acquire locks in the specified
order, this deadlock is avoided.

Adhering to a strict order of lock acquisition is not always optimal. When thread 2
has many assumptions about the state of the module while holding mutex lock B,
giving up mutex lock B to acquire mutex lock A and then reacquiring mutex lock B
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in order would cause it to discard its assumptions and reevaluate the state of the
module.

The blocking synchronization primitives usually have variants that attempt to get a
lock and fail if they cannot, such as mutex_trylock() . This allows threads to
violate the lock hierarchy when there is no contention. When there is contention, the
held locks must usually be discarded and the locks reacquired in order.

Deadlocks Related to Scheduling
Because there is no guaranteed order in which locks are acquired, a problem in
threaded programs is that a particular thread never acquires a lock, even though it
seems that it should.

This usually happens when the thread that holds the lock releases it, lets a small
amount of time pass, and then reacquires it. Because the lock was released, it might
seem that the other thread should acquire the lock. But, because nothing blocks the
thread holding the lock, it continues to run from the time it releases the lock until it
reacquires the lock, and so no other thread is run.

You can usually solve this type of problem by calling thr_yield(3T) just before the
call to reacquire the lock. This allows other threads to run and to acquire the lock.

Because the time-slice requirements of applications are so variable, the threads
library does not impose any. Use calls to thr_yield( ) to make threads share time
as you require.

Locking Guidelines
Here are some simple guidelines for locking.

� Try not to hold locks across long operations like I/O where performance can be
adversely affected.

� Don’t hold locks when calling a function that is outside the module and that
might reenter the module.

� In general, start with a coarse-grained approach, identify bottlenecks, and add
finer-grained locking where necessary to alleviate the bottlenecks. Most locks are
held for short amounts of time and contention is rare, so fix only those locks that
have measured contention.

� When using multiple locks, avoid deadlocks by making sure that all threads
acquire the locks in the same order.
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Following Some Basic Guidelines
� Know what you are importing and whether it is safe.

A threaded program cannot arbitrarily enter nonthreaded code.

� Threaded code can safely refer to unsafe code only from the initial thread.

This ensures that the static storage associated with the initial thread is used only
by that thread.

� Sun-supplied libraries are defined to be safe unless explicitly documented as
unsafe.

If a reference manual entry does not say whether a function is MT-Safe, it is safe.
All MT-unsafe functions are identified explicitly in the manual page.

� Use compilation flags to manage binary incompatible source changes. (See
Chapter 7, Compiling and Debugging, for complete instructions.)

� −D_REENTRANTenables multithreading with the -lthread library.

� −D_POSIX_C_SOURCEwith −lpthread gives POSIX threads behavior.

� −D_POSIX_PTHREADS_SEMANTICSwith −lthread gives both Solaris threads
and pthreads interfaces with a preference given to the POSIX interfaces when
the two interfaces conflict.

� When making a library safe for multithreaded use, do not thread global process
operations.

Do not change global operations (or actions with global side effects) to behave in a
threaded manner. For example, if file I/O is changed to per-thread operation,
threads cannot cooperate in accessing files.

For thread-specific behavior, or thread cognizant behavior, use thread facilities. For
example, when the termination of main() should terminate only the thread that
is exiting main( ) , the end of main() should be:

thr_exit();
/*NOTREACHED*/

Creating and Using Threads
The threads packages will cache the threads data structure, stacks, and LWPs so that
the repetitive creation of unbound threads can be inexpensive.
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Unbound thread creation has considerable overhead when compared to process
creation or even to bound thread creation. In fact, the overhead is similar to unbound
thread synchronization when you include the context switches to stop one thread
and start another.

So, creating and destroying threads as they are required is usually better than
attempting to manage a pool of threads that wait for independent work.

A good example of this is an RPC server that creates a thread for each request and
destroys it when the reply is delivered, instead of trying to maintain a pool of
threads to service requests.

While thread creation has less overhead compared to that of process creation, it is
not efficient when compared to the cost of a few instructions. Create threads for
processing that lasts at least a couple of thousand machine instructions.

Lightweight Processes
Figure 10–1 illustrates the relationship between LWPs and the user and kernel levels.

Proc 1

User

Proc 2 Proc 3 Proc 4 Proc 5

Traditional 
process

Kernel

Hardware

= Processor= Thread = LWP

Figure 10–1 Multithreading Levels and Relationships

The user-level threads library, with help from the programmer and the operating
environment, ensures that the number of LWPs available is adequate for the
currently active user-level threads. However, there is no one-to-one mapping
between user threads and LWPs, and user-level threads can freely migrate from one
LWP to another.

With Solaris threads, a programmer can tell the threads library how many threads
should be “running” at the same time.
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For example, if the programmer says that up to three threads should run at the same
time, then at least three LWPs should be available. If there are three available
processors, the threads run in parallel. If there is only one processor, then the
operating environment multiplexes the three LWPs on that one processor. If all the
LWPs block, the threads library adds another LWP to the pool.

When a user thread blocks due to synchronization, its LWP transfers to another
runnable thread. This transfer is done with a coroutine linkage and not with a
system call.

The operating environment decides which LWP should run on which processor and
when. It has no knowledge about what user threads are or how many are active in
each process.

The kernel schedules LWPs onto CPU resources according to their scheduling classes
and priorities. The threads library schedules threads on the process pool of LWPs in
much the same way.

Each LWP is independently dispatched by the kernel, performs independent system
calls, incurs independent page faults, and runs in parallel on a multiprocessor
system.

An LWP has some capabilities that are not exported directly to threads, such as a
special scheduling class.

Unbound Threads
The library invokes LWPs as needed and assigns them to execute runnable threads.
The LWP assumes the state of the thread and executes its instructions. If the thread
becomes blocked on a synchronization mechanism, or if another thread should be
run, the thread state is saved in process memory and the threads library assigns
another thread to the LWP to run.

Bound Threads
Sometimes having more threads than LWPs, as can happen with unbound threads, is
a disadvantage.

For example, a parallel array computation divides the rows of its arrays among
different threads. If there is one LWP for each processor, but multiple threads for
each LWP, each processor spends time switching between threads. In this case, it is
better to have one thread for each LWP, divide the rows among a smaller number of
threads, and reduce the number of thread switches.

A mixture of threads that are permanently bound to LWPs and unbound threads is
also appropriate for some applications.
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An example of this is a realtime application that has some threads with system-wide
priority and realtime scheduling, and other threads that attend to background
computations. Another example is a window system with unbound threads for most
operations and a mouse serviced by a high-priority, bound, realtime thread.

When a user-level thread issues a system call, the LWP running the thread calls into
the kernel and remains attached to the thread at least until the system call completes.

Bound threads require more overhead than unbound threads. Because bound threads
can change the attributes of the underlying LWP, the LWPs are not cached when the
bound threads exit. Instead, the operating environment provides a new LWP when a
bound thread is created and destroys it when the bound thread exits.

Use bound threads only when a thread needs resources that are available only
through the underlying LWP, such as a virtual time interval timer or an alternate
stack, or when the thread must be visible to the kernel to be scheduled with respect
to all other active threads in the system, as in realtime scheduling.

Use unbound threads even when you expect all threads to be active simultaneously.
This enables Solaris threads to cache LWP and thread resources efficiently so that
thread creation and destruction are fast. Use thr_setconcurrency(3T) to tell
Solaris threads how many threads you expect to be simultaneously active.

Thread Concurrency (Solaris Threads Only)
By default, Solaris threads attempts to adjust the system execution resources (LWPs)
used to run unbound threads to match the real number of active threads. While the
Solaris threads package cannot make perfect decisions, it at least ensures that the
process continues to make progress.

When you have some idea of the number of unbound threads that should be
simultaneously active (executing code or system calls), tell the library through
thr_setconcurrency (3T).

For example:

� A database server that has a thread for each user should tell Solaris threads the
expected number of simultaneously active users.

� A window server that has one thread for each client should tell Solaris threads the
expected number of simultaneously active clients.

� A file copy program that has one reader thread and one writer thread should tell
Solaris threads that the desired concurrency level is two.

Alternatively, the concurrency level can be incremented by one through the
THR_NEW_LWPflag as each thread is created.

Include unbound threads blocked on interprocess (USYNC_PROCESS)
synchronization variables as active when you compute thread concurrency. Exclude
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bound threads—they do not require concurrency support from Solaris threads
because they are equivalent to LWPs.

Efficiency
A new thread is created with thr_create(3T) in less time than an existing thread
can be restarted. This means that it is more efficient to create a new thread when one
is needed and have it call thr_exit(3T) when it has completed its task than it
would be to stockpile an idle thread and restart it.

Thread Creation Guidelines
Here are some simple guidelines for using threads.

� Use threads for independent activities that must do a meaningful amount of work.

� Use Solaris threads to take advantage of CPU concurrency.

� Use bound threads only when absolutely necessary, that is, when some facility of
the underlying LWP is required.

Working With Multiprocessors
Multithreading lets you take advantage of multiprocessors, primarily through
parallelism and scalability. Programmers should be aware of the differences between
the memory models of a multiprocessor and a uniprocessor.

Memory consistency is directly interrelated to the processor interrogating memory.
For uniprocessors, memory is obviously consistent because there is only one
processor viewing memory.

To improve multiprocessor performance, memory consistency is relaxed. You cannot
always assume that changes made to memory by one processor are immediately
reflected in the other processors’ views of that memory.

You can avoid this complexity by using synchronization variables when you use
shared or global variables.

Barrier synchronization is sometimes an efficient way to control parallelism on
multiprocessors. An example of barriers can be found in Appendix B, Solaris Threads
Example: barrier.c.

Another multiprocessor issue is efficient synchronization when threads must wait
until all have reached a common point in their execution.
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Note - The issues discussed here are not important when the threads
synchronization primitives are always used to access shared memory locations.

The Underlying Architecture
When threads synchronize access to shared storage locations using the threads
synchronization routines, the effect of running a program on a shared-memory
multiprocessor is identical to the effect of running the program on a uniprocessor.

However, in many situations a programmer might be tempted to take advantage of
the multiprocessor and use “tricks” to avoid the synchronization routines. As Code
Example 10–5 and Code Example 10–6 show, such tricks can be dangerous.

Understanding the memory models supported by common multiprocessor
architectures helps to understand the dangers.

The major multiprocessor components are:

� The processors themselves

� Store buffers, which connect the processors to their caches

� Caches, which hold the contents of recently accessed or modified storage locations

� memory, which is the primary storage (and is shared by all processors).

In the simple traditional model, the multiprocessor behaves as if the processors are
connected directly to memory: when one processor stores into a location and another
immediately loads from the same location, the second processor loads what was
stored by the first.

Caches can be used to speed the average memory access, and the desired semantics
can be achieved when the caches are kept consistent with one another.

A problem with this simple approach is that the processor must often be delayed to
make certain that the desired semantics are achieved. Many modern multiprocessors
use various techniques to prevent such delays, which, unfortunately, change the
semantics of the memory model.

Two of these techniques and their effects are explained in the next two examples.

“Shared-Memory” Multiprocessors
Consider the purported solution to the producer/consumer problem shown in Code
Example 10–5.

Although this program works on current SPARC-based multiprocessors, it assumes
that all multiprocessors have strongly ordered memory. This program is therefore not
portable.
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CODE EXAMPLE 10–5 The Producer/Consumer Problem—Shared Memory Multiprocessors

char buffer[BSIZE];
unsigned int in = 0;
unsigned int out = 0;

void char
producer(char item) { consumer(void) {

char item;
do

;/* nothing */ do
while ;/* nothing */

(in - out == BSIZE); while
(in - out == 0);

buffer[in%BSIZE] = item; item = buffer[out%BSIZE];
in++; out++;

} }

When this program has exactly one producer and exactly one consumer and is run
on a shared-memory multiprocessor, it appears to be correct. The difference between
in and out is the number of items in the buffer.

The producer waits (by repeatedly computing this difference) until there is room for
a new item, and the consumer waits until there is an item in the buffer.

For memory that is strongly ordered (for instance, a modification to memory on one
processor is immediately available to the other processors), this solution is correct (it
is correct even taking into account that in and out will eventually overflow, as long as
BSIZE is less than the largest integer that can be represented in a word).

Shared-memory multiprocessors do not necessarily have strongly ordered memory. A
change to memory by one processor is not necessarily available immediately to the
other processors. When two changes to different memory locations are made by one
processor, the other processors do not necessarily detect the changes in the order in
which they were made because changes to memory do not happen immediately.

First the changes are stored in store buffers that are not visible to the cache.

The processor checks these store buffers to ensure that a program has a consistent
view, but because store buffers are not visible to other processors, a write by one
processor does not become visible until it is written to cache.

The synchronization primitives (see Chapter 4, Programming With Synchronization
Objects) use special instructions that flush the store buffers to cache. So, using locks
around your shared data ensures memory consistency.

When memory ordering is very relaxed, Code Example 10–5 has a problem because
the consumer might see that in has been incremented by the producer before it sees
the change to the corresponding buffer slot.

This is called weak ordering because stores made by one processor can appear to
happen out of order by another processor (memory, however, is always consistent
from the same processor). To fix this, the code should use mutexes to flush the cache.
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The trend is toward relaxing memory order. Because of this, programmers are
becoming increasingly careful to use locks around all global or shared data.

As demonstrated by Code Example 10–5 and Code Example 10–6, locking is essential.

Peterson’s Algorithm
The code in Code Example 10–6 is an implementation of Peterson’s Algorithm,
which handles mutual exclusion between two threads. This code tries to guarantee
that there is never more than one thread in the critical section and that, when a
thread calls mut_excl( ) , it enters the critical section sometime “soon.”

An assumption here is that a thread exits fairly quickly after entering the critical
section.

CODE EXAMPLE 10–6 Mutual Exclusion for Two Threads?

void mut_excl(int me /* 0 or 1 */) {
static int loser;
static int interested[2] = {0, 0};
int other; /* local variable */

other = 1 - me;
interested[me] = 1;
loser = me;
while (loser == me && interested[other])

;

/* critical section */
interested[me] = 0;

}

This algorithm works some of the time when it is assumed that the multiprocessor
has strongly ordered memory.

Some multiprocessors, including some SPARC-based multiprocessors, have store
buffers. When a thread issues a store instruction, the data is put into a store buffer.
The buffer contents are eventually sent to the cache, but not necessarily right away.
(Note that the caches on each of the processors maintain a consistent view of
memory, but modified data does not reach the cache right away.)

When multiple memory locations are stored into, the changes reach the cache (and
memory) in the correct order, but possibly after a delay. SPARC-based
multiprocessors with this property are said to have total store order (TSO).

When one processor stores into location A and then loads from location B, and
another processor stores into location B and loads from location A, the expectation is
that either the first processor fetches the newly modified value in location B or the
second processor fetches the newly modified value in location A, or both. However,
the case in which both processors load the old values simply cannot happen.
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Moreover, with the delays caused by load and store buffers, the “impossible case”
can happen.

What could happen with Peterson’s algorithm is that two threads running on
separate processors each stores into its own slot of the particular array and then
loads from the other slot. They both read the old values (0), assume that the other
party is not present, and both enter the critical section. (Note that this is the sort of
problem that might not occur when you test a program, but only much later.)

This problem is avoided when you use the threads synchronization primitives,
whose implementations issue special instructions to force the writing of the store
buffers to the cache.

Parallelizing a Loop on a Shared-Memory Parallel Computer
In many applications, and especially numerical applications, while part of the
algorithm can be parallelized, other parts are inherently sequential, as shown in the
following:

Thread 1 Thread 2 through Thread n

while(many_iterations) {

sequential_computation
--- Barrier ---
parallel_computation

}

while(many_iterations) {

--- Barrier ---
parallel_computation

}

For example, you might produce a set of matrixes with a strictly linear computation,
then perform operations on the matrixes using a parallel algorithm, then use the
results of these operations to produce another set of matrixes, then operate on them
in parallel, and so on.

The nature of the parallel algorithms for such a computation is that little
synchronization is required during the computation, but synchronization of all the
threads employed is required to ensure that the sequential computation is finished
before the parallel computation begins.

The barrier forces all the threads that are doing the parallel computation to wait until
all threads involved have reached the barrier. When they’ve reached the barrier, they
are released and begin computing together.
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Summary
This guide has covered a wide variety of important threads programming issues.
Look in Appendix A, Sample Application—Multithreaded grep, for a pthreads
program example that uses many of the features and styles that have been discussed.
Look in Appendix B, Solaris Threads Example, for a program example that uses
Solaris threads.

Further Reading
For more in-depth information about multithreading, see the following book:

� Programming with Threads by Steve Kleiman, Devang Shah, and Bart Smaalders
(Prentice-Hall, published in 1995)
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APPENDIX A

Sample Application—Multithreaded
grep

Description of tgrep
The tgrep sample program is a multithreaded version of find(1) combined with
grep(1). tgrep supports all but the −w (word search) options of the normal grep ,
and a few exclusively available options.

By default, the tgrep searches are like the following command:

find . -exec grep [ options ] pattern {} \;

For large directory hierarchies, tgrep gets results more quickly than the find
command, depending on the number of processors available. On uniprocessor
machines it is about twice as fast, and on four processor machines it is about four
times as fast.

The −e option changes the way tgrep interprets the pattern string. Ordinarily
(without the −e option) tgrep uses a literal string match. With the −e option, tgrep
uses an MT-Safe public domain version of a regular expression handler. The regular
expression method is slower.

The −B option tells tgrep to use the value of the environment variable called
TGLIMIT to limit the number of threads it will use during a search. This option has
no affect if TGLIMIT is not set. Because tgrep can use a lot of system resources, this
is a way to run it politely on a timesharing system.
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Getting Online Source Code
Source for tgrep is included on the Catalyst Developer’s CD. Contact your sales
representative to find out how you can get a copy.

Only the multithreaded main.c module appears here. Other modules, including
those for regular expression handling, plus documentation and Makefiles, are
available on the Catalyst Developer’s CD.

CODE EXAMPLE A–1 Source Code for tgrep Program

/* Copyright (c) 1993, 1994 Ron Winacott */
/* This program may be used, copied, modified, and redistributed freely */
/* for ANY purpose, so long as this notice remains intact. */

#define _REENTRANT

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <assert.h>
#include <errno.h>
#include <ctype.h>
#include <sys/types.h>
#include <time.h>
#include <sys/stat.h>
#include <dirent.h>

#include "version.h"

#include <fcntl.h>
#include <sys/uio.h>
#include <pthread.h>
#include <sched.h>

#ifdef MARK
#include <prof.h> /* to turn on MARK(), use -DMARK to compile (see man prof5)*/
#endif

#include "pmatch.h"

#define PATH_MAX 1024 /* max # of characters in a path name */
#define HOLD_FDS 6 /* stdin,out,err and a buffer */
#define UNLIMITED 99999 /* The default tglimit */
#define MAXREGEXP 10 /* max number of -e options */

#define FB_BLOCK 0x00001
#define FC_COUNT 0x00002
#define FH_HOLDNAME 0x00004
#define FI_IGNCASE 0x00008
#define FL_NAMEONLY 0x00010
#define FN_NUMBER 0x00020
#define FS_NOERROR 0x00040
#define FV_REVERSE 0x00080
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#define FW_WORD 0x00100
#define FR_RECUR 0x00200
#define FU_UNSORT 0x00400
#define FX_STDIN 0x00800
#define TG_BATCH 0x01000
#define TG_FILEPAT 0x02000
#define FE_REGEXP 0x04000
#define FS_STATS 0x08000
#define FC_LINE 0x10000
#define TG_PROGRESS 0x20000

#define FILET 1
#define DIRT 2

typedef struct work_st {
char *path;
int tp;
struct work_st *next;

} work_t;

typedef struct out_st {
char *line;
int line_count;
long byte_count;
struct out_st *next;

} out_t;

#define ALPHASIZ 128
typedef struct bm_pattern { /* Boyer - Moore pattern */

short p_m; /* length of pattern string */
short p_r[ALPHASIZ]; /* "r" vector */
short *p_R; /* "R" vector */
char *p_pat; /* pattern string */

} BM_PATTERN;

/* bmpmatch.c */
extern BM_PATTERN *bm_makepat(char *p);
extern char *bm_pmatch(BM_PATTERN *pat, register char *s);
extern void bm_freepat(BM_PATTERN *pattern);
BM_PATTERN *bm_pat; /* the global target read only after main */

/* pmatch.c */
extern char *pmatch(register PATTERN *pattern, register char *string, int *len);
extern PATTERN *makepat(char *string, char *metas);
extern void freepat(register PATTERN *pat);
extern void printpat(PATTERN *pat);
PATTERN *pm_pat[MAXREGEXP]; /* global targets read only for pmatch */

#include "proto.h" /* function prototypes of main.c */

/* local functions to POSIX only */
void pthread_setconcurrency_np(int con);
int pthread_getconcurrency_np(void);
void pthread_yield_np(void);

pthread_attr_t detached_attr;
pthread_mutex_t output_print_lk;
pthread_mutex_t global_count_lk;

int global_count = 0;
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work_t *work_q = NULL;
pthread_cond_t work_q_cv;
pthread_mutex_t work_q_lk;
pthread_mutex_t debug_lock;

#include "debug.h" /* must be included AFTER the
mutex_t debug_lock line */

work_t *search_q = NULL;
pthread_mutex_t search_q_lk;
pthread_cond_t search_q_cv;
int search_pool_cnt = 0; /* the count in the pool now */
int search_thr_limit = 0; /* the max in the pool */

work_t *cascade_q = NULL;
pthread_mutex_t cascade_q_lk;
pthread_cond_t cascade_q_cv;
int cascade_pool_cnt = 0;
int cascade_thr_limit = 0;

int running = 0;
pthread_mutex_t running_lk;

pthread_mutex_t stat_lk;
time_t st_start = 0;
int st_dir_search = 0;
int st_file_search = 0;
int st_line_search = 0;
int st_cascade = 0;
int st_cascade_pool = 0;
int st_cascade_destroy = 0;
int st_search = 0;
int st_pool = 0;
int st_maxrun = 0;
int st_worknull = 0;
int st_workfds = 0;
int st_worklimit = 0;
int st_destroy = 0;

int all_done = 0;
int work_cnt = 0;
int current_open_files = 0;
int tglimit = UNLIMITED; /* if -B limit the number of

threads */
int progress_offset = 1;
int progress = 0; /* protected by the print_lock ! */
unsigned int flags = 0;
int regexp_cnt = 0;
char *string[MAXREGEXP];
int debug = 0;
int use_pmatch = 0;
char file_pat[255]; /* file patten match */
PATTERN *pm_file_pat; /* compiled file target string (pmatch()) */

/*
* Main: This is where the fun starts
*/

int
main(int argc, char **argv)
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{
int c,out_thr_flags;
long max_open_files = 0l, ncpus = 0l;
extern int optind;
extern char *optarg;
int prio = 0;
struct stat sbuf;
pthread_t tid,dtid;
void *status;
char *e = NULL, *d = NULL; /* for debug flags */
int debug_file = 0;
struct sigaction sigact;
sigset_t set,oset;
int err = 0, i = 0, pm_file_len = 0;
work_t *work;
int restart_cnt = 10;

/* NO OTHER THREADS ARE RUNNING */
flags = FR_RECUR; /* the default */

while ((c = getopt(argc, argv, "d:e:bchilnsvwruf:p:BCSZzHP:")) != EOF) {
switch (c) {

#ifdef DEBUG
case ’d’:

debug = atoi(optarg);
if (debug == 0)

debug_usage();

d = optarg;
fprintf(stderr,"tgrep: Debug on at level(s) ");
while (*d) {

for (i=0; i<9; i++)
if (debug_set[i].level == *d) {

debug_levels |= debug_set[i].flag;
fprintf(stderr,"%c ",debug_set[i].level);
break;

}
d++;

}
fprintf(stderr,"\n");
break;

case ’f’: debug_file = atoi(optarg); break;
#endif /* DEBUG */

case ’B’:
flags |= TG_BATCH;

#ifndef __lock_lint
/* locklint complains here, but there are no other threads */

if ((e = getenv("TGLIMIT"))) {
tglimit = atoi(e);

}
else {

if (!(flags & FS_NOERROR)) /* order dependent! */
fprintf(stderr,"env TGLIMIT not set, overriding -B\n");

flags &= ~TG_BATCH;
}

#endif
break;

case ’p’:
flags |= TG_FILEPAT;
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strcpy(file_pat,optarg);
pm_file_pat = makepat(file_pat,NULL);
break;

case ’P’:
flags |= TG_PROGRESS;
progress_offset = atoi(optarg);
break;

case ’S’: flags |= FS_STATS; break;
case ’b’: flags |= FB_BLOCK; break;
case ’c’: flags |= FC_COUNT; break;
case ’h’: flags |= FH_HOLDNAME; break;
case ’i’: flags |= FI_IGNCASE; break;
case ’l’: flags |= FL_NAMEONLY; break;
case ’n’: flags |= FN_NUMBER; break;
case ’s’: flags |= FS_NOERROR; break;
case ’v’: flags |= FV_REVERSE; break;
case ’w’: flags |= FW_WORD; break;
case ’r’: flags &= ~FR_RECUR; break;
case ’C’: flags |= FC_LINE; break;
case ’e’:

if (regexp_cnt == MAXREGEXP) {
fprintf(stderr,"Max number of regexp’s (%d) exceeded!\n",

MAXREGEXP);
exit(1);

}
flags |= FE_REGEXP;
if ((string[regexp_cnt] =(char *)malloc(strlen(optarg)+1))==NULL){

fprintf(stderr,"tgrep: No space for search string(s)\n");
exit(1);

}
memset(string[regexp_cnt],0,strlen(optarg)+1);
strcpy(string[regexp_cnt],optarg);
regexp_cnt++;
break;

case ’z’:
case ’Z’: regexp_usage();

break;
case ’H’:
case ’?’:
default : usage();
}

}
if (flags & FS_STATS)

st_start = time(NULL);

if (!(flags & FE_REGEXP)) {
if (argc - optind < 1) {

fprintf(stderr,"tgrep: Must supply a search string(s) "
"and file list or directory\n");

usage();
}
if ((string[0]=(char *)malloc(strlen(argv[optind])+1))==NULL){

fprintf(stderr,"tgrep: No space for search string(s)\n");
exit(1);

}
memset(string[0],0,strlen(argv[optind])+1);
strcpy(string[0],argv[optind]);
regexp_cnt=1;
optind++;

}
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if (flags & FI_IGNCASE)
for (i=0; i<regexp_cnt; i++)

uncase(string[i]);

if (flags & FE_REGEXP) {
for (i=0; i<regexp_cnt; i++)

pm_pat[i] = makepat(string[i],NULL);
use_pmatch = 1;

}
else {

bm_pat = bm_makepat(string[0]); /* only one allowed */
}

flags |= FX_STDIN;

max_open_files = sysconf(_SC_OPEN_MAX);
ncpus = sysconf(_SC_NPROCESSORS_ONLN);
if ((max_open_files - HOLD_FDS - debug_file) < 1) {

fprintf(stderr,"tgrep: You MUST have at least ONE fd "
"that can be used, check limit (>10)\n");

exit(1);
}
search_thr_limit = max_open_files - HOLD_FDS - debug_file;
cascade_thr_limit = search_thr_limit / 2;
/* the number of files that can be open */
current_open_files = search_thr_limit;

pthread_attr_init(&detached_attr);
pthread_attr_setdetachstate(&detached_attr,

PTHREAD_CREATE_DETACHED);

pthread_mutex_init(&global_count_lk,NULL);
pthread_mutex_init(&output_print_lk,NULL);
pthread_mutex_init(&work_q_lk,NULL);
pthread_mutex_init(&running_lk,NULL);
pthread_cond_init(&work_q_cv,NULL);
pthread_mutex_init(&search_q_lk,NULL);
pthread_cond_init(&search_q_cv,NULL);
pthread_mutex_init(&cascade_q_lk,NULL);
pthread_cond_init(&cascade_q_cv,NULL);

if ((argc == optind) && ((flags & TG_FILEPAT) || (flags & FR_RECUR))) {
add_work(".",DIRT);
flags = (flags & ~FX_STDIN);

}
for ( ; optind < argc; optind++) {

restart_cnt = 10;
flags = (flags & ~FX_STDIN);

STAT_AGAIN:
if (stat(argv[optind], &sbuf)) {

if (errno == EINTR) { /* try again !, restart */
if (--restart_cnt)

goto STAT_AGAIN;
}
if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Can’t stat file/dir %s, %s\n",
argv[optind], strerror(errno));

continue;
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}
switch (sbuf.st_mode & S_IFMT) {
case S_IFREG :

if (flags & TG_FILEPAT) {
if (pmatch(pm_file_pat, argv[optind], &pm_file_len))

DP(DLEVEL1,("File pat match %s\n",argv[optind]));
add_work(argv[optind],FILET);

}
else {

add_work(argv[optind],FILET);
}
break;

case S_IFDIR :
if (flags & FR_RECUR) {

add_work(argv[optind],DIRT);
}
else {

if (!(flags & FS_NOERROR))
fprintf(stderr,"tgrep: Can’t search directory %s, "

"-r option is on. Directory ignored.\n",
argv[optind]);

}
break;

}
}

pthread_setconcurrency_np(3);

if (flags & FX_STDIN) {
fprintf(stderr,"tgrep: stdin option is not coded at this time\n");
exit(0); /* XXX Need to fix this SOON */
search_thr(NULL);
if (flags & FC_COUNT) {

pthread_mutex_lock(&global_count_lk);
printf("%d\n",global_count);
pthread_mutex_unlock(&global_count_lk);

}
if (flags & FS_STATS)

prnt_stats();
exit(0);

}

pthread_mutex_lock(&work_q_lk);
if (!work_q) {

if (!(flags & FS_NOERROR))
fprintf(stderr,"tgrep: No files to search.\n");

exit(0);
}
pthread_mutex_unlock(&work_q_lk);

DP(DLEVEL1,("Starting to loop through the work_q for work\n"));

/* OTHER THREADS ARE RUNNING */
while (1) {

pthread_mutex_lock(&work_q_lk);
while ((work_q == NULL || current_open_files == 0 || tglimit <= 0) &&

all_done == 0) {
if (flags & FS_STATS) {

pthread_mutex_lock(&stat_lk);
if (work_q == NULL)
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st_worknull++;
if (current_open_files == 0)

st_workfds++;
if (tglimit <= 0)

st_worklimit++;
pthread_mutex_unlock(&stat_lk);

}
pthread_cond_wait(&work_q_cv,&work_q_lk);

}
if (all_done != 0) {

pthread_mutex_unlock(&work_q_lk);
DP(DLEVEL1,("All_done was set to TRUE\n"));
goto OUT;

}
work = work_q;
work_q = work->next; /* maybe NULL */
work->next = NULL;
current_open_files--;
pthread_mutex_unlock(&work_q_lk);

tid = 0;
switch (work->tp) {
case DIRT:

pthread_mutex_lock(&cascade_q_lk);
if (cascade_pool_cnt) {

if (flags & FS_STATS) {
pthread_mutex_lock(&stat_lk);
st_cascade_pool++;
pthread_mutex_unlock(&stat_lk);

}
work->next = cascade_q;
cascade_q = work;
pthread_cond_signal(&cascade_q_cv);
pthread_mutex_unlock(&cascade_q_lk);
DP(DLEVEL2,("Sent work to cascade pool thread\n"));

}
else {

pthread_mutex_unlock(&cascade_q_lk);
err = pthread_create(&tid,&detached_attr,cascade,(void *)work);
DP(DLEVEL2,("Sent work to new cascade thread\n"));
if (flags & FS_STATS) {

pthread_mutex_lock(&stat_lk);
st_cascade++;
pthread_mutex_unlock(&stat_lk);

}
}
break;

case FILET:
pthread_mutex_lock(&search_q_lk);
if (search_pool_cnt) {

if (flags & FS_STATS) {
pthread_mutex_lock(&stat_lk);
st_pool++;
pthread_mutex_unlock(&stat_lk);

}
work->next = search_q; /* could be null */
search_q = work;
pthread_cond_signal(&search_q_cv);
pthread_mutex_unlock(&search_q_lk);
DP(DLEVEL2,("Sent work to search pool thread\n"));
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}
else {

pthread_mutex_unlock(&search_q_lk);
err = pthread_create(&tid,&detached_attr,

search_thr,(void *)work);
pthread_setconcurrency_np(pthread_getconcurrency_np()+1);
DP(DLEVEL2,("Sent work to new search thread\n"));
if (flags & FS_STATS) {

pthread_mutex_lock(&stat_lk);
st_search++;
pthread_mutex_unlock(&stat_lk);

}
}
break;

default:
fprintf(stderr,"tgrep: Internal error, work_t->tp not valid\n");
exit(1);

}
if (err) { /* NEED TO FIX THIS CODE. Exiting is just wrong */

fprintf(stderr,"Could not create new thread!\n");
exit(1);

}
}

OUT:
if (flags & TG_PROGRESS) {

if (progress)
fprintf(stderr,".\n");

else
fprintf(stderr,"\n");

}
/* we are done, print the stuff. All other threads are parked */
if (flags & FC_COUNT) {

pthread_mutex_lock(&global_count_lk);
printf("%d\n",global_count);
pthread_mutex_unlock(&global_count_lk);

}
if (flags & FS_STATS)

prnt_stats();
return(0); /* should have a return from main */

}

/*
* Add_Work: Called from the main thread, and cascade threads to add file
* and directory names to the work Q.
*/

int
add_work(char *path,int tp)
{

work_t *wt,*ww,*wp;

if ((wt = (work_t *)malloc(sizeof(work_t))) == NULL)
goto ERROR;

if ((wt->path = (char *)malloc(strlen(path)+1)) == NULL)
goto ERROR;

strcpy(wt->path,path);
wt->tp = tp;
wt->next = NULL;
if (flags & FS_STATS) {
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pthread_mutex_lock(&stat_lk);
if (wt->tp == DIRT)

st_dir_search++;
else

st_file_search++;
pthread_mutex_unlock(&stat_lk);

}
pthread_mutex_lock(&work_q_lk);
work_cnt++;
wt->next = work_q;
work_q = wt;
pthread_cond_signal(&work_q_cv);
pthread_mutex_unlock(&work_q_lk);
return(0);

ERROR:
if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Could not add %s to work queue. Ignored\n",
path);

return(-1);
}

/*
* Search thread: Started by the main thread when a file name is found
* on the work Q to be serached. If all the needed resources are ready
* a new search thread will be created.
*/

void *
search_thr(void *arg) /* work_t *arg */
{

FILE *fin;
char fin_buf[(BUFSIZ*4)]; /* 4 Kbytes */
work_t *wt,std;
int line_count;
char rline[128];
char cline[128];
char *line;
register char *p,*pp;
int pm_len;
int len = 0;
long byte_count;
long next_line;
int show_line; /* for the -v option */
register int slen,plen,i;
out_t *out = NULL; /* this threads output list */

pthread_yield_np();
wt = (work_t *)arg; /* first pass, wt is passed to use. */

/* len = strlen(string);*/ /* only set on first pass */

while (1) { /* reuse the search threads */
/* init all back to zero */
line_count = 0;
byte_count = 0l;
next_line = 0l;
show_line = 0;

pthread_mutex_lock(&running_lk);
running++;
pthread_mutex_unlock(&running_lk);
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pthread_mutex_lock(&work_q_lk);
tglimit--;
pthread_mutex_unlock(&work_q_lk);
DP(DLEVEL5,("searching file (STDIO) %s\n",wt->path));

if ((fin = fopen(wt->path,"r")) == NULL) {
if (!(flags & FS_NOERROR)) {

fprintf(stderr,"tgrep: %s. File \"%s\" not searched.\n",
strerror(errno),wt->path);

}
goto ERROR;

}
setvbuf(fin,fin_buf,_IOFBF,(BUFSIZ*4)); /* XXX */
DP(DLEVEL5,("Search thread has opened file %s\n",wt->path));
while ((fgets(rline,127,fin)) != NULL) {

if (flags & FS_STATS) {
pthread_mutex_lock(&stat_lk);
st_line_search++;
pthread_mutex_unlock(&stat_lk);

}
slen = strlen(rline);
next_line += slen;
line_count++;
if (rline[slen-1] == ’\n’)

rline[slen-1] = ’\0’;
/*
** If the uncase flag is set, copy the read in line (rline)
** To the uncase line (cline) Set the line pointer to point at
** cline.
** If the case flag is NOT set, then point line at rline.
** line is what is compared, rline is what is printed on a
** match.
*/
if (flags & FI_IGNCASE) {

strcpy(cline,rline);
uncase(cline);
line = cline;

}
else {

line = rline;
}
show_line = 1; /* assume no match, if -v set */
/* The old code removed */
if (use_pmatch) {

for (i=0; i<regexp_cnt; i++) {
if (pmatch(pm_pat[i], line, &pm_len)) {

if (!(flags & FV_REVERSE)) {
add_output_local(&out,wt,line_count,

byte_count,rline);
continue_line(rline,fin,out,wt,

&line_count,&byte_count);
}
else {

show_line = 0;
} /* end of if -v flag if / else block */
/*
** if we get here on ANY of the regexp targets
** jump out of the loop, we found a single
** match so do not keep looking!
** If name only, do not keep searcthing the same
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** file, we found a single match, so close the file,
** print the file name and move on to the next file.
*/
if (flags & FL_NAMEONLY)

goto OUT_OF_LOOP;
else

goto OUT_AND_DONE;
} /* end found a match if block */

} /* end of the for pat[s] loop */
}
else {

if (bm_pmatch( bm_pat, line)) {
if (!(flags & FV_REVERSE)) {

add_output_local(&out,wt,line_count,byte_count,rline);
continue_line(rline,fin,out,wt,

&line_count,&byte_count);
}
else {

show_line = 0;
}
if (flags & FL_NAMEONLY)

goto OUT_OF_LOOP;
}

}
OUT_AND_DONE:

if ((flags & FV_REVERSE) && show_line) {
add_output_local(&out,wt,line_count,byte_count,rline);
show_line = 0;

}
byte_count = next_line;

}
OUT_OF_LOOP:

fclose(fin);
/*
** The search part is done, but before we give back the FD,
** and park this thread in the search thread pool, print the
** local output we have gathered.
*/
print_local_output(out,wt); /* this also frees out nodes */
out = NULL; /* for the next time around, if there is one */

ERROR:
DP(DLEVEL5,("Search done for %s\n",wt->path));
free(wt->path);
free(wt);

notrun();
pthread_mutex_lock(&search_q_lk);
if (search_pool_cnt > search_thr_limit) {

pthread_mutex_unlock(&search_q_lk);
DP(DLEVEL5,("Search thread exiting\n"));
if (flags & FS_STATS) {

pthread_mutex_lock(&stat_lk);
st_destroy++;
pthread_mutex_unlock(&stat_lk);

}
return(0);

}
else {

search_pool_cnt++;
while (!search_q)
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pthread_cond_wait(&search_q_cv,&search_q_lk);
search_pool_cnt--;
wt = search_q; /* we have work to do! */
if (search_q->next)

search_q = search_q->next;
else

search_q = NULL;
pthread_mutex_unlock(&search_q_lk);

}
}
/*NOTREACHED*/

}

/*
* Continue line: Special case search with the -C flag set. If you are
* searching files like Makefiles, some lines might have escape char’s to
* contine the line on the next line. So the target string can be found, but
* no data is displayed. This function continues to print the escaped line
* until there are no more "\" chars found.
*/

int
continue_line(char *rline, FILE *fin, out_t *out, work_t *wt,

int *lc, long *bc)
{

int len;
int cnt = 0;
char *line;
char nline[128];

if (!(flags & FC_LINE))
return(0);

line = rline;
AGAIN:

len = strlen(line);
if (line[len-1] == ’\\’) {

if ((fgets(nline,127,fin)) == NULL) {
return(cnt);

}
line = nline;
len = strlen(line);
if (line[len-1] == ’\n’)

line[len-1] = ’\0’;
*bc = *bc + len;
*lc++;
add_output_local(&out,wt,*lc,*bc,line);
cnt++;
goto AGAIN;

}
return(cnt);

}

/*
* cascade: This thread is started by the main thread when directory names
* are found on the work Q. The thread reads all the new file, and directory
* names from the directory it was started when and adds the names to the
* work Q. (it finds more work!)
*/

void *
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cascade(void *arg) /* work_t *arg */
{

char fullpath[1025];
int restart_cnt = 10;
DIR *dp;

char dir_buf[sizeof(struct dirent) + PATH_MAX];
struct dirent *dent = (struct dirent *)dir_buf;
struct stat sbuf;
char *fpath;
work_t *wt;
int fl = 0, dl = 0;
int pm_file_len = 0;

pthread_yield_np(); /* try toi give control back to main thread */
wt = (work_t *)arg;

while(1) {
fl = 0;
dl = 0;
restart_cnt = 10;
pm_file_len = 0;

pthread_mutex_lock(&running_lk);
running++;
pthread_mutex_unlock(&running_lk);
pthread_mutex_lock(&work_q_lk);
tglimit--;
pthread_mutex_unlock(&work_q_lk);

if (!wt) {
if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Bad work node passed to cascade\n");
goto DONE;

}
fpath = (char *)wt->path;
if (!fpath) {

if (!(flags & FS_NOERROR))
fprintf(stderr,"tgrep: Bad path name passed to cascade\n");

goto DONE;
}
DP(DLEVEL3,("Cascading on %s\n",fpath));
if (( dp = opendir(fpath)) == NULL) {

if (!(flags & FS_NOERROR))
fprintf(stderr,"tgrep: Can’t open dir %s, %s. Ignored.\n",

fpath,strerror(errno));
goto DONE;

}
while ((readdir_r(dp,dent)) != NULL) {

restart_cnt = 10; /* only try to restart the interupted 10 X */

if (dent->d_name[0] == ’.’) {
if (dent->d_name[1] == ’.’ && dent->d_name[2] == ’\0’)

continue;
if (dent->d_name[1] == ’\0’)

continue;
}

fl = strlen(fpath);
dl = strlen(dent->d_name);
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if ((fl + 1 + dl) > 1024) {
fprintf(stderr,"tgrep: Path %s/%s is too long. "

"MaxPath = 1024\n",
fpath, dent->d_name);

continue; /* try the next name in this directory */
}
strcpy(fullpath,fpath);
strcat(fullpath,"/");
strcat(fullpath,dent->d_name);

RESTART_STAT:
if (stat(fullpath,&sbuf)) {

if (errno == EINTR) {
if (--restart_cnt)

goto RESTART_STAT;
}
if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Can’t stat file/dir %s, %s. "
"Ignored.\n",
fullpath,strerror(errno));

goto ERROR;
}

switch (sbuf.st_mode & S_IFMT) {
case S_IFREG :

if (flags & TG_FILEPAT) {
if (pmatch(pm_file_pat, dent->d_name, &pm_file_len)) {

DP(DLEVEL3,("file pat match (cascade) %s\n",
dent->d_name));

add_work(fullpath,FILET);
}

}
else {

add_work(fullpath,FILET);
DP(DLEVEL3,("cascade added file (MATCH) %s to Work Q\n",

fullpath));
}
break;

case S_IFDIR :
DP(DLEVEL3,("cascade added dir %s to Work Q\n",fullpath));
add_work(fullpath,DIRT);
break;

}
}

ERROR:
closedir(dp);

DONE:
free(wt->path);
free(wt);
notrun();
pthread_mutex_lock(&cascade_q_lk);
if (cascade_pool_cnt > cascade_thr_limit) {

pthread_mutex_unlock(&cascade_q_lk);
DP(DLEVEL5,("Cascade thread exiting\n"));
if (flags & FS_STATS) {

pthread_mutex_lock(&stat_lk);
st_cascade_destroy++;
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pthread_mutex_unlock(&stat_lk);
}
return(0); /* pthread_exit */

}
else {

DP(DLEVEL5,("Cascade thread waiting in pool\n"));
cascade_pool_cnt++;
while (!cascade_q)

pthread_cond_wait(&cascade_q_cv,&cascade_q_lk);
cascade_pool_cnt--;
wt = cascade_q; /* we have work to do! */
if (cascade_q->next)

cascade_q = cascade_q->next;
else

cascade_q = NULL;
pthread_mutex_unlock(&cascade_q_lk);

}
}
/*NOTREACHED*/

}

/*
* Print Local Output: Called by the search thread after it is done searching
* a single file. If any oputput was saved (matching lines), the lines are
* displayed as a group on stdout.
*/

int
print_local_output(out_t *out, work_t *wt)
{

out_t *pp, *op;
int out_count = 0;
int printed = 0;

pp = out;
pthread_mutex_lock(&output_print_lk);
if (pp && (flags & TG_PROGRESS)) {

progress++;
if (progress >= progress_offset) {

progress = 0;
fprintf(stderr,".");

}
}
while (pp) {

out_count++;
if (!(flags & FC_COUNT)) {

if (flags & FL_NAMEONLY) { /* Pint name ONLY ! */
if (!printed) {

printed = 1;
printf("%s\n",wt->path);

}
}
else { /* We are printing more then just the name */

if (!(flags & FH_HOLDNAME))
printf("%s :",wt->path);

if (flags & FB_BLOCK)
printf("%ld:",pp->byte_count/512+1);

if (flags & FN_NUMBER)
printf("%d:",pp->line_count);

printf("%s\n",pp->line);
}
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}
op = pp;
pp = pp->next;
/* free the nodes as we go down the list */
free(op->line);
free(op);

}

pthread_mutex_unlock(&output_print_lk);
pthread_mutex_lock(&global_count_lk);
global_count += out_count;
pthread_mutex_unlock(&global_count_lk);
return(0);

}

/*
* add output local: is called by a search thread as it finds matching lines.
* the matching line, its byte offset, line count, etc. are stored until the
* search thread is done searching the file, then the lines are printed as
* a group. This way the lines from more then a single file are not mixed
* together.
*/

int
add_output_local(out_t **out, work_t *wt,int lc, long bc, char *line)
{

out_t *ot,*oo, *op;

if (( ot = (out_t *)malloc(sizeof(out_t))) == NULL)
goto ERROR;

if (( ot->line = (char *)malloc(strlen(line)+1)) == NULL)
goto ERROR;

strcpy(ot->line,line);
ot->line_count = lc;
ot->byte_count = bc;

if (!*out) {
*out = ot;
ot->next = NULL;
return(0);

}
/* append to the END of the list; keep things sorted! */
op = oo = *out;
while(oo) {

op = oo;
oo = oo->next;

}
op->next = ot;
ot->next = NULL;
return(0);

ERROR:
if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Output lost. No space. "
"[%s: line %d byte %d match : %s\n",
wt->path,lc,bc,line);

return(1);
}
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/*
* print stats: If the -S flag is set, after ALL files have been searched,
* main thread calls this function to print the stats it keeps on how the
* search went.
*/

void
prnt_stats(void)
{

float a,b,c;
float t = 0.0;
time_t st_end = 0;
char tl[80];

st_end = time(NULL); /* stop the clock */
printf("\n----------------- Tgrep Stats. --------------------\n");
printf("Number of directories searched: %d\n",st_dir_search);
printf("Number of files searched: %d\n",st_file_search);
c = (float)(st_dir_search + st_file_search) / (float)(st_end - st_start);
printf("Dir/files per second: %3.2f\n",c);
printf("Number of lines searched: %d\n",st_line_search);
printf("Number of matching lines to target: %d\n",global_count);

printf("Number of cascade threads created: %d\n",st_cascade);
printf("Number of cascade threads from pool: %d\n",st_cascade_pool);
a = st_cascade_pool; b = st_dir_search;
printf("Cascade thread pool hit rate: %3.2f%%\n",((a/b)*100));
printf("Cascade pool overall size: %d\n",cascade_pool_cnt);
printf("Number of search threads created: %d\n",st_search);
printf("Number of search threads from pool: %d\n",st_pool);
a = st_pool; b = st_file_search;
printf("Search thread pool hit rate: %3.2f%%\n",((a/b)*100));
printf("Search pool overall size: %d\n",search_pool_cnt);
printf("Search pool size limit: %d\n",search_thr_limit);
printf("Number of search threads destroyed: %d\n",st_destroy);

printf("Max # of threads running concurrenly: %d\n",st_maxrun);
printf("Total run time, in seconds. %d\n",

(st_end - st_start));

/* Why did we wait ? */
a = st_workfds; b = st_dir_search+st_file_search;
c = (a/b)*100; t += c;
printf("Work stopped due to no FD’s: (%.3d) %d Times, %3.2f%%\n",

search_thr_limit,st_workfds,c);
a = st_worknull; b = st_dir_search+st_file_search;
c = (a/b)*100; t += c;
printf("Work stopped due to no work on Q: %d Times, %3.2f%%\n",

st_worknull,c);
if (tglimit == UNLIMITED)

strcpy(tl,"Unlimited");
else

sprintf(tl," %.3d ",tglimit);
a = st_worklimit; b = st_dir_search+st_file_search;
c = (a/b)*100; t += c;
printf("Work stopped due to TGLIMIT: (%.9s) %d Times, %3.2f%%\n",

tl,st_worklimit,c);
printf("Work continued to be handed out: %3.2f%%\n",100.00-t);
printf("----------------------------------------------------\n");

}
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/*
* not running: A glue function to track if any search threads or cascade
* threads are running. When the count is zero, and the work Q is NULL,
* we can safely say, WE ARE DONE.
*/

void
notrun (void)
{

pthread_mutex_lock(&work_q_lk);
work_cnt--;
tglimit++;
current_open_files++;
pthread_mutex_lock(&running_lk);
if (flags & FS_STATS) {

pthread_mutex_lock(&stat_lk);
if (running > st_maxrun) {

st_maxrun = running;
DP(DLEVEL6,("Max Running has increased to %d\n",st_maxrun));

}
pthread_mutex_unlock(&stat_lk);

}
running--;
if (work_cnt == 0 && running == 0) {

all_done = 1;
DP(DLEVEL6,("Setting ALL_DONE flag to TRUE.\n"));

}
pthread_mutex_unlock(&running_lk);
pthread_cond_signal(&work_q_cv);
pthread_mutex_unlock(&work_q_lk);

}

/*
* uncase: A glue function. If the -i (case insensitive) flag is set, the
* target strng and the read in line is converted to lower case before
* comparing them.
*/

void
uncase(char *s)
{

char *p;

for (p = s; *p != NULL; p++)
*p = (char)tolower(*p);

}

/*
* usage: Have to have one of these.
*/

void
usage(void)
{

fprintf(stderr,"usage: tgrep <options> pattern <{file,dir}>...\n");
fprintf(stderr,"\n");
fprintf(stderr,"Where:\n");

#ifdef DEBUG
fprintf(stderr,"Debug -d = debug level -d <levels> (-d0 for usage)\n");
fprintf(stderr,"Debug -f = block fd’s from use (-f #)\n");

#endif
fprintf(stderr," -b = show block count (512 byte block)\n");
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fprintf(stderr," -c = print only a line count\n");
fprintf(stderr," -h = Do NOT print file names\n");
fprintf(stderr," -i = case insensitive\n");
fprintf(stderr," -l = print file name only\n");
fprintf(stderr," -n = print the line number with the line\n");
fprintf(stderr," -s = Suppress error messages\n");
fprintf(stderr," -v = print all but matching lines\n");

#ifdef NOT_IMP
fprintf(stderr," -w = search for a \"word\"\n");

#endif
fprintf(stderr," -r = Do not search for files in all "

"sub-directories\n");
fprintf(stderr," -C = show continued lines (\"\\\")\n");
fprintf(stderr," -p = File name regexp pattern. (Quote it)\n");
fprintf(stderr," -P = show progress. -P 1 prints a DOT on stderr\n"

" for each file it finds, -P 10 prints a DOT\n"
" on stderr for each 10 files it finds, etc...\n");

fprintf(stderr," -e = expression search.(regexp) More then one\n");
fprintf(stderr," -B = limit the number of threads to TGLIMIT\n");
fprintf(stderr," -S = Print thread stats when done.\n");
fprintf(stderr," -Z = Print help on the regexp used.\n");
fprintf(stderr,"\n");
fprintf(stderr,"Notes:\n");
fprintf(stderr," If you start tgrep with only a directory name\n");
fprintf(stderr," and no file names, you must not have the -r option\n");
fprintf(stderr," set or you will get no output.\n");
fprintf(stderr," To search stdin (piped input), you must set -r\n");
fprintf(stderr," Tgrep will search ALL files in ALL \n");
fprintf(stderr," sub-directories. (like */* */*/* */*/*/* etc..)\n");
fprintf(stderr," if you supply a directory name.\n");
fprintf(stderr," If you do not supply a file, or directory name,\n");
fprintf(stderr," and the -r option is not set, the current \n");
fprintf(stderr," directory \".\" will be used.\n");
fprintf(stderr," All the other options should work \"like\" grep\n");
fprintf(stderr," The -p patten is regexp; tgrep will search only\n");
fprintf(stderr,"\n");
fprintf(stderr," Copy Right By Ron Winacott, 1993-1995.\n");
fprintf(stderr,"\n");
exit(0);

}

/*
* regexp usage: Tell the world about tgrep custom (THREAD SAFE) regexp!
*/

int
regexp_usage (void)
{

fprintf(stderr,"usage: tgrep <options> -e \"pattern\" <-e ...> "
"<{file,dir}>...\n");

fprintf(stderr,"\n");
fprintf(stderr,"metachars:\n");
fprintf(stderr," . - match any character\n");
fprintf(stderr," * - match 0 or more occurrences of previous char\n");
fprintf(stderr," + - match 1 or more occurrences of previous char.\n");
fprintf(stderr," ^ - match at beginning of string\n");
fprintf(stderr," $ - match end of string\n");
fprintf(stderr," [ - start of character class\n");
fprintf(stderr," ] - end of character class\n");
fprintf(stderr," ( - start of a new pattern\n");
fprintf(stderr," ) - end of a new pattern\n");
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fprintf(stderr," @(n)c - match <c> at column <n>\n");
fprintf(stderr," | - match either pattern\n");
fprintf(stderr," \\ - escape any special characters\n");
fprintf(stderr," \\c - escape any special characters\n");
fprintf(stderr," \\o - turn on any special characters\n");
fprintf(stderr,"\n");
fprintf(stderr,"To match two diffrerent patterns in the same command\n");
fprintf(stderr,"Use the or function. \n"

"ie: tgrep -e \"(pat1)|(pat2)\" file\n"
"This will match any line with \"pat1\" or \"pat2\" in it.\n");

fprintf(stderr,"You can also use up to %d -e expressions\n",MAXREGEXP);
fprintf(stderr,"RegExp Pattern matching brought to you by Marc Staveley\n");
exit(0);

}

/*
* debug usage: If compiled with -DDEBUG, turn it on, and tell the world
* how to get tgrep to print debug info on different threads.
*/

#ifdef DEBUG
void
debug_usage(void)
{

int i = 0;

fprintf(stderr,"DEBUG usage and levels:\n");
fprintf(stderr,"--------------------------------------------------\n");
fprintf(stderr,"Level code\n");
fprintf(stderr,"--------------------------------------------------\n");
fprintf(stderr,"0 This message.\n");
for (i=0; i<9; i++) {

fprintf(stderr,"%d %s\n",i+1,debug_set[i].name);
}
fprintf(stderr,"--------------------------------------------------\n");
fprintf(stderr,"You can or the levels together like -d134 for levels\n");
fprintf(stderr,"1 and 3 and 4.\n");
fprintf(stderr,"\n");
exit(0);

}
#endif

/* Pthreads NP functions */

#ifdef __sun
void
pthread_setconcurrency_np(int con)
{

thr_setconcurrency(con);
}

int
pthread_getconcurrency_np(void)
{

return(thr_getconcurrency());
}

void
pthread_yield_np(void)
{
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/* In Solaris 2.4, these functions always return - 1 and set errno to ENOSYS */
if (sched_yield()) /* call UI interface if we are older than 2.5 */

thr_yield();
}

#else
void
pthread_setconcurrency_np(int con)
{

return;
}

int
pthread_getconcurrency_np(void)
{

return(0);
}

void
pthread_yield_np(void)
{

return;
}
#endif
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APPENDIX B

Solaris Threads Example: barrier.c

The barrier.c program demonstrates an implementation of a barrier for Solaris
threads. (See “Parallelizing a Loop on a Shared-Memory Parallel Computer” on page
248 for a definition of barriers.)

CODE EXAMPLE B–1 Solaris Threads Example: barrier.c

#define _REENTRANT

/* Include Files */

#include <thread.h>
#include <errno.h>

/* Constants & Macros *

/* Data Declarations */

typedef struct {
int maxcnt; /* maximum number of runners */
struct _sb {

cond_t wait_cv; /* cv for waiters at barrier */
mutex_t wait_lk; /* mutex for waiters at barrier */
int runners; /* number of running threads */

} sb[2];
struct _sb *sbp; /* current sub-barrier */

} barrier_t;

/*
* barrier_init - initialize a barrier variable.
*
*/

int
barrier_init( barrier_t *bp, int count, int type, void *arg ) {

int n;
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int i;

if (count < 1)
return(EINVAL);

bp->maxcnt = count;
bp->sbp = &bp->sb[0];

for (i = 0; i < 2; ++i) {
#if defined(__cplusplus)

struct barrier_t::_sb *sbp = &( bp->sb[i] );
#else

struct _sb *sbp = &( bp->sb[i] );
#endif

sbp->runners = count;

if (n = mutex_init(&sbp->wait_lk, type, arg))
return(n);

if (n = cond_init(&sbp->wait_cv, type, arg))
return(n);

}
return(0);

}

/*
* barrier_wait - wait at a barrier for everyone to arrive.
*
*/

int
barrier_wait(register barrier_t *bp) {
#if defined(__cplusplus)

register struct barrier_t::_sb *sbp = bp->sbp;
#else

register struct _sb *sbp = bp->sbp;
#endif

mutex_lock(&sbp->wait_lk);

if (sbp->runners == 1) { /* last thread to reach barrier */
if (bp->maxcnt != 1) {
/* reset runner count and switch sub-barriers */

sbp->runners = bp->maxcnt;
bp->sbp = (bp->sbp == &bp->sb[0])

? &bp->sb[1] : &bp->sb[0];

/* wake up the waiters */
cond_broadcast(&sbp->wait_cv);

}
} else {

sbp->runners--; /* one less runner */

while (sbp->runners != bp->maxcnt)
cond_wait( &sbp->wait_cv, &sbp->wait_lk);

}

mutex_unlock(&sbp->wait_lk);

return(0);
}
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/*
* barrier_destroy - destroy a barrier variable.
*
*/

int
barrier_destroy(barrier_t *bp) {

int n;
int i;

for (i=0; i < 2; ++ i) {
if (n = cond_destroy(&bp->sb[i].wait_cv))

return( n );

if (n = mutex_destroy( &bp->sb[i].wait_lk))
return(n);

}

return(0);
}

#define NTHR 4
#define NCOMPUTATION 2
#define NITER 1000
#define NSQRT 1000

void *
compute(barrier_t *ba )
{

int count = NCOMPUTATION;

while (count--) {
barrier_wait( ba );
/* do parallel computation */

}
}

main( int argc, char *argv[] ) {
int i;
int niter;
int nthr;
barrier_t ba;
double et;
thread_t *tid;

switch ( argc ) {
default:
case 3 : niter = atoi( argv[1] );

nthr = atoi( argv[2] );
break;

case 2 : niter = atoi( argv[1] );
nthr = NTHR;
break;

case 1 : niter = NITER;
nthr = NTHR;
break;

Solaris Threads Example: barrier.c 277



}

barrier_init( &ba, nthr + 1, USYNC_THREAD, NULL );
tid = (thread_t *) calloc(nthr, sizeof(thread_t));

for (i = 0; i < nthr; ++i) {
int n;

if (n = thr_create(NULL, 0,
(void *(*)( void *)) compute,
&ba, NULL, &tid[i])) {

errno = n;
perror("thr_create");
exit(1);

}
}

for (i = 0; i < NCOMPUTATION; i++) {
barrier_wait(&ba );

/* do parallel algorithm */
}

for (i = 0; i < nthr; i++) {
thr_join(tid[i], NULL, NULL);

}

}
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APPENDIX C

MT Safety Levels: Library Interfaces

Table C–1 lists the safety levels for interfaces from Section 3 of the man(3) Library
Routines (see “MT Interface Safety Levels” on page 170 for explanations of the safety
categories).

TABLE C–1 MT Safety Levels of Library Routines

Library Routine Safety Level

a64l(3C) MT-Safe

abort(3C) Safe

abs(3C) MT-Safe

accept(3N) Safe

acos(3M) MT-Safe

acosh(3M) MT-Safe

addch(3X) Unsafe

addchnstr(3X) Unsafe

addchstr(3X) Unsafe

addnstr(3X) Unsafe

279



TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

addnwstr(3X) Unsafe

addsev(3C) MT-Safe

addseverity(3C) Safe

addstr(3X) Unsafe

addwch(3X) Unsafe

addwchnstr(3X) Unsafe

addwchstr(3X) Unsafe

addwstr(3X) Unsafe

adjcurspos(3X) Unsafe

advance(3G) MT-Safe

aiocancel(3) Unsafe

aioread(3) Unsafe

aiowait(3) Unsafe

aiowrite(3) Unsafe

aio_cancel(3R) MT-Safe

aio_error(3R) Async-Signal-Safe

aio_fsync(3R) MT-Safe

aio_read(3R) MT-Safe

aio_return(3R) Async-Signal-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

aio_suspend(3R) Async-Signal-Safe

aio_write(3R) MT-Safe

alloca(3C) Safe

arc(3) Safe

ascftime(3C) MT-Safe

asctime(3C) Unsafe, use asctime_r()

asin(3M) MT-Safe

asinh(3M) MT-Safe

assert(3C) Safe

atan(3M) MT-Safe

atan2(3M) MT-Safe

atanh(3M) MT-Safe

atexit(3C) Safe

atof(3C) MT-Safe

atoi(3C) MT-Safe

atol(3C) MT-Safe

atoll(3C) MT-Safe

attroff(3X) Unsafe

attron(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

attrset(3X) Unsafe

authdes_create(3N) Unsafe

authdes_getucred(3N) MT-Safe

authdes_seccreate(3N) MT-Safe

authkerb_getucred(3N) Unsafe

authkerb_seccreate(3N) Unsafe

authnone_create(3N) MT-Safe

authsys_create(3N) MT-Safe

authsys_create_default(3N) MT-Safe

authunix_create(3N) Unsafe

authunix_create_default(3N) Unsafe

auth_destroy(3N) MT-Safe

au_close(3) Safe

au_open(3) Safe

au_user_mask(3) MT-Safe

au_write(3) Safe

basename(3G) MT-Safe

baudrate(3X) Unsafe

beep(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

bessel(3M) MT-Safe

bgets(3G) MT-Safe

bind(3N) Safe

bindtextdomain(3I) Safe with exceptions

bkgd(3X) Unsafe

bkgdset(3X) Unsafe

border(3X) Unsafe

bottom_panel(3X) Unsafe

box(3) Safe

box(3X) Unsafe

bsearch(3C) Safe

bufsplit(3G) MT-Safe

byteorder(3N) Safe

calloc(3C) Safe

calloc(3X) Safe

callrpc(3N) Unsafe

cancellation(3T) MT-Safe

can_change_color(3X) Unsafe

catclose(3C) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

catgets(3C) MT-Safe

catopen(3C) MT-Safe

cbc_crypt(3) MT-Safe

cbreak(3X) Unsafe

cbrt(3M) MT-Safe

ceil(3M) MT-Safe

cfgetispeed(3) MT-Safe, Async-Signal-Safe

cfgetospeed(3) MT-Safe, Async-Signal-Safe

cfree(3X) Safe

cfsetispeed(3) MT-Safe, Async-Signal-Safe

cfsetospeed(3) MT-Safe, Async-Signal-Safe

cftime(3C) MT-Safe

circle(3) Safe

clear(3X) Unsafe

clearerr(3S) MT-Safe

clearok(3X) Unsafe

clntraw_create(3N) Unsafe

clnttcp_create(3N) Unsafe

clntudp_bufcreate(3N) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

clntudp_create(3N) Unsafe

clnt_broadcast(3N) Unsafe

clnt_call(3N) MT-Safe

clnt_control(3N) MT-Safe

clnt_create(3N) MT-Safe

clnt_create_timed(3N) MT-Safe

clnt_create_vers(3N) MT-Safe

clnt_destroy(3N) MT-Safe

clnt_dg_create(3N) MT-Safe

clnt_freeres(3N) MT-Safe

clnt_geterr(3N) MT-Safe

clnt_pcreateerror(3N) MT-Safe

clnt_perrno(3N) MT-Safe

clnt_perror(3N) MT-Safe

clnt_raw_create(3N) MT-Safe

clnt_spcreateerror(3N) MT-Safe

clnt_sperrno(3N) MT-Safe

clnt_sperror(3N) MT-Safe

clnt_tli_create(3N) MT-Safe

MT Safety Levels: Library Interfaces 285



TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

clnt_tp_create(3N) MT-Safe

clnt_tp_create_timed(3N) MT-Safe

clnt_vc_create(3N) MT-Safe

clock(3C) MT-Safe

clock_gettime(3R) Async-Signal-Safe

closedir(3C) Safe

closelog(3) Safe

closepl(3) Safe

closevt(3) Safe

clrtobot(3X) Unsafe

clrtoeol(3X) Unsafe

color_content(3X) Unsafe

compile(3G) MT-Safe

condition(3T) MT-Safe

cond_broadcast(3T) MT-Safe

cond_destroy(3T) MT-Safe

cond_init(3T) MT-Safe

cond_signal(3T) MT-Safe

cond_timedwait(3T) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

cond_wait(3T) MT-Safe

confstr(3C) MT-Safe

connect(3N) Safe

cont(3) Safe

conv(3C) MT-Safe with exceptions

copylist(3G) MT-Safe

copysign(3M) MT-Safe

copywin(3X) Unsafe

cos(3M) MT-Safe

cosh(3M) MT-Safe

crypt(3C) Safe

crypt(3X) Unsafe

cset(3I) MT-Safe with exceptions

csetcol(3I) MT-Safe with exceptions

csetlen(3I) MT-Safe with exceptions

csetno(3I) MT-Safe with exceptions

ctermid(3S) Unsafe, use ctermid_r()

ctime(3C) Unsafe, use ctime_r()

ctype(3C) MT-Safe with exceptions
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

current_field(3X) Unsafe

current_item(3X) Unsafe

curses(3X) Unsafe

curs_addch(3X) Unsafe

curs_addchstr(3X) Unsafe

curs_addstr(3X) Unsafe

curs_addwch(3X) Unsafe

curs_addwchstr(3X) Unsafe

curs_addwstr(3X) Unsafe

curs_alecompat(3X) Unsafe

curs_attr(3X) Unsafe

curs_beep(3X) Unsafe

curs_bkgd(3X) Unsafe

curs_border(3X) Unsafe

curs_clear(3X) Unsafe

curs_color(3X) Unsafe

curs_delch(3X) Unsafe

curs_deleteln(3X) Unsafe

curs_getch(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

curs_getstr(3X) Unsafe

curs_getwch(3X) Unsafe

curs_getwstr(3X) Unsafe

curs_getyx(3X) Unsafe

curs_inch(3X) Unsafe

curs_inchstr(3X) Unsafe

curs_initscr(3X) Unsafe

curs_inopts(3X) Unsafe

curs_insch(3X) Unsafe

curs_insstr(3X) Unsafe

curs_instr(3X) Unsafe

curs_inswch(3X) Unsafe

curs_inswstr(3X) Unsafe

curs_inwch(3X) Unsafe

curs_inwchstr(3X) Unsafe

curs_inwstr(3X) Unsafe

curs_kernel(3X) Unsafe

curs_move(3X) Unsafe

curs_outopts(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

curs_overlay(3X) Unsafe

curs_pad(3X) Unsafe

curs_printw(3X) Unsafe

curs_refresh(3X) Unsafe

curs_scanw(3X) Unsafe

curs_scroll(3X) Unsafe

curs_scr_dump(3X) Unsafe

curs_set(3X) Unsafe

curs_slk(3X) Unsafe

curs_termattrs(3X) Unsafe

curs_termcap(3X) Unsafe

curs_terminfo(3X) Unsafe

curs_touch(3X) Unsafe

curs_util(3X) Unsafe

curs_window(3X) Unsafe

cuserid(3S) MT-Safe

data_ahead(3X) Unsafe

data_behind(3X) Unsafe

dbm_clearerr(3) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

dbm_close(3) Unsafe

dbm_delete(3) Unsafe

dbm_error(3) Unsafe

dbm_fetch(3) Unsafe

dbm_firstkey(3) Unsafe

dbm_nextkey(3) Unsafe

dbm_open(3) Unsafe

dbm_store(3) Unsafe

db_add_entry(3N) Unsafe

db_checkpoint(3N) Unsafe

db_create_table(3N) Unsafe

db_destroy_table(3N) Unsafe

db_first_entry(3N) Unsafe

db_free_result(3N) Unsafe

db_initialize(3N) Unsafe

db_list_entries(3N) Unsafe

db_next_entry(3N) Unsafe

db_remove_entry(3N) Unsafe

db_reset_next_entry(3N) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

db_standby(3N) Unsafe

db_table_exists(3N) Unsafe

db_unload_table(3N) Unsafe

dcgettext(3I) Safe with exceptions

decimal_to_double(3) MT-Safe

decimal_to_extended(3) MT-Safe

decimal_to_floating(3) MT-Safe

decimal_to_quadruple(3) MT-Safe

decimal_to_single(3) MT-Safe

def_prog_mode(3X) Unsafe

def_shell_mode(3X) Unsafe

delay_output(3X) Unsafe

delch(3X) Unsafe

deleteln(3X) Unsafe

delscreen(3X) Unsafe

delwin(3X) Unsafe

del_curterm(3X) Unsafe

del_panel(3X) Unsafe

derwin(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

des_crypt(3) MT-Safe

DES_FAILED(3) MT-Safe

des_failed(3) MT-Safe

des_setparity(3) MT-Safe

dgettext(3I) Safe with exceptions

dial(3N) Unsafe

difftime(3C) MT-Safe

dirname(3G) MT-Safe

div(3C) MT-Safe

dladdr(3X) MT-Safe

dlclose(3X) MT-Safe

dlerror(3X) MT-Safe

dlopen(3X) MT-Safe

dlsym(3X) MT-Safe

dn_comp(3N) Unsafe

dn_expand(3N) Unsafe

doconfig(3N) Unsafe

double_to_decimal(3) MT-Safe

doupdate(3X) Unsafe
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Library Routine Safety Level

drand48(3C) Safe

dup2(3C) Unsafe, Async-Signal-Safe

dupwin(3X) Unsafe

dup_field(3X) Unsafe

dynamic_field_info(3X) Unsafe

ecb_crypt(3) MT-Safe

echo(3X) Unsafe

echochar(3X) Unsafe

echowchar(3X) Unsafe

econvert(3) MT-Safe

ecvt(3) MT-Safe

ecvt(3C) Unsafe

el(32_fsize.3E) Unsafe

el(32_getehdr.3E) Unsafe

el(32_getshdr.3E) Unsafe

el(32_newehdr.3E) Unsafe

el(32_newphdr.3E) Unsafe

el(32_xlatetof.3E) Unsafe

el(32_xlatetom.3E) Unsafe

294 Multithreaded Programming Guide ♦ February 2000



TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

elf(3E) Unsafe

elf_begin(3E) Unsafe

elf_cntl(3E) Unsafe

elf_end(3E) Unsafe

elf_errmsg(3E) Unsafe

elf_errno(3E) Unsafe

elf_fill(3E) Unsafe

elf_flagdata(3E) Unsafe

elf_flagehdr(3E) Unsafe

elf_flagelf(3E) Unsafe

elf_flagphdr(3E) Unsafe

elf_flagscn(3E) Unsafe

elf_flagshdr(3E) Unsafe

elf_getarhdr(3E) Unsafe

elf_getarsym(3E) Unsafe

elf_getbase(3E) Unsafe

elf_getdata(3E) Unsafe

elf_getident(3E) Unsafe

elf_getscn(3E) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

elf_hash(3E) Unsafe

elf_kind(3E) Unsafe

elf_memory(3E) Unsafe

elf_ndxscn(3E) Unsafe

elf_newdata(3E) Unsafe

elf_newscn(3E) Unsafe

elf_next(3E) Unsafe

elf_nextscn(3E) Unsafe

elf_rand(3E) Unsafe

elf_rawdata(3E) Unsafe

elf_rawfile(3E) Unsafe

elf_strptr(3E) Unsafe

elf_update(3E) Unsafe

elf_version(3E) Unsafe

encrypt(3C) Safe

endac(3) Safe

endauclass(3) MT-Safe

endauevent(3) MT-Safe

endauuser(3) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

endnetconfig(3N) MT-Safe

endnetpath(3N) MT-Safe

endutent(3C) Unsafe

endutxent(3C) Unsafe

endwin(3X) Unsafe

erand48(3C) Safe

erase(3) Safe

erase(3X) Unsafe

erasechar(3X) Unsafe

erf(3M) MT-Safe

erfc(3M) MT-Safe

errno(3C) MT-Safe

ethers(3N) MT-Safe

ether_aton(3N) MT-Safe

ether_hostton(3N) MT-Safe

ether_line(3N) MT-Safe

ether_ntoa(3N) MT-Safe

ether_ntohost(3N) MT-Safe

euccol(3I) Safe
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Library Routine Safety Level

euclen(3I) Safe

eucscol(3I) Safe

exit(3C) Safe

exp(3M) MT-Safe

expm1(3M) MT-Safe

extended_to_decimal(3) MT-Safe

fabs(3M) MT-Safe

fattach(3C) MT-Safe

fclose(3S) MT-Safe

fconvert(3) MT-Safe

fcvt(3) MT-Safe

fcvt(3C) Unsafe

fdatasync(3R) Async-Signal-Safe

fdetach(3C) Unsafe

fdopen(3S) MT-Safe

feof(3S) MT-Safe

ferror(3S) MT-Safe

fflush(3S) MT-Safe

ffs(3C) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

fgetc(3S) MT-Safe

fgetgrent(3C) Unsafe, use fgetgrent_r( )

fgetpos(3C) MT-Safe

fgetpwent(3C) Unsafe, use fgetpwent_r( )

fgets(3S) MT-Safe

fgetspent(3C) Unsafe, use fgetspent_r( )

fgetwc(3I) MT-Safe

fgetws(3I) MT-Safe

field_arg(3X) Unsafe

field_back(3X) Unsafe

field_buffer(3X) Unsafe

field_count(3X) Unsafe

field_fore(3X) Unsafe

field_index(3X) Unsafe

field_info(3X) Unsafe

field_init(3X) Unsafe

field_just(3X) Unsafe

field_opts(3X) Unsafe

field_opts_off(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

field_opts_on(3X) Unsafe

field_pad(3X) Unsafe

field_status(3X) Unsafe

field_term(3X) Unsafe

field_type(3X) Unsafe

field_userptr(3X) Unsafe

fileno(3S) MT-Safe

file_to_decimal(3) MT-Safe

filter(3X) Unsafe

finite(3C) MT-Safe

flash(3X) Unsafe

floating_to_decimal(3) MT-Safe

flockfile(3S) MT-Safe

floor(3M) MT-Safe

flushinp(3X) Unsafe

fmod(3M) MT-Safe

fmtmsg(3C) Safe

fnmatch(3C) MT-Safe

fn_attribute_add(3N) Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

fn_attribute_assign(3N) Safe

fn_attribute_copy(3N) Safe

fn_attribute_create(3N) Safe

fn_attribute_destroy(3N) Safe

fn_attribute_first(3N) Safe

fn_attribute_identifier(3N) Safe

fn_attribute_next(3N) Safe

fn_attribute_remove(3N) Safe

fn_attribute_syntax(3N) Safe

FN_attribute_t(3N) Safe

fn_attribute_valuecount(3N) Safe

fn_attrmodlist_add(3N) Safe

fn_attrmodlist_assign(3N) Safe

fn_attrmodlist_copy(3N) Safe

fn_attrmodlist_count(3N) Safe

fn_attrmodlist_create(3N) Safe

fn_attrmodlist_destroy(3N) Safe

fn_attrmodlist_first(3N) Safe

fn_attrmodlist_next(3N) Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

FN_attrmodlist_t(3N) Safe

fn_attrset_add(3N) Safe

fn_attrset_assign(3N) Safe

fn_attrset_copy(3N) Safe

fn_attrset_count(3N) Safe

fn_attrset_create(3N) Safe

fn_attrset_destroy(3N) Safe

fn_attrset_first(3N) Safe

fn_attrset_get(3N) Safe

fn_attrset_next(3N) Safe

fn_attrset_remove(3N) Safe

FN_attrset_t(3N) Safe

fn_attr_get(3N) Safe

fn_attr_get_ids(3N) Safe

fn_attr_get_values(3N) Safe

fn_attr_modify(3N) Safe

fn_attr_multi_get(3N) Safe

fn_attr_multi_modify(3N) Safe

fn_bindinglist_destroy(3N) Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

fn_bindinglist_next(3N) Safe

FN_bindinglist_t(3N) Safe

fn_composite_name_append_comp(3N) Safe

fn_composite_name_append_name(3N) Safe

fn_composite_name_assign(3N) Safe

fn_composite_name_copy(3N) Safe

fn_composite_name_count(3N) Safe

fn_composite_name_create(3N) Safe

fn_composite_name_delete_comp(3N) Safe

fn_composite_name_destroy(3N) Safe

fn_composite_name_first(3N) Safe

fn_composite_name_from_string(3N) Safe

fn_composite_name_insert_comp(3N) Safe

fn_composite_name_insert_name(3N) Safe

fn_composite_name_is_empty(3N) Safe

fn_composite_name_is_equal(3N) Safe

fn_composite_name_is_prefix(3N) Safe

fn_composite_name_is_suffix(3N) Safe

fn_composite_name_last(3N) Safe
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Library Routine Safety Level

fn_composite_name_next(3N) Safe

fn_composite_name_prefix(3N) Safe

fn_composite_name_prepend_comp(3N) Safe

fn_composite_name_prepend_name(3N) Safe

fn_composite_name_prev(3N) Safe

fn_composite_name_suffix(3N) Safe

FN_composite_name_t(3N) Safe

fn_compound_name_append_comp(3N) Safe

fn_compound_name_assign(3N) Safe

fn_compound_name_copy(3N) Safe

fn_compound_name_count(3N) Safe

fn_compound_name_delete_all(3N) Safe

fn_compound_name_delete_comp(3N) Safe

fn_compound_name_destroy(3N) Safe

fn_compound_name_first(3N) Safe

fn_compound_name_from_syntax_attrs Safe

fn_compound_name_get_syntax_attrs(3N) Safe

fn_compound_name_insert_comp(3N) Safe

fn_compound_name_is_empty(3N) Safe
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Library Routine Safety Level

fn_compound_name_is_equal(3N) Safe

fn_compound_name_is_prefix(3N) Safe

fn_compound_name_is_suffix(3N) Safe

fn_compound_name_last(3N) Safe

fn_compound_name_next(3N) Safe

fn_compound_name_prefix(3N) Safe

fn_compound_name_prepend_comp(3N) Safe

fn_compound_name_prev(3N) Safe

fn_compound_name_suffix(3N) Safe

FN_compound_name_t(3N) Safe

fn_ctx_bind(3N) Safe

fn_ctx_create_subcontext(3N) Safe

fn_ctx_destroy_subcontext(3N) Safe

fn_ctx_get_ref(3N) Safe

fn_ctx_get_syntax_attrs(3N) Safe

fn_ctx_handle_destroy(3N) Safe

fn_ctx_handle_from_initial(3N) MT-Safe

fn_ctx_handle_from_ref(3N) Safe

fn_ctx_list_bindings(3N) Safe
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Library Routine Safety Level

fn_ctx_list_names(3N) Safe

fn_ctx_lookup(3N) Safe

fn_ctx_lookup_link(3N) Safe

fn_ctx_rename(3N) Safe

FN_ctx_t(3N) Safe

fn_ctx_unbind(3N) Safe

fn_multigetlist_destroy(3N) Safe

fn_multigetlist_next(3N) Safe

FN_multigetlist_t(3N) Safe

fn_namelist_destroy(3N) Safe

fn_namelist_next(3N) Safe

FN_namelist_t(3N) Safe

fn_ref_addrcount(3N) Safe

fn_ref_addr_assign(3N) Safe

fn_ref_addr_copy(3N) Safe

fn_ref_addr_create(3N) Safe

fn_ref_addr_data(3N) Safe

fn_ref_addr_description(3N) Safe

fn_ref_addr_destroy(3N) Safe
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Library Routine Safety Level

fn_ref_addr_length(3N) Safe

FN_ref_addr_t(3N) Safe

fn_ref_addr_type(3N) Safe

fn_ref_append_addr(3N) Safe

fn_ref_assign(3N) Safe

fn_ref_copy(3N) Safe

fn_ref_create(3N) Safe

fn_ref_create_link(3N) Safe

fn_ref_delete_addr(3N) Safe

fn_ref_delete_all(3N) Safe

fn_ref_description(3N) Safe

fn_ref_destroy(3N) Safe

fn_ref_first(3N) Safe

fn_ref_insert_addr(3N) Safe

fn_ref_is_link(3N) Safe

fn_ref_link_name(3N) Safe

fn_ref_next(3N) Safe

fn_ref_prepend_addr(3N) Safe

FN_ref_t(3N) Safe
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Library Routine Safety Level

fn_ref_type(3N) Safe

fn_status_advance_by_name(3N) Safe

fn_status_append_remaining_name(3N) Safe

fn_status_append_resolved_name(3N) Safe

fn_status_assign(3N) Safe

fn_status_code(3N) Safe

fn_status_copy(3N) Safe

fn_status_create(3N) Safe

fn_status_description(3N) Safe

fn_status_destroy(3N) Safe

fn_status_diagnostic_message(3N) Safe

fn_status_is_success(3N) Safe

fn_status_link_code(3N) Safe

fn_status_link_diagnostic_message(3N) Safe

fn_status_link_remaining_name(3N) Safe

fn_status_link_resolved_name(3N) Safe

fn_status_link_resolved_ref(3N) Safe

fn_status_remaining_name(3N) Safe

fn_status_resolved_name(3N) Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

fn_status_resolved_ref(3N) Safe

fn_status_set(3N) Safe

fn_status_set_code(3N) Safe

fn_status_set_diagnostic_message(3N) Safe

fn_status_set_link_code(3N) Safe

fn_status_set_link_diagnostic_message Safe

fn_status_set_link_remaining_name(3N) Safe

fn_status_set_link_resolved_name(3N) Safe

fn_status_set_link_resolved_ref(3N) Safe

fn_status_set_remaining_name(3N) Safe

fn_status_set_resolved_name(3N) Safe

fn_status_set_resolved_ref(3N) Safe

fn_status_set_success(3N) Safe

FN_status_t(3N) Safe

fn_string_assign(3N) Safe

fn_string_bytecount(3N) Safe

fn_string_charcount(3N) Safe

fn_string_code_set(3N) Safe

fn_string_compare(3N) Safe
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Library Routine Safety Level

fn_string_compare_substring(3N) Safe

fn_string_contents(3N) Safe

fn_string_copy(3N) Safe

fn_string_create(3N) Safe

fn_string_destroy(3N) Safe

fn_string_from_composite_name(3N) Safe

fn_string_from_compound_name(3N) Safe

fn_string_from_contents(3N) Safe

fn_string_from_str(3N) Safe

fn_string_from_strings(3N) Safe

fn_string_from_str_n(3N) Safe

fn_string_from_substring(3N) Safe

fn_string_is_empty(3N) Safe

fn_string_next_substring(3N) Safe

fn_string_prev_substring(3N) Safe

fn_string_str(3N) Safe

FN_string_t(3N) Safe

fn_valuelist_destroy(3N) Safe

fn_valuelist_next(3N) Safe
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Library Routine Safety Level

FN_valuelist_t(3N) Safe

fopen(3S) MT-Safe

forms(3X) Unsafe

form_cursor(3X) Unsafe

form_data(3X) Unsafe

form_driver(3X) Unsafe

form_field(3X) Unsafe

form_fields(3X) Unsafe

form_fieldtype(3X) Unsafe

form_field_attributes(3X) Unsafe

form_field_buffer(3X) Unsafe

form_field_info(3X) Unsafe

form_field_just(3X) Unsafe

form_field_new(3X) Unsafe

form_field_opts(3X) Unsafe

form_field_userptr(3X) Unsafe

form_field_validation(3X) Unsafe

form_hook(3X) Unsafe

form_init(3X) Unsafe

MT Safety Levels: Library Interfaces 311



TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

form_new(3X) Unsafe

form_new_page(3X) Unsafe

form_opts(3X) Unsafe

form_opts_off(3X) Unsafe

form_opts_on(3X) Unsafe

form_page(3X) Unsafe

form_post(3X) Unsafe

form_sub(3X) Unsafe

form_term(3X) Unsafe

form_userptr(3X) Unsafe

form_win(3X) Unsafe

fpclass(3C) MT-Safe

fpgetmask(3C) MT-Safe

fpgetround(3C) MT-Safe

fpgetsticky(3C) MT-Safe

fprintf(3S) MT-Safe except with
setlocale( )

fpsetmask(3C) MT-Safe

fpsetround(3C) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

fpsetsticky(3C) MT-Safe

fputc(3S) MT-Safe

fputs(3S) MT-Safe

fputwc(3I) MT-Safe

fputws(3I) MT-Safe

fread(3S) MT-Safe

free(3C) Safe

free(3X) Safe

freenetconfigent(3N) MT-Safe

free_field(3X) Unsafe

free_fieldtype(3X) Unsafe

free_form(3X) Unsafe

free_item(3X) Unsafe

free_menu(3X) Unsafe

freopen(3S) MT-Safe

frexp(3C) MT-Safe

fscanf(3S) MT-Safe

fseek(3S) MT-Safe

fsetpos(3C) MT-Safe

MT Safety Levels: Library Interfaces 313



TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

fsync(3C) Async-Signal-Safe

ftell(3S) MT-Safe

ftok(3C) MT-Safe

ftruncate(3C) MT-Safe

ftrylockfile(3S) MT-Safe

ftw(3C) Safe

func_to_decimal(3) MT-Safe

funlockfile(3S) MT-Safe

fwrite(3S) MT-Safe

gconvert(3) MT-Safe

gcvt(3) MT-Safe

gcvt(3C) Unsafe

getacdir(3) Safe

getacflg(3) Safe

getacinfo(3) Safe

getacmin(3) Safe

getacna(3) Safe

getauclassent(3) Unsafe

getauclassent_r(3) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

getauclassnam(3) Unsafe

getauclassnam_r(3) MT-Safe

getauditflags(3) MT-Safe

getauditflagsbin(3) MT-Safe

getauditflagschar(3) MT-Safe

getauevent(3) Unsafe

getauevent_r(3) MT-Safe

getauevnam(3) Unsafe

getauevnam_r(3) MT-Safe

getauevnonam(3) MT-Safe

getauevnum(3) Unsafe

getauevnum_r(3) MT-Safe

getauuserent(3) Unsafe

getauusernam(3) Unsafe

getbegyx(3X) Unsafe

getc(3S) MT-Safe

getch(3X) Unsafe

getchar(3S) MT-Safe

getcwd(3C) Safe
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Library Routine Safety Level

getdate(3C) MT-Safe

getenv(3C) Safe

getfauditflags(3) MT-Safe

getgrent(3C) Unsafe, use getgrent_r( )

getgrgid(3C) Unsafe, use getgrgid_r( )

getgrnam(3C) Unsafe, use getgrnam_r( )

gethostbyaddr(3N) Unsafe, use gethostbyaddr_r()

gethostbyname(3N) Unsafe, use gethostbyname_r()

gethrtime(3C) MT-Safe

gethrvtime(3C) MT-Safe

getlogin(3C) Unsafe, use getlogin_r( )

getmaxyx(3X) Unsafe

getmntany(3C) Safe

getmntent(3C) Safe

getnetbyaddr(3N) Unsafe, use getnetbyaddr_r()

getnetbyname(3N) Unsafe, use getnetbyname_r()

getnetconfig(3N) MT-Safe

getnetconfigent(3N) MT-Safe

getnetgrent(3N) Unsafe, use getnetgrent_r()

316 Multithreaded Programming Guide ♦ February 2000



TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

getnetname(3N) MT-Safe

getnetpath(3N) MT-Safe

getnwstr(3X) Unsafe

getopt(3C) Unsafe

getparyx(3X) Unsafe

getpass(3C) Unsafe

getpeername(3N) Safe

getprotobyname(3N) Unsafe, use
getprotobyname_r( )

getprotobynumber(3N) Unsafe, use
getprotobynumber_r()

getprotoent(3N) Unsafe, use getprotoent_r()

getpublickey(3N) Safe

getpw(3C) Safe

getpwent(3C) Unsafe, use getpwent_r( )

getpwnam(3C) Unsafe, use getpwnam_r( )

getpwuid(3C) Unsafe, use getpwuid_r( )

getrpcbyname(3N) Unsafe, use getrpcbyname_r()

getrpcbynumber(3N) Unsafe, use
getrpcbynumber_r( )

getrpcent(3N) Unsafe, use getrpcent_r( )
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

getrpcport(3N) Unsafe

gets(3S) MT-Safe

getsecretkey(3N) Safe

getservbyname(3N) Unsafe, use getservbyname_r()

getservbyport(3N) Unsafe, use getservbyport_r()

getservent(3N) Unsafe, use getservent_r( )

getsockname(3N) Safe

getsockopt(3N) Safe

getspent(3C) Unsafe, use getspent_r( )

getspnam(3C) Unsafe, use getspnam_r( )

getstr(3X) Unsafe

getsubopt(3C) MT-Safe

getsyx(3X) Unsafe

gettext(3I) Safe with exceptions

gettimeofday(3C) MT-Safe

gettxt(3C) Safe with exceptions

getutent(3C) Unsafe

getutid(3C) Unsafe

getutline(3C) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

getutmp(3C) Unsafe

getutmpx(3C) Unsafe

getutxent(3C) Unsafe

getutxid(3C) Unsafe

getutxline(3C) Unsafe

getvfsany(3C) Safe

getvfsent(3C) Safe

getvfsfile(3C) Safe

getvfsspec(3C) Safe

getw(3S) MT-Safe

getwc(3I) MT-Safe

getwch(3X) Unsafe

getwchar(3I) MT-Safe

getwidth(3I) MT-Safe with exceptions

getwin(3X) Unsafe

getws(3I) MT-Safe

getwstr(3X) Unsafe

getyx(3X) Unsafe

get_myaddress(3N) Unsafe
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Library Routine Safety Level

gmatch(3G) MT-Safe

gmtime(3C) Unsafe, use gmtime_r()

grantpt(3C) Safe

gsignal(3C) Unsafe

halfdelay(3X) Unsafe

hasmntopt(3C) Safe

has_colors(3X) Unsafe

has_ic(3X) Unsafe

has_il(3X) Unsafe

havedisk(3N) MT-Safe

hcreate(3C) Safe

hdestroy(3C) Safe

hide_panel(3X) Unsafe

host2netname(3N) MT-Safe

hsearch(3C) Safe

htonl(3N) Safe

htons(3N) Safe

hyperbolic(3M) MT-Safe

hypot(3M) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

iconv(3) MT-Safe

iconv_close(3) MT-Safe

iconv_open(3) MT-Safe

idcok(3X) Unsafe

idlok(3X) Unsafe

ieee_functions(3M) MT-Safe

ieee_test(3M) MT-Safe

ilogb(3M) MT-Safe

immedok(3X) Unsafe

inch(3X) Unsafe

inchnstr(3X) Unsafe

inchstr(3X) Unsafe

inet(3N) Safe

inet_addr(3N) Safe

inet_lnaof(3N) Safe

inet_makeaddr(3N) Safe

inet_netof(3N) Safe

inet_network(3N) Safe

inet_ntoa(3N) Safe

MT Safety Levels: Library Interfaces 321



TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

initgroups(3C) Unsafe

initscr(3X) Unsafe

init_color(3X) Unsafe

init_pair(3X) Unsafe

innstr(3X) Unsafe

innwstr(3X) Unsafe

insch(3X) Unsafe

insdelln(3X) Unsafe

insertln(3X) Unsafe

insnstr(3X) Unsafe

insnwstr(3X) Unsafe

insque(3C) Unsafe

insstr(3X) Unsafe

instr(3X) Unsafe

inswch(3X) Unsafe

inswstr(3X) Unsafe

intrflush(3X) Unsafe

inwch(3X) Unsafe

inwchnstr(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

inwchstr(3X) Unsafe

inwstr(3X) Unsafe

isalnum(3C) MT-Safe with exceptions

isalpha(3C) MT-Safe with exceptions

isascii(3C) MT-Safe with exceptions

isastream(3C) MT-Safe

iscntrl(3C) MT-Safe with exceptions

isdigit(3C) MT-Safe with exceptions

isencrypt(3G) MT-Safe

isendwin(3X) Unsafe

isenglish(3I) MT-Safe with exceptions

isgraph(3C) MT-Safe with exceptions

isideogram(3I) MT-Safe with exceptions

islower(3C) MT-Safe with exceptions

isnan(3C) MT-Safe

isnan(3M) MT-Safe

isnand(3C) MT-Safe

isnanf(3C) MT-Safe

isnumber(3I) MT-Safe with exceptions
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

isphonogram(3I) MT-Safe with exceptions

isprint(3C) MT-Safe with exceptions

ispunct(3C) MT-Safe with exceptions

isspace(3C) MT-Safe with exceptions

isspecial(3I) MT-Safe with exceptions

isupper(3C) MT-Safe with exceptions

iswalnum(3I) MT-Safe with exceptions

iswalpha(3I) MT-Safe with exceptions

iswascii(3I) MT-Safe with exceptions

iswcntrl(3I) MT-Safe with exceptions

iswctype(3I) MT-Safe

iswdigit(3I) MT-Safe with exceptions

iswgraph(3I) MT-Safe with exceptions

iswlower(3I) MT-Safe with exceptions

iswprint(3I) MT-Safe with exceptions

iswpunct(3I) MT-Safe with exceptions

iswspace(3I) MT-Safe with exceptions

iswupper(3I) MT-Safe with exceptions

iswxdigit(3I) MT-Safe with exceptions
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

isxdigit(3C) MT-Safe with exceptions

is_linetouched(3X) Unsafe

is_wintouched(3X) Unsafe

item_count(3X) Unsafe

item_description(3X) Unsafe

item_index(3X) Unsafe

item_init(3X) Unsafe

item_name(3X) Unsafe

item_opts(3X) Unsafe

item_opts_off(3X) Unsafe

item_opts_on(3X) Unsafe

item_term(3X) Unsafe

item_userptr(3X) Unsafe

item_value(3X) Unsafe

item_visible(3X) Unsafe

j0(3M) MT-Safe

j1(3M) MT-Safe

jn(3M) MT-Safe

jrand48(3C) Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

kerberos(3N) Unsafe

kerberos_rpc(3N) Unsafe

keyname(3X) Unsafe

keypad(3X) Unsafe

key_decryptsession(3N) MT-Safe

key_encryptsession(3N) MT-Safe

key_gendes(3N) MT-Safe

key_secretkey_is_set(3N) MT-Safe

key_setsecret(3N) MT-Safe

killchar(3X) Unsafe

krb_get_admhst(3N) Unsafe

krb_get_cred(3N) Unsafe

krb_get_krbhst(3N) Unsafe

krb_get_lrealm(3N) Unsafe

krb_get_phost(3N) Unsafe

krb_kntoln(3N) Unsafe

krb_mk_err(3N) Unsafe

krb_mk_req(3N) Unsafe

krb_mk_safe(3N) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

krb_net_read(3N) Unsafe

krb_net_write(3N) Unsafe

krb_rd_err(3N) Unsafe

krb_rd_req(3N) Unsafe

krb_rd_safe(3N) Unsafe

krb_realmofhost(3N) Unsafe

krb_recvauth(3N) Unsafe

krb_sendauth(3N) Unsafe

krb_set_key(3N) Unsafe

krb_set_tkt_string(3N) Unsafe

kvm_close(3K) Unsafe

kvm_getcmd(3K) Unsafe

kvm_getproc(3K) Unsafe

kvm_getu(3K) Unsafe

kvm_kread(3K) Unsafe

kvm_kwrite(3K) Unsafe

kvm_nextproc(3K) Unsafe

kvm_nlist(3K) Unsafe

kvm_open(3K) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

kvm_read(3K) Unsafe

kvm_setproc(3K) Unsafe

kvm_uread(3K) Unsafe

kvm_uwrite(3K) Unsafe

kvm_write(3K) Unsafe

l64a(3C) MT-Safe

label(3) Safe

labs(3C) MT-Safe

lckpwdf(3C) MT-Safe

lcong48(3C) Safe

ldexp(3C) MT-Safe

ldiv(3C) MT-Safe

leaveok(3X) Unsafe

lfind(3C) Safe

lfmt(3C) MT-Safe

lgamma(3M) Unsafe, use lgamma_r()

libpthread(3T) Fork1-Safe,MT-Safe,Async-Signal-
Safe

libthread(3T) Fork1-Safe,MT-Safe,Async-Signal-
Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

line(3) Safe

link_field(3X) Unsafe

link_fieldtype(3X) Unsafe

linmod(3) Safe

lio_listio(3R) MT-Safe

listen(3N) Safe

llabs(3C) MT-Safe

lldiv(3C) MT-Safe

lltostr(3C) MT-Safe

localeconv(3C) Safe with exceptions

localtime(3C) Unsafe, use localtime_r( )

lockf(3C) MT-Safe

log(3M) MT-Safe

log10(3M) MT-Safe

log1p(3M) MT-Safe

logb(3C) MT-Safe

logb(3M) MT-Safe

longjmp(3C) Unsafe

longname(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

lrand48(3C) Safe

lsearch(3C) Safe

madvise(3) MT-Safe

maillock(3X) Unsafe

major(3C) MT-Safe

makecontext(3C) MT-Safe

makedev(3C) MT-Safe

mallinfo(3X) Safe

malloc(3C) Safe

malloc(3X) Safe

mallopt(3X) Safe

mapmalloc(3X) Safe

matherr(3M) MT-Safe

mbchar(3C) MT-Safe with exceptions

mblen(3C) MT-Safe with exceptions

mbstowcs(3C) MT-Safe with exceptions

mbstring(3C) MT-Safe with exceptions

mbtowc(3C) MT-Safe with exceptions

media_findname(3X) MT-Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

media_getattr(3X) MT-Safe

media_setattr(3X) MT-Safe

memalign(3C) Safe

memccpy(3C) MT-Safe

memchr(3C) MT-Safe

memcmp(3C) MT-Safe

memcpy(3C) MT-Safe

memmove(3C) MT-Safe

memory(3C) MT-Safe

memset(3C) MT-Safe

menus(3X) Unsafe

menu_attributes(3X) Unsafe

menu_back(3X) Unsafe

menu_cursor(3X) Unsafe

menu_driver(3X) Unsafe

menu_fore(3X) Unsafe

menu_format(3X) Unsafe

menu_grey(3X) Unsafe

menu_hook(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

menu_init(3X) Unsafe

menu_items(3X) Unsafe

menu_item_current(3X) Unsafe

menu_item_name(3X) Unsafe

menu_item_new(3X) Unsafe

menu_item_opts(3X) Unsafe

menu_item_userptr(3X) Unsafe

menu_item_value(3X) Unsafe

menu_item_visible(3X) Unsafe

menu_mark(3X) Unsafe

menu_new(3X) Unsafe

menu_opts(3X) Unsafe

menu_opts_off(3X) Unsafe

menu_opts_on(3X) Unsafe

menu_pad(3X) Unsafe

menu_pattern(3X) Unsafe

menu_post(3X) Unsafe

menu_sub(3X) Unsafe

menu_term(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

menu_userptr(3X) Unsafe

menu_win(3X) Unsafe

meta(3X) Unsafe

minor(3C) MT-Safe

mkdirp(3G) MT-Safe

mkfifo(3C) MT-Safe, Async-Signal-Safe

mktemp(3C) Safe

mktime(3C) Unsafe

mlock(3C) MT-Safe

monitor(3C) Safe

move(3) Safe

move(3X) Unsafe

movenextch(3X) Unsafe

moveprevch(3X) Unsafe

move_field(3X) Unsafe

move_panel(3X) Unsafe

mq_close(3R) MT-Safe

mq_getattr(3R) MT-Safe

mq_notify(3R) MT-Safe
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Library Routine Safety Level

mq_open(3R) MT-Safe

mq_receive(3R) MT-Safe

mq_send(3R) MT-Safe

mq_setattr(3R) MT-Safe

mq_unlink(3R) MT-Safe

mrand48(3C) Safe

msync(3C) MT-Safe

munlock(3C) MT-Safe

munlockall(3C) MT-Safe

mutex(3T) MT-Safe

mutex_destroy(3T) MT-Safe

mutex_init(3T) MT-Safe

mutex_lock(3T) MT-Safe

mutex_trylock(3T) MT-Safe

mutex_unlock(3T) MT-Safe

mvaddch(3X) Unsafe

mvaddchnstr(3X) Unsafe

mvaddchstr(3X) Unsafe

mvaddnstr(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

mvaddnwstr(3X) Unsafe

mvaddstr(3X) Unsafe

mvaddwch(3X) Unsafe

mvaddwchnstr(3X) Unsafe

mvaddwchstr(3X) Unsafe

mvaddwstr(3X) Unsafe

mvcur(3X) Unsafe

mvdelch(3X) Unsafe

mvderwin(3X) Unsafe

mvgetch(3X) Unsafe

mvgetnwstr(3X) Unsafe

mvgetstr(3X) Unsafe

mvgetwch(3X) Unsafe

mvgetwstr(3X) Unsafe

mvinch(3X) Unsafe

mvinchnstr(3X) Unsafe

mvinchstr(3X) Unsafe

mvinnstr(3X) Unsafe

mvinnwstr(3X) Unsafe
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Library Routine Safety Level

mvinsch(3X) Unsafe

mvinsnstr(3X) Unsafe

mvinsnwstr(3X) Unsafe

mvinsstr(3X) Unsafe

mvinstr(3X) Unsafe

mvinswch(3X) Unsafe

mvinswstr(3X) Unsafe

mvinwch(3X) Unsafe

mvinwchnstr(3X) Unsafe

mvinwchstr(3X) Unsafe

mvinwstr(3X) Unsafe

mvprintw(3X) Unsafe

mvscanw(3X) Unsafe

mvwaddch(3X) Unsafe

mvwaddchnstr(3X) Unsafe

mvwaddchstr(3X) Unsafe

mvwaddnstr(3X) Unsafe

mvwaddnwstr(3X) Unsafe

mvwaddstr(3X) Unsafe

336 Multithreaded Programming Guide ♦ February 2000



TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

mvwaddwch(3X) Unsafe

mvwaddwchnstr(3X) Unsafe

mvwaddwchstr(3X) Unsafe

mvwaddwstr(3X) Unsafe

mvwdelch(3X) Unsafe

mvwgetch(3X) Unsafe

mvwgetnwstr(3X) Unsafe

mvwgetstr(3X) Unsafe

mvwgetwch(3X) Unsafe

mvwgetwstr(3X) Unsafe

mvwin(3X) Unsafe

mvwinch(3X) Unsafe

mvwinchnstr(3X) Unsafe

mvwinchstr(3X) Unsafe

mvwinnstr(3X) Unsafe

mvwinnwstr(3X) Unsafe

mvwinsch(3X) Unsafe

mvwinsnstr(3X) Unsafe

mvwinsnwstr(3X) Unsafe
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Library Routine Safety Level

mvwinsstr(3X) Unsafe

mvwinstr(3X) Unsafe

mvwinswch(3X) Unsafe

mvwinswstr(3X) Unsafe

mvwinwch(3X) Unsafe

mvwinwchnstr(3X) Unsafe

mvwinwchstr(3X) Unsafe

mvwinwstr(3X) Unsafe

mvwprintw(3X) Unsafe

mvwscanw(3X) Unsafe

nanosleep(3R) MT-Safe

napms(3X) Unsafe

nc_perror(3N) MT-Safe

nc_sperror(3N) MT-Safe

ndbm(3) Unsafe

netdir(3N) MT-Safe

netdir_free(3N) MT-Safe

netdir_getbyaddr(3N) MT-Safe

netdir_getbyname(3N) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

netdir_mergeaddr(3N) MT-Safe

netdir_options(3N) MT-Safe

netdir_perror(3N) MT-Safe

netdir_sperror(3N) MT-Safe

netname2host(3N) MT-Safe

netname2user(3N) MT-Safe

newpad(3X) Unsafe

newterm(3X) Unsafe

newwin(3X) Unsafe

new_field(3X) Unsafe

new_fieldtype(3X) Unsafe

new_form(3X) Unsafe

new_item(3X) Unsafe

new_menu(3X) Unsafe

new_page(3X) Unsafe

new_panel(3X) Unsafe

nextafter(3C) MT-Safe

nextafter(3M) MT-Safe

nftw(3C) Safe with exceptions
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Library Routine Safety Level

nis_add(3N) MT-Safe

nis_clone_object(3N) Safe

nis_creategroup(3N) MT-Safe

nis_db(3N) Unsafe

nis_destroygroup(3N) MT-Safe

nis_destroy_object(3N) Safe

nis_dir_cmp(3N) Safe

nis_domain_of(3N) Safe

nis_error(3N) Safe

nis_first_entry(3N) MT-Safe

nis_freenames(3N) Safe

nis_freeresult(3N) MT-Safe

nis_freeservlist(3N) MT-Safe

nis_freetags(3N) MT-Safe

nis_getnames(3N) Safe

nis_getservlist(3N) MT-Safe

nis_groups(3N) MT-Safe

nis_ismember(3N) MT-Safe

nis_leaf_of(3N) Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

nis_lerror(3N) Safe

nis_list(3N) MT-Safe

nis_local_directory(3N) MT-Safe

nis_local_group(3N) MT-Safe

nis_local_host(3N) MT-Safe

nis_local_names(3N) MT-Safe

nis_local_principal(3N) MT-Safe

nis_lookup(3N) MT-Safe

nis_map_group(3N) MT-Safe

nis_mkdir(3N) MT-Safe

nis_modify(3N) MT-Safe

nis_modify_entry(3N) MT-Safe

nis_names(3N) MT-Safe

nis_name_of(3N) Safe

nis_next_entry(3N) MT-Safe

nis_perror(3N) Safe

nis_ping(3N) MT-Safe

nis_print_group_entry(3N) MT-Safe

nis_print_object(3N) Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

nis_remove(3N) MT-Safe

nis_removemember(3N) MT-Safe

nis_remove_entry(3N) MT-Safe

nis_rmdir(3N) MT-Safe

nis_server(3N) MT-Safe

nis_servstate(3N) MT-Safe

nis_sperrno(3N) Safe

nis_sperror(3N) Safe

nis_sperror_r(3N) Safe

nis_stats(3N) MT-Safe

nis_subr(3N) Safe

nis_tables(3N) MT-Safe

nis_verifygroup(3N) MT-Safe

nl(3X) Unsafe

nlist(3E) Safe

nlsgetcall(3N) Unsafe

nlsprovider(3N) Unsafe

nlsrequest(3N) Unsafe

nl_langinfo(3C) Safe with exceptions
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

nocbreak(3X) Unsafe

nodelay(3X) Unsafe

noecho(3X) Unsafe

nonl(3X) Unsafe

noqiflush(3X) Unsafe

noraw(3X) Unsafe

NOTE(3X) Safe

notimeout(3X) Unsafe

nrand48(3C) Safe

ntohl(3N) Safe

ntohs(3N) Safe

offsetof(3C) MT-Safe

opendir(3C) Safe

openlog(3) Safe

openpl(3) Safe

openvt(3) Safe

overlay(3X) Unsafe

overwrite(3X) Unsafe

p2close(3G) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

p2open(3G) Unsafe

pair_content(3X) Unsafe

panels(3X) Unsafe

panel_above(3X) Unsafe

panel_below(3X) Unsafe

panel_hidden(3X) Unsafe

panel_move(3X) Unsafe

panel_new(3X) Unsafe

panel_show(3X) Unsafe

panel_top(3X) Unsafe

panel_update(3X) Unsafe

panel_userptr(3X) Unsafe

panel_window(3X) Unsafe

pathfind(3G) MT-Safe

pclose(3S) Unsafe

pechochar(3X) Unsafe

pechowchar(3X) Unsafe

perror(3C) MT-Safe

pfmt(3C) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

plot(3) Safe

pmap_getmaps(3N) Unsafe

pmap_getport(3N) Unsafe

pmap_rmtcall(3N) Unsafe

pmap_set(3N) Unsafe

pmap_unset(3N) Unsafe

pnoutrefresh(3X) Unsafe

point(3) Safe

popen(3S) Unsafe

post_form(3X) Unsafe

post_menu(3X) Unsafe

pos_form_cursor(3X) Unsafe

pos_menu_cursor(3X) Unsafe

pow(3M) MT-Safe

prefresh(3X) Unsafe

printf(3S) MT-Safe except with
setlocale( )

printw(3X) Unsafe

psiginfo(3C) Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

psignal(3C) Safe

pthreads(3T) Fork1-Safe,MT-Safe,Async-Signal-
Safe

pthread_atfork(3T) MT-Safe

pthread_attr_destroy(3T) MT-Safe

pthread_attr_getdetachstate(3T) MT-Safe

pthread_attr_getinheritsched(3T) MT-Safe

pthread_attr_getschedparam(3T) MT-Safe

pthread_attr_getschedpolicy(3T) MT-Safe

pthread_attr_getscope(3T) MT-Safe

pthread_attr_getstackaddr(3T) MT-Safe

pthread_attr_getstacksize(3T) MT-Safe

pthread_attr_init(3T) MT-Safe

pthread_attr_setdetachstate(3T) MT-Safe

pthread_attr_setscope(3T) MT-Safe

pthread_attr_setstackaddr(3T) MT-Safe

pthread_attr_setstacksize(3T) MT-Safe

pthread_cancel(3T) MT-Safe

pthread_cleanup_pop(3T) MT-Safe

pthread_cleanup_push(3T) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

pthread_condattr_destroy(3T) MT-Safe

pthread_condattr_getpshared(3T) MT-Safe

pthread_condattr_init(3T) MT-Safe

pthread_condattr_setpshared(3T) MT-Safe

pthread_cond_broadcast(3T) MT-Safe

pthread_cond_destroy(3T) MT-Safe

pthread_cond_init(3T) MT-Safe

pthread_cond_signal(3T) MT-Safe

pthread_cond_timedwait(3T) MT-Safe

pthread_cond_wait(3T) MT-Safe

pthread_create(3T) MT-Safe

pthread_detach(3T) MT-Safe

pthread_equal(3T) MT-Safe

pthread_exit(3T) MT-Safe

pthread_getschedparam(3T) MT-Safe

pthread_getspecific(3T) MT-Safe

pthread_join(3T) MT-Safe

pthread_key_create(3T) MT-Safe

pthread_key_delete(3T) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

pthread_kill(3T) MT-Safe, Async-Signal-Safe

pthread_mutexattr_destroy(3T) MT-Safe

pthread_mutexattr_getprioceiling(3T) MT-Safe

pthread_mutexattr_getprotocol(3T) MT-Safe

pthread_mutexattr_getpshared(3T) MT-Safe

pthread_mutexattr_init(3T) MT-Safe

pthread_mutexattr_setprioceiling(3T) MT-Safe

pthread_mutexattr_setprotocol(3T) MT-Safe

pthread_mutexattr_setpshared(3T) MT-Safe

pthread_mutex_destroy(3T) MT-Safe

pthread_mutex_getprioceiling(3T) MT-Safe

pthread_mutex_init(3T) MT-Safe

pthread_mutex_lock(3T) MT-Safe

pthread_mutex_setprioceiling(3T) MT-Safe

pthread_mutex_trylock(3T) MT-Safe

pthread_mutex_unlock(3T) MT-Safe

pthread_once(3T) MT-Safe

pthread_self(3T) MT-Safe

pthread_setcancelstate(3T) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

pthread_setcanceltype(3T) MT-Safe

pthread_setschedparam(3T) MT-Safe

pthread_setspecific(3T) MT-Safe

pthread_sigmask(3T) MT-Safe, Async-Signal-Safe

pthread_testcancel(3T) MT-Safe

ptsname(3C) Safe

publickey(3N) Safe

putc(3S) MT-Safe

putchar(3S) MT-Safe

putenv(3C) Safe

putmntent(3C) Safe

putp(3X) Unsafe

putpwent(3C) Unsafe

puts(3S) MT-Safe

putspent(3C) Unsafe

pututline(3C) Unsafe

pututxline(3C) Unsafe

putw(3S) MT-Safe

putwc(3I) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

putwchar(3I) MT-Safe

putwin(3X) Unsafe

putws(3I) MT-Safe

qeconvert(3) MT-Safe

qfconvert(3) MT-Safe

qgconvert(3) MT-Safe

qiflush(3X) Unsafe

qsort(3C) Safe

quadruple_to_decimal(3) MT-Safe

rac_drop(3N) Unsafe

rac_poll(3N) Unsafe

rac_recv(3N) Unsafe

rac_send(3N) Unsafe

raise(3C) MT-Safe

rand(3C) Unsafe, use rand_r( )

random(3C) Unsafe

raw(3X) Unsafe

rcmd(3N) Unsafe

readdir(3C) Unsafe, use readdir_r()
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

read_vtoc(3X) Unsafe

realloc(3C) Safe

realloc(3X) Safe

realpath(3C) MT-Safe

recv(3N) Safe

recvfrom(3N) Safe

recvmsg(3N) Safe

redrawwin(3X) Unsafe

refresh(3X) Unsafe

regcmp(3G) MT-Safe

regcomp(3C) MT-Safe

regerror(3C) MT-Safe

regex(3G) MT-Safe

regexec(3C) MT-Safe

regexpr(3G) MT-Safe

regfree(3C) MT-Safe

registerrpc(3N) Unsafe

remainder(3M) MT-Safe

remove(3C) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

remque(3C) Unsafe

replace_panel(3X) Unsafe

resetty(3X) Unsafe

reset_prog_mode(3X) Unsafe

reset_shell_mode(3X) Unsafe

resolver(3N) Unsafe

restartterm(3X) Unsafe

res_init(3N) Unsafe

res_mkquery(3N) Unsafe

res_search(3N) Unsafe

res_send(3N) Unsafe

rewind(3S) MT-Safe

rewinddir(3C) Safe

rexec(3N) Unsafe

rint(3M) MT-Safe

ripoffline(3X) Unsafe

rmdirp(3G) MT-Safe

rnusers(3N) MT-Safe

rpc(3N) MT-Safe with exceptions
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

rpcbind(3N) MT-Safe

rpcb_getaddr(3N) MT-Safe

rpcb_getmaps(3N) MT-Safe

rpcb_gettime(3N) MT-Safe

rpcb_rmtcall(3N) MT-Safe

rpc_broadcast_exp(3N) MT-Safe

rpc_call(3N) MT-Safe

rpc_clnt_auth(3N) MT-Safe

rpc_clnt_calls(3N) MT-Safe

rpc_clnt_create(3N) MT-Safe

rpc_control(3N) MT-Safe

rpc_createerr(3N) MT-Safe

rpc_rac(3N) Unsafe

rpc_reg(3N) MT-Safe

rpc_soc(3N) Unsafe

rpc_svc_create(3N) MT-Safe

rpc_svc_err(3N) MT-Safe

rpc_svc_reg(3N) MT-Safe

rpc_xdr(3N) Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

rresvport(3N) Unsafe

rstat(3N) MT-Safe

ruserok(3N) Unsafe

rusers(3N) MT-Safe

rwall(3N) MT-Safe

rwlock(3T) MT-Safe

rwlock_destroy(3T) MT-Safe

rwlock_init(3T) MT-Safe

rw_rdlock(3T) MT-Safe

rw_tryrdlock(3T) MT-Safe

rw_trywrlock(3T) MT-Safe

rw_unlock(3T) MT-Safe

rw_wrlock(3T) MT-Safe

savetty(3X) Unsafe

scalb(3C) MT-Safe

scalb(3M) MT-Safe

scalbn(3M) MT-Safe

scale_form(3X) Unsafe

scale_menu(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

scanf(3S) MT-Safe

scanw(3X) Unsafe

sched_getparam(3R) MT-Safe

sched_getscheduler(3R) MT-Safe

sched_get_priority_max(3R) MT-Safe

sched_get_priority_min(3R) MT-Safe

sched_rr_get_interval(3R) MT-Safe

sched_setparam(3R) MT-Safe

sched_setscheduler(3R) MT-Safe

sched_yield(3R) MT-Safe

scrl(3X) Unsafe

scroll(3X) Unsafe

scrollok(3X) Unsafe

scr_dump(3X) Unsafe

scr_init(3X) Unsafe

scr_restore(3X) Unsafe

scr_set(3X) Unsafe

seconvert(3) MT-Safe

secure_rpc(3N) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

seed48(3C) Safe

seekdir(3C) Safe

select(3C) MT-Safe

sema_destroy(3T) MT-Safe

sema_init(3T) MT-Safe

sema_post(3T) MT-Safe, Async-Signal-Safe

sema_trywait(3T) MT-Safe

sema_wait(3T) MT-Safe

sem_close(3R) MT-Safe

sem_destroy(3R) MT-Safe

sem_getvalue(3R) MT-Safe

sem_init(3R) MT-Safe

sem_open(3R) MT-Safe

sem_post(3R) Async-Signal-Safe

sem_trywait(3R) MT-Safe

sem_unlink(3R) MT-Safe

sem_wait(3R) MT-Safe

send(3N) Safe

sendmsg(3N) Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

sendto(3N) Safe

setac(3) Safe

setauclass(3) MT-Safe

setauevent(3) MT-Safe

setauuser(3) MT-Safe

setbuf(3S) MT-Safe

setcat(3C) MT-Safe

setjmp(3C) Unsafe

setkey(3C) Safe

setlabel(3C) MT-Safe

setlocale(3C) Safe with exceptions

setlogmask(3) Safe

setnetconfig(3N) MT-Safe

setnetpath(3N) MT-Safe

setscrreg(3X) Unsafe

setsockopt(3N) Safe

setsyx(3X) Unsafe

setterm(3X) Unsafe

settimeofday(3C) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

setupterm(3X) Unsafe

setutent(3C) Unsafe

setvbuf(3S) MT-Safe

set_current_field(3X) Unsafe

set_current_item(3X) Unsafe

set_curterm(3X) Unsafe

set_fieldtype_arg(3X) Unsafe

set_fieldtype_choice(3X) Unsafe

set_field_back(3X) Unsafe

set_field_buffer(3X) Unsafe

set_field_fore(3X) Unsafe

set_field_init(3X) Unsafe

set_field_just(3X) Unsafe

set_field_opts(3X) Unsafe

set_field_pad(3X) Unsafe

set_field_status(3X) Unsafe

set_field_term(3X) Unsafe

set_field_type(3X) Unsafe

set_field_userptr(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

set_form_fields(3X) Unsafe

set_form_init(3X) Unsafe

set_form_opts(3X) Unsafe

set_form_page(3X) Unsafe

set_form_sub(3X) Unsafe

set_form_term(3X) Unsafe

set_form_userptr(3X) Unsafe

set_form_win(3X) Unsafe

set_item_init(3X) Unsafe

set_item_opts(3X) Unsafe

set_item_term(3X) Unsafe

set_item_userptr(3X) Unsafe

set_item_value(3X) Unsafe

set_max_field(3X) Unsafe

set_menu_back(3X) Unsafe

set_menu_init(3X) Unsafe

set_menu_items(3X) Unsafe

set_menu_mark(3X) Unsafe

set_menu_opts(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

set_menu_pad(3X) Unsafe

set_menu_pattern(3X) Unsafe

set_menu_sub(3X) Unsafe

set_menu_term(3X) Unsafe

set_menu_userptr(3X) Unsafe

set_menu_win(3X) Unsafe

set_new_page(3X) Unsafe

set_panel_userptr(3X) Unsafe

set_term(3X) Unsafe

set_top_row(3X) Unsafe

sfconvert(3) MT-Safe

sgconvert(3) MT-Safe

shm_open(3R) MT-Safe

shm_unlink(3R) MT-Safe

show_panel(3X) Unsafe

shutdown(3N) Safe

sigaddset(3C) MT-Safe, Async-Signal-Safe

sigdelset(3C) MT-Safe, Async-Signal-Safe

sigemptyset(3C) MT-Safe, Async-Signal-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

sigfillset(3C) MT-Safe, Async-Signal-Safe

sigfpe(3) Safe

sigismember(3C) MT-Safe, Async-Signal-Safe

siglongjmp(3C) Unsafe

significand(3M) MT-Safe

sigqueue(3R) Async-Signal-Safe

sigsetjmp(3C) Unsafe

sigsetops(3C) MT-Safe, Async-Signal-Safe

sigtimedwait(3R) Async-Signal-Safe

sigwaitinfo(3R) Async-Signal-Safe

sin(3M) MT-Safe

single_to_decimal(3) MT-Safe

sinh(3M) MT-Safe

sleep(3B) Async-Signal-Safe

sleep(3C) Safe

slk_attroff(3X) Unsafe

slk_attron(3X) Unsafe

slk_attrset(3X) Unsafe

slk_clear(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

slk_init(3X) Unsafe

slk_label(3X) Unsafe

slk_noutrefresh(3X) Unsafe

slk_refresh(3X) Unsafe

slk_restore(3X) Unsafe

slk_set(3X) Unsafe

slk_touch(3X) Unsafe

socket(3N) Safe

socketpair(3N) Safe

space(3) Safe

spray(3N) Unsafe

sprintf(3S) MT-Safe

sqrt(3M) MT-Safe

srand(3C) Unsafe

srand48(3C) Safe

srandom(3C) Unsafe

sscanf(3S) MT-Safe

ssignal(3C) Unsafe

standend(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

standout(3X) Unsafe

start_color(3X) Unsafe

step(3G) MT-Safe

str(3G) MT-Safe

strcadd(3G) MT-Safe

strcasecmp(3C) Safe

strcat(3C) Safe

strccpy(3G) MT-Safe

strchr(3C) Safe

strcmp(3C) Safe

strcoll(3C) Safe with exceptions

strcpy(3C) Safe

strcspn(3C) Safe

strdup(3C) Safe

streadd(3G) MT-Safe

strecpy(3G) MT-Safe

strerror(3C) Safe

strfind(3G) MT-Safe

strfmon(3C) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

strftime(3C) MT-Safe

string(3C) Safe

string_to_decimal(3) MT-Safe

strlen(3C) Safe

strncasecmp(3C) Safe

strncat(3C) Safe

strncmp(3C) Safe

strncpy(3C) Safe

strpbrk(3C) Safe

strptime(3C) MT-Safe

strrchr(3C) Safe

strrspn(3G) MT-Safe

strsignal(3C) Safe

strspn(3C) Safe

strstr(3C) Safe

strtod(3C) MT-Safe

strtok(3C) Unsafe, use strtok_r()

strtol(3C) MT-Safe

strtoll(3C) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

strtoul(3C) MT-Safe

strtoull(3C) MT-Safe

strtrns(3G) MT-Safe

strxfrm(3C) Safe with exceptions

subpad(3X) Unsafe

subwin(3X) Unsafe

svcerr_auth(3N) MT-Safe

svcerr_decode(3N) MT-Safe

svcerr_noproc(3N) MT-Safe

svcerr_noprog(3N) MT-Safe

svcerr_progvers(3N) MT-Safe

svcerr_systemerr(3N) MT-Safe

svcerr_weakauth(3N) MT-Safe

svcfd_create(3N) Unsafe

svcraw_create(3N) Unsafe

svctcp_create(3N) Unsafe

svcudp_bufcreate(3N) Unsafe

svcudp_create(3N) Unsafe

svc_auth_reg(3N) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

svc_control(3N) MT-Safe

svc_create(3N) MT-Safe

svc_destroy(3N) MT-Safe

svc_dg_create(3N) MT-Safe

svc_fds(3N) Unsafe

svc_fd_create(3N) MT-Safe

svc_getcaller(3N) Unsafe

svc_reg(3N) MT-Safe

svc_register(3N) Unsafe

svc_tli_create(3N) MT-Safe

svc_tp_create(3N) MT-Safe

svc_unreg(3N) MT-Safe

svc_unregister(3N) Unsafe

svc_vc_create(3N) MT-Safe

swab(3C) MT-Safe

swapcontext(3C) MT-Safe

syncok(3X) Unsafe

sysconf(3C) MT-Safe, Async-Signal-Safe

syslog(3) Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

system(3S) Unsafe

taddr2uaddr(3N) MT-Safe

tan(3M) MT-Safe

tanh(3M) MT-Safe

tcdrain(3) MT-Safe, Async-Signal-Safe

tcflow(3) MT-Safe, Async-Signal-Safe

tcflush(3) MT-Safe, Async-Signal-Safe

tcgetattr(3) MT-Safe, Async-Signal-Safe

tcgetpgrp(3) MT-Safe, Async-Signal-Safe

tcgetsid(3) MT-Safe

tcsendbreak(3) MT-Safe, Async-Signal-Safe

tcsetattr(3) MT-Safe, Async-Signal-Safe

tcsetpgrp(3) MT-Safe, Async-Signal-Safe

tcsetpgrp(3C) MT-Safe

tdelete(3C) Safe

telldir(3C) Safe

tempnam(3S) Safe

termattrs(3X) Unsafe

termname(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

textdomain(3I) Safe with exceptions

tfind(3C) Safe

tgetent(3X) Unsafe

tgetflag(3X) Unsafe

tgetnum(3X) Unsafe

tgetstr(3X) Unsafe

tgoto(3X) Unsafe

threads(3T) Fork1-Safe,MT-Safe,Async-Signal-
Safe

thr_continue(3T) MT-Safe

thr_create(3T) MT-Safe

thr_exit(3T) MT-Safe

thr_getconcurrency(3T) MT-Safe

thr_getprio(3T) MT-Safe

thr_getspecific(3T) MT-Safe

thr_join(3T) MT-Safe

thr_keycreate(3T) MT-Safe

thr_kill(3T) MT-Safe, Async-Signal-Safe

thr_main(3T) MT-Safe

thr_min_stack(3T) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

thr_self(3T) MT-Safe

thr_setconcurrency(3T) MT-Safe

thr_setprio(3T) MT-Safe

thr_setspecific(3T) MT-Safe

thr_sigsetmask(3T) MT-Safe, Async-Signal-Safe

thr_stksegment(3T) MT-Safe

thr_suspend(3T) MT-Safe

thr_yield(3T) MT-Safe

tigetflag(3X) Unsafe

tigetnum(3X) Unsafe

tigetstr(3X) Unsafe

timeout(3X) Unsafe

timer_create(3R) MT-Safe with exceptions

timer_delete(3R) MT-Safe with exceptions

timer_getoverrun(3R) Async-Signal-Safe

timer_gettime(3R) Async-Signal-Safe

timer_settime(3R) Async-Signal-Safe

tmpfile(3S) Safe

tmpnam(3S) Unsafe, use tmpnam_r()
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

TNF_DECLARE_RECORD(3X) MT-Safe

TNF_DEFINE_RECORD(3.3X) MT-Safe

TNF_DEFINE_RECORD_1(3X) MT-Safe

TNF_DEFINE_RECORD_2(3X) MT-Safe

TNF_DEFINE_RECORD_4(3X) MT-Safe

TNF_DEFINE_RECORD_5(3X) MT-Safe

TNF_PROBE(3.3X) MT-Safe

TNF_PROBE(3X) MT-Safe

TNF_PROBE_0(3X) MT-Safe

TNF_PROBE_1(3X) MT-Safe

TNF_PROBE_2(3X) MT-Safe

TNF_PROBE_4(3X) MT-Safe

TNF_PROBE_5(3X) MT-Safe

tnf_process_disable(3X) MT-Safe

tnf_process_enable(3X) MT-Safe

tnf_thread_disable(3X) MT-Safe

tnf_thread_enable(3X) MT-Safe

toascii(3C) MT-Safe with exceptions

tolower(3C) MT-Safe with exceptions
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

top_panel(3X) Unsafe

top_row(3X) Unsafe

touchline(3X) Unsafe

touchwin(3X) Unsafe

toupper(3C) MT-Safe with exceptions

towlower(3I) MT-Safe with exceptions

towupper(3I) MT-Safe with exceptions

tparm(3X) Unsafe

tputs(3X) Unsafe

trig(3M) MT-Safe

truncate(3C) MT-Safe

tsearch(3C) Safe

ttyname(3C) Unsafe, use ttyname_r()

ttyslot(3C) Safe

twalk(3C) Safe

typeahead(3X) Unsafe

t_accept(3N) MT-Safe

t_alloc(3N) MT-Safe

t_bind(3N) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

t_close(3N) MT-Safe

t_connect(3N) MT-Safe

t_error(3N) MT-Safe

t_free(3N) MT-Safe

t_getinfo(3N) MT-Safe

t_getstate(3N) MT-Safe

t_listen(3N) MT-Safe

t_look(3N) MT-Safe

t_open(3N) MT-Safe

t_optmgmt(3N) MT-Safe

t_rcv(3N) MT-Safe

t_rcvconnect(3N) MT-Safe

t_rcvdis(3N) MT-Safe

t_rcvrel(3N) MT-Safe

t_rcvudata(3N) MT-Safe

t_rcvuderr(3N) MT-Safe

t_snd(3N) MT-Safe

t_snddis(3N) MT-Safe

t_sync(3N) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

t_unbind(3N) MT-Safe

uaddr2taddr(3N) MT-Safe

ulckpwdf(3C) MT-Safe

ulltostr(3C) MT-Safe

unctrl(3X) Unsafe

ungetc(3S) MT-Safe

ungetch(3X) Unsafe

ungetwc(3I) MT-Safe

ungetwch(3X) Unsafe

unlockpt(3C) Safe

unordered(3C) MT-Safe

unpost_form(3X) Unsafe

unpost_menu(3X) Unsafe

untouchwin(3X) Unsafe

update_panels(3X) Unsafe

updwtmp(3C) Unsafe

updwtmpx(3C) Unsafe

user2netname(3N) MT-Safe

use_env(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

utmpname(3C) Unsafe

utmpxname(3C) Unsafe

valloc(3C) Safe

vfprintf(3S) Async-Signal-Safe

vidattr(3X) Unsafe

vidputs(3X) Unsafe

vlfmt(3C) MT-Safe

volmgt_check(3X) MT-Safe

volmgt_inuse(3X) MT-Safe

volmgt_root(3X) MT-Safe

volmgt_running(3X) MT-Safe

volmgt_symdev(3X) MT-Safe

volmgt_symname(3X) MT-Safe

vpfmt(3C) MT-Safe

vprintf(3S) Async-Signal-Safe

vsprintf(3S) MT-Safe

vsyslog(3) Safe

vwprintw(3X) Unsafe

vwscanw(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

waddch(3X) Unsafe

waddchnstr(3X) Unsafe

waddchstr(3X) Unsafe

waddnstr(3X) Unsafe

waddnwstr(3X) Unsafe

waddstr(3X) Unsafe

waddwch(3X) Unsafe

waddwchnstr(3X) Unsafe

waddwchstr(3X) Unsafe

waddwstr(3X) Unsafe

wadjcurspos(3X) Unsafe

watof(3I) MT-Safe

watoi(3I) MT-Safe

watol(3I) MT-Safe

watoll(3I) MT-Safe

wattroff(3X) Unsafe

wattron(3X) Unsafe

wattrset(3X) Unsafe

wbkgd(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

wbkgdset(3X) Unsafe

wborder(3X) Unsafe

wclear(3X) Unsafe

wclrtobot(3X) Unsafe

wclrtoeol(3X) Unsafe

wconv(3I) MT-Safe with exceptions

wcscat(3I) MT-Safe

wcschr(3I) MT-Safe

wcscmp(3I) MT-Safe

wcscoll(3I) MT-Safe

wcscpy(3I) MT-Safe

wcscspn(3I) MT-Safe

wcsetno(3I) MT-Safe with exceptions

wcslen(3I) MT-Safe

wcsncat(3I) MT-Safe

wcsncmp(3I) MT-Safe

wcsncpy(3I) MT-Safe

wcspbrk(3I) MT-Safe

wcsrchr(3I) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

wcsspn(3I) MT-Safe

wcstod(3I) MT-Safe

wcstok(3I) MT-Safe

wcstol(3I) MT-Safe

wcstombs(3C) MT-Safe with exceptions

wcstoul(3I) MT-Safe

wcstring(3I) MT-Safe

wcswcs(3I) MT-Safe

wcswidth(3I) MT-Safe

wcsxfrm(3I) MT-Safe

wctomb(3C) MT-Safe with exceptions

wctype(3I) MT-Safe

wcursyncup(3X) Unsafe

wcwidth(3I) MT-Safe

wdelch(3X) Unsafe

wdeleteln(3X) Unsafe

wechochar(3X) Unsafe

wechowchar(3X) Unsafe

werase(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

wgetch(3X) Unsafe

wgetnstr(3X) Unsafe

wgetnwstr(3X) Unsafe

wgetstr(3X) Unsafe

wgetwch(3X) Unsafe

wgetwstr(3X) Unsafe

whline(3X) Unsafe

winch(3X) Unsafe

winchnstr(3X) Unsafe

winchstr(3X) Unsafe

windex(3I) MT-Safe

winnstr(3X) Unsafe

winnwstr(3X) Unsafe

winsch(3X) Unsafe

winsdelln(3X) Unsafe

winsertln(3X) Unsafe

winsnstr(3X) Unsafe

winsnwstr(3X) Unsafe

winsstr(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

winstr(3X) Unsafe

winswch(3X) Unsafe

winswstr(3X) Unsafe

winwch(3X) Unsafe

winwchnstr(3X) Unsafe

winwchstr(3X) Unsafe

winwstr(3X) Unsafe

wmove(3X) Unsafe

wmovenextch(3X) Unsafe

wmoveprevch(3X) Unsafe

wprintw(3X) Unsafe

wredrawln(3X) Unsafe

wrefresh(3X) Unsafe

wrindex(3I) MT-Safe

write_vtoc(3X) Unsafe

wscanw(3X) Unsafe

wscasecmp(3I) MT-Safe

wscat(3I) MT-Safe

wschr(3I) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

wscmp(3I) MT-Safe

wscol(3I) MT-Safe

wscoll(3I) MT-Safe

wscpy(3I) MT-Safe

wscrl(3X) Unsafe

wscspn(3I) MT-Safe

wsdup(3I) MT-Safe

wsetscrreg(3X) Unsafe

wslen(3I) MT-Safe

wsncasecmp(3I) MT-Safe

wsncat(3I) MT-Safe

wsncmp(3I) MT-Safe

wsncpy(3I) MT-Safe

wspbrk(3I) MT-Safe

wsprintf(3I) MT-Safe

wsrchr(3I) MT-Safe

wsscanf(3I) MT-Safe

wsspn(3I) MT-Safe

wstandend(3X) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

wstandout(3X) Unsafe

wstod(3I) MT-Safe

wstok(3I) MT-Safe

wstol(3I) MT-Safe

wstring(3I) MT-Safe

wsxfrm(3I) MT-Safe

wsyncdown(3X) Unsafe

wsyncup(3X) Unsafe

wtimeout(3X) Unsafe

wtouchln(3X) Unsafe

wvline(3X) Unsafe

xdr(3N) Safe

xdrmem_create(3N) MT-Safe

xdrrec_create(3N) MT-Safe

xdrrec_endofrecord(3N) Safe

xdrrec_eof(3N) Safe

xdrrec_readbytes(3N) Safe

xdrrec_skiprecord(3N) Safe

xdrstdio_create(3N) MT-Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

xdr_accepted_reply(3N) Safe

xdr_admin(3N) Safe

xdr_array(3N) Safe

xdr_authsys_parms(3N) Safe

xdr_authunix_parms(3N) Unsafe

xdr_bool(3N) Safe

xdr_bytes(3N) Safe

xdr_callhdr(3N) Safe

xdr_callmsg(3N) Safe

xdr_char(3N) Safe

xdr_complex(3N) Safe

xdr_control(3N) Safe

xdr_create(3N) MT-Safe

xdr_destroy(3N) MT-Safe

xdr_double(3N) Safe

xdr_enum(3N) Safe

xdr_float(3N) Safe

xdr_free(3N) Safe

xdr_getpos(3N) Safe

382 Multithreaded Programming Guide ♦ February 2000



TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

xdr_hyper(3N) Safe

xdr_inline(3N) Safe

xdr_int(3N) Safe

xdr_long(3N) Safe

xdr_longlong_t(3N) Safe

xdr_opaque(3N) Safe

xdr_opaque_auth(3N) Safe

xdr_pointer(3N) Safe

xdr_quadruple(3N) Safe

xdr_reference(3N) Safe

xdr_rejected_reply(3N) Safe

xdr_replymsg(3N) Safe

xdr_setpos(3N) Safe

xdr_short(3N) Safe

xdr_simple(3N) Safe

xdr_sizeof(3N) Safe

xdr_string(3N) Safe

xdr_union(3N) Safe

xdr_u_char(3N) Safe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

xdr_u_hyper(3N) Safe

xdr_u_int(3N) Safe

xdr_u_long(3N) Safe

xdr_u_longlong_t(3N) Safe

xdr_u_short(3N) Safe

xdr_vector(3N) Safe

xdr_void(3N) Safe

xdr_wrapstring(3N) Safe

xprt_register(3N) MT-Safe

xprt_unregister(3N) MT-Safe

y0(3M) MT-Safe

y1(3M) MT-Safe

yn(3M) MT-Safe

ypclnt(3N) Unsafe

yperr_string(3N) Unsafe

ypprot_err(3N) Unsafe

yp_all(3N) Unsafe

yp_bind(3N) Unsafe

yp_first(3N) Unsafe
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TABLE C–1 MT Safety Levels of Library Routines (continued)

Library Routine Safety Level

yp_get_default_domain(3N) Unsafe

yp_master(3N) Unsafe

yp_match(3N) Unsafe

yp_next(3N) Unsafe

yp_order(3N) Unsafe

yp_unbind(3N) Unsafe

yp_update(3N) Unsafe

_NOTE(3X) Safe

_tolower(3C) MT-Safe with exceptions

_toupper(3C) MT-Safe with exceptions

__nis_map_group(3N) MT-Safe
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Numbers
32-bit architectures 76
64–bit environment

large file support 28
large virtual address space 27
libraries 28
/proc restrictions 27
registers 28

A
Ada 160
adb 182
adding

to LWP pool 214
signals to mask 45

aiocancel(3) 165, 166
aioread(3) 165, 166
aiowait(3) 166
aiowrite(3) 165, 166
aio_errno 165
AIO_INPROGRESS 165
aio_result_t 165, 166
algorithms

faster with MT 21
parallel 248
sequential 248

alternate signal stacks 26, 154
ANSI C 183
application-level threads 20
architecture

multiprocessor 245
SPARC 76, 245, 247

assert statement 120, 121, 237
Async-Signal-Safe

signal handlers 160
functions 158, 173

asynchronous
event notification 124
I/O 164 to 166
semaphore use 124
signals 154, 158

atomic, defined 76
automatic

LWP number adjustments 152
stack allocation 71

B
binary semaphores 122
binding

reasons to bind 26, 153, 243, 244
threads to LWPs 214
values to keys 35, 219

bottlenecks 239
bound threads 20, 24, 153, 242, 243

alternate signal stacks 154
concurrency 244
defined 20
mixing with unbound threads 242
no LWP caching 243
priority 151
reasons to bind 26, 153
scheduling class 151
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C
C++ 183
cache, defined 245
caching

not for bound thread LWPs 243
threads data structure 240

changing the signal mask 45, 217
coarse-grained locking 237
code lock 236, 237
code monitor 236, 238
compile flag

-D_POSIX_C_SOURCE 177
-D_REENTRANT 177
_REENTRANT 177
single-threaded application 177

completion semantics 159
concurrency 243, 244, 237

level 214
unbound threads 204

condition variables 76, 105, 121, 162
cond_broadcast 226, 227
cond_destroy 225
cond_init 224
cond_init(3T) 230
cond_signal 226
cond_timedwait 226
cond_wait 225
cond_wait(3T) 163
contention 239
continue execution 203
coroutine linkage 242
counting semaphores 20, 122
creating

stacks 72, 73, 214, 216
thread-specific keys 35 to 37, 219, 220
threads 30, 32, 244, 240

critical section 247
custom stack 72, 216

D
daemon threads 215
data

global 35
local 35
lock 236, 237
profile 149
races 169

shared 24, 246
data, see thread-specific data

thread specific
dbx 183
deadlock 238, 239
debugging 181, 185

adb 182
asynchronous signals 181
dbx 183
deadlocks 181
hidden gap in synchronization 181
inadequate stack size 182
large automatic arrays 182
long-jumping without releasing mutex

lock 181
no synchronization of global

memory 181
passing pointer to caller’s stack 181
recursive deadlock 181
reevaluate conditions after return from

condition wait 181
deleting signals from mask 45
destructor function 35, 40
detached threads 33, 58, 214
Dijkstra, E. W. 122

E
EAGAIN 31, 36, 95, 97, 100, 112, 127, 205, 215
EBUSY 95, 100, 112, 209, 210
EDEADLK 32, 97
EFAULT 207 to 211
EINTR 127, 147, 155, 162, 163
EINVAL 31, 32, 34, 36, 37, 42 to 44, 46, 50, 51,

57 to 59, 61, 62, 64 to 68, 70,
73, 74, 79 to 81, 85 to 90, 92,
93, 95, 96, 101, 108 to 110, 112
to 114, 116 to 118, 124, 126 to
128, 131 to 133, 135 to 137,
139, 205, 207 to 211, 215

ENOMEM 36, 37, 79, 98, 100, 108, 112, 215
ENOSPC 124
ENOSYS 42, 89, 90, 92, 93, 96
ENOTRECOVERABLE 98, 100
ENOTSUP 43, 64, 66, 92, 93
EOWNERDEAD 98, 100
EPERM 85 to 87, 89 to 91, 99, 125
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errno 38, 177, 179, 234
global variables 234

errno.h 175
__errno 179
error checking 44
ESRCH 32, 34, 44, 45, 49, 203, 204
ETIME 116
event notification 124
examining the signal mask 45, 217
exec(2) 144, 146 to 148
execution resources 204, 205, 243
exit(2) 148, 215
exit(3C) 47

F
finding

minimum stack size 216
thread concurrency level 205
thread priority 221

fine-grained locking 237
flags to thr_create() 214
flockfile(3S) 167
flowchart of compile options 178
fork 226
fork(2) 146, 147
fork1(2) 146, 147
FORTRAN 183, 191
funlockfile(3S) 167

G
getc(3S) 167
getc_unlocked(3S) 167
gethostbyname(3N) 234
gethostbyname_r(3N) 235
getrusage(3B) 150
global

data 236
side effects 240
state 236
variables 38, 39, 233

H
heap, malloc(3C) storage from 33

I
I/O

asynchronous 164, 165
nonsequential 166
standard 167
synchronous 164

inheriting priority 213
interrupt 154
interval timer 243
invariants 121, 237

J
joining threads 31, 58, 218

K
kernel context switching 23
keys

bind value to key 219
get specific key 37, 220
global into private 39
storing value of 37, 220

kill(2) 154, 156

L
-lc 178
ld 178
libc 173
libC 174
libc 175, 178
libdl_stubs 173
libintl 174, 175
libm 174, 175
libmalloc 174, 175
libmapmalloc 174, 176
libnsl 174, 175, 179
libposix4 175
libpthread 175, 178
library

C routines 233
MT safety 173
threads 175, 241

libresolv 174
libsocket 174, 175
libthread 23, 175, 178, 241

alternate library 180
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libw 174, 175
libX11 174
lightweight processes 24, 150, 153, 242, 241

adding an LWP 215
creation 242
debugging 182
defined 20
independence 242
SunOS 4.0 24
system calls 243
multiplexing 242
not supported 24
profile state 149
shortage 153
special capabilities 242

limits, resources 150
limits.h 175
linking 175
linking with alternate libthread library 180

LD_LIBRARY_PATH 180
LD_LIBRARY_PATH_64 180

linking with libpthread
-lc 178
ld 178
-lpthread 178

linking with libthread
-lc 178
ld 178
-lthread 178

local variable 235
lock hierarchy 238
locking 236

coarse grained 237, 239
code 236
conditional 103
data 236
fine-grained 237, 239
guidelines 239
invariants 237

locklint tool 188
LockLint usage 188
locks 76

mutual exclusion 76, 105, 146, 162
read-write 212
readers/writer 76

lock_lint 103
longjmp(3C) 150, 160
LoopTool for parallelization 191

LoopTool reporter 188
-lposix4 library

POSIX 1003.1c semaphore 179
-lpthread 178
lseek(2) 166
-lthread 178
LWPs , see lightweight processes

M
main() 240
malloc(3C) 33
MAP_NORESERVE 71
MAP_SHARED 147
memory

ordering, relaxed 246
strongly ordered 246

mmap(2) 71, 147
monitor, code 236, 238
mprotect(2) 72, 216
MT-Safe libraries 173
multiple-readers, single-writer locks 212
multiplexing with LWPs 242
multiprocessors 244, 248
multithreading

defined 20
mutex

PTHREAD_MUTEX_ERRORCHECK 97
PTHREAD_MUTEX_NORMAL 97
PTHREAD_MUTEX_RECUSIVE 97

mutex scope 80
mutexmutual exclusion locks 238
mutex_destroy 223
mutex_init 221
mutex_init(3T) 230
mutex_lock 223
mutex_trylock 224
mutex_trylock(3T) 239
mutex_unlock 223
mutual exclusion locks 76, 105, 146, 162

attributes 78
deadlock 102
default attributes 76
scope, Solaris and POSIX 77
type attribute 81
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N
NDEBUG 120
netdir 174
netselect 174
nice(2) 151, 152
nondetached threads 33, 46
nonsequential I/O 166
null

threads 72, 215, 216
null procedures

libpthread stub 178
libthread stub 178

P
parallel

algorithms 248
array computation 242

Pascal 183
PC

program counter 24
PC_GETCID 151
PC_GETCLINFO 151
PC_GETPARMS 151
PC_SETPARMS 151
per-process signal handler 154
per-thread signal handler 154
Peterson’s Algorithm 247
PL/1 language 156
portability 76
POSIX 1003.4a 21
pread(2) 165, 166
printf problem 235
printf(3S) 160
priocntl(2) 151, 152
priority 24, 150 to 152, 242

finding for a thread 221
inheritance 213, 220, 221
and scheduling 220
range 220
setting for a thread 220

priority inversion 84
process

terminating 47
traditional UNIX 19

producer/consumer problem 140, 230, 245
profil(2) 149
profiling an LWP 149

programmer-allocated stack 72, 216
prolagen

semaphore, P operation 122
pthread.h 175
pthread_atfork 46
pthread_attr_getdetachstate 58
pthread_attr_getguardsize 60
pthread_attr_getinheritsched 66
pthread_attr_getschedparam 68
pthread_attr_getschedpolicy 65
pthread_attr_getscope 61
pthread_attr_getstackaddr 74
pthread_attr_getstacksize 70
pthread_attr_init 55

attribute values 55
pthread_attr_setdetachstate 57
pthread_attr_setguardsize 59
pthread_attr_setinheritsched 65
pthread_attr_setschedparam 67
pthread_attr_setschedpolicy 63
pthread_attr_setscope 60
pthread_attr_setstackaddr 72
pthread_attr_setstacksize 69
pthread_cancel 49
pthread_cleanup_pop 52
pthread_cleanup_push 52
pthread_condattr_destroy 108
pthread_condattr_getpshared 110
pthread_condattr_init 107
pthread_condattr_setpshared 109
pthread_cond_broadcast 113, 116, 118

example 117
pthread_cond_broadcast(3T) 155
pthread_cond_destroy 118
pthread_cond_init 111
pthread_cond_signal 113, 114, 118, 120

example 115
pthread_cond_signal(3T) 155
pthread_cond_timedwait 115

example 116
pthread_cond_timedwait(3T) 162
pthread_cond_wait 112, 119

example 115
pthread_cond_wait(3T) 155, 162
pthread_create 30
pthread_detach 34
pthread_equal 41
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pthread_exit 46, 47
pthread_getconcurrency 63
pthread_getschedparam 43
pthread_getspecific 37, 39, 40
pthread_join 31, 56
pthread_join(3T) 71, 164
pthread_keycreate 35, 40
pthread_keycreate(3T)

example 40
pthread_keydelete 36
pthread_kill 44
pthread_kill(3T) 156
pthread_mutexattr_destroy 79
pthread_mutexattr_getprioceiling

get priority ceiling of mutex attribute 88
pthread_mutexattr_getprotocol

get protocol of mutex attribute 86
pthread_mutexattr_getpshared 81
pthread_mutexattr_getrobust_np

get robust attribute of mutex 92
pthread_mutexattr_gettype 83
pthread_mutexattr_init 78
pthread_mutexattr_setprioceiling

set priority ceiling of mutex attribute 87
pthread_mutexattr_setprotocol

set protocol of mutex attribute 83
pthread_mutexattr_setpshared 80
pthread_mutexattr_setrobust_np

set robust attribute of mutex 91
pthread_mutexattr_settype 81
pthread_mutex_consistent_np 95
pthread_mutex_destroy 101
pthread_mutex_getprioceiling

get priority ceiling of mutex 90
pthread_mutex_init 94
pthread_mutex_lock 96

example 102, 104
pthread_mutex_lock(3T)

example 105
pthread_mutex_setprioceiling

set priority ceiling of mutex 89
pthread_mutex_trylock 99, 104
pthread_mutex_unlock 98

example 102, 104
pthread_mutex_unlock(3T)

example 105
pthread_once 41
PTHREAD_PRIO_INHERIT 84

PTHREAD_PRIO_NONE 83
PTHREAD_PRIO_PROTECT 84
pthread_rwlockattr_destroy 131
pthread_rwlockattr_getpshared 133
pthread_rwlockattr_init 131
pthread_rwlockattr_setpshared 132
pthread_rwlock_destroy 139
pthread_rwlock_init 134
pthread_rwlock_rdlock 135
pthread_rwlock_tryrdlock 136
pthread_rwlock_trywrlock 137
pthread_rwlock_unlock 138
pthread_rwlock_wrlock 136
PTHREAD_SCOPE_PROCESS 26, 60
PTHREAD_SCOPE_SYSTEM 26, 60
pthread_self 40
pthread_setcancelstate 50
pthread_setcanceltype 50
pthread_setconcurrency 62
pthread_setprio(3T) 151, 153
pthread_setschedparam 42
pthread_setspecific 37, 40
pthread_setspecific(3T)

example 39
pthread_sigmask 45
pthread_sigsetmask(3T) 156
PTHREAD_STACK_MIN() 72
pthread_testcancel 51
pthread_yield 42
putc(3S) 167
putc_unlocked(3S) 167
pwrite(2) 165, 166

R
read(2) 166
read-write locks 133, 212

attribute 132
attributes 130

readers/writer locks 76
realtime 243

scheduling 150, 152
red zone 71, 72, 216
reentrant 236

described 236
functions 172
strategies for making 236
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register state 24
relaxed memory ordering 246
remote procedure call RPC 22
replacing signal mask 45
resume execution 203
RPC 22, 174, 241
RT, , see realtime
rwlock_destroy 211
rwlock_init(3T) 206, 230
rw_rdlock(3T) 208
rw_tryrdlock 208
rw_trywrlock 210
rw_unlock(3T) 210
rw_wrlock 209
_r 235

S
safety, threads interfaces 169, 174
SA_RESTART 163
scheduling

class 150, 153
compute-bound threads 205
priorities 220
realtime 150, 152
system class 150
timeshare 150, 151

semaphores 76, 122, 141
binary 122
counting 122
counting, defined 20
decrement semaphore value 122
increment semaphore value 122
interprocess 125
intraprocess 125
named 125

sema_destroy 229
sema_init 227
sema_init(3T) 230
sema_post 228
sema_post(3T) 173
sema_trywait 229
sema_wait 228
sem_destroy 128
sem_init 124

example 129
sem_post 122, 126

example 129

sem_trywait 122, 127
sem_wait 122, 126

example 129
sending signal to thread 44, 217
sequential algorithms 248
setjmp(3C) 150, 159, 160
shared data 24, 236
shared-memory multiprocessor 246
sigaction(2) 154, 155, 163
sigaltstack(2) 154
SIGFPE 155, 160
SIGILL 155
SIGINT 155, 159, 163
SIGIO 155, 166
siglongjmp(3C) 160
signal(2) 154
signal(5) 154
signal.h 44, 45, 175, 217, 218
signals

access mask 45, 217
add to mask 45
asynchronous 154, 158
delete from mask 45
handler 154, 158
inheritance 213
masks 24
pending 203, 213
replace current mask 45
send to thread 44, 217
SIGSEGV 71
SIG_BLOCK 45
SIG_SETMASK 45
SIG_UNBLOCK 45
stack 154
unmasked and caught 162

sigprocmask(2) 156
SIGPROF 148
SIGSEGV 71, 155
sigsend(2) 154
sigsetjmp(3C) 160
sigtimedwait(2) 158
SIGVTALRM 148
sigwait(2) 157, 158, 160
SIGWAITING 153
SIG_BLOCK 45
SIG_DFL 154
SIG_IGN 154
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SIG_SETMASK 45
SIG_UNBLOCK 45
single-threaded

assumptions 233
code 76
defined 20
processes 148

size of stack 70, 72, 214, 216
stack 243, 240

address 73, 214
boundaries 71
creation 73, 214
custom 216
deallocation 216
minimum size 72, 216
overflows 71
parameters 33
pointer 24
programmer-allocated 72, 216
red zone 71, 72, 216
returning a pointer to 171
size 70, 72, 214, 216

stack_base 73, 214
stack_size 70, 214
standard I/O 167
standards 21
start_routine 214
static storage 179, 233
stdio 38, 177
store buffer 247
storing thread key value 37, 220
streaming a tape drive 165
strongly ordered memory 246
strtoaddr 174
suspending a new thread 214
swap space 71
synchronization objects 75, 141

condition variables 76, 105, 121
mutex locks 76, 105
read-write locks 212
semaphores 76, 122, 140, 227, 231

synchronous I/O 164, 165
system calls

handling errors 234
and LWPs 243

system scheduling class 150

T
tape drive, streaming 165
terminating

process 47
threads 32

Thread Analyzer tool 188
thread synchronization

condition variables 27
mutex locks 26
mutual exclusion locks 76
read-write locks 130
semaphores 27, 122

thread-directed signal 158
thread-private storage 24
thread-specific data 35, 40

global 38 to 40
global into private 39
new storage class 234
private 38

thread.h 175
threads

compute-bound 205
concurrencyconcurrency 204
creating 30, 32, 213, 215, 244, 240
daemon 215
defined 20
detached 33, 58, 214
exit codes 32
exit status 31
identifiers 32, 40, 41, 46, 214, 215, 217
initial 47
joining 31, 47, 218
keyskeys 219
library 175, 241
lightweight processes 24
nondetached 33, 46
null 72, 215, 216
prioritypriority 213
private data 35
safety 169, 174
signalssignals 162
stacksstack 171
suspended 203
suspending 214
synchronizing 76, 141
terminating 32, 46, 218
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thread-specific datathread-specific
data 234

unbound threads 25
user-level 20, 23

THR_BOUND 214, 215
thr_continue 203
thr_continue(3T) 214
thr_create 220
thr_create(3T) 213, 216
THR_DAEMON 215
THR_DETACHED 214
thr_exit 218
thr_exit(3T) 215
thr_getconcurrency 205
thr_getconcurrency(3T) 205
thr_getprio 221
thr_getspecific 220
thr_join 218
thr_keycreate 219
thr_kill 217
thr_kill(3T) 173
thr_min_stack(3T) 214, 215
THR_NEW_LWP 205, 214, 243
thr_self(3T) 217
thr_setconcurrency 204
thr_setconcurrency(3T) 204, 214, 243
thr_setprio 220
thr_setspecific 219
thr_sigsetmask(3T) 173
THR_SUSPENDED 214
thr_yield(3T) 217, 239
time slicing 152
time-out 116, 226
timeshare scheduling class 150 to 152
tiuser.h 179
TLI 174, 179
tools

adb 182
dbx 183
debugger 183
lock_lint 103

total store order 247
trap 154

TS, , see timeshare scheduling class
TSD, see thread-specific data
__t_errno 179

U
unbound threads 150

alternate signal stacks 154
caching 240
concurrency 204, 244
defined 20
disadvantage 242
mixing with bound threads 242
priorities 150, 220
reasons not to bind 243, 241
and scheduling 150, 152, 153
and thr_setconcurrency(3T) 204, 243
and pthread_setprio(3T) 151, 153

unistd.h 175
UNIX 19, 21, 23, 155, 164, 166, 234
user space 23
user-level threads 20, 23
USYNC_PROCESS 207, 222, 224, 227, 229,

230, 244
USYNC_PROCESS_ROBUST 222
USYNC_THREAD 207, 222, 225, 228, 229

V
variables

condition 76, 105, 121, 141
global 233
primitive 76

verhogen
semaphore, V operation 122

vfork(2) 146

W
write(2) 166

X
XDR 174
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