
man pages section 9S: DDI and
DKI Data Structures

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 806-0640-10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 7

Intro(9S) 13

aio_req(9S) 16

buf(9S) 17

cb_ops(9S) 20

copyreq(9S) 22

copyresp(9S) 23

datab(9S) 24

ddi_device_acc_attr(9S) 25

ddi_dma_attr(9S) 30

ddi_dma_cookie(9S) 34

ddi_dmae_req(9S) 35

ddi_dma_lim_sparc(9S) 39

ddi_dma_lim(9S) 39

ddi_dma_lim_x86(9S) 41

ddi_dma_req(9S) 43

ddi_idevice_cookie(9S) 46

ddi_mapdev_ctl(9S) 47

devmap_callback_ctl(9S) 48

Contents 3

dev_ops(9S) 50

fmodsw(9S) 52

free_rtn(9S) 53

iocblk(9S) 54

iovec(9S) 55

kstat(9S) 56

kstat_intr(9S) 58

kstat_io(9S) 60

kstat_named(9S) 61

linkblk(9S) 62

modldrv(9S) 63

modlinkage(9S) 64

modlstrmod(9S) 65

module_info(9S) 66

msgb(9S) 67

qband(9S) 68

qinit(9S) 69

queclass(9S) 70

queue(9S) 71

scsi_address(9S) 72

scsi_arq_status(9S) 73

scsi_asc_key_strings(9S) 75

scsi_device(9S) 76

scsi_extended_sense(9S) 77

scsi_hba_tran(9S) 80

scsi_inquiry(9S) 83

scsi_pkt(9S) 86

scsi_status(9S) 90

4 man pages section 9S: DDI and DKI Data Structures ♦ February 2000

streamtab(9S) 92

stroptions(9S) 93

tuple(9S) 95

uio(9S) 98

Index 99

Contents 5

6 man pages section 9S: DDI and DKI Data Structures ♦ February 2000

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page
is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information
it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware
peripherals and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

Preface 7

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there are
no bugs to report, there is no BUGS section. See the intro pages for more information
and detail about each section, and man(1) for more information about man pages in
general.

NAME This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not
exist in the standard path, its full path name is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or
arguments enclosed within braces are

8 man pages section 9S: DDI and DKI Data Structures ♦ February 2000

interdependent, such that everything
enclosed must be treated as a unit.

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES. Interactive
commands, subcommands, requests, macros, and
functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl (2) system call is called
ioctl and generates its own heading. ioctl
calls for a specific device are listed alphabetically
(on the man page for that specific device). ioctl
calls are used for a particular class of devices all
of which have an io ending, such as mtio (7I).

OPTIONS This secton lists the command options with
a concise summary of what each option does.
The options are listed literally and in the order
they appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard
output, standard error, or output files – generated
by the command.

RETURN VALUES If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they

9

failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations.
The subsections listed here are used to explain
built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage
or of how to use a command or function.
Wherever possible a complete example
including command-line entry and machine
response is shown. Whenever an example is
given, the prompt is shown as example% ,
or if the user must be superuser, example# .
Examples are followed by explanations, variable
substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion,
and values other than zero for various error
conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes (5) for more information.

10 man pages section 9S: DDI and DKI Data Structures ♦ February 2000

SEE ALSO This section lists references to other man
pages, in-house documentation, and outside
publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

NOTES This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

11

CHAPTER

Data Structures for Drivers

12

Data Structures for Drivers Intro(9S)

NAME Intro – introduction to kernel data structures

DESCRIPTION Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

In this section, reference pages contain the following headings:

� NAMEsummarizes the structure’s purpose.

� SYNOPSISlists the include file that defines the structure.

� INTERFACE LEVELdescribes any architecture dependencies.

� DESCRIPTIONprovides general information about the structure.

� STRUCTURE MEMBERSlists all accessible structure members.

� SEE ALSOgives sources for further information.

Every driver MUST include <sys/ddi.h> and <sys/sunddi.h> , in that
order, and last.

The following table summarizes the STREAMS structures described in this
section.

Structure Type

copyreq DDI/DKI

copyresp DDI/DKI

datab DDI/DKI

fmodsw Solaris DDI

free_rtn DDI/DKI

iocblk DDI/DKI

linkblk DDI/DKI

module_info DDI/DKI

msgb DDI/DKI

qband DDI/DKI

qinit DDI/DKI

queclass Solaris DDI

queue DDI/DKI

streamtab DDI/DKI

stroptions DDI/DKI

Last modified 22 Jan 1997 SunOS 5.8 13

Intro(9S) Data Structures for Drivers

The following table summarizes structures that are not specific to STREAMS I/O.

Structure Type

aio_req Solaris DDI

buf DDI/DKI

cb_ops Solaris DDI

ddi_device_acc_attr Solaris DDI

ddi_dma_attr Solaris DDI

ddi_dma_cookie Solaris DDI

ddi_dma_lim_sparc Solaris SPARC DDI

ddi_dma_lim_IA Solaris IA DDI

ddi_dma_req Solaris DDI

ddi_dmae_req Solaris IA DDI

ddi_idevice_cookie Solaris DDI

ddi_mapdev_ctl Solaris DDI

devmap_callback_ctl Solaris DDI

dev_ops Solaris DDI

iovec DDI/DKI

kstat Solaris DDI

kstat_intr Solaris DDI

kstat_io Solaris DDI

kstat_named Solaris DDI

map DDI/DKI

modldrv Solaris DDI

modlinkage Solaris DDI

modlstrmod Solaris DDI

scsi_address Solaris DDI

scsi_arq_status Solaris DDI

scsi_device Solaris DDI

scsi_extended_sense Solaris DDI

scsi_hba_tran Solaris DDI

14 SunOS 5.8 Last modified 22 Jan 1997

Data Structures for Drivers Intro(9S)

Structure Type

scsi_inquiry Solaris DDI

scsi_pkt Solaris DDI

scsi_status Solaris DDI

uio DDI/DKI

NOTES Do not declare arrays of structures as the size of the structures may change
between releases. Rely only on the structure members listed in this chapter and
not on unlisted members or the position of a member in a structure.

Last modified 22 Jan 1997 SunOS 5.8 15

aio_req(9S) Data Structures for Drivers

NAME aio_req – asynchronous I/O request structure

SYNOPSIS #include <sys/uio.h>

#include <sys/aio_req.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

DESCRIPTION An aio_req structure describes an asynchronous I/O request.

STRUCTURE
MEMBERS

struct uio*aio_uio; /* uio structure describing the I/O request */

The aio_uio member is a pointer to a uio (9S) structure, describing the I/O
transfer request.

SEE ALSO aread (9E), awrite (9E), aphysio (9F), uio (9S)

16 SunOS 5.8 Last modified 28 Mar 1997

Data Structures for Drivers buf(9S)

NAME buf – block I/O data transfer structure

SYNOPSIS #include <sys/ddi.h>

#include <sys/sunddi.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The buf structure is the basic data structure for block I/O transfers. Each block
I/O transfer has an associated buffer header. The header contains all the buffer
control and status information. For drivers, the buffer header pointer is the sole
argument to a block driver strategy (9E) routine. Do not depend on the size of
the buf structure when writing a driver.

It is important to note that a buffer header may be linked in multiple lists
simultaneously. Because of this, most of the members in the buffer header
cannot be changed by the driver, even when the buffer header is in one of the
driver’s work lists.

Buffer headers are also used by the system for unbuffered or physical I/O for
block drivers. In this case, the buffer describes a portion of user data space
that is locked into memory.

Block drivers often chain block requests so that overall throughput for the device
is maximized. The av_forw and the av_back members of the buf structure can
serve as link pointers for chaining block requests.

STRUCTURE
MEMBERS int b_flags; /* Buffer status */

struct buf *av_forw; /* Driver work list link */
struct buf *av_back; /* Driver work list link */
size_t b_bcount; /* # of bytes to transfer */
union {

caddr_t b_addr; /* Buffer’s virtual address */
} b_un;
daddr_t b_blkno; /* Block number on device */
diskaddr_t b_lblkno; /* Expanded block number on device */
size_t b_resid; /* # of bytes not transferred */
size_t b_bufsize; /* size of allocated buffer */
int (*b_iodone)(struct buf *); /* function called */

/* by biodone */
int b_error; /* expanded error field */
void *b_private; /* "opaque" driver private area */
dev_t b_edev; /* expanded dev field */

The members of the buffer header available to test or set by a driver are as
follows:

Last modified 26 Sep 1996 SunOS 5.8 17

buf(9S) Data Structures for Drivers

B_BUSY indicates the buffer is in use. The driver may not change this
flag unless it allocated the buffer with getrbuf (9F) and no
I/O operation is in progress.

B_DONE indicates the data transfer has completed. This flag is
read-only.

B_ERROR indicates an I/O transfer error. It is set in conjunction with
the b_error field. bioerror (9F) should be used in
preference to setting the B_ERRORbit.

B_PAGEIO indicates the buffer is being used in a paged I/O request.
See the description of the b_un.b_addr field for more
information. This flag is read-only.

B_PHYS indicates the buffer header is being used for physical
(direct) I/O to a user data area. See the description of the
b_un.b_addr field for more information. This flag is
read-only.

B_READ indicates data is to be read from the peripheral device into
main memory.

B_WRITE indicates the data is to be transferred from main memory
to the peripheral device. B_WRITEis a pseudo flag and
cannot be directly tested; it is only detected as the NOT
form of B_READ.

b_flags stores the buffer status and tells the driver whether to read or write to
the device. The driver must never clear the b_flags member. If this is done,
unpredictable results can occur including loss of disk sanity and the possible
failure of other kernel processes.

Valid flags are as follows:

av_forw and av_back can be used by the driver to link the buffer into driver
work lists.

b_bcount specifies the number of bytes to be transferred in both a paged
and a non-paged I/O request.

b_un.b_addr is the virtual address of the I/O request, unless B_PAGEIOis
set. The address is a kernel virtual address, unless B_PHYSis set, in which case
it is a user virtual address. If B_PAGEIOis set, b_un.b_addr contains kernel
private data. Note that either one of B_PHYSand B_PAGEIO, or neither, may
be set, but not both.

18 SunOS 5.8 Last modified 26 Sep 1996

Data Structures for Drivers buf(9S)

b_blkno identifies which logical block on the device (the device is defined by
the device number) is to be accessed. The driver may have to convert this logical
block number to a physical location such as a cylinder, track, and sector of a
disk. This is a 32-bit value. The driver should use b_blkno or b_lblkno ,
but not both.

b_lblkno identifies which logical block on the device (the device is defined
by the device number) is to be accessed. The driver may have to convert this
logical block number to a physical location such as a cylinder, track, and sector of
a disk. This is a 64-bit value. The driver should use b_lblkno or b_blkno ,
but not both.

b_resid should be set to the number of bytes not transferred because of an
error.

b_bufsize contains the size of the allocated buffer.

b_iodone identifies a specific biodone routine to be called by the driver
when the I/O is complete.

b_error may hold an error code that should be passed as a return code from
the driver. b_error is set in conjunction with the B_ERRORbit set in the
b_flags member. bioerror (9F) should be used in preference to setting
the b_error field.

b_private is for the private use of the device driver.

b_edev contains the major and minor device numbers of the device accessed.

SEE ALSO strategy (9E), aphysio (9F), bioclone (9F), biodone (9F), bioerror (9F),
bioinit (9F), clrbuf (9F), getrbuf (9F), physio (9F), iovec (9S), uio (9S)

Writing Device Drivers

WARNINGS Buffers are a shared resource within the kernel. Drivers should read or write only
the members listed in this section. Drivers that attempt to use undocumented
members of the buf structure risk corrupting data in the kernel or on the device.

Last modified 26 Sep 1996 SunOS 5.8 19

cb_ops(9S) Data Structures for Drivers

NAME cb_ops – character/block entry points structure

SYNOPSIS #include <sys/conf.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION cb_ops contains all entry points for drivers that support both character and
block entry points. All leaf device drivers supporting direct user process access
to a device should declare a cb_ops structure.

All drivers which safely allow multiple threads of execution in the driver at the
same time must set the D_MPflag in the cb_flag field.

If the driver properly handles 64-bit offsets, it should also set the D_64BIT flag
in the cb_flag field. This specifies that the driver will use the uio_loffset
field of the uio (9S) structure.

mt-streams (9F) describes other flags that may be set in the cb_flag field.

cb_rev is the cb_ops structure revision number. This field must be set to
CB_REV.

Non-STREAMS drivers should set cb_str to NULL.

The following DDI/DKI or DKI-only or DDI-only functions are provided in the
character/block driver operations structure.

block/char Function Description

b/c XXopen DDI/DKI

b/c XXclose DDI/DKI

b XXstrategy DDI/DKI

b XXprint DDI/DKI

b XXdump DDI(Sun)

c XXread DDI/DKI

c XXwrite DDI/DKI

c XXioctl DDI/DKI

c XXdevmap DDI(Sun)

c XXmmap DKI

20 SunOS 5.8 Last modified 30 Sep 1996

Data Structures for Drivers cb_ops(9S)

block/char Function Description

c XXsegmap DKI

c XXchpoll DDI/DKI

c XXprop_op DDI(Sun)

c XXaread DDI(Sun)

c XXawrite DDI(Sun)

STRUCTURE
MEMBERS int (*cb_open)(dev_t *devp, int flag, int otyp, cred_t *credp);

int (*cb_close)(dev_t dev, int flag, int otyp, cred_t *credp);
int (*cb_strategy)(struct buf *bp);int(*cb_print)(dev_t dev, char *str);
int (*cb_dump)(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
int (*cb_read)(dev_t dev, struct uio *uiop, cred_t *credp);
int (*cb_write)(dev_t dev, struct uio *uiop, cred_t *credp);
int (*cb_ioctl)(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp);
int (*cb_devmap)(dev_t dev, devmap_cookie_t dhp, offset_t off,

size_t len, size_t *maplen, uint_t model);
int (*cb_mmap)(dev_t dev, off_t off, int prot);
int (*cb_segmap)(dev_t dev, off_t off, struct as *asp,

caddr_t *addrp, off_t len, unsigned int prot,
unsigned int maxprot, unsigned int flags, cred_t *credp);

int (*cb_chpoll)(dev_t dev, short events, int anyyet,
short *reventsp, struct pollhead **phpp);

int (*cb_prop_op)(dev_t dev, dev_info_t *dip,
ddi_prop_op_t prop_op, int mod_flags,
char *name, caddr_t valuep, int *length);

struct streamtab *cb_str; /* streams information */
int cb_flag;intcb_rev;
int (*cb_aread)(dev_t dev, struct aio_req *aio, cred_t *credp);
int (*cb_awrite)(dev_t dev, struct aio_req *aio, cred_t *credp);

SEE ALSO aread (9E), awrite (9E), chpoll (9E), close (9E), dump(9E), ioctl (9E),
mmap(9E), open (9E), print (9E), prop_op (9E), read (9E), segmap(9E),
strategy (9E), write (9E), nochpoll (9F), nodev (9F), nulldev (9F),
dev_ops (9S), qinit (9S)

Writing Device Drivers

STREAMS Programming Guide

Last modified 30 Sep 1996 SunOS 5.8 21

copyreq(9S) Data Structures for Drivers

NAME copyreq – STREAMS data structure for the M_COPYIN and the M_COPYOUT
message types

SYNOPSIS #include <sys/stream.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The data structure for the M_COPYINand the M_COPYOUTmessage types.

STRUCTURE
MEMBERS int cq_cmd; /* ioctl command (from ioc_cmd) */

cred_t *cq_cr; /* full credentials */
uint_t cq_id; /* ioctl id (from ioc_id) */
uint_t cq_flag; /* see below */
mblk_t *cq_private; /* private state information */
caddr_t cq_addr; /* address to copy data to/from */
size_t cq_size; /* number of bytes to copy */

/* cq_flag values */
#define STRCANON 0x01 /* b_cont data block contains */

/* canonical format specifier */
#define RECOPY 0x02 /* perform I_STR copyin again, */

/* this time using canonical */
/* format specifier */

SEE ALSO STREAMS Programming Guide

22 SunOS 5.8 Last modified 14 Nov 1996

Data Structures for Drivers copyresp(9S)

NAME copyresp – STREAMS data structure for the M_IOCDATA message type

SYNOPSIS #include <sys/stream.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The data structure copyresp is used with the M_IOCDATAmessage type.

STRUCTURE
MEMBERS int cp_cmd; /* ioctl command (from ioc_cmd) */

cred_t *cp_cr; /* full credentials */
uint_t cp_id; /* ioctl id (from ioc_id) */
uint_t cp_flag; /* ioctl flags */
mblk_t *cp_private; /* private state information */
caddr_t cp_rval; /* status of request: 0 -> success;

/*non-zero -> failure */

SEE ALSO STREAMS Programming Guide

Last modified 14 Nov 1996 SunOS 5.8 23

datab(9S) Data Structures for Drivers

NAME datab – STREAMS message data structure

SYNOPSIS #include <sys/stream.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The datab structure describes the data of a STREAMS message. The actual
data contained in a STREAMS message is stored in a data buffer pointed to by
this structure. A msgb (message block) structure includes a field that points
to a datab structure.

A data block can have more than one message block pointing to it at one time, so
the db_ref member keeps track of a data block’s references, preventing it from
being deallocated until all message blocks are finished with it.

STRUCTURE
MEMBERS unsigned char *db_base; /* first byte of buffer */

unsigned char *db_lim; /* last byte (+1) of buffer */
dbref_t db_ref; /* # of message pointers to this data */
unsigned char db_type; /* message type */

A datab structure is defined as type dblk_t .

SEE ALSO free_rtn (9S), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

24 SunOS 5.8 Last modified 18 Feb 1998

Data Structures for Drivers ddi_device_acc_attr(9S)

NAME ddi_device_acc_attr – data access attributes structure

SYNOPSIS #include <sys/ddi.h>

#include <sys/sunddi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The ddi_device_acc_attr structure describes the data access characteristics
and requirements of the device.

STRUCTURE
MEMBERS

ushort_t devacc_attr_version;
uchar_t devacc_attr_endian_flags;
uchar_t devacc_attr_dataorder;

The devacc_attr_version member identifies the version number of this
structure. The current version number is DDI_DEVICE_ATTR_V0.

The devacc_attr_endian_flags member describes the endian
characteristics of the device. Specify one of the following values.
DDI_NEVERSWAP_ACC Ddata access with no byte swapping.

DDI_STRUCTURE_BE_ACC Structural data access in big endian
format.

DDI_STRUCTURE_LE_ACC Structural data access in little endian
format.

DDI_STRUCTURE_BE_ACCand DDI_STRUCTURE_LE_ACCdescribes the
endian characteristics of the device as big endian or little endian, respectively.
Even though most of the devices will have the same endian characteristics
as their buses, there are examples of devices with I/O an processor that has
opposite endian characteristics of the buses. When DDI_STRUCTURE_BE_ACC
or DDI_STRUCTURE_LE_ACCis set, byte swapping will automatically be
performed by the system if the host machine and the device data formats have
opposite endian characteristics. The implementation may take advantage of
hardware platform byte swapping capabilities.

When DDI_NEVERSWAP_ACCis specified, byte swapping will not be invoked
in the data access functions.

The devacc_attr_dataorder member describes order in which the CPU will
reference data. Specify one of the following values.
DDI_STRICTORDER_ACC The data references must be issued

by a CPU in program order. Strict
ordering is the default behavior.

Last modified 27 Oct 1994 SunOS 5.8 25

ddi_device_acc_attr(9S) Data Structures for Drivers

DDI_UNORDERED_OK_ACC The CPU may re-order the data
references. This includes all kinds of
re-ordering. For example, . a load
followed by a store may be replaced
by a store followed by a load.

DDI_MERGING_OK_ACC The CPU may merge individual
stores to consecutive locations. For
example, the CPU may turn two
consecutive byte stores into one
halfword store. It may also batch
individual loads. For example, the
CPU may turn two consecutive
byte loads into one halfword load.
DDI_MERGING_OK_ACCalso implies
re-ordering.

DDI_LOADCACHING_OK_ACC The CPU may cache the data it
fetches and reuse it until another
store occurs. The default behavior
is to fetch new data on every load.
DDI_LOADCACHING_OK_ACCalso
implies merging and re-ordering.

DDI_STORECACHING_OK_ACC The CPU may keep the data in the
cache and push it to the device
(perhaps with other data) at a
later time. The default behavior
is to push the data right away.
DDI_STORECACHING_OK_ACCalso
implies load caching, merging, and
re-ordering.

These values are advisory, not mandatory. For example, data can be ordered
without being merged or cached, even though a driver requests unordered,
merged and cached together.

EXAMPLES The following examples illustrate the use of device register address mapping
setup functions and different data access functions.
EXAMPLE 1 Using ddi_device_acc_attr() in ddi_regs_map_setup (9F)

This example demonstrates the use of the ddi_device_acc_attr() structure
in ddi_regs_map_setup (9F). It also shows the use of ddi_getw (9F) and
ddi_putw (9F) functions in accessing the register contents.

26 SunOS 5.8 Last modified 27 Oct 1994

Data Structures for Drivers ddi_device_acc_attr(9S)

dev_info_t *dip;
uint_t rnumber;
ushort_t *dev_addr;
offset_t offset;
offset_t len;
ushort_t dev_command;
ddi_device_acc_attr_t dev_attr;
ddi_acc_handle_t handle;

. . .

/*
* setup the device attribute structure for little endian,
* strict ordering and 16-bit word access.
*/

dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

/*
* set up the device registers address mapping
*/

ddi_regs_map_setup(dip, rnumber, (caddr_t *)&dev_addr, offset, len,
&dev_attr, &handle);

/* read a 16-bit word command register from the device */
dev_command = ddi_getw(handle, dev_addr);

dev_command |= DEV_INTR_ENABLE;
/* store a new value back to the device command register */
ddi_putw(handle, dev_addr, dev_command);

CODE EXAMPLE 1 Accessing a Device with Different Apertures

The following example illustrates the steps used to access a device with different
apertures. We assume that several apertures are grouped under one single
"reg" entry. For example, the sample device has four different apertures each
32K in size. The apertures represent YUV little-endian, YUV big-endian, RGB
little-endian, and RGB big-endian. This sample device uses entry 1 of the "reg"
property list for this purpose. The size of the address space is 128K with each
32K range as a separate aperture. In the register mapping setup function, the
sample driver uses the offset and len parameters to specify one of the apertures.

ulong_t *dev_addr;
ddi_device_acc_attr_t dev_attr;
ddi_acc_handle_t handle;
uchar_t buf[256];

. . .

/*
* setup the device attribute structure for never swap,
* unordered and 32-bit word access.
*/

Last modified 27 Oct 1994 SunOS 5.8 27

ddi_device_acc_attr(9S) Data Structures for Drivers

dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
dev_attr.devacc_attr_dataorder = DDI_UNORDERED_OK_ACC;

/*
* map in the RGB big-endian aperture
* while running in a big endian machine
* - offset 96K and len 32K
*/

ddi_regs_map_setup(dip, 1, (caddr_t *)&dev_addr, 96*1024, 32*1024,
&dev_attr, &handle);

/*
* Write to the screen buffer
* first 1K bytes words, each size 4 bytes
*/

ddi_rep_putl(handle, buf, dev_addr, 256, DDI_DEV_AUTOINCR);

CODE EXAMPLE 2 Functions Thal Call Out the Data Word Size

The following example illustrates the use of the functions that explicitly call out
the data word size to override the data size in the device attribute structure.

struct device_blk {
ushort_t d_command; /* command register */
ushort_t d_status; /* status register */
ulong d_data; /* data register */

} *dev_blkp;
dev_info_t *dip;
caddr_t dev_addr;
ddi_device_acc_attr_t dev_attr;
ddi_acc_handle_t handle;
uchar_t buf[256];

. . .

/*
* setup the device attribute structure for never swap,
* strict ordering and 32-bit word access.
*/

dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
dev_attr.devacc_attr_dataorder= DDI_STRICTORDER_ACC;

ddi_regs_map_setup(dip, 1, (caddr_t *)&dev_blkp, 0, 0,
&dev_attr, &handle);

/* write command to the 16-bit command register */
ddi_putw(handle, &dev_blkp->d_command, START_XFER);

/* Read the 16-bit status register */
status = ddi_getw(handle, &dev_blkp->d_status);

if (status & DATA_READY)
/* Read 1K bytes off the 32-bit data register */
ddi_rep_getl(handle, buf, &dev_blkp->d_data,

28 SunOS 5.8 Last modified 27 Oct 1994

Data Structures for Drivers ddi_device_acc_attr(9S)

256, DDI_DEV_NO_AUTOINCR);

SEE ALSO ddi_getw (9F), ddi_putw (9F), ddi_regs_map_setup (9F)

Writing Device Drivers

Last modified 27 Oct 1994 SunOS 5.8 29

ddi_dma_attr(9S) Data Structures for Drivers

NAME ddi_dma_attr – DMA attributes structure

SYNOPSIS #include <sys/ddidmareq.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION A ddi_dma_attr_t structure describes device and DMA engine specific
attributes necessary to allocate DMA resources for a device. The driver may
have to extend the attributes with bus specific information depending on the
bus to which the device is connected.

STRUCTURE
MEMBERS uint_t dma_attr_version; /* version number */

uint64_t dma_attr_addr_lo; /* low DMA address range */
uint64_t dma_attr_addr_hi; /* high DMA address range */
uint64_t dma_attr_count_max; /* DMA counter register */
uint64_t dma_attr_align; /* DMA address alignment */
uint_t dma_attr_burstsizes; /* DMA burstsizes */
uint32_t dma_attr_minxfer; /* min effective DMA size */
uint64_t dma_attr_maxxfer; /* max DMA xfer size */
uint64_t dma_attr_seg; /* segment boundary */
int dma_attr_sgllen; /* s/g list length */
uint32_t dma_attr_granular; /* granularity of device */
uint_t dma_attr_flags; /* DMA transfer flags */

dma_attr_version stores the version number of this DMA attribute structure.
It should be set to DMA_ATTR_V0.

The dma_attr_addr_lo and dma_attr_addr_hi fields specify the address
range the device’s DMA engine can access. The dma_attr_addr_lo field
describes the inclusive lower 64–bit boundary. The dma_attr_addr_hi
describes the inclusive upper 64–bit boundary. The system will ensure
that allocated DMA resources are within the range specified. See
ddi_dma_cookie (9S).

The dma_attr_count_max describes an inclusive upper bound for the device’s
DMA counter register. For example, 0xFFFFFF would describe a DMA engine
with a 24 bit counter register. DMA resource allocation functions have to break
up a DMA object into multiple DMA cookies if the size of the object exceeds
the size of the DMA counter register.

The dma_attr_align specifies alignment requirements for allocated DMA
resources. This field can be used to force more restrictive alignment than imposed
by dma_attr_burstsizes or dma_attr_minxfer , such as alignment at a
page boundary. Most drivers will set this to 1 indicating byte alignment.

Note that dma_attr_align only specifies alignment requirements for allocated
DMA resources. The buffer passed to ddi_dma_addr_bind_handle (9F) or

30 SunOS 5.8 Last modified 26 Sep 1996

Data Structures for Drivers ddi_dma_attr(9S)

ddi_dma_buf_bind_handle (9F) must have and equally restrictive alignment
(see ddi_dma_mem_alloc (9F)).

The dma_attr_burstsizes field describes the possible burst sizes the device’s
DMA engine can accept. The format of the data sizes is binary encoded in terms
of powers of two. When DMA resources are allocated, the system may modify
the burstsizes value to reflect the system limits. The driver must use the allowable
burstsizes to program the DMA engine. See ddi_dma_burstsizes (9F).

The dma_attr_minxfer field describes the minimum effective DMA access
size in units of bytes. DMA resources may be modified depending on the
presence and use of I/O caches and write buffers between the DMA engine and
the memory object. This field is used to determine alignment and padding
requirements for ddi_dma_mem_alloc (9F).

The dma_attr_maxxfer field describes the maximum effective DMA access
size in units of bytes.

The dma_attr_seg field specifies segment boundary restrictions for allocated
DMA resources. The system will allocate DMA resources for the device such that
the object does not span the segment boundary specified by dma_attr_seg . For
example a value of 0xFFFF means DMA resources must not cross a 64K boundary.
DMA resource allocation functions may have to break up a DMA object into
multiple DMA cookies to enforce segment boundary restrictions. In this case, the
transfer must be performed using scatter-gather I/O or multiple DMA windows.

The dma_attr_sgllen field describes the length of the device’s DMA
scatter/gather list. Possible values are as follows:
< 0 Device DMA engine is not constrained by the size – for example,

DMA chaining.

= 0 Reserved.

= 1 Device DMA engine does not support scatter/gather such as third
party DMA.

> 1 Device DMA engine uses scatter/gather. dma_attr_sgllen is the
maximum number of entries in the list.

The dma_attr_granular field describes the granularity of the device
transfer size in units of bytes. When the system allocates DMA resources,
a single segment’s size will be a multiple of the device granularity. Or if
dma_attr_sgllen is larger than 1 within a window, the sum of the sizes for a
subgroup of segments will be a multiple of the device granularity.

Note that all driver requests for DMA resources must be a multiple of the
granularity of the device transfer size.

Last modified 26 Sep 1996 SunOS 5.8 31

ddi_dma_attr(9S) Data Structures for Drivers

The dma_attr_flags field can be set to:
DDI_DMA_FORCE_PHYSICAL

Some platforms, such as SPARC systems,support what is called DVMA
(Direct Virtual Memory Access). On these platforms the device is provided
with a virtual address by the system in order to perform the transfer. In
this case, the underlying platform provides an IOMMU which translates
accesses to these virtual addresses into the proper physical addresses. Some
of these platforms support in addition DMA. DDI_DMA_FORCE_PHYSICAL
indicates that the system should return physical rather than virtual I/O
addresses if the system supports both. If the system does not support
physical DMA, the return value from ddi_dma_alloc_handle (9F)
will be DDI_DMA_BADATTR.In this case, the driver has to clear
DDI_DMA_FORCE_PHYSICALand retry the operation.

EXAMPLES EXAMPLE 1 Initializing the ddi_dma_attr_t Structure

Assume a device has the following DMA characteristics:

� Full 32-bit range addressable

� 24-bit DMA counter register

� byte alignment

� 4 and 8-byte burst sizes support

� Minimum effective transfer size of 1 bytes

� 64M maximum transfer size limit

� Maximum segment size of 32K

� 17 scatter/gather list elements

� 512 byte device transfer size granularity

The corresponding ddi_dma_attr_t structure would be initialized as follows:

static ddi_dma_attr_t dma_attrs = {
DMA_ATTR_V0 /* version number */
(uint64_t)0x0, /* low address */
(uint64_t)0xffffffff, /* high address */
(uint64_t)0xffffff, /* DMA counter max */
(uint64_t)0x1 /* alignment */
0x0c, /* burst sizes */
0x1, /* minimum transfer size */
(uint64_t)0x3ffffff, /* maximum transfer size */
(uint64_t)0x7fff, /* maximum segment size */
17, /* scatter/gather list lgth */
512 /* granularity */
0 /* DMA flags */

};

32 SunOS 5.8 Last modified 26 Sep 1996

Data Structures for Drivers ddi_dma_attr(9S)

SEE ALSO ddi_dma_addr_bind_handle (9F), ddi_dma_alloc_handle (9F),
ddi_dma_buf_bind_handle (9F), ddi_dma_burstsizes (9F),
ddi_dma_mem_alloc (9F), ddi_dma_nextcookie (9F), ddi_dma_cookie (9S)

Writing Device Drivers

Last modified 26 Sep 1996 SunOS 5.8 33

ddi_dma_cookie(9S) Data Structures for Drivers

NAME ddi_dma_cookie – DMA address cookie

SYNOPSIS #include <sys/sunddi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The ddi_dma_cookie_t structure contains DMA address information required
to program a DMA engine. It is filled in by a call to ddi_dma_getwin (9F),
ddi_dma_addr_bind_handle (9F), or ddi_dma_buf_bind_handle (9F) to
get device specific DMA transfer information for a DMA request or a DMA
window.

STRUCTURE
MEMBERS uint64_t dmac_laddress; /* 64 bit address */

uint32_t dmac_address; /* 32 bit address */
size_t dmac_size; /* transfer size */
uint_t dmac_type; /* bus specific type bits */

dmac_laddress specifies a 64–bit I/O address appropriate for programming
the device’s DMA engine. If a device has a 64-bit DMA address register a driver
should use this field to program the DMA engine. dmac_address specifies
a 32–bit I/O address. It should be used for devices which have a 32-bit DMA
address register. The I/O address range that the device can address and other
DMA attributes have to be specified in a ddi_dma_attr (9S) structure.

dmac_size describes the length of the transfer in bytes.

dmac_type contains bus specific type bits, if appropriate. For example, a device
on a VME bus will have VME address modifier bits placed here.

SEE ALSO pci (4), sbus (4), sysbus (4), ddi_dma_addr_bind_handle (9F),
ddi_dma_buf_bind_handle (9F), ddi_dma_getwin (9F),
ddi_dma_nextcookie (9F), ddi_dma_attr (9S)

Writing Device Drivers

34 SunOS 5.8 Last modified 30 Sep 1996

Data Structures for Drivers ddi_dmae_req(9S)

NAME ddi_dmae_req – DMA engine request structure

SYNOPSIS #include <sys/dma_engine.h>

INTERFACE
LEVEL

Solaris IA DDI specific (Solaris IA DDI).

DESCRIPTION A ddi_dmae_req structure is used by a device driver to describe the parameters
for a DMA channel. This structure contains all the information necessary to set
up the channel, except for the DMA memory address and transfer count. The
defaults as specified below support most standard devices. Other modes may
be desirable for some devices, or to increase performance. The DMA engine
request structure is passed to ddi_dmae_prog (9F).

STRUCTURE
MEMBERS

The ddi_dmae_req structure contains several members, each of which controls
some aspect of DMA engine operation. The structure members associated with
supported DMA engine options are described here.

uchar_tder_command; /* Read / Write *
/uchar_tder_bufprocess; /* Standard / Chain */
uchar_tder_path; /* 8 / 16 / 32 */
uchar_tder_cycles; /* Compat / Type A / Type B / Burst */
uchar_tder_trans; /* Single / Demand / Block */
ddi_dma_cookie_t*(*proc)(); /* address of nextcookie routine */
void*procparms; /* parameter for nextcookie call */

der_command
specifies what DMA operation is to be performed. The value
DMAE_CMD_WRITEsignifies that data is to be transferred from memory to
the I/O device. The value DMAE_CMD_READsignifies that data is to be
transferred from the I/O device to memory. This field must be set by the
driver before calling ddi_dmae_prog() .

der_bufprocess
On some bus types, a driver may set der_bufprocess to the value
DMAE_BUF_CHAINto specify that multiple DMA cookies will be given to
the DMA engine for a single I/O transfer, thus effecting a scatter/gather
operation. In this mode of operation, the driver calls ddi_dmae_prog()
to give the DMA engine the DMA engine request structure and a pointer
to the first cookie. The proc structure member must be set to the address
of a driver nextcookie routine that takes one argument, specified by
the procparms structure member, and returns a pointer to a structure
of type ddi_dma_cookie_t that specifies the next cookie for the I/O
transfer. When the DMA engine is ready to receive an additional cookie, the
bus nexus driver controlling that DMA engine calls the routine specified
by the proc structure member to obtain the next cookie from the driver.
The driver’s nextcookie routine must then return the address of the next
cookie (in static storage) to the bus nexus routine that called it. If there are

Last modified 1 Jan 1997 SunOS 5.8 35

ddi_dmae_req(9S) Data Structures for Drivers

no more segments in the current DMA window, then (*proc)() must
return the NULL pointer.

A driver may only specify the DMAE_BUF_CHAINflag if the particular
bus architecture supports the use of multiple DMA cookies in a single
I/O transfer. A bus DMA engine may support this feature either with a
fixed-length scatter/gather list, or via an interrupt chaining feature such as
the one implemented in the EISA architecture. A driver must ascertain
whether its parent bus nexus supports this feature by examining the
scatter/gather list size returned in the dlim_sgllen member of the DMA
limit structure (see ddi_dma_lim_IA (9S)) returned by the driver’s call to
ddi_dmae_getlim() . If the size of the scatter/gather list is 1, then no
chaining is available, the driver must not specify the DMAE_BUF_CHAINflag
in the ddi_dmae_req structure it passes to ddi_dmae_prog() , and the
driver need not provide a nextcookie routine.

If the size of the scatter/gather list is greater than 1, then DMA chaining is
available, and the driver has two options. Under the first option, the driver
chooses not to use the chaining feature, in which case (a) the driver must
set the size of the scatter/gather list to 1 before passing it to the DMA
setup routine, and (b) the driver must not set the DMAE_BUF_CHAINflag.

Under the second option, the driver chooses to use the chaining
feature, in which case (a) it should leave the size of the scatter/gather
list alone, and (b) it must set the DMAE_BUF_CHAINflag in the
ddi_dmae_req structure. Before calling ddi_dmae_prog() the driver
must prefetch cookies by repeatedly calling ddi_dma_nextseg (9F) and
ddi_dma_segtocookie (9F) until either (1) the end of the DMA window
is reached (ddi_dma_nextseg (9F) returns NULL), or (2) the size of the
scatter/gather list is reached, whichever occurs first. These cookies must
be saved by the driver until they are requested by the nexus driver calling
the driver’s nextcookie routine. The driver’s nextcookie routine must return
the prefetched cookies, in order, one cookie for each call to the nextcookie
routine, until the list of prefetched cookies is exhausted. After the end of
the list of cookies is reached, the nextcookie routine must return the NULL
pointer.

The size of the scatter/gather list determines how many discontiguous
segments of physical memory may participate in a single DMA transfer. ISA
bus DMA engines have no scatter/gather capability, so their scatter/gather
list sizes are 1. EISA bus DMA engines have a DMA chaining interrupt
facility that allows very large scatter/gather operations. Other finite
scatter/gather list sizes would also be possible. For performance reasons,
it is recommended that drivers use the chaining capability if it is available
on their parent bus.

36 SunOS 5.8 Last modified 1 Jan 1997

Data Structures for Drivers ddi_dmae_req(9S)

As described above, a driver making use of DMA chaining must prefetch
DMA cookies before calling ddi_dmae_prog() . There are two reasons why
the driver must do this. First, the driver must have some way to know the
total I/O count with which to program the I/O device. This I/O count must
match the total size of all the DMA segments that will be chained together
into one DMA operation. Depending on the size of the scatter/gather list
and the memory position and alignment of the DMA object, all or just part
of the current DMA window may be able to participate in a single I/O
operation. The driver must compute the I/O count by adding up the sizes
of the prefetched DMA cookies. The number of cookies whose sizes are
to be summed is the lesser of (a) the size of the scatter/gather list, or (b)
the number of segments remaining in the window. Second, on some bus
architectures, the driver’s nextcookie routine may be called from a high-level
interrupt routine. If the cookies were not prefetched, the nextcookie routine
would have to call ddi_dma_nextseg() and ddi_dma_segtocookie()
from a high-level interrupt routine, which is not recommended.

When breaking a DMA window into segments, the system arranges
that the end of every segment whose number is an integral multiple of
the scatter/gather list size will fall on a device-granularity boundary,
as specified in the dlim_granular field in the ddi_dma_lim_IA (9S)
structure.

If the scatter/gather list size is 1 (either because no chaining is available or
because the driver does not wish to use the chaining feature), then the
total I/O count for a single DMA operation is simply the size of DMA
segment denoted by the single DMA cookie that is passed in the call to
ddi_dmae_prog() . In this case, the system arranges that each DMA
segment is a multiple of the device-granularity size.

der_path
specifies the DMA transfer size. The default of zero (DMAE_PATH_DEF)
specifies ISA compatibility mode. In that mode, channels 0, 1, 2, and 3 are
programmed in 8-bit mode (DMAE_PATH_8), and channels 5, 6, and 7 are
programmed in 16-bit, count-by-word mode (DMAE_PATH_16). On the EISA
bus, other sizes may be specified: DMAE_PATH_32specifies 32-bit mode,
and DMAE_PATH_16Bspecifies a 16-bit, count-by-byte mode.

der_cycles
specifies the timing mode to be used during DMA data transfers. The
default of zero (DMAE_CYCLES_1) specifies ISA compatible timing. Drivers
using this mode must also specify DMAE_TRANS_SNGLin the der_trans
structure member. On EISA buses, these other timing modes are available:

DMAE_CYCLES_2 specifies type “A” timing;

Last modified 1 Jan 1997 SunOS 5.8 37

ddi_dmae_req(9S) Data Structures for Drivers

DMAE_CYCLES_3 specifies type “B” timing;

DMAE_CYCLES_4 specifies “Burst” timing.

der_trans
specifies the bus transfer mode that the DMA engine should expect from the
device. The default value of zero (DMAE_TRANS_SNGL) specifies that the
device will perform one transfer for each bus arbitration cycle. Devices that
use ISA compatible timing (specified by a value of zero, which is the default,
in the der_cycles structure member) should use the DMAE_TRANS_SNGL
mode. On EISA buses, a der_trans value of DMAE_TRANS_BLCKspecifies
that the device will perform a block of transfers for each arbitration cycle.
A value of DMAE_TRANS_DMNDspecifies that the device will perform the
Demand Transfer Mode protocol.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO eisa (4), isa (4), attributes (5), ddi_dma_segtocookie (9F), ddi_dmae (9F),
ddi_dma_lim_IA (9S), ddi_dma_req (9S)

38 SunOS 5.8 Last modified 1 Jan 1997

Data Structures for Drivers ddi_dma_lim_sparc(9S)

NAME ddi_dma_lim_sparc, ddi_dma_lim – SPARC DMA limits structure

SYNOPSIS #include <sys/ddidmareq.h>

INTERFACE
LEVEL

Solaris SPARC DDI specific (Solaris SPARC DDI).

DESCRIPTION A ddi_dma_lim structure describes in a generic fashion the possible limitations
of a device’s DMA engine. This information is used by the system when it
attempts to set up DMA resources for a device.

STRUCTURE
MEMBERS

uint_t dlim_addr_lo; /* low range of 32 bit addressing capability */
uint_t dlim_addr_hi; /* inclusive upper bound of addressing */

/* capability */
uint_t dlim_cntr_max; /* inclusive upper bound of dma engine’s */

/* address limit * /
uint_t dlim_burstsizes; /* binary encoded dma burst sizes */
uint_t dlim_minxfer; /* minimum effective dma transfer size */
uint_t dlim_dmaspeed; /* average dma data rate (kb/s) */

The dlim_addr_lo and dlim_addr_hi fields specify the address range the
device’s DMA engine can access. The dlim_addr_lo field describes the lower
32 bit boundary of the device’s DMA engine, the dlim_addr_hi describes
the inclusive upper 32 bit boundary. The system will allocate DMA resources
in a way that the address for programming the device’s DMA engine (see
ddi_dma_cookie (9S) or ddi_dma_htoc (9F)) will be within this range. For
example, if your device can access the whole 32 bit address range, you may use
[0 ,0xFFFFFFFF]. If your device has just a 16 bit address register but will
access the top of the 32 bit address range, then [0xFFFF0000 ,0xFFFFFFFF
] would be the right limit.

The dlim_cntr_max field describes an inclusive upper bound for the device’s
DMA engine address register. This handles a fairly common case where a portion
of the address register is simply a latch rather than a full register. For example,
the upper 8 bits of a 32 bit address register may be a latch. This splits the address
register into a portion which acts as a true address register (24 bits) for a 16
megabyte segment and a latch (8 bits) to hold a segment number. To describe
these limits, you would specify 0xFFFFFF in the dlim_cntr_max structure.

The dlim_burstsizes field describes the possible burst sizes the device’s
DMA engine can accept. At the time of a DMA resource request, this element
defines the possible DMA burst cycle sizes that the requester’s DMA engine
can handle. The format of the data is binary encoding of burst sizes assumed
to be powers of two. That is, if a DMA engine is capable of doing 1, 2, 4 and
16 byte transfers, the encoding would be 0x17. If the device is an SBus device
and can take advantage of a 64 bit SBus, the lower 16 bits are used to specify
the burst size for 32 bit transfers and the upper 16 bits are used to specify

Last modified 1 Feb 1994 SunOS 5.8 39

ddi_dma_lim_sparc(9S) Data Structures for Drivers

the burst size for 64 bit transfers. As the resource request is handled by the
system, the burstsizes value may be modified. Prior to enabling DMA for the
specific device, the driver that owns the DMA engine should check (using
ddi_dma_burstsizes (9F)) what the allowed burstsizes have become and
program the DMA engine appropriately.

The dlim_minxfer field describes the minimum effective DMA transfer size
(in units of bytes). It must be a power of two. This value specifies the minimum
effective granularity of the DMA engine. It is distinct from dlim_burstsizes
in that it describes the minimum amount of access a DMA transfer will effect.
dlim_burstsizes describes in what electrical fashion the DMA engine might
perform its accesses, while dlim_minxfer describes the minimum amount
of memory that can be touched by the DMA transfer. As a resource request is
handled by the system, the dlim_minxfer value may be modified contingent
upon the presence (and use) of I/O caches and DMA write buffers in between
the DMA engine and the object that DMA is being performed on. After DMA
resources have been allocated, the resultant minimum transfer value can be
gotten using ddi_dma_devalign (9F) .

The field dlim_dmaspeed is the expected average data rate for the DMA engine
(in units of kilobytes per second). Note that this should not be the maximum, or
peak, burst data rate, but a reasonable guess as to the average throughput. This
field is entirely optional, and may be left as zero. Its intended use is to provide
some hints about how much DMA resources this device may need.

SEE ALSO ddi_dma_addr_setup (9F) , ddi_dma_buf_setup (9F) ,
ddi_dma_burstsizes (9F) , ddi_dma_devalign (9F) , ddi_dma_htoc (9F)
, ddi_dma_setup (9F) , ddi_dma_cookie (9S) , ddi_dma_lim_IA (9S) ,
ddi_dma_req (9S)

40 SunOS 5.8 Last modified 1 Feb 1994

Data Structures for Drivers ddi_dma_lim_x86(9S)

NAME ddi_dma_lim_x86 – IA DMA limits structure

SYNOPSIS #include <sys/ddidmareq.h>

INTERFACE
LEVEL

Solaris IA DDI specific (Solaris IA DDI)

DESCRIPTION A ddi_dma_lim structure describes in a generic fashion the possible limitations
of a device or its DMA engine. This information is used by the system when it
attempts to set up DMA resources for a device. When the system is requested to
perform a DMA transfer to or from an object, the request will be broken up, if
necessary, into multiple sub-requests, each of which conforms to the limitations
expressed in the ddi_dma_lim structure.

This structure should be filled in by calling the routine ddi_dmae_getlim (9F)
which sets the values of the structure members appropriately based on the
characteristics of the DMA engine on the driver’s parent bus. If the driver has
additional limitations, it may further restrict some of the values in the structure
members. A driver should take care to not relax any restrictions imposed by
ddi_dmae_getlim() .

STRUCTURE
MEMBERS

uint_t dlim_addr_lo; /* low range of 32 bit addressing capability */
uint_t dlim_addr_hi; /* inclusive upper bound of addressing capability */
uint_t dlim_minxfer; /* minimum effective dma transfer size */
uint_t dlim_version; /* version number of this structure */
uint_t dlim_adreg_max; /* inclusive upper bound of

/* incrementing addr reg */
uint_t dlim_ctreg_max; /* maximum transfer count minus one */
uint_t dlim_granular; /* granularity (and min size) of transfer count */
short dlim_sgllen; /* length of DMA scatter/gather list */
uint_t dlim_reqsize; /* maximum transfer size in bytes of a single I/O */

The dlim_addr_lo and dlim_addr_hi fields specify the address range
the device’s DMA engine can access. The dlim_addr_lo field describes the
lower 32 bit boundary of the device’s DMA engine; dlim_addr_hi describes
the inclusive upper 32 bit boundary. The system will allocate DMA resources
in a way that the address for programming the device’s DMA engine (see
ddi_dma_cookie (9S) or ddi_dma_segtocookie (9F)) will be within this
range. For example, if your device can access the whole 32 bit address range, you
may use [0,0xFFFFFFFF].

The dlim_minxfer field describes the minimum effective DMA transfer size
(in units of bytes). It must be a power of two. This value specifies the minimum
effective granularity of the DMA engine. It describes the minimum amount of
memory that can be touched by the DMA transfer. As a resource request is
handled by the system, the dlim_minxfer value may be modified contingent
upon the presence (and use) of I/O caches and DMA write buffers in between
the DMA engine and the object that DMA is being performed on. After DMA

Last modified 31 Jan 1994 SunOS 5.8 41

ddi_dma_lim_x86(9S) Data Structures for Drivers

resources have been allocated, the resultant minimum transfer value can be
retrieved using ddi_dma_devalign (9F).

The dlim_version field specifies the version number of this structure. This
field should be set to DMALIM_VER0.

The dlim_adreg_max field describes an inclusive upper bound for the device’s
DMA engine address register. This handles a fairly common case where a
portion of the address register is simply a latch rather than a full register. For
example, the upper 16 bits of a 32 bit address register may be a latch. This
splits the address register into a portion which acts as a true address register
(lower 16 bits) for a 64 kilobyte segment and a latch (upper 16 bits) to hold a
segment number. To describe these limits, you would specify 0xFFFF in the
dlim_adreg_max structure member.

The dlim_ctreg_max field specifies the maximum transfer count that the
DMA engine can handle in one segment or cookie. The limit is expressed as
the maximum count minus one. This transfer count limitation is a per-segment
limitation. It is used as a bit mask, so it must be one less than a power of two.

The dlim_granular field describes the granularity of the device’s DMA
transfer ability, in units of bytes. This value is used to specify, for example, the
sector size of a mass storage device. DMA requests will be broken into multiples
of this value. If there is no scatter/gather capability, then the size of each DMA
transfer will be a multiple of this value. If there is scatter/gather capability,
then a single segment will not be smaller than the minimum transfer value,
but may be less than the granularity; however the total transfer length of the
scatter/gather list will be a multiple of the granularity value.

The dlim_sgllen field specifies the maximum number of entries in the
scatter/gather list. It is the number of segments or cookies that the DMA engine
can consume in one I/O request to the device. If the DMA engine has no
scatter/gather list, this field should be set to one.

The dlim_reqsize field describes the maximum number of bytes that the
DMA engine can transmit or receive in one I/O command. This limitation is only
significant if it is less than (dlim_ctreg_max +1) * dlim_sgllen . If the DMA
engine has no particular limitation, this field should be set to 0xFFFFFFFF.

SEE ALSO ddi_dmae (9F), ddi_dma_addr_setup (9F), ddi_dma_buf_setup (9F),
ddi_dma_devalign (9F), ddi_dma_segtocookie (9F), ddi_dma_setup (9F),
ddi_dma_cookie (9S) ddi_dma_lim_sparc (9S), ddi_dma_req (9S)

42 SunOS 5.8 Last modified 31 Jan 1994

Data Structures for Drivers ddi_dma_req(9S)

NAME ddi_dma_req – DMA Request structure

SYNOPSIS #include <sys/ddidmareq.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION A ddi_dma_req structure describes a request for DMA resources. A driver
may use it to describe forms of and ways to allocate DMA resources for a
DMA request.

STRUCTURE
MEMBERS

ddi_dma_lim_t *dmar_limits; /* Caller’s dma engine’s */
/* constraints */

uint_t dmar_flags; /* Contains information for */
/* mapping routines */

int (*dmar_fp)(caddr_t); /* Callback function */
caddr_t dmar_arg; /* Callback function’s argument */
ddi_dma_obj_t dmar_object; /* Description of the object */

/* to be mapped */

For the definition of the DMA limits structure, which dmar_limits points to,
see ddi_dma_lim_sparc (9S) or ddi_dma_lim_IA (9S).

Valid values for dmar_flags are:

DDI_DMA_WRITE /* Direction memory --> IO */
DDI_DMA_READ /* Direction IO --> memory */
DDI_DMA_RDWR /* Both read and write */
DDI_DMA_REDZONE /* Establish an MMU redzone at end of mapping */
DDI_DMA_PARTIAL /* Partial mapping is allowed */
DDI_DMA_CONSISTENT /* Byte consistent access wanted */
DDI_DMA_SBUS_64BIT /* Use 64 bit capability on SBus */

DDI_DMA_WRITE, DDI_DMA_READand DDI_DMA_RDWRdescribe the intended
direction of the DMA transfer. Some implementations may explicitly disallow
DDI_DMA_RDWR.

DDI_DMA_REDZONEasks the system to establish a protected red zone after the
object. The DMA resource allocation functions do not guarantee the success of
this request as some implementations may not have the hardware ability to
support it.

DDI_DMA_PARTIALtells the system that the caller can accept a partial mapping.
That is, if the size of the object exceeds the resources available, only allocate a
portion of the object and return status indicating so. At a later point, the caller
can use ddi_dma_curwin (9F) and ddi_dma_movwin (9F) to change the valid
portion of the object that has resources allocated.

DDI_DMA_CONSISTENTgives a hint to the system that the object should be
mapped for byte consistent access. Normal data transfers usually use a streaming
mode of operation. They start at a specific point, transfer a fairly large amount of

Last modified 17 May 1994 SunOS 5.8 43

ddi_dma_req(9S) Data Structures for Drivers

data sequentially, and then stop usually on a aligned boundary. Control mode
data transfers for memory resident device control blocks (for example ethernet
message descriptors) do not access memory in such a sequential fashion. Instead,
they tend to modify a few words or bytes, move around and maybe modify a
few more. There are many machine implementations that make this difficult to
control in a generic and seamless fashion. Therefore, explicit synchronization
steps using ddi_dma_sync (9F) or ddi_dma_free (9F) are required in order to
make the view of a memory object shared between a CPU and a DMA device
consistent. However, proper use of the DDI_DMA_CONSISTENTflag gives
a hint to the system so that it will attempt to pick resources such that these
synchronization steps are as efficient as possible.

DDI_DMA_SBUS_64BITtells the system that the device can do 64 bit transfers
on a 64 bit SBus. If the SBus does not support 64 bit data transfers, data will
be transferred in 32 mode.

The callback function specified by the member dmar_fp indicates how a caller
to one of the DMA resource allocation functions (see ddi_dma_setup (9F))
wants to deal with the possibility of resources not being available. If dmar_fp
is set to DDI_DMA_DONTWAIT, then the caller does not care if the allocation
fails, and can deal with an allocation failure appropriately. If dmar_fp is set
to DDI_DMA_SLEEP, then the caller wishes to have the the allocation routines
wait for resources to become available. If any other value is set, and a DMA
resource allocation fails, this value is assumed to be a function to call at a later
time when resources may become available. When the specified function is
called, it is passed the value set in the structure member dmar_arg . The
specified callback function must return either 0 (indicating that it attempted to
allocate a DMA resources but failed to do so, again), in which case the callback
function will be put back on a list to be called again later, or the callback function
must return 1 indicating either success at allocating DMA resources or that
it no longer wishes to retry.

The callback function will be called in interrupt context. Therefore, only system
functions and contexts that are accessible from interrupt context will be available.
The callback function must take whatever steps necessary to protect its critical
resources, data structures, queues, so forth.

Note that it is possible that a call to ddi_dma_free (9F), which frees DMA
resources, may cause a callback function to be called, and unless some care is
taken an undesired recursion may occur. Unless care is taken, this may cause an
undesired recursive mutex_enter (9F), which will cause a system panic.

dmar_object Structure The dmar_object member of the ddi_dma_req structure is itself a complex
and extensible structure:

uint_t dmao_size; /* size, in bytes, of the object */
ddi_dma_atyp_t dmao_type; /* type of object */

44 SunOS 5.8 Last modified 17 May 1994

Data Structures for Drivers ddi_dma_req(9S)

ddi_dma_aobj_t dmao_obj; /* the object described */

The dmao_size element is the size, in bytes, of the object resources are allocated
for DMA.

The dmao_type element selects the kind of object described by dmao_obj . It
may be set to DMA_OTYP_VADDRindicating virtual addresses.

The last element, dmao_obj , consists of the virtual address type:

struct v_address virt_obj;

It is specified as:

struct v_address {
caddr_t v_addr; /* base virtual address */
struct as *v_as; /* pointer to address space */
void *v_priv; /* priv data for shadow I/O */

};

SEE ALSO ddi_dma_addr_setup (9F), ddi_dma_buf_setup (9F), ddi_dma_curwin (9F),
ddi_dma_free (9F), ddi_dma_movwin (9F), ddi_dma_setup (9F),
ddi_dma_sync (9F), mutex (9F)

Writing Device Drivers

Last modified 17 May 1994 SunOS 5.8 45

ddi_idevice_cookie(9S) Data Structures for Drivers

NAME ddi_idevice_cookie – device interrupt cookie

SYNOPSIS #include <sys/ddi.h>

#include <sys/sunddi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The ddi_idevice_cookie_t structure contains interrupt priority and
interrupt vector information for a device. This structure is useful for devices
having programmable bus-interrupt levels. ddi_add_intr (9F) assigns values
to the ddi_idevice_cookie_t structure members.

STRUCTURE
MEMBERS

u_short idev_vector; /* interrupt vector */
ushort_t idev_priority; /* interrupt priority */

The idev_vector field contains the interrupt vector number for vectored
bus architectures such as VMEbus. The idev_priority field contains the
bus interrupt priority level.

SEE ALSO ddi_add_intr (9F)

Writing Device Drivers

46 SunOS 5.8 Last modified 13 Sep 1994

Data Structures for Drivers ddi_mapdev_ctl(9S)

NAME ddi_mapdev_ctl – device mapping-control structure

SYNOPSIS #include <sys/conf.h>

#include <sys/devops.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION Future releases of Solaris will provide this structure for binary
and source compatibility. However, for increased functionality, use
devmap_callback_ctl (9S) instead. See devmap_callback_ctl (9S) for
details.

A ddi_mapdev_ctl structure describes a set of routines that allow a device
driver to manage events on mappings of the device created by ddi_mapdev (9F).

See mapdev_access (9E), mapdev_dup (9E) and mapdev_free (9E) for more
details on these entry points.

STRUCTURE
MEMBERS int mapdev_rev;

int (*mapdev_access)(ddi_mapdev_handle_t handle, void *devprivate,
off_t offset);

void (*mapdev_free)(ddi_mapdev_handle_t handle, void *devprivate);
int (*mapdev_dup)(ddi_mapdev_handle_t handle, void *devprivate,

ddi_mapdev_handle_t new_handle, void **new_devprivate);

A device driver should allocate the device mapping control structure and
initialize the following fields:
mapdev_rev Must be set to MAPDEV_REV.

mapdev_access Must be set to the address of the mapdev_access (9E) entry
point.

mapdev_free Must be set to the address of the mapdev_free (9E) entry
point.

mapdev_dup Must be set to the address of the mapdev_dup (9E) entry
point.

SEE ALSO exit (2), fork (2), mmap(2), munmap(2), mapdev_access (9E),
mapdev_dup (9E), mapdev_free (9E), segmap(9E), ddi_mapdev (9F),
ddi_mapdev_intercept (9F), ddi_mapdev_nointercept (9F)

Writing Device Drivers

Last modified 14 Jan 1997 SunOS 5.8 47

devmap_callback_ctl(9S) Data Structures for Drivers

NAME devmap_callback_ctl – device mapping-control structure

SYNOPSIS #include <sys/ddidevmap.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION A devmap_callback_ctl structure describes a set of callback routines that are
called by the system to notify a device driver to manage events on the device
mappings created by devmap_setup (9F) or ddi_devmap_segmap (9F).

Device drivers pass the initialized devmap_callback_ctl structure to
either devmap_devmem_setup (9F) or devmap_umem_setup (9F) in the
devmap(9E) entry point during the mapping setup. The system will make a
private copy of the structure for later use. Device drivers may specify different
devmap_callback_ctl for different mappings.

A device driver should allocate the device mapping control structure and
initialize the following fields if the driver wants the entry points to be called
by the system:
devmap_rev Version number. Set this to DEVMAP_OPS_REV

devmap_map Set to the address of the devmap_map(9E) entry
point or to NULL if the driver does not support
this callback. If set, the system will call the
devmap_map(9E) entry point during the mmap(2)
system call. The drivers typically allocate driver
private data structure in this function and return
the pointer to the private data structure to the
system for later use.

devmap_access Set to the address of the devmap_access (9E)
entry point or to NULL if the driver does
not support this callback. If set, the system
will call the driver’s devmap_access (9E)
entry point during memory access. The
system expects devmap_access (9E) to
call either devmap_do_ctxmgt (9F) or
devmap_default_access (9F) to load the
memory address translations before it returns
to the system.

devmap_dup Set to the address of the devmap_dup (9E)
entry point or to NULL if the driver does not
support this call. If set, the system will call the
devmap_dup (9E) entry point during the fork (2)
system call.

48 SunOS 5.8 Last modified 24 Jul 1996

Data Structures for Drivers devmap_callback_ctl(9S)

devmap_unmap Set to the address of the devmap_unmap(9E)
entry point or to NULL if the driver does not
support this call. If set, the system will call the
devmap_unmap(9E) entry point during the
munmap(2) or exit (2) system calls.

STRUCTURE
MEMBERS int devmap_rev;

int (*devmap_map)(devmap_cookie_t dhp, dev_t dev, uint_t flags,
offset_t off, size_t len, void **pvtp);

int (*devmap_access)(devmap_cookie_t dhp, void *pvtp, offset_t off,
size_t len, uint_t type, uint_t rw);

int (*devmap_dup)(devmap_cookie_t dhp, void *pvtp,
devmap_cookie_t new_dhp, void **new_pvtp);

void (*devmap_unmap)(devmap_cookie_t dhp, void *pvtp, offset_t off,
size_t len, devmap_cookie_t new_dhp1, void **new_pvtp1,
devmap_cookie_t new_dhp2, void **new_pvtp2);

SEE ALSO exit (2), fork (2), mmap(2), munmap(2), devmap(9E), devmap_access (9E),
devmap_dup (9E), devmap_map(9E), devmap_unmap(9E),
ddi_devmap_segmap (9F), devmap_default_access (9F),
devmap_devmem_setup (9F), devmap_do_ctxmgt (9F), devmap_setup (9F),
devmap_umem_setup (9F)

Writing Device Drivers

Last modified 24 Jul 1996 SunOS 5.8 49

dev_ops(9S) Data Structures for Drivers

NAME dev_ops – device operations structure

SYNOPSIS #include <sys/conf.h>

#include <sys/devops.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION dev_ops contains driver common fields and pointers to the bus_ops and
cb_ops (9S).

Following are the device functions provided in the device operations structure.
All fields must be set at compile time.
devo_rev Driver build version. Set this to DEVO_REV.

devo_refcnt Driver reference count. Set this to 0.

devo_getinfo Get device driver information (see getinfo (9E)).

devo_identify Determine if a driver is associated with a device.
See identify (9E).

devo_probe Probe device. See probe (9E).

devo_attach Attach driver to dev_info . See attach (9E).

devo_detach Detach/prepare driver to unload. See
detach (9E).

devo_reset Reset device. Not supported in this release.) Set
this to nodev .

devo_cb_ops Pointer to cb_ops (9S) structure for leaf drivers.

devo_bus_ops Pointer to bus operations structure for nexus
drivers. Set this to NULL if this is for a leaf driver.

devo_power Power a device attached to be system. See
power (9E).

STRUCTURE
MEMBERS int devo_rev;

int devo_refcnt;
int (*devo_getinfo)(dev_info_t *dip,

ddi_info_cmd_t infocmd, void *arg, void **result);
int (*devo_identify)(dev_info_t *dip);
int (*devo_probe)(dev_info_t *dip);
int (*devo_attach)(dev_info_t *dip,

ddi_attach_cmd_t cmd);
int (*devo_detach)(dev_info_t *dip,

ddi_detach_cmd_t cmd);

50 SunOS 5.8 Last modified 24 Jun 1997

Data Structures for Drivers dev_ops(9S)

int (*devo_reset)(dev_info_t *dip, ddi_reset_cmd_t cmd);
struct cb_ops *devo_cb_ops;
struct bus_ops *devo_bus_ops;
int (*devo_power)(dev_info_t *dip, int component, int level);

SEE ALSO attach (9E), detach (9E), getinfo (9E), identify (9E), probe (9E), power (9E),
nodev (9F)

Writing Device Drivers

Last modified 24 Jun 1997 SunOS 5.8 51

fmodsw(9S) Data Structures for Drivers

NAME fmodsw – STREAMS module declaration structure

SYNOPSIS #include <sys/stream.h>

#include <sys/conf.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

DESCRIPTION The fmodsw structure contains information for STREAMS modules. All
STREAMS modules must define a fmodsw structure.

f_name must match mi_idname in the module_info structure. See
module_info (9S).

All modules must set the f_flag to D_MPto indicate that they safely allow
multiple threads of execution. See mt-streams (9F) for additional flags.

STRUCTURE
MEMBERS char f_name[FMNAMESZ + 1]; /* module name */

struct streamtab *f_str; /* streams information */
int f_flag; /* flags */

SEE ALSO mt-streams (9F), modlstrmod (9S), module_info (9S)

STREAMS Programming Guide

52 SunOS 5.8 Last modified 23 Feb 1994

Data Structures for Drivers free_rtn(9S)

NAME free_rtn – structure that specifies a driver’s message freeing routine

SYNOPSIS #include <sys/stream.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The free_rtn structure is referenced by the datab structure. When freeb (9F)
is called to free the message, the driver’s message freeing routine (referenced
through the free_rtn structure) is called, with arguments, to free the data
buffer.

STRUCTURE
MEMBERS void (*free_func)() /* user’s freeing routine */

char *free_arg /* arguments to free_func() */

The free_rtn structure is defined as type frtn_t .

SEE ALSO esballoc (9F), freeb (9F), datab (9S)

STREAMS Programming Guide

Last modified 13 Nov 1996 SunOS 5.8 53

iocblk(9S) Data Structures for Drivers

NAME iocblk – STREAMS data structure for the M_IOCTL message type

SYNOPSIS #include <sys/stream.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The iocblk data structure is used for passing M_IOCTLmessages.

STRUCTURE
MEMBERS

int ioc_cmd; /* ioctl command type */
cred_t *ioc_cr; /* full credentials */
uint_t ioc_id; /* ioctl id */
uint_t ioc_flag; /* ioctl flags */
uint_t ioc_count; /* count of bytes in data field */
int ioc_rval; /* return value */
int ioc_error; /* error code */

SEE ALSO STREAMS Programming Guide

54 SunOS 5.8 Last modified 13 Nov 1996

Data Structures for Drivers iovec(9S)

NAME iovec – data storage structure for I/O using uio

SYNOPSIS #include <sys/uio.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION An iovec structure describes a data storage area for transfer in a uio (9S)
structure. Conceptually, it may be thought of as a base address and length
specification.

STRUCTURE
MEMBERS caddr_t iov_base; /* base address of the data storage area */

/* represented by the iovec structure */
int iov_len; /* size of the data storage area in bytes */

SEE ALSO uio (9S)

Writing Device Drivers

Last modified 11 Apr 1991 SunOS 5.8 55

kstat(9S) Data Structures for Drivers

NAME kstat – kernel statistics structure

SYNOPSIS #include <sys/types.h>

#include <sys/kstat.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

DESCRIPTION Each kernel statistic (kstat) exported by device drivers consists of a header
section and a data section. The kstat structure is the header portion of the
statistic.

A driver receives a pointer to a kstat structure from a successful call to
kstat_create (9F). Drivers should never allocate a kstat structure in any
other manner.

After allocation, the driver should perform any further initialization needed
before calling kstat_install (9F) to actually export the kstat .

STRUCTURE
MEMBERS void *ks_data; /* kstat type-specific data */

ulong_t ks_ndata; /* # of type-specific data records */
ulong_t ks_data_size; /* total size of kstat data section */
int (*ks_update)(struct kstat *, int);
void *ks_private; /* arbitrary provider-private data */
void *ks_lock; /* protects this kstat’s data */

The members of the kstat structure available to examine or set by a driver
are as follows:
ks_data Points to the data portion of the kstat . Either allocated by

kstat_create (9F) for the drivers use, or by the driver
if it is using virtual kstats.

ks_ndata The number of data records in this kstat. Set by the
ks_update (9E) routine.

ks_data_size The amount of data pointed to by ks_data . Set by the
ks_update (9E) routine.

ks_update Is a pointer to a routine which dynamically updates kstat .
This is useful for drivers where the underlying device
keeps cheap hardware stats, but extraction is expensive.
Instead of constantly keeping the kstat data section up
to date, the driver can supply a ks_update (9E) function
which updates the kstat data section on demand. To take

56 SunOS 5.8 Last modified 4 Apr 1994

Data Structures for Drivers kstat(9S)

advantage of this feature, set the ks_update field before
calling kstat_install (9F).

ks_private Is a private field for the driver’s use. Often used in
ks_update (9E).

ks_lock Is a pointer to a mutex that protects this kstat . kstat
data sections are optionally protected by the per-kstat
ks_lock . If ks_lock is non-NULL, kstat clients (such as
/dev/kstat) will acquire this lock for all of their operations
on that kstat . It is up to the kstat provider to decide
whether guaranteeing consistent data to kstat clients is
sufficiently important to justify the locking cost. Note,
however, that most statistic updates already occur under one
of the provider’s mutexes, so if the provider sets ks_lock
to point to that mutex, then kstat data locking is free.
ks_lock is really of type (kmutex_t*); it is declared as
(void*) in the kstat header so that users don’t have to be
exposed to all of the kernel’s lock-related data structures.

SEE ALSO kstat_create (9F)

Writing Device Drivers

Last modified 4 Apr 1994 SunOS 5.8 57

kstat_intr(9S) Data Structures for Drivers

NAME kstat_intr – structure for interrupt kstats

SYNOPSIS #include <sys/types.h>

#include <sys/kstat.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

DESCRIPTION Interrupt statistics are kept in the kstat_intr structure. When
kstat_create (9F) creates an interrupt kstat , the ks_data field is a pointer
to one of these structures. The macro KSTAT_INTR_PTR() is provided to
retrieve this field. It looks like this:

#define KSTAT_INTR_PTR(kptr) ((kstat_intr_t *)(kptr)->ks_data)

An interrupt is a hard interrupt (sourced from the hardware device itself),
a soft interrupt (induced by the system via the use of some system interrupt
source), a watchdog interrupt (induced by a periodic timer call), spurious (an
interrupt entry point was entered but there was no interrupt to service), or
multiple service (an interrupt was detected and serviced just prior to returning
from any of the other types).

Drivers generally only report claimed hard interrupts and soft interrupts from
their handlers, but measurement of the spurious class of interrupts is useful for
autovectored devices in order to pinpoint any interrupt latency problems in
a particular system configuration.

Devices that have more than one interrupt of the same type should use multiple
structures.

STRUCTURE
MEMBERS

ulong_t intrs[KSTAT_NUM_INTRS]; /* interrupt counters */

The only member exposed to drivers is the intrs member. This field is an array
of counters; the driver must use the appropriate counter in the array based on
the type of interrupt condition. The following indexes are supported:
KSTAT_INTR_HARD Hard interrupt.

KSTAT_INTR_SOFT Soft interrupt.

KSTAT_INTR_WATCHDOG Watchdog interrupt.

KSTAT_INTR_SPURIOUS Spurious interrupt.

KSTAT_INTR_MULTSVC Multiple service interrupt.

SEE ALSO kstat (9S)

58 SunOS 5.8 Last modified 4 Apr 1994

Data Structures for Drivers kstat_intr(9S)

Writing Device Drivers

Last modified 4 Apr 1994 SunOS 5.8 59

kstat_io(9S) Data Structures for Drivers

NAME kstat_io – structure for I/O kstats

SYNOPSIS #include <sys/types.h>

#include <sys/kstat.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

DESCRIPTION I/O kstat statistics are kept in a kstat_io structure. When kstat_create (9F)
creates an I/O kstat , the ks_data field is a pointer to one of these structures.
The macro KSTAT_IO_PTR() is provided to retrieve this field. It looks like this:

#define KSTAT_IO_PTR(kptr) ((kstat_io_t *)(kptr)->ks_data)

STRUCTURE
MEMBERS

u_longlong_t nread; /* number of bytes read */
u_longlong_t nwritten; /* number of bytes written *]/
ulong_t reads; /* number of read operations */
ulong_t writes; /* number of write operations */

The nread field should be updated by the driver with the number of bytes
successfully read upon completion.

The nwritten field should be updated by the driver with the number of bytes
successfully written upon completion.

The reads field should be updated by the driver after each successful read
operation.

The writes field should be updated by the driver after each successful write
operation

Other I/O statistics are updated through the use of the kstat_queue (9F)
functions.

SEE ALSO kstat_create (9F), kstat_named_init (9F), kstat_queue (9F),
kstat_runq_back_to_waitq (9F), kstat_runq_enter (9F),
kstat_runq_exit (9F), kstat_waitq_enter (9F), kstat_waitq_exit (9F),
kstat_waitq_to_runq (9F)

Writing Device Drivers

60 SunOS 5.8 Last modified 4 Apr 1994

Data Structures for Drivers kstat_named(9S)

NAME kstat_named – structure for named kstats

SYNOPSIS #include <sys/types.h>

#include <sys/kstat.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

DESCRIPTION Named kstats are an array of name-value pairs. These pairs are kept in the
kstat_named structure. When a kstat is created by kstat_create (9F),
the driver specifies how many of these structures will be allocated. They are
returned as an array pointed to by the ks_data field.

STRUCTURE
MEMBERS union {

char c[16];
long l;
ulong_t ul;
longlong_t ll;
u_longlong_t ull;

} value; /* value of counter */

The only member exposed to drivers is the value member. This field is a
union of several data types. The driver must specify which type it will use in
the call to kstat_named_init() .

SEE ALSO kstat_create (9F), kstat_named_init (9F)

Writing Device Drivers

Last modified 4 Apr 1994 SunOS 5.8 61

linkblk(9S) Data Structures for Drivers

NAME linkblk – STREAMS data structure sent to multiplexor drivers to indicate a link

SYNOPSIS #include <sys/stream.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The linkblk structure is used to connect a lower Stream to an upper STREAMS
multiplexor driver. This structure is used in conjunction with the I_LINK ,
I_UNLINK , P_LINK , and P_UNLINK ioctl commands. See streamio (7I). The
M_DATAportion of the M_IOCTLmessage contains the linkblk structure. Note
that the linkblk structure is allocated and initialized by the Stream head as a
result of one of the above ioctl commands.

STRUCTURE
MEMBERS queue_t *l_qtop; /* lowest level write queue of upper stream */

/* (set to NULL for persistent links) */
queue_t *l_qbot; /* highest level write queue of lower stream */
int l_index; /* index for lower stream. */

SEE ALSO ioctl (2), streamio (7I)

STREAMS Programming Guide

62 SunOS 5.8 Last modified 7 Jul 1994

Data Structures for Drivers modldrv(9S)

NAME modldrv – linkage structure for loadable drivers

SYNOPSIS #include <sys/modctl.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

DESCRIPTION The modldrv structure is used by device drivers to export driver specific
information to the kernel.

STRUCTURE
MEMBERS struct mod_ops *drv_modops;

char *drv_link info;
struct dev_ops *drv_dev_ops;

drv_modops Must always be initialized to the address of
mod_driverops . This identifies the module as a loadable
driver.

drv_linkinfo Can be any string up to MODMAXNAMELEN, and is used to
describe the module. This is usually the name of the driver,
but can contain other information such as a version number.

drv_dev_ops Pointer to the driver’s dev_ops (9S) structure.

SEE ALSO add_drv (1M), dev_ops (9S), modlinkage (9S)

Writing Device Drivers

Last modified 7 Jun 1993 SunOS 5.8 63

modlinkage(9S) Data Structures for Drivers

NAME modlinkage – module linkage structure

SYNOPSIS #include <sys/modctl.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

DESCRIPTION The modlinkage structure is provided by the module writer to the routines
which install, remove, and retrieve information from a module. See _init (9E),
_fini (9E) and _info (9E).

STRUCTURE
MEMBERS

int ml_rev
void *ml_linkage[4];

ml_rev Is the revision of the loadable modules system. This must
have the value MODREV_1.

ml_linkage Is a null-terminated array of pointers to linkage structures.
For driver modules there is only one linkage structure.

SEE ALSO add_drv (1M), _fini (9E), _info (9E), _init (9E), modldrv (9S),
modlstrmod (9S)

Writing Device Drivers

64 SunOS 5.8 Last modified 18 Sep 1992

Data Structures for Drivers modlstrmod(9S)

NAME modlstrmod – linkage structure for loadable STREAMS modules

SYNOPSIS #include <sys/modctl.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

DESCRIPTION The modlstrmod structure is used by STREAMS modules to export module
specific information to the kernel.

STRUCTURE
MEMBERS

struct mod_ops *strmod_modops;
char *strmod_linkinfo;
struct fmodsw *strmod_fmodsw;

strmod_modops Must always be initialized to the address of
mod_strmodops . This identifies the module as
a loadable STREAMS module.

strmod_linkinfo Can be any string up to MODMAXNAMELEN, and
is used to describe the module. This is usually
the name of the module, but can contain other
information (such as a version number).

strmod_fmodsw Is a pointer to a template of a class entry within
the module that is copied to the kernel’s class
table when the module is loaded.

SEE ALSO modload (1M)

Writing Device Drivers

Last modified 7 Jun 1993 SunOS 5.8 65

module_info(9S) Data Structures for Drivers

NAME module_info – STREAMS driver identification and limit value structure

SYNOPSIS #include <sys/stream.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION When a module or driver is declared, several identification and limit values can
be set. These values are stored in the module_info structure.

The module_info structure is intended to be read-only. However, the
flow control limits (mi_hiwat and mi_lowat) and the packet size limits (
mi_minpsz and mi_maxpsz) are copied to the QUEUEstructure, where they
may be modified.

STRUCTURE
MEMBERS ushort_t mi_idnum; /* module ID number */

char *mi_idname; /* module name */
ssize_t mi_minpsz; /* maximum packet size */
size_t mi_hiwat; /* high water mark */
size_t mi_lowat; /* low water mark */

The constant FMNAMESZ, limiting the length of a module’s name, is set to eight
in this release.

SEE ALSO queue (9S)

STREAMS Programming Guide

66 SunOS 5.8 Last modified 14 Nov 1996

Data Structures for Drivers msgb(9S)

NAME msgb – STREAMS message block structure

SYNOPSIS #include <sys/stream.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION A STREAMS message is made up of one or more message blocks, referenced by
a pointer to a msgb structure. The b_next and b_prev pointers are used to
link messages together on a QUEUE. The b_cont pointer links message blocks
together when a message is composed of more than one block.

Each msgb structure also includes a pointer to a datab (9S) structure, the data
block (which contains pointers to the actual data of the message), and the type
of the message.

STRUCTURE
MEMBERS struct msgb *b_next; /* next message on queue */

struct msgb *b_prev; /* previous message on queue */
struct msgb *b_cont; /* next message block */
unsigned char *b_rptr; /* 1st unread data byte of buffer */
unsigned char *b_wptr; /* 1st unwritten data byte of buffer */
struct datab *b_datap; /* pointer to data block */
unsigned char b_band; /* message priority */
unsigned short b_flag; /* used by stream head */

Valid flags are as follows:
MSGMARK Last byte of message is marked.

MSGDELIM Message is delimited.

The msgb structure is defined as type mblk_t .

SEE ALSO datab (9S)

Writing Device Drivers

STREAMS Programming Guide

Last modified 11 Apr 1991 SunOS 5.8 67

qband(9S) Data Structures for Drivers

NAME qband – STREAMS queue flow control information structure

SYNOPSIS #include <sys/stream.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The qband structure contains flow control information for each priority band
in a queue.

The qband structure is defined as type qband_t .

STRUCTURE
MEMBERS struct qband*qb_next; /* next band’s info */

size_t qb_count /* number of bytes in band */
struct msgb *qb_first; /* start of band’s data */
struct msgb *qb_last; /* end of band’s data */
size_t qb_hiwat; /* band’s high water mark */
size_t qb_lowat; /* band’s low water mark */
uint_t qb_flag; /* see below */

Valid flags are as follows:
QB_FULL Band is considered full.

QB_WANTW Someone wants to write to band.

SEE ALSO strqget (9F), strqset (9F), msgb(9S), queue (9S)

STREAMS Programming Guide

NOTES All access to this structure should be through strqget (9F) and strqset (9F). It
is logically part of the queue (9S) and its layout and partitioning with respect to
that structure may change in future releases. If portability is a concern, do not
declare or store instances of or references to this structure.

68 SunOS 5.8 Last modified 14 Nov 1996

Data Structures for Drivers qinit(9S)

NAME qinit – STREAMS queue processing procedures structure

SYNOPSIS #include <sys/stream.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The qinit structure contains pointers to processing procedures for a QUEUE.
The streamtab structure for the module or driver contains pointers to one
queue (9S) structure for both upstream and downstream processing.

STRUCTURE
MEMBERS int (*qi_putp)(); /* put procedure */

int (*qi_srvp)(); /* service procedure */
int (*qi_qopen)(); /* open procedure */
int (*qi_qclose)(); /* close procedure */
int (*qi_qadmin)(); /* unused */
struct module_info *qi_minfo; /* module parameters */
struct module_stat *qi_mstat; /* module statistics */

SEE ALSO queue (9S), streamtab (9S)

Writing Device Drivers

STREAMS Programming Guide

NOTES This release includes no support for module statistics.

Last modified 11 Apr 1991 SunOS 5.8 69

queclass(9S) Data Structures for Drivers

NAME queclass – a STREAMS macro that returns the queue message class definitions
for a given message block

SYNOPSIS #include <sys/stream.h>
queclass (mblk_t *bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION queclass returns the queue message class definition for a given data block
pointed to by the message block bp passed in.

The message may either be QNORM, a normal priority message, or QPCTL, a
high priority message.

SEE ALSO STREAMS Programming Guide

70 SunOS 5.8 Last modified 07 Mar 1994

Data Structures for Drivers queue(9S)

NAME queue – STREAMS queue structure

SYNOPSIS #include <sys/stream.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION A STREAMS driver or module consists of two queue structures, one for
upstream processing (read) and one for downstream processing (write). This
structure is the major building block of a stream. It contains pointers to the
processing procedures, pointers to the next and previous queues in the stream,
flow control parameters, and a pointer defining the position of its messages on
the STREAMS scheduler list.

The queue structure is defined as type queue_t .

STRUCTURE
MEMBERS

struct qinit*q_qinfo; /* module or driver entry points */
struct msgb*q_first; /* first message in queue */
struct msgb*q_last; /* last message in queue */
struct queue*q_next; /* next queue in stream */
struct queue*q_link; /* to next queue for scheduling*/
void *q_ptr; /* pointer to private data structure */
size_t q_count; /* approximate size of message queue */
uint_t q_flag; /* status of queue */
ssize_t q_minpsz; /* smallest packet accepted by QUEUE*/
ssize_t q_maxpsz; /*largest packet accepted by QUEUE */
size_t q_hiwat; /* high water mark */
size_t q_lowat; /* low water mark */

Valid flags are as follows:
QENAB Queue is already enabled to run.

QWANTR Someone wants to read queue.

QWANTW Someone wants to write to queue.

QFULL Queue is considered full.

QREADR This is the reader (first) queue.

QUSE This queue in use (allocation).

QNOENB Do not enable queue by wasy of putq() .

SEE ALSO strqget (9F), strqset (9F), module_info (9S), msgb(9S), qinit (9S),
streamtab (9S)

Writing Device Drivers

STREAMS Programming Guide

Last modified 12 Nov 1996 SunOS 5.8 71

scsi_address(9S) Data Structures for Drivers

NAME scsi_address – SCSI address structure

SYNOPSIS #include <sys/scsi/scsi.h>

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

DESCRIPTION A scsi_address structure defines the addressing components for SCSI target
device. The address of the target device is separated into two components:
target number and logical unit number. The two addressing components are
used to uniquely identify any type of SCSI device; however, most devices can be
addressed with the target component of the address. In the case where only the
target component is used to address the device, the logical unit should be set to
0. If the SCSI target device supports logical units, then the HBA must interpret
the logical units field of the data structure.

The pkt_address member of a scsi_pkt (9S) is initialized by
scsi_init_pkt (9F).

STRUCTURE
MEMBERS scsi_hba_tran_t *a_hba_tran; /* Transport vectors for the SCSI bus */

ushort_t a_target; /* SCSI target id */
uchar_t a_lun; /* SCSI logical unit */

a_hba_tran is a pointer to the controlling HBA’s transport vector structure.
The SCSA interface uses this field to pass any transport requests from the SCSI
target device drivers to the HBA driver.

a_target is the target component of the SCSI address.

a_lun is the logical unit component of the SCSI address. The logical unit is used
to further distinguish a SCSI target device that supports multiple logical units.
The makecom(9F) family of functions use the a_lun field to set the logical unit
field in the SCSI CDB, for compatibility with SCSI-1.

SEE ALSO makecom(9F), scsi_init_pkt (9F), scsi_hba_tran (9S), scsi_pkt (9S)

Writing Device Drivers

72 SunOS 5.8 Last modified 30 Aug 1995

Data Structures for Drivers scsi_arq_status(9S)

NAME scsi_arq_status – SCSI auto request sense structure

SYNOPSIS #include <sys/scsi/scsi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

DESCRIPTION When auto request sense has been enabled using scsi_ifsetcap (9F) and the
"auto-rqsense" capability, the target driver must allocate a status area in the SCSI
packet structure (see scsi_pkt (9S)) for the auto request sense structure. In the
event of a check condition the transport layer will automatically execute a
request sense command. This ensures that the request sense information does
not get lost. The auto request sense structure supplies the SCSI status of the
original command, the transport information pertaining to the request sense
command, and the request sense data.

STRUCTURE
MEMBERS

struct scsi_status sts_status; /* SCSI status */
struct scsi_status sts_rqpkt_status; /* SCSI status of

request sense cmd */
uchar_t sts_rqpkt_reason; /* reason completion */
uchar_t sts_rqpkt_resid; /* residue */
uint_t sts_rqpkt_state; /* state of command */
uint_t sts_rqpkt_statistics; /* statistics */
struct scsi_extended_sense sts_sensedata; /* actual sense data */

sts_status is the SCSI status of the original command. If the status indicates a
check condition then the transport layer may have performed an auto request
sense command.

sts_rqpkt_status is the SCSI status of the request sense command.

sts_rqpkt_reason is the completion reason of the request sense command.
If the reason is not CMD_CMPLT, then the request sense command did not
complete normally.

sts_rqpkt_resid is the residual count of the data transfer and indicates the
number of data bytes that have not been transferred. The auto request sense
command requests SENSE_LENGTHbytes.

sts_rqpkt_state has bit positions representing the five most important status
that a SCSI command can go through.

sts_rqpkt_statistics maintains transport-related statistics of the request
sense command.

sts_sensedata contains the actual sense data if the request sense command
completed normally.

SEE ALSO scsi_ifgetcap (9F), scsi_init_pkt (9F), scsi_extended_sense (9S),
scsi_pkt (9S)

Last modified 30 Sep 1996 SunOS 5.8 73

scsi_arq_status(9S) Data Structures for Drivers

Writing Device Drivers

74 SunOS 5.8 Last modified 30 Sep 1996

Kernel Functions for Drivers scsi_asc_key_strings(9S)

NAME scsi_asc_key_strings – SCSI ASC ASCQ to message structure

SYNOPSIS #include <sys/scsi/scsi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The scsi_asc_key_strings structure stores the ASC ASCQ and pointer to the
related ASCII string.

STRUCTURE
MEMBERS

ushort_t asc; /* ASC code */
ushort_t ascq; /* ASCQ code */
char *message; /* ASCII message string */

asc contains the ASC key code.

ascq contains the ASCQ code.

message points to the NULL terminated ASCII string
describing the asc and ascq condition

SEE ALSO scsi_vu_errmsg (9F)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

Last modified 24 Feb 1998 SunOS 5.8 75

scsi_device(9S) Data Structures for Drivers

NAME scsi_device – SCSI device structure

SYNOPSIS #include <sys/scsi/scsi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The scsi_device structure stores common information about each SCSI
logical unit, including pointers to areas that contain both generic and device
specific information. There is one scsi_device structure for each logical
unit attached to the system. The host adapter driver initializes part of this
structure prior to probe (9E) and destroys this structure after a probe failure
or successful detach (9E).

STRUCTURE
MEMBERS struct scsi_address sd_address; /* Routing information */

dev_info_t *sd_dev; /* Cross-reference to our dev_info_t */
kmutex_t sd_mutex; /* Mutex for this device */
struct scsi_inquiry *sd_inq; /* scsi_inquiry data structure */
struct scsi_extended_sense *sd_sense; /* Optional request sense buffer ptr */
caddr_t sd_private; /* Target drivers private data */

sd_address contains the routing information that the target driver normally
copies into a scsi_pkt (9S) structure using the collection of makecom(9F)
functions. The SCSA library routines use this information to determine which
host adapter, SCSI bus, and target/lun a command is intended for. This structure
is initialized by the host adapter driver.

sd_dev is a pointer to the corresponding dev_info structure. This pointer is
initialized by the host adapter driver.

sd_mutex is a mutual exclusion lock for this device. It is used to serialize access
to a device. The host adapter driver initializes this mutex. See mutex (9F).

sd_inq is initially NULL (zero). After executing scsi_probe (9F) this field
contains the inquiry data associated with the particular device.

sd_sense is initially NULL (zero). If the target driver wants to use
this field for storing REQUEST SENSE data, it should allocate an
scsi_extended_sense (9S) buffer and set this field to the address of this buffer.

sd_private is reserved for the use of target drivers and should generally be
used to point to target specific data structures.

SEE ALSO detach (9E), probe (9E), makecom(9F), mutex (9F), scsi_probe (9F),
scsi_extended_sense (9S), scsi_pkt (9S)

Writing Device Drivers

76 SunOS 5.8 Last modified 19 Feb 1993

Data Structures for Drivers scsi_extended_sense(9S)

NAME scsi_extended_sense – SCSI extended sense structure

SYNOPSIS #include <sys/scsi/scsi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The scsi_extended_sense structure for error codes 0x70 (current errors) and
0x71 (deferred errors) is returned on a successful REQUEST SENSEcommand.
SCSI-2 compliant targets are required to return at least the first 18 bytes of this
structure. This structure is part of scsi_device (9S) structure.

STRUCTURE
MEMBERS uchar_t es_valid :1; /* sense data is valid */

uchar_t es_class :3; /* Error Class- fixed at 0x7 */
uchar_t es_code :4; /* Vendor Unique error code */
uchar_t es_segnum; /* segment number: for COPY cmd only */
uchar_t es_filmk :1; /* File Mark Detected */
uchar_t es_eom :1; /* End of Media */
uchar_t es_ili :1; /* Incorrect Length Indicator */
uchar_t es_key :4; /* Sense key */
uchar_t es_info_1; /* information byte 1 */
uchar_t es_info_2; /* information byte 2 */
uchar_t es_info_3; /* information byte 3 */
uchar_t es_info_4; /* information byte 4 */
uchar_t es_add_len; /* number of additional bytes */
uchar_t es_cmd_info[4]; /* command specific information */
uchar_t es_add_code; /* Additional Sense Code */
uchar_t es_qual_code; /* Additional Sense Code Qualifier */
uchar_t es_fru_code; /* Field Replaceable Unit Code */
uchar_t es_skey_specific[3]; /* Sense Key Specific information */

es_valid , if set, indicates that the information field contains valid information.

es_class should be 0x7 .

es_code is either 0x0 or 0x1 .

es_segnum contains the number of the current segment descriptor if the
REQUEST SENSEcommand is in response to a COPY, COMPARE, and
COPY AND VERIFYcommand.

es_filmk , if set, indicates that the current command had read a filemark or
setmark (sequential access devices only).

es_eom, if set, indicates that an end-of-medium condition exists (sequential
access and printer devices only).

es_ili , if set, indicates that the requested logical block length did not match
the logical block length of the data on the medium.

es_key indicates generic information describing an error or exception condition.
The following sense keys are defined:

Last modified 30 Aug 1995 SunOS 5.8 77

scsi_extended_sense(9S) Data Structures for Drivers

KEY_NO_SENSE
Indicates that there is no specific sense key information to be reported.

KEY_RECOVERABLE_ERROR
Indicates that the last command completed successfully with some recovery
action performed by the target.

KEY_NOT_READY
Indicates that the logical unit addressed cannot be accessed.

KEY_MEDIUM_ERROR
Indicates that the command terminated with a non-recovered error condition
that was probably caused by a flaw on the medium or an error in the
recorded data.

KEY_HARDWARE_ERROR
Indicates that the target detected a non-recoverable hardware failure while
performing the command or during a self test.

KEY_ILLEGAL_REQUEST
Indicates that there was an illegal parameter in the CDB or in the additional
parameters supplied as data for some commands.

KEY_UNIT_ATTENTION
Indicates that the removable medium may have been changed or the target
has been reset.

KEY_WRITE_PROTECT/KEY_DATA_PROTECT
Indicates that a command that reads or writes the medium was attempted
on a block that is protected from this operation.

KEY_BLANK_CHECK
Indicates that a write-once device or a sequential access device encountered
blank medium or format-defined end-of-data indication while reading or a
write-once device encountered a non-blank medium while writing.

KEY_VENDOR_UNIQUE
This sense key is available for reporting vendor-specific conditions.

KEY_COPY_ABORTED
Indicates a COPY, COMPARE, and COPY AND VERIFYcommand was aborted.

KEY_ABORTED_COMMAND
Indicates that the target aborted the command.

KEY_EQUAL
Indicates a SEARCH DATAcommand has satisfied an equal comparison.

KEY_VOLUME_OVERFLOW

78 SunOS 5.8 Last modified 30 Aug 1995

Data Structures for Drivers scsi_extended_sense(9S)

Indicates that a buffered peripheral device has reached the end-of-partition
and data may remain in the buffer that has not been written to the medium.

KEY_MISCOMPARE
Indicates that the source data did not match the data read from the medium.

KEY_RESERVE
Indicates that the target is currently reserved by a different initiator.

es_info_{1,2,3,4} is device type or command specific.

es_add_len indicates the number of additional sense bytes to follow.

es_cmd_info contains information that depends on the command which
was executed.

es_add_code (ASC) indicates further information related to the error or
exception condition reported in the sense key field.

es_qual_code (ASCQ) indicates detailed information related to the additional
sense code.

es_fru_code (FRU) indicates a device-specific mechanism to unit that has
failed.

es_skey_specific is defined when the value of the sense-key specific valid
bit (bit 7) is 1. This field is reserved for sense keys not defined above.

SEE ALSO scsi_device (9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

Last modified 30 Aug 1995 SunOS 5.8 79

scsi_hba_tran(9S) Data Structures for Drivers

NAME scsi_hba_tran – SCSI Host Bus Adapter (HBA) driver transport vector structure

SYNOPSIS #include <sys/scsi/scsi.h>

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

DESCRIPTION A scsi_hba_tran_t structure defines vectors that an HBA driver exports to
SCSA interfaces so that HBA specific functions can be executed.

STRUCTURE
MEMBERS dev_info_t *tran_hba_dip; /* HBAs dev_info pointer */

void *tran_hba_private; /* HBA softstate */
void *tran_tgt_privat /* HBA target private pointer */
struct scsi_device *tran_sd; /* scsi_device */
int (*tran_tgt_init)(); /* transport target */

/* initialization */
int (*tran_tgt_probe)(); /* transport target probe */
void (*tran_tgt_free)(); /* transport target free */
int (*tran_start)(); /* transport start */
int (*tran_reset)(); /* transport reset */
int (*tran_abort)(); /* transport abort */
int (*tran_getcap)(); /* capability retrieval */
int (*tran_setcap)(); /* capability establishment */
struct scsi_pkt *(*tran_init_pkt)(); /* packet and dma allocation */
void (*tran_destroy_pkt)(); /* packet and dma */

/* deallocation */
void (*tran_dmafree)(); /* dma deallocation */
void (*tran_sync_pkt)(); /* sync DMA */
void (*tran_reset_notify)(); /* bus reset notification */
int (*tran_bus_reset)(); /* reset bus only */
int (*tran_quiesce)(); /* quiesce a bus */
int (*tran_unquiesce)(); /* unquiesce a bus */

tran_hba_dip dev_info pointer to the HBA supplying the
scsi_hba_tran structure.

tran_hba_private Private pointer which the HBA driver can use to
refer to the device’s soft state structure.

tran_tgt_private Private pointer which the HBA can use to refer
to per-target specific data. This field may only
be used when the SCSI_HBA_TRAN_CLONEflag
is specified in scsi_hba_attach (9F). In this
case, the HBA driver must initialize this field in
its tran_tgt_init (9E) entry point.

tran_sd Pointer to scsi_device (9S) structure if cloning;
otherwise NULL.

tran_tgt_init Is the function entry allowing per-target HBA
initialization, if necessary.

80 SunOS 5.8 Last modified 20 Sep 1994

Data Structures for Drivers scsi_hba_tran(9S)

tran_tgt_probe Is the function entry allowing per-target
scsi_probe (9F) customization, if necessary.

tran_tgt_free Is the function entry allowing per-target HBA
deallocation, if necessary.

tran_start Is the function entry that starts a SCSI command
execution on the HBA hardware.

tran_reset Is the function entry that resets a SCSI bus or
target device.

tran_abort Is the function entry that aborts one SCSI
command, or all pending SCSI commands.

tran_getcap Is the function entry that retrieves a SCSI
capability.

tran_setcap Is the function entry that sets a SCSI capability.

tran_init_pkt Is the function entry that allocates a scsi_pkt
structure.

tran_destroy_pkt Is the function entry that frees a scsi_pkt
structure allocated by tran_init_pkt .

tran_dmafree is the function entry that frees DMA
resources which were previously allocated by
tran_init_pkt .

tran_sync_pkt Synchronize data in pkt after a data transfer
has been completed.

tran_reset_notify Is the function entry allowing a target to register
a bus reset notification request with the HBA
driver.

tran_bus_reset Is the function entry that resets the SCSI bus
without resetting targets.

tran_quiesce Is the function entry that waits for all outstanding
commands to complete and blocks (or queues)
any I/O requests issued.

tran_unquiesce Is the function entry that allows I/O activities to
resume on the SCSI bus.

SEE ALSO tran_abort (9E), tran_bus_reset (9E), tran_destroy_pkt (9E),
tran_dmafree (9E), tran_getcap (9E), tran_init_pkt (9E),
tran_quiesce (9E), tran_reset (9E), tran_reset_notify (9E),

Last modified 20 Sep 1994 SunOS 5.8 81

scsi_hba_tran(9S) Data Structures for Drivers

tran_setcap (9E), tran_start (9E), tran_sync_pkt (9E),
tran_tgt_free (9E), tran_tgt_init (9E), tran_tgt_probe (9E),
tran_unquiesce (9E), ddi_dma_sync (9F), scsi_hba_attach (9F),
scsi_hba_pkt_alloc (9F), scsi_hba_pkt_free (9F), scsi_probe (9F),
scsi_device (9S), scsi_pkt (9S)

Writing Device Drivers

82 SunOS 5.8 Last modified 20 Sep 1994

Data Structures for Drivers scsi_inquiry(9S)

NAME scsi_inquiry – SCSI inquiry structure

SYNOPSIS #include <sys/scsi/scsi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The scsi_inquiry structure contains 36 required bytes, followed by a variable
number of vendor-specific parameters. Bytes 59 through 95, if returned, are
reserved for future standardization. This structure is part of scsi_device (9S)
structure and typically filled in by scsi_probe (9F).

STRUCTURE
MEMBERS uchar_t inq_dtype; /* peripheral qualifier, device type */

uchar_t inq_rmb :1; /* removable media */
uchar_t inq_qual :7; /* device type qualifier */
uchar_t inq_iso :2; /* ISO version */
uchar_t inq_ecma :3; /* ANSI version */
uchar_t inq_aenc :1; /* async event notification cap. */
uchar_t inq_trmiop :1; /* supports TERMINATE I/O PROC msg */
uchar_t inq_rdf :4; /* response data format */
uchar_t inq_len; /* additional length */
uchar_t inq_reladdr :1; /* supports relative addressing */
uchar_t inq_wbus32 :1; /* supports 32 bit wide data xfers */
uchar_t inq_wbus16 :1; /* supports 16 bit wide data xfers */
uchar_t inq_sync :1; /* supports synchronous data xfers */
uchar_t inq_linked :1; /* supports linked commands */
uchar_t inq_cmd_que :1; /* supports command queueing */
uchar_t inq_sftre :1; /* supports Soft Reset option */
char inq_vid[8]; /* vendor ID */
char inq_pid[16]; /* product ID */
char inq_revision[4]; /* revision level */

inq_dtype identifies the type of device. Bits 0 - 4 represent the Peripheral
Device Type and bits 5 - 7 represent the Peripheral Qualifier. The following
values are appropriate for Peripheral Device Type field:
DTYPE_ARRAY_CTRL Array controller device (for example, RAID).

DTYPE_DIRECT Direct-access device (for example, magnetic disk).

DTYPE_ESI Enclosure services device.

DTYPE_SEQUENTIAL Sequential-access device (for example, magnetic
tape).

DTYPE_PRINTER Printer device.

DTYPE_PROCESSOR Processor device.

DTYPE_WORM Write-once device (for example, some optical
disks).

DTYPE_RODIRECT CD-ROM device.

Last modified 1 Apr 1997 SunOS 5.8 83

scsi_inquiry(9S) Data Structures for Drivers

DTYPE_SCANNER Scanner device.

DTYPE_OPTICAL Optical memory device (for example, some
optical disks).

DTYPE_CHANGER Medium Changer device (for example,
jukeboxes).

DTYPE_COMM Communications device.

DTYPE_UNKNOWN Unknown or no device type.

DTYPE_MASK Mask to isolate Peripheral Device Type field.

The following values are appropriate for the Peripheral Qualifier field:
DPQ_POSSIBLE The specified peripheral device type is currently

connected to this logical unit. If the target cannot
determine whether or not a physical device
is currently connected, it shall also use this
peripheral qualifier when returning the INQUIRY
data. This peripheral qualifier does not imply
that the device is ready for access by the initiator.

DPQ_SUPPORTED The target is capable of supporting the specified
peripheral device type on this logical unit.
However, the physical device is not currently
connected to this logical unit.

DPQ_NEVER The target is not capable of supporting a physical
device on this logical unit. For this peripheral
qualifier, the peripheral device type shall be set to
DTYPE_UNKNOWNto provide compatibility with
previous versions of SCSI. For all other peripheral
device type values, this peripheral qualifier is
reserved.

DPQ_VUNIQ This is a vendor-unique qualifier.

DTYPE_NOTPRESENTis the peripheral qualifier DPQ_NEVERand the peripheral
device type DTYPE_UNKNOWNcombined.

inq_rmb , if set, indicates that the medium is removable.

inq_qual is a device type qualifier.

inq_iso indicates ISO version.

84 SunOS 5.8 Last modified 1 Apr 1997

Data Structures for Drivers scsi_inquiry(9S)

inq_ecma indicates ECMA version.

inq_ansi indicates ANSI version.

inq_aenc , if set, indicates that the device supports asynchronous event
notification capability as defined in SCSI-2 specification.

inq_trmiop , if set, indicates that the device supports the TERMINATE I/O
PROCESSmessage.

inq_rdf , if reset, indicates the INQUIRY data format is as specified in SCSI-1.

inq_inq_len is the additional length field which specifies the length in bytes
of the parameters.

inq_reladdr , if set, indicates that the device supports the relative addressing
mode of this logical unit.

inq_wbus32 , if set, indicates that the device supports 32-bit wide data transfers.

inq_wbus16 , if set, indicates that the device supports 16-bit wide data transfers.

inq_sync , if set, indicates that the device supports synchronous data transfers.

inq_linked , if set, indicates that the device supports linked commands for
this logical unit.

inq_cmdque , if set, indicates that the device supports tagged command
queueing.

inq_sftre , if reset, indicates that the device responds to the RESETcondition
with the hard RESETalternative. If this bit is set, this indicates that the device
responds with the soft RESET alternative.

inq_vid contains eight bytes of ASCII data identifying the vendor of the
product.

inq_pid contains sixteen bytes of ASCII data as defined by the vendor.

inq_revision contains four bytes of ASCII data as defined by the vendor.

SEE ALSO scsi_probe (9F), scsi_device (9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

Last modified 1 Apr 1997 SunOS 5.8 85

scsi_pkt(9S) Data Structures for Drivers

NAME scsi_pkt – SCSI packet structure

SYNOPSIS #include <sys/scsi/scsi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION A scsi_pkt structure defines the packet which is allocated by
scsi_init_pkt (9F). The target driver fills in some information, and passes it to
scsi_transport (9F) for execution on the target. The HBA fills in some other
information as the command is processed. When the command completes (or
can be taken no further) the completion function specified in the packet is called
with a pointer to the packet as its argument. From fields within the packet, the
target driver can determine the success or failure of the command.

STRUCTURE
MEMBERS

opaque_t pkt_ha_private;
/* private data for host adapter */

struct scsi_address pkt_address;
/* destination packet */

opaque_t pkt_private;
/* private data for target driver */

void (*pkt_comp)(struct scsi_pkt *);
/* callback */

uint_t pkt_flags;
/* flags */

int pkt_time;
/* time allotted to complete command */

uchar_t *pkt_scbp;
/* pointer to status block */

uchar_t *pkt_cdbp;
/* pointer to command block */

ssize_t pkt_resid;
/* number of bytes not transferred */

uint_t pkt_state;
/* state of command */

uint_t pkt_statistics;
/* statistics */

uchar_t pkt_reason;
/* reason completion called */

pkt_ha_private An opaque pointer which the Host Bus Adapter
uses to reference a private data structure used to
transfer scsi_pkt requests.

pkt_address Initialized by scsi_init_pkt (9F) and serves
to record the intended route and recipient of
a request.

pkt_private Reserved for the use of the target driver and is
not changed by the HBA driver.

86 SunOS 5.8 Last modified 6 Mar 1998

Data Structures for Drivers scsi_pkt(9S)

pkt_comp Specifies the command completion callback
routine. When the host adapter driver has gone
as far as it can in transporting a command to a
SCSI target, and the command has either run
to completion, or can go no further for some
other reason, the host adapter driver will call
the function pointed to by this field and pass a
pointer to the packet as argument. The callback
routine itself is called from interrupt context
and must not sleep nor call any function which
may sleep.

pkt_flags Provides additional information about how the
target driver wants the command to be executed.
See pkt_flag Definitions .

pkt_time Will be set by the target driver to represent the
maximum length of time in seconds that this
command is allowed take to complete. pkt_time
may be 0 if no timeout is required.

pkt_scbp Points to either a struct scsi_status (9S) or,
if auto–rqsense is enabled, and pkt_state
includes STATE_ARQ_DONE, a struct
scsi_arq_status. If scsi_status is returned, the
SCSI status byte resulting from the requested
command is available; if scsi_arq_status (9S)
is returned, the sense information is also
available.

pkt_cdbp Points to a kernel addressable buffer whose
length was specified by a call to the proper
resource allocation routine, scsi_init_pkt (9F).

pkt_resid Contains a residual count, either the number
of data bytes that have not been transferred
(scsi_transport (9F)) or the number of
data bytes for which DMA resources could
not be allocated scsi_init_pkt (9F). In the
latter case, partial DMA resources may only be
allocated if scsi_init_pkt (9F) is called with
the PKT_DMA_PARTIALflag.

pkt_state Has bit positions representing the six most
important states that a SCSI command can go
through (see pkt_state Definitions).

Last modified 6 Mar 1998 SunOS 5.8 87

scsi_pkt(9S) Data Structures for Drivers

pkt_statistics Maintains some transport-related statistics. (see
pkt_statistics Definitions).

pkt_reason Contains a completion code that indicates why
the pkt_comp function was called.

The host adapter driver will update the pkt_resid , pkt_reason , pkt_state ,
and pkt_statistics fields.

pkt_flags Definitions: The definitions that are appropriate for the structure member pkt_flags are:
FLAG_NOINTR Run command with no command completion

callback; command is complete upon return from
scsi_transport (9F).

FLAG_NODISCON Run command without disconnects.

FLAG_NOPARITY Run command without parity checking.

FLAG_HTAG Run command as the head of queue tagged
command.

FLAG_OTAG Run command as an ordered queue tagged
command.

FLAG_STAG Run command as a simple queue tagged
command.

FLAG_SENSING This command is a request sense command.

FLAG_HEAD This command should be put at the head of
the queue.

pkt_reason
Definitions:

The definitions that are appropriate for the structure member pkt_reason are:
CMD_CMPLT No transport errors–normal completion.

CMD_INCOMPLETE Transport stopped with abnormal state.

CMD_DMA_DERR DMA direction error.

CMD_TRAN_ERR Unspecified transport error.

CMD_RESET SCSI bus reset destroyed command.

CMD_ABORTED Command transport aborted on request.

CMD_TIMEOUT Command timed out.

CMD_DATA_OVR Data Overrun.

CMD_CMD_OVR Command Overrun.

CMD_STS_OVR Status Overrun.

CMD_BADMSG Message not Command Complete.

88 SunOS 5.8 Last modified 6 Mar 1998

Data Structures for Drivers scsi_pkt(9S)

CMD_NOMSGOUT Target refused to go to Message Out phase.

CMD_XID_FAIL Extended Identify message rejected.

CMD_IDE_FAIL Initiator Detected Error message rejected.

CMD_ABORT_FAIL Abort message rejected.

CMD_REJECT_FAIL Reject message rejected.

CMD_NOP_FAIL No Operation message rejected.

CMD_PER_FAIL Message Parity Error message rejected.

CMD_BDR_FAIL Bus Device Reset message rejected.

CMD_ID_FAIL Identify message rejected.

CMD_UNX_BUS_FREE Unexpected Bus Free Phase.

CMD_TAG_REJECT Target rejected the tag message.

pkt_state Definitions: The definitions that are appropriate for the structure member pkt_state are:
STATE_GOT_BUS Bus arbitration succeeded

STATE_GOT_TARGET Target successfully selected.

STATE_SENT_CMD Command successfully sent.

STATE_XFERRED_DATA Data transfer took place.

STATE_GOT_STATUS Status received.

STATE_ARQ_DONE The command resulted in a check condition and
the host adapter driver executed an automatic
request sense cmd.

pkt_statistics
Definitions:

The definitions that are appropriate for the structure member pkt_statistics
are:
STAT_DISCON Device disconnect.

STAT_SYNC Command did a synchronous data transfer.

STAT_PERR SCSI parity error.

STAT_BUS_RESET Bus reset.

STAT_DEV_RESET Device reset.

STAT_ABORTED Command was aborted.

STAT_TIMEOUT Command timed out.

SEE ALSO tran_init_pkt (9E), scsi_arq_status (9S), scsi_init_pkt (9F),
scsi_transport (9F), scsi_status (9S)Writing Device Drivers

Last modified 6 Mar 1998 SunOS 5.8 89

scsi_status(9S) Data Structures for Drivers

NAME scsi_status – SCSI status structure

SYNOPSIS #include <sys/scsi/scsi.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

DESCRIPTION The SCSI-2 standard defines a status byte which is normally sent by the target to
the initiator during the status phase at the completion of each command.

STRUCTURE
MEMBERS uchar sts_scsi2 :1; /* SCSI-2 modifier bit */

uchar sts_is :1; /* intermediate status sent */
uchar sts_busy :1; /* device busy or reserved */
uchar sts_cm :1; /* condition met */
ucha sts_chk :1; /* check condition */

sts_chk indicates that a contingent allegiance condition has occurred.

sts_cm is returned whenever the requested operation is satisfied

sts_busy indicates that the target is busy. This status is returned whenever a
target is unable to accept a command from an otherwise acceptable initiator (that
is, no reservation conflicts). The recommended initiator recovery action is to
issue the command again at a later time.

sts_is is returned for every successfully completed command in a series of
linked commands (except the last command), unless the command is terminated
with a check condition status, reservation conflict, or command terminated
status. Note that host bus adapter drivers may not support linked commands
(see scsi_ifsetcap (9F)). If sts_is and sts_busy are both set, then a
reservation conflict has occurred.

sts_scsi2 is the SCSI-2 modifier bit. If sts_scsi2 and sts_chk are both set,
this indicates a command terminated status. If sts_scsi2 and sts_busy are
both set, this indicates that the command queue in the target is full.

For accessing the status as a byte, the following values are appropriate:
STATUS_GOOD This status indicates that the target

has successfully completed the
command.

STATUS_CHECK This status indicates that a contingent
allegiance condition has occurred.

STATUS_MET This status is returned when the
requested operations are satisfied.

STATUS_BUSY This status indicates that the target is
busy.

90 SunOS 5.8 Last modified 30 Aug 1995

Data Structures for Drivers scsi_status(9S)

STATUS_INTERMEDIATE This status is returned for every
successfully completed command in a
series of linked commands.

STATUS_SCSI2 This is the SCSI-2 modifier bit.

STATUS_INTERMEDIATE_MET This status is a combination
of STATUS_METand
STATUS_INTERMEDIATE.

STATUS_RESERVATION_CONFLICT This status is a combination of
STATUS_INTERMEDIATEand
STATUS_BUSY, and it is returned
whenever an initiator attempts to
access a logical unit or an extent
within a logical unit is reserved.

STATUS_TERMINATED This status is a combination
of STATUS_SCSI2 and
STATUS_CHECK,and it is returned
whenever the target terminates the
current I/O process after receiving a
terminate I/O process message.

STATUS_QFULL This status is a combination of
STATUS_SCSI2and STATUS_BUSY,
and it is returned when the command
queue in the target is full.

SEE ALSO scsi_ifgetcap (9F), scsi_init_pkt (9F), scsi_extended_sense (9S),
scsi_pkt (9S)

Writing Device Drivers

Last modified 30 Aug 1995 SunOS 5.8 91

streamtab(9S) Data Structures for Drivers

NAME streamtab – STREAMS entity declaration structure

SYNOPSIS #include <sys/stream.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION Each STREAMS driver or module must have a streamtab structure.

streamtab is made up of qinit structures for both the read and write queue
portions of each module or driver. Multiplexing drivers require both upper and
lower qinit structures. Theqinit structure contains the entry points through
which the module or driver routines are called.

Normally, the read QUEUEcontains the open and close routines. Both the read
and write queue can contain put and service procedures.

STRUCTURE
MEMBERS

struct qinit *st_rdinit; /* read QUEUE */
struct qinit *st_wrinit; /* write QUEUE */
struct qinit *st_muxrinit; /* lower read QUEUE*/
struct qinit *st_muxwinit; /* lower write QUEUE*/

SEE ALSO qinit (9S)

STREAMS Programming Guide

92 SunOS 5.8 Last modified 11 Apr 1991

Data Structures for Drivers stroptions(9S)

NAME stroptions – options structure for M_SETOPTS message

SYNOPSIS #include <sys/stream.h>

#include <sys/stropts.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION The M_SETOPTSmessage contains a stroptions structure and is used to
control options in the stream head.

STRUCTURE
MEMBERS uint_t so_flags; /* options to set */

short so_readopt; /* read option */
ushort_t so_wroff; /* write offset */
ssize_t so_minpsz; /* minimum read packet size */
ssize_t so_maxpsz; /* maximum read packet size */
size_t so_hiwat; /* read queue high water mark */
size_t so_lowat; /* read queue low water mark */
unsigned char so_band; /* band for water marks */
ushort_t so_erropt; /* error option */

The following are the flags that can be set in the so_flags bit mask in the
stroptions structure. Note that multiple flags can b
SO_READOPT Set read option.

SO_WROFF Set write offset.

SO_MINPSZ Set min packet size

SO_MAXPSZ Set max packet size.

SO_HIWAT Set high water mark.

SO_LOWAT Set low water mark.

SO_MREADON Set read notification ON.

SO_MREADOFF Set read notification OFF.

SO_NDELON Old TTY semantics for NDELAY reads/writes.

SO_NDELOFFSTREAMS Semantics for NDELAY reads/writes.

SO_ISTTY The stream is acting as a terminal.

SO_ISNTTY The stream is not acting as a terminal.

SO_TOSTOP Stop on background writes to this stream.

SO_TONSTOP Do not stop on background writes to stream.

Last modified 14 Nov 1996 SunOS 5.8 93

stroptions(9S) Data Structures for Drivers

SO_BAND Water marks affect band.

SO_ERROPT Set error option.

When SO_READOPTis set, the so_readopt field of the stroptions structure
can take one of the following values. See read (2).
RNORM Read msg norm.

RMSGD Read msg discard.

RMSGN Read msg no discard.

When SO_BANDis set, so_band determines to which band so_hiwat and
so_lowat apply.

When SO_ERROPTis set, the so_erropt field of the stroptions structure can
take a value that is either none or one of:
RERRNORM Persistent read errors; default.

RERRNONPERSIST Non-persistent read errors.

OR’ed with either none or one of:
WERRNORM Persistent write errors; default.

WERRNONPERSIST Non-persistent write errors.

SEE ALSO read (2), streamio (7I)

STREAMS Programming Guide

94 SunOS 5.8 Last modified 14 Nov 1996

Data Structures for Drivers tuple(9S)

NAME tuple – Card Information Structure (CIS) access structure

SYNOPSIS #include <sys/pccard.h>

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

DESCRIPTION The tuple_t structure is the basic data structure provided by Card Services
to manage PC Card information. A PC Card provides identification and
configuration information through its Card Information Structure (CIS). A PC
Card driver accesses a PC Card’s CIS through various Card Services functions.

The CIS information allows PC Cards to be self-identifying, meaning that the CIS
provides information to the system so that it can identify the proper PC Card
driver for the PC Card, and configuration information so that the driver can
allocate appropriate resources to configure the PC Card for proper operation
in the system.

The CIS information is contained on the PC Card in a linked list of tuple data
structures called a CIS chain. Each tuple has a one-byte type and a one-byte link,
an offset to the next tuple in the list. A PC Card can have one or more CIS chains.

A multi-function PC Card that complies with the PC Card 95 MultiFunction
Metaformat specification will have one or more global CIS chains that
collectively are referred to as the global CIS. These PC Cards will also have one
or more per-function CIS chains. Each per-function collection of CIS chains is
referred to as a function-specific CIS.

To examine a PC Card’s CIS, first a PC Card driver must locate the desired
tuple by calling csx_GetFirstTuple (9F). Once the first tuple is located,
subsequent tuples may be located by calling csx_GetNextTuple (9F). See
csx_GetFirstTuple (9F). The linked list of tuples may be inspected one
by one, or the driver may narrow the search by requesting only tuples of a
particular type.

Once a tuple has been located, the PC Card driver may inspect the tuple data.
The most convenient way to do this for standard tuples is by calling one of the
number of tuple-parsing utility functions; for custom tuples, the driver may get
access to the raw tuple data by calling csx_GetTupleData (9F).

Solaris PC Card drivers do not need to be concerned with which CIS chain a
tuple appears in. On a multi-function PC Card, the client will get the tuples from
the global CIS followed by the tuples in the function-specific CIS. The caller
will not get any tuples from a function-specific CIS that does not belong to
the caller’s function.

Last modified 20 Dec 1996 SunOS 5.8 95

tuple(9S) Data Structures for Drivers

STRUCTURE
MEMBERS

The structure members of tuple_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* tuple attributes */
cisdata_t DesiredTuple; /* tuple to search for */
cisdata_t TupleOffset; /* tuple data offset */
cisdata_t TupleDataMax; /* max tuple data size */
cisdata_t TupleDataLen; /* actual tuple data length */
cisdata_t TupleData[CIS_MAX_TUPLE_DATA_LEN];

/* body tuple data */
cisdata_t TupleCode; /* tuple type code */
cisdata_t TupleLink; /* tuple link */

The fields are defined as follows:
Socket Not used in Solaris, but for portability with other Card

Services implementations, it should be set to the logical
socket number.

Attributes This field is bit-mapped. The following bits are defined:

TUPLE_RETURN_LINK

Return link tuples if set.

TUPLE_RETURN_IGNORED_TUPLES

Return ignored tuples if set. Ignored tuples are those
tuples in a multi-function PC Card’s global CIS chain that
are duplicates of the same tuples in a function-specific
CIS chain.

TUPLE_RETURN_NAME

Return tuple name string via the csx_ParseTuple (9F)
function if set.

DesiredTuple This field is the requested tuple type code to be
returned, when calling csx_GetFirstTuple (9F) or
csx_GetNextTuple (9F). RETURN_FIRST_TUPLEis used
to return the first tuple regardless of tuple type, if it exists.
RETURN_NEXT_TUPLEis used to return the next tuple
regardless of tuple type.

TupleOffset This field allows partial tuple information to be retrieved,
starting at the specified offset within the tuple. This field
must only be set before calling csx_GetTupleData (9F).

TupleDataMax This field is the size of the tuple data buffer that
Card Services uses to return raw tuple data from
csx_GetTupleData (9F). It can be larger than the number

96 SunOS 5.8 Last modified 20 Dec 1996

Data Structures for Drivers tuple(9S)

of bytes in the tuple data body. Card Services ignores any
value placed here by the client.

TupleDataLen This field is the actual size of the tuple data body. It
represents the number of tuple data body bytes returned by
csx_GetTupleData (9F).

TupleData This field is an array of bytes containing the raw tuple data
body contents returned by csx_GetTupleData (9F).

TupleCode This field is the tuple type code and is returned by
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F)
when a tuple matching the DesiredTuple field is returned.

TupleLink This field is the tuple link, the offset to the next tuple,
and is returned by csx_GetFirstTuple (9F) or
csx_GetNextTuple (9F) when a tuple matching the
DesiredTuple field is returned.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F), csx_ParseTuple (9F),
csx_Parse_CISTPL_BATTERY (9F), csx_Parse_CISTPL_BYTEORDER(9F),
csx_Parse_CISTPL_CFTABLE_ENTRY (9F),
csx_Parse_CISTPL_CONFIG (9F), csx_Parse_CISTPL_DATE (9F),
csx_Parse_CISTPL_DEVICE (9F), csx_Parse_CISTPL_FUNCE (9F),
csx_Parse_CISTPL_FUNCID (9F), csx_Parse_CISTPL_JEDEC_C (9F),
csx_Parse_CISTPL_MANFID (9F), csx_Parse_CISTPL_SPCL (9F),
csx_Parse_CISTPL_VERS_1 (9F), csx_Parse_CISTPL_VERS_2 (9F)

PC Card 95 Standard, PCMCIA/JEIDA

Last modified 20 Dec 1996 SunOS 5.8 97

uio(9S) Data Structures for Drivers

NAME uio – scatter/gather I/O request structure

SYNOPSIS #include <sys/uio.h>

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION A uio structure describes an I/O request that can be broken up into different
data storage areas (scatter/gather I/O). A request is a list of iovec structures
(base/length pairs) indicating where in user space or kernel space the I/O
data is to be read/written.

The contents of uio structures passed to the driver through the entry points
should not be written by the driver. The uiomove (9F) function takes care of all
overhead related to maintaining the state of the uio structure.

uio structures allocated by the driver should be initialized to zero before use, by
bzero (9F), kmem_zalloc (9F), or an equivalent.

STRUCTURE
MEMBERS iovec_t *uio_iov; /* pointer to the start of the iovec */

/* list for the uio structure */
int uio_iovcnt; /* the number of iovecs in the list */
off_t uio_offset; /* 32-bit offset into file where data is */

/* transferred from or to. See NOTES. */
offset_t uio_loffset; /* 64-bit offset into file where data is */

/* transferred from or to. See NOTES. */
uio_seg_t uio_segflg; /* identifies the type of I/O transfer: */

/* UIO_SYSSPACE: kernel <-> kernel */
/* UIO_USERSPACE: kernel <-> user */

short uio_fmode; /* file mode flags (not driver setable) */
daddr_t uio_limit; /* 32-bit ulimit for file (maximum block */

/* offset). not driver setable. See NOTES. */
diskaddr_t uio_llimit; /* 64-bit ulimit for file (maximum block */

/* offset). not driver setable. See NOTES. */
int uio_resid; /* residual count */

The uio_iov member is a pointer to the beginning of the iovec (9S) list for the
uio . When the uio structure is passed to the driver through an entry point, the
driver should not set uio_iov . When the uio structure is created by the driver,
uio_iov should be initialized by the driver and not written to afterward.

SEE ALSO aread (9E), awrite (9E), read (9E), write (9E), bzero (9F), kmem_zalloc (9F),
uiomove (9F), cb_ops (9S), iovec (9S)

Writing Device Drivers

NOTES Only one of uio_offset or uio_loffset should be interpreted by the
driver. Which field the driver interprets is dependent upon the settings in
the cb_ops (9S) structure.

98 SunOS 5.8 Last modified 28 Mar 1997

Data Structures for Drivers uio(9S)

Only one of uio_limit or uio_llimit should be interpreted by the
driver. Which field the driver interprets is dependent upon the settings in
the cb_ops (9S) structure.

When performing I/O on a seekable device, the driver should not modify either
the uio_offset or the uio_loffset field of the uio structure. I/O to such
a device is constrained by the maximum offset value. When performing I/O
on a device on which the concept of position has no relevance, the driver may
preserve the uio_offset or uio_loffset , perform the I/O operation, then
restore the uio_offset or uio_loffset to the field’s initial value. I/O
performed to a device in this manner is not constrained.

Last modified 28 Mar 1997 SunOS 5.8 99

uio(9S) Data Structures for Drivers

100 SunOS 5.8 Last modified 28 Mar 1997

Index

A
aio_req — asynchronous I/O request

structure 16
asynchronous I/O request structure —

aio_req 16

B
buf — block I/O data transfer structure 17

C
Card Information Structure (CIS) access

structure — tuple 95
character/block entry points structure for

drivers
— cb_ops 20

copyreq — STREAMS data structure for
the M_COPYIN and the
M_COPYOUT message
types 22

copyresp — STREAMS data structure for
the M_IOCDATA message
type 23

D
data access attributes structure —

ddi_device_acc_attr 25
DDI device mapping

ddi_mapdev_ctl — device mapping-control
structure 47

devmap_callback_ctl — device
mapping-control
structure 48

DDI direct memory access
DMA limits structure – ddi_dma_lim 39
DMA cookie structure —

ddi_dma_cookie 34
DMA limits structure — ddi_dma_lim 41
DMA Request structure —

ddi_dma_req 43
ddi_device_acc_attr — data access attributes

structure 25
ddi_dma_attr — DMA attributes structure 30
ddi_dmae_req — DMA engine request

structure 35
ddi_idevice_cookie — device interrupt

cookie 46
ddi_mapdev_ctl — device mapping-control

structure 47
device interrupt cookie —

ddi_idevice_cookie 46
device mapping-control structure —

ddi_mapdev_ctl 47–48
device operations structure

— dev_ops 50
devmap_callback_ctl — device mapping-control

structure 48
DMA attributes structure — ddi_dma_attr 30
DMA cookie structure

— ddi_dma_cookie 34
DMA engine request structure —

ddi_dmae_req 35

Index-101

DMA limits structure
– ddi_dma_lim 39, 41

DMA Request structure
— ddi_dma_req 43

driver’s message freeing routine
— free_rtn 53

drivers, loadable, linkage structure
— modldrv 63

F
fmodsw — STREAMS module declaration

structure 52

I
I/O data storage structure using uio

— iovec 55
I/O request structure, scatter/gather

— uio 98
I/O, block, data transfer structure

— buf 17
iocblk — STREAMS data structure for the

M_IOCTL message type 54

K
kernel statistics structure — kstat 56
kstat — kernel statistics structure 56
kstat_intr — structure for interrupt kstats 58
kstat_io — structure for I/O kstats 60
kstat_named — structure for named kstats 61

L
linkblk — STREAMS data structure sent to

multiplexor drivers to indicate
a link 62

M
modlinkage — module linkage structure 64

O
options structure for M_SETOPTS message —

stroptions 93

Q
queclass — a STREAMS macro that returns

the queue message class
definitions for a given
message block 70

S
SCSI address structure — scsi_address 72
SCSI ASC ASCQ to message structure

scsi-vu-errmsg 75
SCSI auto request sense structure —

scsi_arq_status 73
SCSI device structure — scsi_device 76, 83
SCSI extended sense structure —

scsi_extended_sense 77
SCSI Host Bus Adapter (HBA) driver

transport vector structure —
scsi_hba_tran 80

SCSI packet structure — scsi_pkt 86
SCSI status structure — scsi_status 90
scsi_address — SCSI address structure 72
scsi_arq_status — SCSI auto request sense

structure 73
scsi_asc_key_strings

SCSI ASC ASCQ to message structure 75
scsi_device — SCSI device structure 76
scsi_extended_sense — SCSI extended sense

structure 77
scsi_hba_tran — SCSI Host Bus Adapter

(HBA) driver transport vector
structure 80

scsi_inquiry — SCSI device structure 83
scsi_pkt — SCSI packet structure 86

pkt_flags Definitions 88
pkt_reason Definitions 88
pkt_state Definitions 89
pkt_statistics Definitions 89

scsi_status — SCSI status structure 90
STREAMS data structure for the M_COPYIN

and the M_COPYOUT
message types — copyreq 22

STREAMS data structure for the M_IOCDATA
message type — copyresp 23

STREAMS data structure for the M_IOCTL
message type — iocblk 54

man pages section 9S: DDI and DKI Data Structures ♦ February 2000

STREAMS data structure sent to multiplexor
drivers to indicate a link —
linkblk 62

STREAMS driver identification and limit value
structure

— module_info 66
STREAMS entity declaration structure

— streamtab 92
STREAMS macro that returns the queue

message class definitions for
a given message block —
queclass 70

STREAMS message block structure
— msgb 67

STREAMS message data structure
— datab 24

STREAMS module declaration structure —
fmodsw 52

STREAMS modules, loadable, linkage structure
modlstrmod 65

STREAMS queue flow control information
structure

— qband 68
STREAMS queue processing procedures

structure
— qinit 69

STREAMS queue structure
— queue 71

stroptions — options structure for M_SETOPTS
message 93

structure for I/O kstats — kstat_io 60
structure for interrupt kstats — kstat_intr 58
structure for named kstats — kstat_named 61

T
tuple — Card Information Structure (CIS) access

structure 95

U
uio — scatter/gather I/O request structure 98

Index-103

