
man pages section 7: Device
and Network Interfaces

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 806-0636-10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 13

Intro(7) 19

adp(7D) 22

afb(7d) 23

arp(7P) 24

ARP(7P) 24

asy(7D) 27

ata(7D) 30

audio(7I) 32

audioamd(7D) 43

audiocs(7D) 45

audio_support(7I) 49

authmd5h(7M) 52

authsha1(7M) 53

bd(7M) 54

bpp(7D) 56

bufmod(7M) 62

bwtwo(7D) 66

cadp(7D) 67

Contents 3

cdio(7I) 70

cgeight(7D) 79

cgfour(7D) 80

cgfourteen(7D) 81

cgsix(7D) 82

cgthree(7D) 83

cgtwo(7D) 84

cmdk(7D) 85

cnft(7D) 87

connld(7M) 91

console(7D) 93

cpqncr(7D) 94

cpr(7) 96

cvc(7D) 98

cvcredir(7D) 99

dad(7D) 100

dbri(7D) 103

devinfo(7D) 109

dkio(7I) 110

dlpi(7P) 117

dnet(7D) 118

dr(7d) 120

drmach(7d) 120

ecpp(7D) 122

elx(7D) 128

encr3des(7M) 130

encrdes(7M) 132

esp(7D) 133

4 man pages section 7: Device and Network Interfaces ♦ February 2000

fas(7D) 140

fbio(7I) 149

fcp(7D) 151

fctl(4) 152

fd(7D) 153

fdc(7D) 153

fdio(7I) 159

ffb(7D) 163

flashpt(7D) 164

fp(7d) 165

gld(7D) 166

glm(7D) 175

hdio(7I) 180

hid(7D) 182

hme(7D) 184

hsfs(7FS) 189

hubd(7D) 192

i2o_bs(7D) 194

i2o_scsi(7D) 196

icmp6(7P) 197

icmp(7P) 199

ICMP(7P) 199

idn(7d) 201

ifb(7d) 204

ifp(7D) 205

if_tcp(7P) 209

if(7P) 209

inet6(7P) 217

Contents 5

inet(7P) 221

ip6(7P) 224

ip(7P) 231

IP(7P) 231

iprb(7D) 236

ipsec(7P) 239

ipsecah(7P) 243

AH(7P) 243

ipsecesp(7P) 244

ESP(7P) 244

isdnio(7I) 246

isp(7D) 261

kb(7M) 267

kdmouse(7D) 277

kstat(7D) 278

ksyms(7D) 279

ldterm(7M) 281

le(7D) 285

lebuffer(7D) 285

ledma(7D) 285

llc1(7D) 290

llc2(7D) 293

lockstat(7D) 300

lofi(7D) 301

lofs(7FS) 303

log(7D) 305

logi(7D) 309

lp(7D) 310

6 man pages section 7: Device and Network Interfaces ♦ February 2000

ltem(7D) 312

m64(7D) 313

mem(7D) 315

kmem(7D) 315

mhd(7i) 316

mixer(7I) 321

mlx(7D) 334

msglog(7D) 337

msm(7D) 338

mt(7D) 339

mtio(7I) 340

ncrs(7D) 353

null(7D) 360

ocf_escr1(7D) 361

ocf_ibutton(7D) 362

ocf_iscr1(7D) 363

ohci(7D) 364

openprom(7D) 365

pcata(7D) 370

pcelx(7D) 371

pcfs(7FS) 372

pcic(7D) 378

pckt(7M) 379

pcmem(7D) 380

pcn(7D) 381

pcram(7D) 383

pcscsi(7D) 384

pcser(7D) 385

Contents 7

pf_key(7P) 386

pfmod(7M) 395

pipemod(7M) 398

pln(7D) 399

pm(7D) 400

poll(7d) 407

ppp(7M) 411

ppp_diag(7M) 411

ipd(7M) 411

ipdptp(7M) 411

ipdcm(7M) 411

ptem(7M) 413

ptm(7D) 414

pts(7D) 416

pty(7D) 418

qe(7D) 421

qec(7D) 424

qfe(7d) 425

quotactl(7I) 430

rns_smt(7D) 432

route(7P) 433

routing(7P) 437

sad(7D) 439

sbpro(7D) 443

scsa2usb(7D) 446

sd(7D) 449

se(7D) 455

se_hdlc(7D) 459

8 man pages section 7: Device and Network Interfaces ♦ February 2000

ses(7D) 463

sesio(7I) 464

sf(7D) 466

sgen(7D) 469

slp(7P) 475

smartii(7D) 477

soc(7D) 478

socal(7D) 480

sockio(7I) 482

spwr(7D) 483

ssd(7D) 484

st(7D) 488

stc(7D) 501

stp4020(7D) 514

streamio(7I) 515

sxp(7D) 534

symhisl(7D) 537

sysmsg(7D) 540

t1394dcam(7D) 541

tcp(7P) 542

TCP(7P) 542

tcx(7D) 547

termio(7I) 549

termiox(7I) 572

ticlts(7D) 578

ticots(7D) 578

ticotsord(7D) 578

timod(7M) 580

Contents 9

tirdwr(7M) 582

tmpfs(7FS) 584

tpf(7D) 586

ttcompat(7M) 587

tty(7D) 594

tun(7M) 595

TUN(7M) 595

uata(7D) 599

udp(7P) 601

UDP(7P) 601

uhci(7D) 604

usbkbm(7M) 605

usb_mid(7D) 607

usbms(7M) 608

uscsi(7I) 610

usoc(7D) 614

visual_io(7I) 616

volfs(7FS) 623

vuidmice(7M) 625

vuidm3p(7M) 625

vuidm4p(7M) 625

vuidm5p(7M) 625

vuid2ps2(7M) 625

vuid3ps2(7M) 625

wscons(7D) 628

xd(7D) 638

xdc(7D) 638

xmemfs(7FS) 640

10 man pages section 7: Device and Network Interfaces ♦ February 2000

xt(7D) 642

xy(7D) 644

xyc(7D) 644

zero(7D) 646

zs(7D) 647

zsh(7D) 650

Index 653

Contents 11

12 man pages section 7: Device and Network Interfaces ♦ February 2000

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page
is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information
it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware
peripherals and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

Preface 13

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there are
no bugs to report, there is no BUGS section. See the intro pages for more information
and detail about each section, and man(1) for more information about man pages in
general.

NAME This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not
exist in the standard path, its full path name is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or
arguments enclosed within braces are

14 man pages section 7: Device and Network Interfaces ♦ February 2000

interdependent, such that everything
enclosed must be treated as a unit.

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES. Interactive
commands, subcommands, requests, macros, and
functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl (2) system call is called
ioctl and generates its own heading. ioctl
calls for a specific device are listed alphabetically
(on the man page for that specific device). ioctl
calls are used for a particular class of devices all
of which have an io ending, such as mtio (7I).

OPTIONS This secton lists the command options with
a concise summary of what each option does.
The options are listed literally and in the order
they appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard
output, standard error, or output files – generated
by the command.

RETURN VALUES If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they

15

failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations.
The subsections listed here are used to explain
built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage
or of how to use a command or function.
Wherever possible a complete example
including command-line entry and machine
response is shown. Whenever an example is
given, the prompt is shown as example% ,
or if the user must be superuser, example# .
Examples are followed by explanations, variable
substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion,
and values other than zero for various error
conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes (5) for more information.

16 man pages section 7: Device and Network Interfaces ♦ February 2000

SEE ALSO This section lists references to other man
pages, in-house documentation, and outside
publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

NOTES This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

17

CHAPTER

Device and Network Interfaces

18

Device and Network Interfaces Intro(7)

NAME Intro – introduction to special files

DESCRIPTION This section describes various device and network interfaces available on the
system. The types of interfaces described include character and block devices,
STREAMS modules, network protocols, file systems, and ioctl requests for
driver subsystems and classes.

This section contains the following major collections:
(7D) The system provides drivers for a variety of hardware devices, such

as disk, magnetic tapes, serial communication lines, mice, and frame
buffers, as well as virtual devices such as pseudo-terminals and
windows.

This section describes special files that refer to specific hardware
peripherals and device drivers. STREAMS device drivers are also
described. Characteristics of both the hardware device and the
corresponding device driver are discussed where applicable.

An application accesses a device through that device’s special file.
This section specifies the device special file to be used to access the
device as well as application programming interface (API) information
relevant to the use of the device driver.

All device special files are located under the /devices directory.
The /devices directory hierarchy attempts to mirror the hierarchy
of system busses, controllers, and devices configured on the system.
Logical device names for special files in /devices are located under
the /dev directory. Although not every special file under /devices
will have a corresponding logical entry under /dev , whenever
possible, an application should reference a device using the logical
name for the device. Logical device names are listed in the FILES
section of the page for the device in question.

This section also describes driver configuration where applicable.
Many device drivers have a driver configuration file of the form
driver_name.conf associated with them (see driver.conf (4)). The
configuration information stored in the driver configuration file is
used to configure the driver and the device. Driver configuration
files are located in /kernel/drv and /usr/kernel/drv . Driver
configuration files for platform dependent drivers are located in
/platform/‘uname -i‘/kernel/drv where ‘uname -i‘ is the
output of the uname(1) command with the -i option.

Some driver configuration files may contain user configurable
properties. Changes in a driver’s configuration file will not take effect
until the system is rebooted or the driver has been removed and
re-added (see rem_drv (1M) and add_drv (1M)).

Last modified 29 Sep 1994 SunOS 5.8 19

Intro(7) Device and Network Interfaces

(7FS) This section describes the programmatic interface for several file
systems supported by SunOS.

(7I) This section describes ioctl requests which apply to a class of drivers
or subsystems. For example, ioctl requests which apply to most tape
devices are discussed in mtio (7I). Ioctl requests relevant to only a
specific device are described on the man page for that device. The
page for the device in question should still be examined for exceptions
to the ioctls listed in section 7I.

(7M) This section describes STREAMS modules. Note that STREAMS
drivers are discussed in section 7D. streamio (7I) contains a list of
ioctl requests used to manipulate STREAMS modules and interface
with the STREAMS framework. Ioctl requests specific to a STREAMS
module will be discussed on the man page for that module.

(7P) This section describes various network protocols available in SunOS.

SunOS supports both socket-based and STREAMS-based network
communications. The Internet protocol family, described in inet (7P),
is the primary protocol family supported by SunOS, although
the system can support a number of others. The raw interface
provides low-level services, such as packet fragmentation and
reassembly, routing, addressing, and basic transport for socket-based
implementations. Facilities for communicating using an Internet-family
protocol are generally accessed by specifying the AF_INET address
family when binding a socket; see socket (3SOCKET) for details.

Major protocols in the Internet family include:

� The Internet Protocol (IP) itself, which supports the universal
datagram format, as described in ip (7P). This is the default protocol
for SOCK_RAWtype sockets within the AF_INET domain.

� The Transmission Control Protocol (TCP); see tcp (7P). This is the
default protocol for SOCK_STREAMtype sockets.

� The User Datagram Protocol (UDP); see udp (7P). This is the default
protocol for SOCK_DGRAMtype sockets.

� The Address Resolution Protocol (ARP); see arp (7P).

� The Internet Control Message Protocol (ICMP); see icmp (7P).

SEE ALSO add_drv (1M), rem_drv (1M), intro (3), ioctl (2), socket (3SOCKET),
driver.conf (4), arp (7P), icmp (7P), inet (7P), ip (7P), mtio (7I), st (7D),
streamio (7I), tcp (7P), udp (7P)

Solaris Transition Guide

TCP/IP and Data Communications Administration Guide

20 SunOS 5.8 Last modified 29 Sep 1994

Device and Network Interfaces Intro(7)

STREAMS Programming Guide

Writing Device Drivers

Last modified 29 Sep 1994 SunOS 5.8 21

adp(7D) Devices

NAME adp – low-level module for controllers based on Adaptec AIC-7870P and
AIC-7880P SCSI chips

DESCRIPTION The adp module provides low-level interface routines between the common
disk/tape I/O system and SCSI (Small Computer System Interface) controllers
based on the Adaptec AIC-7870P and AIC-7880P SCSI chips. These controllers
include the Adaptec 2940, 2940W, 2940U, 2940UW, 3940, and 3940W, as well as
motherboards with embedded AIC-7870P and AIC-7880P SCSI chips.

The complete list of support devices is (see NOTES):

AIC-7560 AIC-7870 AIC-7881

AIC-7850 AIC-7871 AIC-7882

AIC-7855 AIC-7872 AIC-7884

AIC-7860 AIC-7874 AIC-7885

AIC-7861 AIC-7875

AIC-7862 AIC-7880

The adp module can be configured for disk and streaming tape support for one
or more host adapter boards, each of which must be the sole initiator on a
SCSI bus. Auto-configuration code determines if the adapter is present at the
configured address and what types of devices are attached to the adapter.

FILES /kernel/drv/adp.conf configuration file for the adp driver; there are no
user-configurable options in this file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5)

Hardware Compatibility List for Solaris 2.6 (Intel Platform Edition)

Solaris 8 (Intel Platform Edition) Installation Guide

NOTES Throughout the release, support of additional devices may be added. See the
Hardware Compatibility List for Solaris 2.6 (Intel Platform Edition) in the
Solaris 8 (Intel Platform Edition) Installation Guide for additional information.

The adp driver supports Logical Unit Number (“LUN”) values of 0 through
15, this is beyond the standard SCSI-2 requirements which call for support of
LUNs 0 through 7.

22 SunOS 5.8 Last modified 17 Apr 1998

Devices afb(7d)

NAME afb – Elite3D graphics accelerator driver

DESCRIPTION The afb driver is the device driver for the Sun Elite3D graphics accelerators. The
afbdaemon process loads the afb microcode at system startup time and during
the resume sequence of a suspend-resume cycle.

FILES /dev/fbs/afb n
Device special file

/usr/lib/afb.ucode
afb microcode

/usr/sbin/afbdaemon
afb microcode loader

SEE ALSO afbconfig (1M)

Last modified 27 Aug 1999 SunOS 5.8 23

arp(7P) Protocols

NAME arp, ARP – Address Resolution Protocol

SYNOPSIS #include <sys/fcntl.h>

#include <sys/socket.h>

#include <net/if_arp.h>

#include <netinet/in.h>

s = socket(AF_INET, SOCK_DGRAM, 0);

d = open ("/dev/arp", oflag);

DESCRIPTION ARP is a protocol used to map dynamically between Internet Protocol (IP) and
10Mb/s Ethernet addresses. It is used by all the 10Mb/s Ethernet datalink
providers (interface drivers) and it can be used by other datalink providers that
support broadcast, such as FDDI and Token Ring. The only network layer
supported in this implementation is the Internet Protocol, although ARP is
not specific to that protocol.

ARP caches IP-to-Ethernet address mappings. When an interface requests a
mapping for an address not in the cache, ARP queues the message that requires
the mapping and broadcasts a message on the associated network requesting
the address mapping. If a response is provided, ARP caches the new mapping
and transmits any pending message. ARP will queue at most four packets
while waiting for a response to a mapping request; it keeps only the four most
recently transmitted packets.

APPLICATION
PROGRAMMING

INTERFACE

The STREAMS device /dev/arp is not a Transport Level Interface ("TLI) "
transport provider and may not be used with the TLI interface.

To facilitate communications with systems that do not use ARP, ioctl()
requests are provided to enter and delete entries in the IP-to-Ethernet tables.

#include <sys/sockio.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
struct arpreq arpreq;
ioctl(s, SIOCSARP, (caddr_t)&arpreq);
ioctl(s, SIOCGARP, (caddr_t)&arpreq);
ioctl(s, SIOCDARP, (caddr_t)&arpreq);

Each ioctl() request takes the same structure as an argument. SIOCSARPsets
an ARP entry, SIOCGARPgets an ARP entry, and SIOCDARPdeletes an ARP
entry. These ioctl() requests may be applied to any Internet family socket
descriptor s , or to a descriptor for the ARP device, but only by the privileged
user.

24 SunOS 5.8 Last modified 23 Aug 1994

Protocols arp(7P)

The arpreq structure contains:

/*
* ARP ioctl request
*/
struct arpreq {

struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */
int arp_flags; /* flags */

};
/* arp_flags field values */

#define ATF_COM 0x2 /* completed entry (arp_ha valid) */
#define ATF_PERM 0x4 /* permanent entry */
#define ATF_PUBL 0x8 /* publish (respond for other host) */
#define ATF_USETRAILERS 0x10 /* send trailer packets to host */

The address family for the arp_pa sockaddr must be AF_INET ; for the
arp_ha sockaddr , it must be AF_UNSPEC. The only flag bits that may
be written are ATF_PUBLand ATF_USETRAILERS. ATF_PERMmakes the
entry permanent if the ioctl() request succeeds. The peculiar nature of the
ARP tables may cause the ioctl() request to fail if too many permanent IP
addresses hash to the same slot. ATF_PUBLspecifies that the ARP code should
respond to ARP requests for the indicated host coming from other machines.
This allows a host to act as an "ARP server", which may be useful in convincing
an ARP -only machine to talk to a non-ARP machine.

ARP is also used to negotiate the use of trailer IP encapsulations. Trailers are an
alternate encapsulation used to allow efficient packet alignment for large packets
despite variable-sized headers. Hosts that wish to receive trailer encapsulations
so indicate by sending gratuitous ARP translation replies along with replies to IP
requests; trailer encapsulations are also sent in reply to IP translation replies. The
negotiation is thus fully symmetrical, in that either host or both may request
trailers. The ATF_USETRAILERSflag records the receipt of such a reply and
enables the transmission of trailer packets to that host.

ARP watches passively for hosts impersonating the local host (that is, a host
which responds to an ARP mapping request for the local host’s address).

SEE ALSO arp (1M) , ifconfig (1M) , if_tcp (7P) , inet (7P)

Leffler, Sam, and Michael Karels, Trailer Encapsulations , RFC 893, Network
Information Center, SRI International, Menlo Park, California, April 1984.

Plummer, Dave, An Ethernet Address Resolution Protocol -or- Converting
Network Protocol Addresses to 48.bit Ethernet Addresses for Transmission on
Ethernet Hardware , RFC 826, Network Information Center, SRI International,
Menlo Park, California, November 1982.

DIAGNOSTICS IP: Hardware address ’%x:%x:%x:%x:%x:%x’

Last modified 23 Aug 1994 SunOS 5.8 25

arp(7P) Protocols

trying to be our address ’%d.%d.%d.%d’!
Duplicate IP address. ARP has discovered another host on the local network
which responds to mapping requests for the Internet address of this system.

IP: Proxy ARP problem? Hardware address ’%x:%x:%x:%x:%x:%x’
thinks it is ’%d.%d.%d.%d’

This message will appear if arp (1M) has been used to create a published
entry, and some other host on the local network responds to mapping
requests for the published ARP entry.

26 SunOS 5.8 Last modified 23 Aug 1994

Devices asy(7D)

NAME asy – asynchronous serial port driver

SYNOPSIS #include <fcntl.h>

#include <sys/termios.h>

open("/dev/ttynn", mode);

open("/dev/ttydn", mode);

open("/dev/cuan", mode);

DESCRIPTION The asy module is a loadable STREAMS driver that provides basic support for
the standard UARTS that use Intel-8250, National Semiconductor-16450 and
16550 hardware, in addition to basic asynchronous communication support.
The asy module supports those termio (7I) device control functions specified
by flags in the c_cflag word of the termios structure, and by the IGNBRK,
IGNPAR, PARMRK,or INPCK flags in the c_iflag word of the termios
structure. All other termio (7I) functions must be performed by STREAMS
modules pushed atop the driver. When a device is opened, the ldterm (7M)
and ttcompat (7M) STREAMS modules are automatically pushed on top of the
stream, providing the standard termio (7I) interface.

The character-special devices /dev/tty00 and /dev/tty01 are used to access
the two standard serial ports (COM1 and COM2) on an x86–based system. The
asy module supports up to four serial ports, including the standard ports.
The tty nn devices have minor device numbers in the range 00-03, and may
be assigned names of the form /dev/ttyd n, where n denotes the line to be
accessed. These device names are typically used to provide a logical access point
for a dial-in line that is used with a modem.

To allow a single tty line to be connected to a modem and used for incoming
and outgoing calls, a special feature is available that is controlled by the minor
device number. By accessing character-special devices with names of the form
/dev/cua n, it is possible to open a port without the Carrier Detect signal
being asserted, either through hardware or an equivalent software mechanism.
These devices are commonly known as dial-out lines.

APPLICATION
PROGRAMMING

INTERFACE

Once a /dev/cua n line is opened, the corresponding tty, or ttyd line cannot
be opened until the /dev/cua n line is closed. A blocking open will wait until
the /dev/cua n line is closed (which will drop Data Terminal Ready , after
which Carrier Detect will usually drop as well) and carrier is detected
again. A non-blocking open will return an error. If the /dev/ttyd n line has
been opened successfully (usually only when carrier is recognized on the
modem), the corresponding /dev/cua n line cannot be opened. This allows
a modem to be attached to a device, (for example, /dev/ttyd0 , which is
renamed from /dev/tty00) and used for dial-in (by enabling the line for

Last modified 14 May 1999 SunOS 5.8 27

asy(7D) Devices

login in /etc/inittab) or dial-out (by tip (1) or uucp (1C)) as /dev/cua0
when no one is logged in on the line.

IOCTLS The standard set of termio ioctl() calls are supported by asy .

Breaks can be generated by the TCSBRK, TIOCSBRK,and TIOCCBRK ioctl()
calls.

The input and output line speeds may be set to any speed that is supported by
termio . The speeds cannot be set independently; for example, when the output
speed is set, the input speed is automatically set to the same speed.

When the asy module is used to service the serial console port, it supports a
BREAK condition that allows the system to enter the debugger or the monitor.
The BREAK condition is generated by hardware and it is usually enabled by
default.

A BREAK condition originating from erroneous electrical signals cannot be
distinguished from one deliberately sent by remote DCE. The Alternate Break
sequence can be used as a remedy against this. Due to a risk of incorrect
sequence interpretation, binary protocols such as PPP, SLIP, and others should
not be run over the serial console port when Alternate Break sequence is in
effect. By default, the Alternate Break sequence is a three character sequence:
carriage return, tilde and control-B (CR ~ CTRL-B), but may be changed by the
driver. For more information on breaking (entering the debugger or monitor) ,
see kbd (1) and kb (7M)

ERRORS An open() will fail under the following conditions:
ENXIO The unit being opened does not exist.

EBUSY The dial-out device is being opened while the dial-in device
is already open, or the dial-in device is being opened with a
no-delay open and the dial-out device is already open.

EBUSY The unit has been marked as exclusive-use by another
process with a TIOCEXCL ioctl() call.

EINTR The open was interrupted by the delivery of a signal.

FILES /dev/tty[00-03]
hardwired tty lines

/dev/ttyd[0-3]
dial-in tty lines

/dev/cua[0-3]
dial-out tty lines

28 SunOS 5.8 Last modified 14 May 1999

Devices asy(7D)

/platform/i86pc/kernel/drv/asy.conf
asy configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO tip (1), kbd (1), uucp (1C), ioctl (2), open (2), termios (3C), attributes (5),
ldterm (7M), ttcompat (7M), kb (7M) termio (7I)

DIAGNOSTICS asy n : silo overflow. The hardware overrun occurred
before the input character could
be serviced.

asy n : ring buffer overflow. The driver’s character input
ring buffer overflowed before it
could be serviced.

Last modified 14 May 1999 SunOS 5.8 29

ata(7D) Devices

NAME ata – AT attachment disk driver

SYNOPSIS ata@1,ioaddr

DESCRIPTION The ata driver supports disk and CD-ROM interfaces conforming to the
AT Attachment specification including IDE interfaces. It excludes the MFM,
RLL, ST506, and ST412 interfaces. Support is provided for CD_ROM drives
that conform to the Small Form Factor (SFF) ATA Packet Interface (ATAPI)
specification: SFF-8020 revision 1.2.

CONFIGURATION The driver initializes itself in accordance with the information found in the
configuration file ata.conf (see below). The only user configurable items
in this file are:
drive0_block_factor
drive1_block_factor ATA controllers support some amount of

buffering (blocking). The purpose is to interrupt
the host when an entire buffer full of data has
been read or written instead of using an interrupt
for each sector. This reduces interrupt overhead
and significantly increases throughput. The
driver interrogates the controller to find the
buffer size. Some controllers hang when buffering
is used, so the values in the configuration file
are used by the driver to reduce the effect of
buffering (blocking). The values presented may
be chosen from 0x1 , 0x2 , 0x4 , 0x8 and 0x10 .

The values as shipped are set to 0x1 , and they
can be tuned to increase performance.

If your controller hangs when attempting
to use higher block factors, you may be
unable to reboot the system. For IA based
systems, it is recommended that the tuning
be carried out using a duplicate of the
/platform/i86pc/kernel directory subtree.
This will ensure that a bootable kernel subtree
exists in the event of a failed test.

max_transfer This value controls the size of individual requests
for consecutive disk sectors. The value may range
from 0x1 to 0x100 . Higher values yield higher
throughput. The system is shipped with a value
of 0x100 , which probably should not be changed.

30 SunOS 5.8 Last modified 18 Apr 1997

Devices ata(7D)

EXAMPLES EXAMPLE 1 Sample ata Configuration File
for higher performance - set block factor to 16

drive0_block_factor=0x1 drive1_block_factor=0x1
max_transfer=0x100
flow_control="dmult" queue="qsort" disk="dadk" ;

IA FILES /platform/i86pc/kernel/drv/ata The device file.

/platform/i86pc/kernel/drv/ata.conf The configuration file.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5), cmdk(7D)

Last modified 18 Apr 1997 SunOS 5.8 31

audio(7I) Ioctl Requests

NAME audio – generic audio device interface

SYNOPSIS #include <sys/audio.h>

OVERVIEW An audio device is used to play and/or record a stream of audio data. Since a
specific audio device may not support all of the functionality described below,
refer to the device-specific manual pages for a complete description of each
hardware device. An application can use the AUDIO_GETDEV ioctl (2) to
determine the current audio hardware associated with /dev/audio .

AUDIO FORMATS Digital audio data represents a quantized approximation of an analog audio
signal waveform. In the simplest case, these quantized numbers represent the
amplitude of the input waveform at particular sampling intervals. In order to
achieve the best approximation of an input signal, the highest possible sampling
frequency and precision should be used. However, increased accuracy comes
at a cost of increased data storage requirements. For instance, one minute of
monaural audio recorded in mu-Law format (as in the Greek letter mu) at
8 KHz requires nearly 0.5 megabytes of storage, while the standard Compact
Disc audio format (stereo 16-bit linear PCM data sampled at 44.1 KHz) requires
approximately 10 megabytes per minute.

Audio data may be represented in several different formats. An audio device’s
current audio data format can be determined by using the AUDIO_GETINFO
ioctl described below.

An audio data format is characterized in the audio driver by four parameters:
Sample Rate, Encoding, Precision, and Channels. Refer to the device-specific
manual pages for a list of the audio formats that each device supports. In
addition to the formats that the audio device supports directly, other formats
provide higher data compression. Applications may convert audio data to and
from these formats when recording or playing.

Sample Rate Sample rate is a number that represents the sampling frequency (in samples per
second) of the audio data.

Encodings An encoding parameter specifies the audio data representation. mu-Law
encoding (pronounced mew-Law, as in the Greek letter mu) corresponds to
CCITT G.711, and is the standard for voice data used by telephone companies in
the United States, Canada, and Japan. A-Law encoding is also part of G.711,
and is the standard encoding for telephony elsewhere in the world. A-Law and
mu-Law audio data are sampled at a rate of 8000 samples per second with 12-bit
precision, with the data compressed to 8-bit samples. The resulting audio data
quality is equivalent to that of standard analog telephone service.

Linear Pulse Code Modulation (PCM) is an uncompressed audio format in which
sample values are directly proportional to audio signal voltages. Each sample is
a 2’s complement number that represents a positive or negative amplitude.

32 SunOS 5.8 Last modified 21 January 1999

Ioctl Requests audio(7I)

Precision Precision indicates the number of bits used to store each audio sample. For
instance, mu-Law and A-Law data are stored with 8-bit precision. PCM data
may be stored at various precisions, though 16-bit PCM is most common.

Channels Multiple channels of audio may be interleaved at sample boundaries. A
sample frame consists of a single sample from each active channel. For
example, a sample frame of stereo 16-bit PCM data consists of 2 16-bit samples,
corresponding to the left and right channel data.

DESCRIPTION The device /dev/audio is a device driver that dispatches audio requests to the
appropriate underlying audio device driver. The audio driver is implemented
as a STREAMS driver. In order to record audio input, applications open (2)
the /dev/audio device and read data from it using the read (2) system call.
Similarly, sound data is queued to the audio output port by using the write (2)
system call. Device configuration is performed using the ioctl (2) interface.

Alternatively, opening /dev/audio may open a mixing audio driver that
provides a super set of this audio interface. The audio mixer removes the
exclusive resource restriction, allowing multiple processes to play and record
audio at the same time. See mixer (7I) and audio_support (7I) for more
information.

Opening the Audio
Device

The audio device is treated as an exclusive resource – only one process can open
the device at a time. However, two processes may simultaneously access the
device: if one opens it read-only, then another may open it write-only and
the AUDIO_DUBLEX bit is set in the hw_features of the audio_info structure,
see below for details.

When a process cannot open /dev/audio because the requested access mode is
busy:

� if either the O_NDELAYor O_NONBLOCKflag are set in the open() oflag
argument, then –1 is immediately returned, with errno set to EBUSY.

� if neither the O_NDELAYnor the O_NONBLOCKflag are set, then open()
hangs until the device is available or a signal is delivered to the process,
in which case a –1 is returned with errno set to EINTR. This allows a
process to block in the open call, while waiting for the audio device to
become available.

Upon the initial open() of the audio device, the driver will reset the data format
of the device to the default state of 8-bit, 8Khz, mono mu-Law data. If the device
is already open and a different audio format has been set, this will not be possible.
Audio applications should explicitly set the encoding characteristics to match
the audio data requirements, rather than depend on the default configuration.

Since the audio device grants exclusive read or write access to a single process
at a time, long-lived audio applications may choose to close the device when
they enter an idle state and reopen it when required. The play.waiting and

Last modified 21 January 1999 SunOS 5.8 33

audio(7I) Ioctl Requests

record.waiting flags in the audio information structure (see below) provide an
indication that another process has requested access to the device. For instance, a
background audio output process may choose to relinquish the audio device
whenever another process requests write access.

Recording Audio
Data

The read() system call copies data from the system buffers to the application.
Ordinarily, read() blocks until the user buffer is filled. The I_NREAD ioctl
(see streamio (7I)) may be used to determine the amount of data that may be
read without blocking. The device may alternatively be set to a non-blocking
mode, in which case read() completes immediately, but may return fewer bytes
than requested. Refer to the read (2) manual page for a complete description
of this behavior.

When the audio device is opened with read access, the device driver immediately
starts buffering audio input data. Since this consumes system resources,
processes that do not record audio data should open the device write-only
(O_WRONLY).

The transfer of input data to STREAMS buffers may be paused (or resumed)
by using the AUDIO_SETINFO ioctl to set (or clear) the record.pause flag in
the audio information structure (see below). All unread input data in the
STREAMS queue may be discarded by using the I_FLUSH STREAMS ioctl
(see streamio (7I)). When changing record parameters, the input stream should
be paused and flushed before the change, and resumed afterward. Otherwise,
subsequent reads may return samples in the old format followed by samples in
the new format. This is particularly important when new parameters result in a
changed sample size.

Input data can accumulate in STREAMS buffers very quickly. At a minimum, it
will accumulate at 8000 bytes per second for 8-bit, 8 KHz, mono, mu-Law
data. If the device is configured for 16-bit linear or higher sample rates, it will
accumulate even faster. If the application that consumes the data cannot keep up
with this data rate, the STREAMS queue may become full. When this occurs,
the record.error flag is set in the audio information structure and input sampling
ceases until there is room in the input queue for additional data. In such cases,
the input data stream contains a discontinuity. For this reason, audio recording
applications should open the audio device when they are prepared to begin
reading data, rather than at the start of extensive initialization.

Playing Audio Data The write() system call copies data from an applications buffer to the
STREAMS output queue. Ordinarily, write() blocks until the entire user buffer
is transferred. The device may alternatively be set to a non-blocking mode, in
which case write() completes immediately, but may have transferred fewer
bytes than requested (see write (2)).

34 SunOS 5.8 Last modified 21 January 1999

Ioctl Requests audio(7I)

Although write() returns when the data is successfully queued, the actual
completion of audio output may take considerably longer. The AUDIO_DRAIN
ioctl may be issued to allow an application to block until all of the queued
output data has been played. Alternatively, a process may request asynchronous
notification of output completion by writing a zero-length buffer (end-of-file
record) to the output stream. When such a buffer has been processed, the play.eof
flag in the audio information structure (see below) is incremented.

The final close (2) of the file descriptor hangs until audio output has drained.
If a signal interrupts the close() , or if the process exits without closing the
device, any remaining data queued for audio output is flushed and the device is
closed immediately.

The conversion of output data may be paused (or resumed) by using the
AUDIO_SETINFO ioctl to set (or clear) the play.pause flag in the audio
information structure. Queued output data may be discarded by using the
I_FLUSH STREAMS ioctl .

Output data will be played from the STREAMS buffers. or A-Law data (faster
for 16-bit linear data or higher sampling rates). If the output queue becomes
empty, the play.error flag is set in the audio information structure and output
is stopped until additional data is written. If an application attempts to write
a number of bytes that is not a multiple of the current sample frame size, an
error will be generated and the device will need to be closed before any future
writes will succeed.

Asynchronous I/O The I_SETSIG STREAMS ioctl enables asynchronous notification, through
the SIGPOLL signal, of input and output ready conditions. The O_NONBLOCK
flag may be set using the F_SETFL fcntl (2) to enable non-blocking read()
and write() requests. This is normally sufficient for applications to maintain
an audio stream in the background.

Audio Control
Pseudo-Device

It is sometimes convenient to have an application, such as a volume control
panel, modify certain characteristics of the audio device while it is being used by
an unrelated process. The /dev/audioctl pseudo-device is provided for this
purpose. Any number of processes may open /dev/audioctl simultaneously.
However, read() and write() system calls are ignored by /dev/audioctl .
The AUDIO_GETINFOand AUDIO_SETINFO ioctl commands may be issued to
/dev/audioctl to determine the status or alter the behavior of /dev/audio .
Note: In general, the audio control device name is constructed by appending the
letters "ctl" to the path name of the audio device.

Audio Status Change
Notification

Applications that open the audio control pseudo-device may request
asynchronous notification of changes in the state of the audio device by setting
the S_MSGflag in an I_SETSIG STREAMS ioctl . Such processes receive a
SIGPOLL signal when any of the following events occur:

Last modified 21 January 1999 SunOS 5.8 35

audio(7I) Ioctl Requests

� An AUDIO_SETINFO ioctl has altered the device state.

� An input overflow or output underflow has occurred.

� An end-of-file record (zero-length buffer) has been processed on output.

� An open() or close() of /dev/audio has altered the device state.

� An external event (such as speakerbox volume control) has altered the
device state.

IOCTLS
Audio Information

Structure
The state of the audio device may be polled or modified using the
AUDIO_GETINFOand AUDIO_SETINFO ioctl commands. These commands
operate on the audio_info structure as defined, in <sys/audioio.h> , as
follows:

/* This structure contains state information for audio device
IO streams */

struct audio_prinfo {
/* The following values describe the audio data encoding */
uint_t sample_rate; /* samples per second */
uint_t channels; /* number of interleaved channels */
uint_t precision; /* number of bits per sample */
uint_t encoding; /* data encoding method */

/* The following values control audio device configuration */
uint_t gain; /* volume level */
uint_t port; /* selected I/O port */
uint_t buffer_size; /* I/O buffer size */

/* The following values describe the current device state */
uint_t samples; /* number of samples converted */
uint_t eof; /* End Of File counter (play only) */
uchar_t pause; /* non-zero if paused, zero to resume */
uchar_t error; /* non-zero if overflow/underflow */
uchar_t waiting; /* non-zero if a process wants access */
uchar_t balance; /* stereo channel balance */

/* The following values are read-only device state information */
uchar_t open; /* non-zero if open access granted */
uchar_t active; /* non-zero if I/O active */
uint_t avail_ports; /* available I/O ports */
uint_t mod_ports; /* modifyable I/O ports */

} audio_prinfo_t;
/* This structure is used in AUDIO_GETINFO and AUDIO_SETINFO ioctl

commands */
typedef struct audio_info {

audio_prinfo_t record; /* input status information */
audio_prinfo_t play; /* output status information */
uint_t monitor_gain; /* input to output mix */
uchar_t output_muted; /* non-zero if output muted */
uint_t hw_features; /* supported H/W features */
uint_t sw_features; /* supported S/W features */
uint_t sw_features_enabled; /* supported S/W features enabled */

} audio_info_t;
/* Audio encoding types */
#define AUDIO_ENCODING_ULAW (1) /* u-Law encoding */

36 SunOS 5.8 Last modified 21 January 1999

Ioctl Requests audio(7I)

#define AUDIO_ENCODING_ALAW (2) /* A-Law encoding */
#define AUDIO_ENCODING_LINEAR (3) /* Linear PCM encoding */
/* These ranges apply to record, play, and monitor gain values */
#define AUDIO_MIN_GAIN (0) /* minimum gain value */
#define AUDIO_MAX_GAIN (255) /* maximum gain value */
/* These values apply to the balance field to adjust channel gain values */
#define AUDIO_LEFT_BALANCE (0) /* left channel only */
#define AUDIO_MID_BALANCE (32) /* equal left/right balance */
#define AUDIO_RIGHT_BALANCE (64) /* right channel only */
/* Define some convenient audio port names (for port and avail_ports) */
/* output ports (several might be enabled at once) */
#define AUDIO_SPEAKER (0x01) /* output to built-in speaker */
#define AUDIO_HEADPHONE (0x02) /* output to headphone jack */
#define AUDIO_LINE_OUT (0x04) /* output to line out */
#define AUDIO_AUX1_OUT (0x08) /* output to aux1 out */
#define AUDIO_AUX2_OUT (0x10) /* output to aux2 out */
#define AUDIO_SPDIF_OUT (0x20) /* output to SPDIF port */
/* input ports (usually only one may be enabled at a time) */
#define AUDIO_MICROPHONE (0x01) /* input from microphone */
#define AUDIO_LINE_IN (0x02) /* input from line in */
#define AUDIO_CD (0x04) /* input from on-board CD inputs */
#define AUDIO_AUX1_IN (0x08) /* input from aux1 in */
#define AUDIO_AUX2_IN (0x10) /* input from aux2 in */
#define AUDIO_SPDIF_IN (0x20) /* input from SPDIF port */

#define MAX_AUDIO_DEV_LEN (16)

/* These defines are for hardware features */
#define AUDIO_DUPLEX (0x00000001) /* simult. play & cap. supported */

/* These defines are for software features */
#define AUDIO_MIXER (0x00000001) /* audio mixer audio pers. mod. */
/* Parameter for the AUDIO_GETDEV ioctl */
typedef struct audio_device {

char name[MAX_AUDIO_DEV_LEN];
char version[MAX_AUDIO_DEV_LEN];
char config[MAX_AUDIO_DEV_LEN];

} audio_device_t;

The play.gain and record.gain fields specify the output and input volume levels. A
value of AUDIO_MAX_GAINindicates maximum volume. Audio output may
also be temporarily muted by setting a non-zero value in the output_muted field.
Clearing this field restores audio output to the normal state. Most audio devices
allow input data to be monitored by mixing audio input onto the output channel.
The monitor_gain field controls the level of this feedback path.

The play.port field controls the output path for the audio device. It can be set
to either AUDIO_SPEAKER(built-in speaker), AUDIO_HEADPHONE(headphone
jack), AUDIO_LINE_OUT(line-out port), AUDIO_AUX1_OUT(auxilary1 out),
or AUDIO_AUX2_OUT(auxilary2 out). For some devices, it may be set to a
combination of these ports. The play.avail_ports field returns the set of output

Last modified 21 January 1999 SunOS 5.8 37

audio(7I) Ioctl Requests

ports that are currently accessible. The play.mod_ports field returns the set
of output ports that may be turned on and off. If a port is missing from
play.mod_ports then that port is assumed to always be on.

The input ports can be either AUDIO_MICROPHONE(microphone
jack), AUDIO_LINE_IN (line-out port), AUDIO_CD(internal CD-ROM),
AUDIO_AUX1_IN (auxilary1 in), or AUDIO_AUX2_IN (auxilary2 in). The
record.avail_ports field returns the set of input ports that are currently accessible.
record.mod_ports field returns the set of input ports that may be turned on and off.
If a port is missing from record.mod_ports then that port is assumed to always be
on. Input ports are considered to be mutually exclusive.

The play.balance and record.balance fields are used to control the volume between
the left and right channels when manipulating stereo data. When the value is set
between AUDIO_LEFT_BALANCEand AUDIO_MID_BALANCE, the right channel
volume will be reduced in proportion to the balance value. Conversely, when
balance is set between AUDIO_MID_BALANCEand AUDIO_RIGHT_BALANCE, the
left channel will be proportionally reduced.

The play.pause and record.pause flags may be used to pause and resume the
transfer of data between the audio device and the STREAMS buffers. The
play.error and record.error flags indicate that data underflow or overflow has
occurred. The play.active and record.active flags indicate that data transfer is
currently active in the corresponding direction.

The play.open and record.open flags indicate that the device is currently open with
the corresponding access permission. The play.waiting and record.waiting flags
provide an indication that a process may be waiting to access the device. These
flags are set automatically when a process blocks on open() , though they may
also be set using the AUDIO_SETINFO ioctl command. They are cleared only
when a process relinquishes access by closing the device.

The play.samples and record.samples fields are initialized, at open() , to zero and
increment each time a data sample is copied to or from the associated STREAMS
queue. Some audio drivers may be limited to counting buffers of samples,
instead of single samples for the samples accounting. For this reason, applications
should not assume that the samples fields contain a perfectly accurate count. The
play.eof field increments whenever a zero-length output buffer is synchronously
processed. Applications may use this field to detect the completion of particular
segments of audio output.

The record.buffer_size field controls the amount of input data that is buffered in
the device driver during record operations. Applications that have particular
requirements for low latency should set the value appropriately. Note however
that smaller input buffer sizes may result in higher system overhead. The value
of this field is specified in bytes and drivers will constrain it to be a multiple of
the current sample frame size. Some drivers may place other requirements on

38 SunOS 5.8 Last modified 21 January 1999

Ioctl Requests audio(7I)

the value of this field. Refer to the audio device-specific manual page for more
details. If an application changes the format of the audio device and does not
modify the record.buffer_size field, the device driver may use a default value to
compensate for the new data rate. Therefore, if an application is going to modify
this field, it should modify it during or after the format change itself, not before.
When changing the record.buffer_size parameters, the input stream should be
paused and flushed before the change, and resumed afterward. Otherwise,
subsequent reads may return samples in the old format followed by samples in
the new format. This is particularly important when new parameters result in a
changed sample size. If you change the record.buffer_size for the first packet, this
protocol must be followed or the first buffer will be the default buffer size for the
device, followed by packets of the requested change size.

The record.buffer_size field may be modified only on the /dev/audio device by
processes that have it opened for reading.

The play.buffer_size field is currently not supported.

The audio data format is indicated by the sample_rate, channels, precision, and
encoding fields. The values of these fields correspond to the descriptions in the
AUDIO FORMATSsection above. Refer to the audio device-specific manual pages
for a list of supported data format combinations.

The data format fields may be modified only on the /dev/audio device. The
audio hardware will often constrain the input and output data formats to be
identical. If this is the case, then the data format may not be changed if multiple
processes have opened the audio device.

If the parameter changes requested by an AUDIO_SETINFO ioctl cannot
all be accommodated, ioctl() will return with errno set to EINVAL and no
changes will be made to the device state.

Streamio IOCTLS All of the streamio (7I) ioctl commands may be issued for the /dev/audio
device. Because the /dev/audioctl device has its own STREAMS queues,
most of these commands neither modify nor report the state of /dev/audio
if issued for the /dev/audioctl device. The I_SETSIG ioctl may be
issued for /dev/audioctl to enable the notification of audio status changes,
as described above.

Audio IOCTLS The audio device additionally supports the following ioctl commands:
AUDIO_DRAIN The argument is ignored. This command suspends the

calling process until the output STREAMS queue is empty,
or until a signal is delivered to the calling process. It may
not be issued for the /dev/audioctl device. An implicit
AUDIO_DRAIN is performed on the final close() of
/dev/audio .

Last modified 21 January 1999 SunOS 5.8 39

audio(7I) Ioctl Requests

AUDIO_GETDEV The argument is a pointer to an audio_device structure.
This command may be issued for either /dev/audio or
/dev/audioctl . The returned value in the name field
will be a string that will identify the current /dev/audio
hardware device, the value in version will be a string
indicating the current version of the hardware, and config
will be a device-specific string identifying the properties of
the audio stream associated with that file descriptor. Refer
to the audio device-specific manual pages to determine the
actual strings returned by the device driver.

AUDIO_GETINFOThe argument is a pointer to an audio_info structure.
This command may be issued for either /dev/audio or
/dev/audioctl . The current state of the /dev/audio
device is returned in the structure.

AUDIO_SETINFOThe argument is a pointer to an audio_info structure.
This command may be issued for either the /dev/audio
or the /dev/audioctl device with some restrictions. This
command configures the audio device according to the
structure supplied and overwrites the structure with the new
state of the device. Note: The play.samples, record.samples,
play.error, record.error, and play.eof fields are modified to
reflect the state of the device when the AUDIO_SETINFOwas
issued. This allows programs to automatically modify these
fields while retrieving the previous value.

Certain fields in the information structure, such as the pause flags are treated
as read-only when /dev/audio is not open with the corresponding access
permission. Other fields, such as the gain levels and encoding information, may
have a restricted set of acceptable values. Applications that attempt to modify
such fields should check the returned values to be sure that the corresponding
change took effect. The sample_rate, channels, precision, and encoding fields treated
as read-only for /dev/audioctl , so that applications can be guaranteed that
the existing audio format will stay in place until they relinquish the audio device.
AUDIO_SETINFOwill return EINVAL when the desired configuration is not
possible, or EBUSY when another process has control of the audio device.

Once set, the following values persist through subsequent open() and close()
calls of the device: play.gain, record.gain, play.balance, record.balance, output_muted,
monitor_gain, play.port, and record.port. However, an automatic device driver
unload will reset these parameters to their default values on the next load. All
other state is reset when the corresponding I/O stream of /dev/audio is closed.

The audio_info structure may be initialized through the use of the
AUDIO_INITINFO macro. This macro sets all fields in the structure to values

40 SunOS 5.8 Last modified 21 January 1999

Ioctl Requests audio(7I)

that are ignored by the AUDIO_SETINFOcommand. For instance, the following
code switches the output port from the built-in speaker to the headphone jack
without modifying any other audio parameters:

audio_info_t info;
AUDIO_INITINFO(&info);
info.play.port = AUDIO_HEADPHONE;
err = ioctl(audio_fd, AUDIO_SETINFO, &info);

This technique eliminates problems associated with using a sequence of
AUDIO_GETINFOfollowed by AUDIO_SETINFO.

ERRORS An open() will fail if:
EBUSY The requested play or record access is busy and either the

O_NDELAYor O_NONBLOCKflag was set in the open()
request.

EINTR The requested play or record access is busy and a signal
interrupted the open() request.

An ioctl() will fail if:
EINVAL The parameter changes requested in the AUDIO_SETINFO

ioctl are invalid or are not supported by the device.

EBUSY The parameter changes requested in the AUDIO_SETINFO
ioctl could not be made because another process has the
device open and is using a different format.

FILES The physical audio device names are system dependent and are rarely used by
programmers. The programmer should use the generic device names listed
below.
/dev/audio symbolic link to the system’s primary audio

device

/dev/audioctl symbolic link to the control device for
/dev/audio

/dev/sound/0 first audio device in the system

/dev/sound/0ctl audio control device for /dev/sound/0

/usr/demo/SOUND audio demonstration programs and other files

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture All

Last modified 21 January 1999 SunOS 5.8 41

audio(7I) Ioctl Requests

Availability SUNWcsu, SUNWaudd, SUNWauddx,
SUNWaudh

Stability Level Evolving

SEE ALSO close (2), fcntl (2), ioctl (2), open (2), poll (2), read (2), write (2),
audioamd (7D), audiocs (7D), dbri (7D), sbpro (7D), audio_support (7I)
mixer (7I) streamio (7I)

BUGS Due to a feature of the STREAMS implementation, programs that are terminated
or exit without closing the audio device may hang for a short period while
audio output drains. In general, programs that produce audio output should
catch the SIGINT signal and flush the output stream before exiting.

On LX machines running Solaris 2.3, catting a demo audio file to the audio
device /dev/audio does not work. Use the audioplay command on LX
machines instead of cat .

FUTURE
DIRECTIONS

Future audio drivers should use the mixer (7I) audio device to gain access to
these new features.

42 SunOS 5.8 Last modified 21 January 1999

Devices audioamd(7D)

NAME audioamd – telephone quality audio device

DESCRIPTION The audioamd device uses the AM79C30A Digital Subscriber Controller chip
to implement the audio device interface. This interface is described fully in
the audio (7I) manual page.

Applications that open /dev/audio may use the AUDIO_GETDEVioctl to
determine which audio device is being used. The audioamd driver will return
"SUNW,am79c30" in the name field of the audio_device structure. The version
field will contain "a" and the config field will be set to "onboard1" .

The AUDIO_SETINFO ioctl controls device configuration parameters. When
an application modifies the record.buffer_size field using the AUDIO_SETINFO
ioctl, the driver will constrain it to be greater than zero and less than or equal to
8000 bytes or one second of audio data. Applications are warned that setting this
field too low or too high may cause system performance problems and should
therefore set this field with caution.

Audio Data Formats The audioamd device supports the audio formats listed in the following table.
When the device is open for simultaneous play and record, the input and output
data formats must match.

Supported Audio Data Formats

Sample Rate Encoding Precision Channels

8000 Hz mu-law 8 1

8000 Hz A-law 8 1

Since audioamd supports only single-channel (monaural) audio, the play.balance
and record.balance fields of the audio_info structure are ignored.

Audio Ports The record.avail_ports and play.avail_ports fields of the audio_info structure
report the available input and output ports. The audioamd device supports
one input port, selected by setting the record.port field to AUDIO_MICROPHONE.
The play.port field may be set to either AUDIO_SPEAKERor AUDIO_HEADPHONE,
to direct audio output to the built-in speaker or headphone jack, respectively.
Note that AUDIO_SPEAKERcannot be enabled for systems that do not include a
built-in speaker.

Sample Granularity Since the audioamd device manipulates single samples of audio data, the
reported input and output sample counts will be very close to the actual sample
count. However, some other audio devices report sample counts that are
approximate, due to buffering constraints. Programs should, in general, not rely
on absolute accuracy of the sample count fields.

FILES /dev/audio
/dev/audioctl

Last modified 1 Jan 1997 SunOS 5.8 43

audioamd(7D) Devices

/dev/sound
/usr/demo/SOUND

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC: SPARCstation 1 and 2, IPC, IPX, SLC, ELC,
LC, and SPARCserver 6xx system

Desktop SPARCsystems include a built-in speaker for audio output. The audio
cable provides connectors for a microphone and external headset. The headset
output level is adequate to power most headphones, but may be too low for
some external speakers. Powered speakers or an external amplifier may be used.
SPARCserver 6xx systems do not have an internal speaker, but support an
external microphone and speaker connected through the audio cable.

The Sun Microphone is recommended for normal desktop audio recording.
It contains a battery that must be replaced after 210 hours of use. Other
microphones may be used, but a pre-amplifier circuit may be required to achieve
a sufficient input signal. Other audio sources may be recorded by connecting
one channel of the line output to the audio cable microphone input. If the input
signal is distorted, external attenuation may be required (audio sources may also
be connected from their headphone output with the volume turned down).

SEE ALSO ioctl (2), attributes (5), audio (7I), streamio (7I)

AMD data sheet for the AM79C30A Digital Subscriber Controller, Publication
number 09893.

44 SunOS 5.8 Last modified 1 Jan 1997

Devices audiocs(7D)

NAME audiocs – Crystal Semiconductor 4231 audio Interface

DESCRIPTION The audiocs devices uses the Crystal Semiconductor 4231 Codec to implement
the audio device interface.

APPLICATION
PROGRAM

INTERFACE

This interface is described in the mixer (7I) and audio (7I) man pages.

Driver Versions Applications that open /dev/audio may use the AUDIO_GETDEVioctl to
determine which audio device is being used. The audiocs driver will return the
string SUNW,CS4231in the name field of the audio_device structure. The
version field will contain a letter, defined below and the config field will contain
the string onboard1 .

Platform
Type

Version Line Head- Int. Line Mic CD-ROM

Out phone Spkr In

SS-4/5 a Y Y Y Y Y Y

Ultra-1/2 b Y Y Y Y Y N

Reserved c Y Y Y Y Y N

PowerPC d Y Y Y Y Y Y

Reserved e Y Y Y N Y Y

Ultra-450 f Y Y Y Y Y N

Ultra-30/60 g Y Y Y Y Y N

Ultra-5/10 h Y Y Y Y Y Y

The audiocs device provides support for line out, headphone, internal
speaker, line in, microphone, and on some platforms, internal CDROM audio
in. The AUDIO_GETINFOioctl should be used to get the play.avail_ports and
record.avail_ports fields to see which ports are available. The play.mod_ports and
record.mod_ports fields will show which ports may be manipulated.

Audio Mixer Mode The configuration file /usr/kernel/drv/audiocs.conf or
/usr/kernel/drv/sparcv9/audiocs.conf is used to configure the
audiocs driver so that the audio mixer is enable or disabled. See the mixer (7I)
manual page for details. The audio mixer’s mode may be changed at any time
using the mixerctl command.

Audio Data Formats The audiocs device supports the audio formats listed in the following table.
When the audio mixer is in compatibility mode and the device is open
for simultaneous play and record, the input and output data formats must
match. Some sample rates are supported in compatibility mode that aren’t

Last modified 21 January 1999 SunOS 5.8 45

audiocs(7D) Devices

supported in mixer mode . This is due to the computational overhead for
sample rate conversion being too high.

Supported Audio Data Formats

Sample Rate Encoding Precision Channels Mode

5510 Hz mu-Law or
A-Law

8 1 or 2 C only

6620 Hz mu-Law or
A-Law

8 1 or 2 C only

8000 Hz mu-Law or
A-Law

8 1 or 2 M and C

9600 Hz mu-Law or
A-Law

8 1 or 2 M and C

11025 Hz mu-Law or
A-Law

8 1 or 2 M and C

16000 Hz mu-Law or
A-Law

8 1 or 2 M and C

18900 Hz mu-Law or
A-Law

8 1 or 2 M and C

22050 Hz mu-Law or
A-Law

8 1 or 2 M and C

27420 Hz mu-Law or
A-Law

8 1 or 2 C only

32000 Hz mu-Law or
A-Law

8 1 or 2 M and C

33075 Hz mu-Law or
A-Law

8 1 or 2 M and C

37800 Hz mu-Law or
A-Law

8 1 or 2 M and C

44100 Hz mu-Law or
A-Law

8 1 or 2 M and C

48000 Hz mu-Law or
A-Law

8 1 or 2 M and C

5510 Hz linear 16 1 or 2 C only

6620 Hz linear 16 1 or 2 C only

8000 Hz linear 16 1 or 2 M and C

9600 Hz linear 16 1 or 2 M and C

46 SunOS 5.8 Last modified 21 January 1999

Devices audiocs(7D)

11025 Hz linear 16 1 or 2 M and C

16000 Hz linear 16 1 or 2 M and C

18900 Hz linear 16 1 or 2 M and C

22050 Hz linear 16 1 or 2 M and C

27420 Hz linear 16 1 or 2 C only

32000 Hz linear 16 1 or 2 M and C

33075 Hz linear 16 1 or 2 M and C

37800 Hz linear 16 1 or 2 M and C

44100 Hz linear 16 1 or 2 M and C

48000 Hz linear 16 1 or 2 M and C

Sample Granularity Since the audiocs device manipulates buffers of audio data, at any given time
the reported input and output sample counts will vary from the actual sample
count by no more than the size of the buffers it is transferring. Programs should,
in general, not rely on absolute accuracy of the play.samples and record.samples
fields of the audio_info structure.

Interrupt Rate The driver determines how often play and record interrupts should happen. For
playing audio this determines how often and how much audio is requested from
the audio mixer. The impact on recording is minimal, however, if a very small
read buffer size is set then the interrupt rate should be increased. The play and
record interrupt rates are tuneable in the audiocs.conf file.

Audio Status Change
Notification

As described in audio (7I), it is possible to request asynchronous notification of
changes in the state of an audio device.

ERRORS audiocs errors are defined in the audio (7I), man pages.

FILES /dev/audio
Symlink to the system’s primary audio device, not necessarily an audiocs
audio device.

/dev/audioctl
Control device for the above audio device.

/dev/sound/0
Represents the first audio device on the system and is not necessarily an
audiocs audio device.

/dev/sound/0ctl
Audio control for above device.

/usr/demo/SOUND

Last modified 21 January 1999 SunOS 5.8 47

audiocs(7D) Devices

Audio demonstration programs and other files.

/usr/kernel/drv/audiocs
audiocs driver.

/usr/kernel/drv/audiocs.conf
audiocs driver configuration file.

/usr/kernel/drv/sparcv9/audiocs
audiocs driver, 64-bit.

/usr/kernel/drv/sparcv9/audiocs.conf
audiocs driver configuration file.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC, PowerPC on Solaris 2.5.1 only

Availability SUNWaudd, SUNWauddx

Stability Level Evolving

SEE ALSO mixerctl(1), ioctl (2), attributes (5), audio (7I), mixer (7I),
streamio (7I)

Crystal Semiconductor, Inc., data sheet for the CS4231

48 SunOS 5.8 Last modified 21 January 1999

Ioctl Requests audio_support(7I)

NAME audio_support – audio driver support routines and interface

SYNOPSIS #include <sys/audio.h>

DESCRIPTION The audio support driver supports audio drivers that use the new audio
driver audio driver architecture. It also provides a limited number of ioctl (2)s
for application programmers.

DATA
STRUCTURES

The following data structures are defined to manage the different audio devices
types and their channels.

Device Types The following enumeration lists a number of generic device types.

typedef enum {
UNDEFINED, AUDIO, AUDIOCTL, USER1, USER2, USER3

} audio_device_type_e;

At this time, Solaris implements only the AUDIOand AUDIOCTLaudio device
types, using the audio mixer, see mixer (7I) for details. The USER1, USER2, and
USER3device types allow third parties to write audio personality modules of
their own.

Channel Structure This structure is used to get and set state information on individual channels.

struct audio_channel {
pid_t pid; /* application’s porcess ID */
uint_t ch_number; /* channel this device is using */
audio_device_type_e dev_type; /* the device type */
uint_t info_size; /* size of the channel’s info structure */
void *info; /* the channel’s state information */

} audio_channel_t;

The ch_number must be set to the specific channel number to get or set. When
the ioctl() returns the pid will contain the process ID of the process that has
the channel open and dev_type will contain the type of the device. If pid
is 0 (zero), then the channel is not open. The pointer info must point to a
buffer large enough to hold whatever audio device related state structure may
be returned. At this time there is only the audio_info_t structure, see the
audio (7I) and mixer (7I) man pages.

IOCTLS The audio support driver provides the following ioctls() :
AUDIO_GET_CH_NUMBER This ioctl() returns the channel

number the file descriptor represents
in the integer pointed to by the
ioctl() argument.

Last modified 21 January 1999 SunOS 5.8 49

audio_support(7I) Ioctl Requests

AUDIO_GET_CH_TYPE This ioctl() returns the type of
channel the process has open via the
audio_device_type_e enumeration
pointed to by the ioctl()
argument.

AUDIO_GET_NUM_CHS This ioctl() returns the number of
channels the device supports in the
integer pointed to by the ioctl()
argument.

MACROS The following macro can be used to initialize data structures. The established
convention is that the state corresponding to a field set to -1 will not be modified.

AUDIO_INIT(I, S)

Where I is a pointer to an info structure and S is the size of that structure.

The following code segment demonstrates how to use this macro:

audio_info_t info;
AUDIO_INIT(&info, sizeof(info));
info.play.port = AUDIO_HEADPHONE;
err = ioct(audio_fd, AUDIO_SETINFO, &info);

ERRORS EINVAL The ioctl() is invalid for this file descriptor, the
audio_channel_t structure’s info pointer doesn’t point
to a buffer or the ch_number is bad.

ENOMEM The ioctl() failed due to lack of memory.

FILES /usr/demo/SOUND audio demonstration programs and other files

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWaudd, SUNWauddx, SUNWaudh

Stability Level Evolving

SEE ALSO ioctl (2), open (2), audio (7I) mixer (7I) streamio (7I)

50 SunOS 5.8 Last modified 21 January 1999

Ioctl Requests audio_support(7I)

FUTURE
DIRECTIONS

Over time additional audio personallity modules will be added. The audio
application programmer is encouraged to review this man page on each Solaris
release for new audio personality modules.

Last modified 21 January 1999 SunOS 5.8 51

authmd5h(7M) STREAMS Modules

NAME authmd5h – HMAC-MD5 Authentication Algorithm Module for IPsec

SYNOPSIS strmod/authmd5h

DESCRIPTION This module implements the HMAC-MD5 authentication algorithm using the
MD5 message-digest algorithm and the HMAC technique documented in RFC
2104. The authmd5h module has the following properties:
key size 128 bits

digest size 96 bits (truncated from 128)

authmd5h is used by both AHand ESP.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcsrx (64-bit)

Interface Stability Evolving

SEE ALSO ipseckey (1M), attributes (5), pf_key (7P), ipsec (7P), ipsecah (7P),
ipsecesp (7P)

Krawczyk, H., Ballare, M., and Canetti, R., RFC 2104, HMAC: Keyed-Hashing
for Message Authentication, The Internet Society, 1997

Madsen, C. and Glenn, R., RFC 2403, The Use of HMAC-MD5-96 within ESP
and AH, The Internet Society, 1998.

Rivest, R., RFC 1321, The MD5 Message-Digest Algorithm, The Internet Society,
1992.

52 SunOS 5.8 Last modified 11 Feb 1999

STREAMS Modules authsha1(7M)

NAME authsha1 – HMAC-SHA-1 Authentication Algorithm Module for IPsec

SYNOPSIS strmod/authsha1

DESCRIPTION This module implements the HMAC-SHA-1 authentication algorithm, using the
SHA-1 hash algorithm and the HMAC technique set forth in RFC 2104. The
authshal module has the following properties
key size 160 bits

digest size 96 bits (truncated from 160).

authshal is used by both AHand ESP.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcsrx (64-bit)

Interface Stability Evolving

SEE ALSO ipseckey (1M), attributes (5), pf_key (7P), ipsec (7P) ipsecah (7P),
ipsecesp (7P),

NIST, FIPS PUB 180–1: Secure Hash Standard, April 1995.

Krawczyk, H., Ballare, M., and Canetti, R., RFC 2104, HMAC: Keyed-Hashing
for Message Authentication, The Internet Society, 1997.

Madsen, C. and Glenn, R., RFC 2404, The Use of HMAC-SHA-1-96 within
ESP and AH, The Internet Society, 1998.

Last modified 11 Feb 1999 SunOS 5.8 53

bd(7M) STREAMS Modules

NAME bd – SunButtons and SunDials STREAMS module

SYNOPSIS open("/dev/bd", O_RDWR)

DESCRIPTION The bd STREAMS module processes the byte streams generated by the
SunButtons buttonbox and SunDials dialbox. The buttonbox generates a stream
of bytes that encode the identity and state transition of the buttons. The dialbox
generates a stream of bytes that encode the identity of the dials and the amount
by which they are turned. Both of these streams are merged together when a
host has both a buttonbox and a dialbox in use at the same time.

SunButtons reports the button number and up/down status encoded into a one
byte message. Byte values from 0xc0 to 0xdf indicate a transition to button down.
To obtain the button number, subtract 0xc0 from the byte value. Byte values
from 0xe0 to 0xff indicate a transition to button up. To obtain the button number,
subtract 0xe0 from the byte value.

Each dial sample in the byte stream consists of three bytes. The first byte
identifies which dial was turned and the next two bytes return the delta in
signed binary format. When bound to an application using the window system,
Virtual User Input Device (“VUID”) events are generated. An event from a dial
is constrained to lie between 0x80 and 0x87.

A stream with the bd pushed streams module configured in it
can emit firm_events as specified by the protocol of a VUID. bd
understands the VUIDSFORMATand VUIDGFORMATioctls (see
reference below), as defined in /usr/include/sys/bdio.h and
$OPENWINHOME/include/xview/win_event.h . All other ioctl() requests are
passed downstream.

The bd streams module sets the parameters of the serial port when it is first
opened. No termio (7I) ioctl () requests should be performed on a bd
STREAMS module, as bd expects the device parameters to remain as it set them.

IOCTLS VUIDSFORMAT
VUIDGFORMAT These are standard VUID ioctls.

BDIOBUTLITE The bd streams module implements this ioctl to enable
processes to manipulate the lights on the buttonbox.
The BDIOBUTLITE ioctl must be carried by an I_STR
ioctl to the bd module. For an explanation of I_STR see
streamio (7I). The data for the BDIOBUTLITE ioctl is an
unsigned integer in which each bit represents the lamp on
one button. The macro LED_MAPin <sys/bdio.h> maps
button numbers to appropriate bits. Source code for the
demo program x_buttontest is provided with the buttons
and dials package, and may be found in the directory

54 SunOS 5.8 Last modified 19 Feb 1992

STREAMS Modules bd(7M)

/usr/demo/BUTTONBOX . Look at x_buttontest.c for an
example of how to manipulate the lights on the buttonbox.

FILES /usr/include/sys/bdio.h

/usr/include/sys/stropts.h

$OPENWINHOME/share/include/xview/win_event.h

SEE ALSO bdconfig (1M), ioctl (2), x_buttontest (6), x_dialtest (6), streamio (7I),
termio (7I)

SunButtons Installation and Programmers Guide

SunDials Installation and Programmers Guide

WARNINGS The SunDials dial box must be used with a serial port.

Last modified 19 Feb 1992 SunOS 5.8 55

bpp(7D) Devices

NAME bpp – bi-directional parallel port driver

SYNOPSIS SUNW,bpp@slot, offset:bpp n

DESCRIPTION The bpp driver provides a general-purpose bi-directional interface to parallel
devices. It supports a variety of output (printer) and input (scanner) devices,
using programmable timing relationships between the various handshake
signals.

APPLICATION
PROGRAMMING

INTERFACE

The bpp driver is an exclusive-use device. If the device has already been opened,
subsequent opens fail with EBUSY.

Default Operation Each time the bpp device is opened, the default configuration is
BPP_ACK_BUSY_HSfor read handshake, BPP_ACK_HSfor write handshake,
1 microsecond for all setup times and strobe widths, and 60 seconds for both
timeouts. This configuration (in the write mode) drives many common personal
computer parallel printers with Centronics-type interfaces. The application
should use the BPPIOC_SETPARMSioctl request to configure the bpp for the
particular device which is attached, if necessary.

Write Operation If a failure or error condition occurs during a write (2), the number of bytes
successfully written is returned (short write). Note that errno will not be set.
The contents of certain status bits will be captured at the time of the error,
and can be retrieved by the application program, using the BPPIOC_GETERR
ioctl request. Subsequent write (2) calls may fail with the system error ENXIO
if the error condition is not rectified. The captured status information will
be overwritten each time an attempted transfer or a BPPIOC_TESTIO ioctl
request occurs.

Read Operations If a failure or error condition occurs during a read (2), the number of bytes
successfully read is returned (short read). Note that errno will not be set. The
contents of certain status bits will be captured at the time of the error, and
can be retrieved by the application, using the BPPIOC_GETERRioctl request.
Subsequent read (2) calls may fail with ENXIO if the error condition is not
rectified. The captured register information will be overwritten each time an
attempted transfer or a BPPIOC_TESTIO ioctl request.

If the read_handshake element of the bpp_transfer_parms structure (see
below) is set to BPP_CLEAR_MEMor BPP_SET_MEM, zeroes or ones, respectively,
are written into the user buffer.

Read/Write Operation When the driver is opened for reading and writing, it is assumed that scanning
will take place, as scanners are the only devices supported by this mode.
Most scanners require that the SLCT_IN or AFXpin be set to tell the scanner
the direction of the transfer. The AFX line is set when the read_handshake
element of the bpp_transfer_parms structure is set to BPP_HSCAN_HS,

56 SunOS 5.8 Last modified 22 Aug 1994

Devices bpp(7D)

otherwise the SLCT_IN pin is set. Normally, scanning starts by writing a
command to the scanner, at which time the pin is set. When the scan data is
read back, the pin is reset.

IOCTLS The following ioctl requests are supported:
BPPIOC_SETPARMS Set transfer parameters.

The argument is a pointer to a
bpp_transfer_parms structure. See below for
a description of the elements of this structure. If a
parameter is out of range, EINVAL is returned.

BPPIOC_GETPARMS Get current transfer parameters.

The argument is a pointer to a
bpp_transfer_parms structure. See below for
a description of the elements of this structure. If
no parameters have been configured since the
device was opened, the contents of the structure
will be the default conditions of the parameters
(see Default Operation above).

BPPIOC_SETOUTPINS Set output pin values.

The argument is a pointer to a bpp_pins
structure. See below for a description of the
elements of this structure. If a parameter is out
of range, EINVAL is returned.

BPPIOC_GETOUTPINS Read output pin values. The argument is a
pointer to a bpp_pins structure. See below for a
description of the elements of this structure.

BPPIOC_GETERR Get last error status.

The argument is a pointer to a
bpp_error_status structure. See below for
a description of the elements of this structure.
This structure indicates the status of all the
appropriate status bits at the time of the most
recent error condition during a read (2) or
write (2) call, or the status of the bits at the most
recent BPPIOC_TESTIO ioctl request. Note:
The bits in the pin_status element indicate
whether the associated pin is active, not the
actual polarity. The application can check transfer
readiness without attempting another transfer
using the BPPIOC_TESTIO ioctl. Note: The

Last modified 22 Aug 1994 SunOS 5.8 57

bpp(7D) Devices

timeout_occurred and bus_error fields will
never be set by the BPPIOC_TESTIO ioctl, only
by an actual failed transfer.

BPPIOC_TESTIO Test transfer readiness.

This command checks to see if a read or write
transfer would succeed based on pin status,
opened mode, and handshake selected. If a
handshake would succeed, 0 is returned. If a
transfer would fail, -1 is returned, and errno is
set to EIO, and the error status information is
captured. The captured status can be retrieved
using the BPPIOC_GETERRioctl call. Note that
the timeout_occurred and bus_error fields
will never be set by this ioctl.

Transfer Parameters
Structure

This structure is defined in <sys/bpp_io.h> .

struct bpp_transfer_parms {
enum handshake_t

read_handshake; /* parallel port read handshake mode */
int read_setup_time; /* DSS register - in nanoseconds */
int read_strobe_width; /* DSW register - in nanoseconds */
int read_timeout; /*

* wait this many seconds
* before aborting a transfer

*/
enum handshake_t

write_handshake; /* parallel port write handshake mode */
int write_setup_time; /* DSS register - in nanoseconds */
int write_strobe_width; /* DSW register - in nanoseconds */
int write_timeout; /*

* wait this many seconds
* before aborting a transfer

*/
};
/* Values for read_handshake and write_handshake fields */

enum handshake_t {
BPP_NO_HS, /* no handshake pins */
BPP_ACK_HS, /* handshake controlled by ACK line */
BPP_BUSY_HS, /* handshake controlled by BSY line */
BPP_ACK_BUSY_HS, /*

* handshake controlled by ACK and BSY lines
* read_handshake only!

*/
BPP_XSCAN_HS, /* xerox scanner mode,

* read_handshake only!
*/

BPP_HSCAN_HS, /*
* HP scanjet scanner mode
* read_handshake only!

58 SunOS 5.8 Last modified 22 Aug 1994

Devices bpp(7D)

*/
BPP_CLEAR_MEM, /* write 0’s to memory,

* read_handshake only!
*/

BPP_SET_MEM, /* write 1’s to memory,
* read_handshake only!

*/
/* The following handshakes are RESERVED. Do not use. */

BPP_VPRINT_HS, /* valid only in read/write mode */
BPP_VPLOT_HS /* valid only in read/write mode */

};

The read_setup_time field controls the time between dstrb falling edge to bsy
rising edge if the read_handshake field is set to BPP_NO_HSor BPP_ACK_HS.
It controls the time between dstrb falling edge to ack rising edge if the
read_handshake field is set to BPP_ACK_HSor BPP_ACK_BUSY_HS. It controls
the time between ack falling edge to dstrb rising edge if the read_handshake
field is set to BPP_XSCAN_HS.

The read_strobe_width field controls the time between ack rising edge
and ack falling edge if the read_handshake field is set to BPP_NO_HSor
BPP_ACK_BUSY_HS. It controls the time between dstrb rising edge to dstrb
falling edge if the read_handshake field is set to BPP_XSCAN_HS.

The values allowed for the write_handshake field are duplicates of the
definitions for the read_handshake field. Note that some of these handshake
definitions are only valid in one mode or the other.

The write_setup_time field controls the time between data valid to dstrb
rising edge for all values of the write_handshake field.

The write_strobe_width field controls the time between dstrb rising
edge and dstrb falling edge if the write_handshake field is not set to
BPP_VPRINT_HSor BPP_VPLOT_HS. It controls the minimum time between
dstrb rising edge to dstrb falling edge if the write_handshake field is set to
BPP_VPRINT_HSor BPP_VPLOT_HS.

Transfer Pins
Structure

This structure is defined in <sys/bpp_io.h> .

struct bpp_pins {
uchar_t output_reg_pins; /* pins in P_OR register */
uchar_t input_reg_pins; /* pins in P_IR register */

};

/* Values for output_reg_pins field */
#define BPP_SLCTIN_PIN 0x01 /* Select in pin */
#define BPP_AFX_PIN 0x02 /* Auto feed pin */
#define BPP_INIT_PIN 0x04 /* Initialize pin */
#define BPP_V1_PIN 0x08 /* reserved pin 1 */

Last modified 22 Aug 1994 SunOS 5.8 59

bpp(7D) Devices

#define BPP_V2_PI 0x10 /* reserved pin 2 */
#define BPP_V3_PIN 0x20 /* reserved pin 3 */
#define BPP_ERR_PIN 0x01 /* Error pin */
#define BPP_SLCT_PIN 0x02 /* Select pin */
#define BPP_PE_PIN 0x04 /* Paper empty pin */

Error Pins Structure This structure is defined in the include file <sys/bpp_io.h> .

struct bpp_error_status {
char timeout_occurred; /* 1 if a timeout occurred */
char bus_error; /* 1 if an SBus bus error */
uchar_t pin_status; /*

* status of pins which could
* cause an error
*/

};
/* Values for pin_status field */
#define BPP_ERR_ERR 0x01 /* Error pin active */
#define BPP_SLCT_ERR 0x02 /* Select pin active */
#define BPP_PE_ERR 0x04 /* Paper empty pin active */
#define BPP_SLCTIN_ERR 0x10 /* Select in pin active */
#define BPP_BUSY_ERR 0x40 /* Busy pin active */

ERRORS EBADF The device is opened for write-only access and a read is
attempted, or the device is opened for read-only access
and a write is attempted.

EBUSY The device has been opened and another open is attempted.
An attempt has been made to unload the driver while one
of the units is open.

EINVAL A BPPIOC_SETPARMS ioctl is attempted with an out of
range value in the bpp_transfer_parms structure. A
BPPIOC_SETOUTPINS ioctl is attempted with an invalid
value in the pins structure. An ioctl is attempted with
an invalid value in the command argument. An invalid
command argument is received during modload (1M) or
modunload (1M).

EIO The driver encountered an SBus bus error when attempting
an access.

A read or write does not complete properly, due to a
peripheral error or a transfer timeout.

60 SunOS 5.8 Last modified 22 Aug 1994

Devices bpp(7D)

A BPPIOC_TESTIO ioctl call is attempted while a
condition exists which would prevent a transfer (such as
a peripheral error).

ENXIO The driver has received an open request for a unit for which
the attach failed. The driver has received a read or write
request for a unit number greater than the number of units
available. The driver has received a write request for a unit
which has an active peripheral error.

FILES /dev/bpp n bi-directional parallel port devices

SEE ALSO ioctl (2), read (2), write (2), sbus (4)

Last modified 22 Aug 1994 SunOS 5.8 61

bufmod(7M) STREAMS Modules

NAME bufmod – STREAMS Buffer Module

SYNOPSIS ioctl(fd, I_PUSH, "bufmod");

DESCRIPTION bufmod is a STREAMS module that buffers incoming messages, reducing the
number of system calls and the associated overhead required to read and process
them. Although bufmod was originally designed to be used in conjunction
with STREAMS-based networking device drivers, the version described here
is general purpose so that it can be used anywhere STREAMS input buffering
is required.

Read-side Behavior The behavior of bufmod depends on various parameters and flags that can be
set and queried as described below under IOCTLS. bufmod collects incoming
M_DATAmessages into chunks, passing each chunk upstream when the chunk
becomes full or the current read timeout expires. It optionally converts M_PROTO
messages to M_DATAand adds them to chunks as well. It also optionally adds
to each message a header containing a timestamp, and a cumulative count of
messages dropped on the stream read side due to resource exhaustion or flow
control. Thedefault settings of bufmod allow it to drop messages when flow
control sets in or resources are exhausted; disabling headers and explicitly
requesting no drops makes bufmod pass all messages through. Finally, bufmod
is capable of truncating upstream messages to a fixed, programmable length.

When a message arrives, bufmod processes it in several steps. The following
paragraphs discuss each step in turn.

Upon receiving a message from below, if the SB_NO_HEADERflag is not set,
bufmod immediately timestamps it and saves the current time value for later
insertion in the header described below.

Next, if SB_NO_PROTO_CVTis not set, bufmod converts all leading M_PROTO
blocks in the message to M_DATAblocks, altering only the message type field and
leaving the contents alone.

It then truncates the message to the current snapshot length, which is set with the
SBIOCSSNAP ioctl described below.

Afterwards, if SB_NO_HEADERis not set, bufmod prepends a header to the
converted message. This header is defined as follows.

struct sb_hdr {
uint_t sbh_origlen;
uint_t sbh_msglen;
uint_t sbh_totlen;
uint_t sbh_drops;

#if defined(_LP64) || defined(_I32LPx)
struct timeval32 sbh_timestamp;

#else
struct timeval sbh_timestamp;

#endif /* !_LP64 */

62 SunOS 5.8 Last modified 11 Nov 1997

STREAMS Modules bufmod(7M)

};

The sbh_origlen field gives the message’s original length before truncation in
bytes. The sbh_msglen field gives the length in bytes of the message after the
truncation has been done. sbh_totlen gives the distance in bytes from the
start of the truncated message in the current chunk (described below) to the start
of the next message in the chunk; the value reflects any padding necessary to
insure correct data alignment for the host machine and includes the length of the
header itself. sbh_drops reports the cumulative number of input messages
that this instance of bufmod has dropped due to flow control or resource
exhaustion. In the current implementation message dropping due to flow control
can occur only if the SB_NO_DROPSflag is not set. (Note: this accounts only
for events occurring within bufmod , and does not count messages dropped by
downstream or by upstream modules.) The sbh_timestamp field contains the
message arrival time expressed as a struct timeval .

After preparing a message, bufmod attempts to add it to the end of the current
chunk, using the chunk size and timeout values to govern the addition. The
chunk size and timeout values are set and inspected using the ioctl() calls
described below. If adding the new message would make the current chunk
grow larger than the chunk size, bufmod closes off the current chunk, passing it
up to the next module in line, and starts a new chunk. If adding the message
would still make the new chunk overflow, the module passes it upward in an
over-size chunk of its own. Otherwise, the module concatenates the message to
the end of the current chunk.

To ensure that messages do not languish forever in an accumulating chunk,
bufmod maintains a read timeout. Whenever this timeout expires, the module
closes off the current chunk and passes it upward. The module restarts the
timeout period when it receives a read side data message and a timeout is not
currently active. These two rules insure that bufmod minimizes the number
of chunks it produces during periods of intense message activity and that it
periodically disposes of all messages during slack intervals, but avoids any
timeout overhead when there is no activity.

bufmod handles other message types as follows. Upon receiving an M_FLUSH
message specifying that the read queue be flushed, the module clears the
currently accumulating chunk and passes the message on to the module or
driver above. (Note: bufmod uses zero length M_CTLmessages for internal
synchronization and does not pass them through.) bufmod passes all other
messages through unaltered to its upper neighbor, maintaining message order
for non high priority messages by passing up any accumulated chunk first.

Last modified 11 Nov 1997 SunOS 5.8 63

bufmod(7M) STREAMS Modules

If the SB_DEFER_CHUNKflag is set, buffering does not begin until the second
message is received within the timeout window.

If the SB_SEND_ON_WRITEflag is set, bufmod passes up the read
side any buffered data when a message is received on the write side.
SB_SEND_ON_WRITEand SB_DEFER_CHUNKare often used together.

Write-side Behavior bufmod intercepts M_IOCTLmessages for the ioctl s described below. The
module passes all other messages through unaltered to its lower neighbor. If
SB_SEND_ON_WRITEis set, message arrival on the writer side suffices to close
and transmit the current read side chunk.

IOCTLS bufmod responds to the following ioctl s.
SBIOCSTIME Set the read timeout value to the value referred to by the

struct timeval pointer given as argument. Setting the
timeout value to zero has the side-effect of forcing the
chunk size to zero as well, so that the module will pass
all incoming messages upward immediately upon arrival.
Negative values are rejected with an EINVAL error.

SBIOCGTIME Return the read timeout in the struct timeval pointed to
by the argument. If the timeout has been cleared with the
SBIOCCTIME ioctl , return with an ERANGEerror.

SBIOCCTIME Clear the read timeout, effectively setting its value to infinity.
This results in no timeouts being active and the chunk being
delivered when it is full.

SBIOCSCHUNK Set the chunk size to the value referred to by the uint_t
pointer given as argument. See NOTES for a description of
effect on stream head high water mark.

SBIOCGCHUNK Return the chunk size in the uint_t pointed to by the
argument.

SBIOCSSNAP Set the current snapshot length to the value given in the
uint_t pointed to by the ioctl ’s final argument. bufmod
interprets a snapshot length value of zero as meaning
infinity, so it will not alter the message. See NOTES for a
description of effect on stream head high water mark.

SBIOCGSNAP Returns the current snapshot length in the uint_t pointed
to by the ioctl ’s final argument.

SBIOCSFLAGS Set the current flags to the value given in the uint_t
pointed to by the ioctl ’s final argument. Possible values
are a combination of the following.

64 SunOS 5.8 Last modified 11 Nov 1997

STREAMS Modules bufmod(7M)

SB_SEND_ON_WRITE Transmit the read side chunk
on arrival of a message on the
write side.

SB_NO_HEADER Do not add headers to read
side messages.

SB_NO_DROPS Do not drop messages due to
flow control upstream.

SB_NO_PROTO_CVT Do not convert M_PROTO
messages into M_DATA.

SB_DEFER_CHUNK Begin buffering on arrival of
the second read side message
in a timeout interval.

SBIOCGFLAGS Returns the current flags in the uint_t pointed to by the
ioctl ’s final argument.

SEE ALSO dlpi (7P), le (7D), pfmod (7M)

NOTES Older versions of bufmod did not support the behavioral flexibility controlled
by the SBIOCSFLAGS ioctl . Applications that wish to take advantage of this
flexibility can guard themselves against old versions of the module by invoking
the SBIOCGFLAGSioctl and checking for an EINVAL error return.

When buffering is enabled by issuing an SBIOCSCHUNKioctl to set the chunk
size to a non zero value, bufmod sends a SETOPTSmessage to adjust the stream
head high and low water marks to accommodate the chunked messages.

When buffering is disabled by setting the chunk size to zero, message truncation
can have a significant influence on data traffic at the stream head and therefore
the stream head high and low water marks are adjusted to new values
appropriate for the smaller truncated message sizes.

BUGS bufmod does not defend itself against allocation failures, so that it is possible,
although very unlikely, for the stream head to use inappropriate high and low
water marks after the chunk size or snapshot length have changed.

Last modified 11 Nov 1997 SunOS 5.8 65

bwtwo(7D) Devices

NAME bwtwo – black and white memory frame buffer

SYNOPSIS /dev/fbs/bwtwo

DESCRIPTION The bwtwo interface provides access to monochrome memory frame buffers. It
supports the ioctls described in fbio (7I).

Reading or writing to the frame buffer is not allowed — you must use the
mmap(2) system call to map the board into your address space.

FILES /dev/fbs/bwtwo[0-9] device files

SEE ALSO mmap(2), cgfour (7D), fbio (7I)

BUGS Use of vertical-retrace interrupts is not supported.

66 SunOS 5.8 Last modified 27 Mar 1992

Devices cadp(7D)

NAME cadp – Adaptec Ultra-2 SCSI host bus adapter driver

SYNOPSIS scsi@unit-address

DESCRIPTION The cadp host bus adapter driver is a SCSA–compliant nexus driver that
supports the following Adaptec Ultra-2 SCSI Devices:

� Adapters: Adaptec 2940AU, 2940U, 2940U Dual, 2940UW, 2940UW
Dual, 2944UW, 3940U, 3940UW, 3940AU, 3940AUW, 3940AUWD,
39444AUWD, AHA-2940U2W, AHA-2940U2B, AHA-2940U2, AHA-2950U2B,
AHA-3950U2B

� Chips: AIC-7860, AIC-7880, AIC-7895, AIC-7896/AIC-7897,
AIC-7890/AIC-7891, AIC-7890AB, AIC-7890A

The cadp driver supports standard functions provided by the SCSA interface,
including tagged and untagged queuing, Wide/Fast/Ultra SCSI, and auto
request sense. The cadp driver does not support linked commands.

Driver Configuration The cadp host bus adapter driver is configured by defining the properties
found in cadp.conf . Properties in the cadp.conf file that can be modified
by the user include: scsi-options , target< n>-scsi-options ,
scsi-reset-delay , and scsi-initiator-id . Properties in the cadp.conf
file override global SCSI settings.

The property target< n>-scsi-options overrides the scsi-options
property value for target< n>, where <n> can vary from decimal
0 to 15. The cadp driver supports the following scsi-options:
SCSI_OPTIONS_DR, SCSI_OPTIONS_SYNC, SCSI_OPTIONS_TAG,
SCSI_OPTIONS_FAST, SCSI_OPTIONS_WIDE, SCSI_OPTIONS_FAST20, and
SCSI_OPTIONS_FAST40.

EXAMPLES EXAMPLE 1

Create a file called /kernel/drv/cadp.conf , then add the following line:
scsi-options=0x78;

The above line disables tagged queuing, Fast/Ultra SCSI, and wide mode for
all cadp instances.

To set scsi-options more specifically per target, add the following lines to
/kernel/drv/cadp.conf :

target1-scsi-options=0x78;
device-type-scsi-options-list =
"SEAGATE ST32550W", "seagate-scsi-options" ;
seagate-scsi-options = 0x58;
scsi-options=0x3f8;

Last modified 17 Aug 1999 SunOS 5.8 67

cadp(7D) Devices

With the exception of one disk type that has scsi-options set to 0x58 , the
above example sets scsi-options for target 1 to 0x78, and all remaining
targets to 0x3f8.

The scsi-options properties that are specified per target ID have the
highest precedence, followed by scsi-options per device type. Global
scsi-options for all cadp instances per bus have the lowest precedence. You
must reboot the system for the specified scsi options to take effect.

Driver Capabilities To enable certain features on the cadp driver, the target driver must set
capabilities. The following capabilities can be queried and modified by the
target driver: synchronous , tagged-qing , wide-xfer , auto-rqsense ,
qfull-retries , and qfull-retry-interval . All other capabilities are
query only.

By default, the tagged-qing , auto-rqsense , and wide-xfer capabilities are
disabled. The disconnect , synchronous , and untagged-qing capabilities
are always enabled. The cadp driver capabilities can only be assigned binary
values (0 or 1). The default value for qfull-retries is 10 and the default
value for qfull-retry-interval is 100. The qfull-retries capability is
au_char (0 to 255) while qfull-retry-interval is a u_short (0 to 65535).

If a conflict occurs between the value of scsi-options and a capability,
the value set in scsi-options prevails. Only whom != 0 is supported
in the scsi_ifsetcap(9F) call. See scsi_ifsetcap(9F) and
scsi_ifgetcap(9F) for details.

FILES /kernel/drv/cadp ELF kernel module

/kernel/drv/cadp.conf Optional configuration file

ATTRIBUTES See attributes (5) for a description of the following attribute:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO prtconf (1M), driver.conf (4), pci (4), attributes (5), scsi_abort (9F),
scsi_hba_attach (9F), scsi_ifgetcap (9F), scsi_ifsetcap (9F),
scsi_reset (9F), scsi_sync_pkt (9F), scsi_transport (9F),
scsi_device (9S), scsi_extended_sense (9S), scsi_inquiry (9S),
scsi_pkt (9S)

Writing Device Drivers

Hardware Compatibility List for Solaris 8 (Intel Platform Edition)

ANSI Small Computer System Interface-2 (SCSI-2)

68 SunOS 5.8 Last modified 17 Aug 1999

Devices cadp(7D)

NOTES The cadp driver supports the adapters and chipsets listed in this man page. For
information on support of additional devices, see the Hardware Compatibility
List for Solaris 8 (Intel Platform Edition), a component of the Information
Library for Solaris 8 (Intel Platform Edition).

The cadp driver exports properties indicating (per target) the negotiated transfer
speed (target< n>-sync-speed), whether wide bus (target< n>-wide),
is supported for that particular target (target< n>-scsi-options), and
whether tagged queuing (target< n>-tag-queue) has been enabled.
The sync-speed property value is the data transfer rate in KB/sec. The
target< n>-tag-queue and the target< n>-wide property have value 1 to
indicate that the corresponding capability is enabled, or 0 to indicate that the
capability is disabled. See prtconf (1M) (verbose option) for information
on viewing the cadp properties.

Sample output is provided below:

pci9005,f500, instance #2
System software properties:

name <interrupt-priorities> length <4>
value <0x05000000>.

name <tape> length <5>
value <0x7363747000>.

name <disk> length <5>
value <0x7363646b00>.

name <queue> length <6>
value <0x71736f727400>.

name <flow_control> length <6>
value <0x646d756c7400>.

Driver properties:
name <target0-tag-queue> length <4>

value <0x01000000>.
name <target0-wide> length <4>

value <0x01000000>.
name <target0-sync-speed> length <4>

value <0x28000000>.
name <chosen-interrupt> length <8>

value <0x0100000000000000>.
name <scsi-selection-timeout> length <4>

value <0xfa000000>.
name <scsi-options> length <4>

value <0xf81f0000>.
name <scsi-watchdog-tick> length <4>

value <0x0a000000>.
name <scsi-tag-age-limit> length <4>

value <0x02000000>.
name <scsi-reset-delay> length <4>

value <0xb80b0000>.

Last modified 17 Aug 1999 SunOS 5.8 69

cdio(7I) Ioctl Requests

NAME cdio – CD-ROM control operations

SYNOPSIS #include <sys/cdio.h>

DESCRIPTION The set of ioctl (2) commands described below are used to perform audio and
CD-ROMspecific operations. Basic to these cdio ioctl requests are the definitions
in <sys/cdio.h> .

Several CD-ROMspecific commands can report addresses either in LBA (Logical
Block Address) format or in MSF (Minute, Second, Frame) format. The READ
HEADER, READ SUBCHANNEL, and READ TABLE OF CONTENTScommands
have this feature.

LBA format represents the logical block address for the CD-ROMabsolute
address field or for the offset from the beginning of the current track expressed
as a number of logical blocks in a CD-ROMtrack relative address field. MSF
format represents the physical address written on CD-ROMdiscs, expressed as a
sector count relative to either the beginning of the medium or the beginning
of the current track.

IOCTLS The following I/O controls do not have any additional data passed into or
received from them.
CDROMSTART

This ioctl() spins up the disc and seeks to the last address requested.

CDROMSTOP
This ioctl() spins down the disc.

CDROMPAUSE
This ioctl() pauses the current audio play operation.

CDROMRESUME
This ioctl() resumes the paused audio play operation.

CDROMEJECT
This ioctl() ejects the caddy with the disc.

The following I/O controls require a pointer to the structure for that ioctl() ,
with data being passed into the ioctl() .
CDROMPLAYMSF

This ioctl() command requests the drive to output the audio signals at
the specified starting address and continue the audio play until the specified
ending address is detected. The address is in MSF format. The third
argument of this ioctl() call is a pointer to the type struct cdrom_msf .

/*
* definition of play audio msf structure

70 SunOS 5.8 Last modified 18 Feb 1998

Ioctl Requests cdio(7I)

*/
struct cdrom_msf {

unsigned char cdmsf_min0; /* starting minute*/
unsigned char cdmsf_sec0; /* starting second*/
unsigned char cdmsf_frame0; /*starting frame*/
unsigned char cdmsf_min1; /* ending minute */
unsigned char cdmsf_sec1; /* ending second */
unsigned char cdmsf_frame1; /* ending frame */

};

The CDROMREADTOCENTRYioctl request may be used to obtain the start time
for a track. An approximation of the finish time can be obtained by using
the CDROMREADTOCENTRYioctl request to retrieve the start time of the
track following the current track.

The leadout track is the next consecutive track after the last audio track.
Hence, the start time of the leadout track may be used as the effective finish
time of the last audio track.

CDROMPLAYTRKIND
This ioctl() command is similar to CDROMPLAYMSF. The starting
and ending address is in track/index format. The third argument of the
ioctl() call is a pointer to the type struct cdrom_ti .

/*
* definition of play audio track/index structure
*/

struct cdrom_ti {
unsigned char cdti_trk0; /* starting track*/
unsigned char cdti_ind0; /* starting index*/
unsigned char cdti_trk1; /* ending track */
unsigned char cdti_ind1; /* ending index */

};

CDROMVOLCTRL
This ioctl() command controls the audio output level. The SCSI
command allows the control of up to four channels. The current
implementation of the supported CD-ROMdrive only uses channel 0 and
channel 1. The valid values of volume control are between 0x00 and 0xFF,
with a value of 0xFF indicating maximum volume. The third argument of
the ioctl() call is a pointer to struct cdrom_volctrl which contains
the output volume values.

/*
* definition of audio volume control structure
*/

struct cdrom_volctrl {
unsigned char channel0;
unsigned char channel1;
unsigned char channel2;

Last modified 18 Feb 1998 SunOS 5.8 71

cdio(7I) Ioctl Requests

unsigned char channel3;
};

The following I/O controls take a pointer that will have data returned to the
user program from the CD-ROMdriver.
CDROMREADTOCHDR

This ioctl() command returns the header of the table of contents (TOC).
The header consists of the starting tracking number and the ending track
number of the disc. These two numbers are returned through a pointer of
struct cdrom_tochdr . While the disc can start at any number, all tracks
between the first and last tracks are in contiguous ascending order.

/*
* definition of read toc header structure
*/

struct cdrom_tochdr {
unsigned char cdth_trk0; /* starting track*/
unsigned char cdth_trk1; /* ending track*/

};

CDROMREADTOCENTRY
This ioctl() command returns the information of a specified track.
The third argument of the function call is a pointer to the type struct
cdrom_tocentry . The caller needs to supply the track number and the
address format. This command will return a 4-bit adr field, a 4-bit ctrl
field, the starting address in MSF format or LBA format, and the data mode
if the track is a data track. The ctrl field specifies whether the track is
data or audio.

/*
* definition of read toc entry structure
*/

struct cdrom_tocentry {
unsigned char cdte_track;
unsigned char cdte_adr :4;
unsigned char cdte_ctrl :4;
unsigned char cdte_format;
union {

struct {
unsigned char minute;
unsigned char second;
unsigned char frame;

} msf;
int lba;

} cdte_addr;
unsigned char cdte_datamode;

};

72 SunOS 5.8 Last modified 18 Feb 1998

Ioctl Requests cdio(7I)

To get the information from the leadout track, the following value is
appropriate for the cdte_track field:

CDROM_LEADOUT Leadout track

To get the information from the data track, the following value is
appropriate for the cdte_ctrl field:

CDROM_DATA_TRACK Data track

The following values are appropriate for the cdte_format field:

CDROM_LBA LBAformat

CDROM_MSF MSFformat

CDROMSUBCHNL
This ioctl() command reads the Q sub-channel data of the current block.
The subchannel data includes track number, index number, absolute CD-ROM
address, track relative CD-ROMaddress, control data and audio status. All
information is returned through a pointer to struct cdrom_subchnl . The
caller needs to supply the address format for the returned address.

struct cdrom_subchnl {
unsigned char cdsc_format;
unsigned char cdsc_audiostatus;
unsigned char cdsc_adr: 4;
unsigned char cdsc_ctrl: 4;
unsigned char cdsc_trk;
unsigned char cdsc_ind;
union {

struct {
unsigned char minute;
unsigned char second;
unsigned char frame;

} msf;
int lba;

} cdsc_absaddr;
union {

struct {
unsigned char minute;
unsigned char second;
unsigned char frame;

} msf;
int lba;

} cdsc_reladdr;
};

Last modified 18 Feb 1998 SunOS 5.8 73

cdio(7I) Ioctl Requests

The following values are valid for the audio status field returned from READ
SUBCHANNELcommand:

CDROM_AUDIO_INVALID Audio status not supported.

CDROM_AUDIO_PLAY Audio play operation in progress.

CDROM_AUDIO_PAUSED Audio play operation paused.

CDROM_AUDIO_COMPLETED Audio play successfully completed.

CDROM_AUDIO_ERROR Audio play stopped due to error.

CDROM_AUDIO_NO_STATUS No current audio status to return.

CDROMREADOFFSET
This ioctl() command returns the absolute CD-ROMaddress of the first
track in the last session of a Multi-Session CD-ROM. The third argument of
the ioctl() call is a pointer to an int .

CDROMCDDA
This ioctl() command returns the CD-DAdata or the subcode data.
The third argument of the ioctl() call is a pointer to the type struct
cdrom_cdda . In addition to allocating memory and supplying its address,
the caller needs to supply the starting address of the data, the transfer
length, and the subcode options. The caller also needs to issue the
CDROMREADTOCENTRY ioctl() to find out which tracks contain CD-DA
data before issuing this ioctl() .

/*
* Definition of CD-DA structure
*/

struct cdrom_cdda {
unsigned int cdda_addr;
unsigned int cdda_length;
caddr_t cdda_data;
unsigned char cdda_subcode;

};

To get the subcode information related to CD-DA data, the following values
are appropriate for the cdda_subcode field:

CDROM_DA_NO_SUBCODE CD-DAdata with no subcode.

CDROM_DA_SUBQ CD-DAdata with sub Q code.

CDROM_DA_ALL_SUBCODE CD-DAdata with all subcode.

CDROM_DA_SUBCODE_ONLY All subcode only.

74 SunOS 5.8 Last modified 18 Feb 1998

Ioctl Requests cdio(7I)

To allocate the memory related to CD-DAand/or subcode data, the following
values are appropriate for each data block transferred:

CD-DAdata with no subcode 2352 bytes

CD-DAdata with sub Q code 2368 bytes

CD-DAdata with all subcode 2448 bytes

All subcode only 96 bytes

CDROMCDXA
This ioctl() command returns the CD-ROM XA(CD-ROM Extended
Architecture) data according to CD-ROM XAformat. The third argument of
the ioctl() call is a pointer to the type struct cdrom_cdxa . In addition
to allocating memory and supplying its address, the caller needs to supply
the starting address of the data, the transfer length, and the format. The
caller also needs to issue the CDROMREADTOCENTRY ioctl() to find out
which tracks contain CD-ROM XAdata before issuing this ioctl() .

/*
* Definition of CD-ROM XA structure
*/

struct cdrom_cdxa {
unsigned int cdxa_addr;
unsigned int cdxa_length;
caddr_t cdxa_data;
unsigned char cdxa_format;

};

To get the proper CD-ROM XAdata, the following values are appropriate
for the cdxa_format field:

CDROM_XA_DATA CD-ROM XAdata only

CDROM_XA_SECTOR_DATA CD-ROM XAall sector data

CDROM_XA_DATA_W_ERROR CD-ROM XAdata with error flags data

To allocate the memory related to CD-ROM XAformat, the following values
are appropriate for each data block transferred:

CD-ROM XAdata only 2048 bytes

CD-ROM XAall sector data 2352 bytes

CD-ROM XAdata with error flags data 2646 bytes

CDROMSUBCODE

Last modified 18 Feb 1998 SunOS 5.8 75

cdio(7I) Ioctl Requests

This ioctl() command returns raw subcode data (subcodes P ~ W are
described in the "Red Book," see SEE ALSO) to the initiator while the target
is playing audio. The third argument of the ioctl() call is a pointer to
the type struct cdrom_subcode . The caller needs to supply the transfer
length and allocate memory for subcode data. The memory allocated should
be a multiple of 96 bytes depending on the transfer length.

/*
* Definition of subcode structure
*/

struct cdrom_subcode {
unsigned int cdsc_length;
caddr_t cdsc_addr;

};

The next group of I/O controls get and set various CD-ROMdrive parameters.
CDROMGBLKMODE

This ioctl() command returns the current block size used by the CD-ROM
drive. The third argument of the ioctl() call is a pointer to an integer.

CDROMSBLKMODE
This ioctl() command requests the CD-ROMdrive to change from the
current block size to the requested block size. The third argument of the
ioctl() call is an integer which contains the requested block size.

This ioctl() command operates in exclusive-use mode only. The caller
must ensure that no other processes can operate on the same CD-ROM
device before issuing this ioctl() . read (2) behavior subsequent to this
ioctl() remains the same: the caller is still constrained to read the raw
device on block boundaries and in block multiples.

To set the proper block size, the following values are appropriate:

CDROM_BLK_512 512 bytes

CDROM_BLK_1024 1024 bytes

CDROM_BLK_2048 2048 bytes

CDROM_BLK_2056 2056 bytes

CDROM_BLK_2336 2336 bytes

CDROM_BLK_2340 2340 bytes

CDROM_BLK_2352 2352 bytes

CDROM_BLK_2368 2368 bytes

CDROM_BLK_2448 2448 bytes

76 SunOS 5.8 Last modified 18 Feb 1998

Ioctl Requests cdio(7I)

CDROM_BLK_2646 2646 bytes

CDROM_BLK_2647 2647 bytes

CDROMGDRVSPEED
This ioctl() command returns the current CD-ROMdrive speed. The third
argument of the ioctl() call is a pointer to an integer.

CDROMSDRVSPEED
This ioctl() command requests the CD-ROMdrive to change the current
drive speed to the requested drive speed. This speed setting is only
applicable when reading data areas. The third argument of the ioctl() is
an integer which contains the requested drive speed.

To set the CD-ROMdrive to the proper speed, the following values are
appropriate:

CDROM_NORMAL_SPEED 150k/second

CDROM_DOUBLE_SPEED 300k/second

CDROM_QUAD_SPEED 600k/second

CDROM_MAXIMUM_SPEED 300k/second (2x drive) 600k/second
(4x drive)

Note that these numbers are only accurate when reading 2048 byte blocks.
The CD-ROMdrive will automatically switch to normal speed when playing
audio tracks and will switch back to the speed setting when accessing data.

SEE ALSO ioctl (2), read (2)

N. V. Phillips and Sony Corporation, System Description Compact Disc Digital
Audio, ("Red Book").

N. V. Phillips and Sony Corporation, System Description of Compact Disc
Read Only Memory, ("Yellow Book").

N. V. Phillips, Microsoft, and Sony Corporation, System Description CD-ROM
XA, 1991.

Volume and File Structure of CD-ROM for Information Interchange, ISO
9660:1988(E).

SCSI-2 Standard, document X3T9.2/86-109

NOTES The CDROMCDDA, CDROMCDXA, CDROMSUBCODE, CDROMGDRVSPEED,
CDROMSDRVSPEED, and some of the block sizes in CDROMSBLKMODEare
designed for new Sun-supported CD-ROMdrives and might not work on some
of the older CD-ROMdrives.

Last modified 18 Feb 1998 SunOS 5.8 77

cdio(7I) Ioctl Requests

The interface to this device is preliminary and subject to change in future
releases. Programs should be written in a modular fashion so that future changes
can be easily incorporated.

78 SunOS 5.8 Last modified 18 Feb 1998

Devices cgeight(7D)

NAME cgeight – 24-bit color memory frame buffer

SYNOPSIS /dev/fbs/cgeight n

DESCRIPTION The cgeight is a 24-bit color memory frame buffer with a monochrome overlay
plane and an overlay enable plane implemented optionally on the Sun-4/110,
Sun-4/150, Sun-4/260 and Sun-4/280 system models. It provides the standard
frame buffer interface as defined in fbio (7I).

In addition to the ioctls described under fbio (7I) the cgeight interface
responds to two cgeight -specific colormap ioctls, FBIOPUTCMAPand
FBIOGETCMAP. FBIOPUTCMAPreturns no information other than success/failure
using the ioctl return value. FBIOGETCMAPreturns its information in the
arrays pointed to by the red, green, and blue members of its fbcmap structure
argument; fbcmap is defined in <sys/fbio.h> as:

struct fbcmap {
int index; /* first element (0 origin) */
int count; /* number of elements */
unsigned char *red; /* red color map elements */
unsigned char *green /* green color map elements */
unsigned char *blue; /* blue color map elements */

};

The driver uses color board vertical-retrace interrupts to load the colormap.

The systems have an overlay plane colormap, which is accessed by encoding
the plane group into the index value with the PIX_GROUPmacro (see
<sys/pr_planegroups.h >).

When using the mmap(2) system call to map in the cgeight frame buffer. The
device looks like:

DACBASE: 0x200000 -> Brooktree Ramdac 16 bytes
0x202000 -> P4 Register 4 bytes

OVLBASE: 0x210000 -> Overlay Plane 1152x900x1
0x230000 -> Overlay Enable Planea 1152x900x1
0x250000 -> 24-bit Frame Buffera 1152x900x32

FILES /dev/fbs/cgeight0
<sys/fbio.h>
<sys/pr_planegroups.h>

SEE ALSO mmap(2), fbio (7I)

Last modified 27 Mar 1992 SunOS 5.8 79

cgfour(7D) Devices

NAME cgfour – P4-bus 8-bit color memory frame buffer

SYNOPSIS /dev/fbs/cgfour n

DESCRIPTION The cgfour is a color memory frame buffer with a monochrome overlay plane
and an overlay enable plane. It provides the standard frame buffer interface as
defined in fbio (7I).

In addition to the ioctls described under fbio (7I) the cgfour interface responds
to two cgfour -specific colormap ioctls, FBIOPUTCMAPand FBIOGETCMAP.
FBIOPUTCMAPreturns no information other than success/failure using the ioctl
return value. FBIOGETCMAPreturns its information in the arrays pointed to by
the red, green, and blue members of its fbcmap structure argument; fbcmap is
defined in <sys/fbio.h> as:

struct fbcmap {
int index; /* first element (0 origin) */
int count; /* number of elements */
unsigned char *red /* red color map elements */
unsigned char *green; /* green color map elements */
unsigned char *blue; /* blue color map elements */

};

The driver uses color board vertical-retrace interrupts to load the colormap.

The cgfour has an overlay plane colormap, which is accessed by encoding
the plane group into the index value with the PIX_GROUPmacro (see
<sys/pr_planegroups.h>).

FILES /dev/fbs/cgfour0

SEE ALSO mmap(2), fbio (7I)

80 SunOS 5.8 Last modified 27 Mar 1992

Devices cgfourteen(7D)

NAME cgfourteen – 24-bit color graphics device

SYNOPSIS /dev/fbs/cgfourteen n

DESCRIPTION The cgfourteen device driver controls the video SIMM (VSIMM) component
of the video and graphics subsystem of the Desktop SPARCsystems with SX
graphics option. The VSIMM provides 24-bit truecolor visuals in a variety of
screen resolutions and pixel depths.

The driver supports multi-threaded applications and has an interface accessible
through mmap(2). The user must have an effective user ID of 0 to be able to write
to the control space of the cgfourteen device.

There are eight distinct physical spaces the user may map, in addition to the
control space. The mappings are set up by giving the desired offset to the
mmap(2) call.

The cgfourteen device supports the standard frame buffer interface as
defined in fbio (7I).

The cgfourteen device can serve as a system console device.

See /usr/include/sys/cg14io.h for other device-specific information.

FILES /kernel/drv/cgfourteen cgfourteen device driver

/dev/fbs/cgfourtee.n[0-9] Logical device name.

/usr/include/sys/cg14io.h Header file that contains device
specific information

/usr/include/sys/cg14reg.h Header file that contains device
specific information

SEE ALSO mmap(2), fbio (7I)

Last modified 4 Jun 1993 SunOS 5.8 81

cgsix(7D) Devices

NAME cgsix – accelerated 8-bit color frame buffer

SYNOPSIS /dev/fbs/cgsix n

DESCRIPTION cgsix is a low-end graphics accelerator designed to enhance vector and
polygon drawing performance. It has an 8-bit color frame buffer and provides
the standard frame buffer interface as defined in fbio (7I).

In addition, cgsix supports the following cgsix -specific IOCTL, defined
in <sys/fbio.h> .
FBIOGXINFO Returns cgsix -specific information about the hardware.

See the definition of cg6_info in <sys/fbio.h> for
more information.

cgsix has registers and memory that may be mapped with mmap(2), using the
offsets defined in <sys/cg6reg.h> .

FILES /dev/fbs/cgsix0

SEE ALSO mmap(2), fbio (7I)

82 SunOS 5.8 Last modified 27 Mar 1992

Devices cgthree(7D)

NAME cgthree – 8-bit color memory frame buffer

SYNOPSIS /dev/fbs/cgthree n

DESCRIPTION cgthree is a color memory frame buffer. It provides the standard frame buffer
interface as defined in fbio (7I).

FILES /dev/fbs/cgthree[0-9]

SEE ALSO mmap(2), fbio (7I)

Last modified 27 Mar 1992 SunOS 5.8 83

cgtwo(7D) Devices

NAME cgtwo – color graphics interface

SYNOPSIS /dev/cgtwo n

DESCRIPTION The cgtwo interface provides access to the color graphics controller board,
which is normally supplied with a 19” 66 Hz non-interlaced color monitor. It
provides the standard frame buffer interface as defined in fbio (7I).

The hardware consumes 4 megabytes of VME bus address space. The board
starts at standard address 0x400000. The board must be configured for interrupt
level 4.

FILES /dev/cgtwo[0-9]

SEE ALSO mmap(2), fbio (7I)

84 SunOS 5.8 Last modified 21 Oct 1991

Devices cmdk(7D)

NAME cmdk – common disk driver

SYNOPSIS cmdk@target, lun : [partition | slice]

DESCRIPTION The cmdk device driver is a common interface to various disk devices. The
driver supports magnetic fixed disks and magnetic removable disks.

The block-files access the disk using the system’s normal buffering mechanism
and are read and written without regard to physical disk records. There is also a
"raw" interface that provides for direct transmission between the disk and the
user’s read or write buffer. A single read or write call usually results in one I/O
operation; raw I/O is therefore considerably more efficient when many bytes are
transmitted. The names of the block files are found in /dev/dsk ; the names of
the raw files are found in /dev/rdsk .

I/O requests to the magnetic disk must have an offset and transfer length that
is a multiple of 512 bytes or the driver returns an EINVAL error. However,
I/O requests to the 2K-byte CD-ROM drive must be a multiple of 2K bytes.
Otherwise, the driver returns an EINVAL error, too.

Slice 0 is normally used for the root file system on a disk, slice 1 as a paging
area (for example, swap), and slice 2 for backing up the entire fdisk partition
for Solaris software. Other slices may be used for usr file systems or system
reserved area.

Fdisk partition 0 is to access the entire disk and is generally used by the
fdisk (1M) program.

FILES /dev/dsk/c ndn[s|p]n block device (IDE)

/dev/rdsk/c ndn[s|p]n raw device (IDE)

where:

cn controller n

dn lun n (0-7)

sn UNIX system slice n (0-15)

pn fdisk partition (0)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

Last modified 7 Feb 1998 SunOS 5.8 85

cmdk(7D) Devices

SEE ALSO fdisk (1M), mount (1M), lseek (2), read (2), write (2), readdir (3C), scsi (4),
vfstab (4), attributes (5), dkio (7I)

86 SunOS 5.8 Last modified 7 Feb 1998

Devices cnft(7D)

NAME cnft – device driver for Compaq NIC

SYNOPSIS /dev/cnft

DESCRIPTION The cnft Ethernet driver is a multi-threaded, loadable, clonable, STREAMS
GLD driver. This driver supports the following controllers :

� Compaq NetFlex-3/EISA

� 10Base-T UTP Module

� 10/100Base-TX UTP Module

� 100VG-AnyLAN UTP Module

� 100Base-FX Module

� Compaq NetFlex-3/PCI

� 10Base-T UTP Module

� 10/100Base-TX UTP Module

� 100VG-AnyLAN UTP Module

� 100Base-FX Module

� Compaq Netelligent 10Base-T PCI UTP

� Compaq Netelligent 10/100 TX PCI UTP

� Compaq Dual Port NetFlex-3 10/100TX PCI UTP

� Compaq Integrated NetFlex-3 10/100T PCI with AUI on ProLiant 2500
and Professional Workstation 5000

� Compaq Integrated NIC on DeskPro 4000/6000 and ProLiant 800

Multiple controllers installed within the system are supported by the driver. The
cnft driver provides basic support for these controllers. Functions include chip
initialization, frame transmit and receive, multicast support, and error recovery
and reporting and promiscuous mode support.

The cloning character-special device /dev/cnft is used to access all the above
mentioned network controllers installed on the system.

The driver binary cnft and the configuration file cnft.conf must be present
in /kernel/drv directory.

On Solaris 2.5, 2.5.1, and 2.6, for PCI controllers, the driver has to be added
using the command

example% add_drv —i ’"pciVID,DID"’

Last modified 20 Jun 1997 SunOS 5.8 87

cnft(7D) Devices

where VID is the Vendor ID and DID is the Device ID of the PCI controller. Given
below are the vendor ID and device ID of Compaq PCI NICs:

e11,f130 NetFlex-3/P Controller
e11,f150 NetFlex-3/P Controller(with TLAN 2.3)
e11,ae32 Netelligent 10/100 TX PCI UTP Controller
e11,ae34 Netelligent 10 T PCI UTP Controller
e11,ae40 NetFlex-3 Dual Port 10/100TX PCI UTP
e11,ae43 Integrated NetFlex-3 on ProLiant 2500

and Professional Workstation 5000
e11,ae35 Integrated NIC on DeskPro 4000/6000

and ProLiant 800

For example, to add the Netelligent 10 T PCI UTP Controller, the command to
be used is:

example% add_drv –i ’"pcie11,ae34"’

On Solaris 2.5/2.5.1/2.6, the NetFlex-3/E controller can be added by using
the command

example% add_drv cnft

On Solaris 2.6 systems, an entry must be present in the master file for EISA NICs.

For example, an entry for both the EISA controllers will be as shown below:

CPQF120|CPQF140 cnft net all cnft.bef "NetFlex-3 EISA"

CONFIGURATION The configuration file contains only the user defined properties.

The /kernel/drv/cnft.conf file supports the following options:
duplex_mode The duplex_mode can be selected using this

property. This entry is optional and if not
defined, autosense is taken as the default
duplex mode. The values are:

0 Board autosenses the duplex mode

1 Half duplex mode

2 Full duplex mode

max_tx_lsts The maximum transmit lists for the controller.
Every frame transmitted is described by a “list”.
This value defines the maximum number of
frames the driver can buffer before the controller

88 SunOS 5.8 Last modified 20 Jun 1997

Devices cnft(7D)

actually transmits the frame over the media. This
property is optional and a value of 16 is used
by default.

max_rx_lsts The maximum receive lists for the controller.
Every frame received is described by a “list”.
This value defines the maximum number of
receive buffers provided to the controller by the
driver. The controller will buffer as many frames
before the driver picks them up. This property is
optional and a value of 16 is used by default.

tx_threshold The value of transmit threshold for the controller.
This is the number of transmit frame complete
(TX EOF) interrupts that must accumulate in the
controller before it will generate an interrupt,
thereby conserving interrupt overhead on the
computer. This property is optional and a value
of 2 is used by default.

media_speed This property is used to force the media speed
for the controller. It can be used to force a
10/100Base-TX interface to 10Mbps or 100Mbps
operation. The values are :

0 Board autosenses the media speed

10 Force 10Base-T operation

100 Force 100Base-TX operation

mediaconnector This property is used by the driver to enable
the AUI connector for the Integrated NetFlex-3
controller on ProLiant 2500 or the BNC connector
for the Integrated NIC on DeskPro 4000/6000,
ProLiant 800, and Professional Workstation 5000.
The value is:

1 Use AUI Interface / Use BNC Interface

debug_flag This property enables or disables the debug
property of the driver. This is optional and by
default it is disabled. The values are:

0 Disable the debug property

1 Enable the debug property

Last modified 20 Jun 1997 SunOS 5.8 89

cnft(7D) Devices

board_id This property is used to support additional
controller IDs. The format is 0xVIDDID where
VID is the Vendor ID and DID the device ID.

FILES /dev/cnft cnft character special device

/kernel/drv/cnft.conf configuration file of cnft driver

<sys/stropts.h>
<sys/ethernet.h>
<sys/gld.h>

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5), dlpi (7P)

90 SunOS 5.8 Last modified 20 Jun 1997

STREAMS Modules connld(7M)

NAME connld – line discipline for unique stream connections

SYNOPSIS /dev/connld

DESCRIPTION connld is a STREAMS-based module that provides unique connections between
server and client processes. It can only be pushed (see streamio (7I)) onto one
end of a STREAMS-based pipe that may subsequently be attached to a name in
the file system name space with fattach (3C). After the pipe end is attached, a
new pipe is created internally when an originating process attempts to open (2)
or creat (2) the file system name. A file descriptor for one end of the new
pipe is packaged into a message identical to that for the ioctl I_SENDFD (see
streamio (7I)) and is transmitted along the stream to the server process on the
other end. The originating process is blocked until the server responds.

The server responds to the I_SENDFD request by accepting the file descriptor
through the I_RECVFD ioctl message. When this happens, the file descriptor
associated with the other end of the new pipe is transmitted to the originating
process as the file descriptor returned from open (2) or creat (2).

If the server does not respond to the I_SENDFD request, the stream that the
connld module is pushed on becomes uni-directional because the server will not
be able to retrieve any data off the stream until the I_RECVFD request is issued.
If the server process exits before issuing the I_RECVFD request, the open (2) or
the creat (2) invocation will fail and return -1 to the originating process.

When the connld module is pushed onto a pipe, it ignores messages going back
and forth through the pipe.

ERRORS On success, an open of connld returns 0. On failure, errno is set to the
following values:
EINVAL A stream onto which connld is being pushed is not a pipe

or the pipe does not have a write queue pointer pointing to a
stream head read queue.

EINVAL The other end of the pipe onto which connld is being
pushed is linked under a multiplexor.

EPIPE connld is being pushed onto a pipe end whose other end
is no longer there.

ENOMEM An internal pipe could not be created.

ENXIO An M_HANGUPmessage is at the stream head of the pipe
onto which connld is being pushed.

EAGAIN Internal data structures could not be allocated.

ENFILE A file table entry could not be allocated.

Last modified 3 Jul 1990 SunOS 5.8 91

connld(7M) STREAMS Modules

SEE ALSO creat (2), open (2), fattach (3C), streamio (7I)

STREAMS Programming Guide

92 SunOS 5.8 Last modified 3 Jul 1990

Devices console(7D)

NAME console – STREAMS-based console interface

SYNOPSIS /dev/console

DESCRIPTION The file /dev/console refers to the system console device. /dev/console
should be used for interactive purposes only. Use of /dev/console for logging
purposes is discouraged; syslog (3C) or msglog (7D) should be used instead.

The identity of this device depends on the EEPROM or NVRAM settings in effect
at the most recent system reboot; by default, it is the “workstation console”
device consisting of the workstation keyboard and frame buffer acting in concert
to emulate an ASCII terminal (see wscons (7D)).

Regardless of the system configuration, the console device provides
asynchronous serial driver semantics so that, in conjunction with the STREAMS
line discipline module ldterm (7M), it supports the termio (7I) terminal
interface.

SEE ALSO syslog (3C), termios (3C), ldterm (7M), termio (7I), msglog (7D),
wscons (7D)

NOTES In contrast to pre-SunOS 5.0 releases, it is no longer possible to redirect I/O
intended for /dev/console to some other device. Instead, redirection now
applies to the workstation console device using a revised programming interface
(see wscons (7D)). Since the system console is normally configured to be the work
station console, the overall effect is largely unchanged from previous releases.

See wscons (7D) for detailed descriptions of control sequence syntax, ANSI
control functions, control character functions and escape sequence functions.

Last modified 23 Apr 1999 SunOS 5.8 93

cpqncr(7D) Devices

NAME cpqncr – low-level module for Compaq 32-Bit Fast-Wide SCSI-2 EISA/PCI (825)
and Compaq Wide-Ultra SCSI PCI (875) Controllers

DESCRIPTION The cpqncr module provides low-level interface routines between the common
disk/tape I/O subsystem and the Compaq 825/875 SCSI (Small Computer
System Interface) controllers.

The cpqncr module can be configured for disk and streaming tape support for
one or more Compaq 825/875 controllers. Each controller should be the sole
initiator on a SCSI bus. Auto configuration code determines if the adapter is
present at the configured address and what types of devices are attached to it.

CONFIGURATION The driver attempts to initialize itself in accordance with the information found
in the configuration file, cpqncr.conf . The relevant user configurable items in
this file are as follows:
debug_flag This property enables or disables driver debug

messages. These messages are not displayed by
default. Setting the value to 1 enables debug
messages; setting it to 0 disables it.

alarm_msg_enable This property enables alarm messages displayed
for Storage System faults. Alarm messages are
enabled by setting the value to 1 and disabled
by setting it to 0. These messages are disabled
by default.

tag_enable This property enables or disables tag queueing
support by the driver. Tagged Queueing is
disabled by default. Tagged queueing is enabled
by setting the value to 1 and disabled by setting
the value to 0.

queue_depth This property sets the number of active requests
the driver can handle for a controller. The
maximum and default value is 37 and the
minimum value is 13 . This can be decreased for
supporting multiple controllers.

board_id This property enables support for Compaq
SCSI controllers other than Compaq 825/875
controllers. The board ID (Vendor and Device
ID) must be specified for the driver to support
the controller.

FILES /kernel/drv/cpqncr.conf configuration file for the cpqncr
driver

94 SunOS 5.8 Last modified 20 Jun 1997

Devices cpqncr(7D)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO driver.conf (4), attributes (5)

Last modified 20 Jun 1997 SunOS 5.8 95

cpr(7) Device and Network Interfaces

NAME cpr – Suspend and resume module

SYNOPSIS /platform/’uname -m’/kernel/misc/cpr

DESCRIPTION The cpr module is a loadable module used to suspend and resume the entire
system. You may wish to suspend a system to save power or to power off
temporarily for transport. The cpr module should not be used in place
of a normal shutdown when performing any hardware reconfiguration or
replacement. In order for the resume operation to succeed, it is important that
the hardware configuration remain the same. When the system is suspended,
the entire system state is preserved in non-volatile storage until a resume
operation is conducted.

dtpower (1M) or power.conf (4) are used to configure the suspend-resume
feature.

The speed of suspend and resume operations can range from 15 seconds to
several minutes, depending on the system speed, memory size, and load.

During resume operation, the SIGTHAWsignal is sent to all processes to allow
them to do any special processing in response to suspend-resume operation.
Normally applications are not required to do any special processing because of
suspend-resume, but some specialized processes can use SIGTHAWto restore
the state prior to suspend . For example, X can refresh the screen in response to
SIGTHAW.

In some cases the cpr module may be unable to perform the suspend
operation. If a system contains additional devices outside the standard shipped
configuration, it is possible that device drivers for these additional devices
might not support suspend-resume operations. In this case, the suspend will
fail and an error message will be displayed. These devices must be removed or
their device drivers unloaded for the suspend operation to succeed. Contact
the device manufacturer to obtain a new version of device driver that supports
suspend-resume.

A suspend may also fail when devices or processes are performing critical or
time-sensitive operations (such as realtime operations). The system will remain
in its current running state. Messages reporting the failure will be displayed on
the console and status returned to the caller. Once the system is successfully
suspended the resume operation will always succeed, barring external influences
such as a hardware reconfiguration.

Some network-based applications may fail across a suspend and resume cycle.
This largely depends on the underlying network protocol and the applications
involved. In general, applications that retry and automatically reestablish
connections will continue to operate transparently on a resume operation; those
applications that do not will likely fail.

96 SunOS 5.8 Last modified 15 Oct 1999

Device and Network Interfaces cpr(7)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcpr

Interface stability Unstable

SEE ALSO dtpower (1M) (OpenWindows Reference Manual), pmconfig (1M),
uadmin (1M), uadmin (2), power.conf (4), attributes (5)

Using Power Management

Writing Device Drivers

NOTES Certain device operations such as tape and floppy disk activities are not
resumable due to the nature of removable media. These activities are detected
at suspend time, and must be stopped before the suspend operation will
complete successfully.

Suspend-resume is currently supported only on a limited set of hardware
platforms. Please see the book Using Power Management for a complete
list of platforms that support system Power Management. See uname(2) to
programatically determine if the machine supports suspend-resume.

BUGS In extremely rare occasions, the system may fail during the early stages of a
resume operation. In this small window it is theoretically possible to be stuck
in a loop such that the system does not resume and does not boot normally. If
you are in such a loop, get to the PROM ok prompt using the L1+A keys and
enter the following command:

<ok> set-default boot-file

This command resets the system and with the next power-on the system will
boot normally.

Last modified 15 Oct 1999 SunOS 5.8 97

cvc(7D) Devices

NAME cvc – virtual console driver

DESCRIPTION cvc is a STREAMS-based pseudodriver that supports the network console,
which is called cvc on the host side and netcon on the SSP. cvc interfaces
with console (7D).

Logically, the cvc driver sits below the console driver. It redirects console
output to the cvcredir (7D) driver if a network console connection is active.
If a network console connection is not active, it redirects console output to
the JTAG interface.

The cvc driver receives console input from cvcredir and passes it to the
process associated with /dev/console .

NOTES The cvc facility supersedes the SunOS wscons (7D) facility, which should not be
used in conjunction with cvc . The wscons driver is useful for systems with
directly attached consoles (frame buffers and keyboards), but is not useful with
the Enterprise 10000 system, which has no local keyboard or frame buffer.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Sun Enterprise 10000 servers only

Availability SUNWcvc.u

SEE ALSO cvcd (1M), attributes (5), console (7D), cvcredir (7D), wscons (7D)

Sun Enterprise 10000 SSP 3.1.1 Collection

98 SunOS 5.8 Last modified 27 Jan 1998

Devices cvcredir(7D)

NAME cvcredir – virtual console redirection driver

DESCRIPTION cvcredir , the virtual console redirection driver for the Enterprise 10000 server,
is a STREAMS-based pseudodriver that works in conjunction with the cvc
driver, cvc (7D), and the cvc daemon, cvcd (1M).

The cvcredir device is opened at start-of-day by the cvc daemon, cvcd . The
cvcredir driver receives console output from cvc and passes it to cvcd . It
receives console input from cvcd and passes it to cvc .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Sun Enterprise 10000 servers only

Availability SUNWcvc.u

SEE ALSO cvcd (1M), attributes (5), console (7D), cvc (7D)

Sun Enterprise 10000 SSP 3.1.1 Collection

Last modified 27 Jan 1998 SunOS 5.8 99

dad(7D) Devices

NAME dad – driver for IDE disk devices

SYNOPSIS dad@target,lun:partition

DESCRIPTION This driver handles the ide disk drives on SPARC platforms.

The type of disk drive is determined using the ATA IDE identify device
command and by reading the volume label stored on block 0 of the drive. The
volume label describes the disk geometry and partitioning; it must be present or
the disk cannot be mounted by the system.

The block-files access the disk using the system’s normal buffering mechanism
and are read and written without regard to physical disk records. There is also a
"raw" interface that provides for direct transmission between the disk and the
user’s read or write buffer. A single read or write call usually results in one I/O
operation; raw I/O is therefore considerably more efficient when many bytes are
transmitted. The names of the block files are found in /dev/dsk ; the names of
the raw files are found in /dev/rdsk .

I/O requests to the raw device must be aligned on a 512-byte (DEV_BSIZE)
boundary and must have a length that is a multiple of 512 bytes. Requests which
do not meet the restrictions will cause the driver to return an EINVAL error. I/O
requests to the block device have no alignment or length restrictions.

Device Statistics
Support

Each device maintains I/O statistics both for the device and for each partition
allocated on that device. For each device/partition, the driver accumulates
reads, writes, bytes read, and bytes written. The driver also takes hi-resolution
time stamps at queue entry and exit points, which facilitates monitoring the
residence time and cumulative residence-length product for each queue.

Each device also has error statistics associated with it. These must include
counters for hard errors, soft errors and transport errors. Other data may be
implemented as required.

FILES /dev/dsk/c nt ndnsn block files

/dev/rdsk/c nt ndnsn raw files

where:
cn controller n

t n IDE target id n (0-3)

dn Always 0.

sn partition n (0-7)

The target ide numbers are assigned as:
0 Master disk on Primary channel.

1 Slave disk on Primary channel.

100 SunOS 5.8 Last modified 15 Mar 1999

Devices dad(7D)

2 Master disk on Secondary channel

3 Slave disk on Secondary channel.

IOCTLS Refer to dkio (7I).

ERRORS EACCES Permission denied.

EBUSY The partition was opened exclusively by another thread.

EFAULT The argument was a bad address.

EINVAL Invalid argument.

EIO An I/O error occurred.

ENOTTY This indicates that the device does not support the requested
ioctl function.

ENXIO During opening, the device did not exist.

EROFS The device is a read-only device.

SEE ALSO format (1M), mount (1M), lseek (2), read (2), write (2), driver.conf (4),
vfstab (4), dkio (7I)

X3T10 ATA-4 specifications.

DIAGNOSTICS offline
The driver has decided that the target disk is no longer there.

disk ok
The target disk is now responding again.

corrupt label - bad geometry
The disk label is corrupted.

corrupt label - label checksum failed
The disk label is corrupted.

corrupt label - wrong magic number
The disk label is corrupted.

disk not responding to selection
The target disk is not responding.

i/o to invalid geometry
The geometry of the drive could not be established.

incomplete read/write - retrying/giving up
There was a residue after the command completed normally.

no bp for disk label

Last modified 15 Mar 1999 SunOS 5.8 101

dad(7D) Devices

A bp with consistent memory could not be allocated.

no memory for disk label
Free memory pool exhausted.

ATA transport failed: reason ’nnnn’: {retrying|giving}
The host adapter has failed to transport a command to the target for the
reason stated. The driver will either retry the command or, ultimately, give
up.

corrupt label - wrong magic number
The disk label is corrupted.

corrupt label - label checksum failed
The disk label is corrupted.

corrupt label - bad geometry
The disk label is corrupted.

no mem for property
Free memory pool exhausted.

transport rejected (<n>)
Host adapter driver was unable to accept a command.

Device Fault
There has been a Device Fault - reason for such error is vendor specific.

102 SunOS 5.8 Last modified 15 Mar 1999

Devices dbri(7D)

NAME dbri – Dual Basic Rate ISDN and audio Interface

DESCRIPTION The dbri device uses the T5900FC Dual Basic Rate ISDN Interface (DBRI) and
Multimedia Codec chips to implement the audio device interface. This interface
is described fully in the audio (7I) manual page.

Applications that open /dev/audio may use the AUDIO_GETDEVioctl to
determine which audio device is being used. The dbri driver will return the
string "SUNW,dbri" in the name field of the audio_device structure. The
version field will contain "e" and the config field will contain one of the
following values: "isdn_b" on an ISDN B channel stream, "speakerbox" on
a /dev/audio stream associated with a SpeakerBox, and lastly "onboard1" on
a /dev/audio stream associated with the onboard Multimedia Codec.

The AUDIO_SETINFOioctl controls device configuration parameters. When an
application modifies the record.buffer_size field using the AUDIO_SETINFOioctl,
the driver will constrain it to be non-zero and a multiple of 16 bytes, up to
a maximum of 8176 bytes.

Audio Interfaces The SpeakerBox audio peripheral is available for connection to the SpeakerBox
Interface (SBI) port of most dbri equipped systems and provides an integral
monaural speaker as well as stereo line out, stereo line in, stereo headphone,
and monaural microphone connections. The headset output level is adequate
to power most headphones, but may be too low for some external speakers.
Powered speakers or an external amplifier may be used with both the headphone
and line out ports.

SPARCstation LX systems have the Multimedia Codec integrated onto the
CPU board of the machine thus giving users the option of using it or using a
SpeakerBox plugged into the AUI/Audio port on the back panel. When using
the "onboard" Codec, the microphone and headphone ports are located on the
system back panel - there are no Line In or Line Out ports available for this
configuration. In addition, the headphone and microphone ports do not have
the input detection circuitry to determine whether or not there is currently
headphones or a microphone plugged in. If a SpeakerBox is plugged in when the
machine is first rebooted and reconfigured, or upon the first access of the audio
device, it will be used, otherwise the onboard Codec will be used.

The Sun Microphone is recommended for normal desktop audio recording.
When the Sun Microphone is used in conjunction with the SpeakerBox, the
microphone battery is bypassed. Other audio sources may be recorded by
connecting their line output to the SpeakerBox line input (audio sources may also
be connected from their headphone output if the volume is adjusted properly).

ISDN Interfaces The DBRI controller offers two Basic Rate ISDN (BRI) interfaces. One is a BRI
Terminal Equipment (TE) interface and the other is a BRI Network Termination
(NT) interface.

Last modified 1 Jan 1997 SunOS 5.8 103

dbri(7D) Devices

The NT connector is switched by a relay so that when system power is not
available or when software is not accessing the NT port, the TE and NT
connectors are electrically connected and devices plugged into the NT port
will be on the same BRI passive bus.

Audio Data Formats
for the Multimedia
Codec/SpeakerBox

The dbri device supports the audio formats listed in the following table. When
the device is open for simultaneous play and record, the input and output
data formats must match.

Supported Audio Data Formats

Sampe Rate Encoding Precision Channels

8000 Hz mu-law or A-law 8 1

9600 Hz mu-law or A-law 8 1

11025 Hz mu-law or A-law 8 1

16000 Hz mu-law or A-law 8 1

18900 Hz mu-law or A-law 8 1

22050 Hz mu-law or A-law 8 1

32000 Hz mu-law or A-law 8 1

37800 Hz mu-law or A-law 8 1

44100 Hz mu-law or A-law 8 1

48000 Hz mu-law or A-law 8 1

8000 Hz linear 16 1 or 2

9600 Hz linear 16 1 or 2

11025 Hz linear 16 1 or 2

16000 Hz linear 16 1 or 2

18900 Hz linear 16 1 or 2

22050 Hz linear 16 1 or 2

32000 Hz linear 16 1 or 2

37800 Hz linear 16 1 or 2

44100 Hz linear 16 1 or 2

48000 Hz linear 16 1 or 2

Audio Data Formats
for BRI Interfeces

ISDN channels implement a subset of audio semantics. The preferred ioctls
for querying or setting the format of a BRI channel are ISDN_GET_FORMAT,
ISDN_SET_FORMAT, and ISDN_SET_CHANNEL.In particular, there is no audio

104 SunOS 5.8 Last modified 1 Jan 1997

Devices dbri(7D)

format described in audio (7I) that covers HDLC or transparent data. The dbri
driver maps HDLC and transparent data to AUDIO_ENCODING_NONE.ISDN
D-channels are always configured for HDLC encoding of data. The programmer
should interpret an encoding value of AUDIO_ENCODING_NONEas an indication
that the fd is not being used to transfer audio data.

B-channels can be configured for mu-law (as in the Greek letter mu), A-law, or
HDLC encoding of data. The mu-law and A-law formats are always at 8000
Hz, 8-bit, mono. Although a BRI H-channel is actually 16 bits wide at the
physical layer and the 16-bit sample occurs at 8 kHz, the HDLC encoding always
presents the data in 8-bit quantities. Therefore, 56 bit-per-second (bps), 64 bps,
and 128 bps formats are all presented to the programmer as 8-bit wide, mono,
AUDIO_ENCODING_NONEformat streams at different sample rates. A line rate of
56kbps results in a 8-bit sample rate of 7000 Hz. If the bit stuffing and un-stuffing
of HDLC were taken into account, the data rate would be slightly less.

For the sake of compatibility, AUDIO_GETINFOwill return one of the following
on a ISDN channel:

BRI Audio Data Formats

Sample Rate Encoding Precision Channels

8000 Hz mu-law or A-law 8 1

- AUDIO_ENCODING_NONE - -

ISDN_GET_FORMATwill return one of the following for an ISDN channel:

BRI Audio Data Formats

Mode Sample
Rate

Encoding Precision # Ch Available
on

HDLC 2000 Hz NONE 8 1 D

HDLC 7000 Hz NONE 8 1 B1,B2

HDLC 8000 Hz NONE 8 1 B1,B2

HDLC 16000 Hz NONE 8 1 B1,B2

TRANS 8000 Hz mu-law 8 1 B1,B2

TRANS 8000 Hz A-law 8 1 B1,B2

TRANS 8000 Hz NONE 8 1 B1,B2

TRANS 8000 Hz NONE 16 1 B1 only

In the previous table:

Last modified 1 Jan 1997 SunOS 5.8 105

dbri(7D) Devices

HDLC = ISDN_MODE_HDLC TRANS = ISDN_MODE_TRANSPARENT

Audio Ports Audio ports are not relevant to ISDN D or B channels.

The record.avail_ports and play.avail_ports fields of the audio_info structure
report the available input and output ports. The dbri device supports two input
ports, selected by setting the record.port field to either AUDIO_MICROPHONE
or AUDIO_LINE_IN . The play.port field may be set to any combination of
AUDIO_SPEAKER, AUDIO_HEADPHONE, and AUDIO_LINE_OUTby OR’ing
the desired port names together. As noted above, when using the onboard
Multimedia Codec on the SPARCstation LX, the Line In and Line Out ports
are not available.

Sample Granularity Since the dbri device manipulates buffers of audio data, at any given time the
reported input and output sample counts will vary from the actual sample count
by no more than the size of the buffers it is transferring. Programs should, in
general, not rely on absolute accuracy of the play.samples and record.samples
fields of the audio_info structure.

Audio Status Change
Notification

As described in audio (7I), it is possible to request asynchronous notification
of changes in the state of an audio device. The DBRI driver extends this to the
ISDN B channels by sending the signal up the data channel instead of the control
channel. Asynchronous notification of events on a B-channel only occurs when
the channel is in a transparent data mode. When the channel is in HDLC mode,
no such notification will take place.

ERRORS In addition to the errors described in audio (7I), an open() will fail if:
ENODEV The driver is unable to communicate with the SpeakerBox,

possibly because it is currently not plugged in.

FILES The physical device names are very system dependent and are rarely used by
programmers. For example:

/devices/sbus@1,f8000000/SUNW,DBRIe@1,10000:te,b2.

The programmer should instead use the generic device names listed below:
/dev/audio symlink to the system’s primary audio device,

not necessarily a dbri based audio device

/dev/audioctl control device for the above audio device

/dev/sound/0* represents the first audio device on the system
and is not necessarily based on dbri or
SpeakerBox

/dev/sound/0 first audio device in the system

/dev/sound/0ctl audio control for above device

106 SunOS 5.8 Last modified 1 Jan 1997

Devices dbri(7D)

/dev/isdn/0/* represents the first ISDN device on the system
and any associated interfaces. This device is not
necessarily based on dbri.

/dev/isdn/0/te/mgt TE management device

/dev/isdn/0/te/d TE D channel

/dev/isdn/0/te/b1 TE B1 channel

/dev/isdn/0/te/b2 TE B2 channel

/dev/isdn/0/nt/mgt NT management device

/dev/isdn/0/nt/d NT D channel

/dev/isdn/0/nt/b1 NT B1 channel

/dev/isdn/0/nt/b2 NT B2 channel

/dev/isdn/0/aux/0 SpeakerBox or onboard Multimedia Codec

/dev/isdn/0/aux/0ctl Control device for SpeakerBox or onboard
Multimedia Codec

/usr/demo/SOUND audio demonstration programs and other files

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

The DBRI Multimedia Codec, and SpeakerBox are available on SPARCstation
10 and LX systems.

SPARCstation 10SX and SPARCstation 20 systems have the Multimedia Codec
integrated onto the CPU board of the machine.

This hardware may or may not be available on future systems from Sun
Microsystems Computer Corporation.

There are new configurations for the SX10SX and Gypsy machines. The SS10BSX
looks like a speakerbox but does not have auto-detection of the Headphone
and Microphone ports. The Gypsy claims to be "onboard" but does have line
in and line out ports.

SEE ALSO ioctl (2), attributes (5), audio (7I), isdnio (7I), streamio (7I)

AT&T Microelectronics data sheet for the T5900FC Sun Dual Basic Rate ISDN
Interface.

Last modified 1 Jan 1997 SunOS 5.8 107

dbri(7D) Devices

Crystal Semiconductor, Inc., data sheet for the CS4215 16-Bit, 48 kHz, Multimedia
Audio Codec Publication number DS76PP5.

NOTES Due to hardware restrictions, it is impossible to reduce the record gain to 0. A
valid input signal is still received at the lowest gain setting the Multimedia Codec
allows. For security reasons, the dbri driver disallows a record gain value of 0.
This is to provide feedback to the user that such a setting is not possible and that
a valid input signal is still being received. An attempt to set the record gain to 0
will result in the lowest possible non-zero gain. The audio_info structure will
be updated with this value when the AUDIO_SETINFOioctl returns.

BUGS When a DBRI channel associated with the SpeakerBox Interface underruns, DBRI
may not always repeat the last sample but instead could repeat more than one
sample. This behavior can result in a tone being generated by an audio device
connected to the SBI port.

Monitor STREAMs connected to a B1 channel on either the TE or NT interface do
not work because of a DBRI hardware problem. The device driver disallows the
creation of such monitors.

108 SunOS 5.8 Last modified 1 Jan 1997

Devices devinfo(7D)

NAME devinfo – device information driver

DESCRIPTION The devinfo driver is a private mechanism used by the libdevinfo interfaces
to access kernel device configuration data and to guarantee data consistency.

FILES /devices/pseudo/devinfo@0:devinfo

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Stability Level Private

SEE ALSO libdevinfo (3DEVINFO), libdevinfo (4), attributes (5)

Writing Device Drivers

Last modified 9 Jan 1998 SunOS 5.8 109

dkio(7I) Ioctl Requests

NAME dkio – disk control operations

SYNOPSIS #include <sys/dkio.h>

#include <sys/vtoc.h>

DESCRIPTION Disk drivers support a set of ioctl (2) requests for disk controller, geometry,
and partition information. Basic to these ioctl() requests are the definitions
in <sys/dkio.h> .

IOCTLS The following ioctl() requests set and/or retrieve the current disk controller,
partitions, or geometry information on all architectures:
DKIOCINFO The argument is a pointer to a dk_cinfo structure

(described below). This structure tells the controller–type
and attributes regarding bad-block processing done on the
controller.

/*
* Structures and definitions for disk I/O control commands
*/

#define DK_DEVLEN 16 /* device name max length, */
/* including unit # and NULL */
/* Used for controller info */

struct dk_cinfo {
char dki_cname[DK_DEVLEN]; /* controller name */

/*(no unit #)*/
ushort_t dki_ctype; /* controller type */
ushort_t dki_flags; /* flags */
ushort_t dki_cnum; /* controller number */
uint_t dki_addr; /* controller address */
uint_t dki_space; /* controller bus type */
uint_t dki_prio; /* interrupt priority */
uint_t dki_vec; /* interrupt vector */
char dki_dname[DK_DEVLEN]; /* drive name (no unit #) */
uint_t dki_unit; /* unit number */
uint_t dki_slave; /* slave number */
ushort_t dki_partition; /* partition number */
ushort_t dki_maxtransfer; /* maximum transfer size */

/* in DEV_BSIZE */

};
/*

* Controller types
*/

#define DKC_UNKNOWN 0
#define DKC_CDROM 1 /* CD-ROM, SCSI or other */
#define DKC_WDC2880 2
#define DKC_XXX_0 3 /* unassigned */
#define DKC_XXX_1 4 /* unassigned */
#define DKC_DSD5215 5
#define DKC_ACB4000 7
#define DKC_MD21 8
#define DKC_XXX_2 9 /* unassigned */

110 SunOS 5.8 Last modified 17 June 1999

Ioctl Requests dkio(7I)

#define DKC_NCRFLOPPY 10
#define DKC_SMSFLOPPY 12
#define DKC_SCSI_CCS 13 /* SCSI CCS compatible */
#define DKC_INTEL82072 14 /* native floppy chip */
#define DKC_MD 16 /* meta-disk (virtual-disk) */

/* driver */
#define DKC_INTEL82077 19 /* 82077 floppy disk */

/* controller */
#define DKC_DIRECT 20 /* Intel direct attached */

/* device (IDE) */
#define DKC_PCMCIA_MEM 21 /* PCMCIA memory disk-like */

/* type */
#define DKC_PCMCIA_ATA 22 /* PCMCIA AT Attached type */

/*
* Sun reserves up through 1023
*/

#define DKC_CUSTOMER_BASE 1024

/*
* Flags
*/

#define DKI_BAD144 0x01 /* use DEC std 144 */
/* bad sector fwding */

#define DKI_MAPTRK 0x02 /* controller does */
/* track mapping */

#define DKI_FMTTRK 0x04 /* formats only full
/* track at a time*/

#define DKI_FMTVOL 0x08 /* formats only full */
/* volume at a time*/

#define DKI_FMTCYL 0x10 /* formats only full */
/* cylinders at a time*/

#define DKI_HEXUNIT 0x20 /* unit number printed as */
/* 3 hexdigits */

#define DKI_PCMCIA_PFD 0x40 /* PCMCIA pseudo-floppy */
/* memory card */

*/
* Sun reserves up through 1023
*/

#define DKC_CUSTOMER_BASE 1024

/*
* Flags
*/

#define DKI_BAD144 0x01 /* use DEC std 144
/* bad sector fwding */

#define DKI_MAPTRK 0x02 /* controller does */
/* track mapping */

#define DKI_FMTTRK 0x04 /* formats only full
/* track at a time*/

#define DKI_FMTVOL 0x08 /* formats only full */
/* volume at a time*/

Last modified 17 June 1999 SunOS 5.8 111

dkio(7I) Ioctl Requests

#define DKI_FMTCYL 0x10 /* formats only full */
/* cylinders at a time*/

#define DKI_HEXUNIT 0x20 /* unit number printed */
/* as 3 hex digits */

#define DKI_PCMCIA_PFD 0x40 /* PCMCIA pseudo-floppy*/
/* memory card */

DKIOCGAPART The argument is a pointer to a dk_allmap structure
(described below). This ioctl() gets the controller’s notion
of the current partition table for disk drive.

DKIOCSAPART The argument is a pointer to a dk_allmap structure
(described below). This ioctl() sets the controller’s notion
of the partition table without changing the disk itself.

/*
* Partition map (part of dk_label)
*/ struct dk_map {

daddr_t dkl_cylno; /* starting cylinder */
daddr_t dkl_nblk; /* number of blocks */
};

/*
* Used for all partitions
*/

struct dk_map {
struct dk_allmap {
struct dk_map dka_map[NDKMAP];
};

DKIOCGGEOM The argument is a pointer to a dk_geom structure (described
below). This ioctl() gets the controller’s notion of the
current geometry of the disk drive.

DKIOCSGEOM The argument is a pointer to a dk_geom structure (described
below). This ioctl() sets the controller’s notion of the
geometry without changing the disk itself.

DKIOCGVTOC The argument is a pointer to a vtoc structure (described
below). This ioctl() returns the device’s current volume
table of contents (VTOC.)

DKIOCSVTOC The argument is a pointer to a vtoc structure (described
below). This ioctl() changes the VTOC associated with
the device.

struct partition {
ushort_t p_tag; /* ID tag of partition */
ushort_t p_flag; /* permission flags */
daddr_t p_start; /* start sector of partition */
long p_size; /* # of blocks in partition */
};

112 SunOS 5.8 Last modified 17 June 1999

Ioctl Requests dkio(7I)

If DKIOCSVTOCis used with a floppy diskette, the p_start field must be the
first sector of a cylinder. To compute the number of sectors per cylinder, multiply
the number of heads by the number of sectors per track.

struct vtoc {
unsigned long v_bootinfo[3]; /* info needed by mboot

/* (unsupported)*/
unsigned long v_sanity; /* to verify vtoc sanity */
unsigned long v_version; /* layout version */
char v_volume[LEN_DKL_VVOL]; /* volume name */
ushort_t v_sectorsz; /* sector size in bytes*/
ushort_t v_nparts; /* number of partitions*/
unsigned long v_reserved[10]; /* free space */
struct partition v_part[V_NUMPAR]; /* partition headers*/
time_t timestamp[V_NUMPAR]; /* partition timestamp

/* (unsupported)*/
char v_asciilabel[LEN_DKL_ASCII]; /* compatibility */
};

/*
* Partition permission flags
*/

#define V_UNMNT 0x01 /* Unmountable partition */
#define V_RONLY 0x10 /* Read only */

/*
* Partition identification tags
*/

#define V_UNASSIGNED 0x00 /* unassigned partition */
#define V_BOOT 0x01 /* Boot partition */
#define V_ROOT 0x02 /* Root filesystem */
#define V_SWAP 0x03 /* Swap filesystem */
#define V_USR 0x04 /* Usr filesystem */
#define V_BACKUP 0x05 /* full disk */
#define V_VAR 0x07 /* Var partition */
#define V_HOME 0x08 /* Home partition */
#define V_ALTSCTR 0x09 /* Alternate sector partition */

DKIOCEJECT If the drive supports removable media, this
ioctl() requests the disk drive to eject its disk.

DKIOCREMOVABLE The argument to this ioctl() is an integer.
After successful completion, this ioctl() will
set that integer to a non-zero value if the drive in
question has removable media. If the media is
not removable, that integer will be set to 0.

DKIOCSTATE This ioctl() blocks until the state of the drive,
inserted or ejected, is changed. The argument is a
pointer to a dkio_state , enum, whose possible
enumerations are listed below. The initial value

Last modified 17 June 1999 SunOS 5.8 113

dkio(7I) Ioctl Requests

should be either the last reported state of the
drive, or DKIO_NONE. Upon return, the enum
pointed to by the argument is updated with the
current state of the drive.

enum dkio_state {
DKIO_NONE, /* Return disk’s current state */
DKIO_EJECTED, /* Disk state is ’ejected’ */
DKIO_INSERTED /* Disk state is ’inserted’ */
};

DKIOCLOCK For devices with removable media, this ioctl()
requests the disk drive to lock the door.

DKIOCUNLOCK For devices with removable media, this ioctl()
requests the disk drive to unlock the door.

DKIOCGMEDIAINFO The argument to this ioctl() is a pointer to
a dk_minfo structure. The structure indicates
the type of media or the command set profile
used by the drive to operate on the media. The
dk_minfo structure also indicates the logical
media blocksize the drive uses as the basic unit
blocksize of operation and the raw formatted
capacity of the media in number of logical blocks.

/*
* Used for media info or profile info
*/
struct dk_minfo {
uint_t dki_media_type; /* Media type or profile info */
uint_t dki_lbsize; /* Logical blocksize of media */
diskaddr_t dki_capacity; /* Capacity as # of dki_lbsize blks */
};
/*
* Media types or profiles known
*/
#define DK_UNKNOWN 0x00 /* Media inserted - type unknown */

/*
* SFF 8090 Specification Version 3, media types 0x01 - 0xfffe are retained to
* maintain compatibility with SFF8090. The following define the
* optical media type.
*/
#define DK_MO_ERASABLE 0x03 /* MO Erasable */
#define DK_MO_WRITEONCE 0x04 /* MO Write once */
#define DK_AS_MO 0x05 /* AS MO */
#define DK_CDROM 0x08 /* CDROM */
#define DK_CDR 0x09 /* CD-R */
#define DK_CDRW 0x0A /* CD-RW */
#define DK_DVDROM 0x10 /* DVD-ROM */
#define DK_DVDR 0x11 /* DVD-R */
#define DK_DVDRAM 0x12 /* DVD_RAM or DVD-RW */

114 SunOS 5.8 Last modified 17 June 1999

Ioctl Requests dkio(7I)

/*
* Media types for other rewritable magnetic media
*/
#define DK_FIXED_DISK 0x10001 /* Fixed disk SCSI or otherwise */
#define DK_FLOPPY 0x10002 /* Floppy media */
#define DK_ZIP 0x10003 /* IOMEGA ZIP media */
#define DK_JAZ 0x10004 /* IOMEGA JAZ media */

If the media exists and the host can obtain a current profile list, the command will
succeed and return the dk_minfo structure with data representing that media.

If there is no media in the drive, the command will fail and the host will return
an ENXIO error, indicating that it cannot gather the information requested.

If the profile list is not available, the host will attempt to identify the media-type
based on the available information.

If identification is not possible, the host will return media type DK_UNKNOWN. See
NOTES for blocksize usage and capacity information.

IA Only The following ioctl() requests set and/or retrieve the current disk controller,
partitions, or geometry information on IA architecture.
DKIOCG_PHYGEOM The argument is a pointer to a dk_geom structure

(described below). This ioctl() gets the
driver’s notion of the physical geometry of the
disk drive. It is functionally identical to the
DKIOCGGEOM ioctl() .

DKIOCG_VIRTGEOM The argument is a pointer to a dk_geom
structure (described below). This ioctl()
gets the controller’s (and hence the driver’s)
notion of the virtual geometry of the disk drive.
Virtual geometry is a view of the disk geometry
maintained by the firmware in a host bus adapter
or disk controller. If the disk is larger than 8
Gbytes, this ioctl will fail because a CHS-based
geometry is not relevant or useful for this drive.

/*
* Definition of a disk’s geometry
*/
*/struct dk_geom {
unsigned shor dkg_ncyl; /* # of data cylinders */
unsigned shor dkg_acyl; /* # of alternate cylinders */
unsigned short dkg_bcyl; /* cyl offset (for fixed head area) */
unsigned short dkg_nhead; /* # of heads */
unsigned short dkg_obs1; /* obsolete */
unsigned short dkg_nsect; /* # of sectors per track*/
unsigned short dkg_intrlv; /* interleave factor */
unsigned short dkg_obs2; /* obsolete */

Last modified 17 June 1999 SunOS 5.8 115

dkio(7I) Ioctl Requests

unsigned short dkg_obs3; /* obsolete */
unsigned short dkg_apc; /* alternates per cylinder */

/* (SCSI only) */
unsigned short dkg_rpm; /* revolutions per min*/
unsigned short dkg_pcyl; /* # of physical cylinders */
unsigned short dkg_write_reinstruct; /* # sectors to skip, writes*/
unsigned short dkg_read_reinstruct; /* # sectors to skip, reads*/
unsigned short dkg_extra[7]; /* for compatible expansion*/
};
#define dkg_gap1 dkg_extra[0] /* for application compatibility*/
#define dkg_gap2 dkg_extra[1] /* for application compatibility*/

DKIOCADDBAD This ioctl() forces the driver to re-examine the alternates
slice and rebuild the internal bad block map accordingly. It
should be used whenever the alternates slice is changed by
any method other than the addbadsec (1M) or format (1M)
utilities. DKIOCADDBADcan only be used for software
remapping on IDE drives; SCSI drives use hardware
remapping of alternate sectors.

DKIOCPARTINFOThe argument is a pointer to a part_info structure
(described below). This ioctl() gets the driver’s notion of
the size and extent of the partition or slice indicated by the
file descriptor argument.

/*
* Used by applications to get partition or slice information
*/

struct part_info {
daddr_t p_start;
int p_length;

};

SEE ALSO format (1M), ioctl (2), sd (7D), xd (7D), cdio (7I), fdio (7I), hdio (7I), xy (7D)
IA Only addbadsec (1M), cmdk(7D)

NOTES Blocksize information provided in DKIOCGMEDIAINFOis the size (in bytes) of
the device’s basic unit of operation and may differ from the blocksize that
the Solaris operating environment exports to the user. Capacity information
provided in the DKIOCGMEDIAINFOare for reference only and you are advised
to use the values returned by DKIOCGGEOMor other appropriate ioctl for
accessing data using the standard interfaces.

116 SunOS 5.8 Last modified 17 June 1999

Protocols dlpi(7P)

NAME dlpi – Data Link Provider Interface

SYNOPSIS #include <sys/dlpi.h>

DESCRIPTION SunOS STREAMS-based device drivers wishing to support the STREAMS
TCP/IP and other STREAMS-based networking protocol suite implementations
support Version 2 of the Data Link Provider Interface (“DLPI”). DLPI V2 enables
a data link service user to access and use any of a variety of conforming data
link service providers without special knowledge of the provider’s protocol.
Specifically, the interface is intended to support Ethernet, X.25 LAPB, SDLC,
ISDN LAPD, CSMA/CD, FDDI, token ring, token bus, Bisync, and other
datalink-level protocols.

The interface specifies access to the data link service provider in the form of
M_PROTOand M_PCPROTOtype STREAMS messages and does not define a
specific protocol implementation. The interface defines the syntax and semantics
of primitives exchanged between the data link user and the data link provider
to attach a physical device with physical-level address to a stream, bind a
datalink-level address to the stream, get implementation-specific information
from the data link provider, exchange data with a peer data link user in one
of three communication modes (connection, connectionless, acknowledged
connectionless), enable/disable multicast group and promiscuous mode
reception of datalink frames, get and set the physical address associated with a
stream, and several other operations.

For details on this interface refer to the <sys/dlpi.h> header and to the
STREAMS DLPI Specification, 800-6915-01.

FILES Files in or under /dev .

SEE ALSO le (7D)

Last modified 2 Oct 1991 SunOS 5.8 117

dnet(7D) Devices

NAME dnet – Ethernet driver for DEC 21040, 21041, 21140 Ethernet cards

SYNOPSIS /kernel/drv/dnet

DESCRIPTION The dnet Ethernet driver is a multithreaded, loadable, clonable, STREAMS
GLD driver. Multiple controllers installed within the system are supported by
the driver. The dnet driver functions include controller initialization, frame
transmit and receive, functional addresses, promiscuous and multicast support,
and error recovery and reporting.

APPLICATION
PROGRAMMING

INTERFACE

The cloning character-special device, /dev/dnet , is used to access all DEC
21040/21041/21140 devices installed in the system.

The dnet driver is dependent on /kernel/misc/gld , a loadable kernel
module that provides the dnet driver with the DLPI and STREAMSfunctionality
required of a LAN driver. See gld (7D) for more details on the primitives
supported by the driver.

The device is initialized on the first attach and de-initialized (stopped) on the
last detach.

The values returned by the driver in the DL_INFO_ACKprimitive in response to
a DL_INFO_REQfrom the user are as follows:

� The maximum SDU is 1500 (ETHERMTU- defined in <sys/ethernet.h>).

� The minimum SDU is 0.

� The DLSAPaddress length is 8.

� The MAC type is DL_ETHER.

� The sap length value is −2, meaning the physical address component
is followed immediately by a 2-byte sap component within the DLSAP
address.

� The broadcast address value is the Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

Once in the DL_ATTACHEDstate, the user must send a DL_BIND_REQto associate
a particular Service Access Point (SAP) with the stream.

CONFIGURATION The /kernel/drv/dnet.conf file supports the following options:
full-duplex For full duplex operation use full-duplex=1 , for half

duplex use full-duplex=0 . Half-duplex operation gives
better results on older 10mbit networks.

speed For 10mbit operation use speed=10 , for 100mbit operation
use speed=100 . Certain 21140 based cards will operate at
either speed. Use the speed property to override the 100mbit
default in this case.

118 SunOS 5.8 Last modified 2 Sep 1997

Devices dnet(7D)

FILES /dev/dnet character special device

/kernel/drv/dnet.conf dnet configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5), dlpi (7P), gld (7D) streamio (7I)

Writing Device Drivers

STREAMS Programming Guide

Network Interfaces Programmer’s Guide

Last modified 2 Sep 1997 SunOS 5.8 119

dr(7d) Devices

NAME dr, drmach – Sun Enterprise 10000 dynamic reconfiguration driver

SYNOPSIS dr

drmach

DESCRIPTION The dr driver provides a pseudo-driver interface to sequencing dynamic attach
and detach of Sun Enterprise 10000 system boards. This interface is provided
using file system entry points referred to as attachment points. An attachment
point exists for each possible system board slot in the Sun Enterprise 10000
server and takes the form of:

/devices/pseudo/dr@0:slotX

where X represents the physical slot number (0 to 15) for a particular system
board.

The dr driver is designed as a general module for sequencing dr operations for
different platforms. The dr driver works in conjunction with the drmach(7)
miscellaneous module, which provides platform-specific (Sun Enterprise 10000
server) dr sequencing and attributes.

Execution of dr operations on the Sun Enterprise 10000 server is performed
by the dr_daemon (1M) . When performing either a dr attach or dr detach
operation, dr_daemon (1M) makes the appropriate ioctl (2) system calls into
the respective attachment point for that particular board. The general sequence
of the ioctl (2) calls are:

For dr attach:
CONNECT

OBP probes for the devices on the incoming board.

CONFIGURE
Convert the device nodes into CF2 and make the respective resources
available to the OS.

For dr detach:
RELEASE

Release usage of certain devices on the respective board.

UNCONFIGURE
Remove respective devices from the operating system resource pool.

DISCONNECT
Remove devices from the (OBP) device tree.

In the Solaris 8 operating environment, unsafe drivers are registered by using the
dr.conf property unsupported-io-drivers , as in the following example.

120 SunOS 5.8 Last modified 19 April 1999

Devices dr(7d)

unsupported-io-drivers="device_name1", "device_name2", ...;

The syntax of the property follows the Form #3 described in driver.conf (4)

SEE ALSO add_drv (1M) , drvconfig (1M) , devlinks (1M) , disks (1M) , ports (1M) ,
dr_daemon (1M) , tapes (1M)

Sun Enterprise 10000 Dynamic Reconfiguration User Guide

Sun Enterprise 10000 SSP 3.2 User Guide

Last modified 19 April 1999 SunOS 5.8 121

ecpp(7D) Devices

NAME ecpp – IEEE 1284 ecp, nibble and centronics compatible parallel port driver

SYNOPSIS #include <sys/types.h>

#include <fcntl.h>

#include <sys/ecppio.h>

fd=open("/dev/ecpp0",flags);

DESCRIPTION The ecpp driver provides a bi-directional interface to IEEE 1284 compliant
devices as well as a forward single-directional interface to Centronics devices.
The ecpp driver supports the IEEE 1284 Compatibility, Nibble, and ECP
protocols as well as the Centronic protocol. ECPP_COMPAT_MODE and
ECPP_CENTRONICS modes of operation have logically identical handshaking
protocols; however devices that support ECPP_COMPAT_MODE are IEEE
1284 compliant devices. IEEE 1284 compliant devices support at least
ECPP_COMPAT_MODE and ECPP_NIBBLE_MODE. Centronics devices will
support only ECPP_CENTRONICS mode.

By default, ECPP_COMPAT_MODE devices have a strobe handshaking pulse
width of 500ns. For this mode, forward data transfers are conducted by
DMA. By default, the strobe pulse width for ECPP_CENTRONICS devices is
two microsecond. Forward transfers for these devices are managed through
PIO. The default characteristics for both ECPP_COMPAT_MODE and
ECPP_CENTRONICS devices may be changed through tunable variables
defined in ecpp.conf . The ecpp driver is an exclusive-use device; if the device
has already been opened, subsequent opens fail with EBUSY.

Default Operation Each time the ecpp device is opened, the device is marked as EBUSYand the
configuration variables are set to their default values. The write_timeout
period is set to 90 seconds.

The driver sets the mode variable according to the following algorithm: The
driver initially attempts to negotiate the device into ECP mode. If this fails, the
driver will attempt to negotiate into Nibble mode. If Nibble mode negotiation
fails, the driver will operate in Centronics mode. The application may attempt
to negotiate the device into a specific mode or set the write_timeout values
through the ECPPIOC_SETPARMS ioctl (2) call. For the negotiation to be
successful, both the host workstation and the peripheral must support the
requested mode.

For an IEEE 1284 compliant device, bi-directional ECP mode is the preferred
mode of operation. Data transfers in the forward and reverse direction are DMA
transfers. Handshaking with the peripheral is managed by the parallel port
hardware. Consequently, ECP mode is highly efficient.

122 SunOS 5.8 Last modified 26 July 1999

Devices ecpp(7D)

Nibble mode is a unidirectional backchannel mode. Under
ECPP_NIBBLE_MODE, handshaking is controlled by software while data
movement is managed by PIO.

Tunables Characteristics of the ecpp driver may be tuned by the variables described
in /kernel/drv/ecpp.conf . These variables are read while the driver is
being attached to the kernel. If the driver is currently attached, ecpp must be
unloaded before the driver can be re-attached and the tuneable variables read
again. See modunload (1M)

Some Centronics peripherals and certain IEEE 1284 compatible peripherals
will not operate with the parallel port operating in a fast handshaking mode.
If printing problems occur, set "fast-centronics" and "fast-1284-compatible" to
"false.” See /kernel/drv/ecpp.conf for more information.

Read/Write Operation The ecpp driver is a full duplex STREAMS device driver. While an application is
writing to an IEEE 1284 compliant device, another thread may read from it.

Write Operation A write (2) operation returns the number of bytes successfully written to the
stream head. If a failure occurs while a Centronics device is transfering data, the
content of the status bits will be captured at the time of the error, and can be
retrieved by the application program, using the ECPPIOC_GETERR ioctl (2)
call. The captured status information will be overwritten each time an attempted
transfer or a ECPPIOC_TESTIO ioctl (2) occurs.

Intelligent IEEE 1284 compliant devices (such as Postscript printers) return
error information through a backchannel. This data may be retrieved with
the read (2) call.

Read Operation If a failure or error condition occurs during a read (2), the number of bytes
successfully read is returned (short read). When attempting to read the port
that has no data currently available, read (2) returns 0 if O_NDELAYis set. If
O_NONBLOCKis set, read (2) returns -1 and sets errno to EAGAIN. If O_NDELAY
and O_NONBLOCKare clear, read (2) blocks until data become available.

IOCTLS The following ioctl (2) calls are supported:
ECPPIOC_GETPARMS Get current transfer parameters. The argument is

a pointer to a struct ecpp_transfer_parms .
See below for a description of the elements of this
structure. If no parameters have been configured
since the device was opened, the structure will
be set to its default configuration. See Default
Operation above for more information.

ECPPIOC_SETPARMS Set transfer parameters. The argument is a
pointer to a struct ecpp_transfer_parms . If
a parameter is out of range, EINVAL is returned.

Last modified 26 July 1999 SunOS 5.8 123

ecpp(7D) Devices

If the peripheral or host device cannot support
the requested mode, EPROTONOSUPPORT
is returned. See below for a description
of ecpp_transfer_parms and its valid
parameters.

The Transfer Parameters Structure is defined in
<sys/ecppio.h> .

struct ecpp_transfer_parms {
int write_timeout;
int mode;

};

The write_timeout field is set to
ECPP_W_TIMEOUT_DEFAULT.The
write_timeout field specifies how long the
driver will wait for the peripheral to respond to a
transfer request. The value must be greater than
0 and less than ECPP_MAX_TIMEOUT.Any other
values are out of range.

The mode field reflects the IEEE 1284 mode to
which the parallel port is currently configured.
The mode may be set to only one of the following
bit values.

#define ECPP_CENTRONICS 0x01
#define ECPP_COMPAT_MODE 0x02
#define ECPP_NIBBLE_MODE 0x04
#define ECPP_FAILURE_MODE 0x06

This command may set the mode value to
ECPP_CENTRONICS, ECPP_COMPAT_MODE,
or ECPP_NIBBLE_MODE. All other values
are invalid. If the requested mode is not
supported, ECPPIOC_SETPARMSwill return
EPROTONOSUPPORT.Under this circumstance,
ECPPIOC_GETPARMSwill return to its
original mode. If a non-recoverable IEEE
1284 error occurs, the driver will be set to
ECPP_FAILURE_MODE.For instance, if the
port is not capable of returning to its original
mode, ECPPIOC_GETPARMSwill return
ECPP_FAILURE_MODE.

124 SunOS 5.8 Last modified 26 July 1999

Devices ecpp(7D)

BPPIOC_TESTIO Tests the transfer readiness of ECPP_CENTRONICS
or ECPP_COMPAT_MODE devices. If the
current mode of the port is ECPP_CENTRONICS
or ECPP_COMPAT_MODE,this command
determines if write (2) would succeed. If it is
not one of these modes, EINVAL is returned.
BPPIOC_TESTIO determines if a write (2)
would succeed by checking the open flag and
status pins. If any status pins are set, a transfer
will fail. If a transfer succeeds, zero is returned.
If a transfer fails, -1 is returned, and errno is
set to EIO, and the state of the status pins is
captured. The captured status can be retrieved
using the BPPIOC_GETERR ioctl (2) call. The
timeout_occurred and bus_error fields will
never be set by this ioctl (2). BPPIOC_TESTIO
and BPPIOC_GETERRare compatible to the ioctls
specified in bpp (7D). However, bus_error is
not used in this interface.

BPPIOC_GETERR Get last error status.The argument is a pointer to
a struct bpp_error_status . This structure
is described below. This structure indicates the
status of all the appropriate status bits at the
time of the most recent error condition during a
write() call, or the status of the bits at the most
recent BPPIOC_TESTIO ioctl() call.

The timeout_occurred value is set when a
timeout occurs during write() . bus_error is
not used in this interface.

pin_status indicates possible error
conditions under ECPP_CENTRONICSor
ECPP_COMPAT_MODE.Under these modes, the
state of the status pins will indicate the state
of the device. For instance, many Centronics
printers lower the nErr signal when a paper jam
occurs. The behavior of the status pins depends
on the device. As defined in the IEEE 1284
specification, status signals do not represent the
error status of ECP devices. Error information
is formatted by a printer specific protocol such
as PostScript, and is returned through the
backchannel.

Last modified 26 July 1999 SunOS 5.8 125

ecpp(7D) Devices

The Error Status Structure struct
bpp_error_status is defined in the include
file <sys/bpp_io.h> . The valid bits for
pin_status are shown below. A set bit indicates
that the associated pin is asserted. For example, if
BPP_ERR_ERRis set, nErr is asserted:

struct bpp_error_status {
char timeout_occurred; /* 1=timeout */
char bus_error; /* not used */
uchar_t pin_status; /* status of pins which

/* could cause error */
};
/* pin_status values */
#define BPP_ERR_ERR 0x01 /* nErr=0 */
#define BPP_SLCT_ERR 0x02 /* Select=1 */
#define BPP_PE_ERR 0x04 /* PE =1 */
#define BPP_BUSY_ERR 0x40 /* Busy = 1 */

ERRORS EBADF The device is opened for write-only access and a read is
attempted, or the device is opened for read-only access
and a write is attempted.

EBUSY The device has been opened and another open is attempted.
An attempt has been made to unload the driver while one
of the units is open.

EINVAL A ECPPIOC_SETPARMS ioctl() is attempted with an out
of range value in the ecpp_transfer_parms structure.

A ECPPIOC_SETREGS ioctl() is attempted with an
invalid value in the ecpp_regs structure. An ioctl() is
attempted with an invalid value in the command argument.

An invalid command argument is received from the vd
driver during modload (1M), modunload (1M).

EIO The driver encountered a bus error when attempting an
access.

A read or write did not complete properly, due to a
peripheral error or a transfer timeout.

ENXIO The driver has received an open request for a unit for which
the attach failed. The driver has received a write request for
a unit which has an active peripheral error.

FILES /dev/ecpp0 1284 compatible and ecp mode parallel port device.

126 SunOS 5.8 Last modified 26 July 1999

Devices ecpp(7D)

SEE ALSO ioctl (2), read (2), write (2), system (4), streamio (7I)

Last modified 26 July 1999 SunOS 5.8 127

elx(7D) Devices

NAME elx – 3COM EtherLink III Ethernet device driver

SYNOPSIS #include <sys/stropts.h>

#include <sys/ethernet.h>

#include <sys/dlpi.h>

#include <sys/gld.h>

DESCRIPTION The elx Ethernet driver is a multi-threaded, loadable, clonable, STREAMS
hardware driver supporting the connectionless Data Link Provider Interface,
dlpi (7P), over the following 3COM ETHERLINK III Ethernet controllers. For IA
based systems: 3C509, 3C509B, 3C579 and 3C59x controllers. Multiple EtherLink
III controllers installed within the system are supported by the driver. The elx
driver provides basic support for the EtherLink III hardware. Functions include
chip initialization, frame transmit and receive, multicast and “promiscuous”
support, and error recovery and reporting.

The cloning, character-special device /dev/elx is used to access all EtherLink
III devices installed within the system.

The elx driver is dependent on /kernel/misc/gld , a loadable kernel module
that provides the elx driver with the DLPI and STREAMSfunctionality required
of a LAN driver. See gld (7D) for more details on the primatives supported by
the driver.

The values returned by the driver in the DL_INFO_ACKprimitive in response
to the DL_INFO_REQfrom the user are as follows:

� The maximum SDU is 1500 (ETHERMTU).

� The minimum SDU is 0. The driver will pad to the mandatory 60-octet
minimum packet size.

� The dlsap address length is 8.

� The MAC type is DL_ETHER.

� The sap length value is −2, meaning the physical address component is
followed immediately by a 2-byte sap component within the DLSAP
address.

� The broadcast address value is Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

FILES /dev/elx
special character device

/platform/i86pc/kernel/drv/elx.conf
configuration file for elx driver

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

128 SunOS 5.8 Last modified 24 Feb 1998

Devices elx(7D)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5), dlpi (7P), gld (7D)

Last modified 24 Feb 1998 SunOS 5.8 129

encr3des(7M) STREAMS Modules

NAME encr3des – Triple-DES-CBC Encryption Algorithm Module for IPsec

SYNOPSIS strmod/encr3des

DESCRIPTION This module implements triple-DES, which is the application of the United
States Data Encryption Standard (“DES”) three times with three different keys
for IPsec. The triple application of DES, given K1, K2, and K3, happens on a
per-block basis as follows:
Encryption: Encrypt w/K1, Decrypt w/K2, Encrypt w/K3

Decryption: Decrypt w/K3, Encrypt w/K2, Decrypt w/K1

Triple-DES roughly doubles the effective key strength of DES. For further
discussions on Triple-DES, see Applied Cryptography: Protocols, Algorithms, and
Source Code in C by Bruce Schneier.

The encr3des module uses cipher-block chaining (“CBC”), as per RFC 2451
and has the following properties:
Key Size 192 bits. The single 192-bit key consists of three DES keys

concatenated together in the _encryption_ (outbound)
order. See encrdes (7M). The encr3des module supports
weak-key checking and parity-fixing to aid pf_key (7P).

Block Size 64 bit.

Export Restriction Triple DES has an effective key strength of approximately 112 bits and is only
available inside the United States. Triple DES cannot be realistically weakened
for use outside the United States..

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcryr (32-bit)

SUNWcryrx (64-bit)

Interface Stability Evolving

SEE ALSO ipseckey (1M), attributes (5), encrdes (7M) ipsec (7P), ipsecesp (7P),
pf_key (7P)

NIST, FIPS PUB 46-2: Data Encryption Standard, December, 1993.

Pereira, R. and Adams, R., RFC 2451, The ESP CBC-Mode Cipher Algorithms,
The Internet Society, 1998.

130 SunOS 5.8 Last modified 11 Feb 1999

STREAMS Modules encr3des(7M)

Schnier, B., Applied Cryptography: Protocols, Algorithms, and Source Code in
C. Second ed. New York, New York: John Wiley & Sons, 1996.

Last modified 11 Feb 1999 SunOS 5.8 131

encrdes(7M) STREAMS Modules

NAME encrdes – DES-CBC Encryption Algorithm Module for IPsec

SYNOPSIS strmod/encrdes

DESCRIPTION This module implements the United States Data Encryption Standard (“DES”)
for IPsec. encrdes uses cipher-block chaining (“CBC”), as per RFC 2405 and
has the following properties:
Key Size 64 bits. 56 bit key, plus 8 parity bits. 7 bits of key are

followed by one bit of odd parity. For example, the 56-bit
key FF FF FF FF FF FF FF would be encoded as FE FE FE
FE FE FE FE FE. encrdes supports weak-key checking and
parity-fixing to aid pf_key (7P).

Block Size 64 bits.

It is used by ESP.
Export Restriction DES with an actual key strength of 56 bits is only available inside the United

States. DES has an effective key strength of approximately 56 bits and is only
available inside the United States. DES cannot be realistically weakened for use
outside the United States..

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcryr (32-bit)

SUNWcryrx (64-bit)

Interface Stability Evolving

SEE ALSO ipseckey (1M), attributes (5), ipsec (7P), ipsecesp (7P), pf_key (7P)

Madson, C., and Doraswamy, N, RFC 2405, The ESP DES-CBC Cipher
Algorithm with Explicit IV, The Internet Society, 1998.

NIST, FIPS PUB 46-2: Data Encryption Standard, December, 1993.

132 SunOS 5.8 Last modified 11 Feb 1999

Devices esp(7D)

NAME esp – ESP SCSI Host Bus Adapter Driver

SYNOPSIS esp@sbus-slot,80000

DESCRIPTION The esp Host Bus Adapter driver is a SCSA compliant nexus driver that supports
the Emulex family of esp SCSI chips (esp100, esp100A, esp236, fas101, fas236).

The esp driver supports the standard functions provided by the SCSA interface.
The driver supports tagged and untagged queuing, fast SCSI (on FAS esp’s only),
almost unlimited transfer size (using a moving DVMA window approach), and
auto request sense; but it does not support linked commands.

CONFIGURATION The esp driver can be configured by defining properties in esp.conf which
override the global SCSI settings. Supported properties are: scsi-options ,
target< n>-scsi-options , scsi-reset-delay , scsi-watchdog-tick ,
scsi-tag-age-limit , scsi-initiator-id .

target< n>-scsi-options overrides the scsi-options property value for
target< n>. <n> can vary from 0 to 7.

Refer to scsi_hba_attach (9F) for details.

EXAMPLES EXAMPLE 1 A sample of esp configuration file.

Create a file /kernel/drv/esp.conf and add this line:
scsi-options=0x78;

This will disable tagged queuing, fast SCSI, and Wide mode for all esp instances.
To disable an option for one specific esp (refer to driver.conf (4)):

name="esp"
parent="/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000"

reg=0xf,0x800000,0x40
target1-scsi-options=0x58
scsi-options=0x178 scsi-initiator-id=6;

Note that the default initiator ID in OBP is 7 and that the change to ID 6 will
occur at attach time. It may be preferable to change the initiator ID in OBP.

The above would set scsi-options for target 1 to 0x58 and for all other
targets on this SCSI bus to 0x178 . The physical pathname of the parent can be
determined using the /devices tree or following the link of the logical device
name:

example# ls -l /dev/rdsk/c0t3d0s0
lrwxrwxrwx 1 root root 88 Aug 22 13:29 /dev/rdsk/c0t3d0s0 ->
../../devices/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/

esp@f,800000/sd@3,0:a,raw

The register property values can be determined from prtconf (1M) output
(−v option):

esp, instance #0
....

Register Specifications:
Bus Type=0xf, Address=0x800000, Size=40

Last modified 7 Feb 1997 SunOS 5.8 133

esp(7D) Devices

To set scsi-options more specifically per target:
target1-scsi-options=0x78;
device-type-scsi-options-list =

"SEAGATE ST32550W", "seagate-scsi-options" ;
seagate-scsi-options = 0x58;
scsi-options=0x3f8;

The above would set scsi-options for target 1 to 0x78 and for all other
targets on this SCSI bus to 0x378 except for one specific disk type which will
have scsi-options set to 0x58.

scsi-options specified per target ID has the highest precedence, followed
by scsi-options per device type. To get the inquiry string run probe-scsi or
probe-scsi-all command at the ok prompt before booting the system.

Global, for example. for all esp instances, scsi-options per bus has the
lowest precedence.

The system needs to be rebooted before the specified scsi-options take effect.

FILES /kernel/drv/esp ELF Kernel Module

/kernel/drv/esp.conf Configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SBus-based systems with esp-based

SCSI port and SSHA, SBE/S, FSBE/S,

and DSBE/S SBus SCSI Host
Adapter options

SEE ALSO prtconf (1M), driver.conf (4), attributes (5), fas (7D), scsi_abort (9F),
scsi_hba_attach (9F), scsi_ifgetcap (9F), scsi_reset (9F),
scsi_sync_pkt (9F), scsi_transport (9F), scsi_device (9S),
scsi_extended_sense (9S), scsi_inquiry (9S), scsi_pkt (9S)

Writing Device Drivers

OpenBoot Command Reference

ANSI Small Computer System Interface-2 (SCSI-2)

ESP Technical Manuals, QLogic Corp.

DIAGNOSTICS The messages described below are some that may appear on the system console,
as well as being logged.

The first four messages may be displayed while the esp driver is trying to
attach; these messages mean that the esp driver was unable to attach. All of

134 SunOS 5.8 Last modified 7 Feb 1997

Devices esp(7D)

these messages are preceded by "esp%d", where "%d" is the instance number
of the esp controller.
Device in slave-only slot

The SBus device has been placed in a slave-only slot and will not be
accessible; move to non-slave-only SBus slot.

Device is using a hilevel intr
The device was configured with an interrupt level that cannot be used with
this esp driver. Check the SBus device.

Unable to map registers
Driver was unable to map device registers; check for bad hardware. Driver
did not attach to device; SCSI devices will be inaccessible.

Cannot find dma controller
Driver was unable to locate a dma controller. This is an auto-configuration
error.

Disabled TQ since disconnects are disabled
Tagged queuing was disabled because disconnects were disabled in
scsi-options .

Bad clock frequency- setting 20mhz, asynchronous mode
Check for bad hardware.

Sync pkt failed
Syncing a SCSI packet failed. Refer to scsi_sync_pkt (9F).

Slot %x: All tags in use!!!
The driver could not allocate another tag number. The target devices do not
properly support tagged queuing.

Target %d.%d cannot alloc tag queue\n
The driver could not allocate space for tag queue.

Gross error in esp status (%x)
The driver experienced severe SCSI bus problems. Check cables and
terminator.

Spurious interrupt
The driver received an interrupt while the hardware was not interrupting.

Lost state in phasemanage
The driver is confused about the state of the SCSI bus.

Unrecoverable DMA error during selection
The DMA controller experienced host SBus problems. Check for bad
hardware.

Bad sequence step (0x%x) in selection

Last modified 7 Feb 1997 SunOS 5.8 135

esp(7D) Devices

The esp hardware reported a bad sequence step. Check for bad hardware.

Undetermined selection failure
The selection of a target failed unexpectedly. Check for bad hardware.

>2 reselection IDs on the bus
Two targets selected simultaneously, which is illegal. Check for bad
hardware.

Reconnect: unexpected bus free
A reconnect by a target failed. Check for bad hardware.

Timeout on receiving tag msg
Suspect target f/w failure in tagged queue handling.

Parity error in tag msg
A parity error was detected in a tag message. Suspect SCSI bus problems.

Botched tag
The target supplied bad tag messages. Suspect target f/w failure in tagged
queue handling.

Parity error in reconnect msg’s
The reconnect failed because of parity errors.

Target <n> didn’t disconnect after sending <message>
The target unexpectedly did not disconnect after sending <message>.

No support for multiple segs
The esp driver can only transfer contiguous data.

No dma window?
Moving the DVMA window failed unexpectedly.

No dma window on <type> operation
Moving the DVMA window failed unexpectedly.

Cannot set new dma window
Moving the DVMA window failed unexpectedly.

Unable to set new window at <address> for <type> operation
Moving the DVMA window failed unexpectedly.

Illegal dma boundary? %x
An attempt was made to cross a boundary that the driver could not handle.

Unwanted data out/in for Target <n>
The target went into an unexpected phase.

Spurious <name> phase from target <n>
The target went into an unexpected phase.

136 SunOS 5.8 Last modified 7 Feb 1997

Devices esp(7D)

SCSI bus DATA IN phase parity error
The driver detected parity errors on the SCSI bus.

SCSI bus MESSAGE IN phase parity error
The driver detected parity errors on the SCSI bus.

SCSI bus STATUS phase parity error
The driver detected parity errors on the SCSI bus.

Premature end of extended message
An extended SCSI bus message did not complete. Suspect a target f/w
problem.

Premature end of input message
A multibyte input message was truncated. Suspect a target f/w problem.

Input message botch
The driver is confused about messages coming from the target.

Extended message <n> is too long
The extended message sent by the target is longer than expected.

<name> message <n> from Target <m> garbled
Target <m> sent message <name> of value <n> which the driver did not
understand.

Target <n> rejects our message <name>
Target <n> rejected a message sent by the driver.

Rejecting message <name> from Target <n>
The driver rejected a message received from target <n>

Cmd dma error
The driver was unable to send out command bytes.

Target <n> refused message resend
The target did not accept a message resend.

Two-byte message <name> <value> rejected
The driver does not accept this two-byte message.

Unexpected selection attempt
An attempt was made to select this host adapter by another initiator.

Polled cmd failed (target busy)
A polled command failed because the target did not complete outstanding
commands within a reasonable time.

Polled cmd failed
A polled command failed because of timeouts or bus errors.

Last modified 7 Feb 1997 SunOS 5.8 137

esp(7D) Devices

Disconnected command timeout for Target <id>.<lun>
A timeout occurred while target/lun was disconnected. This is usually
a target f/w problem. For tagged queuing targets, <n> commands were
outstanding when the timeout was detected.

Disconnected tagged cmds (<n>) timeout for Target
<id>.<lun>

A timeout occurred while target/lun was disconnected. This is usually
a target f/w problem. For tagged queuing targets, <n> commands were
outstanding when the timeout was detected.

Connected command timeout for Target <id>.<lun>
This is usually a SCSI bus problem. Check cables and termination.

Target <id>.<lun> reverting to async. mode
A data transfer hang was detected. The driver attempts to eliminate this
problem by reducing the data transfer rate.

Target <id>.<lun> reducing sync. transfer rate
A data transfer hang was detected. The driver attempts to eliminate this
problem by reducing the data transfer rate.

Reverting to slow SCSI cable mode
A data transfer hang was detected. The driver attempts to eliminate this
problem by reducing the data transfer rate.

Reset SCSI bus failed
An attempt to reset the SCSI bus failed.

External SCSI bus reset
Another initiator reset the SCSI bus.

WARNINGS The esp hardware does not support Wide SCSI mode. Only FAS-type esp’s
support fast SCSI (10 MB/sec).

NOTES The esp driver exports properties indicating per target the negotiated transfer
speed (target<n>-sync-speed) and whether tagged queuing has been
enabled (target<n>-TQ). The sync-speed property value is the data transfer
rate in KB/sec. The target-TQ property has no value. The existence of the
property indicates that tagged queuing has been enabled. Refer to prtconf (1M)
(verbose option) for viewing the esp properties.

dma, instance #3
Register Specifications:

Bus Type=0x2, Address=0x81000, Size=10
esp, instance #3

Driver software properties:
name <target3-TQ> length <0> − <no

value>.

138 SunOS 5.8 Last modified 7 Feb 1997

Devices esp(7D)

name <target3-sync-speed> length <4>
value <0x00002710>.

name <scsi-options> length <4>
value <0x000003f8>.

name <scsi-watchdog-tick> length <4>
value <0x0000000a>.

name <scsi-tag-age-limit> length <4>
value <0x00000008>.

name <scsi-reset-delay> length <4>
value <0x00000bb8>.

Last modified 7 Feb 1997 SunOS 5.8 139

fas(7D) Devices

NAME fas – FAS SCSI Host Bus Adapter Driver

SYNOPSIS fas@sbus-slot,0x8800000

DESCRIPTION The fas Host Bus Adapter driver is a SCSA compliant nexus driver that
supports the Qlogic FAS366 SCSI chip.

The fas driver supports the standard functions provided by the SCSA interface.
The driver supports tagged and untagged queuing, wide and fast SCSI, almost
unlimited transfer size (using a moving DVMA window approach), and auto
request sense; but it does not support linked commands.

Driver Configuration The fas driver can be configured by defining properties in fas.conf which
override the global SCSI settings. Supported properties are: scsi-options ,
target< n>-scsi-options , scsi-reset-delay , scsi-watchdog-tick ,
scsi-tag-age-limit , scsi-initiator-id .

target< n>-scsi-options overrides the scsi-options property value for
target< n>. <n> can vary from decimal 0 to 15 . The supported scsi-options
are: SCSI_OPTIONS_DR, SCSI_OPTIONS_SYNC, SCSI_OPTIONS_TAG,
SCSI_OPTIONS_FAST, and SCSI_OPTIONS_WIDE.

After periodic interval scsi-watchdog-tick , the fas driver searches all
current and disconnected commands for timeouts.

scsi-tag-age-limit is the number of times that the fas driver attempts
to allocate a particular tag ID that is currently in use after going through
all tag IDs in a circular fashion. After finding the same tag ID in use
scsi-tag-age-limit times, no more commands will be submitted to this
target until all outstanding commands complete or timeout.

Refer to scsi_hba_attach (9F) for details.

EXAMPLES EXAMPLE 1 A sample of fas configuration file

Create a file called /kernel/drv/fas.conf and add this line:

scsi-options=0x78;

This disables tagged queuing, Fast SCSI, and Wide mode for all fas instances.
The following example disables an option for one specific fas (refer to
driver.conf (4) for more details):

name="fas" parent="/iommu@f,e0000000/sbus@f,e0001000"
reg=3,0x8800000,0x10,3,0x8810000,0x40
target1-scsi-options=0x58
scsi-options=0x178 scsi-initiator-id=6;

Note that the default initiator ID in OBP is 7 and that the change to ID 6 will
occur at attach time. It may be preferable to change the initiator ID in OBP.

140 SunOS 5.8 Last modified 20 Jun 1997

Devices fas(7D)

The example above sets scsi-options for target 1 to 0x58 and all other
targets on this SCSI bus to 0x178 .

The physical pathname of the parent can be determined using the /devices
tree or following the link of the logical device name:

ls −l /dev/rdsk/c1t3d0s0
lrwxrwxrwx 1 root other 78 Aug 28 16:05 /dev/rdsk/c1t3d0s0 ->

. . /. . /devices/iommu@f,e0000000/sbus@f,e0001000/SUNW,fas@3,8800000/sd@3,0:a,raw

Determine the register property values using the output from prtconf (1M)
(with the −v option):

SUNW,fas, instance #0
. . . .
Register Specifications:

Bus Type=0x3, Address=0x8800000, Size=10
Bus Type=0x3, Address=0x8810000, Size=40

scsi-options can also be specified per device type using the device inquiry
string. All the devices with the same inquiry string will have the same
scsi-options set. This can be used to disable some scsi-options on all
the devices of the same type.

device-type-scsi-options-list=
"TOSHIBA XM5701TASUN12XCD", "cd-scsi-options";

cd-scsi-options = 0x0;

The above entry in /kernel/drv/fas.conf sets the scsi-options
for all devices with inquiry string TOSHIBA XM5701TASUN12XCDto
cd-scsi-options . To get the inquiry string, run the probe-scsi or
probe-scsi-all command at the ok prompt before booting the system.

To set scsi-options more specifically per target:

target1-scsi-options=0x78;
device-type-scsi-options-list =

"SEAGATE ST32550W", "seagate-scsi-options" ;
seagate-scsi-options = 0x58;
scsi-options=0x3f8;

The above sets scsi-options for target 1 to 0x78 and for all other targets
on this SCSI bus to 0x3f8 except for one specific disk type which will have
scsi-options set to 0x58 .

Last modified 20 Jun 1997 SunOS 5.8 141

fas(7D) Devices

scsi-options specified per target ID have the highest precedence, followed
by scsi-options per device type. Global fas scsi-options (effecting all
instances) per bus have the lowest precedence.

The system needs to be rebooted before the specified scsi-options take effect.
Driver Capabilities The target driver needs to set capabilities in the fas driver in order to

enable some driver features. The target driver can query and modify these
capabilities: synchronous , tagged-qing , wide-xfer , auto-rqsense ,
qfull-retries , qfull-retry-interval . All other capabilities can only
be queried.

By default, tagged-qing , auto-rqsense , and wide-xfer capabilities are
disabled, while disconnect , synchronous , and untagged-qing are enabled.
These capabilities can only have binary values (0 or 1). The default value for
qfull-retries is 10 and the default value for qfull-retry-interval
is 100 . The qfull-retries capability is a uchar_t (0 to 255) while
qfull-retry-interval is a ushort_t (0 to 65535).

The target driver needs to enable tagged-qing and wide-xfer explicitly. The
untagged-qing capability is always enabled and its value cannot be modified,
because fas can queue commands even when tagged-qing is disabled.

Whenever there is a conflict between the value of scsi-options and a
capability, the value set in scsi-options prevails. Only whom != 0 is
supported in the scsi_ifsetcap (9F) call.

Refer to scsi_ifsetcap (9F) and scsi_ifgetcap (9F) for details.

FILES /kernel/drv/fas ELF Kernel Module

/kernel/drv/fas.conf Optional configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to Sparc SBus-based systems with
FAS366-based SCSI port and SunSWIFT SBus SCSI
Host Adapter/Fast Ethernet option.

SEE ALSO prtconf (1M), driver.conf (4), attributes (5), scsi_abort (9F),
scsi_hba_attach (9F), scsi_ifgetcap (9F), scsi_ifsetcap (9F),
scsi_reset (9F), scsi_sync_pkt (9F), scsi_transport (9F),
scsi_device (9S), scsi_extended_sense (9S), scsi_inquiry (9S),
scsi_pkt (9S)

Writing Device Drivers

OpenBoot 3.x Command Reference Manual

142 SunOS 5.8 Last modified 20 Jun 1997

Devices fas(7D)

ANSI Small Computer System Interface-2 (SCSI-2)

QLogic Corporation, FAS366 Technical Manuals.

DIAGNOSTICS The messages described below are some that may appear on the system console,
as well as being logged.

The first five messages may be displayed while the fas driver is trying to
attach; these messages mean that the fas driver was unable to attach. All of
these messages are preceded by "fas%d", where "%d" is the instance number
of the fas controller.
Device in slave-only slot

The SBus device has been placed in a slave-only slot and will not be
accessible; move to non-slave-only SBus slot.

Device is using a hilevel intr
The device was configured with an interrupt level that cannot be used with
this fas driver. Check the SBus device.

Cannot allocate soft state

Cannot alloc dma handle

Cannot alloc cmd area

Cannot create kmem_cache
Driver was unable to allocate memory for internal data structures.

Unable to map FAS366 registers
Driver was unable to map device registers; check for bad hardware. Driver
did not attach to device; SCSI devices will be inaccessible.

Cannot add intr
Driver could not add its interrupt service routine to the kernel.

Cannot map dma
Driver was unable to locate a DMA controller. This is an auto-configuration
error.

Cannot bind cmdarea
Driver was unable to bind the DMA handle to an address.

Cannot create devctl minor node
Driver is unable to create a minor node for the controller.

Cannot attach

Last modified 20 Jun 1997 SunOS 5.8 143

fas(7D) Devices

The driver was unable to attach; usually follows another warning that
indicates why attach failed.

Disabled TQ since disconnects are disabled
Tagged queuing was disabled because disconnects were disabled in
scsi-options .

Bad clock frequency
Check for bad hardware.

Sync of pkt (<address>) failed
Syncing a SCSI packet failed. Refer to scsi_sync_pkt (9F).

All tags in use!
The driver could not allocate another tag number. The target devices do not
properly support tagged queuing.

Gross error in FAS366 status
The driver experienced severe SCSI bus problems. Check cables and
terminator.

Spurious interrupt
The driver received an interrupt while the hardware was not interrupting.

Lost state in phasemanage
The driver is confused about the state of the SCSI bus.

Unrecoverable DMA error during selection
The DMA controller experienced host SBus problems. Check for bad
hardware.

Bad sequence step (<step number>) in selection
The FAS366 hardware reported a bad sequence step. Check for bad
hardware.

Undetermined selection failure
The selection of a target failed unexpectedly. Check for bad hardware.

Target <n>: failed reselection (bad reselect bytes)
A reconnect failed, target sent incorrect number of message bytes. Check
for bad hardware.

Target <n>: failed reselection (bad identify message)
A reconnect failed, target didn’t send identify message or it got corrupted.
Check for bad hardware.

Target <n>: failed reselection (not in msgin phase)
Incorrect SCSI bus phase after reconnection. Check for bad hardware.

Target <n>: failed reselection (unexpected bus free)

144 SunOS 5.8 Last modified 20 Jun 1997

Devices fas(7D)

Incorrect SCSI bus phase after reconnection. Check for bad hardware.

Target <n>: failed reselection (timeout on receiving tag msg)
A reconnect failed; target failed to send tag bytes. Check for bad hardware.

Target <n>: failed reselection (botched tag)
A reconnect failed; target failed to send tag bytes. Check for bad hardware.

Target <n>: failed reselection (invalid tag)
A reconnect failed; target sent incorrect tag bytes. Check for bad hardware.

Target <n>: failed reselection (Parity error in reconnect msg’s)
A reconnect failed; parity error detected. Check for bad hardware.

Target <n>: failed reselection (no command)
A reconnect failed; target accepted abort or reset , but still tries to
reconnect. Check for bad hardware.

Unexpected bus free
Target disconnected from the bus without notice. Check for bad hardware.

Target <n> didn’t disconnect after sending <message>
The target unexpectedly did not disconnect after sending <message>.

Bad sequence step (0x?) in selection
The sequence step register shows an improper value. The target might be
misbehaving.

Illegal dma boundary?
An attempt was made to cross a boundary that the driver could not handle.

Unwanted data xfer direction for Target <n>
The target went into an unexpected phase.

Unrecoverable DMA error on dma <send/receive>
There is a DMA error while sending/receiving data. The host DMA
controller is experiencing some problems.

SCSI bus DATA IN phase parity error
The driver detected parity errors on the SCSI bus.

SCSI bus MESSAGE IN phase parity error
The driver detected parity errors on the SCSI bus.

SCSI bus STATUS phase parity error
The driver detected parity errors on the SCSI bus.

Premature end of extended message
An extended SCSI bus message did not complete. Suspect a target firmware
problem.

Last modified 20 Jun 1997 SunOS 5.8 145

fas(7D) Devices

Premature end of input message
A multibyte input message was truncated. Suspect a target firmware
problem.

Input message botch
The driver is confused about messages coming from the target.

Extended message <n> is too long
The extended message sent by the target is longer than expected.

<name> message <n> from Target <m> garbled
Target <m> sent message <name> of value <n> which the driver did not
understand.

Target <n> rejects our message <name>
Target <n> rejected a message sent by the driver.

Rejecting message <name> from Target <n>
The driver rejected a message received from target <n>.

Cmd transmission error
The driver was unable to send out command bytes.

Target <n> refused message resend
The target did not accept a message resend.

MESSAGE OUT phase parity error
The driver detected parity errors on the SCSI bus.

Two byte message <name> <value> rejected
The driver does not accept this two byte message.

Gross error in fas status <stat>
The fas chip has indicated a gross error like FIFO overflow.

Polled cmd failed (target busy)
A polled command failed because the target did not complete outstanding
commands within a reasonable time.

Polled cmd failed
A polled command failed because of timeouts or bus errors.

Auto request sense failed
Driver is unable to get request sense from the target.

Disconnected command timeout for Target <id>.<lun>
A timeout occurred while target id /lun was disconnected. This is usually a
target firmware problem. For tagged queuing targets, <n> commands were
outstanding when the timeout was detected.

Disconnected tagged cmds (<n>) timeout for Target <id>.<lun>

146 SunOS 5.8 Last modified 20 Jun 1997

Devices fas(7D)

A timeout occurred while target id /lun was disconnected. This is usually a
target firmware problem. For tagged queuing targets, <n> commands were
outstanding when the timeout was detected.

Connected command timeout for Target <id>.<lun>
This is usually a SCSI bus problem. Check cables and termination.

Target <id>.<lun> reverting to async. mode
A data transfer hang was detected. The driver attempts to eliminate this
problem by reducing the data transfer rate.

Target <id>.<lun> reducing sync. transfer rate
A data transfer hang was detected. The driver attempts to eliminate this
problem by reducing the data transfer rate.

Reverting to slow SCSI cable mode
A data transfer hang was detected. The driver attempts to eliminate this
problem by reducing the data transfer rate.

Target <id> reducing sync. transfer rate
Target <id> reverting to async. mode
Target <id> disabled wide SCSI mode

Due to problems on the SCSI bus, the driver goes into more conservative
mode of operation to avoid further problems.

Reset SCSI bus failed
An attempt to reset the SCSI bus failed.

External SCSI bus reset
Another initiator reset the SCSI bus.

WARNINGS The fas hardware (FAS366) supports both Wide and Fast SCSI mode, but fast20
is not supported. The maximum SCSI bandwidth is 20 MB/sec. Initiator mode
block sequence (IBS) is not supported.

NOTES The fas driver exports properties indicating per target the negotiated
transfer speed (target<n>-sync-speed), whether wide bus is
supported (target<n>-wide), scsi-options for that particular target
(target<n>-scsi-options), and whether tagged queuing has been enabled
(target<n>-TQ). The sync-speed property value is the data transfer rate
in KB/sec. The target<n>-TQ and the target<n>-wide property have
value 1 to indicate that the corresponding capability is enabled, or 0 to indicate
that the capability is disabled for that target. Refer to prtconf (1M) (verbose
option) for viewing the fas properties.

SUNW,fas,instance #1
Driver software properties:

name <target3-TQ> length <4>

Last modified 20 Jun 1997 SunOS 5.8 147

fas(7D) Devices

value <0x00000001>.
name <target3-wide> length <4>

value <0x00000000>.
name <target3-sync-speed> length <4>

value <0x00002710>.
name <target3-scsi-options> length <4>

value <0x000003f8>.
name <target0-TQ> length <4>

value <0x00000001>.
name <pm_norm_pwr> length <4>

value <0x00000001>.
name <pm_timestamp> length <4>

value <0x30040346>.
name <scsi-options> length <4>

value <0x000003f8>.
name <scsi-watchdog-tick> length <4>

value <0x0000000a>.
name <scsi-tag-age-limit> length <4>

value <0x00000002>.
name <scsi-reset-delay> length <4>

value <0x00000bb8>.
Register Specifications:

Bus Type=0x3, Address=0x8800000, Size=10
Bus Type=0x3, Address=0x8810000, Size=40

Interrupt Specifications:
Interrupt Priority=0x35 (ipl 5)

148 SunOS 5.8 Last modified 20 Jun 1997

Ioctl Requests fbio(7I)

NAME fbio – frame buffer control operations

DESCRIPTION The frame buffers provided with this release support the same general interface
that is defined by <sys/fbio.h> . Each responds to an FBIOGTYPE ioctl (2)
request which returns information in a fbtype structure.

Each device has an FBTYPEwhich is used by higher-level software to determine
how to perform graphics functions. Each device is used by opening it, doing an
FBIOGTYPE ioctl() to see which frame buffer type is present, and thereby
selecting the appropriate device-management routines.

FBIOGINFO returns information specific to the GS accelerator.

FBIOSVIDEO and FBIOGVIDEOare general-purpose ioctl() requests
for controlling possible video features of frame buffers. These ioctl()
requests either set or return the value of a flags integer. At this point, only the
FBVIDEO_ONoption is available, controlled by FBIOSVIDEO. FBIOGVIDEO
returns the current video state.

The FBIOSATTRand FBIOGATTR ioctl() requests allow access to special
features of newer frame buffers. They use the fbsattr and fbgattr structures.

Some color frame buffers support the FBIOPUTCMAPand FBIOGETCMAP
ioctl() requests, which provide access to the colormap. They use the fbcmap
structure.

Also, some framebuffers with multiple colormaps will either encode the
colormap identifier in the high-order bits of the "index" field in the fbcmap
structure, or use the FBIOPUTCMAPIand FBIOGETCMAPI ioctl() requests.

FBIOVERTICAL is used to wait for the start of the next vertical retrace period.

FBIOVRTOFFSETReturns the offset to a read-only vertical retrace page for those
framebuffers that support it. This vertical retrace page may be mapped into user
space with mmap(2). The first word of the vertical retrace page (type unsigned
int) is a counter that is incremented every time there is a vertical retrace. The
user process can use this counter in a variety of ways.

FBIOMONINFOreturns a mon_info structure which contains information about
the monitor attached to the framebuffer, if available.

FBIOSCURSOR, FBIOGCURSOR, FBIOSCURPOSand FBIOGCURPOSare used
to control the hardware cursor for those framebuffers that have this feature.
FBIOGCURMAXreturns the maximum sized cursor supported by the framebuffer.
Attempts to create a cursor larger than this will fail.

Finally FBIOSDEVINFOand FBIOGDEVINFOare used to transfer variable-length,
device-specific information into and out of framebuffers.

Last modified 27 Mar 1992 SunOS 5.8 149

fbio(7I) Ioctl Requests

SEE ALSO ioctl (2), mmap(2), bwtwo (7D), cgeight (7D), cgfour (7D), cgsix (7D),
cgthree (7D), cgtwo (7D)

BUGS The FBIOSATTRand FBIOGATTR ioctl() requests are only supported by
frame buffers which emulate older frame buffer types. For example, cgfour (7D)
frame buffers emulate bwtwo (7D) frame buffers. If a frame buffer is emulating
another frame buffer, FBIOGTYPEreturns the emulated type. To get the real
type, use FBIOGATTR.

The FBIOGCURPOSioctl was incorrectly defined in previous operating systems,
and older code running in binary compatibility mode may get incorrect results.

150 SunOS 5.8 Last modified 27 Mar 1992

Device and Network Interfaces fcp(7D)

NAME fcp – Fibre Channel protocol driver

DESCRIPTION The fcp driver is the upper layer protocol that supports mechanisms for
transporting SCSI-3 commands over Fibre Channel. The fcp driver, which
interfaces with the Sun Fibre Channel transport library fctl (7D), supports the
standard functions provided by the SCSA interface.

FILES /kernel/drv/fcp
32–bit ELF kernel driver

/kernel/drv/sparcv9/fcp
64–bit ELF kernel driver

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Interface stability Unknown

Availability SUNWfcp

SEE ALSO prtconf (1M), driver.conf (4), fctl (7D), fp (7D), usoc (7D)

Writing Device Drivers

Fibre Channel Physical and Signaling Interface (FC-PH) ANSI X3.230: 1994

Fibre Channel Generic Services (FC-GS-2) Project 1134-D

Fibre Channel Arbitrated Loop (FC-AL) ANSI X3.272-1996

Fibre Channel Protocol for SCSI (FCP) ANSI X3.269-1996

SCSI-3 Architecture Model (SAM) Fibre Channel Private Loop SCSI Direct
Attach (FC-PLDA) ANSI X3.270-1996

Fabric Loop Attachment (FC-FLA), NCITS TR-20:1998

Last modified 20 Jul 1999 SunOS 5.8 151

fctl(4) Devices

NAME fctl – Sun Fibre Channel transport library

DESCRIPTION The fctl kernel module interfaces the Sun Fibre Channel upper layer protocol
(ULP) mapping modules with Sun Fibre Channel adapter (FCA) drivers. There
are no user-configurable options for this module.

FILES /kernel/misc/fctl
32–bit ELF kernel module

/kernel/misc/sparcv9/fctl
64–bit ELF kernel module

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Interface stability Unknown

Availability SUNWfctl

SEE ALSO fp (7D)

152 SunOS 5.8 Last modified 20 Jul 1999

Devices fd(7D)

NAME fd, fdc – drivers for floppy disks and floppy disk controllers

SYNOPSIS

SPARC /dev/diskette0

/dev/rdiskette0

IA /dev/diskette[0-1]

/dev/rdiskette[0-1]

DESCRIPTION The fd driver provides the interfaces to the floppy disks using the Intel 82072 on
sun4c systems and the Intel 82077 on sun4m systems.

The fd and fdc drivers provide the interfaces to floppy disks using the Intel
8272, Intel 82077, NEC 765, or compatible disk controllers on IA based systems.

The default partitions for the floppy driver are:
a All cylinders except the last

b Only the last cylinder

c Entire diskette

The fd driver autosenses the density of the diskette.

When the floppy is first opened the driver looks for a SunOS label in logical
block 0 of the diskette. If attempts to read the SunOS label fail, the open will
fail. If block 0 is read successfully but a SunOS label is not found, auto-sensed
geometry and default partitioning are assumed.

The fd driver supports both block and “raw” interfaces.

The block files (/dev/diskette*) access the diskette using the system’s
normal buffering mechanism and may be read and written without regard to
physical diskette records.

There is also a “raw” (/dev/rdiskette*) interface that provides for direct
transmission between the diskette and the user’s read or write buffer. A single
read (2) or write (2) call usually results in one I/O operation; therefore raw I/O
is considerably more efficient when larger blocking factors are used. A blocking
factor of no less than 8 Kbytes is recommended. See the Notes section, below,
for information on the number of sectors per track.

3.5" Diskettes For 3.5" double-sided diskettes, the following densities are supported:

SPARC 1.7 Mbyte
density

80 cylinders, 21 sectors per track, 1.7 Mbyte
capacity

high density 80 cylinders, 18 sectors per track, 1.44 Mbyte
capacity

Last modified 24 Feb 1998 SunOS 5.8 153

fd(7D) Devices

double density 80 cylinders, 9 sectors per track, 720 Kbyte
capacity

medium density 77 cylinders, 8 sectors per track, 1.2 Mbyte
capacity (sun4m only)

IA extended
density

80 cylinders, 36 sectors per track, 2.88 Mbyte
capacity

1.7 Mbyte density 80 cylinders, 21 sectors per track, 1.7 Mbyte
capacity

high density 80 cylinders, 18 sectors per track, 1.44 Mbyte
capacity

double density 80 cylinders, 9 sectors per track, 760 Kbyte
capacity

5.25" Diskettes For 5.25" double-sided diskettes on IA platforms, the densities listed below
are supported:

SPARC 5.25" diskettes are not supported on SPARC platforms.

IA high density 80 cylinders, 15 sectors per track, 1.2 Mbyte
capacity

double density 40 cylinders, 9 sectors per track, 360 Kbyte
capacity

double density 40 cylinders, 8 sectors per track, 320 Kbyte
capacity

quad density 80 cylinders, 9 sectors per track, 720 Kbyte
capacity

double density 40 cylinders, 16 sectors per track (256 bytes per
sector), 320 Kbyte capacity

double density 40 cylinders, 4 sectors per track (1024 bytes per
sector), 320 Kbyte capacity

ERRORS EBUSY During opening, the partition has been opened
for exclusive access and another process wants
to open the partition. Once open, this error is
returned if the floppy disk driver attempted to
pass a command to the floppy disk controller
when the controller was busy handling another
command. In this case, the application should try
the operation again.

154 SunOS 5.8 Last modified 24 Feb 1998

Devices fd(7D)

EFAULT An invalid address was specified in an ioctl
command (see fdio (7I)).

EINVAL The number of bytes read or written is not a
multiple of the diskette’s sector size. This error is
also returned when an unsupported command
is specified using the FDIOCMDioctl command
(see fdio (7I)).

EIO During opening, the diskette does not have a
label or there is no diskette in the drive. Once
open, this error is returned if the requested I/O
transfer could not be completed.

ENOSPC An attempt was made to write past the end
of the diskette.

ENOTTY The floppy disk driver does not support the
requested ioctl functions (see fdio (7I)).

ENXIO The floppy disk device does not exist or the
device is not ready.

EROFS The floppy disk device is opened for write access
and the diskette in the drive is write protected.

IA Only ENOSYS The floppy disk device does not support the
requested ioctl function (FDEJECT).

IA
CONFIGURATION

The driver attempts to initialize itself using the information found in the
configuration file, /platform/i86pc/kernel/drv/fd.conf .

name="fd" parent="fdc" unit=0;
name="fd" parent="fdc" unit=1;

FILES
SPARC /platform/sun4c/kernel/drv/fd driver module

/platform/sun4m/kernel/drv/fd driver module

/platform/sun4u/kernel/drv/fd driver module

/usr/include/sys/fdreg.h structs and definitions for Intel 82072
and 82077 controllers

/usr/include/sys/fdvar.h structs and definitions for floppy
drivers

Last modified 24 Feb 1998 SunOS 5.8 155

fd(7D) Devices

/dev/diskette device file

/dev/diskette0 device file

/dev/rdiskette raw device file

/dev/rdiskette0 raw device file

For ucb Compatibility
/dev/fd0[a-c] block file

/dev/rfd0[a-c] raw file

/vol/dev/diskette0 directory containing volume
management character device file

/vol/dev/rdiskette0 directory containing the volume
management raw character device file

/vol/dev/aliases/floppy0 symbolic link to the entry in
/vol/dev/rdiskette0

IA /platform/i86pc/kernel/drv/fd driver module

/platform/i86pc/kernel/drv/fd.conf configuration file for floppy
driver

/platform/i86pc/kernel/drv/fdc floppy-controller driver module

/platform/i86pc/kernel/drv/fdc.con
f

configuration file for the
floppy-controller

/usr/include/sys/fdc.h structs and definitions for IA
floppy devices

/usr/include/sys/fdmedia.h structs and definitions for IA
floppy media

IA First Drive
/dev/diskette device file

/dev/diskette0 device file

/dev/rdiskette raw device file

/dev/rdiskette0 raw device file

For ucb Compatibility
/dev/fd0[a-c] block file

/dev/rfd0[a-c] raw file

/vol/dev/diskette0 directory containing volume
management character device file

156 SunOS 5.8 Last modified 24 Feb 1998

Devices fd(7D)

/vol/dev/rdiskette0 directory containing the volume
management raw character device file

/vol/dev/aliases/floppy0 symbolic link to the entry in
/vol/dev/rdiskette0

IA Second Drive
/dev/diskette1 device file

/dev/rdiskette1 raw device file

For ucb Compatibility
/dev/fd1[a-c] block file

/dev/rfd1[a-c] raw file

/vol/dev/diskette1 directory containing volume
management character device file

/vol/dev/rdiskette1 directory containing the volume
management raw character device file

/vol/dev/aliases/floppy1 symbolic link to the entry in
/vol/dev/rdiskette1

SEE ALSO fdformat (1) , dd(1M) , drvconfig (1M) , vold (1M) , read (2) , write (2) ,
driver.conf (4) , dkio (7I) fdio (7I)

DIAGNOSTICS
All Platforms fd<n>: <command name> failed (<sr1> <sr2> <sr3>)

The <command name> failed after several retries on drive <n>. The three
hex values in parenthesis are the contents of status register 0, status register
1, and status register 2 of the Intel 8272, the Intel 82072, and the Intel 82077
Floppy Disk Controller on completion of the command, as documented in
the data sheet for that part. This error message is usually followed by one of
the following, interpreting the bits of the status register:

fd<
n
>:

not writable

fd<
n
>:

crc error blk <block number>

There was a data error on <block number>.

fd<
n
>:

bad format

Last modified 24 Feb 1998 SunOS 5.8 157

fd(7D) Devices

fd<
n
>:

timeout

fd<
n
>:

drive not ready

fd<
n
>:

unformatted diskette or no diskette in drive

fd<
n
>:

block <block number> is past the end!

(nblk=<total number of blocks>)

The operation tried to access a block number that is
greater than the total number of blocks.

fd<
n
>:

b_bcount 0x<op_size> not % 0x<sect_size>

The size of an operation is not a multiple of the sector
size.

fd<
n
>:

overrun/underrun

fd<
n
>:

host bus error . There was a hardware error on a
system bus.

SPARC Only Overrun/underrun errors occur when accessing a diskette while the system is
heavily loaded. Decrease the load on the system and retry the diskette access.

NOTES 3.5" high density diskettes have 18 sectors per track and 5.25" high density
diskettes have 15 sectors per track. They can cross a track (though not a cylinder)
boundary without losing data, so when using dd(1M) or read (2) / write (2)
calls to or from the “raw” diskette, you should specify bs=18k or multiples
thereof for 3.5" diskettes, and bs=15k or multiples thereof for 5.25" diskettes.

The SPARC fd driver is not an unloadable module.

Under Solaris (Intel Platform Edition), the configuration of the floppy drives
is specified in CMOS configuration memory. Use the BIOS setup program or
an EISA configuration program for the system to define the diskette size and
density/capacity for each installed drive. Note that MS-DOS may operate the
floppy drives correctly, even though the CMOS configuration may be in error.
Solaris (Intel Platform Edition) relies on the CMOS configuration to be accurate.

158 SunOS 5.8 Last modified 24 Feb 1998

Ioctl Requests fdio(7I)

NAME fdio – floppy disk control operations

SYNOPSIS #include <sys/fdio.h>

DESCRIPTION The Solaris floppy driver supports a set of ioctl (2) requests for getting and
setting the floppy drive characteristics. Basic to these ioctl () requests are
the definitions in <sys/fdio.h> .

IOCTLS The following ioctl () requests are available on the Solaris floppy driver.
FDDEFGEOCHARIA based systems: This ioctl () forces the floppy driver to

restore the diskette and drive characteristics and geometry,
and partition information to default values based on the
device configuration.

FDGETCHANGE The argument is a pointer to an int. This ioctl () returns
the status of the diskette-changed signal from the floppy
interface. The following defines are provided for cohesion.

Note: For IA based systems, use FDGC_DETECTED(which is available only on IA
based systems) instead of FDGC_HISTORY.

/*
* Used by FDGETCHANGE, returned state of the sense disk change bit.
*/

#define FDGC_HISTORY 0x01 /* disk has changed since last call */
#define FDGC_CURRENT 0x02 /* current state of disk change */
#define FDGC_CURWPROT 0x10 /* current state of write protect */
#define FDGC_DETECTED 0x20 /* previous state of DISK CHANGE */

FDIOGCHAR The argument is a pointer to an fd_char structure
(described below). This ioctl () gets the characteristics of
the floppy diskette from the floppy controller.

FDIOSCHAR The argument is a pointer to an fd_char structure
(described below). This ioctl () sets the characteristics of
the floppy diskette for the floppy controller. Typical values
in the fd_char structure for a high density diskette:

field value
fdc_medium 0
fdc_transfer_rate 500
fdc_ncyl 80
fdc_nhead 2
fdc_sec_size 512
fdc_secptrack 18
fdc_steps -1 { This field doesn’t apply. }

Last modified 13 Feb 1997 SunOS 5.8 159

fdio(7I) Ioctl Requests

/*
* Floppy characteristics
*/

struct fd_char {
uchar_t fdc_medium; /* equals 1 if medium type */
int fdc_transfer_rate; /* transfer rate */
int fdc_ncyl; /* number of cylinders */
int fdc_nhead; /* number of heads */
int fdc_sec_size; /* sector size */
int fdc_secptrack; /* sectors per track */
int fdc_steps; /* no. of steps per data track */

};

FDGETDRIVECHAR The argument to this ioctl () is a pointer to an
fd_drive structure (described below). This
ioctl () gets the characteristics of the floppy
drive from the floppy controller.

FDSETDRIVECHAR IA based systems: The argument to this ioctl ()
is a pointer to an fd_drive structure (described
below). This ioctl () sets the characteristics
of the floppy drive for the floppy controller.
Only fdd_steprate , fdd_headsettle ,
fdd_motoron , and fdd_motoroff are actually
used by the floppy disk driver.

/*
* Floppy Drive characteristics
*/

struct fd_drive {
int fdd_ejectable; /* does the drive support eject? */
int fdd_maxsearch; /* size of per-unit search table */
int fdd_writeprecomp; /* cyl to start write precompensation */
int fdd_writereduce; /* cyl to start recucing write current */
int fdd_stepwidth; /* width of step pulse in 1 us units */
int fdd_steprate; /* step rate in 100 us units */
int fdd_headsettle; /* delay, in 100 us units */
int fdd_headload; /* delay, in 100 us units */
int fdd_headunload; /* delay, in 100 us units */
int fdd_motoron; /* delay, in 100 ms units */
int fdd_motoroff; /* delay, in 100 ms units */
int fdd_precomplevel; /* bit shift, in nano-secs */
int fdd_pins; /* defines meaning of pin 1, 2, 4 and 34 */
int fdd_flags; /* TRUE READY, Starting Sector #, & Motor On */

};

FDGETSEARCH Not available.

FDSETSEARCH Not available.

FDEJECT SPARC: This ioctl () requests the floppy drive to eject
the diskette.

160 SunOS 5.8 Last modified 13 Feb 1997

Ioctl Requests fdio(7I)

FDIOCMD The argument is a pointer to an fd_cmd structure (described
below). This ioctl () allows access to the floppy diskette
using the floppy device driver. Only the FDCMD_WRITE,
FDCMD_READ, and FDCMD_FORMAT_TRcommands are
currently available.

struct fd_cmd {
ushort_t fdc_cmd; /* command to be executed */
int fdc_flags; /* execution flags (IA only) */
daddr_t fdc_blkno; /* disk address for command */
int fdc_secnt; /* sector count for command */
caddr_t fdc_bufaddr; /* user’s buffer address */
uint_t fdc_buflen; /* size of user’s buffer */

};

Please note that the fdc_buflen field is currently unused. The fdc_secnt
field is used to calculate the transfer size, and the buffer is assumed to be large
enough to accommodate the transfer.

struct fd_cmd {
/*

* Floppy commands
*/

#define FDCMD_WRITE 1
#define FDCMD_READ 2
#define FDCMD_SEEK 3
#define FDCMD_REZERO 4
#define FDCMD_FORMAT_UNIT 5
#define FDCMD_FORMAT_TRACK 6
};

FDRAW The argument is a pointer to an fd_raw structure (described
below). This ioctl () allows direct control of the floppy
drive using the floppy controller. Refer to the appropriate
floppy-controller data sheet for full details on required
command bytes and returned result bytes. The following
commands are supported.

/*
* Floppy raw commands
*/
#define FDRAW_SPECIFY 0x03
#define FDRAW_READID 0x0a (IA only)
#define FDRAW_SENSE_DRV 0x04
#define FDRAW_REZERO 0x07
#define FDRAW_SEEK 0x0f
#define FDRAW_SENSE_INT 0x08 (IA only)
#define FDRAW_FORMAT 0x0d

Last modified 13 Feb 1997 SunOS 5.8 161

fdio(7I) Ioctl Requests

#define FDRAW_READTRACK 0x02
#define FDRAW_WRCMD 0x05
#define FDRAW_RDCMD 0x06
#define FDRAW_WRITEDEL 0x09
#define FDRAW_READDEL 0x0c

Please note that when using FDRAW_SEEKor FDRAW_REZERO,the driver
automatically issues a FDRAW_SENSE_INTcommand to clear the interrupt from
the FDRAW_SEEKor the FDRAW_REZERO.The result bytes returned by these
commands are the results from the FDRAW_SENSE_INTcommand. Please see
the floppy-controller data sheet for more details on FDRAW_SENSE_INT.

/*
* Used by FDRAW
*/

struct fd_raw {
char fdr_cmd[10]; /* user-supplied command bytes */
short fdr_cnum; /* number of command bytes */
char fdr_result[10]; /* controller-supplied result bytes */
ushort_t fdr_nbytes; /* number to transfer if read/write command */
char *fdr_addr; /* where to transfer if read/write command */

};

SEE ALSO ioctl (2), dkio (7I), fd (7D), hdio (7I)

162 SunOS 5.8 Last modified 13 Feb 1997

Devices ffb(7D)

NAME ffb – 24-bit UPA color frame buffer and graphics accelerator

DESCRIPTION ffb is a 24-bit UPA-based color frame buffer and graphics accelerator which
comes in the two configurations: single buffered frame and double buffered
frame.
Single buffered frame buffer Consists of 32 video memory planes

of 1280 x 1024 pixels, including 24-bit
single-buffering and 8-bit X planes.

Double buffered frame buffer Consists of 96 video memory planes
of 1280 x 1024 pixels, including 24-bit
double-buffering, 8-bit X planes,
28-bit Z-buffer planes and 4-bit
Y planes.

The driver supports the following frame buffer ioctls which are defined in
fbio (7I):

FBIOPUTCMAP, FBIOGETCMAP, FBIOSVIDEO, FBIOGVIDEO, FBIOVERTICAL,
FBIOSCURSOR, FBIOGCURSOR, FBIOSCURPOS, FBIOGCURPOS, FBIOGCURMAX,
FBIO_WID_PUT, FBIO_WID_GET

FILES /dev/fbs/ffb0 device special file

SEE ALSO ffbconfig (1M), mmap(2), fbio (7I)

Last modified 10 Jun 1997 SunOS 5.8 163

flashpt(7D) Devices

NAME flashpt – low-level module for Mylex/BusLogic host bus adapters

SYNOPSIS pci104b,8130@d

DESCRIPTION The flashpt module provides low-level interface routines between the
common disk/tape I/O subsystem and the BusLogic FlashPoint Ultra SCSI
(Small Computer System Interface) controllers. The flashpt module can
be configured for disk and streaming tape support for one or more host
bus adapter boards, each of which must be the sole initiator on a SCSI bus.
Auto-configuration code determines if the adapter is present at the configured
address and determines what types of devices are attached to the adapter.

Supported BusLogic
Adapters

The following table describes the BusLogic host adapters supported by the
flashpt module.

MODEL DESCRIPTION

FlashPoint LT PCI Ultra SCSI adapter

FlashPoint LW PCI Ultra & Wide SCSI adapter

FlashPoint DL PCI Dual Channel Ultra SCSI adapter

FlashPoint DW PCI Dual Channel Ultra & Wide SCSI adapter

CONFIGURATION The driver attempts to configure itself in accordance with the information found
in the configuration file flashpt.conf .

FILES /kernel/drv/flashpt.conf flashpt device driver configuration
file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO driver.conf (4), sysbus (4), attributes (5)

164 SunOS 5.8 Last modified 20 Jun 1997

Devices fp(7d)

NAME fp – Sun Fibre Channel port driver

DESCRIPTION The fp driver is a Sun Fibre Channel nexus driver that enables Fibre Channel
topology discovery, device discovery, Fibre Channel adapter port management
and other capabilities through well-defined Fibre Channel adapter driver
interfaces.

The fp driver requires the presence of a fabric name server in fabric and public
loop topologies to discover fibre channel devices. In private loop topologies, the
driver discovers devices by performing PLOGI to all valid AL_PAs, provided
that devices do not participate in LIRP and LILP stages of loop initialization.

FILES /kernel/drv/fp
32–bit ELF kernel driver

/kernel/drv/sparcv9/fp
64–bit ELF kernel driver

/kernel/drv/fp.conf
fp driver configuration file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Interface stability Unknown

Availability SUNWfctl

SEE ALSO prtconf (1M), driver.conf (4), fctl (7D)

Writing Device Drivers,

Fibre Channel Physical and Signaling Interface (FC-PH) ANSI X3.230: 1994,

Fibre Channel Generic Services (FC-GS-2) Project 1134-D,

Fibre Channel Arbitrated Loop (FC-AL) ANSI X3.272-1996,

Fibre Channel Protocol for SCSI (FCP) ANSI X3.269-1996,

SCSI-3 Architecture Model (SAM) Fibre Channel Private Loop SCSI Direct
Attach (FC-PLDA) ANSI X3.270-1996,

SCSI Direct Attach (FC-PLDA) NCITS TR-19:1998,

Fabric Loop Attachment (FC-FLA), NCITS TR-20:1998

Last modified 20 Jul 1999 SunOS 5.8 165

gld(7D) Devices

NAME gld – Generic LAN Driver

SYNOPSIS #include <sys/stropts.h>

#include <sys/stream.h>

#include <sys/dlpi.h>

#include <sys/gld.h>

DESCRIPTION GLD is a multi-threaded, clonable, loadable kernel module providing support
for Solaris Local Area Network device drivers.

Local Area Network (LAN) device drivers in Solaris are STREAMS-based
drivers that use the Data Link Provider Interface (DLPI) to communicate with
network protocol stacks. These protocol stacks use the network drivers to send
and receive packets on a local area network. A network device driver, therefore,
must implement and adhere to the requirements imposed by the DDI/DKI
specification, the STREAMS specification, the DLPI interface specification, and
the programmatic interface of the device itself.

GLD implements most of the STREAMS functions and DLPI functionality
required of a Solaris LAN driver. Several Solaris network drivers are
implemented using GLD.

Any Solaris network driver implemented using GLD is divided into two
distinct parts: a generic part that deals with STREAMS and DLPI interfaces,
and a device-specific part that deals with the particular hardware device. The
device-specific module indicates its dependency on the GLD module and
registers itself with GLD from within the driver’s attach (9E) function. After
the driver has been successfully loaded, it is a DLPI-compliant driver. The
device-specific part of the driver calls GLD functions when it receives data or
needs some service from GLD. GLD makes calls into the GLD entry points of the
device-specific driver through pointers provided to GLD by the device-specific
driver when it registered itself with GLD.

The GLD facility currently supports devices of type DL_ETHER, DL_TPR, and
DL_FDDI. GLD drivers are expected to process fully-formed MAC-layer packets,
and should not perform any Logical Link Control (LLC) handling.

In some cases it may be necessary or desirable to implement a full
DLPI-compliant driver without using the GLD facility. This will be the case, for
example, for devices that are not IEEE 802-style LAN devices, or where a device
type or DLPI service not supported by GLD is required.

Type DL_ETHER:
Ethernet V2 and 802.3

For devices designated type DL_ETHER, GLD provides support for both Ethernet
V2 and IEEE 802.3 / ISO 8802-3 packet processing. Ethernet V2 enables a data
link service user to access and use any of a variety of conforming data link
service providers without special knowledge of the provider’s protocol. A

166 SunOS 5.8 Last modified 25 Jan 1999

Devices gld(7D)

Service Access Point (SAP) is the point through which the user communicates
with the service provider.

Streams bound to SAP values in the range [0-255] are treated as equivalent and
denote that the user wishes to use 802.3 mode. If the value of the SAP field of the
DL_BIND_REQis within this range, GLD computes the length, not including the
14-byte MAC header, of each subsequent DL_UNITDATA_REQmessage on that
stream, and transmits 802.3 frames having that length in the MAC frame header
type field. Such lengths will never exceed 1500.

Furthermore, all frames received from the media, having a type field in the
range [0-1500], are assumed to be 802.3 frames and are routed up all open
streams that are in 802.3 mode, i.e. are bound to a SAP value in the [0-255]
range. If more than one stream is in 802.3 mode, the incoming frame will be
duplicated and routed up each such stream.

Streams bound to SAP values > 1500 receive incoming packets whose Ethernet
MAC header type value exactly matches the value of the SAP to which the
Stream is bound.

Types DL_TPR and
DL_FDDI: SNAP

processing

For media types DL_TPRand DL_FDDI GLD implements minimal SNAP
processing for any stream bound to a SAP value greater than 255. SAP values in
the range [0-255] are LLC SAP values, and are carried naturally by the media
packet format. However, SAP values greater than 255 require a SNAP (Sub-Net
Access Protocol) header, under the LLC header, to carry the 16-bit Ethernet
V2-style SAP value.

SNAP headers are carried under LLC headers with destination SAP 0xAA. For
outgoing packets with SAP values greater than 255, GLD creates an LLC+SNAP
header that always looks like:

“AA AA 03 00 00 00 XX XX”

where “XX XX” represents the 16-bit SAP, corresponding to the Ethernet V2 style
“type”. This is the only class of SNAP header supported — non-zero OUI
fields, and LLC control fields other than 03, are considered to be LLC packets
with SAP 0xAA. Clients wishing to use SNAP formats other than this one
must use LLC and bind to SAP 0xAA.

Incoming packets are examined to ascertain whether they fall into the format
specified above. Packets that do will be matched to Streams bound to the
packet’s 16-bit SNAP type, as well as being considered to match the LLC SNAP
SAP 0xAA.

Packets received for any LLC SAP are passed up all Streams that are bound to an
LLC SAP, just as described for media type DL_ETHERabove.

Last modified 25 Jan 1999 SunOS 5.8 167

gld(7D) Devices

Type DL_TPR: Source
Routing

For type DL_TPRdevices, GLD implements minimal support for Source Routing.
Source Routing is a mechanism by which a station sending a packet across a
bridged medium specifies, in the packet MAC header, Routing Information that
determines the route that the packet will take through the bridged network.

Functionally, the Source Routing support provided by GLD learns routes, solicits
and responds to requests for information about possible multiple routes,
and selects among multiple routes available to it. It adds Routing Information
Fields to the MAC headers of outgoing packets, and recognizes such fields
in incoming packets.

GLD’s Source Routing support does not implement the full Route Determination
Entity (RDE) specified in ISO 8802-2 (IEEE 802.2) Section 9. However, it is
designed to interoperate with any such implementations that may exist in the
same (or a bridged) network.

Style 1 and 2
Providers

GLD implements both Style 1 and Style 2 providers. A Physical Point of
Attachment (PPA) is the point at which a system attaches itself to a physical
communication medium. All communication on that physical medium funnels
through the PPA. The Style 1 provider attaches the stream to a particular
PPA based on the major/minor device that has been opened. The Style 2
provider requires the DLS user to explicitly identify the desired PPA using
DL_ATTACH_REQ.In this case, open (9E) creates a stream between the user and
GLD, and DL_ATTACH_REQsubsequently associates a particular PPA with that
stream. Style 2 is denoted by a minor number of zero. If a device node is opened
whose minor number is not zero, that denotes Style 1, and the associated PPA is
the minor number minus 1. In both Style 1 and Style 2 opens, the device is cloned.

Implemented DLPI
Primitives

GLD implements the following DLPI primitives:

The DL_INFO_REQprimitive requests information about the DLPI stream. The
message consists of one M_PROTOmessage block. GLD returns device-dependent
values in the DL_INFO_ACKresponse to this request, based on information the
GLD-based driver passed to gld_register (). However GLD returns the
following values on behalf of all GLD-based drivers:

� The version is DL_VERSION_2.

� The service mode is DL_CLDLS— GLD implements connectionless-mode
service.

� The provider style is DL_STYLE1 or DL_STYLE2, depending on how the
stream was opened.

� No optional Quality Of Service (QOS) support is present, so the QOS
fields are zero.

The DL_ATTACH_REQprimitive is called to associate a PPA with a stream. This
request is needed for Style 2 DLS providers to identify the physical medium

168 SunOS 5.8 Last modified 25 Jan 1999

Devices gld(7D)

over which the communication will transpire. Upon completion, the state
changes from DL_UNATTACHEDto DL_UNBOUND.The message consists of
one M_PROTOmessage block. This request may not be issued when using the
driver in Style 1 mode; streams opened using Style 1 are already attached to a
PPA by the time the open completes.

The DL_DETACH_REQprimitive requests to detach the PPA from the stream.
This is only allowed if the stream was opened using Style 2.

The DL_BIND_REQand DL_UNBIND_REQprimitives bind and unbind a DLSAP
to the stream. The PPA associated with each stream will have been initialized
upon completion of the processing of the DL_BIND_REQ. Multiple streams may
be bound to the same SAP; each such stream receives a copy of any packets
received for that SAP.

The DL_ENABMULTI_REQand DL_DISABMULTI_REQprimitives enable and
disable reception of individual multicast group addresses. A set of multicast
addresses may be iteratively created and modified on a per-stream basis using
these primitives. The stream must be attached to a PPA for these primitives
to be accepted.

The DL_PROMISCON_REQand DL_PROMISCOFF_REQprimitives enable and
disable promiscuous mode on a per-stream basis, either at a physical level or at
the SAP level. The DL Provider will route all received messages on the media
to the DLS User until either a DL_DETACH_REQor a DL_PROMISCOFF_REQis
received or the stream is closed. Physical level promiscuous mode may be
specified for all packets on the medium, or for multicast packets only. The stream
must be attached to a PPA for these primitives to be accepted.

The DL_UNITDATA_REQprimitive is used to send data in a connectionless
transfer. Because this is an unacknowledged service, there is no guarantee of
delivery. The message consists of one M_PROTOmessage block followed by one
or more M_DATAblocks containing at least one byte of data.

The DL_UNITDATA_IND type is used when a packet is received and is to be
passed upstream. The packet is put into an M_PROTOmessage with the primitive
set to DL_UNITDATA_IND.

The DL_PHYS_ADDR_REQprimitive returns the MAC address, currently
associated with the PPA attached to the stream, in the DL_PHYS_ADDR_ACK
primitive. When using style 2, this primitive is only valid following a successful
DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQprimitive changes the MAC address currently
associated with the PPA attached to the stream. This primitive affects all other
current and future streams attached to this device. Once changed, all streams
subsequently opened and attached to this device will obtain this new physical
address. The new physical address will remain in effect until this primitive

Last modified 25 Jan 1999 SunOS 5.8 169

gld(7D) Devices

is used to change the physical address again or the driver is reloaded. This
primitive will only succeed when no Stream currently attached to the selected
device is bound (i.e. using DL_BIND_REQ).

Implemented ioctl
Functions

GLD implements the ioctl ioc_cmd function described below.

The DLIOCRAWioctl function is used by some DLPI applications, most notably
the snoop (1M) command. The DLIOCRAWcommand puts the stream into
a raw mode, which, on receive, causes the the full MAC-level packet to be
sent upstream in an M_DATAmessage instead of it being transformed into the
DL_UNITDATA_IND form normally used for reporting incoming packets. Packet
SAP filtering is still performed on streams that are in raw mode; if a stream
user wants to receive all incoming packets it must also select the appropriate
promiscuous modes. After successfully selecting raw mode, the application is
also allowed to send fully formatted packets to the driver as M_DATAmessages
for transmission. DLIOCRAWtakes no arguments. Once enabled, the stream
remains in this mode until closed.

Network Statistics Solaris network drivers must implement statistics variables. GLD itself tallies
some network statistics, but other statistics must be counted by each GLD-based
driver. GLD provides support for GLD-based drivers to report a standard set of
network driver statistics. Statistics are reported by GLD using the kstat (7D)
and kstat (9S) mechanism. All statistics are maintained as unsigned, and all
are 32 bits unless otherwise noted.

GLD maintains and reports the following statistics.
rbytes64 Total bytes successfully received on the interface

(64 bits).

rbytes Total bytes successfully received on the interface.

obytes64 Total bytes requested to be transmitted on the
interface (64 bits).

obytes Total bytes requested to be transmitted on the
interface.

ipackets64 Total packets successfully received on the
interface (64 bits).

ipackets Total packets successfully received on the
interface.

opackets64 Total packets requested to be transmitted on
the interface (64 bits).

opackets Total packets requested to be transmitted on the
interface.

170 SunOS 5.8 Last modified 25 Jan 1999

Devices gld(7D)

multircv Multicast packets successfully received, including
group and functional addresses (long).

multixmt Multicast packets requested to be transmitted,
including group and functional addresses (long).

brdcstrcv Broadcast packets successfully received (long).

brdcstxmt Broadcast packets requested to be transmitted
(long).

unknowns Valid received packets not accepted by any
stream.

noxmtbuf Packets discarded on output because transmit
buffer was busy, or no buffer could be allocated
for transmit.

blocked Times a received packet could not be put up a
stream because the queue was flow controlled.

xmtretry Times transmit was retried after having been
delayed due to lack of resources.

promisc Current “promiscuous” state of the interface.

The device dependent driver may count the following statistics.
ifspeed Current estimated bandwidth of the interface in

bits per second (64 bits).

media Current media type in use by the device.

intr Times interrupt handler was called and claimed
the interrupt.

norcvbuf Times a valid incoming packet was known to
have been discarded because no buffer could be
allocated for receive.

ierrors Total packets received that couldn’t be processed
because they contained errors.

oerrors Total packets that weren’t successfully
transmitted because of errors.

missed Packets known to have been dropped by the
hardware on receive.

uflo Times FIFO underflowed on transmit.

oflo Times receiver overflowed during receive.

Last modified 25 Jan 1999 SunOS 5.8 171

gld(7D) Devices

The following group of statistics applies to networks of type DL_ETHER; these
are maintained by device-specific drivers of that type, as above.
align_errors Packets received with framing errors (not an

integral number of octets).

fcs_errors Packets received with CRC errors.

duplex Current duplex mode of the interface.

carrier_errors Times carrier was lost or never detected on a
transmission attempt.

collisions Ethernet collisions during transmit.

ex_collisions Frames where excess collisions occurred on
transmit, causing transmit failure.

tx_late_collisions Times a transmit collision occurred late (after
512 bit times).

defer_xmts Packets without collisions where first transmit
attempt was delayed because the medium was
busy.

first_collisions Packets successfully transmitted with exactly one
collision.

multi_collisions Packets successfully transmitted with multiple
collisions.

sqe_errors Times SQE test error was reported.

macxmt_errors Packets encountering transmit MAC failures,
except carrier and collision failures.

macrcv_errors Packets received with MAC errors, except align,
fcs, and toolong errors.

toolong_errors Packets received larger than the maximum
permitted length.

runt_errors Packets received smaller than the minimum
permitted length.

The following group of statistics applies to networks of type DL_TPR; these are
maintained by device-specific drivers of that type, as above.
line_errors Packets received with non-data bits or FCS errors.

burst_errors Times an absence of transitions for five half-bit
timers was detected.

172 SunOS 5.8 Last modified 25 Jan 1999

Devices gld(7D)

signal_losses Times loss of signal condition on the ring was
detected.

ace_errors Times an AMP or SMP frame in which A is equal
to C is equal to 0, was followed by another such
SMP frame without an intervening AMP frame.

internal_errors Times the station recognized an internal error.

lost_frame_errors Times the TRR timer expired during transmit.

frame_copied_errors Times a frame addressed to this station was
received with the FS field A bit set to 1.

token_errors Times the station acting as the active monitor
recognized an error condition that needed a
token transmitted.

freq_errors Times the frequency of the incoming signal
differed from the expected frequency.

The following group of statistics applies to networks of type DL_FDDI; these are
maintained by device-specific drivers of that type, as above.
mac_errors Frames detected in error by this MAC that had

not been detected in error by another MAC.

mac_lost_errors Frames received with format errors such that the
frame was stripped.

mac_tokens Number of tokens received (total of non-restricted
and restricted).

mac_tvx_expired Number of times that TVX has expired.

mac_late Number of TRT expirations since this MAC was
reset or a token was received.

mac_ring_ops Number of times the ring has entered the
“Ring_Operational” state from the “Ring Not
Operational” state.

FILES /kernel/misc/gld loadable kernel module

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5), dlpi (7P), attach (9E), open (9E), kstat (9S), kstat (7D).

Last modified 25 Jan 1999 SunOS 5.8 173

gld(7D) Devices

WARNINGS Contrary to the DLPI specification, GLD returns the device’s correct address
length and broadcast address in DL_INFO_ACKeven before the stream has
been attached to a PPA.

Promiscuous mode may only be entered by Streams that are attached to a PPA.

174 SunOS 5.8 Last modified 25 Jan 1999

Devices glm(7D)

NAME glm – GLM SCSI Host Bus Adapter Driver

SYNOPSIS scsi@unit-address

DESCRIPTION The glm Host Bus Adapter driver is a SCSA compliant nexus driver that
supports the Symbios 53c875 SCSI chip.

It supports the standard functions provided by the SCSA interface. That is,
it supports tagged and untagged queuing, Wide/Fast/Ultra SCSI, and auto
request sense, but it does not support linked commands.

Driver Configuration Configure the glm driver by defining properties in glm.conf . These properties
override the global SCSI settings. glm supports these properties which can
be modified by the user: scsi-options , target< n>-scsi-options ,
scsi-reset-delay , scsi-tag-age-limit , scsi-watchdog-tick , and
scsi-initiator-id .

target< n>-scsi-options overrides the scsi-options property
value for target< n>. <n> can vary from decimal 0 to 15 . glm supports
these scsi-options : SCSI_OPTIONS_DR, SCSI_OPTIONS_SYNC,
SCSI_OPTIONS_TAG, SCSI_OPTIONS_FAST, SCSI_OPTIONS_WIDE, and
SCSI_OPTIONS_FAST20.

After periodic interval scsi-watchdog-tick , the glm driver searches through
all current and disconnected commands for timeouts.

scsi-tag-age-limit is the number of times that the glm driver attempts
to allocate a particular tag ID that is currently in use after going through
all tag IDs in a circular fashion. After finding the same tag ID in use
scsi-tag-age-limit times, no more commands will be submitted to this
target until all outstanding commands complete or timeout.

Refer to scsi_hba_attach (9F).

EXAMPLES EXAMPLE 1 Using the glm Configuration File

Create a file called /kernel/drv/glm.conf and add the following line:
scsi-options=0x78;

This disables tagged queuing, Fast/Ultra SCSI and wide mode for all glm
instances.

The following example disables an option for one specific glm (refer to
driver.conf (4) and pci (4) for more details):

name="glm" parent="/pci@1f,4000"
unit-address="3"
target1-scsi-options=0x58
scsi-options=0x178 scsi-initiator-id=6;

Note that the default initiator ID in OBP is 7 and that the change to ID 6 will
occur at attach time. It may be preferable to change the initiator ID in OBP.

Last modified 8 Jan 1998 SunOS 5.8 175

glm(7D) Devices

The example above sets scsi-options for target 1 to 0x58 and all other
targets on this SCSI bus to 0x178 .

The physical pathname of the parent can be determined using the /devices
tree or following the link of the logical device name:

ls -l /dev/rdsk/c0t0d0s0
lrwxrwxrwx 1 root root 45 May 16 10:08 /dev/rdsk/c0t0d0s0 ->
. . / . . /devices/pci@1f,4000/scsi@3/sd@0,0:a,raw

In this case, like the example above, the parent is /pci@1f,4000 and the
unit-address is the number bound to the scsi@3 node.

To set scsi-options more specifically per target:
target1-scsi-options=0x78;
device-type-scsi-options-list =

"SEAGATE ST32550W", "seagate-scsi-options" ;
seagate-scsi-options = 0x58;
scsi-options=0x3f8;

The above sets scsi-options for target 1 to 0x78 and for all other targets
on this SCSI bus to 0x3f8 except for one specific disk type which will have
scsi-options set to 0x58 .

scsi-options specified per target ID have the highest precedence, followed by
scsi-options per device type. Global scsi-options (for all glm instances)
per bus have the lowest precedence.

The system needs to be rebooted before the specified scsi-options take effect.
Driver Capabilities The target driver needs to set capabilities in the glm driver in order to

enable some driver features. The target driver can query and modify these
capabilities: synchronous , tagged-qing , wide-xfer , auto-rqsense ,
qfull-retries , qfull-retry-interval . All other capabilities can only
be queried.

By default, tagged-qing , auto-rqsense , and wide-xfer capabilities are
disabled, while disconnect , synchronous , and untagged-qing are enabled.
These capabilities can only have binary values (0 or 1). The default value for
qfull-retries is 10 and the default value for qfull-retry-interval
is 100 . The qfull-retries capability is a uchar_t (0 to 255) while
qfull-retry-interval is a ushort_t (0 to 65535).

The target driver needs to enable tagged-qing and wide-xfer explicitly. The
untagged-qing capability is always enabled and its value cannot be modified.

Whenever there is a conflict between the value of scsi-options and a
capability, the value set in scsi-options prevails. Only whom != 0 is
supported in the scsi_ifsetcap (9F) call.

Refer to scsi_ifsetcap (9F) and scsi_ifgetcap (9F) for details.

176 SunOS 5.8 Last modified 8 Jan 1998

Devices glm(7D)

FILES /kernel/drv/glm ELF Kernel Module

/kernel/drv/glm.conf Optional configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems with
Symbios 53c875 SCSI I/O processors

SEE ALSO prtconf (1M), driver.conf (4), pci (4), attributes (5), scsi_abort (9F),
scsi_hba_attach (9F), scsi_ifgetcap (9F), scsi_ifsetcap (9F),
scsi_reset (9F), scsi_sync_pkt (9F), scsi_transport (9F),
scsi_device (9S), scsi_extended_sense (9S), scsi_inquiry (9S),
scsi_pkt (9S)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2),

Symbios Logic Inc., SYM53c875 PCI-SCSI I/O Processor With Fast-20

DIAGNOSTICS The messages described below are some that may appear on the system console,
as well as being logged.
Device is using a hilevel intr

The device was configured with an interrupt level that cannot be used with
this glm driver. Check the PCI device.

map setup failed
Driver was unable to map device registers; check for bad hardware. Driver
did not attach to device; SCSI devices will be inaccessible.

glm_script_alloc failed
The driver was unable to load the SCRIPTS for the SCSI processor, check
for bad hardware. Driver did not attach to device; SCSI devices will be
inaccessible.

cannot map configuration space.
The driver was unable to map in the configuration registers. Check for bad
hardware. SCSI devices will be inaccessible.

attach failed
The driver was unable to attach; usually preceded by another warning that
indicates why attach failed. These can be considered hardware failures.

SCSI bus DATA IN phase parity error
The driver detected parity errors on the SCSI bus.

Last modified 8 Jan 1998 SunOS 5.8 177

glm(7D) Devices

SCSI bus MESSAGE IN phase parity error
The driver detected parity errors on the SCSI bus.

SCSI bus STATUS phase parity error
The driver detected parity errors on the SCSI bus.

Unexpected bus free
Target disconnected from the bus without notice. Check for bad hardware.

Disconnected command timeout for Target <id>.<lun>
A timeout occurred while target id /lun was disconnected. This is usually a
target firmware problem. For tagged queuing targets, <n> commands were
outstanding when the timeout was detected.

Disconnected tagged cmd(s) (<n>) timeout for Target <id>.<lun>
A timeout occurred while target id /lun was disconnected. This is usually a
target firmware problem. For tagged queuing targets, <n> commands were
outstanding when the timeout was detected.

Connected command timeout for Target <id>.<lun>
This is usually a SCSI bus problem. Check cables and termination.

Target <id> reducing sync. transfer rate
A data transfer hang or DATA-IN phase parity error was detected. The
driver attempts to eliminate this problem by reducing the data transfer rate.

Target <id> reverting to async. mode
A second data transfer hang was detected for this target. The driver
attempts to eliminate this problem by reducing the data transfer rate.

Target <id> disabled wide SCSI mode
A second data phase hang was detected for this target. The driver attempts
to eliminate this problem by disabling wide SCSI mode.

auto request sense failed
An attempt to start an auto request packet failed. Another auto request
packet may already be in transport.

invalid reselection (<id>.<lun>)
A reselection failed; target accepted abort or reset , but still tries to
reconnect. Check for bad hardware.

invalid intcode
The SCRIPTS processor generated an invalid SCRIPTS interrupt. Check
for bad hardware.

NOTES The glm hardware (53C875) supports Wide, Fast, and Ultra SCSI mode. The
maximum SCSI bandwidth is 40 MB/sec.

178 SunOS 5.8 Last modified 8 Jan 1998

Devices glm(7D)

The glm driver exports properties indicating per target the negotiated
transfer speed (target< n>-sync-speed), whether wide bus is supported
(target< n>-wide), for that particular target (target< n>-scsi-options),
and whether tagged queuing has been enabled (target< n>-TQ). The
sync-speed property value is the data transfer rate in KB/sec. The
target< n>-TQ and the target< n>-wide property have value 1 to indicate
that the corresponding capability is enabled, or 0 to indicate that the capability is
disabled for that target. Refer to prtconf (1M) (verbose option) for viewing
the glm properties.

scsi, instance #0
Driver properties:

name <target6-TQ> length <4>
value <0x00000000>.

name <target6-wide> length <4>
value <0x00000000>.

name <target6-sync-speed> length <4>
value <0x00002710>.

name <target1-TQ> length <4>
value <0x00000001>.

name <target1-wide> length <4>
value <0x00000000>.

name <target1-sync-speed> length <4>
value <0x00002710>.

name <target0-TQ> length <4>
value <0x00000001>.

name <target0-wide> length <4>
value <0x00000001>.

name <target0-sync-speed> length <4>
value <0x00009c40>.

name <scsi-options> length <4>
value <0x000007f8>.

name <scsi-watchdog-tick> length <4>
value <0x0000000a>.

name <scsi-tag-age-limit> length <4>
value <0x00000002>.

name <scsi-reset-delay> length <4>
value <0x00000bb8>.

name <latency-timer> length <4>
value <0x00000088>.

name <cache-line-size> length <4>
value <0x00000010>.

Last modified 8 Jan 1998 SunOS 5.8 179

hdio(7I) Ioctl Requests

NAME hdio – SMD and IPI disk control operations

SYNOPSIS #include <sys/hdio.h>

DESCRIPTION The SMD and IPI disk drivers supplied with this release support a set of
ioctl (2) requests for diagnostics and bad sector information. Basic to these
ioctl() requests are the definitions in <sys/hdio.h> .

IOCTLS HDKIOCGTYPE The argument is a pointer to a hdk_type structure
(described below). This ioctl() gets specific information
from the hard disk.

HDKIOCSTYPE The argument is a pointer to a hdk_type structure
(described below). This ioctl() sets specific information
about the hard disk.

/*
* Used for drive info
*/

struct hdk_type {
ushort_t hdkt_hsect; /* hard sector count (read only) */
ushort_t hdkt_promrev; /* prom revision (read only) */
uchar_t hdkt_drtype; /* drive type (ctlr specific) */
uchar_t hdkt_drstat; /* drive status (ctlr specific, ro) */

};

HDKIOCGBAD The argument is a pointer to a hdk_badmap structure
(described below). This ioctl() is used to get the bad
sector map from the disk.

HDKIOCSBAD The argument is a pointer to a hdk_badmap structure
(described below). This ioctl() is used to set the bad
sector map on the disk.

/*
* Used for bad sector map
*/

struct hdk_badmap {
caddr_t hdkb_bufaddr; /* address of user’s map buffer */

};

HDKIOCGDIAG The argument is a pointer to a hdk_diag structure
(described below). This ioctl() gets the most recent

180 SunOS 5.8 Last modified 19 Feb 1993

Ioctl Requests hdio(7I)

command that failed along with the sector and error number
from the hard disk.

/*
* Used for disk diagnostics
*/

struct hdk_diag {
ushort_t hdkd_errcmd; /* most recent command in error */
daddr_t hdkd_errsect; /* most recent sector in error */
uchar_t hdkd_errno; /* most recent error number */
uchar_t hdkd_severe; /* severity of most recent error */

};

SEE ALSO ioctl (2), dkio (7I), xd (7D), xy (7D)

Last modified 19 Feb 1993 SunOS 5.8 181

hid(7D) Devices

NAME hid – Human Interface Device (HID) class driver

SYNOPSIS keyboard@unit-address

mouse@unit-address

hid@unit-address

DESCRIPTION The hid driver is a USBA (Solaris USB Architecture) compliant client driver
that supports the Human Interface Device Class (HID) 1.0 specification. The
Human Interface Device class encompasses devices controlled by humans to
operate computer systems. Typical examples of HID devices include keyboards,
mice, trackballs, and joysticks. HID also covers front-panel controls such
as knobs, switches, and buttons. A USB device with multiple interfaces may
have one interface for audio and a HID interface to define the buttons that
control the audio.

The hid driver is very general and primarily handles the USB functionality of
the device and generic HID functionality. For example, HID interfaces are
required to have an interrupt pipe for the device to send data packets, and the
hid driver opens the pipe to the interrupt endpoint and starts polling. The hid
driver is also responsible for managing the device through the default control
pipe. In addition to being a USB client driver, the hid driver is also a STREAMS
driver so that modules may be pushed on top of it.

The HID specification is very flexible, and HID devices dynamically describe
their packets and other parameters through the HID report descriptor. The HID
parser is a misc module that parses the HID report descriptor and creates a
database of information about the device. The hid driver queries the HID parser
to find out the type and characteristics of the HID device. The HID specification
predefines packet formats for the boot protocol keyboard and mouse.

FILES /kernel/drv/hid
32 bit ELF kernel module

/kernel/drv/sparcv9/hid
64 bit ELF kernel module

/kernel/misc/hidparser
/kernel/misc/sparcv9/hidparser

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems

Availability SUNWusb, SUNWusbx

182 SunOS 5.8 Last modified 21 Oct 1999

Devices hid(7D)

SEE ALSO hubd (7D), ohci (7D), uhci (7D), usb_mid (7D), usbkbm(7M), usbms(7M)

Writing Device Drivers

STREAMS Programming Guide

Universal Serial Bus Specification 1.0 and 1.1

Device Class Definition for Human Interface Devices (HID) 1.0

DIAGNOSTICS None.

Last modified 21 Oct 1999 SunOS 5.8 183

hme(7D) Devices

NAME hme – SUNW,hme Fast-Ethernet device driver

SYNOPSIS /dev/hme

DESCRIPTION The SUNW,hmeFast-Ethernet driver is a multi-threaded, loadable, clonable,
STREAMS hardware driver supporting the connectionless Data Link Provider
Interface, dlpi (7P), over a SUNW,hmeFast-Ethernet controller. The motherboard
and add-in SBus SUNW,hmecontrollers of several varieties are supported.
Multiple SUNW,hmecontrollers installed within the system are supported by
the driver.

The hme driver provides basic support for the SUNW,hmehardware. It is used
to handle the SUNW,hmedevice. Functions include chip initialization, frame
transit and receive, multicast and promiscuous support, and error recovery and
reporting. SUNW,hmeThe SUNW,hmedevice provides 100Base-TX networking
interfaces using SUN’s FEPS ASICand an Internal Transceiver. The FEPS ASIC
provides the Sbus interface and MAC functions and the Physical layer functions
are provided by the Internal Transceiver which connects to a RJ-45 connector.
In addition to the RJ-45 connector, an MII (Media Independent Interface)
connector is also provided on all SUNW,hmedevices except the SunSwith SBus
adapter board. The MII interface is used to connect to an External Transceiver
which may use any physical media (copper or fiber) specified in the 100Base-TX
standard. When an External Transceiver is connected to the MII, the driver
selects the External Transceiver and disables the Internal Transceiver.

The 100Base-TX standard specifies an “auto-negotiation” protocol to
automatically select the mode and speed of operation. The Internal transceiver
is capable of doing “auto-negotiation” with the remote-end of the link (Link
Partner) and receives the capabilities of the remote end. It selects the Highest
Common Denominator mode of operation based on the priorities. It also
supports forced-mode of operation where the driver can select the mode of
operation.

APPLICATION
PROGRAMMING

INTERFACE

The cloning character-special device /dev/hme is used to access all SUNW,hme
controllers installed within the system.

hme and DLPI The hme driver is a “style 2” Data Link Service provider. All M_PROTOand
M_PCPROTOtype messages are interpreted as DLPI primitives. Valid DLPI
primitives are defined in <sys/dlpi.h>. Refer to dlpi (7P) for more
information. An explicit DL_ATTACH_REQmessage by the user is required to
associate the opened stream with a particular device (ppa). The ppa ID is
interpreted as an unsigned long data type and indicates the corresponding
device instance (unit) number. An error (DL_ERROR_ACK) is returned by the
driver if the ppa field value does not correspond to a valid device instance
number for this system. The device is initialized on first attach and de-initialized
(stopped) at last detach.

184 SunOS 5.8 Last modified 5 Sep 1995

Devices hme(7D)

The values returned by the driver in the DL_INFO_ACKprimitive in response
to the DL_INFO_REQfrom the user are as follows:

� The maximum SDU is 1500 (ETHERMTU- defined in <sys/ethernet.h>).

� The minimum SDU is 0.

� The dlsap address length is 8.

� The MAC type is DL_ETHER.

� The sap length values is −2 meaning the physical address component is
followed immediately by a 2 byte sap component within the DLSAP
address.

� The service mode is DL_CLDLS.

� No optional quality of service (QOS) support is included at present so
the QOS fields are 0.

� The provider style is DL_STYLE2.

� The version is DL_VERSION_2.

� The broadcast address value is Ethernet/IEEE broadcast address
(0xFFFFFF).

Once in the DL_ATTACHEDstate, the user must send a DL_BIND_REQto
associate a particular SAP (Service Access Pointer) with the stream. The hme
driver interprets the sap field within the DL_BIND_REQas an Ethernet “type”
therefore valid values for the sap field are in the [0-0xFFFF] range. Only one
Ethernet type can be bound to the stream at any time.

If the user selects a sap with a value of 0, the receiver will be in “802.3 mode”. All
frames received from the media having a “type” field in the range [0-1500] are
assumed to be 802.3 frames and are routed up all open Streams which are bound
to sap value 0. If more than one Stream is in “802.3 mode” then the frame will
be duplicated and routed up multiple Streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQif the
sap value is 0, and if the destination type field is in the range [0-1500]. If
either is true, the driver computes the length of the message, not including
initial M_PROTOmblk (message block), of all subsequent DL_UNITDATA_REQ
messages and transmits 802.3 frames that have this value in the MAC frame
header length field.

The hmedriver DLSAPaddress format consists of the 6 byte physical (Ethernet)
address component followed immediately by the 2 byte sap (type) component
producing an 8 byte DLSAPaddress. Applications should not hardcode to this
particular implementation-specific DLSAPaddress format but use information
returned in the DL_INFO_ACKprimitive to compose and decompose DLSAP
addresses. The sap length, full DLSAPlength, and sap /physical ordering
are included within the DL_INFO_ACK. The physical address length can be

Last modified 5 Sep 1995 SunOS 5.8 185

hme(7D) Devices

computed by subtracting the sap length from the full DLSAPaddress length
or by issuing the DL_PHYS_ADDR_REQto obtain the current physical address
associated with the stream.

Once in the DL_BOUNDstate, the user may transmit frames on the Ethernet by
sending DL_UNITDATA_REQmessages to the hmedriver. The hme driver will
route received Ethernet frames up all those open and bound streams having
a sap which matches the Ethernet type as DL_UNITDATA_IND messages.
Received Ethernet frames are duplicated and routed up multiple open streams if
necessary. The DLSAPaddress contained within the DL_UNITDATA_REQand
DL_UNITDATA_IND messages consists of both the sap (type) and physical
(Ethernet) components.

In addition to the mandatory connectionless DLPI message set the driver
additionally supports the following primitives.

hme Primitives The DL_ENABMULTI_REQand DL_DISABMULTI_REQprimitives enable/disable
reception of individual multicast group addresses. A set of multicast addresses
may be iteratively created and modified on a per-stream basis using these
primitives. These primitives are accepted by the driver in any state following
DL_ATTACHED.

The DL_PROMISCON_REQand DL_PROMISCOFF_REQprimitives with the
DL_PROMISC_PHYSflag set in the dl_level field enables/disables reception
of all (“promiscuous mode”) frames on the media including frames generated
by the local host. When used with the DL_PROMISC_SAPflag set this
enables/disables reception of all sap (Ethernet type) values. When used
with the DL_PROMISC_MULTIflag set this enables/disables reception of
all multicast group addresses. The effect of each is always on a per-stream
basis and independent of the other sap and physical level configurations on
this stream or other streams.

The DL_PHYS_ADDR_REQprimitive returns the 6 octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACKprimitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQprimitive changes the 6 octet Ethernet address
currently associated (attached) to this stream. The credentials of the process
which originally opened this stream must be superuser. Otherwise EPERMis
returned in the DL_ERROR_ACK.This primitive is destructive in that it affects all
other current and future streams attached to this device. An M_ERRORis sent up
all other streams attached to this device when this primitive is successful on
this stream. Once changed, all streams subsequently opened and attached to
this device will obtain this new physical address. Once changed, the physical
address will remain until this primitive is used to change the physical address
again or the system is rebooted, whichever comes first.

186 SunOS 5.8 Last modified 5 Sep 1995

Devices hme(7D)

hme DRIVER By default, the hme driver performs “auto-negotiation” to select the mode and
speed of the link, when the Internal Transceiver is used.

When an External Transceiver is connected to the MII interface, the driver
selects the External Transceiver for networking operations. If the External
Transceiver supports “auto-negotiation”, the driver uses the auto-negotiation
procedure to select the link speed and mode. If the External Transceiver does not
support auto-negotiation, it will select the highest priority mode supported by
the transceiver.

� 100 Mbps, full-duplex

� 100 Mbps, half-duplex

� 10 Mbps, full-duplex

� 10 Mbps, half-duplex

The link can be in one of the 4 following modes:

These speeds and modes are described in the 100Base-TX standard.

The auto−negotiation protocol automatically selects:

� Operation mode (half-duplex or full-duplex)

� Speed (100 Mbps or 10 Mbps)

The auto−negotiation protocol does the following:

� Gets all the modes of operation supported by the Link Partner

� Advertises its capabilities to the Link Partner

� Selects the highest common denominator mode of operation based on the
priorities

The internal transceiver is capable of all of the operating speeds and modes
listed above. When the internal transceiver is used, by default, auto-negotiation
is used to select the speed and the mode of the link and the common mode
of operation with the Link Partner.

When an external transceiver is connected to the MII interface, the driver selects
the external transceiver for networking operations. If the external transceiver
supports auto-negotiation:

� The driver uses the auto-negotiation procedure to select the link speed
and mode.

Last modified 5 Sep 1995 SunOS 5.8 187

hme(7D) Devices

If the external transceiver does not support auto-negotiation

� The driver selects the highest priority mode supported by the transceiver.

Sometimes, the user may want to select the speed and mode of the link. The
SUNW,hmedevice supports programmable “IPG” (Inter-Packet Gap) parameters
ipg1 and ipg2 . By default, the driver sets ipg1 to 8 byte-times and ipg2 to
4 byte-times (which are the standard values). Sometimes, the user may want
to alter these values depending on whether the driver supports 10 Mbps or 100
Mpbs and accordingly, IPG will be set to 9.6 or 0.96 microseconds.

hme Parameter List The hme driver provides for setting and getting various parameters for the
SUNW,hmedevice. The parameter list includes:

current transceiver status
current link status
inter-packet gap
local transceiver capabilities
link partner capabilities

The local transceiver has two set of capabilities: one set reflects the capabilities
of the hardware , which are read-only (RO) parameters and the second set
reflects the values chosen by the user and is used in speed selection . There
are read/write (RW) capabilities. At boot time, these two sets of capabilities
will be the same. The Link Partner capabilities are also read only parameters
because the current default value of these parameters can only be read and
cannot be modified.

FILES /dev/hme hme special character device

/kernel/drv/hme.conf System-wide default device driver properties

SEE ALSO ndd (1M), netstat (1M), driver.conf (4), dlpi (7P), le (7D)

188 SunOS 5.8 Last modified 5 Sep 1995

File Systems hsfs(7FS)

NAME hsfs – High Sierra & ISO 9660 CD-ROM file system

DESCRIPTION HSFS is a file system type that allows users access to files on High Sierra or ISO
9660 format CD-ROM disks from within the SunOS operating system. Once
mounted, a HSFS file system provides standard SunOS read-only file system
operations and semantics. That is, users can read files and list files in a directory
on a High Sierra or ISO 9660 CD-ROM, and applications can use standard UNIX
system calls on these files and directories.

This file system also contains support for the Rock Ridge Extensions. If the
extensions are contained on the CD-ROM, then the file system will provide
all of the file system semantics and file types of UFS, except for writability
and hard links.

If your /etc/vfstab file contains a line similar to

/dev/dsk/c0t6d0s0 −/hsfs hsfs −no ro

and /hsfs exists, you can mount an HSFS file system with either of the
following commands:

mount −F hsfs −o ro device-special directory-name

or

mount /hsfs

Normally, if Rock Ridge extensions exist on the CD-ROM, the file system will
automatically use those extensions. If you do not want to use the Rock Ridge
extensions, use the “nrr” (No Rock Ridge) mount option. The mount command
would then be:

mount −F hsfs −o ro,nrr device-special directory-name

Files on a High Sierra or ISO 9660 CD-ROM disk have names of the form
filename.ext;version, where filename and the optional ext consist of a sequence of
uppercase alphanumeric characters (including “_”), while the version consists of
a sequence of digits, representing the version number of the file. HSFS converts
all the uppercase characters in a file name to lowercase, and truncates the “;”
and version information. If more than one version of a file is present on the
CD-ROM, only the file with the highest version number is accessible.

Conversion of uppercase to lowercase characters may be disabled by using the
−o nomaplcase option to mount (1M). (See mount_hsfs (1M)).

Last modified 25 Apr 1994 SunOS 5.8 189

hsfs(7FS) File Systems

If the CD-ROM contains Rock Ridge extensions, the file names and directory
names may contain any character supported under UFS. The names may also
be upper and/or lower case and will be case sensitive. File name lengths can
be as long as those of UFS.

Files accessed through HSFS have mode 555 (owner, group and world readable
and executable), uid 0 and gid 3. If a directory on the CD-ROM has read
permission, HSFS grants execute permission to the directory, allowing it to be
searched.

With Rock Ridge extensions, files and directories can have any permissions that
are supported on a UFS file system; however, despite any write permissions, the
file system is read-only, with EROFSreturned to any write operations.

High Sierra and ISO 9660 CD-ROMs support only regular files and directories,
thus HSFS supports only these file types. A Rock Ridge CD-ROM can support
regular files, directories, and symbolic links, as well as device nodes, such as
block, character, and FIFO.

EXAMPLES EXAMPLE 1 Sample Display of File System Files

If there is a file BIG.BAR on a High Sierra or ISO 9660 format CD-ROM it will
show up as big.bar when listed on a HSFS file system.

If there are three files
BAR.BAZ;1
BAR.BAZ;2

and
BAR.BAZ;3

on a High Sierra or ISO 9660 format CD-ROM, only the file BAR.BAZ;3 will be
accessible. It will be listed as bar.baz .

SEE ALSO mount (1M), mount_hsfs (1M), vfstab (4)

N. V. Phillips and Sony Corporation, System Description Compact Disc Digital
Audio, ("Red Book").

N. V. Phillips and Sony Corporation, System Description of Compact Disc
Read Only Memory, ("Yellow Book").

IR "Volume and File Structure of CD-ROM for Information Interchange", ISO
9660:1988(E).

DIAGNOSTICS hsfs: Warning: the file system...
does not conform to the ISO-9660 spec

The specific reason appears on the following line. You might be attempting
to mount a CD-ROM containing a different file system, such as UFS.

hsfs: Warning: the file system...
contains a file [with an] unsupported type

190 SunOS 5.8 Last modified 25 Apr 1994

File Systems hsfs(7FS)

The hsfs file system does not support the format of some file or directory
on the CD-ROM, for example a record structured file.

hsfs: hsnode table full, %d nodes allocated
There are not enough HSFS internal data structure elements to handle all
the files currently open. This problem may be overcome by adding a line
of the form set hsfs:nhsnode= number to the /etc/system system
configuration file and rebooting. See system (4).

WARNINGS Do not physically eject a CD-ROM while the device is still mounted as a HSFS
file system.

Under MS-DOS (for which CD-ROMs are frequently targeted), files with no
extension may be represented either as

filename.

or

filename

that is, with or without a trailing period. These names are not equivalent under
UNIX systems. For example, the names

BAR.

and

BAR

are not names for the same file under the UNIX system. This may cause
confusion if you are consulting documentation for CD-ROMs originally intended
for MS-DOS systems.

Use of the −o notraildot option to mount (1M) makes it optional to specify the
trailing dot. (See mount_hsfs (1M)).

NOTES No translation of any sort is done on the contents of High Sierra or ISO 9660
format CD-ROMs; only directory and file names are subject to interpretation by
HSFS.

Last modified 25 Apr 1994 SunOS 5.8 191

hubd(7D) Devices

NAME hubd – USB hub driver

SYNOPSIS hub@unit-address

DESCRIPTION The hubd driver is a USBA (Solaris USB Architecture) compliant client driver
that supports USB hubs conforming to the Universal Serial Bus Specification
1.0 and 1.1 specification. The hubd driver supports bus–powered and self–
powered hubs. The driver supports hubs with individual port power, ganged
power, and no power switching.

When a device is attached to the port of the hub, the hubd driver enumerates
the devices by determining the type of device and assigning to it an address.
The hubd driver will also attach a driver to the device if one is available. When
the device is disconnected from the hub port, the hubd driver will offline any
driver instance attached to the device.

FILES /kernel/drv/hubd
32 bit ELF kernel module

/kernel/drv/sparcv9/hubd
64 bit ELF kernel module

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems

Availability SUNWusb, SUNWusbx

SEE ALSO ohci (7D), uhci (7D), usb_mid (7D)

Writing Device Drivers

Universal Serial Bus Specification 1.0 and 1.1

DIAGNOSTICS The messages described below may appear on the system console as well as
being logged. All messages are formatted in the following manner:

WARNING: <device path> <hubd%d>: Error message...

where %dis the instance number of hubd and <device path> is the physical
path to the device in /devices direc tory. For the root hub, the driver displays
messages with usb%d instead of hub%d because the root hub is an integrated
part of the host controller.
Connecting device on port X failed.

The driver failed to enumerate device connected on port X of hub.

Global over current condition, please disconnect.

192 SunOS 5.8 Last modified 21 Oct 1999

Devices hubd(7D)

The driver detected an over current condition. This means that the aggregate
current being drawn by the devices on the downstream port exceeds a
preset value. Refer to section 7.2.1.2.1 and 11.13.5 of the Universal Serial Bus
Specification 1.1 specification. The user is expected to remove and insert
this hub to render it and its downstream devices functional again. If this
message continues to display for a particular hub, downstream devices may
need to be removed to eliminate the problem.

Cannot access device. Please reconnect %s.
This hub has been disconnected and the user inserted a device other than
the original one. The driver prompts the user by prompting the name of
the device.

Devices not identical to the previous one on this port.
Please disconnect and reconnect.

Same condition as described above, however in this case, the driver is
unable to identify the original device with a name string.

Last modified 21 Oct 1999 SunOS 5.8 193

i2o_bs(7D) Devices

NAME i2o_bs – Block Storage OSM for I2O

SYNOPSIS disk@local target id#:a through u

disk@local target id#:a through u raw

DESCRIPTION The I2O Block Storage OSM abstraction (BSA, which also is referred to as block
storage class) layer is the primary interface that Solaris operating environments
use to access block storage devices. A block storage device provides random
access to a permanent storage medium. The i2o_bs device driver uses I2O
Block Storage class messages to control the block device; and provides the same
functionality (ioctls , for example) that is present in the Solaris device driver
like ’cmdk, dadk’ on IA for disk. The maximum size disk supported by i2o_bs
is the same as what is available on IA.

The i2o_bs is currently implemented version 1.5 of Intelligent IO specification.

The block files access the disk using the system’s normal buffering mechanism
and are read and written without regard to physical disk records. There is also a
"raw" interface that provides for direct transmission between the disk and the
user’s read or write buffer. A single read or write call usually results in one I/O
operation; raw I/O is therefore considerably more efficient when many bytes are
transmitted. The names of the block files are found in /dev/dsk ; the names of
the raw files are found in /dev/rdsk .

I2O associates each block storage device with a unique ID called a local target id
that is assigned by I2O hardware. This information can be acquired by the block
storage OSM through I2O Block Storage class messages. For Block Storage OSM,
nodes are created in /devices/pci#/pci# which include the local target ID
as one component of device name that the node refers to. However the /dev
names and the names in /dev/dsk and /dev/rdsk do not encode the local
target id in any part of the name.

For example, you might have the following:

/devices/ /dev/dsk name

/devices/pci@0,0/pci101e,0@10,1/disk@10:a /dev/dsk/c1d0s0

I/O requests to the disk must have an offset and transfer length that is a multiple
of 512 bytes or the driver returns an EINVAL error.

Slice 0 is normally used for the root file system on a disk, slice 1 is used as a
paging area (for example, swap), and slice 2 for backing up the entire fdisk
partition for Solaris software. Other slices may be used for usr file systems or
system reserved area.

194 SunOS 5.8 Last modified 21 Jul 1998

Devices i2o_bs(7D)

Fdisk partition 0 is to access the entire disk and is generally used by the
fdisk (1M) program.

FILES /dev/dsk/cndn[s|p]n block device

/dev/rdsk/cndn[s|p]n raw device

where:

cn controller n

dn instance number

sn UNIX system slice n (0-15)

pn fdisk partition (0)

/kernel/drv/i2o_bs i2o_bs driver

/kernel/drv/i2o_bs.conf Configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO fdisk (1M), format (1M) mount (1M), lseek (2), read (2), write (2),
readdir (3C), vfstab (4), acct (3HEAD), attributes (5), dkio (7I)

Last modified 21 Jul 1998 SunOS 5.8 195

i2o_scsi(7D) Devices

NAME i2o_scsi – an I2O OS specific module that supports SCSA interface.

DESCRIPTION The i2o_scsi OSM module is a SCSI HBA driver that supports the SCSA
interface. It supports both SCSI Adapter Class and SCSI Peripheral Class
functions. It translates the SCSI packet coming down from the SCSA into an I2O
SCSI Peripheral Class message, passes it along to the IOP which in turn passes it
to the HDM (hardware specific module).

It also uses SCSI Adapter Class functions to manage the SCSI adapter and SCSI
bus. For each SCSI Adapter Class I2O device (a SCSI controller), it claims the
SCSI Peripheral class devices which are attached to that port. The existing SCSI
target drivers which use the SCSA interface should only work with i2o_scsi .
This includes target drivers like sd , st , and so on.

FILES /kernel/drv/i2o_scsi.conf configuration file for the i2o_scsi
driver; there are no user-configurable
options in this file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5)

Solaris 8 (Intel Platform Edition) Installation Guide

NOTES Throughout the release, support of additional devices may be added. See
the Solaris 7 (Intel Platform Edition) 11/99 Hardware Compatibility List for
additional information.

196 SunOS 5.8 Last modified 21 Jul 1998

Protocols icmp6(7P)

NAME icmp6 – Internet Control Message Protocol for Internet Protocol Version 6

SYNOPSIS #include <sys/socket.h>

#include <netinet/in.h>

#include <netinet/ip_icmp.h>

#include <netinet/icmp6.h>

s = socket(AF_INET6, SOCK_RAW, proto);

t = t_open("/dev/icmp6", O_RDWR);

DESCRIPTION The ICMP6 protocol is the error and control message protocol used with
Version 6 of the Internet Protocol. It is used by the kernel to handle and report
errors in protocol processing. It is also used for IPv6 neighbor and router
discovery, and for multicast group membership queries and reports. It may also
be accessed by programs using the socket interface or the Transport Level
Interface (TLI) for network monitoring and diagnostic functions. When used
with the socket interface, a “raw socket” type is used. The protocol number
for ICMP6, used in the proto parameter to the socket call, can be obtained
from getprotobyname (3SOCKET). ICMP6 file descriptors and sockets are
connectionless and are normally used with the t_sndudata / t_rcvudata
and the sendto() / recvfrom() calls. They may also be used with the
sendmsg() /recvgmsg() calls when sending or receiving ancillary data.

Outgoing packets automatically have an Internet Protocol Version 6 (IPv6)
header and zero or more IPv6 extension headers prepended. These headers are
prepended by the kernel. Unlike ICMP for IPv4, the IP_HDRINCL option is not
supported for ICMP6, so ICMP6 applications neither build their own outbound
IPv6 headers, nor do they receive the inbound IPv6 headers with received
data. IPv6 extension headers and relevant fields of the IPv6 header may be set
or received as ancillary data to a sendmsg (3SOCKET) or recvmsg (3SOCKET)
system call. Each of these fields and extension headers may also be set on a per
socket basis with the setsockopt (3SOCKET) system call. Such "sticky" options
are used on all outgoing packets unless overridden by ancillary data. When any
ancillary data is present with a sendmsg (3SOCKET) system call, all sticky
options are ignored for that system call, but subsequently remain configured.

ICMP6 is a datagram protocol layered above IPv6. Received ICMP6 messages
may be reflected back to users of higher-level protocols such as TCP or UDP as
error returns from system calls. A copy of each ICMP6error message received by
the system is provided to every holder of an open ICMP6 socket or TLI descriptor.

SEE ALSO getprotobyname (3SOCKET), recv (3SOCKET), recvmsg (3SOCKET),
send (3SOCKET), sendmsg (3SOCKET), setsockopt (3SOCKET),
t_rcvudata (3NSL), t_sndudata (3NSL), inet6 (7P), ip6 (7P), routing (7P)

Last modified 10 Nov 1999 SunOS 5.8 197

icmp6(7P) Protocols

Conta, A. and Deering, S., RFC 2463, Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification, The Internet
Society, December 1998.

DIAGNOSTICS A socket operation may fail with one of the following errors returned:
EISCONN An attempt was made to establish a connection

on a socket which already has one, or when
trying to send a datagram with the destination
address specified and the socket is already
connected.

ENOTCONN An attempt was made to send a datagram, but no
destination address is specified, and the socket
has not been connected.

ENOBUFS The system ran out of memory for an internal
data structure.

EADDRNOTAVAIL An attempt was made to create a socket with a
network address for which no network interface
exists.

ENOMEM The system was unable to allocate memory for an
internal data structure.

ENOPROTOOPT An attempt was made to set an IPv4 socket
option on an IPv6 socket.

EINVAL An attempt was made to set an invalid or
malformed socket option.

EAFNOSUPPORT An attempt was made to bind or connect to an
IPv4 or mapped address, or to specify an IPv4 or
mapped address as the next hop.

198 SunOS 5.8 Last modified 10 Nov 1999

Protocols icmp(7P)

NAME icmp, ICMP – Internet Control Message Protocol

SYNOPSIS #include <sys/socket.h>

#include <netinet/in.h>

#include <netinet/ip_icmp.h>

s = socket(AF_INET, SOCK_RAW, proto);

t = t_open("/dev/icmp", O_RDWR);

DESCRIPTION ICMP is the error and control message protocol used by the Internet protocol
family. It is used by the kernel to handle and report errors in protocol processing.
It may also be accessed by programs using the socket interface or the Transport
Level Interface ("TLI ") for network monitoring and diagnostic functions.
When used with the socket interface, a "raw socket" type is used. The protocol
number for ICMP, used in the proto parameter to the socket call, can be obtained
from getprotobyname (3SOCKET) . ICMP file descriptors and sockets are
connectionless, and are normally used with the t_sndudata / t_rcvudata
and the sendto() / recvfrom() calls.

Outgoing packets automatically have an Internet Protocol ("IP ") header
prepended to them. Incoming packets are provided to the user with the IP
header and options intact.

ICMP is an datagram protocol layered above IP. It is used internally by the
protcol code for various purposes including routing, fault isolation, and
congestion control. Receipt of an ICMP "redirect" message will add a new entry
in the routing table, or modify an existing one. ICMP messages are routinely
sent by the protocol code. Received ICMP messages may be reflected back to
users of higher-level protocols such as TCP or UDP as error returns from system
calls. A copy of all ICMP message received by the system is provided to every
holder of an open ICMP socket or TLI descriptor.

SEE ALSO getprotobyname (3SOCKET) , recv (3SOCKET) , send (3SOCKET) ,
t_rcvudata (3NSL) , t_sndudata (3NSL) , inet (7P) , ip (7P) , routing (7P)

Postel, Jon, Internet Control Message Protocol – DARPA Internet Program
Protocol Specification , RFC 792, Network Information Center, SRI International,
Menlo Park, Calif., September 1981.

DIAGNOSTICS A socket operation may fail with one of the following errors returned:
EISCONN An attempt was made to establish a connection

on a socket which already has one, or when
trying to send a datagram with the destination
address specified and the socket is already
connected.

Last modified 3 Jul 1990 SunOS 5.8 199

icmp(7P) Protocols

ENOTCONN An attempt was made to send a datagram, but no
destination address is specified, and the socket
has not been connected.

ENOBUFS The system ran out of memory for an internal
data structure.

EADDRNOTAVAIL An attempt was made to create a socket with a
network address for which no network interface
exists.

NOTES Replies to ICMP "echo" messages which are source routed are not sent back
using inverted source routes, but rather go back through the normal routing
mechanisms.

200 SunOS 5.8 Last modified 3 Jul 1990

Devices idn(7d)

NAME idn – inter-domain network device driver

SYNOPSIS /dev/idn

DESCRIPTION The idn driver is a multi-thread, loadable, clonable, STREAMS-based pseudo
driver that supports the connectionless Data Link Provider Interface dlpi (7P)
over the Sun Enterprise 10000 Gigplane-XB Interconnect. This connection is
permitted only between domains within the same Sun Enterprise 10000 server.

The idn driver supports 1 to 32 logical network interfaces that can be connected
to domains linked to the local domain through the domain_link (1M)
command. (See domain_link (1M) in the Sun Enterprise 10000 SSP 3.2
Reference Manual for more information.) The idn driver works in conjunction
with the System Service Processor (SSP) to perform domain linking/unlinking
and automated linking upon host bootup.

The /dev/idn device is used to access all IDN services provided by the system.
IDN and DLPI The idn driver is a style-2 Data Link Service provider. All M_PROTOand

M_PCPROTO–type messages are interpreted as DLPI primitives. For the idn
driver to associate the opened stream with a particular device (ppa), you must
send an explicit DL_ATTACH_REQmessage. The ppa ID is interpreted as an
unsigned long and indicates the corresponding device instance (unit) number.
The DL_ERROR_ACKerror is returned by the driver if the ppa field value does
not correspond to a valid device-instance number for the system. The device is
initialized on first attach and de-initialized (stopped) on the last detach.

� The maximum SDU is configurable by using the idn.conf file and has a
range of 512 bytes to 512 Kbytes. The default value is 16384 bytes.

� The minimum SDU is 0.

� The Service Access Pointer (SAP) address length is 8.

� The MAC type is DL_ETHER.

� The SAP length value is -2, meaning the physical address component
is followed immediately by a 2-byte SAP component within the DLSAP
address.

� The service mode is DL_CLDLS.

� Optional quality of service (QOS) is not presently supported; accordingly,
the QOS fields are 0.

� The provider style is DL_STYLE2.

� The version is DL_VERSION_2.

� The broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF).
The idn driver supports broadcast by issuing messages to each target
individually. The idn driver is inherently a point-to-point network between
domains. When the idn driver is in the DL_ATTACHEDstate, the user must

Last modified 3 Jun 1999 SunOS 5.8 201

idn(7d) Devices

send a DL_BIND_REQrequest to associate a particular SAP with the stream.
The idn driver interprets the SAP field within the DL_BIND_REQmessage
as an Ethernet type and valid values for the SAP field are in the range of 0
to 0xFFFF. Only one Ethernet type can be bound to the stream at any time.

If a SAP with a value of 0 is selected, the receiver will be in 802.3 mode. All
frames received from the media having a type field in the range of 0 to 1500 are
assumed to be 802.3 frames and are routed up all open streams which are bound
to SAP value 0. If more than one stream is in 802.3 mode, then the frame will be
duplicated and routed up as multiple stream DL_UNITDATA_IND messages.

In transmission, the driver checks the SAP field of the DL_BIND_REQto
determine if the SAP value is 0, and if the destination type field is in the range
of 0 to 1500. If either is true, the driver computes the length of the message,
(excluding the initial message block M_PROTO mblk)of all subsequent
DL_UNITDATA_REQmessages and transmits 802.3 frames that have this value in
the MAC frame header length field.

The driver also supports raw M_DATAmode. When the user sends a DLIOCRAW
ioctl, the particular stream is put in raw mode. A complete frame and a proper
ether header is expected as part of the data.

The DLSAP address format consists of the 6-byte, physical address component
(Ethernet) followed immediately by the 2-byte SAP component (type),
producing an 8-byte DLSAP address. Applications should not hardcode to
this particular implementation-specific DLSAP address format, but instead
should use information returned in the DL_INFO_ACKprimitive to compose and
decompose DLSAP addresses. The SAP length, full DLSAP length, and SAP
physical ordering are included within the DL_INFO_ACKprimitive. The physical
address length can be computed by subtracting the SAP length from the full
DLSAP address length or by issuing the DL_PHYS_ADDR_REQmessage to obtain
the current physical address associated with the stream.

When the idn driver is in the DL_BOUNDstate, you can transmit frames on
the IDN by sending DL_UNITDATA_REQmessages to the driver. The driver
then routes received IDN frames up the open and bound streams having a
SAP which matches the Ethernet type as DL_UNITDATA_IND messages. If
necessary, received IDN frames are duplicated and routed up multiple open
streams. The DLSAP address contained within the DL_UNITDATA_REQand
DL_UNITDATA_IND messages consists of both the SAP (type) and physical
(Ethernet) components.

IDN Primitives In addition to the mandatory connectionless DLPI message set, the idn driver
supports the following primitives:

The DL_ENABMULTI_REQand DL_DISABMULTI_REQprimitives which enable
or disable, respectively, the reception of individual multicast group addresses.

202 SunOS 5.8 Last modified 3 Jun 1999

Devices idn(7d)

A set of multicast addresses may be iteratively created and modified on a
per-stream basis using these primitives. These primitives are accepted by the
driver in any state following the DL_ATTACHEDstate.

The DL_PROMISCON_REQand DL_PROMISCOFF_REQprimitives, which with
the DL_PROMISC_PHYSflag set in the dl_level field, enable or disable,
respectively, the reception of all promiscuous frames on the media, including
frames generated by the local domain. When used with the DL_PROMISC_SAP
flag set in the dl_level field, these primitives enable or disable, respectively,
the reception of all SAP (Ethernet type) values. When used with the
DL_PROMISC_MULTIflag set in the dl_level field, these primitives enable or
disable, respectively, the reception of all multicast group addresses. The effect
of each is always on a per-stream basis and independent of the other SAP and
physical level configurations on this stream or other streams.

The DL_PHYS_ADDR_REQprimitive which returns the 6-octet, Ethernet address
associated with (or attached to) the stream in the DL_PHYS_ADDR_ACKprimitive.
This primitive is valid only in states following a successful DL_ATTACH_REQ
request.

Because the driver maintains domain address information in the address
to direct packets to the correct destination, the DL_SET_PHYS_ADDR_REQ
primitive is not allowed.

FILES The following files are supported:
/dev/idn

IDN special character device

/platform/SUNW,Ultra-Enterprise-10000/kernel/drv/idn.conf
System-wide and per-interface default device driver properties

SEE ALSO netstat (1M), ndd (1M), dlpi (7P)

domain_link (1M) in the Sun Enterprise 10000 SSP 3.2 Reference Manual.

Sun Enterprise 10000 InterDomain Networks User Guide

NOTES The idn driver supports a set of properties that can be set by using the
driver.conf file for the IDN. See the Sun Enterprise 10000 InterDomain
Networks User Guide for more information about the properties in the
driver.conf (4), (idn.conf , for IDNs).

Last modified 3 Jun 1999 SunOS 5.8 203

ifb(7d) Devices

NAME ifb – IFB graphics accelerator driver

DESCRIPTION The ifb driver is the device driver for the Sun Elite3D graphics accelerators.
The ifbdaemon process loads the ifb microcode at system startup time and
during the resume sequence of a suspend-resume cycle.

FILES /dev/fbs/ifb n
Device special file

/usr/lib/ifb.ucode
ifb microcode

/usr/sbin/ifbdaemon
ifb microcode loader

SEE ALSO SUNWifb_config (1M)

204 SunOS 5.8 Last modified 27 Aug 1999

Devices ifp(7D)

NAME ifp – ISP2100 Family Fibre Channel Host Bus Adapter Driver

SYNOPSIS PCI SUNW,ifp@pci-slot

DESCRIPTION The ifp Host Bus Adapter is a SCSA compliant nexus driver for the Qlogic
ISP2100/ISP2100A chips. These chips support Fibre Channel Protocol for SCSI
on Private Fibre Channel Arbitrated loops.

The ifp driver interfaces with SCSI disk target driver, ssd (7D), and the SCSI-3
Enclosure Services driver, ssd (7D). Only SCSI devices of type disk and ses are
supported at present time.

The ifp driver supports the standard functions provided by the SCSA interface.
It supports auto request sense (cannot be turned off) and tagged queueing by
default. The driver requires that all devices have unique hard addresses defined
by switch settings in hardware. Devices with conflicting hard addresses will not
be accessible.

FILES /kernel/drv/ifp ELF Kernel Module

/kernel/drv/sparcv9/ifp ELF Kernel Module (64–bit version)

/kernel/drv/ifp.conf Driver configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SPARC

SEE ALSO luxadm (1M), prtconf (1M), driver.conf (4), attributes (5), ses (7D),
ssd (7D)

Writing Device Drivers,

ANSI X3.272–1996, Fibre Channel Arbitrated Loop (FC-AL),

ANSI X3.269-1996, Fibre Channel Protocol for SCSI (FCP),

ANSI X3.270-1996, SCSI-3 Architecture Model (SAM),

Fibre Channel Private Loop SCSI Direct Attach (FC-PLDA),

ISP2100 Firmware Interface Specification, QLogic Corporation

DIAGNOSTICS The messages described below are some that may appear on the system console,
as well as being logged.

This first set of messages may be displayed while the ifp driver is initially trying
to attach. All of these messages mean that the ifp driver was unable to attach.

Last modified 22 Jul 1998 SunOS 5.8 205

ifp(7D) Devices

These messages are preceded by "ifp <number>", where "<number>" is the
instance number of the ISP2100 Host Bus Adapter.
Device is using a hilevel intr, unused

The device was configured with an interrupt level that cannot be used with
this ifp driver. Check the device.

Failed to alloc soft state
Driver was unable to allocate space for the internal state structure. Driver
did not attach to device; SCSI devices will be inaccessible.

Bad soft state
Driver requested an invalid internal state structure. Driver did not attach to
device; SCSI devices will be inaccessible.

Unable to map pci config registers
Unable to map biu registers

Driver was unable to map device registers; check for bad hardware. Driver
did not attach to device; SCSI devices will be inaccessible.

Cannot alloc tran
Driver was unable to obtain a transport handle to be able to communicate
with SCSA framework. Driver did not attach to device; SCSI devices will
be inaccessible.

ddi_create_minor_node failed
Driver was unable to create devctl minor node that is used by
luxadm (1M) for administering the loop. Driver did not attach to device;
SCSI devices will be inaccessible.

Cannot alloc dma handle
Driver was unable allocate a dma handle for communicating with the
Host Bus Adapter. Driver did not attach to device; SCSI devices will be
inaccessible.

Cannot alloc cmd area
Driver was unable allocate dma memory for request and response queues.
Driver did not attach to device; SCSI devices will be inaccessible.

Cannot bind cmd area
Driver was unable to bind dma handle to the cmd area. Driver did not attach
to device; SCSI devices will be inaccessible.

Cannot alloc fcal handle
Driver was unable allocate a dma handle for retrieving loop map from the
Host Bus Adapter. Driver did not attach to device; SCSI devices will be
inaccessible.

Cannot bind portdb

206 SunOS 5.8 Last modified 22 Jul 1998

Devices ifp(7D)

Driver was unable to bind fcal port handle to the memory used for
obtaining port database. Driver did not attach to device; SCSI devices will
be inaccessible.

scsi_hba_attach failed
Driver was unable to attach to the SCSA framework. Driver did not attach
to device; SCSI devices will be inaccessible.

Unable to create hotplug thread
Driver was not able to create the kernel thread used for hotplug support.
Driver did not attach to device; SCSI devices will be inaccessible.

Cannot add intr
Driver was not able to add the interrupt routine to the kernel. Driver did
not attach to device; SCSI devices will be inaccessible.

Unable to attach
Driver was unable to attach to the hardware for some reason that may be
printed. Driver did not attach to device; SCSI devices will be inaccessible.

The following set of messages may be display at any time. They will be printed
with the full device pathname followed by the shorter form described above.
Firmware checksum incorrect

Firmware has an invalid checksum and will not be downloaded.

Chip reset timeout
ISP chip failed to reset in the time allocated; may be bad hardware.

Stop firmware failed
Stopping the firmware failed; may be bad hardware.

Load ram failed
Unable to download new firmware into the ISP chip.

DMA setup failed
The DMA setup failed in the host adapter driver on a scsi_pkt . This will
return TRAN_BADPKTto a SCSA target driver.

Bad request pkt type
Bad request pkt
Bad request pkt hdr
Bad req pkt order

The ISP Firmware rejected the packet as being set up incorrectly. This will
cause the ifp driver to call the target completion routine with the reason of
CMD_TRAN_ERRset in the scsi_pkt . Check the target driver for correctly
setting up the packet.

Last modified 22 Jul 1998 SunOS 5.8 207

ifp(7D) Devices

Firmware error
The ISP chip encountered a firmware error of some kind. This error will
cause the ifp driver to do error recovery by resetting the chip.

DMA Failure (event)
The ISP chip encountered a DMA error while reading from the request
queue (event is 8003) or writing to the response queue (event is 8004). This
error will cause the ifp driver to do error recovery by resetting the chip.

Fatal error, resetting interface
This is an indication that the ifp driver is doing error recovery. This will
cause all outstanding commands that have been transported to the ifp
driver to be completed via the scsi_pkt completion routine in the target
driver with reason of CMD_RESETand status of STAT_BUS_RESETset in
the scsi_pkt .

target t, duplicate port wwns
The driver detected target t to be having the same port WWN as a different
target; this is not supposed to happen. Target t will become inaccessible.

target t, duplicate switch settings
The driver detected devices with the same switch setting t. All such devices
will become inaccessible.

WWN changed on target t
The World Wide Name (WWN) has changed on the device with switch
setting t.

target t, unknown device type dt
The driver does not know the device type dt reported by the device with
switch setting t.

208 SunOS 5.8 Last modified 22 Jul 1998

Protocols if_tcp(7P)

NAME if_tcp, if – general properties of Internet Protocol network interfaces

DESCRIPTION A network interface is a device for sending and receiving packets on a network.
It is usually a hardware device, although it can be implemented in software.
Network interfaces used by the Internet Protocol (IPv4 or IPv6) must be
STREAMS devices conforming to the Datalink Provider Interface (DLPI). See
dlpi (7P) .

APPLICATION
PROGRAMMING

INTERFACE

An interface becomes available to IP when it is opened and the IP module is
pushed onto the stream with the I_PUSH ioctl (2) command (see streamio (7I)
), and the SIOCSLIFNAME ioctl (2) is issued to specify the name of the interface
and whether it is IPv4 or IPv6 . This may be initiated by the kernel at boot time
or by a user program some time after the system is running. Each interface
must be assigned an IP address with the SIOCSLIFADDR ioctl() before it
can be used. On interfaces where the network-to-link layer address mapping
is static, only the network number is taken from the ioctl() request; the
remainder is found in a hardware specific manner. On interfaces which provide
dynamic network-to-link layer address mapping facilities, for example, 10Mb/s
Ethernets using arp (7P) , the entire address specified in the ioctl() is used. A
routing table entry for destinations on the network of the interface is installed
automatically when an interface’s address is set.

IOCTLS The following ioctl() calls may be used to manipulate IP network interfaces.
Unless specified otherwise, the request takes an lifreq structure as its
parameter. This structure has the form:

/* Interface request structure used for socket ioctls. All */
/* interface ioctls must have parameter definitions which */
/* begin with ifr_name. The remainder may be interface specific. */
struct lifreq {
#define LIFNAMSIZ 32

char lfr_name[LIFNAMSIZ]; /* if name, for example "le1" */
union {

int lifru_addrlen; /* for subnet/token etc */
uint_t lifru_ppa; /* SIOCSLIFNAME */

} lifr_lifru1;
union {

struct sockaddr_storage lifru_addr;
struct sockaddr_storage lifru_dstaddr;
struct sockaddr_storage lifru_broadaddr;
struct sockaddr_storage lifru_token; /* With lifr_addrlen */
struct sockaddr_storage lifru_subnet; /* With lifr_addrlen */
int lifru_index; /* interface index */
uint64_t lifru_flags; /* SIOC?LIFFLAGS */
int lifru_metric;
uint_t lifru_mtu;
char lifru_data[1]; /* interface dependent data */
char lifru_enaddr[6];
int lif_muxid[2]; /* mux id’s for arp and ip */
struct lif_nd_req lifru_nd_req;
struct lif_ifinfo_req lifru_ifinfo_req;

Last modified 13 Oct 1999 SunOS 5.8 209

if_tcp(7P) Protocols

} lifr_lifru;

#define lifr_addrlen lifr_lifru1.lifru_addrlen
#define lifr_ppa lifr_lifru1.lifru_ppa /* Driver’s ppa */
#define lifr_addr lifr_lifru.lifru_addr /* address */
#define lifr_dstaddr lifr_lifru.lifru_dstaddr
#define lifr_broadaddr lifr_lifru.lifru_broadaddr /* broadcast address */
#define lifr_token lifr_lifru.lifru_token /* address token */
#define lifr_subnet lifr_lifru.lifru_subnet /* subnet prefix */
#define lifr_index lifr_lifru.lifru_index /* interface index */
#define lifr_flags lifr_lifru.lifru_flags /* flags */
#define lifr_metric lifr_lifru.lifru_metric /* metric */
#define lifr_mtu lifr_lifru.lifru_mtu /* mtu */
#define lifr_data lifr_lifru.lifru_data
#define lifr_enaddr lifr_lifru.lifru_enaddr /* ethernet address */
#define lifr_index lifr_lifru.lifru_index /* interface index */
#define lifr_ip_muxid lifr_lifru.lif_muxid[0]
#define lifr_arp_muxid lifr_lifru.lif_muxid[1]
#define lifr_nd lifr_lifru.lifru_nd_req /* SIOCLIF*ND */
#define lifr_ifinfo lifr_lifru.lifru_ifinfo_req /* SIOC[GS]LIFLNKINFO */
};

SIOCSLIFADDR Set interface address. Following the address
assignment, the "initialization" routine for the
interface is called.

SIOCGLIFADDR Get interface address.

SIOCSLIFDSTADDR Set point to point address for interface.

SIOCGLIFDSTADDR Get point to point address for interface.

SIOCSLIFFLAGS Set interface flags field. If the interface is marked
down, any processes currently routing packets
through the interface are notified.

SIOCGLIFFLAGS Get interface flags.

SIOCGLIFCONF Get interface configuration list. This request
takes an lifconf structure (see below) as a
value-result parameter. The lifc_len field
should be initially set to the size of the buffer
pointed to by lifc_buf . On return it will
contain the length, in bytes, of the configuration
list. The lifc_family field should be set to
AF_UNSPECto retrieve both AF_INET and

210 SunOS 5.8 Last modified 13 Oct 1999

Protocols if_tcp(7P)

AF_INET6 interfaces. The lifc_flags field
should be initially set to zero.

SIOCGLIFNUM Get number of interfaces. This request returns
an integer which is the number of interface
descriptions (struct lifreq) that will be
returned by the SIOCGLIFCONFioctl; that is, it
gives an indication of how large lifc_len has
to be. This request takes an lifnum structure
(see below) as a value-result parameter. The
lifn_family field should be set to AF_UNSPEC
to count both AF_INET and AF_INET6 interfaces.
The lifn_flags field should be initially set
to zero.

SIOCSLIFMTU Set the maximum transmission unit (MTU) size
for interface. Place the result of this request in
lifru_mtu field. The MTU can not exceed the
physical MTU limitation (which is reported in the
DLPI DL_INFO_ACKmessage).

SIOCGLIFMTU Get the maximum transmission unit size for
interface. Place the result of this request in
ifru_mtu field.

SIOCSLIFMETRIC Set the metric associated with the interface.
The metric is used by routine daemons such
as in.routed (1M) .

SIOCGLIFMETRIC Get the metric associated with the interface.

SIOCGLIFMUXID Get the ip and arp muxid associated with the
interface.

SIOCSLIFMUXID Set the ip and arp muxid associated with the
interface.

SIOCGLIFINDEX Get the interface index associated with the
interface.

SIOCSLIFINDEX Set the interface index associated with the
interface.

SIOCLIFADDIF Add a new logical interface on a physical
interface using an unused logical unit number.

SIOCLIFREMOVEIF Remove a logical interface by specifying its IP
address or logical interface name.

Last modified 13 Oct 1999 SunOS 5.8 211

if_tcp(7P) Protocols

SIOCSLIFTOKEN Set the address token used to form IPv6
link-local addresses and for stateless address
autoconfiguration.

SIOCGLIFTOKEN Get the address token used to form IPv6
link-local addresses and for stateless address
autoconfiguration.

SIOCSLIFSUBNET Set the subnet prefix associated with the interface.

SIOCGLIFSUBNET Get the subnet prefix associated with the
interface.

SIOCSLIFLNKINFO Set link specific parameters for the interface.

SIOCGLIFLNKINFO Get link specific parameters for the interface.

SIOCLIFDELND Delete a neighbor cache entry for IPv6 .

SIOCLIFGETND Get a neighbor cache entry for IPv6 .

SIOCLIFSETND Set a neighbor cache entry for IPv6 .

SIOCTMYADDR Test if the address is assigned to this node. This
request takes an sioc_addrreq structure (see
below) as a value-result parameter. The sa_addr
field should be set to the address to test. The
sa_res field will contain a non-zero value if the
address is assigned to this node.

SIOCTONLINK Test if the address is directly reachable, for
example, that it can be reached without
going through a router. This request takes an
sioc_addrreq structure (see below) as a
value-result parameter. The sa_addr field
should be set to the address to test. The sa_res
field will contain a non-zero value if the address
is onlink.

SIOCTMYSITE Test if the address is part of the same site as this
node. This request takes an sioc_addrreq
structure (see below) as a value-result parameter.
The sa_addr field should be set to the address to

212 SunOS 5.8 Last modified 13 Oct 1999

Protocols if_tcp(7P)

test. The sa_res field will contain a non-zero
value if the address is in the same site.

The lifconf structure has the form:

/*
* Structure used in SIOCGLIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*/

struct lifconf {
sa_family_t lifc_family;
int lifc_flags; /* request specific interfaces */
int lifc_len; /* size of associated buffer */
union {

caddr_t lifcu_buf;
struct ifreq *lifcu_req;

} lifc_lifcu;

#define lifc_buf lifc_lifcu.lifcu_buf /* buffer address */
#define lifc_req lifc_lifcu.lifcu_req /* array of structures returned */
};

The sioc_addrreq structure has the form:

/* Structure used in SIOCGLIFNUM request. */
struct lifnum {

sa_family_t lifn_family;
int lifn_flags; /* request specific interfaces */
int lifn_count; /* Result */

};

/*
* Argument structure for SIOCT* address testing ioctls.
*/

struct sioc_addrreq {
struct sockaddr_storage sa_addr; /* Address to test */
int sa_res; /* Result - 0/1 */

};

The following ioctl() calls are maintained for compatibility but only apply to
IPv4 network interfaces, since the data structures are to small to hold an IPv6
address. Unless specified otherwise, the request takes an ifreq structure as its
parameter. This structure has the form:

/* Interface request structure used for socket ioctls. All */
/* interface ioctls must have parameter definitions which */

Last modified 13 Oct 1999 SunOS 5.8 213

if_tcp(7P) Protocols

/* begin with ifr_name. The remainder may be interface specific. */
struct ifreq {
#define IFNAMSIZ 16

char ifr_name[IFNAMSIZ]; /* if name, for example */
/* "le1" */

union {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
char ifru_oname[IFNAMSIZ]; /* other if name */
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
char ifru_data[1]; /* interface dependent data */
char ifru_enaddr[6];
int if_muxid[2]; /* mux id’s for arp and ip */
int ifru_index; /* interface index */

} ifr_ifru;

#define ifr_addr ifr_ifru.ifru_addr /* address */
#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */
#define ifr_oname ifr_ifru.ifru_oname /* other if name */
#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */
#define ifr_flags ifr_ifru.ifru_flags /* flags */
#define ifr_index ifr_ifru.ifru_index /* interface index */
#define ifr_metric ifr_ifru.ifru_metric /* metric */
#define ifr_data ifr_ifru.ifru_data /* for use by interface */
#define ifr_enaddr ifr_ifru.ifru_enaddr a/* ethernet address */
};

SIOCSIFADDR Set interface address. Following the address
assignment, the "initialization" routine for the
interface is called.

SIOCGIFADDR Get interface address.

SIOCSIFDSTADDR Set point to point address for interface.

SIOCGIFDSTADDR Get point to point address for interface.

SIOCSIFFLAGS Set interface flags field. If the interface is marked
down, any processes currently routing packets
through the interface are notified.

SIOCGIFFLAGS Get interface flags.

SIOCGIFCONF Get interface configuration list. This request takes
an ifconf structure (see below) as a value-result

214 SunOS 5.8 Last modified 13 Oct 1999

Protocols if_tcp(7P)

parameter. The ifc_len field should be initially
set to the size of the buffer pointed to by
ifc_buf . On return it will contain the length, in
bytes, of the configuration list.

SIOCGIFNUM Get number of interfaces. This request returns
an integer which is the number of interface
descriptions (struct ifreq) that will be
returned by the SIOCGIFCONFioctl; that is, it
gives an indication of how large ifc_len has
to be.

SIOCSIFMTU Set the maximum transmission unit (MTU) size
for interface. Place the result of this request in
ifru_metric field. The MTU has to be smaller
than physical MTU limitation (which is reported
in the DLPI DL_INFO_ACKmessage).

SIOCGIFMTU Get the maximum transmission unit size for
interface. Place the result of this request in
ifru_metric field.

SIOCSIFMETRIC Set the metric associated with the interface.
The metric is used by routine daemons such
as in.routed (1M) .

SIOCGIFMETRIC Get the metric associated with the interface.

SIOCGIFMUXID Get the ip and arp muxid associated with the
interface.

SIOCSIFMUXID Set the ip and arp muxid associated with the
interface.

SIOCGIFINDEX Get the interface index associated with the
interface.

SIOCSIFINDEX Set the interface index associated with the
interface.

The ifconf structure has the form:

/*
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*/

struct ifconf {

Last modified 13 Oct 1999 SunOS 5.8 215

if_tcp(7P) Protocols

int ifc_len; /* size of associated buffer */
union {

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

} ifc_ifcu;

#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */
};

ERRORS EPERM The effective user id of the calling process in not superuser.

ENXIO The lifr_name member of the lifreq structure contains
an invalid value.

EBADADDR Wrong address family or malformed address.

EBUSY For SIOCSLIFFLAGS , this error is returned when the order
of bringing the primary/physical interface (for example, le0
) and a secondary/logical interface associated with the same
physical interface (for example, le0:1) up or down is
violated. The physical interface must be configured up first
and cannot be configured down until all the corresponding
logical interfaces have been configured down.

EINVAL For SIOCGLIFCONF, this error is returned when the size
of the buffer pointed to by the lifc_buf member of the
lifconf structure is too small.

For SIOCSLIFMTU , this error is returned when the requested
MTU size is invalid. This error indicates the MTU size is
greater than the MTU size supported by the DLPI provider
or less than 68 (for IPv4) or less than 1200 (for IPv6).

SEE ALSO ifconfig (1M) , in.routed (1M) , ioctl (2) , arp (7P) , dlpi (7P) , ip (7P)
, ip6 (7P) , streamio (7I)

216 SunOS 5.8 Last modified 13 Oct 1999

Protocols inet6(7P)

NAME inet6 – Internet protocol family for Internet Protocol version 6

SYNOPSIS #include <sys/types.h>

#include <netinet/in.h>

DESCRIPTION The inet6 protocol family implements a collection of protocols that are centered
around the Internet Protocol version 6 (IPv6) and share a common address
format. The inet6 protocol family can be accessed using the socket interface,
where it supports the SOCK_STREAM, SOCK_DGRAM, and SOCK_RAWsocket
types, or the Transport Level Interface (TLI), where it supports the connectionless
(T_CLTS) and connection oriented (T_COTS_ORD) service types.

PROTOCOLS The Internet protocol family for IPv6 included the Internet Protocol Version 6
(IPv6), the Neighbor Discovery Protocol (NDP), the Internet Control Message
Protocol (ICMPv6), the Transmission Control Protocol (TCP), and the User
Datagram Protocol (UDP).

TCP supports the socket interface’s SOCK_STREAMabstraction and TLI’s
T_COTS_ORDservice type. UDP supports the SOCK_DGRAMsocket abstraction
and the TLI T_CLTS service type. See tcp (7P) and udp (7P). A direct interface to
IPv6 is available using the socket interface. See ip6 (7P). ICMPv6 is used by the
kernel to handle and report errors in protocol processing. It is also accessible to
user programs. See icmp6 (7P). NDP is used to translate 128-bit IPv6 addresses
into 48–bit Ethernet addresses.

IPv6 addresses come in three types: unicast, anycast, and multicast. A unicast
address is an identifier for a single network interface. An anycast address is an
identifier for a set of interfaces; a packet sent to an anycast address is delivered
to the "nearest" interface identified by that address, pursuant to the routing
protocol’s measure of distance. A multicast address is an identifier for a set of
interfaces; a packet sent to a multicast address is delivered to all interfaces
identified by that address. There are no broadcast addresses as such in IPv6;
their functionality is superseded by multicast addresses.

For IPv6 addresses, there are three scopes within which unicast addresses are
guaranteed to be unique. The scope is indicated by the address prefix. The three
varieties are link-local (the address is unique on that physical link), site-local (the
address is unique within that site), and global (the address is globally unique).

The three highest order bits for global unicast addresses are set to 001 . The
ten highest order bits for site-local addresses are set to 1111 1110 11 . The
ten highest order bits for link-local addresses are set to 1111 1110 11 . For
multicast addresses, the eight highest order bits are set to 1111 1111 . Anycast
addresses have the same format as unicast addresses.

IPv6 addresses do not follow the concept of "address class" seen in IP.

Last modified 1 Jul 1999 SunOS 5.8 217

inet6(7P) Protocols

A global unicast address is divided into the following segments:

� The first three bits are the Format Prefix identifying a unicast address.

� The next 13 bits are the Top-Level Aggregation (TLA) identifier. For
example, the identifier could specify the ISP.

� The next eight bits are reserved for future use.

� The next 24 bits are the Next-Level Aggregation (NLA) identifier.

� The next 16 bits are the Site-Level Aggregation (SLA) identifier.

� The last 64 bits are the interface ID. This will most often be the hardware
address of the link in IEEE EUI-64 format.

Link-local unicast addresses are divided in this manner:

� The first ten bits are the Format Prefix identifying a link-local address.

� The next 54 bits are zero.

� The last 64 bits are the interface ID. This will most often be the hardware
address of the link in IEEE EUI-64 format.

Site-local unicast addresses are divided in this manner:

� The first ten bits are the Format Prefix identifying a site-local address.

� The next 38 bits are zero.

� The next 16 bits are the subnet ID.

� The last 64 bits are the interface ID. This will most often be the hardware
address of the link in IEEE EUI-64 format.

ADDRESSING IPv6 addresses are sixteen byte quantities, stored in network byte order. The
socket API uses the sockaddr_in6 structure when passing IPv6 addresses
between an application and the kernel. The sockaddr_in6 structure has the
following members:

sa_familty_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;
uint32_t __sin6_src_id;

218 SunOS 5.8 Last modified 1 Jul 1999

Protocols inet6(7P)

Library routines are provided to manipulate structures of this form. See
inet (3SOCKET).

The sin6_addr field of the sockaddr_in6 structure specifies a local or remote
IPv6 address. Each network interface has one or more IPv6 addresses configured,
that is, a link-local address, a site-local address, and one or more global unicast
IPv6 addresses. The special value of all zeros may be used on this field to test for
"wildcard" matching. Given in a bind (3SOCKET) call, this value leaves the local
IPv6 address of the socket unspecified, so that the socket will receive connections
or messages directed at any of the valid IPv6 addresses of the system. This
can prove useful when a process neither knows nor cares what the local IPv6
address is, or when a process wishes to receive requests using all of its network
interfaces. The sockaddr_in6 structure given in the bind() call must specify
an in6_addr value of either all zeros or one of the system’s valid IPv6 addresses.
Requests to bind any other address will elicit the error EADDRNOTAVAI. When a
connect (3SOCKET) call is made for a socket that has a wildcard local address,
the system sets the sin6_addr field of the socket to the IPv6 address of the
network interface through which the packets for that connection are routed.

The sin6_port field of the sockaddr_in6 structure specifies a port number
used by TCP or UDP. The local port address specified in a bind() call is
restricted to be greater than IPPORT_RESERVED(defined in <netinet/in.h>)
unless the creating process is running as the super-user, providing a space of
protected port numbers. In addition, the local port address cannot be in use by
any socket of the same address family and type. Requests to bind sockets to port
numbers being used by other sockets return the error EADDRINUSE. If the local
port address is specified as 0, the system picks a unique port address greater
than IPPORT_RESERVED. A unique local port address is also selected when a
socket which is not bound is used in a connect (3SOCKET) or sendto() call.
See send (3SOCKET). This allows programs that do not care which local port
number is used to set up TCP connections by simply calling socket (3SOCKET)
and then connect (3SOCKET), and then sending UDP datagrams with a
socket() call followed by a sendto() call.

Although this implementation restricts sockets to unique local port numbers,
TCP allows multiple simultaneous connections involving the same local port
number so long as the remote IPv6 addresses or port numbers are different
for each connection. Programs may explicitly override the socket restriction
by setting the SO_REUSEADDRsocket option with setsockopt() . See
getsockopt (3SOCKET).

In addition, the same port may be bound by two separate sockets if one is an IP
socket and the other an IPv6 socket.

TLI applies somewhat different semantics to the binding of local port numbers.
These semantics apply when Internet family protocols are used using the TLI.

Last modified 1 Jul 1999 SunOS 5.8 219

inet6(7P) Protocols

SEE ALSO ioctl (2), bind (3SOCKET), connect (3SOCKET),
getipnodebyaddr (3SOCKET), getipnodebyname (3SOCKET),
getprotobyname (3SOCKET), getservbyname (3SOCKET),
getsockopt (3SOCKET), inet (3SOCKET), send (3SOCKET), icmp6 (7P),
ip6 (7P), tcp (7P), udp (7P)

Conta, A. and Deering, S., Internet Control Message Protocol (ICMPv6) for the
Internet Protocol Version 6 (IPv6) Specification, RFC 1885, December 1995.

Deering, S. and Hinden, B., Internet Protocol, Version 6 (IPv6) Specification,
RFC 1883, December 1995.

Hinden, B. and Deering, S., IP Version 6 Addressing Architecture, RFC 1884,
December 1995.

NOTES The IPv6 support is subject to change as the Internet protocols develop. Users
should not depend on details of the current implementation, but rather the
services exported.

220 SunOS 5.8 Last modified 1 Jul 1999

Protocols inet(7P)

NAME inet – Internet protocol family

SYNOPSIS #include <sys/types.h>

#include <netinet/in.h>

DESCRIPTION The Internet protocol family implements a collection of protocols which are
centered around the Internet Protocol (“IP”) and which share a common
address format. The Internet family protocols can be accessed using the socket
interface, where they support the SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW
socket types, or the Transport Level Interface (TLI), where they support the
connectionless (T_CLTS) and connection oriented (T_COTS_ORD) service types.

PROTOCOLS The Internet protocol family is comprised of the Internet Protocol (“IP”), the
Address Resolution Protocol (“ARP”), the Internet Control Message Protocol
(“ICMP”), the Transmission Control Protocol (“TCP”), and the User Datagram
Protocol (“UDP”).

TCP supports the socket interface’s SOCK_STREAMabstraction and TLI’s
T_COTS_ORDservice type. UDP supports the SOCK_DGRAMsocket abstraction
and the TLI T_CLTS service type. See tcp (7P) and udp (7P). A direct interface
to IP is available using both TLI and the socket interface (see ip (7P)). ICMP is
used by the kernel to handle and report errors in protocol processing. It is also
accessible to user programs (see icmp (7P)). ARP is used to translate 32-bit IP
addresses into 48-bit Ethernet addresses (see arp (7P)).

The 32-bit IP address is divided into network number and host number parts. It
is frequency-encoded. The most-significant bit is zero in Class A addresses, in
which the high-order 8 bits represent the network number. Class B addresses
have their high order two bits set to 10 and use the high-order 16 bits as the
network number field. Class C addresses have a 24-bit network number part of
which the high order three bits are 110. Sites with a cluster of IP networks may
chose to use a single network number for the cluster; this is done by using subnet
addressing. The host number portion of the address is further subdivided into
subnet number and host number parts. Within a subnet, each subnet appears to
be an individual network. Externally, the entire cluster appears to be a single,
uniform network requiring only a single routing entry. Subnet addressing is
enabled and examined by the following ioctl (2) commands. They have the
same form as the SIOCSIFADDRcommand.
SIOCSIFNETMASK Set interface network mask. The network mask

defines the network part of the address; if it
contains more of the address than the address
type would indicate, then subnets are in use.

SIOCGIFNETMASK Get interface network mask.

Last modified 5 Jun 1997 SunOS 5.8 221

inet(7P) Protocols

ADDRESSING IP addresses are four byte quantities, stored in network byte order. IP
addresses should be manipulated using the byte order conversion routines
(see byteorder (3SOCKET)).

Addresses in the Internet protocol family use the sockaddr_in structure,
which has that following members:

short sin_family;
ushort_t sin_port;
struct in_addr sin_addr;
char sin_zero[8];

Library routines are provided to manipulate structures of this form; See
inet (3SOCKET).

The sin_addr field of the sockaddr_in structure specifies a local or remote
IP address. Each network interface has its own unique IP address. The special
value INADDR_ANYmay be used in this field to effect “wildcard” matching.
Given in a bind (3SOCKET) call, this value leaves the local IP address of the
socket unspecified, so that the socket will receive connections or messages
directed at any of the valid IP addresses of the system. This can prove useful
when a process neither knows nor cares what the local IP address is or when
a process wishes to receive requests using all of its network interfaces. The
sockaddr_in structure given in the bind (3SOCKET) call must specify an
in_addr value of either INADDR_ANYor one of the system’s valid IP addresses.
Requests to bind any other address will elicit the error EADDRNOTAVAI. When a
connect (3SOCKET) call is made for a socket that has a wildcard local address,
the system sets the sin_addr field of the socket to the IP address of the network
interface that the packets for that connection are routed through.

The sin_port field of the sockaddr_in structure specifies a port number
used by TCP or UDP. The local port address specified in a bind (3SOCKET)
call is restricted to be greater than IPPORT_RESERVED(defined in
<<netinet/in.h>>) unless the creating process is running as the superuser,
providing a space of protected port numbers. In addition, the local port
address must not be in use by any socket of same address family and type.
Requests to bind sockets to port numbers being used by other sockets return
the error EADDRINUSE. If the local port address is specified as 0, then the
system picks a unique port address greater than IPPORT_RESERVED. A
unique local port address is also picked when a socket which is not bound
is used in a connect (3SOCKET) or sendto (see send (3SOCKET)) call.
This allows programs which do not care which local port number is used
to set up TCP connections by simply calling socket (3SOCKET) and then
connect (3SOCKET), and to send UDP datagrams with a socket (3SOCKET)
call followed by a sendto() call.

222 SunOS 5.8 Last modified 5 Jun 1997

Protocols inet(7P)

Although this implementation restricts sockets to unique local port numbers,
TCP allows multiple simultaneous connections involving the same local port
number so long as the remote IP addresses or port numbers are different for each
connection. Programs may explicitly override the socket restriction by setting the
SO_REUSEADDRsocket option with setsockopt (see getsockopt (3SOCKET)).

TLI applies somewhat different semantics to the binding of local port numbers.
These semantics apply when Internet family protocols are used using the TLI.

SEE ALSO ioctl (2), bind (3SOCKET), byteorder (3SOCKET), connect (3SOCKET),
gethostbyname (3NSL), getnetbyname (3SOCKET),
getprotobyname (3SOCKET), getservbyname (3SOCKET),
getsockopt (3SOCKET), send (3SOCKET), socket (3SOCKET), arp (7P),
icmp (7P), ip (7P), tcp (7P), udp (7P)

Network Information Center, DDN Protocol Handbook (3 vols.), Network
Information Center, SRI International, Menlo Park, Calif., 1985.

NOTES The Internet protocol support is subject to change as the Internet protocols
develop. Users should not depend on details of the current implementation, but
rather the services exported.

Last modified 5 Jun 1997 SunOS 5.8 223

ip6(7P) Protocols

NAME ip6 – Internet Protocol Version 6

SYNOPSIS #include <sys/socket.h>

#include <netinet/in.h>,

#include <netinet/ip6.h>

s = socket(AF_INET6, SOCK_RAW, proto);

t = t_open ("/dev/rawip6", O_RDWR);

DESCRIPTION The IPv6 protocol is the next generation of the internetwork datagram delivery
protocol of the Internet protocol family. Programs may use IPv6 through
higher-level protocols such as the Transmission Control Protocol (TCP) or the
User Datagram Protocol (UDP), or may interface directly to IPv6. See tcp (7P)
and udp (7P). Direct access may be by means of the socket interface, using a
“raw socket,” or by means of the Transport Level Interface (TLI). The protocol
options and IPv6 extension headers defined in the IPv6 specification may be
set in outgoing datagrams.

APPLICATION
PROGRAMMING

INTERFACE

The STREAMS driver /dev/rawip6 is the TLI transport provider that provides
raw access to IPv6.

Raw IPv6 sockets are connectionless and are normally used with the sendto()
and recvfrom() calls (see send (3SOCKET) and recv (3SOCKET)), although
the connect (3SOCKET) call may also be used to fix the destination for future
datagrams. In this case, the read (2) or recv (3SOCKET) and write (2) or
send (3SOCKET) calls may be used. Ancillary data may also be sent or received
over raw IPv6 sockets using the sendmsg (3SOCKET) and recvmsg (3SOCKET)
system calls.

Unlike raw IP, IPv6 applications do not include a complete IPv6 header
when sending; there is no IPv6 analog to the IP IP_HDRINCL socket option.
IPv6 header values may be specified or received as ancillary data to a
sendmsg (3SOCKET) or recvmsg (3SOCKET) system call, or may be specified
as "sticky" options on a per-socket basis by using the setsockopt (3SOCKET)
system call. Such sticky options are applied to all outbound packets
unless overridden by ancillary data. If any ancillary data is specified in a
sendmsg (3SOCKET) call, all sticky options not explicitly overridden revert
to default values for that datagram only; the sticky options persist as set for
subsequent datagrams.

Since sendmsg (3SOCKET) is not supported for SOCK_STREAMupper level
protocols such as TCP, ancillary data is unsupported for TCP. Sticky options,
however, are supported.

224 SunOS 5.8 Last modified 10 Nov 1999

Protocols ip6(7P)

Since sendmsg (3SOCKET) is supported for SOCK_DGRAMupper level protocols,
both ancillary data and sticky options are supported for UDP, ICMP6, and
raw IPv6 sockets.

The socket options supported at the IPv6 level are:
IPV6_BOUND_IF Limit reception transmission of packets to this

interface. Takes an integer as an argument; the
integer is the selected interace index.

IPV6_UNSPEC_SRC Boolean. Allow/disallow sending with a zero
source address.

IPV6_UNICAST_HOPS Default hop limit for unicast datagrams. This
option takes an integer as an argument. Its value
becomes the new default value for ip6_hops
that IPv6 will use on outgoing unicast datagrams
sent from that socket. The initial default is 60 .

IPV6_CHECKSUM Specify the integer offset in bytes into the user
data of the checksum location. Does not apply
to the ICMP6 protocol. Note: checksums are
required for all IPv6 datagrams; this is different
from IP, in which datagram checksums were
optional. IPv6 will compute the ULP checksum if
the value in the checksum field is zero.

The following options are boolean switches controlling the reception of ancillary
data:
IPV6_RECVPKTINFO Enable/disable receipt of the index of the

interface the packet arrived on, and of the
inbound packet’s destination address.

IPV6_RECVHOPLIMIT Enable/disable receipt of the inbound packet’s
current hoplimit.

IPV6_RECVHOPOPTS Enable/disable receipt of the inbound packet’s
IPv6 hop-by-hop extension header.

IPV6_RECVDSTOPTS Enable/disable receipt of the inbound packet’s
IPv6 destination options extension header.

IPV6_RECVRTHDR Enable/disable receipt of the inbound packet’s
IPv6 routing header.

IPV6_RECVRTHDRDSTOPTSEnable/disable receipt of the inbound packet’s
intermediate-hops options extension header.

Last modified 10 Nov 1999 SunOS 5.8 225

ip6(7P) Protocols

The following options may be set as sticky options with setsockopt (3SOCKET)
or as ancillary data to a sendmsg (3SOCKET) system call:
IPV6_PKTINFO Set the source address and/or interface out

which the packet(s) will be sent. Takes a struct
ip6_pktinfo as the parameter.

IPV6_HOPLIMIT Set the initial hoplimit for outbound
datagrams. Takes an integer as the parameter.
Note: This option sets the hoplimit only
for ancillary data or sticky options and
does not change the default hoplimit for
the socket; see IPV6_UNICAST_HOPSand
IPV6_MULTICAST_HOPSto change the socket’s
default hoplimit.

IPV6_NEXTHOP Specify the IPv6 address of the first hop, which
must be a neighbor of the sending host. Takes a
struct sockaddr_in6 as the parameter. When
this option specifies the same address as the
destination IPv6 address of the datagram, this is
equivalent to the existing SO_DONTROUTEoption.

IPV6_HOPOPTS Specify one or more hop-by-hop options. Variable
length. Takes a complete IPv6 hop-by-hop
options extension header as the parameter.

IPV6_DSTOPTS Specify one or more destination options. Variable
length. Takes a complete IPv6 destination options
extension header as the parameter.

IPV6_RTHDR Specify the IPv6 routing header. Variable length.
Takes a complete IPv6 routing header as the
parameter. Currently, only type 0 routing headers
are supported.

IPV6_RTHDRDSTOPTS Specify one or more destination options for all
intermediate hops. May be configured, but will
not be applied unless an IPv6 routing header
is also configured. Variable length. Takes a
complete IPv6 destination options extension
header as the parameter.

The following options affect the socket’s multicast behavior:

226 SunOS 5.8 Last modified 10 Nov 1999

Protocols ip6(7P)

IPV6_JOIN_GROUP Join a multicast group. Takes a struct
ipv6_mreq as the parameter; the structure
contains a multicast address and an interface
index.

IPV6_LEAVE_GROUP Leave a multicast group. Takes a struct
ipv6_mreq as the parameter; the structure
contains a multicast address and an interface
index.

IPV6_MULTICAST_IF The outgoing interface for multicast packets.
This option takes an integer as an argument;
the integer is the interface index of the selected
interface.

IPV6_MULTICAST_HOPS Default hop limit for multicast datagrams.
This option takes an integer as an argument.
Its value becomes the new default value for
ip6_hops that IPv6 will use on outgoing
multicast datagrams sent from that socket. The
initial default is 1.

IPV6_MULTICAST_LOOP Loopback for multicast datagrams. Normally
multicast datagrams are delivered to members on
the sending host. Setting the unsigned character
argument to 0 will cause the opposite behavior.

The multicast socket options can be used with any datagram socket type in
the IPv6 family.

At the socket level, the socket option SO_DONTROUTEmay be applied. This
option forces datagrams being sent to bypass routing and forwarding by forcing
the IPv6 hoplimit field to 1, meaning that the packet will not be forwarded
by routers.

Raw IPv6 datagrams can also be sent and received using the TLI connectionless
primitives.

Datagrams flow through the IPv6 layer in two directions: from the network up
to user processes and from user processes down to the network. Using this
orientation, IPv6 is layered above the network interface drivers and below
the transport protocols such as UDP and TCP. The Internet Control Message
Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) is logically a part of
IPv6. See icmp6 (7P).

Unlike IP, IPv6 provides no checksum of the IPv6 header. Also unlike IP,
upper level protocol checksums are required. IPv6 will compute the ULP/data

Last modified 10 Nov 1999 SunOS 5.8 227

ip6(7P) Protocols

portion checksum if the checksum field contains a zero (see IPV6_CHECKSUM
option above).

IPv6 extension headers in received datagrams are processed in the IPv6 layer
according to the protocol specification. Currently recognized IPv6 extension
headers include hop-by-hop options header, destination options header, routing
header (currently, only type 0 routing headers are supported), and fragment
header.

The IPv6 layer will normally act as a router (forwarding datagrams that
are not addressed to it, among other things) when the machine has two or
more IPv6 interfaces that are up. This behavior can be overridden by using
ndd (1M) to set the /dev/ip6 variable, ip6_forwarding . The value 0 means
do not forward; the value 1 means forward. The initialization scripts (see
/etc/init.d/inetinit) set this value at boot time based on the number of
"up" interfaces and whether or not the neighbor discovery protocol daemon
configuration file /etc/inet/ndpd.conf exists. The default value is zero;
ip6_forwarding is set to 1 only if more than one interface has been configured
for IPv6 and if /etc/inet/ndpd.conf exists.

The IPv6 layer will send an ICMP6 message back to the source host in many
cases when it receives a datagram that can not be handled. A "time exceeded "
ICMP6 message will be sent if the ip6_hops field in the IPv6 header drops to
zero in the process of forwarding a datagram. A "destination unreachable "
message will be sent by a router or by the originating host if a datagram can not
be sent on because there is no route to the final destination; it will be sent by a
router when it encounters a firewall prohibition; it will be sent by a destination
node when the transport protocol (that is, TCP) has no listener. A "packet too
big " message will be sent by a router if the packet is larger than the MTU of the
outgoing link (this is used for Path MTU Discovery). A "parameter problem "
message will be sent if there is a problem with a field in the IPv6 header or any of
the IPv6 extension headers such that the packet cannot be fully processed.

The IPv6 layer supports fragmentation and reassembly. Datagrams are
fragmented on output if the datagram is larger than the maximum transmission
unit (MTU) of the network interface. Fragments of received datagrams
are dropped from the reassembly queues if the complete datagram is not
reconstructed within a short time period.

Errors in sending discovered at the network interface driver layer are passed
by IPv6 back up to the user process.

SEE ALSO ndd (1M), read (2), write (2), bind (3SOCKET), connect (3SOCKET),
getsockopt (3SOCKET), recv (3SOCKET), recvmsg (3SOCKET),
send (3SOCKET), sendmsg (3SOCKET), setsockopt (3SOCKET),
defaultrouter (4), icmp6 (7P), if_tcp (7P), inet6 (7P), routing (7P)
tcp (7P), udp (7P)

228 SunOS 5.8 Last modified 10 Nov 1999

Protocols ip6(7P)

Deering, S. and Hinden, B., Internet Protocol, Version 6 (IPv6) Specification,
RFC 2460, Copyright The Internet Society (C) 1998, December, 1998.

DIAGNOSTICS A socket operation may fail with one of the following errors returned:
EACCES A bind() operation was attempted with a

“reserved” port number and the effective user ID
of the process was not the privileged user.

EADDRINUSE A bind() operation was attempted on a socket
with a network address/port pair that has
already been bound to another socket.

EADDRNOTAVAIL A bind() operation was attempted for an
address that is not configured on this machine.

EINVAL A sendmsg() operation with a non-NULL
msg_accrights was attempted.

EINVAL A getsockopt() or setsockopt() operation
with an unknown socket option name was given.

EINVAL A getsockopt() or setsockopt() operation
was attempted with the IPv6 option field
improperly formed; an option field was shorter
than the minimum value or longer than the
option buffer provided; the value in the option
field was invalid.

EISCONN A connect() operation was attempted on a
socket on which a connect() operation had
already been performed, and the socket could
not be successfully disconnected before making
the new connection.

EISCONN A sendto() or sendmsg() operation specifying
an address to which the message should be
sent was attempted on a socket on which
a connect() operation had already been
performed.

EMSGSIZE A send() , sendto() , or sendmsg() operation
was attempted to send a datagram that was too
large for an interface, but was not allowed to be
fragmented (such as broadcasts).

ENETUNREACH An attempt was made to establish a connection
via connect() , or to send a datagram via
sendto() or sendmsg() , where there was

Last modified 10 Nov 1999 SunOS 5.8 229

ip6(7P) Protocols

no matching entry in the routing table; or if an
ICMP “destination unreachable ” message
was received.

ENOTCONN A send() or write() operation, or a
sendto() or sendmsg() operation not
specifying an address to which the message
should be sent, was attempted on a socket on
which a connect() operation had not already
been performed.

ENOBUFS The system ran out of memory for fragmentation
buffers or other internal data structures.

ENOMEM The system was unable to allocate memory for
an IPv6 socket option or other internal data
structures.

ENOPROTOOPT An IP socket option was attempted on an IPv6
socket, or an IPv6 socket option was attempted
on an IP socket.

NOTES Applications using the sockets API must use the Advanced Sockets API for IPv6
(RFC 2292) to see elements of the inbound packet’s IPv6 header or extension
headers.

230 SunOS 5.8 Last modified 10 Nov 1999

Protocols ip(7P)

NAME ip, IP – Internet Protocol

SYNOPSIS #include <sys/socket.h>

#include <netinet/in.h>

s = socket(AF_INET, SOCK_RAW, proto);

t = t_open ("/dev/rawip", O_RDWR);

DESCRIPTION IP is the internetwork datagram delivery protocol that is central to the Internet
protocol family. Programs may use IP through higher-level protocols such as the
Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP), or
may interface directly to IP. See tcp (7P) and udp (7P) . Direct access may be by
means of the socket interface, using a "raw socket," or by means of the Transport
Level Interface ("TLI"). The protocol options defined in the IP specification
may be set in outgoing datagrams.

APPLICATION
PROGRAMMING

INTERFACE

The STREAMS driver /dev/rawip is the TLI transport provider that provides
raw access to IP.

Raw IP sockets are connectionless and are normally used with the sendto()
and recvfrom() calls (see send (3SOCKET) and recv (3SOCKET)), although
the connect (3SOCKET) call may also be used to fix the destination for future
datagram. In this case, the read (2) or recv (3SOCKET) and write (2) or
send (3SOCKET) calls may be used. If proto is IPPROTO_RAWor IPPROTO_IGMP
, the application is expected to include a complete IP header when sending.
Otherwise, that protocol number will be set in outgoing datagrams and used to
filter incoming datagrams and an IP header will be generated and prepended
to each outgoing datagram. In either case, received datagrams are returned
with the IP header and options intact.

The socket options supported at the IP level are:
IP_OPTIONS IP options for outgoing datagrams. This

socket option may be used to set IP options
to be included in each outgoing datagram. IP
options to be sent are set with setsockopt()
(see getsockopt (3SOCKET)). The
getsockopt (3SOCKET) call returns the IP
options set in the last setsockopt() call. IP
options on received datagrams are visible to
user programs only using raw IP sockets. The
format of IP options given in setsockopt()
matches those defined in the IP specification
with one exception: the list of addresses for the
source routing options must include the first-hop
gateway at the beginning of the list of gateways.
The first-hop gateway address will be extracted

Last modified 10 Nov 1999 SunOS 5.8 231

ip(7P) Protocols

from the option list and the size adjusted
accordingly before use. IP options may be used
with any socket type in the Internet family.

IP_SEC_OPT Enable or obtain IPsec security settings for this
socket. For more details on the protection services
of IPsec, see ipsec (7P) .

IP_ADD_MEMBERSHIP Join a multicast group.

IP_DROP_MEMBERSHIP Leave a multicast group.

These options take a struct ip_mreq as the parameter. The structure contains
a multicast address which has to be set to the CLASS-D IP multicast address,
and an interface address. Normally the interface address is set to INADDR_ANY
which causes the kernel to choose the interface to join on.
IP_MULTICAST_IF The outgoing interface for multicast packets. This

option takes a struct in_addr as an argument,
and it selects that interface for outgoing IP
multicast packets. If the address specified is
INADDR_ANY, it will use the unicast routing
table to select the outgoing interface (which is
the default behavior).

IP_MULTICAST_TTL Time to live for multicast datagrams. This option
takes an unsigned character as an argument. Its
value is the TTL that IP will use on outgoing
multicast datagrams. The default is 1 .

IP_MULTICAST_LOOP Loopback for multicast datagrams. Normally
multicast datagrams are delivered to members on
the sending host. Setting the unsigned character
argument to 0 will cause the opposite behavior.

The multicast socket options can be used with any datagram socket type in
the Internet family.

At the socket level, the socket option SO_DONTROUTEmay be applied. This
option forces datagrams being sent to bypass routing and forwarding by forcing
the IP Time To Live field to 1 , meaning that the packet will not be forwarded
by routers.

Raw IP datagrams can also be sent and received using the TLI connectionless
primitives.

232 SunOS 5.8 Last modified 10 Nov 1999

Protocols ip(7P)

Datagrams flow through the IP layer in two directions: from the network up
to user processes and from user processes down to the network. Using this
orientation, IP is layered above the network interface drivers and below the
transport protocols such as UDP and TCP. The Internet Control Message Protocol
(ICMP) is logically a part of IP. See icmp (7P) .

IP provides for a checksum of the header part, but not the data part, of the
datagram. The checksum value is computed and set in the process of sending
datagrams and checked when receiving datagrams.

IP options in received datagrams are processed in the IP layer according to the
protocol specification. Currently recognized IP options include: security, loose
source and record route (LSRR), strict source and record route (SSRR), record
route, and internet timestamp.

The IP layer will normally act as a router (forwarding datagrams that are
not addressed to it, among other things) when the machine has two or more
interfaces that are up. This behavior can be overridden by using ndd (1M) to set
the /dev/ip variable, ip_forwarding . The value 0 means do not forward; the
value 1 means forward. The initialization scripts (see /etc/init.d/inetinit
) set this value at boot time based on the number of "up" interfaces, but will not
turn on IP forwarding at all if the file /etc/notrouter exists. When the IP
module is loaded, ip_forwarding is 0 and remains so if:

� only one non-DHCP-managed interface is up (the most common case)

� the file /etc/notrouter exists and DHCP does not say that IP forwarding
is on

� the file /etc/defaultrouter exists and DHCP does not say IP
forwarding is on

Otherwise, ip_forwarding will be set to 1 .

Additionally, finer-grained forwarding can be configured in IP. Each interface
will create an <ifname>:ip_forwarding /dev/ip variable that can be
modified using ndd (1M) . If a per-interface :ip_forwarding variable is set to
0 , packets will neither be forwarded from this interface to others, nor forwarded
to this interface. Setting the ip_forwarding variable will toggle all of the
per-interface :ip_forwarding variables to the setting of ip_forwarding .

The IP layer will send an ICMP message back to the source host in many cases
when it receives a datagram that can not be handled. A "time exceeded" ICMP
message will be sent if the "time to live" field in the IP header drops to zero in the
process of forwarding a datagram. A "destination unreachable" message will be
sent if a datagram can not be forwarded because there is no route to the final
destination, or if it can not be fragmented. If the datagram is addressed to the
local host but is destined for a protocol that is not supported or a port that is not
in use, a destination unreachable message will also be sent. The IP layer may

Last modified 10 Nov 1999 SunOS 5.8 233

ip(7P) Protocols

send an ICMP "source quench" message if it is receiving datagrams too quickly.
ICMP messages are only sent for the first fragment of a fragmented datagram
and are never returned in response to errors in other ICMP messages.

The IP layer supports fragmentation and reassembly. Datagrams are fragmented
on output if the datagram is larger than the maximum transmission unit (MTU)
of the network interface. Fragments of received datagrams are dropped from
the reassembly queues if the complete datagram is not reconstructed within
a short time period.

Errors in sending discovered at the network interface driver layer are passed by
IP back up to the user process.

SEE ALSO ndd (1M) , read (2) , write (2) , bind (3SOCKET) , connect (3SOCKET)
, getsockopt (3SOCKET) , recv (3SOCKET) , send (3SOCKET) ,
defaultrouter (4) , icmp (7P) , if_tcp (7P) , inet (7P) , ip6 (7P) , ipsec (7P)
, routing (7P) , tcp (7P) , udp (7P)

Braden, R., RFC 1122, Requirements for Internet Hosts - Communication Layers
, Information Sciences Institute, University of Southern California, October 1989.

Postel, J., RFC 791, Internet Protocol - DARPA Internet Program Protocol
Specification , Information Sciences Institute, University of Southern California,
September 1981.

DIAGNOSTICS A socket operation may fail with one of the following errors returned:
EACCES A bind() operation was attempted with a

"reserved" port number and the effective user ID
of the process was not the privileged user.

EADDRINUSE A bind() operation was attempted on a socket
with a network address/port pair that has
already been bound to another socket.

EADDRNOTAVAIL A bind() operation was attempted for an
address that is not configured on this machine.

EINVAL A sendmsg() operation with a non-NULL
msg_accrights was attempted.

EINVAL A getsockopt() or setsockopt() operation
with an unknown socket option name was given.

EINVAL A getsockopt() or setsockopt() operation
was attempted with the IP option field
improperly formed; an option field was shorter
than the minimum value or longer than the
option buffer provided.

234 SunOS 5.8 Last modified 10 Nov 1999

Protocols ip(7P)

EISCONN A connect() operation was attempted on a
socket on which a connect() operation had
already been performed, and the socket could
not be successfully disconnected before making
the new connection.

EISCONN A sendto() or sendmsg() operation specifying
an address to which the message should be
sent was attempted on a socket on which
a connect() operation had already been
performed.

EMSGSIZE A send() , sendto() , or sendmsg()
operation was attempted to send a datagram
that was too large for an interface, but was not
allowed to be fragmented (such as broadcasts).

ENETUNREACH An attempt was made to establish a connection
via connect() , or to send a datagram via
sendto() or sendmsg() , where there was no
matching entry in the routing table; or if an ICMP
"destination unreachable" message was received.

ENOTCONN A send() or write() operation, or a
sendto() or sendmsg() operation not
specifying an address to which the message
should be sent, was attempted on a socket on
which a connect() operation had not already
been performed.

ENOBUFS The system ran out of memory for fragmentation
buffers or other internal data structures.

NOTES Raw sockets should receive ICMP error packets relating to the protocol; currently
such packets are simply discarded.

Users of higher-level protocols such as TCP and UDP should be able to see
received IP options.

Last modified 10 Nov 1999 SunOS 5.8 235

iprb(7D) Devices

NAME iprb – Intel 82557, 82558, 82559–controlled network interface controllers

SYNOPSIS /dev/iprb

DESCRIPTION The iprb Ethernet driver is a multi-threaded, loadable, clonable, STREAMS
hardware driver supporting the connectionless Data Link Provider Interface,
dlpi (7P), over Intel D100 82557, 82558, and 82559 controllers. Multiple 82557,
82558, and 82559 controllers installed within the system are supported by the
driver. The iprb driver provides basic support for the 82557, 82558, and 82559
hardware. Functions include chip initialization, frame transmit and receive,
multicast support, and error recovery and reporting.

APPLICATION
PROGRAMMING

INTERFACE

The cloning, character-special device /dev/iprb is used to access all 82557,
82558, and 82559 devices installed within the system.

iprb and DLPI The iprb driver is dependent on /kernel/misc/gld , a loadable kernel
module that provides the iprb driver with the DLPI and STREAMSfunctionality
required of a LAN driver. See gld (7D) for more details on the primitives
supported by the driver.

The values returned by the driver in the DL_INFO_ACKprimitive in response
to the DL_INFO_REQfrom the user are as follows:

� The maximum SDU is 1500 (ETHERMTU).

� The minimum SDU is 0. The driver will pad to the mandatory 60-octet
minimum packet size.

� The dlsap address length is 8.

� The MAC type is DL_ETHER.

� The sap length value is −2, meaning the physical address component
is followed immediately by a 2-byte sap component within the DLSAP
address.

� The broadcast address value is Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

FILES /dev/iprb
iprb Character special device

/kernel/drv/iprb.conf Configuration file of iprb driver

<sys/stropts.h>
<sys/ethernet.h>
<sys/dlpi.h>
<sys/gld.h>

The iprb.conf configuration file options include:

236 SunOS 5.8 Last modified 12 July 1999

Devices iprb(7D)

−TxURRetry
Default: 3

Allowed Values: 0, 1, 2, 3

Sets the number of retransmissions. Modified when tuning performance.

−MWIEnable
Default: 0 (Disable)

Allowed Values: 0 (Disable), 1 (Enable)

Should only be set for 82558 adapters and systems in which the PCI
bus supports Memory Write & Invalidate operations. Can improve the
performance for some configurations.

−FlowControl
Default: 0 (Disable)

Allowed Values: 0 (Disable), 1 (Enable)

Setting this value can improve the performance for some configurations

−CollisionBackOffModification
Default: 0 (Disable)

Allowed Values: 0 (Disable), 1 (Enable)

Setting this value can improve the performance for some configurations

−PhyErrataFrequency
Default: 0 (Disable)

Allowed Values: 0 (Disable), 10 (Enable)

If you have problems establishing links with cables length = 70 Ft, set this
field to 10

−CpuCycleSaver
Default: 0

Allowed Values: 1 through FFFFh

Reasonable Values: 200h through 800h

The CPUSaver algorithm improves the system’s P/E ratio by reducing
the number of interrupts generated by the card. The algorithm bundles
multiple receive frames together, then generates a single interrupt for the
bundle. Because the microcode does not support run-time configuration,
configuration must be done prior to the micro code being loaded into
the chip. Changing this value from its default means that the driver will
have to be unloaded and loaded for the change to take affect. Setting the
CpuCycleSaver option to 0 prevents the algorithm from being used. Because

Last modified 12 July 1999 SunOS 5.8 237

iprb(7D) Devices

it varies for different network environments, the optimal value for this
parameter is impossible to predict. Accordingly, developers should run
tests to determine the effect that changing this value has on bandwidth
and CPU utilization.

−ForceSpeedDuplex
Default: 5 (Auto-negotiate)

Allowed Values: 4 (100 FDX)

3 (100 HDX)

2 (10 FDX)

1 (10 HDX)

Specify the speed and duplex mode for each instance.

Example: ForceSpeedDuplex=5,4;

Sets iprb0 to autonegotiate and iprb1 to 100 FDX.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5), dlpi (7P), gld (7D)

238 SunOS 5.8 Last modified 12 July 1999

Protocols ipsec(7P)

NAME ipsec – Internet Protocol Security Architecture

DESCRIPTION The IP Security Architecture (IPsec) provides protection for IP datagrams. The
protection can include confidentiality, strong integrity of the data, partial
sequence integrity (replay protection), and data authentication. IPsec is
performed inside the IP processing, and it can be applied with or without the
knowledge of an Internet application.

Protection
Mechanisms

IPsec provides two mechanisms for protecting data. The Authentication Header
(“AH”) provides strong integrity, replay protection, and data authentication.
AH protects as much of the IP datagram as it can. AH cannot protect fields that
change nondeterministically between sender and receiver.

The Encapsulating Security Payload (“ESP”) provides confidentiality over what
it encapsulates, as well as the services that AH provides, but only over that
which it encapsulates. ESP’s authentication services are optional, which allow
ESP and AH to be used together on the same datagram without redundancy.

Two types of algorithms are used for IPsec, authentication and encryption
algorithms.. Authentication algorithms produce an integrity checksum value or
"digest" based on the data and a key. The size of both the digest and the key are
described in authentication algorithm pages. See, for example, authmd5h (7M)
and authsha1 (7M). Encryption algorithms encrypt data with a key. Encryption
algorithms operate on data in units of a "block size". The size of both the block
size and the key size are described in the encryption algorithm pages. See, for
example, encrdes (7M) and encr3des (7M).

Security Associations Both AH and ESP use Security Associations (SAs), which are entities that specify
security properties from one host to another. Two communicating machines
need at least two SAs to communicate securely, unless they are using multicast,
and then they can use the same multicast SA. SAs are managed through the
pf_key (7P) interface. Automatic SA management is not yet available, but a
command-line front-end is available by means of ipseckey (1M). An IPsec SA
is identified by a tuple of <AH or ESP, destination IP address, and SPI>. The
Security Parameters Index (“SPI”) is an arbitrary 32-bit value that is transmitted
on the wire with an AH or ESP packet. See ipsecah (7P) or ipsecesp (7P) for
an explanation about where the SPI falls in a protected packet.

Protection Policy
and Enforcement

Mechanisms

Mechanism and policy are separate. The policy for applying IPsec can
be enforced in two places: on a system-wide level, or on a per-socket
level.Configuring systemwide policy is done by the command ipsecconf (1M).
Configuring per-socket policy will be discussed later in this section.

Systemwide IPsec policy is applied to incoming and outgoing datagrams. Some
additional rules can be applied to outgoing datagrams because of the additional
data known by the system. Inbound datagrams can either be accepted or
dropped. The decision to drop or accept an inbound datagram is based on

Last modified 10 Nov 1999 SunOS 5.8 239

ipsec(7P) Protocols

several criteria, which sometimes overlap or conflict. Conflict resolution is
resolved by which rule is parsed first, with one exception. If a policy entry states
that traffic should bypass all other policy, it will automaticaly be accepted.
Outbound datagrams will either be sent with protection or without. If protection
is applied, it can be either specific algorithms, or not. If policy normally would
protect a datagram, it can be bypassed in either by an exception in systemwide
policy, or by requesting a bypass in per-socket policy.

For intra-machine traffic, policies will be enforced, but actual security
mechanisms will not be applied; rather, the outbound policy on an intra-machine
packet will translate into an inbound packet that has had those mechanisms
applied.

Per-Socket Policy The IP_SEC_OPTsocket option is used to set per-socket IPsec policy. The
structure used for an IP_SEC_OPTrequest is:

typedef struct ipsec_req {
uint_t ipsr_ah_req; /* AH request */
uint_t ipsr_esp_req; /* ESP request */
uint_t ipsr_self_encap_req; /* Self-Encap request */
uint8_t ipsr_auth_alg; /* Auth algs for AH */
uint8_t ipsr_esp_alg; /* Encr algs for ESP */
uint8_t ipsr_esp_auth_alg; /* Auth algs for ESP */

} ipsec_req_t;

The IPsec request has field for both AH and ESP. Algorithms can be specified, or
not. The actual request for AH or ESP services can take one of the following
values:
IPSEC_PREF_NEVER Bypass all policy. Only the superuser may request

this service.

IPSEC_PREF_REQUIRED Regardless of other policy, require the use of
the IPsec service.

The following value can be logically ORed to an IPSEC_PREF_REQUIREDvalue:
IPSEC_PREF_UNIQUE Regardless of other policy, enforce a unique SA

for traffic originating from this socket.

The ipsec_self_encap_req is used to add an additional IP header outside
the original one. This is in case IP options not normally encapsulated by ESP
need to be. Algorithm values from <net/pfkeyv2.h> are as follows:
SADB_AALG_MD5HMAC This uses the MD5-HMAC (RFC 2403) algorithm

for authentication. See authmd5h (7M).

SADB_AALG_SHA1HMAC This uses the SHA1-HMAC (RFC 2404) algorithm
for authentication. See authsha1 (7M).

240 SunOS 5.8 Last modified 10 Nov 1999

Protocols ipsec(7P)

SADB_EALG_DESCBC This uses the DES (RFC 2405) algorithm for
encryption. See encrdes (7M).

SADB_EALG_3DESCBC This uses the Triple DES (RFC 2451) algorithm
for encryption. See encr3des (7M).

An application should either use either the getsockopt (3SOCKET) or the
setsockopt (3SOCKET) call to manipulate IPsec requests. For example:

#include <sys/socket.h>
#include <netinet/in.h>
#include <net/pfkeyv2.h> /* For SADB_*ALG_* */
/* socket setup skipped */
rc = setsockopt(s, IPPROTO_IP, IP_SEC_OPT,

(const char *)&ipsec_req, sizeof (ipsec_req_t));

SECURITY
CONSIDERATIONS

While IPsec is an effective tool in securing network traffic, it will not make
security problems disappear. Security issues beyond the mechanisms that IPsec
offers may be discussed in a similar “Security Consideration” section within
individual reference manual pages.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ipsecconf (1M), ipseckey (1M), getsockopt (3SOCKET),
setsockopt (3SOCKET), attributes (5), authmd5h (7M), authsha1 (7M),
encrdes (7M), encr3des (7M), inet (7P) ip (7P), ipsec (7P), ipsecah (7P),
ipsecesp (7P), pf_key (7P)

Kent, S., and Atkinson, R., RFC 2401, Security Architecture for the Internet
Protocol, The Internet Society, 1998.

Kent, S. and Atkinson, R.,RFC 2406, IP Encapsulating Security Payload (ESP),
The Internet Society, 1998.

Madson, C., and Doraswamy, N, RFC 2405, The ESP DES-CBC Cipher
Algorithm with Explicit IV, The Internet Society, 1998.

Madsen, C. and Glenn, R., RFC 2403, The Use of HMAC-MD5-96 within ESP
and AH, The Internet Society, 1998.

Madsen, C. and Glenn, R., RFC 2404, The Use of HMAC-SHA-1-96 within
ESP and AH, The Internet Society, 1998.

Last modified 10 Nov 1999 SunOS 5.8 241

ipsec(7P) Protocols

Pereira, R. and Adams, R., RFC 2451, The ESP CBC-Mode Cipher Algorithms,
The Internet Society, 1998.

242 SunOS 5.8 Last modified 10 Nov 1999

Protocols ipsecah(7P)

NAME ipsecah, AH – IPsec Authentication Header

SYNOPSIS drv/ipsecah

DESCRIPTION The ipsecah module ("AH ") provides strong integrity, authentication, and
partial sequence integrity (replay protection) to IP datagrams. AH protects
the parts of the IP datagram that can be predicted by the sender as it will be
received by the receiver. For example, the IP TTL field is not a predictable
field, and is not protected by AH .

AH is inserted between the IP header and the transport header. The transport
header can be TCP , UDP , ICMP , or another IP header, if tunnels are being
used. See tun (7M) .

Authentication
Algorithms And The

AH Device

AH is implemented as a module that is auto-pushed on top of IP . The entry
/dev/ipsecah is used for tuning AH with ndd (1M) , as well as to allow future
authentication algorithms to be loaded on top of AH . Current authentication
algorithms include HMAC-MD5 and HMAC-SHA-1. See authmd5h (7M) and
authsha1 (7P) . Each authentication algorithm has its own key size and key
format properties.

Security
Considerations

Without replay protection enabled, AH is vulnerable to replay attacks. AH
does not protect against eavesdropping. Data protected with AH can still be
seen by an adversary.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcsrx (64-bit)

Interface Stability Evolving

SEE ALSO ipsecconf (1M) , ndd (1M) , attributes (5) , authmd5h (7M) , authsha1 (7P) ,
ip (7P) , ipsec (7P) , ipsecesp (7P) , tun (7M)

Kent, S. and Atkinson, R.RFC 2402, IP Authentication Header , The Internet
Society, 1998.

Last modified 16 Feb 1999 SunOS 5.8 243

ipsecesp(7P) Protocols

NAME ipsecesp, ESP – IPsec Encapsulating Security Payload

SYNOPSIS drv/ipsecesp

DESCRIPTION The ipsecesp module provides confidentiality, integrity, authentication, and
partial sequence integrity (replay protection) to IP datagrams. The encapsulating
security payload ("ESP ") encapsulates its data, so it only protects the data
that follows its beginning in the datagram. If the packet is a TCP packet,
ESP will encapsulate the TCP header and its data only. If the packet is an IP
in IP datagram, ESP will protect the inner IP datagram. Per-socket policy
allows "self-encapsulation" so ESP can encapsulate IP options if it needs to.
See ipsec (7P) .

Unlike the authentication header ("AH ") , ESP allows multiple kinds of
datagram protection. To use a single form of datagram protection can expose
vulnerabilities. For example, only ESP can be used to provide confidentiality.
But protecting confidentiality alone exposes vulnerabilities in both replay attacks
and cut-and-paste attacks. Similarly, if ESP protects only integrity and does not
fully protect against eavesdropping, it may provide weaker protection than AH
. See ipsecah (7P) .

Algorithms and the
ESP Device

ESP is implemented as a module that is auto-pushed on top of IP . Use the
/dev/ipsecesp entry to tune ESP with ndd (1M) , as well as to allow future
algorithms to be loaded on top of ESP . ESP allows encryption algorithms to be
pushed on top of it, in addition to the authentication algorithms that can be used
in AH . Authentication algorithms include HMAC-MD5 and HMAC-SHA-1.
See authmd5h (7M) and authsha1 (7P) . Encryption algorithms include DES
and Triple-DES . See encrdes (7M) and encr3des (7M) . Each authentication
and encryption algorithm has its key size and key format properties. Because of
export laws in the United States, not all encryption algorithms will be available
outside of the United States.

Security
Considerations

ESP without authentication exposes vulnerabilities to cut-and-paste
cryptographic attacks, as well as eavesdropping attacks. When ESP is used
without confidentiality, it is as vulnerable to replay as AH is.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcsrx (64-bit)

Interface Stability Evolving

SEE ALSO ipsecconf (1M) , ndd (1M) , attributes (5) , authmd5h (7M) , authsha1 (7P) ,
encrdes (7M) , encr3des (7M) , ip (7P) , ipsec (7P) , ipsecah (7P)

244 SunOS 5.8 Last modified 16 Feb1999

Protocols ipsecesp(7P)

Kent, S. and Atkinson, R.RFC 2406, IP Encapsulating Security Payload (ESP) ,
The Internet Society, 1998.

NOTES Due to United States export control laws, the encryption strength available on
ESP will be weaker for versions of the SunOS sold outside the United States..

Last modified 16 Feb1999 SunOS 5.8 245

isdnio(7I) Ioctl Requests

NAME isdnio – ISDN interfaces

SYNOPSIS #include <sun/audioio.h>
#include <sun/isdnio.h>

int ioctl (int fd, int command, /* arg */ ...);

DESCRIPTION ISDN ioctl commands are a subset of ioctl (2) commands that perform a
variety of control functions on Integrated Services Digital Network (ISDN)
STREAMS devices. The arguments commandand arg are passed to the file
designated by fd and are interpreted by the ISDN device driver.

fd is an open file descriptor that refers to a stream. commanddetermines the
control function to be performed as described in the IOCTLS section of this
document. arg represents additional information that is needed by command.
The type of arg depends upon the command, but generally it is an integer or a
pointer to a command-specific data structure.

Since these ISDN commands are a subset of ioctl and streamio (7I), they are
subject to errors as described in those interface descriptions.

This set of generic ISDN ioctl commands is meant to control various types
of ISDN STREAMS device drivers. The following paragraphs give some
background on various types of ISDN hardware interfaces and data formats, and
other device characteristics.

Controllers,
Interfaces, and

Channels

This manual page discusses operations on, and facilities provided by ISDN
controllers, interfaces and channels. A controller is usually a hardware
peripheral device that provides one or more ISDN interfaces and zero or more
auxiliary interfaces. In this context, the term interface is synonymous with the
term “port”. Each interface can provide one or more channels.

Time Division
Multiplexed Serial

Interfaces

ISDN BRI-TE, BRI-NT, and PRI interfaces are all examples of Time Division
Multiplexed Serial Interfaces. As an example, a Basic Rate ISDN (BRI) Terminal
Equipment (TE) interface provides one D-channel and two B-channels on the
same set of signal wires. The BRI interface, at the S reference point, operates at a
bit rate of 192,000 bits per second. The bits are encoded using a pseudoternary
coding system that encodes a logic one as zero volts, and a logic zero as a
positive or negative voltage. Encoding rules state that adjacent logic zeros must
be encoded with opposite voltages. Violations of this rule are used to indicate
framing information such that there are 4000 frames per second, each containing
48 bits. These 48 bits are divided into channels. Not including framing and
synchronization bits, the frame is divided into 8 bits for the B1-channel, 1 bit
for the D-channel, 8 bits for B2, 1 bit for D, 8 bits for B1, 1 bit for D, and 8 bits
for B2. This results in a 64,000 bps B1-channel, a 64,000 bps B2-channel, and a
16,000 bps D-channel, all on the same serial interface.

246 SunOS 5.8 Last modified 7 Apr 1998

Ioctl Requests isdnio(7I)

Basic Rate ISDN A Basic Rate ISDN (BRI) interface consists of a 16000 bit per second Delta
Channel (D-channel) for signaling and X.25 packet transmission, and two 64000
bit per second Bearer Channels (B-channels) for transmission of voice or data.

The CCITT recommendations on ISDN Basic Rate interfaces, I.430, identify
several “reference points” for standardization. From (Stallings89):

“Reference point T (terminal) corresponds to a minimal ISDN network
termination at the customer’s premises. It separates the network
provider’s equipment from the user’s equipment. Reference
point S (system) corresponds to the interface of individual
ISDN terminals. It separates user terminal equipment from
network-related communications functions. Reference point R
(rate) provides a non-ISDN interface between user equipment
that is not ISDN-compatible and adaptor equipment. . . . The
final reference point . . . is reference point U (user). This interface
describes the full-duplex data signal on the subscriber line.

Some older technology components of some ISDN networks occasionally steal
the low order bit of an ISDN B-channel octet in order to transmit in-band
signaling information between switches or other components of the network.
Even when out-of-band signaling has been implemented in these networks, and
the in-band signaling is no longer needed, the bit-robbing mechanism may still
be present. This bit robbing behavior does not appreciably affect a voice call, but
it will limit the usable bandwidth of a data call to 56000 bits per second instead
of 64000 bits per second. These older network components only seem to exist
in the United States of America, Canada and Japan. ISDN B-channel data calls
that have one end point in the United States, Canada or Japan may be limited to
56000 bps usable bandwidth instead of the normal 64000 bps. Sometimes the
ISDN service provider may be able to supply 56kbps for some calls and 64kbps
for other calls. On an international call, the local ISDN service provider may
advertise the call as 64kbps even though only 56kbps are reliably delivered
because of bit-robbing in the foreign ISDN that is not reported to the local switch.

A Basic Rate Interface implements either a Terminal Equipment (TE) interface or
a Network Termination (NT) interface. TE’s can be ISDN telephones, a Group
4 fax, or other ISDN terminal equipment. A TE connects to an NT in order to
gain access to a public or private ISDN network. A private ISDN network, such
as provided by a Private Branch Exchange (PBX), usually provides access to
the public network.

If multi-point configurations are allowed by an NT, it may be possible to
connect up to eight TE’s to a single NT interface. All of the TE’s in a multipoint
configuration share the same D and B-channels. Contention for B-Channels by
multiple TEs is resolved by the ISDN switch (NT) through signaling protocols on
the D-channel.

Last modified 7 Apr 1998 SunOS 5.8 247

isdnio(7I) Ioctl Requests

Contention for access to the D-channel is managed by a collision detection and
priority mechanism. D-channel call control messages have higher priority than
other packets. This media access function is managed at the physical layer.

A BRI-TE interface may implement a “Q-channel”, the Q-channel is a slow speed,
800 bps, data path from a TE to an NT. Although the structure of the Q-channel is
defined in the I.430 specification, the use of the Q-channel is for further study.

A BRI-NT interface may implement an “S-channel”, the S-channel is a slow
speed, 4000 bps, data path from a NT to an TE. The use of the S-channel is
for further study.

Primary Rate ISDN Primary Rate ISDN (PRI) interfaces are either 1.544Mbps (T1 rate) or 2.048Mbps
(E1 rate) and are typically organized as 23 B-channels and one D-Channel
(23B+D) for T1 rates, and 30 B-Channels and one D-Channel (30B+D) for E1 rates.
The D-channels on a PRI interface operate at 64000 bits per second. T1 rate PRI
interface is the standard in the United States, Canada and Japan while E1 rate
PRI interface is the standard in European countries. Some E1 rate PRI interface
implementations allow access to channel zero which is used for framing.

Channel Types ISDN channels fall into several categories; D-channels, bearer channels, and
management pseudo channels. Each channel has a corresponding device name
somewhere under the directory /dev/isdn/ as documented in the appropriate
hardware specific manual page.
D-channels

There is at most one D-channel per ISDN interface. The D-channel carries
signaling information for the management of ISDN calls and can also carry
X.25 packet data. In the case of a PRI interface, there may actually be no
D-channel if Non-Facility Associated Signaling is used. D-channels carry
data packets that are framed and checked for transmission errors according
to the LAP-D protocol. LAP-D uses framing and error checking identical
to the High Speed Data Link (HDLC) protocol.

B-channels
BRI interfaces have two B-channels, B1 and B2. On a BRI interface, the
only other type of channel is an H-channel which is a concatenation of
the B1 and B2 channels. An H-channel is accessed by opening the “base”
channel, B1 in this case, and using the ISDN_SET_FORMATioctl to change
the configuration of the B-channel from 8-bit, 8 kHz to 16-bit, 8kHz.

On a primary rate interface, B channels are numbered from 0 to 31 in Europe
and 1 to 23 in the United States, Canada and Japan.

H-Channels
A BRI or PRI interface can offer multiple B-channels concatenated into
a single, higher bandwidth channel. These concatenated B-channels are
referred to as an “H-channels” on a BRI interface. The PRI interface version

248 SunOS 5.8 Last modified 7 Apr 1998

Ioctl Requests isdnio(7I)

of an H-channel is referred to as an Hn-channels where n is a number
indicating how the B-channels have been aggregated into a single channel.

� A PRI interface H0 channel is 384 kbps allowing 3H0+D on a T1 rate PRI
interface and 4H0+D channels on an E1 rate PRI interface.

� A T1 PRI interface H11 channel is 1536 kbps (24×64000bps). This will
consume the channel normally reserved for the D-channel, so signaling
must be done with Non-Facility Associated Signaling (NFAS) from
another PRI interface.

� An E1 PRI interface H12 channel is 1920 kbps (30×64000bps). An
H12-channel leaves room for the framing-channel as well as the
D-channel.

Auxiliary channels
Auxiliary channels are non-ISDN hardware interfaces that are closely tied to
the ISDN interfaces. An example would be a video or audio coder/decoder
(codec). The existence of an auxiliary channel usually implies that one or
more B-channels can be “connected” to an auxiliary interface in hardware.

Management pseudo-channels
A management pseudo-channel is used for the management of a controller,
interface, or hardware channel. Management channels allow for out-of-band
control of hardware interfaces and for out-of-band notification of status
changes. There is at least one management device per hardware interface.

There are three different types of management channels implemented by
ISDN hardware drivers:

� A controller management device handles all ioctls that simultaneously
affect hardware channels on different interfaces. Examples include
resetting a controller, mu-code (as in the Greek letter mu) downloading
of a controller, or the connection of an ISDN B-channel to an auxiliary
channel that represents an audio coder/decoder (codec). The latter case
would be accomplished using the ISDN_SET_CHANNELioctl.

� An interface management device handles all ioctls that affect multiple
channels on the same interface. Messages associated with the activation
and deactivation of an interface arrive on the management device
associated with the D channel of an ISDN interface.

� Auxiliary interfaces may also have management devices. See the
hardware specific man pages for operations on auxiliary devices.

Trace pseudo-channels
A device driver may choose to implement a trace device for a data or
management channel. Trace channels receive a special M_PROTOheader with

Last modified 7 Apr 1998 SunOS 5.8 249

isdnio(7I) Ioctl Requests

the original channel’s original M_PROTOor M_DATAmessage appended to
the special header. The header is described by:

typedef struct {
uint_t seq; /* Sequence number */
int type; /* device dependent */
struct timeval timestamp;
char _f[8]; /* filler */

} audtrace_hdr_t;

ISDN Channel types The isdn_chan_t type enumerates the channels available on ISDN interfaces.
If a particular controller implements any auxiliary channels then those auxiliary
channels will be described in a controller specific manual page. The defined
channels are described by the isdn_chan_t type as shown below:

/* ISDN channels */
typedef enum {

ISDN_CHAN_NONE = 0x0, /* No channel given */
ISDN_CHAN_SELF, /* The channel performing the ioctl */
ISDN_CHAN_HOST, /* Unix STREAM */
ISDN_CHAN_CTRL_MGT, /* Controller management */

/* TE channel defines */

ISDN_CHAN_TE_MGT, /* Receives activation/deactivation */
ISDN_CHAN_TE_D_TRACE, /* Trace device for protocol analysis apps */
ISDN_CHAN_TE_D,
ISDN_CHAN_TE_B1,
ISDN_CHAN_TE_B2,

/* NT channel defines */

ISDN_CHAN_NT_MGT, /* Receives activation/deactivation */
ISDN_CHAN_NT_D_TRACE, /* Trace device for protocol analysis apps */
ISDN_CHAN_NT_D,
ISDN_CHAN_NT_B1,
ISDN_CHAN_NT_B2,

/* Primary rate ISDN */

ISDN_CHAN_PRI_MGT,
ISDN_CHAN_PRI_D,
ISDN_CHAN_PRI_B0, ISDN_CHAN_PRI_B1,
ISDN_CHAN_PRI_B2, ISDN_CHAN_PRI_B3,
ISDN_CHAN_PRI_B4, ISDN_CHAN_PRI_B5,
ISDN_CHAN_PRI_B6, ISDN_CHAN_PRI_B7,
ISDN_CHAN_PRI_B8, ISDN_CHAN_PRI_B9,
ISDN_CHAN_PRI_B10, ISDN_CHAN_PRI_B11,
ISDN_CHAN_PRI_B12, ISDN_CHAN_PRI_B13,
ISDN_CHAN_PRI_B14, ISDN_CHAN_PRI_B15,
ISDN_CHAN_PRI_B16, ISDN_CHAN_PRI_B17,
ISDN_CHAN_PRI_B18, ISDN_CHAN_PRI_B19,
ISDN_CHAN_PRI_B20, ISDN_CHAN_PRI_B21,
ISDN_CHAN_PRI_B22, ISDN_CHAN_PRI_B23,

250 SunOS 5.8 Last modified 7 Apr 1998

Ioctl Requests isdnio(7I)

ISDN_CHAN_PRI_B24, ISDN_CHAN_PRI_B25,
ISDN_CHAN_PRI_B26, ISDN_CHAN_PRI_B27,
ISDN_CHAN_PRI_B28, ISDN_CHAN_PRI_B29,
ISDN_CHAN_PRI_B30, ISDN_CHAN_PRI_B31,

/* Auxiliary channel defines */

ISDN_CHAN_AUX0, ISDN_CHAN_AUX1, ISDN_CHAN_AUX2, ISDN_CHAN_AUX3,
ISDN_CHAN_AUX4, ISDN_CHAN_AUX5, ISDN_CHAN_AUX6, ISDN_CHAN_AUX7

} isdn_chan_t;

ISDN Interface types The isdn_interface_t type enumerates the interfaces available on ISDN
controllers. The defined interfaces are described by the isdn_interface_t
type as shown below:

/* ISDN interfaces */
typedef enum {

ISDN_TYPE_UNKNOWN = -1, /* Not known or applicable */
ISDN_TYPE_SELF = 0, /*

* For queries, application may
* put this value into "type" to
* query the state of the file
* descriptor used in an ioctl.
*/

ISDN_TYPE_OTHER, /* Not an ISDN interface */
ISDN_TYPE_TE,
ISDN_TYPE_NT,
ISDN_TYPE_PRI,

} isdn_interface_t;

Activation and
Deactivation of ISDN

Interfaces

The management device associated with an ISDN D-channel is used to request
activation, deactivation and receive information about the activation state
of the interface. See the descriptions of the ISDN_PH_ACTIVATE_REQand
ISDN_MPH_DEACTIVATE_REQioctls. Changes in the activation state of an
interface are communicated to the D-channel application through M_PROTO
messages sent up-stream on the management device associated with the
D-channel. If the D-channel protocol stack is implemented as a user process, the
user process can retrieve the M_PROTOmessages using the getmsg (2) system call.

These M_PROTOmessages have the following format:

typedef struct isdn_message {
unsigned int magic; /* set to ISDN_PROTO_MAGIC */
isdn_interface_t type; /* Interface type */
isdn_message_type_t message; /* CCITT or vendor Primitive */
unsigned int vendor[5]; /* Vendor specific content */

} isdn_message_t;
typedef enum isdn_message_type {

ISDN_VPH_VENDOR = 0, /* Vendor specific messages */
ISDN_PH_AI, /* Physical: Activation Ind */
ISDN_PH_DI, /* Physical: Deactivation Ind */
ISDN_MPH_AI, /* Management: Activation Ind */
ISDN_MPH_DI, /* Management: Deactivation Ind */

Last modified 7 Apr 1998 SunOS 5.8 251

isdnio(7I) Ioctl Requests

ISDN_MPH_EI1, /* Management: Error 1 Indication */
ISDN_MPH_EI2, /* Management: Error 2 Indication */
ISDN_MPH_II_C, /* Management: Info Ind, connection */
ISDN_MPH_II_D /* Management: Info Ind, disconn. */

} isdn_message_type_t;

IOCTLS
STREAMS IOCTLS All of the streamio (7I) ioctl commands may be issued for a device

conforming to the the isdnio interface.

ISDN interfaces that allow access to audio data should implement a reasonable
subset of the audio (7I) interface.

ISDN ioctls ISDN_PH_ACTIVATE_REQ
Request ISDN physical layer activation. This command is valid for both TE
and NT interfaces. fd must be a D-channel file descriptor. arg is ignored.

TE activation will occur without use of the ISDN_PH_ACTIVATE_REQioctl
if the device corresponding to the TE D-channel is open, “on”, and the
ISDN switch is requesting activation.

ISDN_MPH_DEACTIVATE_REQ
fd must be an NT D-channel file descriptor. arg is ignored.

This command requests ISDN physical layer de-activation. This is not
valid for TE interfaces. A TE interace may be turned off by use of the
ISDN_PARAM_POWERcommand or by close (2) on the associated fd.

ISDN_ACTIVATION_STATUS
fd is the file descriptor for a D-channel, the management device associated
with an ISDN interface, or the management device associated with the
controller. arg is a pointer to an isdn_activation_status_t structure.
Although it is possible for applications to determine the current activation
state with this ioctl, a D-channel protocol stack should instead process
messages from the management pseudo channel associated with the
D-channel.

typedef struct isdn_activation_status {
isdn_interface_t type;
enum isdn_activation_state activation;

} isdn_activation_status_t;
typedef enum isdn_activation_state {

ISDN_OFF = 0, /* Interface is powered down */
ISDN_UNPLUGGED, /* Power but no-physical connection */
ISDN_DEACTIVATED_REQ, /* Pending Deactivation, NT Only */
ISDN_DEACTIVATED, /* Activation is permitted */
ISDN_ACTIVATE_REQ, /* Attempting to activate */
ISDN_ACTIVATED, /* Interface is activated */

} isdn_activation_state_t;

252 SunOS 5.8 Last modified 7 Apr 1998

Ioctl Requests isdnio(7I)

The type field should be set to ISDN_TYPE_SELF. The device specific
interface type will be returned in the type field.

The isdn_activation_status_t structure contains the interface type
and the current activation state. type is the interface type and should be set
by the caller to ISDN_TYPE_SELF.

ISDN_INTERFACE_STATUS
The ISDN_INTERFACE_STATUSioctl retrieves the status and statistics
of an ISDN interface. The requesting channel must own the interface
whose status is being requested or the ioctl will fail. fd is the file
descriptor for an ISDN interface management device. arg is a pointer to
a struct isdn_interface_info . If the interface field is set to
ISDN_TYPE_SELF, it will be changed in the returned structure to reflect
the proper device-specific interface of the requesting fd.

typedef struct isdn_interface_info {
isdn_interface_t interface;
enum isdn_activation_state activation;
unsigned int ph_ai; /* Physical: Activation Ind */
unsigned int ph_di; /* Physical: Deactivation Ind */
unsigned int mph_ai; /* Management: Activation Ind */
unsigned int mph_di; /* Management: Deactivation Ind */
unsigned int mph_ei1; /* Management: Error 1 Indication */
unsigned int mph_ei2; /* Management: Error 2 Indication */
unsigned int mph_ii_c; /* Management: Info Ind, connection */
unsigned int mph_ii_d; /* Management: Info Ind, disconn. */

} isdn_interface_info_t;

ISDN_CHANNEL_STATUS
The ISDN_CHANNEL_STATUSioctl retrieves the status and statistics of an
ISDN channel. The requesting channel must own the channel whose status
is being requested or the ioctl will fail. fd is any file descriptor. arg is a
pointer to a struct isdn_channel_info . If the interface field is set to
ISDN_CHAN_SELF, it will be changed in the returned structure to reflect
the proper device-specific channel of the requesting fd.

typedef struct isdn_channel_info {
isdn_chan_t channel;
enum isdn_iostate iostate;
struct isdn_io_stats {
ulong_t packets; /* packets transmitted or received */
ulong_t octets; /* octets transmitted or received */
ulong_t errors; /* errors packets transmitted or received */
} transmit, receive;

} isdn_channel_info_t;

ISDN_PARAM_SET

Last modified 7 Apr 1998 SunOS 5.8 253

isdnio(7I) Ioctl Requests

fd is the file descriptor for a management device. arg is a pointer to a
struct isdn_param . This commandallows the setting of various ISDN
physical layer parameters such as timers. This commanduses the same
arguments as the ISDN_PARAM_GETcommand.

ISDN_PARAM_GET
fd is the file descriptor for a management device. arg is a pointer to a
struct isdn_param This commandprovides for querying the value of a
particular ISDN physical layer parameter.

typedef enum {
ISDN_PARAM_NONE = 0,
ISDN_PARAM_NT_T101, /* NT Timer, 5-30 s, in milliseconds */
ISDN_PARAM_NT_T102, /* NT Timer, 25-100 ms, in milliseconds */
ISDN_PARAM_TE_T103, /* TE Timer, 5-30 s, in milliseconds */
ISDN_PARAM_TE_T104, /* TE Timer, 500-1000 ms, in milliseconds */
ISDN_PARAM_MAINT, /* Manage the TE Maintenance Channel */
ISDN_PARAM_ASMB, /* Modify Activation State Machine Behavior */
ISDN_PARAM_POWER, /* Take the interface online or offline */
ISDN_PARAM_PAUSE, /* Paused if == 1, else not paused == 0 */

} isdn_param_tag_t;
enum isdn_param_asmb {

ISDN_PARAM_TE_ASMB_CCITT88, /* 1988 bluebook */
ISDN_PARAM_TE_ASMB_CTS2, /* Conformance Test Suite 2 */

};
typedef struct isdn_param {

isdn_param_tag_t tag;
union {

unsigned int us; /* micro seconds */
unsigned int ms; /* Timer value in ms */
unsigned int flag; /* Boolean */
enum isdn_param_asmb asmb;
enum isdn_param_maint maint;
struct {

isdn_chan_t channel; /* Channel to Pause */
int paused; /* TRUE or FALSE */

} pause;
unsigned int reserved[2]; /* reserved, set to zero */

} value;
} isdn_param_t;

ISDN_PARAM_POWER
If an implementation provides power on and off functions, then power
should be on by default. If flag is ISDN_PARAM_POWER_OFFthen a TE
interface is forced into state F0, NT interfaces are forced into state G0. If
flag is ISDN_PARAM_POWER_ONthen a TE interface will immediately
transition to state F3 when the TE D-channel is opened. If flag is one, an
NT interface will transition to state G1 when the NT D-channel is opened.

Implementations that do not provide ISDN_POWERreturn failure with errno
set to ENXIO.ISDN_POWERis different from ISDN_PH_ACTIVATE_REQsince

254 SunOS 5.8 Last modified 7 Apr 1998

Ioctl Requests isdnio(7I)

CCITT specification requires that if a BRI-TE interface device has power,
then it permits activation.

ISDN_PARAM_NT_T101
This parameter accesses the NT timer value T1. The CCITT
recommendations specify that timer T1 has a value from 5 to 30 seconds.
Other standards may differ.

ISDN_PARAM_NT_T102
This parameter accesses the NT timer value T2. The CCITT
recommendations specify that timer T2 has a value from 25 to 100
milliseconds. Other standards may differ.

ISDN_PARAM_TE_T103
This parameter accesses the TE timer value T3. The CCITT recommendations
specify that timer T3 has a value from 5 to 30 seconds. Other standards
may differ.

ISDN_PARAM_TE_T104
This parameter accesses the TE timer value T4. The CTS2 specifies that timer
T4 is either not used or has a value from 500 to 1000 milliseconds. Other
standards may differ. CTS2 requires that timer T309 be implemented if
T4 is not available.

ISDN_PARAM_MAINT
This parameter sets the multi-framing mode of a BRI-TE
interface. For normal operation this parameter should be set to
ISDN_PARAM_MAINT_ECHO.Other uses of this parameter are dependent on
the definition and use of the BRI interface S and Q channels.

ISDN_PARAM_ASMB
There are a few differences in the BRI-TE interface activation state
machine standards. This parameter allows the selection of the appropriate
standard. At this time, only ISDN_PARAM_TE_ASMB_CCITT88and
ISDN_PARAM_TE_ASMB_CTS2are available.

ISDN_PARAM_PAUSE
This parameter allows a management device to pause the IO on a B-channel.
pause.channel is set to indicate which channel is to be paused or
un-paused. pause.paused is set to zero to un-pause and one to pause. fd
is associated with an ISDN interface management device. arg is a pointer to
a struct isdn_param .

ISDN_SET_LOOPBACK
fd is the file descriptor for an ISDN interface’s management device. arg is a
pointer to an isdn_loopback_request_t structure.

Last modified 7 Apr 1998 SunOS 5.8 255

isdnio(7I) Ioctl Requests

typedef enum {
ISDN_LOOPBACK_LOCAL,
ISDN_LOOPBACK_REMOTE,

} isdn_loopback_type_t;
typedef enum {

ISDN_LOOPBACK_B1 = 0x1,
ISDN_LOOPBACK_B2 = 0x2,
ISDN_LOOPBACK_D = 0x4,
ISDN_LOOPBACK_E_ZERO = 0x8,
ISDN_LOOPBACK_S = 0x10,
ISDN_LOOPBACK_Q = 0x20,

} isdn_loopback_chan_t;
typedef struct isdn_loopback_request {

isdn_loopback_type_t type;
int channels;

} isdn_loopback_request_t;

An application can receive D-channel data during D-Channel loopback but
cannot transmit data. The field type is the bitwise OR of at least one of
the following values:

ISDN_LOOPBACK_B1 (0x1) /* loopback on B1-channel */
ISDN_LOOPBACK_B2 (0x2) /* loopback on B2-channel */
ISDN_LOOPBACK_D (0x4) /* loopback on D-channel */
ISDN_LOOPBACK_E_ZERO (0x8) /* force E-channel to Zero if */

/* fd is for NT interface */
ISDN_LOOPBACK_S (0x10) /* loopback on S-channel */
ISDN_LOOPBACK_Q (0x20) /* loopback on Q-channel */

ISDN_RESET_LOOPBACK
arg is a pointer to an isdn_loopback_request_t structure.
ISDN_RESET_LOOPBACKturns off the selected loopback modes.

ISDN Data Format The isdn_format_t type is meant to be a complete description of the various
data modes and rates available on an ISDN interface. Several macros are
available for setting the format fields. The isdn_format_t structure is shown
below:

/* ISDN channel data format */
typedef enum {

ISDN_MODE_NOTSPEC, /* Not specified */
ISDN_MODE_HDLC, /* HDLC framing and error checking */
ISDN_MODE_TRANSPARENT /* Transparent mode */

} isdn_mode_t;

/* Audio encoding types (from audioio.h) */

#define AUDIO_ENCODING_NONE (0) /* no encoding*/
#define AUDIO_ENCODING_ULAW (1) /* mu-law */
#define AUDIO_ENCODING_ALAW (2) /* A-law */
#define AUDIO_ENCODING_LINEAR (3) /* Linear PCM */
typedef struct isdn_format {

256 SunOS 5.8 Last modified 7 Apr 1998

Ioctl Requests isdnio(7I)

isdn_mode_t mode;
unsigned int sample_rate; /* sample frames/sec*/
unsigned int channels; /* # interleaved chans */
unsigned int precision; /* bits per sample */
unsigned int encoding; /* data encoding */

} isdn_format_t;
/*

* These macros set the fields pointed
* to by the macro argument (isdn_format_t*)fp in preparation
* for the ISDN_SET_FORMAT ioctl.
*/

ISDN_SET_FORMAT_BRI_D(fp) /* BRI D-channel */
ISDN_SET_FORMAT_PRI_D(fp) /* PRI D-channel */
ISDN_SET_FORMAT_HDLC_B64(fp) /* BRI B-ch @ 56kbps */
ISDN_SET_FORMAT_HDLC_B56(fp) /* BRI B-ch @ 64kbps */
ISDN_SET_FORMAT_VOICE_ULAW(fp) /* BRI B-ch voice */
ISDN_SET_FORMAT_VOICE_ALAW(fp) /* BRI B-ch voice */
ISDN_SET_FORMAT_BRI_H(fp) /* BRI H-channel */

ISDN Datapath Types Every STREAMS stream that carries data to or from the ISDN serial interfaces
is classified as a channel-stream datapath. A possible ISDN channel-stream
datapath device name for a TE could be /dev/isdn/0/te/b1 .

On some hardware implementations, it is possible to route the data from
hardware channel to hardware channel completely within the chip or controller.
This is classified as a channel-channel datapath. There does not need to be any
open file descriptor for either channel in this configuration. Only when data
enters the host and utilizes a STREAMS stream is this classified as an ISDN
channel-stream datapath.

ISDN Management
Stream

A management stream is a STREAMS stream that exists solely for control
purposes and is not intended to carry data to or from the ISDN serial interfaces.
A possible management device name for a TE could be /dev/isdn/0/te/mgt .

Channel
Management

IOCTLS

The following ioctls describe operations on individual channels and the
connection of multiple channels.
ISDN_SET_FORMAT

fd is a data channel, the management pseudo-channel associated with the
data channel, or the management channel associated with the data channel’s
interface or controller. arg is a pointer to a struct isdn_format_req .
The ISDN_SET_FORMATioctl sets the format of an ISDN channel-stream
datapath. It may be issued on both an open ISDN channel-stream datapath
Stream or an ISDN Management Stream. Note that an open (2) call for a
channel-stream datapath will fail if an ISDN_SET_FORMAThas never been
issued after a reset, as the mode for all channel-stream datapaths is initially
biased to ISDN_MODE_NOTSPEC.arg is a pointer to an ISDN format type
(isdn_format_req_t *).

Last modified 7 Apr 1998 SunOS 5.8 257

isdnio(7I) Ioctl Requests

typedef struct isdn_format_req {
isdn_chan_t channel;
isdn_format_t format; /* data format */
int reserved[4]; /* future use - must be 0 */

} isdn_format_req_t;

If there is not an open channel-stream datapath for a requested channel, the
default format of that channel will be set for a subsequent open (2).

To modify the format of an open STREAM, the driver will disconnect the
hardware channel, flush the internal hardware queues, set the new default
configuration, and finally reconnect the data path using the newly specified
format. Upon taking effect, all state information will be reset to initial
conditions, as if a channel was just opened. It is suggested that the user
flush the interface as well as consult the hardware specific documentation to
insure data integrity.

If a user desires to connect more than one B channel, such as an H-channel,
the B-channel with the smallest offset should be specified, then the precision
should be specified multiples of 8. For an H-channel the precision value
would be 16. The user should subsequently open the base B-channel. If any
of the sequential B-channels are busy the open will fail, otherwise all of the
B-channels that are to be used in conjunction will be marked as busy.

The returned failure codes and their descriptions are listed below:

EPERM /* No permission for intented operation */
EINVAL /* Invalid format request */
EIO /* Set format attempt failed. */

ISDN_SET_CHANNEL
The ISDN_SET_CHANNELioctl sets up a data connection within an ISDN
controller. The ISDN_SET_CHANNEL ioctl can only be issued from an
ISDN management stream to establish or modify channel-channel datapaths.
The ioctl parameter arg is a pointer to an ISDN connection request
(isdn_conn_req_t *). Once a data path is established, data flow is started
as soon as the path endpoints become active. Upon taking effect, all state
information is reset to initial conditions, as if a channel was just opened.

The isdn_conn_req_t structure is shown below. The five fields include
the receive and transmit ISDN channels, the number of directions of the
data path, as well as the data format. The reserved field must always be
set to zero.

/* Number of directions for data flow */
typedef enum {

ISDN_PATH_NOCHANGE = 0, /* Invalid value */
ISDN_PATH_DISCONNECT, /* Disconnect data path */

258 SunOS 5.8 Last modified 7 Apr 1998

Ioctl Requests isdnio(7I)

ISDN_PATH_ONEWAY, /* One way data path */
ISDN_PATH_TWOWAY, /* Bi-directional data path */

} isdn_path_t;
typedef struct isdn_conn_req {

isdn_chan_t from;
isdn_chan_t to;
isdn_path_t dir; /* uni/bi-directional or disconnect */
isdn_format_t format; /* data format */
int reserved[4]; /* future use - must be 0 */

} isdn_conn_req_t;

To specify a read-only, write-only, or read-write path, or to disconnect a path,
the dir field should be set to ISDN_PATH_ONEWAY, ISDN_PATH_TWOWAY,
and ISDN_PATH_DISCONNECTrespectively. To modify the format of a
channel-channel datapath, a user must disconnect the channel and then
reconnect with the desired format.

The returned failure codes and their descriptions are listed below:

EPERM /* No permission for intented operation */
EBUSY /* Connection in use */
EINVAL /* Invalid connection request */
EIO /* Connection attempt failed */

ISDN_GET_FORMAT
The ISDN_GET_FORMATioctl gets the ISDN data format of the
channel-stream datapath described by fd. arg is a pointer to an ISDN data
format request type (isdn_format_req_t *). ISDN_GET_FORMATcan be
issued on any channel to retrieve the format of any channel it owns. For
example, if issued on the TE management channel, the format of any other
te channel can be retrieved.

ISDN_GETCONFIG
The ISDN_GETCONFIGioctl is used to get the current connection
status of all ISDN channels associated with a particular management
STREAM. ISDN_GETCONFIGalso retrieves a hardware identifier and
the generic interface type. arg is an ISDN connection table pointer
(isdn_conn_tab_t *). The isdn_conn_tab_t structure is shown below:

typedef struct isdn_conn_tab {
char name[ISDN_ID_SIZE]; /* identification string */
isdn_interface_t type;
int maxpaths; /* size in entries of app’s array int npaths; */

/* number of valid entries returned by driver */
isdn_conn_req_t *paths; /* connection table in app’s memory */

} isdn_conn_tab_t;

The table contains a string which is the interface’s unique identification
string. The second element of this table contains the ISDN transmit and

Last modified 7 Apr 1998 SunOS 5.8 259

isdnio(7I) Ioctl Requests

receive connections and configuration for all possible data paths for each
type of ISDN controller hardware. Entries that are not connected will have a
value of ISDN_NO_CHANin the from and to fields. The number of entries
will always be ISDN_MAX_CHANS, and can be referenced in the hardware
specific implementation documentation. An isdn_conn_tab_t structure is
allocated on a per controller basis.

SEE ALSO getmsg (2), ioctl (2), open (2), poll (2), read (2), write (2), audio (7I),
dbri (7D), streamio (7I)

ISDN, An Introduction, by William Stallings, Macmillan Publishing Company,
ISBN 0-02-415471-7

260 SunOS 5.8 Last modified 7 Apr 1998

Devices isp(7D)

NAME isp – ISP SCSI Host Bus Adapter Driver

SYNOPSIS

Sbus QLGC,isp@sbus-slot,10000

PCI SUNW,isptwo@pci-slot

DESCRIPTION The ISP Host Bus Adapter is a SCSA compliant nexus driver that supports the
Qlogic ISP1000 SCSI and the ISP1040B SCSI chips. The ISP1000 chip works on
SBus and the ISP1040B chip works on PCI bus. The ISP is an intelligent SCSI
Host Bus Adapter chip that reduces the amount of CPU overhead used in
a SCSI transfer.

The isp driver supports the standard functions provided by the SCSA interface.
The driver supports tagged and untagged queuing, fast and wide SCSI, and auto
request sense, but does not support linked commands. The PCI version ISP Host
bus adapter based on ISP1040B also supports Fast-20 scsi devices.

CONFIGURATION The isp driver can be configured by defining properties in isp.conf which
override the global SCSI settings. Supported properties are scsi-options ,
target< n>-scsi-options , scsi-reset-delay , scsi-watchdog-tick ,
scsi-tag-age-limit , scsi-initiator-id .

target< n>-scsi-options overrides the scsi-options property value for
target< n>. <n> is a hex value that can vary from 0 to f .

Refer to scsi_hba_attach (9F) for details.

EXAMPLES EXAMPLE 1 SCSI Options

Create a file called /kernel/drv/isp.conf and add this line:
scsi-options=0x78;

This will disable tagged queuing, fast SCSI, and Wide mode for all isp
instances. The following will disable an option for one specific ISP (refer to
driver.conf (4)):

name="isp" parent="/iommu@f,e0000000/sbus@f,e0001000"
reg=1,0x10000,0x450
target1-scsi-options=0x58
scsi-options=0x178 scsi-initiator-id=6;

Note that the default initiator ID in OBP is 7 and that the change to ID 6 will
occur at attach time. It may be preferable to change the initiator ID in OBP.

The above would set scsi-options for target 1 to 0x58 and for all other
targets on this SCSI bus to 0x178 .

The physical pathname of the parent can be determined using the /devices
tree or following the link of the logical device name:

example# ls -l /dev/rdsk/c2t0d0s0
lrwxrwxrwx 1 root root 76 Aug 22 13:29 /dev/rdsk/c2t0d0s0 ->

Last modified 12 Jan 1998 SunOS 5.8 261

isp(7D) Devices

../../devices/iommu@f,e0000000/sbus@f,e0001000/QLGC,isp@1,10000/sd@0,0:a,raw

Determine the register property values using the output of prtconf (1M) with
the −v option:

QLGC,isp, instance #0
...
Register Specifications:

Bus Type=0x1, Address=0x10000, Size=450

EXAMPLE 2 ISP Properties

The isp driver exports properties indicating per target the negotiated transfer
speed (target<n>-sync-speed), whether tagged queuing has been enabled
(target<n>-TQ), and whether the wide data transfer has been negotiated
(target<n>-wide). The sync-speed property value is the data transfer rate
in KB/sec. The target-TQ and target-wide properties have no value. The
existence of these properties indicate that tagged queuing or wide transfer
has been enabled. Refer to prtconf (1M) (verbose option) for viewing the
isp properties.

QLGC,isp, instance #2
Driver software properties:

name <target0-TQ> length <0> -- <no value>.
name <target0-wide> length <0> -- <no value>.
name <target0-sync-speed> length <4>

value <0x000028f5>.
name <scsi-options> length <4>

value <0x000003f8>.
name <scsi-watchdog-tick> length <4>

value <0x0000000a>.
name <scsi-tag-age-limit> length <4>

value <0x00000008>.
name <scsi-reset-delay> length <4>

value <0x00000bb8>.

EXAMPLE 3 PCI Bus

To achieve the same setting of SCSI-options as in instance #0 above on
a PCI machine, create a file called /kernel/drv/isp.conf and add the
following entries.

name="isp" parent="/pci@1f,2000/pci@1"
unit-address="4"
scsi-options=0x178
target3-scsi-options=0x58 scsi-initiator-id=6;

The physical pathname of the parent can be determined using the /devices
tree or following the link of the logical device name:

To set scsi-options more specifically per device type, add the following line in
the /kernel/drv/isp.conf file:

device-type-scsi-options-list =
"SEAGATE ST32550W", "seagate-scsi-options" ;

seagate-scsi-options = 0x58;

262 SunOS 5.8 Last modified 12 Jan 1998

Devices isp(7D)

All device which are of this specific disk type will have scsi-options set to
0x58.

scsi-options specified per target ID has the highest precedence, followed by
scsi-options per device type. Global (for all isp instances) scsi-options
per bus has the lowest precedence.

The system needs to be rebooted before the specified scsi-options take effect.
EXAMPLE 4 Driver Capabilities

The target driver needs to set capabilities in the isp driver in order to
enable some driver features. The target driver can query and modify these
capabilities: synchronous , tagged-qing , wide-xfer , auto-rqsense ,
qfull-retries , qfull-retry-interval . All other capabilities can only
be queried.

By default, tagged-qing , auto-rqsense , and wide-xfer capabilities
are disabled, while disconnect , synchronous , and untagged-qing
are enabled. These capabilities can only have binary values (0 or 1). The
default values for qfull-retries and qfull-retry-interval are
both 10 . The qfull-retries capability is a uchar_t (0 to 255) while
qfull-retry-interval is a ushort_t (0 to 65535).

The target driver needs to enable tagged-qing and wide-xfer explicitly. The
untagged-qing capability is always enabled and its value cannot be modified,
because isp can queue commands even when tagged-qing is disabled.

Whenever there is a conflict between the value of scsi-options and a
capability, the value set in scsi-options prevails. Only whom != 0 is
supported in the scsi_ifsetcap (9F) call.

Refer to scsi_ifsetcap (9F) and scsi_ifgetcap (9F) for details.

FILES /kernel/drv/isp ELF Kernel Module

/kernel/drv/isp.conf Configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

SEE ALSO prtconf (1M), driver.conf (4), attributes (5), scsi_abort (9F),
scsi_hba_attach (9F), scsi_ifgetcap (9F), scsi_reset (9F),
scsi_transport (9F), scsi_device (9S), scsi_extended_sense (9S),
scsi_inquiry (9S), scsi_pkt (9S)

Writing Device Drivers

Last modified 12 Jan 1998 SunOS 5.8 263

isp(7D) Devices

OpenBoot 3.x Command Reference Manual

ANSI Small Computer System Interface-2 (SCSI-2)

QLogic Corporation, ISP1000 Firmware Interface Specification

QLogic Corporation, ISP1020 Firmware Interface Specification

QLogic Corporation, ISP1000 Technical Manual

QLogic Corporation, ISP1020a/1040a Technical Manual

QLogic Corporation, Differences between the ISP1020a/1040a and the
ISP1020B/1040B - Application Note

DIAGNOSTICS The messages described below may appear on the system console as well as
being logged.

The first set of messages may be displayed while the isp driver is first trying to
attach. All of these messages mean that the isp driver was unable to attach.
These messages are preceded by "isp<number>", where "<number>" is the
instance number of the ISP Host Bus Adapter.
Device in slave-only slot, unused

The SBus device has been placed in a slave-only slot and will not be
accessible; move to non-slave-only SBus slot.

Device is using a hilevel intr, unused
The device was configured with an interrupt level that cannot be used with
this isp driver. Check the device.

Failed to alloc soft state
Driver was unable to allocate space for the internal state structure. Driver
did not attach to device; SCSI devices will be inaccessible.

Bad soft state
Driver requested an invalid internal state structure. Driver did not attach to
device; SCSI devices will be inaccessible.

Unable to map registers
Driver was unable to map device registers; check for bad hardware. Driver
did not attach to device; SCSI devices will be inaccessible.

Cannot add intr
Driver was not able to add the interrupt routine to the kernel. Driver did
not attach to device; SCSI devices will be inaccessible.

Unable to attach
Driver was unable to attach to the hardware for some reason that may be
printed. Driver did not attach to device; SCSI devices will be inaccessible.

264 SunOS 5.8 Last modified 12 Jan 1998

Devices isp(7D)

The next set of messages can be displayed at any time. They will be printed with
the full device pathname followed by the shorter form described above.
Firmware should be < 0x<number> bytes

Firmware size exceeded allocated space and will not download firmware.
This could mean that the firmware was corrupted somehow. Check the
isp driver.

Firmware checksum incorrect
Firmware has an invalid checksum and will not be downloaded.

Chip reset timeout
ISP chip failed to reset in the time allocated; may be bad hardware.

Stop firmware failed
Stopping the firmware failed; may be bad hardware.

Load ram failed
Unable to download new firmware into the ISP chip.

DMA setup failed
The DMA setup failed in the host adapter driver on a scsi_pkt . This will
return TRAN_BADPKTto a SCSA target driver.

Bad request pkt
The ISP Firmware rejected the packet as being set up incorrectly. This will
cause the isp driver to call the target completion routine with the reason of
CMD_TRAN_ERRset in the scsi_pkt . Check the target driver for correctly
setting up the packet.

Bad request pkt header
The ISP Firmware rejected the packet as being set up incorrectly. This will
cause the isp driver to call the target completion routine with the reason of
CMD_TRAN_ERRset in the scsi_pkt . Check the target driver for correctly
setting up the packet.

Polled command timeout on <number>.<number>
A polled command experienced a timeout. The target device, as noted by
the target lun (<number>.<number>) information, may not be responding
correctly to the command, or the ISP chip may be hung. This will cause an
error recovery to be initiated in the isp driver. This could mean a bad
device or cabling.

SCSI Cable/Connection problem
Hardware/Firmware error

The ISP chip encountered a firmware error of some kind. The problem is
probably due to a faulty scsi cable or improper cable connection. This error
will cause the isp driver to do error recovery by resetting the chip.

Last modified 12 Jan 1998 SunOS 5.8 265

isp(7D) Devices

Received unexpected SCSI Reset
The ISP chip received an unexpected SCSI Reset and has initiated its own
internal error recovery, which will return all the scsi_pkt with reason
set to CMD_RESET.

Fatal timeout on target <number>.<number>
The isp driver found a command that had not completed in the correct
amount of time; this will cause error recovery by the isp driver. The device
that experienced the timeout was at target lun (<number>.<number>).

Fatal error, resetting interface
This is an indication that the isp driver is doing error recovery. This will
cause all outstanding commands that have been transported to the isp
driver to be completed via the scsi_pkt completion routine in the target
driver with reason of CMD_RESETand status of STAT_BUS_RESETset in
the scsi_pkt .

266 SunOS 5.8 Last modified 12 Jan 1998

STREAMS Modules kb(7M)

NAME kb – keyboard STREAMS module

SYNOPSIS #include <sys/types.h>

#include <sys/stream.h>

#include <sys/stropts.h>

#include <sys/vuid_event.h>

#include <sys/kbio.h>

#include <sys/kbd.h>

ioctl(fd, I_PUSH, "kb");

DESCRIPTION The kb STREAMS module processes byte streams generated by a keyboard
attached to a CPU serial port. Definitions for altering keyboard translation
and reading events from the keyboard are contained in <sys/kbio.h> and
<sys/kbd.h> .

The kb STREAMS module utilizes a set of keyboard tables to recognize which
keys have been typed. Each translation table is an array of 128 16-bit words
(unsigned short s). If a table entry is less than 0x100, the entry is treated as
an ISO 8859/1 character. Higher values indicate special characters that invoke
more complicated actions.

Keyboard Translation
Mode

The keyboard can be in one of the following translation modes:
TR_NONE

Keyboard translation is turned off and up/down key codes are reported.

TR_ASCII
ISO 8859/1 codes are reported.

TR_EVENT
firm_events are reported.

TR_UNTRANS_EVENT
firm_events containing unencoded keystation codes are reported for all
input events within the window system.

Keyboard
Translation-Table

Entries

All instances of the kb module share seven translation tables that convert raw
keystation codes to event values. The tables are:
Unshifted Used when a key is depressed and no shifts are in effect.

Shifted Used when a key is depressed and a Shift key is held down.

Caps Lock Used when a key is depressed and Caps Lock is in effect.

Alt Graph Used when a key is depressed and the Alt Graph key is
held down.

Num Lock Used when a key is depressed and Num Lock is in effect.

Last modified 14 May 1999 SunOS 5.8 267

kb(7M) STREAMS Modules

Controlled Used when a key is depressed and the Control key is held
down. (Regardless of whether a Shift key or the Alt Graph
is being held down, or whether Caps Lock or Num Lock is
in effect).

Key Up Used when a key is released.

Each key on the keyboard has a key station code that represents a number
from 0 to 127. The number is used as an index into the translation table that is
currently in effect. If the corresponding entry in the translation table is a value
from 0 to 255, the value is treated as an ISO 8859/1 character, and the character is
the result of the translation.

If the entry in the translation table is higher than 255, it is a special entry. Special
entry values are classified according to the value of the high-order bits. The
high-order value for each class is defined as a constant, as shown below. When
added to the constant, the value of the low-order bits distinguish between
keys within each class:
SHIFTKEYS 0x100

A shift key. The value of the particular shift key is added to determine
which shift mask to apply:

CAPSLOCK 0 Caps Lock key.

SHIFTLOCK 1 “Shift Lock” key.

LEFTSHIFT 2 Left-hand Shift key.

RIGHTSHIFT 3 Right-hand Shift key.

LEFTCTRL 4 Left-hand (or only) Control key.

RIGHTCTRL 5 Right-hand Control key.

ALTGRAPH 9 Alt Graph key.

ALT 10 Alternate or Alt key.

NUMLOCK 11 Num Lock key.

BUCKYBITS 0x200
Used to toggle mode-key-up/down status without altering the value of an
accompanying ISO 8859/1 character. The actual bit-position value, minus 7,
is added.

268 SunOS 5.8 Last modified 14 May 1999

STREAMS Modules kb(7M)

METABIT 0 The Meta key was pressed along with the key. This is the
only user-accessible bucky bit. It is ORed in as the 0x80
bit; since this bit is a legitimate bit in a character, the
only way to distinguish between, for example, 0xA0 as
META+0x20 and 0xA0 as an 8-bit character is to watch
for META key up and META key down events and keep
track of whether the META key was down.

SYSTEMBIT 1 The System key was pressed. This is a place holder to
indicate which key is the system-abort key.

FUNNY 0x300
Performs various functions depending on the value of the low 4 bits:

NOP 0x300 Does nothing.

OOPS 0x301 Exists, but is undefined.

HOLE 0x302 There is no key in this position on the keyboard, and the
position-code should not be used.

RESET 0x306 Keyboard reset.

ERROR 0x307 The keyboard driver detected an internal error.

IDLE 0x308 The keyboard is idle (no keys down).

COMPOSE
0x309

The COMPOSE key; the next two keys should comprise a
two-character COMPOSE key sequence.

NONL 0x30A Used only in the Num Lock table; indicates that this key is
not affected by the Num Lock state, so that the translation
table to use to translate this key should be the one that
would have been used had Num Lock not been in effect.

0x30B — 0x30F Reserved for non-parameterized functions.

FA_CLASS 0x400
A floating accent or “dead key.” When this key is pressed, the next key
generates an event for an accented character; for example, “floating accent
grave” followed by the “a” key generates an event with the ISO 8859/1 code
for the “a with grave accent” character. The low-order bits indicate which
accent; the codes for the individual “floating accents” are as follows:

FA_UMLAUT 0x400 umlaut

FA_CFLEX 0x401 circumflex

FA_TILDE 0x402 tilde

Last modified 14 May 1999 SunOS 5.8 269

kb(7M) STREAMS Modules

FA_CEDILLA 0x403 cedilla

FA_ACUTE 0x404 acute accent

FA_GRAVE 0x405 grave accent

STRING 0x500
The low-order bits index a table of strings. When a key with a STRINGentry
is depressed, the characters in the null-terminated string for that key are
sent, character-by-character. The maximum length is defined as:

KTAB_STRLEN 10

Individual string numbers are defined as:

HOMEARROW

0x00

UPARROW

0x01

DOWNARROW

0x02

LEFTARROW

0x03

RIGHTARROW

0x04

String numbers 0x05 — 0x0F are available for custom entries.

FUNCKEYS 0x600
There are 64 keys reserved for function keys. The actual positions are
usually on the left/right/top/bottom of the keyboard.

The next-to-lowest 4 bits indicate the group of function keys:

LEFTFUNC 0x600

RIGHTFUNC 0x610

TOPFUNC 0x610 0x610

BOTTOMFUNC 0x630

The low 4 bits indicate the function key number within the group:

270 SunOS 5.8 Last modified 14 May 1999

STREAMS Modules kb(7M)

LF(n) (LEFTFUNC+(n)-1)

RF(n) (RIGHTFUNC+(n)-1)

TF(n) (TOPFUNC+(n)-1)

BF(n) (BOTTOMFUNC+(n)-1)

PADKEYS 0x700
A “numeric keypad key.” These entries should appear only in the Num Lock
translation table; when Num Lock is in effect, these events will be generated
by pressing keys on the right-hand keypad. The low-order bits indicate
which key. The codes for the individual keys are:

PADEQUAL 0x700 “=” key

PADSLASH 0x701 “/” key

PADSTAR 0x702 “*” key

PADMINUS 0x703 “-” key

PADSEP 0x704 “,” key

PAD7 0x705 “7” key

PAD8 0x706 “8” key

PAD9 0x707 “9” key

PADPLUS 0x708 “+” key

PAD4 0x709 “4” key

PAD5 0x70A “5” key

PAD6 0x70B “6” key

PAD1 0x70C “1” key

PAD2 0x70D “2” key

PAD3 0x70E “3” key

PAD0 0x70F “0” key

PADDOT 0x710 “.” key

PADENTER 0x711 “Enter” key

Last modified 14 May 1999 SunOS 5.8 271

kb(7M) STREAMS Modules

When a function key is pressed in TR_ASCII mode, the following escape
sequence is sent:

ESC[0 9z

where ESC is a single escape character and “0 . .. 9” indicates the decimal
representation of the function-key value. For example, function key R1 sends the
sequence:

ESC[208z

because the decimal value of RF(1) is 208. In TR_EVENTmode, if there is a VUID
event code for the function key in question, an event with that event code is
generated; otherwise, individual events for the characters of the escape sequence
are generated.

Keyboard
Compatibility Mode

When started, the kb STREAMS module is in the compatibility mode. When
the keyboard is in the TR_EVENTtranslation mode, ISO 8859/1 characters from
the upper half of the character set (that is, characters with the eighth bit set) ,
are presented as events with codes in the ISO_FIRST range (as defined in
<<sys/vuid_event.h>>). For backwards compatibility with older versions
of the keyboard driver, the event code is ISO_FIRST plus the character value.
When compatibility mode is turned off, ISO 8859/1 characters are presented
as events with codes equal to the character code.

DESCRIPTION The following ioctl() requests set and retrieve the current translation mode
of a keyboard:
KIOCTRANS Pointer to an int . The translation mode is set to the value in

the int pointed to by the argument.

KIOCGTRANS Pointer to an int . The current translation mode is stored in
the int pointed to by the argument.

ioctl() requests for changing and retrieving entries from the keyboard
translation table use the kiockeymap structure:

struct kiockeymap {
int kio_tablemask; /* Translation table (one of: 0, CAPSMASK,

* SHIFTMASK, CTRLMASK, UPMASK,
* ALTGRAPHMASK, NUMLOCKMASK)
*/

#define KIOCABORT1 –1 /* Special “mask”: abort1 keystation */
#define KIOCABORT2 –2 /* Special “mask”: abort2 keystation */

uchar_t kio_station; /* Physical keyboard key station (0-127) */
ushort_t kio_entry; /* Translation table station’s entry */
char kio_string[10]; /* Value for STRING entries (null terminated) */

};

272 SunOS 5.8 Last modified 14 May 1999

STREAMS Modules kb(7M)

KIOCSKEY Pointer to a kiockeymap structure. The translation
table entry referred to by the values in that structure is
changed. The kio_tablemask request specifies which
of the following translation tables contains the entry to
be modified:

UPMASK 0x0080 “Key Up” translation
table.

NUMLOCKMASK 0x0800 “Num Lock”
translation table.

CTRLMASK 0x0030 “Controlled”
translation table.

ALTGRAPHMASK 0x0200 “Alt Graph”
translation table.

SHIFTMASK 0x000E “Shifted” translation
table.

CAPSMASK 0x0001 “Caps Lock”
translation table.

(No shift keys pressed or locked) “Unshifted” translation
table.

The kio_station request specifies the keystation code for the entry to be
modified. The value of kio_entry is stored in the entry in question. If
kio_entry is between STRING and STRING+15, the string contained in
kio_string is copied to the appropriate string table entry. This call may return
EINVAL if there are invalid arguments.

Special values of kio_tablemask can affect the two step “break to the PROM
monitor” sequence. The usual sequence is L1-a or Stop -. If kio_tablemask is
KIOCABORT1, then the value of kio_station is set to be the first keystation
in the sequence. If kio_tablemask , is KIOCABORT2then the value of
kio_station is set to be the second keystation in the sequence. An attempt to
change the "break to the PROM monitor" sequence without having superuser
permission results in an EPERMerror.
KIOCGKEY The argument is a pointer to a kiockeymap structure.

The current value of the keyboard translation table entry
specified by kio_tablemask and kio_station is stored
in the structure pointed to by the argument. This call may
return EINVAL if there are invalid arguments.

Last modified 14 May 1999 SunOS 5.8 273

kb(7M) STREAMS Modules

KIOCTYPE The argument is a pointer to an int . A code indicating the
type of the keyboard is stored in the int pointed to by
the argument:

KB_SUN3 Sun Type 3 keyboard

KB_SUN4 Sun Type 4 keyboard

KB_ASCII ASCII terminal masquerading as keyboard

KB_PC Type 101 PC keyboard

KB_DEFAULT Stored in the int pointed to by the
argument if the keyboard type is
unknown. In case of error, -1 is stored in
the int pointed to by the argument.

KIOCLAYOUT The argument is a pointer to an int . On a Sun Type 4
keyboard, the layout code specified by the keyboard’s DIP
switches is stored in the int pointed to by the argument.

KIOCCMD The argument is a pointer to an int . The command
specified by the value of the int pointed to by the argument
is sent to the keyboard. The commands that can be sent are:

Commands to the Sun Type 3 and Sun Type 4 keyboards:

KBD_CMD_RESET Reset keyboard as if power-up.

KBD_CMD_BELL Turn on the bell.

KBD_CMD_NOBELL Turn off the bell.

KBD_CMD_CLICK Turn on the click annunciator.

KBD_CMD_NOCLICK Turn off the click annunciator.

Commands to the Sun Type 4 keyboard:

KBD_CMD_SETLED Set keyboard LEDs.

KBD_CMD_GETLAYOUT Request that keyboard indicate
layout.

Inappropriate commands for particular keyboard types are ignored. Since there
is no reliable way to get the state of the bell or click (because the keyboard
cannot be queried and a process could do writes to the appropriate serial driver
— circumventing this ioctl() request) an equivalent ioctl() to query its
state is not provided.

274 SunOS 5.8 Last modified 14 May 1999

STREAMS Modules kb(7M)

KIOCSLED The argument is a pointer to an char . On the Sun Type 4
keyboard, the LEDs are set to the value specified in that
char . The values for the four LEDs are:

LED_CAPS_LOCK “Caps Lock” light.

LED_COMPOSE “Compose” light.

LED_SCROLL_LOCK “Scroll Lock” light.

LED_NUM_LOCK “Num Lock” light.

On some Japanese layouts, the value for the fifth LED is:

LED_KANA “Kana” light.

KIOCGLED Pointer to a char . The current state of the LEDs is stored in
the char pointed to by the argument.

KIOCSCOMPAT Pointer to an int . “Compatibility mode” is turned on if the
int has a value of 1, and is turned off if the int has a
value of 0.

KIOCGCOMPAT Pointer to an int . The current state of “compatibility mode”
is stored in the int pointed to by the argument.

The following ioctl() request allows the default effect of the keyboard abort
sequence to be changed.
KIOCSKABORTEN

Pointer to an int . The keyboard abort sequence effect (typically L1-A or
Stop-A on the keyboard on SPARC systems, F1–A on IA systems, and
BREAK on the serial console device) is enabled if the int has a value
of KIOCABORTENABLE(1). If the value is KIOCABORTDISABLE(0)
, the keyboard abort sequence effect is disabled. If the value is
KIOCABORTALTERNATE(2), the Alternate Break sequence is in effect and is
defined by the serial console drivers zs (7D) se (7D) and asy (7D). Any other
value of the parameter for this ioctl() is treated as enable . The Alternate
Break sequence is applicable to the serial console devices only. When the
Alternate Break sequence is in effect, binary protocols including PPP, SLIP,
file transfer and others should not be run over the console serial port.

This ioctl() will be active and retain state even if there is no physical
keyboard in the system. The default effect (enable) causes the operating
system to suspend and enter the kernel debugger (if present) or the system
prom (on most systems with OpenBoot proms). The default effect is enabled
on most systems, but may be different on server systems with key switches

Last modified 14 May 1999 SunOS 5.8 275

kb(7M) STREAMS Modules

in the ’secure’ position. On these systems, the effect is always disabled when
the key switch is in the ’secure’ position. This ioctl() returns EPERMif the
caller is not the superuser.

These ioctl() requests are supported for compatibility with the system
keyboard device /dev/kbd .
KIOCSDIRECT

Has no effect.

KIOCGDIRECT
Always returns 1.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

SEE ALSO kbd (1), loadkeys (1), kadb (1M), keytables (4), attributes (5), zs (7D),
se (7D), asy (7D) termio (7I)

NOTES Many of the keyboards released after Sun Type 4 keyboard also report
themselves as Sun Type 4 keyboard.

276 SunOS 5.8 Last modified 14 May 1999

Devices kdmouse(7D)

NAME kdmouse – built-in mouse device interface

DESCRIPTION The kdmouse driver supports machines with built-in PS/2 mouse interfaces.
It allows applications to obtain information about the mouse’s movements
and the status of its buttons.

Programs are able to read directly from the device. The data returned
corresponds to the byte sequences as defined in the IBM PS/2 Technical
Reference Manual.

FILES /dev/kdmouse device file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5), vuidmice (7M)

IBM PS/2 Technical Reference Manual.

Last modified 24 Feb 1998 SunOS 5.8 277

kstat(7D) Devices

NAME kstat – kernel statistics driver

DESCRIPTION The kstat driver is the mechanism used by the kstat (3KSTAT) library to
extract kernel statistics. This is NOT a public interface.

FILES /dev/kstat kernel statistics driver

SEE ALSO kstat (3KSTAT), kstat (9S)

278 SunOS 5.8 Last modified 26 May 1994

Devices ksyms(7D)

NAME ksyms – kernel symbols

SYNOPSIS /dev/ksyms

DESCRIPTION The file /dev/ksyms is a character special file that allows read-only access to an
ELF format image containing two sections: a symbol table and a corresponding
string table. The contents of the symbol table reflect the symbol state of the
currently running kernel. You can determine the size of the image with the
fstat () system call. The recommended method for accessing the /dev/ksyms
file is by using the ELF access library. See elf (3ELF) for details. If you are not
familiar with ELF format, see a.out (4).

/dev/ksyms is an executable for the processor on which you are accessing it. It
contains ELF program headers which describe the text and data segment(s) in
kernel memory. Since /dev/ksyms has no text or data, the fields specific to
file attributes are initialized to NULL. The remaining fields describe the text or
data segment(s) in kernel memory.
Symbol table The SYMTAB section contains the symbol table

entries present in the currently running kernel.
This section is ordered as defined by the ELF
definition with locally-defined symbols first,
followed by globally-defined symbols. Within
symbol type, the symbols are ordered by kernel
module load time. For example, the kernel file
symbols are first, followed by the first module’s
symbols, and so on, ending with the symbols
from the last module loaded.

The section header index (st_shndx) field of
each symbol entry in the symbol table is set
to SHN_ABS, because any necessary symbol
relocations are performed by the kernel link
editor at module load time.

String table The STRTAB section contains the symbol name
strings that the symbol table entries reference.

SEE ALSO kernel (1M), stat (2), elf (3ELF), kvm_open (3KVM), a.out (4), mem(7D)

WARNINGS The kernel is dynamically configured. It loads kernel modules when necessary.
Because of this aspect of the system, the symbol information present in the
running system can vary from time to time, as kernel modules are loaded and
unloaded.

When you open the /dev/ksyms file, you have access to an ELF image which
represents a snapshot of the state of the kernel symbol information at that
instant in time. While the /dev/ksyms file remains open, kernel module

Last modified 1 Oct 1996 SunOS 5.8 279

ksyms(7D) Devices

autounloading is disabled, so that you are protected from the possibility of
acquiring stale symbol data. Note that new modules can still be loaded,
however. If kernel modules are loaded while you have the /dev/ksyms file
open, the snapshot held by you will not be updated. In order to have access to
the symbol information of the newly loaded modules, you must first close and
then reopen the /dev/ksyms file. Be aware that the size of the /dev/ksyms file
will have changed. You will need to use the fstat() function (see stat (2)) to
determine the new size of the file.

Avoid keeping the /dev/ksyms file open for extended periods of time, either
by using kvm_open (3KVM) of the default namelist file or with a direct open.
There are two reasons why you should not hold /dev/ksyms open. First, the
system’s ability to dynamically configure itself is partially disabled by the
locking down of loaded modules. Second, the snapshot of symbol information
held by you will not reflect the symbol information of modules loaded after
your initial open of /dev/ksyms .

Note that the ksyms driver is a loadable module, and that the kernel driver
modules are only loaded during an open system call. Thus it is possible to run
stat (2) on the /dev/ksyms file without causing the ksyms driver to be loaded.
In this case, the file size will appear to be zero. A solution for this behavior is
to first open the /dev/ksyms file, causing the ksyms driver to be loaded (if
necessary). You can then use the file descriptor from this open in a fstat ()
system call to get the file’s size.

NOTES The kernel virtual memory access library (libkvm) routines use /dev/ksyms as
the default namelist file. See kvm_open (3KVM) for details.

280 SunOS 5.8 Last modified 1 Oct 1996

STREAMS Modules ldterm(7M)

NAME ldterm – standard STREAMS terminal line discipline module

SYNOPSIS #include <sys/stream.h>

#include <sys/termios.h>

int ioctl(fd,I_PUSH,"ldterm");

DESCRIPTION The ldterm STREAMS module provides most of the termio (7I) terminal
interface. The vis module does not perform the low-level device control
functions specified by flags in the c_cflag word of the termio/termios
structure, or by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the c_iflag
word of the termio/termios structure. Those functions must be performed
by the driver or by modules pushed below the ldterm module. The ldterm
module performs all other termio/termios functions, though some may
require the cooperation of the driver or modules pushed below ldterm and may
not be performed in some cases. These include the IXOFF flag in the c_iflag
word and the delays specified in the c_oflag word.

The ldterm module also handles single and multi-byte characters from
various codesets including both Extended Unix Code (EUC) and non-EUC
codesets.

The remainder of this section describes the processing of various STREAMS
messages on the read- and write-side.

Read-side Behavior Various types of STREAMS messages are processed as follows:
M_BREAK Depending on the state of the BRKINT flag, either an

interrupt signal is generated or the message is treated as if it
were an M_DATAmessage containing a single ASCII NUL
character when this message is received.

M_DATA This message is normally processed using the standard
termio input processing. If the ICANONflag is set, a single
input record (“line”) is accumulated in an internal buffer
and sent upstream when a line-terminating character is
received. If the ICANONflag is not set, other input processing
is performed and the processed data are passed upstream.

If output is to be stopped or started as a result of the arrival
of characters (usually CNTRL-Q and CNTRL-S), M_STOP
and M_STARTmessages are sent downstream. If the IXOFF
flag is set and input is to be stopped or started as a result
of flow-control considerations, M_STOPIand M_STARTI
messages are sent downstream.

M_DATAmessages are sent downstream, as necessary, to
perform echoing.

Last modified 7 Jun1999 SunOS 5.8 281

ldterm(7M) STREAMS Modules

If a signal is to be generated, an M_FLUSHmessage with a
flag byte of FLUSHRis placed on the read queue. If the
signal is also to flush output, an M_FLUSHmessage with a
flag byte of FLUSHWis sent downstream.

All other messages are passed upstream unchanged.

Write-side Behavior Various types of STREAMS messages are processed as follows:
M_FLUSH The write queue of the module is flushed of all its data

messages and the message is passed downstream.

M_IOCTL The function of this ioctl is performed and the message is
passed downstream in most cases. The TCFLSHand TCXONC
ioctls can be performed entirely in the ldterm module, so
the reply is sent upstream and the message is not passed
downstream.

M_DATA If the OPOSTflag is set, or both the XCASEand ICANONflags
are set, output processing is performed and the processed
message is passed downstream along with any M_DELAY
messages generated. Otherwise, the message is passed
downstream without change.

M_CTL If the size of the data buffer associated with the message
is the size of struct iocblk , ldterm will perform
functional negotiation to determine where the termio (7I)
processing is to be done. If the command field of the
iocblk structure (ioc_cmd) is set to MC_NO_CANON, the
input canonical processing normally performed on M_DATA
messages is disabled and those messages are passed
upstream unmodified. (This is for the use of modules or
drivers that perform their own input processing, such
as a pseudo-terminal in TIOCREMOTEmode connected to
a program that performs this processing). If the command
is MC_DO_CANON, all input processing is enabled. If the
command is MC_PART_CANON, then an M_DATAmessage
containing a termios structure is expected to be attached
to the original M_CTLmessage. The ldterm module will
examine the iflag , oflag , and lflag fields of the
termios structure and from that point on, will process only
those flags that have not been turned ON. If none of the
above commands are found, the message is ignored. In any
case, the message is passed upstream.

282 SunOS 5.8 Last modified 7 Jun1999

STREAMS Modules ldterm(7M)

M_FLUSH The read queue of the module is flushed of all its data
messages and all data in the record being accumulated are
also flushed. The message is passed upstream.

M_IOCACK The data contained within the message, which is to be
returned to the process, are augmented if necessary, and the
message is passed upstream.

All other messages are passed downstream unchanged.

IOCTLS The ldterm module processes the following TRANSPARENTioctls. All others
are passed downstream.
TCGETS/TCGETA

The message is passed downstream. If an acknowledgment is seen, the data
provided by the driver and modules downstream are augmented and the
acknowledgement is passed upstream.

TCSETS/TCSETSW/TCSETSF/TCSETA/TCSETAW/TCSETAF
The parameters that control the behavior of the ldterm module are
changed. If a mode change requires options at the stream head to be
changed, an M_SETOPTSmessage is sent upstream. If the ICANONflag
is turned on or off, the read mode at the stream head is changed to
message-nondiscard or byte-stream mode, respectively. If the TOSTOPflag
is turned on or off, the tostop mode at the stream head is turned on or
off, respectively. In any case, ldterm passes the ioctl on downstream
for possible additional processing.

TCFLSH
If the argument is 0, an M_FLUSHmessage with a flag byte of FLUSHRis
sent downstream and placed on the read queue. If the argument is 1, the
write queue is flushed of all its data messages and an M_FLUSHmessage
with a flag byte of FLUSHWis sent upstream and downstream. If the
argument is 2, the write queue is flushed of all its data messages and an
M_FLUSHmessage with a flag byte of FLUSHRWis sent downstream and
placed on the read queue.

TCXONC
If the argument is 0 and output is not already stopped, an M_STOPmessage
is sent downstream. If the argument is 1 and output is stopped, an M_START
message is sent downstream. If the argument is 2 and input is not already
stopped, an M_STOPImessage is sent downstream. If the argument is 3 and
input is stopped, an M_STARTI message is sent downstream.

TCSBRK

Last modified 7 Jun1999 SunOS 5.8 283

ldterm(7M) STREAMS Modules

The message is passed downstream, so the driver has a chance to drain the
data and then send an M_IOCACKmessage upstream.

EUC_WSET
This call takes a pointer to an eucioc structure, and uses it to set the EUC
line discipline’s local definition for the code set widths to be used for
subsequent operations. Within the stream, the line discipline may optionally
notify other modules of this setting using M_CTLmessages. When this call is
received and the eucioc structure contains valid data, the line discipline
changes into EUC handling mode once the eucioc data is completely
transferred to an internal data structure.

EUC_WGET
This call takes a pointer to an eucioc structure, and returns in it the EUC
code set widths currently in use by the EUC line discipline. If the current
codeset of the line discipline is not an EUC one, the result is meaningless.

SEE ALSO termios (3C), console (7D), termio (7I)

STREAMS Programming Guide

284 SunOS 5.8 Last modified 7 Jun1999

Devices le(7D)

NAME le, lebuffer, ledma – Am7990 (LANCE) Ethernet device driver

SYNOPSIS /dev/le

DESCRIPTION The Am7990 ("LANCE ") Ethernet driver is a multi-threaded, loadable, clonable,
STREAMS hardware driver supporting the connectionless Data Link Provider
Interface, dlpi (7P) over a LANCE Ethernet controller. The motherboard and
add-in SBus LANCE controllers of several varieties are supported. Multiple
LANCE controllers installed within the system are supported by the driver. The
le driver provides basic support for the LANCE hardware. Functions include
chip initialization, frame transmit and receive, multicast and promiscuous
support, and error recovery and reporting.

APPLICATION
PROGRAMMING

INTERFACE

The cloning character-special device /dev/le is used to access all LANCE
controllers installed within the system.

The lebuffer and ledma device drivers are bus nexus drivers which cooperate
with the le leaf driver in supporting the LANCE hardware functions over
several distinct slave-only and DVMA LANCE -based Ethernet controllers. The
lebuffer and ledma bus nexi drivers are not directly accessible to the user.

le and DLPI The le driver is a "style 2" Data Link Service provider. All M_PROTOand
M_PCPROTOtype messages are interpreted as DLPI primitives. Valid DLPI
primitives are defined in <sys/dlpi.h> . Refer to dlpi (7P) for more
information. An explicit DL_ATTACH_REQmessage by the user is required to
associate the opened stream with a particular device (ppa). The ppa ID is
interpreted as an unsigned long data type and indicates the corresponding
device instance (unit) number. An error (DL_ERROR_ACK) is returned by the
driver if the ppa field value does not correspond to a valid device instance
number for this system. The device is initialized on first attach and de-initialized
(stopped) on last detach.

The values returned by the driver in the DL_INFO_ACKprimitive in response
to the DL_INFO_REQfrom the user are as follows:

� The maximum SDU is 1500 (ETHERMTU- defined in <sys/ethernet.h>).

� The minimum SDU is 0 .

� The dlsap address length is 8 .

� The MAC type is DL_ETHER.

� The sap length value is -2 meaning the physical address component is
followed immediately by a 2 byte sap component within the DLSAP
address.

� The service mode is DL_CLDLS.

� No optional quality of service (QOS) support is included at present so the
QOS fields are 0 .

Last modified 23 Aug 1994 SunOS 5.8 285

le(7D) Devices

� The provider style is DL_STYLE2.

� The version is DL_VERSION_2.

� The broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF
).

Once in the DL_ATTACHEDstate, the user must send a DL_BIND_REQto
associate a particular SAP (Service Access Pointer) with the stream. The le
driver interprets the sap field within the DL_BIND_REQas an Ethernet "type"
therefore valid values for the sap field are in the [0 -0xFFFF] range. Only one
Ethernet type can be bound to the stream at any time.

If the user selects a sap with a value of 0 , the receiver will be in "802.3 mode". All
frames received from the media having a "type" field in the range [0 -1500] are
assumed to be 802.3 frames and are routed up all open Streams which are bound
to sap value 0 . If more than one Stream is in "802.3 mode" then the frame will
be duplicated and routed up multiple Streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQif the
sap value is 0 , and if the destination type field is in the range [0 -1500]. If
either is true, the driver computes the length of the message, not including
initial M_PROTOmblk (message block), of all subsequent DL_UNITDATA_REQ
messages and transmits 802.3 frames that have this value in the MAC frame
header length field.

The le driver DLSAPaddress format consists of the 6 byte physical (Ethernet)
address component followed immediately by the 2 byte sap (type) component
producing an 8 byte DLSAPaddress. Applications should not hardcode to this
particular implementation-specific DLSAPaddress format but use information
returned in the DL_INFO_ACKprimitive to compose and decompose DLSAP
addresses. The sap length, full DLSAPlength, and sap /physical ordering
are included within the DL_INFO_ACK. The physical address length can be
computed by subtracting the sap length from the full DLSAPaddress length
or by issuing the DL_PHYS_ADDR_REQto obtain the current physical address
associated with the stream.

Once in the DL_BOUNDstate, the user may transmit frames on the Ethernet by
sending DL_UNITDATA_REQmessages to the le driver. The le driver will
route received Ethernet frames up all those open and bound streams having
a sap which matches the Ethernet type as DL_UNITDATA_IND messages.
Received Ethernet frames are duplicated and routed up multiple open streams if
necessary. The DLSAPaddress contained within the DL_UNITDATA_REQand
DL_UNITDATA_IND messages consists of both the sap (type) and physical
(Ethernet) components.

In addition to the mandatory connectionless DLPI message set the driver
additionally supports the following primitives.

286 SunOS 5.8 Last modified 23 Aug 1994

Devices le(7D)

le Primitives The DL_ENABMULTI_REQand DL_DISABMULTI_REQprimitives enable/disable
reception of individual multicast group addresses. A set of multicast addresses
may be iteratively created and modified on a per-stream basis using these
primitives. These primitives are accepted by the driver in any state following
DL_ATTACHED.

The DL_PROMISCON_REQand DL_PROMISCOFF_REQprimitives with the
DL_PROMISC_PHYSflag set in the dl_level field enables/disables reception of
all ("promiscuous mode") frames on the media including frames generated by
the local host.

When used with the DL_PROMISC_SAPflag set this enables/disables reception
of all sap (Ethernet type) values. When used with the DL_PROMISC_MULTIflag
set this enables/disables reception of all multicast group addresses. The effect
of each is always on a per-stream basis and independent of the other sap and
physical level configurations on this stream or other streams.

The DL_PHYS_ADDR_REQprimitive returns the 6 octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACKprimitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQprimitive changes the 6 octet Ethernet address
currently associated (attached) to this stream. The credentials of the process
which originally opened this stream must be superuser. Otherwise EPERMis
returned in the DL_ERROR_ACK.This primitive is destructive in that it affects all
other current and future streams attached to this device. An M_ERRORis sent up
all other streams attached to this device when this primitive is successful on
this stream. Once changed, all streams subsequently opened and attached to
this device will obtain this new physical address. Once changed, the physical
address will remain until this primitive is used to change the physical address
again or the system is rebooted, whichever comes first.

FILES /dev/le le special character device.

/kernel/drv/options.conf System wide default device driver
properties

SEE ALSO netstat (1M) , driver.conf (4) , dlpi (7P)

SPARCstation 10 Twisted-Pair Ethernet Link Test

Twisted-Pair Ethernet Link Test

DIAGNOSTICS le%d: msg too big: %d
The message length exceeded ETHERMAX.

le%d: Babble error - sent a packet longer than 1518 bytes

Last modified 23 Aug 1994 SunOS 5.8 287

le(7D) Devices

While transmitting a packet, the LANCE chip has noticed that the packet’s
length exceeds the maximum allowed for Ethernet. This error indicates
a kernel bug.

le%d: No carrier - transceiver cable problem?
The LANCE chip has lost input to its carrier detect pin while trying to
transmit a packet.

le%d: Memory Error!
The LANCE chip timed out while trying to acquire the bus for a DVMA
transfer.

NOTES If you are using twisted pair Ethernet (TPE), you need to be aware of the link test
feature. The IEEE 10Base-T specification states that the link test should always
be enabled at the host and the hub. Complications may arise because:

1. Some older hubs do not provide link pulses

2. Some hubs are configured to not send link pulses

Under either of these two conditions the host translates the lack of link pulses
into a link failure unless it is programmed to ignore link pulses. To program
your system to ignore link pulses (also known as disabling the link test) do the
following at the OpenBoot PROM prompt:

<#0> OK SETENV TPE-LINK-TEST? FALSE
TPE-LINK-TEST? = FALSE

The above command will work for SPARCstation-10, SPARCstation-20
and SPARCclassic systems that come with built in twisted pair Ethernet
ports. For other systems and for add-on boards with twisted pair Ethernet refer
to the documentation that came with the system or board for information on
disabling the link test.

SPARCstation-10, SPARCstation-20 and SPARCclassic systems come
with a choice of built in AUI (using an adapter cable) and TPE ports. In Solaris
2.2 an auto-selection scheme was implemented in the le driver that will switch
between AUI and TPE depending on which interface is active. Auto-selection
uses the presence or absence of the link test on the TPE interface as one indication
of whether that interface is active. In the special case where you wish to use
TPE with the link-test disabled you should manually override auto-selection so
that the system will use only the twisted pair port.

This override can be performed by defining the cable-selection property in the
options.conf file to force the system to use TPE or AUI as appropriate. The
example below sets the cable selection to TPE.

288 SunOS 5.8 Last modified 23 Aug 1994

Devices le(7D)

example# cd /kernel/drv
example# echo ’cable-selection="tpe";’ >> options.conf

Note that the standard options.conf file contains important information; the
only change to the file should be the addition of the cable-selection property. Be
careful to type this line exactly as shown above, ensuring that you append to the
existing file, and include the terminating semi-colon. Alternatively, you can use
a text editor to append the following line to the end of the file:

cable-selection="tpe";

Please refer to the SPARCstation 10 Twisted-Pair Ethernet Link Test (801-2481-10),
Twisted-Pair Ethernet Link Test (801-6184-10) and the driver.conf (4) man page
for details of the syntax of driver configuration files.

Last modified 23 Aug 1994 SunOS 5.8 289

llc1(7D) Devices

NAME llc1 – Logical Link Control Protocol Class 1 Driver

SYNOPSIS #include <sys/stropts.h>

#include <sys/ethernet.h>

#include <sys/dlpi.h>

#include <sys/llc1.h>

DESCRIPTION The llc1 driver is a multi-threaded, loadable, clonable, STREAMS multiplexing
driver supporting the connectionless Data Link Provider Interface, dlpi (7P),
implementing IEEE 802.2 Logical Link Control Protocol Class 1 over a STREAM
to a MAC level driver. Multiple MAC level interfaces installed within the system
can be supported by the driver. The llc1 driver provides basic support for the
LLC1 protocol. Functions provided include frame transmit and receive, XID, and
TEST, multicast support, and error recovery and reporting.

The cloning, character-special device, /dev/llc1 , is used to access all LLC1
controllers configured under llc1 .

The llc1 driver is a “Style 2” Data Link Service provider. All messages of types
M_PROTOand M_PCPROTOare interpreted as DLPI primitives. An explicit
DL_ATTACH_REQmessage by the user is required to associate the opened stream
with a particular device (ppa). The ppa ID is interpreted as an unsigned long
and indicates the corresponding device instance (unit) number. An error
(DL_ERROR_ACK) is returned by the driver if the ppa field value does not
correspond to a valid device instance number for this system.

The values returned by the driver in the DL_INFO_ACKprimitive in response
to the DL_INFO_REQfrom the user are as follows:

� The maximum Service Data UNIT (SDU) is derived from the MAC layer
linked below the driver. In the case of an Ethernet driver, the SDU will be
1497.

� The minimum SDU is 0.

� The MAC type is DL_CSMACDor DL_TPRas determined by the driver linked
under llc1. If the driver reports that it is DL_ETHER, it will be changed to
DL_CSMACD;otherwise the type is the same as the MAC type.

� The sap length value is −1, meaning the physical address component is
followed immediately by a 1-octet sap component within the DLSAP
address.

� The service mode is DL_CLDLS.

� The MAC type is DL_CSMACDor DL_TPRas determined by the driver linked
under llc1. If the driver reports that it is DL_ETHER, it will be changed to
DL_CSMACD;otherwise the type is the same as the MAC type.

� The dlsap address length is 7.

290 SunOS 5.8 Last modified 13 Feb 1997

Devices llc1(7D)

� No optional quality of service (QOS) support is included at present, so the
QOS fields should be initialized to 0.

� The DLPI version is DL_VERSION_2.

� The provider style is DL_STYLE2.

� The broadcast address value is the broadcast address returned from the
lower level driver.

Once in the DL_ATTACHEDstate, the user must send a DL_BIND_REQto
associate a particular Service Access Point (SAP) with the stream. The llc1
driver interprets the sap field within the DL_BIND_REQas an IEEE 802.2
“SAP,” therefore valid values for the sap field are in the [0-0xFF] range with
only even values being legal.

The llc1 driver DLSAP address format consists of the 6-octet physical (e.g.,
Ethernet) address component followed immediately by the 1-octet sap (type)
component producing a 7-octet DLSAP address. Applications should not
hard-code to this particular implementation-specific DLSAP address format,
but use information returned in the DL_INFO_ACKprimitive to compose
and decompose DLSAP addresses. The sap length, full DLSAP length,
and sap /physical ordering are included within the DL_INFO_ACK. The
physical address length can be computed by subtracting the absolute value
of the sap length from the full DLSAP address length or by issuing the
DL_PHYS_ADDR_REQto obtain the current physical address associated with
the stream.

Once in the DL_BOUNDstate, the user may transmit frames on the LAN by
sending DL_UNITDATA_REQmessages to the llc1 driver. The llc1 driver will
route received frames up all open and bound streams having a sap which
matches the IEEE 802.2 DSAP as DL_UNITDATA_INDmessages. Received frames
are duplicated and routed up multiple open streams if necessary. The DLSAP
address contained within the DL_UNITDATA_REQand DL_UNITDATA_IND
messages consists of both the sap (type) and physical (Ethernet) components.

In addition to the mandatory, connectionless DLPI message set, the driver
additionally supports the following primitives:

The DL_ENABMULTI_REQand DL_DISABMULTI_REQprimitives enable/disable
reception of specific multicast group addresses. A set of multicast addresses may
be iteratively created and modified on a per-stream basis using these primitives.
These primitives are accepted by the driver in any driver state that is valid
while still being attached to the ppa .

The DL_PHYS_ADDR_REQprimitive returns the 6-octet physical address
currently associated (attached) to the stream in the DL_PHYS_ADDR_ACK
primitive. This primitive is valid only in states following a successful
DL_ATTACH_REQ.

Last modified 13 Feb 1997 SunOS 5.8 291

llc1(7D) Devices

The DL_SET_PHYS_ADDR_REQprimitive changes the 6-octet physical address
currently associated (attached) to this stream. Once changed, all streams
subsequently opened and attached to this device will obtain this new physical
address. Once changed, the physical address will remain set until this primitive
is used to change the physical address again or the system is rebooted,
whichever occurs first.

The DL_XID_REQ/DL_TEST_REQprimitives provide the means for a user to
issue an LLC XID or TESTrequest message. A response to one of these messages
will be in the form of a DL_XID_CON/DL_TEST_CONmessage.

The DL_XID_RES/DL_TEST_RESprimitives provide a way for the user to
respond to the receipt of an XID or TEST message that was received as a
DL_XID_IND/DL_TEST_IND message.

XID and TEST will be automatically processed by llc1 if the
DL_AUTO_XID/DL_AUTO_TESTbits are set in the DL_BIND_REQ.

FILES /dev/llc1 cloning, character-special device

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5), dlpi (7P)

292 SunOS 5.8 Last modified 13 Feb 1997

Devices llc2(7D)

NAME llc2 – Class II logical link control driver

DESCRIPTION The llc2 logical link control driver interfaces network software (NetBIOS, SNA,
OSI, etc.) running under the Solaris operating environment to a physical LAN
network controlled by one of the supported communications adapters. The llc2
driver, which appears as a STREAMS driver to the network software, resides in
the kernel and is accessed by standard UNIX STREAMS functions.

This version of the llc2 driver includes support for both connectionless and
connection-oriented logical link control class II (llc2) operations for Ethernet,
Token Ring, and FDDI adapters when accessed through the appropriate Solaris
MAC layer driver. The Data Link Provider Interface (DLPI) to the llc2 driver
enables multiple and different protocol stacks, (including NetBIOS and SNA), to
operate simultaneously over one or more local area networks.

To start the llc2 driver by default, rename file
/etc/llc2/llc2_start.default to /etc/llc2/llc2_start . This
allows the /etc/rc2.d/S40llc2 script to build up the configuration
file for each ppa interface in /etc/llc2/default/llc2.* and start
llc2 on each interface. To verify the configuration files, manually run
/usr/lib/llc2/llc2_autoconfig .

For more information on the llc2 driver, see the IEEE standard 802.2 Logical
Link Control.

OBTAINING LLC2
STATISTICS

You can obtain LLC2 statistics or reset the statistics counter to zero using the
ILD_LLC2 ioctl. The ILD_LLC2 ioctl has a number of subcommands. The
following retrieve LLC2 statistics:

Name Function

LLC2_GET_STA_STATS Get station statistics

LLC2_GET_SAP_STATS Get SAP statistics

LLC2_GET_CON_STATS Get connection statistics

The structure used depends on the subcommand sent.
LLC2_GET_STA_STATS The LLC2_GET_STA_STATScommand retrieves statistics on a particular

Physical Point of Attachment (PPA).

When sending the LLC2_GET_STA_STATScommand, the llc2GetStaStats
structure is used:

typedef struct llc2GetStaStats {
uint_t ppa;
uint_t cmd;

Last modified 12 Aug 1999 SunOS 5.8 293

llc2(7D) Devices

uchar_t clearFlag;
uchar_t state;
ushort_t numSaps;
uchar_t saps[LLC2_MAX_SAPS];
uint_t nullSapXidCmdRcvd;
uint_t nullSapXidRspSent;
uint_t nullSapTestCmdRcvd;
uint_t nullSapTestRspSent;
uint_t outOfState;
uint_t allocFail;
uint_t protocolError;
} llc2GetStaStats_t;

The members of the structure are:

Member Description

cmd LLC2_GET_STA_STATS

clearFlag Clear counters flag. Set this to 0 to retreive statistics
and to 1 to reset all counters to 0.

state Station component state. Possible values are ?????

numSaps Number of active SAPs in the saps array

saps An array of active SAP values

nullSapXidCmdRcvd Number of NULL SAP XID commands received

nullSapXidRspSent Number of NULL SAP XID responses sent

nullSapTestCmdRcvd Number of NULL SAP TEST commands received

nullSapTestRspSent Number of NULL SAP TEST responses sent

outOfState Number of invalid events received

allocFail Number of buffer allocation failures

protocolError Number of protocol errors

LLC2_GET_SAP_STATS The LLC2_GET_SAP_STATScommand retreives statistics related to a particular
SAP. When sending the LLC2_GET_SAP_STATScommand, the llc2GetSapStats
structure is used:

typedef struct llc2GetSapStats {
uint_t ppa;
uint_t cmd;
uchar_t sap;
uchar_t clearFlag;
uchar_t state;
uint_t numCons;
ushort_t cons[LLC2_MAX_CONS];
uint_t xidCmdSent;
uint_t xidCmdRcvd;
uint_t xidRspSent;

294 SunOS 5.8 Last modified 12 Aug 1999

Devices llc2(7D)

uint_t xidRspRcvd;
uint_t testCmdSent;
uint_t testCmdRcvd;
uint_t testRspSent;
uint_t testRspRcvd;
uint_t uiSent;
uint_t uiRcvd;
uint_t outOfState;
uint_t allocFail;
uint_t protocolError;
} llc2GetSapStats_t;

The members are:

Member Description

ppa Physical Point of Attachment number

cmd LLC2_GET_SAP_STATS

sap SAP value

clearFlag Clear counters flag. Set this to 0 to retreive statistics
and to 1 to reset all counters to 0.

state SAP component state

numCons Number of active connections in the cons array

cons Array of active connection indexes

xidCmdSent Number of XID commands sent

xidCmdRcvd Number of XID responses received

xidRspSent Number of XID responses sent

xidRspRcvd Number of XID responses received

testCmdSent Number of TEST commands sent

testCmdRcvd Number of TEST commands received

testRspSent Number of TEST responses sent

testRspRcvd Number of TEST responses received

uiSent Number of UI frames sent

uiRcvd Number of UI frames received

outOfState Number of invalid events received

allocFail Number of buffer allocation failures

protocolError Number of protocol errors

Last modified 12 Aug 1999 SunOS 5.8 295

llc2(7D) Devices

LLC2_GET_CON_STATS The LLC2_GET_CON_STATScommand retrieves statistics related to a particular
connection component. When sending the LLC2_GET_CON_STATScommand,
the llc2GetConStats structure is used:

typedef struct llc2GetConStats {
uint_t ppa;
uint_t cmd;
uchar_t sap;
ushort_t con;
uchar_t clearFlag;
uchar_t stateOldest;
uchar_t stateOlder;
uchar_t stateOld;
uchar_t state;
ushort_t sid;
dlsap_t rem;
ushort_t flag;
uchar_t dataFlag;
uchar_t k;
uchar_t vs;
uchar_t vr;
uchar_t nrRcvd;
ushort_t retryCount;
uint_t numToBeAcked;
uint_t numToResend;
uint_t macOutSave;
uint_t macOutDump;
uchar_t timerOn;
uint_t iSent;
uint_t iRcvd;
uint_t frmrSent;
uint_t frmrRcvd;
uint_t rrSent;
uint_t rrRcvd;
uint_t rnrSent;
uint_t rnrRcvd;
uint_t rejSent;
uint_t rejRcvd;
uint_t sabmeSent;
uint_t sabmeRcvd;
uint_t uaSent;
uint_t uaRcvd;
uint_t discSent;
uint_t outOfState;
uint_t allocFail;
uint_t protocolError;
uint_t localBusy;
uint_t remoteBusy;
uint_t maxRetryFail;
uint_t ackTimerExp;
uint_t pollTimerExp;
uint_t rejTimerExp;
uint_t remBusyTimerExp;
uint_t inactTimerExp;
uint_t sendAckTimerExp;

296 SunOS 5.8 Last modified 12 Aug 1999

Devices llc2(7D)

} llc2GetConStats_t;

The members of the structure are:

Member Description

ppa Physical Point of Attachment number

cmd LLC2_GET_CON_STATS

sap SAP value

con Connection index

clearFlag Clear counters flag. Set this to 0 to retreive
statistics and to 1 to reset all counters to 0.

stateOldest, stateOlder, stateOld, state The four previous dlpi states of the connection

sid SAP value and connection index

dlsap_t rem Structure containing the remote MAC
address and SAP

flag Connection component processing flag

dataFlag DATA_FLAG

k transmit window size

vs Sequence number of the next I-frame to send

vr Sequence number of the next I-frame expected

nrRcvd Sequence number of the last I-frame
acknowledged by the remote node

retryCount Number of timer expirations

numToBeAcked Number of outbound I-frames to be
acknowledged

numToResend Number of outbound I-frames to be re-sent

macOutSave Number of outbound I-frames held by the
MAC driver to be saved on return to LLC2

macOutDump Number of outbound I-frames held by the
MAC driver to be dumped on return to LLC2

timerOn Timer activity flag

iSent Number of I-frames sent

iRcvd Number of I-frames received

frmrSent Number of frame rejects sent

frmrRcvd Number of frame rejects received

Last modified 12 Aug 1999 SunOS 5.8 297

llc2(7D) Devices

Member Description

rrSent Number of RRs sent

rrRcvd Number of RRs received

rnrRcvd Number of RNRs received

rejSent Number of rejects sent

rejRcvd Number of rejects received

sabmeSent Number of SABMEs sent

sabmeRcvd Number of SABMEs received

uaSent Number of UAs sent

uaRcvd Number of UAs received

discSent Number of DISCs sent

outOfState Number of invalid events received

allocFail Number of buffer allocation failures

protocolError Number of protocol errors

localBusy Number of times in a local busy state

remoteBusy Number of times in a remote busy state

maxRetryFail Number of failures due to reaching maxRetry

ackTimerExp Number of ack timer expirations

pollTimerExp Number of P-timer expirations

rejTimerExp Number of reject timer expirations

remBusyTimerExp Number of remote busy timer expirations

inactTimerExp Number of inactivity timer expirations

sendAckTimerExp Number of send ack timer expirations

FILES /dev/llc2 Clone device used to access the driver
/etc/llc2/default/llc2.? configuration
files (One file per ppa interface.)

ATTRIBUTES See attributes (5) for a description of the following attribute:

298 SunOS 5.8 Last modified 12 Aug 1999

Devices llc2(7D)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWllc

SEE ALSO llc2_autoconfig (1), llc2_config (1), llc2 (4)

Last modified 12 Aug 1999 SunOS 5.8 299

lockstat(7D) Devices

NAME lockstat – kernel lock statistics driver

DESCRIPTION The lockstat driver is the mechanism used by the lockstat (1M) command
to extract kernel lock statistics. This is not a public interface.

FILES /dev/lockstat kernel lock statistics driver

SEE ALSO lockstat (1M)

300 SunOS 5.8 Last modified 7 May 1997

Devices lofi(7D)

NAME lofi – Loopback file driver

DESCRIPTION The lofi file driver exports a file as a block device. Reads and writes to the
block device are translated to reads and writes on the underlying file. This is
useful when the file contains a file system image. Exporting it as a block device
through the lofi file driver allows normal system utilities to operate on the
image through the block device (like fstyp (1M) fsck (1M), and mount (1M).
This is useful for accessing CD-ROM and FAT floppy images. See lofiadm (1M)
for examples.

File block device entries are contained in /dev/lofi , while /dev/rlofi
contains the character (or raw) device entries. Entries are in the form of decimal
numbers which are assigned through lofiadm (1M). When created, these device
entries are owned by root , in group sys , and have permissions 0600 . While
ownership, group, and permission settings can be altered, there are possible
ramifications. See lofiadm (1M) for more information.

FILES /dev/lofictl
Master control device

/dev/lofi/ n
Block device for file n

/dev/rlofi/ n
Character device for file n

/kernel/drv/lofi
32–bit driver

/kernel/drv/lofi.conf
Driver configuration file. (Should not be altered.)

/kernel/drv/sparcv9/lofi
64–bit driver

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr, SUNWcarx.u

SEE ALSO lofiadm (1M), fsck (1M), fstyp (1M), mount (1M), newfs (1M), attributes (5)

NOTES Just as you would not directly access a disk device that has mounted file
systems, you should not access a file associated with a block device except
through the lofi file driver.

Last modified 30 Jul 1999 SunOS 5.8 301

lofi(7D) Devices

For compatability purposes, a raw device is also exported along with the block
device. For example, newfs (1M) requires one.

302 SunOS 5.8 Last modified 30 Jul 1999

File Systems lofs(7FS)

NAME lofs – loopback virtual file system

SYNOPSIS #include <sys/param.h>
#include <sys/mount.h>
int mount (const char* dir, const char* virtual, int mflag, lofs, NULL, 0);

DESCRIPTION The loopback file system device allows new, virtual file systems to be created,
which provide access to existing files using alternate pathnames. Once the
virtual file system is created, other file systems can be mounted within it,
without affecting the original file system. However, file systems which are
subsequently mounted onto the original file system are visible to the virtual file
system, unless or until the corresponding mount point in the virtual file system
is covered by a file system mounted there.

virtual is the mount point for the virtual file system. dir is the pathname of the
existing file system. mflag specifies the mount options; the MS_DATAbit in mflag
must be set. If the MS_RDONLYbit in mflag is not set, accesses to the loop back file
system are the same as for the underlying file system. Otherwise, all accesses
in the loopback file system will be read-only. All other mount (2) options are
inherited from the underlying file systems.

A loopback mount of ’/ ’ onto /tmp/newroot allows the entire file system
hierarchy to appear as if it were duplicated under /tmp/newroot , including
any file systems mounted from remote NFS servers. All files would then be
accessible either from a pathname relative to ’/ ’ or from a pathname relative to
/tmp/newroot until such time as a file system is mounted in /tmp/newroot ,
or any of its subdirectories.

Loopback mounts of ’/ ’ can be performed in conjunction with the chroot (2)
system call, to provide a complete virtual file system to a process or family of
processes.

Recursive traversal of loopback mount points is not allowed. After the
loopback mount of /tmp/newroot , the file /tmp/newroot/tmp/newroot
does not contain yet another file system hierarchy; rather, it appears just as
/tmp/newroot did before the loopback mount was performed (for example, as
an empty directory).

SEE ALSO mount (1M), chroot (2), mount (2), sysfs (2), vfstab (4)

WARNINGS Loopback mounts must be used with care; the potential for confusing users and
applications is enormous. A loopback mount entry in /etc/vfstab must
be placed after the mount points of both directories it depends on. This is
most easily accomplished by making the loopback mount entry the last in
/etc/vfstab .

BUGS Files can be modified on a read-only loopback mounted file system, and a
loopback mounted file system can be unmounted even if there is an open regular

Last modified 22 Apr 1996 SunOS 5.8 303

lofs(7FS) File Systems

file on that file system. The loopback file system works by shadowing directories
of the underlying file system. Because no other file types are shadowed, the
loopback file system can not enforce read-only access to non-directory files
located on a read-only mounted loopback file system. Thus, write access to
regular files located on a loopback mounted file system is determined by the
underlying file system. In addition, the loopback file system can not correctly
determine whether a loopback mounted file system can be unmounted or not.
It can only detect when a directory is active or not, not when a file within a
directory is active. Thus, a loopback mounted file system may be unmounted if
there are no active directories on the file system, even if there are open files on
the file system.

304 SunOS 5.8 Last modified 22 Apr 1996

Devices log(7D)

NAME log – interface to STREAMS error logging and event tracing

SYNOPSIS #include <sys/strlog.h>

#include <sys/log.h>

DESCRIPTION log is a STREAMS software device driver that provides an interface for console
logging and for the STREAMS error logging and event tracing processes (see
strerr (1M), and strace (1M)). log presents two separate interfaces: a function
call interface in the kernel through which STREAMS drivers and modules
submit log messages; and a set of ioctl (2) requests and STREAMS messages
for interaction with a user level console logger, an error logger, a trace logger, or
processes that need to submit their own log messages.

Kernel Interface log messages are generated within the kernel by calls to the function strlog() :

strlog(short mid,
short sid,
char level,
ushort_t flags,
char *fmt,
unsigned arg1 . . .

);

Required definitions are contained in <sys/strlog.h> , <sys/log.h> , and
<sys/syslog.h> . mid is the STREAMS module id number for the module or
driver submitting the log message. sid is an internal sub-id number usually used
to identify a particular minor device of a driver. level is a tracing level that allows
for selective screening out of low priority messages from the tracer. flags are any
combination of SL_ERROR(the message is for the error logger), SL_TRACE(the
message is for the tracer), SL_CONSOLE(the message is for the console logger),
SL_FATAL (advisory notification of a fatal error), and SL_NOTIFY (request
that a copy of the message be mailed to the system administrator). fmt is a
printf (3C) style format string, except that %s, %e, %E, %g, and %Gconversion
specifications are not handled. Up to NLOGARGS(in this release, three) numeric
or character arguments can be provided.

User Interface log is implemented as a cloneable device, it clones itself without intervention
from the system clone device. Each open of /dev/log obtains a separate stream
to log . In order to receive log messages, a process must first notify log
whether it is an error logger, trace logger, or console logger using a STREAMS
I_STR ioctl call (see below). For the console logger, the I_STR ioctl has an
ic_cmd field of I_CONSLOG, with no accompanying data. For the error logger,
the I_STR ioctl has an ic_cmd field of I_ERRLOG, with no accompanying
data. For the trace logger, the ioctl has an ic_cmd field of I_TRCLOG, and
must be accompanied by a data buffer containing an array of one or more
struct trace_ids elements.

Last modified 11 Mar 1998 SunOS 5.8 305

log(7D) Devices

struct trace_ids {
short ti_mid;
short ti_sid;
char ti_level;

};

Each trace_ids structure specifies a mid, sid, and level from which messages
will be accepted. strlog (9F) will accept messages whose mid and sid exactly
match those in the trace_ids structure, and whose level is less than or equal to
the level given in the trace_ids structure. A value of −1 in any of the fields of
the trace_ids structure indicates that any value is accepted for that field.

Once the logger process has identified itself using the ioctl call, log will begin
sending up messages subject to the restrictions noted above. These messages
are obtained using the getmsg (2) function. The control part of this message
contains a log_ctl structure, which specifies the mid, sid, level, flags, time in
ticks since boot that the message was submitted, the corresponding time in
seconds since Jan. 1, 1970, a sequence number, and a priority. The time in
seconds since 1970 is provided so that the date and time of the message can be
easily computed, and the time in ticks since boot is provided so that the relative
timing of log messages can be determined.

struct log_ctl {
short mid;
short sid;
char level; /* level of message for tracing */
short flags; /* message disposition */

#if defined(_LP64) || defined(_I32LPx)
clock32_t ltime; /* time in machine ticks since boot */
time32_t ttime; /* time in seconds since 1970 */

#else
clock_t ltime;
time_t ttime;

#endif
int seq_no; /* sequence number */
int pri; /* priority = (facility|level) */

};

The priority consists of a priority code and a facility code, found in
<sys/syslog.h> . If SL_CONSOLEis set in flags, the priority code is set as
follows: If SL_WARNis set, the priority code is set to LOG_WARNING; If SL_FATAL
is set, the priority code is set to LOG_CRIT; If SL_ERRORis set, the priority code
is set to LOG_ERR; If SL_NOTEis set, the priority code is set to LOG_NOTICE; If
SL_TRACEis set, the priority code is set to LOG_DEBUG; If only SL_CONSOLEis
set, the priority code is set to LOG_INFO. Messages originating from the kernel
have the facility code set to LOG_KERN. Most messages originating from user
processes will have the facility code set to LOG_USER.

306 SunOS 5.8 Last modified 11 Mar 1998

Devices log(7D)

Different sequence numbers are maintained for the error and trace logging
streams, and are provided so that gaps in the sequence of messages can be
determined (during times of high message traffic some messages may not be
delivered by the logger to avoid hogging system resources). The data part of the
message contains the unexpanded text of the format string (null terminated),
followed by NLOGARGSwords for the arguments to the format string, aligned on
the first word boundary following the format string.

A process may also send a message of the same structure to log , even if it is not
an error or trace logger. The only fields of the log_ctl structure in the control
part of the message that are accepted are the level, flags, and pri fields; all other
fields are filled in by log before being forwarded to the appropriate logger. The
data portion must contain a null terminated format string, and any arguments
(up to NLOGARGS) must be packed, 32-bits each, on the next 32-bit boundary
following the end of the format string.

ENXIO is returned for I_TRCLOGioctls without any trace_ids structures,
or for any unrecognized ioctl calls. The driver silently ignores incorrectly
formatted log messages sent to the driver by a user process (no error results).

Processes that wish to write a message to the console logger may direct their
output to /dev/conslog , using either write (2) or putmsg (2).

Driver Configuration The following driver configuration properties may be defined in the log.conf
file.
msgid=1 If msgid=1 , each message will be preceded by a message ID

as described in syslogd (1M).

msgid=0 If msgid=0 , message IDs will not be generated. This
property is unstable and may be removed in a future release.

EXAMPLES EXAMPLE 1 I_ERRLOGregistration.

struct strioctl ioc;
ioc.ic_cmd = I_ERRLOG;
ioc.ic_timout = 0; /* default timeout (15 secs.) */
ioc.ic_len = 0;
ioc.ic_dp = NULL;
ioctl(log, I_STR, &ioc);

EXAMPLE 2 I_TRCLOGregistration.

struct trace_ids tid[2];
tid[0].ti_mid = 2;
tid[0].ti_sid = 0;
tid[0].ti_level = 1;
tid[1].ti_mid = 1002;
tid[1].ti_sid = −1; /* any sub-id will be allowed */

Last modified 11 Mar 1998 SunOS 5.8 307

log(7D) Devices

tid[1].ti_level = −1; /* any level will be allowed */
ioc.ic_cmd = I_TRCLOG;
ioc.ic_timout = 0;
ioc.ic_len = 2 * sizeof(struct trace_ids);
ioc.ic_dp = (char *)tid;
ioctl(log, I_STR, &ioc);

Example of submitting a log message (no arguments):

struct strbuf ctl, dat;
struct log_ctl lc;
char *message = "Don’t forget to pick up some milk

on the way home";
ctl.len = ctl.maxlen = sizeof(lc);
ctl.buf = (char *)&lc;
dat.len = dat.maxlen = strlen(message);
dat.buf = message;
lc.level = 0;
lc.flags = SL_ERROR|SL_NOTIFY;
putmsg(log, &ctl, &dat, 0);

FILES /dev/log Log driver.

/dev/conslog Write only instance of the log driver, for console
logging.

/kernel/drv/log.conf Log configuration file.

SEE ALSO strace (1M), strerr (1M), intro (3), getmsg (2), ioctl (2), putmsg (2),
write (2), printf (3C), strlog (9F)

STREAMS Programming Guide

308 SunOS 5.8 Last modified 11 Mar 1998

Devices logi(7D)

NAME logi – LOGITECH Bus Mouse device interface

SYNOPSIS /dev/logi

DESCRIPTION The logi driver supports the LOGITECH Bus Mouse. It allows applications to
obtain information about the mouse’s movements and the status of its buttons.
The data is read in the Five Byte Packed Binary Format, also called MSC format.

FILES /dev/logi

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5)

Last modified 1 Jan 1997 SunOS 5.8 309

lp(7D) Devices

NAME lp – driver for parallel port

SYNOPSIS include <sys/bpp_io.h>

fd = open("/dev/lpn", flags);

DESCRIPTION The lp driver provides the interface to the parallel ports used by printers for IA
based systems. The lp driver is implemented as a STREAMS device.

IOCTLS BPPIOC_TESTIO Test transfer readiness. This command checks
to see if a read or write transfer would succeed
based on pin status. If a transfer would
succeed, 0 is returned. If a transfer would
fail, −1 is returned, and errno is set to EIO .
The error status can be retrieved using the
BPPIOC_GETERR ioctl() call.

BPPIOC_GETERR Get last error status. The argument is a pointer to
a struct bpp_error_status . See below for
a description of the elements of this structure.
This structure indicates the status of all the
appropriate status bits at the time of the most
recent error condition during a read (2) or
write (2) call, or the status of the bits at the
most recent BPPIOC_TESTIO ioctl (2) call.
The application can check transfer readiness
without attempting another transfer using the
BPPIOC_TESTIO ioctl() .

Error Pins Structure This structure and symbols are defined in the include file <sys/bpp_io.h> :

struct bpp_error_status {
char timeout_occurred; /* Not use */
char bus_error; /* Not use */
uchar_t pin_status; /* Status of pins which could cause an error */

};

/* Values for pin_status field */
#define BPP_ERR_ERR 0x01 /* Error pin active */
#define BPP_SLCT_ERR 0x02 /* Select pin active */
#define BPP_PE_ERR 0x04 /* Paper empty pin active */

Note: Other pin statuses are defined in <sys/bpp_io.h> , but BPP_ERR_ERR,
BPP_SLCT_ERRand BPP_PE_ERRare the only ones valid for the IA lp driver.

ERRORS EIO A BPPIOC_TESTIO ioctl() call is attempted while a
condition exists that would prevent a transfer (such as
a peripheral error).

310 SunOS 5.8 Last modified 21 May 1997

Devices lp(7D)

EINVAL An ioctl() is attempted with an invalid value in the
command argument.

FILES /platform/i86pc/kernel/drv/lp.conf configuration file for lp driver

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO sysbus (4), attributes (5), streamio (7I)

NOTES A read operation on a bi-directional parallel port is not supported.

Last modified 21 May 1997 SunOS 5.8 311

ltem(7D) Devices

NAME ltem – ANSI Layered Console Driver

SYNOPSIS #include <sys/types.h>

#include <fcntl.h>

#include <visual.h>

#include <sys/ltem.h>

DESCRIPTION The ltem driver provides a general-purpose ANSI interface to the system
console device. ltem is a layered device driver which on one side provides the
kernel with a consistent interface to the system console device (and therefore to
the console framebuffer) and on the other side uses ioctls to send data to the
framebuffer driver (see visual_io (7I)).

IOCTLS The following ioctl (2) calls are supported:
VIS_CONS_MODE_CHANGENotifies ltem that the resolution of the

underlying framebuffer has been changed.
ltem will stop console output, notify the
framebuffer (by passing this ioctl on), reset the
terminal emulator (using the VIS_DEVFINI
and VIS_DEVINIT ioctls), and allow console
output again.

FILES /dev/ltem/* ANSI console layered driver

SEE ALSO ioctl (2), visual_io (7I)

312 SunOS 5.8 Last modified 11 Dec 1995

Devices m64(7D)

NAME m64 – 8-bit PCI color memory frame buffer

SYNOPSIS SUNW,m64B@pci-slot:m64 X

DESCRIPTION m64 is the PGX 8-bit color frame buffer and graphics accelerator, with 8-bit
colormap. It provides the standard frame buffer interface defined in fbio (7I).

APPLICATION
PROGRAMMING

INTERACE

The m64has registers and memory that may be mapped with mmap(2).

There is extra on-board memory which may be used for scratch-pad,
double-buffering or off-screen rendering. The total amount of memory on
the board may be found with the FBIOGATTRioctl. Total mappable memory,
including on-screen memory, is attr.sattr.dev_specific[0] .

The chip revision number is returned in dev_specific[2] .

The dac revision number is returned in dev_specific[3] .

The prom revision number is returned in dev_specific[4] .

The byte offset from the start of the frame buffer to the start of the visible part of
the frame buffer is returned in dev_specific[5] .

The m64 frame buffer has a 2-color cursor. The color is determined by the mask
and data planes, as written by the FBIOSETCURSioctl. mask:data combinations
are as follows: 0x=transparent, 10=color0, 11=color1.

Maximum cursor size is 64x64 pixels. The Mask and Image pointers in the
fbcursor structure should point to data which is zero-padded to 32-bits per
scanline and aligned on a 32-bit boundary.

IOCTLS The m64 frame buffer accepts the following ioctl (2) calls, which are defined in
<sys/fbio.h> and <sys/visual_io.h>. All are implemented as described
in fbio (7I):

FBIOGATTR FBIOGTYPE

FBIOPUTCMAP FBIOGETCMAP

FBIOSATTR FBIOSVIDEO

FBIOGVIDEO FBIOVERTICAL

FBIOSCURSOR FBIOGCURSOR

FBIOSCURPOS FBIOGCURPOS

FBIOGCURMAX FBIOGXINFO

FBIOMONINFO FBIOVRTOFFSET

VIS_GETIDENTIFIER

The value returned by VIS_GETIDENTIFIER is SUNWm64.

Last modified 18 Jun 1997 SunOS 5.8 313

m64(7D) Devices

FBIOPUTCMAPreturns immediately, although the actual colormap update
may be delayed until the next vertical retrace. If vertical retrace is currently in
progress, the new colormap takes effect immediately.

FBIOGETCMAPreturns immediately with the currently-loaded colormap,
unless a colormap write is pending (see above), in which case it waits until the
colormap is updated before returning. This may be used to synchronize software
with colormap updates.

The size and linebytes values returned by FBIOGATTR, FBIOGTYPE, and
FBIOGXINFOare measured in bytes. The proper ways to compute the size of a
frame buffer mapping are to use either:

� the size attribute in FBIOGATTR, FBIOGTYPE, or

� size=linebytes*height

Ioctl functions which nominally wait for vertical retrace (FBIOVERTICAL,
FBIOGETCMAP)do not wait, but return immediately, if video is blanked or
vertical retrace is not being generated. The vertical retrace counter page is
not updated if vertical retrace is not being generated. Vertical retrace is not
generated when the device is in energy-saving mode.

FILES /dev/fbs/m64 n A device special file.

/dev/fb The default frame buffer.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture UltraSPARC with a PCI I/O Bus

SEE ALSO ioctl (2), mmap(2), attributes (5), fbio (7I)

314 SunOS 5.8 Last modified 18 Jun 1997

Devices mem(7D)

NAME mem, kmem – physical or virtual memory

SYNOPSIS /dev/mem

/dev/kmem

DESCRIPTION The file /dev/mem is a special file that is an image of the physical memory of
the computer. The file /dev/kmem is a special file that is an image of the
kernel virtual memory of the computer. Either may be used, for example, to
examine, and even patch the system.

Byte addresses in /dev/mem are interpreted as physical memory addresses. Byte
addresses in /dev/kmem are interpreted as kernel virtual memory addresses.
References to non-existent locations cause errors to be returned.

The file /dev/kmem accesses up to 4GB of kernel virtual memory. The file
/dev/mem accesses physical memory; the size of the file is equal to the amount
of physical memory in the computer. This can be larger than 4GB; in which case,
memory beyond 4GB can be accessed using a series of read (2) and write (2)
commands or a combination of llseek (2) and read (2) and write (2) .

ERRORS EFAULT Bad address. This error can occur when trying to: write (2) a
read-only location, read (2) a write-only location, or read (2)
or write (2) a non-existent or unimplemented location.

ENXIO This error results from attempting to mmap(2) a non-existent
physical (mem) or virtual (kmem) memory address.

FILES /dev/mem File containing image of physical memory of computer.

/dev/kmem File containing image of kernel virtual memory of computer.

SEE ALSO llseek (2) , mmap(2) , read (2) , write (2)

NOTES Some of /dev/kmem cannot be read because of write-only addresses or
unequipped memory addresses.

Last modified 18 Mar 1994 SunOS 5.8 315

mhd(7i) Ioctl Requests

NAME mhd – multihost disk control operations

SYNOPSIS #include <sys/mhd.h>

DESCRIPTION The mhd ioctl (2) control access rights of a multihost disk, using disk
reservations on the disk device.

The stability level of this interface (see attributes (5)) is Evolving, thus, use
of this interface should be limited and users of the interface will find that it
is subject to change.

The mhd ioctls fall into two major categories:
•
ioctls for non-shared multihost disks, and
• ioctls for shared multihost disks.

One ioctl, MHIOCENFAILFAST, is applicable to both non-shared and shared
multihost disks. It is described after the first two categories.

All the ioctls require root privilege.

For all of the ioctls, the caller should obtain the file descriptor for the device by
calling open (2) with the O_NDELAYflag; without the O_NDELAYflag, the open
may fail due to another host already having a conflicting reservation on the
device. Some of the ioctls below permit the caller to forcibly clear a conflicting
reservation held by another host, however, in order to call the ioctl, the caller
must first obtain the open file descriptor.

Non-shared multihost
disks

Non-shared multihost disks ioctls consist of MHIOCTKOWN, MHIOCRELEASE,
HIOCSTATUS, and MHIOCQRESERVE. These ioctl requests control the access
rights of non-shared multihost disks. A non-shared multihost disk is one that
supports serialized, mutually exclusive I/O mastery by the connected hosts.
This is in contrast to the shared-disk model, in which concurrent access is
allowed from more than one host (see below).

A non-shared multihost disk can be in one of two states:

� exclusive access state, where only one connected host has I/O access, or

� non-exclusive access state, where all connected hosts have I/O access. An
external hardware reset can cause the disk to enter the non-exclusive access
state.

Each multihost disk driver views the machine on which it’s running as the "local
host"; each views all other machines as "remote hosts". For each I/O or ioctl
request, the requesting host is the local host.

Note that the non-shared ioctls are designed to work with SCSI-2 disks. The
SCSI-2 RESERVE/RELEASE command set is the underlying hardware facility
in the device that supports the non-shared ioctls.

316 SunOS 5.8 Last modified 31 Jan 1999

Ioctl Requests mhd(7i)

The function prototypes for the non-shared ioctls are:

ioctl(fd, MHIOCTKOWN, (struct mhioctkown *)tkown);
ioctl(fd, MHIOCRELEASE);
ioctl(fd, MHIOCSTATUS);
ioctl(fd, MHIOCQRESERVE);

MHIOCTKOWN Forcefully acquires exclusive access rights to the multihost
disk for the local host. Revokes all access rights to the
multihost disk from remote hosts. Causes the disk to enter
the exclusive access state.

Implementation Note: Reservations (exclusive access rights)
broken via random resets should be reinstated by the driver
upon their detection, for example, in the automatic probe
function described below.

MHIOCRELEASE Relinquishes exclusive access rights to the multihost disk
for the local host. On suc- cess, causes the disk to enter the
non- exclusive access state.

MHIOCSTATUS Probes a multihost disk to determine whether the local host
has access rights to the disk. Returns 0 if the local host has
access to the disk, 1 if it doesn’t, and -1 with errno set to
EIO if the probe failed for some other reason.

MHIOCQRESERVEIssues, simply and only, a SCSI-2 Reserve command. If the
attempt to reserve fails due to the SCSI error Reservation
Conflict (which implies that some other host has the device
reserved), then the ioctl will return –1 with errno set to
EACCES. The MHIOCQRESERVEioctl does NOT issue a bus
device reset or bus reset prior to attempting the SCSI-2
reserve command. It also does not take care of re-instating
reservations that disappear due to bus resets or bus device
resets; if that behavior is desired, then the caller can call
MHIOCTKOWNafter the MHIOCQRESERVEhas returned
success. If the device does not support the SCSI-2 Reserve
command, then the ioctl returns –1 with errno set to
ENOTSUP.The MHIOCQRESERVEioctl is intended to be used
by high-availability or clustering software for a "quorum"
disk, hence, the "Q" in the name of the ioctl.

Shared Multihost
Disks

Shared multihost disks ioctls control access to shared multihost disks. The ioctls
are merely a veneer on the SCSI-3 Persistent Reservation facility. Therefore, the
underlying semantic model is not described in detail here, see instead the SCSI-3
standard. The SCSI-3 Persistent Reservations support the concept of a group
of hosts all sharing access to a disk.

Last modified 31 Jan 1999 SunOS 5.8 317

mhd(7i) Ioctl Requests

The function prototypes and descriptions for the shared multihost ioctls are
as follows:
ioctl (fd , MHIOCGRP_INKEYS, (mhioc_inkeys_t) *k);

Issues the SCSI-3 command Persistent Reserve In Read Keys to the
device. On input, the field k->li should be initialized by the caller with
k->li.listsize reflecting how big of an array the caller has allocated
for the k->li.list field and with k->li.listlen == 0. On return, the
field k->li.listlen is updated to indicate the number of reservation keys
the device currently has: if this value is larger than k->li.listsize then
that indicates that the caller should have passed a bigger k->li.list array
with a bigger k->li.listsize. The number of array elements actually
written by the callee into k->li.list is the minimum of k->li.listlen
and k->li.listsize. The field k->generation is updated with the
generation information returned by the SCSI-3 Read Keys query. If the
device does not support SCSI-3 Persistent Reservations, then this ioctl
returns –1 with errno set to ENOTSUP.

ioctl (fd , MHIOCGRP_INRESVS, (mhioc_inresvs_t) *r);
Issues the SCSI-3 command Persistent Reserve In Read Reservations to
the device. Remarks similar to MHIOCGRP_INKEYSapply to the array
manipulation. If the device does not support SCSI-3 Persistent Reservations,
then this ioctl returns –1 with errno set to ENOTSUP.

ioctl (fd , MHIOCGRP_REGISTER, (mhioc_register_t) *r);
Issues the SCSI-3 command Persistent Reserve Out Register. The fields
of structure r are all inputs; none of the fields are modified by the ioctl.
The field r->aptpl should be set to true to specify that registrations and
reservations should persist across device power failures, or to false to specify
that registrations and reservations should be cleared upon device power
failure; true is the recommended setting. The field r->oldkey is the key
that the caller believes the device may already have for this host initiator; if
the caller believes that that this host initiator is not already registered with
this device, it should pass the special key of all zeros. To achieve the effect
of unregistering with the device, the caller should pass its current key for
the r->oldkey field and an r->newkey field containing the special key
of all zeros. If the device returns the SCSI error code Reservation Conflict,
this ioctl returns –1 with errno set to EACCES.

ioctl (fd , MHIOCGRP_RESERVE, (mhioc_resv_desc_t) *r);
Issues the SCSI-3 command Persistent Reserve Out Reserve. The fields of
structure r are all inputs; none of the fields are modified by the ioctl. If the
device returns the SCSI error code Reservation Conflict, this ioctl returns –1
with errno set to EACCES.

318 SunOS 5.8 Last modified 31 Jan 1999

Ioctl Requests mhd(7i)

ioctl (fd , MHIOCGRP_PREEMPTANDABORT, (mhioc_preemptandabort_t)
*r);

Issues the SCSI-3 command Persistent Reserve Out Preempt-And-Abort.
The fields of structure r are all inputs; inputs; none of the fields are
modified by the ioctl. The key of the victim host is specified by the field
r->victim_key . The field r->resvdesc supplies the preempter’s
key and the reservation that it is requesting as part of the SCSI-3
Preempt-And-Abort command. If the device returns the SCSI error code
Reservation Conflict, this ioctl returns –1 with errno set to EACCES.

ioctl (fd , MHIOCGRP_PREEMPT, (mhioc_preemptandabort_t) *r);
Similar to MHIOCGRP_PREEMPTANDABORT, but instead issues the SCSI-3
command Persistent Reserve Out Preempt.

ioctl (fd , MHIOCGRP_CLEAR, (mhioc_resv_key_t) *r);
Issues the SCSI-3 command Persistent Reserve Out Clear. The
input parameter r is the reservation key of the caller, which should
have been already registered with the device, by an earlier call to
MHIOCGRP_REGISTER.

For each device, the non-shared ioctls should not be mixed with the Persistent
Reserve Out shared ioctls, and vice-versa, otherwise, the underlying device is
likely to return errors, because SCSI does not permit SCSI-2 reservations to be
mixed with SCSI-3 reservations on a single device. It is, however, legitimate to
call the Persistent Reserve In ioctls, because these are query only. Issuing the
MHIOCGRP_INKEYSioctl is the recommended way for a caller to determine if the
device supports SCSI-3 Persistent Reservations (the ioctl will return –1 with
errno set to ENOTSUPif the device does not).

MHIOCENFAILFAST
Ioctl

The MHIOCENFAILFASTioctl is applicable for both non-shared and shared disks,
and may be used with either the non-shared or shared ioctls.
ioctl (fd , MHIOENFAILFAST, (unsigned int *) millisecs);

Enables or disables the failfast option in the multihost disk driver and
enables or disables automatic probing of a multihost disk, described below.
The argument is an unsigned integer specifying the number of milliseconds
to wait between executions of the automatic probe function. An argument
of zero disables the failfast option and disables automatic probing. If the
MHIOCENFAILFAST ioctl is never called, the effect is defined to be that
both the failfast option and automatic probing are disabled.

Automatic Probing The MHIOCENFAILFASTioctl sets up a timeout in the driver to periodically
schedule automatic probes of the disk. The automatic probe function works
in this manner: The driver is scheduled to probe the multihost disk every n
milliseconds, rounded up to the next integral multiple of the system clock’s
resolution. If

Last modified 31 Jan 1999 SunOS 5.8 319

mhd(7i) Ioctl Requests

1. the local host no longer has access rights to the multihost disk, and

2. access rights were expected to be held by the local host,

then the driver immediately panics the machine, in order to comply with the
failfast model.

If the driver makes this discovery outside the timeout function, especially during
a read or write operation, it is imperative that it panic the system then as well.

RETURN VALUES Each request returns –1 on failure and sets errno to indicate the error.
EPERM Caller is not root.

EACCES Access rights were denied.

EIO The multihost disk or controller was unable to successfully
complete the requested operation.

EOPNOTSUP The multihost disk does not support the operation. For
example, it does not support the SCSI-2 Reserve/Release
command set, or the SCSI-3 Persistent Reservation command
set.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWhea

Stability Evolving

SEE ALSO ioctl (2), open (2), attributes (5)open(2)

NOTES The ioctls for shared multihost disks and the MHIOCQRESERVEioctl are currently
implemented only for SPARC and only for the following disk device drivers:
sd (7D), ssd (7D).

320 SunOS 5.8 Last modified 31 Jan 1999

Ioctl Requests mixer(7I)

NAME mixer – audio mixer audio personality module interface

SYNOPSIS #include <sys/mixer.h>

OVERVIEW The audio mixer extends the audio (7I) interface, allowing more then one
process to play or record audio at the same time. Understanding the audio (7I)
interface thoroughly is a prerequisite to understanding the mixer (7I) interface.

Backward
Compatibility

It is possible to disable the mixing function and return to 100% backward
compatibility with the audio (7I) interface. These two modes of operation are
referred to the mixer mode and the compatible mode . This is done by editing
the audio driver’s .conf file and then unloading and reloading the driver, or
using the mixerctl (1) command.

Multi-Stream Codecs The audio mixer supports the new multi-stream Codecs that have become
available recently. Examples of these Codecs are the Crystal Semiconductor
4410/4422 and the Aureal 8820/8830. These devices have DSP engines on them
that provide a great many features, such as sample rate conversion. Therefore
each play/record channel is mapped to an individual channel straight into the
Codec and the audio mixer doesn’t do any sample rate or encoding conversion,
as described below. However, the programming interfaces remain the same
and applications cannot tell the difference between a multi-stream Codec and
a traditional Codec.

Buffer Size The audio_info_t structure allows the application to set the size of the play
and record buffer size. As in the audio (7i) interface, the audio mixer doesn’t
support changing the play buffer. This is because the audio driver takes sound
samples as they are needed, regardless of how many are delivered with each
write. However, the record side does use the buffer size. When buffer size
bytes are captured by the audio driver then that many bytes are sent to the
application to read.

AUDIO FORMATS See the audio (7I) manual page for a brief discussion on audio formats. The
audio mixer must convert all audio formats to a common format in order to
mix the various audio streams. The following describes how the audio mixer
deals with these different components.

Sample Rate As defined in audio (7I), the initial sample rate when /dev/audio is opened is
8KHz.

In mixer mode the audio mixer always configures the Codec for the highest
possible sample rate for both record and play. This ensures that none of
the audio streams need to be low pass filtered, which is almost as compute
intensive as up sampling. The result is that high sample rate audio streams
aren’t degraded by filtering.

Sample rate conversion can be a compute intensive operation, depending on the
number of channel’s and the devices sample rate. For example, an 8KHz signal

Last modified 21 January 1999 SunOS 5.8 321

mixer(7I) Ioctl Requests

is easy to convert to 48KHz. Requiring a low cost up sampling by 6. However,
converting from 44.1KHz to 48KHz is very compute intensive given that it
must be up sampled by 160 and then down sampled by 147, in order to use
integer multipliers. (Remember, we only get integers in the kernel.) Therefore,
applications can greatly reduce the impact of sample rate conversion by carefully
picking their sample rate. The least impact is to use the highest sample rate the
device supports, as there isn’t any sample rate conversion necessary. The next
best is to have the applications do it’s own sample rate conversion, where it can
take advantage of floating point and accelerated instructions, like VIS and MMX.
This is followed by small up and down sampling integers.

In compatible mode the audio mixer programs the Codec to the sample rate
set by the application. Therefore it doesn’t incur any sample rate conversion
overhead. If the Codec cannot support different play and record sample rates
then the AUDIO_SETINFO ioctl (2) will fail.

Encodings and
Precision

As defined in audio (7I), the initial encoding and precision when /dev/audio
is opened is 8-bit mu-Law (as in the Greek letter mu).

In mixer mode the audio mixer supports the following formats in the
following precisions.

Encoding Precision Channels

Signed Linear PCM 16-bit Mono or Stereo

Unsigned Linear PCM 8-bit Mono or Stereo

mu-Law 8-bit Mono or Stereo

A-Law 8-bit Mono or Stereo

The audio mixer converts all audio streams to Linear PCM before mixing.
After mixing it is converted to the best format the audio mixer can configure
the Codec for. This conversion process is not compute intensive, therefore
audio applications can choose whichever encoding best meets the needs of
the application.

In compatibility mode the audio mixer sets the Codec to the encoding and
precision set by the application. If the Codec cannot support different play and
record encodings or precisions then the AUDIO_SETINFO ioctl (2) will fail.

Channels As defined in audio (7I), the initial number of channels when /dev/audio is
opened is 1, mono. Most Codecs play or record mono audio on the left channel.

In mixer mode the audio mixer sets the Codec to the maximum number of
channels supported. If a mono signal is played or recorded it is mixed only on
the first channel, which is usually the left channel, and silence is mixed on all
other channels.

322 SunOS 5.8 Last modified 21 January 1999

Ioctl Requests mixer(7I)

In compatible mode the audio mixer sets the Codec to the number of
channels set by the application. If the Codec cannot support a different number
of play and record channels then the AUDIO_SETINFO ioctl (2) will fail.

DESCRIPTION The device /dev/audio is a device driver that dispatches audio requests to
the appropriate underlying audio personality module. The audio driver is
implemented as a STREAMS driver. In order to record audio input, applications
open (2) the /dev/audio device and read data from it using the read (2) system
call. Similarly, sound data is queued to the audio output port by using the
write (2) system call. Device configuration is performed using the ioctl (2)
interface.

Opening the Audio
Device

In mixer mode the the audio device is no longer treated as an exclusive resource.
However, each process may open the audio device once, unless it has made an
AUDIO_MIXER_MULTIPLE_OPEN ioctl (2). See below for more details.

Each open() will complete as long as there are channels available to be
allocated. When there are no longer any channels available to allocate the
following happens:

� if either the O_NDELAYor O_NONBLOCKflag are set in the open() oflag
argument, then –1 is immediately returned, with errno set to EBUSY.

� if neither the O_NDELAYnor the O_NONBLOCKflag are set, then open()
hangs until a channel becomes available or a signal is delivered to the
process, in which case a –1 is returned with errno set to EINTR.

Upon the initial open() of the audio channel, the audio mixer will reset
the data format of the audio channel to the default state of 8-bit, 8Khz, mono
mu-Law data (as in the Greek letter mu). If the audio device doesn’t support
this configuration then it tells the audio mixer what the initial configuration
should be. Therefor audio applications should explicitly set the encoding
characteristics to match the audio data requirements, rather than depend on the
default configuration.

In compatible mode the audio mixer behaves exactly as described in the
audio (7I) manual page. See that manual page for details.

Recording Audio
Data

The read() system call copies data from the system buffers to the application.
Ordinarily, read() blocks until the user buffer is filled. The I_NREAD ioctl
(see streamio (7I)) may be used to determine the amount of data that may be
read without blocking. The device may alternatively be set to a non-blocking
mode, in which case read() completes immediately, but may return fewer bytes
than requested. Refer to the read (2) manual page for a complete description
of this behavior.

When the audio device is opened with read access, the device driver immediately
starts buffering audio input data. Since this consumes system resources,

Last modified 21 January 1999 SunOS 5.8 323

mixer(7I) Ioctl Requests

processes that do not record audio data should open the device write-only
(O_WRONLY).

The transfer of input data to STREAMS buffers may be paused (or resumed)
by using the AUDIO_SETINFO ioctl to set (or clear) the record.pause flag in
the audio information structure, see audio (7I). All unread input data in the
STREAMS queue may be discarded by using the I_FLUSH STREAMS ioctl
(see streamio (7I)). When changing record parameters, the input stream should
be paused and flushed before the change, and resumed afterward. Otherwise,
subsequent reads may return samples in the old format followed by samples in
the new format.

Input data can accumulate in STREAMS buffers very quickly. For example, by
default it will accumulate at 8000 bytes per second for 8-bit, 8 KHz, mono,
mu-Law data (as in the Greek letter mu). If the device is configured for 16-bit
linear or higher sample rates, it will accumulate even faster. If the application
that consumes the data cannot keep up with this data rate, the STREAMS queue
may become full. When this occurs, the record.error flag is set in the audio
information structure and input sampling ceases until there is room in the
input queue for additional data. In such cases, the input data stream contains a
discontinuity. For this reason, audio recording applications should open the
audio device when they are prepared to begin reading data, rather than at
the start of extensive initialization.

Playing Audio Data The write() system call copies data from an applications buffer to the
STREAMS output queue. Ordinarily, write() blocks until the entire user buffer
is transferred. The device may alternatively be set to a non-blocking mode, in
which case write() completes immediately, but may have transferred fewer
bytes than requested (see write (2)).

Although write() returns when the data is successfully queued, the actual
completion of audio output may take considerably longer. The AUDIO_DRAIN
ioctl may be issued to allow an application to block until all of the queued
output data has been played. Alternatively, a process may request asynchronous
notification of output completion by writing a zero-length buffer (end-of-file
record) to the output stream. When such a buffer has been processed, the play.eof
flag in the audio information structure (see below) is incremented.

The final close (2) of the file descriptor hangs until audio output has drained.
If a signal interrupts the close() , or if the process exits without closing the
device, any remaining data queued for audio output is flushed and the device is
closed immediately.

The conversion of output data may be paused (or resumed) by using the
AUDIO_SETINFO ioctl to set (or clear) the play.pause flag in the audio

324 SunOS 5.8 Last modified 21 January 1999

Ioctl Requests mixer(7I)

information structure. Queued output data may be discarded by using the
I_FLUSH STREAMS ioctl .

Output data will be played from the STREAMS buffers at a default rate of 8000
bytes per second for mu-Law (as in the Greek letter mu) or A-Law data (faster
for 16-bit linear data or higher sampling rates). If the output queue becomes
empty, the play.error flag is set in the audio information structure and output
is stopped until additional data is written. If an application attempts to write
a number of bytes that is not a multiple of the current sample frame size, an
error will be generated and the data will be thrown away. However, additional
writes are allowed.

Asynchronous I/O The I_SETSIG STREAMS ioctl enables asynchronous notification, through
the SIGPOLL signal, of input and output ready conditions. The O_NONBLOCK
flag may be set using the F_SETFL fcntl (2) to enable non-blocking read()
and write() requests. This is normally sufficient for applications to maintain
an audio stream in the background.

Audio Control
Pseudo-Device

It is sometimes convenient to have an application, such as a volume control
panel, modify certain characteristics of the audio device while it is being used by
an unrelated process. The /dev/audioctl pseudo-device is provided for this
purpose. Any number of processes may open /dev/audioctl simultaneously.
However, read() and write() system calls are ignored by /dev/audioctl .

Note: The audio control device name is constructed by appending the letters
"ctl" to the path name of the audio device.

Audio Status Change
Notification

Applications that open the audio control pseudo-device may request
asynchronous notification of changes in the state of the audio device by setting
the S_MSGflag in an I_SETSIG STREAMS ioctl . Such processes receive a
SIGPOLL signal when any of the following events occur:

� An AUDIO_SETINFO, AUDIO_MIXERCTL_SETINFO,
AUDIO_MIXERCTL_SET_CHINFO, or AUDIO_MIXERCTL_SET_MODE ioctl
() has altered the device state.

� An input overflow or output underflow has occurred.

� An end-of-file record (zero-length buffer) has been processed on output.

� An open() or close() of /dev/audio has altered the device state.

� An external event (such as speakerbox volume control) has altered the
device state.

IOCTLS The audio mixer implements all the ioctl() s defined in audio (7I) and uses
the audio_prinfo_t , audio_info_t , and the audio_device_t structures.
See audio (7I) for details on these ioctl() s and structures. It also uses two
new data structures, defined here.

Last modified 21 January 1999 SunOS 5.8 325

mixer(7I) Ioctl Requests

See audio_support (7I) for a list of ioctl s which are common to all audio
devices.

Audio Mixer Control
Structure

The state of the audio device may be polled or modified using the
AUDIO_MIXERCTL_GETINFOand AUDIO_MIXERCTL_SETINFO ioctl
commands.

typedef struct am_control {
audio_info_t dev_info; /* the audio device’s state */
int8_t ch_open[1]; /* variable sized array of open chs */

} am_control_t;

See CODE EXAMPLESfor example code on how to use this structure and the
related macro, AUDIO_MIXER_CTL_STRUCT_SIZE(num_ch).

Audio Mixer Sample
Rates Structure

The following structure is used by the AUDIO_MIXER_GET_SAMPLE_RATES
ioctl to get a list of all the supported sample rates.

typedef struct am_sample_rates {
uint_t type; /* play or capture */
uint_t flags;
uint_t num_samp_rates; /* number of elements in samp_rates[] */
uint_t samp_rates[1]; /* variable sized array of sample rates */

} am_sample_rates_t;
#define AUDIO_PLAY 0 /* type */
#define AUDIO_RECORD 1

#define MIXER_SR_LIMITS 0x00000001 /* flags */

See CODE EXAMPLESfor example code on how to use this structure and the
related macro, AUDIO_MIXER_SAMP_RATES_STRUCT_SIZE(num_srs).

Audio Info Structure When in mixer mode the audio_info_t structure’s sw_features_enabled field
will have AM_MIXERset. When in compatibility mode the AM_MIXERbit
will be cleared.

The following are the defines for the sw_features and the
sw_features_enabled fields.

#define AM_MIXER 0x00000001 /* mixer is present/enabled */

Streamio IOCTLS All of the streamio (7I) ioctl commands may be issued for the /dev/audio
and /dev/audioctl devices. I_SETSIG ioctl may be issued for
/dev/audioctl to enable the notification of audio status changes, as described
above.

326 SunOS 5.8 Last modified 21 January 1999

Ioctl Requests mixer(7I)

Audio Mixer IOCTLS Except for AUDIO_MIXER_GET_SAMPLE_RATE, AUDIO_MIXERCTL_GET_MODE,
and AUDIO_MIXERCTL_SET_MODE, these ioctl() s are valid only in mixer
mode. Using them in compatible mode will cause an EINVAL error to be
returned.
AUDIO_MIXER_MULTIPLE_OPEN The argument is ignored. This

command allows an individual
process to open /dev/audio more
then once for play or record. This
feature is useful for mixing panels
that may be controlling multiple
audio streams.

AUDIO_MIXER_SINGLE_OPEN The argument is ignored. This
command returns /dev/audio
back into an exclusive access
device on per process basis after an
AUDIO_MIXER_MULTIPLE_OPEN
ioctl() has been executed. This
ioctl() will fail if more than one
play or record stream is open.

AUDIO_MIXER_GET_SAMPLE_RATES The argument is a pointer to an
am_sample_rates_t structure.
This command gets a list of
supported sample rates for either
play or capture for the mode the
audio mixer is in. It is legal
for the supported sample rates
to be different for mixer mode vs
compatible mode . The type field
must be set to either AUDIO_PLAY
or AUDIO_RECORDto get a list
of either play or capture sample
rates, respectively. Setting both is
an error. The num_samp_rates
field is set to the number of sample
rates that the samp_rates[]
array may hold. When the ioctl
returns, num_samp_rates will be
set either to the number of sample
rates in the array samp_rates[] ,
or the total number of sample rates
available if more then the array can
hold. In the former case there are

Last modified 21 January 1999 SunOS 5.8 327

mixer(7I) Ioctl Requests

num_samp_rates valid sample
rates in the array. In the later case
all the elements of the array have
valid sample rates, but there are
more available. The size of the
array should be increased to get all
available sample rates. If the flags
field has MIXER_SR_LIMITS flag
set then the return sample rates are
the lowest and the highest sample
rate possible, with all sample rates in
between being legal. Some Codecs
that have DSP engines on them have
this capability.

AUDIO_MIXERCTL_GETINFO The argument is a pointer to a
am_control_t structure. This
command gets device and channel
state information. The dev_info
field contains the state of the
hardware device. It provides a
convenient way to determine the
hardware’s state. The ch_open array
is used to specify which channels are
open and which are closed. Open
channels are non-zero, while closed
channels are set to zero, where the
channel number corresponds to
the array index. The number of
elements in the ch_open array
may change over time. Therefore a
macro is provided to allocate the
correct amount of space. Below is a
code segment which shows how this
should be done.

AUDIO_MIXERCTL_SETINFO The argument is a pointer to a
am_control_t structure. This
command sets the device state, but
cannot modify any channel’s state.
The dev_info field is used to set the
device state. However, there are sever
limitations. Only the gain, balance,
port and pause for play and record

328 SunOS 5.8 Last modified 21 January 1999

Ioctl Requests mixer(7I)

and monitor_gain and output_muted
may be modified. The other fields
cannot be modified as this would
interfere with how the audio mixer
programs the audio device. The
ch_open array is not used when
setting the audio device and may be
set to a size of one.

AUDIO_MIXERCTL_GET_CHINFO The argument is a pointer to an
audio_channel_t structure. This
command gets a channel’s state
information. The ch_number
field must be set before making
the ioctl() call in order for
the audio mixer to determine
which channel to get information
on. When the ioctl() returns
the pid field should be checked. If
it is set to 0 the rest of the data in
the audio_channel_t structure
is invalid because the channel is
not allocated. The dev_type field
describes the type of channel and the
info pointer points to a buffer where
the audio_info_t structure for the
audio channel is populated.

AUDIO_MIXERCTL_SET_CHINFO The argument is a pointer to an
audio_channel_t structure. This
command sets a channel’s state
information. The ch_number field
must be set before making the
ioctl() call in order for the to
determine which channel to set.
When the ioctl() returns the pid
will contain the process ID of the
process that has the channel open
and dev_type will contain the type
of the device. If pid is 0 (zero), then
the channel is not open. The info
pointer points to an audio_info_t
structure, which is used to program
the state of the channel.

Last modified 21 January 1999 SunOS 5.8 329

mixer(7I) Ioctl Requests

AUDIO_MIXERCTL_GET_MODE The argument is a pointer to an
integer that contains the audio
mixer mode when it returns. It will
be set to either AM_MIXER_MODEor
AM_COMPAT_MODE.

AUDIO_MIXERCTL_SET_MODE The argument is a pointer to an
integer that contains the audio
mixer mode to be set and it must
be set to either AM_MIXER_MODE
or AM_COMPAT_MODE. The audio
mixer may be set to mixer mode at
any time. However, it may be set to
compatible mode only when there
is a single read/write open within
one process, or a single read process
and a single write process. Otherwise
the ioctl() will fail. Because the
Codec is being reprogrammed to a
different data format, it is possible
there may be brief pause or burst of
noise when the mode changes. This
is normal. It may be eliminated by
pausing the input and output or by
closing all streams before changing
modes. The mixerctl (1) command
may be used to change the audio
mixer’s mode.

MACROS The following macro is used to determine how large an am_control_t
structure is when it points to an audio_info_t structure.

AUDIO_MIXER_CTL_STRUCT_SIZE(num_ch)

Where num_ch is the number of channels the device supports. The number of
channels can be determined using the AUDIO_GET_NUM_CHS ioctl() .

This macro is used when allocating an am_sample_rates_t structure.

AUDIO_MIXER_SAMP_RATES_STRUCT_SIZE(num_srs)

330 SunOS 5.8 Last modified 21 January 1999

Ioctl Requests mixer(7I)

Where num_srs is the number of samples rates requested.

CODE EXAMPLES The following examples illustrate how these new data structures and ioctl s
can be used.

Example 1 The following code demonstrates how to use the audio support and the
audio mixer ioctl() s to get some state information on /dev/audio .

audio_channel_t ch;
audio_info_t info;
am_control_t *ctl;
int num;
err = ioctl(audio_fd, AUDIO_GET_NUM_CHS, &num);

ctl = (am_control_t *)malloc(AUDIO_MIXER_CTL_STRUCT_SIZE(num));

err = ioctl(audio_fd, AUDIO_MIXERCTL_GETINFO, ctl);

ch->info = &info;
ch->info_size = sizeof (audio_info_t);

for (i = 0; i < num; i++) {
if (ctl->ch_open[i] != 0) {

ch.ch_number = i;
if (ioctl(audio_fd, AUDIO_MIXERCTL_GET_CHINFO, &ch) < 0) {

printf(""Channel #%d isn’t an audio/audioctl device, 1);
} else {

printf("Ch# %d, PID = %d, Type = %s\n", i, ch->pid, ch->type);
}

}
}

Example 2 The following code demonstrates how to use the
AUDIO_MIXER_GET_SAMPLE_RATES ioctl to get the number of
supported play sample rates. It also shows how to deal with allocating a
samp_rates[] array that is too small

#define LARGE_NUMBER 10000;
am_sample_rates_t *sr;
int num;
for (num = 4; num < LARGE_NUMBER; num += 2) {

sr = (am_sample_rates_t *)malloc(AUDIO_MIXER_SAMP_RATES_STRUCT_SIZE(num));

sr->num_samp_rates = num;
sr->type = AUDIO_PLAY;

err = ioctl(audio_fd, AUDIO_MIXER_GET_SAMPLE_RATES, sr);

if (sr->num_samp_rates <= num) {
break;

}

free(sr);

Last modified 21 January 1999 SunOS 5.8 331

mixer(7I) Ioctl Requests

}

(void) printf("Supported play sample rates:\n");
for (i = 0; i < sr->num_samp_rates; i++) {

(void) printf(" %d\n", sr->samp_rates[i]);
}

ERRORS An open() will fail if:
EBUSY The requested play or record access is busy and either the

O_NDELAYor O_NONBLOCKflag was set in the open()
request.

ENOMEM Memory was not available to be allocated for the channel.

EINTR The requested play or record access is busy and a signal
interrupted the open() request.

EIO There has been an error opening the device. An error
message is printed on the console explaining the failure.

An ioctl() will fail if:
EBUSY The parameter changes requested in the AUDIO_SETINFO

ioctl could not be made because another process has the
device open and is using a different format.

EINTR The ioctl() was interrupted by a signal.

EINVAL The parameter changes requested in the AUDIO_SETINFO
ioctl are invalid or are not supported by the device.

EIO There has been an error with the ioctl() . An error
message is printed on the console explaining the failure.

ENOMEM The ioctl() failed because memory couldn’t be allocated.

EPERM The audio mixer is in compatible mode and one of the
new ioctl() s was used. They are supported only in
mixer mode .

FILES The physical audio device names are system dependent and are rarely used by
programmers. The programmer should use the generic device names listed
below.
/dev/audio symbolic link to the system’s primary audio

device

/dev/audioctl symbolic link to the control device for
/dev/audio

/dev/sound/0 first audio device in the system

332 SunOS 5.8 Last modified 21 January 1999

Ioctl Requests mixer(7I)

/dev/sound/0ctl audio control device for /dev/sound/0

/dev/sound/x additional audio devices

/dev/sound/xctl audio control device for /dev/sound/x

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWaudd, SUNWauddx, SUNWaudh

Stability Level Evolving

SEE ALSO mixerctl (1), close (2), fcntl (2), ioctl (2), open (2), poll (2), read (2),
write (2), system (4), audiocs (7D), audio_support (7I) streamio (7I)

BUGS Due to a feature of the STREAMS implementation, programs that are terminated
or exit without closing the audio device may hang for a short period while
audio output drains. In general, programs that produce audio output should
catch the SIGINT signal and flush the output stream before exiting.

Last modified 21 January 1999 SunOS 5.8 333

mlx(7D) Devices

NAME mlx – low-level module for Mylex DAC960E EISA and Mylex
DAC960P/PD/PD-Ultra/PL PCIhost bus adapter series

SYNOPSIS /kernel/drv/mlx

DESCRIPTION The mlx module provides low-level interface routines between the
common disk/tape I/O subsystem and the Mylex DAC960E, and
DAC960P/PD/PD-Ultra/PL controllers. The mlx module can be configured for
disk, CD-ROM, and streaming tape support for one or more host adapter boards.

CONFIGURATION Auto-configuration code determines whether the adapter is present at the
configured address and what types of devices are attached to it. The Mylex
DAC960E and DAC960P/PD/PD-Ultra/PL are primarily used as disk array
(system drive) controllers. In order to configure the attached disk arrays, the
controller must first be configured prior to Solaris boot using the configuration
utilities provided by the hardware manufacturer. With these utilities, the user
can set different levels of redundant arrays of independent disks (RAID), striping
parameters, caching mechanisms, and so on. For more information, refer to the
user’s manual supplied with your hardware.

Configuration Tips The Mylex DAC960E and DAC960P/PD/PD-Ultra/PL BIOS can handle
multiple cards. Therefore, if more than one Mylex DAC960Ea or
DAC960P/PD/PD-Ultra/PL, adapter is installed in a system, only the BIOS of
the one in the lowest slot should be enabled and the BIOS in any other adapter
should be disabled.

Enable tag queueing only for the SCSI disk drives that are officially tested and
approved by Mylex Corp. for the DAC960E and DAC960P/PD/PD-Ultra/PL.
Otherwise, it is strongly recommended that you disable tag queueing to avoid
serious problems.

Board Configuration
and Auto

Configuration

The SCSI ID of the devices on each channel may not be equal to or greater than
the value of the maximum number of targets allowed per channel (MAX_TGT), or
it cannot even be configured.

Access to
Ready/Standby

Drives

When a SCSI disk drive is initially connected to the controller, it is marked as
ready. If a SCSI disk drive is not defined to be part of any physical pack within a
system drive at configuration time, it is automatically labeled as a standby drive,
which may be used by the controller at any time for automatic failover. For this
reason, standby drives are inaccessible from the mlx driver, and the use of
ready drives is strongly discouraged. Independent access to ready drives will
be removed in an upcoming release.

FILES /kernel/drv/mlx.conf mlx configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

334 SunOS 5.8 Last modified 24 Feb 1998

Devices mlx(7D)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5)

WARNINGS
Limitations on SCSI

Device Use
Due to Mylex firmware limitations, a tape blocksize greater than 32k bytes
cannot be used. Also, tapes and CD-ROM players will not work reliably on
channels that also have SCSI hard drives attached to them. Therefore, to be
certain of correct SCSI device operation, use SCSI devices only on an otherwise
unused channel, and with a fixed block size of 32k or less.

Finally, note that any SCSI command which takes over one hour will
automatically be aborted by the Mylex firmware, so very long tape commands
(such as erasing a large tape) may fail.

Tag Queueing Enable tag queueing only for the SCSI disk drives which are officially tested and
approved by Mylex Corp. for the DAC960E and DAC960P/PD/PD-Ultra/PL.
Otherwise, it is strongly recommended to disable tag queueing to avoid serious
problems.

Ready and Standby
Drives

If a SCSI disk drive is not defined to be part of any physical pack within a system
drive, it is labeled as a ready or standby drive. If any SCSI disk drive within a
system drive fails, data on a standby drive may be lost due to the standby
replacement procedure. This procedure will overwrite the standby drive if the
failed disk drive is configured with any level of redundancy (RAID levels 1, 5,
and 6) and its size is identical to the size of the available standby drive.

Therefore, despite the fact that the ready and standby drives are physically
connected, the system denies any kind of access to them, so that there will be no
chance of accidental loss of valuable data.

Hot Plugging Other than the "hot replacement" of disk drives, which is described in the
manufacturer’s user’s guide, the Mylex DAC960E series do not support
"hot-plugging" (adding or removing devices while the system is running) unless
the firmware version of the adapter is 1.22 or 1.23 . Otherwise, in order to add
or remove devices, you must shut down the system, add or remove devices,
reconfigure the host bus adapter using the configuration utility provided by the
manufacturer, and then reboot your system.

SCSI Target IDs When setting up the device SCSI target IDs, note that there is a limitation on the
choice of target ID numbers. Assuming the maximum number of targets per
channel on the particular model of Mylex or IBM host bus adapter is MAX_TGT
(see the manufacturer’s user’s manual), the SCSI target IDs on a given channel

Last modified 24 Feb 1998 SunOS 5.8 335

mlx(7D) Devices

should range from 0 to (MAX_TGT− 1). Note that target SCSI IDs on one
channel can be repeated on other channels.

� Mylex DAC960-5 model supports a maximum of four targets per channel,
that is, MAX_TGT= 4. Therefore, the SCSI target IDs on a given channel
should range from 0 to 3.

� Mylex DAC960-3 model supports a maximum of seven targets per channel,
that is, MAX_TGT= 7. Therefore, the SCSI target IDs on a given channel
should range from 0 to 6.

336 SunOS 5.8 Last modified 24 Feb 1998

Devices msglog(7D)

NAME msglog – message output collection from system startup or background
applications

SYNOPSIS /dev/msglog

DESCRIPTION Output from system startup (“rc”) scripts is directed to /dev/msglog , which
dispatches it appropriately.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

Interface Stability Stable

SEE ALSO syslogd (1M), syslog (3C), attributes (5), sysmsg (7D)

NOTES In the current version of Solaris, /dev/msglog is an alias for /dev/sysmsg . In
future versions of Solaris, writes to /dev/msglog may be directed into a more
general logging mechanism such as syslogd (1M).

syslog (3C) provides a more general logging mechanism than /dev/msglog
and should be used in preference to /dev/msglog whenever possible.

Last modified 13 Oct 1998 SunOS 5.8 337

msm(7D) Devices

NAME msm – Microsoft Bus Mouse device interface

DESCRIPTION The msmdriver supports the Microsoft Bus Mouse. It allows applications to
obtain information about the mouse’s movements and the status of its buttons.
The data is read in the Five Byte Packed Binary Format, also called MSC format.

FILES /dev/msm

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5)

338 SunOS 5.8 Last modified 1 Jan 1997

Devices mt(7D)

NAME mt – tape interface

DESCRIPTION The files rmt/* refer to tape controllers and associated tape drives.

The labelit (1M) command requires these magnetic tape file names to work
correctly with the tape controllers. No other tape controller commands require
these file names.

FILES /dev/rmt/*

SEE ALSO labelit (1M)

Last modified 3 Jul 1990 SunOS 5.8 339

mtio(7I) Ioctl Requests

NAME mtio – general magnetic tape interface

SYNOPSIS #include <sys/types.h>

#include <sys/ioctl.h>

#include <sys/mtio.h>

DESCRIPTION 1/2”, 1/4”, 4mm, and 8mm magnetic tape drives all share the same general
character device interface.

There are two types of tape records: data records and end-of-file (EOF) records.
EOF records are also known as tape marks and file marks. A record is separated
by interrecord (or tape) gaps on a tape.

End-of-recorded-media (EOM) is indicated by two EOF marks on 1/2” tape; by
one EOF mark on 1/4”, 4mm, and 8mm cartridge tapes.

1/2” Reel Tape Data bytes are recorded in parallel onto the 9-track tape. Since it is a
variable-length tape device, the number of bytes in a physical record may vary.

The recording formats available (check specific tape drive) are 800 BPI, 1600 BPI,
6250 BPI, and data compression. Actual storage capacity is a function of the
recording format and the length of the tape reel. For example, using a 2400 foot
tape, 20 Mbyte can be stored using 800 BPI, 40 Mbyte using 1600 BPI, 140 Mbyte
using 6250 BPI, or up to 700 Mbyte using data compression.

1/4” Cartridge Tape Data is recorded serially onto 1/4” cartridge tape. The number of bytes per
record is determined by the physical record size of the device. The I/O request
size must be a multiple of the physical record size of the device. For QIC-11,
QIC-24, and QIC-150 tape drives, the block size is 512 bytes.

The records are recorded on tracks in a serpentine motion. As one track is
completed, the drive switches to the next and begins writing in the opposite
direction, eliminating the wasted motion of rewinding. Each file, including the
last, ends with one file mark.

Storage capacity is based on the number of tracks the drive is capable of
recording. For example, 4-track drives can only record 20 Mbyte of data on a
450 foot tape; 9-track drives can record up to 45 Mbyte of data on a tape of the
same length. QIC-11 is the only tape format available for 4-track tape drives. In
contrast, 9-track tape drives can use either QIC-24 or QIC-11. Storage capacity is
not appreciably affected by using either format. QIC-24 is preferable to QIC-11
because it records a reference signal to mark the position of the first track on the
tape, and each block has a unique block number.

The QIC-150 tape drives require DC-6150 (or equivalent) tape cartridges for
writing. However, they can read other tape cartridges in QIC-11, QIC-24, or
QIC-120 tape formats.

340 SunOS 5.8 Last modified 14 Jan 1997

Ioctl Requests mtio(7I)

8mm Cartridge Tape Data is recorded serially onto 8mm helical scan cartridge tape. Since it is a
variable-length tape device, the number of bytes in a physical record may vary.
The recording formats available (check specific tape drive) are standard 2Gbyte,
5Gbyte, and compressed format.

4mm DAT Tape Data is recorded either in Digital Data Storage (DDS) tape format or in
Digital Data Storage, Data Compressed (DDS-DC) tape format. Since it is a
variable-length tape device, the number of bytes in a physical record may vary.
The recording formats available are standard 2Gbyte and compressed format.

Persistent Error
Handling

Persistent error handling is a modification of the current error handling
behaviors, BSD and SVR4. With persistent error handling enabled, all tape
operations after an error or exception will return immediately with an error.
Persistent error handling can be most useful with asynchronous tape operations
that use the aioread (3AIO) and aiowrite (3AIO) functions.

To enable persistent error handling, the ioctl MTIOCPERSISTENTmust be
issued. If this ioctl succeeds, then persistent error handling is enabled and
changes the current error behavior. This ioctl will fail if the device driver does
not support persistent error handling.

With persistent error handling enabled, all tape operations after an exception
or error will return with the same error as the first command that failed; the
operations will not be executed. An exception is some event that might stop
normal tape operations, such as an End Of File (EOF) mark or an End Of Tape
(EOT) mark. An example of an error is a media error. The MTIOCLRERRioctl
must be issued to allow normal tape operations to continue and to clear the error.

Disabling persistent error handling returns the error behavior to normal
SVR4 error handling, and will not occur until all outstanding operations are
completed. Applications should wait for all outstanding operations to complete
before disabling persistent error handling. Closing the device will also disable
persistent error handling and clear any errors or exceptions.

The Read Operation and Write Operation subsections contain more
pertinent information reguarding persistent error handling.

Read Operation The read (2) function reads the next record on the tape. The record size is
passed back as the number of bytes read, provided it is not greater than the
number requested. When a tape mark or end of data is read, a zero byte count is
returned; all successive reads after the zero read will return an error and errno
will be set to EIO . To move to the next file, an MTFSFioctl can be issued before or
after the read causing the error. This error handling behavior is different from
the older BSD behavior, where another read will fetch the first record of the next
tape file. If the BSD behavior is required, device names containing the letter b
(for BSD behavior) in the final component should be used. If persistent error
handling was enabled with either the BSD or SVR4 tape device behavior, all

Last modified 14 Jan 1997 SunOS 5.8 341

mtio(7I) Ioctl Requests

operations after this read error will return EIO errors until the MTIOCLRERR
ioctl is issued. An MTFSFioctl can then he issued.

Two successful successive reads that both return zero byte counts indicate EOM
on the tape. No further reading should be performed past the EOM.

Fixed-length I/O tape devices require the number of bytes read to be a multiple
of the physical record size. For example, 1/4” cartridge tape devices only
read multiples of 512 bytes. If the blocking factor is greater than 64,512 bytes
(minphys limit), fixed-length I/O tape devices read multiple records.

Most tape devices which support variable-length I/O operations may read a
range of 1 to 65,535 bytes. If the record size exceeds 65,535 bytes, the driver reads
multiple records to satisfy the request. These multiple records are limited to
65,534 bytes. Newer variable-length tape drivers may relax the above limitation
and allow applications to read record sizes larger than 65,534. Refer to the
specific tape driver man page for details.

Reading past logical EOT is transparent to the user. A read operation should
never hit physical EOT.

Read requests that are lesser than a physical tape record are not allowed.
Appropriate error is returned.

Write Operation The write (2) function writes the next record on the tape. The record has the
same length as the given buffer.

Writing is allowed on 1/4” tape at either the beginning of tape or after the last
written file on the tape. With the Exabyte 8200, data may be appended only at
the beginning of tape, before a filemark, or after the last written file on the tape.

Writing is not so restricted on 1/2”, 4mm, and the other 8mm cartridge tape
drives. Care should be used when appending files onto 1/2” reel tape devices,
since an extra file mark is appended after the last file to mark the EOM. This
extra file mark must be overwritten to prevent the creation of a null file. To
facilitate write append operations, a space to the EOM ioctl is provided. Care
should be taken when overwriting records; the erase head is just forward of the
write head and any following records will also be erased.

Fixed-length I/O tape devices require the number of bytes written to be a
multiple of the physical record size. For example, 1/4” cartridge tape devices
only write multiples of 512 bytes.

Fixed-length I/O tape devices write multiple records if the blocking factor is
greater than 64,512 bytes (minphys limit). These multiple writes are limited to
64,512 bytes. For example, if a write request is issued for 65,536 bytes using a
1/4” cartridge tape, two writes are issued; the first for 64,512 bytes and the
second for 1024 bytes.

342 SunOS 5.8 Last modified 14 Jan 1997

Ioctl Requests mtio(7I)

Most tape devices which support variable-length I/O operations may write a
range of 1 to 65,535 bytes. If the record size exceeds 65,535 bytes, the driver
writes multiple records to satisfy the request. These multiple records are limited
to 65,534 bytes. As an example, if a write request for 65,540 bytes is issued, two
records are written; one for 65,534 bytes followed by another record for 6 bytes.
Newer variable-length tape drivers may relax the above limitation and allow
applications to write record sizes larger than 65,534. Refer to the specific tape
driver man page for details.

When logical EOT is encountered during a write, that write operation completes
and the number of bytes successfully transferred is returned (note that a ’short
write’ may have occurred and not all the requested bytes would have been
transferred. The actual amount of data written will depend on the type of device
being used). The next write will return a zero byte count. A third write will
successfully transfer some bytes (as indicated by the returned byte count, which
again could be a short write); the fourth will transfer zero bytes, and so on, until
the physical EOT is reached and all writes will fail with EIO .

When logical EOT is encountered with persistent error handling enabled, the
current write may complete or be a short write. The next write will return a zero
byte count. At this point an application should act appropriately for end of
tape cleanup or issue yet another write, which will return the error ENOSPC.
After clearing the exception with MTIOCLRERR, the next write will succeed
(possibly short), followed by another zero byte write count, and then another
ENOSPCerror.

Allowing writes after LEOT has been encountered enables the flushing of
buffers. However, it is strongly recommended to terminate the writing and close
the file as soon as possible.

Seeks are ignored in tape I/O.

Close Operation Magnetic tapes are rewound when closed, except when the “no-rewind” devices
have been specified. The names of no-rewind device files use the letter n as
the end of the final component. The no-rewind version of /dev/rmt/0l is
/dev/rmt/0ln . In case of error for a no-rewind device, the next open rewinds
the device.

If the driver was opened for reading and a no-rewind device has been specified,
the close advances the tape past the next filemark (unless the current file position
is at EOM), leaving the tape correctly positioned to read the first record of the
next file. However, if the tape is at the first record of a file it doesn’t advance
again to the first record of the next file. These semantics are different from
the older BSD behavior. If BSD behavior is required where no implicit space
operation is executed on close, the non-rewind device name containing the letter
b (for BSD behavior) in the final component should be specified.

Last modified 14 Jan 1997 SunOS 5.8 343

mtio(7I) Ioctl Requests

If data was written, a file mark is automatically written by the driver upon close.
If the rewinding device was specified, the tape will be rewound after the file
mark is written. If the user wrote a file mark prior to closing, then no file mark is
written upon close. If a file positioning ioctl, like rewind, is issued after writing,
a file mark is written before repositioning the tape.

All buffers are flushed on closing a tape device. Hence, it is strongly
recommended that the application wait for all buffers to be flushed before
closing the device. This can be done by writing a filemark via MTWEOF,even
with a zero count.

Note that for 1/2” reel tape devices, two file marks are written to mark the EOM
before rewinding or performing a file positioning ioctl. If the user wrote a file
mark before closing a 1/2” reel tape device, the driver will always write a file
mark before closing to insure that the end of recorded media is marked properly.
If the non-rewinding device was specified, two file marks are written and the
tape is left positioned between the two so that the second one is overwritten on a
subsequent open (2) and write (2).

If no data was written and the driver was opened for WRITE-ONLY access, one
or two file marks are written, thus creating a null file.

After closing the device, persistent error handling will be disabled and any error
or exception will be cleared.

IOCTLS Not all devices support all ioctls . The driver returns an ENOTTYerror on
unsupported ioctls.

The following structure definitions for magnetic tape ioctl commands are
from <sys/mtio.h> .

The minor device byte structure is::

15 7 6 5 4 3 2 1 0
__
Unit # BSD Reserved Density Density No rewind Unit #
Bits 7-15 behavior Select Select on Close Bits 0-1

/*
* Layout of minor device byte:
*/

#define MTUNIT(dev) (((minor(dev) & 0xff80) >> 5) +
(minor(dev) & 0x3))
#define MT_NOREWIND (1 <<2)
#define MT_DENSITY_MASK (3 <<3)
#define MT_DENSITY1 (0 <<3) /* Lowest density/format */
#define MT_DENSITY2 (1 <<3)
#define MT_DENSITY3 (2 <<3)
#define MT_DENSITY4 (3 <<3) /* Highest density/format */
#define MTMINOR(unit) (((unit & 0x7fc) << 5) + (unit & 0x3))

344 SunOS 5.8 Last modified 14 Jan 1997

Ioctl Requests mtio(7I)

#define MT_BSD (1 <<6) /* BSD behavior on close */

/* Structure for MTIOCTOP − magnetic tape operation command */

struct mtop {
short mt_op; /* operation */
daddr_t mt_count; /* number of operations */

};

The following operations of MTIOCTOPioctl are supported:
MTWEOF write an end-of-file record

MTFSF forward space over file mark

MTBSF backward space over file mark (1/2", 8mm only)

MTFSR forward space to inter-record gap

MTBSR backward space to inter-record gap

MTREW rewind

MTOFFL rewind and take the drive off-line

MTNOP no operation, sets status only

MTRETEN retension the tape (cartridge tape only)

MTERASE erase the entire tape and rewind

MTEOM position to EOM

MTNBSF backward space file to beginning of file

MTSRSZ set record size

MTGRSZ get record size

MTLOAD load the next tape cartridge into the tape drive
/* structure for MTIOCGET − magnetic tape get status command */

struct mtget {
short mt_type; /* type of magtape device */

/* the following two registers are device dependent */
short mt_dsreg; /* “drive status” register */
short mt_erreg; /* “error” register */

/* optional error info. */
daddr_t mt_resid; /* residual count */
daddr_t mt_fileno; /* file number of current position */
daddr_t mt_blkno; /* block number of current position */
ushort_t mt_flags;
short mt_bf; /* optimum blocking factor */

};
/* structure for MTIOCGETDRIVETYPE − get tape config data command */

Last modified 14 Jan 1997 SunOS 5.8 345

mtio(7I) Ioctl Requests

struct mtdrivetype_request {
int size;
struct mtdrivetype *mtdtp;

};
struct mtdrivetype {

char name[64]; /* Name, for debug */
char vid[25]; /* Vendor id and product id */
char type; /* Drive type for driver */
int bsize; /* Block size */
int options; /* Drive options */
int max_rretries; /* Max read retries */
int max_wretries; /* Max write retries */
uchar_t densities[MT_NDENSITIES]; /* density codes,low->hi */
uchar_t default_density; /* Default density chosen */
uchar_t speeds[MT_NSPEEDS]; /* speed codes, low->hi */

};

The MTWEOFioctl is used for writing file marks to tape. Not only does this signify
the end of a file, but also usually has the side effect of flushing all buffers in the
tape drive to the tape medium. A zero count MTWEOFwill just flush all the buffers
and will not write any file marks. Because a successful completion of this tape
operation will guarantee that all tape data has been written to the tape medium,
it is recommended that this tape operation be issued before closing a tape device.

When spacing forward over a record (either data or EOF), the tape head is
positioned in the tape gap between the record just skipped and the next record.
When spacing forward over file marks (EOF records), the tape head is positioned
in the tape gap between the next EOF record and the record that follows it.

When spacing backward over a record (either data or EOF), the tape head is
positioned in the tape gap immediately preceding the tape record where the
tape head is currently positioned. When spacing backward over file marks (EOF
records), the tape head is positioned in the tape gap preceding the EOF. Thus
the next read would fetch the EOF.

Record skipping does not go past a file mark; file skipping does not go past
the EOM. After an MTFSR<huge number> command, the driver leaves the
tape logically positioned before the EOF. A related feature is that EOFs remain
pending until the tape is closed. For example, a program which first reads all
the records of a file up to and including the EOF and then performs an MTFSF
command will leave the tape positioned just after that same EOF, rather than
skipping the next file.

The MTNBSFand MTFSFoperations are inverses. Thus, an “ MTFSF−1” is
equivalent to an “ MTNBSF1”. An “ MTNBSF0” is the same as “ MTFSF0”; both
position the tape device at the beginning of the current file.

346 SunOS 5.8 Last modified 14 Jan 1997

Ioctl Requests mtio(7I)

MTBSFmoves the tape backwards by file marks. The tape position will end on
the beginning of the tape side of the desired file mark. An “ MTBSF0” will
position the tape at the end of the current file, before the filemark.

MTBSRand MTFSRoperations perform much like space file operations, except
that they move by records instead of files. Variable-length I/O devices (1/2”
reel, for example) space actual records; fixed-length I/O devices space physical
records (blocks). 1/4” cartridge tape, for example, spaces 512 byte physical
records. The status ioctl residual count contains the number of files or records
not skipped.

MTOFFLrewinds and, if appropriate, takes the device off-line by unloading
the tape. It is recommended that the device be closed after offlining and then
re-opened after a tape has been inserted to facilitate portability to other platforms
and other operating systems. Attempting to re-open the device with no tape will
result in an error unless the O_NDELAYflag is used. (See open (2).)

The MTRETENretension ioctl applies only to 1/4” cartridge tape devices. It is
used to restore tape tension, improving the tape’s soft error rate after extensive
start-stop operations or long-term storage.

MTERASErewinds the tape, erases it completely, and returns to the beginning of
tape. Erasing may take a long time depending on the device and/or tapes. For
time details, refer to the the drive specific manual.

MTEOMpositions the tape at a location just after the last file written on the tape.
For 1/4” cartridge and 8mm tape, this is after the last file mark on the tape. For
1/2” reel tape, this is just after the first file mark but before the second (and
last) file mark on the tape. Additional files can then be appended onto the
tape from that point.

Note the difference between MTBSF(backspace over file mark) and MTNBSF
(backspace file to beginning of file). The former moves the tape backward
until it crosses an EOF mark, leaving the tape positioned before the file mark.
The latter leaves the tape positioned after the file mark. Hence, "MTNBSFn" is
equivalent to "MTBSF(n+1)" followed by "MTFSF1". The 1/4” cartridge tape
devices do not support MTBSF.

MTSRSZand MTGRSZare used to set and get fixed record lengths. The MTSRSZ
ioctl allows variable length and fixed length tape drives that support multiple
record sizes to set the record length. The mt_count field of the mtop struct is
used to pass the record size to/from the st driver. A value of 0 indicates variable
record size. The MTSRSZioctl makes a variable-length tape device behave like a
fixed-length tape device. Refer to the specific tape driver man page for details.

MTLOADloads the next tape cartridge into the tape drive. This is generally only
used with stacker and tower type tape drives which handle multiple tapes

Last modified 14 Jan 1997 SunOS 5.8 347

mtio(7I) Ioctl Requests

per tape drive. A tape device without a tape inserted can be opened with the
O_NDELAYflag, in order to execute this operation.

The MTIOCGETget status ioctl call returns the drive ID (mt_type), sense key error
(mt_erreg), file number (mt_fileno), optimum blocking factor (mt_bf) and record
number (mt_blkno) of the last error. The residual count (mt_resid) is set to the
number of bytes not transferred or files/records not spaced. The flags word
(mt_flags) contains information such as whether the device is SCSI, whether it is
a reel device, and whether the device supports absolute file positioning.

The MTIOCGETDRIVETYPEget drivetype ioctl call returns the name of the tape
drive as defined in st.conf (name), Vendor ID and model (product), ID (vid),
type of tape device (type), block size (bsize), drive options (options), maximum
read retry count (max_rretries), maximum write retry count (max_wretries),
densities supported by the drive (densities), and default density of the tape
drive (default_density).

Persistent Error
Handling IOCTLs

and Asynchronous
Tape Operations

MTIOCPERSISTENT enables/disables persistent error
handling

MTIOCPERSISTENTSTATUS queries for persistent error handling

MTIOCLRERR clears persistent error handling

MTIOCGUARANTEEDORDER checks whether driver guarantees
order of I/O’s

The MTIOCPERSISTENTioctl enables or disables persistent error handling. It
takes as an argument a pointer to an integer that turns it either on or off. If
the ioctl succeeds, the desired operation was successful. It will wait for all
outstanding I/O’s to complete before changing the persistent error handling
status. For example,

int on = 1;
ioctl(fd, MTIOCPERSISTENT, &on);
int off = 0;
ioctl(fd, MTIOCPERSISTENT, &off);

The MTIOCPERSISTENTSTATUSioctl enables or disables persistent error
handling. It takes as an argument a pointer to an integer inserted by the driver.
The integer can be either 1 if persistent error handling is ’on’, or 0 if persistent
error handling is ’off’. It will not wait for outstanding I/O’s. For example,

int query;
ioctl(fd, MTIOCPERSISTENTSTATUS, &query);

348 SunOS 5.8 Last modified 14 Jan 1997

Ioctl Requests mtio(7I)

The MTIOCLRERRioctl clears persistent error handling and allows tape
operations to continual normally. This ioctl requires no argument and will
always succeed, even if persistent error handling has not been enabled. It will
wait for any outstanding I/O’s before it clears the error.

The MTIOCGUARANTEEDORDERioctl is used to determine whether the driver
guarantees the order of I/O’s. It takes no argument. If the ioctl succeeds, the
driver will support guaranteed order. If the driver does not support guaranteed
order, then it should not be used for asynchronous I/O with libaio . It will wait
for any outstanding I/O’s before it returns. For example,

ioctl(fd, MTIOCGUARANTEEDORDER)

See the Persistent Error Handling subsection above for more information
on persistent error handling.

Asynchronous and
State Change IOCTLS

MTIOCSTATE This ioctl blocks until the state of the drive, inserted
or ejected, is changed. The argument is a pointer to a
mtio_state , enum, whose possible enumerations are listed
below. The initial value should be either the last reported
state of the drive, or MTIO_NONE. Upon return, the enum
pointed to by the argument is updated with the current
state of the drive.

enum mtio_state {
MTIO_NONE /* Return tape’s current state */
MTIO_EJECTED /* Tape state is “ejected” */
MTIO_INSERTED /* Tape state is “inserted” */
;

When using asynchronous operations, most ioctls will wait for all outstanding
commands to complete before they are executed.

IOCTLS for
Multi-initiator

Configurations

MTIOCRESERVE reserve the tape drive

MTIOCRELEASE revert back to the default behavior of
reserve on open/release on close

MTIOCFORCERESERVE reserve the tape unit by breaking
reservation held by another host

The MTIOCRESERVEioctl reserves the tape drive such that it does not release
the tape drive at close. This changes the default behavior of releasing the
device upon close. Reserving the tape drive that is already reserved has no
effect. For example,

Last modified 14 Jan 1997 SunOS 5.8 349

mtio(7I) Ioctl Requests

ioctl(fd, MTIOCRESERVE);

The MTIOCRELEASEioctl reverts back to the default behavior of reserve on
open/release on close operation, and a release will occur during the next close.
Releasing the tape drive that is already released has no effect. For example,

ioctl(fd, MTIOCRELEASE);

The MTIOCFORCERESERVEioctl breaks a reservation held by another host,
interrupting any I/O in progress by that other host, and then reserves the
tape unit. This ioctl can be executed only with super-user privileges. It is
recommended to open the tape device in O_NDELAYmode when this ioctl
needs to be executed, otherwise the open will fail if another host indeed has it
reserved. For example,

ioctl(fd, MTIOCFORCERESERVE);

IOCTLS for Handling
Tape Configuration

Options

MTIOCSHORTFMK enables/disable support for writing
short filemarks. This is specific to
Exabyte drives.

MTIOCREADIGNOREILI enables/disable supress incorrect
length indicator support during reads

MTIOCREADIGNOREEOFS enables/disable support for reading
past two EOF marks which otherwise
indicate End-Of-recording-Media
(EOM) in the case of 1/2" reel tape
drives

The MTIOCSHORTFMKioctl enables or disables support for short filemarks.
This ioctl is only applicable to Exabyte drives which support short filemarks.
As an argument, it takes a pointer to an integer. If 0 (zero) is the specified
integer, then long filemarks will be written. If 1 is the specified integer, then
short filemarks will be written. The specified tape bahavior will be in effect until
the device is closed.

For example:

int on = 1;
int off = 0;
/* enable short filemarks */
ioctl(fd, MTIOSHORTFMK, &on);
/* disable short filemarks */
ioctl(fd, MTIOCSHORTFMK, &off);

350 SunOS 5.8 Last modified 14 Jan 1997

Ioctl Requests mtio(7I)

Tape drives which do not support short filemarks will return an errno of
ENOTTY.

The MTIOCREADIGNOREILIioctl enables or disables the suppress incorrect
length indicator (SILI) support during reads. As an argument, it takes a pointer
to an integer. If 0 (zero) is the specified integer, SILI will not be used during reads
and incorrect length indicator will not be supressed. If 1 is the specified integer,
SILI will be used during reads and incorrect length indicator will be supressed.
The specified tape bahavior will be in effect until the device is closed.

For example:

int on = 1;
int off = 0;
ioctl(fd, MTIOREADIGNOREILI, &on);
ioctl(fd, MTIOREADIGNOREILI, &off);

The MTIOCREADIGNOREEOFSioctl enables or disables support for reading
past double EOF marks which otherwise indicate End-Of-recorded-media
(EOM) in the case of 1/2" reel tape drives. As an argument, it takes a pointer
to an integer. If 0 (zero) is the specified integer, then double EOF marks
indicate End-Of-recodred-media (EOD). If 1 is the specified integer, the double
EOF marks no longer indicate EOM, thus allowing applications to read past
two EOF marks. In this case it is the responsibility of the application to detect
end-of-recorded-media (EOM). The specified tape bahavior will be in effect until
the device is closed.

For example:

int on = 1;
int off = 0;
ioctl(fd, MTIOREADIGNOREEOFS, &on);
ioctl(fd, MTIOREADIGNOREEOFS, &off);

Tape drives other than 1/2" reel tapes will return an errno of ENOTTY.

EXAMPLES EXAMPLE 1 Tape Positioning and Tape Drives

Suppose you have written three files to the non-rewinding 1/2” tape device,
/dev/rmt/0ln, and that you want to go back and dd(1M) the second file off
the tape. The commands to do this are:

mt −F /dev/rmt/0lbn bsf 3
mt −F /dev/rmt/0lbn fsf 1
dd if=/dev/rmt/0ln

Last modified 14 Jan 1997 SunOS 5.8 351

mtio(7I) Ioctl Requests

To accomplish the same tape positioning in a C program, followed by a get
status ioctl:

struct mtop mt_command;
struct mtget mt_status;
mt_command.mt_op = MTBSF;
mt_command.mt_count = 3;
ioctl(fd, MTIOCTOP, &mt_command);
mt_command.mt_op = MTFSF;
mt_command.mt_count = 1;
ioctl(fd, MTIOCTOP, &mt_command);
ioctl(fd, MTIOCGET, (char *)&mt_status);

or
mt_command.mt_op = MTNBSF;
mt_command.mt_count = 2;
ioctl(fd, MTIOCTOP, &mt_command);
ioctl(fd, MTIOCGET, (char *)&mt_status);

To get information about the tape drive:
struct mt_drivetype mtdt;
struct mtdrivetype_request mtreq;
mtreq.size = sizeof(struct mt_drivetype);
mtreq.mtdtp = &mtdt;
ioctl(fd, MTIOCGETDRIVETYPE, &mtreq);

FILES /dev/rmt/ <unit number><density>[<BSD behavior>][<no rewind>]

Where density can be l, m, h, u/c (low, medium, high, ultra/compressed,
respectively), the BSD behavior option is b, and the no rewind option is n.

For example, /dev/rmt/0hbn specifies unit 0, high density, BSD behavior
and no rewind.

SEE ALSO mt(1), tar (1), dd(1M), open (2), read (2), write (2), aioread (3AIO),
aiowrite (3AIO), ar (3HEAD), st (7D)

1/4 Inch Tape Drive Tutorial

352 SunOS 5.8 Last modified 14 Jan 1997

Devices ncrs(7D)

NAME ncrs – ncrs SCSI host bus adapter driver

SYNOPSIS scsi@unit-address

DESCRIPTION The ncrs host bus adapter driver is a SCSA-compliant nexus driver that
supports the LSI Logic (formerly Symbios Logic or NRC) 53C810, 53C810A,
53C815, 53C820, 53C825, 53C825A, 53C860, 53C875, 53C875J, 53C876, and
53C895 SCSI (Small Computer Systems Interface) chips.

The ncrs driver supports standard functions provided by the SCSA interface,
including tagged and untagged queuing, Wide/Fast/Ultra/Ultra2 SCSI, and
auto request sense. The ncrs driver does not support linked commands.

Preconfiguration
Information

� The NCR BIOS and the Solaris fdisk program may be incompatible. To
prevent conflicts, you should create an entry in the FDISK partition table
using the DOS version of FDISK (or equivalent utility) before installing
the Solaris software. To ensure your system will reboot following Solaris
installation, create a DOS partition at least 1–cylinder in size that starts
at cylinder 0.

� Add-in cards containing 53C815, 53C820, 53C825, or 53C825A controllers
must be used in bus-mastering PCI slots. PCI slots on dual PCI slot
motherboards are generally bus-master capable. However, motherboards
that contain three or more PCI slots, or motherboards that feature several
embedded PCI controllers may contain PCI slots that are not bus-master
capable.

� PCI motherboards that feature Symbios Logic SDMS BIOS and an embedded
53C810 or 53C810A controller may not be compatible with 53C82x add-in
cards equipped with Symbios Logic SDMS BIOs. To prevent conflicts, it may
be necessary to upgrade the motherboard BIOS, the add-in card, or both.

� Early PCI systems that are equipped with an 53C810 motherboard chip
may contain unconnected interrupt pins. These systems cannot be used
with Solaris software.

� Wide-to–narrow target connections are not supported by Solaris software;
as a result, you should not attempt to connect wide targets to narrow
connectors on any of the supported devices.

� If your adapter supports the Symbios Logic SCSI configuration utility, the
value of the hosts SCSI ID (found under the Adapter Setup menu) must be
set to 7. (You can access the Symbios Logic SCSI configuration utility using
Control-C.)

� If you experience problems with old target devices, add the following to the
/kernel/drv/ncrs.conf file:

target N-scsi-options = 0x0;

Last modified 20 April 1999 SunOS 5.8 353

ncrs(7D) Devices

where N is the ID of the failing target.

� If you are using a Conner 1080S narrow SCSI drive, the system may display
the following warnings:

WARNING: /pci@0,0/pci1000, f@d (ncrs0):
invalid reselection (0,0)
WARNING: /pci@0,0/pci1000,f@d/sd@0,0 (sd0);
SCSI transport failed: ’reset: retrying command’

To supress these warnings, disable tagged queuing in the ncrs.conf file.

� Pentium motherboards (Intel NX chipset) using P90 or slower processors
may cause the ncrs driver to hang. If this occurs, the following messages
are displayed on the console:

warning /pci@0,0/pci1000,3@6(ncrs0)
Unexpected DMA state:active dstat=c0<DMA-FIFO-empty,
master-data-parity-error>

This is an unrecoverable state and the system will not install using the
ncrs driver.

� The ncrs driver supports the 53C875 chipset Revision 4, or later versions
only. Earlier, pre-release versions of the chip are not supported.

� On rare occasions, use of an SDT7000/SDT9000 tape drive may result in the
following message being displayed on the console:

Unexpected DMA state: ACTIVE. dstat=81<DMA-FIFO-empty,
illegal-instruction>

After the above message is displayed, the system and tape drive will recover
and remain usable.

Driver Configuration The ncrs host bus adapter driver is configured by defining the properties found
in ncrs.conf . Properties in the ncrs.conf file that can be modified by the user
include: scsi-options , target< n>-scsi-options , scsi-reset-delay ,
scsi-tag-age-limit , scsi-watchdog-tick , scsi-initiator-id , and
ncrs-iomap . Properties in the ncrs.conf file override global SCSI settings.

The property target< n>-scsi-options overrides the scsi-options
property value for target< n>, where <n> can vary from decimal 0 to 15 . The
ncrs driver supports the following SCSI options: SCSI_OPTIONS_DR(0x8) ,
SCSI_OPTIONS_SYNC(0x20) , SCSI_OPTIONS_TAG(0x80) ,
SCSI_OPTIONS_FAST(0x100) , SCSI_OPTIONS_WIDE(0x200) ,
SCSI_OPTIONS_FAST20(0x400) , and SCSI_OPTIONS_FAST40(0x800).

After periodic interval scsi-watchdog-tick , the ncrs driver searches
through all current and disconnected commands for timeouts.

The scsi-tag-age-limit property represents the number of times that the
ncrs driver attempts to allocate a tag ID that is currently in use after going

354 SunOS 5.8 Last modified 20 April 1999

Devices ncrs(7D)

through all tag IDs in a circular fashion. When encountering the same tag ID
used scsi-tag-age-limit times, no additional commands are submitted to
the target until all outstanding commands complete or timeout.

The ncrs-iomap property enables the driver to utilize IO mapping (rather
than memory mapping) of registers.

Refer to scsi_hba_attach (9F) for details.

EXAMPLES EXAMPLE 1 A sample ncrs configuration file

Create a file called /kernel/drv/ncrs.conf , then add the following line:

scsi-options=0x78;

The above example disables tagged queuing, Fast/Ultra SCSI, and wide mode
for all ncrs instances.

The following example disables an option for one specific ncrs device. See
driver.conf (4) and pci (4) for more details.

name="ncrs" parent="/pci@1f,4000"
unit-address="3"
target1-scsi-options=0x58
scsi-options=0x178 scsi-initiator-id=6;

In the example, the default initiator ID in OBP is 7; the change to ID 6 will
occur at attach time. The scsi-options property is set for target 1 to 0x58
and all other targets set to 0x178 . Note that it may be preferable to change the
initiator ID in OBP.

The physical path name of the parent can be determined using the /devices
tree or by following the link of the logical device name:

ls −l /dev/rdsk/c0t0d0s0
lrwxrwxrwx 1 root root 45 May 16 10:08 /dev/rdsk/c0t0d0s0 ->
. . / . . /devices/pci@1f,4000/scsi@3/sd@0,0:a,raw

In the example above, the parent is /pci@1f,4000 and the unit-address is
the number bound to the scsi@3 node.

To set scsi-options more specifically per target, do the following:

target1-scsi-options=0x78;
device-type-scsi-options-list =
"SEAGATE ST32550W", "seagate-scsi-options" ;
seagate-scsi-options = 0x58;
scsi-options=0x3f8;

Last modified 20 April 1999 SunOS 5.8 355

ncrs(7D) Devices

With the exception of one specific disk type that has scsi-options set to
0x58 , the example above sets scsi-options for target 1 to 0x78 and all
other targets to 0x3f8 .

The scsi-options properties that are specified per target ID have the
highest precedence, followed by scsi-options per device type. Global
scsi-options (for all ncrs instances) per bus have the lowest precedence.

To turn on IO mapping for all ncrs cards in the system, do the following:

ncrs-iomap=1;

The above action will noticeably slow the performance of the driver. You must
reboot the system for the specified scsi-options to take effect.

Driver Capabilities To enable some driver features, the target driver must set capabilities in the
ncrs driver. The following capabilities can be queried and modified by the
target driver: synchronous , tagged-qing , wide-xfer , auto-rqsense ,
qfull-retries , and qfull-retry-interval . All other capabilities are
query only.

The tagged-qing , auto-rqsense , wide-xfer , disconnect , and
Ultra/Ultra2 synchronous capabilities are enabled by default, and
can be assigned binary (0 or 1) values only. The default value for
qfull-retries is 10, while the default value for qfull-retry-interval
is 100. The qfull-retries capability is a uchar_t (0 to 255), while
qfull-retry-interval is a ushort_t (0 to 65535).

If a conflict exists between the value of scsi-options and a capability,
the value set in scsi-options prevails. Only whom != 0 is supported
in the scsi_ifsetcap (9F) call. Refer to scsi_ifsetcap (9F) and
scsi_ifgetcap (9F) for details.

The ncrs host bus adapter driver also supports hotplugging of targets using the
cfgadm tool. Hotplug operations on the SCSI bus that hosts the root partition
should not be performed. See the cfgadm (1M) man page for more information.

FILES /kernel/drv/ncrs ELF kernel module

/kernel/drv/ncrs.conf Optional configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attribute:

356 SunOS 5.8 Last modified 20 April 1999

Devices ncrs(7D)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems with
Symbios 53C810, 53C810A, 53C815,
53C820, 53C825, 53C825A, 53C860,
53C875, 53C875J, 53C876, and 53C895
SCSI I/O processors.

SEE ALSO prtconf (1M), driver.conf (4), pci (4), attributes (5), scsi_abort (9F),
scsi_hba_attach (9F), scsi_ifgetcap (9F), scsi_ifsetcap (9F),
scsi_reset (9F), scsi_sync_pkt (9F), scsi_transport (9F),
scsi_device (9S), scsi_extended_sense (9S), scsi_inquiry (9S),
scsi_pkt (9S)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2)

Symbios Logic Inc., SYM53C895 PCI-Ultra2 SCSI I/O Processor With LVDlink

Symbios Logic Inc., SYM53C875 PCI-SCSI I/O Processor With Fast-20

Symbios Logic Inc., SYM53C825A PCI-SCSI I/O Processor

Symbios Logic Inc., SYM53C810A PCI-SCSI I/O Processor

DIAGNOSTICS The messages described below are logged and may also appear on the system
console.

Device is using a hilevel intr

The device was configured with an interrupt level that cannot be used with this
ncrs driver. Check the PCI device.

map setup failed

The driver was unable to map device registers; check for bad hardware. Driver
did not attach to device; SCSI devices will be inaccessible.

glm_script_alloc failed

The driver was unable to load the SCRIPTS for the SCSI processor; check for bad
hardware. Driver did not attach to device; SCSI devices will be inaccessible.

cannot map configuration space

The driver was unable to map in the configuration registers. Check for bad
hardware. SCSI devices will be inaccessible

attach failed

The driver was unable to attach; usually preceded by another warning that
indicates why attach failed. These can be considered hardware failures.

Last modified 20 April 1999 SunOS 5.8 357

ncrs(7D) Devices

SCSI bus DATA IN phase parity error

The driver detected parity errors on the SCSI bus.

SCSI bus MESSAGE IN phase parity error

The driver detected parity errors on the SCSI bus.

SCSI bus STATUS phase parity error

The driver detected parity errors on the SCSI bus.

Unexpected bus free

Target disconnected from the bus without notice. Check for bad hardware.

Disconnected command timeout for Target <id>.<lun>

A timeout occurred while target id /lun was disconnected. This is usually a
target firmware problem. For tagged queuing targets, <n> commands were
outstanding when the timeout was detected.

Disconnected tagged cmd(s) (<n>) timeout for Target <id>.<lun>

A timeout occurred while target id /lun was disconnected. This is usually a
target firmware problem. For tagged queuing targets, <n> commands were
outstanding when the timeout was detected.

Connected command timeout for Target <id>.<lun>

This is usually a SCSI bus problem. Check cables and termination.

Target <id> reducing sync. transfer rate

A data transfer hang or DATA-IN phase parity error was detected. The driver
attempts to eliminate this problem by reducing the data transfer rate.

Target <id> reverting to async. mode

A second data transfer hang was detected for this target. The driver attempts to
eliminate this problem by reducing the data transfer rate.

Target <id> disabled wide SCSI mode

A second data phase hang was detected for this target. The driver attempts to
eliminate this problem by disabling wide SCSI mode.

auto request sense failed

An attempt to start an auto request packet failed. Another auto request packet
may already be in transport.

invalid reselection (<id>.<lun>)

A reselection failed; target accepted abort or reset , but still tries to reconnect.
Check for bad hardware.

invalid intcode

358 SunOS 5.8 Last modified 20 April 1999

Devices ncrs(7D)

The SCRIPTS processor generated an invalid SCRIPTS interrupt. Check for
bad hardware.

NOTES The ncrs hardware (53C875) supports Wide, Fast, and Ultra SCSI mode. The
maximum SCSI bandwidth is 40 MB/sec.

The ncrs hardware (53C895) supports Wide, Fast, Ultra and Ultra2 SCSI mode
using a LVD bus. The maximum SCSI bandwidth is 80 MB/second.

The ncrs driver exports properties indicating the negotiated transfer speed
per target (target<n>-sync-speed), whether wide bus is supported
(target<n>-wide) for that particular target (target<n>-scsi-options),
and whether tagged queuing has been enabled (target<n>-T Q). The
sync-speed property value indicates the data transfer rate in KB/sec. The
target<n>-TQ and the target<n>-wide property have value 1 (to
indicate that the corresponding capability is enabled for that target), or 0 (to
indicate that the capability is disabled for that targe). See prtconf (1M) (verbose
option) for details on viewing the ncrs properties.

scsi, instance #0
Driver properties:

name <target6-TQ> length <4>
value <0x00000000>.

name <target6-wide> length <4>
value <0x00000000>.

name <target6-sync-speed> length <4>
value <0x00002710>.

name <target1-TQ> length <4>
value <0x00000001>.

name <target1-wide> length <4>
value <0x00000000>.

name <target1-sync-speed> length <4>
value <0x00002710>.

name <target0-TQ> length <4>
value <0x00000001>.

name <target0-wide> length <4>
value <0x00000001>.

name <target0-sync-speed> length <4>
value <0x00009c40>.

name <scsi-options> length <4>
value <0x000007f8>.

name <scsi-watchdog-tick> length <4>
value <0x0000000a>.

name <scsi-tag-age-limit> length <4>
value <0x00000002>.

name <scsi-reset-delay> length <4>
value <0x00000bb8>.

name <latency-timer> length <4>
value <0x00000088>.

name <cache-line-size> length <4>
value <0x00000010>.

Last modified 20 April 1999 SunOS 5.8 359

null(7D) Devices

NAME null – the null file, also called the null device

SYNOPSIS /dev/null

DESCRIPTION Data written on the null special file, /dev/null , is discarded.

Reads from a null special file always return 0 bytes.

FILES /dev/null

360 SunOS 5.8 Last modified 18 Sep 1992

Devices ocf_escr1(7D)

NAME ocf_escr1 – Sun external serial smart card terminal driver

DESCRIPTION The ocf_escr1 driver is an OpenCard Framework (OCF)-compliant card
terminal driver for the Sun external serial smart card reader.

APPLICATION
PROGRAMMING

INTERFACE

The ocf_escr1 driver is part of the OCF framework stack and is started by the
OCF startup script. The Sun serial smart card reader requires a host serial port
and is accessed through the character-special devices. The reader is powered
from the keyboard port.

FILES /usr/share/lib/smartcard/scmrsr3.jar
Java-archived driver class files

/dev/cua/x
Asynchronous serial line using port x

SEE ALSO ports (1M), smartcard (1M), smartcard (5)

Last modified 8 Jul 1999 SunOS 5.8 361

ocf_ibutton(7D) Devices

NAME ocf_ibutton – iButton Smart Card terminal driver

DESCRIPTION The ocf_ibutton smart card terminal driver is an OpenCard Framework
(OCF)-compliant terminal driver for the Dallas Semiconductor iButton reader.

APPLICATION
PROGRAMMING

INTERFACE

The ocf_ibutton smart card terminal driver is part of the OCF framework
stack and is started by the OCF startup script. The iButton reader requires a host
serial port and is accessed through the character-special devices.

FILES /usr/share/lib/smartcard/ibutton.jar
Java-archived driver class files

/dev/cua/x
Asynchronous serial line using port x

SEE ALSO ports (1M), smartcard (1M), smartcard (5)

362 SunOS 5.8 Last modified 8 Jul 1999

Devices ocf_iscr1(7D)

NAME ocf_iscr1 – I2C smart card card terminal driver

DESCRIPTION The ocf_iscr1 I2C smart card card terminal driver is an OpenCard Framework
(OCF)-compliant terminal driver for SCM Microsystems Smart Transporter chips
that feature the I2C bus interface.

APPLICATION
PROGRAMMING

INTERFACE

The ocf_iscr1 I2C driver is part of the OCF framework stack and is
started by the OCF startup script. The smart card reader requires the
/platform/sun4u/kernel/drv/sparcv9/scmi2c Solaris hardware device
driver to be installed and present to work. The smart card reader driver also
requires device node /dev/scmi2c n, where n is the nth SCM I2C card terminal
reader installed.

FILES /usr/share/lib/smartcard/scmi2c.jar
Java-archived driver class files

/dev/scmi2c n
SCM Microsystems Smart Transporter chip device node

/platform/sun4u/kernel/drv/sparcv9/scmi2c
SCM Microsystems Smart Transporter chip kernel module

SEE ALSO smartcard (1M), smartcard (5)

Last modified 8 Jul 1999 SunOS 5.8 363

ohci(7D) Devices

NAME ohci – OpenHCI host controller driver

SYNOPSIS usb@unit-address

DESCRIPTION The ohci driver is a USBA (Solaris USB Architecture) compliant nexus
driver that supports the OpenHCI Host Controller Interface Specification
1.0a, an industry standard developed by Compaq, Microsoft, and National
Semiconductor.

The ohci driver supports bulk, interrupt, and control transfers. ohci supports
the nexus device control interface.

FILES /kernel/drv/ohci
32 bit ELF kernel module

/kernel/drv/sparcv9/ohci
64 bit ELF kernel module

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Availability SUNWusb, SUNWusbx

SEE ALSO hid (7D), hubd (7D) uhci (7D), scsa2usb (7D), usb_mid (7D)

Writing Device Drivers

Universal Serial Bus Specification 1.0 and 1.1

Open Host Controller Interface Specification for USB 1.0a

DIAGNOSTICS None. All host controller errors are passed to the client drivers and root hub
errors are documented in hubd (7D).

364 SunOS 5.8 Last modified 8 Nov 1999

Devices openprom(7D)

NAME openprom – PROM monitor configuration interface

SYNOPSIS #include <sys/fcntl.h>

#include <sys/types.h>

#include <sys/openpromio.h>

open("/dev/openprom", mode);

DESCRIPTION The internal encoding of the configuration information stored in EEPROM or
NVRAM varies from model to model, and on some systems the encoding is
“hidden” by the firmware. The openprom driver provides a consistent interface
that allows a user or program to inspect and modify that configuration, using
ioctl (2) requests. These requests are defined in <sys/openpromio.h> :

struct openpromio {
uint_t oprom_size; /* real size of following data */
union {

char b[1]; /* NB: Adjacent, Null terminated */
int i;

} opio_u;
};
#define oprom_array opio_u.b /* property name/value array */
#define oprom_node opio_u.i /* nodeid from navigation config-ops */
#define oprom_len opio_u.i /* property len from OPROMGETPROPLEN */
#define OPROMMAXPARAM 32768 /* max size of array (advisory) */

For all ioctl (2) requests, the third parameter is a pointer to a struct
openpromio . All property names and values are null-terminated strings; the
value of a numeric option is its ASCII representation.

IOCTLS OPROMGETOPT This ioctl takes the null-terminated name of
a property in the oprom_array and returns its
null-terminated value (overlaying its name).
oprom_size should be set to the size of oprom_array;
on return it will contain the size of the returned
value. If the named property does not exist, or if
there is not enough space to hold its value, then
oprom_size will be set to zero. See BUGSbelow.

OPROMSETOPT This ioctl takes two adjacent strings in
oprom_array; the null-terminated property name
followed by the null-terminated value.

OPROMSETOPT2 This ioctl is similar to OPROMSETOPT,except that
it uses the difference between the actual user
array size and the length of the property name
plus its null terminator.

Last modified 13 Jan 1997 SunOS 5.8 365

openprom(7D) Devices

OPROMNXTOPT This ioctl is used to retrieve properties
sequentially. The null-terminated name of a
property is placed into oprom_array and on
return it is replaced with the null-terminated
name of the next property in the sequence, with
oprom_size set to its length. A null string on input
means return the name of the first property; an
oprom_size of zero on output means there are
no more properties.

OPROMNXT
OPROMCHILD
OPROMGETPROP
OPROMNXTPROP These ioctls provide an interface to the raw

config_ops operations in the PROM monitor. One
can use them to traverse the system device tree;
see prtconf (1M).

OPROMGETPROPLEN This ioctl provides an interface to the
property length raw config op. It takes the name of
a property in the buffer, and returns an integer in
the buffer. It returns the integer -1 if the property
does not exist; 0 if the property exists, but has no
value (a boolean property); or a positive integer
which is the length of the property as reported by
the PROM monitor. See BUGS below.

OPROMGETVERSION This ioctl returns an arbitrary and
platform-dependent NULL-terminated string in
oprom_array, representing the underlying version
of the firmware.

ERRORS EAGAIN There are too many opens of the /dev/openprom device.

EFAULT A bad address has been passed to an ioctl (2) routine.

EINVAL The size value was invalid, or (for OPROMSETOPT) the
property does not exist, or and invalid ioctl is being issued.

ENOMEM The kernel could not allocate space to copy the user’s
structure.

EPERM Attempts have been made to write to a read-only entity, or
read from a write only entity.

ENXIO Attempting to open a non-existent device.

366 SunOS 5.8 Last modified 13 Jan 1997

Devices openprom(7D)

EXAMPLES EXAMPLE 1 oprom_array Data Allocation and Reuse

The following example shows how the oprom_array is allocated and reused for
data returned by the driver.

/*
* This program opens the openprom device and prints the platform
* name (root node name property) and the prom version.
*
* NOTE: /dev/openprom is readable only by user ’root’ or group ’sys’.
*/

#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/openpromio.h>
#define min(a, b) (a < b ? a : b)
#define max(a, b) (a > b ? a : b)
#define MAXNAMESZ 32 /* Maximum property *name* size */
#define BUFSZ 1024 /* A Handly default buffer size */
#define MAXVALSZ (BUFSZ - sizeof (int))
static char *promdev = "/dev/openprom";
/*

* Allocate an openpromio structure big enough to contain
* a bufsize’d oprom_array. Zero out the structure and
* set the oprom_size field to bufsize.
*/

static struct openpromio *
opp_zalloc(size_t bufsize)
{

struct openpromio *opp;
opp = malloc(sizeof (struct openpromio) + bufsize);
(void) memset(opp, 0, sizeof (struct openpromio) + bufsize);
opp->oprom_size = bufsize;
return (opp);

}
/*

* Free a ’struct openpromio’ allocated by opp_zalloc
*/

static void
opp_free(struct openpromio *opp)
{

free(opp);
}
/*

* Get the peer node of the given node. The root node is the peer of zero.
* After changing nodes, property lookups apply to that node. The driver
* ’remembers’ what node you are in.
*/

static int
peer(int nodeid, int fd)
{

struct openpromio *opp;
int i;

Last modified 13 Jan 1997 SunOS 5.8 367

openprom(7D) Devices

opp = opp_zalloc(sizeof (int));
opp->oprom_node = nodeid;
if (ioctl(fd, OPROMNEXT, opp) < 0) {

perror("OPROMNEXT");
exit(1);

}
i = opp->oprom_node;
opp_free(opp);
return(i);

}
int
main(void)
{

struct openpromio *opp;
int fd, proplen;
size_t buflen;
if ((fd = open(promdev, O_RDONLY)) < 0) {

fprintf(stderr, "Cannot open openprom device\n");
exit(1);

}
/*

* Get and print the length and value of the
* root node ’name’ property
*/

(void) peer(0, fd); /* Navigate to the root node */
/*

* Allocate an openpromio structure sized big enough to
* take the string "name" as input and return the int-sized
* length of the ’name’ property.
* Then, get the length of the ’name’ property.
*/

buflen = max(sizeof (int), strlen("name") + 1);
opp = opp_zalloc(buflen);
(void) strcpy(opp->oprom_array, "name");
if (ioctl(fd, OPROMGETPROPLEN, opp) < 0) {

perror("OPROMGETPROPLEN");
/* exit(1); */
proplen = 0; /* down-rev driver? */

} else
proplen = opp->oprom_len;

opp_free(opp);
if (proplen == -1) {

printf("’name’ property does not exist!\n");
exit (1);

}
/*

* Allocate an openpromio structure sized big enough
* to take the string ’name’ as input and to return
* ’proplen + 1’ bytes. Then, get the value of the
* ’name’ property. Note how we make sure to size the
* array at least one byte more than the returned length
* to guarantee NULL termination.
*/

buflen = (proplen ? proplen + 1 : MAXVALSZ);
buflen = max(buflen, strlen("name") + 1);

368 SunOS 5.8 Last modified 13 Jan 1997

Devices openprom(7D)

opp = opp_zalloc(buflen);
(void) strcpy(opp->oprom_array, "name");
if (ioctl(fd, OPROMGETPROP, opp) < 0) {

perror("OPROMGETPROP");
exit(1);

}
if (opp->oprom_size != 0)

printf("Platform name <%s> property len <%d>\n",
opp->oprom_array, proplen);

opp_free(opp);
/*

* Allocate an openpromio structure assumed to be
* big enough to get the ’prom version string’.
* Get and print the prom version.
*/

opp_zalloc(MAXVALSZ);
opp->oprom_size = MAXVALSZ;
if (ioctl(fd, OPROMGETVERSION, opp) < 0) {

perror("OPROMGETVERSION");
exit(1);

}
printf("Prom version <%s>\n", opp->oprom_array);
opp_free(opp);
(void) close(fd);
return (0);

}

FILES /dev/openprom PROM monitor configuration interface

SEE ALSO eeprom (1M), monitor (1M), prtconf (1M), ioctl (2), mem(7D)

BUGS There should be separate return values for non-existent properties as opposed
to not enough space for the value.

An attempt to set a property to an illegal value results in the PROM setting it to
some legal value, with no error being returned. An OPROMGETOPTshould be
performed after an OPROMSETOPTto verify that the set worked.

Some PROMS lie about the property length of some string properties, omitting
the NULL terminator from the property length. The openprom driver attempts
to transparently compensate for these bugs when returning property values by
NULL terminating an extra character in the user buffer if space is available in the
user buffer. This extra character is excluded from the oprom_size field returned
from OPROMGETPROPand OPROMGETOPTand excluded in the oprom_len field
returned from OPROMGETPROPLENbut is returned in the user buffer from the
calls that return data, if the user buffer is allocated at least one byte larger than
the property length.

Last modified 13 Jan 1997 SunOS 5.8 369

pcata(7D) Devices

NAME pcata – PCMCIA ATA card device driver

SYNOPSIS pcata@socket#:a -u

pcata@socket#:a -u,raw

DESCRIPTION The PCMCIA ATA card device driver supports PCMCIA ATA disk and flash
cards that follow the following standards:

� PC card 2.01 compliance (MBR+fdisk table required for all platforms).

� PC card ATA 2.01 compliance.

� PC card services 2.1 compliance.

The driver supports standard PCMCIA ATA cards that contain a Card
Information Structure (CIS). For PCMCIA, nodes are created in /devices that
include the socket number as one component of the device name referred to by
the node. However, the names in /dev , /dev/dsk , and /dev/rdsk follow the
current conventions for ATA devices, which do not encode the socket number in
any part of the name. For example, you may have the following:

Platform
/devices name

/dev/dsk name

IA
/devices/isa/pcic@1,3e0
/disk@0:a

/dev/dsk/c1d0s0

SPARC
/devices/iommu@f,e0000000
/sbus@f,e0001000
/SUNW, pcmcia@3,0
/disk@0:a

/dev/dsk/c1d0s0

FILES /kernel/drv/pcata pcata driver

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsdpr

SEE ALSO format (1M), mount (1M), newfs (1M), pcmcia (4), attributes (5), pcfs (7FS)

370 SunOS 5.8 Last modified 20 Jun 1997

Devices pcelx(7D)

NAME pcelx – 3COM EtherLink III PCMCIA Ethernet Adapter

SYNOPSIS network@ <socket>:pcelx <socket>

DESCRIPTION The pcelx driver supports the 3COM EtherLink III PCMCIA PC Card as a
standard Ethernet type of device conforming to the DLPI interface specification.
The driver supports the hot-plugging of the PC Card.

The PPA (Physical Point of Attachment) is defined by the socket number the PC
Card is inserted in. This means that for IP use, the PC Card should always be
plugged into the same socket that the network interface was initially brought
up on or else a network reconfiguration should be done to take down the old
interface and bring up the new one.

The 3C589, 3C589B, and 3C589C versions of the PC Card are supported on the IA
platform. The 3C589B and 3C589C are supported on the SPARC platform.

FILES /kernel/drv/pcelx pcelx driver

/dev/pcelx DLPI Style 2 device

/dev/pcelx n DLPI Style 1 device where: n is the PCMCIA
physical socket number.

SEE ALSO pcmcia (4)

Last modified 18 Feb 1997 SunOS 5.8 371

pcfs(7FS) File Systems

NAME pcfs – DOS formatted file system

SYNOPSIS #include <sys/param.h>
#include <sys/mount.h>
#include <sys/fs/pc_fs.h>
int mount (const char *spec, const char *dir, int mflag, "pcfs", structpcfs_args, struct *pc_argp,
sizeof (struct pcfs_args));

DESCRIPTION pcfs is a file system type that allows users direct access to files on DOS
formatted disks from within the SunOS operating system. Once mounted, pcfs
provides standard SunOS file operations and semantics. That is, users can create,
delete, read, and write files on a DOS formatted disk. They can also create and
delete directories and list files in a directory.

The pcfs file system contained on the block special file identified by spec
is mounted on the directory identified by dir. spec and dir are pointers to
pathnames. mflag specifies the mount options. The MS_DATA bit in mflag must
be set. Mounting a pcfs file system requires a pointer to a structure containing
mount flags and local timezone information, * pc_argp:

struct pcfs_args {
int timezone; /* seconds west of Greenwich */
int daylight; /* type of dst correction */
int flags;
};

The information required in the timezone and daylight members of this
structure is described in ctime (3C). flags can contain the PCFS_MNT_FOLDCASE
flag. Fold names read from the file system to lowercase.

Mounting File
Systems

Use the following command to mount pcfs from diskette:

mount −F pcfs device-special directory-name

You can use:

mount directory-name

if the following line is in your /etc/vfstab file:

device-special - directory-namepcfs − no rw

Use the following command to mount pcfs from non-diskette media:

mount −F pcfs device-special: logical-drive directory-name

You can use:

mount directory-name

372 SunOS 5.8 Last modified 1 Apr1999

File Systems pcfs(7FS)

if the following line is in your /etc/vfstab file:

device-special: logical_drive − directory-name pcfs − no rw

device-special specifies the special block device file for the diskette
(/dev/diskette N) or the entire hard disk (/dev/dsk/c Nt NdNp0 for a SCSI
disk, and /dev/dsk/c NdNp0 for IDE disks) or the PCMCIA pseudo-floppy
memory card (/dev/dsk/c Nt NdNsN).

logical-drive specifies either the DOS logical drive letter (c through z) or a drive
number (1 through 24). Drive letter c is equivalent to drive number 1 and
represents the Primary DOS partition on the disk; drive letters d through z are
equivalent to drive numbers 2 through 24 , and represent DOS drives within
the Extended DOS partition. Note that device-special and logical-drive must be
separated by a colon.

directory-name specifies the location where the file system is mounted.

For example, to mount the Primary DOS partition from a SCSI hard disk, use:

mount −F pcfs /dev/dsk/c Nt NdNp0:c /pcfs/c

To mount the first logical drive in the Extended DOS partition from an IDE
hard disk, use:

mount −F pcfs /dev/dsk/c NdNp0:d /pcfs/d

To mount a DOS diskette in the first floppy drive, if Volume Management
is not running (see vold (1M)) use:

mount −F pcfs /dev/diskette /pcfs/a

If Volume Management is running, then running volcheck (1) will automatically
mount the floppy and some removable disks for the user.

To mount a PCMCIA pseudo-floppy memory card, with Volume Management
not running (or not managing the PCMCIA media), use:

mount −F pcfs /dev/dsk/c Nt NdNsN /pcfs

Conventions Files and directories created through pcfs have to comply with either the DOS
short file name convention or the long file name convention introduced with
Windows 95. The DOS short file name convention is of the form filename[.ext],

Last modified 1 Apr1999 SunOS 5.8 373

pcfs(7FS) File Systems

where filename generally consists of from one to eight upper-case characters,
while the optional ext consists of from one to three upper-case characters.

The long file name convention is much closer to Solaris file names. A long file
name can consist of any any characters valid in a short file name, lowercase
letters, non-leading spaces, the characters +,;=[] , any number of periods, and
can be up to 255 characters long. Long file names have an associated short file
name for systems that do not support long file names (such as earlier releases
of Solaris). The short file name is not visible if the system recognizes long file
names. pcfs generates a unique short name automatically when creating a
long file name.

Given a long file name such as This is a really long filename.TXT ,
the short file name will generally be of the form THISIS~ N.TXT , where
N is a number. So, this long file name will probably get the short name
THISIS~1.TXT , or THISIS~2.TXT if THISIS~1.TXT already exits (or
THISIS~3.TXT if both exist, and so forth). If you need to use pcfs file systems
on systems that do not support long file names, you may want to continue
following the short file name conventions. See EXAMPLES.

When creating a file name, pcfs creates a short file name if it fits the DOS
short file name format, otherwise it creates a long file name. This is because
long file names take more directory space. In fact, since the root directory of a
pcfs file system is fixed size, long file names in the root directory should be
avoided if possible.

When displaying file names, pcfs shows them exactly as they are on the media
(so short names show up as all uppercase, and long file names retain their case).
The old behavior of pcfs was to fold all names to lowercase, which can be
forced with the PCFS_MNT_FOLDCASEmount option. All file name searches
within pcfs , however, are treated as if they were uppercase, so readme.txt
and ReAdMe.TxT refer to the same file.

To format a diskette or a PCMCIA pseudo-floppy memory card in DOS format in
the SunOS system, use either the fdformat −d or the DOS FORMATcommand.

Boot Partitions On IA systems, hard drives may contain an fdisk partition reserved for the
Solaris boot utilities. These partitions are special instances of pcfs . You can
mount an IA boot partition with the command:

mount −F pcfs device-special:boot directory-name

or you can use:

mount directory-name

if the following line is in your /etc/vfstab file:

374 SunOS 5.8 Last modified 1 Apr1999

File Systems pcfs(7FS)

device-special:boot − directory-name pcfs − no rw

device-special specifies the special block device file for the entire hard disk
(/dev/dsk/c Nt NdNp0)

directory-name specifies the location where the file system is mounted.

All files on a boot partition are owned by super-user. Only the super-user may
create, delete, or modify files on a boot partition.

EXAMPLES EXAMPLE 1 Sample Displays of File Names

If you copy a file financial.data from a UNIX file system to pcfs , it
will show up as financial.data in pcfs , but will probably show up as
FINANC~1.DAT in systems that do not support long file names.

The following file names are not legal short file names, but are legal long file
names :

test.sh.orig
data+
.login

Other systems that do not support long file names may well see:
TESTSH~1.ORI
DATA~1
LOGIN~1

The short file name is generated from the initial characters of the long file name,
so it is better to differentiate names in the first few characters. For example,
these names:

WorkReport.January.Data
WorkReport.February.Data
WorkReport.March.Data

result in these short names, which are not very distinguishable:
WORKRE~1.DAT
WORKRE~2.DAT
WORKRE~13.DAT

These names, however:
January.WorkReport.Data
February.WorkReport.Data
March.WorkReport.Data

Last modified 1 Apr1999 SunOS 5.8 375

pcfs(7FS) File Systems

result in the more descriptive short names:
JANUAR~1.DAT
FEBRUA~1.DAT
MARCHW~1.DAT

FILES /usr/lib/fs/pcfs/mount pcfs mount command

/usr/kernel/fs/pcfs 32-bit kernel module

/usr/kernel/fs/sparcv9/pcfs 64-bit kernel module

SEE ALSO chgrp (1), chown (1), dos2unix (1), eject (1), fdformat (1), unix2dos (1),
volcheck (1), mount (1M), mount_pcfs (1M), vold (1M), ctime (3C),
vfstab (4), pcmem(7D)

WARNINGS Do not physically eject a DOS floppy while the device is still mounted as pcfs .
If Volume Management is managing a device, use the eject (1) command
before physically removing media.

When mounting pcfs on a hard disk, make sure the first block on that device
contains a valid fdisk partition table.

Because pcfs has no provision for handling owner-IDs or group-IDs on files,
chown (1) or chgrp (1) may generate various errors. This is a limitation of pcfs ,
but it should not cause problems other than error messages.

NOTES The following characters are the only ones allowed in pcfs short file names
and extensions:

0-9
A-Z
$#&@!%()-{}<>‘_^~|’

SunOS and DOS use different character sets and have different requirements
for the text file format. Use the dos2unix (1) and unix2dos (1) commands to
convert files between them.

pcfs offers a convenient transportation vehicle for files between Sun
Workstations and PCs. Since the DOS disk format was designed for use under
DOS, it is quite inefficient to operate under the SunOS system. Therefore, it
should not be used as the format for a regular local storage. Use ufs instead for
local storage within the SunOS system.

Although long file names can contain spaces (just as in UNIX file names), some
utilities may be confused by them.

This implementation of pcfs conforms to the behavior exhibited by Windows
95 version 4.00.950.

376 SunOS 5.8 Last modified 1 Apr1999

File Systems pcfs(7FS)

BUGS pcfs should handle the disk change condition in the same way that DOS does,
so that the user does not need to unmount the file system to change floppies.

When listing or searching a directory, pcfs does not include files with the
hidden or system bits set.

Last modified 1 Apr1999 SunOS 5.8 377

pcic(7D) Devices

NAME pcic – Intel i82365SL PC Card Interface Controller

DESCRIPTION The Intel i82365SL PC Card Interface Controller provides one or more PCMCIA
PC Card sockets. The pcic driver implements a PCMCIA bus nexus driver.

The driver provides basic support for the Intel 82365SL and compatible chips.
The chips that have been tested are:

� Intel 82365SL

� Cirrus Logic PD6710/PD6720/PD6722

� Vadem VG365/VG465/VG468/VG469

� Toshiba PCIC and ToPIC

� Ricoh RF5C366

� Texas Instruments PCI1130/PCI1131/PCI1031

While most systems using one of these chips should work, there are enough
options left to the hardware designer that are not software detectable that some
systems will not be supported. Note that systems with CardBus interfaces are
only supported in the non-legacy mode. Systems that only initialize the bridge
to legacy mode and don’t configure the PCI memory will not be supported.

Direct access to the PCMCIA hardware is not supported. All device access must
be through the Card Services interface of the DDI.

CONFIGURATION
Driver Configuration There is one driver configuration property defined in the pcic.conf file.

interrupt-priorities=11; This property must be defined and
must not be modified from the
default value.

FILES /kernel/drv/pcic pcic driver

/kernel/drv/pcic.conf pcic configuration file

SEE ALSO pcmcia (4) and stp4020 (7D)

378 SunOS 5.8 Last modified 20 Mar 1997

STREAMS Modules pckt(7M)

NAME pckt – STREAMS Packet Mode module

SYNOPSIS int ioctl(fd, I_PUSH, "pckt");

DESCRIPTION pckt is a STREAMS module that may be used with a pseudo terminal to
packetize certain messages. The pckt module should be pushed (see I_PUSH on
streamio (7I)) onto the master side of a pseudo terminal.

Packetizing is performed by prefixing a message with an M_PROTOmessage.
The original message type is stored in the 1 byte data portion of the M_PROTO
message.

On the read-side, only the M_PROTO, M_PCPROTO, M_STOP, M_START, M_STOPI,
M_STARTI, M_IOCTL, M_DATA, M_FLUSH, and M_READmessages are packetized.
All other message types are passed upstream unmodified.

Since all unread state information is held in the master’s stream head read
queue, flushing of this queue is disabled.

On the write-side, all messages are sent down unmodified.

With this module in place, all reads from the master side of the pseudo terminal
should be performed with the getmsg (2) or getpmsg () function. The control
part of the message contains the message type. The data part contains the
actual data associated with that message type. The onus is on the application to
separate the data into its component parts.

SEE ALSO getmsg (2), ioctl (2), ldterm (7M), ptem (7M), streamio (7I), termio (7I)

STREAMS Programming Guide

Last modified 3 Jul 1990 SunOS 5.8 379

pcmem(7D) Devices

NAME pcmem – PCMCIA memory card nexus driver

DESCRIPTION The pcmemdriver identifies the type of memory card in the system and will
allow future support of other memory device types.

The PCMCIA memory card nexus driver supports PCMCIA memory card client
drivers. There are no user-configurable options for this driver.

FILES /kernel/drv/pcmem pcmem driver

SEE ALSO pcram (7D)

380 SunOS 5.8 Last modified 20 Mar 1995

Devices pcn(7D)

NAME pcn – AMD PCnet Ethernet controller device driver

SYNOPSIS /dev/pcn

DESCRIPTION The pcn Ethernet driver is a multi-threaded, loadable, clonable driver for the
AMD PCnet family of Ethernet controllers that use the Generic LAN Driver
(GLD) facility to implement the required STREAMS and Data Link Provider (see
dlpi (7P)) interfaces.

This driver supports a number of integrated motherboards and add-in adapters
based on the AMD PCnet-ISA, PCnet-PCI, and PCnet-32 controller chips. The
pcn driver functions include controller initialization, frame transmit and receive,
functional addresses, promiscuous and multicast support, and error recovery
and reporting.

APPLICATION
PROGRAMMING

INTERFACE

The cloning character-special device, /dev/pcn , is used to access all PCnet
devices installed in the system.

pcn and DLPI The pcn driver uses the Solaris GLDmodule which handles all the STREAMS
and DLPI specific functions of the driver. It is a style 2 DLPI driver and therefore
supports only the connectionless mode of data transfer. Thus, a DLPI user
should issue a DL_ATTACH_REQprimitive to select the device to be used. Valid
DLPI primitives are defined in <sys/dlpi.h> . Refer to dlpi (7P) for more
information.

The device is initialized on the first attach and de-initialized (stopped) on the
last detach.

The values returned by the driver in the DL_INFO_ACKprimitive in response to
a DL_INFO_REQfrom the user are as follows:

� The maximum SDU is 1500 (ETHERMTU- defined in <sys/ethernet.h>).

� The minimum SDU is 0.

� The DLSAPaddress length is 8.

� The MAC type is DL_ETHER.

� The sap length value is −2, meaning the physical address component
is followed immediately by a 2-byte sap component within the DLSAP
address.

� The service mode is DL_CLDLS.

� No optional quality of service (QOS) support is included at present, so
the QOS fields are 0.

� The provider style is DL_STYLE2.

� The version is DL_VERSION_2.

Last modified 1 Jan 1997 SunOS 5.8 381

pcn(7D) Devices

� The broadcast address value is the Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

Once in the DL_ATTACHEDstate, the user must send a DL_BIND_REQto associate
a particular Service Access Point (SAP) with the stream.

FILES /dev/pcn character special device

/kernel/drv/pcn.conf configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5), standards (5), dlpi (7P), streamio (7I)

Writing Device Drivers

STREAMS Programming Guide

382 SunOS 5.8 Last modified 1 Jan 1997

Devices pcram(7D)

NAME pcram – PCMCIA RAM memory card device driver

SYNOPSIS memory@<socket>/pcram@<technology>,0:c

memory@<socket>/pcram@<technology>,0:c,raw

DESCRIPTION The PCMCIA RAM memory card device driver supports disk-like I/O access to
any standard PCMCIA static random access memory (SRAM) card and dynamic
random access memory (DRAM) card. The driver supports standard PCMCIA
SRAM/DRAM cards that contain a Card Information Structure (CIS). RAM card
densities in the 512Kilobytes to 64Mbyte range are supported.

FILES /kernel/drv/pcram pcram driver

/dev/dsk/c nt ndnsn block files

/dev/rdsk/c nt ndnsn raw fileswhere:

cn controller n

t n technology type n

0x1 ROM,0x2 OTPROM,0x3 EPROM,

0x4 EEPROM,0x5 FLASH,0x6 SRAM,

0x7 DRAM

dn technology region in type n

sn slice n

SEE ALSO fdformat (1), pcmcia (4), dkio (7I), pcmem(7D)

Last modified 19 Jul 1996 SunOS 5.8 383

pcscsi(7D) Devices

NAME pcscsi – low-level module for the AMD PCscsi, PCscsi II, PCnet-SCSI, and Qlogic
QLA510 PCI-to-SCSI bus adapters

SYNOPSIS pcscsi@ ioaddr,0

DESCRIPTION The pcscsi module provides low-level interface routines between the common
disk/tape I/O subsystem and the Am53C974 (PCscsi), Am53C974A (PCscsi II),
Am79C974 (PCnet-SCSI) (SCSI device only), and the Qlogic QLA510 Small
Computer System Interface (SCSI) controllers.

The pcscsi module can be configured for disk and streaming tape support
for one host bus adapter device. Each host bus adapter device must be the sole
initiator on a SCSI bus. Auto-configuration code determines if the adapter is
present on the PCI bus, what its configuration is, and what types of devices
are attached to it.

Because these are PCI devices, any configuration is done through the PCI BIOS.
Generally these settings can be accessed through a CMOS utility.

CONFIGURATION The driver attempts to initialize itself in accordance with the configuration
the PCI BIOS assigned to the chip.

While there is information found in the configuration file, pcscsi.conf , this
information is used only by the I/O subsystem. There are no user-configurable
options.

FILES /kernel/drv/pcscsi.conf configuration file for the pcscsi
driver

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO driver.conf (4), sysbus (4), attributes (5)

384 SunOS 5.8 Last modified 12 May 1997

Devices pcser(7D)

NAME pcser – PCMCIA serial card device driver

SYNOPSIS serial@ <socket>:pcser

serial@ <socket>:pcser,cu

DESCRIPTION The PCMCIA serial card device driver supports asynchronous serial I/O access
to any PCMCIA card that that complies with Revision 2.1 of the PCMCIA
Standard and which presents an 8250-type UART interface.

FILES /kernel/drv/pcser pcser driver

/dev/term/pc n dial-in devices

/dev/cua/pc n dial-out devices where: n is the PCMCIA physical
socket number.

SEE ALSO cu (1C), tip (1), uucp (1C), autopush (1M), pcmciad (1M), ports (1M),
ioctl (2), open (2), pcmcia (4), ldterm (7M), termio (7I), ttcompat (7M)

DIAGNOSTICS pcser: socket n soft silo overflow
The driver’s character input ring buffer overflowed before it could be
serviced.

pcser: socket n unable to get CIS information
The CIS on the card has incorrect information or is in an incorrect format.
This message usually indicates a non-compliant card.

Last modified 19 Jul 1996 SunOS 5.8 385

pf_key(7P) Protocols

NAME pf_key – security association database

SYNOPSIS #include <sys/types.h>
#include <sys/socket.h>
#include <net/pfkeyv2.h>

int socket (PF_KEY,SOCK_RAW,PF_KEY_V2);

DESCRIPTION Keying information for IPsec security services is maintained in security
association databases “SADBs)”. The security associations (“SAs”) are used to
protect both inbound and outbound packets.

A user process (or possibly multiple co-operating processes) maintains SADBs
by sending messages over a special kind of socket. This is analogous to the
method described in route (7P). Only a superuser may access an SADB.

The operating system may spontaneously emit messages in response to external
events, such as a request for a new SA for an outbound datagram, or to report
the expiration of an existing SA.

One opens the channel for passing SADB control messages by using the socket
call shown in the SYNOPSIS section above. More than one key socket can
be open per system.

Messages are formed by a small base header, followed by a number, zero or
more, of extension messages, some of which require additional data following
them. The base message and all extensions must be eight-byte aligned. An
example message is the GETmessage, which requires the base header, the SA
extension, and the ADDRESS_DSTextension.

Messages Messages include:

#define SADB_GETSPI /* Get a new SPI value from the system. */
#define SADB_UPDATE /* Update an SA. */
#define SADB_ADD /* Add a fully-formed SA. */
#define SADB_DELETE /* Delete an SA. */
#define SADB_GET /* Get an SA */
#define SADB_ACQUIRE /* Kernel needs a new SA. */
#define SADB_REGISTER /* Register to receive ACQUIRE messages. */
#define SADB_EXPIRE /* SA has expired. */
#define SADB_FLUSH /* Flush all SAs. */
#define SADB_DUMP /* Get all SAs. (Unreliable) */
#define SADB_X_PROMISC /* Listen promiscuously */
#define SADB_X_PCHANGE /* Passive listener change (passive ACQUIRE) */

The base message header consists of:

struct sadb_msg {
uint8_t sadb_msg_version; /* Set to PF_KEY_V2, for compatibility */
uint8_t sadb_msg_type; /* Message type */
uint8_t sadb_msg_errno; /* Why message failed */

386 SunOS 5.8 Last modified 16 Feb 1999

Protocols pf_key(7P)

uint8_t sadb_msg_satype; /* Which security service */
uint16_t sadb_msg_len; /* Length in 8-byte units */
uint16_t sadb_msg_reserved; /* Zero out */
uint32_t sadb_msg_seq; /* For message originator */
uint32_t sadb_msg_pid; /* Identify originator */

};

Extension types include:

#define SADB_EXT_SA /* SA information */
#define SADB_EXT_LIFETIME_HARD /* Hard lifetime */
#define SADB_EXT_LIFETIME_SOFT /* Soft lifetime */
#define SADB_EXT_ADDRESS_SRC /* Source address */
#define SADB_EXT_ADDRESS_DST /* Destination address */
#define SADB_EXT_ADDRESS_PROXY /* Proxy address */
#define SADB_EXT_KEY_AUTH /* Authentication key */
#define SADB_EXT_KEY_ENCRYPT /* Encryption key */
#define SADB_EXT_IDENTITY_SRC /* Source certificate ID */
#define SADB_EXT_IDENTITY_DST /* Destination certificate ID */
#define SADB_EXT_SENSITIVITY /* Sensitivity information */
#define SADB_EXT_PROPOSAL /* Security proposal */
#define SADB_EXT_SUPPORTED_AUTH /* Supported authentication algorithms */
#define SADB_EXT_SUPPORTED_ENCRYPT /* Supported encryption algorithms */
#define SADB_EXT_SPIRANGE /* Range of possible SPIs */

Extension headers include:

Generic Extension Header

struct sadb_ext {
uint16_t sadb_ext_len; /* In 64-bit words, inclusive */
uint16_t sadb_ext_type; /* 0 is reserved */

};

Security Association Information Extension

struct sadb_sa {
uint16_t sadb_sa_len;
uint16_t sadb_sa_exttype; /* ASSOCIATION */
uint32_t sadb_sa_spi;
uint8_t sadb_sa_replay;
uint8_t sadb_sa_state;
uint8_t sadb_sa_auth;
uint8_t sadb_sa_encrypt;
uint32_t sadb_sa_flags;

};

Lifetime Extension

Last modified 16 Feb 1999 SunOS 5.8 387

pf_key(7P) Protocols

struct sadb_lifetime {
uint16_t sadb_lifetime_len;
uint16_t sadb_lifetime_exttype; /* SOFT, HARD, CURRENT */
uint32_t sadb_lifetime_allocations;
uint64_t sadb_lifetime_bytes;
uint64_t sadb_lifetime_addtime;
uint64_t sadb_lifetime_usetime;

};

Address Extension

struct sadb_address {
uint16_t sadb_address_len;
uint16_t sadb_address_exttype; /* SRC, DST, PROXY */
uint8_t sadb_address_proto; /* Proto for ports... */
uint8_t sadb_address_prefixlen; /* Prefix length. */
uint16_t sadb_address_reserved; /* Padding */

/* Followed by a sockaddr structure. */
};

Keying Material Extension

struct sadb_key {
uint16_t sadb_key_len;
uint16_t sadb_key_exttype; /* AUTH, ENCRYPT */
uint16_t sadb_key_bits;
uint16_t sadb_key_reserved;

/* Followed by actual key(s) in canonical (outbound proc.) order. */
};

Indentity Extension

struct sadb_ident {
uint16_t sadb_ident_len;
uint16_t sadb_ident_exttype; /* SRC, DST, PROXY */
uint16_t sadb_ident_type; /* FQDN, USER_FQDN, etc. */
uint16_t sadb_ident_reserved; /* Padding */
uint64_t sadb_ident_id; /* For userid, etc. */

/* Followed by an identity null-terminate C string if present. */
};

Sensitivity/Integrity Extension

struct sadb_sens {
uint16_t sadb_sens_len;
uint16_t sadb_sens_exttype; /* SENSITIVITY */
uint32_t sadb_sens_dpd;
uint8_t sadb_sens_sens_level;
uint8_t sadb_sens_sens_len; /* 64-bit words */
uint8_t sadb_sens_integ_level;
uint8_t sadb_sens_integ_len; /* 64-bit words */
uint32_t sadb_sens_reserved;

/*
* followed by two uint64_t arrays

388 SunOS 5.8 Last modified 16 Feb 1999

Protocols pf_key(7P)

* uint64_t sadb_sens_bitmap[sens_bitmap_len];
* uint64_t integ_bitmap[integ_bitmap_len];
*/

};

Proposal Extension

struct sadb_prop {
uint16_t sadb_prop_len;
uint16_t sadb_prop_exttype; /* PROPOSAL */
uint8_t sadb_prop_replay; /* Replay win. size. */
uint8_t sadb_prop_reserved[3];

/* Followed by sadb_comb[] array. */
};

A Combination Instance for a Proposal

struct sadb_comb {
uint8_t sadb_comb_auth;
uint8_t sadb_comb_encrypt;
uint16_t sadb_comb_flags;
uint16_t sadb_comb_auth_minbits;
uint16_t sadb_comb_auth_maxbits;
uint16_t sadb_comb_encrypt_minbits;
uint16_t sadb_comb_encrypt_maxbits;
uint32_t sadb_comb_reserved;
uint32_t sadb_comb_soft_allocations;
uint32_t sadb_comb_hard_allocations;
uint64_t sadb_comb_soft_bytes;
uint64_t sadb_comb_hard_bytes;
uint64_t sadb_comb_soft_addtime;
uint64_t sadb_comb_hard_addtime;
uint64_t sadb_comb_soft_usetime;
uint64_t sadb_comb_hard_usetime;

};

Supported Algorithms Extension

struct sadb_supported {
uint16_t sadb_supported_len;
uint16_t sadb_supported_exttype;
uint32_t sadb_supported_reserved;

};

An Algorithm Instance

struct sadb_alg {
uint8_t sadb_alg_id; /* Algorithm type. */
uint8_t sadb_alg_ivlen; /* IV len, in bits */
uint16_t sadb_alg_minbits; /* Min. key len (in bits) */
uint16_t sadb_alg_maxbits; /* Max. key length */
uint16_t sadb_alg_reserved;

};

Last modified 16 Feb 1999 SunOS 5.8 389

pf_key(7P) Protocols

Range of SPIs Extension

struct sadb_spirange {
uint16_t sadb_spirange_len;
uint16_t sadb_spirange_exttype; /* SPI_RANGE */
uint32_t sadb_spirange_min
uint32_t sadb_spirange_max;
uint32_t sadb_spirange_reserved;

};

MESSAGE USE AND
BEHAVIOR

Each message has a behavior. A behavior is defined as where the initial message
travels, for example, user to kernel, and what subsequent actions are expected to
take place. Contents of messages are illustrated as:

<base, REQUIRED EXTENSION, REQ., (OPTIONAL EXTENSION), (OPT)>

The SA extension is sometimes used only for its SPI field. If all other fields must
be ignored, this is represented by SA(*).

The lifetime extensions are represented with one to three letters after the word
lifetime, representing (H)ARD, (S)OFT, and (C)URRENT.

The address extensions are represented with one to three letters after the word
"address," representing (S)RC, (D)ST, (P)ROXY.

Note that when an error occurs, only the base header is sent. Typical errors
include:
EINVAL Various message improprieties, including SPI ranges that

are malformed, weak keys, and others.

ENOMEM Needed memory was not available.

ENSGSIZ The message exceeds the maximum length allowed.

EEXIST An SA (that is being added or created with GETSPI) already
exists.

ESRCH An SA could not be found.

The following are examples of message use and behavior:

SADB_GETSPI

Send a SADB_GETSPImessage from a user process to the kernel.

<base, address, SPI range>

The kernel returns the SADB_GETSPImessage to all listening processes.

390 SunOS 5.8 Last modified 16 Feb 1999

Protocols pf_key(7P)

<base, SA(*), address (SD)>

SADB_UPDATE

Send a SADB_UPDATEmessage from a user process to the kernel.

<base, SA, (lifetime(HS),) address(SD), (address(P), key (AE),
(identity(SD),) (sensitivity)>c

The kernel returns the SADB_UPDATEmessage to all listening processes.

<base, SA(*), address (SD)>

SADB_ADD

Send a SADB_ADDmessage from a user process to the kernel.

<base, SA, (lifetime(HS),) address(SD), (address(P),) key (AE),
(identity(SD),) (sensitivity)>

The kernel returns the SADB_ADDmessage to all listening processes.

<base, SA, (lifetime(HS),) address (SD),
(identity (SD),) (sensitivity)>

SADB_DELETE

Send a SADB_DELETEmessage from a user process to the kernel.

<base, SA (*), address (SD)>

The kernel returns the SADB_DELETEmessage to all listening processes.

<base, SA (*), address (SD)>

SADB_GET

Send a SADB_GETmessage from a user process to the kernel.

<base, SA (*), address (SD)>

Last modified 16 Feb 1999 SunOS 5.8 391

pf_key(7P) Protocols

The kernel returns the SADB_GETmessage to the socket that sent the SADB_GET
message.

<base, SA , (lifetime (HSC),) address SD), (address (P),) key (AE),
(identity (SD),) (sensitivity)>

SADB_ACQUIRE

The kernel sends a SADB_ACQUIREmessage to registered sockets. Note that
any GETSPI, ADD, or UPDATEcalls in reaction to an ACQUIREmust fill in the
sadb_msg_seq of those messages with the one in the ACQUIREmessage. The
address (SD) extensions must have the port fields filled in with the port numbers
of the session requiring keys if appropriate.

<base, address (SD), (address(P)), (identity(SD),)
(sensitivity,) proposal>

If key management fails, the user process should send an SADB_ACQUIREto
indicate failure.

<base>

SADB_REGISTER

Send a SADB_REGISTERmessage from a user process to the kernel.

<base>

The kernel returns the SADB_REGISTERmessage to registered sockets, with
algorithm types supported by the kernel being indicated in the supported
algorithms field. Note that this message may arrive asynchronously due to an
algorithm being loaded or unloaded into a dynamically linked kernel.

<base, supported>

SADB_EXPIRE

The kernel sends a SADB_EXPIREmessage to all listeners when the soft lmit of a
security association has been expired.

<base, SA, lifetime (C and one of HS), address (SD)>

392 SunOS 5.8 Last modified 16 Feb 1999

Protocols pf_key(7P)

SADB_FLUSH

Send a SADB_FLUSHmessage from a user process to the kernel.

<base>

The kernel returns the SADB_FLUSHmessage to all listening sockets.

<base>

SADB_DUMP

Send a SADB_DUMPmessage from a user process to the kernel.

<base>

Several SADB_DUMPmessages will return from the kernel to the sending socket.

<base, SA, (lifetime (HSC),) address (SD), (address (P),) key (AE),
(identity (SD),) sensitivity)>

To mark the end of a dump a single base header will arrive with its
sadb_mdg_seq set to 0.

<base>

SADB_X_PROMISC

Send a SADB_X_PROMISCmessage from a user process to the kernel.

<base>

The kernel returns the SADB_X_PROMISCmessage to all listening processes.

<base>

SADB_X_PCHANGE

Last modified 16 Feb 1999 SunOS 5.8 393

pf_key(7P) Protocols

The kernel sends a SADB_X_PCHANGEmessage to registered sockets. Note that
the address (SD) extensions must have the port fields filled in with the port
numbers of the session requiring keys if appropriate.

<base, address (SD), (identity (SD),)
(sensitivity,) (proposal)>

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcsrx (64-bit)

Interface Stability Evolving

SEE ALSO ipseckey (1M), ipsec (7P), ipsecah (7P), ipsecesp (7P), route (7P)

McDonald, D.L., Metz, C.W., and Phan, B.G., RFC 2367, PF_KEY Key
Management API, Version 2, The Internet Society, July 1998.

NOTES Time-based lifetimes may not expire with exact precision in seconds because
kernel load may affect the aging of SAs.

394 SunOS 5.8 Last modified 16 Feb 1999

STREAMS Modules pfmod(7M)

NAME pfmod – STREAMS Packet Filter Module

SYNOPSIS #include <sys/pfmod.h>

ioctl(fd, IPUSH, "pfmod"0;

DESCRIPTION pfmod is a STREAMS module that subjects messages arriving on its read queue
to a packet filter and passes only those messages that the filter accepts on to its
upstream neighbor. Such filtering can be very useful for user-level protocol
implementations and for networking monitoring programs that wish to view
only specific types of events.

Read-side Behavior pfmod applies the current packet filter to all M_DATAand M_PROTOmessages
arriving on its read queue. The module prepares these messages for examination
by first skipping over all leading M_PROTOmessage blocks to arrive at the
beginning of the message’s data portion. If there is no data portion, pfmod
accepts the message and passes it along to its upstream neighbor. Otherwise,
the module ensures that the part of the message’s data that the packet filter
might examine lies in contiguous memory, calling the pullupmsg (9F) utility
routine if necessary to force contiguity. (Note: this action destroys any sharing
relationships that the subject message might have had with other messages.)
Finally, it applies the packet filter to the message’s data, passing the entire
message upstream to the next module if the filter accepts, and discarding the
message otherwise. See PACKET FILTERS below for details on how the filter
works.

If there is no packet filter yet in effect, the module acts as if the filter exists but
does nothing, implying that all incoming messages are accepted. The IOCTLS
section below describes how to associate a packet filter with an instance of
pfmod .

pfmod passes all other messages through unaltered to its upper neighbor.

Write-side Behavior pfmod intercepts M_IOCTLmessages for the ioctl described below. The module
passes all other messages through unaltered to its lower neighbor.

IOCTLS pfmod responds to the following ioctl.
PFIOCSETF This ioctl directs the module to replace its current packet

filter, if any, with the filter specified by the struct
packetfilt pointer named by its final argument. This
structure is defined in <sys/pfmod.h> as:

struct packetfilt {
uchar_t Pf_Priority; /* priority of filter */
uchar_t Pf_FilterLen; /* length of filter cmd list */
ushort_t Pf_Filter[ENMAXFILTERS]; /* filter command list */

};

Last modified 18 Sep 1992 SunOS 5.8 395

pfmod(7M) STREAMS Modules

The Pf_Priority field is included only for compatibility with other packet
filter implementations and is otherwise ignored. The packet filter itself is
specified in the Pf_Filter array as a sequence of two-byte commands, with
the Pf_FilterLen field giving the number of commands in the sequence.
This implementation restricts the maximum number of commands in a filter
(ENMAXFILTERS) to 255. The next section describes the available commands
and their semantics.

PACKET FILTERS A packet filter consists of the filter command list length (in units of ushort_t s),
and the filter command list itself. (The priority field mentioned above is ignored
in this implementation.) Each filter command list specifies a sequence of actions
that operate on an internal stack of ushort_t s (“shortwords”). Each shortword
of the command list specifies one of the actions ENF_PUSHLIT, ENF_PUSHZERO,
ENF_PUSHONE, ENF_PUSHFFFF, ENF_PUSHFF00, ENF_PUSH00FF, or
ENF_PUSHWORD+n, which respectively push the next shortword of the command
list, zero, one, 0xFFFF, 0xFF00, 0x00FF, or shortword n of the subject message
on the stack, and a binary operator from the set {ENF_EQ, ENF_NEQ, ENF_LT,
ENF_LE, ENF_GT, ENF_GE, ENF_AND, ENF_OR, ENF_XOR} which then operates
on the top two elements of the stack and replaces them with its result. When
both an action and operator are specified in the same shortword, the action is
performed followed by the operation.

The binary operator can also be from the set {ENF_COR, ENF_CAND, ENF_CNOR,
ENF_CNAND}. These are “short-circuit” operators, in that they terminate the
execution of the filter immediately if the condition they are checking for is found,
and continue otherwise. All pop two elements from the stack and compare them
for equality; ENF_CANDreturns false if the result is false; ENF_CORreturns true if
the result is true; ENF_CNANDreturns true if the result is false; ENF_CNORreturns
false if the result is true. Unlike the other binary operators, these four do not
leave a result on the stack, even if they continue.

The short-circuit operators should be used when possible, to reduce the amount
of time spent evaluating filters. When they are used, you should also arrange
the order of the tests so that the filter will succeed or fail as soon as possible;
for example, checking the IP destination field of a UDP packet is more likely to
indicate failure than the packet type field.

The special action ENF_NOPUSHand the special operator ENF_NOPcan be used
to only perform the binary operation or to only push a value on the stack. Since
both are (conveniently) defined to be zero, indicating only an action actually
specifies the action followed by ENF_NOP, and indicating only an operation
actually specifies ENF_NOPUSHfollowed by the operation.

After executing the filter command list, a non-zero value (true) left on top of
the stack (or an empty stack) causes the incoming packet to be accepted and
a zero value (false) causes the packet to be rejected. (If the filter exits as the

396 SunOS 5.8 Last modified 18 Sep 1992

STREAMS Modules pfmod(7M)

result of a short-circuit operator, the top-of-stack value is ignored.) Specifying
an undefined operation or action in the command list or performing an illegal
operation or action (such as pushing a shortword offset past the end of the
packet or executing a binary operator with fewer than two shortwords on the
stack) causes a filter to reject the packet.

EXAMPLES EXAMPLE 1

The packet filter module is not dependent on any particular device driver or
module but is commonly used with datalink drivers such as the Ethernet driver.
If the underlying datalink driver supports the Data Link Provider Interface
(DLPI) message set, the appropriate STREAMS DLPI messages must be issued to
attach the stream to a particular hardware device and bind a datalink address to
the stream before the underlying driver will route received packets upstream.
Refer to the DLPI Version 2 specification for details on this interface.

The reverse ARP daemon program may use code similar to the following
fragment to construct a filter that rejects all but RARP packets. That is, is accepts
only packets whose Ethernet type field has the value ETHERTYPE_REVARP.

struct ether_header eh; /* used only for offset values */
struct packetfilt pf;
register ushort_t *fwp = pf.Pf_Filter;
ushort_t offset;
int fd;
/*

* Push packet filter streams module.
*/

if (ioctl(fd, I_PUSH, "pfmod") < 0)
syserr("pfmod");

/*
* Set up filter. Offset is the displacement of the Ethernet
* type field from the beginning of the packet in units of
* ushort_ts.
*/

offset = ((uint_t) &eh.ether_type - (uint_t) &eh.ether_dhost) /
sizeof (us_short);

*fwp++ = ENF_PUSHWORD + offset;
*fwp++ = ENF_PUSHLIT;
*fwp++ = htons(ETHERTYPE_REVARP);
*fwp++ = ENF_EQ;
pf.Pf_FilterLen = fwp - &pf.Pf_Filter[0];

This filter can be abbreviated by taking advantage of the ability to combine
actions and operations:

*fwp++ = ENF_PUSHWORD + offset;
*fwp++ = ENF_PUSHLIT | ENF_EQ;
*fwp++ = htons(ETHERTYPE_REVARP);

SEE ALSO bufmod (7M), dlpi (7P),, le (7D), pullupmsg (9F)

Last modified 18 Sep 1992 SunOS 5.8 397

pipemod(7M) STREAMS Modules

NAME pipemod – STREAMS pipe flushing module

DESCRIPTION The typical stream is composed of a stream head connected to modules and
terminated by a driver. Some stream configurations such as pipes and FIFOs
do not have a driver and hence certain features commonly supported by the
driver need to be provided by other means. Flushing is one such feature, and it
is provided by the pipemod module.

Pipes and FIFOs in their simplest configurations only have stream heads. A
write side is connected to a read side. This remains true when modules are
pushed. The twist occurs at a point known as the mid-point. When an M_FLUSH
message is passed from a write queue to a read queue the FLUSHRand/or
FLUSHWbits have to be switched. The mid-point of a pipe is not always easily
detectable, especially if there are numerous modules pushed on either end of
the pipe. In that case there needs to be a mechanism to intercept all message
passing through the stream. If the message is an M_FLUSHmessage and it
is at the mid-point, the flush bits need to be switched. This bit switching is
handled by the pipemod module.

pipemod should be pushed onto a pipe or FIFO where flushing of any kind
will take place. The pipemod module can be pushed on either end of the pipe.
The only requirement is that it is pushed onto an end that previously did not
have modules on it. That is, pipemod must be the first module pushed onto a
pipe so that it is at the mid-point of the pipe itself.

The pipemod module handles only M_FLUSHmessages. All other messages
are passed on to the next module using the putnext() utility routine. If an
M_FLUSHmessage is passed to pipemod and the FLUSHRand FLUSHWbits are
set, the message is not processed but is passed to the next module using the
putnext() routine. If only the FLUSHRbit is set, the FLUSHRbit is turned off
and the FLUSHWbit is set. The message is then passed on to the next module
using putnext() . Similarly, if the FLUSHWbit is the only bit set in the M_FLUSH
message, the FLUSHWbit is turned off and the FLUSHRbit is turned on. The
message is then passed to the next module on the stream.

The pipemod module can be pushed on any stream that desires the bit switching.
It must be pushed onto a pipe or FIFO if any form of flushing must take place.

SEE ALSO STREAMS Programming Guide

398 SunOS 5.8 Last modified 21 Aug 1992

Devices pln(7D)

NAME pln – SPARCstorage Array SCSI Host Bus Adapter Driver

SYNOPSIS pln@SUNW,pln@a0000800,200611b9

DESCRIPTION The pln Host Bus Adapter (HBA) driver is a SCSA compliant nexus driver which
supports the SPARC Storage Array. The SPARC Storage Array is a disk array
device which supports multiple disk drives. The drives are located on several
SCSI busses within the SPARC Storage Array. A SPARC microprocessor controls
the SPARC Storage Array. Non-volatile RAM is used as a disk cache. The SPARC
Storage Array interfaces to the host system using Fibre Channel. An SBus card
called the SOC card (see soc (7D)) connects the Fibre Channel to the host system.

The pln driver interfaces with the SOC device driver, soc (7D), and the SPARC
Storage Array SCSI target driver, ssd (7D).

The pln driver supports the standard functions provided by the SCSA interface.
The driver supports tagged and untagged queuing and auto request sense.

FILES /kernel/drv/pln ELF kernel module

/kernel/drv/pln.conf configuration file

SEE ALSO prtconf (1M), ssaadm(1M), driver.conf (4), soc (7D), ssd (7D)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2)

DIAGNOSTICS The messages described below may appear on the system console and in the
system log.

This following messages indicate the pln driver was unable to attach to the
device. These messages are preceded by "pln%d", where "%d" is the instance
number of the pln controller.
Failed to alloc soft state

Driver was unable to allocate space for the internal state structure. Driver
did not attach to device. SCSI devices will be inaccessible.

Bad soft state
Driver requested an invalid internal state structure. Driver did not attach to
device. SCSI devices will be inaccessible.

Unable to attach
Driver was unable to attach to the hardware for some reason that may be
printed. SCSI devices will be inaccessible.

Last modified 8 Aug 1997 SunOS 5.8 399

pm(7D) Devices

NAME pm – Power Management driver

SYNOPSIS /dev/pm

DESCRIPTION The Power Management (pm) driver provides an interface for applications to
configure devices within the system for Power Management. The interface is
provided through ioctl (2) commands. The pmdriver may be accessed using
/dev/pm .

Power Management
Framework

The Power Management framework model allows the system to be viewed as a
collection of devices. Each device is a collection of components that comprise the
smallest power manageable units. The device driver controls the definition of a
device’s power manageable components.

A component can either be busy or idle at the current power level. Normally, the
Power Management framework takes an idle component to the next lower power
level. The Power Management framework uses two factors to determine this
transition: the component must have been idle for at least the threshold time,
and the device to which the component belongs must satisfy any dependency
requirements. A dependency occurs when a device requires another device to
be power managed before it can be power managed. Dependencies occur on a
per device basis: when a dependency exists, no components of a device may be
managed unless all the devices it depends upon are first power managed.

Using the commands below, an application may take control of the Power
Management of a device from the Power Management framework driver and
manage the transition of device power levels directly.

OBSOLETE
IOCTLS

All of the ioctl commands in this section are obsolete and will be removed
in a future release. See the NEW IOCTLS section of this man page for new
commands.

For this set of ioctl commands, arg (see ioctl (2)) points to a structure of type
pm_request defined in <sys/pm.h> :

typedef struct {
char *who; /* device to configure */
int select; /* selects the component or dependent of the device */
int level; /* power level or threshold value */
char *dependent; /* holds name of dependent */
int size; /* size of dependent buffer */

} pm_request;

The fields should contain the following data:
who Pointer to the name of the device to be configured. This may

be the name of a device special file or any trailing substring
of the physical path to the device.

400 SunOS 5.8 Last modified 20 Sep 1999

Devices pm(7D)

select Non−negative integer specifying the component or
dependent being configured. The numbering starts at zero.

level Non−negative integer specifying the threshold value in
seconds or the desired power level.

dependent Pointer to a buffer which contains the name of a device on
which this device has a dependency. It uses the same format
as the who field.

size Size of the dependent buffer.

Not all fields are used in each command.

PM_DISABLE_AUTOPM
The device named by who is disabled from being power managed by
framework. The caller will power manage the device directly using the
commands below. If this command is not successfully executed, subsequent
PM_SET_CUR_PWRcalls will fail. This command is obsolete and will be
removed in a future release. Use PM_DIRECT_PMinstead.

Error codes:

EBUSY Device already disabled from being power managed by
framework.

EPERM Caller is neither superuser nor owner of the device.

PM_GET_NORM_PWR
The normal power level of the component select of the device named by
who is returned. The normal power level of the component is the power
level to which the component will be set when it becomes busy again.
This command is obsolete and will be removed in a future release. Use
PM_GET_FULL_POWERinstead.

Error codes:

EINVAL Device component out of range.

EIO Device has no power−manageable components.

PM_GET_CUR_PWR
The current power level of component select of the device named by who is
returned. This command is obsolete and will be removed in a future release.
Please use PM_GET_CURRENT_POWERinstead.

Error codes:

Last modified 20 Sep 1999 SunOS 5.8 401

pm(7D) Devices

EINVAL Device component out of range.

EAGAIN Device component level is not currently known.

PM_SET_CUR_PWR
Component select of the device named by who is brought to power level
level. If select is not 0 and component 0 of the device is at power level 0,
component 0 is brought to its normal power level. Each component of each
device which depends on this device is brought to its normal power level.
Each component of each ancestor of each device affected is brought to its
normal power level. This command is obsolete and will be removed in a
future release. Use PM_SET_CURRENT_POWERinstead.

Error codes:

EINVAL Device component out of range, or power level < 0.

EIO Failed to power device or its ancestors or its dependents
or their ancestors.

EPERM Caller is neither superuser nor owner of the device.

PM_REENABLE_AUTOPM
The device named by who is re-enabled for Power Management by the
framework. By default, all configured devices are power managed by the
framework. This command is obsolete and will be removed in a future
release. Use PM_RELEASE_DIRECT_PMinstead.

Error codes:

EINVAL Device already being power managed by the framework.

EPERM Caller is neither super-user nor owner of the device.

NEW IOCTLS The ioctl commands in this section replace the obsolete commands listed
above and take a pointer to a different structure and support more complete
functionality.

For this set of ioctl commands, arg (see ioctl (2)) points to a structure of type
pm_req defined in <sys/pm.h> :

typedef struct pm_req {
char *physpath; /* physical path of device to configure */

/* see libdevinfo(3) */
int component; /* the component of the device */
int value; /* power level, threshold value, or count */
void *data; /* command-dependent variable sized data */
size_t datasize; /* size of data buffer */

} pm_req_t;

402 SunOS 5.8 Last modified 20 Sep 1999

Devices pm(7D)

The fields should contain the following data:
physpath Pointer to the physical path of a device. See libdevinfo (3).

For example, for the device /devices/pseudo/pm@0:pm
the physpath value would be /pseudo/pm@0 .

component Non-negative integer specifying which component is being
configured. The numbering starts at zero.

value Non-negative integer specifying the threshold value in
seconds or the desired power level, or the number of levels
being specified.

data Pointer to a buffer which contains or receives variable-sized
data, such as the name of a device upon which this device
has a dependency.

size Size of the data buffer.

Not all fields are used in each command.

PM_DIRECT_PM
The device named by physpath is disabled from being power managed by
the framework. The caller will power manage the device directly using the
PM_DIRECT_NOTIFY, PM_GET_TIME_IDLEand PM_GET_CURRENT_POWER,
PM_GET_FULL_POWERand PM_SET_CURRENT_POWERcommands.
If the device needs to have its power level changed either because
its driver calls pm_raise_power (9F), pm_lower_power (9F), or
pm_power_has_changed (9F) or because the device is the parent of another
device that is changing power level or a device that this device depends
on is changing power level, then the power level change of the device
will be blocked and the caller will be notified as described below for the
PM_DIRECT_NOTIFYcommand.

Error codes:

EBUSY Device already disabled for Power Management by
framework.

EPERM Caller is neither superuser nor effective group ID of 0.

PM_RELEASE_DIRECT_PM
The device named by physpath (which must have been the target of a
PM_DIRECT_PMcommand) is re-enabled for Power Management by the
framework.

Error codes:

Last modified 20 Sep 1999 SunOS 5.8 403

pm(7D) Devices

EINVAL Device component out of range.

PM_DIRECT_NOTIFY PM_DIRECT_NOTIFY_WAIT
These commands allow the process that is directly power managing a device
to be notified of events that could change the power level of the device.
When such an event occurs, this command returns information about the
event.

arg (see ioctl (2)) points to a structure of type pm_state_change defined
in <sys/pm.h> :

typedef struct pm_state_change {
char *physpath; /* device which has changed state */
int component; /* which component changed state */
int event; /* type of event */
time_t timestamp; /* time of state change */+
int old_level; /* power level changing from */
int new_level; /* power level changing to */
size_t size; /* size of buffer physpath points to */

} pm_state_change_t;

When an event occurs, the struct pointed to by arg is filled in. If the event
type is PSC_PENDING_CHANGE, then the information in the rest of the struct
describes an action that the framework would have taken if the device
were not directly power managed by the caller. The caller is responsible for
completing the indicated level changes using PM_SET_CURRENT_POWER
below.

An event type of PSC_HAS_CHANGEDindicates that the driver for the
directly power managed device has called pm_power_has_changed (9F)
due to the device changing power on its own. It is provided to allow the
caller to track the power state of the device. PM_DIRECT_NOTIFYreturns
EWOULDBLOCKif no event is pending, and PM_DIRECT_NOTIFY_WAIT
blocks until an event is available.

pmalso supports the poll (2) interface. When an event is pending a poll (2)
call that includes a file descriptor for /dev/pm and that has POLLIN or
POLLRDNORMset in its event mask will return.

PM_SET_CURRENT_POWER
Component component of the device named by physpath (which must
contain the physical path of a device against which the process has issued a
PM_DIRECT_PMcommand) is set to power level value. If all components of
the device named by physpath were at level 0, value is non-zero and some
device has a dependency on this device, then all components of that device
will be brought to full power before this command returns. Similarly, if the

404 SunOS 5.8 Last modified 20 Sep 1999

Devices pm(7D)

parent of the target device is powered off, then it will be brought up as
needed before this command returns.

Error codes:

EINVAL Device component out of range, or power level < 0.

EIO Failed to power device or its ancestors or the devices on
which this device has dependency or their ancestors. Note
that this may not indicate a failure, the device driver may
have rejected the command as inappropriate because the
component has become busy.

EPERM Caller has not previously issued a successful
PM_DIRECT_PMcommand against this device.

PM_GET_FULL_POWER
The highest supported power level of component component of the device
named by physpath is returned.

PM_GET_CURRENT_POWER
The current power level of component component of the device named by
physpath is returned.

Error codes:

EAGAIN Device component power level is not currently known.

PM_GET_TIME_IDLE
PM_GET_TIME_IDLEreturns the number of seconds that component
component of the device named by physpath has been idle. If the device is
not idle, then 0 is returned.

Note that because the state of the device may change between the time
the process issues the PM_GET_TIME_IDLEcommand and the time the
process issues a PM_SET_CURRENT_POWERcommand to reduce the power
level of an idle component, the process must be prepared to deal with a
PM_SET_CURRENT_POWERcommand returning failure because the driver
has rejected the command as inappropriate because the device component
has become busy. This can be differentiated from other types of failures by
issuing the PM_GET_TIME_IDLEcommand again to see if the component
has become busy.

ERRORS Upon error, the commands will return −1, and set errno. In addition to the error
codes listed above by command, the following error codes are common to
all commands:
EFAULT Bad address passed in as argument.

Last modified 20 Sep 1999 SunOS 5.8 405

pm(7D) Devices

ENODEV Device is not power manageable, or device is not configured.

ENXIO Too many opens attempted.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Unstable (Interfaces under OBSOLETE
IOCTLS are obsolete.)

SEE ALSO pmconfig (1M), intro (2), ioctl (2), power.conf (4),
attributes (5), pm-components (9), attach (9E), detach (9E),
power (9E), ddi_dev_is_needed (9F), pm_busy_component (9F),
pm_create_components (9F), pm_destroy_components (9F),
pm_idle_component (9F), pm_lower_power (9F),
pm_power_has_changed (9F), pm_raise_power (9F)

Writing Device Drivers

406 SunOS 5.8 Last modified 20 Sep 1999

Devices poll(7d)

NAME poll – driver for fast poll on many file descriptors

SYNOPSIS #include <sys/devpoll.h>

PARAMETERS fd Open file descriptor that refers to the /dev/poll driver.

path /dev/poll

buf Array of pollfd structures.

bufsize Size of buf in bytes.

arg Pointer to pollcall structure.

pfd Pointer to pollfd structure.

DESCRIPTION The /dev/poll driver is a special driver that lets user monitor multiple sets
of polled file descriptors. By using the /dev/poll driver, users can poll large
number of file descriptors very efficiently. Access to /dev/poll driver is
provided through open (2), write (2), and ioctl(2) system calls.

Writing an array of pollfd struct to the /dev/poll driver has the effect
of adding these file descriptors to the monitored poll file descriptor set
represented by the fd. Users wishing to monitor multiple file descriptor sets
should open the /dev/poll driver multiple times. Each fd corresponds to one
set. For each pollfd struct entry (defined in sys/poll.h):

struct pollfd {
int fd;
short events;
short revents;

}

The fd field specifies the file descriptor being polled. The events field indicates
the interested poll events on the file descriptor. If a pollfd array contains
multiple pollfd entries with same fd field, the "events" field in each pollfd
entry is OR’ed. A special POLLREMOVEevent in the events field of the pollfd
structure will remove the fd from the monitored set. The revents field is
not used. Write returns the number of bytes written successfully or -1 when
write fails.

The DP_POLLioctl is used to retrieve returned poll events occured on the
polled file descriptors in the monitored set represented by fd. arg is a pointer to
the devpoll structures which are defined as follows:

struct dvpoll {
struct pollfd* dp_fds;
int dp_nfds;
int dp_timeout;

}

Last modified 31 Jan 1999 SunOS 5.8 407

poll(7d) Devices

The dp_fds points to a buffer which is used to hold an array of returned
pollfd structures. The dp_nfds field specifies the size of the buffer in terms
of the number of pollfd entries it contains; dp_nfds also indicates the
maximum number of file descriptors on which a user is interested in getting poll
information. If there is no interested events on any of the polled file descriptors,
the DP_POLLioctl call will wait dp_timeout miliseconds before returning. If
dp_timeout is 0, the ioctl call returns immediately; if dp_timeout is -1 , the
call blocks until an interested poll events is available or the call is interrupted.
Upon return, if the ioctl call has failed, -1 is returned. The memory content
pointed by dp_fds is not modified. A return value 0 means the ioctl is timed
out. In this case, the memory content pointed by dp_fds is not modified. If
the call is successful, it returns the number of valid pollfd entries in the array
pointed by dp_fds ; the contents of the rest of the buffer is undefined. For each
valid pollfd entry, the fd field indicates the file desciptor on which the polled
events happened. The events field is the user specified poll events . The
revents field contains the events occurred. –1 is returned if the call fails.

DP_ISPOLLEDioctl allows user to query if a file descriptor is already in the
monitored set represented by fd . The fd field of the pollfd structure indicates
the file descriptor of interest. The DP_ISPOLLEDioctl returns 1 if the file
descriptor is in the set. The events field contains the currently polled events .
The revents field contains 0. The ioctl returns 0 if the file descriptor is not in
the set. The pollfd structure pointed by pfd is not modified. The ioctl returns
a -1 if the call fails.

EXAMPLES EXAMPLE 1 The following example shows how /dev/poll may be used.
{

...
/*

* open the driver
*/

if ((wfd = open("/dev/poll", O_RDWR)) < 0) {
exit(-1);

}
pollfd = (struct pollfd*)malloc(sizeof(struct pollfd) * MAXBUF);
if (pollfd == NULL) {

close(wfd);
exit(-1);

}
/*

* initialize buffer
*/

for (i = 0; i < MAXBUF; i++) {
pollfd[i].fd = fds[i];
pollfd[i].events = POLLIN;
pollfd[i].revents = 0;

}
if (write(wfd, &pollfd[0], sizeof(struct pollfd) * MAXBUF) !=

sizeof(struct pollfd) * MAXBUF) {
perror("failed to write all pollfds");

408 SunOS 5.8 Last modified 31 Jan 1999

Devices poll(7d)

close (wfd);
free(pollfd);
exit(-1);

}
/*

* read from the devpoll driver
*/

dopoll.dp_timeout = -1;
dopoll.dp_nfds = MAXBUF;
dopoll.dp_fds = pollfd;
result = ioctl(wfd, DP_POLL, &dopoll);
if (result < 0) {

perror("/dev/poll ioctl DP_POLL failed");
close (wfd);
free(pollfd);
exit(-1);

}
for (i = 0; i < result; i++) {

read(dopoll.dp_fds[i].fd, rbuf, STRLEN);
}

...
}

ERRORS EACCES A process does not have permission to access the content
cached in /dev/poll .

EINTR A signal was caught during the execution of the ioctl (2)
function.

EFAULT The request argument requires a data transfer to or from a
buffer pointed to by arg, but arg points to an illegal address.

EINVAL The request or arg parameter is not valid for this device.

ENXIO The O_NONBLICKflag is set, the named file is a FIFO, the
O_WRONGLYflag is set, and no process has the file open for
reading; or the named file is a character special or block
special file and the device associated with this special file
does not exist.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC, Intel

Availability SUNWcarx.u, SUNWcsxu (64-bit Solaris)

SUNWcsr, SUNWcsu (32-bit Solaris
on Intel)

SUNWhea (header files)

Last modified 31 Jan 1999 SunOS 5.8 409

poll(7d) Devices

Interface Stability Evolving

MT-Level Safe

SEE ALSO open (2), poll (2), write (2), attributes (5)

NOTES The /dev/poll API is particularly beneficial to applications which poll a large
number of file descriptors and poll them repeatedly. Applications will exhibit
the best performance gain if the polled file descriptor list rarely change.

When using the /dev/poll driver, user should pay attention to remove a
closed file descriptor from a monitored poll set. Failure to do so may result in
a POLLNVAL revents being returned for the closed file descriptor. When
a file descriptor is closed but not removed from the monitored set, and if the
file descriptor is reused in subsequent open of a possibly different device,
user will be polling the device associated with the reused file descriptor. In a
multithreaded application, careful coordination among threads doing close and
DP_POLLioctl is recommended for consistent results.

The /dev/poll driver caches a list of polled file descriptors, which are specific
to a process. Therefore, the /dev/poll file descriptor of a process will be
inherited by its child process, just like any other file descriptors. But the child
process will have very limited access through this inherited /dev/poll file
descriptor. Any attempt to write or do ioctl by the child process will result in
an EACCESerror. The child process should close the inherited /dev/poll file
descriptor and open its own if desired.

The /dev/poll driver does not yet support polling. Polling on a /dev/poll
file descriptor will result in POLLERRbeing returned in the revents field
of pollfd structure.

410 SunOS 5.8 Last modified 31 Jan 1999

STREAMS Modules ppp(7M)

NAME ppp, ppp_diag, ipd, ipdptp, ipdcm – STREAMS modules and drivers for the
Point-to-Point Protocol

DESCRIPTION ppp is a STREAMS module which implements the Point to Point Protocol
("PPP "). PPP is a datalink protocol which provides a method for transmitting
datagrams over serial point-to-point links. PPP allows for various options to
be negotiated between the two hosts of a point-to-point link; these options
provide things such as peer authentication, header compression, link quality
monitoring, and mapping of control characters. The PPP specifications are
described in RFC 1331, The Point-to-Point Protocol for the Transmission of
Multi-protocol Datagrams over Point-to-Point Links and RFC 1332, The PPP
Internet Protocol Control Protocol (IPCP) .

The pseudo device drivers /dev/ipd , /dev/ipdptp , and /dev/ipdcm form
the IP-dialup layer. This layer provides IP network interfaces for dialup (connect
on demand) point-to-point links. The ipd and ipdptp devices are the IP-dialup
network interfaces. The ipd device provides a point-to-multipoint interface,
and the ipdptp device provides a point-to-point interface. The ipdcm device
supplies an interface between the ipd or ipdptp device and a link manager.

The ppp module and IP-dialup layer work together to provide IP connectivity
over serial point-to-point links. A "link manager" daemon is responsible for
setting up and tearing down these dialup connections. Connections are
established when an IP packet needs to be sent to the remote host, or the remote
host has indicated its desire to establish a PPP connection.

The ppp_diag module captures PPP layer packets and parses the contents for
debugging purposes. Usually, the parsed output is sent to the strlog facility
from which it is retrieved by the link manager. This module is pushed between
the serial device and the ppp module by the link manager when debugging
is enabled.

Operation When a packet is routed to an IP-dialup point-to-point interface which is not
currently connected to the remote host, the ipdcm driver sends a message
to the link manager to establish the connection. The link manager opens a
communications channel and pushes the ppp module onto the corresponding
serial device. The ppp module negotiates with the remote host on which options
will be used for the link. When both hosts have agreed on a set of options, the
link manager links the ppp module and serial device underneath the ipd or
ipdptp interface which is providing the IP interface to the remote host.

Similarly, a remote host may initiate a connection on an enabled communications
port. In this case the link manager receives the request and pushes the ppp
module onto the corresponding device. Once the ppp module has successfully
negotiated on the set of options for the link with its peer, the link manager links
the ppp module and serial device underneath the ipd or ipdptp interface
which is providing the IP-dialup interface.

Last modified 1 Jan 1997 SunOS 5.8 411

ppp(7M) STREAMS Modules

When the ppp module and serial device have been linked underneath the
IP-dialup interface, IP packets are sent and received over the point-to-point
link in PPP frames.

FILES /dev/ipd pseudo device driver that provides point-to-ipoint
interface.

/dev/ipdptp pseudo device driver that provides
point-to-multipoint interface.

/dev/ipdcm pseudo device driver that provides interface
between ipd and ipdptp and link manager.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpppk

SEE ALSO aspppd (1M) , attributes (5)

412 SunOS 5.8 Last modified 1 Jan 1997

STREAMS Modules ptem(7M)

NAME ptem – STREAMS Pseudo Terminal Emulation module

SYNOPSIS int ioctl(fd, I_PUSH, "ptem");

DESCRIPTION ptem is a STREAMS module that, when used in conjunction with a line
discipline and pseudo terminal driver, emulates a terminal.

The ptem module must be pushed (see I_PUSH, streamio (7I)) onto the slave
side of a pseudo terminal STREAM, before the ldterm (7M) module is pushed.

On the write-side, the TCSETA, TCSETAF, TCSETAW, TCGETA, TCSETS,
TCSETSW, TCSETSF, TCGETS, TCSBRK, JWINSIZE , TIOCGWINSZ, and
TIOCSWINSZ termio ioctl (2) messages are processed and acknowledged. If
remote mode is not in effect, ptem handles the TIOCSTI ioctl by copying the
argument bytes into an M_DATAmessage and passing it back up the read side.
Regardless of the remote mode setting, ptem acknowledges the ioctl and passes
a copy of it downstream for possible further processing. A hang up (that is,
stty 0) is converted to a zero length M_DATAmessage and passed downstream.
Termio cflags and window row and column information are stored locally
one per stream. M_DELAYmessages are discarded. All other messages are
passed downstream unmodified.

On the read-side all messages are passed upstream unmodified with the
following exceptions. All M_READand M_DELAYmessages are freed in both
directions. A TCSBRKioctl is converted to an M_BREAKmessage and passed
upstream and an acknowledgement is returned downstream. A TIOCSIGNAL
ioctl is converted into an M_PCSIGmessage, and passed upstream and an
acknowledgement is returned downstream. Finally a TIOCREMOTEioctl is
converted into an M_CTLmessage, acknowledged, and passed upstream; the
resulting mode is retained for use in subsequent TIOCSTI parsing.

FILES <sys/ptem.h>

SEE ALSO stty (1), ioctl (2), ldterm (7M), pckt (7M), streamio (7I), termio (7I)

STREAMS Programming Guide

Last modified 3 Jul 1990 SunOS 5.8 413

ptm(7D) Devices

NAME ptm – STREAMS pseudo-tty master driver

DESCRIPTION The pseudo-tty subsystem simulates a terminal connection, where the master
side represents the terminal and the slave represents the user process’s special
device end point. In order to use the pseudo-tty subsystem, a node for the master
side driver /dev/ptmx and N number of nodes for the slave driver must be
installed. See pts (7D). The master device is set up as a cloned device where
its major device number is the major for the clone device and its minor device
number is the major for the ptm driver. There are no nodes in the file system for
master devices. The master pseudo driver is opened using the open (2) system
call with /dev/ptmx as the device parameter. The clone open finds the next
available minor device for the ptm major device.

A master device is available only if it and its corresponding slave device are
not already open. When the master device is opened, the corresponding slave
device is automatically locked out. Only one open is allowed on a master device.
Multiple opens are allowed on the slave device. After both the master and slave
have been opened, the user has two file descriptors which are the end points
of a full duplex connection composed of two streams which are automatically
connected at the master and slave drivers. The user may then push modules
onto either side of the stream pair.

The master and slave drivers pass all messages to their adjacent queues. Only
the M_FLUSHneeds some processing. Because the read queue of one side is
connected to the write queue of the other, the FLUSHRflag is changed to the
FLUSHWflag and vice versa. When the master device is closed an M_HANGUP
message is sent to the slave device which will render the device unusable. The
process on the slave side gets the errno EIO when attempting to write on that
stream but it will be able to read any data remaining on the stream head read
queue. When all the data has been read, read() returns 0 indicating that the
stream can no longer be used. On the last close of the slave device, a 0-length
message is sent to the master device. When the application on the master side
issues a read() or getmsg() and 0 is returned, the user of the master device
decides whether to issue a close() that dismantles the pseudo-terminal
subsystem. If the master device is not closed, the pseudo-tty subsystem will be
available to another user to open the slave device.

If O_NONBLOCKor O_NDELAYis set, read on the master side returns −1 with
errno set to EAGAINif no data is available, and write returns −1 with errno set to
EAGAIN if there is internal flow control.

IOCTLS The master driver supports the ISPTM and UNLKPTioctls that are used by the
functions grantpt (3C), unlockpt (3C) and ptsname (3C). The ioctl ISPTM
determines whether the file descriptor is that of an open master device. On
success, it returns the major/minor number of the master device which can be
used to determine the name of the corresponding slave device. The ioctl UNLKPT

414 SunOS 5.8 Last modified 5 Feb 1997

Devices ptm(7D)

unlocks the master and slave devices. It returns 0 on success. On failure, the
errno is set to EINVAL indicating that the master device is not open.

FILES /dev/ptmx master clone device

/dev/pts/M slave devices (M = 0 -> N-1)

SEE ALSO grantpt (3C), ptsname (3C), unlockpt (3C), pckt (7M), pts (7D)

STREAMS Programming Guide

Last modified 5 Feb 1997 SunOS 5.8 415

pts(7D) Devices

NAME pts – STREAMS pseudo-tty slave driver

DESCRIPTION The pseudo-tty subsystem simulates a terminal connection, where the master
side represents the terminal and the slave represents the user process’s special
device end point. In order to use the pseudo-tty subsystem, a node for the master
side driver /dev/ptmx and N nodes for the slave driver (N is determined
at installation time) must be installed. The names of the slave devices are
/dev/pts/M where Mhas the values 0 through N-1. When the master device
is opened, the corresponding slave device is automatically locked out. No
user may open that slave device until its permissions are adjusted and the
device unlocked by calling functions grantpt (3C) and unlockpt (3C). The
user can then invoke the open system call with the name that is returned by
the ptsname (3C) function. See the example below.

Only one open is allowed on a master device. Multiple opens are allowed on the
slave device. After both the master and slave have been opened, the user has
two file descriptors which are end points of a full duplex connection composed
of two streams automatically connected at the master and slave drivers. The
user may then push modules onto either side of the stream pair. The user needs
to push the ptem (7M) and ldterm (7M) modules onto the slave side of the
pseudo-terminal subsystem to get terminal semantics.

The master and slave drivers pass all messages to their adjacent queues. Only
the M_FLUSHneeds some processing. Because the read queue of one side is
connected to the write queue of the other, the FLUSHRflag is changed to the
FLUSHWflag and vice versa. When the master device is closed an M_HANGUP
message is sent to the slave device which will render the device unusable. The
process on the slave side gets the errno EIO when attempting to write on that
stream but it will be able to read any data remaining on the stream head read
queue. When all the data has been read, read returns 0 indicating that the stream
can no longer be used. On the last close of the slave device, a 0-length message
is sent to the master device. When the application on the master side issues a
read() or getmsg() and 0 is returned, the user of the master device decides
whether to issue a close() that dismantles the pseudo-terminal subsystem.
If the master device is not closed, the pseudo-tty subsystem will be available
to another user to open the slave device. Since 0-length messages are used to
indicate that the process on the slave side has closed and should be interpreted
that way by the process on the master side, applications on the slave side should
not write 0-length messages. If that occurs, the write returns 0, and the 0-length
message is discarded by the ptem module.

The standard STREAMS system calls can access the pseudo-tty devices. The
slave devices support the O_NDELAYand O_NONBLOCKflags.

416 SunOS 5.8 Last modified 21 Aug 1992

Devices pts(7D)

EXAMPLES EXAMPLE 1
int fdm fds;
char *slavename;
extern char *ptsname();

fdm = open("/dev/ptmx", O_RDWR); /* open master */
grantpt(fdm); /* change permission of slave */
unlockpt(fdm); /* unlock slave */
slavename = ptsname(fdm); /* get name of slave */
fds = open(slavename, O_RDWR); /* open slave */
ioctl(fds, I_PUSH, "ptem"); /* push ptem */
ioctl(fds, I_PUSH, "ldterm"); /* push ldterm*/

FILES /dev/ptmx master clone device

/dev/pts/M slave devices (M = 0 -> N-1)

SEE ALSO grantpt (3C), ptsname (3C), unlockpt (3C), ldterm (7M), ptm (7D), ptem (7M)

STREAMS Programming Guide

Last modified 21 Aug 1992 SunOS 5.8 417

pty(7D) Devices

NAME pty – pseudo-terminal driver

DESCRIPTION The pty driver provides support for a pair of devices collectively known as a
pseudo-terminal. The two devices comprising a pseudo-terminal are known as a
controller and a slave. The slave device distinguishes between the B0 baud
rate and other baud rates specified in the c_cflag word of the termios
structure, and the CLOCALflag in that word. It does not support any of the other
termio (7I) device control functions specified by flags in the c_cflag word of
the termios structure and by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in
the c_iflag word of the termios structure, as these functions apply only to
asynchronous serial ports. All other termio (7I) functions must be performed by
STREAMS modules pushed atop the driver; when a slave device is opened, the
ldterm (7M) and ttcompat (7M) STREAMS modules are automatically pushed
on top of the stream, providing the standard termio (7I) interface.

Instead of having a hardware interface and associated hardware that supports
the terminal functions, the functions are implemented by another process
manipulating the controller device of the pseudo-terminal.

The controller and the slave devices of the pseudo-terminal are tightly connected.
Any data written on the controller device is given to the slave device as input, as
though it had been received from a hardware interface. Any data written on
the slave terminal can be read from the controller device (rather than being
transmitted from a UAR).

By default, 48 pseudo-terminal pairs are configured as follows:

/dev/pty[p-r][0-9a-f] controller devices
/dev/tty[p-r][0-9a-f] slave devices

IOCTLS The standard set of termio ioctl s are supported by the slave device. None of
the bits in the c_cflag word have any effect on the pseudo-terminal, except
that if the baud rate is set to B0, it will appear to the process on the controller
device as if the last process on the slave device had closed the line; thus, setting
the baud rate to B0 has the effect of “hanging up” the pseudo-terminal, just as it
has the effect of “hanging up” a real terminal.

There is no notion of “parity” on a pseudo-terminal, so none of the flags in the
c_iflag word that control the processing of parity errors have any effect.
Similarly, there is no notion of a “break”, so none of the flags that control the
processing of breaks, and none of the ioctl s that generate breaks, have any
effect.

Input flow control is automatically performed; a process that attempts to write to
the controller device will be blocked if too much unconsumed data is buffered

418 SunOS 5.8 Last modified 8 Aug 1994

Devices pty(7D)

on the slave device. The input flow control provided by the IXOFF flag in
the c_iflag word is not supported.

The delays specified in the c_oflag word are not supported.

As there are no modems involved in a pseudo-terminal, the ioctl s that return
or alter the state of modem control lines are silently ignored.

A few special ioctl s are provided on the controller devices of pseudo-terminals
to provide the functionality needed by applications programs to emulate real
hardware interfaces:
TIOCSTOP The argument is ignored. Output to the pseudo-terminal is

suspended, as if a STOPcharacter had been typed.

TIOCSTART The argument is ignored. Output to the pseudo-terminal is
restarted, as if a STARTcharacter had been typed.

TIOCPKT The argument is a pointer to an int . If the value of the int
is non-zero, packet mode is enabled; if the value of the int is
zero, packet mode is disabled. When a pseudo-terminal is in
packet mode, each subsequent read (2) from the controller
device will return data written on the slave device preceded
by a zero byte (symbolically defined as TIOCPKT_DATA), or a
single byte reflecting control status information. In the latter
case, the byte is an inclusive-or of zero or more of the bits:

TIOCPKT_FLUSHREAD whenever the read queue for
the terminal is flushed.

TIOCPKT_FLUSHWRITE whenever the write queue for
the terminal is flushed.

TIOCPKT_STOP whenever output to the
terminal is stopped using ^S.

TIOCPKT_START whenever output to the
terminal is restarted.

TIOCPKT_DOSTOP whenever XON/XOFF flow
control is enabled after being
disabled; it is considered
“enabled” when the IXON
flag in the c_iflag word is
set, the VSTOPmember of
the c_cc array is ^S and the
VSTARTmember of the c_cc
array is ^Q.

Last modified 8 Aug 1994 SunOS 5.8 419

pty(7D) Devices

TIOCPKT_NOSTOP whenever XON/XOFF flow
control is disabled after being
enabled.

TIOCREMOTE The argument is a pointer to an int . If the value of the
int is non-zero, remote mode is enabled; if the value of
the int is zero, remote mode is disabled. This mode can
be enabled or disabled independently of packet mode.
When a pseudo-terminal is in remote mode, input to the
slave device of the pseudo-terminal is flow controlled and
not input edited (regardless of the mode the slave side of
the pseudo-terminal). Each write to the controller device
produces a record boundary for the process reading the slave
device. In normal usage, a write of data is like the data
typed as a line on the terminal; a write of 0 bytes is like
typing an EOFcharacter. Note: this means that a process
writing to a pseudo-terminal controller in remote mode must
keep track of line boundaries, and write only one line at
a time to the controller. If, for example, it were to buffer
up several NEWLINE characters and write them to the
controller with one write() , it would appear to a process
reading from the slave as if a single line containing several
NEWLINE characters had been typed (as if, for example, a
user had typed the LNEXT character before typing all but
the last of those NEWLINE characters). Remote mode can be
used when doing remote line editing in a window manager,
or whenever flow controlled input is required.

EXAMPLES EXAMPLE 1
#include <fcntl.h>
#include <sys/termios.h>

int fdm fds;
fdm = open("/dev/ptyp0, O_RDWR); /* open master */
fds = open("/dev/ttyp0, O_RDWR); /* open slave */

FILES /dev/pty[p-z][0-9a-f] pseudo-terminal controller devices

/dev/tty[p-z][0-9a-f] pseudo-terminal slave devices

SEE ALSO rlogin (1), rlogind (1M), ldterm (7M), termio (7I), ttcompat (7M),

NOTES It is apparently not possible to send an EOTby writing zero bytes in TIOCREMOTE
mode.

420 SunOS 5.8 Last modified 8 Aug 1994

Devices qe(7D)

NAME qe – QEC/MACE Ethernet device driver

SYNOPSIS #include <mace.h>

#include <qe.h>

#include <qec.h>

#include <dlpi.h>

DESCRIPTION qe is a multi-threaded, loadable, clonable, STREAMS hardware device driver
supporting the connectionless Data Link Provider Interface, dlpi (7P), over
Am79C940 (MACE) Ethernet controllers in the SBus QED card. qec (7D) is its
parent in the Open Boot Prom device tree. There is no fixed limitation on the
number of QED cards supported by the driver. The qe driver provides basic
support for the MACE and QEC hardware. Functions include chip initialization,
frame transmit and receive, multicast and promiscuous support, and error
recovery and reporting.

The cloning character-special device /dev/qe is used to access all MACE
controllers installed within the system.

qe and DLPI The qe driver is a “style 2” Data Link Service provider. All M_PROTOand
M_PCPROTOtype msgs are interpreted as DLPI primitives. An explicit
DL_ATTACH_REQmessage by the user is required to associate the opened stream
with a particular device (ppa). The ppa ID is interpreted as an unsigned
long and indicates the corresponding device instance (unit) number. An error
(DL_ERROR_ACK) is returned by the driver if the ppa field value does not
correspond to a valid device instance number for this system. The device is
initialized on first attach and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACKprimitive in response
to the DL_INFO_REQfrom the user are as follows:

� The max SDU is 1500 (ETHERMTU).

� The min SDU is 0.

� The dlsap address length is 8.

� The MAC type is DL_ETHER.

� The sap length value is −2 meaning the physical address component
is followed immediately by a 2 byte sap component within the DLSAP
address.

� The service mode is DL_CLDLS.

� No optional quality of service (QOS) support is included at present so
the QOS fields are 0.

� The provider style is DL_STYLE2.

� The version is DL_VERSION_2.

Last modified 3 Mar 1994 SunOS 5.8 421

qe(7D) Devices

� The broadcast address value is Ethernet/IEEE broadcast address
(0xFFFFFF).

Once in the DL_ATTACHEDstate, the user must send a DL_BIND_REQto
associate a particular SAP (Service Access Pointer) with the stream. The qe
driver interprets the sap field within the DL_BIND_REQas an Ethernet “type”
therefore valid values for the sap field are in the [0-0xFFFF] range. Only one
Ethernet type can be bound to the stream at any time.

If the user selects a sap with a value of 0, the receiver will be in 802.3 mode. All
frames received from the media having a “type” field in the range [0-1500] are
assumed to be 802.3 frames and are routed up all open Streams which are bound
to sap value 0. If more than one Stream is in “802.3 mode” then the frame will
be duplicated and routed up multiple Streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQif the
sap value is 0, and if the destination type field is in the range [0-1500]. If
either is true, the driver computes the length of the message, not including
initial M_PROTOmblk (message block), of all subsequent DL_UNITDATA_REQ
messages and transmits 802.3 frames that have this value in the MAC frame
header length field.

The driver also supports raw M_DATAmode. When the user sends a DLIOCRAW
ioctl, the particular Stream is put in raw mode. A complete frame along with
a proper ether header is expected as part of the data.

The qe driver DLSAPaddress format consists of the 6 byte physical (Ethernet)
address component followed immediately by the 2 byte sap (type) component
producing an 8 byte DLSAPaddress. Applications should not hardcode to this
particular implementation-specific DLSAPaddress format but use information
returned in the DL_INFO_ACKprimitive to compose and decompose DLSAP
addresses. The sap length, full DLSAPlength, and sap /physical ordering
are included within the DL_INFO_ACK. The physical address length can be
computed by subtracting the sap length from the full DLSAPaddress length
or by issuing the DL_PHYS_ADDR_REQto obtain the current physical address
associated with the stream.

Once in the DL_BOUNDstate, the user may transmit frames on the Ethernet by
sending DL_UNITDATA_REQmessages to the qe driver. The qe driver will
route received Ethernet frames up all those open and bound streams having
a sap which matches the Ethernet type as DL_UNITDATA_IND messages.
Received Ethernet frames are duplicated and routed up multiple open streams if
necessary. The DLSAPaddress contained within the DL_UNITDATA_REQand
DL_UNITDATA_IND messages consists of both the sap (type) and physical
(Ethernet) components.

422 SunOS 5.8 Last modified 3 Mar 1994

Devices qe(7D)

qe Primitives In addition to the mandatory connectionless DLPI message set the driver
additionally supports the following primitives.

The DL_ENABMULTI_REQand DL_DISABMULTI_REQprimitives enable/disable
reception of individual multicast group addresses. A set of multicast addresses
may be iteratively created and modified on a per-stream basis using these
primitives. These primitives are accepted by the driver in any state following
DL_ATTACHED.

The DL_PROMISCON_REQand DL_PROMISCOFF_REQprimitives with the
DL_PROMISC_PHYSflag set in the dl_level field enables/disables reception
of all (“promiscuous mode”) frames on the media including frames generated
by the local host. When used with the DL_PROMISC_SAPflag set this
enables/disables reception of all sap (Ethernet type) values. When used
with the DL_PROMISC_MULTIflag set this enables/disables reception of
all multicast group addresses. The effect of each is always on a per-stream
basis and independent of the other sap and physical level configurations on
this stream or other streams.

The DL_PHYS_ADDR_REQprimitive return the 6 octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACKprimitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQprimitive changes the 6 octet Ethernet address
currently associated (attached) to this stream. The credentials of the process
which originally opened this stream must be superuser or EPERMis returned
in the DL_ERROR_ACK.This primitive is destructive in that it affects all other
current and future streams attached to this device. An M_ERRORis sent up all
other streams attached to this device when this primitive on this stream is
successful. Once changed, all streams subsequently opened and attached to this
device will obtain this new physical address. Once changed, the physical address
will remain so until this primitive is used to change the physical address again
or the system is rebooted, whichever comes first.

FILES /dev/qe qe special character device.

SEE ALSO dlpi (7P), le (7D), qec (7D)

Last modified 3 Mar 1994 SunOS 5.8 423

qec(7D) Devices

NAME qec – QEC bus nexus device driver

DESCRIPTION The qec device driver is a bus nexus driver which provides basic support
for the QEC hardware. It is the parent of the qe(7D) leaf driver. The driver
supports multiple QED SBus cards installed within the system. It is not directly
accessible to the user.

SEE ALSO qe(7D)

424 SunOS 5.8 Last modified 3 Mar 1993

Devices qfe(7d)

NAME qfe – SUNW,qfe Quad Fast-Ethernet device driver

SYNOPSIS /dev/qfe

DESCRIPTION The SUNW,qfe Quad Fast-Ethernet driver is a multi-threaded, loadable, clonable,
STREAMS hardware driver supporting the connectionless Data Link Provider
Interface, dlpi (7P), over a SUNW,qfe Quad Fast-Ethernet controller. Multiple
SUNW,qfe controllers installed within the system are supported by the driver.
The qfe driver provides basic support for the SUNW,qfe hardware. It is used
to handle the SUNW,qfe device. Functions include chip initialization, frame
transit and receive, multicast and promiscuous support, and error recovery
and reporting.

SUNW,qfe The SUNW,qfe device provides a 100Base-TX networking interface. There are
two types of SUNW,qfe device: one supporting Sbus and the other supporting
the PCI bus interface. The Sbus SUNW,qfe device uses Sun’s FEPS ASIC, which
provides the Sbus interface and MAC functions. The PCI SUNW,qfe device uses
Sun’s PFEX ASICto provide the PCI interface and MAC functions. Both connect
with the 100Base-TX on-board transceiver, which connects to a RJ45 connector
to provide the Physical layer functions and external connection.

The 100Base-TX standard specifies an “auto-negotiation” protocol to
automatically select the mode and speed of operation. The internal transceiver is
capable of doing auto-negotiation with the remote-end of the link (link partner)
and receives the capabilities of the remote end. It selects the Highest Common
Denominator mode of operation based on the priorities. It also supports
forced-mode of operation where the driver can select the mode of operation.

APPLICATION
PROGRAMMING

INTERFACE

The cloning character-special device /dev/qfe is used to access all SUNW,qfe
controllers installed within the system.

qfe and DLPI The qfe driver is a “style 2” data link service provider. All M_PROTOand
M_PCPROTOtype messages are interpreted as DLPI primitives. Valid DLPI
primitives are defined in <sys/dlpi.h> . Refer to dlpi (7P) for more
information. An explicit DL_ATTACH_REQmessage by the user is required to
associate the opened stream with a particular device (ppa). The ppa ID is
interpreted as an unsigned long data type and indicates the corresponding
device instance (unit) number. The driver returns an error (DL_ERROR_ACK) if
the ppa field value does not correspond to a valid device instance number for
this system. The device is initialized on first attach and de-initialized (stopped)
at last detach.

The values returned by the driver in the DL_INFO_ACKprimitive in response
to the DL_INFO_REQfrom the user are as follows:

� The maximum SDU is 1500 (ETHERMTU- defined in <sys/ethernet.h>).

� The minimum SDU is 0.

Last modified 6 May 1998 SunOS 5.8 425

qfe(7d) Devices

� The dlsap address length is 8.

� The MAC type is DL_ETHER.

� The sap length values is −2 meaning the physical address component is
followed immediately by a 2 byte sap component within the DLSAP
address.

� The service mode is DL_CLDLS.

� No optional quality of service (QOS) support is included at present so
the QOS fields are 0.

� The provider style is DL_STYLE2.

� The version is DL_VERSION_2.

� The broadcast address value is Ethernet/IEEE broadcast address
(0xFFFFFF).

Once in the DL_ATTACHEDstate, the user must send a DL_BIND_REQto associate
a particular service access pointer SAP with the stream. The qfe driver interprets
the sap field within the DL_BIND_REQas an Ethernet “type” therefore valid
values for the sap field are in the [0-0xFFFF] range. Only one Ethernet type can
be bound to the stream at any time.

If the user selects a sap with a value of 0, the receiver will be in “802.3 mode”. All
frames received from the media having a “type” field in the range [0-1500] are
assumed to be 802.3 frames and are routed up all open streams which are bound
to sap value 0. If more than one stream is in “802.3 mode” then the frame will be
duplicated and routed up multiple streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQif the
sap value is 0, and if the destination type field is in the range [0-1500]. If
either is true, the driver computes the length of the message, not including
initial M_PROTO mblk(message block), of all subsequent DL_UNITDATA_REQ
messages and transmits 802.3 frames that have this value in the MAC frame
header length field.

The qfe driver DLSAPaddress format consists of the 6 byte physical (Ethernet)
address component followed immediately by the 2 byte sap (type) component
producing an 8 byte DLSAPaddress. Applications should not hardcode to this
particular implementation-specific DLSAPaddress format but use information
returned in the DL_INFO_ACKprimitive to compose and decompose DLSAP
addresses. The sap length, full DLSAPlength, and sap /physical ordering
are included within the DL_INFO_ACK. The physical address length can be
computed by subtracting the sap length from the full DLSAPaddress length
or by issuing the DL_PHYS_ADDR_REQto obtain the current physical address
associated with the stream.

426 SunOS 5.8 Last modified 6 May 1998

Devices qfe(7d)

Once in the DL_BOUNDstate, the user may transmit frames on the Ethernet by
sending DL_UNITDATA_REQmessages to the qfe driver. The qfe driver will
route received Ethernet frames up all those open and bound streams having
a sap which matches the Ethernet type as DL_UNITDATA_IND messages.
Received Ethernet frames are duplicated and routed up multiple open streams if
necessary. The DLSAPaddress contained within the DL_UNITDATA_REQand
DL_UNITDATA_IND messages consists of both the sap (type) and physical
(Ethernet) components.

In addition to the mandatory connectionless DLPI message set the driver also
supports the following primitives.

qfe Primitives The DL_ENABMULTI_REQand DL_DISABMULTI_REQprimitives enable or
disable reception of individual multicast group addresses. A set of multicast
addresses may be iteratively created and modified on a per-stream basis using
these primitives. The driver accepts these primitives in any state following
DL_ATTACHED.

The DL_PROMISCON_REQand DL_PROMISCOFF_REQprimitives with the
DL_PROMISC_PHYSflag set in the dl_level field enables or disables reception
of all frames on the media (“promiscuous mode”), including frames generated
by the local host.

When used with the DL_PROMISC_SAPflag set this enables or disables reception
of all sap (Ethernet type) values. When used with the DL_PROMISC_MULTIflag
set this enables or disables reception of all multicast group addresses. The effect
of each is always on a per-stream basis and independent of the other sap and
physical level configurations on this stream or other streams.

The DL_PHYS_ADDR_REQprimitive returns the 6 octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACKprimitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQprimitive changes the 6 octet Ethernet address
currently associated (attached) to this stream. The credentials of the process
which originally opened this stream must be root. Otherwise EPERMis returned
in the DL_ERROR_ACK.This primitive is destructive in that it affects all other
current and future streams attached to this device. An M_ERRORis sent up
all other streams attached to this device when this primitive is successful on
this stream. Once changed, all streams subsequently opened and attached to
this device will obtain this new physical address. Once changed, the physical
address will remain until this primitive is used to change the physical address
again or the system is rebooted, whichever comes first.

qfe Driver By default, the qfe driver performs “auto-negotiation” to select the mode and
speed of the link.

Last modified 6 May 1998 SunOS 5.8 427

qfe(7d) Devices

The link can be in one of the four following modes:

� 100 Mbps, full-duplex

� 100 Mbps, half-duplex

� 10 Mbps, full-duplex

� 10 Mbps, half-duplex

These speeds and modes are described in the 100Base-TX standard.

The auto−negotiation protocol automatically selects:

� Operation mode (half-duplex or full-duplex)

� Speed (100 Mbps or 10 Mbps)

The auto−negotiation protocol does the following:

� Gets all the modes of operation supported by the Link Partner

� Advertises its capabilities to the Link Partner

� Selects the highest common denominator mode of operation based on the
priorities.

� The highest priority is given to the 100 Mbps, full-duplex; lowest priority
is given to 10 Mbps, half-duplex.

The 100Base-TX transceiver is capable of all of the operating speeds and modes
listed above. By default, auto-negotiation is used to select the speed and the
mode of the link and the common mode of operation with the link partner.

Sometimes, the user may want to select the speed and mode of the link. The
SUNW,qfe device supports programmable "IPG" (Inter-Packet Gap) parameters
ipg1 and ipg2 . By default, the driver sets ipg1 to 8 byte-times and ipg2 to
4 byte-times (which are the standard values). Sometimes, the user may want
to alter these values depending on whether the driver supports 10 Mbps or 100
Mpbs and accordingly, IPG will be set to 9.6 or 0.96 microseconds.

qfe Parameter List The qfe driver provides for setting and getting various parameters for the
SUNW,qfe device. The parameter list includes:

� current transceiver status

� current link status

� inter-packet gap

� local transceiver capabilities

� link partner capabilities

The local transceiver has two sets of capabilities: one set reflects the capabilities
of the hardware, which are read-only (RO) parameters, and the second set,

428 SunOS 5.8 Last modified 6 May 1998

Devices qfe(7d)

which reflects the values chosen by the user, is used in speed selection. There
are read/write (RW) capabilities. At boot time, these two sets of capabilities
will be the same. The Link Partner capabilities are also read-only parameters
because the current default value of these parameters can only be read and
cannot be modified.

FILES /dev/qfe qfe special character device

/kernel/drv/qfe.conf system wide default device driver properties

SEE ALSO ndd (1M), netstat (1M), driver.conf (4), dlpi (7P), le (7D)

Last modified 6 May 1998 SunOS 5.8 429

quotactl(7I) Ioctl Requests

NAME quotactl – manipulate disk quotas

SYNOPSIS #include <sys/fs/ufs_quota.h>

int ioctl(int fd, Q_QUOTACTL, struct quotcl *qp)

DESCRIPTION This ioctl() call manipulates disk quotas. fd is the file descriptor returned
by the open() system call after opening the quotas file (located in the
root directory of the filesystem running quotas.) Q_QUOTACTLis defined in
/usr/include/sys/fs/ufs_quota.h . qp is the address of the quotctl
structure which is defined as

struct quotctl {
int op;
uid_t uid;
caddr_t addr;

};

op indicates an operation to be applied to the user ID uid. (See below.) addr is the
address of an optional, command specific, data structure which is copied in or
out of the system. The interpretation of addr is given with each value of op below.
Q_QUOTAON Turn on quotas for a file system. addr points to the

full pathname of the quotas file. uid is ignored. It is
recommended that uid have the value of 0. This call is
restricted to the super-user.

Q_QUOTAOFF Turn off quotas for a file system. addr and uid are ignored. It
is recommended that addr have the value of NULL and uid
have the value of 0. This call is restricted to the super-user.

Q_GETQUOTA Get disk quota limits and current usage for user uid.
addr is a pointer to a dqblk structure (defined in
<sys/fs/ufs_quota.h>). Only the super-user may get
the quotas of a user other than himself.

Q_SETQUOTA Set disk quota limits and current usage for user uid.
addr is a pointer to a dqblk structure (defined in
sys/fs/ufs_quota.h). This call is restricted to the
super-user.

Q_SETQLIM Set disk quota limits for user uid. addr is a pointer to a
dqblk structure (defined in sys/fs/ufs_quota.h). This
call is restricted to the super-user.

Q_SYNC Update the on-disk copy of quota usages for this file system.
addr and uid are ignored.

Q_ALLSYNC Update the on-disk copy of quota usages for all file systems
with active quotas. addr and uid are ignored.

430 SunOS 5.8 Last modified 14 Sep 1995

Ioctl Requests quotactl(7I)

RETURN VALUES This ioctl() returns:
0 on success.

−1 on failure and sets errno to indicate the error.

ERRORS EFAULT addr is invalid.

EINVAL The kernel has not been compiled with the QUOTAoption.
op is invalid.

ENOENT The quotas file specified by addr does not exist.

EPERM The call is privileged and the caller was not the super-user.

ESRCH No disk quota is found for the indicated user. Quotas have
not been turned on for this file system.

EUSERS The quota table is full.

If op is Q_QUOTAON, ioctl() may set errno to:
EACCES The quota file pointed to by addr exists but is not a regular

file. The quota file pointed to by addr exists but is not on
the file system pointed to by special.

EIO Internal I/O error while attempting to read the quotas file
pointed to by addr.

FILES /usr/include/sys/fs/ufs_quota.h quota-related structure/function
definitions and defines

SEE ALSO quota (1M), quotacheck (1M), quotaon (1M), getrlimit (2), mount (2)

BUGS There should be some way to integrate this call with the resource limit interface
provided by setrlimit() and getrlimit (2).

This call is incompatible with Melbourne quotas.

Last modified 14 Sep 1995 SunOS 5.8 431

rns_smt(7D) Devices

NAME rns_smt – Rockwell Station Management driver

SYNOPSIS /dev/rns_smt

DESCRIPTION On the Rockwell FDDI adapter boards, the rns_smt driver implements the
FDDI Station Management protocol (SMT). The Station Management protocol
includes Connection Management, Ring Management and all frame services.
The rns_snt driver is a loadable, clonable STREAMS driver that can support
multiple instances of the FDDI interface, as well as multiple application layer
clients.

The cloning character-oriented devices /dev/rns_smt are used to access the
rns_snt driver that supports Rockwell FDDI adapters. The /dev/rns_smt
device is an interface used only for Station Management applications, such as
those that gather MIB statistics or other Station information.

The SMT driver supports DLPI and SPI interfaces. All M_PROTOand M_PCPROTO
type messages are interpreted as DLPI or SPI. SPI (SMT provider interface) is a
Rockwell proprietary interface that is used during communication between the
SMT and related applications. rns_smt is a "style 2" data link service provider,
which means that an explicit DL_ATTACH_REQis required to associate the
opened stream with a particular device or physical point of attachment (PPA).

FILES /dev/rns_smt interface used for Station
Management applications

/kernel/drv/rns_smt.conf configuration file

432 SunOS 5.8 Last modified 10 Apr 1996

Protocols route(7P)

NAME route – kernel packet forwarding database

SYNOPSIS #include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/route.h>
int socket (PF_ROUTE, SOCK_RAW, int protocol);

DESCRIPTION UNIX provides some packet routing facilities. The kernel maintains a routing
information database, which is used in selecting the appropriate network
interface when transmitting packets.

A user process (or possibly multiple co-operating processes) maintains this
database by sending messages over a special kind of socket. This supplants fixed
size ioctl (2)’s specified in routing (7P). Routing table changes may only be
carried out by the superuser.

The operating system may spontaneously emit routing messages in response to
external events, such as receipt of a re-direct, or failure to locate a suitable route
for a request. The message types are described in greater detail below.

Routing database entries come in two flavors: entries for a specific host, or
entries for all hosts on a generic subnetwork (as specified by a bit mask and
value under the mask). The effect of wildcard or default route may be achieved
by using a mask of all zeros, and there may be hierarchical routes.

When the system is booted and addresses are assigned to the network interfaces,
the internet protocol family installs a routing table entry for each interface when
it is ready for traffic. Normally the protocol specifies the route through each
interface as a direct connection to the destination host or network. If the route
is direct, the transport layer of a protocol family usually requests the packet
be sent to the same host specified in the packet. Otherwise, the interface is
requested to address the packet to the gateway listed in the routing entry, that
is, the packet is forwarded.

When routing a packet, the kernel attempts to find the most specific route
matching the destination. If no entry is found, the destination is declared to be
unreachable, and a routing-miss message is generated if there are any listeners
on the routing control socket (described below). If there are two different mask
and value-under-the-mask pairs that match, the more specific is the one with
more bits in the mask. A route to a host is regarded as being supplied with a
mask of as many ones as there are bits in the destination.

A wildcard routing entry is specified with a zero destination address value, and
a mask of all zeroes. Wildcard routes are used when the system fails to find
other routes matching the destination. The combination of wildcard routes and
routing redirects can provide an economical mechanism for routing traffic.

Last modified 9 Nov 1999 SunOS 5.8 433

route(7P) Protocols

One opens the channel for passing routing control messages by using the socket
call shown in the SYNOPSIS section above. There can be more than one routing
socket open per system.

Messages are formed by a header followed by a small number of sockaddrs ,
whose length depend on the address family. sockaddrs are interpreted by
position. An example of a type of message with three addresses might be a CIDR
prefix route: Destination, Netmask, and Gateway. The interpretation of which
addresses are present is given by a bit mask within the header, and the sequence
is least significant to most significant bit within the vector.

Any messages sent to the kernel are returned, and copies are sent to all interested
listeners. The kernel provides the process ID of the sender, and the sender may
use an additional sequence field to distinguish between outstanding messages.
However, message replies may be lost when kernel buffers are exhausted.

The protocol parameter specifies which messages an application listening on the
routing socket is interested in seeing, based on the the address family of the
sockaddrs present. Currently, you can specify AF_INET and AF_INET6
to filter the messages seen by the listener, or alternatively, you can specify
AF_UNSPECto indicate that the listener is interested in all routing messages.

The kernel may reject certain messages, and will indicate this by filling in the
rtm_errno field of the rt_msghdr struct (see below). The following codes
may be returned:
EEXIST If requested to duplicate an existing entry

ESRCH If requested to delete a non-existent entry

ENOBUFS If insufficient resources were available to install a new route.

In the current implementation, all routing processes run locally, and the values
for rtm_errno are available through the normal errno mechanism, even
if the routing reply message is lost.

A process may avoid the expense of reading replies to its own messages by
issuing a setsockopt (3SOCKET) call indicating that the SO_USELOOPBACK
option at the SOL_SOCKETlevel is to be turned off. A process may ignore all
messages from the routing socket by doing a shutdown (3SOCKET) system
call for further input.

If a route is in use when it is deleted, the routing entry is marked down and
removed from the routing table, but the resources associated with it are not
reclaimed until all references to it are released.

Messages User processes can obtain information about the routing entry to a specific
destination by using a RTM_GETmessage.

Messages include:

434 SunOS 5.8 Last modified 9 Nov 1999

Protocols route(7P)

#define RTM_ADD 0x1 /* Add Route */
#define RTM_DELETE 0x2 /* Delete Route */
#define RTM_CHANGE 0x3 /* Change Metrics, Flags, or Gateway */
#define RTM_GET 0x4 /* Report Information */
#define RTM_LOSING 0x5 /* Kernel Suspects Partitioning */
#define RTM_REDIRECT 0x6 /* Told to use different route */
#define RTM_MISS 0x7 /* Lookup failed on this address */
#define RTM_LOCK 0x8 /* fix specified metrics */
#define RTM_OLDADD 0x9 /* caused by SIOCADDRT */
#define RTM_OLDDEL 0xa /* caused by SIOCDELRT */
#define RTM_RESOLVE 0xb /* request to resolve dst to LL addr */
#define RTM_NEWADDR 0xc /* address being added to iface */
#define RTM_DELADDR 0xd /* address being removed from iface */
#define RTM_IFINFO 0xe /* iface going up/down etc. */

A message header consists of:

struct rt_msghdr {
ushort_t rtm_msglen; /* to skip over non-understood messages */
uchar_t rtm_version; /* future binary compatibility */
uchar_t rtm_type; /* message type */
ushort_t rtm_index; /* index for associated ifp */
pid_t rtm_pid; /* identify sender */
int rtm_addrs; /* bitmask identifying sockaddrs in msg */
int rtm_seq; /* for sender to identify action */
int rtm_errno; /* why failed */
int rtm_flags; /* flags, incl kern & message, e.g., DONE */
int rtm_use; /* from rtentry */
uint_t rtm_inits; /* which values we are initializing */

struct rt_metrics rtm_rmx; /* metrics themselves */
};

where

struct rt_metrics {
uint32_t rmx_locks; /* Kernel must leave these values alone */
uint32_t rmx_mtu; /* MTU for this path */
uint32_t rmx_hopcount; /* max hops expected */
uint32_t rmx_expire; /* lifetime for route, e.g., redirect */
uint32_t rmx_recvpipe; /* inbound delay-bandwidth product */
uint32_t rmx_sendpipe; /* outbound delay-bandwidth product */
uint32_t rmx_ssthresh; /* outbound gateway buffer limit */
uint32_t rmx_rtt; /* estimated round trip time */
uint32_t rmx_rttvar; /* estimated rtt variance */
uint32_t rmx_pksent; /* packets sent using this route */

};

/* Flags include the values */

#define RTF_UP 0x1 /* route usable */
#define RTF_GATEWAY 0x2 /* destination is a gateway */

Last modified 9 Nov 1999 SunOS 5.8 435

route(7P) Protocols

#define RTF_HOST 0x4 /* host entry (net otherwise) */
#define RTF_REJECT 0x8 /* host or net unreachable */
#define RTF_DYNAMIC 0x10 /* created dynamically(by redirect) */
#define RTF_MODIFIED 0x20 /* modified dynamically(by redirect) */
#define RTF_DONE 0x40 /* message confirmed */
#define RTF_MASK 0x80 /* subnet mask present */
#define RTF_CLONING 0x100 /* generate new routes on use */
#define RTF_XRESOLVE 0x200 /* external daemon resolves name */
#define RTF_LLINFO 0x400 /* generated by ARP */
#define RTF_STATIC 0x800 /* manually added */
#define RTF_BLACKHOLE 0x1000 /* just discard pkts (during updates) */
#define RTF_PRIVATE 0x2000 /* do not advertise this route */
#define RTF_PROTO2 0x4000 /* protocol specific routing flag #2 */
#define RTF_PROTO1 0x8000 /* protocol specific routing flag #1 */

/* Specifiers for metric values in rmx_locks and rtm_inits are */

#define RTV_MTU 0x1 /* init or lock _mtu */
#define RTV_HOPCOUNT 0x2 /* init or lock _hopcount */
#define RTV_EXPIRE 0x4 /* init or lock _expire */
#define RTV_RPIPE 0x8 /* init or lock _recvpipe */
#define RTV_SPIPE 0x10 /* init or lock _sendpipe */
#define RTV_SSTHRESH 0x20 /* init or lock _ssthresh */
#define RTV_RTT 0x40 /* init or lock _rtt */
#define RTV_RTTVAR 0x80 /* init or lock _rttvar */

/* Specifiers for which addresses are present in the messages are */

#define RTA_DST 0x1 /* destination sockaddr present */
#define RTA_GATEWAY 0x2 /* gateway sockaddr present */
#define RTA_NETMASK 0x4 /* netmask sockaddr present */
#define RTA_GENMASK 0x8 /* cloning mask sockaddr present */
#define RTA_IFP 0x10 /* interface name sockaddr present */
#define RTA_IFA 0x20 /* interface addr sockaddr present */
#define RTA_AUTHOR 0x40 /* sockaddr for author of redirect */
#define RTA_BRD 0x80 /* for NEWADDR, broadcast or p-p dest addr */

SEE ALSO ioctl (2), setsockopt (3SOCKET), shutdown (3SOCKET), routing (7P)

NOTES Some of the metrics may not be implemented and return zero. The implemented
metrics are set in rtm_inits .

436 SunOS 5.8 Last modified 9 Nov 1999

Protocols routing(7P)

NAME routing – system support for packet network routing

DESCRIPTION The network facilities provide general packet routing. The routing interface
described here can be used to maintain the system’s IPv4 routing table. It has
been maintained for compatibility with older applications. The recommended
interface for maintaining the system’s routing tables is the routing socket,
described at route (7P). The routing socket can be used to manipulate both the
IPv4 and IPv6 routing tables of the system. Routing table maintenance may be
implemented in applications processes.

A simple set of data structures compose a “routing table” used in selecting
the appropriate network interface when transmitting packets. This table
contains a single entry for each route to a specific network or host. The routing
table was designed to support routing for the Internet Protocol (IP), but its
implementation is protocol independent and thus it may serve other protocols
as well. User programs may manipulate this data base with the aid of two
ioctl (2) commands, SIOCADDRTand SIOCDELRT. These commands allow the
addition and deletion of a single routing table entry, respectively. Routing table
manipulations may only be carried out by privileged user.

A routing table entry has the following form, as defined in
/usr/include/net/route.h :

struct rtentry {
unit_t rt_hash; /* to speed lookups */
struct sockaddr rt_dst; /* key */
struct sockaddr rt_gateway; /* value */
short rt_flags; /* up/down?, host/net */
short rt_refcnt; /* # held references */
unit_t rt_use; /* raw # packets forwarded */

/*
* The kernel does not use this field, and without it the structure is
* datamodel independent.
*/

#if !defined(_KERNEL)
struct ifnet *rt_ifp; /* the answer: interface to use */

#endif /* !defined(_KERNEL) */
};

with rt_flags defined from:

#define RTF_UP 0x1 /* route usable */
#define RTF_GATEWAY 0x2 /* destination is a gateway */
#define RTF_HOST 0x4 /* host entry (net otherwise) */

There are three types of routing table entries: those for a specific host, those for
all hosts on a specific network, and those for any destination not matched by
entries of the first two types, called a wildcard route. Each network interface
installs a routing table entry when it is initialized. Normally the interface

Last modified 9 Nov 1999 SunOS 5.8 437

routing(7P) Protocols

specifies if the route through it is a “direct” connection to the destination host or
network. If the route is direct, the transport layer of a protocol family usually
requests the packet be sent to the same host specified in the packet. Otherwise,
the interface may be requested to address the packet to an entity different from
the eventual recipient; essentially, the packet is forwarded.

Routing table entries installed by a user process may not specify the hash,
reference count, use, or interface fields; these are filled in by the routing routines.
If a route is in use when it is deleted, meaning its rt_refcnt is non-zero, the
resources associated with it will not be reclaimed until all references to it are
removed.

User processes read the routing tables through the /dev/ip device.

The rt_use field contains the number of packets sent along the route. This value
is used to select among multiple routes to the same destination. When multiple
routes to the same destination exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination address value.
Wildcard routes are used only when the system fails to find a route to the
destination host and network. The combination of wildcard routes and routing
redirects can provide an economical mechanism for routing traffic.

ERRORS EEXIST A request was made to duplicate an existing
entry.

ESRCH A request was made to delete a non-existent
entry.

ENOBUFS Insufficient resources were available to install a
new route.

ENOMEM Insufficient resources were available to install a
new route.

ENETUNREACH The gateway is not directly reachable.
For example, it does not match the
destination/subnet on any of the network
interfaces.

FILES /dev/ip IP device driver

SEE ALSO route (1M), ioctl (2), route (7P)

438 SunOS 5.8 Last modified 9 Nov 1999

Devices sad(7D)

NAME sad – STREAMS Administrative Driver

SYNOPSIS #include <sys/types.h>

#include <sys/conf.h>

#include <sys/sad.h>

#include <sys/stropts.h>

int ioctl(int fildes, int command, int arg);

DESCRIPTION The STREAMS Administrative Driver provides an interface for applications to
perform administrative operations on STREAMS modules and drivers. The
interface is provided through ioctl (2) commands. Privileged operations may
access the sad driver using /dev/sad/admin . Unprivileged operations may
access the sad driver using /dev/sad/user .

The fildes argument is an open file descriptor that refers to the sad driver.
The commandargument determines the control function to be performed as
described below. The arg argument represents additional information that is
needed by this command. The type of arg depends upon the command, but it is
generally an integer or a pointer to a command-specific data structure.

COMMAND
FUNCTIONS

The autopush facility (see autopush (1M)) allows one to configure a list of
modules to be automatically pushed on a stream when a driver is first opened.
Autopush is controlled by the following commands:
SAD_SAP Allows the administrator to configure the given device’s

autopush information. arg points to a strapush structure,
which contains the following members:

unit_t ap_cmd;
major_t sap_major;
minor_t sap_minor;
minor_t sap_lastminor;
unit_t sap_npush;
unit_t sap_list [MAXAPUSH] [FMNAMESZ + 1];

The sap_cmd field indicates the type of configuration being
done. It may take on one of the following values:

SAP_ONE Configure one minor device of a driver.

SAP_RANGE Configure a range of minor devices of a
driver.

SAP_ALL Configure all minor devices of a driver.

SAP_CLEAR Undo configuration information for a
driver.

Last modified 16 Apr 1997 SunOS 5.8 439

sad(7D) Devices

The sap_major field is the major device number of the
device to be configured. The sap_minor field is the
minor device number of the device to be configured. The
sap_lastminor field is used only with the SAP_RANGE
command, which configures a range of minor devices
between sap_minor and sap_lastminor , inclusive. The
minor fields have no meaning for the SAP_ALL command.
The sap_npush field indicates the number of modules to be
automatically pushed when the device is opened. It must
be less than or equal to MAXAPUSH ,defined in sad.h . It
must also be less than or equal to NSTRPUSH,the maximum
number of modules that can be pushed on a stream, defined
in the kernel master file. The field sap_list is an array of
NULL-terminated module names to be pushed in the order
in which they appear in the list.

When using the SAP_CLEARcommand, the user sets
only sap_major and sap_minor . This will undo the
configuration information for any of the other commands. If
a previous entry was configured as SAP_ALL, sap_minor
should be set to zero. If a previous entry was configured as
SAP_RANGE , sap_minor should be set to the lowest minor
device number in the range configured.

On failure, errno is set to the following value:

EFAULT arg points outside the allocated address
space.

EINVAL The major device number is invalid, the
number of modules is invalid, or the list of
module names is invalid.

ENOSTR The major device number does not
represent a STREAMS driver.

EEXIST The major-minor device pair is already
configured.

ERANGE The command is SAP_RANGEand
sap_lastminor is not greater than
sap_minor , or the command is
SAP_CLEARand sap_minor is not equal
to the first minor in the range.

440 SunOS 5.8 Last modified 16 Apr 1997

Devices sad(7D)

ENODEV The command is SAP_CLEARand the
device is not configured for autopush.

ENOSR An internal autopush data structure
cannot be allocated.

SAD_GAP Allows any user to query the sad driver to get the autopush
configuration information for a given device. arg points to a
strapush structure as described in the previous command.

The user should set the sap_major and sap_minor fields
of the strapush structure to the major and minor device
numbers, respectively, of the device in question. On return,
the strapush structure will be filled in with the entire
information used to configure the device. Unused entries
in the module list will be zero-filled.

On failure, errno is set to one of the following values:

EFAULT arg points outside the allocated address
space.

EINVAL The major device number is invalid.

ENOSTR The major device number does not
represent a STREAMS driver.

ENODEV The device is not configured for autopush.

SAD_VML Allows any user to validate a list of modules (that is, to see
if they are installed on the system). arg is a pointer to a
str_list structure with the following members:

int sl_nmods;
struct str_mlist *sl_modlist;

The str_mlist structure has the following member:

char l_name[FMNAMESZ+1];

sl_nmods indicates the number of entries the user has
allocated in the array and sl_modlist points to the array
of module names. The return value is 0 if the list is valid, 1 if
the list contains an invalid module name, or −1 on failure.
On failure, errno is set to one of the following values:

Last modified 16 Apr 1997 SunOS 5.8 441

sad(7D) Devices

EFAULT arg points outside the allocated address
space.

EINVAL The sl_nmods field of the str_list
structure is less than or equal to zero.

SEE ALSO intro (2), ioctl (2), open (2)

STREAMS Programming Guide

DIAGNOSTICS Unless otherwise specified, the return value from ioctl() is 0 upon success
and −1 upon failure with errno set as indicated.

442 SunOS 5.8 Last modified 16 Apr 1997

Devices sbpro(7D)

NAME sbpro – Sound Blaster Pro, Sound Blaster 16, and Sound Blaster AWE32 audio
device driver

SYNOPSIS sbpro:sound,sbpro

sbpro:sound,sbproctl

DESCRIPTION The Creative Labs Sound Blaster family of audio cards comprises DMA-capable
ISA bus plug-in cards that provide 8 and 16 bit mono and stereo digitized sound
recording and playback over a wide range of sampling rates. Each card includes
a digital sound processor and mixing capability. Some of the cards also support
more advanced audio features such as FM synthesis, advanced signal processing,
advanced wave effects, and MIDI capability; however, the sbpro driver does
not currently support those advanced features. The features and interfaces
supported by the Solaris sbpro driver are described here and in audio (7I).

Some Sound Blaster cards support optional non-audio capabilities such as SCSI
interfaces and CD-ROM interfaces. These interfaces are not supported by the
sbpro driver. The Sound Blaster 16 optional SCSI-2 interface is supported by
the aic (7D) driver.

The sbpro driver also supports certain "Sound Blaster compatible" audio
devices, including some based on the ESS688 audio chip.

In addition, the driver supports some devices based on the Analog Devices
AD1847 and AD1848, and Crystal Semiconductor CS4231 chips. Any
CS4231-based devices supported by this driver are programmed in AD1848
compatibility mode. There is no special support in this driver for the more
advanced CS4231 features. This family of devices will be referred to as the
"AD184x family."

For a list of supported hardware implementations known to work with this
driver, consult the latest version of the Solaris IA Device Configuration Guide or
the Solaris IA Driver Update Guide (available online on the World Wide Web
and other locations). The guide will contain more specific information about
the settings for each type of card or motherboard.

APPLICATION
PROGRAMMING

INTERFACE

The Sound Blaster device is treated as an exclusive resource: only one process
may open the device at a time. Since the Sound Blaster hardware does not
support simultaneous sound input and output, the sbpro driver does not allow
the simultaneous access of the device by two processes, even if one tries to open
it read-only and the other write-only.

The sbpro driver will return "SUNW,sbpro" or "SUNW,sb16" in the name
field of the audio_device structure. The version field will contain the version
number of the card’s DSP chip, and the config field will be set to "SBPRO" or
"SB16" . The AWE32 is currently identified as an SB16. In all the discussion
below, the Sound Blaster AWE32 behaves the same as the Sound Blaster 16.

Last modified 1 Jan 1997 SunOS 5.8 443

sbpro(7D) Devices

Audio Data Formats The Sound Blaster Pro handles 8-bit samples. In mono mode, audio data may
be sampled at rates from 4,000 to 44,100 samples per second. In stereo mode,
samples may be handled at the rates of 11,025 and 22,050 samples per second.
The SB-16 can sample 8-bit or 16-bit mono or stereo data in the range of 5,000
to 44,100 Hz. Devices in the AD184x family can handle sample rates up to
48,000 Hz.

The Sound Blaster Pro hardware handles 8-bit linear samples in excess-128
format. The Sound Blaster 16 handles that format as well as 16-bit linear
samples in two’s complement format. The sbpro driver will generate and
accept data in these formats if AUDIO_ENCODING_LINEARis selected in the
encoding field of the audio information structure. 16 bit precision is not available
on the Sound Blaster Pro. The sbpro driver will also accept and generate
mu−law format data (as in the Greek letter mu) if the encoding field is set to
AUDIO_ENCODING_ULAW.In this case, driver software performs the translation
between linear and mu-law formats. mu-law encoding is designed to provide
an improved signal-to-noise ratio at low amplitude levels. To achieve best
results when using mu-law encoding, the audio record volume should be set so
that typical amplitude levels lie within approximately three-fourths of the full
dynamic range. Devices in the AD184x family support both mu-law and A-law
in hardware, and the driver allows either of those encodings to be selected.

Audio Ports The Sound Blaster hardware does not support multiple output devices,
so the play.port field of the audio information structure only supports
AUDIO_HEADPHONE.Output volume is controlled by software. There is a
volume control thumbwheel on the back of the card which should be turned all
the way up to maximum; otherwise no sound may be audible.

The record.port field of the audio information structure allows selection
of which audio source is used for recording, and may be set to one of
AUDIO_MICROPHONE, AUDIO_LINE_IN, or AUDIO_CD. These select
input from the microphone jack, line-level input jack, or internal CD input,
respectively. The microphone input is treated as a mono source by the hardware,
although the microphone jack is a stereo jack. If your microphone has a mono
plug, you should convert it to a stereo plug using an appropriate adapter. Line
and CD are stereo sources. When recording in mono mode, both stereo channels
are mixed before recording.

FILES /dev/audio linked to s/dev/sound/0

/dev/audioctl linked to /dev/sound/0ctl

/dev/sound/0 first audio device in the system

/dev/sound/0ctl audio control for first audio device

/usr/demo/SOUND audio demonstration programs

444 SunOS 5.8 Last modified 1 Jan 1997

Devices sbpro(7D)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO audioconvert (1), ioctl (2), attributes (5), aic (7D), audio (7I),
streamio (7I)

Solaris IA Device Configuration Guide

Solaris IA Driver Update Guide

Creative Labs, Inc. Sound Blaster Pro User Reference Manual

BUGS The current driver implementation does not support the A-law encoding mode
for Sound Blaster and compatible devices.

The conversion of mu-law to 8-bit linear format for Sound Blaster and compatible
devices can cause a loss of precision, resulting in poor sound quality in cases
where the original recording level was well below normal. If this occurs while
using the Sound Blaster 16 card, audioconvert (1) can be used to convert the
original mu-law data to 16-bit linear format before play. This will preserve all the
precision from the original mu-law sample.

Last modified 1 Jan 1997 SunOS 5.8 445

scsa2usb(7D) Devices

NAME scsa2usb – SCSI to USB bridge host bus adapter driver

SYNOPSIS storage@unit-address

DESCRIPTION The scsa2usb host bus adapter driver is a USBA (Solaris USB Architecture)
compliant nexus driver which supports the USB Bulk Only Mass Storage
Specification 1.0. It supports bus powered and self powered USB mass storage
devices. This nexus driver is a client driver for USB.

The scsa2usb nexus driver maps SCSA target driver requests to the USBA
client driver requests.

For each logical unit on the mass storage device, the scsa2usb driver creates a
child device info node. Currently, only disk nodes that attach to the standard
Solaris SCSI disk driver are supported. (Refer to sd (7D).

The driver supports IOMEGA USB removable media Zip drives (Zip100 and
Zip250). The Zip100 can store up to 100 MBytes of data while the Zip250 can
store up to 250 MBytes of data. The USB Zip drives are not bootable devices.

DEVICE SPECIAL
FILES

Block special file names are found in /dev/dsk ; raw file names are found
in /dev/rdsk . Input/Output requests to the devices must follow the same
restrictions as those for SCSI disk. Refer to sd (7D).

IOCTLS Refer to dkio (7I).

ERRORS Refer to sd (7D).

FILES The device special files for the USB mass storage device are created like those for
a SCSI disk. Refer to sd (7D).
/dev/dsk/c nt ndnsn

Block files

/dev/rdsk/c nt ndnsn
Raw files

/kernel/drv/scsa2usb
32-bit ELF kernel module

/kernel/drv/sparcv9/scsa2usb
64-bit ELF kernel module

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Availability SUNWusb, SUNWusbx

446 SunOS 5.8 Last modified 9 Nov 1999

Devices scsa2usb(7D)

SEE ALSO fdisk (1M), format (1M), cfgadm_scsi (1M), scsi (4), ohci (7D), sd (7D),
uhci (7D), usb_mid (7D), dkio (7I), pcfs (7FS)

Writing Device Drivers

Universal Serial Bus Specification 1.1

Universal Serial Bus Mass Storage Class Specification Overview 1.0

Universal Serial Bus Mass Storage Class Bulk-Only Transport 1.0

DIAGNOSTICS Refer to sd (7D).

The messages described below may appear on the system console, as well as
being logged. All messages are formatted in the following manner:

Warning: <device path> (scsa2usb%d): Error Message...

Device is busy and cannot be suspended. Please close
device.

The system wide suspend failed because the Zip device is busy. Close the
device before retrying the suspend.

Reinserted device is accessible again.
The Zip device that was hot-removed from its USB slot has been re-inserted
again to the same slot. It is available for access.

Disconnected device was busy, please reconnect.
Disconnecting of the Zip device failed because the device is busy. Please
reconnect the device.

Device is not identical to the previous one on this port.
Please disconnect and reconnect.

Another USB device has been inserted on the port that housed a Zip device.
Please disconnect the USB device and reconnect the Zip device back into
its place.

Cannot access device. Please reconnect < name>.
There was an error in accessing the Zip device during reconnect. Please
reconnect the device.

Syncing not supported.
System panic. A file system is mounted on the Zip media. Syncing is not
supported by scsa2usb driver.

NOTES The Zip 100 drive cannot be power managed as it does not comply with
Universal Serial Bus Specification 1.0. Power Management support for Zip100
has been disabled.

Last modified 9 Nov 1999 SunOS 5.8 447

scsa2usb(7D) Devices

If the system panics while a UFS file system is mounted on the Zip media, no
syncing will take place because syncing is not supported by the scsa2usb
driver. As a result, the file system on the media will not be consistent on reboot.

If a PCFS file system was mounted, no syncing is needed and the filesystem
will be consistent on reboot.

If a Zip drive is busy, system suspend cannot proceed and the system will
immediately resume again.

448 SunOS 5.8 Last modified 9 Nov 1999

Devices sd(7D)

NAME sd – SCSI disk and ATAPI/SCSI CD-ROM device driver

SYNOPSIS sd@target,lun:partition

DESCRIPTION
SPARC The sd SCSI and SCSI/ATAPI driver supports embedded SCSI-2 and

CCS-compatible SCSI disk and CD-ROM drives, ATAPI 2.6 (SFF-8020i)-compliant
CD-ROM drives, SFF-8090–compliant SCSI/ATAPI DVD-ROM drives, IOMEGA
SCSI/ATAPI ZIP drives, and SCSI JAZ drives. The sd driver also supports the
Emulex MD21 disk controller for ESDI drives, although support for the MD21
controller may be phased out in subsequent releases.

To determine the disk drive type, use the SCSI/ATAPI inquiry command
and read the volume label stored on block 0 of the drive. (The volume label
describes the disk geometry and partitioning and must be present for the disk
to be mounted by the system.) A volume label is not required for removable,
rewritable or read-only media.

IA Only The sd driver supports embedded SCSI-2 and CCS-compatible SCSI disk
and CD-ROM drives, ATAPI 2.6 (SFF-8020i)-compliant CD-ROM drives,
SFF-8090-compliant SCSI/ATAPI DVD-ROM drives, IOMEGA SCSI/ATAPI ZIP
drives, and SCSI JAZ drives.

The IA BIOS legacy requires a master boot record (MBR) and fdisk table in the
first physical sector of the bootable media. If the IA hard disk contains a Solaris
disk label, it is located in the second 512-byte sector of the FDISK partition.

DEVICE SPECIAL
FILES

Block-files access the disk using normal buffering mechanism and are read-from
and written-to without regard to physical disk records. A "raw" interface enables
direct transmission between the disk and the user’s read or write buffer. A
single read or write call usually results in a single I/O operation; raw I/O is
therefore more efficient when many bytes are transmitted. Block files names are
found in /dev/dsk ; raw file names are found in /dev/rdsk .

I/O requests to the raw device must be aligned on a 512-byte (DEV_BSIZE)
boundary and all I/O request lengths must be in multiples of 512 bytes. Requests
that do not meet these requirements will trigger an EINVAL error. There are no
alignment or length restrictions on I/O requests to the block device.

CD-ROM DRIVE
SUPPORT

A CD-ROM disk is single-sided and contains approximately 640 megabytes of
data or 74 minutes of audio. When the CD-ROM is opened, the eject button is
disabled to prevent manual removal of the disk until the last close() is called.
No volume label is required for a CD-ROM. The disk geometry and partitioning
information are constant and never change. If the CD-ROM contains data
recorded in a Solaris-aware file system format, it can be mounted using the
appropriate Solaris file system support.

Last modified 15 June 1999 SunOS 5.8 449

sd(7D) Devices

DVD-ROM DRIVE
SUPPORT

DVD-ROM media can be single or double-sided and can be recorded to using
a single or double layer structure. Double-layer media provides parallel or
opposite track paths. A DVD-ROM can hold from between 4.5 Gbytes and 17
Gbytes of data, depending on the layer structure used for recording and if the
DVD-ROM is single or double-sided.

When the DVD-ROM is opened, the eject button is disabled to prevent the
manual removal of a disk until the last close () is called. No volume label
is required for a DVD-ROM. If the DVD-ROM contains data recorded in a
Solaris-aware file system format, it can be mounted using the appropriate Solaris
file system support.

ZIP/JAZ DRIVE
SUPPORT

ZIP/JAZ media provide varied data capacity points; a single JAZ drive can store
up to 2 GBytes of data, while a ZIP-250 can store up to 250MBytes of data.
ZIP/JAZ drives can be read-from or written-to using the appropriate drive.

When a ZIP/JAZ drive is opened, the eject button is disabled to prevent the
manual removal of a disk until the last close () is called. No volume label
is required for a ZIP/JAZ drive. If the ZIP/JAZ drive contains data recorded
in a Solaris-aware file system format, it can be mounted using the appropriate
Solaris file system support.

DEVICE
STATISTICS

SUPPORT

Each device maintains I/O statistics for the device and for partitions allocated
for that device. For each device/partition, the driver accumulates reads, writes,
bytes read, and bytes written. The driver also initiates hi-resolution time stamps
at queue entry and exit points to enable monitoring of residence time and
cumulative residence-length product for each queue.

IOCTLS Refer to dkio (7I), and cdio (7I)
ERRORS EACCES Permission denied

EBUSY The partition was opened exclusively by another
thread

EFAULT The argument features a bad address

EINVAL Invalid argument. EIO. An I/O error occurred.
Refer to notes for details on copy –protected
DVD-ROM media

ENOTTY The device does not support the requested ioctl
function

ENXIO During opening, the device did not exist. During
close, the drive unlock failed

EROFS The device is read-only

450 SunOS 5.8 Last modified 15 June 1999

Devices sd(7D)

CONFIGURATION The sd driver can be configured by defining properties in the sd.conf file. The
sd driver supports the following properties:
qfull-retries The supplied value is passed as the

qfull-retries capability value of the HBA
driver. See scsi_ifsetcap (9F) for details.

qfull-retry-interval The supplied value is passed as the
qfull-retry interval capability value of the
HBA driver. See scsi_ifsetcap (9F) for details.

IA Only allow-bus-device-reset The default value is 1, which allows
resetting to occur. Set this value to
0 (zero) to prevent the sd driver
from calling scsi_reset (9F) with a
second argument of RESET_TARGET
when in error-recovery mode.
This scsi_reset (9F) call may
prompt the HBA driver to send
a SCSI Bus Device Reset message.
The scsi_reset (9F) call with a
second argument of RESET_TARGET
may result from an explicit request
via the USCSICMD ioctl . Some
high-availability multi-initiator
systems may wish to prohibit the Bus
Device Reset message; to do this, set
the allow-bus-device-reset
property to 0.

FILES sd.conf driver configuration file

/dev/dsk/cntndnsn block files

/dev/rdsk/cntndnsn raw files

Where:
cn controller n

tn SCSI target id n (0-6)

dn SCSI LUN n (0-7 normally; some HBAs support
LUNs to 15 or 32. See the specific manpage for
details)

sn partition n (0-7)

Last modified 15 June 1999 SunOS 5.8 451

sd(7D) Devices

SEE ALSO fdisk (1M), format (1M), close (2), ioctl (2), lseek (2), read (2), write (2),
driver.conf (4), scsi (4), filesystem (5) pcfs (7FS), hsfs (7FS), cdio (7I),
dkio (7I), scsi_ifsetcap (9F), scsi_reset (9F)

ANSI Small Computer System Interface-2 (SCSI-2)

Emulex MD21 Disk Controller Programmer Reference Manual

ATA Packet Interface for CD-ROMs, SFF-8020i

Mt.Fuji Commands for CD and DVD, SFF8090v3

DIAGNOSTICS Error for Command: ’ <command name>’
Error Level: Fatal
Requested Block: <n>
Error Block: <m>
Vendor: ’ <vendorname>’
Serial Number: ’ <serial number>’
Sense Key: <sense key name>

ASC: 0x<a> (<ASC name>), ASCQ: 0x, FRU: 0x<c>
The command indicated by <command name> failed. The Requested Block
is the block where the transfer started and the Error Block is the block that
caused the error. Sense Key, ASC, and ASCQ information is returned by the
target in response to a request sense command.

Caddy not inserted in drive
The drive is not ready because no caddy has been inserted.

Check Condition on REQUEST SENSE
A REQUEST SENSE command completed with a check condition. The
original command will be retried a number of times.

Label says <m> blocks Drive says <n> blocks
There is a discrepancy between the label and what the drive returned on the
READ CAPACITYcommand.

Not enough sense information
The request sense data was less than expected.

Request Sense couldn’t get sense data
The REQUEST SENSEcommand did not transfer any data.

Reservation Conflict
The drive was reserved by another initiator.

SCSI transport failed: reason ’xxxx’: {retrying|giving
up}

The host adapter has failed to transport a command to the target for the
reason stated. The driver will either retry the command or, ultimately, give
up.

452 SunOS 5.8 Last modified 15 June 1999

Devices sd(7D)

Unhandled Sense Key<n>
The REQUEST SENSE data included an invalid sense.

Unit not ready. Additional sense code 0x
<n> The drive is not ready.

Can’t do switch back to mode 1
A failure to switch back to read mode 1.

Corrupt label - bad geometry
The disk label is corrupted.

Corrupt label - label checksum failed
The disk label is corrupted.

Corrupt label - wrong magic number
The disk label is corrupted.

Device busy too long
The drive returned busy during a number of retries.

Disk not responding to selection
The drive was probably powered down or died

Failed to handle UA
A retry on a Unit Attention condition failed.

I/O to invalid geometry
The geometry of the drive could not be established.

Incomplete read/write - retrying/giving up
There was a residue after the command completed normally.

No bp for direct access device format geometry
A bp with consistent memory could not be allocated.

No bp for disk label
A bp with consistent memory could not be allocated.

No bp for fdisk
A bp with consistent memory could not be allocated.

No bp for rigid disk geometry
A bp with consistent memory could not be allocated.

No mem for property
Free memory pool exhausted.

No memory for direct access device format geometry
Free memory pool exhausted.

No memory for disk label

Last modified 15 June 1999 SunOS 5.8 453

sd(7D) Devices

Free memory pool exhausted.

No memory for rigid disk geometry
The disk label is corrupted.

No resources for dumping
A packet could not be allocated during dumping.

Offline
Drive went offline; probably powered down.

Requeue of command fails
Driver attempted to retry a command and experienced a transport error.

sdrestart transport failed ()
Driver attempted to retry a command and experienced a transport error.

Transfer length not modulo
Illegal request size.

Transport of request sense fails ()
Driver attempted to submit a request sense command and failed.

Transport rejected ()
Host adapter driver was unable to accept a command.

Unable to read label
Failure to read disk label.

Unit does not respond to selection
Drive went offline; probably powered down.

NOTES DVD-ROM media containing DVD-Video data may follow/adhere to the
requirements of content scrambling system or copy protection scheme. Reading
of copy-protected sector will cause I/O error. Users are advised to use the
appropriate playback software to view video contents on DVD-ROM media
containing DVD-Video data.

454 SunOS 5.8 Last modified 15 June 1999

Devices se(7D)

NAME se – Siemens 82532 ESCC serial communications driver

SYNOPSIS se@bus_address:port_name[,cu]

DESCRIPTION The se module is a loadable STREAMS driver that provides basic support for the
82532 ESCC hardware and basic asynchronous and synchronous communication
support. This manual page describes the asynchronous protocol interface;
for information on the synchronous interface, please see the se_hdlc (7D)
manual page.

The platform specific device bus address for the se module is bus_address. The
se module’s port_name is a single letter (a-z).

APPLICATION
PROGRAMMING

INTERFACE

The Siemens 82532 provides two serial input/output channels capable of
supporting a variety of communication protocols. A typical system will use one
of these devices to implement two serial ports (port_name), usually configured
for RS-423 (which also supports most RS-232 equipment). The Siemens 82532
uses 64 character input and output FIFOs to reduce system overhead. When
receiving characters, the CPU is notified when 32 characters have arrived
(one-half of receive buffer is full) or no character has arrived in the time it would
take to receive four characters at the current baud rate.

When sending characters, the Siemens 82532 places the first 64 characters to be
sent into its output FIFO and then notifies the CPU when it is half empty (32
characters left). Because the se module waits for the Siemens 82532 to transmit
the remaining characters within its output FIFO before making requested
changes, delays may occur when the port’s attributes are being modified.

The se module implements CTS/RTS flow control in hardware. To prevent data
overruns, remove CTS/RTS flow control responsibility from the CPU during
periods of high system load.

In async mode (obtained by opening /dev/cua/[a-z] , /dev/term/[a-z] or
/dev/tty[a-z]), the driver supports the termio (7I) device control functions
specified by flags in the c_cflag word of the termios structure, and by the
IGNBRK, IGNPAR, PARMRK,or INPCK flags in the c_iflag word. All other
termio (7I) functions must be performed by STREAMS modules pushed atop
the driver. When a device is opened, the ldterm (7M) and ttcompat (7M)
STREAMS modules are automatically pushed on top of the stream, providing
the standard termio interface.

Each of the following are valid name space entries: /dev/cua/[a-z] ,
/dev/term/[a-z], and /dev/tty[a-z] . The number of entries used in
this name space are machine dependent. The /dev/tty[a-z] device names
exist only if the SunOS 4.x Binary Compatibility Package is installed. The
/dev/tty[a-z] device names are created by the ucblinks command, which is
available only with the SunOS 4.x Binary Compatibility Package.

Last modified 24 May 1999 SunOS 5.8 455

se(7D) Devices

You can connect a single tty line to a modem for incoming and outgoing calls
using a special feature controlled by the minor device number. By accessing
character-special devices with names of the form /dev/cua/ [a-z], it is possible
to open a port without the Carrier Detect signal being asserted, either
through hardware or an equivalent software mechanism. These devices are
commonly known as dial-out lines.

After a /dev/cua/ [a-z] line is opened, the corresponding tty line cannot be
opened until the /dev/cua/ [a-z] line is closed. A blocking open will wait until
the /dev/cua/ [a-z] line is closed (which will drop Data Terminal Ready
and Carrier Detect) and carrier is detected again. A non-blocking open
will return an error. If the tty line has been opened successfully (usually only
when carrier is recognized on the modem), the corresponding /dev/cua/ [a-z]
line cannot be opened. This allows a modem to be attached to a device, (for
example, /dev/term/ [a-z] renamed from /dev/tty [a-z]) and used for dial-in
(by enabling the line for login in /etc/inittab) and dial-out (by tip (1) or
uucp (1C)) as /dev/cua/ [a-z] when no one is logged in on the line.

IOCTLS The se module supports the standard set of termio ioctl () calls.

Breaks can be generated by the TCSBRK, TIOCSBRK, and TIOCCBRK ioctl()
calls.

The state of the DCD, CTS, RTS, and DTRinterface signals can be queried
through the use of the TIOCM_CAR, TIOCM_CTS, TIOCM_RTS,and TIOCM_DTR
arguments to the TIOCMGET ioctl command, respectively. Due to hardware
limitations, only the RTSand DTRsignals may be set through their respective
arguments to the TIOCMSET, TIOCMBIS, and TIOCMBIC ioctl commands.

The input and output line speeds may be set to all baud rates supported by
termio . Input and output line speeds cannot be set independently; when you
set the output speed, the input speed is automatically set to the same speed.

When using baud rates over 100,000 baud, the software changes the line
driver configuration to handle the higher data rates. This action decreases the
theoretical maximum cable length from 70 meters to 30 meters.

When the se module is used to service the serial console port, it supports a
BREAK condition that allows the system to enter the debugger or the monitor.
The BREAK condition is generated by hardware and it is usually enabled by
default. A BREAK condition originating from erroneous electrical signals
cannot be distinguished from one deliberately sent by remote DCE. Due to the
risk of incorrect sequence interpretation, binary protocols such as PPP, SLIP
and others should not be run over the serial console port when the Alternate
Break sequence is in effect. By default, the Alternate Break sequence is a three
character sequence: carriage return, tilde and control-B (CR ~ CTRL-B), but may

456 SunOS 5.8 Last modified 24 May 1999

Devices se(7D)

be changed by the driver. For information on breaking (entering the debugger or
monitor) , see kadb (1) and kb (7M.)

ERRORS An open () will fail under the following conditions:
ENXIO The unit being opened does not exist.

EBUSY The dial-out device is being opened and the dial-in device is
already open, or the dial-in device is being opened with a
no-delay open and the dial-out device is already open.

EBUSY The port is in use by another serial protocol.

EBUSY The unit has been marked as exclusive-use by another
process with a TIOCEXCL ioctl () call.

EINTR The open was interrupted by the delivery of a signal.

FILES /dev/cua/ [a-z] dial-out tty lines

/dev/term/[a-z] dial-in tty lines

/dev/tty [a-z] binary compatibility package device names

/dev/se_hdlc [0-9] synchronous devices - see se_hdlc (7D).

/dev/se_hdlc synchronous control clone device

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

SEE ALSO tip (1), kadb (1), ucblinks (1B), cu (1C), uucp (1C), ports (1M), ioctl (2),
open (2), attributes (5), zs (7D), zsh (7D), se_hdlc (7D), termio (7I),
ldterm (7M), ttcompat (7M), kb (7M)

SunOS 4.x Binary Compatibility Guide

DIAGNOSTICS se n : fifo overrun The Siemens 82532 internal FIFO received more
data than it could handle. This indicates that
Solaris was not servicing data interrupts fast
enough and suggests a system with too many
interrupts or a data line with a data rate that is
too high.

se n : buffer overrun The se module was unable to store data it
removed from the Siemens 82532 FIFO. The user
process is not reading data fast enough, and

Last modified 24 May 1999 SunOS 5.8 457

se(7D) Devices

suggests an overloaded system. If possible, the
application should enable flow control (either
CTSRTS or XONXOFF) to allow the driver to
backpressure the remote system when the local
buffers fill up.

458 SunOS 5.8 Last modified 24 May 1999

Devices se_hdlc(7D)

NAME se_hdlc – on-board high-performance serial HDLC interface

SYNOPSIS se@bus_address:port_number[, hdlc]

DESCRIPTION The se_hdlc devices are a synchronous hdlc-framing interface for the se serial
devices. Both built-in serial ports (port_number) on platforms which have the
se serial devices, support synchronous data transfer at a maximum rate of 384
kbps. bus_address is the platform specific se device bus address. port_number is
a single digit number (0-9).

APPLICATION
PROGRAMMING

INTERFACE

The se_hdlc n devices provide a data path which supports the transfer of data
via read (2) and write (2) system calls, as well as ioctl (2) calls. Data path
opens are exclusive in order to protect against injection or diversion of data
by another process.

The se_hdlc device provides a separate control path for use by programs that
need to configure or monitor a connection independent of any exclusive access
restrictions imposed by data path opens. Up to three control paths may be
active on a particular serial channel at any one time. Control path accesses are
restricted to ioctl (2) calls only; no data transfer is possible.

When used in synchronous modes, the SAB 82532 ESCC supports several
options for clock sourcing and data encolding. Both the transmit and receive
clock sources can be set to be the external Transmit clock (TRxC), external
Receive Clock (RTxC), the internal Baud Rate Generator (BRG), or the output of
the ESCC ’s Digital Phase-Lock Loop (DPLL).

The BRG is a programmable divisor that derives a clock frequency from the
PCLK input signal to the ESCC. The programmed baud rate is translated into
a floating point (6-bit mantissa, 4–bit exponent) number time constant that is
stored in the ESCC.

A local loopback mode is available, primarily for use by syncloop (1M) for
testing purposes, and should not be confused with SDLC loop mode, which is
not supported on this interface. Also, an auto-echo feature may be selected that
causes all incoming data to be routed to the transmit data line, allowing the port
to act as the remote end of a digital loop. Neither of these options should be
selected casually, or left in use when not needed.

The se driver keeps running totals of various hardware generated events for
each channel. These include numbers of packets and characters sent and
received, abort conditions detected by the receiver, receive CRC errors, transmit
underruns, receive overruns, input errors and output errors, and message block
allocation failures. Input errors are logged whenever an incoming message
must be discarded, such as when an abort or CRC error is detected, a receive
overrun occurs, or when no message block is available to store incoming data.
Output errors are logged when the data must be discarded due to underruns,

Last modified 1 Jan 1997 SunOS 5.8 459

se_hdlc(7D) Devices

CTS drops during transmission, CTS timeouts, or excessive watchdog timeouts
caused by a cable break.

IOCTLS The se driver supports the following ioctl() commands.
S_IOCGETMODE Return a struct scc_mode containing

parameters currently in use. These include the
transmit and receive clock sources, boolean
loopback and NRZI mode flags and the integer
baud rate.

S_IOCSETMODE The argument is a struct scc_mode from
which the ESCC channel will be programmed.

S_IOCGETSTATS Return a struct sl_stats containing the
current totals of hardware-generated events.
These include numbers of packets and characters
sent and received by the driver, aborts and CRC
errors detected, transmit underruns, and receive
overruns.

S_IOCCLRSTATS Clear the hardware statistics for this channel.

S_IOCGETSPEED Returns the currently set baud rate as an integer.
This may not reflect the actual data transfer rate
if external clocks are used.

S_IOCGETMCTL Returns the current state of the CTS and DCD
incoming modem interface signals as an integer.

The following structures are used with se hdlc ioctl() commands:

struct scc_mode {
char sm_txclock; /* transmit clock sources */
char sm_rxclock; /* receive clock sources */
char sm_iflags; /* data and clock inversion flags (non-zsh) */
uchar_t sm_config; /* boolean configuration options */
int sm_baudrate; /* real baud rate */
int sm_retval; /* reason codes for ioctl failures */

};
struct sl_stats {

long ipack; /* input packets */
long opack; /* output packets */
long ichar; /* input bytes */
long ochar; /* output bytes */
long abort; /* abort received */
long crc; /* CRC error */
long cts; /* CTS timeouts */
long dcd; /* Carrier drops */
long overrun; /* receive overrun */
long underrun; /* transmit underrun */
long ierror; /* input error */

460 SunOS 5.8 Last modified 1 Jan 1997

Devices se_hdlc(7D)

long oerror; /* output error */
long nobuffers; /* receive side memory allocation failure */

};

ERRORS An open() will fail if a STREAMS message block cannot be allocated or under
the following conditions:
ENXIO The unit being opened does not exist.

EBUSY The device is in use by another serial protocol.

An ioctl() will fail under the following conditions:
EINVAL An attempt was made to select an invalid clocking source.

EINVAL The baud rate specified for use with the baud rate generator
would translate to a null time constant in the ESCC’s
registers.

FILES /dev/se_hdlc[0-1], /dev/se_hdlc character-special devices

/usr/include/sys/ser_sync.h header file specifying synchronous
serial communication definitions

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

SEE ALSO syncinit (1M), syncloop (1M), syncstat (1M), ioctl (2), open (2), read (2),
write (2), attributes (5), se (7D), zsh (7D)

Siemens ESCC2 SAB 82532 Enhanced Serial Communication Controller User’s
Manual

DIAGNOSTICS se_hdlc clone open failed, no memory, rq=nnn
A kernel memory allocation failed for one of the private data structures. The
value of nnn is the address of the read queue passed to open (2).

se_hdlc: clone device must be attached before use!
An operation was attempted through a control path before that path had
been attached to a particular serial channel.

se_hdlcn: not initialized, can’t send message

Last modified 1 Jan 1997 SunOS 5.8 461

se_hdlc(7D) Devices

An M_DATAmessage was passed to the driver for a channel that had not
been programmed at least once since the driver was loaded. The ESCC’s
registers were in an unknown state. The S_IOCSETMODEioctl command
performs the programming operation.

sen hdlc_start: Invalid message type d on write queue
driver received an invalid message type from streams.

se_hdlcn: transmit hung
The transmitter was not successfully restarted after the watchdog timer
expired. This is usually caused by a bad or disconnected cable.

462 SunOS 5.8 Last modified 1 Jan 1997

Devices ses(7D)

NAME ses – SCSI enclosure services device driver

SYNOPSIS ses @target, lun

DESCRIPTION The ses device driver is an interface to SCSI enclosure services devices. These
devices sense and monitor the physical conditions within an enclosure as well as
allow access to the status reporting and configuration features of the enclosure
(such as indicator LEDs on the enclosure.)

ioctl (9E) calls may be issued to ses to determine the state of the enclosure and
to set parameters on the enclosure services device.

No ses driver properties are defined. Use the ses.conf file to configure
the ses driver.

EXAMPLES The following is an example of the ses.conf file format:

#
Copyright (c) 1996, by Sun Microsystems, Inc.
All rights reserved.
#
#
#ident "@(#)ses.conf 1.1 97/02/10 SMI"
#

name="ses" parent="sf"
target=15;

name="ses" parent="SUNW,pln" port=0 target=15;
name="ses" parent="SUNW,pln" port=1 target=15;
name="ses" parent="SUNW,pln" port=2 target=15;
name="ses" parent="SUNW,pln" port=3 target=15;
name="ses" parent="SUNW,pln" port=4 target=15;
name="ses" parent="SUNW,pln" port=5 target=15;

name="ses" class="scsi"
target=15 lun=0;

FILES /kernel/drv/ses.conf driver configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

SEE ALSO ssaadm(1M), driver.conf (4), attributes (5), esp (7D), isp (7D), ioctl (9E)

Last modified 22 May 1997 SunOS 5.8 463

sesio(7I) Ioctl Requests

NAME sesio – enclosure services device driver interface

SYNOPSIS #include<sys/sesio.h>

DESCRIPTION The ses device driver provides the following ioctls as a means to access SCSI
enclosure services devices.

IOCTLS The ses driver supports the following ioctls:
SES_IOCTL_GETSTATE This ioctl obtains enclosure state in the

ses_ioctl structure.

SES_IOCTL_SETSTATE This ioctl is used to set parameters on the
enclosure services device. The ses_ioctl
structure is used to pass information into the
driver.

ERRORS EIO The ses driver was unable to obtain data from the enclosure
services device or the data transfer could not be completed.

ENOTTY The ses driver does not support the requested ioctl function.

ENXIO The enclosure services device does not exist.

EFAULT The user specified a bad data length.

STRUCTURES The ses_ioctl structure has the following fields:

uint32_t; /* Size of buffer that follows */
uint8_t page_code: /* Page to be read/written */
uint8_t reserved[3]; /* Reserved; Set to 0 */
unit8t buffer[1]; /* Size arbitrary, user specifies */

EXAMPLES EXAMPLE 1 Using the SES_IOCTL_GETSTATEioctl

The following example uses the SES_IOCTL_GETSTATEioctl to recover 20 bytes
of page 4 from a previously opened device.

char abuf[30];
struct ses_ioctl *sesp;
int status;
sesp = (ses_ioctl *)abuf;
sesp->size = 20;
sesp->page_code = 4;
status = ioctl(fd, SES_IOCTL_GETSTATE, abuf);

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

464 SunOS 5.8 Last modified 27 Mar 1997

Ioctl Requests sesio(7I)

SEE ALSO ses (7D), ioctl (9E)

Last modified 27 Mar 1997 SunOS 5.8 465

sf(7D) Devices

NAME sf – SOC+ FC-AL FCP Driver

SYNOPSIS sf@port,0

DESCRIPTION The sf driver is a SCSA compliant nexus driver which supports the Fibre
Channel Protocol for SCSI on Private Fibre Channel Arbitrated loops. An SBus
card called the SOC+ card (see socal (7D)) connects the Fibre Channel loop
to the host system.

The sf driver interfaces with the SOC+ device driver, socal (7D), the SCSI disk
target driver, ssd (7D), and the SCSI-3 Enclosure Services driver, ses (7D). It
only supports SCSI devices of type disk and ses.

The sf driver supports the standard functions provided by the SCSA interface.
The driver supports auto request sense and tagged queueing by default.

The driver requires that all devices have unique hard addresses defined by
switch settings in hardware. Devices with conflicting hard addresses will not be
accessible.

FILES /platform/architecture/kernel/drv/sf ELF kernel module

/platform/architecture/kernel/drv/sf.conf sf driver configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

SEE ALSO luxadm (1M), prtconf (1M), driver.conf (4), socal (7D), ssd (7D)

Writing Device Drivers

ANSI X3.272-1996, Fibre Channel Arbitrated Loop (FC-AL)

ANSI X3.269-1996, Fibre Channel Protocol for SCSI (FCP)

ANSI X3.270-1996, SCSI-3 Architecture Model (SAM)

Fibre Channel Private Loop SCSI Direct Attach (FC-PLDA)

DIAGNOSTICS In addition to being logged, the messages below may display on the system
console.

The first set of messages indicate that the attachment was unsuccessful, and will
only display while the sf driver is initially attempting to attach. Each message is
preceded by sf %d , where %d is the instance number of the sf device.
Failed to alloc soft state

Driver was unable to allocate space for the internal state structure. Driver
did not attach to device, SCSI devices will be inaccessible.

466 SunOS 5.8 Last modified 27 Mar 1997

Devices sf(7D)

Bad soft state
Driver requested an invalid internal state structure. Driver did not attach to
device, SCSI devices will be inaccessible.

Failed to obtain transport handle
Driver was unable to obtain a transport handle to communicate with
the socal driver. Driver did not attach to device, SCSI devices will be
inaccessible

Failed to allocate command/response pool
Driver was unable to allocate space for commands and responses. Driver
did not attach to device, SCSI devices will be inaccessible.

Failed to allocate kmem cache
Driver was unable to allocate space for the packet cache. Driver did not
attach to device, SCSI devices will be inaccessible.

Failed to allocate dma handle for
Driver was unable to allocate a dma handle for the loop map. Driver did
not attach to device, SCSI devices will be inaccessible.

Failed to allocate lilp map
Driver was unable to allocate space for the loop map. Driver did not attach
to device, SCSI devices will be inaccessible.

Failed to bind dma handle for
Driver was unable to bind a dma handle for the loop map. Driver did not
attach to device, SCSI devices will be inaccessible.

Failed to attach
Driver was unable to attach for some reason that may be printed. Driver did
not attach to device, SCSI devices will be inaccessible.

The next set of messages may display at any time. The full device pathname,
followed by the shorter form described above, will precede the message.
Invalid lilp map

The driver did not obtain a valid lilp map from the socal driver. SCSI device
will be inaccessible.

Target t, AL-PA x and hard
The device with a switch setting t has an AL-PA x which does not match its
hard address y. The device will not be accessible.

Duplicate switch settings
The driver detected devices with the same switch setting. All such devices
will be inaccessible.

Last modified 27 Mar 1997 SunOS 5.8 467

sf(7D) Devices

WWN changed on target t
The World Wide Name (WWN) has changed on the device with switch
setting t.

Target t, unknown device type
The driver does not know the device type reported by the device with
switch setting t.

468 SunOS 5.8 Last modified 27 Mar 1997

Devices sgen(7D)

NAME sgen – Generic SCSI device driver

SYNOPSIS #include <sys/scsi/targets/sgendef.h>

sgen@target,lun:<devtype>

DESCRIPTION The sgen driver exports the uscsi (7I) interfaces to user processes. The sgen
driver can be configured to bind to SCSI devices for which no system driver is
available. Examples of such devices include SCSI scanners and SCSI processor
devices.

SECURITY AND
DATA INTEGRITY

Typically, drivers which export the uscsi (7I) interface unconditionally require
that the user present superuser credentials. The sgen driver does not, and relies
on the filesystem permissions on its device special file to govern who may access
that device. By default, access is restricted and device nodes created by the sgen
driver are readable and writable by the superuser exclusively.

It is important to understand that SCSI devices coexisting on the same SCSI
bus may potentially interact with each other. This may result from firmware
bugs in SCSI devices, or may be made to happen programmatically by sending
appropriate SCSI commands to a device. Potentially, any application controlling
a device via the sgen driver can introduce data integrity or security problems in
that device or any other device sharing the same SCSI bus.

Granting unprivileged users access to an sgen -controlled SCSI device may
create other problems. It may be possible for a user to instruct a target device to
gather data from another target device on the same bus. It may also be possible
for malicious users to install new firmware onto a device to which they are
granted access. For environments where security is a concern, but user access to
devices controlled by the sgen driver is nevertheless desired, it is recommended
that the devices be separated onto a dedicated SCSI bus to mitigate the risk of
data corruption and security violations.

CONFIGURATION The sgen driver is configurable via the sgen.conf file. In addition to standard
SCSI device configuration directives (see scsi (4)) , administrators can set
several additional properties for the sgen driver.

By default, the sgen driver will not claim or bind to any devices on the
system. To do so, it must be configured by the administrator using the
inquiry-config-list and/or the device-type-config-list properties.

As with other SCSI drivers, the sgen.conf configuration file enumerates
the targets sgen should use. See scsi (4) for more details. For each target
enumerated in the sgen.conf file, the sgen driver sends a SCSI INQUIRY
command to gather information about the device present at that target.
The inquiry-config-list property specifies that the sgen driver
should bind to a particular device returning a particular set of inquiry

Last modified 29 Sep 1999 SunOS 5.8 469

sgen(7D) Devices

data. The device-type-config-list specifies that the sgen driver
should bind to every device that is of a particular SCSI device type. When
examining the device, the sgen driver tests to see if it matches an entry in the
device-type-config-list or the inquiry-config-list . For more detail
on these two properties, see the PROPERTIES section.

When a match against the INQUIRY data presented by a device is made, the
sgen driver attaches to that device and creates a device node and link in the
/devices and /dev hierarchies. See the FILES section for more information
about how these files are named.

It is important for the administrator to ensure that devices claimed by the sgen
driver do not conflict with existing target drivers on the system. For example,
if the sgen driver is configured to bind to a direct access device, the standard
sd.conf file will usually cause sd to claim the device as well. This can cause
unpredictable results. In general, the uscsi (7I) interface exported by sd (7D) or
st (7D) should be used to gain access to direct access and sequential devices.

The sgen driver is disabled by default. The sgen.conf file is shipped with all
of the ’name="sgen" class="scsi" target=... ’ entries commented out
to shorten boot time and to prevent the driver from consuming kernel resources.
To use the sgen driver effectively on desktop systems, simply uncomment all of
the name="sgen " lines in sgen.conf file. On larger systems with many SCSI
controllers, carefully edit the sgen.conf file so that sgen binds only where
needed. Refer to driver.conf (4) for further details.

PROPERTIES inquiry-config-list
The inquiry-config-list property is a list of pairs of strings; it
enumerates a list of specific devices to which the sgen driver will bind.
Each pair of strings is referred to as <vendorid , productid > in the
discussion below.

vendorid
is used to match the Vendor ID reported by the device. The SCSI
specification limits Vendor IDs to eight characters. Correspondingly, the
length of this string should not exceed eight characters. As a special case,
"* " may be used as a wildcard which matches any Vendor ID. This is useful
in situations where more than one vendor produces a particular model of
a product. vendorid is matched against the Vendor ID reported by the
device in a case-insensitive manner.

productid
is used to match the Product ID reported by the device. The SCSI
specification limits Product IDs to sixteen characters (unused characters
are filled with the whitespace characters). Correspondingly, the length of
productid should not exceed sixteen characters. When examining the

470 SunOS 5.8 Last modified 29 Sep 1999

Devices sgen(7D)

Product ID of the device, sgen examines the length l of productid and
performs a match against only the first l characters in the device’s Product
ID. productid is matched against the Product ID reported by the device in
a case-insensitive manner.

For example, to match some fictitious devices from ACME corp, the
inquiry-config-list can be configured as follows:

inquiry-config-list = "ACME", "UltraToast 3000",

"ACME" "UltraToast 4000",

"ACME", "UltraToast 5000";

To match "UltraToast 4000" devices, regardless of vendor,
inquiry-config-list is modified as follows:

inquiry-config-list = "*", "UltraToast 4000" ;

To match every device from ACME in the "UltraToast" series (i.e UltraToast 3000,
4000, 5000, ...), inquiry-config-list is modified as follows:

inquiry-config-list = "ACME" "UltraToast";

Whitespace characters are significant when specifying productid . For example,
a productid of "UltraToast 1000" is fifteen characters in length. If a device
reported its ID as "UltraToast 10000", the sgen driver would bind to it because
only the first fifteen characters are considered significant when matching. To
remedy this situation, specify productid as "UltraToast 1000 ", (note trailing
space). This forces the sgen driver to consider all sixteen characters in the
product ID to be significant.
device-type-config-list

The device-type-config-list property is a list of strings; it enumerates
a list of device types to which the sgen driver will bind. The valid device
types correspond to those defined by the SCSI-3 SPC Draft Standard, Rev.
11a. These types are:

Type Name Inquiry Type ID

direct 0x00

sequential 0x01

printer 0x02

processor 0x03

worm 0x04

Last modified 29 Sep 1999 SunOS 5.8 471

sgen(7D) Devices

Type Name Inquiry Type ID

rodirect 0x05

scanner 0x06

optical 0x07

changer 0x08

comm 0x09

prepress1 0x0a

prepress2 0x0b

array_ctrl 0x0c

ses 0x0d

rbc 0x0e

ocrw 0x0f

bridge 0x10

type_unknown 0x1f

Alternately, you can specify device types by INQUIRY type ID. To do this, specify
type_0x<typenum> in the sgen-config-list . Case is not significant
when specifying device type names.
sgen-diag

The sgen-diag property sets the diagnostic output level. This property
can be set globally and/or per target/lun pair. sgen-diag is an integer
property, and can be set to 0, 1, 2 or 3. Illegal values will silently default to
0. The meaning of each diagnostic level is as follows:

0 No error reporting [default]

1 Report driver configuration information, unusual
conditions, and indicate when sense data has
been returned from the device.

2 Trace the entry into and exit from routines inside
the driver, and provide extended diagnostic data.
No error reporting [default].

472 SunOS 5.8 Last modified 29 Sep 1999

Devices sgen(7D)

3 Provide detailed output about command
characteristics, driver state, and the contents of
each CDB passed to the driver.

In ascending order, each level includes the diagnostics that the previous level
reports. See the IOCTLS section for more infomation on the SGEN_IOC_DIAG
ioctl.

FILES sgen.conf
Driver configuration file. See CONFIGURATION for more details.

/dev/scsi<devtype>/c nt ndn
The sgen driver categorizes each device in a separate directory by its SCSI
device type. The files inside the directory are named according to their
controller number, target ID and LUN as follows:

cn is the controller numbertn is the SCSI target iddn is the SCSI LUN

This is analogous to the {controller;target;device } naming scheme,
and the controller numbers correspond to the same controller numbers
which are used for naming disks. For example, /dev/dsk/c0t0d0s0 and
/dev/scsi/scanner/c0t5d0 are both connected to controller c0 .

IOCTLS The sgen driver exports the uscsi (7I) interface for each device it manages.
This allows a user process to talk directly to a SCSI device for which there is
no other driver installed in the system. Additionally, the sgen driver supports
the following ioctls:
SGEN_IOC_READY

Send a TEST UNIT READYcommand to the device and return 0 upon
success, non-zero upon failure. This ioctl accepts no arguments.

SGEN_IOC_DIAG
Change the level of diagnostic reporting provided by the driver. This ioctl
accepts a single integer argument between 0 and 3. The levels have the same
meaning as in the sgen-diag property discussed in PROPERTIES above.

ERRORS EBUSY The device was opened by another thread or process. The
driver maintains a strict exclusive-open policy for each
device.

ENXIO During opening, the device did not respond to a
TEST UNIT READYSCSI command.

ENOTTY Indicates that the device does not support the requested
ioctl function.

EXAMPLES Here is an example of how sgen can be configured to bind to scanner devices
on the system:

Last modified 29 Sep 1999 SunOS 5.8 473

sgen(7D) Devices

device-type-config-list = "scanner";

The administrator should subsequently uncomment the appropriate
name="sgen"... lines for the SCSI target ID to which the scanner corresponds.
In this example, the scanner is at target 4.

name= "sgen" class= "scsi" target=4 lun=0;

If it is expected that the scanner will be moved from target to target over time,
or that more scanners might be added in the future, it is recommended that
all of the name="sgen"... lines be uncommented, so that sgen checks all
of the targets on the bus.

For large systems where boot times are a concern, it is recommended that the
parent="" property be used to specify which SCSI bus sgen should examine.

SEE ALSO driver.conf (4), scsi (4), sd (7D), st (7D), uscsi (7I)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2)

SCSI-3 SPC Draft Standard, Rev. 11a

474 SunOS 5.8 Last modified 29 Sep 1999

Protocols slp(7P)

NAME slp – Service Location Protocol

SYNOPSIS

DESCRIPTION The Service Location Protocol (“SLP”) is a dynamic service discovery protocol
that runs on top of the Internet Protocol (“IP”). The protocol is specified by the
IETF standard-track documents RFC 2165, RFC 2608, RFC 2609; the API is
documented in RFC 2614. .

There are two components to the SLP technology. The first is a daemon,
slpd (1M), which coordinates SLP operations. The second is a software library,
slp_api (3slp), through which processes access a public API. Both components
are configured by means of the SLP configuration file, slp.conf (4).

The SLP API is useful for two types of processes:
Client Applications Services and service information can be requested

from the API. Clients do not need to know
the location of a required service, only the
type of service, and optionally, the service
characteristics. SLP will supply the location and
other information to the client through the API.

Server Processes Programs that offer network services use the
SLP API to advertise their location as well as
other service information. The advertisement
can optionally include attributes describing
the service. Advertisements are accompanied
by a lifetime; when the lifetime expires, the
advertisement is flushed, unless it is refreshed
prior to expiration.

API libraries are available for both the C and Java languages.

SLP provides the following additional features:

� slpd (1M) can be configured to function as a transparent directory agent.
This feature makes SLP scalable to the enterprise. System administrators
can configure directory agents to achieve a number of different strategies
for scalability.

� SLP service advertising and discovery is performed in scopes. Unless
otherwise configured, all discovery and all advertisements are in the scope
default. In the case of a larger network, scopes can be used to group services
and client systems so that users will only find those services which are
physically near them, belong to their department, or satisfy the specified
criteria. Administrators can configure these scopes to achieve different
service provider strategies.

Last modified 17 Nov 1999 SunOS 5.8 475

slp(7P) Protocols

� Services may be registered by proxy through a serialized registration
file. This is an alternative to registering services through the API. See
slpd.reg (4) for more information.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

CSI CSI-enabled

Interface Stability Standard

MT-Level MT-Safe

SEE ALSO slpd (1m), slp_api (3slp), slp.conf (4), slpd.reg (4), attributes (5)

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location
Protocol, Version 2, The Internet Society, June 1999.

Guttman, E., Perkins, C., and Kempf, J., RFC 2609, Service Templates and
Service: Schemes, The Internet Society, June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

Veizades, J., Guttman, E., Perkins, C., and Kaplan, S., RFC 2165, Service Location
Protocol, Network Working Group, 1997.

476 SunOS 5.8 Last modified 17 Nov 1999

Devices smartii(7D)

NAME smartii – Compaq Smart-2 EISA/PCI and Smart-2SL PCI Array Controller driver

DESCRIPTION The smartii driver is a driver for Compaq Smart-2 EISA/PCI and Smart-2SL
PCI Array Controllers on Compaq Servers. The driver supports magnetic fixed
disks and magnetic removable disks.

The Smart-2 and Smart-2SL controllers can be configured using the Compaq
Array configuration utility. Each Smart-2 controller can support a maximum of
14 physical disks and each Smart-2SL controller can support a maximum of 7
disks. Only one bus can be used at any time for the Smart-2SL controller. Each
controller can support 32 logical volumes.

The block files access the disk using the system’s normal buffering mechanism
and they are read and written without regard to physical disk records. There is
also a "raw" interface that provides for direct transmission between the disk and
the user’s read or write buffer. A single read or write call usually results in one
I/O operation. Raw I/O is therefore considerably more efficient when many
bytes are transmitted. The names of the block files are found in /dev/dsk ; the
names of the raw files are found in /dev/rdsk .

Slice 0 is normally used for the root file system on a disk; slice 1 as a paging area
(for example, swap); and slice 2 for backing up the entire Solaris fdisk partition.
Other slices may be used for usr file systems or system reserved areas.

fdisk partition 0 is to access the entire disk and is generally used by the
fdisk (1M) program.

FILES /dev/dsk/c ndn[s|p]n block device

/dev/rdsk/c ndn[s|p]n raw device where:

cn controller n

dn lun n (0-7)

sn UNIX system slice n (0-15)

pn fdisk partition (0)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO smart2cfg (1), fdisk (1M), attributes (5), cmdk(7D)

Last modified 20 Jun 1997 SunOS 5.8 477

soc(7D) Devices

NAME soc – Serial Optical Controller (SOC) device driver

SYNOPSIS soc@sbus-slot,0

DESCRIPTION The Fibre Channel Host Bus Adapter is an SBus card which implements two full
duplex Fibre Channel interfaces. Each Fibre Channel interface supports a point
to point interface to another Fibre Channel device.

The soc device driver is a nexus driver. The soc driver implements portions
of the FC-2 and FC-4 layers of the Fibre Channel.

FILES /kernel/drv/soc ELF Kernel Module

SEE ALSO sbus (4), pln (7D), ssd (7D)

Writing Device Drivers

DIAGNOSTICS The messages described below are some that may appear on system console, as
well as being logged.

On the console these messages are preceded by

soc%d: port % a

where %d is the instance number of the soc controller and %a is the port on
the host adapter.
Fibre Channel is ONLINE

The Fibre Channel is now online to the device.

Fibre Channel is OFFLINE
The Fibre Channel connection is now offline.

INCORRECT WWN: Found: xxxx,xxxxxxxx Expected:
yyyy,yyyyyyyy

This message means that the soc re-logged into a device after the Fibre
Channel connection went offline and back online and the World Wide Name
of the device is now different. This probably means the cable has been
plugged into another device.

attach failed: unable to map eeprom
Driver was unable to map device memory; check for bad hardware. Driver
did not attach to device, devices will be inaccessible.

attach failed: unable to map XRAM
Driver was unable to map device memory; check for bad hardware. Driver
did not attach to device, devices will be inaccessible.

attach failed: unable to map registers

478 SunOS 5.8 Last modified 6 Apr 1995

Devices soc(7D)

Driver was unable to map device registers; check for bad hardware. Driver
did not attach to device, devices will be inaccessible.

attach failed: unable to access status register
Driver was unable to map device registers; check for bad hardware. Driver
did not attach to device, devices will be inaccessible.

attach failed: unable to install interrupt handler
Driver was not able to add the interrupt routine to the kernel. Driver did
not attach to device, devices will be inaccessible.

attach failed: could not alloc offline packet structure
Driver was unable to allocate space for the internal state structure. Driver
did not attach to device, devices will be inaccessible.

Last modified 6 Apr 1995 SunOS 5.8 479

socal(7D) Devices

NAME socal – Serial Optical Controller for Fibre Channel Arbitrated Loop (SOC+)
device driver

SYNOPSIS socal@ sbus-slot,0

DESCRIPTION The Fibre Channel Host Bus Adapter is an SBus card which implements two full
duplex Fibre Channel interfaces. Each Fibre Channel interface can connect to a
Fibre Channel Arbitrated Loop (FC-AL).

The socal device driver is a nexus driver and implements portions of the FC-2
and FC-4 layers of FC-AL.

FILES /kernel/drv/socal ELF Kernel Module

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

SEE ALSO sbus (4), sf (7D), ssd (7D)

Writing Device Drivers

ANSI X3.230-1994, Fibre Channel Physical and Signalling Interface (FC-PH)

ANSI X3.272-1996, Fibre Channel Arbitrated Loop (FC-AL)

Fibre Channel Private Loop SCSI Direct Attach (FC-PLDA)

DIAGNOSTICS The messages described below may appear on system console in addition
to being logged.

On the console, these messages are preceded by:

socal %d: port %a

where %d is the instance number of the socal controller and %a is the port
on the host adapter.
Fibre Channel Loop is ONLINE

The Fibre Channel loop is now online.

Fibre Channel Loop is OFFLINE
The Fibre Channel loop is now offline.

attach failed: device in slave-only slot.
Move soc+ card to another slot.

attach failed: bad soft state.
Driver did not attach, devices will be inaccessible.

480 SunOS 5.8 Last modified 9 May 1997

Devices socal(7D)

attach failed: unable to alloc xport struct.
Driver did not attach, devices will be inaccessible.

attach failed: unable to map eeprom
Driver was unable to map device memory; check for bad hardware. Driver
did not attach to device, devices will be inaccessible.

attach failed: unable to map XRAM
Driver was unable to map device memory; check for bad hardware. Driver
did not attach to device, devices will be inaccessible.

attach failed: unable to map registers
Driver was unable to map device registers; check for bad hardware. Driver
did not attach to device, devices will be inaccessible.

attach failed: unable to access status register
Driver was unable to map device registers; check for bad hardware. Driver
did not attach to device, devices will be inaccessible.

attach failed: unable to install interrupt handler
Driver was not able to add the interrupt routine to the kernel. Driver did
not attach to device, devices will be inaccessible.

attach failed: unable to access host adapter XRAM
Driver was unable to access device RAM; check for bad hardware. Driver
did not attach to device, devices will be inaccessible.

attach failed: unable to write host adapter XRAM
Driver was unable to write device RAM; check for bad hardware. Driver did
not attach to device, devices will be inaccessible.

attach failed: read/write mismatch in XRAM
Driver was unable to verify device RAM; check for bad hardware. Driver
did not attach to device, devices will be inaccessible.

Last modified 9 May 1997 SunOS 5.8 481

sockio(7I) Ioctl Requests

NAME sockio – ioctls that operate directly on sockets

SYNOPSIS #include <sys/sockio.h>

DESCRIPTION The ioctls listed in this manual page apply directly to sockets,
independent of any underlying protocol. The setsockopt() call (see
getsockopt (3SOCKET)) is the primary method for operating on sockets,
rather than on the underlying protocol or network interface. ioctl s for a
specific network interface or protocol are documented in the manual page
for that interface or protocol.
SIOCSPGRP The argument is a pointer to an int . Set the process-group

ID that will subsequently receive SIGIO or SIGURGsignals
for the socket referred to by the descriptor passed to ioctl
to the value of that int . The argument must be either
positive (in which case it must be a process ID) or negative
(in which case it must be a process group).

SIOCGPGRP The argument is a pointer to an int . Set the value of that
int to the process-group ID that is receiving SIGIO or
SIGURGsignals for the socket referred to by the descriptor
passed to ioctl .

SIOCCATMARK The argument is a pointer to an int . Set the value of that
int to 1 if the read pointer for the socket referred to by the
descriptor passed to ioctl points to a mark in the data
stream for an out-of-band message. Set the value of that int
to 0 if the read pointer for the socket referred to by the
descriptor passed to ioctl does not point to a mark in the
data stream for an out-of-band message.

SEE ALSO ioctl (2), getsockopt (3SOCKET)

482 SunOS 5.8 Last modified 8 Nov 1996

Devices spwr(7D)

NAME spwr – SMC EtherPower II 10/100 (9432) Ethernet device driver

SYNOPSIS /dev/spwr

DESCRIPTION The spwr Ethernet driver is a multi-threaded, loadable, clonable, STREAMS
hardware driver supporting the connectionless Data Link Provider Interface,
dlpi (7P), over SMC EtherPower II 10/100 controllers. Multiple EtherPower II
controllers installed within the system are supported by the driver. The spwr
driver provides basic support for the SMC EtherPower II hardware. Functions
include chip initialization, frame transmit and receive, multicast support, and
error recovery and reporting.

APPLICATION
PROGRAMMING

INTERFACE

The cloning character-special device /dev/spwr is used to access all SMC
EtherPower II devices installed within the system.

The spwr driver is dependent on /kernel/misc/gld , a loadable kernel
module that provides the spwr driver with the DLPI and STREAMS
functionality required of a LAN driver. See gld (7d) for more details on the
primitives supported by the driver.

The values returned by the driver in the DL_INFO_ACKprimitive in response
to the DL_INFO_REQfrom the user are as follows:

� The maximum SDU is 1500 (ETHERMTU).

� The minimum SDU is 0. The spwr driver will pad to the mandatory
60-octet minimum packet size.

� The DLSAPaddress length is 8.

� The MAC type is DL_ETHER.

� The SAP length value is –2 , meaning the physical address component
is followed immediately by a 2-byte SAP component within the DLSAP
address.

� The broadcast address value is Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

FILES /dev/spwr Character special device.

/kernel/drv/spwr.conf Driver configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5), dlpi (7P), gld (7D)

Last modified 2 Dec 1998 SunOS 5.8 483

ssd(7D) Devices

NAME ssd – driver for SPARCstorage Array and Fibre Channel Arbitrated Loop disk
devices

SYNOPSIS ssd@port, target: partition

DESCRIPTION This driver handles both SCSI-2 disks in the SPARCstorage Array and Fibre
Channel Arbitrated Loop (FC-AL) disks on Private loops.

The specific type of each disk is determined by the SCSI inquiry command and
reading the volume label stored on block 0 of the drive. The volume label
describes the disk geometry and partitioning; it must be present or the disk
cannot be mounted by the system.

The block-files access the disk using the system’s normal buffering mechanism
and are read and written without regard to physical disk records. There is also a
“raw” interface that provides for direct transmission between the disk and the
user’s read or write buffer. A single read or write call usually results in one I/O
operation; raw I/O is therefore considerably more efficient when many bytes are
transmitted. The names of the block files are found in /dev/dsk ; the names of
the raw files are found in /dev/rdsk .

I/O requests (such as lseek (2)) to the SCSI disk must have an offset that is a
multiple of 512 bytes (DEV_BSIZE), or the driver returns an EINVAL error. If
the transfer length is not a multiple of 512 bytes, the transfer count is rounded
up by the driver.

Partition 0 is normally used for the root file system on a disk, partition 1 as a
paging area (for example, swap), and partition 2 for backing up the entire disk.
Partition 2 normally maps the entire disk and may also be used as the mount
point for secondary disks in the system. The rest of the disk is normally partition
6. For the primary disk, the user file system is located here.

Each device also has error statistics associated with it. These must include
counters for hard errors, soft errors and transport errors. Other data may be
implemented as required.

IOCTLS Refer to dkio (7I).

ERRORS EACCES Permission denied.

EBUSY The partition was opened exclusively by another thread.

EFAULT The argument was a bad address.

EINVAL Invalid argument.

EIO An I/O error occurred.

ENOTTY The device does not support the requested ioctl function.

484 SunOS 5.8 Last modified 27 May 1997

Devices ssd(7D)

ENXIO When returned during open (2), this error indicates the
device does not exist.

EROFS The device is a read-only device.

FILES ssd.conf driver configuration file

/dev/dsk/cnt ndnsn block files

/dev/rdsk/cnt ndnsn raw files

where, for the SPARCstorage Array:
cn is the controller number on the system. Each SPARCstorage Array will

have a unique controller number

tn port number within the SPARCstorage Array n

dn SCSI target n

sn partition n

and for all FC-AL disks:
cn is the controller number on the system.

tn 7-bit disk loop identifier, such as switch setting

dn SCSI lun n

sn partition n (0-7)

SEE ALSO format (1M), ioctl (2), lseek (2), open (2), read (2), write (2),
driver.conf (4), cdio (7I), dkio (7I)

ANSI Small Computer System Interface-2 (SCSI-2)

SPARCstorage Array User’s Guide

ANSI X3.272-1996, Fibre Channel Arbitrated Loop (FC-AL)

Fibre Channel - Private Loop SCSI Direct Attach (FC-PLDA)

DIAGNOSTICS Error for command ’<command name>’ Error Level: Fatal
Requested Block <n>, Error Block: <m>
Sense Key: <sense key name>
Vendor ’<vendor name>’: ASC = 0x<a> (<ASC name>), ASCQ = 0x, FRU = 0x<c>

The command indicated by <command name> failed. The Requested Block
is the block where the transfer started and the Error Block is the block that
caused the error. Sense Key, ASC, and ASCQ information is returned by the
target in response to a request sense command.

Last modified 27 May 1997 SunOS 5.8 485

ssd(7D) Devices

Check Condition on REQUEST SENSE
A REQUEST SENSE command completed with a check condition. The
original command will be retried a number of times.

Label says <m> blocks Drive says <n> blocks
There is a discrepancy between the label and what the drive returned on
the READ CAPACITY command.

Not enough sense information
The request sense data was less than expected.

Request Sense couldn’t get sense data
The REQUEST SENSE command did not transfer any data.

Reservation Conflict
The drive was reserved by another initiator.

SCSI transport failed: reason ’xxxx’ : {retrying|giving up}
The host adapter has failed to transport a command to the target for the
reason stated. The driver will either retry the command or, ultimately, give
up.

Unhandled Sense Key <n>
The REQUEST SENSE data included an invalid sense key.

Unit not Ready. Additional sense code 0x<n>
The drive is not ready.

corrupt label - bad geometry
The disk label is corrupted.

corrupt label - label checksum failed
The disk label is corrupted.

corrupt label - wrong magic number
The disk label is corrupted.

device busy too long
The drive returned busy during a number of retries.

disk not responding to selection
The drive was probably powered down or died.

i/o to invalid geometry
The geometry of the drive could not be established.

incomplete read/write - retrying/giving up
There was a residue after the command completed normally.

logical unit not ready
The drive is not ready.

486 SunOS 5.8 Last modified 27 May 1997

Devices ssd(7D)

no bp for disk label
A bp with consistent memory could not be allocated.

no mem for property
Free memory pool exhausted.

no memory for disk label
Free memory pool exhausted.

no resources for dumping
A packet could not be allocated during dumping.

offline
Drive went offline; probably powered down.

requeue of command fails <n>
Driver attempted to retry a command and experienced a transport error.

ssdrestart transport failed (<n>)
Driver attempted to retry a command and experienced a transport error.

transfer length not modulo <n>
Illegal request size.

transport rejected (<n>)
Host adapter driver was unable to accept a command.

unable to read label
Failure to read disk label.

unit does not respond to selection
Drive went offline; probably powered down.

Last modified 27 May 1997 SunOS 5.8 487

st(7D) Devices

NAME st – driver for SCSI tape devices

SYNOPSIS st@target, lun: [l, m, h, c, u][b][n]

DESCRIPTION The st device driver is an interface to various SCSI tape devices. Supported tape
devices include 1/4” Tandberg 2.5 Gigabyte QIC tape drive, 1/4” Archive Viper
QIC-150 streaming tape drive, 1/4” Emulex MT-02 tape controller, HP-88780
1/2” tape drive, Exabyte EXB-8200/8500/8505/8505XL 8mm cartridge tape, and
the Archive Python 4 mm DAT tape subsystem. st provides a standard interface
to these various devices; see mtio (7I) for details.

The driver can be opened with either rewind on close or no rewind on close
options. It can also be opened with the O_NDELAY(see open (2)) option when
there is no tape inserted in the drive. A maximum of four tape formats per
device are supported (see FILES below). The tape format is specified using the
device name. Often tape format is also referred to as tape density.

The driver now reserves the tape drive upon open and releases it at close
for use in multi-initiator environments. Refer to the MTIOCRESERVEand
MTIOCRELEASEioctls in mtio (7I) for information about how to allow a tape
drive to remain reserved upon close. See the flag options below for information
about disabling this feature.

If the tape drive is opened in O_NDELAYmode, no reservation will occur during
the open, as per the POSIX standard (see standards (5)). However, before
the first tape operation or I/O occurs, a reservation will occur to provide
reserve/release functionality.

Persistent Errors and
Asynchronous Tape

Operation

The st driver now supports persistent errors (see mtio (7I)) and asynchronous
tape operations (see mtio (7I), aioread (3AIO), and aiowrite (3AIO)).

Read Operation If the driver is opened for reading in a different format than the tape is written
in, the driver overrides the user-selected format. For example, if a 1/4” cartridge
tape is written in QIC-24 format and opened for reading in QIC-150, the driver
will detect a read failure on the first read and automatically switch to QIC-24 to
read the data.

Note that if the low density format is used, no indication is given that the
driver has overridden the user-selected format. Other formats issue a warning
message to inform the user of an overridden format selection. Some devices
automatically perform this function and do not require driver support (1/2”
reel tape drive, for example).

Write Operation Writing from the beginning of tape is performed in the user-specified format.
The original tape format is used for appending onto previously written tapes.

488 SunOS 5.8 Last modified 12 August 1999

Devices st(7D)

Tape Configuration The st tape driver has a built-in configuration table for all Sun supported tape
drives. In order to support the addition of third party tape devices or to override
a built-in configuration, device information can be supplied in st.conf as
global properties that apply to each node, or as properties that are applicable to
one node only. The st driver looks for the property called “tape-config-list”.
The value of this property is a list of triplets, where each triplet consists of
three strings.

The formal syntax is:

tape-config-list = <triplet> [, <triplet> *];

where

<triplet> := <vid+pid>, <pretty print>, <data-property-name>

and

<data-property-name> = <version>, <type>, <bsize>,
<options>, <number of densities>,
<density> [, <density>*], <default-density>;

A semicolon (;) is used to terminate a prototype devinfo node specification.
Individual elements listed within the specification should not be separated by a
semicolon. (Refer to driver.conf (4) for more information.)

<vid+pid> is the string that is returned by the tape device on a SCSI inquiry
command. This string may contain any character in the range 0x20-0x7e .
Characters such as “ " ” (double quote) or “ ’ ” (single quote), which are not
permitted in property value strings, are represented by their octal equivalent (for
example, \042 and \047). Trailing spaces may be truncated.

<pretty print> is used to report the device on the console. This string may
have zero length, in which case the <vid+pid> will be used to report the device.

<data-property-name> is the name of the property which contains all the
tape configuration values (such as <type> , <bsize> , etc.) corresponding for
the tape drive for the specified <vid+pid> .

<version> is a version number and should be 1. In the future, higher
version numbers may be used to allow for changes in the syntax of the
<data-property-name> value list.

<type> is a type field. Valid types are defined in /usr/include/sys/mtio.h .
For third party tape configuration, the following generic types are recommended:

Last modified 12 August 1999 SunOS 5.8 489

st(7D) Devices

MT_ISQIC 0x32

MT_ISREEL 0x33

MT_ISDAT 0x34

MT_IS8MM 0x35

MT_ISOTHER 0x36

<bsize> is the preferred block size of the tape device. The value should be 0 for
variable block size devices.

<options> is a bit pattern representing the devices, as defined in
/usr/include/sys/scsi/targets/stdef.h . Valid flags for tape
configuration are:

ST_VARIABLE 0x0001

ST_QIC 0x0002

ST_REEL 0x0004

ST_BSF 0x0008

ST_BSR 0x0010

ST_LONG_ERASE 0x0020

ST_AUTODEN_OVERRIDE 0x0040

ST_NOBUF 0x0080

ST_KNOWS_EOD 0x0200

ST_UNLOADABLE 0x0400

ST_SOFT_ERROR_REPORTING 0x0800

ST_LONG_TIMEOUTS 0x1000

ST_BUFFERED_WRITES 0x4000

ST_NO_RECSIZE_LIMIT 0x8000

ST_MODE_SEL_COMP 0x10000

ST_NO_RESERVE_RELEASE 0x20000

ST_READ_IGNORE_ILI 0x40000

ST_READ_IGNORE_EOFS 0x80000

ST_SHORT_FILEMARKS 0x100000

ST_EJECT_TAPE_ON_CHANGER_FAILURE0x200000

ST_RETRY_ON_RECOVERED_DEFERRED_ERROR0x400000

490 SunOS 5.8 Last modified 12 August 1999

Devices st(7D)

ST_VARIABLE
The flag indicates the tape device supports variable length record sizes.

ST_QIC
The flag indicates a Quarter Inch Cartridge (QIC) tape device.

ST_REEL
The flag indicates a 1/2−inch reel tape device.

ST_BSF
If flag is set, the device supports backspace over EOF marks (bsf - see mt(1)).

ST_BSR
If flag is set, the tape device supports the backspace record operation (bsr
- see mt(1)). If the device does not support bsr, the st driver emulates
the action by rewinding the tape and using the forward space record (fsf)
operation to forward the tape to the correct file. The driver then uses
forward space record (fsr - see mt(1)) to forward the tape to the correct
record.

ST_LONG_ERASE
The flag indicates the tape device needs a longer time than normal to erase.

ST_AUTODEN_OVERRIDE
The auto-density override flag. The device is capable of determining the
tape density automatically without issuing a “mode-select”/“mode-sense
command”.

ST_NOBUF
The flag disables the device’s ability to perform buffered writes. A buffered
write occurs when the device acknowledges the completion of a write
request after the data has been written to the device’s buffer, but before all
of the data has been written to the tape.

ST_KNOWS_EOD
If flag is set, the device can determine when EOD (End of Data) has
been reached. When this flag is set, the st driver uses fast file skipping.
Otherwise, file skipping happens one file at a time.

ST_UNLOADABLE
The flag indicates the device will not complain if the st driver is unloaded
and loaded again (see modload (1M) and modunload (1M)). That is, the
driver will return the correct inquiry string.

ST_SOFT_ERROR_REPORTING

Last modified 12 August 1999 SunOS 5.8 491

st(7D) Devices

The flag indicates the tape device will perform a “request sense” or “log
sense” command when the device is closed. Currently, only Exabyte and
DAT drives support this feature.

ST_LONG_TIMEOUTS
The flag indicates the tape device requires timeouts that are 5 times longer
than usual for normal operation.

ST_BUFFERED_WRITES
If the flag is set, when data is written to the tape device, the data is buffered
by the driver. The application may receive acknowledgement of completion
of the write request before the data has been written to tape.

ST_NO_RECSIZE_LIMIT (SPARC Only)
The flag applies to variable-length tape devices. If this flag is set, the
record size is not limited to a 64 Kbyte record size. The record size is only
limited by the smaller of either the record size supported by the device or
the maximum DMA transfer size of the system. (Refer to Large Record
Sizes and WARNINGS.)

ST_MODE_SEL_COMP
If the ST_MODE_SEL_COMPflag is set, the driver determines which of
the two mode pages the device supports for selecting or deselecting
compression. It first tries the Data Compression mode page (0x0F); if this
fails, it tries the Device Configuration mode page (0x10). Some devices,
however, may need a specific density code for selecting or deselecting
compression. Please refer to the device specific SCSI manual. When the flag
is set, compression will be enabled only if the "c" or "u" device is used. For
any other device densities, compression will be disabled.

ST_NO_RESERVE_RELEASE
The ST_NO_RESERVE_RELEASEflag disables the use of reserve on open and
release on close. If an attempt to use a ioctl of MTRESERVEor MTRELEASE
on a drive with this flag set, it will return an error of ENOTTY(inappropriate
ioctl for device).

ST_READ_IGNORE_ILI
The ST_READ_IGNORE_ILI flag is applicable only to variable block
devices which support the SILI bit option. The ST_READ_IGNORE_ILI flag
indicates that SILI (supress incorrect length indicator) bit will be set during
reads. When this flag is set, short reads (requested read size is less than
the record size on the tape) will be successful and the number of bytes
transferred will be equal to the record size on the tape. The tape will be
positioned at the start of the next record skipping over the extra data (the
remaining data has been has been lost). Long reads (requested read size is
more than the record size on the tape) will see a large performance gain

492 SunOS 5.8 Last modified 12 August 1999

Devices st(7D)

when this flag is set, due to overhead reduction. When this flag is not set,
short reads will return an error of ENOMEM.

ST_READ_IGNORE_EOFS
The ST_READ_IGNORE_EOFSflag is applicable only to 1/2" Reel Tape
drives and when performing consecutive reads only. It should not be used
for any other tape command. Usually End-of-recorded-media (EOM) is
indicated by two EOF marks on 1/2" tape and application cannot read
past EOM. When this flag is set, two EOF marks no longer indicate EOM
allowing applications to read past two EOF marks. In this case it is the
responsibility of the application to detect end-of-recorded-media (EOM).
When this flag is set, tape operations (like MTEOM) which positions the tape
at end-of-recorded-media will fail since detection of end-of-recorded-media
(EOM) is to be handled by the application. This flag should be used when
backup applications have embedded double filemarks between files.

ST_SHORT_FILEMARKS
The ST_SHORT_FILEMARKSflag is applicable only to EXABYTE 8mm
tape drives which supports short filemarks. When this flag is set, short
filemarks will be used for writing filemarks. Short filemarks could lead to
tape incompatible with some otherwise compatible device. By default long
filemarks will be used for writing filemarks.

ST_EJECT_TAPE_ON_CHANGER_FAILURE
If ST_EJECT_TAPE_ON_CHANGER_FAILUREflag is set, the tape will be
ejected automatically if the tape cartridge is trapped in the medium due to
positioning problems of the medium changer.

The following ASC/ASCQ keys are defined to the reasons for causing
tape ejection if ST_EJECT_TAPE_ON_CHANGER_FAILUREoption is set to
0x200000:

Sense ASC/ASCQ Description

Key

4 15/01 Mechanical Failure

4 44/00 Internal Target Failure

2 53/00 Media Load or Eject Failed

4 53/00 Media Load or Eject Failed

4 53/01 Unload Tape Failure

ST_RETRY_ON_RECOVERED_DEFERRED_ERROR
If ST_RETRY_ON_RECOVERED_DEFERRED_ERRORflag is set, the st driver
will retry the last write if this cmd caused a check condition with error

Last modified 12 August 1999 SunOS 5.8 493

st(7D) Devices

code 0x71 and sense code 0x01. Some tape drives, notably the IBM 3090,
require this option.

<number of densities> is the number of densities specified. Each tape drive
can support up to four densities. The value entered should therefore be between
1 and 4; if less than 4, the remaining densities will be assigned a value of 0x0 .

<density> is a single-byte hexadecimal number. It can either be found in the
device specification manual or be obtained from the device vendor.

<default-density> has a value between 0 and (<number of densities> - 1).

Device Statistics
Support

Each device maintains I/O statistics both for the device and for each partition
allocated on that device. For each device/partition, the driver accumulates
reads, writes, bytes read, and bytes written. The driver also takes hi-resolution
time stamps at queue entry and exit points, which facilitates monitoring the
residence time and cumulative residence-length product for each queue.

Each device also has error statistics associated with it. These must include
counters for hard errors, soft errors and transport errors. Other data may be
implemented as required.

IOCTLS The behavior of SCSI tape positioning ioctls is the same across all devices which
support them. (Refer to mtio (7I).) However, not all devices support all ioctls.
The driver returns an ENOTTYerror on unsupported ioctls.

The retension ioctl only applies to 1/4” cartridge tape devices. It is used to
restore tape tension, thus improving the tape’s soft error rate after extensive
start-stop operations or long-term storage.

In order to increase performance of variable-length tape devices (particularly
when they are used to read/write small record sizes), two operations in the
MTIOCTOPioctl, MTSRSZand MTGRSZ, can be used to set and get fixed record
lengths. The ioctl also works with fixed-length tape drives which allow multiple
record sizes. The min/max limits of record size allowed on a driver are found by
using a SCSI-2 READ BLOCK LIMITScommand to the device. If this command
fails, the default min/max record sizes allowed are 1 byte and 63k bytes. An
application that needs to use a different record size opens the device, sets the size
with the MTSRSZioctl, and then continues with I/O. The scope of the change in
record size remains until the device is closed. The next open to the device resets
the record size to the default record size (retrieved from st.conf).

Note that the error status is reset by the MTIOCGETget status ioctl call or by the
next read, write, or other ioctl operation. If no error has occurred (sense key is
0), the current file and record position is returned.

ERRORS EACCES The driver is opened for write access and the tape
is write-protected or the tape unit is reserved
by another host.

494 SunOS 5.8 Last modified 12 August 1999

Devices st(7D)

EBUSY The tape drive is in use by another process. Only
one process can use the tape drive at a time. The
driver will allow a grace period for the other
process to finish before reporting this error.

EINVAL The number of bytes read or written is not a
multiple of the physical record size (fixed-length
tape devices only).

EIO During opening, the tape device is not ready
because either no tape is in the drive, or the
drive is not on-line. Once open, this error is
returned if the requested I/O transfer could not
be completed.

ENOTTY This indicates that the tape device does not
support the requested ioctl function.

ENXIO During opening, the tape device does not exist.

ENOMEM This indicates that the record size on the tape
drive is more than the requested size during
read operation.

EXAMPLES CODE EXAMPLE 1 Global tape-config list property

The following is an example of a global tape-config-list property:

tape-config-list =
"Magic DAT", "Magic 4mm Helical Scan", "magic-data";

magic-data = 1,0x34,1024,0x1639,4,0,0x8c,0x8c,0x8c,3;

name="st" class="scsi"
target=0 lun=0;

name="st" class="scsi"
target=1 lun=0;

name="st" class="scsi"
target=2 lun=0;
.
.
.

name="st" class="scsi"
target=6 lun=0;

EXAMPLE 1 Tape-config-list property applicable to target 2 only

The following is an example of a tape-config-list property applicable to target 2
only:

name="st" class="scsi"
target=0 lun=0;

name="st" class="scsi"

Last modified 12 August 1999 SunOS 5.8 495

st(7D) Devices

target=1 lun=0;
name="st" class="scsi"

target=2 lun=0
tape-config-list =
"Magic DAT", "Magic 4mm Helical Scan", "magic-data"
magic-data = 1,0x34,1024,0x1639,4,0,0x8c,0x8c,0x8c,3;

name="st" class="scsi"
target=3 lun=0;

.

.

.
name="st" class="scsi"

target=6 lun=0;
Large Record Sizes To support applications such as seismic programs that require large record

sizes, the flag ST_NO_RECSIZE_LIMIT must be set in drive option in the
configuration entry. A SCSI tape drive that needs to transfer large records should
OR this flag with other flags in the ’options’ field in st.conf . (Refer to Tape
Configuration .) By default, this flag is set for the built-in config entries
of Archive DAT and Exabyte drives.

If this flag is set, the st driver issues a SCSI-2 READ BLOCK LIMITScommand
to the device to determine the maximum record size allowed by it. If the
command fails, st continues to use the maximum record sizes mentioned
in the mtio (7I) man page.

If the command succeeds, st restricts the maximum transfer size of a
variable-length device to the minimum of that record size and the maximum
DMA size that the host adapter can handle. Fixed-length devices are bound by
the maximum DMA size allocated by the machine. Note that tapes created with
a large record size may not be readable by earlier releases or on other platforms.

(Refer to the WARNINGSsection for more information.)

EOT Handling The Emulex drives have only a physical end of tape (PEOT); thus it is not
possible to write past EOT. All other drives have a logical end of tape (LEOT)
before PEOT to guarantee flushing the data onto the tape. The amount of storage
between LEOT and PEOT varies from less than 1 Mbyte to about 20 Mbyte,
depending on the tape drive.

If EOT is encountered while writing an Emulex, no error is reported but the
number of bytes transferred is 0 and no further writing is allowed. On all other
drives, the first write that encounters EOT will return a short count or 0. If a
short count is returned, then the next write will return 0. After a zero count is
returned, the next write returns a full count or short count. A following write
returns 0 again. It is important that the number and size of trailer records be
kept as small as possible to prevent data loss. Therefore, writing after EOT is
not recommended.

496 SunOS 5.8 Last modified 12 August 1999

Devices st(7D)

Reading past EOT is transparent to the user. Reading is stopped only by reading
EOF’s. For 1/2” reel devices, it is possible to read off the end of the reel if one
reads past the two file marks which mark the end of recorded media.

Write Data Buffering Tape drives with data compression require a much higher data rate in order to
stream the tape. Write data buffering in the driver improves streaming to the
drive without changing the application and augments the buffering in the tape
drive itself. If write data buffering is enabled, data is buffered in the driver and
the request is immediately acknowledged by the driver before it has been written
to the tape drive. This enables the driver to submit the next request as soon as
the previous request completes and the application to prepare the next request
while the current request is in progress. A SCSI tape drive that allows buffering
requires ORing the flag ST_BUFFERED_WRITESwith other flags in the ’options’
field in st.conf . (Refer to Tape Configuration .) By default, this option is
set for the built-in config entries of the Archive DAT and Exabyte drives.

In order for write buffering to work properly, sufficient space after LEOT must
be available to empty the write buffers. Older tape devices usually do not have
sufficient space after LEOT.

To turn on tape buffering, a property in st.conf called "tape-driver-buffering"
should be added. The value assigned to this property is the maximum number
of buffered write requests allowed. For example, 0 indicates no write request
buffering allowed, while 2 indicates buffer up to 2 write requests. If this property
is not specified in st.conf , the driver defaults to a value of 0. The maximum
size of write request that can be buffered is specified through a property in
st.conf called "tape-driver-buf-max-size". If this property is not specified in
st.conf, the driver defaults the buffer size to a value of 1 Mbyte.

An example of st.conf , where the maximum number of write requests
buffered is 4 and maximum size of write request buffered is 2 Mbyte, is given
below. This applies to all nodes in this conf file.

tape-driver-buffering = 4; tape-driver-buf-max-size = 0x200000;

name="st" class="scsi"
target=0 lun=0;

name="st" class="scsi"
target=1 lun=0;

name="st" class="scsi"
target=2 lun=0;

. . . .

Last modified 12 August 1999 SunOS 5.8 497

st(7D) Devices

In the case of a SCSI bus reset, a medium error, or any other fatal transport
error on a buffered request, the driver returns an error on subsequent write
requests and allows no more writes. If no further write requests occur, an error
is returned on close.

Since some applications may perceive write buffering as a potential data
integrity problem, this feature is disabled by default and needs to be explicitly
enabled in the config entry and turned on by means of the property in st.conf .
Furthermore, some fault tolerant backup servers make assumptions about the
data buffering in the tape drive itself. These assumptions may not be valid
if write buffering has been enabled.

Write buffering may be superseded by other performance enhancements in a
future release.

FILES /kernel/drv/st.conf
driver configuration file

/usr/include/sys/mtio.h
structures and definitions for mag tape io control commands

/usr/include/sys/scsi/targets/stdef.h
definitions for SCSI tape drives

/dev/rmt/[0 − 127][l,m,h,u,c][b][n]
where l,m,h,u,c specifies the density (low, medium, high,
ultra/compressed), b the optional BSD behavior (see mtio (7I)), and n the
optional no rewind behavior. For example, /dev/rmt/0lbn specifies unit
0, low density, BSD behavior, and no rewind.

For 1/2” reel tape devices (HP-88780), the densities are:

l 800 BPI density

m 1600 BPI density

h 6250 BPI density

c data compression

(not supported on all modules)

For 8mm tape devices (Exabyte 8200/8500/8505):

l Standard 2 Gbyte format

m 5 Gbyte format (8500, 8505 only)

h,c 5 Gbyte compressed format (8505 only)

For 4mm DAT tape devices (Archive Python):

498 SunOS 5.8 Last modified 12 August 1999

Devices st(7D)

l Standard format

m,h,c data compression

For all QIC (other than QIC-24) tape devices:

l,m,h,c density of the tape cartridge type

(not all devices can read and

write all formats)

For QIC-24 tape devices (Emulex MT−02):

l QIC-11 Format

m,h,c QIC-24 Format

SEE ALSO mt(1), modload (1M), modunload (1M), open (2), read (2), write (2),
aioread (3AIO), aiowrite (3AIO), kstat (3KSTAT), driver.conf (4),
scsi (4), standards (5), esp (7D), isp (7D), mtio (7I), ioctl (9E)

DIAGNOSTICS Error for command ’<command name>’Error Level: Fatal
Requested Block <n>, Error Block: <m>
Sense Key: <sense key name>
Vendor ’<name>’: ASC = 0x<a> (<extended sense code name>),
ASCQ = 0x, FRU = 0x<c>

The command indicated by <command name> failed. The Requested Block
is the block where the transfer started and the Error Block is the block that
caused the error. Sense Key, ASC, ASCQ and FRU information is returned
by the target in response to a request sense command.

write/read: not modulo <n> block size
The request size for fixed record size devices must be a multiple of the
specified block size.

recovery by resets failed
After a transport error, the driver attempted to recover with device and bus
reset. This recovery failed.

Periodic head cleaning required
The driver reported that periodic head cleaning is now required.

Soft error rate (<n>%) during writing/reading was too high
The soft error rate has exceeded the threshold specified by the vendor.

Last modified 12 August 1999 SunOS 5.8 499

st(7D) Devices

SCSI transport failed: reason ’xxxx’: {retrying|giving
up}

The host adapter has failed to transport a command to the target for the
reason stated. The driver will either retry the command or, ultimately, give
up.

WARNINGS In Solaris 2.4, the ST_NO_RECSIZE_LIMIT flag is set for the built-in config
entries of the Archive DAT and Exabyte drivers by default. (Refer to Large
Record Sizes .) Tapes written with large block sizes prior to Solaris 2.4 may
cause some applications to fail if the number of bytes returned by a read request
is less than the requested block size (for example, asking for 128 Kbytes and
receiving less than 64 Kbytes).

The ST_NO_RECSIZE_LIMIT flag can be disabled in the config entry for the
device as a work-around. (Refer to Tape Configuration .) This action
disables the ability to read and write with large block sizes and allows the
reading of tapes written prior to Solaris 2.4 with large block sizes.

(Refer to mtio (7I) for a description of maximum record sizes.)

BUGS Tape devices that do not return a BUSY status during tape loading prevent user
commands from being held until the device is ready. The user must delay issuing
any tape operations until the tape device is ready. This is not a problem for tape
devices supplied by Sun Microsystems.

Tape devices that do not report a blank check error at the end of recorded media
may cause file positioning operations to fail. Some tape drives, for example,
mistakenly report media error instead of blank check error.

500 SunOS 5.8 Last modified 12 August 1999

Devices stc(7D)

NAME stc – Serial Parallel Communications driver for SBus

DESCRIPTION The SPC/S SBus communications board consists of eight asynchronous serial
ports and one IBM PS/2-compatible parallel port. The stc driver supports up to
eight SPC/S boards in an SBus system. Each serial port has full modem control:
the CD, DTR, DSR, RTS, and CTSmodem control lines are provided, and flow
control is supported in hardware for either RTS/CTS hardware flow control
or DC1/DC3 software flow control.

The parallel port is unidirectional, with support for the ACK, STROBE, BUSY,
PAPER OUT, SELECT, and ERRORinterface signals. Both the serial and parallel
ports support those termio (7I) device control functions specified by flags in
the c_cflag word of the termios (3C) structure. In addition, the serial ports
support the IGNPAR, PARMRK, INPCK, IXON, IXANY, and IXOFF flags in the
c_iflag word of the termios (3C) structure. The latter c_iflag functions
are performed by the stc driver for the serial ports.

Since the parallel port is a unidirectional, output-only port, no input
termios (3C) (c_iflag) parameters apply to it. Trying to execute a nonsensical
ioctl() on the parallel port is not recommended.

All other termios (3C) functions are performed by STREAMS modules
pushed on top of the driver. When an stc device is opened, the ldterm (7M)
and ttcompat (7M) STREAMS modules are automatically pushed on top of
the stream if they are specified in the /etc/iu.ap file (the default condition),
providing the standard termio (7I) interface.

The device names of the form /dev/term/ n or /dev/ttyy n specify the serial
I/O ports provided on the SPC/S board, conventionally as incoming lines.
The device names of the form /dev/cua/ n or /dev/ttyz n specify the serial
I/O ports provided on the SPC/S board, conventionally as outgoing lines.
The device names of the form /dev/printers/ n or /dev/stclp n specify
the parallel port, and the device name of the form /dev/stc n specify a special
control port per board.

To allow a single tty line to be connected to a modem and used for both incoming
and outgoing calls, a special feature, controlled by the minor device number,
has been added. Minor device numbers in the range 128-191 correspond to the
same physical lines as those in the range 0-63 (that is, the same line as the
minor device number minus 128).

A dial-in line has a minor device in the range 0-63 and is conventionally named
/dev/term/ n, where n is a number that indicates which dial-in line it is (so
that /dev/term/0 is the first dial-in line). The dial-out line corresponding to
that dial-in line has a minor device number 128 greater than the minor device
number of the dial-in line and is conventionally named /dev/cua/ n, where n is

Last modified 17 Mar 1998 SunOS 5.8 501

stc(7D) Devices

the number of the dial-in line. These devices will also have the compatibility
names /dev/ttyz n.

The /dev/cua/ n lines are special in that they can be opened even when there is
no carrier on the line. Once a /dev/cua/ n line is opened, the corresponding
/dev/term/ n line cannot be opened until the /dev/cua/ n line is closed; a
blocking open will wait until the /dev/cua/ n line is closed (which will drop
DTR, after which DCDwill usually drop as well) and carrier is detected again, and
a non-blocking open will return an error. If the /dev/term/ n line has been
opened successfully (usually only when carrier is recognized on the modem) the
corresponding /dev/cua/ n line cannot be opened. This allows a modem to
be attached to /dev/term/0 , for example, and used for dial-in, by enabling
the line for login (using pmadm(1M)) and also used for dial-out (by tip (1) or
uucp (1C)) as /dev/cua/0 when nobody is logged in on the line.

The parallel port is given the name /dev/stclp n, where n is the SPC/S unit
number (see Minor Numbers , below).

The control port, named /dev/stc n, where n is the SPC/S, is available. An
ioctl() is provided for this special file which allow the collection of statistics
maintained on serial port performance.

Minor Numbers The characters o p u u | u l l l correspond to the bits in the minor number. They
are mnemonic indicators of the function of the corresponding bit.
o set if this device is an outgoing serial line

p set if this is a parallel port device

u device unit number

l device line number if this is the parallel port line, ’p’ should be 1
and ’lll’ should be all 0’s if this is the control line, both ’p’ and ’lll’
should be set to all 1’s

IOCTLS The standard set of termio ioctl() calls is supported by the stc driver on both
the serial and parallel ports.

If the CRTSCTSflag in the c_cflag is set and if CTSis high, output will be
transmitted; if CTSis low, output will be frozen. If the CRTSCTSflag is clear, the
state of CTShas no effect. Breaks can be generated by the TCSBRK, TIOCSBRK
and TIOCCBRK ioctl() calls. The modem control lines TIOCM_CAR,
TIOCM_CTS, TIOCM_RTS, TIOCM_DSRand TIOCM_DTRare provided for the
serial ports, although the TIOCMGET ioctl() call will not return the state of the
TIOCM_RTSor TIOCM_DSRlines, which are output-only signals.

The serial port input and output line speeds may be set to any of the speeds
supported by termio (7I).

502 SunOS 5.8 Last modified 17 Mar 1998

Devices stc(7D)

DEVICE-SPECIFIC
IOCTLS

The stc driver supports two additional ioctl() s. STC_SPPC(struct
ppc_params_t *) sets parallel port parameters, and STC_GPPC(struct
ppc_params_t *) gets parallel port parameters. Both are valid until changed
or until a close() .

struct ppc_params_t {
uint_t flags; /* driver status flag */
uint_t state; /* status of the printer interface */
uint_t strobe_w; /* strobe width, in microseconds */
uint_t data_setup; /* data setup time, in microseconds */
uint_t ack_timeout; /* ACK timeout in secs */
uint_t error_timeout; /* PAPER OUT, etc... timeout in secs */
uint_t busy_timeout; /* BUSY timeout in seconds */

};

The possible values for flags defined in /usr/include/sys/stcio.h are:
PP_PAPER_OUT honor PAPER OUT from port; returned HIGH means PAPER

OUT.

PP_ERROR honor ERROR from port; returned HIGH means ERROR.

PP_BUSY honor BUSY from port; returned HIGH means BUSY.

PP_SELECT honor SELECT from port; returned HIGH means OFFLINE.

PP_MSG print console message on every error scan.

PP_SIGNAL send a PP_SIGTYPE (SIGURG) to the process if printer error.

The state field contains the current status of the printer interface. It is analogous
to the bit order of flags, but contains the status the driver maintains, masked
by the flags that are set. The result of shifting state PP_SHIFT bits to the left
is the actual state of the hardware.

The STC_SPPCand STC_GPPC ioctl() calls are understood only by the
parallel port. STC_GSTATS(struct stc_stats_t *) gets or resets driver
performance statistics on serial ports.

struct stc_stats_t {
uint_t cmd; /* command */
uint_t qpunt; /* punting in stc_drainsilo() */
uint_t drain_timer; /* posted a timer in stc_drainsilo() */
uint_t no_canput; /* canput() failed in stc_drainsilo() */
uint_t no_rcv_drain; /* can’t call stc_drainsilo() in stc_rcv() */
uint_t stc_drain; /* STC_DRAIN flag set on this line */
uint_t stc_break; /* BREAK requested on XMIT via stc_ioctl() */
uint_t stc_sbreak; /* start BREAK requested via stc_ioctl() */
uint_t stc_ebreak; /* end BREAK requested via stc_ioctl() */

Last modified 17 Mar 1998 SunOS 5.8 503

stc(7D) Devices

uint_t set_modem; /* set modem control lines in stc_ioctl() */
uint_t get_modem; /* get modem control lines in stc_ioctl() */
uint_t ioc_error; /* bad ioctl() */
uint_t set_params; /* call to stc_param() */
uint_t no_start; /* can’t run in stc_start(); already there */
uint_t xmit_int; /* transmit interrupts */
uint_t rcv_int; /* receive interrupts */
uint_t rcvex_int; /* receive exception interrupts */
uint_t modem_int; /* modem change interrupts */
uint_t xmit_cc; /* characters transmitted */
uint_t rcv_cc; /* characters received */
uint_t break_cnt; /* BREAKs received */
uint_t bufcall; /* times we couldn’t get STREAMS buffer */
uint_t canwait; /* stc_drainsilo() called w/pending timer */
uint_t reserved; /* this field is meaningless */

};

The STC_GSTATS ioctl() works only on the SPC/S control port. The possible
cmd values, defined in /usr/include/sys/stcio.h , are STAT_CLEAR, which
clears the line statistics, and STAT_GET, which gets the line statistics.

SOFTCAR, DTR
and CTS/RTS

FLOW CONTROL

Several methods may be used to enable or disable soft carrier on a
particular serial line. The non-programmatic method is to edit the
/platform/ platform/kernel/drv/stc.conf file. For this change to take
effect, the machine must be rebooted. See the next section, SETTING DEFAULT
LINE PARAMETERS, for more information on this method. From within an
application program, you can enable or disable the recognition of carrier on a
particular line by issuing the TIOCGSOFTCAR ioctl() to the driver.

The default mode of operation for the DTRsignal is to assert it on the first
open() of a serial line and, if HUPCL is set, to de-assert it on the last
close() . To change the operation of this feature, issue the set on the
/platform/ platform/kernel/drv/stc.conf parameter flags field bit
DTR_ASSERT.

SETTING
DEFAULT LINE
PARAMETERS

Many default parameters of the serial and parallel ports can be changed using
the /platform/ platform/kernel/drv/stc.conf file. The format of a line in
the stc.conf file is:

device_tag=token[= value][: token[= value]]

For serial ports, the device_tag is stc_n, where n is between 0 and the maximum
number of serial ports used by the driver. The token and parameters that follow
it apply to both the /dev/term/ n entries and /dev/cua/ n entries.

For parallel ports, the device_tag is stc_pn, where n is between 0 and the number
of parallel ports driven by stc .

504 SunOS 5.8 Last modified 17 Mar 1998

Devices stc(7D)

The token[= value] specifies a token, and if the token takes a value, the value to
assigned. Tokens that don’t take a value are considered boolean. If boolean
tokens don’t appear in the stc.conf file, they will be cleared by the driver. If
these tokens appear in the stc.conf file, they will be set by the driver.

Tokens that take parameters must have a parameter specified in the token=value
couplet in the stc.conf file. If no parameter or an invalid parameter is
specified, the driver will ignore the token and revert to using the driver’s
default value.

Tokens for Serial
Ports

Valid boolean tokens for serial ports are:
soft_carrier - Defaullt value, enables the soft carrier on the

specified line. When the soft carrier is set,
transitions on the carrier detect line will be
ignored. Use drt_assert to clear this value.

dtr_assert - Causes the DTRto be asserted on the next open
of the port.

dtr_force - Causes DTRto be continuously asserted. It
overrides any other DTRoperations and ioctl()
calls.

dtr_close - Use alternate semantics when dealing with DTR
in close. If this is clear, DTRwill drop on the close
of the port. If this is set, DTRwill not drop on
close() if TS_SOFTCAR(see termiox (7I))
is set in the t_flags.

cflow_flush - Flush any data being held off by remote flow
control on close() .

cflow_msg - Display a message on the console if data
transmission is stalled due to remote flow control
blocking the transfer in close() .

instantflow - If transmission is stopped by software flow
control and the flow control is disabled via an
ioctl() call, the transmitter will be enabled
immediately.

Valid tokens requiring values are:
drain_size - The size of STREAMS buffers allocated when

passing data from the receive interrupt handler
upstream.

Last modified 17 Mar 1998 SunOS 5.8 505

stc(7D) Devices

hiwater, lowwater - The high water and low water thresholds in the
receive interrupt handler 1024 byte buffer.

rtpr - The inter-character receive timer.

rxfifo - The UART receive fifo threshold.

For serial ports, the value-carrying tokens have the following defaults and
ranges:

token default value min value max value

hiwater 1010 bytes 2 bytes 1022 bytes

lowwater 512 bytes 2 bytes hiwater minus 2
bytes

drain_size 64 bytes 4 bytes 1024 bytes

rtpr 18 millisecs 1 millisecs 255 millisecs

rxfifo 4 bytes 1 bytes 8 bytes

Tokens for Parallel
Ports

Valid boolean tokens for parallel ports are
paper_out - If set, the PAPER OUTsignal from the port is

monitored. If clear, the signal is ignored.

error - Monitor the ERRORsignal from the port. Ignore
the signal if clear.

busy - Monitor the BUSYsignal from the port. Ignore the
signal if clear.

select - Monitor the SELECT, or ON LINE, signal from the
port. Ignore the signal if clear.

pp_message - If this token is clear, a console message will be
printed when any of the above four enabled
conditions are detected, and another when the
condition is cleared. If set, a console message will
be printed every 60 seconds until the condition
is cleared.

pp_signal - If this token is set, the parallel port’s controlling
process will get a PP_SIGTYPEsignal whenever
one of the above four conditions is detected.
PP_SIGTYPE is defined in stcio.h , which is
available to the user.

506 SunOS 5.8 Last modified 17 Mar 1998

Devices stc(7D)

Valid tokens requiring parameters for the parallel ports are
ack_timeout - The amount of time in seconds to wait for an

ACKfrom the port after asserting STROBEand
transferring a byte of data.

error_timeout - Amount of time in seconds to wait for an error to
go away.

busy_timeout - The amount of time in seconds to wait for a
BUSYsignal to clear, or zero for an infinite BUSY
timeout.

data_setup - The amount of time in microseconds between
placing data ont the parallel lines and asserting
the STROBE.

strobe_width - width of the STROBEpulse, in microseconds.

For value-carrying tokens for parallel ports:

token default value min value max value

strobe_width 2 microsecs 1 microsecs 30 microsecs

data_setup 2 microsecs 0 microsecs 30 microsecs

ack_timeout 60 seconds 5 seconds 7200 seconds

errror_timeout 5 seconds 1 seconds 480 seconds

busy_timeout 10 seconds 0 seconds 7200 seconds

PARALLEL PORT
PARAMETERS

The default values of certain parallel port parameters that govern data transfer
between the SPC/S board and the device attached to the parallel port will
usually work well with most devices; however, some devices don’t strictly
adhere to the IBM PS/2-compatible (Centronics-compatible) data transfer and device
control/status protocol, and may require modification of one or more of the
default parallel port parameters. Some printers, for example, have non-standard
timing on their SELECTline, which manifests itself if you start sending data to
the printer and then take it off line; when you put it back on line, the printer
will not assert it’s SELECTline until after the next character is sent to the
printer. Since the stc driver will not send data to the device if it’s SELECTline
is de-asserted, a deadlock condition occurs. To remedy this situation, you can
change the default signal list that the stc driver monitors on the parallel port
by removing the SELECTsignal from the list. This can be done either through
the /platform/ platform/kernel/drv/stc.conf configuration file or
programmatically through the STC_SPPC ioctl() call.

Last modified 17 Mar 1998 SunOS 5.8 507

stc(7D) Devices

LOADABLE
ISSUES

If you try to unload the driver, and one or more of the ports on one or more of
the SPC/S boards is in use (for example, open()) by a process, the driver will
not be unloaded, and all lines on all SPC/S boards, with the exception of the control
ports, will be marked with an open inhibit flag to prevent further opens until
the driver is successfully unloaded.

ERRORS An open() will fail with errno set to:
ENXIO The unit being opened does not exist.

EBUSY The dial-out device is being opened and the dial-in device
is already open, the dial-in device is being opened with a
no-delay open and the dial-out device is already open or the
unit has been marked as exclusive-use by another process
with a TIOCEXCL ioctl() call.

EINTR The open was interrupted by the delivery of a signal.

EPERM The control port for the board was opened by a process
whose uid was not root .

An ioctl() will fail with errno set to:
ENOSR A STREAMS data block could not be allocated to return

data to the caller.

EINVAL An invalid value was passed as the data argument to the
ioctl() call or an invalid argument or op-field was passed
in one of the driver-specific ioctl() ’s.

EPERM An STC_GSTATS ioctl() was requested by a process
whose uid was not root .

ENOTTY An unrecognized ioctl() command was received.

FILES The stc driver uses the following files:
/dev/term/[00-3f]
/dev/ttyy[00-3f]

Hardwired and dial-in tty lines

/dev/cua/[00-3f]
/dev/ttyz[00-3f]

Dial-out tty lines

/dev/printers/[0-7]
/dev/stclp[0-7]

Parallel port lines

508 SunOS 5.8 Last modified 17 Mar 1998

Devices stc(7D)

/dev/stc[0-7]
Control port

/platform/ platform/kernel/drv/stc.conf
Driver configuration file

/usr/include/sys/stcio.h
Header file with ioctl() s supported by this driver

SEE ALSO tip (1), uucp (1C), pmadm(1M), termios (3C), ldterm (7M), termio (7I),
termiox (7I), ttcompat (7M), allocb (9F), bufcall (9F), kmem_zalloc (9F)

DIAGNOSTICS All diagnostic messages from the driver appear on the system console. There are
three severity levels of messages displayed:
FATAL The device driver does not get loaded, and any SPC/S

boards installed in the system are inaccessible. Fatal errors
usually occur during the modload process.

ERROR Some condition has disrupted the normal operation of the
board and/or device driver. There may be data loss. This
class of message mayindicate an impending hardware
failure.

ADVISORY The device driver has detected a condition that may be of
interest, usually a transient condition that clears itself.

Messages During
Initialization Of

Driver/Board

The following messages can be generated during initialization of the driver or
board.
stc_attach: can’t allocate memory for unit structs

FATAL. kmem_zalloc() failed to allocate memory for the driver’s internal
data structures.

stc_attach: board revision undeterminable
FATAL. The driver did not get a hardware revision level from the board’s
onboard FCode PROM.

stc_attach: board revision 0x%x not supported by driver.
FATAL. This revision of the board is not supported by the driver.

stc_attach: oscillator revision undeterminable
FATAL. The driver did not get an oscillator revision level from the board’s
onboard FCode PROM.

stc_attach: weird oscillator revision (0x%x), assuming 10Mhz
ADVISORY. The board’s onboard FCode PROM returned an unanticipated
baud-rate oscillator value, so the driver assumes that a 10Mhz oscillator is
installed.

Last modified 17 Mar 1998 SunOS 5.8 509

stc(7D) Devices

stc_attach: error initializing stc%d
FATAL. An error occured while trying to initialize the board; perhaps a
memory access failed.

stc_attach: bad number of interrupts: %d
FATAL. An incorrect number of interrupts was read from the board’s
onboard FCode PROM.

stc_attach: bad number of register sets: %d
FATAL. An incorrect number of register sets was read from the board’s
onboard FCode PROM.

stc_init: stc%d GIVR was not 0x0ff, was: 0x%x
FATAL. Either the cd-180 8-channel UART failed to initialize properly or a
memory fault occured while trying to access the chip.

cd180_init: stc%d GIVR was not 0x0ff, was: 0x%x
FATAL. Either the cd-180 8-channel UART failed to initialize properly or a
memory fault occured while trying to access the chip.

stc%d: board revision: 0x%x should be updated
ADVISORY. Two versions of the FCode PROM on the SPC/S card, V1.0
(0x4) and V1.1 (0x5), have been released. The V1.1 PROM fixes some
incompatabilities between the V1.0 FCode PROM on the SPC/S and the V2.0
OpenBOOT PROM on your system. An SPC/S card in a system running
Solaris 2.X. requires a V1.1 PROM.

stc%d: system boot PROM revision V%d.%d should be updated
ADVISORY. Your system’s BOOT PROM should be updated to at least V1.3
because prior versions of the BOOT PROM did not correctly map the SBus
interrupt levels that the SPC/S uses.

Messages Related To
The Serial Port

SET_CCR: CCR timeout

ERROR. The cd-180’s CCRregister did not return to zero within the specified
timeout period after it was issued a command

PUTSILO: unit %d line %d soft silo overflow
ERROR. The driver’s internal receive data silo for the enunciated line has
overflowed because the system has not gotten around to pulling data out of
the silo. Make sure you are using the correct flow control and that all data in
the silo is flushed. This message frequently appears becasue of a hardware
crosstalk problem that was fixed in later releases of the board.

stc_rcvex: unit %d line %d receiver overrun, char: 0x%x

510 SunOS 5.8 Last modified 17 Mar 1998

Devices stc(7D)

ERROR. The driver could not get around to service the cd-180 receive data
interrupt before the cd-180’s receive data FIFO filled up. This message
frequently appears becasue of a hardware crosstalk problem that was fixed
in later releases of the board.

stc_drainsilo: unit %d line %d can’t allocate streams buffer
ERROR. The driver could not get a STREAMS message buffer from
bufcall (9F). All data in the driver’s receive data silo is flushed.

stc_drainsilo: unit %d line %d punting put retries
ERROR. After trying several times to send data down the stream from the
driver to the application and finding the path blocked, the driver gives up.
All data in the driver’s receive data silo is flushed.

stc_modem: unit %d line %d interesting modem control
ADVISORY. The cd-180 posted a modem control line change interrupt, but
upon examination by the driver, no modem control lines had changed state
since the last time a scan was conducted. If you see this problem frequently,
it is likely that your data cables are either too long or picking up induced
noise.

Messages Related To
The Parallel Port

ppc_stat: unit %d PAPER OUT

ADVISORY. The device connected to the parallel port on the enumerated
BOARDhas signalled that it is out of paper (PAPER OUTline asserted).

ppc_stat: unit %d PAPER OUT condition cleared
ADVISORY. The previously-detected PAPER OUTcondition has been cleared
by the device connected to the parallel port on the enumerated board
(PAPER OUTline de-asserted).

ppc_stat: unit %d OFFLINE
ADVISORY. The device connected to the parallel port on the enumerated
board has signaled that it is offline (SLCT line de-asserted).

ppc_stat: unit %d OFFLINE condition cleared
ADVISORY. The previously-detected off line condition has been cleared by
the device connected to the parallel port on the enumerated board (SLCT
line asserted).

ppc_stat: unit %d ERROR
ADVISORY. The device connected to the parallel port on the enumerated
board has signalled that it has encountered an error of some sort (ERROR
line asserted).

ppc_stat: unit %d ERROR condition cleared

Last modified 17 Mar 1998 SunOS 5.8 511

stc(7D) Devices

ADVISORY. The previously-detected error condition has been cleared by the
device connected to the parallel port on the enumerated board (ERROR
line de-asserted).

ppc_acktimeout: unit %d ACK timeout
ERROR. The ACKline from the device connected to the parallel port did not
assert itself within the configurable timeout period. Check to be sure that
the device is connected and powered on.

ppc_acktimeout: unit %d BUSY timeout
ERROR. The BUSYline from the device connected to the parallel port did not
de-assert itself within the configurable timeout period. Check to be sure that
the device is connected and powered on.

ppc_int: unit %d stray interrupt
ADVISORY. The parallel port controller (ppc) chip generated an interrupt
while the device was closed. This was unexpected, and if you see it
frequently, your parallel cable may be picking up induced noise, causing the
ppc to generate an unwanted interrupt; or this could indicate an internal
problem in the ppc .

ppc_acktimeout: unit %d can’t get pointer to read q
ERROR. The driver’s internal ppc data structure became corrupted.

ppc_acktimeout: unit %d can’t send M_ERROR message
ERROR. The driver can’t send an M_ERRORSTREAMS message to the
application.

ppc_signal: unit %d can’t get pointer to read q
ERROR. The driver’s internal ppc data structure became corrupted.

ppc_signal: unit %d can’t send M_PCSIG(PP_SIGTYPE 0x%x) message
ERROR. The driver can’t send an M_PCSIGSTREAMS message to the
application (which could cause a signal to be posted).

Messages Related To
STREAMS Processing

stc_wput: unit %d trying to M_STARTI on ppc or control device

ADVISORY. An M_STARTI STREAMS message was sent to the parallel port
or the board control device, which should only happen if an application
explicitly sends this message.

stc_wput: unit %d line %d unknown message: 0x%x
ADVISORY. An unknown STREAMS message was sent to the driver. Check
your application coding.

stc_start: unit %d line %d unknown message: 0x%x
ADVISORY. An unknown STREAMS message was sent to the driver. Check
your application coding.

512 SunOS 5.8 Last modified 17 Mar 1998

Devices stc(7D)

Messages Related To
Serial Port Control

stc_ioctl: unit %d line %d can’t allocate streams buffer for ioctl

ERROR. The driver could not get a STREAMS message buffer from
bufcall() for the requested ioctl() ; theioctl() will not be executed.

stc_ioctl: unit %d line %d can’t allocate STC_DCONTROL block
ERROR. The driver could not allocate a data block from allocb (9F) for the
STC_DCONTROLreturn value; the ioctl() does not get executed.

stc_ioctl: unit %d line %d can’t allocate STC_GPPC block
ERROR. The driver could not allocate a data block from allocb() for the
STC_GPPCreturn value; the ioctl() does not get executed.

stc_ioctl: unit %d line %d can’t allocate TIOCMGET block
ERROR. The driver could not allocate a data block from allocb() for the
TIOCMGETreturn value; the ioctl() does not get executed.

stc_vdcmd: unit %d cd-180 firmware revision: 0x%x
ADVISORY. This message displays the firmware revision level of the cd-180
when the driver is first loaded.

Last modified 17 Mar 1998 SunOS 5.8 513

stp4020(7D) Devices

NAME stp4020 – STP 4020 PCMCIA Adapter

DESCRIPTION The STP 4020 PCMCIA Adapter provides for two PCMCIA PC Card sockets. The
stp4020 adapter driver provides an interface between the PCMCIA sockets and
the PCMCIA nexus. The driver supports the Sun PCMCIA Interface/Sbus card.

Direct access to the PCMCIA hardware is not supported. The driver exists
solely to support the PCMCIA nexus.

FILES /kernel/drv/stp4020 stp4020 driver.

SEE ALSO pcmcia (4)

514 SunOS 5.8 Last modified 27 Jul 1999

Ioctl Requests streamio(7I)

NAME streamio – STREAMS ioctl commands

SYNOPSIS #include <sys/types.h>
#include <stropts.h>
#include <sys/conf.h>
int ioctl (int fildes, int command, ... /*arg*/);

DESCRIPTION STREAMS (see intro (3)) ioctl commands are a subset of the ioctl (2)
commands and perform a variety of control functions on streams.

The fildes argument is an open file descriptor that refers to a stream. The
command argument determines the control function to be performed as described
below. The arg argument represents additional information that is needed by this
command. The type of arg depends upon the command, but it is generally an
integer or a pointer to a command-specific data structure. The command and arg
arguments are interpreted by the STREAM head. Certain combinations of these
arguments may be passed to a module or driver in the stream.

Since these STREAMS commands are ioctl s, they are subject to the errors
described in ioctl (2). In addition to those errors, the call will fail with errno
set to EINVAL, without processing a control function, if the STREAM referenced
by fildes is linked below a multiplexor, or if command is not a valid value for a
stream.

Also, as described in ioctl (2), STREAMS modules and drivers can detect
errors. In this case, the module or driver sends an error message to the STREAM
head containing an error value. This causes subsequent calls to fail with errno
set to this value.

IOCTLS The following ioctl commands, with error values indicated, are applicable to
all STREAMS files:
I_PUSH Pushes the module whose name is pointed to by arg onto the

top of the current stream, just below the STREAM head. If
the STREAM is a pipe, the module will be inserted between
the stream heads of both ends of the pipe. It then calls the
open routine of the newly-pushed module. On failure,
errno is set to one of the following values:

EINVAL Invalid module name.

EFAULT arg points outside the allocated address
space.

ENXIO Open routine of new module failed.

ENXIO Hangup received on fildes.

Last modified 19 Apr 1999 SunOS 5.8 515

streamio(7I) Ioctl Requests

I_POP Removes the module just below the STREAM head of the
STREAM pointed to by fildes. To remove a module from a
pipe requires that the module was pushed on the side it is
being removed from. arg should be 0 in an I_POP request.
On failure, errno is set to one of the following values:

EINVAL No module present in the stream.

ENXIO Hangup received on fildes.

EPERM Attempt to pop through an anchor by an
unpriviledged process.

I_ANCHOR Positions the stream anchor to be at the STREAMS module
directly below the STREAM head. Once this has been
done, only a privileged process may pop modules below
the anchor on the stream. arg must be 0 in an I_ANCHOR
request. On failure, errno is set to the following value:

EINVAL Request to put an anchor on a pipe.

I_LOOK Retrieves the name of the module just below the STREAM
head of the STREAM pointed to by fildes, and places it in a
null terminated character string pointed at by arg. The buffer
pointed to by arg should be at least FMNAMESZ+1 bytes long.
This requires the declaration #include <sys/conf.h> . On
failure, errno is set to one of the following values:

EFAULT arg points outside the allocated address
space.

EINVAL No module present in stream.

I_FLUSH This request flushes all input and/or output queues,
depending on the value of arg. Legal arg values are:

FLUSHR Flush read queues.

FLUSHW Flush write queues.

FLUSHRW Flush read and write queues.

If a pipe or FIFO does not have any modules pushed, the
read queue of the STREAM head on either end is flushed
depending on the value of arg.

516 SunOS 5.8 Last modified 19 Apr 1999

Ioctl Requests streamio(7I)

If FLUSHRis set and fildes is a pipe, the read queue for that
end of the pipe is flushed and the write queue for the other
end is flushed. If fildes is a FIFO, both queues are flushed.

If FLUSHWis set and fildes is a pipe and the other end of the
pipe exists, the read queue for the other end of the pipe is
flushed and the write queue for this end is flushed. If fildes is
a FIFO, both queues of the FIFO are flushed.

If FLUSHRWis set, all read queues are flushed, that is, the
read queue for the FIFO and the read queue on both ends of
the pipe are flushed.

Correct flush handling of a pipe or FIFO with modules
pushed is achieved via the pipemod module. This module
should be the first module pushed onto a pipe so that it is at
the midpoint of the pipe itself.

On failure, errno is set to one of the following values:

ENOSR Unable to allocate buffers for flush
message due to insufficient STREAMS
memory resources.

EINVAL Invalid arg value.

ENXIO Hangup received on fildes.

I_FLUSHBAND Flushes a particular band of messages. arg points to a
bandinfo structure that has the following members:

unsigned char bi_pri;
int bi_flag;

The bi_flag field may be one of FLUSHR, FLUSHW, or
FLUSHRWas described earlier.

I_SETSIG Informs the STREAM head that the user wishes the kernel
to issue the SIGPOLL signal (see signal (3C)) when a
particular event has occurred on the STREAM associated
with fildes. I_SETSIG supports an asynchronous processing
capability in STREAMS. The value of arg is a bitmask that
specifies the events for which the user should be signaled.
It is the bitwise OR of any combination of the following
constants:

S_INPUT Any message other than an M_PCPROTO
has arrived on a STREAM head read

Last modified 19 Apr 1999 SunOS 5.8 517

streamio(7I) Ioctl Requests

queue. This event is maintained for
compatibility with previous releases. This
event is triggered even if the message
is of zero length.

S_RDNORM An ordinary (non-priority) message has
arrived on a STREAM head read queue.
This event is triggered even if the message
is of zero length.

S_RDBAND A priority band message (band > 0) has
arrived on a stream head read queue. This
event is triggered even if the message
is of zero length.

S_HIPRI A high priority message is present on the
STREAM head read queue. This event is
triggered even if the message is of zero
length.

S_OUTPUT The write queue just below the STREAM
head is no longer full. This notifies the
user that there is room on the queue for
sending (or writing) data downstream.

S_WRNORM This event is the same as S_OUTPUT.

S_WRBAND A priority band greater than 0 of a queue
downstream exists and is writable. This
notifies the user that there is room on the
queue for sending (or writing) priority
data downstream.

S_MSG A STREAMS signal message that contains
the SIGPOLL signal has reached the front
of the STREAM head read queue.

S_ERROR An M_ERRORmessage has reached the
STREAM head.

S_HANGUP An M_HANGUPmessage has reached the
STREAM head.

S_BANDURG When used in conjunction with
S_RDBAND, SIGURGis generated instead of
SIGPOLL when a priority message reaches
the front of the stream head read queue.

518 SunOS 5.8 Last modified 19 Apr 1999

Ioctl Requests streamio(7I)

A user process may choose to be signaled only of high
priority messages by setting the arg bitmask to the value
S_HIPRI .

Processes that wish to receive SIGPOLL signals must
explicitly register to receive them using I_SETSIG . If several
processes register to receive this signal for the same event
on the same stream, each process will be signaled when the
event occurs.

If the value of arg is zero, the calling process will be
unregistered and will not receive further SIGPOLL signals.
On failure, errno is set to one of the following values:

EINVAL arg value is invalid or arg is zero and
process is not registered to receive the
SIGPOLL signal.

EAGAIN Allocation of a data structure to store the
signal request failed.

I_GETSIG Returns the events for which the calling process is currently
registered to be sent a SIGPOLL signal. The events are
returned as a bitmask pointed to by arg, where the events are
those specified in the description of I_SETSIG above. On
failure, errno is set to one of the following values:

EINVAL Process not registered to receive the
SIGPOLL signal.

EFAULT arg points outside the allocated address
space.

I_FIND Compares the names of all modules currently present in the
STREAM to the name pointed to by arg, and returns 1 if the
named module is present in the stream. It returns 0 if the
named module is not present. On failure, errno is set to
one of the following values:

EFAULT arg points outside the allocated address
space.

EINVAL arg does not contain a valid module name.

I_PEEK Allows a user to retrieve the information in the first message
on the STREAM head read queue without taking the
message off the queue. I_PEEK is analogous to getmsg (2)

Last modified 19 Apr 1999 SunOS 5.8 519

streamio(7I) Ioctl Requests

except that it does not remove the message from the queue.
arg points to a strpeek structure, which contains the
following members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

The maxlen field in the ctlbuf and databuf strbuf
structures (see getmsg (2)) must be set to the number of
bytes of control information and/or data information,
respectively, to retrieve. flags may be set to RS_HIPRI or
0. If RS_HIPRI is set, I_PEEK will look for a high priority
message on the STREAM head read queue. Otherwise,
I_PEEK will look for the first message on the STREAM
head read queue.

I_PEEK returns 1 if a message was retrieved, and returns
0 if no message was found on the STREAM head read
queue. It does not wait for a message to arrive. On return,
ctlbuf specifies information in the control buffer, databuf
specifies information in the data buffer, and flags contains
the value RS_HIPRI or 0. On failure, errno is set to the
following value:

EFAULT arg points, or the buffer area specified
in ctlbuf or databuf is, outside the
allocated address space.

EBADMSG Queued message to be read is not valid
for I_PEEK .

EINVAL Illegal value for flags .

I_SRDOPT Sets the read mode (see read (2)) using the value of the
argument arg. Legal arg values are:

RNORM Byte-stream mode, the default.

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.

In addition, the STREAM head’s treatment of control
messages may be changed by setting the following flags
in arg:

520 SunOS 5.8 Last modified 19 Apr 1999

Ioctl Requests streamio(7I)

RPROTNORM Reject read() with EBADMSGif a control
message is at the front of the STREAM
head read queue.

RPROTDAT Deliver the control portion of a message as
data when a user issues read() . This is
the default behavior.

RPROTDIS Discard the control portion of a message,
delivering any data portion, when a user
issues a read ().

On failure, errno is set to the following value:

EINVAL arg is not one of the above legal values, or
arg is the bitwise inclusive OR of RMSGD
and RMSGN.

I_GRDOPT Returns the current read mode setting in an int pointed to
by the argument arg. Read modes are described in read ().
On failure, errno is set to the following value:

EFAULT arg points outside the allocated address
space.

I_NREAD Counts the number of data bytes in data blocks in the first
message on the STREAM head read queue, and places this
value in the location pointed to by arg. The return value for
the command is the number of messages on the STREAM
head read queue. For example, if zero is returned in arg, but
the ioctl return value is greater than zero, this indicates
that a zero-length message is next on the queue. On failure,
errno is set to the following value:

EFAULT arg points outside the allocated address
space.

I_FDINSERT Creates a message from specified buffer(s), adds information
about another STREAM and sends the message downstream.
The message contains a control part and an optional data
part. The data and control parts to be sent are distinguished
by placement in separate buffers, as described below.

The arg argument points to a strfdinsert structure, which
contains the following members:

Last modified 19 Apr 1999 SunOS 5.8 521

streamio(7I) Ioctl Requests

struct strbuf ctlbuf;
struct strbuf databuf;
t_uscalar_t flags;
int fildes;
int offset;

The len member in the ctlbuf strbuf structure (see
putmsg (2)) must be set to the size of a t_uscalar_t
plus the number of bytes of control information to be sent
with the message. The fildes member specifies the file
descriptor of the other STREAM, and the offset member,
which must be suitably aligned for use as a t_uscalar_t ,
specifies the offset from the start of the control buffer
where I_FDINSERT will store a t_uscalar_t whose
interpretation is specific to the STREAM end. The len
member in the databuf strbuf structure must be set to
the number of bytes of data information to be sent with the
message, or to 0 if no data part is to be sent.

The flags member specifies the type of message to be
created. A normal message is created if flags is set to 0,
and a high-priority message is created if flags is set to
RS_HIPRI . For non-priority messages, I_FDINSERT will
block if the STREAM write queue is full due to internal flow
control conditions. For priority messages, I_FDINSERT does
not block on this condition. For non-priority messages,
I_FDINSERT does not block when the write queue is full
and O_NDELAYor O_NONBLOCKis set. Instead, it fails and
sets errno to EAGAIN.

I_FDINSERT also blocks, unless prevented by lack of
internal resources, waiting for the availability of message
blocks in the STREAM, regardless of priority or whether
O_NDELAYor O_NONBLOCKhas been specified. No partial
message is sent.

The ioctl() function with the I_FDINSERT command
will fail if:

EAGAIN A non-priority message is specified, the
O_NDELAYor O_NONBLOCKflag is set, and
the STREAM write queue is full due to
internal flow control conditions.

ENOSR Buffers can not be allocated for the
message that is to be created.

522 SunOS 5.8 Last modified 19 Apr 1999

Ioctl Requests streamio(7I)

EFAULT The arg argument points, or the buffer
area specified in ctlbuf or databuf is,
outside the allocated address space.

EINVAL One of the following: The fildes
member of the strfdinsert structure is
not a valid, open STREAM file descriptor;
the size of a t_uscalar_t plus offset
is greater than the len member for the
buffer specified through ctlptr ; the
offset member does not specify a
properly-aligned location in the data
buffer; or an undefined value is stored in
flags .

ENXIO Hangup received on the fildes argument
of the ioctl call or the fildes member
of the strfdinsert structure.

ERANGE The len field for the buffer specified
through databuf does not fall within the
range specified by the maximum and
minimum packet sizes of the topmost
STREAM module; or the len member for
the buffer specified through databuf is
larger than the maximum configured size
of the data part of a message; or the len
member for the buffer specified through
ctlbuf is larger than the maximum
configured size of the control part of
a message.

I_FDINSERT can also fail if an error message was received
by the STREAM head of the STREAM corresponding to the
fildes member of the strfdinsert structure. In this case,
errno will be set to the value in the message.

I_STR Constructs an internal STREAMS ioctl message from the data
pointed to by arg, and sends that message downstream.

This mechanism is provided to send user ioctl requests
to downstream modules and drivers. It allows information
to be sent with the ioctl , and will return to the user any
information sent upstream by the downstream recipient.
I_STR blocks until the system responds with either a
positive or negative acknowledgement message, or until the

Last modified 19 Apr 1999 SunOS 5.8 523

streamio(7I) Ioctl Requests

request "times out" after some period of time. If the request
times out, it fails with errno set to ETIME.

At most one I_STR can be active on a stream. Further
I_STR calls will block until the active I_STR completes at
the STREAM head. The default timeout interval for these
requests is 15 seconds. The O_NDELAYand O_NONBLOCK
(see open (2)) flags have no effect on this call.

To send requests downstream, arg must point to a strioctl
structure which contains the following members:

int ic_cmd;
int ic_timeout;
int ic_len;
char *ic_dp;

ic_cmd is the internal ioctl command intended for a
downstream module or driver and ic_timout is the
number of seconds (-1 = infinite, 0 = use default, >0 = as
specified) an I_STR request will wait for acknowledgement
before timing out. ic_len is the number of bytes in the data
argument and ic_dp is a pointer to the data argument. The
ic_len field has two uses: on input, it contains the length
of the data argument passed in, and on return from the
command, it contains the number of bytes being returned
to the user (the buffer pointed to by ic_dp should be large
enough to contain the maximum amount of data that any
module or the driver in the STREAM can return).

The STREAM head will convert the information pointed to
by the strioctl structure to an internal ioctl command
message and send it downstream. On failure, errno is set to
one of the following values:

ENOSR Unable to allocate buffers for the ioctl
message due to insufficient STREAMS
memory resources.

EFAULT Either arg points outside the allocated
address space, or the buffer area specified
by ic_dp and ic_len (separately for data
sent and data returned) is outside the
allocated address space.

EINVAL ic_len is less than 0 or ic_len is larger
than the maximum configured size of the

524 SunOS 5.8 Last modified 19 Apr 1999

Ioctl Requests streamio(7I)

data part of a message or ic_timout is
less than -1.

ENXIO Hangup received on fildes.

ETIME A downstream ioctl timed out before
acknowledgement was received.

An I_STR can also fail while waiting for an
acknowledgement if a message indicating an error or a
hangup is received at the STREAM head. In addition,
an error code can be returned in the positive or negative
acknowledgement message, in the event the ioctl command
sent downstream fails. For these cases, I_STR will fail with
errno set to the value in the message.

I_SWROPT Sets the write mode using the value of the argument arg.
Legal bit settings for arg are:

SNDZERO Send a zero-length message downstream
when a write of 0 bytes occurs.

To not send a zero-length message when a write of 0 bytes
occurs, this bit must not be set in arg.

On failure, errno may be set to the following value:

EINVAL arg is not the above legal value.

I_GWROPT Returns the current write mode setting, as described above,
in the int that is pointed to by the argument arg.

I_SENDFD Requests the STREAM associated with fildes to send a
message, containing a file pointer, to the stream head at the
other end of a STREAM pipe. The file pointer corresponds to
arg, which must be an open file descriptor.

I_SENDFD converts arg into the corresponding system file
pointer. It allocates a message block and inserts the file
pointer in the block. The user id and group id associated
with the sending process are also inserted. This message is
placed directly on the read queue (see intro (3)) of the
STREAM head at the other end of the STREAM pipe to
which it is connected. On failure, errno is set to one of
the following values:

EAGAIN The sending STREAM is unable to allocate
a message block to contain the file pointer.

Last modified 19 Apr 1999 SunOS 5.8 525

streamio(7I) Ioctl Requests

EAGAIN The read queue of the receiving STREAM
head is full and cannot accept the message
sent by I_SENDFD.

EBADF arg is not a valid, open file descriptor.

EINVAL fildes is not connected to a STREAM pipe.

ENXIO Hangup received on fildes.

I_RECVFD Retrieves the file descriptor associated with the message
sent by an I_SENDFD ioctl over a STREAM pipe. arg is a
pointer to a data buffer large enough to hold an strrecvfd
data structure containing the following members:

int fd;
uid_t uid;
gif_t gif;

fd is an integer file descriptor. uid and gid are the user id
and group id, respectively, of the sending stream.

If O_NDELAYand O_NONBLOCKare clear (see open (2)),
I_RECVFD will block until a message is present at the
STREAM head. If O_NDELAYor O_NONBLOCKis set,
I_RECVFD will fail with errno set to EAGAIN if no message
is present at the STREAM head.

If the message at the STREAM head is a message sent by an
I_SENDFD, a new user file descriptor is allocated for the file
pointer contained in the message. The new file descriptor
is placed in the fd field of the strrecvfd structure. The
structure is copied into the user data buffer pointed to by
arg. On failure, errno is set to one of the following values:

EAGAIN A message is not present at the STREAM
head read queue, and the O_NDELAYor
O_NONBLOCKflag is set.

EBADMSG The message at the STREAM head read
queue is not a message containing a
passed file descriptor.

EFAULT arg points outside the allocated address
space.

EMFILE NOFILES file descriptors are currently
open.

526 SunOS 5.8 Last modified 19 Apr 1999

Ioctl Requests streamio(7I)

ENXIO Hangup received on fildes.

EOVERFLOW uid or gid is too large to be stored in the
structure pointed to by arg.

I_LIST Allows the user to list all the module names on the stream,
up to and including the topmost driver name. If arg is NULL,
the return value is the number of modules, including the
driver, that are on the STREAM pointed to by fildes. This
allows the user to allocate enough space for the module
names. If arg is non-null, it should point to an str_list
structure that has the following members:

int sl_nmods;
struct str_mlist *sl_modlist;

The str_mlist structure has the following member:

char l_name[FMNAMESZ+1];

The sl_nmods member indicates the number of entries
the process has allocated in the array. Upon return, the
sl_modlist member of the str_list structure contains
the list of module names, and the number of entries that
have been filled into the sl_modlist array is found in
the sl_nmods member (the number includes the number
of modules including the driver). The return value from
ioctl() is 0. The entries are filled in starting at the top of
the STREAM and continuing downstream until either the
end of the STREAM is reached, or the number of requested
modules (sl_nmods) is satisfied. On failure, errno may
be set to one of the following values:

EINVAL The sl_nmods member is less than 1.

EAGAIN Unable to allocate buffers

I_ATMARK Allows the user to see if the current message on the stream
head read queue is “marked” by some module downstream.
arg determines how the checking is done when there may
be multiple marked messages on the STREAM head read
queue. It may take the following values:

ANYMARK Check if the message is marked.

Last modified 19 Apr 1999 SunOS 5.8 527

streamio(7I) Ioctl Requests

LASTMARK Check if the message is the last one
marked on the queue.

The return value is 1 if the mark condition is satisfied and 0
otherwise. On failure, errno is set to the following value:

EINVAL Invalid arg value.

I_CKBAND Check if the message of a given priority band exists on the
stream head read queue. This returns 1 if a message of a
given priority exists, 0 if not, or −1 on error. arg should
be an integer containing the value of the priority band in
question. On failure, errno is set to the following value:

EINVAL Invalid arg value.

I_GETBAND Returns the priority band of the first message on the
STREAM head read queue in the integer referenced by arg.
On failure, errno is set to the following value:

ENODATA No message on the STREAM head read
queue.

I_CANPUT Check if a certain band is writable. arg is set to the priority
band in question. The return value is 0 if the priority band
arg is flow controlled, 1 if the band is writable, or −1 on
error. On failure, errno is set to the following value:

EINVAL Invalid arg value.

I_SETCLTIME Allows the user to set the time the STREAM head will delay
when a stream is closing and there are data on the write
queues. Before closing each module and driver, the STREAM
head will delay for the specified amount of time to allow the
data to drain. Note, however, that the module or driver may
itself delay in its close routine; this delay is independent of
the STREAM head’s delay and is not settable. If, after the
delay, data are still present, data will be flushed. arg is the
number of milliseconds to delay, rounded up to the nearest
legal value on the system. The default is fifteen seconds. On
failure, errno is set to the following value:

EINVAL Invalid arg value.

I_GETCLTIME Returns the close time delay in the integer pointed by arg.

I_SERROPT Sets the error mode using the value of the argument arg.

528 SunOS 5.8 Last modified 19 Apr 1999

Ioctl Requests streamio(7I)

Normally STREAM head errors are persistent; once they are
set due to an M_ERRORor M_HANGUP, the error condition
will remain until the STREAM is closed. This option can be
used to set the STREAM head into non-persistent error
mode i.e. once the error has been returned in response to
a read (2), getmsg (2), ioctl (2), write (2), or putmsg (2)
call the error condition will be cleared. The error mode can
be controlled independently for read and write side errors.
Legal arg values are either none or one of:

RERRNORM Persistent read errors, the
default.

RERRNONPERSIST Non-persistent read errors.

OR’ed with either none or one of:

WERRNORM Persistent write errors, the
default.

WERRNONPERSIST Non-persistent write errors.

When no value is specified e.g.
for the read side error behavior
then the behavior for that side
will be left unchanged.

On failure, errno is set to the following value:

EINVAL arg is not one of the above legal values.

I_GERROPT Returns the current error mode setting in an int pointed to
by the argument arg. Error modes are described above for
I_SERROPT. On failure,errno is set to the following value:

EFAULT arg points outside the allocated address
space.

The following four commands are used for connecting and disconnecting
multiplexed STREAMS configurations.
I_LINK Connects two streams, where fildes is the file descriptor of

the stream connected to the multiplexing driver, and arg is
the file descriptor of the STREAM connected to another
driver. The STREAM designated by arg gets connected below
the multiplexing driver. I_LINK requires the multiplexing

Last modified 19 Apr 1999 SunOS 5.8 529

streamio(7I) Ioctl Requests

driver to send an acknowledgement message to the STREAM
head regarding the linking operation. This call returns a
multiplexor ID number (an identifier used to disconnect the
multiplexor, see I_UNLINK) on success, and -1 on failure. On
failure, errno is set to one of the following values:

ENXIO Hangup received on fildes.

ETIME Time out before acknowledgement
message was received at STREAM head.

EAGAIN Temporarily unable to allocate storage to
perform the I_LINK.

ENOSR Unable to allocate storage to perform the
I_LINK due to insufficient STREAMS
memory resources.

EBADF arg is not a valid, open file descriptor.

EINVAL fildes STREAM does not support
multiplexing.

EINVAL arg is not a stream, or is already linked
under a multiplexor.

EINVAL The specified link operation would cause
a “cycle” in the resulting configuration;
that is, a driver would be linked into
the multiplexing configuration in more
than one place.

EINVAL fildes is the file descriptor of a pipe or
FIFO.

An I_LINK can also fail while waiting for the multiplexing
driver to acknowledge the link request, if a message
indicating an error or a hangup is received at the STREAM
head of fildes. In addition, an error code can be returned in
the positive or negative acknowledgement message. For
these cases, I_LINK will fail with errno set to the value in
the message.

I_UNLINK Disconnects the two streams specified by fildes and arg.
fildes is the file descriptor of the STREAM connected to
the multiplexing driver. arg is the multiplexor ID number
that was returned by the I_LINK . If arg is -1, then all

530 SunOS 5.8 Last modified 19 Apr 1999

Ioctl Requests streamio(7I)

streams that were linked to fildes are disconnected. As in
I_LINK , this command requires the multiplexing driver to
acknowledge the unlink. On failure, errno is set to one of
the following values:

ENXIO Hangup received on fildes.

ETIME Time out before acknowledgement
message was received at STREAM head.

ENOSR Unable to allocate storage to perform the
I_UNLINK due to insufficient STREAMS
memory resources.

EINVAL arg is an invalid multiplexor ID number
or fildes is not the STREAM on which the
I_LINK that returned arg was performed.

EINVAL fildes is the file descriptor of a pipe or
FIFO.

An I_UNLINK can also fail while waiting for the
multiplexing driver to acknowledge the link request, if a
message indicating an error or a hangup is received at the
STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement
message. For these cases, I_UNLINK will fail with errno set
to the value in the message.

I_PLINK Connects two streams, where fildes is the file descriptor
of the stream connected to the multiplexing driver, and
arg is the file descriptor of the STREAM connected to
another driver. The STREAM designated by arg gets
connected via a persistent link below the multiplexing
driver. I_PLINK requires the multiplexing driver to send an
acknowledgement message to the STREAM head regarding
the linking operation. This call creates a persistent link that
continues to exist even if the file descriptor fildes associated
with the upper STREAM to the multiplexing driver is closed.
This call returns a multiplexor ID number (an identifier that
may be used to disconnect the multiplexor, see I_PUNLINK)
on success, and -1 on failure. On failure, errno is set to
one of the following values:

ENXIO Hangup received on fildes.

Last modified 19 Apr 1999 SunOS 5.8 531

streamio(7I) Ioctl Requests

ETIME Time out before acknowledgement
message was received at the STREAM
head.

EAGAIN Unable to allocate STREAMS storage to
perform the I_PLINK.

EBADF arg is not a valid, open file descriptor.

EINVAL fildes does not support multiplexing.

EINVAL arg is not a STREAM or is already linked
under a multiplexor.

EINVAL The specified link operation would cause
a “cycle” in the resulting configuration;
that is, if a driver would be linked into
the multiplexing configuration in more
than one place.

EINVAL fildes is the file descriptor of a pipe or
FIFO.

An I_PLINK can also fail while waiting for the multiplexing
driver to acknowledge the link request, if a message
indicating an error on a hangup is received at the STREAM
head of fildes. In addition, an error code can be returned in
the positive or negative acknowledgement message. For
these cases, I_PLINK will fail with errno set to the value in
the message.

I_PUNLINK Disconnects the two streams specified by fildes and arg
that are connected with a persistent link. fildes is the file
descriptor of the STREAM connected to the multiplexing
driver. arg is the multiplexor ID number that was returned
by I_PLINK when a STREAM was linked below the
multiplexing driver. If arg is MUXID_ALL then all streams
that are persistent links to fildes are disconnected. As in
I_PLINK, this command requires the multiplexing driver to
acknowledge the unlink. On failure, errno is set to one of
the following values:

ENXIO Hangup received on fildes.

ETIME Time out before acknowledgement
message was received at the STREAM
head.

532 SunOS 5.8 Last modified 19 Apr 1999

Ioctl Requests streamio(7I)

EAGAIN Unable to allocate buffers for the
acknowledgement message.

EINVAL Invalid multiplexor ID number.

EINVAL fildes is the file descriptor of a pipe or
FIFO.

An I_PUNLINK can also fail while waiting for the
multiplexing driver to acknowledge the link request if a
message indicating an error or a hangup is received at the
STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement
message. For these cases, I_PUNLINK will fail with errno
set to the value in the message.

RETURN VALUES Unless specified otherwise above, the return value from ioctl() is 0 upon
success and −1 upon failure, with errno set as indicated.

SEE ALSO intro (3), close (2), fcntl (2), getmsg (2), ioctl (2), open (2), poll (2),
putmsg (2), read (2), write (2), signal (3C), signal (3HEAD), pipemod (7M)

STREAMS Programming Guide

Last modified 19 Apr 1999 SunOS 5.8 533

sxp(7D) Devices

NAME sxp – Rockwell 2200 SNAP Streams Driver

SYNOPSIS /dev/sxp

DESCRIPTION The sxp (also known as the SNAP) driver is a loadable, clonable, STREAMS
driver that supports the connectionless Data Link Provider Interface (
dlpi (7P)) over one or more FDDI adapters (Rockwell 2200 Series). The cloning
character-special devices (/dev/sxp , /dev/snap , /dev/llc , /dev/mac) are
used to access the 2200 Series adapter(s). The /dev/sxp device is equivalent
to /dev/snap . /dev/sxp is used so that the name SXP will show up in
ifconfig . All messages transmitted on a SNAP device have the 802.2 LLC and
Sub-Network Access Protocol (SNAP) and the FDDI MAC headers (RFC -1188)
prepended. For an LLC device, the LLC and MAC headers are prepended, and
for a MAC device only the MAC header is prepended. Received FDDI frames
are delivered to the appropriate open device. In response to a DL_INFO_REQ,
the SNAP driver returns the following values in the DL_INFO_ACKprimitive:

� The maximum SDU is 4500 .

� The minimum SDU is 0.

� The DLSAP address length is 8 (always true in the Solaris environment).

� The address offset is 0 (prior to being attached).

� The MAC type is DL_FDDI.

� The sap length value is −2, which indicates that within the DLSAP address,
the physical address component is followed immediately by a 2-byte service
access point (SAP) component.

� The service mode is DL_CLDLS.

� The quality of service (QOS) fields are 0, because optional QOS is not
supported.

� The provider style is DL_STYLE2.

� The broadcast address value is the IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

Because the SNAP driver is a "style 2" Data Link Service provider, an explicit
DL_ATTACH_REQmessage from the user is required to associate the opened
stream with a particular network device (that is, ppa). The dl_ppa field within
the DL_ATTACH_REQindicates the instance (unit) number of the network device.
If no currently attached ppa has the same instance number and there are no
unattached ppas available, the driver returns an error (DL_ERROR_ACK). Once in
the DL_ATTACHEDstate, a DL_BIND_REQis required to associate a particular
SAP with the stream.

Once in the DL_ATTACHEDstate, a DL_BIND_REQis required to associate a
particular Service Access Point (SAP) with the stream. For the sap field

534 SunOS 5.8 Last modified 1 Jan 1997

Devices sxp(7D)

within the DL_BIND_REQ, valid values are in the range [0-0xFFFF]. Values
for 0-0xFF will give LLC 802.2 service without SNAP encapsulation, unless a
later DL_HIERARCHIAL_BIND DL_SUBS_BIND_REQis made. Values from
0x100-0xFFFF will give LLC 802.2 with SNAP encapsulation without the
need for a DL_SUBS_BIND_REQ.Note that DL_HIERARCHIAL_BIND class
DL_SUBS_BIND_REQs are only supported on streams bound to the 0xAA SAP.
After successful completion of the DL_BIND_REQ, the ppa is initialized and the
stream is ready for use. In addition to the DL_HIERARCHIAL_BIND class of
DL_SUBS_BUD_REQ, the DL_PEER_BINDclass can be used to bind multiple
SAP s with a stream.

Frames may be transmitted on the FDDI ring by sending DL_UNITDATA_REQ
messages to the SNAP driver. The DLSAP address contained within the
DL_UNITDATA_REQ must consist of both the SAP and physical (FDDI)
components. For a SNAP device, the SAP portion of the DLSAP address is
placed in the EtherType field of the 802.2 SNAP header. The DSAP and SSAP
fields of the 802.2 LLC header are both set to the value 170, indicating a SNAP
message and a MAC frame_type of LLC. For an LLC device, the SAP portion
of the DLSAP address is placed in the DSAP field of the 802.2 LLC header. The
SSAP field is set to the SAP bound to the stream. The MAC frame_type is LLC.
For a MAC device, the SAP portion of the DLSAP address is placed in the
frame_control field of the MAC header. Received FDDI frames are routed up
the correct stream(s) as DL_UNITDATA_IND messages (containing the DLSAP
address). The stream(s) are found by:

1. Comparing the EtherType field of the SNAP header with the bound SAP
of all of the SNAP streams

2. Comparing the DSAP field of the LLC header with the bound SAP of all
the LLC streams

3. Comparing the frame_control field of the MAC header with the bound
SAP of all the MAC streams.

If necessary, messages are duplicated. In addition to the mandatory
connectionless DLPI message set, the driver also supports the
following primitives: DL_ENABMULTI_REQ, DL_DISABMULTI_REQ,
DL_PROMISCON_REQ, DL_PROMISCOFF_REQ, DL_PHYS_ADDR_REQ.

The DL_ENABMULTI_REQand DL_DISABMULTI_REQprimitives enable
or disable reception of individual multicast group addresses. Using these
primitives, a set of multicast group addresses may be iteratively created and
modified on a per-stream basis. These primitives are accepted by the driver in
any state following a successful DL_ATTACH_REQ.The DL_PROMISCON_REQ
and DL_PROMISCOFF_REQprimitives (with the DL_PROMISC_PHYSflag set
in the dl_level field) enable or disable reception of all (promiscuous mode)

Last modified 1 Jan 1997 SunOS 5.8 535

sxp(7D) Devices

frames on the media, including frames generated by the local host. When
used with the DL_PROMISC_SAPflag (set), this enables or disables reception
of all sap values. When used with the DL_PROMISC_MULTIflag (set), this
enables or disables reception of all multicast group addresses. The affect of each
primitive is always on a per-stream basis, and is independent of the other
sap and physical level configurations on this stream (or other streams). In the
DL_PHYS_ADDR_ACKmessage, the DL_PHYS_ADDR_REQprimitive returns the
6-octet FDDI address (in canonical form) currently associated with the stream.
This primitive is valid only in states following a successful DL_ATTACH_REQ.
The driver also supports the following ioctls (I/O controls): DLIOCRAW,
SL_RAW, SL_DATA_ENABLE, SL_DATA_DISABLE,and DRV_CONFIG.As
defined by Solaris, the DLIOCRAWioctl puts the stream into raw mode, which
causes the driver to send the full MAC -level packet up the stream in an M_DATA
message, instead of transforming it to the DL_UNITDATA_IND form. On this
stream, the driver will also accept formatted M_DATAmessages for transmission.
To disable raw mode, the stream must be closed. The DLIOCRAWioctl requires
no arguments. As defined by Rockwell, the SL_RAWioctl puts the stream into
raw mode, similar to the DLIOCRAWioctl except that the frame-type field of the
MAC header is considered to be a long word instead of a byte, preserving
alignment. The SL_RAWioctl requires no arguments. As defined by Rockwell,
the SL_DATA_ENABLEand SL_DATA_DISABLEioctls enable or disable the
transmission of data on the stream. By default, transmission is enabled. The
SL_DATA_ENABLEand SL_DATA_DISABLEioctls require no arguments.

FILES /dev/sxp SXP special character device

kernel/drv/sys_core SXP loadable module

kernel/drv/sxp.conf SXP configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5), dlpi (7P), rns_smt (7D)

536 SunOS 5.8 Last modified 1 Jan 1997

Devices symhisl(7D)

NAME symhisl – symhisl SCSI Host Bus Adapter Driver

SYNOPSIS scsi@unit-address

DESCRIPTION The symhisl Host Bus Adapter driver is a SCSA compliant nexus driver that
supports the LSI Logic (formerly Symbios, Inc) SYM53C896 SCSI chipset.

It supports the standard functions provided by the SCSA interface such as
tagged queuing and untagged queuing, 16 bit Wide transfer, Fast/Ultra/Ultra2
synchronous transfer, and auto request sense, but it does not support linked
commands.

The symhisl hardware (SYM53C896) supports Wide, Fast, Ultra, and Ultra2
SCSI synchronous speeds. The maximum SCSI bandwidth that SYM53C896
support is 80 MB/sec.

Driver Configuration Configure the symhisl driver by defining properties in symhisl.conf .
These properties override the global SCSI settings. symhisl supports these
properties that the user can modify:

scsi-options
target< n>-scsi-options
scsi-reset-delay
scsi-watchdog-tick
scsi-initiator-id
symFlags

scsi-options symhisl supports these scsi-options :

SCSI_OPTIONS_DR SCSI_OPTIONS_SYNC SCSI_OPTIONS_FAST
SCSI_OPTIONS_FAST20 SCSI_OPTIONS_PARITY SCSI_OPTIONS_TAG
SCSI_OPTIONS_WIDE

SCSI_OPTIONS_PARITY is supported for the scsi-options setting only and
disables host adapter parity checking.
target< n>-scsi-options Overrides the scsi-options property value for

target< n>. <n> can vary from hex 0 to f .

scsi-reset-delay SCSI bus or device reset recovery time, in
milliseconds.

scsi-watchdog-tick After periodic interval (seconds), the symhisl
driver searches through all current and
disconnected commands for timeouts.

scsi-initiator-id The bus ID of the HBA.

symFlags Driver specific bit-mask that can be used to
enable or disable driver properties.

Last modified 6 Feb 1999 SunOS 5.8 537

symhisl(7D) Devices

bit 0 When set, the driver will not reset the SCSI bus at
initialization. Certain CD-ROM, tape, and other devices
will not work properly when this bit is set. The default
state for this bit is cleared.

bit 1 When set, the driver will not export the DMI ioctl interface.
Only set this bit if you want to disable the ioctl interface for
security reasons. The default state for this bit is cleared.

bit 2 When set, the driver will disable 64-bit addressing capability.
When clear, the driver will enable 64-bit addressing
capability. The default state for this bit is cleared.

Refer to scsi_hba_attach (9F) for more information on driver configuration.

EXAMPLES EXAMPLE 1 Edit the file /kernel/drv/symhisl.conf and add the following line:

scsi-options=0x78;

EXAMPLE 2 This disables tagged queuing, Fast/Ultra/Ultra2 SCSI and wide mode
for all symhisl instances.

The following example disables an option for one specific symhisl (refer to
driver.conf (4) and pci (4) for more details):

name="symhisl" parent="/pci@1f,4000"
unit-address="3"
target1-scsi-options=0x58
scsi-options=0x178 scsi-initiator-id=6;

EXAMPLE 3 Note that the initiator ID can only be changed for symhisl adapters that
don’t use the LSI Logic Boot ROM Configuration Utility. For adapters that can use the
LSI Logic Boot ROM Configuration Utility, scsi-initiator-id will have no effect.

The example above sets scsi-options for target 1 to 0x58 and all other
targets on this SCSI bus to 0x178 .

The physical pathname of the parent can be determined using the /devices
tree or following the link of the logical device name:

ls –l /dev/rdsk/c0t0d0s0
lrwxrwxrwx 1 root root 45 May 16 10:08 /dev/rdsk/c0t0d0s0 ->

. . / . . /devices/pci@1f,4000/scsi@3/sd@0,0:a,raw

EXAMPLE 4 In this case, like the example above, the parent is /pci@1f,4000 and
the unit-address is the number bound to the scsi@3 node.

scsi-options specified per target ID have the highest precedence, followed
by scsi-options per device type. Global scsi-options (for all symhisl
instances) per bus have the lowest precedence.

538 SunOS 5.8 Last modified 6 Feb 1999

Devices symhisl(7D)

The system needs to be rebooted before the specified scsi-options take effect.

Driver Capabilities The target driver needs to set capabilities in the symhisl driver in order to
enable some driver features. The target driver can query and modify these
capabilities: disconnect , synchronous , wide-xfer , tagged-qing , and
auto-rqsense . All other capabilities can only be queried.

By default, tagged-qing capabilities are disabled, while disconnect ,
synchronous , wide-xfer , auto-rqsense , and untagged-qing are
enabled. These capabilities can only have binary values (0 or 1).

The target driver needs to enable tagged-qing explicitly. The untagged-qing
capability is always enabled and its value cannot be modified.

Whenever there is a conflict between the value of scsi-options and a
capability, the value set in scsi-options prevails. Only whom != 0 is
supported in the scsi_ifsetcap (9F) call.

Refer to scsi_ifsetcap (9F) and scsi_ifgetcap (9F) for details.

FILES /kernel/drv/symhisl ELF Kernel Module

/kernel/drv/symhisl.conf Required configuration file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems with

LSI Logic (formerly Symbios Inc)
SYM53C896

SCSI I/O processors.

SEE ALSO prtconf (1M), driver.conf (4), pci (4), attributes (5), scsi_abort (9F),
scsi_hba_attach (9F), scsi_ifgetcap (9F), scsi_ifsetcap (9F),
scsi_reset (9F), scsi_sync_pkt (9F), scsi_transport (9F),
scsi_device (9S), scsi_extended_sense (9S), scsi_inquiry (9S),
scsi_pkt (9S)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2),

LSI Logic Corporation, SYM53C896 PCI-SCSI I/O Processor

NOTES The symhisl hardware (SYM53C896) supports Wide, Fast, Ultra, and Ultra2
SCSI synchronous speeds. The maximum SCSI bandwidth is 80 MB/sec.

Last modified 6 Feb 1999 SunOS 5.8 539

sysmsg(7D) Devices

NAME sysmsg – system message routing to console devices

SYNOPSIS /dev/sysmsg

DESCRIPTION The file /dev/sysmsg routes output to a variable set of console devices. Writes
to /dev/sysmsg are always directed to the system console /dev/console ,
and are in addition directed to a set of auxiliary console devices managed by
consadm (1M).

Only root has permission to write to this device.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

Interface Stability Stable

SEE ALSO consadm (1M), syslogd (1M) , attributes (5), console (7D)

540 SunOS 5.8 Last modified 13 Oct 1998

Devices usoc(7D)

NAME t1394dcam – IEEE 1394 bus-based digital camera

DESCRIPTION t1394dcam is a digital camera which conforms to the 1394 Trade Association
Camera Working Group’s 1394-based Digital Camera Specification V1.04. The
video modes, framerates, and features supported by the camera are determined
by the camera’s manufacturer; the camera facilitates the ability to query which of
these are supported.

The driver supports camera initialization, attribute acquisition and
establishment, and the ability to enable and disable the streaming of digital video
into a kernel resident memory buffer via the following ioctl (2) commands:

� T1394_DCAM_CMD_CAM_RESET

� T1394_DCAM_CMD_PARAM_GET

� T1394_DCAM_CMD_PARAM_SET

� T1394_DCAM_CMD_FRAME_RCV_START

� T1394_DCAM_CMD_FRAME_RCV_STOP

� 1394_DCAM_CMD_RING_BUFF_FLUSH

� T1394_DCAM_CMD_FRAME_SEQ_NUM_COUNT_RESET

FILES /dev/1394/t1394dcam0
Device feature and video control file

/dev/1394/t1394dcamctl0
Device feature control file

SEE ALSO 1394-based Digital Camera Specification V1.04

Last modified 17 Sep 1999 SunOS 5.8 541

tcp(7P) Protocols

NAME tcp, TCP – Internet Transmission Control Protocol

SYNOPSIS #include <sys/socket.h>

#include <netinet/in.h>

s = socket(AF_INET, SOCK_STREAM, 0);

s = socket(AF_INET6, SOCK_STREAM, 0);

t = t_open("/dev/tcp", O_RDWR);

t = t_open("/dev/tcp6", O_RDWR);

DESCRIPTION TCP is the virtual circuit protocol of the Internet protocol family. It provides
reliable, flow-controlled, in order, two-way transmission of data. It is a
byte-stream protocol layered above the Internet Protocol ("IP "), or the Internet
Protocol Version 6 ("IPv6 "), the Internet protocol family’s internetwork
datagram delivery protocol.

Programs can access TCP using the socket interface as a SOCK_STREAMsocket
type, or using the Transport Level Interface ("TLI ") where it supports the
connection-oriented (T_COTS_ORD) service type.

TCP uses IP ’s host-level addressing and adds its own per-host collection of "port
addresses." The endpoints of a TCP connection are identified by the combination
of an IP or IPv6 address and a TCP port number. Although other protocols, such
as the User Datagram Protocol (UDP), may use the same host and port address
format, the port space of these protocols is distinct. See inet (7P) and inet6 (7p)
for details on the common aspects of addressing in the Internet protocol family.

Sockets utilizing TCP are either "active" or "passive". Active sockets initiate
connections to passive sockets. Both types of sockets must have their local IP or
IPv6 address and TCP port number bound with the bind (3SOCKET) system
call after the socket is created. By default, TCP sockets are active. A passive
socket is created by calling the listen (3SOCKET) system call after binding the
socket with bind() . This establishes a queueing parameter for the passive
socket. After this, connections to the passive socket can be received with the
accept (3SOCKET) system call. Active sockets use the connect (3SOCKET) call
after binding to initiate connections.

By using the special value INADDR_ANYwith IP , or the unspecified address (all
zeroes) with IPv6, the local IP address can be left unspecified in the bind()
call by either active or passive TCP sockets. This feature is usually used if the
local address is either unknown or irrelevant. If left unspecified, the local IP or
IPv6 address will be bound at connection time to the address of the network
interface used to service the connection.

Once a connection has been established, data can be exchanged using the
read (2) and write (2) system calls.

542 SunOS 5.8 Last modified 4 Nov 1999

Protocols tcp(7P)

Under most circumstances, TCP sends data when it is presented. When
outstanding data has not yet been acknowledged, TCP gathers small amounts of
output to be sent in a single packet once an acknowledgement has been received.
For a small number of clients, such as window systems that send a stream of
mouse events which receive no replies, this packetization may cause significant
delays. To circumvent this problem, TCP provides a socket-level boolean option,
TCP_NODELAY. TCP_NODELAYis defined in <netinet/tcp.h> , and is set
with setsockopt (3SOCKET) and tested with getsockopt (3SOCKET) .
The option level for the setsockopt() call is the protocol number for TCP,
available from getprotobyname (3SOCKET) .

Another socket level option, SO_RCVBUF,can be used to control the window
that TCP advertises to the peer. IP level options may also be used with TCP. See
ip (7P) and ip6 (7p) .

TCP provides an urgent data mechanism, which may be invoked using the
out-of-band provisions of send (3SOCKET) . The caller may mark one byte
as "urgent" with the MSG_OOBflag to send (3SOCKET) . This sets an "urgent
pointer" pointing to this byte in the TCP stream. The receiver on the other side of
the stream is notified of the urgent data by a SIGURGsignal. The SIOCATMARK
ioctl (2) request returns a value indicating whether the stream is at the urgent
mark. Because the system never returns data across the urgent mark in a single
read (2) call, it is possible to advance to the urgent data in a simple loop which
reads data, testing the socket with the SIOCATMARK ioctl() request, until
it reaches the mark.

Incoming connection requests that include an IP source route option are noted,
and the reverse source route is used in responding.

A checksum over all data helps TCP implement reliability. Using a
window-based flow control mechanism that makes use of positive
acknowledgements, sequence numbers, and a retransmission strategy, TCP can
usually recover when datagrams are damaged, delayed, duplicated or delivered
out of order by the underlying communication medium.

If the local TCP receives no acknowledgements from its peer for a period of time,
as would be the case if the remote machine crashed, the connection is closed
and an error is returned to the user. If the remote machine reboots or otherwise
loses state information about a TCP connection, the connection is aborted and an
error is returned to the user.

SunOS supports TCP Extensions for High Performance (RFC 1323) which
includes the window scale and time stamp options, and Protection Against
Wrap Around Sequence Numbers (PAWS). SunOS also supports Selective
Acknowledgment (SACK) capabilities (RFC 2018).

Turn on the window scale option in one of the following ways:

Last modified 4 Nov 1999 SunOS 5.8 543

tcp(7P) Protocols

� An application can set SO_SNDBUFor SO_RCVBUFsize in the
setsockopt() option to be larger than 64K. This must be done before the
program calls listen() or connect() , because the window scale option
is negotiated when the connection is established. Once the connection has
been made, it is too late to increase the send or receive window beyond the
default TCP limit of 64K.

� For all applications, use ndd (1M) to modify the configuration parameter
tcp_wscale_always . If tcp_wscale_always is set to 1 , the window
scale option will always be set when connecting to a remote system. If
tcp_wscale_always is 0, the window scale option will be set only if the
user has requested a send or receive window larger than 64K. The default
value of tcp_wscale_always is 0 .

� Regardless of the value of tcp_wscale_always , the window scale option
will always be included in a connect acknowledgement if the connecting
system has used the option.

Turn on SACKcapabilities in the following way:

� Use ndd to modify the configuration parameter tcp_sack_permitted .
If tcp_sack_permitted is set to 0 , TCP will not accept SACKor send
out SACKinformation. If tcp_sack_permitted is set to 1 , TCP will
not initiate a connection with SACKpermitted option in the SYNsegment,
but will respond with SACKpermitted option in the SYN|ACK segment
if an incoming connection request has the SACKpermitted option. This
means that TCP will only accept SACKinformation if the other side of the
connection also accepts SACKinformation. If tcp_sack_permitted is set
to 2 , it will both initiate and accept connections with SACKinformation.
The default for tcp_sack_permitted is 1 .

Turn on the time stamp option in the following way:

� Use ndd to modify the configuration parameter tcp_tstamp_always .
If tcp_tstamp_always is 1 , the time stamp option will always be set
when connecting to a remote machine. If tcp_tstamp_always is 0 , the
timestamp option will not be set when connecting to a remote system. The
default for tcp_tstamp_always is 0 .

� Regardless of the value of tcp_tstamp_always , the time stamp option
will always be included in a connect acknowledgement (and all succeeding
packets) if the connecting system has used the time stamp option.

Use the following procedure to turn on the time stamp option only when the
window scale option is in effect:

544 SunOS 5.8 Last modified 4 Nov 1999

Protocols tcp(7P)

� Use ndd to modify the configuration parameter tcp_tstamp_if_wscale .
Setting tcp_tstamp_if_wscale to 1 will cause the time stamp option
to be set when connecting to a remote system, if the window scale option
has been set. If tcp_tstamp_if_wscale is 0 , the time stamp option
will not be set when connecting to a remote system. The default for
tcp_tstamp_if_wscale is 0 .

Protection Against Wrap Around Sequence Numbers (PAWS) is always used
when the time stamp option is set.

SunOS also supports multiple methods of generating initial sequence numbers.
One of these methods is the improved technique suggested in RFC 1948. We
HIGHLY recommended that you set sequence number generation parameters to
be as close to boot time as possible. This prevents sequence number problems
on connections that use the same connection-ID as ones that used a different
sequence number generation. The /etc/init.d/inetinit script contains
commands which configure initial sequence number generation. The script
reads the value contained in the configuration file /etc/default/inetinit
to determine which method to use.

The /etc/default/inetinit file is an unstable interface, and may change in
future releases.

TCP may be configured to report some information on connections that
terminate by means of an RST packet. By default, no logging is done. If the
ndd (1M) parameter tcp_trace is set to 1, then trace data is collected for all new
connections established after that time.

The trace data consists of the TCP headers and IP source and destination
addresses of the last few packets sent in each direction before RST occurred.
Those packets are logged in a series of strlog (9F) calls. This trace facility has
a very low overhead, and so is superior to such utilities as snoop (1M) for
non-intrusive debugging for connections terminating by means of an RST .

SEE ALSO ndd (1M) , ioctl (2) , read (2) , write (2) , accept (3SOCKET) ,
bind (3SOCKET) , connect (3SOCKET) , getprotobyname (3SOCKET) ,
getsockopt (3SOCKET) , listen (3SOCKET) , send (3SOCKET) , inet (7P) ,
inet6 (7P) , ip (7P) , ip6 (7P)

Mathias, M. and Hahdavi, J. Pittsburgh Supercomputing Center; Ford, S.
Lawrence Berkeley National Laboratory; Romanow, A. Sun Microsystems, Inc.
RFC 2018, TCP Selective Acknowledgement Options , October 1996.

Bellovin, S., RFC 1948, Defending Against Sequence Number Attacks , May 1996.

Jacobson, V., Braden, R., and Borman, D., RFC 1323, TCP Extensions for High
Performance , May 1992.

Last modified 4 Nov 1999 SunOS 5.8 545

tcp(7P) Protocols

Postel, Jon, RFC 793, Transmission Control Protocol - DARPA Internet Program
Protocol Specification , Network Information Center, SRI International, Menlo
Park, CA., September 1981.

DIAGNOSTICS A socket operation may fail if:
EISCONN A connect() operation was attempted on a

socket on which a connect() operation had
already been performed.

ETIMEDOUT A connection was dropped due to excessive
retransmissions.

ECONNRESET The remote peer forced the connection to be
closed (usually because the remote machine
has lost state information about the connection
due to a crash).

ECONNREFUSED The remote peer actively refused connection
establishment (usually because no process is
listening to the port).

EADDRINUSE A bind() operation was attempted on a socket
with a network address/port pair that has
already been bound to another socket.

EADDRNOTAVAIL A bind() operation was attempted on a socket
with a network address for which no network
interface exists.

EACCES A bind() operation was attempted with a
"reserved" port number and the effective user ID
of the process was not the privileged user.

ENOBUFS The system ran out of memory for internal data
structures.

546 SunOS 5.8 Last modified 4 Nov 1999

Devices tcx(7D)

NAME tcx – 24-bit SBus color memory frame buffer

SYNOPSIS SUNW,tcx@sbus-slot,offset:tcx X

DESCRIPTION tcx is a 8/24-bit color frame buffer and graphics accelerator, with 8-bit colormap
and overlay/enable planes. It provides the standard frame buffer interface
defined in fbio (7I). sbus-slot is the Sbus slot number. (See sbus (4) for more
information.) offset is the device offset. X is the kernel-assigned device number.

APPLICATION
PROGRAMMING

INTERFACE

tcx has two control planes which define how the underlying pixel is displayed.
The display modes are 8-bit (8 bits taken from low-order 8 bits of pixel) through a
colormap; 24-bit through a gamma-correction table; 24-bit through the colormap;
or 24-bit direct. The colormap is shared by both 24-bit and 8-bit modes.

The tcx has registers and memory that may be mapped with mmap(2).

There is an 8-bit only version of tcx which operates the same as the 24-bit
version, except that the 24-bit-related mappings can not be made.

IOCTLS tcx accepts the following ioctl (2) calls, defined in <sys/fbio.h> and
<sys/visual_io.h> , and implemented as described in fbio (7I).

FBIOGATTR FBIOGCURSOR

FBIOGTYPE FBIOSCURPOS

FBIOPUTCMAP FBIOGCURPOS

FBIOGETCMAP FBIOGCURMAX

FBIOSATTR FBIOGXINFO

FBIOSVIDEO FBIOMONINFO

FBIOGVIDEO FBIOVRTOFFSET

FBIOVERTICAL VIS_GETIDENTIFIER

FBIOSCURSOR

VIS_GETIDENTIFIER returns "SUNW,tcx".

Emulation mode (FBIOGATTR, FBIOSATTR) may be either
FBTYPE_SUN3COLORor FBTYPE_MEMCOLOR. Set emulation mode to 21
(FBTYPE_LASTPLUSONE) to turn emulation off. Changes to emulation mode
(via FBIOSATTR) take place immediately. Emulation may be turned off
manually by setting emu_type field of the fbsattr structure to 21 . Emulation
mode is reset to default on reboot.

FBIOPUTCMAPreturns immediately, although the actual colormap update
may be delayed until the next vertical retrace. If vertical retrace is currently in
progress, the new colormap takes effect immediately.

Last modified 1 Jan 1997 SunOS 5.8 547

tcx(7D) Devices

FBIOGETCMAPreturns immediately with the currently-loaded colormap,
unless a colormap write is pending (see above), in which case it waits until the
colormap is updated before returning. This may be used to synchronize software
with colormap updates.

The size and linebytes values returned by FBIOGATTR, FBIOGTYPE and
FBIOGXINFOare the sizes of the 8-bit framebuffer. The proper way to compute
the size of a framebuffer mapping is:

size=linebytes*height*bytes_per_pixel

The information returned in the dev_specific field by the FBIOGATTRioctl is
as follows:

dev_specific[0] is the tcx capabilities mask:

Name Hex Value Meaning

STIP_ALIGN 0xf stipple alignment constraint

C_PLANES 0xf0 # of control planes

BLIT_WIDTH 0xf00 maximum blit width

BLIT_HEIGHT 0xf000 maximum blit height

STIP_ROP 0x10000 stipple-with-rop supported

BLIT_ROP 0x20000 blit-with-rop supported

24_BIT 0x40000 24-bit support

HW_CURSOR 0x80000 hardware cursor

PLANE_MASK 0x100000 plane mask support for
8-bit stipple

dev_specific[1] is the kernel address for 8-bit mapping. This is useful only
to other device drivers, and should not be used outside the kernel.

FILES /dev/fbs/tcx device special file

/dev/fb default frame buffer

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARCstation 4, SPARCstation 5

SEE ALSO ioctl (2), mmap(2), sbus (4), attributes (5), fbio (7I)

548 SunOS 5.8 Last modified 1 Jan 1997

Ioctl Requests termio(7I)

NAME termio – general terminal interface

SYNOPSIS #include <termio.h>
ioctl (int fildes, int request, struct termio *arg);

ioctl (int fildes, int request, int arg);

#include <termios.h>
ioctl (int fildes, int request, struct termios *arg);

DESCRIPTION This release supports a general interface for asynchronous communications ports
that is hardware-independent. The user interface to this functionality is using
function calls (the preferred interface) described in termios (3C) or ioctl
commands described in this section. This section also discusses the common
features of the terminal subsystem which are relevant with both user interfaces.

When a terminal file is opened, it normally causes the process to wait until a
connection is established. In practice, users’ programs seldom open terminal
files; they are opened by the system and become a user’s standard input, output,
and error files. The first terminal file opened by the session leader that is not
already associated with a session becomes the controlling terminal for that
session. The controlling terminal plays a special role in handling quit and
interrupt signals, as discussed below. The controlling terminal is inherited by a
child process during a fork (2). A process can break this association by changing
its session using setsid() (see getsid (2)).

A terminal associated with one of these files ordinarily operates in full-duplex
mode. Characters may be typed at any time, even while output is occurring, and
are only lost when the character input buffers of the system become completely
full, which is rare. For example, the number of characters in the line discipline
buffer may exceed { MAX_CANON} and IMAXBEL (see below) is not set, or the user
may accumulate { MAX_INPUT} number of input characters that have not yet
been read by some program. When the input limit is reached, all the characters
saved in the buffer up to that point are thrown away without notice.

Session Management
(Job Control)

A control terminal will distinguish one of the process groups in the session
associated with it to be the foreground process group. All other process groups
in the session are designated as background process groups. This foreground
process group plays a special role in handling signal-generating input characters,
as discussed below. By default, when a controlling terminal is allocated, the
controlling process’s process group is assigned as foreground process group.

Background process groups in the controlling process’s session are subject
to a job control line discipline when they attempt to access their controlling
terminal. Process groups can be sent signals that will cause them to stop, unless
they have made other arrangements. An exception is made for members of
orphaned process groups.

Last modified 6 Mar 1998 SunOS 5.8 549

termio(7I) Ioctl Requests

The operating system will not normally send SIGTSTP, SIGTTIN , or SIGTTOU
signals to a process that is a member of an orphaned process group.

These are process groups which do not have a member with a parent in
another process group that is in the same session and therefore shares the same
controlling terminal. When a member’s orphaned process group attempts to
access its controlling terminal, errors will be returned. since there is no process to
continue it if it should stop.

If a member of a background process group attempts to read its controlling
terminal, its process group will be sent a SIGTTIN signal, which will normally
cause the members of that process group to stop. If, however, the process is
ignoring or holding SIGTTIN , or is a member of an orphaned process group, the
read will fail with errno set to EIO , and no signal will be sent.

If a member of a background process group attempts to write its controlling
terminal and the TOSTOPbit is set in the c_lflag field, its process group will
be sent a SIGTTOUsignal, which will normally cause the members of that
process group to stop. If, however, the process is ignoring or holding SIGTTOU,
the write will succeed. If the process is not ignoring or holding SIGTTOUand
is a member of an orphaned process group, the write will fail with errno set
to EIO , and no signal will be sent.

If TOSTOPis set and a member of a background process group attempts to
ioctl its controlling terminal, and that ioctl will modify terminal parameters
(for example, TCSETA, TCSETAW, TCSETAF, or TIOCSPGRP), its process group
will be sent a SIGTTOUsignal, which will normally cause the members of that
process group to stop. If, however, the process is ignoring or holding SIGTTOU,
the ioctl will succeed. If the process is not ignoring or holding SIGTTOUand
is a member of an orphaned process group, the write will fail with errno set
to EIO , and no signal will be sent.

Canonical Mode
Input Processing

Normally, terminal input is processed in units of lines. A line is delimited by
a newline (ASCII LF) character, an end-of-file (ASCII EOT) character, or an
end-of-line character. This means that a program attempting to read will be
suspended until an entire line has been typed. Also, no matter how many
characters are requested in the read call, at most one line will be returned. It is
not necessary, however, to read a whole line at once; any number of characters
may be requested in a read, even one, without losing information.

During input, erase and kill processing is normally done. The ERASE character
(by default, the character DEL) erases the last character typed. The WERASE
character (the character Control-w) erases the last “word” typed in the current
input line (but not any preceding spaces or tabs). A “word” is defined as a
sequence of non-blank characters, with tabs counted as blanks. Neither ERASE
nor WERASE will erase beyond the beginning of the line. The KILL character (by

550 SunOS 5.8 Last modified 6 Mar 1998

Ioctl Requests termio(7I)

default, the character NAK) kiills (deletes) the entire input line, and optionally
outputs a newline character. All these characters operate on a key stroke basis,
independent of any backspacing or tabbing that may have been done. The
REPRINTcharacter (the character Control-r) prints a newline followed by all
characters that have not been read. Reprinting also occurs automatically if
characters that would normally be erased from the screen are fouled by program
output. The characters are reprinted as if they were being echoed; consequencely,
if ECHOis not set, they are not printed.

The ERASE and KILL characters may be entered literally by preceding them
with the ‘\’ (escape) character. In this case, the escape character is not read. The
erase and kill characters may be changed.

Non-canonical Mode
Input Processing

In non-canonical mode input processing, input characters are not assembled into
lines, and erase and kill processing does not occur. The MIN and TIME values
are used to determine how to process the characters received.

MIN represents the minimum number of characters that should be received
when the read is satisfied (that is, when the characters are returned to the user).
TIME is a timer of 0.10-second granularity that is used to timeout bursty and
short-term data transmissions. The four possible values for MIN and TIME and
their interactions are described below.
Case A: MIN > 0, TIME > 0 In this case, TIME serves as an

intercharacter timer and is activated
after the first character is received.
Since it is an intercharacter timer, it is
reset after a character is received. The
interaction between MIN and TIME is
as follows: as soon as one character
is received, the intercharacter timer
is started. If MIN characters are
received before the intercharacter
timer expires (note that the timer is
reset upon receipt of each character),
the read is satisfied. If the timer
expires before MIN characters are
received, the characters received
to that point are returned to the
user. Note that if TIME expires, at
least one character will be returned
because the timer would not have
been enabled unless a character was
received. In this case (MIN > 0, TIME
> 0), the read sleeps until the MIN
and TIME mechanisms are activated

Last modified 6 Mar 1998 SunOS 5.8 551

termio(7I) Ioctl Requests

by the receipt of the first character.
If the number of characters read is
less than the number of characters
available, the timer is not reactivated
and the subsequent read is satisfied
immediately.

Case B: MIN > 0, TIME = 0 In this case, since the value of TIME
is zero, the timer plays no role and
only MIN is significant. A pending
read is not satisfied until MIN
characters are received (the pending
read sleeps until MIN characters are
received). A program that uses this
case to read record based terminal
I/O may block indefinitely in the
read operation.

Case C: MIN = 0, TIME > 0 In this case, since MIN = 0, TIME no
longer represents an intercharacter
timer: it now serves as a read timer
that is activated as soon as a read is
done. A read is satisfied as soon as
a single character is received or the
read timer expires. Note that, in this
case, if the timer expires, no character
is returned. If the timer does not
expire, the only way the read can be
satisfied is if a character is received.
In this case, the read will not block
indefinitely waiting for a character; if
no character is received within TIME
*.10 seconds after the read is initiated,
the read returns with zero characters.

Case D: MIN = 0, TIME = 0 In this case, return is immediate. The
minimum of either the number of
characters requested or the number
of characters currently available is
returned without waiting for more
characters to be input.

Comparing Different
Cases of MIN, TIME

Interaction

Some points to note about MIN and TIME :

� In the following explanations, note that the interactions of MIN and TIME
are not symmetric. For example, when MIN > 0 and TIME = 0, TIME has

552 SunOS 5.8 Last modified 6 Mar 1998

Ioctl Requests termio(7I)

no effect. However, in the opposite case, where MIN = 0 and TIME > 0,
both MIN and TIME play a role in that MIN is satisfied with the receipt of
a single character.

� Also note that in case A (MIN > 0, TIME > 0), TIME represents an
intercharacter timer, whereas in case C (MIN = 0, TIME > 0), TIME
represents a read timer.

These two points highlight the dual purpose of the MIN/TIME feature. Cases
A and B, where MIN > 0, exist to handle burst mode activity (for example,
file transfer programs), where a program would like to process at least MIN
characters at a time. In case A, the intercharacter timer is activated by a user as a
safety measure; in case B, the timer is turned off.

Cases C and D exist to handle single character, timed transfers. These cases are
readily adaptable to screen-based applications that need to know if a character is
present in the input queue before refreshing the screen. In case C, the read is
timed, whereas in case D, it is not.

Another important note is that MIN is always just a minimum. It does not
denote a record length. For example, if a program does a read of 20 bytes, MIN is
10, and 25 characters are present, then 20 characters will be returned to the user.

Writing Characters When one or more characters are written, they are transmitted to the terminal as
soon as previously written characters have finished typing. Input characters
are echoed as they are typed if echoing has been enabled. If a process produces
characters more rapidly than they can be typed, it will be suspended when its
output queue exceeds some limit. When the queue is drained down to some
threshold, the program is resumed.

Special Characters Certain characters have special functions on input. These functions and their
default character values are summarized as follows:
INTR (Control-c or ASCII ETX) generates a SIGINT signal. SIGINT

is sent to all foreground processes associated with the
controlling terminal. Normally, each such process is forced to
terminate, but arrangements may be made either to ignore
the signal or to receive a trap to an agreed upon location.
(See signal (3HEAD)).

QUIT (Control-| or ASCII FS) generates a SIGQUIT signal. Its
treatment is identical to the interrupt signal except that,
unless a receiving process has made other arrangements, it
will not only be terminated but a core image file (called
core) will be created in the current working directory.

Last modified 6 Mar 1998 SunOS 5.8 553

termio(7I) Ioctl Requests

ERASE (DEL) erases the preceding character. It does not erase
beyond the start of a line, as delimited by a NL, EOF, EOL,
or EOL2 character.

WERASE (Control-w or ASCII ETX) erases the preceding “word”. It
does not erase beyond the start of a line, as delimited by a
NL, EOF, EOL, or EOL2 character.

KILL (Control-u or ASCII NAK) deletes the entire line, as
delimited by a NL, EOF, EOL, or EOL2 character.

REPRINT (Control-r or ASCII DC2) reprints all characters, preceded
by a newline, that have not been read.

EOF (Control-d or ASCII EOT) may be used to generate an
end-of-file from a terminal. When received, all the characters
waiting to be read are immediately passed to the program,
without waiting for a newline, and the EOF is discarded.
Thus, if no characters are waiting (that is, the EOF occurred
at the beginning of a line) zero characters are passed back,
which is the standard end-of-file indication. Unless escaped,
the EOF character is not echoed. Because EOT is the default
EOF character, this prevents terminals that respond to EOT
from hanging up.

NL (ASCII LF) is the normal line delimiter. It cannot be changed
or escaped.

EOL (ASCII NULL) is an additional line delimiter, like NL . It is
not normally used.

EOL2 is another additional line delimiter.

SWTCH (Control-z or ASCII EM) is used only when shl layers is
invoked.

SUSP (Control-z or ASCII SUB) generates a SIGTSTP signal.
SIGTSTP stops all processes in the foreground process group
for that terminal.

DSUSP (Control-y or ASCII EM). It generates a SIGTSTP signal as
SUSP does, but the signal is sent when a process in the
foreground process group attempts to read the DSUSP
character, rather than when it is typed.

STOP (Control-s or ASCII DC3) can be used to suspend output
temporarily. It is useful with CRT terminals to prevent
output from disappearing before it can be read. While output
is suspended, STOP characters are ignored and not read.

554 SunOS 5.8 Last modified 6 Mar 1998

Ioctl Requests termio(7I)

START (Control-q or ASCII DC1) is used to resume output. Output
has been suspended by a STOP character. While output is
not suspended, START characters are ignored and not read.

DISCARD (Control-o or ASCII SI) causes subsequent output to be
discarded. Output is discarded until another DISCARD
character is typed, more input arrives, or the condition is
cleared by a program.

LNEXT (Control-v or ASCII SYN) causes the special meaning of
the next character to be ignored. This works for all the
special characters mentioned above. It allows characters
to be input that would otherwise be interpreted by the
system (for example KILL, QUIT). The character values for
INTR, QUIT, ERASE, WERASE, KILL, REPRINT, EOF, EOL,
EOL2, SWTCH, SUSP, DSUSP, STOP, START, DISCARD, and
LNEXT may be changed to suit individual tastes. If the
value of a special control character is _POSIX_VDISABLE
(0), the function of that special control character is disabled.
The ERASE, KILL, and EOF characters may be escaped by
a preceding backslash (‘ \ ’) character, in which case no
special function is done. Any of the special characters
may be preceded by the LNEXT character, in which case
no special function is done.

Modem Disconnect When a modem disconnect is detected, a SIGHUPsignal is sent to the terminal’s
controlling process. Unless other arrangements have been made, these signals
cause the process to terminate. If SIGHUPis ignored or caught, any subsequent
read returns with an end-of-file indication until the terminal is closed.

If the controlling process is not in the foreground process group of the terminal, a
SIGTSTP is sent to the terminal’s foreground process group. Unless other
arrangements have been made, these signals cause the processes to stop.

Processes in background process groups that attempt to access the controlling
terminal after modem disconnect while the terminal is still allocated to the
session will receive appropriate SIGTTOUand SIGTTIN signals. Unless other
arrangements have been made, this signal causes the processes to stop.

The controlling terminal will remain in this state until it is reinitialized with a
successful open by the controlling process, or deallocated by the controlling
process.

Terminal Parameters The parameters that control the behavior of devices and modules providing
the termios interface are specified by the termios structure defined by
termios.h . Several ioctl (2) system calls that fetch or change these parameters
use this structure that contains the following members:

Last modified 6 Mar 1998 SunOS 5.8 555

termio(7I) Ioctl Requests

tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_lflag; /* local modes */
cc_t c_cc[NCCS]; /* control chars */

The special control characters are defined by the array c_cc . The symbolic
name NCCSis the size of the Control-character array and is also defined by
<termios.h> . The relative positions, subscript names, and typical default
values for each function are as follows:

Relative Position Subscript Name Typical Default Value

0 VINTR ETX

1 VQUIT FS

2 VERASE DEL

3 VKILL NAK

4 VEOF EOT

5 VEOL NUL

6 VEOL2 NUL

7 VWSTCH NUL

8 VSTART NUL

9 VSTOP DC3

10 VSUSP SUB

11 VDSUSP EM

12 VREPRINT DC2

13 VDISCARD SI

14 VWERASE ETB

15 VLNEXT SYN

16-19 Reserved

Input Modes The c_iflag field describes the basic terminal input control:
IGNBRK Ignore break condition.

BRKINT Signal interrupt on break.

556 SunOS 5.8 Last modified 6 Mar 1998

Ioctl Requests termio(7I)

IGNPAR Ignore characters with parity errors.

PARMRK Mark parity errors.

INPCK Enable input parity check.

ISTRIP Strip character.

INLCR Map NL to CR on input.

IGNCR Ignore CR.

ICRNL Map CR to NL on input.

IUCLC Map upper-case to lower-case on input.

IXON Enable start/stop output control.

IXANY Enable any character to restart output.

IXOFF Enable start/stop input control.

IMAXBEL Echo BEL on input line too long.

If IGNBRKis set, a break condition (a character framing error with data all
zeros) detected on input is ignored, that is, not put on the input queue and
therefore not read by any process. If IGNBRKis not set and BRKINT is set, the
break condition shall flush the input and output queues and if the terminal is
the controlling terminal of a foreground process group, the break condition
generates a single SIGINT signal to that foreground process group. If neither
IGNBRKnor BRKINT is set, a break condition is read as a single \0 (ASCII NULL)
character, or if PARMRKis set, as \377, \0, \0.

If IGNPARis set, a byte with framing or parity errors (other than break) is ignored.

If PARMRKis set, and IGNPARis not set, a byte with a framing or parity error
(other than break) is given to the application as the three-character sequence:
\377, \0, X, where X is the data of the byte received in error. To avoid ambiguity
in this case, if ISTRIP is not set, a valid character of \377 is given to the
application as \377, \377. If neither IGNPARnor PARMRKis set, a framing or
parity error (other than break) is given to the application as a single \0 (ASCII
NULr) character.

If INPCK is set, input parity checking is enabled. If INPCK is not set, input
parity checking is disabled. This allows output parity generation without input
parity errors. Note that whether input parity checking is enabled or disabled
is independent of whether parity detection is enabled or disabled. If parity
detection is enabled but input parity checking is disabled, the hardware to which
the terminal is connected will recognize the parity bit, but the terminal special
file will not check whether this is set correctly or not.

Last modified 6 Mar 1998 SunOS 5.8 557

termio(7I) Ioctl Requests

If ISTRIP is set, valid input characters are first stripped to seven bits, otherwise
all eight bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If
IGNCRis set, a received CR character is ignored (not read). Otherwise, if ICRNL
is set, a received CR character is translated into a NL character.

If IUCLC is set, a received upper case, alphabetic character is translated into the
corresponding lower case character.

If IXON is set, start/stop output control is enabled. A received STOP character
suspends output and a received START character restarts output. The STOP
and START characters will not be read, but will merely perform flow control
functions. If IXANY is set, any input character restarts output that has been
suspended.

If IXOFF is set, the system transmits a STOP character when the input queue is
nearly full, and a START character when enough input has been read so that the
input queue is nearly empty again.

If IMAXBEL is set, the ASCII BEL character is echoed if the input stream
overflows. Further input is not stored, but any input already present in the input
stream is not disturbed. If IMAXBEL is not set, no BEL character is echoed, and
all input present in the input queue is discarded if the input stream overflows.

Output Modes The c_oflag field specifies the system treatment of output:
OPOST Post-process output.

OLCUC Map lower case to upper on output.

ONLCR Map NL to CR-NL on output.

OCRNL Map CR to NL on output.

ONOCR No CR output at column 0.

ONLRET NL performs CR function.

OFILL Use fill characters for delay.

OFDEL Fill is DEL, else NULL.

NLDLY Select newline delays:
NL0
NL1

CRDLY Select carriage-return delays:
CR0
CR1
CR2
CR3

558 SunOS 5.8 Last modified 6 Mar 1998

Ioctl Requests termio(7I)

TABDLY Select horizontal tab delays or tab expansion:

TAB0

TAB1

TAB2

TAB3 Expand tabs to spaces

XTABS Expand tabs to spaces

BSDLY Select backspace delays:
BS0
BS1

VTDLY Select vertical tab delays:
VT0
VT1

FFDLY Select form feed delays:
FF0
FF1

If OPOSTis set, output characters are post-processed as indicated by the
remaining flags; otherwise, characters are transmitted without change.

If OLCUCis set, a lower case alphabetic character is transmitted as the
corresponding upper case character. This function is often used in conjunction
with IUCLC.

If ONLCRis set, the NL character is transmitted as the CR-NL character pair. If
OCRNLis set, the CR character is transmitted as the NL character. If ONOCRis set,
no CR character is transmitted when at column 0 (first position). If ONRETis
set, the NL character is assumed to do the carriage-return function; the column
pointer is set to 0 and the delays specified for CR are used. Otherwise, the
NL character is assumed to do just the line-feed function; the column pointer
remains unchanged. The column pointer is also set to 0 if the CR character is
actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or
other movement when certain characters are sent to the terminal. In all cases,
a value of 0 indicates no delay. If OFILL is set, fill characters are transmitted
for delay instead of a timed delay. This is useful for high baud rate terminals
that need only a minimal delay. If OFDELis set, the fill character is DEL ;
otherwise it is NULL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

Last modified 6 Mar 1998 SunOS 5.8 559

termio(7I) Ioctl Requests

Newline delay lasts about 0.10 seconds. If ONLRETis set, the carriage-return
delays are used instead of the newline delays. If OFILL is set, two fill characters
are transmitted.

Carriage-return delay type 1 is dependent on the current column position, type 2
is about 0.10 seconds, and type 3 is about 0.15 seconds. If OFILL is set, delay
type 1 transmits two fill characters, and type 2 transmits four fill characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2
is about 0.10 seconds. Type 3 specifies that tabs are to be expanded into spaces. If
OFILL is set, two fill characters are transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character
is transmitted.

The actual delays depend on line speed and system load.

Control Modes The c_cflag field describes the hardware control of the terminal:
CBAUD Baud rate:

B0 Hang up

B50 50 baud

B75 75 baud

B110 110 baud

B134 134 baud

B150 150 baud

B200 200 baud

B300 300 baud

B600 600 baud

B1200 1200 baud

B1800 1800 baud

B2400 2400 baud

B4800 4800 baud

B9600 9600 baud

B19200 19200 baud

EXTA External A

B38400 38400 baud

560 SunOS 5.8 Last modified 6 Mar 1998

Ioctl Requests termio(7I)

EXTB External B

B57600 57600 baud

B76800 76800 baud

B115200 115200 baud

B153600 153600 baud

B230400 230400 baud

B307200 307200 baud

B460800 460800 baud

CSIZE Character size:

CS5 5 bits

CS6 6 bits

CS7 7 bits

CS8 8 bits

CSTOPB Send two stop bits, else one

CREAD Enable receiver

PARENB Parity enable

PARODD Odd parity, else even

HUPCL Hang up on last close

CLOCAL Local line, else dial-up

CIBAUD Input baud rate, if different from output rate

PAREXT Extended parity for mark and space parity

CRTSXOFF Enable inbound hardware flow control

CRTSCTS Enable outbound hardware flow control

CBAUDEXT Bit to indicate output speed > B38400

CIBAUDEXT Bit to indicate input speed > B38400

The CBAUDbits together with the CBAUDEXTbit specify the output baud rate. To
retrieve the output speed from the termios structure pointed to by termios_p
see the following code segment.

speed_t ospeed;
if (termios_p->c_cflag & CBAUDEXT)

Last modified 6 Mar 1998 SunOS 5.8 561

termio(7I) Ioctl Requests

ospeed = (termios_p->c_cflag & CBAUD) + CBAUD + 1;
else

ospeed = termios_p->c_cflag & CBAUD;

To store the output speed in the termios structure pointed to by termios_p see
the following code segment.

speed_t ospeed;
if (ospeed > CBAUD) {

termios_p->c_cflag |= CBAUDEXT;
ospeed -= (CBAUD + 1);

} else
termios_p->c_cflag &= ~CBAUDEXT;

termios_p->c_cflag =
(termios_p->c_cflag & ~CBAUD) | (ospeed & CBAUD);

The zero baud rate, B0, is used to hang up the connection. If B0 is specified, the
data-terminal-ready signal is not asserted. Normally, this disconnects the line.

If the CIBAUDEXTor CIBAUDbits are not zero, they specify the input baud rate,
with the CBAUDEXTand CBAUDbits specifying the output baud rate; otherwise,
the output and input baud rates are both specified by the CBAUDEXTand CBAUD
bits. The values for the CIBAUDbits are the same as the values for the CBAUD
bits, shifted left IBSHIFT bits. For any particular hardware, impossible speed
changes are ignored. To retrieve the input speed in the termios structure
pointed to by termios_p see the following code segment.

speed_t ispeed;
if (termios_p->c_cflag & CIBAUDEXT)

ispeed = ((termios_p->c_cflag & CIBAUD) >> IBSHIFT)
+ (CIBAUD >> IBSHIFT) + 1;

else
ispeed = (termios_p->c_cflag & CIBAUD) >> IBSHIFT;

To store the input speed in the termios structure pointed to by termios_p see
the following code segment.

speed_t ispeed;
if (ispeed == 0) {

ispeed = termios_p->c_cflag & CBAUD;
if (termios_p->c_cflag & CBAUDEXT)

ispeed += (CBAUD + 1);
}
if ((ispeed << IBSHIFT) > CIBAUD) {

termios_p->c_cflag |= CIBAUDEXT;
ispeed -= ((CIBAUD >> IBSHIFT) + 1);

} else
termios_p->c_cflag &= ~CIBAUDEXT;

562 SunOS 5.8 Last modified 6 Mar 1998

Ioctl Requests termio(7I)

termios_p->c_cflag =
(termios_p->c_cflag & ~CIBAUD) |

((ispeed << IBSHIFT) & CIBAUD);

The CSIZE bits specify the character size in bits for both transmission and
reception. This size does not include the parity bit, if any. If CSTOPBis set, two
stop bits are used; otherwise, one stop bit is used. For example, at 110 baud,
two stops bits are required.

If PARENBis set, parity generation and detection is enabled, and a parity bit is
added to each character. If parity is enabled, the PARODDflag specifies odd
parity if set; otherwise, even parity is used.

If CREADis set, the receiver is enabled. Otherwise, no characters are received.

If HUPCLis set, the line is disconnected when the last process with the line open
closes it or terminates. That is, the data-terminal-ready signal is not asserted.

If CLOCALis set, the line is assumed to be a local, direct connection with no
modem control; otherwise, modem control is assumed.

If CRTSCTSis set, inbound hardware flow control is enabled.

If CRTSCTSis set, outbound hardware flow control is enabled.

The four possible combinations for the state of CRTSCTSand CRTSXOFFbits and
their interactions are described below.
Case A: CRTSCTSoff, CRTSXOFFoff. In this case the hardware flow

control is disabled.

Case B: CRTSCTSon, CRTSXOFFoff. In this case only outbound
hardware flow control is enabled. The state of CTS signal
is used to do outbound flow control. It is expected that
output will be suspended if CTS is low and resumed when
CTS is high.

Case C: CRTSCTSoff, CRTSXOFFon. In this case only inbound
hardware flow control is enabled. The state of RTS signal is
used to do inbound flow control. It is expected that input
will be suspended if RTS is low and resumed when RTS is
high.

Case D: CRTSCTSon, CRTSXOFFon. In this case both inbound and
outbound hardware flow control are enabled. Uses the state
of CTS signal to do outbound flow control and RTS signal to
do inbound flow control.

Local Modes The c_lflag field of the argument structure is used by the line discipline to
control terminal functions. The basic line discipline provides the following:

Last modified 6 Mar 1998 SunOS 5.8 563

termio(7I) Ioctl Requests

ISIG Enable signals.

ICANON Canonical input (erase and kill processing).

XCASE Canonical upper/lower presentation.

ECHO Enable echo.

ECHOE Echo erase character as BS-SP-BS &.

ECHOK Echo NL after kill character.

ECHONL Echo NL .

NOFLSH Disable flush after interrupt or quit.

TOSTOP Send SIGTTOUfor background output.

ECHOCTL Echo control characters as char, delete as ^?.

ECHOPRT Echo erase character as character erased.

ECHOKE BS-SP-BS erase entire line on line kill.

FLUSHO Output is being flushed.

PENDIN Retype pending input at next read or input character.

IEXTEN Enable extended (implementation-defined) functions.

If ISIG is set, each input character is checked against the special control
characters INTR, QUIT, SWTCH, SUSP, STATUS, and DSUSP . If an input
character matches one of these control characters, the function associated with
that character is performed. If ISIG is not set, no checking is done. Thus, these
special input functions are possible only if ISIG is set.

If ICANONis set, canonical processing is enabled. This enables the erase and kill
edit functions, and the assembly of input characters into lines delimited by NL-c,
EOF, EOL, and EOL . If ICANONis not set, read requests are satisfied directly
from the input queue. A read is not satisfied until at least MIN characters
have been received or the timeout value TIME has expired between characters.
This allows fast bursts of input to be read efficiently while still allowing single
character input. The time value represents tenths of seconds.

If XCASEis set and ICANONis set, an upper case letter is accepted on input if
preceded by a backslash (‘\’) character, and is output preceded by a backslash
(‘\’) character. In this mode, the following escape sequences are generated on
output and accepted on input:

564 SunOS 5.8 Last modified 6 Mar 1998

Ioctl Requests termio(7I)

FOR: USE:

‘ \’

| \!

≈ \^

{ \(

} \)

\ \\

For example, input A as \a, \n as \\n, and \N as \\\n.

If ECHOis set, characters are echoed as received.

When ICANONis set, the following echo functions are possible.

� If ECHOand ECHOEare set, and ECHOPRTis not set, the ERASE and
WERASE characters are echoed as one or more ASCII BS SP BS, which
clears the last character(s) from a CRT screen.

� If ECHO, ECHOPRT, and IEXTEN are set, the first ERASE and WERASE
character in a sequence echoes as a ‘\’ (backslash), followed by the
characters being erased. Subsequent ERASE and WERASE characters echo
the characters being erased, in reverse order. The next non-erase character
causes a ‘/’ (slash) to be typed before it is echoed. ECHOPRTshould be
used for hard copy terminals.

� If ECHOKEand IEXTEN are set, the kill character is echoed by erasing
each character on the line from the screen (using the mechanism selected
by ECHOEand ECHOPRa).

� If ECHOKis set, and ECHOKEis not set, the NL character is echoed after the
kill character to emphasize that the line is deleted. Note that a ‘\’ (escape)
character or an LNEXT character preceding the erase or kill character
removes any special function.

� If ECHONLis set, the NL character is echoed even if ECHOis not set. This is
useful for terminals set to local echo (so called half-duplex).

If ECHOCTLand IEXTEN are set, all control characters (characters with codes
between 0 and 37 octal) other than ASCII TAB, ASCII NL, the START character,
and the STOP character, ASCII CR, and ASCII BS are echoed as ^ X, where X
is the character given by adding 100 octal to the code of the control character
(so that the character with octal code 1 is echoed as ^ A), and the ASCII DEL
character, with code 177 octal, is echoed as ^ ?.

Last modified 6 Mar 1998 SunOS 5.8 565

termio(7I) Ioctl Requests

If NOFLSHis set, the normal flush of the input and output queues associated with
the INTR, QUIT, and SUSP characters is not done. This bit should be set when
restarting system calls that read from or write to a terminal (see sigaction (2)).

If TOSTOPand IEXTEN are set, the signal SIGTTOUis sent to a process that tries
to write to its controlling terminal if it is not in the foreground process group for
that terminal. This signal normally stops the process. Otherwise, the output
generated by that process is output to the current output stream. Processes that
are blocking or ignoring SIGTTOUsignals are excepted and allowed to produce
output, if any.

If FLUSHOand IEXTEN are set, data written to the terminal is discarded. This bit
is set when the FLUSH character is typed. A program can cancel the effect of
typing the FLUSH character by clearing FLUSHO.

If PENDINand IEXTEN are set, any input that has not yet been read is reprinted
when the next character arrives as input. PENDINis then automatically cleared.

If IEXTEN is set, the following implementation-defined functions are enabled:
special characters (WERASE, REPRINT, DISCARD, and LNEXT) and local flags (
TOSTOP, ECHOCTL, ECHOPRT, ECHOKE, FLUSHO, and PENDIN).

Minimum and
Timeout

The MIN and TIME values were described previously, in the subsection,
Non-canonical Mode Input Processing . The initial value of MIN is
1, and the initial value of TIME is 0.

Terminal Size The number of lines and columns on the terminal’s display is specified in the
winsize structure defined by sys/termios.h and includes the following
members:

unsigned short ws_row; /* rows, in characters */
unsigned short ws_col; /* columns, in characters */
unsigned short ws_xpixel; /* horizontal size, in pixels */
unsigned short ws_ypixel; /* vertical size, in pixels */

Termio Structure The SunOS/SVR4 termio structure is used by some ioctl s; it is defined by
sys/termio.h and includes the following members:

unsigned short c_iflag; /* input modes */
unsigned short c_oflag; /* output modes */
unsigned short c_cflag; /* control modes */
unsigned short c_lflag; /* local modes */
char c_line; /* line discipline */
unsigned char c_cc[NCC]; /* control chars */

566 SunOS 5.8 Last modified 6 Mar 1998

Ioctl Requests termio(7I)

The special control characters are defined by the array c_cc . The symbolic name
NCCis the size of the Control-character array and is also defined by termio.h .
The relative positions, subscript names, and typical default values for each
function are as follows:

Relative Positions Subscript Names Typical Default Values

0 VINTR EXT

1 VQUIT FS

2 VERASE DEL

3 VKILL NAK

4 VEOF EOT

5 VEOL NUL

6 VEOL2 NUL

7 Reserved

The MIN values is stored in the VMIN element of the c_cc array; the TIME
value is stored in the VTIME element of the c_cc array. The VMIN element is
the same element as the VEOFelement; the VTIME element is the same element
as the VEOLelement.

The calls that use the termio structure only affect the flags and control
characters that can be stored in the termio structure; all other flags and control
characters are unaffected.

Modem Lines On special files representing serial ports, the modem control lines supported
by the hardware can be read, and the modem status lines supported by the
hardware can be changed. The following modem control and status lines may be
supported by a device; they are defined by sys/termios.h :
TIOCM_LE line enable

TIOCM_DTR data terminal ready

TIOCM_RTS request to send

TIOCM_ST secondary transmit

TIOCM_SR secondary receive

TIOCM_CTS clear to send

TIOCM_CAR carrier detect

TIOCM_RNG ring

Last modified 6 Mar 1998 SunOS 5.8 567

termio(7I) Ioctl Requests

TIOCM_DSR data set ready

TIOCM_CDis a synonym for TIOCM_CAR, and TIOCM_RI is a synonym for
TIOCM_RNG. Not all of these are necessarily supported by any particular device;
check the manual page for the device in question.

The software carrier mode can be enabled or disabled using the TIOCSSOFTCAR
ioctl . If the software carrier flag for a line is off, the line pays attention to the
hardware carrier detect (DCD) signal. The tty device associated with the line
cannot be opened until DCD is asserted. If the software carrier flag is on, the line
behaves as if DCD is always asserted.

The software carrier flag is usually turned on for locally connected terminals
or other devices, and is off for lines with modems.

To be able to issue the TIOCGSOFTCARand TIOCSSOFTCAR ioctl calls, the
tty line should be opened with O_NDELAYso that the open (2) will not wait
for the carrier.

Default Values The initial termios values upon driver open is configurable. This
is accomplished by setting the “ttymodes” property in the file
/kernel/drv/options.conf . Since this property is assigned during system
initialization, any change to the “ttymodes” property will not take effect until the
next reboot. The string value assigned to this property should be in the same
format as the output of the stty (1) command with the -g option.

If this property is undefined, the following termios modes are in effect. The
initial input control value is BRKINT, ICRNL, IXON, IMAXBEL. The initial output
control value is OPOST, ONLCR, TAB3. The initial hardware control value is
B9600 , CS8, CREAD. The initial line-discipline control value is ISIG , ICANON,
IEXTEN, ECHO, ECHOK, ECHOE, ECHOKE, ECHOCTL.

IOCTLS The ioctl s supported by devices and STREAMS modules providing the
termios (3C) interface are listed below. Some calls may not be supported by all
devices or modules. The functionality provided by these calls is also available
through the preferred function call interface specified on termios .
TCGETS The argument is a pointer to a termios structure. The

current terminal parameters are fetched and stored into
that structure.

TCSETS The argument is a pointer to a termios structure. The
current terminal parameters are set from the values stored in
that structure. The change is immediate.

TCSETSW The argument is a pointer to a termios structure. The
current terminal parameters are set from the values stored in
that structure. The change occurs after all characters queued

568 SunOS 5.8 Last modified 6 Mar 1998

Ioctl Requests termio(7I)

for output have been transmitted. This form should be used
when changing parameters that affect output.

TCSETSF The argument is a pointer to a termios structure. The
current terminal parameters are set from the values stored in
that structure. The change occurs after all characters queued
for output have been transmitted; all characters queued for
input are discarded and then the change occurs.

TCGETA The argument is a pointer to a termio structure. The current
terminal parameters are fetched, and those parameters that
can be stored in a termio structure are stored into that
structure.

TCSETA The argument is a pointer to a termio structure. Those
terminal parameters that can be stored in a termio structure
are set from the values stored in that structure. The change
is immediate.

TCSETAW The argument is a pointer to a termio structure. Those
terminal parameters that can be stored in a termio structure
are set from the values stored in that structure. The change
occurs after all characters queued for output have been
transmitted. This form should be used when changing
parameters that affect output.

TCSETAF The argument is a pointer to a termio structure. Those
terminal parameters that can be stored in a termio structure
are set from the values stored in that structure. The change
occurs after all characters queued for output have been
transmitted; all characters queued for input are discarded
and then the change occurs.

TCSBRK The argument is an int value. Wait for the output to drain.
If the argument is 0, then send a break (zero valued bits for
0.25 seconds).

TCXONC Start/stop control. The argument is an int value. If the
argument is 0, suspend output; if 1, restart suspended
output; if 2, suspend input; if 3, restart suspended input.

TCFLSH The argument is an int value. If the argument is 0, flush
the input queue; if 1, flush the output queue; if 2, flush both
the input and output queues.

TIOCGPGRP The argument is a pointer to a pid_t . Set the value of that
pid_t to the process group ID of the foreground process

Last modified 6 Mar 1998 SunOS 5.8 569

termio(7I) Ioctl Requests

group associated with the terminal. See termios (3C) for a
description of TCGETPGRP.

TIOCSPGRP The argument is a pointer to a pid_t . Associate the process
group whose process group ID is specified by the value
of that pid_t with the terminal. The new process group
value must be in the range of valid process group ID values.
Otherwise, the error EPERMis returned. See termios (3C)
for a description of TCSETPGRP.

TIOCGSID The argument is a pointer to a pid_t . The session ID of the
terminal is fetched and stored in the pid_t .

TIOCGWINSZ The argument is a pointer to a winsize structure. The
terminal driver’s notion of the terminal size is stored into
that structure.

TIOCSWINSZ The argument is a pointer to a winsize structure. The
terminal driver’s notion of the terminal size is set from
the values specified in that structure. If the new sizes are
different from the old sizes, a SIGWINCHsignal is set to the
process group of the terminal.

TIOCMBIS The argument is a pointer to an int whose value is a mask
containing modem control lines to be turned on. The control
lines whose bits are set in the argument are turned on; no
other control lines are affected.

TIOCMBIC The argument is a pointer to an int whose value is a mask
containing modem control lines to be turned off. The control
lines whose bits are set in the argument are turned off; no
other control lines are affected.

TIOCMGET The argument is a pointer to an int . The current state of
the modem status lines is fetched and stored in the int
pointed to by the argument.

TIOCMSET The argument is a pointer to an int containing a new set of
modem control lines. The modem control lines are turned
on or off, depending on whether the bit for that mode
is set or clear.

TIOCSPPS The argument is a pointer to an int that determines whether
pulse-per-second event handling is to be enabled (non-zero)
or disabled (zero). If a one-pulse-per-second reference clock
is attached to the serial line’s data carrier detect input, the
local system clock will be calibrated to it. A clock with a

570 SunOS 5.8 Last modified 6 Mar 1998

Ioctl Requests termio(7I)

high error, that is, a deviation of more than 25 microseconds
per tick, is ignored.

TIOCGPPS The argument is a pointer to an int , in which the state of
the even handling is returned. The int is set to a non-zero
value if pulse-per-second (PPS) handling has been enabled.
Otherwise, it is set to zero.

TIOCGPPSEV The argument is a pointer to a struct ppsclockev . This
structure contains the following members:

struct timeval tv;
uint32_t serial;

“tv” is the system clock timestamp when the event (pulse
on the DCD pin) occurred. “serial” is the ordinal of the
event, which each consecutive event being assigned the next
ordinal. The first event registered gets a “serial” value of 1.
The TIOCGPPSEVreturns the last event registered; multiple
calls will persistently return the same event until a new
one is registered. In addition to time stamping and saving
the event, if it is of one-second period and of consistently
high accuracy, the local system clock will automatically
calibrate to it.

TIOCGSOFTCAR The argument is a pointer to an int whose value is 1 or 0,
depending on whether the software carrier detect is turned
on or off.

TIOCSSOFTCAR The argument is a pointer to an int whose value is 1 or 0.
The value of the integer should be 0 to turn off software
carrier, or 1 to turn it on.

FILES files in or under /dev

SEE ALSO stty (1), fork (2), getsid (2), ioctl (2), setsid (2), sigaction (2),
signal (3C), termios (3C), signal (3HEAD), streamio (7I)

Last modified 6 Mar 1998 SunOS 5.8 571

termiox(7I) Ioctl Requests

NAME termiox – extended general terminal interface

DESCRIPTION The extended general terminal interface supplements the termio (7I) general
terminal interface by adding support for asynchronous hardware flow control,
isochronous flow control and clock modes, and local implementations of
additional asynchronous features. Some systems may not support all of these
capabilities because of either hardware or software limitations. Other systems
may not permit certain functions to be disabled. In these cases the appropriate
bits will be ignored. See <sys/termiox.h> for your system to find out which
capabilities are supported.

Hardware Flow
Control Modes

Hardware flow control supplements the termio (7I) IXON, IXOFF, and IXANY
character flow control. Character flow control occurs when one device controls
the data transfer of another device by the insertion of control characters in the
data stream between devices. Hardware flow control occurs when one device
controls the data transfer of another device using electrical control signals on
wires (circuits) of the asynchronous interface. Isochronous hardware flow
control occurs when one device controls the data transfer of another device by
asserting or removing the transmit clock signals of that device. Character flow
control and hardware flow control may be simultaneously set.

In asynchronous, full duplex applications, the use of the Electronic Industries
Association’s EIA-232-D Request To Send (RTS) and Clear To Send (CTS)
circuits is the preferred method of hardware flow control. An interface to other
hardware flow control methods is included to provide a standard interface
to these existing methods.

The EIA-232-D standard specified only unidirectional hardware flow control -
the Data Circuit-terminating Equipment or Data Communications Equipment
(DCE) indicates to the Data Terminal Equipment (DTE) to stop transmitting data.
The termiox interface allows both unidirectional and bidirectional hardware
flow control; when bidirectional flow control is enabled, either the DCE or DTE
can indicate to each other to stop transmitting data across the interface. Note: It
is assumed that the asynchronous port is configured as a DTE. If the connected
device is also a DTE and not a DCE, then DTE to DTE (for example, terminal or
printer connected to computer) hardware flow control is possible by using a null
modem to interconnect the appropriate data and control circuits.

Clock Modes Isochronous communication is a variation of asynchronous communication
whereby two communicating devices may provide transmit and/or receive
clock signals to one another. Incoming clock signals can be taken from the
baud rate generator on the local isochronous port controller, from CCITT V.24
circuit 114, Transmitter Signal Element Timing - DCE source (EIA-232-D pin
15), or from CCITT V.24 circuit 115, Receiver Signal Element Timing - DCE
source (EIA-232-D pin 17). Outgoing clock signals can be sent on CCITT V.24
circuit 113, Transmitter Signal Element Timing - DTE source (EIA-232-D pin

572 SunOS 5.8 Last modified 3 Jul 1990

Ioctl Requests termiox(7I)

24), on CCITT V.24 circuit 128, Receiver Signal Element Timing - DTE source
(no EIA-232-D pin), or not sent at all.

In terms of clock modes, traditional asynchronous communication is
implemented simply by using the local baud rate generator as the incoming
transmit and receive clock source and not outputting any clock signals.

Terminal Parameters The parameters that control the behavior of devices providing the
termiox interface are specified by the termiox structure defined in the
<sys/termiox.h> header. Several ioctl (2) system calls that fetch or change
these parameters use this structure:

#define NFF 5
struct termiox {

unsigned short x_hflag; /* hardware flow control modes */
unsigned short x_cflag; /* clock modes */
unsigned short x_rflag[NFF]; /* reserved modes */
unsigned short x_sflag; /* spare local modes */

};

The x_hflag field describes hardware flow control modes:

RTSXOFF 0000001 Enable RTS hardware flow control on input.

CTSXON 0000002 Enable CTS hardware flow control on output.

DTRXOFF 0000004 Enable DTR hardware flow control on input.

CDXON 0000010 Enable CD hardware flow control on output.

ISXOFF 0000020 Enable isochronous hardware flow
control on input

The EIA-232-D DTR and CD circuits are used to establish a connection between
two systems. The RTS circuit is also used to establish a connection with a
modem. Thus, both DTR and RTS are activated when an asynchronous port is
opened. If DTR is used for hardware flow control, then RTS must be used for
connectivity. If CD is used for hardware flow control, then CTS must be used
for connectivity. Thus, RTS and DTR (or CTS and CD) cannot both be used for
hardware flow control at the same time. Other mutual exclusions may apply,
such as the simultaneous setting of the termio (7I) HUPCLand the termiox
DTRXOFF bits, which use the DTE ready line for different functions.

Variations of different hardware flow control methods may be selected by setting
the the appropriate bits. For example, bidirectional RTS/CTS flow control
is selected by setting both the RTSXOFFand CTSXONbits and bidirectional
DTR/CTS flow control is selected by setting both the DTRXOFFand CTSXON.
Modem control or unidirectional CTS hardware flow control is selected by
setting only the CTSXONbit.

Last modified 3 Jul 1990 SunOS 5.8 573

termiox(7I) Ioctl Requests

As previously mentioned, it is assumed that the local asynchronous port
(for example, computer) is configured as a DTE. If the connected device (for
example, printer) is also a DTE, it is assumed that the device is connected to the
computer’s asynchronous port using a null modem that swaps control circuits
(typically RTS and CTS). The connected DTE drives RTS and the null modem
swaps RTS and CTS so that the remote RTS is received as CTS by the local DTE.
In the case that CTSXONis set for hardware flow control, printer’s lowering of
its RTS would cause CTS seen by the computer to be lowered. Output to the
printer is suspended until the printer’s raising of its RTS, which would cause
CTS seen by the computer to be raised.

If RTSXOFFis set, the Request To Send (RTS) circuit (line) will be raised, and if
the asynchronous port needs to have its input stopped, it will lower the Request
To Send (RTS) line. If the RTS line is lowered, it is assumed that the connected
device will stop its output until RTS is raised.

If CTSXONis set, output will occur only if the Clear To Send (CTS) circuit (line)
is raised by the connected device. If the CTS line is lowered by the connected
device, output is suspended until CTS is raised.

If DTRXOFFis set, the DTE Ready (DTR) circuit (line) will be raised, and if the
asynchronous port needs to have its input stopped, it will lower the DTE Ready
(DTR) line. If the DTR line is lowered, it is assumed that the connected device
will stop its output until DTR is raised.

If CDXONis set, output will occur only if the Received Line Signal Detector (CD)
circuit (line) is raised by the connected device. If the CD line is lowered by the
connected device, output is suspended until CD is raised.

If ISXOFF is set, and if the isochronous port needs to have its input stopped,
it will stop the outgoing clock signal. It is assumed that the connected device
is using this clock signal to create its output. Transit and receive clock sources
are programmed using the x_cflag fields. If the port is not programmed for
external clock generation, ISXOFF is ignored. Output isochronous flow control
is supported by appropriate clock source programming using the x_cflag field
and enabled at the remote connected device.

The x_cflag field specifies the system treatment of clock modes.

XMTCLK 0000007 Transmit clock source:

XCIBRG 0000000 Get transmit clock from internal baud
rate generator.

XCTSET 0000001 Get transmit clock from transmitter signal
element timing (DCE source) lead, CCITT
V.24 circuit 114, EIA-232-D pin 15.

574 SunOS 5.8 Last modified 3 Jul 1990

Ioctl Requests termiox(7I)

XCRSET 0000002 Get transmit clock from receiver signal
element timing (DCE source) lead, CCITT
V.24 circuit 115, EIA-232-D pin 17.

RCVCLK 0000070 Receive clock source:

RCIBRG 0000000 Get receive clock from internal baud
rate generator.

RCTSET 0000010 Get receive clock from transmitter signal
element timing (DCE source) lead, CCITT
V.24 circuit 114, EIA-232-D pin 15.

RCRSET 0000020 Get receive clock from receiver signal element
timing (DCE source) lead, CCITT V.24
circuit 115, EIA-232-D pin 17.

TSETCLK 0000700 Transmitter signal element timing (DTE
source) lead, CCITT V.24 circuit 113,
EIA-232-D pin 24, clock source:

TSETCOFF 0000000 TSET clock not provided.

TSETCRBRG 0000100 Output receive baud rate generator
on circuit 113.

TSETCTBRG 0000200 Output transmit baud rate generator
on circuit 113

TSETCTSET 0000300 Output transmitter signal element timing
(DCE source) on circuit 113.

TSETCRSET 0000400 Output receiver signal element timing
(DCE source) on circuit 113.

RSETCLK 0007000 Receiver signal element timing (DTE
source) lead, CCITT V.24 circuit 128, no
EIA-232-D pin, clock source:

RSETCOFF 0000000 RSET clock not provided.

RSETCRBRG 0001000 Output receive baud rate generator
on circuit 128.

RSETCTBRG 0002000 Output transmit baud rate generator
on circuit 128.

RSETCTSET 0003000 Output transmitter signal element timing
(DCE source) on circuit 128.

RSETCRSET 0004000 Output receiver signal element timing
(DCE) on circuit 128.

Last modified 3 Jul 1990 SunOS 5.8 575

termiox(7I) Ioctl Requests

If the XMTCLKfield has a value of XCIBRGthe transmit clock is taken from the
hardware internal baud rate generator, as in normal asynchronous transmission.
If XMTCLK= XCTSETthe transmit clock is taken from the Transmitter Signal
Element Timing (DCE source) circuit. If XMTCLK= XCRSETthe transmit clock is
taken from the Receiver Signal Element Timing (DCE source) circuit.

If the RCVCLKfield has a value of RCIBRGthe receive clock is taken from the
hardware Internal Baud Rate Generator, as in normal asynchronous transmission.
If RCVCLK= RCTSETthe receive clock is taken from the Transmitter Signal
Element Timing (DCE source) circuit. If RCVCLK= RCRSETthe receive clock is
taken from the Receiver Signal Element Timing (DCE source) circuit.

If the TSETCLKfield has a value of TSETCOFFthe Transmitter Signal Element
Timing (DTE source) circuit is not driven. If TSETCLK= TSETCRBRGthe
Transmitter Signal Element Timing (DTE source) circuit is driven by the Receive
Baud Rate Generator. If TSETCLK= TSETCTBRGthe Transmitter Signal Element
Timing (DTE source) circuit is driven by the Transmit Baud Rate Generator. If
TSETCLK= TSETCTSETthe Transmitter Signal Element Timing (DTE source)
circuit is driven by the Transmitter Signal Element Timing (DCE source). If
TSETCLK= TSETCRBRGthe Transmitter Signal Element Timing (DTE source)
circuit is driven by the Receiver Signal Element Timing (DCE source).

If the RSETCLKfield has a value of RSETCOFFthe Receiver Signal Element
Timing (DTE source) circuit is not driven. If RSETCLK= RSETCRBRGthe
Receiver Signal Element Timing (DTE source) circuit is driven by the Receive
Baud Rate Generator. If RSETCLK= RSETCTBRGthe Receiver Signal Element
Timing (DTE source) circuit is driven by the Transmit Baud Rate Generator. If
RSETCLK= RSETCTSETthe Receiver Signal Element Timing (DTE source) circuit
is driven by the Transmitter Signal Element Timing (DCE source). If RSETCLK=
RSETCRBRGthe Receiver Signal Element Timing (DTE source) circuit is driven
by the Receiver Signal Element Timing (DCE source).

The x_rflag is reserved for future interface definitions and should not be used
by any implementations. The x_sflag may be used by local implementations
wishing to customize their terminal interface using the termiox ioctl system
calls.

IOCTLS The ioctl (2) system calls have the form:

ioctl (fildes, command, arg) struct termiox * arg;

The commands using this form are:
TCGETX The argument is a pointer to a termiox structure. The

current terminal parameters are fetched and stored into
that structure.

576 SunOS 5.8 Last modified 3 Jul 1990

Ioctl Requests termiox(7I)

TCSETX The argument is a pointer to a termiox structure. The
current terminal parameters are set from the values stored in
that structure. The change is immediate.

TCSETXW The argument is a pointer to a termiox structure. The
current terminal parameters are set from the values stored in
that structure. The change occurs after all characters queued
for output have been transmitted. This form should be used
when changing parameters that will affect output.

TCSETXF The argument is a pointer to a termiox structure. The
current terminal parameters are set from the values stored in
that structure. The change occurs after all characters queued
for output have been transmitted; all characters queued for
input are discarded and then the change occurs.

FILES /dev/*

SEE ALSO stty (1), ioctl (2), termio (7I)

NOTES The termiox (7I) system call is provided for compatibility with previous releases
and its use is discouraged. Instead, the termio (7I) system call is recommended.
See termio (7I) for usage information.

Last modified 3 Jul 1990 SunOS 5.8 577

ticlts(7D) Devices

NAME ticlts, ticots, ticotsord – loopback transport providers

SYNOPSIS #include <sys/ticlts.h>

#include <sys/ticots.h>

#include <sys/ticotsord.h>

DESCRIPTION The devices known as ticlts , ticots , and ticotsord are “loopback
transport providers,” that is, stand-alone networks at the transport level.
Loopback transport providers are transport providers in every sense except
one: only one host (the local machine) is “connected to” a loopback network.
Loopback transports present a TPI (STREAMS-level) interface to application
processes and are intended to be accessed via the TLI (application-level)
interface. They are implemented as clone devices and support address spaces
consisting of “flex-addresses,” that is, arbitrary sequences of octets of length > 0,
represented by a netbuf structure.

ticlts is a datagram-mode transport provider. It offers (connectionless) service
of type T_CLTS . Its default address size is TCL_DEFAULTADDRSZ. ticlts
prints the following error messages (see t_rcvuderr (3NSL)):
TCL_BADADDR bad address specification

TCL_BADOPT bad option specification

TCL_NOPEER bound

TCL_PEERBADSTATE peer in wrong state

ticots is a virtual circuit-mode transport provider. It offers
(connection-oriented) service of type T_COTS. Its default address size is
TCO_DEFAULTADDRSZ. ticots prints the following disconnect messages (see
t_rcvdis (3NSL)):
TCO_NOPEER no listener on destination address

TCO_PEERNOROOMONQ peer has no room on connect queue

TCO_PEERBADSTATE peer in wrong state

TCO_PEERINITIATED peer-initiated disconnect

TCO_PROVIDERINITIATED provider-initiated disconnect

ticotsord is a virtual circuit-mode transport provider, offering service of type
T_COTS_ORD(connection-oriented service with orderly release). Its default
address size is TCOO_DEFAULTADDRSZ. ticotsord prints the following
disconnect messages (see t_rcvdis (3NSL)):

578 SunOS 5.8 Last modified 3 Jul 1990

Devices ticlts(7D)

TCOO_NOPEER no listener on destination address

TCOO_PEERNOROOMONQ peer has no room on connect queue

TCOO_PEERBADSTATE peer in wrong state

TCOO_PEERINITIATED provider-initiated disconnect

TCOO_PROVIDERINITIATED peer-initiated disconnect

USAGE Loopback transports support a local IPC mechanism through the TLI interface.
Applications implemented in a transport provider-independent manner on a
client-server model using this IPC are transparently transportable to networked
environments.

Transport provider-independent applications must not include the headers listed
in the synopsis section above. In particular, the options are (like all transport
provider options) provider dependent.

ticlts and ticots support the same service types (T_CLTS and T_COTS)
supported by the OSI transport-level model.

ticotsord supports the same service type (T_COTSORD) supported by the
TCP/IP model.

FILES /dev/ticlts

/dev/ticots

/dev/ticotsord

SEE ALSO t_rcvdis (3NSL) , t_rcvuderr (3NSL)

Last modified 3 Jul 1990 SunOS 5.8 579

timod(7M) STREAMS Modules

NAME timod – Transport Interface cooperating STREAMS module

SYNOPSIS #include <sys/stropts.h>

ioctl(fildes, I_STR, &my_strioctl);

DESCRIPTION timod is a STREAMS module for use with the Transport Interface (“TI”)
functions of the Network Services library. The timod module converts a set of
ioctl (2) calls into STREAMS messages that may be consumed by a transport
protocol provider that supports the Transport Interface. This allows a user to
initiate certain TI functions as atomic operations.

The timod module must be pushed onto only a stream terminated by a transport
protocol provider that supports the TI.

All STREAMS messages, with the exception of the message types generated
from the ioctl commands described below, will be transparently passed to
the neighboring module or driver. The messages generated from the following
ioctl commands are recognized and processed by the timod module. The
format of the ioctl call is:

#include <sys/stropts.h>
-
-

struct strioctl my_strioctl;
-
-

strioctl.ic_cmd = cmd;
strioctl.ic_timout = INFTIM;
strioctl.ic_len = size;
strioctl.ic_dp = (char *) buf
ioctl(fildes, I_STR, & my_strioctl);

On issuance, size is the size of the appropriate TI message to be sent to the
transport provider and on return size is the size of the appropriate TI message
from the transport provider in response to the issued TI message. buf is a pointer
to a buffer large enough to hold the contents of the appropriate TI messages.
The TI message types are defined in <sys/tihdr.h> . The possible values
for the cmd field are:
TI_BIND Bind an address to the underlying transport protocol

provider. The message issued to the TI_BIND ioctl is
equivalent to the TI message type T_BIND_REQand the
message returned by the successful completion of the ioctl
is equivalent to the TI message type T_BIND_ACK.

TI_UNBIND Unbind an address from the underlying transport protocol
provider. The message issued to the TI_UNBIND ioctl is

580 SunOS 5.8 Last modified 26 Mar 1993

STREAMS Modules timod(7M)

equivalent to the TI message type T_UNBIND_REQand the
message returned by the successful completion of the ioctl
is equivalent to the TI message type T_OK_ACK.

TI_GETINFO Get the TI protocol specific information from the transport
protocol provider. The message issued to the TI_GETINFO
ioctl is equivalent to the TI message type T_INFO_REQand
the message returned by the successful completion of the
ioctl is equivalent to the TI message type T_INFO_ACK.

TI_OPTMGMT Get, set, or negotiate protocol specific options with the
transport protocol provider. The message issued to the
TI_OPTMGMTioctl is equivalent to the TI message type
T_OPTMGMT_REQand the message returned by the successful
completion of the ioctl is equivalent to the TI message
type T_OPTMGMT_ACK.

FILES <sys/timod.h> ioctl definitions

<sys/tiuser.h> TLI interface declaration and structure file

<sys/tihdr.h> TPI declarations and user-level code

<sys/errno.h> system error messages file. Please see errno (3C).

SEE ALSO intro (3), ioctl (2), errno (3C), tirdwr (7M)

STREAMS Programming Guide

Transport Interfaces Programming Guide

DIAGNOSTICS If the ioctl returns with a value greater than 0, the lower 8 bits of the return
value will be one of the TI error codes as defined in <sys/tiuser.h> . If the TI
error is of type TSYSERR, then the next 8 bits of the return value will contain an
error as defined in <sys/errno.h> (see intro (3)).

Last modified 26 Mar 1993 SunOS 5.8 581

tirdwr(7M) STREAMS Modules

NAME tirdwr – Transport Interface read/write interface STREAMS module

SYNOPSIS int ioctl(fd, I_PUSH, "tirdwr");

DESCRIPTION tirdwr is a STREAMS module that provides an alternate interface to a
transport provider which supports the Transport Interface (“TI”) functions of the
Network Services library (see Section 3N). This alternate interface allows a user
to communicate with the transport protocol provider using the read (2) and
write (2) system calls. The putmsg (2) and getmsg (2) system calls may also be
used. However, putmsg and getmsg can only transfer data messages between
user and stream; control portions are disallowed.

The tirdwr module must only be pushed (see I_PUSH in streamio (7I))
onto a stream terminated by a transport protocol provider which supports the
TI. After the tirdwr module has been pushed onto a stream, none of the TI
functions can be used. Subsequent calls to TI functions cause an error on the
stream. Once the error is detected, subsequent system calls on the stream return
an error with errno set to EPROTO.

The following are the actions taken by the tirdwr module when pushed on
the stream, popped (see I_POP in streamio (7I)) off the stream, or when data
passes through it.
push When the module is pushed onto a stream, it checks any

existing data destined for the user to ensure that only regular
data messages are present. It ignores any messages on the
stream that relate to process management, such as messages
that generate signals to the user processes associated with
the stream. If any other messages are present, the I_PUSH
will return an error with errno set to EPROTO.

write The module takes the following actions on data that
originated from a write system call:

� All messages with the exception of messages that
contain control portions (see the putmsg and getmsg
system calls) are transparently passed onto the module’s
downstream neighbor.

� Any zero length data messages are freed by the
module and they will not be passed onto the module’s
downstream neighbor.

� Any messages with control portions generate an error,
and any further system calls associated with the stream
fails with errno set to EPROTO.

read The module takes the following actions on data that
originated from the transport protocol provider.

582 SunOS 5.8 Last modified 3 Jul 1990

STREAMS Modules tirdwr(7M)

All messages with the exception of those that contain control
portions (see the putmsg and getmsg system calls) are
transparently passed onto the module’s upstream neighbor.
The action taken on messages with control portions will
be as follows:

� Any data messages with control portions have the control
portions removed from the message before to passing the
message on to the upstream neighbor.

� Messages that represent an orderly release indication
from the transport provider generate a zero length data
message, indicating the end of file, which will be sent to
the reader of the stream. The orderly release message
itself is freed by the module.

� Messages that represent an abortive disconnect indication
from the transport provider cause all further write and
putmsg system calls to fail with errno set to ENXIO.
All further read and getmsg system calls return zero
length data (indicating end of file) once all previous data
has been read.

� With the exception of the above rules, all other messages
with control portions generate an error and all further
system calls associated with the stream will fail with
errno set to EPROTO.

Any zero length data messages are freed by the module and
they are not passed onto the module’s upstream neighbor.

pop When the module is popped off the stream or the stream is
closed, the module takes the following action:

� If an orderly release indication has been previously
received, then an orderly release request will be sent to
the remote side of the transport connection.

SEE ALSO intro (3), getmsg (2), putmsg (2), read (2), write (2), intro (3), streamio (7I),
timod (7M)

STREAMS Programming Guide

Transport Interfaces Programming Guide

Last modified 3 Jul 1990 SunOS 5.8 583

tmpfs(7FS) File Systems

NAME tmpfs – memory based file system

SYNOPSIS #include <sys/mount.h>
mount (special, directory, MS_DATA, "tmpfs", NULL, 0);

DESCRIPTION tmpfs is a memory based file system which uses kernel resources relating to
the VM system and page cache as a file system. Once mounted, a tmpfs file
system provides standard file operations and semantics. tmpfs is so named
because files and directories are not preserved across reboot or unmounts, all
files residing on a tmpfs file system that is unmounted will be lost.

tmpfs file systems can be mounted with the command:

mount −F tmpfs swap directory

Alternatively, to mount a tmpfs file system on /tmp at multi-user startup time
(maximizing possible performance improvements), add the following line to
/etc/vfstab :

swap −/tmp tmpfs − yes −

tmpfs is designed as a performance enhancement which is achieved by caching
the writes to files residing on a tmpfs file system. Performance improvements
are most noticeable when a large number of short lived files are written and
accessed on a tmpfs file system. Large compilations with tmpfs mounted
on /tmp are a good example of this.

Users of tmpfs should be aware of some constraints involved in mounting a
tmpfs file system. The resources used by tmpfs are the same as those used
when commands are executed (for example, swap space allocation). This means
that large sized tmpfs files can affect the amount of space left over for programs
to execute. Likewise, programs requiring large amounts of memory use up the
space available to tmpfs . Users running into this constraint (for example,
running out of space on tmpfs) can allocate more swap space by using the
swap(1M) command.

Another constraint is that the number of files available in a tmpfs file system is
calculated based on the physical memory of the machine and not the size of the
swap device/partition. If you have too many files, tmpfs will print a warning
message and you will be unable to create new files. You cannot increase this
limit by adding swap space.

Normal file system writes are scheduled to be written to a permanent storage
medium along with all control information associated with the file (for example,

584 SunOS 5.8 Last modified 9 Oct 1990

File Systems tmpfs(7FS)

modification time, file permissions). tmpfs control information resides only in
memory and never needs to be written to permanent storage. File data remains
in core until memory demands are sufficient to cause pages associated with
tmpfs to be reused at which time they are copied out to swap.

An additional mount option can be specified to control the size of an individual
tmpfs file system.

SEE ALSO df (1M), mount (1M), mount_tmpfs (1M), swap(1M), mmap(2), mount (2),
umount (2), vfstab (4)

System Administration Guide, Volume 1

DIAGNOSTICS If tmpfs runs out of space, one of the following messages will display in the
console.
directory: File system full, swap space limit exceeded

This message appears because a page could not be allocated while writing
to a file. This can occur if tmpfs is attempting to write more than it is
allowed, or if currently executing programs are using a lot of memory.
To make more space available, remove unnecessary files, exit from some
programs, or allocate more swap space using swap(1M).

directory: File system full, memory allocation failed
tmpfs ran out of physical memory while attempting to create a new file or
directory. Remove unnecessary files or directories or install more physical
memory.

WARNINGS Files and directories on a tmpfs file system are not preserved across reboots
or unmounts. Command scripts or programs which count on this will not
work as expected.

NOTES Compilers do not necessarily use /tmp to write intermediate files therefore
missing some significant performance benefits. This can be remedied by setting
the environment variable TMPDIRto /tmp . Compilers use the value in this
environment variable as the name of the directory to store intermediate files.

swap to a tmpfs file is not supported.

df (1M) output is of limited accuracy since a tmpfs file system size is not static
and the space available to tmpfs is dependent on the swap space demands
of the entire system.

Last modified 9 Oct 1990 SunOS 5.8 585

tpf(7D) Devices

NAME tpf – Platform Specific Module (PSM) for Tricord Systems Enterprise Server
Models ES3000, ES4000 and ES5000.

DESCRIPTION tpf provides the platform dependent functions for Solaris IA MP support. These
functions adhere to the PSMI Specifications. (Platform Specific Module Interface
Specifications.) Tricord Systems Enterprise Servers are Intel APIC based MP
platforms which run from 1 to 12 Intel processors. The tpf psm supports
dynamic interrupt distribution across all processors in an MP configuration.

The psm is automatically invoked on an ESxxxx platform at system boot time.

FILES /kernel/mach/tpf MP module.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5)

586 SunOS 5.8 Last modified 1 Jan 1997

STREAMS Modules ttcompat(7M)

NAME ttcompat – V7, 4BSD and XENIX STREAMS compatibility module

SYNOPSIS #include <sys/stream.h>

#include <sys/stropts.h>

#include <sys/ttold.h>

#include <sys/ttcompat.h>

#include <sys/filio.h>

ioctl(fd, I_PUSH, "ttcompat");

DESCRIPTION ttcompat is a STREAMS module that translates the ioctl calls supported
by the older Version 7, 4BSD, and XENIX terminal drivers into the ioctl
calls supported by the termio interface (see termio (7I)). All other messages
pass through this module unchanged; the behavior of read and write calls
is unchanged, as is the behavior of ioctl calls other than the ones supported
by ttcompat .

This module can be automatically pushed onto a stream using the autopush
mechanism when a terminal device is opened; it does not have to be explicitly
pushed onto a stream. This module requires that the termios interface be
supported by the modules and the application can push the driver downstream.
The TCGETS, TCSETS,and TCSETSF ioctl calls must be supported. If any
information set or fetched by those ioctl calls is not supported by the modules
and driver downstream, some of the V7/4BSD/XENIX functions may not
be supported. For example, if the CBAUDbits in the c_cflag field are not
supported, the functions provided by the sg_ispeed and sg_ospeed fields of
the sgttyb structure (see below) will not be supported. If the TCFLSH ioctl
is not supported, the function provided by the TIOCFLUSH ioctl will not be
supported. If the TCXONC ioctl is not supported, the functions provided by the
TIOCSTOPand TIOCSTART ioctl calls will not be supported. If the TIOCMBIS
and TIOCMBIC ioctl calls are not supported, the functions provided by the
TIOCSDTRand TIOCCDTR ioctl calls will not be supported.

The basic ioctl calls use the sgttyb structure defined by <sys/ttold.h> :

struct sgttyb {
char sg_ispeed;
char sg_ospeed;
char sg_erase;
char sg_kill;
int sg_flags;

};

The sg_ispeed and sg_ospeed fields describe the input and output speeds of
the device, and reflect the values in the c_cflag field of the termios structure
at a specific time in the past, but are not necessarily reflective of a one-to-one

Last modified 2 Jun 1995 SunOS 5.8 587

ttcompat(7M) STREAMS Modules

correspondence in functionality. The sg_erase and sg_kill fields of the
argument structure specify the erase and kill characters respectively, and
reflect the values in the VERASEand VKILL members of the c_cc field of the
termios structure.

The sg_flags field of the argument structure contains several flags that
determine the system’s treatment of the terminal. They are mapped into flags in
fields of the terminal state, represented by the termios structure.

Delay type 0 is always mapped into the equivalent delay type 0 in the c_oflag
field of the termios structure. Other delay mappings are performed as follows:
sg_flags c_oflag

BS1 BS1

FF1 VT1

CR1 CR2

CR2 CR3

CR3 not supported

TAB1 TAB1

TAB2 TAB2

XTABS TAB3

NL1 ONLRET|CR1

NL2 NL1

If previous TIOCLSET or TIOCLBIS ioctl calls have not selected LITOUT or
PASS8mode, and if RAWmode is not selected, then the ISTRIP flag is set in the
c_iflag field of the termios structure, and the EVENPand ODDPflags control
the parity of characters sent to the terminal and accepted from the terminal.

Parity is not to be generated on output or checked on input. The character size is
set to CS8and the flag is cleared in the c_cflag field of the termios structure.

Even parity characters are to be generated on output and accepted on input. The
flag is set in the c_iflag field of the termios structure, the character size is set
to CS7 and the flag is set in the c_cflag field of the termios structure.

Odd parity characters are to be generated on output and accepted on input. The
flag is set in the c_iflag field, the character size is set to CS7and the flags are
set in the c_cflag field of the termios structure.

Even parity characters are to be generated on output and characters of either
parity are to be accepted on input. The flag is cleared in the c_iflag field,

588 SunOS 5.8 Last modified 2 Jun 1995

STREAMS Modules ttcompat(7M)

the character size is set to CS7 and the flag is set in the c_cflag field of the
termios structure.

The RAWflag disables all output processing (the OPOSTflag in the c_oflag
field, and the XCASEflag in the c_lflag field, are cleared in the termios
structure) and input processing (all flags in the c_iflag field other than the
IXOFF and IXANY flags are cleared in the termios structure). 8 bits of data,
with no parity bit, are accepted on input and generated on output; the character
size is set to CS8and the PARENBand PARODDflags are cleared in the c_cflag
field of the termios structure. The signal-generating and line-editing control
characters are disabled by clearing the ISIG and ICANONflags in the c_lflag
field of the termios structure.

The CRMODflag turns input RETURN characters into NEWLINE characters, and
output and echoed NEWLINE characters to be output as a RETURN followed by
a LINEFEED. The ICRNL flag in the c_iflag field, and the OPOSTand ONLCR
flags in the c_oflag field, are set in the termios structure.

The LCASEflag maps upper-case letters in the ASCII character set to their
lower-case equivalents on input (the IUCLC flag is set in the c_iflag field), and
maps lower-case letters in the ASCII character set to their upper-case equivalents
on output (the OLCUCflag is set in the c_oflag field). Escape sequences are
accepted on input, and generated on output, to handle certain ASCII characters
not supported by older terminals (the XCASEflag is set in the c_lflag field).

Other flags are directly mapped to flags in the termios structure:
sg_flags flags in termios structure

CBREAK complement of ICANONin c_lflag field

ECHO ECHOin c_lflag field

TANDEM IXOFFin c_iflag field

Another structure associated with each terminal specifies characters that are
special in both the old Version 7 and the newer 4BSDterminal interfaces. The
following structure is defined by <sys/ttold.h> :

struct tchars {
char t_intrc; /* interrupt */
char t_quitc; /* quit */
char t_startc; /* start output */
char t_stopc; /* stop output */
char t_eofc; /* end-of-file */
char t_brkc; /* input delimiter (like nl) */

};

XENIX defines the tchar structure as tc . The characters are mapped to
members of the c_cc field of the termios structure as follows:

Last modified 2 Jun 1995 SunOS 5.8 589

ttcompat(7M) STREAMS Modules

tchars c_cc index

t_intrc VINTR

t_quitc VQUIT

t_startc VSTART

t_stopc VSTOP

t_eofc VEOF

t_brkc VEOL

Also associated with each terminal is a local flag word, specifying flags
supported by the new 4BSDterminal interface. Most of these flags are directly
mapped to flags in the termios structure:
local flags flags in termios structure

LCRTBS not supported

LPRTERA ECHOPRTin the c_lflag field

LCRTERA ECHOEin the c_lflag field

LTILDE not supported

LTOSTOP TOSTOPin the c_lflag field

LFLUSHO FLUSHOin the c_lflag field

LNOHANG CLOCALin the c_cflag field

LCRTKIL ECHOKEin the c_lflag field

LCTLECH CTLECHin the c_lflag field

LPENDIN PENDINin the c_lflag field

LDECCTQ complement of IXANY in the c_iflag field

LNOFLSH NOFLSHin the c_lflag field

Another structure associated with each terminal is the ltchars structure which
defines control characters for the new 4BSDterminal interface. Its structure is:

struct ltchars {
char t_suspc; /* stop process signal */
char t_dsuspc; /* delayed stop process signal */
char t_rprntc; /* reprint line */
char t_flushc; /* flush output (toggles) */
char t_werasc; /* word erase */
char t_lnextc; /* literal next character */

590 SunOS 5.8 Last modified 2 Jun 1995

STREAMS Modules ttcompat(7M)

};

The characters are mapped to members of the c_cc field of the termios
structure as follows:
ltchars c_cc index

t_suspc VSUSP

t_dsuspc VDSUSP

t_rprntc VREPRINT

t_flushc VDISCARD

t_werasc VWERASE

t_lnextc VLNEXT

IOCTLS ttcompat responds to the following ioctl calls. All others are passed to the
module below.
TIOCGETP The argument is a pointer to an sgttyb structure. The

current terminal state is fetched; the appropriate characters
in the terminal state are stored in that structure, as are the
input and output speeds. The values of the flags in the
sg_flags field are derived from the flags in the terminal
state and stored in the structure.

TIOCEXCL Set “exclusive-use” mode; no further opens are permitted
until the file has been closed.

TIOCNXCL Turn off “exclusive-use” mode.

TIOCSETP The argument is a pointer to an sgttyb structure. The
appropriate characters and input and output speeds in the
terminal state are set from the values in that structure, and
the flags in the terminal state are set to match the values of
the flags in the sg_flags field of that structure. The state is
changed with a TCSETSF ioctl so that the interface delays
until output is quiescent, then throws away any unread
characters, before changing the modes.

TIOCSETN The argument is a pointer to an sgttyb structure. The
terminal state is changed as TIOCSETPwould change it,
but a TCSETS ioctl is used, so that the interface neither
delays nor discards input.

TIOCHPCL The argument is ignored. The HUPCLflag is set in the
c_cflag word of the terminal state.

Last modified 2 Jun 1995 SunOS 5.8 591

ttcompat(7M) STREAMS Modules

TIOCFLUSH The argument is a pointer to an int variable. If its value
is zero, all characters waiting in input or output queues
are flushed. Otherwise, the value of the int is treated as
the logical ORof the FREADand FWRITEflags defined
by <sys/file.h> . If the FREADbit is set, all characters
waiting in input queues are flushed, and if the FWRITEbit is
set, all characters waiting in output queues are flushed.

TIOCBRK The argument is ignored. The break bit is set for the device.

TIOCCBRK The argument is ignored. The break bit is cleared for the
device.

TIOCSDTR The argument is ignored. The Data Terminal Ready bit
is set for the device.

TIOCCDTR The argument is ignored. The Data Terminal Ready bit is
cleared for the device.

TIOCSTOP The argument is ignored. Output is stopped as if the STOP
character had been typed.

TIOCSTART The argument is ignored. Output is restarted as if the START
character had been typed.

TIOCGETC The argument is a pointer to a tchars structure. The current
terminal state is fetched, and the appropriate characters in
the terminal state are stored in that structure.

TIOCSETC The argument is a pointer to a tchars structure. The values
of the appropriate characters in the terminal state are set
from the characters in that structure.

TIOCLGET The argument is a pointer to an int . The current terminal
state is fetched, and the values of the local flags are derived
from the flags in the terminal state and stored in the int
pointed to by the argument.

TIOCLBIS The argument is a pointer to an int whose value is a mask
containing flags to be set in the local flags word. The current
terminal state is fetched, and the values of the local flags are
derived from the flags in the terminal state; the specified
flags are set, and the flags in the terminal state are set to
match the new value of the local flags word.

TIOCLBIC The argument is a pointer to an int whose value is a mask
containing flags to be cleared in the local flags word. The
current terminal state is fetched, and the values of the local
flags are derived from the flags in the terminal state; the

592 SunOS 5.8 Last modified 2 Jun 1995

STREAMS Modules ttcompat(7M)

specified flags are cleared, and the flags in the terminal state
are set to match the new value of the local flags word.

TIOCLSET The argument is a pointer to an int containing a new set of
local flags. The flags in the terminal state are set to match
the new value of the local flags word.

TIOCGLTC The argument is a pointer to an ltchars structure. The
values of the appropriate characters in the terminal state
are stored in that structure.

TIOCSLTC The argument is a pointer to an ltchars structure. The
values of the appropriate characters in the terminal state are
set from the characters in that structure.

FIORDCHK Returns the number of immediately readable characters.
The argument is ignored.

FIONREAD Returns the number of immediately readable characters in
the int pointed to by the argument.

LDSMAP Calls the function emsetmap (tp, mp) if the function is
configured in the kernel.

LDGMAP Calls the function emgetmap (tp, mp) if the function is
configured in the kernel.

LDNMAP Calls the function emunmap(tp, mp) if the function is
configured in the kernel.

The following ioctls are returned as successful for the sake of compatibility.
However, nothing significant is done (that is, the state of the terminal is not
changed in any way).

TIOCSETD LDOPEN
TIOCGETD LDCLOSE
DIOCSETP LDCHG
DIOCSETP LDSETT
DIIOGETP LDGETT

SEE ALSO ioctl (2), termios (3C), ldterm (7M), termio (7I)

NOTES TIOCBRKand TIOCCBRKshould be handled by the driver. FIONREADand
FIORDCHKare handled in the stream head.

Last modified 2 Jun 1995 SunOS 5.8 593

tty(7D) Devices

NAME tty – controlling terminal interface

DESCRIPTION The file /dev/tty is, in each process, a synonym for the control terminal
associated with the process group of that process, if any. It is useful for programs
or shell sequences that wish to be sure of writing messages on the terminal no
matter how output has been redirected. It can also be used for programs that
demand the name of a file for output, when typed output is desired and it is
tiresome to find out what terminal is currently in use.

FILES /dev/tty

/dev/tty*

SEE ALSO ports (1M), console (7D)

594 SunOS 5.8 Last modified 3 Jul 1990

STREAMS Modules tun(7M)

NAME tun, TUN – tunneling STREAMS module

SYNOPSIS strmod/tun

strmod/atun

DESCRIPTION tun and atun are STREAMS modules that implement an IP-in-IP tunneling
mechanism. IPv6-in-IPv4 and IPv4-in-IPv4 tunnels are supported.

Tunnels are configured as point-to-point interfaces. Ipv4-in-Ipv4 allows IPv4
packets to be encapsulated within IPv4 packets. IPv6-in-IPv4 tunnels allow
IPv6 packets to be encapsulated within IPv4 packets. Both the tunnel source
and the tunnel destination are required to configure these type of tunnels.
Configured tunnels support encapsulated multicast packets. See ifconfig (1M)
for examples of these tunnel configurations.

The atun module is used to configure automatic tunnels. It supports IPv6
packets encapsulated within IPv4 packets. An IPv4 address is required for
the tunnel source of these interfaces and the IPv4 compatible IPv6 source
address must match this address. IPv6 packets using this interface must have
IPv4 compatible source and destination addresses. Automatic tunnels are
not point-to-point, and they do not allow multicast packets to be sent. If the
destination of an automatic tunnel is a router, the packets will not be forwarded.

� Network startup scripts look at /etc/hostname.ip.* to find the available
tunneling interfaces.

� The same tunnel source address (tsrc) and destination address (tdst) is
be used for all instances (luns) of a specific interface.

� Tunnels do not support snooping. Instead, a filter made up of the
combination of addresses can be used on the physical interface to capture
relevant packets.

� If there is a tunnel set up between two multicast routers, then multicast
routing should be configured to use the tunnel, rather than a special
multicast routing virtual interface.

APPLICATION
PROGRAMMING

INTEFACE

The tunnel module is architected to be plumbed between two instances of IP .

IOCTLS The following ioctl() calls may be used to configure a tunneling interface.
The ioctl() s are defined in <sys/sockio.h> . This structure is defined in
<net/if.h> .

/* currently tunnels only support IPv4 or IPv6 */
enum ifta_proto {

IFTAP_INVALID,
IFTAP_IPV4,

Last modified 2 Apr 1999 SunOS 5.8 595

tun(7M) STREAMS Modules

IFTAP_IPV6
};

#define IFTUN_SECINFOLEN 8
#define IFTUN_VERSION 1

/* tunnel configuration structure */

struct iftun_req {
char ifta_lifr_name[LIFNAMSIZ]; /* if name */
struct sockaddr_storage ifta_saddr; /* source address */
struct sockaddr_storage ifta_daddr; /* destination address */
uint_t ifta_flags; /* See below */

/* IP version information is read only */
enum ifta_proto ifta_upper; /* IP version above tunnel */
enum ifta_proto ifta_lower; /* IP versin below tunnel */
uint_t ifta_vers; /* Version number */
uint32_t ifta_secinfo[IFTUN_SECINFOLEN]; /* Security prefs. */

};
/* These flags are set to indicate which members are valid */

#define IFTUN_SRC 0x01
#define IFTUN_DST 0x02
#define IFTUN_SECURITY 0x04

The ifta_vers field indicates what IPsec request structure is overlayed on top
of ifta_secinfo . The current value of IFTUN_VERSIONimplies an overlay
of ipsec_req_t . See ipsec (7P) .
SIOCSTUNPARAM Set tunnel parameters. This ioctl() allows the

tunnel’s source or destination address to be set.
The IFTUN_SRCbit set in ta_flags indicates
that the tunnel should bound to the source
address supplied in ta_saddr . The source
must be a valid configured interface IP address.
The IFTUN_DST bit set in ta_flags indicates
that the tunnel should bound to the destination
address supplied in ta_daddr . The destination
address must be reachable.

SIOCGTUNPARAM Get tunnel parameters. Valid fields are indicated
by the returned value of ta_flags bitmask.
The version of IP plumbed above or below
the tunnel may be determined by inspecting
ta_upper and ta_lower by comparing the
members against the mutually exclusive defined
values IFTAP_INVALID , IFTAP_IPV4 , and
IFTAP_IPV6 . Currently, only IFTAP_IPV4 is
supported, as IP is currently version 4.

596 SunOS 5.8 Last modified 2 Apr 1999

STREAMS Modules tun(7M)

Tunnels and DLPI The tunnel module is a DLPI st yle 2 service provider. All M_PROTOand
M_PCPROTOtype messages are interpreted as DLPI primitives. Valid DLPI
primitives are defined in <sys/dlpi.h> . Refer to dlpi (7P) for more
information. An explicit DL_ATTACH_REQmessage by the user is required to
associate the opened stream with a particular device (ppa). The ppa indicates
the corresponding device instance (unit) number. The device is initialized on
first attach and deinitialized (stopped) on last detach.

The values returned by the module in the DL_INFO_ACKprimitive in response
to the DL_INFO_REQfrom the user are as follows:

� The maximum SDU is usually 4196 ("ip_max_mtu - size of IP header").

� The minimum SDU is 1.

� The dlsap address length is 0 for configured tunnels and non-zero for
automatic tunnels.

� The MACtype is DL_OTHER .

� The sap length value is 0.

� The service mode is DL_CLDLS.

� No optional quality of service (QOS) support is included at present so
the QOS fields are 0.

� The provider style is DL_STYLE2 .

� The version is DL_VERSION_2.

� The broadcast address value is 0

Once in the DL_ATTACHEDstate, the user must send a DL_BIND_REQto associate
a particular SAP (Service Access Pointer) with the stream. The tunneling module
interprets the sap field within the DL_BIND_REQas an IP "type" therefore the
valid value for the sap field is IP_DL_SAP .

Once in the DL_BOUNDstate, the user may transmit packets through the
tunnel by sending DL_UNITDATA_REQmessages to the tunnel module.
Configured tunnels will encapsulate the packet with the appropriate IP header
using the source and destination specified by tsrc and tdst parameters of
ifconfig (1M) . The tunnel module will decapsulate received packets and
route them to the first open and bound stream having a sap , tsrc and tdst
which matches the the configured information. Packets are routed to exactly
one open stream and not duplicated.

The module does not support additional primitives. DL_ERROR_ACKwith
the dl_error set to DL_UNSUPPORTEDwill be returned in the case that an
unsupported DLPI primitive is encountered.

Last modified 2 Apr 1999 SunOS 5.8 597

tun(7M) STREAMS Modules

SECURITY
CONSIDERATIONS

A tunnel creates what appears to be a physical interface to IP . It can be "trusted"
as a physical link only so far as the underlying security protocols, if used, can be
trusted. If the security associations (see ipsec (7P) are securely set up then the
tunnel can be trusted in that packets that come off the tunnel came from the peer
specified in the tunnel destination. If this trust exists, per-interface IP forwarding
can be used to create a Virtual Private Network ("VPN "). See ip (7P) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcsrx (64-bit)

Interface Stability Evolving

SEE ALSO ifconfig (1M) . attributes (5) , ip (7P) , ipsec (7P)

TCP/IP and Data Communications Administration Guide

Gilligan, R. and Nordmark, E., RFC 1933, Transition Mechanisms for IPv6
Hosts and Routers , The Internet Society, 1996.

598 SunOS 5.8 Last modified 2 Apr 1999

Devices uata(7D)

NAME uata – IDE Host Bus Adapter Driver

SYNOPSIS ide@unit-address

DESCRIPTION The uata Host Bus Adapter driver is a nexus driver that supports the ide
interface on SPARC platforms.

It supports DMA mode-2 for the disk drives and ATAPI cdrom drives. It has
support to handle two channels concurrently with two devices connected on
each channel. The devices are logically numbered from 0 to 3.
0 Master disk on Primary channel.

1 Slave disk on Primary channel.

2 Master disk on Secondary channel

3 Slave disk on Secondary channel.

FILES /kernel/drv/uata

SEE ALSO prtconf (1M), driver.conf(4), attributes(5)

Writing Device Drivers

OpenBoot 3.x Command Reference ManualOpenBoot Command Reference

X3T10 ATA-4 specifications.

DIAGNOSTICS The messages described below are some that may appear on the system console,
as well as being logged.
ddi_get_iblock_cookie failed The driver could not obtain the

interrupt cookie so the attach
could fail.

Drive not ready before set_features During the initialization
process of the drives, driver
needs to set the feaures such
as dma mode/pio mode etc.
for the drives. The above
stated message would come
if the drives are not ready to
be programmed. Setting of
features would fail. This could
indicate a fatal problem with
the drive.

Interrupt not seen after set_features The above stated message
also indicates that there was a
problem in setting the featues

Last modified 15 Mar 1999 SunOS 5.8 599

uata(7D) Devices

for the drive. This indicates a
fatal problem with the drive.

Drive not ready after set_features The above stated message
also indicates that there was a
problem in setting the features
for the drive. This indicates a
fatal problem with the drive.

? target %d lun 0 This is an information message
which would appear at the boot
up time to indicate that target
<#number> was identified.

resid = %x There was a residual in
data transfer and the I/O
operation could not be finished
completely.

ghd_timer_newstate: HBA reset failed This is generally a fatal
condition. It indicates that even
after the reset of the channel,
I/O operation could not be
completed.

timeout: <msgp> target = %d lun=0 msgp could be - early abort,
early timeout, abort request,
abort device, reset target, reset
bus

These messages are informational and indicate that a timeout occured for a
I/O request. The uata driver recovers from these states automatically unless
there is a fatal error.

600 SunOS 5.8 Last modified 15 Mar 1999

Protocols udp(7P)

NAME udp, UDP – Internet User Datagram Protocol

SYNOPSIS #include <sys/socket.h>

#include <netinet/in.h>

s = socket(AF_INET, SOCK_DGRAM, 0);

s = socket(AF_INET6, SOCK_DGRAM, 0);

t = t_open("/dev/udp", O_RDWR);

t = t_open("/dev/udp6", O_RDWR);

DESCRIPTION UDP is a simple datagram protocol which is layered directly above the Internet
Protocol ("IP ") or the Internet Protocol Version 6 ("IPv6"). Programs may access
UDP using the socket interface, where it supports the SOCK_DGRAMsocket
type, or using the Transport Level Interface ("TLI "), where it supports the
connectionless (T_CLTS) service type.

Within the socket interface, UDP is normally used with the sendto() ,
sendmsg() , recvfrom() , and recvmsg() calls (see send (3SOCKET) and
recv (3SOCKET)). If the connect (3SOCKET) call is used to fix the destination
for future packets, then the recv (3SOCKET) or read (2) and send (3SOCKET) or
write (2) calls may be used.

UDP address formats are identical to those used by the Transmission Control
Protocol ("TCP "). Like TCP, UDP uses a port number along with an IP or IPv6
address to identify the endpoint of communication. The UDP port number space
is separate from the TCP port number space, that is, a UDP port may not be
"connected" to a TCP port. The bind (3SOCKET) call can be used to set the local
address and port number of a UDP socket. The local IP or IPv6 address may be
left unspecified in the bind() call by using the special value INADDR_ANYfor IP
, or the unspecified address (all zeroes) for IPv6. If the bind() call is not done, a
local IP or IPv6 address and port number will be assigned to the endpoint when
the first packet is sent. Broadcast packets may be sent, assuming the underlying
network supports this, by using a reserved "broadcast address." This address is
network interface dependent. Broadcasts may only be sent by the privileged user.

IPv6 does not support broadcast addresses; their function is supported by IPv6
multicast addresses.

Options at the IP level may be used with UDP ; see ip (7P) or ip6 (7p) .

There are a variety of ways that a UDP packet can be lost or corrupted, including
a failure of the underlying communication mechanism. UDP implements a
checksum over the data portion of the packet. If the checksum of a received
packet is in error, the packet will be dropped with no indication given to the
user. A queue of received packets is provided for each UDP socket. This queue

Last modified 4 Nov 1999 SunOS 5.8 601

udp(7P) Protocols

has a limited capacity. Arriving datagrams which will not fit within its high-water
capacity are silently discarded.

UDP processes Internet Control Message Protocol ("ICMP ") and Internet Control
Message Protocol Version 6 ("ICMP6 ") error messages received in response to
UDP packets it has sent. See icmp (7P) and icmp6 (7p) .

ICMP "source quench" messages are ignored. ICMP "destination unreachable,"
"time exceeded" and "parameter problem" messages disconnect the socket from
its peer so that subsequent attempts to send packets using that socket will return
an error. UDP will not guarantee that packets are delivered in the order they were
sent. As well, duplicate packets may be generated in the communication process.

ICMP6 "destination unreachable" packets are ignored unless the enclosed
code indicates that the port is not in use on the target host, in which case, the
application is notified. ICMP6 "parameter problem" notifications are similarly
passed upstream. All other ICMP6 messages are ignored.

SEE ALSO read (2) , write (2) , bind (3SOCKET) , connect (3SOCKET) , recv (3SOCKET)
, send (3SOCKET) , icmp (7P) , icmp6 (7P) , inet (7P) , inet6 (7P) , ip (7P)
, ip6 (7P) , tcp (7P)

Postel, Jon, RFC 768, User Datagram Protocol , Network Information Center,
SRI International, Menlo Park, Calif., August 1980

DIAGNOSTICS A socket operation may fail if:
EISCONN A connect() operation was attempted on a

socket on which a connect() operation had
already been performed, and the socket could
not be successfully disconnected before making
the new connection.

EISCONN A sendto() or sendmsg() operation specifying
an address to which the message should be
sent was attempted on a socket on which
a connect() operation had already been
performed.

ENOTCONN A send() or write() operation, or a
sendto() or sendmsg() operation not
specifying an address to which the message
should be sent, was attempted on a socket on
which a connect() operation had not already
been performed.

EADDRINUSE A bind() operation was attempted on a socket
with a network address/port pair that has
already been bound to another socket.

602 SunOS 5.8 Last modified 4 Nov 1999

Protocols udp(7P)

EADDRNOTAVAIL A bind() operation was attempted on a socket
with a network address for which no network
interface exists.

EINVAL A sendmsg() operation with a non-NULL
msg_accrights was attempted.

EACCES A bind() operation was attempted with a
"reserved" port number and the effective user ID
of the process was not the privileged user.

ENOBUFS The system ran out of memory for internal data
structures.

Last modified 4 Nov 1999 SunOS 5.8 603

uhci(7D) Devices

NAME uhci – host controller driver

SYNOPSIS usb@unit-address

DESCRIPTION The uhci host controller driver is a USBA (Solaris USB Architecture) compliant
nexus driver that supports the Universal Host Controller Interface Specification
1.1, an industry standard developed by Intel. The uhci driver supports
interrupt, control, and bulk transfers.

The uhci driver supports the nexus device control interface.

FILES /kernel/drv/uhci 32–bit ELF Kernel Module

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based X86 systems

Availability SUNWusb

Interface Stability Unstable

SEE ALSO hubd (7D), usb_mid (7D)

Writing Device Drivers

Universal Host Controller Interface Specification for USB 1.1

Universal Serial Bus Specification

604 SunOS 5.8 Last modified 11 Nov 1999

STREAMS Modules usbkbm(7M)

NAME usbkbm – keyboard STREAMS module for Sun USB Keyboard

SYNOPSIS open("/dev/kbd", O_RDWR)

DESCRIPTION The usbkbm STREAMS module processes byte streams generated by keyboard
attached to a USB port. USB keyboard is a member of Human Interface Device
(HID) Class, and usbkbm only supports the keyboard protocol defined in the
specification. Definitions for altering keyboard translation, and reading events
from the keyboard, are in <sys/kbio.h> and <sys/kbd.h> .

The usbkbm STREAMS module adheres to the interfaces exported by kb (7M).
Refer to the DESCRIPTIONsection of kb (7M) for a discussion of the keyboard
translation modes and the IOCTL section for the supported ioctl() requests.

IOCTLS USB Keyboard" usbkbm returns different values than the kb (7M) ioctl() for
the following ioctls:
KIOCTYPE This ioctl() returns a new keyboard type defined for the

USB keyboard. All types are listed below :
KB_SUN3 Sun Type 3 keyboard
KB_SUN4 Sun Type 4 keyboard
KB_ASCII ASCII terminal masquerading as keyboard
KB_PC Type 101 PC keyboard
KB_USB USB keyboard

The type for the USB keyboard will be KB_USB, and usbkbm will return KB_USB
in response to the KIOCTYPEioctl.
KIOCLAYOUT The argument is a pointer to an int . The layout code

specified by the bCountryCode value returned in the HID
descriptor is returned in the int pointed to by the argument.
The countrycodes are defined in 6.2.1 of the HID 1.0
specifications.

KIOCCMD KBD_CMD_CLICK/KBD_CMD_NOCLICKThe kb (7M)
manpage indicates
that inappropriate
commands for
particular keyboards
are ignored. So
usbkbm will ignore
this command
because clicking is not
supported on the USB
keyboard.

KBD_CMD_SETLED Set keyboard LEDs.
Same as kb (7M)
manpage.

Last modified 22 Apr 1999 SunOS 5.8 605

usbkbm(7M) STREAMS Modules

KBD_CMD_GETLAYOUT The country codes
defined in 6.2.1 of the
HID 1.0 specification
will be returned.

KBD_CMD_BELL/KBD_CMD_NOBELLThis command will be
supported although
the USB keyboard will
not have a buzzer. The
request for the bell will
be rerouted.

KBD_CMD_RESET There is no notion of
resetting the keyboard
as there is for the type4
keyboard. usbkbm will
ignore this command,
and it will not return
an error.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Availability SUNWusb, SUNWusbx

SEE ALSO dumpkeys (1), kbd (1), loadkeys (1), keytables (4), attributes (5), hid (7D),
termio(7I), kb (7M)

606 SunOS 5.8 Last modified 22 Apr 1999

Devices usb_mid(7D)

NAME usb_mid – USB Multi Interface Driver

SYNOPSIS device@ unit-address

DESCRIPTION The usb_mid driver is a USBA (Solaris Universal Serial Bus Architecture)
compliant nexus driver that binds to device level nodes if no vendor or class
specific driver is available. usb_mid will attempt to bind drivers to each of its
interfaces.

usb_mid supports the nexus device control interface.

FILES /kernel/drv/usb_mid 32-bit ELF Kernel Module

/kernel/drv/sparcv9/usb_mid 64-bit ELF Kernel Module

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Availability SUNWusb, SUNWusbx

Interface Stability Unstable

SEE ALSO hubd (7D), ohci (7D),

Writing Device Drivers

Universal Serial Bus Specification

Last modified 9 Nov 1999 SunOS 5.8 607

usbms(7M) STREAMS Modules

NAME usbms – USB mouse STREAMS module

SYNOPSIS #include <sys/vuid_event.h>

#include <sys/msio.h>

#include <sys/msreg.h>

DESCRIPTION The usbms STREAMS module processes byte streams generated by a USB
mouse. A USB mouse is a member of the Human Interface Device (HID) class,
and the usbms module only supports the mouse boot protocol defined in the
HID specification. The usbms module must be pushed on top of the HID class
driver (see hid (7D)). In the VUID_FIRM_EVENTmode, usbms module translates
packets from the USB mouse into Firm events. The Firm event structure is
defined in <sys/vuid_event.h> . The STREAMS module state is initially set
to raw or VUID_NATIVE mode which performs no message processing. See
the HID 1.0 specification for the raw format of the mouse packets. The user
will need to change the state to VUID_FIRM_EVENTin order to initiate mouse
protocol conversion to Firm events.

IOCTLS VUIDGFORMAT This option returns the current state of the STREAMS
module. The state of the usbms STREAMS module may
be either VUID_NATIVE (no message processing) or
VUID_FIRM_EVENT(convert to Firm events).

VUIDSFORMAT The argument is a pointer to an int . Set the state of the
STREAMS module to the int pointed to by the argument.

typedef struct vuid_addr_probe {
short base; /* default vuid device addr directed too */
union {

short next; /* next addr for default when VUIDSADDR */
short current; /* current addr of default when VUIDGADDR */

} data;
} Vuid_addr_probe;

VUIDSADDR The argument is a pointer to a Vuid_addr_probe structure.
VUIDSADDRsets the virtual input device segment address
indicated by base to next.

If base does not equal VKEY_FIRST, ENODEVis returned.
VUIDGADDR The argument is a pointer to a Vuid_addr_probe structure.

Return the address of the virtual input device segment
indicated by base to current.

If base does not equal VKEY_FIRST, ENODEVis returned.

ioctl() requests for changing and retrieving mouse parameters use the
Ms_parms structure:

608 SunOS 5.8 Last modified 22 Apr 1999

STREAMS Modules usbms(7M)

typedef struct {
int jitter_thresh;
int speed_law;
int speed_limit;

} Ms_parms;

jitter_thresh is the "jitter threshold" of the mouse. Motions fewer than
jitter_thresh units along both axes are accumulated and then sent up the
stream after 1/12 second.

speed_law indicated whether extremely large motions are to be ignored. If
it is 1, a "speed limit" is applied to mouse motions. Motions along either axis
of more than speed_limit units are discarded.
MSIOGETPARMSThe argument is a pointer to a Ms_params structure. The

usbms module parameters are returned in the structure.

MSIOSETPARMSThe argument is a pointer to a Ms_params structure. The
usbms module parameters are set according to the values in
the structure.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Availability SUNWusb, SUNWusbx

SEE ALSO ioctl (2), hid (7D)

STREAMS Programming Guide

Last modified 22 Apr 1999 SunOS 5.8 609

uscsi(7I) Ioctl Requests

NAME uscsi – user SCSI command interface

SYNOPSIS #include <sys/scsi/impl/uscsi.h>
ioctl (int fildes, int request, struct uscsi_cmd *cmd);

DESCRIPTION The uscsi command is very powerful and somewhat dangerous; therefore it
has some permission restrictions. See WARNINGSfor more details.

Drivers supporting this ioctl (2) provide a general interface allowing user-level
applications to cause individual SCSI commands to be directed to a particular
SCSI or ATAPI device under control of that driver. The uscsi command is
supported by the sd driver for SCSI disks and ATAPI CD-ROM drives, and by
the st driver for SCSI tape drives. uscsi may also be supported by other device
drivers; see the specific device driver manual page for complete information.

Applications must not assume that all Solaris disk device drivers support the
uscsi ioctl command. The SCSI command may include a data transfer to or
from that device, if appropriate for that command. Upon completion of the
command, the user application can determine how many bytes were transferred
and the status returned by the device. Also, optionally, if the command
returns a Check Condition status, the driver will automatically issue a Request
Sense command and return the sense data along with the original status. See
the USCSI_RQENABLEflag below for this Request Sense processing. The
uscsi_cmd structure is defined in <sys/scsi/impl/uscsi.h> and includes
the following members:

int uscsi_flags; /* read, write, etc. see below */
short uscsi_status; /* resulting status */
short uscsi_timeout; /* Command Timeout */
caddr_t uscsi_cdb /* CDB to send to target */
caddr_t uscsi_bufaddr; /* i/o source/destination */
size_t uscsi_buflen; /* size of i/o to take place*/
size_t uscsi_resid; /* resid from i/o operation */
uchar_t uscsi_cdblen; /* # of valid CDB bytes */
uchar_t uscsi_rqlen; /* size of uscsi_rqbuf */
uchar_t uscsi_rqstatus; /* status of request sense cmd */
uchar_t uscsi_rqresid; /* resid of request sense cmd */
caddr_t uscsi_rqbuf; /* request sense buffer */
void *uscsi_reserved_5; /* Reserved for future use */

The fields of the uscsi_cmd structure have the following meanings:
uscsi_flags The I/O direction and other details of how to

carry out the SCSI command. Possible values
are described below.

uscsi_status The SCSI status byte returned by the device is
returned in this field.

610 SunOS 5.8 Last modified 8 Sep1999

Ioctl Requests uscsi(7I)

uscsi_timeout Time in seconds to allow for completion of the
command.

uscsi_cdb A pointer to the SCSI CDB (command descriptor
block) to be transferred to the device in command
phase.

uscsi_bufaddr The user buffer containing the data to be read
from or written to the device.

uscsi_buflen The length of uscsi_bufaddr .

uscsi_resid If a data transfer terminates without transferring
the entire requested amount, the remainder, or
residue, is returned in this field.

uscsi_cdblen The length of the SCSI CDB to be transferred to
the device in command phase.

uscsi_rqlen The length of uscsi_rqbuf , the application’s
Request Sense buffer.

uscsi_rqstatus The SCSI status byte returned for the Request
Sense command executed automatically by the
driver in response to a Check Condition status
return.

uscsi_rqresid The residue, or untransferred data length, of the
Request Sense data transfer (the number of bytes,
less than or equal to uscsi_rqlen , which were
not filled with sense data).

uscsi_rqbuf Points to a buffer in application address space to
which the results of an automatic Request Sense
command are written.

uscsi_reserved_5 Reserved for future use.

The uscsi_flags field defines the following:

USCSI_WRITE /* send data to device */
USCSI_SILENT /* no error messages */
USCSI_DIAGNOSE /* fail if any error occurs */
USCSI_ISOLATE /* isolate from normal commands */
USCSI_READ /* get data from device */
USCSI_ASYNC /* set bus to asynchronous mode */
USCSI_SYNC /* return bus to sync mode if possible */
USCSI_RESET /* reset target */
USCSI_RESET_ALL /* reset all targets */
USCSI_RQENABLE /* enable request sense extensions */

Last modified 8 Sep1999 SunOS 5.8 611

uscsi(7I) Ioctl Requests

The uscsi_flags bits have the following interpretation:
USCSI_WRITE Data will be written from the initiator to the

target.

USCSI_SILENT The driver should not print any console error
messages or warnings regarding failures
associated with this SCSI command.

USCSI_DIAGNOSE The driver should not attempt any retries or other
recovery mechanisms if this SCSI command
terminates abnormally in any way.

USCSI_ISOLATE This SCSI command should not be executed
with other commands.

USCSI_READ Data will be read from the target to the initiator.

USCSI_ASYNC Set the SCSI bus to asynchronous mode before
running this command.

USCSI_SYNC Set the SCSI bus to synchronous mode before
running this command.

USCSI_RESET Send a SCSI Bus Device Reset Message to this
target.

USCSI_RESET_ALL Cause a SCSI Bus Reset on the bus associated
with this target.

USCSI_RQENABLE Enable Request Sense extensions. If the user
application is prepared to receive sense data, this
bit must be set, the fields uscsi_rqbuf and
uscsi_rqbuflen must be non-zero, and the
uscsi_rqbuf must point to memory writable by
the application.

IOCTLS The ioctl supported by drivers providing the uscsi interface is:
USCSICMD The argument is a pointer to a uscsi_cmd structure. The

SCSI device addressed by that driver is selected, and given
the SCSI command addressed by uscsi_cdb . If this
command requires a data phase, the uscsi_buflen and
uscsi_bufaddr fields must be set appropriately; if data
phase occurs, the uscsi_resid is returned as the number
of bytes not transferred. The status of the command, as
returned by the device, is returned in the uscsi_status
field. If the command terminates with Check Condition
status, and Request Sense is enabled, the sense data itself is

612 SunOS 5.8 Last modified 8 Sep1999

Ioctl Requests uscsi(7I)

returned in uscsi_rqbuf . The uscsi_rqresid provides
the residue of the Request Sense data transfer.

ERRORS EINVAL A parameter has an incorrect, or unsupported, value.

EIO An error occurred during the execution of the command.

EPERM A process without root credentials tried to execute the
USCSICMDioctl.

EFAULT The uscsi_cmd itself, the uscsi_cdb , the uscsi_buf , or
the uscsi_rqbuf point to an invalid address.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWhea

SEE ALSO ioctl (2), attributes (5), sd (7D), st (7D)

ANSI Small Computer System Interface-2 (SCSI-2)

WARNINGS The uscsi command is very powerful, but somewhat dangerous, and so its use
is restricted to processes running as root, regardless of the file permissions on
the device node. The device driver code expects to own the device state, and
uscsi commands can change the state of the device and confuse the device
driver. It is best to use uscsi commands only with no side effects, and avoid
commands such as Mode Select, as they may cause damage to data stored on
the drive or system panics. Also, as the commands are not checked in any way
by the device driver, any block may be overwritten, and the block numbers
are absolute block numbers on the drive regardless of which slice number is
used to send the command.

Last modified 8 Sep1999 SunOS 5.8 613

usoc(7D) Devices

NAME usoc – universal serial optical controller for Fibre Channel arbitrated loop
(SOC+) device driver

DESCRIPTION The Fibre Channel adapter is an SBus card that implements two full duplex Fibre
Channel interfaces. Each interface can connect to a Fibre Channel arbitrated loop
(FC-AL). The usoc device driver is a nexus driver and implements portions of
the FC-2 and FC-4 layers of FC-AL.

FILES /kernel/drv/usoc
32–bit ELF kernel module

/kernel/drv/sparcv9/usoc
64–bit ELF kernel module

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Interface stability Unknown

Availability SUNWusoc

SEE ALSO fctl (7D), sbus (4), fcp (7D), fp (7D), ssd (7D)

Writing Device Drivers

Fibre Channel Physical and Signaling Interface (FC-PH) ANSI X3.230: 1994

Fibre Channel Arbitrated Loop (FC-AL) ANSI X3.272-1996

Fibre Channel Private Loop SCSI Direct Attach (FC-PLDA) NCITS TR-19:1998

Fabric Channel Loop Attachment (FC-FLA), NCITS TR-20:1998

DIAGNOSTICS The following messages are logged and may also appear on the system console.
On the console these messages are preceded by:

usoc%d:

where

usoc%d:

is the per-port instance number of the usoc controller.

Fibre Channel is ONLINE

The Fibre Channel loop is now online.

Fibre Channel Loop is ONLINE

The Fibre Channel loop is now online.

614 SunOS 5.8 Last modified 20 Jul 1999

Devices usoc(7D)

Fibre Channel Loop is OFFLINE

The Fibre Channel loop is now offline.

attach failed: device in slave-only slot.

Move soc+ card to another slot.

attach failed: alloc soft state.

Driver did not attach, devices will be inaccessible.

attach failed: bad soft state.

Driver did not attach, devices will be inaccessible.

attach failed: unable to map eeprom

Driver was unable to map device memory; check for bad hardware. Driver did
not attach to device, devices will be inaccessible.

attach failed: unable to map XRAM

Driver was unable to map device memory; check for bad hardware. Driver did
not attach to device, devices will be inaccessible.

attach failed: unable to map registers

Driver was unable to map device registers; check for bad hardware. Driver did
not attach to device, devices will be inaccessible.

attach failed: unable to access status register

Driver was unable to map device registers; check for bad hardware. Driver did
not attach to device, devices will be inaccessible.

attach failed: unable to install interrupt handler

Driver was not able to add the interrupt routine to the kernel. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to access host adapter XRAM

Driver was unable to access device RAM; check for bad hardware. Driver did
not attach to device, devices will be inaccessible.

attach failed: unable to write host adapter XRAM

Driver was unable to write device RAM; check for bad hardware. Driver did
not attach to device, devices will be inaccessible.

attach failed: read/write mismatch in XRAM

Driver was unable to verify device RAM; check for bad hardware. Driver did
not attach to device, devices will be inaccessible.

Last modified 20 Jul 1999 SunOS 5.8 615

visual_io(7I) Ioctl Requests

NAME visual_io – Solaris VISUAL I/O control operations

SYNOPSIS #include <sys/visual_io.h>

DESCRIPTION The Solaris VISUAL environment defines a small set of ioctl() s for controlling
graphics and imaging devices.

One ioctl() , VIS_GETIDENTIFIER, is mandatory, and must be implemented
in device drivers for graphics devices using the Solaris VISUAL environment.
The VIS_GETIDENTIFIER ioctl() is defined to return a device identifier
from the device driver. This identifier must be a uniquely-defined string.

Two other sets of ioctl() ls exist. One set supports mouse tracking via
hardware cursor operations. These are optional, but if a graphics device has
hardware cursor support and implements these ioctl() s the mouse tracking
performance will be improved.

The other set supports the device being the system console device. These are
optional, but if a graphics device is to be used as the system console device, it
must implement these ioctl() s.

IOCTLS VIS_GETIDENTIFIER
This ioctl() returns an identifier string to uniquely identify a device
used in the Solaris VISUAL environment. This is a mandatory ioctl()
and must return a unique string. We suggest that the name be formed as
<companysymbol><devicetype>. For example, the cgsix driver returns
SUNWcg6.

VIS_GETIDENTIFIER takes a vis_identifier structure as its parameter.
This structure has the form:

#define VIS_MAXNAMELEN 128
struct vis_identifier {

char name[VIS_MAXNAMELEN];
};

VIS_GETCURSOR
VIS_SETCURSOR

These ioctl() s fetch and set various cursor attributes, using the
vis_cursor structure.

struct vis_cursorpos {
short x; /* cursor x coordinate */
short y; /* cursor y coordinate */

};

struct vis_cursorcmap {
int version; /* version */
int reserved;
unsigned char *red; /* red color map elements */

616 SunOS 5.8 Last modified 6 Dec 1995

Ioctl Requests visual_io(7I)

unsigned char *green;/* green color map elements */
unsigned char *blue; /* blue color map elements */

};

#define VIS_CURSOR_SETCURSOR 0x01 /* set cursor */
#define VIS_CURSOR_SETPOSITION 0x02 /* set cursor position */
#define VIS_CURSOR_SETHOTSPOT 0x04 /* set cursor hot spot */
#define VIS_CURSOR_SETCOLORMAP 0x08 /* set cursor colormap */
#define VIS_CURSOR_SETSHAPE 0x10 /* set cursor shape */
#define VIS_CURSOR_SETALL \

(VIS_CURSOR_SETCURSOR | VIS_CURSOR_SETPOSITION | \
VIS_CURSOR_SETHOTSPOT | VIS_CURSOR_SETCOLORMAP | \
VIS_CURSOR_SETSHAPE)

struct vis_cursor {
short set; /* what to set */
short enable; /* cursor on/off */
struct vis_cursorpos pos; /* cursor position */
struct vis_cursorpos hot; /* cursor hot spot */
struct vis_cursorcmap cmap; /* color map info */
struct vis_cursorpos size; /* cursor bitmap size */
char *image; /* cursor image bits */
char *mask; /* cursor mask bits */

};

The vis_cursorcmap structure should contain pointers to two elements,
specifying the red, green, and blue values for foreground and background.

VIS_SETCURSORPOS
VIS_MOVECURSOR

These ioctl() s fetch and move the current cursor position, using the
vis_cursorpos structure.

Console optional
ioctls

The following set of ioctl() s are used by graphics drivers that are to be
part of the system console device. All of the ioctl() s must be implemented
to be a console device. In addition, if the system does not have a prom or the
prom goes away during boot, the special standalone ioctl() ls (listed below)
must also be implemented.

The coordinate system for the console device places 0,0 at the upper left corner of
the device, with rows increasing toward the bottom of the device and columns
increasing from left to right.

VIS_PUTCMAP
VIS_GETCMAP

Set or get color map entries.

The argument is a pointer to a vis_cmap structure, which contains the
following fields:

Last modified 6 Dec 1995 SunOS 5.8 617

visual_io(7I) Ioctl Requests

struct vis_cmap {
int index;
int count;
uchar_t *red;
uchar_t *green;
uchar_t *blue;

}

index is the starting index in the color map where you want to start setting
or getting color map entries.

count is the number of color map entries to set or get. It also is the size of
the red , green , and blue color arrays.

*red , *green , and *blue are pointers to unsigned character arrays which
contain the color map info to set or where the color map info is placed
on a get.

VIS_DEVINIT
Initializes the graphics driver as a console device.

The argument is a pointer to a vis_devinit structure. The graphics driver
is expected to allocate any local state information needed to be a console
device and fill in this structure.

struct vis_devinit {
int version;
screen_size_t width;
screen_size_t height;
screen_size_t linebytes;
unit_t size;
int depth;
short mode;

};

version is the version of this structure and should be set to
VIS_CONS_REV.

width and height are the width and height of the device. If mode (see
below) is VIS_TEXT then width and height are the number of characters
wide and high of the device. If mode is VIS_PIXEL then width and
height are the number of pixels wide and high of the device.

linebytes is the number of bytes per line of the device.

size is the total size of the device in pixels.

depth is the pixel depth it bits of the device. Currently supported depths
are: 1, 4, 8 and 24 .

618 SunOS 5.8 Last modified 6 Dec 1995

Ioctl Requests visual_io(7I)

mode is the mode of the device. One of VIS_PIXEL (data to be displayed is
in bitmap format) or VIS_TEXT (data to be displayed is in ascii format).

VIS_DEVFINI
Tells the graphics driver that it is no longer the system console device. There
is no argument to this ioctl() . The driver is expected to free any locally
kept state information related to the console.

VIS_CONS_MODE_CHANGE
Tells the graphics driver that the framebuffer resolution has been reset
by the user program. The framebuffer is expected to reload any state
information that it is keeping.

The argument to this ioctl() is private to the user program and the
device driver. That is, the user program may wish to directly change the
framebuffer mode and then just use this ioctl() to notify the graphics
driver or it may pass mode change information along to the graphics driver
and have it do the mode change.

VIS_CONSCURSOR
Describes the size and placement of the cursor on the screen. The graphics
driver is expected to display or hide the cursor at the indicated position.

The argument is a pointer to a vis_conscursor structure which contains
the following fields:

struct vis_conscursor {
int version;
screen_pos_t row;
screen_pos_t col;
screen_size_t width;
screen_size_t height
color_t fg_color;
color_t bg_color;
short action;

};

version is set to VIS_CURSOR_VERSIONand should be check by the
driver. If the version does not match, the driver should reject this ioctl() .

row and col are the first row and column (upper left corner of the cursor).

width and height are the width and height of the cursor.

If mode in the VIS_DEVINIT ioctl() was set to VIS_PIXEL , then col ,
row , width and height are in pixels. If mode in the VIS_DEVINIT
ioctl() was set to VIS_TEXT , then col , row , width and height are
in characters.

Last modified 6 Dec 1995 SunOS 5.8 619

visual_io(7I) Ioctl Requests

fg_color and bg_color are the foreground and background
color map indexes to use when the action (see below) is set to
VIS_DISPLAY_CURSOR.

action is whether to display or hide the cursor. It is set to one of:
VIS_HIDE_CURSORor VIS_DISPLAY_CURSOR.

VIS_CONSDISPLAY
Display data on the graphics device. The graphics driver is expected to
display the data contained in the vis_display structure at the specified
position on the console.

The vis_display structure contains the following fields:

struct vis_display {
int version;
screen_pos_t row;
screen_pos_t col;
screen_size_t width;
screen_size_t height;
uchar_t *data;
color_t fg_color;
color_t bg_color;

};

version is set to VIS_DISPLAY_VERSION and should be check by the
driver. If the version does not match, the driver should reject this ioctl() .

row and col specify the starting row and column to display the data at. If
mode in the VIS_DEVINIT ioctl() was set to VIS_TEXT , row and col
are defined to be a character offset from the starting position of the console
device. If mode in the VIS_DEVINIT ioctl() was set to VIS_PIXEL ,
row and col are defined to be a pixel offset from the starting position of
the console device.

width and height specify the size of the data to be displayed. If mode
in the VIS_DEVINIT ioctl() was set to VIS_TEXT , width and height
define the size of data as a rectangle that is width characters wide and
height characters high. If mode in the VIS_DEVINIT ioctl() was set to
VIS_PIXEL , width and height define the size of data as a rectangle that
is width pixels wide and height pixels high.

*data is a pointer to the data to be displayed on the console device. If
mode in the VIS_DEVINIT ioctl() was set to VIS_TEXT , data is an
array of ASCII characters to be displayed on the console device. The driver
must break these characters up appropriately and display it in the retangle
defined by row , col , width , and height . If mode in the VIS_DEVINIT
ioctl() was set to VIS_PIXEL , data is an array of bitmap data to be
displayed on the console device. The driver must break this data up

620 SunOS 5.8 Last modified 6 Dec 1995

Ioctl Requests visual_io(7I)

appropriately and display it in the retangle defined by row , col , width ,
and height .

The fg_color and bg_color fields define the foreground and background
color map indexes to use when displaying the data. fb_color is used for
"on" pixels and bg_color is used for "off" pixels.

VIS_CONSCOPY
Copy data from one location on the device to another. The driver is expected
to copy the specified data. The source data should not be modified. Any
modifications to the source data should be as a side effect of the copy
destination overlapping the copy source.

The argument is a pointer to a vis_copy structure which contains the
following fields:

struct vis_copy {
int version
screen_pos_t s_row;
screen_pos_t s_col;
screen_pos_t e_row;
screen_pos_t e_col;
screen_pos_t t_row;
screen_pos_t t_col;
short direction;

};

version is set to VIS_COPY_VERSIONand should be check by the driver.
If the version does not match, the driver should reject this ioctl() .

s_row , s_col , e_row , and e_col define the source rectangle of the copy.
s_row and s_col are the upper left corner of the source rectangle. e_row
and e_col are the lower right corner of the source rectangle. If mode in the
VIS_DEVINIT ioctl() was set to VIS_TEXT , s_row , s_col, e_row,
and e_col are defined to be character offsets from the starting position
of the console device. If mode in the VIS_DEVINIT ioctl() was set to
VIS_PIXEL , s_row , s_col, e_row, and e_col are defined to be pixel
offsets from the starting position of the console device.

t_row and t_col define the upper left corner of the destination rectangle
of the copy. The entire rectangle is copied to this location. If mode in the
VIS_DEVINIT ioctl() was set to VIS_TEXT , t_row , and t_col are
defined to be character offsets from the starting position of the console
device. If mode in the VIS_DEVINIT ioctl() was set to VIS_PIXEL ,
t_row , and t_col are defined to be pixel offsets from the starting position
of the console device.

direction specifies which way to do the copy. If direction is
VIS_COPY_FORWARDthe graphics driver should copy data from position

Last modified 6 Dec 1995 SunOS 5.8 621

visual_io(7I) Ioctl Requests

(s_row , s_col) in the source rectangle to position (t_row , t_col) in the
destination rectangle. If direction is VIS_COPY_BACKWARDSthe graphics
driver should copy data from position (e_row , e_col) in the source
rectangle to position (t_row+(e_row-s_row) , t_col+(e_col-s_col)) ,
in the destination rectangle.

The next set of console ioctl() s are used on systems which don’t have a
prom. Normally, standalones use the system prom to display characters on the
system console device. On systems without a prom, standalones use the kernel
drivers to display characters on the system console device. When implementing
these ioctl() s, you can not use any of the locking primitives or the copy
routines from the DDI. Furthermore other DDI services may or may not work
and should be avoided.
VIS_STAND_CONSCURSOR

Should perform the same tasks as VIS_CONSCURSORexcept that it must
follow the above restrictions. It takes in as an argument a vis_cursor
structure.

VIS_STAND_CONSDISPLAY
Should perform the same tasks as VIS_CONSDISPLAYexcept that it must
follow the above restrictions. It takes in as an argument a vis_display
structure.

VIS_STAND_CONSCOPY
Should perform the same tasks as VIS_CONSCOPYexcept that it must follow
the above restrictions. It takes in as an argument a vis_copy structure.

622 SunOS 5.8 Last modified 6 Dec 1995

File Systems volfs(7FS)

NAME volfs – Volume Management file system

DESCRIPTION volfs is the Volume Management file system rooted at root_dir. The default
location for root-dir is /vol , but this can be overridden using the −d option of
vold (see vold (1M)). This file system is maintained by the Volume Management
daemon, vold , and will be considered to be /vol for this description.

Media can be accessed in a logical manner (no association with a particular
piece of hardware), or a physical manner (associated with a particular piece of
hardware).

Logical names for media are referred to through /vol/dsk and /vol/rdsk .
/vol/dsk provides block access to random access devices. /vol/rdsk
provides character access to random access devices.

The /vol/rdsk and /vol/dsk directories are mirrors of one another. Any
change to one is reflected in the other immediately. The dev_t for a volume will
be the same for both the block and character device.

The default permissions for /vol are mode=0555 , owner=root , group=sys .
The default permissions for /vol/dsk and /vol/rdsk are mode=01777 ,
owner=root , group=sys .

Physical references to media are obtained through /vol/dev . This hierarchy
reflects the structure of the /dev name space. The default permissions for
all directories in the /vol/dev hierarchy are mode=0555 , owner=root ,
group=sys .

mkdir (2), rmdir (2), unlink (2) (rm), symlink (2) (ln −s), link (2) (ln), and
rename (2) (mv) are supported, subject to normal file and directory permissions.

The following system calls are not supported in the /vol filesystem: creat (2),
only when creating a file, and mknod(2).

If the media does not contain file systems that can be automatically mounted
by rmmount (1M), users can gain access to the media through the following
/vol locations:

Location State of Media

/vol/dev/diskette0/unnamed_floppy formatted unnamed floppy-block
device access

/vol/dev/rdiskette0/unnamed_floppy formatted unnamed floppy-raw
device access

/vol/dev/diskette0/unlabeled unlabeled floppy-block device
access

/vol/dev/rdiskette0/unlabeled unlabeled floppy-raw device access

Last modified 8 Feb 1995 SunOS 5.8 623

volfs(7FS) File Systems

Location State of Media

/vol/dev/dsk/c0t6/unnamed_cdrom CD-ROM-block device access

/vol/dev/rdsk/c0t6/unnamed_cdrom CD-ROM-raw device access

For more information on the location of CD-ROM and floppy media, see System
Administration Guide, Volume 1 or rmmount (1M).

Partitions Some media support the concept of a partition. If the label identifies partitions
on the media, the name of the media becomes a directory with partitions under
it. Only valid partitions are represented. Partitions cannot be moved out of a
directory.

For example, if disk volume ’foo ’ has three valid partitions, 0, 2, and 5, then:

/vol/dsk/foo/s0
/vol/dsk/foo/s2
/vol/dsk/foo/s5

for block access and

/vol/rdsk/foo/s0
/vol/rdsk/foo/s2
/vol/rdsk/foo/s5

for character access.

If a volume is relabeled to reflect different partitions, the name space changes
to reflect the new partition layout.

A format program can check to see if there are others with the volume open and
not allow the format to occur if it is. Volume Management, however, does not
explicitly prevent the rewriting of a label while others have the volume open.
If a partition of a volume is open, and the volume is relabeled to remove that
partition, it will appear exactly as if the volume were missing. A notify event
will be generated and the user may cancel the operation with volcancel (1),
if desired.

SEE ALSO volcancel (1), volcheck (1), volmissing (1) rmmount (1M), vold (1M),
rmmount.conf (4), vold.conf (4)

Solaris Transition Guide

System Administration Guide, Volume 1

624 SunOS 5.8 Last modified 8 Feb 1995

STREAMS Modules vuidmice(7M)

NAME vuidmice, vuidm3p, vuidm4p, vuidm5p, vuid2ps2, vuid3ps2 – converts mouse
protocol to Firm Events

SYNOPSIS #include <sys/stream.h>

#include <sys/vuid_event.h>

int ioctl(fd, I_PUSH, vuidm3p);

int ioctl(fd, I_PUSH, vuidm4p);

int ioctl(fd, I_PUSH, vuidm5p);

int ioctl(fd, I_PUSH, vuid2ps2);

int ioctl(fd, I_PUSH, vuid3ps2);

DESCRIPTION The STREAMS modules vuidm3p , vuidm4p , vuidm5p , vuid2ps2 , and
vuid3ps2 convert mouse protocols to Firm events. The Firm event structure
is described in <sys/vuid_event.h> . Pushing a STREAMS module does
not automatically enable mouse protocol conversion to Firm events. The
STREAMS module state is initially set to raw or VUID_NATIVE mode which
performs no message processing. The user will need to change the state to
VUID_FIRM_EVENTmode in order to initiate mouse protocol conversion to Firm
events. This can be accomplished by the following code:

int format;
format = VUID_FIRM_EVENT;
ioctl(fd, VUIDSFORMAT, &format);

The user can also query the state of the STREAMS module by using the
VUIDGFORMAToption.

int format;
int fd; /* file descriptor */
ioctl(fd, VUIDGFORMAT, &format);
if (format == VUID_NATIVE);

/* The state of the module is in raw mode.
* Message processing is not enabled.
*/

if (format == VUID_FIRM_EVENT);
/* Message processing is enabled.

* Mouse protocol conversion to Firm events
* are performed.

The remainder of this section describes the processing of STREAMS messages
on the read- and write-side.

Read Side Behavior M_DATA The messages coming in are queued and converted to Firm
events.

Last modified 1 Jan 1997 SunOS 5.8 625

vuidmice(7M) STREAMS Modules

M_FLUSH The read queue of the module is flushed of all its data
messages and all data in the record being accumulated are
also flushed. The message is passed upstream.

Write Side Behavior M_IOCTL Messages sent downstream as a result of an ioctl (2) system
call. There are two valid ioctl options processed by the
vuidmice modules VUIDGFORMATand VUIDSFORMAT.

VUIDGFORMAT This option returns the current state of
the STREAMS module. The state of the
vuidmice STREAMS module may either
be VUID_NATIVE (no message processing)
or VUID_FIRM_EVENT(convert to Firm
events).

VUIDSFORMAT This option sets the state of the STREAMS
module to VUID_FIRM_EVENT. If the
state of the STREAMS module is already
in VUID_FIRM_EVENTthen this option
is non-operational. It is not possible to
set the state back to VUID_NATIVE once
the state becomes VUID_FIRM_EVENT.
To disable message processing, pop
the STREAMS module out by calling
ioctl(fd, 1I_POP, vuid*) .

M_FLUSH The write queue of the module is flushed of all its data
messages and the message is passed downstream.

626 SunOS 5.8 Last modified 1 Jan 1997

STREAMS Modules vuidmice(7M)

Mouse
Configurations

Module Protocol Type Device

vuidm3p 3-Byte Protocol Microsoft 2 Button
Serial Mouse

/dev/tty*

vuidm4p 4-Byte Protocol Logitech 3 Button
Mouseman

/dev/tty*

vuidm5p Logitech 3 Button Bus Mouse
Microsoft Bus Mouse

/dev/logi/ dev/msm

vuid2ps2 PS/2 Protocol 2 Button PS/2
Compatible Mouse

/dev/kdmouse

vuid3ps2 PS/2 Protocol 3 Button PS/2
Compatible Mouse

/dev/kdmouse

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO attributes (5)

STREAMS Programming Guide

Last modified 1 Jan 1997 SunOS 5.8 627

wscons(7D) Devices

NAME wscons – workstation console

SYNOPSIS #include <sys/strredir.h>

ioctl (fd, SRIOCSREDIR, target);

ioctl (fd, SRIOCISREDIR, target);

DESCRIPTION The “workstation console” is a device consisting of the combination of the
workstation keyboard and frame buffer, acting in concert to emulate an ASCII
terminal. It includes a redirection facility that allows I/O issued to the
workstation console to be diverted to some other STREAMS device, so that, for
example, window systems can arrange to redirect output that would otherwise
appear directly on the frame buffer, corrupting its appearance.

Redirection The redirection facility maintains a list of devices that have been named as
redirection targets, through the SRIOCSREDIRioctl described below. All entries
but the most recent are inactive; when the currently active entry is closed, the
most recent remaining entry becomes active. The active entry acts as a proxy
for the device being redirected; it handles all read (2), write (2), ioctl (2), and
poll (2) calls issued against the redirectee.

The following two ioctls control the redirection facility. In both cases, fd is
a descriptor for the device being redirected (that is, the workstation console)
and target is a descriptor for a STREAMS device.
SRIOCSREDIR Make target be the source and destination of I/O

ostensibly directed to the device denoted by fd.

SRIOCISREDIR Returns 1 if target names the device currently
acting as proxy for the device denoted by fd,
and 0 if it is not.

ANSI Standard
Terminal Emulation

On SPARC based systems, the PROM monitor emulates an ANSI X3.64 terminal.

On IA systems, ANSI X3.64 emulation is provided by the Solaris console
subsystem.

Note: the VT100 also follows the ANSI X3.64 standard but both the Sun terminal
emulators and the VT100 have nonstandard extensions to the ANSI X3.64
standard. The Sun terminal emulators and the VT100 are not compatible in
any true sense.

The SPARC console displays 34 lines of 80 ASCII characters per line. The IA
console displays 25 lines of 80 ASCII characters per line. Both offer scrolling, (x,
y) cursor addressing ability, and a number of other control functions.

While this is the usual display size, there are instances where it may be a
different size.

� If the display device is not large enough to display that much text.

628 SunOS 5.8 Last modified 22 Apr 1998

Devices wscons(7D)

� On SPARC based systems, if either screen-#rows or screen-#columns
is set by the user to a value other than the default of 34 or 80
respectively. screen-#rows and screen-#columns are fields stored in
NVRAM/EEPROM, see eeprom (1M).

The console displays a cursor which marks the current line and character
position on the screen. ASCII characters between 0x20 (space) and 0x7E (tilde)
inclusive are printing characters — when one is written to the console (and is not
part of an escape sequence), it is displayed at the current cursor position and the
cursor moves one position to the right on the current line.

On SPARC based systems, later PROM revisions have the full 8-bit ISO Latin-1
(ISO 8859-1) character set, not just ASCII. Earlier PROM revisions display
characters in the range 0xA0 − 0xFE as spaces.

If the cursor is already at the right edge of the screen, it moves to the first
character position on the next line. If the cursor is already at the right edge of
the screen on the bottom line, the Line-feed function is performed (see CTRL-J
below), which scrolls the screen up by one or more lines or wraps around, before
moving the cursor to the first character position on the next line.

Control Sequence
Syntax

The console defines a number of control sequences which may occur in its
input. When such a sequence is written to the console, it is not displayed on
the screen, but effects some control function as described below, for example,
moves the cursor or sets a display mode.

Some of the control sequences consist of a single character. The notation CTRL-X
for some character X, represents a control character.

Other ANSI control sequences are of the form:

ESC [params char

Spaces are included only for readability; these characters must occur in the given
sequence without the intervening spaces.
ESC The ASCII escape character (ESC, CTRL-[, 0x1B).

[The next character is a left square bracket ‘[’
(0x5B).

params A sequence of zero or more decimal numbers
made up of digits between 0 and 9, separated
by semicolons.

char A function character, which is different for each
control sequence.

Last modified 22 Apr 1998 SunOS 5.8 629

wscons(7D) Devices

In the following examples of syntactically valid escape sequences, “ESC”
represent the single ASCII character, “Escape”:
ESC[m Select graphic rendition with default parameter

ESC[7m Select graphic rendition with reverse image

ESC[33;54H Set cursor position

ESC[123;456;0;;3;B Move cursor down

Syntactically valid ANSI escape sequences which are not currently interpreted by
the console are ignored. Control characters which are not currently interpreted
by the console are also ignored.

Each control function requires a specified number of parameters, as noted below.
If fewer parameters are supplied, the remaining parameters default to 1, except
as noted in the descriptions below.

If more than the required number of parameters is supplied, only the last n are
used, where n is the number required by that particular command character.
Also, parameters which are omitted or set to zero are reset to the default value of
1 (except as noted below).

Consider, for example, the command character M which requires one parameter.
ESC[;M and ESC[0M and ESC[M and ESC[23;15;32;1M are all equivalent to
ESC[1M and provide a parameter value of 1. Note: ESC[;5M (interpreted as
‘ESC[5M’) is not equivalent to ESC[5;M (interpreted as ‘ESC[5;1M’) which is
ultimately interpreted as ‘ESC[1M’).

In the syntax descriptions below, parameters are represented as ‘#’ or ‘#1;#2 ’.

ANSI Control
Functions

The following paragraphs specify the ANSI control functions implemented by
the console. Each description gives:

� the control sequence syntax

� the hex equivalent of control characters where applicable

� the control function name and ANSI or Sun abbreviation (if any).

� description of parameters required, if any

� description of the control function

� for functions which set a mode, the initial setting of the mode. The initial
settings can be restored with the SUNRESET escape sequence.

Control Character
Functions

Control character funtions for the console are:
CTRL-G
0x7
Bell (BEL)

630 SunOS 5.8 Last modified 22 Apr 1998

Devices wscons(7D)

The Sun Workstation Model 100 and 100U is not equipped with an audible
bell. It ‘rings the bell’ by flashing the entire screen. The window system
flashes the window. The screen will also be flashed on current models if the
Sun keyboard is not the console input device.

CTRL-H
0x8
Backspace (BS)

The cursor moves one position to the left on the current line. If it is already
at the left edge of the screen, nothing happens.

CTRL-I
0x9
Tab (TAB)

The cursor moves right on the current line to the next tab stop. The tab
stops are fixed at every multiple of 8 columns. If the cursor is already at the
right edge of the screen, nothing happens; otherwise the cursor moves right
a minimum of one and a maximum of eight character positions.

CTRL-J
0xA
Line-feed (LF)

The cursor moves down one line, remaining at the same character position
on the line. If the cursor is already at the bottom line, the screen either
scrolls up or “wraps around” depending on the setting of an internal
variable S (initially 1) which can be changed by the ESC[r control sequence.
If S is greater than zero, the entire screen (including the cursor) is scrolled up
by S lines before executing the line-feed. The top S lines scroll off the screen
and are lost. S new blank lines scroll onto the bottom of the screen. After
scrolling, the line-feed is executed by moving the cursor down one line.

If S is zero, ‘wrap-around’ mode is entered. ‘ESC [1 r’ exits back to scroll
mode. If a line-feed occurs on the bottom line in wrap mode, the cursor
goes to the same character position in the top line of the screen. When
any line-feed occurs, the line that the cursor moves to is cleared. This
means that no scrolling occurs. Wrap-around mode is not implemented in
the window system.

On SPARC based systems, the screen scrolls as fast as possible depending on
how much data is backed up waiting to be printed. Whenever a scroll must
take place and the console is in normal scroll mode (‘ESC [1 r’), it scans the
rest of the data awaiting printing to see how many line-feeds occur in it.
This scan stops when any control character from the set {VT, FF, SO, SI , DLE,
DC1, DC2, DC3, DC4, NAK, SYN, ETB, CAN, EM, SUB, ESC, FS, GS, RS, US} is
found. At that point, the screen is scrolled by N lines (N ≥ 1) and processing

Last modified 22 Apr 1998 SunOS 5.8 631

wscons(7D) Devices

continues. The scanned text is still processed normally to fill in the newly
created lines. This results in much faster scrolling with scrolling as long as
no escape codes or other control characters are intermixed with the text.

See also the discussion of the ‘Set scrolling’ (ESC[r) control function below.

CTRL-K
0xB
Reverse Line-feed

The cursor moves up one line, remaining at the same character position on
the line. If the cursor is already at the top line, nothing happens.

CTRL-L
0xC
Form-feed (FF)

The cursor is positioned to the Home position (upper-left corner) and the
entire screen is cleared.

CTRL-M
0xD
Return (CR)

The cursor moves to the leftmost character position on the current line.

Escape Sequence
Functions

CTRL-[

0x1B
Escape (ESC)

This is the escape character. Escape initiates a multi-character control
sequence.

ESC[#@
Insert Character (ICH)

Takes one parameter, # (default 1). Inserts # spaces at the current cursor
position. The tail of the current line starting at the current cursor position
inclusive is shifted to the right by # character positions to make room for the
spaces. The rightmost # character positions shift off the line and are lost.
The position of the cursor is unchanged.

ESC[#A
Cursor Up (CUU)

Takes one parameter, # (default 1). Moves the cursor up # lines. If the cursor
is fewer than # lines from the top of the screen, moves the cursor to the
topmost line on the screen. The character position of the cursor on the
line is unchanged.

632 SunOS 5.8 Last modified 22 Apr 1998

Devices wscons(7D)

ESC[#B
Cursor Down (CUD)

Takes one parameter, # (default 1). Moves the cursor down # lines. If the
cursor is fewer than # lines from the bottom of the screen, move the cursor
to the last line on the screen. The character position of the cursor on the
line is unchanged.

ESC[#C
Cursor Forward (CUF)

Takes one parameter, # (default 1). Moves the cursor to the right by #
character positions on the current line. If the cursor is fewer than # positions
from the right edge of the screen, moves the cursor to the rightmost position
on the current line.

ESC[#D
Cursor Backward (CUB)

Takes one parameter, # (default 1). Moves the cursor to the left by #
character positions on the current line. If the cursor is fewer than # positions
from the left edge of the screen, moves the cursor to the leftmost position
on the current line.

ESC[#E
Cursor Next Line (CNL)

Takes one parameter, # (default 1). Positions the cursor at the leftmost
character position on the #-th line below the current line. If the current line
is less than # lines from the bottom of the screen, positions the cursor at the
leftmost character position on the bottom line.

ESC[#1;#2f
Horizontal and Vertical Position (HVP)

or

ESC[#1;#2H
Cursor Position (CUP)

Takes two parameters, #1 and #2 (default 1, 1). Moves the cursor to the
#2-th character position on the #1-th line. Character positions are numbered
from 1 at the left edge of the screen; line positions are numbered from 1 at
the top of the screen. Hence, if both parameters are omitted, the default
action moves the cursor to the home position (upper left corner). If only one
parameter is supplied, the cursor moves to column 1 of the specified line.

ESC[J
Erase in Display (ED)

Takes no parameters. Erases from the current cursor position inclusive to the
end of the screen. In other words, erases from the current cursor position

Last modified 22 Apr 1998 SunOS 5.8 633

wscons(7D) Devices

inclusive to the end of the current line and all lines below the current line.
The cursor position is unchanged.

ESC[K
Erase in Line (EL)

Takes no parameters. Erases from the current cursor position inclusive to the
end of the current line. The cursor position is unchanged.

ESC[#L
Insert Line (IL)

Takes one parameter, # (default 1). Makes room for # new lines starting at
the current line by scrolling down by # lines the portion of the screen from
the current line inclusive to the bottom. The # new lines at the cursor are
filled with spaces; the bottom # lines shift off the bottom of the screen and
are lost. The position of the cursor on the screen is unchanged.

ESC[#M
Delete Line (DL)

Takes one parameter, # (default 1). Deletes # lines beginning with the current
line. The portion of the screen from the current line inclusive to the bottom
is scrolled upward by # lines. The # new lines scrolling onto the bottom of
the screen are filled with spaces; the # old lines beginning at the cursor line
are deleted. The position of the cursor on the screen is unchanged.

ESC[#P
Delete Character (DCH)

Takes one parameter, # (default 1). Deletes # characters starting with the
current cursor position. Shifts to the left by # character positions the tail of
the current line from the current cursor position inclusive to the end of the
line. Blanks are shifted into the rightmost # character positions. The position
of the cursor on the screen is unchanged.

ESC[#m
Select Graphic Rendition (SGR)

Takes one parameter, # (default 0). Note: unlike most escape sequences,
the parameter defaults to zero if omitted. Invokes the graphic rendition
specified by the parameter. All following printing characters in the data
stream are rendered according to the parameter until the next occurrence
of this escape sequence in the data stream. Currently only two graphic
renditions are defined:

0 Normal rendition

7 Negative (reverse) image

634 SunOS 5.8 Last modified 22 Apr 1998

Devices wscons(7D)

Negative image displays characters as white-on-black if the screen mode
is currently black-on white, and vice-versa. Any non-zero value of # is
currently equivalent to 7 and selects the negative image rendition.

On IA systems only, the following ISO 6429-1983 graphic rendition values
support color text:

30 black foreground

31 red foreground

32 green foreground

33 brown foreground

34 blue foreground

35 magenta foreground

36 cyan foreground

37 white foreground

40 black background

41 red background

42 green background

43 brown background

44 blue background

45 magenta background

46 cyan background

47 white background

ESC[p
Black On White (SUNBOW)

Takes no parameters. Sets the screen mode to black-on-white. If the screen
mode is already black-on-white, has no effect. In this mode spaces display
as solid white, other characters as black-on-white. The cursor is a solid
black block. Characters displayed in negative image rendition (see ‘Select
Graphic Rendition’ above) is white-on-black in this mode. This is the initial
setting of the screen mode on reset.

ESC[q
White On Black (SUNWOB)

Last modified 22 Apr 1998 SunOS 5.8 635

wscons(7D) Devices

Takes no parameters. Sets the screen mode to white-on-black. If the screen
mode is already white-on-black, has no effect. In this mode spaces display
as solid black, other characters as white-on-black. The cursor is a solid white
block. Characters displayed in negative image rendition (see ‘Select Graphic
Rendition’ above) is black-on-white in this mode. The initial setting of the
screen mode on reset is the alternative mode, black on white.

ESC[#r
Set Scrolling (SUNSCRL)

Takes one parameter, # (default 0). Sets to # an internal register which
determines how many lines the screen scrolls up when a line-feed function
is performed with the cursor on the bottom line. A parameter of 2 or 3
introduces a small amount of “jump” when a scroll occurs. A parameter of
34 clears the screen rather than scrolling. The initial setting is 1 on reset.

A parameter of zero initiates “wrap mode” instead of scrolling. In wrap
mode, if a linefeed occurs on the bottom line, the cursor goes to the same
character position in the top line of the screen. When any linefeed occurs,
the line that the cursor moves to is cleared. This means that no scrolling
ever occurs. ‘ESC [1 r’ exits back to scroll mode.

For more information, see the description of the Line-feed (CTRL-J) control
function above.

ESC[s
Reset terminal emulator (SUNRESET)

Takes no parameters. Resets all modes to default, restores current font from
PROM. Screen and cursor position are unchanged.

RETURN VALUES When there are no errors, the redirection ioctls have return values as described
above. Otherwise, they return −1 and set errno to indicate the error.

If the target stream is in an error state, errno is set accordingly.

ERRORS EBADF target does not denote an open file.

ENOSTR target does not denote a STREAMS device.

FILES /dev/wscons the workstation console, accessed by way of
the redirection facility

/dev/systty
/dev/syscon
/dev/console the device that must be opened for the

SRIOCSREDIRand SRIOCISREDIR ioctls

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

636 SunOS 5.8 Last modified 22 Apr 1998

Devices wscons(7D)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

SEE ALSO console (7D)

WARNINGS The redirection ioctls block while there is I/O outstanding on the device instance
being redirected. Thus, attempting to redirect the workstation console while
there is a read outstanding on it will hang until the read completes.

NOTES On Sun Enterprise 10000 servers the netcon facility supersedes wscons (7D).
wscons is useful for systems that do have directly attached consoles, such as
frame buffers and keyboards, but it is not useful with the Enterprise 10000
server, which does not. For more information, refer to netcon (1M) in the
Sun Enterprise 10000 SSP Reference Manual or cvcd (1M).

Last modified 22 Apr 1998 SunOS 5.8 637

xd(7D) Devices

NAME xd, xdc – disk driver for Xylogics 7053 SMD Disk Controller

SYNOPSIS xdc@6d,ee80/xd@slave,0:partition

xdc@6d,ee90/xd@slave,0:partition

xdc@6d,eea0/xd@slave,0:partition

xdc@6d,eeb0/xd@slave,0:partition

DESCRIPTION The driver for Xylogics 7053 devices consists of several components: a controller
driver (xdc) and a slave device driver module (xd). Each driver module has
an associated configuration file, which lives in the same directory as the driver
module. See driver.conf (4) and for the interpretation of the contents of
these files.

The block files access the disk using the system’s normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a raw interface that provides for direct transmission between the disk
and the user’s read or write buffer. A single read or write call usually results in
only one I/O operation; therefore raw I/O is considerably more efficient when
many words are transmitted. The physical names of the raw files conventionally
have ‘,raw ’ appended to them. The logical names for the raw files live in
the /dev/rdsk directory, as usual.

When using raw I/O, transfer counts should be multiples of 512 bytes (the size of
a disk sector). Likewise, when using lseek (2) to specify block offsets from which
to perform raw I/O, the logical offset should also be a multiple of 512 bytes.

Partition 0 is normally used for the root file system on a disk, partition 1 as a
paging area (for example, swap), and partition 2 for backing up the entire disk.
Partition 2 normally maps the entire disk and may also be used as the mount
point for secondary disks in the system. The rest of the disk is normally partition
6 . For the primary disk, the user file system is located here.

DISK SUPPORT This driver handles all SMD drives by reading a label from sector 0 of the drive
which describes the disk geometry and partitioning.

FILES /kernel/drv/xdc driver module

/kernel/drv/xd driver module

/kernel/drv/xdc.conf driver configuration file

/kernel/drv/xd.conf driver configuration file

/dev/dsk/c
X
dY
sZ

block devices, controller X , unit Y , slice Z

638 SunOS 5.8 Last modified 1 Jan 1997

Devices xd(7D)

/dev/rdsk/c
X
dY
sZ

raw devices, controller X , unit Y , slice Z

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC (Sun-4/200, Sun-4/300, and
Sun-4/400 series only)

SEE ALSO lseek (2) , read (2) , write (2) , driver.conf (4) , attributes (5) , dkio (7I)
, hdio (7I)

NOTES In raw I/O read (2) and write (2) truncate file offsets to 512-byte block
boundaries, and write (2) scribbles on the tail of incomplete blocks. Thus,
in programs that are likely to access raw devices, read (2) , write (2) , and
lseek (2) should always deal in 512-byte multiples.

Last modified 1 Jan 1997 SunOS 5.8 639

xmemfs(7FS) File Systems

NAME xmemfs – extended memory file system

SYNOPSIS #include <sys/mount.h>

mount(special_file, directory, MS_DATA, "xmemfs", dataptr, datalen);

DESCRIPTION The xmemfs file system is an extended memory file system that provides an
efficient mechanism for managing and accessing physical memory that exceeds
4 Gbytes in size. Currently, the xmemfs file system is supported on IA32
architecture systems only.

The Physical Address Extension (PAE) is the xmemfs internal processor feature
that enables a 36–bit physical memory address that supports up to 64 Gbytes of
physical memory. Once mounted, the xmemfs file system provides standard
file operations and semantics on directories and regular files only. Because
xmemfs does not allow execute permissions to be set on regular files, execution
of object files is prevented.

With xmemfs , the special_file argument, (typically the device on
which file systems reside), is ignored and serves only as a placeholder. File
data and metadata in xmemfs are always memory-resident. The dataptr
argument must (at a minimum) contain the required size specific option. See
mount_xmemfs (1M) for more information.

Because xmemfs is a memory-based file system, files and directories that are
created are not persistent across reboots or unmounts.

EXTENDED
DESCRIPTION

To mount the xmemfs file system, do the following:
mount -F xmemfs -osize=4g xmem directory

You can also mount a xmemfs file system on /xmem at multi-user
startup time prior to physical memory becoming fragmented.
To do this, add the following line to your /etc/vfstab file:
xmem - /xmem xmemfs - yes largebsize,size=4g

The xmemfs file system is expressly designed for performance-driven
applications (for example, RDBMS) that require large amounts of physical
memory. The xmemfs file system provides file system semantics to manage and
access extended memory spaces that exceed 4 Gbytes. From an application
perspective, extended memory under the control of a mounted xmemfs file
system is viewed as a single, large memory pool that can be partitioned as
needed through file creation. You can obtain windows into each memory
partition by using mmap(2).

Memory controlled by xmemfs can be partitioned by creating files of the required
size in the file system. The xmemfs file system allocates sufficient block-sized
memory pages for a file based on the file’s size. Files can be created using any
standard file utility, including mkfile (1M) and dd(1M). The xmemfs file system

640 SunOS 5.8 Last modified 25 May 1999

File Systems xmemfs(7FS)

optimizes the creation of large files that initially contain all zeroes by allocating
memory pages for the file ’hole’ that is created by writing beyond the end of file.

If sufficient xmemfs extended memory is available, an application can
quickly create an 8 Gbyte file in the xmemfs file system by using llseek (2)
to offset 8GB-1 and then write (2) a one-byte buffer containing zero. With
xmemfs , you can share and protect partitioned memory by setting appropriate
file permissions. To avoid wasting memory resources, (especially with the
−largebsize option specified), newly created option-specified files should be
a multiple of the block size of the xmemfs file system. Creation of many small
files is strongly discouraged. See statvfs (2) for information on determining
file system block sizes.

The xmemfs file system should only be used with performance-driven
applications that require quick access to large amounts of physical memory.
Using xmemfs for other applications may result in non-optimal use of system
resources and possible system performance degradation.

To maximize xmemfs ability to access a file’s extended memory partition, use
mmap(2). The initial mmap(2) call enables the system to assign a map size
containing as much memory as an application may actively access at any time.
The map size is constrained by the application’s virtual address space, (usually
a maximum of 3 Gbytes on machines with more than 4 Gbytes of physical
memory). To access extended memory that is not contained in the existing
mapping, use mmap(2) with the −MAP_FIXEDflag to remap a window within the
address range returned by the initial mmap call.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture i386

Interface Stability Evolving

SEE ALSO df (1M), mount (1M), mount_xmemfs (1M), mmap(2), statvfs (2), mount (2),
umount (2), vfstab (4)

DIAGNOSTICS If the xmemfs file system runs out of space, the following message is displayed
in the console indicating that there is insufficient memory to satisfy a write (2)
request:

directory: File system full, no memory

WARNINGS Files and directories on an xmemfs file system are not preserved across reboots
or unmounts.

Last modified 25 May 1999 SunOS 5.8 641

xt(7D) Devices

NAME xt – driver for Xylogics 472 1/2 inch tape controller

SYNOPSIS xt@2d,ee60:[l,m][b][n]

xt@2d,ee68:[l,m][b][n]

DESCRIPTION The Xylogics 472 tape controller controls Pertec-interface 1/2” tape drives
such as the Fujitsu M2444 and the CDC Keystone III. The xt driver provides a
standard tape interface to the device; see mtio (7I) for details.

The xt driver supports the character device interface. The driver can be opened
with either rewind on close or no rewind on close options. The tape format and
options are specified using the device name (see FILES below).

EOT Handling The user will be notified of end of tape (EOT) on write by a 0 byte count
returned the first time this is attempted. This write must be retried by the user.
Subsequent writes will be successful until the tape winds off the reel. Reading
past EOT is transparent to the user.

IOCTL See mtio (7I) for a list of ioctls available for tape devices. However, not all devices
support all ioctls. The driver returns an ENOTTY error on unsupported ioctls.

1/2” tape devices do not support the tape retension function.

ERRORS EACCES The driver is opened for write access and the tape is write
protected.

EBUSY The tape drive is in use by another process. Only one
process can use the tape drive at a time.

EINVAL The requested number of bytes for a read operation is less
than the actual record length on the tape.

EIO During opening, the tape device is not ready because either
no tape is in the drive, or the drive is not on-line. Once
open, this error is returned if the requested I/O transfer
could not be completed.

ENOTTY This indicates that the tape device does not support the
requested ioctl function.

ENXIO During opening, the tape device does not exist.

FILES /kernel/drv/xt driver module

/kernel/drv/xt.conf driver configuration file

/dev/rmt/[0 −1][l,m][b][n] raw devices

642 SunOS 5.8 Last modified 1 Jan 1997

Devices xt(7D)

For raw devices l,m specifies the density (low, medium), and b the optional BSD
behavior (see mtio (7I)) and n the optional no rewind behavior. For example
/dev/rmt/0lbn specifies unit 0, low density, BSD behavior, and no rewind.

For 1/2” reel tape devices, the densities are:
l typically 1600 BPI density

m typically 6250 BPI density

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC (Sun-4/200, Sun-4/300, and
Sun-4/400 series only)

SEE ALSO ioctl (2), driver.conf (4), attributes (5), mtio (7I)

BUGS Record sizes are restricted to an even number of bytes.

The EOT handling for write operation differs from the mtio (7I) specification.

Last modified 1 Jan 1997 SunOS 5.8 643

xy(7D) Devices

NAME xy, xyc – disk driver for Xylogics 450 and 451 SMD Disk Controllers

SYNOPSIS xyc@2d,ee40/xy@ slave,0: partition

xyc@2d,ee48/xy@ slave,0: partition

DESCRIPTION The driver for Xylogics 450/451 devices consists of several components: a
controller driver module (xyc) and a slave device driver module (xy). Each
driver module has an associated configuration file, which lives in the same
directory as the driver module. See driver.conf (4) and for the interpretation
of the contents of these files.

The block files access the disk using the system’s normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a raw interface that provides for direct transmission between the disk
and the user’s read or write buffer. A single read or write call usually results in
only one I/O operation; therefore raw I/O is considerably more efficient when
many words are transmitted. The physical names of the raw files conventionally
have ‘,raw ’ appended to them. The logical names for the raw files live in
the /dev/rdsk directory, as usual.

When using raw I/O, transfer counts should be multiples of 512 bytes (the size of
a disk sector). Likewise, when using lseek (2) to specify block offsets from which
to perform raw I/O, the logical offset should also be a multiple of 512 bytes.

Partition 0 is normally used for the root file system on a disk, partition 1 as a
paging area (for example, swap), and partition 2 for backing up the entire disk.
Partition 2 normally maps the entire disk and may also be used as the mount
point for secondary disks in the system. The rest of the disk is normally partition
6 . For the primary disk, the user file system is located here.

Due to word ordering differences between the disk controller and Sun computers,
user buffers that are used for raw I/O must not begin on odd byte boundaries.

DISK SUPPORT This driver handles all SMD drives by reading a label from sector 0 of the drive
which describes the disk geometry and partitioning.

FILES /kernel/drv/xyc driver module

/kernel/drv/xy driver module

/kernel/drv/xyc.conf driver configuration file

/kernel/drv/xy.conf driver configuration file

/dev/dsk/c
X
dY
sZ

block device, controller X , unit Y , slice Z

644 SunOS 5.8 Last modified 1 Jan 1997

Devices xy(7D)

/dev/rdsk/c
X
dY
sZ

raw device, controller X , unit Y , slice Z

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC (Sun-4/200, Sun-4/300, and
Sun-4/400 series only)

SEE ALSO lseek (2) , read (2) , write (2) , driver.conf (4) , attributes (5) , dkio (7I)
, hdio (7I)

NOTES In raw I/O read (2) and write (2) truncate file offsets to 512-byte block
boundaries, and write (2) scribbles on the tail of incomplete blocks. Thus,
in programs that are likely to access raw devices, read (2) , write (2) , and
lseek (2) should always deal in 512-byte multiples.

Last modified 1 Jan 1997 SunOS 5.8 645

zero(7D) Devices

NAME zero – source of zeroes

DESCRIPTION A zero special file is a source of zeroed unnamed memory.

Reads from a zero special file always return a buffer full of zeroes. The file
is of infinite length.

Writes to a zero special file are always successful, but the data written is ignored.

Mapping a zero special file creates a zero-initialized unnamed memory object of
a length equal to the length of the mapping and rounded up to the nearest page
size as returned by sysconf . Multiple processes can share such a zero special
file object provided a common ancestor mapped the object MAP_SHARED.

FILES /dev/zero

SEE ALSO fork (2), mmap(2), sysconf (3C)

646 SunOS 5.8 Last modified 3 Jul 1990

Devices zs(7D)

NAME zs – Zilog 8530 SCC serial communications driver

SYNOPSIS #include <fcntl.h>

#include <sys/termios.h>

open("/dev/term/n", mode);

open("/dev/ttyn", mode);

open("/dev/cua/n", mode);

DESCRIPTION The Zilog 8530 provides two serial input/output channels capable of supporting
a variety of communication protocols. A typical system uses two or more of these
devices to implement essential functions, including RS-423 ports (which also
support most RS-232 equipment), and the console keyboard and mouse devices.

The zs module is a loadable STREAMS driver that provides basic support for
the Zilog 8530 hardware and basic asynchronous communication support. The
driver supports the termio (7I) device control functions specified by flags in
the c_cflag word of the termios structure and by the IGNBRK, IGNPAR,
PARMRK,or INPCK flags in the c_iflag word. All other termio (7I) functions
must be performed by STREAMS modules pushed atop the driver. When a
device is opened, the ldterm (7M) and ttcompat (7M) STREAMS modules are
automatically pushed on top of the stream, providing the standard termio (
7I) interface.

The character-special devices /dev/term/a and /dev/term/b are used to
access the two serial ports on the CPU board.

Valid name space entries are /dev/cua/ [a-z], /dev/term/ [a-z] and
/dev/tty [a-z]. The number of entries used in a name space are machine
dependent.

The /dev/tty [n] device names only exist if the SunOS 4.x Binary Compatibility
Package is installed. The /dev/tty [n] device names are created by the
ucblinks command, which is available only with the SunOS 4.x Binary
Compatibility Package.

To allow a single tty line to be connected to a modem and used for both incoming
and outgoing calls, a special feature is available that is controlled by the minor
device number. By accessing character-special devices with names of the form
/dev/cua/ [n], it is possible to open a port without the Carrier Detect
signal being asserted, either through hardware or an equivalent software
mechanism. These devices are commonly known as dial-out lines.

Once a /dev/cua/ [n] line is opened, the corresponding tty line cannot be
opened until the /dev/cua/ n line is closed. A blocking open will wait until
the /dev/cua/ [n] line is closed (which will drop Data Terminal Ready ,
and Carrier Detect) and carrier is detected again. A non-blocking open will

Last modified 14 May 1999 SunOS 5.8 647

zs(7D) Devices

return an error. If the tty line has been opened successfully (usually only when
carrier is recognized on the modem) , the corresponding /dev/cua/ [n] line
cannot be opened. This allows a modem to be attached to /dev/term/ [n]
(renamed from /dev/tty [n]) and used for dial-in (by enabling the line for
login in /etc/inittab) and also used for dial-out (by tip (1) or uucp (1C)) as
/dev/cua/ [n] when no one is logged in on the line.

IOCTLS The zs module supports the standard set of termio ioctl () calls.

If the CRTSCTSflag in the c_cflag field is set, output will be generated only if
CTSis high; if CTSis low, output will be frozen. If the CRTSCTSflag is clear, the
state of CTS has no effect.

If the CRTSXOFFflag in the c_cflag field is set, input will be received only if
RTS is high; if RTS is low, input will be frozen. If the CRTSXOFFflag is clear, the
state of RTShas no effect.

The termios CRTSCTS (respectively CRTSXOFF)flag and termiox CTSXON
(respectively RTSXOFF)can be used interchangeably.

Breaks can be generated by the TCSBRK, TIOCSBRK,and TIOCCBRK ioctl ()
calls.

The state of the DCD, CTS, RTS, and DTRinterface signals may be queried
through the use of the TIOCM_CAR, TIOCM_CTS, TIOCM_RTS,and TIOCM_DTR
arguments to the TIOCMGET ioctl command, respectively. Due to hardware
limitations, only the RTSand DTRsignals may be set through their respective
arguments to the TIOCMSET, TIOCMBIS, and TIOCMBIC ioctl commands.

The input and output line speeds may be set to any of the speeds supported
by termio . The input and output line speeds cannot be set independently; for
example, when you set the the output speed, the input speed is automatically
set to the same speed.

When the driver is used to service the serial console port, it supports a BREAK
condition that allows the system to enter the debugger or the monitor. The
BREAK condition is generated by hardware and it is usually enabled by default.
A BREAK condition originating from erroneous electrical signals cannot be
distinguished from one deliberately sent by remote DCE. The Alternate Break
sequence can be used to remedy this.

Due to a risk of incorrect sequence interpretation, binary protocols such as PPP,
SLIP, and others should not be run over the serial console port when Alternate
Break sequence is in effect. By default, the Alternate Break sequence is three
characters: carriage return, tilde and control-B (CR ~ CTRL-B), but may be
changed by the driver. For more information on breaking (entering the debugger
or monitor, see kbd (1) and kb (7M).

ERRORS An open will fail under the following conditions:

648 SunOS 5.8 Last modified 14 May 1999

Devices zs(7D)

ENXIO The unit being opened does not exist.

EBUSY The dial-out device is being opened and the dial-in device is
already open, or the dial-in device is being opened with a
no-delay open and the dial-out device is already open.

EBUSY The port is in use by another serial protocol.

EBUSY The unit has been marked as exclusive-use by another
process with a TIOCEXCL ioctl () call.

EINTR The open was interrupted by the delivery of a signal.

FILES /dev/cua/ [a-z] dial-out tty lines

/dev/term/ [a-z] dial-in tty lines

/dev/tty [a-z] binary compatibility package device names

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

SEE ALSO kadb (1m), tip (1), ucblinks (1B), cu (1C), uucp (1C), ports (1M), ioctl (2),
open (2), attributes (5), zsh (7D), termio (7I) ldterm (7M), ttcompat (7M),
kb (7M), ldterm (7M)

SunOS 4.x Binary Compatibility Guide

DIAGNOSTICS zs n : silo overflow.
The Zilog 8530 character input silo overflowed before it could be serviced.

zs n : ring buffer overflow.
The driver’s character input ring buffer overflowed before it could be
serviced.

Last modified 14 May 1999 SunOS 5.8 649

zsh(7D) Devices

NAME zsh – On-board serial HDLC/SDLC interface

SYNOPSIS #include <fcntl.h>

open(/dev/zshn, mode);

open(/dev/zsh, mode);

DESCRIPTION The zsh module is a loadable STREAMS driver that implements the sending
and receiving of data packets as HDLCframes over synchronous serial lines. The
module is not a standalone driver, but instead depends upon the zs module
for the hardware support required by all on-board serial devices. When loaded
this module acts as an extension to the zs driver, providing access to an HDLC
interface through character-special devices.

The zsh n devices provide what is known as a data path which supports the
transfer of data via read (2) and write (2) system calls, as well as ioctl (2) calls.
Data path opens are exclusive in order to protect against injection or diversion
of data by another process.

The zsh device provides a separate control path for use by programs that
need to configure or monitor a connection independent of any exclusive access
restrictions imposed by data path opens. Up to three control paths may be
active on a particular serial channel at any one time. Control path accesses are
restricted to ioctl (2) calls only; no data transfer is possible.

When used in synchronous modes, the Z8530 SCCsupports several options
for clock sourcing and data encoding . Both the transmit and receive
clock sources can be set to be the external Transmit Clock (TRxC), external
Receive Clock (RTxC), the internal Baud Rate Generator (BRG), or the output of
the SCC’s Digital Phase-Lock Loop (DPLL).

The Baud Rate Generator is a programmable divisor that derives a clock
frequency from the PCLKinput signal to the SCC. A programmed baud rate is
translated into a 16-bit time constant that is stored in the SCC. When using
the BRGas a clock source the driver may answer a query of its current speed with
a value different from the one specified. This is because baud rates translate into
time constants in discrete steps, and reverse translation shows the change. If an
exact baud rate is required that cannot be obtained with the BRG, an external
clock source must be selected.

Use of the DPLL option requires the selection of NRZI data encoding and the
setting of a non-zero value for the baud rate, because the DPLL uses the BRG
as its reference clock source.

A local loopback mode is available, primarily for use by the syncloop (1M)
utility for testing purposes, and should not be confused with SDLCloop mode,
which is not supported on this interface. Also, an auto-echo feature may be

650 SunOS 5.8 Last modified 1 Jan 1997

Devices zsh(7D)

selected that causes all incoming data to be routed to the transmit data line,
allowing the port to act as the remote end of a digital loop. Neither of these
options should be selected casually, or left in use when not needed.

The zsh driver keeps running totals of various hardware generated events
for each channel. These include numbers of packets and characters sent and
received, abort conditions detected by the receiver, receive CRCerrors, transmit
underruns, receive overruns, input errors and output errors, and message block
allocation failures. Input errors are logged whenever an incoming message
must be discarded, such as when an abort or CRCerror is detected, a receive
overrun occurs, or when no message block is available to store incoming data.
Output errors are logged when the data must be discarded due to underruns,
CTSdrops during transmission, CTStimeouts, or excessive watchdog timeouts
caused by a cable break.

IOCTLS The zsh driver supports several ioctl() commands, including:
S_IOCGETMODE Return a struct scc_mode containing

parameters currently in use. These include the
transmit and receive clock sources, boolean
loopback and NRZI mode flags and the integer
baud rate.

S_IOCSETMODE The argument is a struct scc_mode from
which the SCCchannel will be programmed.

S_IOCGETSTATS Return a struct sl_stats containing the
current totals of hardware-generated events.
These include numbers of packets and characters
sent and received by the driver, aborts and CRC
errors detected, transmit underruns, and receive
overruns.

S_IOCCLRSTATS Clear the hardware statistics for this channel.

S_IOCGETSPEED Returns the currently set baud rate as an integer.
This may not reflect the actual data transfer rate
if external clocks are used.

S_IOCGETMCTL Returns the current state of the CTSand DCD
incoming modem interface signals as an integer.

The following structures are used with zsh ioctl() commands:

struct scc_mode {
char sm_txclock; /* transmit clock sources */
char sm_rxclock; /* receive clock sources */
char sm_iflags; /* data and clock inversion flags (non-zsh) */
uchar_t sm_config; /* boolean configuration options */
int sm_baudrate; /* real baud rate */

Last modified 1 Jan 1997 SunOS 5.8 651

zsh(7D) Devices

int sm_retval; /* reason codes for ioctl failures */
};
struct sl_stats {

long ipack; /* input packets */
long opack; /* output packets */
long ichar; /* input bytes */
long ochar; /* output bytes */
long abort; /* abort received */
long crc; /* CRC error */
long cts; /* CTS timeouts */
long dcd; /* Carrier drops */
long overrun; /* receive overrun */
long underrun; /* transmit underrun */
long ierror; /* input error */
long oerror; /* output error */
long nobuffers; /* receive side memory allocation failure */

};

ERRORS An open() will fail if a STREAMSmessage block cannot be allocated, or:
ENXIO The unit being opened does not exist.

EBUSY The device is in use by another serial protocol.

An ioctl() will fail if:
EINVAL An attempt was made to select an invalid clocking source.

EINVAL The baud rate specified for use with the baud rate generator
would translate to a null time constant in the SCC’s registers.

FILES /dev/zsh[0-1] ,/dev/zsh character-special devices

/usr/include/sys/ser_sync.h header file specifying synchronous
serial communication definitions

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO syncinit (1M), syncloop (1M), syncstat (1M), ioctl (2), open (2), read (2),
write (2), attributes (5), zs (7D)

Refer to the Zilog Z8530 SCC Serial Communications Controller Technical
Manual for details of the SCC’s operation and capabilities.

652 SunOS 5.8 Last modified 1 Jan 1997

Devices zsh(7D)

DIAGNOSTICS zsh data open failed, no memory, rq= nnn
zsh clone open failed, no memory, rq= nnn

A kernel memory allocation failed for one of the private data structures. The
value of nnn is the address of the read queue passed to open (2).

zsh_open: can’t alloc message block
The open could not proceed because an initial STREAMS message block
could not be made available for incoming data.

zsh: clone device d must be attached before use!
An operation was attempted through a control path before that path had
been attached to a particular serial channel.

zsh n: invalid operation for clone dev.
An inappropriate STREAMS message type was passed through a control
path. Only M_IOCTL and M_PROTOmessage types are permitted.

zsh n: not initialized, can’t send message
An M_DATAmessage was passed to the driver for a channel that had not
been programmed at least once since the driver was loaded. The SCC’s
registers were in an unknown state. The S_IOCSETMODEioctl command
performs the programming operation.

zsh n: transmit hung
The transmitter was not successfully restarted after the watchdog timer
expired.

Last modified 1 Jan 1997 SunOS 5.8 653

zsh(7D) Devices

654 SunOS 5.8 Last modified 1 Jan 1997

Index

1/2-inch tape drive
xt — Xylogics 472 642

24-bit UPA color frame buffer and graphics
accelerator — ffb 163

3COM EtherLink III Ethernet device driver —
elx 128

3COM EtherLink III PCMCIA Ethernet Adapter
— pcelx 371

450 SMD Disk driver – xy 644
451 SMD Disk driver – xy 644
472 1/2-inch tape drive — xt 642
4BSD compatibility module — ttcompat 587
7053 SMD Disk driver – xd 638

A
Address Resolution ProtocolARP
adp — low-level module for controllers based

on Adaptec AIC-7870P and
AIC-7880P SCSI chips 22

afb— Elite3D graphics accelerator driver 23,
204

Am7990 (LANCE) Ethernet device driver
– le 285
– lebuffer 285
– ledma 285

Am79C940 (MACE) Ethernet device driver —
qe 421, 424

AMD PCnet Ethernet controller device driver
— pcn 381

an I2O OS sepcific module that supports SCSA
interface

an I2O 196

ANSI Layered Console Driver — ltem 312
ANSI standard terminal emulation —

wscons 628
arp – Address Resolution Protocol 24

SIOCDARP – delete arp entry 24
SIOCGARP – get arp entry 24
SIOCSARP – set arp entry 24

asy — asynchronous serial port driver 27
asynchronous serial port driver — asy 27
AT attachment disk driver — ata 30
ata — AT attachment disk driver 30
audio — audio device interface 32
audio device

Sound Blaster 16/Pro/AWE32 —
sbpro 443

audio_support — audio device independent
driver interface 49

audioamd — telephone quality audio
device 43

audiocs — Crystal Semiconductor 4231 audio
Interface 45

Audio Data Formats for the Multimedia
4231 Codec 45

Audio Interfaces 45
Audio Status Change Notification 47
Driver Version 45
Sample Granularity 47
Setting Audio Mixer Mode 45

authsha1 — HMAC-SHA-1 Authentication
Algorithm Module for
IPsec 53

Index-655

B
bd — SunButtons and SunDials STREAMS

module 54
bpp — bi-directional parallel port 56
bufmod — STREAMS Buffer module 62
built-in mouse device interface —

kdmouse 277
bwtwo — black and white frame buffer 66

C
cadp — SCSI host bus adapter driver 67
CD-ROM — ISO 9660 CD-ROM filesystem —

hsfs 189
cdio— CD-ROM control operations 70
CDROM control operations —cdio 70
cgfourteen — 24-bit color graphics device 81
cgeight — 24-bit color memory frame buffer 79
cgfour — P4-bus 8-bit color memory frame

buffer 80
cgfourteen — 24-bit color graphics device 81
cgsix — accelerated 8-bit color frame buffer 82
cgthree — 8-bit color memory frame buffer 83
cgtwo — color graphics interface 84
cmdk — common disk driver 85
cnft — device driver for Compaq NIC 87
Cogent EM960/EM100 Ethernet controller

device driver — dnet 118
color graphics interface

24-bit color memory frame buffer —
cgeight 79

8-bit color memory frame buffer —
cgthree 83

accelerated 8-bit color frame buffer —
cgsix 82

standard frame buffer — cgtwo 84
P4-bus 8-bit color memory frame buffer —

cgfour 80
Sun color memory frame buffer —

m64 313, 547
common disk driver — cmdk 85
Compaq Smart-2 EISA/PCI and Smart-2SL PCI

Array Controller driver —
smartii 477

connections, unique stream
line discipline — connld 91

connld — line discipline for unique
connections 91

console devices
sysmsg 540

console
STREAMS-based console interface 93

converts mouse protocol to Firm Events –
vuidmice 625

vuid2ps2 625
vuid3ps2 625
vuidm3p 625
vuidm4p 625
vuidm5p 625

core memory
image – mem 315

cpqncr — low-level module for Compaq 825
and 875 Controllers 94

cpr — suspend and resume module 96
Crystal Semiconductor 4231 audio Interface —

audiocs 45
cvc — virtual console driver 98
cvcredir — virtual console redirection

driver 99

D
D-LINK Ethernet controller device driver —

dnet 118
dad — driver for IDE disk devices 100

Device Statistics Support 100
Data Link Provider Interface

— dlpi 117
dbri — ISDN and audio interface 103

Audio Data Formats for BRI Interfeces 104
Audio Data Formats for the Multimedia

Codec/SpeakerBox 104
Audio Interfaces 103
Audio Ports 106
Audio Status Change Notification 106
ISDN Interfaces 103
Sample Granularity 106

delete arp entry ioctl – SIOCDARP 24
device driver for Compaq NIC — cnft 87
device interface

Microsoft Bus Mouse — msm 338
devices

cgfourteen 81

man pages section 7: Device and Network Interfaces ♦ February 2000

disk control operations — dkio 110
disk driver

fd – floppy 153
Xylogics – xd 638, 644

disk quotas — quotactl() 430
dkio — disk control operations 110
dlpi — Data Link Provider Interface 117
dnet — DEC 21040/21140-based Ethernet

Controllers 118
DOS

DOS formatted file system — pcfs 372
Sun Enterprise 10000 dynamic reconfiguration

driver 120
driver for fast poll on many file descriptors —

poll 407
driver for IDE disk devices — dad 100
driver for parallel port — lp 310
driver for SPARC Storage Array disk devices

— ssd 484
drivers for floppy disks and floppy disk

controllers – fd 153
fdc 153
SCSI tape devices — st 488

Dual Basic Rate ISDN and audio Interface —
dbri 103

E
ecpp — bi-directional parallel port 122
Elite3D graphics accelerator driver — afb 23
elx — 3COM ETHERLINK III Ethernet device

driver 128
elx Primitives 128

esp — ESP SCSI Host Bus Adapter Driver 133
ESP SCSI Host Bus Adapter Driver — esp 133
Ethernet device driver

SMC EtherPower II 10/100 (9432) Ethernet
device driver — spwr 483

extended memory file system — xmemfs 640

F
fas — FAS SCSI Host Bus Adapter Driver 140
FAS SCSI Host Bus Adapter Driver — fas 140
fbio — frame buffer control operations 149
fcp — Fibre Channel protocol driver 151
fctl — Sun Fibre Channel transport library 152

fd – drivers for floppy disks and floppy disk
controllers 153

fdc – drivers for floppy disks and floppy disk
controllers 153

FDGETCHANGE — get status of disk
changed 159

fdio — disk control operations 159
FDIOGCHAR — get floppy characteristics 159
FDIOGCHAR — set floppy characteristics 159
FDKEJECT — eject floppy 159
ffb — 24-bit UPA color frame buffer and

graphics accelerator 163
Sun Fibre Channel port driver — fp 165
Fibre Channel protocol driver — fcp 151
file system

quotactl() — disk quotas 430
flashpt — low-level module for

Mylex/BusLogic host
bus adapters 164

Supported BusLogic Adapters 164
floppy disk driver – fd 153
floppy disk control operations — fdio 159
fp — Sun Fibre Channel port driver 165
frame buffer

black and whirte frame buffer —
bwtwo 66

frame buffer control operations
— fbio 149

G
general properties of Internet Protocol network

interfaces – if_tcp 209
general terminal interface — termio 549
Generic LAN Driver — gld 166
Generic SCSI device driver – sgen 469
gld — Generic LAN Driver 166

Ethernet V2 and 802.3 166
FDDI SNAP processing 167
Implemented DLPI Primitives 168
Implemented ioctl Functions 170
Network Statistics 170
Style 1 and 2 Providers 168
Token Ring SNAP processing 167
Token Ring Source Routing 168

glm — GLM SCSI Host Bus Adapter
Driver 175

Index-657

GLM SCSI Host Bus Adapter Driver —
glm 175

H
hdio — SMD and IPI disk control

operations 180
— Human Interface Device (HID) class

driver 182
High Sierra filesystemhsfs
HMAC-SHA-1 Authentication Algorithm

Module for IPsec —
authsha1 53

hme — SUNW,hme Fast-Ethernet device
driver 184

hme Primitives 186
hsfs

filesystem — hsfs 189
hubd — USB hub driver 192
Human Interface Device (HID) class driver —

hid 182

I
I/O

data link provider interface — dlpi 117
extended terminal interface —

termiox 572
ioctls that operate directly on sockets —

sockio 482
STREAMS ioctl commands —

streamio 515
I2C smart card card terminal driver —

ocf_iscr1 363
iButton smart card terminal driver —

ocf_ibutton 362
icmp – Internet Control Message Protocol 199
icmp6 — Internet Control Message Protocol

for Internet Protocol Version
6 197

IDE Host Bus Adapter Driver — uata 599
IEEE 1394 bus-based digital camera —

t1394dcam 541
if – general properties of Internet Protocol

network interfaces 209
if_tcp – general properties of Internet Protocol

network interfaces 209
Application Programming Interface 209

IFB graphics accelerator driver — ifb 204
inet — Internet protocol family 221
inet6 — Internet protocol family for Internet

Protocol version 6 217
Intel D100 Ethernet device driver — iprb 236
Intel i82365SL PC Card Interface Controller —

pcic 378
Intel Ethernet device driver, Intel — iprb 236
Internet Control Message Protocol – icmp 199,

231, 542, 601
Internet Control Message Protocol for Internet

Protocol Version 6 —
icmp6 197

Internet Protocol
to Ethernet addresses – arp 24

Internet protocol family — inet 221
Internet protocol family for Internet Protocol

version 6 — inet6 217
Internet Protocol Security Architecture —

ipsec 239
Internet Protocol Version 6— ip6 224
Internet Protocol Version 6 — ip6 224
ioctls for sockets

SIOCDARP – delete arp entry 24
SIOCGARP – get arp entry 24
SIOCSARP – set arp entry 24

ioctls for floppy
FDEJECT — eject floppy 159
FDGETCHAGE — get status of disk

changed 159
FDIOCHAR — get floppy

characteristics 159
ioctls for sockets

SIOCADDRT — add route 437
SIOCDELRT — delete route 437

ioctl’s for terminals
TIOCPKT — set/clear packet mode

(pty) 419
TIOCREMOTE — remote input

editing 420
TIOCSTART — start output (like

control-Q) 419
TIOCSTOP — stop output (like

control-S) 419
ip – Internet Protocol 231
ip6 — Internet Protocol Version 6 224

man pages section 7: Device and Network Interfaces ♦ February 2000

ipd – STREAMS modules and drivers for the
Point-to-Point Protocol 411

ipdcm – STREAMS modules and drivers for the
Point-to-Point Protocol 411

ipdptp – STREAMS modules and drivers for the
Point-to-Point Protocol 411

iprb — D100 Ethernet device driver 236
ipsec — Internet Protocol Security

Architecture 239
isdnio — generic ISDN interface 246
ISO 9660 — ISO 9660 CD-ROM filesystem —

hsfs 189
isp — ISP SCSI Host Bus Adapter Driver 261
ISP SCSI Host Bus Adapter Driver — isp 261

K
kb — keyboard STREAMS module 267

Keyboard Compatibility Mode 272
Keyboard Translation Mode 267
Keyboard Translation-Table Entries 267

kdmouse — built-in mouse device
interface 277

kernel lock statistics driver — lockstat 300
kernel packet forwarding database —

route 433
kernel statistics driver — kstat 278
kernel symbols — ksyms 279
keyboard STREAMS module — kb 267
keyboard STREAMS module for Sun USB

Keyboard — usbkbm 605
kstat — kernel statistics driver 278
kyms — kernel symbols 279

L
LAN support module — gld 166
ldterm — line discipline for STREAMS terminal

module 281
le – Am7990 (LANCE) Ethernet device

driver 285
lebuffer – Am7990 (LANCE) Ethernet device

driver 285
ledma – Am7990 (LANCE) Ethernet device

driver 285
line discipline for unique stream connections

—connld 91

llc1 — Logical Link Control Protocol Class 1
Driver 290

lockstat — kernel lock statistics driver 300
lofi — loopback file driver 301
lofs — loopback virtual file system 303
log — interface to STREAMS error logging and

event tracing 305
logi — LOGITECH bus mouse device

interface 309
Logical Link Control Protocol Class 1 Driver —

llc1 290
LOGITECH Bus Mouse device interface —

logi 309
loopback file driver — lofi 301
loopback transport providers

– ticlts 578
– ticots 578
– ticotsord 578

loopback virtual file system — lofs 303
low-level module

Mylex DAC960E
DAC960P/PD/PD-Ultra/PL
host bus adapter series —
mlx 334

low-level module for Compaq 825 and Compaq
875 Controllers — cpqncr 94

low-level module for controllers based on
Adaptec AIC-7870P and
AIC-7880P SCSI chips —
adp 22

low-level module for Mylex/BusLogic host bus
adapters — flashpt 164

low-level module for the AMD PCscsi, PCscsi
II, PCnet-SCSI, and Qlogic
QLA510 PCI-to-SCSI bus
adapters — pcscsi 384

lp — driver for parallel port 310
ltem — ANSI Layered Console Driver 312

M
m64 — PCI low-range graphics accelerator

with color memory frame
buffer 313

magnetic tape interface
— mtio 340

mem– image of core memory 315

Index-659

memory based filesystem — tmpfs 584
memory, core

image – mem 315
memory, zeroed unnamed

source — zero 646
message output collection

msglog 337
mhd — multihost disk control operations 316

Automatic Probing 319
MHIOCENFAILFAST Ioctl 319
Non-shared multihost disks: 316
Shared Multihost Disks 317

Microsoft Bus Mouse device interface —
msm 338

mixer — audio mixer device interface 321
mlx — low-level module for Mylex DAC960E

DAC960P/PD/PD-Ultra/PL
host bus adapter series 334

Access to Ready/Standby Drives 334
Board Configuration and Auto

Configuration 334
Configuration Tips 334
Hot Plugging 335
Ready and Standby Drives 335
SCSI Target IDs 335

monitor
PROM monitor configuration interface —

openprom 365
monochrome frame buffer — bwtwo 66
Mouse device interface

LOGITECH Bus Mouse device interface —
logi 309

msglog
message output collection 337

msm — Microsoft Bus Mouse device
interface 338

mtio — general magnetic tape interface 340
multihost disk control operations — mhd 316
Mylex DAC960E DAC960P/PD/PD-Ultra/PL

host bus adapter series
low-level module — mlx 334

N
llc2— llc2 Class II logical link control

driver 293, 353
Driver Configuration 67, 354

network packet routing device — routing 437
null — null file 360

O
ocf_escr1 — serial smart card terminal

driver 361
ocf_ibutton — iButton smart card terminal

driver 362
ocf_iscr1 — I2C smart card card terminal

driver 363
ohci — OpenHCI host controller driver 364
OpenHCI host controller driver — ohci 364
openprom — PROM monitor configuration

interface 365

P
packet routing device — routing 437
packet routing ioctls

SIOCADDRT — add route 437
SIOCDELRT — delete route 437

parallel port, bi-directional — bpp 56, 122
driver for parallel port — lp 310

pcata — PCMCIA ATA card device driver 370
pcelx — 3COM EtherLink III PCMCIA Ethernet

Adapter 371
pcfs — DOS formatted file system 372
pcic — Intel i82365SL PC Card Interface

Controller 378
pckt — STREAMS Packet Mode module 379
PCMCIA ATA card device driver — pcata 370
PCMCIA memory card nexus driver —

pcmem 380
PCMCIA RAM memory card device driver —

pcram 383
PCMCIA serial card device driver — pcser 385
pcmem — PCMCIA memory card nexus

driver 380
pcn — AMD PCnet Ethernet controller device

driver 381
pcram — PCMCIA RAM memory card device

driver 383
pcscsi — low-level module for the AMD PCscsi,

PCscsi II, PCnet-SCSI, and
Qlogic QLA510 PCI-to-SCSI
bus adapters 384

man pages section 7: Device and Network Interfaces ♦ February 2000

pcser — PCMCIA serial card device driver 385
pf_key — security association database 386
pfmod — STREAMS packet filter module 395
pipemod — STREAMS pipe flushing

module 398
Platform Specific Module (PSM) for Tricord

Systems Enterprise Server
Models ES3000, ES4000 and
ES5000 — tpf 586

pln — SPARC Storage Array SCSI Host Bus
adapter driver 399

PLN SCSI Host Bus Adapter driver — pln 399
pm — Power Management Driver 400
Point-to-Point Protocol

– ipd 411
– ipdcm 411
– ipdptp 411
– ppp 411
– ppp_diag 411

poll — driver for fast poll on many file
descriptors 407

Power Management Driver — pm 400
ppp – STREAMS modules and drivers for the

Point-to-Point Protocol 411
Operation 411

ppp_diag – STREAMS modules and drivers
for the Point-to-Point
Protocol 411

PROM
monitor configuration interface —

openprom 365
Pseudo Terminal Emulation module, STREAMS

— ptem 413
pseudo-terminal driver — pty 418
ptem — STREAMS Pseudo Terminal Emulation

module 413
ptm — STREAMS Buffer module 414
pts — STREAMS pseudo-tty slave driver 416
pty — pseudo-terminal driver 418
pty — pseudo-terminal driver 418

Q
qe — Am79C940 (MACE) Ethernet device

driver 421
qec — Am79C940 (MACE) Ethernet device

driver 424

qfe — SUNW,qfe Quad Fast-Ethernet device
driver 425

qfe Primitives 427
quotactl() — disk quotas 430

R
remote input editing ioctl —

TIOCREMOTE 420
rns_smt — Rockwell Station Management

driver 432
Rockwell 2200 SNAP Streams Driver —

sxp 534
Rockwell Station Management driver —

rns_smt 432
route — kernel packet forwarding

database 433
Messages 434

routing — local network packet routing 437
routing ioctls

SIOCADDRT — add route 437
SIOCDELRT — delete route 437

S
sbpro — Creative Labs Sound Blaster audio

device 443
scsa2usb — SCSI to USB bridge host bus

adapter driver 446
SCSI enclosure services device driver —

ses 463
SCSI host bus adapter driver — cadp 67, 293,

353
SCSI tape devices

driver — st 488
SCSI to USB bridge host bus adapter driver —

scsa2usb 446
sd — SCSI disk and ATAPI/SCSI CD-ROM

device driver 449
se — Siemens 82532 ESCC serial

communications driver 455
security association database — pf_key 386
serial communications driver — zs 647
Serial Optical Controller device driver —

soc 478
Serial Optical Controller for Fibre Channel

Arbitrated Loop (SOC+)
device driver — socal 480

Index-661

Serial Parallel Communications driver for SBus
— stc 501

serial smart card terminal driver —
ocf_escr1 361

Service Location Protocol — slp 475
ses — SCSI enclosure services device

driver 463
set/clear

packet mode (pty) ioctl — TIOCPKT 419
sgen – Generic SCSI device driver 469
zsh — On-board serial HDLC interface 459
Siemens 82532 ESCC serial communications

driver — se 455
SIOCDARP – delete arp entry 24
SIOCGARP – get arp entry 24
SIOCSARP – set arp entry 24
slp — Service Location Protocol 475
smartii — Compaq Smart-2 EISA/PCI

and Smart-2SL PCI Array
Controller driver 477

SMC Ethernet device drivers
spwr — SMC EtherPower II 10/100 (9432)

Ethernet device driver 483
SMC EtherPower 8432BT Ethernet controller

device driver — dnet 118
SMC EtherPower II 10/100 (9432) Ethernet

device driver — spwr 483
SMD and IPI disk control operations —

hdio 180
SMD disk controller

Xylogics 7053 – xd 638, 644
soc — Serial Optical Controller Device

Driver 478
socal — Serial Optical Controller for Fibre

Channel Arbitrated Loop
(SOC+) device driver 480

sockio — ioctls that operate directly on
sockets 482

sockets
ioctls that operate directly — sockio 482

Solaris VISUAL I/O control operations 616
Sound Blaster 16/Pro/AWE32 audio devices

— sbpro 443
SPARCstorage Array

disk devices driver — ssd 484
SCSI Host Bus Adapter driver — pln 399

spwr — SMC EtherPower II 10/100 (9432)
Ethernet device driver 483

ssd — driver for SPARC Storage Array disk
devices 484

st — driver for SCSI tape devices 488
start output (like control-Q) ioctl —

TIOCSTART 419
stc — Serial Parallel Communications driver for

SBus 501
stop output (like control-S) ioctl —

TIOCSTOP 419
STP 4020 PCMCIA Adapter

STP 4020 PCMCIA Adapter 514
stp4020 — STP 4020 PCMCIA Adapter 514
STREAMS

interface to error logging — log 305
interface to event tracing — log 305
line discipline for unique stream

connections — connld 91
loopback transport providers – ticlts, ticots,

ticotsord 578
On-board serial HDLC interface —

se_hdlc 459, 650
standard terminal line discipline module

— ldterm 281
Transport Interface cooperating module —

timod 580
Transport Interface read/write interface

module — tirdwr 582
V7, 4BSD, XENIX compatibility module —

ttcompat 587
STREAMS Administrative Driver — sad 439
STREAMS Buffer module — ptm 414
STREAMS Buffer module — bufmod 62
STREAMS ioctl commands — streamio 515
STREAMS module

SunButtons and SunDials — bd 54
STREAMS modules and drivers for the

Point-to-Point Protocol
– ipd 411
– ipdcm 411
– ipdptp 411
– ppp 411
– ppp_diag 411

STREAMS Packet Filter Module — pfmod 395
STREAMS Packet Mode module — pckt 379

man pages section 7: Device and Network Interfaces ♦ February 2000

STREAMS pipe flushing module —
pipemod 398

STREAMS Pseudo Terminal Emulation module
— ptem 413

STREAMS pseudo-tty slave driver — pts 416
STREAMS-based console interface

console 93
Sun Fibre Channel transport library — fctl 152
SunButtons and SunDials STREAMS module

— bd 54
SUNW,hme Fast-Ethernet device driver —

hme 184
SUNW,qfe Quad Fast-Ethernet device driver —

qfe 425
suspend and resume module — cpr 96
sxp — Rockwell 2200 SNAP Streams

Driver 534
symhisl — symhisl SCSI Host Bus Adapter

Driver 537
symhisl SCSI Host Bus Adapter Driver —

symhisl 537
sysmsg

console devices 540
system message routing 540

system message routing
sysmsg 540

T
t1394dcam— IEEE 1394 bus-based digital

camera 541
tape drive, 1/2-inch

xt — Xylogics 472 642
tape interface — mt 339
tape, magnetic interface

— mtio 340
tcp – Internet Transmission Control

Protocol 542
tcx — Sun low-range graphics accelerator

with color memory frame
buffer 547

terminal emulation, ANSI — wscons 628
terminal interface

— termio 549
terminal interface, extended

— termiox 572
terminal parameters — termiox 572

terminal, standard STREAMS
line discipline module — ldterm 281

termio — general terminal interface 549
Canonical mode input processing 550
Comparison of the different cases of MIN,

TIME interaction 552
Control Modes 560
Default values 568
Input modes 556
Local modes 563
Minimum and Timeout 566
Modem disconnect 555
Modem lines 567
Non-canonical mode input processing 551
Output modes 558
Special Characters 553
Terminal parameters 555
Terminal size 566
Termio structure 566
Writing characters 553

termiox — extended general terminal
interface 572

ticlts – loopback transport provider 578
ticots – loopback transport provider 578
ticotsord – loopback transport provider 578
timod — Transport Interface cooperating

module 580, 582
TIOCPKT — set/clear packet mode (pty) 419
TIOCREMOTE — remote input editing 420
TIOCSTART — start output (like

control-Q) 419
TIOCSTOP — stop output (like control-S) 419
tmpfs — memory based filesystem 584
tpf — Platform Specific Module (PSM) for

Tricord Systems Enterprise
Server Models ES3000, ES4000
and ES5000 586

Transport Interface cooperating STREAMS
module — timod 580

Transport Interface read/write interface
STREAMS module —
timod 582

ttcompat — V7, 4BSD and XENIX STREAMS
compatibility module 587

tty — controlling terminal interface 594

Index-663

U
uata — IDE Host Bus Adapter Driver 599
udp – Internet User Datagram Protocol 601
universal serial optical controller for Fibre

Channel arbitrated loop
(SOC+) device driver —
usoc 614

unnamed zeroed memory
source — zero 646

USB hub driver — hubd 192
USB mouse STREAMS module — usbms 608
USB Multi Interface Driver — usb_mid 607
usb_mid — USB Multi Interface Driver 607
usbkbm — keyboard STREAMS module for Sun

USB Keyboard 605
IOCTLS 605

usbms — USB mouse STREAMS module 608
uscsi — user SCSI command interface 610
user SCSI command interface — uscsi 610
usoc— universal serial optical controller for

Fibre Channel arbitrated loop
(SOC+) device driver 614

V
V7 compatibility module — ttcompat 587
virtual console driver — cvc 98
virtual console redirection driver —

cvcredir 99
volfs — Volume Management file system 623
Volume Management

file system — volfs 623
vuid2ps2 – converts mouse protocol to Firm

Events 625

vuid3ps2 – converts mouse protocol to Firm
Events 625

vuidm3p – converts mouse protocol to Firm
Events 625

vuidm4p – converts mouse protocol to Firm
Events 625

vuidm5p – converts mouse protocol to Firm
Events 625

vuidmice – converts mouse protocol to Firm
Events 625

W
workstation console — wscons 628

X
xd – Xylogics SMD Disk driver 638
XENIX compatibility module — ttcompat 587
xmemfs — extended memory file system 640
xt — Xylogics 472 1/2-inch tape drive 642
xy – Xylogics SMD Disk driver 644
Xylogics SMD Disk driver – xd 638, 644
Xylogics 472 1/2-inch tape drive — xt 642

Z
zero — source of zeroes 646
Zilog 8530 SCC serial communications driver

— zs 647
zs — zilog 8530 SCC serial communications

driver 647
zsh — On-board serial HDLC interface 650

man pages section 7: Device and Network Interfaces ♦ February 2000

