
man pages section 4: File Formats

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 806-0633-10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 11

Intro(4) 17

admin(4) 18

aliases(4) 22

addresses(4) 22

forward(4) 22

a.out(4) 27

archives(4) 29

asetenv(4) 32

asetmasters(4) 35

tune.low(4) 35

tune.med(4) 35

tune.high(4) 35

uid_aliases(4) 35

cklist.low(4) 35

cklist.med(4) 35

cklist.high(4) 35

audit_class(4) 38

audit_control(4) 40

Contents 3

audit_data(4) 43

audit_event(4) 44

audit.log(4) 45

audit_user(4) 51

auth_attr(4) 52

bootparams(4) 56

cdtoc(4) 59

clustertoc(4) 62

compver(4) 66

copyright(4) 67

core(4) 68

dacf.conf(4) 72

default_fs(4) 73

fs(4) 73

defaultrouter(4) 74

depend(4) 75

device_allocate(4) 77

device.cfinfo(4) 80

device_maps(4) 85

dfstab(4) 87

dhcp(4) 88

dhcp_inittab(4) 90

dhcp_network(4) 93

dhcptab(4) 96

dialups(4) 107

dir_ufs(4) 108

dir(4) 108

d_passwd(4) 109

4 man pages section 4: File Formats ♦ February 2000

driver.conf(4) 111

environ(4) 114

pref(4) 114

variables(4) 114

ethers(4) 116

exec_attr(4) 117

fd(4) 120

format.dat(4) 121

fspec(4) 126

fstypes(4) 128

fs_ufs(4) 129

inode_ufs(4) 129

inode(4) 129

ftpusers(4) 132

geniconvtbl(4) 134

group(4) 154

holidays(4) 156

hosts(4) 158

hosts.equiv(4) 160

rhosts(4) 160

inetd.conf(4) 164

inet_type(4) 167

init.d(4) 168

inittab(4) 170

ipnodes(4) 173

issue(4) 175

keytables(4) 176

krb5.conf(4) 184

Contents 5

krb.conf(4) 193

krb.realms(4) 194

ldapfilter.conf(4) 195

ldapsearchprefs.conf(4) 197

ldaptemplates.conf(4) 201

limits(4) 205

llc2(4) 209

logindevperm(4) 216

fbtab(4) 216

loginlog(4) 217

magic(4) 218

mech(4) 220

qop(4) 220

mnttab(4) 221

nca.if(4) 224

ncakmod.conf(4) 226

ncalogd.conf(4) 227

ndpd.conf(4) 229

netconfig(4) 233

netgroup(4) 239

netid(4) 242

netmasks(4) 244

netrc(4) 246

networks(4) 248

nfslog.conf(4) 249

nisfiles(4) 252

nologin(4) 255

note(4) 256

6 man pages section 4: File Formats ♦ February 2000

nscd.conf(4) 257

nsswitch.conf(4) 260

order(4) 269

ott(4) 270

packagetoc(4) 271

packingrules(4) 276

pam.conf(4) 279

passwd(4) 284

pathalias(4) 287

path_to_inst(4) 288

pci(4) 290

pcmcia(4) 294

phones(4) 295

pkginfo(4) 296

pkgmap(4) 303

platform(4) 307

plot(4B) 311

policy.conf(4) 313

power.conf(4) 314

printers(4) 322

printers.conf(4) 326

proc(4) 332

prof_attr(4) 362

profile(4) 364

protocols(4) 366

prototype(4) 368

pseudo(4) 373

publickey(4) 374

Contents 7

queuedefs(4) 375

remote(4) 377

resolv.conf(4) 381

rmmount.conf(4) 385

rmtab(4) 389

rpc(4) 390

rpld.conf(4) 391

rt_dptbl(4) 393

sbus(4) 400

sccsfile(4) 403

scsi(4) 407

securenets(4) 409

services(4) 411

shadow(4) 412

sharetab(4) 414

shells(4) 415

slp.conf(4) 416

slpd.reg(4) 425

sock2path(4) 428

space(4) 429

sulog(4) 430

sysbus(4) 432

isa(4) 432

eisa(4) 432

sysidcfg(4) 435

syslog.conf(4) 439

system(4) 443

telnetrc(4) 447

8 man pages section 4: File Formats ♦ February 2000

term(4) 448

terminfo(4) 451

timezone(4) 510

TIMEZONE(4) 511

tnf_kernel_probes(4) 512

ts_dptbl(4) 519

ttydefs(4) 527

ttysrch(4) 528

ufsdump(4) 530

dumpdates(4) 530

updaters(4) 536

user_attr(4) 537

utmp(4) 540

wtmp(4) 540

utmpx(4) 541

wtmpx(4) 541

vfstab(4) 542

vold.conf(4) 543

warn.conf(4) 547

ypfiles(4) 548

zoneinfo(4) 550

Index 550

Contents 9

10 man pages section 4: File Formats ♦ February 2000

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page
is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information
it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware
peripherals and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

Preface 11

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there are
no bugs to report, there is no BUGS section. See the intro pages for more information
and detail about each section, and man(1) for more information about man pages in
general.

NAME This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not
exist in the standard path, its full path name is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or
arguments enclosed within braces are

12 man pages section 4: File Formats ♦ February 2000

interdependent, such that everything
enclosed must be treated as a unit.

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES. Interactive
commands, subcommands, requests, macros, and
functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl (2) system call is called
ioctl and generates its own heading. ioctl
calls for a specific device are listed alphabetically
(on the man page for that specific device). ioctl
calls are used for a particular class of devices all
of which have an io ending, such as mtio (7I).

OPTIONS This secton lists the command options with
a concise summary of what each option does.
The options are listed literally and in the order
they appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard
output, standard error, or output files – generated
by the command.

RETURN VALUES If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they

13

failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations.
The subsections listed here are used to explain
built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage
or of how to use a command or function.
Wherever possible a complete example
including command-line entry and machine
response is shown. Whenever an example is
given, the prompt is shown as example% ,
or if the user must be superuser, example# .
Examples are followed by explanations, variable
substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion,
and values other than zero for various error
conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes (5) for more information.

14 man pages section 4: File Formats ♦ February 2000

SEE ALSO This section lists references to other man
pages, in-house documentation, and outside
publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

NOTES This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

15

CHAPTER

File Formats

16

File Formats Intro(4)

NAME Intro – introduction to file formats

DESCRIPTION This section outlines the formats of various files. The C structure declarations
for the file formats are given where applicable. Usually, the headers containing
these structure declarations can be found in the directories /usr/include or
/usr/include/sys . For inclusion in C language programs, however, the
syntax #include <filename.h> or #include <sys/ filename.h> should be used.

Because the operating system now allows the existence of multiple file system
types, there are several instances of multiple manual pages with the same name.
These pages all display the name of the FSType to which they pertain, in the
form name_ fstype at the top of the page. For example, fs_ufs (4).

Last modified 28 Apr 1999 SunOS 5.8 17

admin(4) File Formats

NAME admin – installation defaults file

DESCRIPTION admin is a generic name for an ASCII file that defines default installation
actions by assigning values to installation parameters. For example, it allows
administrators to define how to proceed when the package being installed
already exists on the system.

/var/sadm/install/admin/default is the default admin file delivered
with this release. The default file is not writable, so to assign values different
from this file, create a new admin file. There are no naming restrictions for
admin files. Name the file when installing a package with the −a option of
pkgadd (1M). If the −a option is not used, the default admin file is used.

Each entry in the admin file is a line that establishes the value of a parameter in
the following form:

param=value

Eleven parameters can be defined in an admin file, but it is not required to assign
values to all eleven parameters. If a value is not assigned, pkgadd (1M) asks
the installer how to proceed.

The eleven parameters and their possible values are shown below except as
noted. They may be specified in any order. Any of these parameters (except
the mail parameter) can be assigned the value ask , which means that if the
situation occurs the installer is notified and asked to supply instructions at
that time (see NOTES).
basedir Indicates the base directory where relocatable packages are

to be installed. If there is no basedir entry in the file, the
installer will be prompted for a path name, as if the file
contained the entry basedir=ask . This parameter can
also be set to default (entry is basedir=default). In
this instance, the package is installed into the base directory
specified by the BASEDIRparameter in the pkginfo (4) file.

mail Defines a list of users to whom mail should be sent following
installation of a package. If the list is empty, no mail is
sent. If the parameter is not present in the admin file, the
default value of root is used. The ask value cannot be
used with this parameter.

runlevel Indicates resolution if the run level is not correct for the
installation or removal of a package. Options are:

nocheck Do not check for run level.

quit Abort installation if run level is not met.

18 SunOS 5.8 Last modified 7 Feb 1997

File Formats admin(4)

conflict Specifies what to do if an installation expects to overwrite
a previously installed file, thus creating a conflict between
packages. Options are:

nocheck Do not check for conflict; files in conflict
will be overwritten.

quit Abort installation if conflict is detected.

nochange Override installation of conflicting files;
they will not be installed.

setuid Checks for executables which will have setuid or setgid bits
enabled after installation. Options are:

nocheck Do not check for setuid executables.

quit Abort installation if setuid processes are
detected.

nochange Override installation of setuid processes;
processes will be installed without setuid
bits enabled.

action Determines if action scripts provided by package developers
contain possible security impact. Options are:

nocheck Ignore security impact of action scripts.

quit Abort installation if action scripts may
have a negative security impact.

partial Checks to see if a version of the package is already partially
installed on the system. Options are:

nocheck Do not check for a partially installed
package.

quit Abort installation if a partially installed
package exists.

Last modified 7 Feb 1997 SunOS 5.8 19

admin(4) File Formats

instance Determines how to handle installation if a previous version
of the package (including a partially installed instance)
already exists. Options are:

quit Exit without installing if an instance of the
package already exists (does not overwrite
existing packages).

overwrite Overwrite an existing package if only
one instance exists. If there is more than
one instance, but only one has the same
architecture, it overwrites that instance.
Otherwise, the installer is prompted
with existing instances and asked which
to overwrite.

unique Do not overwrite an existing instance of a
package. Instead, a new instance of the
package is created. The new instance will
be assigned the next available instance
identifier.

idepend Controls resolution if other packages depend on the one to
be installed. Options are:

nocheck Do not check package dependencies.

quit Abort installation if package dependencies
are not met.

rdepend Controls resolution if other packages depend on the one to
be removed. Options are:

nocheck Do not check package dependencies.

quit Abort removal if package dependencies
are not met.

space Controls resolution if disk space requirements for package
are not met. Options are:

20 SunOS 5.8 Last modified 7 Feb 1997

File Formats admin(4)

nocheck Do not check space requirements
(installation fails if it runs out of space).

quit Abort installation if space requirements
are not met.

EXAMPLES EXAMPLE 1 Sample of admin file.

Below is a sample admin file.

basedir=default
runlevel=quit
conflict=quit
setuid=quit
action=quit
partial=quit
instance=unique
idepend=quit
rdepend=quit
space=quit

SEE ALSO pkgadd (1M), pkginfo (4)

NOTES The value ask should not be defined in an admin file that will be used for
non-interactive installation (since by definition, there is no installer interaction).
Doing so causes installation to fail when input is needed.

Last modified 7 Feb 1997 SunOS 5.8 21

aliases(4) File Formats

NAME aliases, addresses, forward – addresses and aliases for sendmail

SYNOPSIS /etc/mail/aliases

/etc/mail/aliases.dir

/etc/mail/aliases.pag

~/.forward

DESCRIPTION These files contain mail addresses or aliases, recognized by sendmail (1M) for
the local host:
/etc/passwd Mail addresses (usernames) of local

users.

/etc/mail/aliases Aliases for the local host, in
ASCII format. Root can edit this
file to add, update, or delete
local mail aliases. Additionally,
sendmail (1M) will build the DBM
files for /etc/mail/aliases
if they are missing, so long as the
/etc/mail/aliases* files are
owned by root and root has exclusive
write permission.

/etc/mail/aliases. {dir , pag} The aliasing information from
/etc/mail/aliases , in binary,
dbm format for use by sendmail (1M)
. The program newaliases (1) ,
which is invoked automatically by
sendmail (1M) , maintains these files.
Also, sendmail (1M) will build the
DBM files for /etc/mail/aliases
. {dir, pag} if they are missing,
so long as /etc/mail/aliases .
{dir, pag} is owned by root and
root has exclusive write permission.

~/.forward Addresses to which a user’s mail
is forwarded (see Automatic
Forwarding).

In addition, the NIS name services aliases map mail.aliases , and the NIS+
mail_aliases table, both contain addresses and aliases available for use across
the network.

Addresses As distributed, sendmail (1M) supports the following types of addresses:

22 SunOS 5.8 Last modified 17 Dec 1998

File Formats aliases(4)

Local Usernames username

Each local username is listed in the local host’s /etc/passwd file.

Local Filenames pathname

Messages addressed to the absolute pathname of a file are appended to that file.

Commands | command

If the first character of the address is a vertical bar (|), sendmail (1M) pipes the
message to the standard input of the commandthe bar precedes.

Internet-standard
Addresses

username @domain

If domain does not contain any ‘. ’ (dots), then it is interpreted as the name of
a host in the current domain. Otherwise, the message is passed to a mailhost
that determines how to get to the specified domain. Domains are divided into
subdomains separated by dots, with the top-level domain on the right.

For example, the full address of John Smith could be:

js@jsmachine.Podunk-U.EDU

if he uses the machine named jsmachine at Podunk University.

uucp Addresses ... [host !] host ! username

These are sometimes mistakenly referred to as “Usenet” addresses. uucp (1C)
provides links to numerous sites throughout the world for the remote copying
of files.

Other site-specific forms of addressing can be added by customizing the
sendmail.cf configuration file. See sendmail (1M) for details. Standard
addresses are recommended.

Aliases

Local Aliases /etc/mail/aliases is formatted as a series of lines of the form

aliasname : address [, address]

Last modified 17 Dec 1998 SunOS 5.8 23

aliases(4) File Formats

aliasname is the name of the alias or alias group, and address is the address of a
recipient in the group. Aliases can be nested. That is, an address can be the name
of another alias group. Because of the way sendmail (1M) performs mapping
from upper-case to lower-case, an address that is the name of another alias group
must not contain any upper-case letters.

Lines beginning with white space are treated as continuation lines for the
preceding alias. Lines beginning with # are comments.

Special Aliases An alias of the form:

owner-aliasname : address

sendmail directs error-messages resulting from mail to aliasname to address ,
instead of back to the person who sent the message. sendmail rewrites the
SMTP envelope sender to match this, so owner-aliasname should always
point to alias-request , and alias-request should point to the owner’s
actual address:

owner-aliasname: aliasname-request
aliasname-request address

An alias of the form:

aliasname : :include: pathname

with colons as shown, adds the recipients listed in the file pathname to the
aliasname alias. This allows a private list to be maintained separately from
the aliases file.

NIS and NIS+
Domain Aliases

The aliases file on the master NIS server is used for the mail.aliases NIS map,
which can be made available to every NIS client. The mail_aliases table serves
the same purpose on a NIS+ server. Thus, the /etc/mail/aliases* files on
the various hosts in a network will one day be obsolete. Domain-wide aliases
should ultimately be resolved into usernames on specific hosts. For example, if
the following were in the domain-wide alias file:

jsmith:js@jsmachine

then any NIS or NIS+ client could just mail to jsmith and not have to remember
the machine and username for John Smith.

If a NIS or NIS+ alias does not resolve to an address with a specific host, then
the name of the NIS or NIS+ domain is used. There should be an alias of the
domain name for a host in this case.

24 SunOS 5.8 Last modified 17 Dec 1998

File Formats aliases(4)

For example, the alias:

jsmith:root

sends mail on a NIS or NIS+ client to root@podunk-u if the name of the NIS or
NIS+ domain is podunk-u .

Automatic
Forwarding

When an alias (or address) is resolved to the name of a user on the local host,
sendmail (1M) checks for a ~/.forward file, owned by the intended recipient,
in that user’s home directory, and with universal read access. This file can
contain one or more addresses or aliases as described above, each of which is
sent a copy of the user’s mail.

Care must be taken to avoid creating addressing loops in the ~/.forward file.
When forwarding mail between machines, be sure that the destination machine
does not return the mail to the sender through the operation of any NIS aliases.
Otherwise, copies of the message may "bounce." Usually, the solution is to
change the NIS alias to direct mail to the proper destination.

A backslash before a username inhibits further aliasing. For instance, to invoke
the vacation program, user js creates a ~/.forward file that contains the line:

\\js, "|/usr/ucb/vacation js"

so that one copy of the message is sent to the user, and another is piped into the
vacation program.

FILES /etc/passwd password file

/etc/nsswitch.conf name service switch configuration file

/etc/mail/aliases mail aliases file (ascii)

/etc/mail/aliases.dir database of mail aliases (binary)

/etc/mail/aliases.pag database of mail aliases (binary)

/etc/mail/sendmail.cf sendmail configuration file

~/.forward forwarding information file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsndmr

SEE ALSO newaliases (1) , passwd (1) , uucp (1C) , vacation (1) , sendmail (1M) ,
dbm(3UCB) , getusershell (3C) , passwd (4) , shells (4) , attributes (5)

Last modified 17 Dec 1998 SunOS 5.8 25

aliases(4) File Formats

NOTES Because of restrictions in dbm(3UCB) , a single alias cannot contain more than
about 1000 characters. Nested aliases can be used to circumvent this limit.

For aliases which result in piping to a program or concatenating a file, the shell
of the controlling user must be allowed. Which shells are and are not allowed are
determined by getusershell (3C) .

26 SunOS 5.8 Last modified 17 Dec 1998

File Formats a.out(4)

NAME a.out – Executable and Linking Format (ELF) files

SYNOPSIS #include <elf.h>

DESCRIPTION The file name a.out is the default output file name from the link editor, ld (1).
The link editor will make an a.out executable if there were no errors in linking.
The output file of the assembler, as (1), also follows the format of the a.out file
although its default file name is different.

Programs that manipulate ELF files may use the library that elf (3ELF) describes.
An overview of the file format follows. For more complete information, see
the references given below.

Linking View Execution View

ELF header ELF header

Program header table Program header table

optional

Section 1 Segment 1

. . .

Section n Segment 2

. . .

.

Section header table Section header table

optional

An ELF header resides at the beginning and holds a “road map” describing the
file’s organization. Sections hold the bulk of object file information for the
linking view: instructions, data, symbol table, relocation information, and so on.
Segments hold the object file information for the program execution view. As
shown, a segment may contain one or more sections.

A program header table, if present, tells the system how to create a process
image. Files used to build a process image (execute a program) must have a
program header table; relocatable files do not need one. A section header table
contains information describing the file’s sections. Every section has an entry
in the table; each entry gives information such as the section name, the section
size, etc. Files used during linking must have a section header table; other
object files may or may not have one.

Although the figure shows the program header table immediately after the ELF
header, and the section header table following the sections, actual files may

Last modified 3 Jul 1990 SunOS 5.8 27

a.out(4) File Formats

differ. Moreover, sections and segments have no specified order. Only the ELF
header has a fixed position in the file.

When an a.out file is loaded into memory for execution, three logical segments
are set up: the text segment, the data segment (initialized data followed by
uninitialized, the latter actually being initialized to all 0’s), and a stack. The text
segment is not writable by the program; if other processes are executing the same
a.out file, the processes will share a single text segment.

The data segment starts at the next maximal page boundary past the last text
address. If the system supports more than one page size, the “maximal page” is
the largest supported size. When the process image is created, the part of the
file holding the end of text and the beginning of data may appear twice. The
duplicated chunk of text that appears at the beginning of data is never executed;
it is duplicated so that the operating system may bring in pieces of the file in
multiples of the actual page size without having to realign the beginning of the
data section to a page boundary. Therefore, the first data address is the sum of
the next maximal page boundary past the end of text plus the remainder of the
last text address divided by the maximal page size. If the last text address is
a multiple of the maximal page size, no duplication is necessary. The stack is
automatically extended as required. The data segment is extended as requested
by the brk (2) system call.

SEE ALSO as (1), cc (1B), ld (1), brk (2), elf (3ELF)

ANSI C Programmer’s Guide

28 SunOS 5.8 Last modified 3 Jul 1990

File Formats archives(4)

NAME archives – device header

DESCRIPTION

/* Magic numbers */
#define CMN_ASC 0x070701 /* Cpio Magic Number for −c header */
#define CMN_BIN 070707 /* Cpio Magic Number for Binary header */
#define CMN_BBS 0143561 /* Cpio Magic Number for Byte-Swap header */
#define CMN_CRC 0x070702 /* Cpio Magic Number for CRC header */
#define CMS_ASC "070701" /* Cpio Magic String for −c header */
#define CMS_CHR "070707" /* Cpio Magic String for odc header */
#define CMS_CRC "070702" /* Cpio Magic String for CRC header */
#define CMS_LEN 6 /* Cpio Magic String length */
/* Various header and field lengths */
#define CHRSZ 76 /* −H odc size minus filename field */
#define ASCSZ 110 /* −c and CRC hdr size minus filename field */
#define TARSZ 512 /* TAR hdr size */
#define HNAMLEN 256 /* maximum filename length for binary and

odc headers */
#define EXPNLEN 1024 /* maximum filename length for −c and

CRC headers */
#define HTIMLEN 2 /* length of modification time field */
#define HSIZLEN 2 /* length of file size field */
/* cpio binary header definition */
struct hdr_cpio {

short h_magic, /* magic number field */
h_dev; /* file system of file */

ushort_t h_ino, /* inode of file */
h_mode, /* modes of file */
h_uid, /* uid of file */
h_gid; /* gid of file */

short h_nlink, /* number of links to file */
h_rdev, /* maj/min numbers for special files */
h_mtime[HTIMLEN], /* modification time of file */
h_namesize, /* length of filename */

h_filesize[HSIZLEN]; /* size of file */
char h_name[HNAMLEN]; /* filename */

} ;
/* cpio −H odc header format */
struct c_hdr {

char c_magic[CMS_LEN],
c_dev[6],
c_ino[6],
c_mode[6],
c_uid[6],
c_gid[6],
c_nlink[6],
c_rdev[6],
c_mtime[11],
c_namesz[6],
c_filesz[11],
c_name[HNAMLEN];

} ;
/* −c and CRC header format */
struct Exp_cpio_hdr {

char E_magic[CMS_LEN],

Last modified 3 Jul 1990 SunOS 5.8 29

archives(4) File Formats

E_ino[8],
E_mode[8],
E_uid[8],
E_gid[8],
E_nlink[8],
E_mtime[8],
E_filesize[8],
E_maj[8],
E_min[8],
E_rmaj[8],
E_rmin[8],
E_namesize[8],
E_chksum[8],
E_name[EXPNLEN];

} ;
/* Tar header structure and format */
#define TBLOCK 512 /* length of tar header and data blocks */
#define TNAMLEN 100 /* maximum length for tar file names */
#define TMODLEN 8 /* length of mode field */
#define TUIDLEN 8 /* length of uid field */
#define TGIDLEN 8 /* length of gid field */
#define TSIZLEN 12 /* length of size field */
#define TTIMLEN 12 /* length of modification time field */
#define TCRCLEN 8 /* length of header checksum field */
/* tar header definition */
union tblock {

char dummy[TBLOCK];
struct header {

char t_name[TNAMLEN]; /* name of file */
char t_mode[TMODLEN]; /* mode of file */
char t_uid[TUIDLEN]; /* uid of file */
char t_gid[TGIDLEN]; /* gid of file */
char t_size[TSIZLEN]; /* size of file in bytes */
char t_mtime[TTIMLEN]; /* modification time of file */
char t_chksum[TCRCLEN]; /* checksum of header */
char t_typeflag; /* flag to indicate type of file */
char t_linkname[TNAMLEN]; /* file this file is linked with */
char t_magic[6]; /* magic string always "ustar" */
char t_version[2]; /* version strings always "00" */
char t_uname[32]; /* owner of file in ASCII */
char t_gname[32]; /* group of file in ASCII */
char t_devmajor[8]; /* major number for special files */
char t_devminor[8]; /* minor number for special files */
char t_prefix[155]; /* pathname prefix */

} tbuf;
};
/* volcopy tape label format and structure */
#define VMAGLEN 8
#define VVOLLEN 6
#define VFILLEN 464
struct volcopy_label {

char v_magic[VMAGLEN],
v_volume[VVOLLEN],
v_reels,
v_reel;

30 SunOS 5.8 Last modified 3 Jul 1990

File Formats archives(4)

long v_time,
v_length,
v_dens,
v_reelblks, /* u370 added field */
v_blksize, /* u370 added field */
v_nblocks; /* u370 added field */

char v_fill[VFILLEN];
long v_offset; /* used with -e and -reel options */
int v_type; /* does tape have nblocks field? */

} ;

Last modified 3 Jul 1990 SunOS 5.8 31

asetenv(4) File Formats

NAME asetenv – ASET environment file

SYNOPSIS /usr/aset/asetenv

DESCRIPTION The asetenv file is located in /usr/aset , the default operating directory of
the Automated Security Enhancement Tool (ASET). An alternative working
directory can be specified by the administrators through the aset −d command
or the ASETDIR environment variable. See aset (1M). asetenv contains
definitions of environment variables for ASET.

There are 2 sections in this file. The first section is labeled
User Configurable Parameters. It contains, as the label indicates, environment
variables that the administrators can modify to customize ASET
behavior to suit their specific needs. The second section is labeled
ASET Internal Environment Variables and should not be changed. The
configurable parameters are explained as follows:
TASK This variable defines the list of tasks that aset

will execute the next time it runs. The available
tasks are:

tune Tighten system files.

usrgrp Check user/group.

sysconf Check system configuration
file.

env Check environment.

cklist Compare system files checklist.

eeprom Check eeprom (1M)
parameters.

firewall Disable forwarding of IP
packets.

CKLISTPATH_LOW
CKLISTPATH_MED
CKLISTPATH_HIGH These variables define the list of directories to

be used by aset to create a checklist file at the
low, medium, and high security levels, respectively.
Attributes of all the files in the directories defined
by these variables will be checked periodically
and any changes will be reported by aset .
Checks performed on these directories are not

32 SunOS 5.8 Last modified 13 Sep 1991

File Formats asetenv(4)

recursive. aset only checks directories explicitly
listed in these variables and does not check
subdirectories of them.

YPCHECK This variable is a boolean parameter. It specifies
whether aset should extend checking (when
applicable) on system tables to their NIS
equivalents or not. The value true enables it
while the value false disables it.

UID_ALIASES This variable specifies an alias file for user ID
sharing. Normally, aset warns about multiple
user accounts sharing the same user ID because
it is not advisable for accountability reason.
Exceptions can be created using an alias file. User
ID sharing allowed by the alias file will not be
reported by aset . See asetmasters (4) for the
format of the alias file.

PERIODIC_SCHEDULE This variable specifies the schedule for periodic
execution of ASET. It uses the format of
crontab (1) entries. Briefly speaking, the variable
is assigned a string of the following format:

minutes hours day-of-month month day-of-week

Setting this variable does not activate the periodic
schedule of ASET. To execute ASET periodically,
aset (1M) must be run with the −p option. See
aset (1M). For example, if PERIODIC_SCHEDULE
is set to the following, and aset (1M) was started
with the −p option, aset will run at 12:00
midnight every day:

0 0 * * *

EXAMPLES EXAMPLE 1 Sample asetenv file showing the settings of the ASET configurable
parameters

The following is a sample asetenv file, showing the settings of the ASET
configurable parameters:

CKLISTPATH_LOW=/etc:/
CKLISTPATH_MED=$CHECKLISTPATH_LOW:/usr/bin:/usr/ucb
CKLISTPATH_HIGH=$CHECKLISTPATH_MED:/usr/lib:/usr/sbin

Last modified 13 Sep 1991 SunOS 5.8 33

asetenv(4) File Formats

YPCHECK=false
UID_ALIASES=/usr/aset/masters/uid_aliases
PERIODIC_SCHEDULE="0 0 * * *"
TASKS="env sysconf usrgrp"

When aset −p is run with this file, aset is executed at midnight of every
day. The / and /etc directories are checked at the low security level; the / ,
/etc , /usr/bin , and /usr/ucb directories are checked at the medium security
level; and the / , /etc , /usr/bin , /usr/lib , and /usr/sbin directories are
checked at the high security level. Checking of NIS system files is disabled. The
/usr/aset/masters/uid_aliases file specifies the used IDs available for
sharing. The env , sysconf , and usrgrp tasks will be performed, checking
the environment variables, various system tables, and the local passwd and
group files.

SEE ALSO crontab (1), aset (1M), asetmasters (4)

ASET Administrator Manual

34 SunOS 5.8 Last modified 13 Sep 1991

File Formats asetmasters(4)

NAME asetmasters, tune.low, tune.med, tune.high, uid_aliases, cklist.low, cklist.med,
cklist.high – ASET master files

SYNOPSIS /usr/aset/masters/tune.low

/usr/aset/masters/tune.med

/usr/aset/masters/tune.high

/usr/aset/masters/uid_aliases

/usr/aset/masters/cklist.low

/usr/aset/masters/cklist.med

/usr/aset/masters/cklist.high

DESCRIPTION The /usr/aset/masters directory contains several files used by the
Automated Security Enhancement Tool (ASET). /usr/aset is the default
operating directory for ASET. An alternative working directory can be specified
by the administrators through the aset −d command or the ASETDIR
environment variable. See aset (1M) .

These files are provided by default to meet the need of most environments. The
administrators, however, can edit these files to meet their specific needs. The
format and usage of these files are described below.

All the master files allow comments and blank lines to improve readability.
Comment lines must start with a leading "#" character.
tune.low
tune.med
tune.high These files are used by the tune task (see aset (1M)) to

restrict the permission settings for system objects. Each file is
used by ASET at the security level indicated by the suffix.
Each entry in the files is of the form:

pathname mode owner group type

where

pathname is the full pathname

mode is the permission setting

owner is the owner of the object

group is the group of the object

Last modified 13 Sep 1991 SunOS 5.8 35

asetmasters(4) File Formats

type is the type of the object It can be symlink
for a symbolic link, directory for a
directory, or file for everything else.

Regular shell wildcard ("*", "?", ...) characters can be used
in the pathname for multiple references. See sh (1) . The
mode is a five-digit number that represents the permission
setting. Note that this setting represents a least restrictive
value. If the current setting is already more restrictive than
the specified value, ASET does not loosen the permission
settings.

For example, if mode is 00777 , the permission will not be
changed, since it is always less restrictive than the current
setting.

Names must be used for owner and group instead of numeric
ID’s. ? can be used as a "don’t care" character in place of
owner , group , and type to prevent ASET from changing
the existing values of these parameters.

uid_alias This file allows user ID’s to be shared by multiple user
accounts. Normally, ASET discourages such sharing for
accountability reason and reports user ID’s that are shared.
The administrators can, however, define permissible sharing
by adding entries to the file. Each entry is of the form:

uid=alias1=alias2=alias3= ...

where

uid is the shared user id

alias? is the user accounts sharing the user ID

For example, if sync and daemon share the user ID 1 ,
the corresponding entry is:

1=sync=daemon

cklist.low
cklist.med

36 SunOS 5.8 Last modified 13 Sep 1991

File Formats asetmasters(4)

cklist.high These files are used by the cklist task (see aset (1M)),
and are created the first time the task is run at the low ,
medium , and high levels. When the cklist task is run,
it compares the specified directory’s contents with the
appropriate cklist. level file and reports any discrepancies.

EXAMPLES EXAMPLE 1 Examples of Valid Entries for the tune.low , tune.med , and
tune.high Files

The following is an example of valid entries for the tune.low , tune.med ,
and tune.high files:

/bin 00777 root staffsymlink
/etc 02755 root staffdirectory
/dev/sd* 00640 rootoperatorfile

SEE ALSO aset (1M) , asetenv (4)

ASET Administrator Manual

Last modified 13 Sep 1991 SunOS 5.8 37

audit_class(4) File Formats

NAME audit_class – audit class definitions

SYNOPSIS /etc/security/audit_class

DESCRIPTION /etc/security/audit_class is an ASCII system file that stores class
definitions. Programs use the getauclassent (3BSM) routines to access this
information.

The fields for each class entry are separated by colons. Each class entry is a
bitmap and is separated from each other by a newline.

Each entry in the audit_class file has the form:

mask:name:description

The fields are defined as follows:
mask The class mask.

name The class name.

description The description of the class.

The classes are now user-configurable. Each class is represented as a bit in the
class mask which is an unsigned integer. Thus, there are 32 different classes
available, plus two meta-classes – all and no .

all represents a conjunction of all allowed classes, and is provided as a
shorthand method of specifying all classes.

no is the "invalid" class, and any event mapped solely to this class will not be
audited. (Turning auditing on to the all meta class will NOT cause events
mapped solely to the no class to be written to the audit trail.)

EXAMPLES EXAMPLE 1 Sample of an audit_class file.

Here is a sample of an audit_class file:

0x00000000:no:invalid class
0x00000001:fr:file read
0x00000002:fw:file write
0x00000004:fa:file attribute access
0x00000008:fm:file attribute modify
0x00000010:fc:file create
0x00000020:fd:file delete
0x00000040:cl:file close
0xffffffff:all:all classes

FILES /etc/security/audit_class

38 SunOS 5.8 Last modified 31 Dec 1996

File Formats audit_class(4)

SEE ALSO bsmconv (1M), getauclassent (3BSM), audit_event (4)

NOTES It is possible to deliberately turn on the no class in the kernel, in which case the
audit trail will be flooded with records for the audit event AUE_NULL.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv (1M) for more information.

Last modified 31 Dec 1996 SunOS 5.8 39

audit_control(4) File Formats

NAME audit_control – control information for system audit daemon

SYNOPSIS /etc/security/audit_control

DESCRIPTION The audit_control file contains audit control information used by
auditd (1M). Each line consists of a title and a string, separated by a colon.
There are no restrictions on the order of lines in the file, although some lines
must appear only once. A line beginning with ‘#’ is a comment.

Directory definition lines list the directories to be used when creating audit files,
in the order in which they are to be used. The format of a directory line is:

dir: directory-name

directory-name is where the audit files will be created. Any valid writable
directory can be specified.

The following configuration is recommended:

/etc/security/audit/ server/files

where server is the name of a central machine, since audit files belonging to
different servers are usually stored in separate subdirectories of a single audit
directory. The naming convention normally has server be a directory on a server
machine, and all clients mount /etc/security/audit/ server at the same
location in their local file systems. If the same server exports several different file
systems for auditing, their server names will, of course, be different.

There are several other ways for audit data to be arranged: some sites may have
needs more in line with storing each host’s audit data in separate subdirectories.
The audit structure used will depend on each individual site.

The audit threshold line specifies the percentage of free space that must be
present in the file system containing the current audit file. The format of the
threshold line is:

minfree: percentage

where percentage is indicates the amount of free space required. If free space falls
below this threshold, the audit daemon auditd (1M) invokes the shell script
audit_warn (1M). If no threshold is specified, the default is 0%.

The audit flags line specifies the default system audit value. This value is
combined with the user audit value read from audit_user (4) to form the
process audit state. The user audit value overrides the system audit value.
The format of a flags line is:

40 SunOS 5.8 Last modified 31 Dec 1996

File Formats audit_control(4)

flags: audit-flags

where audit-flags specifies which event classes are to be audited. The character
string representation of audit-flags contains a series of flag names, each one
identifying a single audit class, separated by commas. A name preceded by ‘−’
means that the class should be audited for failure only; successful attempts are
not audited. A name preceded by ‘+’ means that the class should be audited
for success only; failing attempts are not audited. Without a prefix, the name
indicates that the class is to be audited for both successes and failures. The
special string all indicates that all events should be audited; −all indicates
that all failed attempts are to be audited, and +all all successful attempts. The
prefixes ^ , ^−, and ^+ turn off flags specified earlier in the string (^− and ^+ for
failing and successful attempts, ^ for both). They are typically used to reset flags.

The non-attributable flags line is similar to the flags line, but this one contain the
audit flags that define what classes of events are audited when an action cannot
be attributed to a specific user. The format of a naflags line is:

naflags: audit-flags

The flags are separated by commas, with no spaces.

The following table lists the predefined audit classes:

short name long name short description
no no_class null value for turning off event preselection
fr file_read Read of data, open for reading, etc.
fw file_write Write of data, open for writing, etc.
fa file_attr_acc Access of object attributes: stat, pathconf, etc.
fm file_attr_mod Change of object attributes: chown, flock, etc.
fc file_creation Creation of object
fd file_deletion Deletion of object
cl file_close close(2) system call
pc process Process operations: fork, exec, exit, etc.
nt network Network events: bind, connect, accept, etc.
ip ipc System V IPC operations
na non_attrib non-attributable events
ad administrative administrative actions: mount, exportfs, etc.
lo login_logout Login and logout events
ap application Application auditing
io ioctl ioctl(2) system call
ex exec exec(2) system call
ot other Everything else
all all All flags set

Note that the classes are configurable, see audit_class (4).

Last modified 31 Dec 1996 SunOS 5.8 41

audit_control(4) File Formats

EXAMPLES EXAMPLE 1 Sample /etc/security/audit_control file for the machine
eggplant.

Here is a sample /etc/security/audit_control file for the machine
eggplant:

dir: /etc/security/jedgar/eggplant
dir: /etc/security/jedgar.aux/eggplant
#
Last-ditch audit file system when jedgar fills up.
#
dir: /etc/security/global/eggplant
minfree: 20
flags: lo,ad,-all,^-fm
naflags: lo,ad

This identifies server jedgar with two file systems normally used for audit
data, another server global used only when jedgar fills up or breaks, and
specifies that the warning script is run when the file systems are 80% filled. It
also specifies that all logins, administrative operations are to be audited (whether
or not they succeed), and that failures of all types except failures to access
object attributes are to be audited.

FILES /etc/security/audit_control
/etc/security/audit_warn
/etc/security/audit/*/*/*
/etc/security/audit_user

SEE ALSO audit (1M), audit_warn (1M), auditd (1M), bsmconv (1M), audit (2),
getfauditflags (3BSM), audit.log (4), audit_class (4), audit_user (4)

NOTES The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv (1M) for more information.

42 SunOS 5.8 Last modified 31 Dec 1996

File Formats audit_data(4)

NAME audit_data – current information on audit daemon

SYNOPSIS /etc/security/audit_data

DESCRIPTION The audit_data file contains information about the audit daemon. The file
contains the process ID of the audit daemon, and the pathname of the current
audit log file. The format of the file is:

pid>: <pathname>

Where pid is the process ID for the audit daemon, and pathname is the full
pathname for the current audit log file.

EXAMPLES EXAMPLE 1 A sample audit_data file.

64:/etc/security/audit/server1/19930506081249.19930506230945.bongos

FILES /etc/security/audit_data

SEE ALSO audit (1M), auditd (1M), bsmconv (1M), audit (2), audit.log (4)

NOTES The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv (1M) for more information.

Last modified 31 Dec 1996 SunOS 5.8 43

audit_event(4) File Formats

NAME audit_event – audit event definition and class mapping

SYNOPSIS /etc/security/audit_event

DESCRIPTION /etc/security/audit_event is an ASCII system file that stores event
definitions and specifies the event to class mappings. Programs use the
getauevent (3BSM) routines to access this information.

The fields for each event entry are separated by colons. Each event is separated
from the next by a newline.

Each entry in the audit_event file has the form:

number:name:description: flags

The fields are defined as follows:
number The event number.

name The event name.

description The description of the event.

flags Flags specifying classes to which the event is
mapped.

EXAMPLES EXAMPLE 1 Sample of the audit_event file entries.

Here is a sample of the audit_event file entries:

7:AUE_EXEC:exec(2):pc,ex
79:AUE_OPEN_WTC:open(2) - write,creat,trunc:fc,fd,fw
6152:AUE_login:login - success or failure:lo
6153:AUE_logout:logout:lo
6154:AUE_telnet:login - through telnet:lo
6155:AUE_rlogin:login - through rlogin:lo

FILES /etc/security/audit_event

SEE ALSO bsmconv (1M), getauevent (3BSM), audit_control (4)

NOTES The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv (1M) for more information.

44 SunOS 5.8 Last modified 31 Dec 1996

File Formats audit.log(4)

NAME audit.log – audit trail file

SYNOPSIS #include <bsm/audit.h>

#include <bsm/audit_record.h>

DESCRIPTION audit.log files are the depository for audit records stored locally or on an audit
server. These files are kept in directories named in the file audit_control (4).
They are named to reflect the time they are created and are, when possible,
renamed to reflect the time they are closed as well. The name takes the form

yyyymmddhhmmss.not_terminated.hostname

when open or if the auditd (1M) terminated ungracefully, and the form

yyyymmddhhmmss. yyyymmddhhmmss.hostname

when properly closed. yyyy is the year, mmthe month, dd day in the month,
hh hour in the day, mmminute in the hour, and ss second in the minute. All
fields are of fixed width.

The audit.log file begins with a standalone file token and typically ends
with one also. The beginning file token records the pathname of the previous
audit file, while the ending file token records the pathname of the next audit
file. If the file name is NULL the appropriate path was unavailable.

The audit.log files contains audit records. Each audit record is made up of
audit tokens. Each record contains a header token followed by various data
tokens. Depending on the audit policy in place by auditon (2), optional other
tokens such as trailers or sequences may be included.

The tokens are defined as follows:

The file token consists of:

token ID 1 byte
seconds of time 4 bytes
milliseconds of time 4 bytes
file name length 2 bytes
file pathname N bytes + 1 terminating NULL byte

The header token consists of:

token ID 1 byte
record byte count 4 bytes
version # 1 byte [2]
event type 2 bytes
event modifier 2 bytes
seconds of time 4 bytes/8 bytes (32-bit/64-bit value)
milliseconds of time 4 bytes/8 bytes (32-bit/64-bit value)

Last modified 18 Aug 1999 SunOS 5.8 45

audit.log(4) File Formats

The expanded header token consists of:

toke ID 1 byte
record byte count 4 bytes
version # 1 byte [2]
event type 2 bytes
event modifier 2 bytes
address type/length 4 bytes
machine address 4 bytes/16 bytes (IPv4/IPv6 address)
seconds of time 4 bytes/8 bytes (32/64-bits)
milliseconds of time 4 bytes/8 bytes (32/64-bits)

The trailer token consists of:

token ID 1 byte
trailer magic number 2 bytes
record byte count 4 bytes

The arbitrary data token is defined:

token ID 1 byte
how to print 1 byte
basic unit 1 byte
unit count 1 byte
data items (depends on basic unit)

The in_addr token consists of:

token ID 1 byte
internet address 4 bytes

The expanded in_addr token consists of:

token ID 1 byte
IP address type/length 4 bytes
IP address 16 bytes

The ip token consists of:

token ID 1 byte
version and ihl 1 byte
type of service 1 byte
length 2 bytes
id 2 bytes
offset 2 bytes
ttl 1 byte
protocol 1 byte
checksum 2 bytes
source address 4 bytes

46 SunOS 5.8 Last modified 18 Aug 1999

File Formats audit.log(4)

destination address 4 bytes

The expanded ip token consists of:

token ID 1 byte
version and ihl 1 byte
type of service 1 byte
length 2 bytes
id 2 bytes
offset 2 bytes
ttl 1 byte
protocol 1 byte
checksum 2 bytes
address type/type 4 bytes
source address 4 bytes/16 bytes (IPv4/IPv6 address)
address type/length 4 bytes
destination address 4 bytes/16 bytes (IPv4/IPv6 address)

The iport token consists of:

token ID 1 byte
port IP address 2 bytes

The path token consists of:

token ID 1 byte
path length 2 bytes
path N bytes + 1 terminating NULL byte

The process token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes
terminal ID

port ID 4 bytes/8 bytes (32-bit/64-bit value)
machine address 4 bytes

The expanded process token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes

Last modified 18 Aug 1999 SunOS 5.8 47

audit.log(4) File Formats

process ID 4 bytes
session ID 4 bytes
terminal ID

port ID 4 bytes/8 bytes (32-bit/64-bit value)
address type/length 4 bytes
machine address 16 bytes

The return token consists of:

token ID 1 byte
error number 1 byte
return value 4 bytes/8 bytes (32-bit/64-bit value)

The subject token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes
terminal ID

port ID 4 bytes/8 bytes (32-bit/64-bit value)
machine address 4 bytes

The expanded subject token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes
terminal ID

port ID 4 bytes/8 bytes (32-bit/64-bit value)
address type/length 4 bytes
machine address 16 bytes

The System V IPC token consists of:

token ID 1 byte
object ID type 1 byte
object ID 4 bytes

The text token consists of:

48 SunOS 5.8 Last modified 18 Aug 1999

File Formats audit.log(4)

token ID 1 byte
text length 2 bytes
text N bytes + 1 terminating NULL byte

The attribute token consists of:

token ID 1 byte
file access mode 4 bytes
owner user ID 4 bytes
owner group ID 4 bytes
file system ID 4 bytes
node ID 8 bytes
device 4 bytes/8 bytes (32-bit/64-bit)

The groups token consists of:

token ID 1 byte
number groups 2 bytes
group list N * 4 bytes

The System V IPC permission token consists of:

token ID 1 byte
owner user ID 4 bytes
owner group ID 4 bytes
creator user ID 4 bytes
creator group ID 4 bytes
access mode 4 bytes
slot sequence # 4 bytes
key 4 bytes

The arg token consists of:

token ID 1 byte
argument # 1 byte
argument value 4 bytes/8 bytes (32-bit/64-bit value)
text length 2 bytes
text N bytes + 1 terminating NULL byte

The exec_args token consists of:

token ID 1 byte
count 4 bytes
text count null-terminated string(s)

The exec_env token consists of:

token ID 1 byte
count 4 bytes
text count null-terminated string(s)

Last modified 18 Aug 1999 SunOS 5.8 49

audit.log(4) File Formats

The exit token consists of:

token ID 1 byte
status 4 bytes
return value 4 bytes

The socket token consists of:

token ID 1 byte
socket type 2 bytes
remote port 2 bytes
remote Internet address 4 bytes

The expanded socket token consists of:

token ID 1 byte
socket type 2 bytes
local port 2 bytes
address type/length 4 bytes
local Internet address 4 bytes/16 bytes (IPv4/IPv6 address)
remote port 4 bytes
address type/length 4 bytes
remote Internet address 4 bytes/16 bytes (IPv4/IPv6 address)

The seq token consists of:

token ID 1 byte
sequence number 4 bytes

SEE ALSO audit (1M), auditd (1M), bsmconv (1M), audit (2), auditon (2), au_to (3BSM),
audit_control (4)

NOTES Each token is generally written using the au_to (3BSM) family of function calls.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv (1M) for more information.

50 SunOS 5.8 Last modified 18 Aug 1999

File Formats audit_user(4)

NAME audit_user – per-user auditing data file

SYNOPSIS /etc/security/audit_user

DESCRIPTION audit_user is an access-restricted database that stores per-user auditing
preselection data. The audit_user file can be used with other authorization
sources, including the NIS map audit_user.byname and the NIS+ table
audit_user . Programs use the getauusernam (3BSM) routines to access
this information.

The search order for multiple user audit information sources is specified in the
/etc/nsswitch.conf file, as described in the nsswitch.conf (4) man page.
The lookup follows the search order for passwd (4).

The fields for each user entry are separated by colons (:). Each user is separated
from the next by a newline. audit_user does not have general read permission.

Each entry in the audit_user file has the form:

username:always-audit-flags:never-audit-flags

The fields are defined as follows:
username The user’s login name.

always-audit-flags Flags specifying event classes to always audit.

never-audit-flags Flags specifying event classes to never audit.

For a complete description of the audit flags and how to combine them, see
the audit_control (4) man page.

EXAMPLES EXAMPLE 1 Sample audit_user file
other:lo,ad:io,cl
fred:lo,ex,+fc,-fr,-fa:io,cl
ethyl:lo,ex,nt:io,cl

FILES /etc/nsswitch.conf
/etc/passwd
/etc/security/audit_user

SEE ALSO bsmconv (1M), getauusernam (3BSM), audit_control (4),
nsswitch.conf (4), passwd (4)

NOTES The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv (1M) for more information.

Last modified 26 Oct 1999 SunOS 5.8 51

auth_attr(4) File Formats

NAME auth_attr – authorization description database

SYNOPSIS /etc/security/auth_attr

DESCRIPTION /etc/security/auth_attr is a local source for authorization names and
descriptions. The auth_attr file can be used with other authorization
sources, including the auth_attr NIS map and NIS+ table. Programs use the
getauthattr (3SECDB) routines to access this information.

The search order for multiple authorization sources is specified in the
/etc/nsswitch.conf file, as described in the nsswitch.conf (4) man page.

An authorization is a right assigned to users that is checked by certain privileged
programs to determine whether users can execute restricted functionality. Each
entry in the auth_attr database consists of one line of text containing six fields
separated by colons (:). Line continuations using the backslash (\) character are
permitted. The format of each entry is:

name:res1:res2:short_desc:long_desc:attr

name The name of the authorization. Authorization names are
unique strings. Construct authorization names using the
following convention:

prefix. or prefix.suffix

prefix Everything in the name field up to the final dot
(.). Authorizations from Sun Microsystems, Inc.
use solaris as a prefix. To avoid name conflicts,
all other authorizations should use a prefix that
begins with the reverse–order Internet domain name
of the organization that creates the authorization
(for example, com.xyzcompany). Prefixes can
have additional arbitrary components chosen by
the authorization’s developer, with components
separated by dots.

suffix The final component in the name field. Specifies
what is being authorized.

When there is no suffix, the name is defined as a
heading. Headings are not assigned to users but are
constructed for use by applications in their GUIs.

When a name ends with the word grant , the entry
defines a grant authorization. Grant authorizations are

52 SunOS 5.8 Last modified 13 Aug 1999

File Formats auth_attr(4)

used to support fine-grained delegation. Users with
appropriate grant authorizations can delegate some of their
authorizations to others. To assign an authorization, the
user needs to have both the authorization itself and the
appropriate grant authorization.

res1 Reserved for future use.

res2 Reserved for future use.

short_desc A short description or terse name for the authorization. This
name should be suitable for displaying in user interfaces,
such as in a scrolling list in a GUI.

long_desc A long description. This field can explain the precise
purpose of the authorization, the applications in which it
is used, and the type of user that would be interested in
using it. The long description can be displayed in the help
text of an application.

attr An optional list of semicolon-separated (;) key-value pairs
that describe the attributes of an authorization. Zero or
more keys may be specified. The keyword help identifies a
help file in HTML. Help files can be read by a web browser
using the URL:

file:/usr/lib/help/auths/locale/C/index.html

EXAMPLES EXAMPLE 1 Constructing a name

In the following example, the name has a prefix (solaris.) followed by
a suffix (printer):

solaris.printer

EXAMPLE 2 Defining a heading

Because the name field ends with a dot, the following entry defines a heading:
solaris.hostmgr.:::Computers & Networks::help=HostMgrHeader.html

EXAMPLE 3 Assigning separate authorizations to set user attributes

In this example, a heading entry is followed by other associated authorization
entries. The entries below the heading provide separate authorizations for
setting user attributes. The attr field for each entry, including the heading entry,
assigns a help file. The application that uses the help key requires the value to
equal the name of a file ending in .htm or .html :

solaris.usermgr.:::Users, Groups & Email Aliases::help=UserMgrHeader.html
solaris.usermgr.pswd:::Change User Passwords::help=UserMgrPswd.html
solaris.usermgr.write:::Add, Modify & Delete::help=UserMgrWrite.html

Last modified 13 Aug 1999 SunOS 5.8 53

auth_attr(4) File Formats

EXAMPLE 4 Assigning a grant authorization

This example assigns to an administrator the following authorizations:
solaris.printmgr.grant
solaris.printmgr.admin
solaris.printmgr.nobanner
solaris.login.enable

With the above authorizations, the administrator can assign to others
the solaris.printmgr.admin and solaris.printmgr.nobanner
authorizations, but not the solaris.login.enable authorization. If the
administrator has both the grant authorization, solaris.printmgr.grant ,
and the wildcard authorization, solaris.printmgr.* , the administrator can
grant to others any of the printer authorizations. See user_attr (4) for more
information about how wildcards can be used to assign multiple authorizations
whose names begin with the same components.
EXAMPLE 5 Authorizing the ability to assign other authorizations

The following entry defines an authorization that grants the ability to assign any
authorization created with a solaris prefix, when the administrator also has
either the specific authorization being granted or a matching wildcard entry:

solaris.grant:::Grant All Rights::help=PriAdmin.html

EXAMPLE 6 Consulting the local authorization file ahead of the NIS table

With the following entry from /etc/nsswitch.conf , the local auth_attr
file is consulted before the NIS table:

auth_attr:files nisplus

FILES /etc/nsswitch.conf

/etc/user_attr

/etc/security/auth_attr

NOTES When deciding which authorization source to use (see DESCRIPTION), keep in
mind that NIS+ provides stronger authentication than NIS.

Because the list of legal keys is likely to expand, any code that parses this
database must be written to ignore unknown key-value pairs without error.
When any new keywords are created, the names should be prefixed with a
unique string, such as the company’s stock symbol, to avoid potential naming
conflicts.

Each application has its own requirements for whether the help value must be a
relative pathname ending with a filename or the name of a file. The only known
requirement is for the name of a file.

54 SunOS 5.8 Last modified 13 Aug 1999

File Formats auth_attr(4)

The following characters are used in describing the database format and must
be escaped with a backslash if used as data: colon (:), semicolon (;), equals
(=), and backslash (\).

SEE ALSO getauthattr (3SECDB), getexecattr (3SECDB), getprofattr (3SECDB),
getuserattr (3SECDB), exec_attr (4), nsswitch.conf (4), user_attr (4)

Last modified 13 Aug 1999 SunOS 5.8 55

bootparams(4) File Formats

NAME bootparams – boot parameter data base

SYNOPSIS /etc/bootparams

DESCRIPTION The bootparams file contains a list of client entries that diskless clients use for
booting. Diskless booting clients retrieve this information by issuing requests to
a server running the rpc.bootparamd (1M) program. The bootparams file
may be used in conjunction with or in place of other sources for the bootparams
information. See nsswitch.conf (4).

For each client the file contains an entry with the client’s name and a list of boot
parameter values for that client. Each entry should have the form:

clientname identifier-specifier ...

The first item of each entry is the host name of the diskless client. The asterisk
(’*’) character may be used as a "wildcard" in place of the client name in a single
entry. That entry will apply to all clients for whom there is not an entry that
specifically names them.

This is followed by one or more whitespace characters and a series of
identifier-specifiers separated by whitespace characters.

Each identifier-specifier has the form:

identifier=server: pathname

or

identifier=domain-name

The first form is used for file-specific identifiers. A file-specific identifier is a key
that is used by diskless clients to identify a file or filesystem. server is the name
of the server that will provide the file or filesystem to the diskless client, and
pathname is the path to the exported file or filesystem on the specified server.
The equal sign (’=’) and colon (’:’) characters are used in the indicated positions.
There should not be any whitespace within an identifier-specifier.

Non-file-specific identifiers use the second form of identifier-specifier. One
non-file-specific value for identifier is supported: the assignment of the client’s
domain name. In this case, the value used for identifier is domain . domain-name

56 SunOS 5.8 Last modified 13 Jan 1995

File Formats bootparams(4)

must be the client’s domain name. The algorithm for determining a client’s
domain name is to first check for a domain identifier in the client-specific entry
and then in "wildcard" entry. If none is found, the server’s domain name is used.

An entry may be split across multiple lines of the file. The backslash (’\’)
character should be used as the last character of a line to signify that the entry
continues on the next line. The line may only be split in places where whitespace
is allowed in the entry.

A variation of the first form (identifier=server: pathname) is used for the ns key
which forces sysidtool (1M) to use a specific name service. By default,
sysidtool uses NIS+ in preference to NIS if it can find a NIS+ server for the
system’s domain on the subnet. This key may be necessary if you are trying
to set up a hands-off installation, or if the name server is on a different subnet,
which is common with NIS+.

If this key is not used, sysidtool uses broadcast to attempt to bind to either a
NIS+ or NIS server; if a name server is not on the local subnet, which is possible
for NIS+, the bind will fail, automatic configuration of the name service will
fail, and an interactive screen is displayed, prompting the user to specify the
name service.

The ns entry has the form:

ns=[server] : [nameservice] [(netmask)]

where:
server the name of a server that will provide a name service to

bind to

nameservice the name service (nis , nisplus , or none);

netmask a series of four numbers separated by periods that specifies
which portion of an IP address is the network part, and
which is the host part.

The ns keyword can be set in add_install_client or by Host Manager.

EXAMPLES EXAMPLE 1 Example Of An Entry In The bootparams File

Here is an example of an entry in the bootparams file:
client1 root=server1:/export/client1/root \

swap=server1:/export/client1/swap \
domain=bldg1.workco.com
root=server2:/export/client2/root ns=:nis
root=server2:/export/client2/root ns=watson:

root=server2:/export/client2/root
ns=mach:nisplus(255.255.255.0)

Last modified 13 Jan 1995 SunOS 5.8 57

bootparams(4) File Formats

FILES /etc/bootparams

SEE ALSO rpc.bootparamd (1M), sysidtool (1M), nsswitch.conf (4)
IA only rpld (1M)

NOTES Solaris diskless clients use the identifiers "root", "swap", and "dump" to look up
the pathnames for the root filesystem, a swap area, and a dump area, respectively.
These are the only identifiers meaningful for SPARC diskless booting clients.

For IA booting clients, the additional keyword identifiers "numbootfiles,"
"bootfile," and "bootaddr" are used (see rpld (1M)).

58 SunOS 5.8 Last modified 13 Jan 1995

File Formats cdtoc(4)

NAME cdtoc – CD-ROM table of contents file

DESCRIPTION The table of contents file, .cdtoc , is an ASCII file that describes the contents
of a CD-ROM or other software distribution media. It resides in the top-level
directory of the file system on a slice of a CD-ROM. It is independent of file
system format, that is, the file system on the slice can be either UFS or HSFS.

Each entry in the .cdtoc file is a line that establishes the value of a parameter in
the following form:

PARAM=value

Blank lines and comments (lines preceded by a pound-sign, “#”) are also allowed
in the file. Parameters are grouped by product, with the beginning of a product
defined by a line of the form:

PRODNAME=value

Each product is expected to consist of one or more software packages that are
stored together in a subdirectory on the distribution media. There can be any
number of products described within the file. There is no required order in
which the parameters must be specified, except that the parameters must be
grouped by product and the PRODNAME parameter must appear first in the list
of parameters for each product specified. Each parameter is described below.
All of the parameters are required for each product.
PRODNAME The full name of the product. This must be

unique within the .cdtoc file and is preferably
unique across all possible products. This value
may contain white space. The length of this
value is limited to 256 ASCII characters; other
restrictions may apply (see below).

PRODVERS The version of the product. The value can contain
any combination of letters, numbers, or other
characters. This value may contain white space.
The length of this value is limited to 256 ASCII
characters; other restrictions may apply (see
below).

PRODDIR The name of the top-level directory containing
the product. This name should be relative to the
top-level directory of the distribution media, for
example, Solaris_2.6/Product . The number
of path components in the name is limited only
by the system’s maximum path name length,

Last modified 4 Oct 1996 SunOS 5.8 59

cdtoc(4) File Formats

which is 1024 ASCII characters. Any single
component is limited to 256 ASCII characters.
This value cannot contain white space.

The lengths of the values of PRODNAME and PRODVERS are further
constrained by the fact that the initial install programs and swmtool (1M)
concatenate these values to produce the full product name. swmtool (1M)
concatenates the two values (inserting a space) to produce the name displayed
in its software selection menu, for example, Solaris 2.6 . For unbundled
products the combined length of the values of PRODNAME and PRODVERS
must not exceed 256 ASCII characters.

When you install OS services with Solstice Host Manager, directories for diskless
clients and Autoclient systems are created by constructing names derived from a
concatenation of the values of PRODNAME, PRODVERS, and client architecture,
for example, /export/exec/Solaris_2. x_sparc.all/usr/platform .
The length of the component containing the product name and version must not
exceed 256 ASCII characters. Thus, for products corresponding to bundled OS
releases (for example, Solaris 2.4), the values of PRODNAME and PRODVERS
are effectively restricted to lengths much less than 256 .

The initial install programs and swmtool (1M) use the value of the PRODDIR
macro in the .cdtoc file to indicate where packages can be found.

EXAMPLES EXAMPLE 1 Sample of .cdtoc file.

Here is a sample .cdtoc file:

#
.cdtoc file -- Online product family CD
#
PRODNAME=Online DiskSuite
PRODVERS=2.0
PRODDIR=Online_DiskSuite_2.0
#
PRODNAME=Online Backup
PRODVERS=2.0
PRODDIR=Online_Backup_2.0

This example corresponds to the following directory layout on a CD-ROM
partition:

/.cdtoc
/Online_DiskSuite_2.0

./SUNWmddr.c

./SUNWmddr.m

./SUNWmddu
/Online_Backup_2.0

60 SunOS 5.8 Last modified 4 Oct 1996

File Formats cdtoc(4)

./SUNWhsm

The bundled release of Solaris 2.6 includes the following .cdtoc file:

PRODNAME=Solaris
PRODVERS=2.6
PRODDIR=Solaris_2.6/Product

This file corresponds to the following directory layout on slice 0 of the Solaris
2.6 product CD:

/.cdtoc
/Solaris_2.6/Product

./SUNWaccr

./SUNWaccu

./SUNWadmap

.

.

.

./SUNWutool

SEE ALSO swmtool (1M), clustertoc (4), packagetoc (4), pkginfo (4)

Last modified 4 Oct 1996 SunOS 5.8 61

clustertoc(4) File Formats

NAME clustertoc – cluster table of contents description file

DESCRIPTION The cluster table of contents file, .clustertoc , is an ASCII file that describes
a hierarchical view of a software product. A .clustertoc file is required
for the base OS product. The file resides in the top-level directory containing
the product.

The hierarchy described by .clustertoc can be of arbitrary depth, although
the initial system installation programs assume that it has three levels. The
hierarchy is described bottom-up, with the packages described in .packagetoc
at the lowest layer. The next layer is the cluster layer which collects packages
into functional units. The highest layer is the meta-cluster layer which collects
packages and clusters together into typical configurations.

The hierarchy exists to facilitate the selection or deselection of software for
installation at varying levels of granularity. Interacting at the package level gives
the finest level of control over what software is to be installed.

Each entry in the .clustertoc file is a line that establishes the value of a
parameter in the following form:

PARAM=value

A line starting with a pound-sign, “#”, is considered a comment and is ignored.

Parameters are grouped by cluster or meta-cluster. The start of a cluster
description is defined by a line of the form:

CLUSTER=value

The start of a meta-cluster description is defined by a line of the form:

METACLUSTER=value

There is no order implied or assumed for specifying the parameters for a
(meta-)cluster with the exception of the CLUSTER or METACLUSTER parameter,
which must appear first and the END parameter which must appear last.

Each parameter is described below. All of the parameters are mandatory.
CLUSTER

The cluster identifier (for example, SUNWCacc). The identifier specified
must be unique within the package and cluster identifier namespace defined
by a product’s .packagetoc and .clustertoc files. The identifiers used
are subject to the same constraints as those for package identifiers. These
constraints are (from pkginfo (4)):

62 SunOS 5.8 Last modified 6 Sep 1995

File Formats clustertoc(4)

“All characters in the abbreviation must be alphanumeric and the first may
not be numeric. The abbreviation is limited to a maximum length of nine
characters. install , new, and all are reserved abbreviations.”

A cluster must be described before another cluster or meta-cluster may
refer to it.

METACLUSTER
The metacluster identifier (for example, SUNWCprog). The identifier
specified must be unique within the package and cluster identifier
namespace defined by a product’s .packagetoc and .clustertoc files.
The identifiers used are subject to the same constraints as those for package
identifiers. These constraints are (from pkginfo (4)):

“All characters in the abbreviation must be alphanumeric and the first may
not be numeric. The abbreviation is limited to a maximum length of nine
characters. install , new, and all are reserved abbreviations.”

Meta-clusters cannot contain references to other meta-clusters.

NAME
The full name of the (meta-)cluster. The length of the name string supplied
may not exceed 256 characters.

VENDOR
The name of the (meta-)cluster’s vendor. The length of the vendor string
supplied may not exceed 256 characters.

VERSION
The version of the (meta-)cluster. The length of the version string supplied
may not exceed 256 characters.

DESC
An informative textual description of the (meta-)cluster’s contents. The
length of the description supplied may not exceed 256 characters. The text
should contain no newlines.

SUNW_CSRMEMBER
Indicates that the package or cluster is a part of the (meta-) cluster currently
being described. The value specified is the identifier of the package or
cluster. There may be an arbitrary number of SUNW_CSRMEMBER
parameters per (meta-)cluster.

SUNW_CSRMBRIFF
Indicates that the package is to be included dynamically in the (meta-)cluster
currently being described. The value of this parameter must follow the
following format:

SUNW_CSRMBRIFF=(<test> <test_arc>)< package>

Last modified 6 Sep 1995 SunOS 5.8 63

clustertoc(4) File Formats

This line will be converted into a SUNW_CSRMEMBER entry at media
installation time if the test provided matches the platform on which the
media is being installed. There may be zero or more SUN_CSRMBRIFF
parameters per (meta-)cluster.

SUNW_CSRMBRIFF=(<test> <value>)<package>
where the the <test> is either the builtin test of "platform" or a shell
script which returns shell true (0) or shell false (1) depending on the
tests being performed in the script. <value> is passed to the test as
the first argument and can be used to create a script that tests for
multiple hardware objects. Finally <package> is the package that will be
included in the final .clustertoc file as a SUNW_CSRMEMBER. See
parse_dynamic_clustertoc (1M) for more information about the scripts.

EXAMPLES EXAMPLE 1 A Cluster Description

The following is an example of a cluster description in a .clustertoc file.

CLUSTER=SUNWCacc
NAME=System Accounting
DESC=System accounting utilities
VENDOR=Sun Microsystems, Inc.
VERSION=7.2
SUNW_CSRMEMBER=SUNWaccr
SUNW_CSRMEMBER=SUNWaccu
END

EXAMPLE 2 A Meta-cluster Description

The following is an example of a meta-cluster description in a .clustertoc file.

METACLUSTER=SUNWCreq
NAME=Core System Support
DESC=A pre-defined software configuration consisting of the minimum
required software for a standalone, non-networked workstation.
VENDOR=Sun Microsystems, Inc.
VERSION=2.x
SUNW_CSRMEMBER=SUNWadmr
SUNW_CSRMEMBER=SUNWcar
SUNW_CSRMEMBER=SUNWCcs
SUNW_CSRMEMBER=SUNWCcg6
SUNW_CSRMEMBER=SUNWCdfb
SUNW_CSRMEMBER=SUNWkvm
SUNW_CSRMEMBER=SUNWCnis
SUNW_CSRMEMBER=SUNWowdv
SUNW_CSRMEMBER=SUNWter
END

64 SunOS 5.8 Last modified 6 Sep 1995

File Formats clustertoc(4)

EXAMPLE 3 A Meta-cluster Description With a Dynamic Cluster Entry

The following is an example of a meta-cluster description with a dynamic cluster
entry as indicated by the use of the SUNW_CSRMBRIFF parameter entries.

METACLUSTER=SUNWCprog
NAME=Developer System Support
DESC=A pre-defined software configuration consisting of the
typical software used by software developers.
VENDOR=Sun Microsystems, Inc.
VERSION=2.5
SUNW_CSRMEMBER=SUNWCadm
SUNW_CSRMBRIFF=(smcc.dctoc tcx)SUNWCtcx
SUNW_CSRMBRIFF=(smcc.dctoc leo)SUNWCleo
SUNW_CSRMBRIFF=(smcc.dctoc sx)SUNWCsx
. . .
END

SEE ALSO parse_dynamic_clustertoc (1M), cdtoc (4), order (4), packagetoc (4),
pkginfo (4)

NOTES The current implementation of the initial system installation programs depend
on the .clustertoc describing three required meta-clusters for the base
OS product:
SUNWCall Contains all of the software packages in the OS distribution.

SUNWCuser Contains the typical software packages for an end-user of
the OS distribution.

SUNWCreq Contains the bare-minimum packages required to boot and
configure the OS to the point of running a multi-user shell.

Last modified 6 Sep 1995 SunOS 5.8 65

compver(4) File Formats

NAME compver – compatible versions file

DESCRIPTION compver is an ASCII file used to specify previous versions of the associated
package which are upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with
which the current version is backward compatible.

Since some packages may require installation of a specific version of another
software package, compatibility information is extremely crucial. Consider, for
example, a package called "A" which requires version "1.0" of application "B" as a
prerequisite for installation. If the customer installing "A" has a newer version of
"B" (version 1.3), the compver file for "B" must indicate that "1.3" is compatible
with version "1.0" in order for the customer to install package "A".

EXAMPLES EXAMPLE 1 Sample compver file.

A sample compver file is shown below:

Version 1.3
Version 1.0

SEE ALSO pkginfo (4)

Application Packaging Developer’s Guide

NOTES The comparison of the version string disregards white space and tabs. It is
performed on a word-by-word basis. Thus, "Version 1.3" and "Version 1.3"
would be considered the same.

The entries in the compver file must match the values assigned to the VERSION
parameter in the pkginfo (4) files.

66 SunOS 5.8 Last modified 4 Oct 1996

File Formats copyright(4)

NAME copyright – copyright information file

DESCRIPTION copyright is an ASCII file used to provide a copyright notice for a package.
The text may be in any format. The full file contents (including comment lines)
are displayed on the terminal at the time of package installation.

SEE ALSO Application Packaging Developer’s Guide

Last modified 7 Feb 1997 SunOS 5.8 67

core(4) File Formats

NAME core – core image file

DESCRIPTION The operating system writes out a core image of a process when it is terminated
due to the receipt of some signals. The core image is called core and is written
in the process’s working directory (provided it can be; normal access controls
apply). A process with an effective user ID different from the real user ID will
not produce a core image. This is also true for a process with an effective group
ID different from the real group ID. Set-user-ID and set-group-ID programs do
not produce core images either when they terminate, since this would cause
a security loophole.

The core file contains all the process information pertinent to debugging:
contents of hardware registers, process status, and process data. The format of a
core file is object file specific.

For ELF executable programs (see a.out (4)), the core file generated is also an
ELF file, containing ELF program and file headers. The e_type field in the file
header has type ET_CORE. The program header contains an entry for every
segment that was part of the process address space, including shared library
segments. The contents of the writable segments are also part of the core image.

The program header of an ELF core file also contains entries for two NOTE
segments, each containing several note entries as described below. The
note entry header and core file note type (n_type) definitions are contained
in <sys/elf.h> . The first NOTEsegment exists for binary compatibility
with old programs that deal with core files. It contains structures defined in
<sys/old_procfs.h> . New programs should recognize and skip this NOTE
segment, advancing instead to the new NOTEsegment. The old NOTEsegment
will be deleted from core files in a future release.

The old NOTEsegment contains the following entries. Each has entry name
"CORE" and presents the contents of a system structure:
prpsinfo_t n_type : NT_PRPSINFO. This entry contains

information of interest to the ps (1) command,
such as process status, CPU usage, "nice"
value, controlling terminal, user-ID, process-ID,
the name of the executable, and so forth.
The prpsinfo_t structure is defined in
<sys/old_procfs.h> .

char array n_type : NT_PLATFORM. This entry contains
a string describing the specific model of the
hardware platform on which this core file was
created. This information is the same as provided
by sysinfo (2) when invoked with the command
SI_PLATFORM.

68 SunOS 5.8 Last modified 14 Jul 1999

File Formats core(4)

auxv_t array n_type : NT_AUXV. This entry contains the array
of auxv_t structures that was passed by the
operating system as startup information to the
dynamic linker. Auxiliary vector information is
defined in <sys/auxv.h> .

Following these entries, for each light-weight process (LWP) in the process, the
old NOTEsegment contains an entry with a prstatus_t structure, plus other
optionally-present entries describing the LWP, as follows:
prstatus_t n_type : NT_PRSTATUS. This structure contains

things of interest to a debugger from the
operating system, such as the general registers,
signal dispositions, state, reason for stopping,
process-ID, and so forth. The prstatus_t
structure is defined in <sys/old_procfs.h> .

prfpregset_t n_type : NT_PRFPREG. This entry is present
only if the LWP used the floating-point
hardware. It contains the floating-point registers.
The prfpregset_t structure is defined in
<sys/procfs_isa.h> .

gwindows_t n_type : NT_GWINDOWS. This entry is present
only on a SPARC machine and only if the system
was unable to flush all of the register windows to
the stack. It contains all of the unspilled register
windows. The gwindows_t structure is defined
in <sys/regset.h> .

prxregset_t n_type : NT_PRXREG. This entry is present
only if the machine has extra register state
associated with it. It contains the extra register
state. The prxregset_t structure is defined in
<sys/procfs_isa.h> .

The new NOTEsegment contains the following entries. Each has entry name
“CORE” and presents the contents of a system structure:
psinfo_t n_type : NT_PSINFO. This structure contains

information of interest to the ps (1) command,
such as process status, CPU usage, "nice"
value, controlling terminal, user-ID, process-ID,
the name of the executable, and so forth.
The psinfo_t structure is defined in
<sys/procfs.h> .

Last modified 14 Jul 1999 SunOS 5.8 69

core(4) File Formats

pstatus_t n_type : NT_PSTATUS. This structure contains
things of interest to a debugger from the
operating system, such as pending signals,
state, process-ID, and so forth. The pstatus_t
structure is defined in <sys/procfs.h> .

char array n_type : NT_PLATFORM. This entry contains
a string describing the specific model of the
hardware platform on which this core file was
created. This information is the same as provided
by sysinfo (2) when invoked with the command
SI_PLATFORM.

auxv_t array n_type : NT_AUXV. This entry contains the array
of auxv_t structures that was passed by the
operating system as startup information to the
dynamic linker. Auxiliary vector information is
defined in <sys/auxv.h> .

struct utsname n_type : NT_UTSNAME. This structure contains
the system information that would have been
returned to the process if it had performed
a uname(2) system call prior to dumping
core. The utsname structure is defined in
<sys/utsname.h> .

prcred_t n_type : NT_PRCRED. This structure contains the
process credentials, including the real, saved, and
effective user and group IDs. The prcred_t
structure is defined in <sys/procfs.h> .
Following the structure is an optional array of
supplementary group IDs. The total number
of supplementary group IDs is given by the
pr_ngroups member of the prcred_t
structure, and the structure includes space for
one supplementary group. If pr_ngroups is
greater than 1, there will be pr_ngroups - 1
gid_t items following the structure; otherwise,
there will be no additional data.

Following these entries, for each LWP in the process, the new NOTEsegment
contains an entry with an lwpsinfo_t structure plus an entry with an
lwpstatus_t structure, plus other optionally-present entries describing the
LWP, as follows:
lwpsinfo_t n_type : NT_LWPSINFO. This structure contains information

of interest to the ps (1) command, such as LWP status, CPU

70 SunOS 5.8 Last modified 14 Jul 1999

File Formats core(4)

usage, "nice" value, LWP-ID, and so forth. The lwpsinfo_t
structure is defined in <sys/procfs.h> .

lwpstatus_t n_type : NT_LWPSTATUS. This structure contains things of
interest to a debugger from the operating system, such as the
general registers, the floating point registers, state, reason
for stopping, LWP-ID, and so forth. The lwpstatus_t
structure is defined in <sys/procfs.h> .

gwindows_t n_type : NT_GWINDOWS. This entry is present only on a
SPARC machine and only if the system was unable to flush
all of the register windows to the stack. It contains all of the
unspilled register windows. The gwindows_t structure is
defined in <sys/regset.h> .

prxregset_t n_type : NT_PRXREG. This entry is present only if the
machine has extra register state associated with it. It contains
the extra register state. The prxregset_t structure is
defined in <sys/procfs_isa.h> .

asrset_t n_type : NT_ASRS. This entry is present only on a SPARC
V9 machine and only if the process is a 64-bit process.
It contains the ancillary state registers for the LWP. The
asrset_t structure is defined in <sys/regset.h> .

The size of the core file created by a process may be controlled by the user
(see getrlimit (2)).

SEE ALSO adb (1), gcore (1), ps (1), crash (1M), getrlimit (2), setuid (2), sysinfo (2),
uname(2), elf (3ELF), a.out (4), proc (4), signal (3HEAD)

ANSI C Programmer’s Guide

Last modified 14 Jul 1999 SunOS 5.8 71

dacf.conf(4) File Formats

NAME dacf.conf – device auto-configuration configuration file

SYNOPSIS /etc/dacf.conf

DESCRIPTION The kernel uses the dacf.conf file to automatically configure hot plugged
devices. Because the dacf.conf file contains important kernel state
information, it should not be modified.

The format of the /etc/dacf.conf file is not public and might change in
versions of the Solaris operating environment that are not compatible with
Solaris 8.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

SEE ALSO attributes (5)

NOTES This document does not constitute an API. The /etc/dacf.conf file might
not exist or might contain different contents or interpretations in versions of
the Solaris operating environment that are not compatiable with Solaris 8. The
existence of this notice does not imply that any other documentation lacking
this notice constitutes an API.

72 SunOS 5.8 Last modified 10 Jun 1999

File Formats default_fs(4)

NAME default_fs, fs – specify the default file system type for local or remote file systems

DESCRIPTION When file system administration commands have both specific and generic
components (for example, fsck (1M)), the file system type must be specified. If
it is not explicitly specified using the −F FSType command line option, the
generic command looks in /etc/vfstab in order to determine the file system
type, using the supplied raw or block device or mount point. If the file system
type can not be determined by searching /etc/vfstab , the command will
use the default file system type specified in either /etc/default/fs or
/etc/dfs/dfstypes , depending on whether the file system is local or remote.

The default local file system type is specified in /etc/default/fs by a line
of the form LOCAL=fstype (for example, LOCAL=ufs). The default remote file
system type is determined by the first entry in the /etc/dfs/fstypes file.

File system administration commands will determine whether the file system
is local or remote by examining the specified device name. If the device name
starts with “/” (slash), it is considered to be local; otherwise it is remote.

The default file system types can be changed by editing the default files with a
text editor.

FILES /etc/vfstab list of default parameters for each file system

/etc/default/fs the default local file system type

/etc/dfs/fstypes the default remote file system type

SEE ALSO fsck (1M) , fstypes (4) , vfstab (4)

Last modified 20 Mar 1992 SunOS 5.8 73

defaultrouter(4) File Formats

NAME defaultrouter – configuration file for default router(s)

SYNOPSIS /etc/defaultrouter

DESCRIPTION The /etc/defaultrouter file defines the default routers the system will use.

The format of the file is as follows:

The /etc/defaultrouter file can contain the hostnames or IP addresses of
one or more default routers, separated by white space. If you use hostnames,
each hostname must also be listed in the local /etc/hosts file, because no
name services are running at the time that this script is run.

Lines beginning with the “#” character are treated as comments.

The default routes listed in this file replace those added by the kernel during
diskless booting. An empty /etc/defaultrouter file will cause the default
route added by the kernel to be deleted.

FILES /etc/defaultrouter Configuration file containing the
hostnames or IP addresses of one or
more default routers.

SEE ALSO hosts (4)

74 SunOS 5.8 Last modified 7 Mar 1997

File Formats depend(4)

NAME depend – software dependencies file

DESCRIPTION depend is an ASCII file used to specify information concerning software
dependencies for a particular package. The file is created by a software
developer.

Each entry in the depend file describes a single software package. The instance
of the package is described after the entry line by giving the package architecture
and/or version. The format of each entry and subsequent instance definition is:

type pkg name
(arch)version
(arch)version

. . .

The fields are:
type Defines the dependency type. Must be one of the following

characters:

P Indicates a prerequisite for installation; for example,
the referenced package or versions must be installed.

I Implies that the existence of the indicated package
or version is incompatible.

R Indicates a reverse dependency. Instead of defining
the package’s own dependencies, this designates
that another package depends on this one. This type
should be used only when an old package does not
have a depend file, but relies on the newer package
nonetheless. Therefore, the present package should
not be removed if the designated old package is still
on the system since, if it is removed, the old package
will no longer work.

pkg Indicates the package abbreviation.

name Specifies the full package name.

(arch)version Specifies a particular instance of the software. A version
name cannot begin with a left parenthesis. The instance
specifications, both (arch) and version, are completely
optional, but each (arch)version pair must begin on a new line

Last modified 4 Oct 1996 SunOS 5.8 75

depend(4) File Formats

that begins with white space. A null version set equates to
any version of the indicated package.

EXAMPLES EXAMPLE 1 Sample of depend file.

Here is a sample depend file:

#ident "@(#)pkg.compat:depend 1.1"
P nsu Networking Support Utilities
P inet Internet Utilities
P sys System Header Files
P src_compat Source Compatibility Files

SEE ALSO Application Packaging Developer’s Guide

76 SunOS 5.8 Last modified 4 Oct 1996

File Formats device_allocate(4)

NAME device_allocate – device_allocate file

SYNOPSIS /etc/security/device_allocate

DESCRIPTION The device_allocate file contains mandatory access control information
about each physical device. Each device is represented by a one line entry
of the form:

device-name;device-type;reserved;reserved;auths;device-exec

where
device-name This is an arbitrary ASCII string naming the

physical device. This field contains no embedded
white space or non-printable characters.

device-type This is an arbitrary ASCII string naming the
generic device type. This field identifies and
groups together devices of like type. This
field contains no embedded white space or
non-printable characters.

reserved This field is reserved for future use.

reserved This field is reserved for future use.

auths This field contains a comma-separated list of
authorizations required to allocate the device,
or asterisk (*) to indicate that the device is not
allocatable, or an ’@’ symbol to indicate that no
explicit authorization is needed to allocate the
device.

The default authorization is
solaris.device.allocate . See auths (1)

device-exec This is the physical device’s data purge program
to be run any time the device is acted on by
allocate (1M). This is to ensure that all usable
data is purged from the physical device before
it is reused. This field contains the filename of
a program in /etc/security/lib or the full
pathname of a cleanup script provided by the
system administrator.

The device_allocate file is an ASCII file that resides in the /etc/security
directory.

Last modified 13 Aug 1999 SunOS 5.8 77

device_allocate(4) File Formats

Lines in device_allocate can end with a ‘\ ’ to continue an entry on the
next line.

Comments may also be included. A ‘#’ makes a comment of all further text until
the next NEWLINE not immediately preceded by a ‘\ ’.

White space is allowed in any field.

The device_allocate file must be created by the system administrator before
device allocation is enabled.

The device_allocate file is owned by root, with a group of sys, and a
mode of 0644.

EXAMPLES EXAMPLE 1 Declaring an allocatable device

Declare that physical device st0 is a type st . st is allocatable, and the
script used to clean the device after running deallocate (1M) is named
/etc/security/lib/st_clean .

scsi tape
st0;\

st;\
reserved;\
reserved;\
solaris.device.allocate;\
/etc/security/lib/st_clean;\

EXAMPLE 2 Declaring an allocatable device with authorizations

Declare that physical device fd0 is of type fd . fd is allocatable by
users with the solaris.device.allocate authorization, and the
script used to clean the device after running deallocate (1M) is named
/etc/security/lib/fd_clean .

floppy drive
fd0;\

fd;\
reserved;\
reserved;\
&;\
/etc/security/lib/fd_clean;\

Notice that making a device allocatable means that you need to allocate and
deallocate it to use it (with allocate (1M) and deallocate (1M)). If a device
is not allocatable, there will be an asterisk (*) in the auths field, and no one
can use the device.

FILES /etc/security/device_allocate Contains list of allocatable devices

78 SunOS 5.8 Last modified 13 Aug 1999

File Formats device_allocate(4)

SEE ALSO auths (1), allocate (1M), bsmconv (1M), deallocate (1M),
list_devices (1M), auth_attr (4)

NOTES The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv (1M) for more information.

Last modified 13 Aug 1999 SunOS 5.8 79

device.cfinfo(4) File Formats

NAME device.cfinfo – devconfig configuration files

SYNOPSIS device.cfinfo

DESCRIPTION device.cfinfo files pass information about device configuration to the
devconfig (1M) program. They allow devconfig (1M) to provide the user
with valid ranges for device attributes.

devconfig (1M) associates a device with its cfinfo file by name. For
example, the device logi for the Logitec Bus Mouse has the devconfig (1M)
configuration file logi.cfinfo associated with it in the DEVCONFIGHOME
directory. DEVCONFIGHOMEis /usr/lib/devconfig by default and may be
set in the user’s environment.

Below is a yaccish grammar of a cfinfo file:

cfinfo_file: cfinfo_devspec EOF

;

cfinfo_devspec: cfinfo_spec_list SEMICOLON

;

cfinfo_spec_list: cfinfo_spec |

cfinfo_spec_list cfinfo_spec

;

cfinfo_spec: comment |

attr_value_pair NEWLINE

;

comment: POUNDSIGN |

POUNDSIGN STRING

;

attr_value_pair: ATTR_NAME EQUALS STRING |

ATTR_OWNAME EQUALS STRING

ATTR_TITLE EQUALS STRING |

80 SunOS 5.8 Last modified 31 Dec 1996

File Formats device.cfinfo(4)

ATTR_CATEGORY EQUALS STRING |

ATTR_INSTANCE EQUALS STRING |

ATTR_CLASS EQUALS STRING |

ATTR_TYPE EQUALS STRING |

ATTR_REAL EQUALS STRING |

ATTR_AUTO EQUALS STRING |

NAME EQUALS value_spec_string

;

value_spec_string: QUOTE value_spec QUOTE

;

value_spec: value_type COMMA value_list

;

value_type: | /* EMPTY */

TYPE_NUMERIC |

TYPE_STRING |

TYPE_VAR

;

value_list: integer_value_list |

string_value_list

;

integer_value_list: INTEGER |

INTEGER COLON INTEGER |

INTEGER COMMA integer_value_list

;

string_value_list: STRING |

Last modified 31 Dec 1996 SunOS 5.8 81

device.cfinfo(4) File Formats

STRING COMMA string_value_list

;

ATTR_NAME name # device name specified
in driver.conf

ATTR_CLASS class # device class specified
in driver.conf

ATTR_TYPE type # device type specified
in OWconfig

ATTR_OWNAME __owname__ # device name specified
in OWconfig

ATTR_TITLE __title__ # device title displayed
by devconfig

ATTR_CATEGORY __category__ # device category

ATTR_INSTANCE __instance__ # device unit

ATTR_REAL __real__ # attributes to write to
driver.conf

ATTR_AUTO __auto__ # self-identifying device
attribute

TYPE_NUMERIC numeric # precedes an integer
value list

TYPE_STRING string # precedes a string
values list

TYPE_VAR var # precedes a variable
specification

The first value in a value_list is the default value picked by devconfig (1M)
for the attribute. An attribute name of the form __name__ is used internally by
devconfig (1M). Number ranges are specified as n1:n2. An internal attribute of
the type var specifies a configurable portion of a real attribute. (See examples
below.) Certain internal attributes have an expanded form when displayed.
These attributes are listed in the file abbreviations in DEVCONFIGHOME. The
file abbreviations also includes a list of name mappings for certain category
names. If the __real__ attribute is present, only the attribute names it specifies are
written to a driver.conf file. Otherwise, all non-internal attributes are written.

EXAMPLES EXAMPLE 1 Device configuration file logi.cfinfo for the LOGITECH bus mouse.

Here is the device configuration file logi.cfinfo for the LOGITECH bus
mouse. The driver configuration file for this device is called logi.conf .

82 SunOS 5.8 Last modified 31 Dec 1996

File Formats device.cfinfo(4)

name="logi"
__owname__="pointer:0"
__title__="Logitec bus mouse"

__category__="pointer"
class="sysbus"

type="LOGI-B"
buttons="var,__nbuttons__"
__nbuttons__="numeric,2:3"
dev="/dev/logi"
intr="numeric,1","var,__irq__"
__irq__="numeric,2:5"
__real__="name","class","intr"

;

The driver name for the LOGITECH Bus Mouse is logi . The device name in
OWconfig (see the OpenWindows Desktop Reference Manual is pointer:0 .
The device category is pointer ; the device category is displayed as pointing
devices , however, since there is a category mapping for pointer in the
abbreviations file. The device class is sysbus as specified in the file
/kernel/drv/classes. A device of class owin does not have a device driver
associated with it. The device IPL is 1. The device IRQ is substituted by the
variable __irq__ and has a range of 2 to 5. A name mapping for __irq__
exists in abbreviations and so __irq__ is displayed as Interrupt
(IRQ): . The device attributes written to logi.conf are name, class , and
intr as specified by the __real__ " entry.

The resulting entry in logi.conf is:

name="logi" class="sysbus" intr=1,2;

The resulting entry in OWconfig is:

type="LOGI-B" buttons=3 dev="/dev/logi" class="owin"
name="pointer:0";

Here is an example of a self-identifying device.

name="lp"
__title__="Parallel printer port"
__category__="lp"

class="sysbus"
__auto__="string,true"

;

The driver for the parallel port automatically identifies it, and devconfig (1M)
treats this device as self-identifying.

FILES abbreviations

Last modified 31 Dec 1996 SunOS 5.8 83

device.cfinfo(4) File Formats

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO devconfig (1M), driver.conf (4), attributes (5) OpenWindows Desktop
Reference Manual

84 SunOS 5.8 Last modified 31 Dec 1996

File Formats device_maps(4)

NAME device_maps – device_maps file

SYNOPSIS /etc/security/device_maps

DESCRIPTION The device_maps file contains access control information about each physical
device. Each device is represented by a one line entry of the form:

device-name : device-type : device-list :

where
device-name This is an arbitrary ASCII string naming the

physical device. This field contains no embedded
white space or non-printable characters.

device-type This is an arbitrary ASCII string naming the
generic device type. This field identifies and
groups together devices of like type. This
field contains no embedded white space or
non-printable characters.

device-list This is a list of the device special files associated
with the physical device. This field contains
valid device special file path names separated
by white space.

The device_maps file is an ASCII file that resides in the /etc/security
directory.

Lines in device_maps can end with a ‘\ ’ to continue an entry on the next line.

Comments may also be included. A ‘#’ makes a comment of all further text until
the next NEWLINE not immediately preceded by a ‘\ ’.

Leading and trailing blanks are allowed in any of the fields.

The device_maps file must be created by the system administrator bef\ore
device allocation is enabled.

This file is owned by root, with a group of sys , and a mode of 0644.

EXAMPLES EXAMPLE 1 A sample device_maps file

scsi tape
st1:\
rmt:\
/dev/rst21 /dev/nrst21 /dev/rst5 /dev/nrst5 /dev/rst13 \

Last modified 31 Dec 1996 SunOS 5.8 85

device_maps(4) File Formats

/dev/nrst13 /dev/rst29 /dev/nrst29 /dev/rmt/1l /dev/rmt/1m \
/dev/rmt/1 /dev/rmt/1h /dev/rmt/1u /dev/rmt/1ln /dev/rmt/1mn \
/dev/rmt/1n /dev/rmt/1hn /dev/rmt/1un /dev/rmt/1b /dev/rmt/1bn:\

FILES /etc/security/device_maps

SEE ALSO allocate (1M), bsmconv (1M), deallocate (1M), dminfo (1M),
list_devices (1M)

NOTES The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv (1M) for more information.

86 SunOS 5.8 Last modified 31 Dec 1996

File Formats dfstab(4)

NAME dfstab – file containing commands for sharing resources across a network

DESCRIPTION dfstab resides in directory /etc/dfs and contains commands for sharing
resources across a network. dfstab gives a system administrator a uniform
method of controlling the automatic sharing of local resources.

Each line of the dfstab file consists of a share (1M) command. The dfstab file
can be read by the shell to share all resources. System administrators can also
prepare their own shell scripts to execute particular lines from dfstab .

The contents of dfstab are executed automatically when the system enters
run-level 3.

SEE ALSO share (1M), shareall (1M)

Last modified 3 Jul 1990 SunOS 5.8 87

dhcp(4) File Formats

NAME dhcp – file containing default parameter values for the DHCP service

DESCRIPTION The dhcp file resides in directory /etc/default and contains parameters for
specifying the type and location of DHCP service databases, as well as DHCP
service daemon default settings.

The dhcp file format is ASCII; comment lines begin with the crosshatch (#)
character. Parameters consist of a keyword followed by an equals (=) sign
followed by the parameter value, of the form:

Keyword=Value

Two parameters are currently supported:

Keyword Value

RESOURCE Can be either nisplus or files

PATH Path to data files. The value of the PATH
keyword is specified as an absolute path for
the files resource, or a fully-qualified directory
for the nisplus resource.

RUN_MODE server or relay . Selects daemon run
mode. Default is server .

VERBOSE TRUE/FALSE. Toggles verbose mode. Default
is FALSE. Generic parameter.

RELAY_HOPS Integer. Max number of BOOTPrelay
hops before packet is dropped. Default
is 4. Generic parameter.

INTERFACES String. Comma-separated list of interface names
to listen to. Generic parameter.

LOGGING_FACILITY Integer. Local facility number (0–7 includive)
to log DHCPevents to. Default is not to log
transactions. Generic parameter.

ETHERS_COMPAT TRUE/FALSE. Toggles ethers compatibility mode.
Default is TRUE. server mode only parameter.

ICMP_VERIFY TRUE/FALSE. Toggles ICMP echo verification
of IP addresses. Default is TRUE. server
mode only parameter.

OFFER_CACHE_TIMEOUT Integer. Number of seconds before OFFER
cache timeoutsoccur. Default is 10 seconds.
server mode only parameter.

88 SunOS 5.8 Last modified 8 Nov 1999

File Formats dhcp(4)

Keyword Value

RESCAN_INTERVAL Integer. Number of minutes between automatic
dhcptab rescans. Default is not to do rescans.
server mode only parameter.

BOOTP_COMPAT String automatic or manual . Enable BOOTP
compatibility. Default is no BOOTP. Value selects
BOOTPaddress allocation method. automatic
for dynamic allocation, manual for static
allocation. server mode only parameter.

RELAY_DESTINATIONS String. Comma-separated list of hostnames
and IP addresses of relay destinations.
relay mode only parameter.

The preferred method of modifying the dhcp file is through use of the
in.dhcpd (1M) or dhcpconfig (1M) utilities.

SEE ALSO dhcpconfig (1M), dhcpmgr (1M), in.dhcpd (1M)

Last modified 8 Nov 1999 SunOS 5.8 89

dhcp_inittab(4) File Formats

NAME dhcp_inittab – information repository for DHCP options

SYNOPSIS /etc/dhcp/inittab

DESCRIPTION DHCP options are network configuration parameters passed from DHCP servers
to DHCP clients when a client machine uses DHCP. Since many DHCP-related
commands must parse and understand these DHCP options, this file serves as a
central location where information about these options may be obtained.

The dhcp_inittab file provides three general pieces of information:

� It provides a mnemonic alias for each option number. For instance, option
12 is aliased to the name "Hostname". This is useful for DHCP-related
programs which require human interaction, such as dhcpinfo (1).

� It provides information about the syntax for each option. This includes
information such as the type of the value, for example, whether it is a 16-bit
integer or an IP address.

� It provides the policy for what options are visible to which DHCP-related
programs.

Each DHCP option belongs to a certain category, which roughly defines the
scope of the option; for instance, an option may only be understood by certain
hosts within a given site, or it may be globally understood by all DHCP clients
and servers. The following categories are defined; the category names are not
case-sensitive:
STANDARD All client and server DHCP implementations agree on the

semantics. These are administered by the Internet Assigned
Numbers Authority (“IANA”). These options are numbered
from 1 to 127.

SITE Within a specific site, all client and server implementations
agree on the semantics. However, at another site the type
and meaning of the option may be quite different. These
options are numbered from 128 to 254.

VENDOR Each vendor may define 254 options unique to that vendor.
The vendor is identified within a DHCP packet by the
"Vendor Class" option, number 60. An option with a specific
numeric identifier belonging to one vendor will, in general,
have a type and semantics different from that of a different
vendor. Vendor options are "super-encapsulated" into the
vendor field number 43, as defined in RFC 2132.

FIELD This category allows the fixed fields within a DHCP packet
to be aliased to a mnemonic name for use with dhcpinfo (1).

90 SunOS 5.8 Last modified 7 Jun1999

File Formats dhcp_inittab(4)

INTERNAL This category is internal to the Solaris DHCP implementation
and will not be further defined.

USAGE Data entries are written one per line and have seven fields; each entry provides
information for one option. Each field is separated by a comma, except
for the first and second, which are separated by whitespace (as defined in
isspace (3C)). An entry cannot be continued onto another line. Blank lines and
those whose first non-whitespace character is ’#’ are ignored.

The fields, in order, are:

� Mnemonic Identifier

The Mnemonic Identifier is a user-friendly alias for the option number; it is
not case sensitive. This field must be per-category unique and should be
unique across all categories. The option names in the STANDARD, SITE , and
VENDORspaces should not overlap, or the behavior will be undefined.

� Category (scope)

The Category field is one of STANDARD, SITE , VENDOR, FIELD , or
INTERNAL and identifies the scope in which the option falls.

� Option Number

The Option Number is the number of this option when it is in a DHCP
packet. This field should be per-category unique and the STANDARDand
SITE fields should not have overlapping code fields or the behavior is
undefined.

� Data Type

Data Type is one of the follow values, which is not case sensitive:
Ascii A printable character string

Octet An array of bytes

Unumber8 An 8-bit unsigned integer

Snumber8 An 8-bit signed integer

Unumber16 A 16-bit unsigned integer

Snumber16 A 16-bit signed integer

Unumber32 A 32-bit unsigned integer

Snumber32 A 32-bit signed integer

Unumber64 A 64-bit unsigned integer

Snumber64 A 64-bit signed integer

Last modified 7 Jun1999 SunOS 5.8 91

dhcp_inittab(4) File Formats

Ip An IP address

The data type field describes an indivisible unit of the option payload,
using one of the values listed above.

� Granularity

The Granularity field describes how many "indivisible units" in the option
payload make up a whole value or item for this option.

� Maximum Number Of Items

� Visibility

The Visibility field specifies which DHCP-related programs make use
of this information, and should always be defined as "sdmi " for newly
added options.

EXAMPLES EXAMPLE 1 Altering the dhcp_inittab File

In general, the dhcp_inittab file should only be altered to add either a DHCP
STANDARDoption or SITE option. For instance:

ipPairs SITE, 132, IP, 2, 0, sdmi

describes an option named ipPairs , that is in the SITE category. That is, it
is defined by each individual site, and is option code 132, which is of type IP
Address, consisting of a potentially infinite number of pairs of IP addresses.

FILES /etc/dhcp/inittab

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

Interface Stability Unstable

SEE ALSO dhcpinfo (1), dhcpagent (1M), attributes (5)

Alexander, S., and R. Droms, RFC 2132, DHCP Options and BOOTP Vendor
Extensions, Network Working Group, March 1997.

Droms, R., RFC 2131, Dynamic Host Configuration Protocol, Network Working
Group, March 1997.

92 SunOS 5.8 Last modified 7 Jun1999

File Formats dhcp_network(4)

NAME dhcp_network – dhcp network DHCP database

DESCRIPTION The dhcp network database is used to map a Dynamic Host Configuration
Protocol (DHCP) client’s client identifier to an IP address and the associated
configuration parameters of that address. This database is located by the DHCP
server at runtime upon receipt of a BOOTP request.

The dhcp network databases can exist as NIS+ tables or ASCII files. Since the
format of the file could change, the preferred method of managing the dhcp
network databases is through the use of the pntadm (1M) command.

Each entry in a dhcp network database has the form:

Client_ID Flags Client_IP Server_IP Lease Macro #Comment

The fields are defined as follows:
Client_ID The client identifier field, Client_ID , is an ASCII

hexadecimal representation of the unique octet string value
of the DHCP Client Identifier Option (code 61) which
identifies a DHCP client. In the absence of the DHCP Client
Identifier Option, the DHCP client is identified using the
form given below for BOOTP clients. The number of
characters in this field must be an even number, with a
maximum length of 64 characters. Valid characters are 0 - 9
and A-F. Entries with values of 00 are freely available for
dynamic allocation to requesting clients. BOOTP clients are
identified by the concatenation of the network’s hardware
type (as defined by RFC 1340, titled "Assigned Numbers")
and the client’s hardware address. For example, the
following BOOTP client has a hardware type of ’01 ’ (10mb
ethernet) and a hardware address of 8:0:20:11:12:b7 , so
its client identifier would be: 010800201112B7

Flags The Flags field is a decimal value, the bit fields of which
can have a combination of the following values:

1 (PERMANENT)

Evaluation of the Lease field is turned off (lease is
permanent). If this bit is not set, Evaluation of the Lease
field is enabled and the Lease is DYNAMIC.

2 (MANUAL)

This entry has a manual client ID binding (cannot be
reclaimed by DHCP server). Client will not be allocated
another address.

Last modified 18 May 1999 SunOS 5.8 93

dhcp_network(4) File Formats

4 (UNUSABLE)

When set, this value means that either through ICMP echo
or client DECLINE, this address has been found to be
unusable. Can also be used by the network administrator
to prevent a certain client from booting, if used in
conjunction with the MANUALflag.

8 (BOOTP)

This entry is reserved for allocation to BOOTP clients only.

Client_IP The Client_IP field holds the IP address for this entry.
This value must be unique in the database.

Server_IP This field holds the IP address of the DHCP server which
owns this client IP address, and thus is responsible for initial
allocation to a requesting client.

Lease This numeric field holds the entry’s absolute lease expiration
time, and is in seconds since January 1, 1970 . It can be
decimal, or hexadecimal (if 0x prefixes number). The special
value -1 is used to denote a permanent lease.

Macro This ASCII text field contains the dhcptab macro name
used to look up this entry’s configuration parameters in
the dhcptab (4) database.

Comment This ASCII text field contains an optional comment.

TREATISE ON
LEASES

This section describes how the DHCP/BOOTP server calculates a client’s
configuration lease using information contained in the dhcptab (4) and dhcp
network databases. The server consults the LeaseTim and LeaseNeg symbols
in the dhcptab , and the Flags and Lease fields of the chosen dhcp network
database record.

The server first examines the Flags field for the identified dhcp network
record. If the PERMANENTflag is on, then the client’s lease is considered
permanent.

If the PERMANENTflag is not on, then the server checks if the client’s lease as
represented by the Lease field in the dhcp network record has expired. If not,
then the server checks if the client has requested a new lease. If the LeaseNeg
symbol has not been included in the client’s dhcptab parameters, then the
client’s requested lease extension is ignored, and the lease is set to be the time
remaining as shown by the Lease field. If the LeaseNeg symbol has been
included, then the server will extend the client’s lease to the value it requested if
this requested lease is less than or equal to the current time plus the value of the
client’s LeaseTim dhcptab parameter.

94 SunOS 5.8 Last modified 18 May 1999

File Formats dhcp_network(4)

If the client’s requested lease is greater than policy allows (value of LeaseTim),
then the client is given a lease equal to the current time plus the value of
LeaseTim . If LeaseTim is not set, then the default LeaseTim value is one hour.

For more information about the dhcptab symbols discussed in this section,
see dhcptab (4).

EXAMPLES EXAMPLE 1 Database entry for dynamic allocation.

The following dhcp network database entry is free for dynamic allocation. The
IP address for this entry is 10.0.0.5 , the IP address of the DHCP server that
can initially allocate this address is 10.0.0.1 , the lease expires 754012553 , or
Mon Nov 22 18:55:53 1993 , and the dhctab macro associated with this
entry is called 10netnis :

00 0 10.0.0.5 10.0.0.1 754012553 10netnis

EXAMPLE 2 Manually administered entry with a permanent lease.

The following entry shows a manually administered entry for client ID
010000C0EFA4A, which has a permanent lease (that is, MANUAL | PERMANENT
== 3):

010000C0EFA4A 3 10.0.0.25 10.0.0.1 -1 10netnis

EXAMPLE 3 Manually administered unusable entry.

The following entry shows a MANUALentry which has been marked as UNUSABLE
(that is, MANUAL | UNUSABLE == 6):

0408072097C9F 6 10.0.0.26 10.0.0.1 764258362 10netdns

EXAMPLE 4 Previously unused DYNAMIC entry.

The following entry for IP address 10.0.0.27 shows a previously unused,
DYNAMICentry which uses dhcptab macro 10netnis and is owned by DHCP
server 10.0.0.2 :

00 0 10.0.0.27 10.0.0.2 0 10netnis

EXAMPLE 5 Reserved entry.

The following entry is reserved for BOOTP clients:
00 08 10.0.0.27 10.0.0.3 0 10netnis

FILES /var/dhcp/NNN_NNN_NNN_NNN
Where NNN_NNN_NNN_NNNare database file(s) or NIS+ tables(s).

/var/dhcp/dhcptab
file or NIS+ table

SEE ALSO dhcpconfig (1M), dhcpmgr (1M), dhtadm (1M), in.dhcpd (1M), pntadm (1M),
dhcptab (4)

Reynolds, J. and J. Postel, Assigned Numbers, STD 2, RFC 1340, USC/Information
Sciences Institute, July 1992,

Last modified 18 May 1999 SunOS 5.8 95

dhcptab(4) File Formats

NAME dhcptab – DHCP configuration parameter table

DESCRIPTION The dhcptab macro table allows network administrators to organize groups of
configuration parameters as macro definitions, which can then be further used in
the definition of other useful macros. These macros can be configured such that
the DHCP server will return their values to DHCP and BOOTP clients.

The preferred method of managing the dhcptab macro table is through the use
of the dhtadm (1M) utility. The syntax described in the balance of this manual
page is intended for informational purposes.

Syntax of the dhcptab
Table

The syntax of the dhcptab table is as follows:

Comments begin with the cross-hatch (#) character in the first position on the
line and end with a carriage return. Lines can be continued by escaping the
carriage return character with a backslash (\) character.

dhcptab records contain three (3) fields:

Name Type Value

The fields are defined as follows:
Name This field identifies the record and is used as the search key

into the dhcptab table. A Namemust consist of ASCII
characters. If the record is of type Macro , then the length
is limited to 64 characters. If the record is of type Symbol ,
then the length is limited to 8 characters.

Type This field specifies the type of record. Currently, there are
only two legal values for Type :

m (Macro) This record is a DHCP macro definition.

s (Symbol) This record is a DHCP symbol definition.
It is used to define vendor and site-specific
options.

Value This field contains the value for the specified type of record.
For the macro type, the value will consist of a series of
symbol=value pairs, separated by the colon (:) character.
For the symbol type, the value will consist of a series of
fields, separated by a comma (,), which define a symbol’s
characteristics. Once defined, a symbol can be used in
macro definitions.

Symbol
Characteristics

The fields describing the characteristics of a symbol are as follows:

Context Code Type Granularity Maximum

96 SunOS 5.8 Last modified 31 Aug 1999

File Formats dhcptab(4)

These fields are defined as follows:
Context This field defines the context in which the symbol definition

is to be used. It can have three values:

Extend

This symbol defines a standard option, codes from 77-127.
The use of this symbol type is for adding new standard
options added since the release of the dhcp server.

Site

This symbol defines a site-specific option, codes 128-254.

Vendor=Client Class ...

This symbol defines a vendor-specific option, codes
1-254. The Vendor context takes ASCII string arguments
which identify the client class that this vendor option
is associated with. Multiple client class names can be
specified, separated by white space. Only those clients
whose client class matches one of these values will see
this option.

Code This field specifies the option code number associated with
this symbol. Valid values are 128-254 for site-specific options,
and 1-254 for vendor-specific options.

Type This field defines the type of data expected as a value for
this symbol. Legal values are:

ASCII NVT ASCII text. Value is enclosed in
double-quotes ("). Granularity setting has
no effect on symbols of this type, since
ASCII strings have a natural granularity of
one (1).

BOOLEAN No value is associated with this data type.
Presence of symbols of this type denote
boolean TRUE, whereas absence denotes
FALSE. Granularity and Miximum values
have no meaning for symbols of this type.

IP Dotted decimal form of an Internet
address. Multi-IP address granularity is
supported.

Last modified 31 Aug 1999 SunOS 5.8 97

dhcptab(4) File Formats

NUMBER An unsigned number with a supported
granularity of 1, 2, 4, and 8 octets.

OCTET Uninterpreted ASCII representation
of binary data. The client identifier is
one example of an OCTETstring. Valid
characters are 0–9, [a-f] [A-F]. One ASCII
character represents one nibble (4 bits),
thus two ASCII characters are needed to
represent an 8 bit quantity. The granularity
setting has no effect on symbols of this
type, since OCTETstrings have a natural
granularity of one (1).

Granularity This value specifies how many objects of Type define a
single instance of the symbol value. For example, the
static route option is defined to be a variable list of routes.
Each route consists of two IP addresses, so the Type is
defined to be IP , and the data’s granularity is defined to
be 2 IP addresses. The granularity field affects the IP and
NUMBERdata types.

Maximum This value specifies the maximum items of Granularity
which are permissible in a definition using this symbol. For
example, there can only be one IP address specified for a
subnet mask, so the Maximum number of items in this case is
one (1). A Maximum value of zero (0) means that a variable
number of items is permitted.

The following example defines a site-specific option called MystatRt , of
code 130 , type IP, and granularity 2, and a Maximumof 0. This definition
corresponds to the internal definition of the static route option (StaticRt).

MystatRt s Site,130,IP,2,0

Macro Definitions The following example illustrates a macro defined using the MystatRt site
option symbol just defined:

10netnis m :MystatRt=3.0.0.0 10.0.0.30:

Macro records can be specified in the Macro field in dhcp network databases
(see dhcp_network (4)), which will bind particular macro definitions to specific
IP addresses.

98 SunOS 5.8 Last modified 31 Aug 1999

File Formats dhcptab(4)

If present, four macro definitions are consulted by the DHCP server to determine
the options that are returned to the requesting client:

Client Class Network IP Address Client
Identifier

These macros are processed as follows:
Client Class A macro called by the ASCII representation of

the client class is searched for in the dhcptab .
If found, then its symbol/value pairs will
be selected for delivery to the client. This
mechanism permits the network administrator to
select configuration parameters to be returned
to all clients of the same class.

Network A macro named by the dotted Internet form
of the network address of the client’s network
(for example, 10.0.0.0) is searched for in the
dhcptab . If found, then its symbol/value pairs
will be combined with those of the Client
Class macro. If a symbol exists in both macros,
then the Network macro value overrides the
value defined in the Client Class macro. This
mechanism permits the network administrator to
select configuration parameters to be returned to
all clients on the same network.

IP Address This macro is specified in the dhcp network
database for the record assigned to the requesting
client. If this macro is found in the dhcptab ,
then its symbol/value pairs will be combined
with those of the Client Class macro
and the Network macro. This mechanism
permits the network administrator to select
configuration parameters to be returned to
clients using a particular IP address. It can also
be used to deliver a macro defined to include
"server-specific" information by including this
macro definition in all dhcp network database
entries owned by a specific server.

Client Identifier A macro named by the ASCII representation of
the client’s unique identifier as shown in the
dhcp network table, dhcp_network (4). If
found, its symbol/value pairs are combined to

Last modified 31 Aug 1999 SunOS 5.8 99

dhcptab(4) File Formats

the sum of the Client Class , Network , and
IP Address macros. Any symbol collisions
are replaced with those specified in the client
identifier macro. This mechanism permits the
network administrator to select configuration
parameters to be returned to a particular
client, regardless of what network that client
is connected to.

Internal Symbol
Names

The following table maps the available internal symbol names to RFC-2132
options:

Symbol Code Description

Subnet 1 Subnet Mask, dotted
Internet address (IP).

UTCoffst 2 Coordinated Universal
time offset (seconds).

Router 3 List of Routers, IP.

Timeserv 4 List of RFC-868 servers, IP.

IEN116ns 5 List of IEN 116 name
servers, IP.

DNSserv 6 List of DNS name
servers, IP.

Logserv 7 List of MIT-LCS UDP
log servers, IP.

Cookie 8 List of RFC-865 cookie
servers, IP.

Lprserv 9 List of RFC-1179 line
printer servers, IP.

Impress 10 List of Imagen Impress
servers, IP.

Resource 11 List of RFC-887 resource
location servers, IP.

Hostname 12 Client’s hostname, value
from hosts database.

Bootsize 13 Number of 512 octet blocks
in boot image, NUMBER.

Dumpfile 14 Path where core image
should be dumped, ASCII.

DNSdmain 15 DNS domain name, ASCII.

100 SunOS 5.8 Last modified 31 Aug 1999

File Formats dhcptab(4)

Symbol Code Description

Swapserv 16 Client’s swap server, IP.

Rootpath 17 Client’s Root path, ASCII.

ExtendP 18 Extensions path, ASCII.

IpFwdF 19 IP Forwarding
Enable/Disable, NUMBER.

NLrouteF 20 Non-local Source Routing,
NUMBER.

PFilter 21 Policy Filter, IP,IP.

MaxIpSiz 22 Maximum datagram
Reassembly Size,
NUMBER.

IpTTL 23 Default IP Time to Live,
(1=<x<=255), NUMBER.

PathTO 24 RFC-1191 Path MTU Aging
Timeout, NUMBER.

PathTbl 25 RFC-1191 Path MTU
Plateau Table, NUMBER.

MTU 26 Interface MTU, x>=68,
NUMBER.

SameMtuF 27 All Subnets are Local,
NUMBER.

Broadcst 28 Broadcast Address, IP.

MaskDscF 29 Perform Mask Discovery,
NUMBER.

MaskSupF 30 Mask Supplier, NUMBER.

RDiscvyF 31 Perform Router Discovery,
NUMBER.

RSolictS 32 Router Solicitation
Address, IP.

StaticRt 33 Static Route, Double IP
(network router).

TrailerF 34 Trailer Encapsulation,
NUMBER.

ArpTimeO 35 ARP Cache Time out,
NUMBER.

Last modified 31 Aug 1999 SunOS 5.8 101

dhcptab(4) File Formats

Symbol Code Description

EthEncap 36 Ethernet Encapsulation,
NUMBER.

TcpTTL 37 TCP Default Time to
Live, NUMBER.

TcpKaInt 38 TCP Keepalive Interval,
NUMBER.

TcpKaGbF 39 TCP Keepalive Garbage,
NUMBER.

NISdmain 40 NIS Domain name, ASCII.

NISservs 41 List of NIS servers, IP.

NTPservs 42 List of NTP servers, IP.

NetBNms 44 List of NetBIOS Name
servers, IP.

NetBDsts 45 List of NetBIOS
Distribution servers, IP.

NetBNdT 46 NetBIOS Node type
(1=B-node, 2=P, 4=M, 8=H)

NetBScop 47 NetBIOS scope, ASCII.

XFontSrv 48 List of X Window Font
servers, IP.

XDispMgr 49 List of X Window Display
managers, IP.

LeaseTim 51 Lease Time Policy, (-1 =
PERM), NUMBER.

Message 56 Message to be displayed
on client, ASCII.

T1Time 58 Renewal (T1) time,
NUMBER.

T2Time 59 Rebinding (T2) time,
NUMBER.

NW_dmain 62 NetWare/IP Domain
Name, ASCII.

NWIPOpts 63 NetWare/IP Options,
OCTET (unknown type).

NIS+dom 64 NIS+ Domain name, ASCII.

102 SunOS 5.8 Last modified 31 Aug 1999

File Formats dhcptab(4)

Symbol Code Description

NIS+serv 65 NIS+ servers, IP.

TFTPsrvN 66 TFTP server hostname,
ASCII.

OptBootF 67 Optional Bootfile path,
ASCII.

MblIPAgt 68 Mobile IP Home Agent, IP.

SMTPserv 69 Simple Mail Transport
Protocol Server, IP.

POP3serv 70 Post Office Protocol (POP3)
Server, IP.

NNTPserv 71 Network News Transport
Proto. (NNTP) Server, IP.

WWWservs 72 Default WorldWideWeb
Server, IP.

Fingersv 73 Default Finger Server, IP.

IRCservs 74 Internet Relay Chat
Server, IP.

STservs 75 StreetTalk Server, IP.

STDAservs 76 StreetTalk Directory Assist.
Server, IP.

BootFile N/A File to Boot, ASCII.

BootPath N/A Boot path prefix to apply
to client’s requested boot
file, ASCII.

BootSrvA N/A Boot Server, IP.

BootSrvN N/A Boot Server Hostname,
ASCII.

EchoVC N/A Echo Vendor Class
Identifier Flag,
(Present=TRUE)

LeaseNeg N/A Lease is Negotiable Flag,
(Present=TRUE)

Include N/A Include listed macro values
in this macro.

Last modified 31 Aug 1999 SunOS 5.8 103

dhcptab(4) File Formats

EXAMPLES EXAMPLE 1 A Sampledhcptab File
#
Solaris-specific client vendor options. First define them, then use them
in our Client Class macro definitions to establish proper context for each
specific platform. Used to implement diskless boot of Solaris using DHCP
as a configuration protocol.
#

Root NFS mount options (mount_nfs(1M) form)
SrootOpt s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,1,ASCII,1,0

IP address of Root server.
SrootIP4 s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,2,IP,1,1

Hostname of Root server.
SrootNM s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,3,ASCII,1,0

Pathname of Root directory.
SrootPTH s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,4,ASCII,1,0

IP address of Swap server.
SswapIP4 s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,5,IP,1,0

Path to swapfile on swap server.
SswapPTH s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,6,ASCII,1,0

Option path of file to boot (e.g. /platform/sun4u/kernel/sparcv9/unix)
SbootFIL s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,7,ASCII,1,0

Posix 1003.1 timezone specification
Stz s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,8,ASCII,1,0

NFS read size used by standalone boot program when loading kernel.
SbootRS s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,9,NUMBER,2,1

IP address of Jumpstart Install server.
SinstIP4 s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,10,IP,1,1

Name of Jumpstart Install server.
SinstNM s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,11,ASCII,1,0

Path to installation image on Install server.
SinstPTH s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,12,ASCII,1,0

ASCII <server name>:/path of sysid configuration file
SsysidCF s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,13,ASCII,1,0

ASCII <server name>:/path of JumpStart configuration file
SjumpsCF s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,14,ASCII,1,0

ASCII terminal type
Sterm s Vendor=SUNW.Ultra-1 SUNW.Ultra-30 SUNW.i86pc,15,ASCII,1,0

#
Macro definitions

104 SunOS 5.8 Last modified 31 Aug 1999

File Formats dhcptab(4)

#
Set the Locale. EST’s offset from GMT is -18000 seconds.
Locale m :UTCoffst=-18000:
#
Define all Solaris-generic options under this macro.
Solaris m :SrootIP4=172.21.0.2:SrootNM="test-172-21-0-0-2": \

:SinstIP4=172.21.0.2:SinstNM="test-172-21-0-0-2": \
:Sterm="xterm":

#
Define all sparc-platform specific options under this macro.
sparc m \
:SrootPTH="/export/s28/base.s28s_wos/latest/Solaris_2.8/Tools/Boot": \

:SinstPTH="/export/s28/base.s28s_wos/latest":
#
Define all sun4m architecture-specific options under this macro. Note how
we include the Solaris and sparc generic information by include the
appropriate macros in this definition.
sun4m m :Include=Solaris:Include=sparc: \

:SbootFIL="/platform/sun4m/kernel/unix":
#
Define all sun4u architecture-specific options under this macro.
sun4u m :Include=Solaris:Include=sparc:
#
Solaris on Intel platform-specific parameters are under this macro.
i86 m :Include=Solaris: \
:SrootPTH="/export/s28/base.s28x_wos/latest/Solaris_2.8/Tools/Boot": \

:SinstPTH="/export/s28/base.s28x_wos/latest": \
:SbootFIL="/platform/i86pc/kernel/unix":

#
Solaris on Intel machines are identified by the "SUNW.i86pc" class. All
clients identifying themselves as members of this class will see these
parameters.
SUNW.i86pc m :Include=i86:
#
Ultra-1 platforms identify themselves as part of the "SUNW.Ultra-1" class.
By default, we boot these machines in 32bit mode. All clients identifying
themselves as members of this class will see these parameters.
SUNW.Ultra-1 m :SbootFIL="/platform/sun4u/kernel/unix": \

:Include=sun4u:
#
Ultra-30 platforms identify themselves as part of the "SUNW.Ultra-30" class.
By default, we will boot these machines in 64bit mode. All clients
identifying themselves as members of this class will see these parameters.
SUNW.Ultra-30 m :SbootFIL="/platform/sun4u/kernel/sparcv9/unix": \

:Include=sun4u:
#
Macros named using a client’s subnet IP address are automatically consulted
by the DHCP server. Thus, all clients on the 172.20.64.64 network will see
these options. Thus it makes sense to associate all parameters specific to
a network with its macro. Note that it is important to keep the netmasks(4)
table up to date with respect to your network topology in order for the
DHCP server macro selection process to work correctly.
#
172.20.64.64 m :Broadcst=172.20.64.127:Subnet=255.255.255.192: \

:Router=172.20.64.65:BootSrvA=172.21.0.2:

Last modified 31 Aug 1999 SunOS 5.8 105

dhcptab(4) File Formats

172.20.64.0 m :Subnet=255.255.255.192: \
:Router=172.20.64.2 172.20.64.1:Broadcst=172.20.64.63: \
:BootSrvA=172.21.0.2:

172.20.64.128 m :Subnet=255.255.255.128:Router=172.20.64.129: \
:Broadcst=172.20.64.255:BootSrvA=172.21.0.2:

172.21.0.0 m :Subnet=255.255.0.0:Router=172.21.0.1: \
:Broadcst=172.21.255.255:BootSrvA=172.21.0.2:

192.168.208.0 m :Subnet=255.255.248.0:Router=192.168.208.1: \
:Broadcst=192.168.215.255:BootSrvA=172.21.0.2:

172.22.0.0 m :Broadcst=172.22.255.255:Subnet=255.255.0.0:MTU=4352: \
:Router=172.22.0.1:BootSrvA=172.22.0.1: \
:NIS+dom="nis+.labtest.dhcp":NIS+serv=172.21.0.2:

#
We use a macro named after the server’s hostname to group parameters related
to the services exported by this server. Here we set the lease policy, as
well as automatically return a client’s hostname by consulting the name
service.
test-172-21-0-0-2 m :Include=Locale:Timeserv=172.21.0.2: \

:LeaseTim=3600:LeaseNeg:Hostname: \
:DNSdmain="lab.test.dhcp":DNSserv=172.22.0.7:

#
This macro’s name is a client’s client identifier. Its options will be
combined with those of the Client class macro, network macro, and server
macro. Regardless of where this client appears in the network topology
served by this dhcp service, these parameters will follow it!
010800207E8A02 m :Impress=172.22.255.27:

FILES /var/dhcp/dhcptab file or NIS+ table.

SEE ALSO dhcpconfig (1M), dhcpmgr (1M), dhtadm (1M), in.dhcpd (1M),
dhcp_network (4)

Alexander, S., and R. Droms, DHCP Options and BOOTP Vendor Extensions,
RFC 2132, Silicon Graphics, Inc., Bucknell University, March 1997.

Droms, R., Interoperation Between DHCP and BOOTP, RFC 1534, Bucknell
University, October 1993.

Droms, R., Dynamic Host Configuration Protocol, RFC 2131, Bucknell University,
March 1997.

Wimer, W., Clarifications and Extensions for the Bootstrap Protocol, RFC 1542,
Carnegie Mellon University, October 1993.

106 SunOS 5.8 Last modified 31 Aug 1999

File Formats dialups(4)

NAME dialups – list of terminal devices requiring a dial-up password

SYNOPSIS /etc/dialups

DESCRIPTION dialups is an ASCII file which contains a list of terminal devices that require a
dial-up password. A dial-up password is an additional password required of
users who access the computer through a modem or dial-up port. The correct
password must be entered before the user is granted access to the computer. The
set of ports that require a dial-up password are listed in the dialups file.

Each entry in the dialups file is a single line of the form:

terminal-device

where
terminal-device The full path name of the terminal device

that will require a dial-up password for users
accessing the computer through a modem or
dial-up port.

The dialups file should be owned by the root user and the root group. The
file should have read and write permissions for the owner (root) only.

EXAMPLES EXAMPLE 1 A sample dialups file.

Here is a sample dialups file:

/dev/term/a
/dev/term/b
/dev/term/c

FILES /etc/d_passwd dial-up password file

/etc/dialups list of dial-up ports requiring dial-up passwords

SEE ALSO d_passwd (4)

Last modified 4 May 1994 SunOS 5.8 107

dir_ufs(4) File Formats

NAME dir_ufs, dir – format of ufs directories

SYNOPSIS #include <sys/param.h>

#include <sys/types.h>

#include <sys/fs/ufs_fsdir.h>

DESCRIPTION A directory consists of some number of blocks of DIRBLKSIZ bytes, where
DIRBLKSIZ is chosen such that it can be transferred to disk in a single atomic
operation (for example, 512 bytes on most machines).

Each DIRBLKSIZ -byte block contains some number of directory entry
structures, which are of variable length. Each directory entry has a struct
direct at the front of it, containing its inode number, the length of the entry,
and the length of the name contained in the entry. These entries are followed by
the name padded to a 4 byte boundary with null bytes. All names are guaranteed
null-terminated. The maximum length of a name in a directory is MAXNAMLEN.

#define DIRBLKSIZ DEV_BSIZE
#define MAXNAMLEN 256
struct direct {

ulong_t d_ino; /* inode number of entry */
ushort_t d_reclen; /* length of this record */
ushort_t d_namlen; /* length of string in d_name */
char d_name[MAXNAMLEN + 1]; /* maximum name length */

};

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Stability Level Unstable

SEE ALSO fs_ufs (4) , attributes (5)

108 SunOS 5.8 Last modified 3 Jul 1990

File Formats d_passwd(4)

NAME d_passwd – dial-up password file

SYNOPSIS /etc/d_passwd

DESCRIPTION A dial-up password is an additional password required of users who access the
computer through a modem or dial-up port. The correct password must be
entered before the user is granted access to the computer.

d_passwd is an ASCII file which contains a list of executable programs (typically
shells) that require a dial-up password and the associated encrypted passwords.
When a user attempts to log in on any of the ports listed in the dialups file
(see dialups (4)), the login program looks at the user’s login entry stored in the
passwd file (see passwd (4)), and compares the login shell field to the entries
in d_passwd . These entries determine whether the user will be required to
supply a dial-up password.

Each entry in d_passwd is a single line of the form:

login-shell: password:

where
login-shell The name of the login program that will require an

additional dial-up password.

password A 13-character encrypted password. Users accessing the
computer through a dial-up port or modem using login-shell
will be required to enter this password before gaining access
to the computer.

d_passwd should be owned by the root user and the root group. The file
should have read and write permissions for the owner (root) only.

If the user’s login program in the passwd file is not found in d_passwd or if the
login shell field in passwd is empty, the user must supply the default password.
The default password is the entry for /usr/bin/sh . If d_passwd has no
entry for /usr/bin/sh , then those users whose login shell field in passwd
is empty or does not match any entry in d_passwd will not be prompted for
a dial-up password.

Dial-up logins are disabled if d_passwd has only the following entry:

/usr/bin/sh:*:

Last modified 4 May 1994 SunOS 5.8 109

d_passwd(4) File Formats

EXAMPLES EXAMPLE 1 Sample d_passwd file.

Here is a sample d_passwd file:

/usr/lib/uucp/uucico:q.mJzTnu8icF0:
/usr/bin/csh:6k/7KCFRPNVXg:
/usr/bin/ksh:9df/FDf.4jkRt:
/usr/bin/sh:41FuGVzGcDJlw:

Generating An
Encrypted Password

The passwd (see passwd (1)) utility can be used to generate the encrypted
password for each login program. passwd generates encrypted passwords for
users and places the password in the shadow (see shadow (4)) file. Passwords
for the d_passwd file will need to be generated by first adding a temporary user
id using useradd (see useradd (1M)), and then using passwd (1) to generate
the desired password in the shadow file. Once the encrypted version of the
password has been created, it can be copied to the d_passwd file.

For example:

1. Type useradd tempuser and press Return. This creates a user named
tempuser .

2. Type passwd tempuser and press Return. This creates an encrypted
password for tempuser and places it in the shadow file.

3. Find the entry for tempuser in the shadow file and copy the encrypted
password to the desired entry in the d_passwd file.

4. Type userdel tempuser and press Return to delete tempuser .

These steps must be executed as the root user.

FILES /etc/d_passwd dial-up password file

/etc/dialups list of dial-up ports requiring dial-up passwords

/etc/passwd password file

/etc/shadow shadow password file

SEE ALSO passwd (1), useradd (1M), dialups (4), passwd (4), shadow (4)

WARNINGS When creating a new dial-up password, be sure to remain logged in on at least
one terminal while testing the new password. This ensures that there is an
available terminal from which you can correct any mistakes that were made
when the new password was added.

110 SunOS 5.8 Last modified 4 May 1994

File Formats driver.conf(4)

NAME driver.conf – driver configuration files

SYNOPSIS driver.conf

DESCRIPTION Driver configuration files pass information about device drivers and their
configuration to the system. Most device drivers do not have to have
configuration files. Drivers for devices that are self-identifying, such as the SBus
devices on many systems, can usually obtain all the information they need from
the FCode PROM on the SBus card using the DDI property interfaces. See
ddi_prop_get_int (9F) and ddi_prop_lookup (9F) for details.

The system associates a driver with its configuration file by name. For example,
a driver in /usr/kernel/drv called wombat has the driver configuration file
wombat.conf associated with it. By convention, the driver configuration file
lives in the same directory as the driver.

The syntax of a single entry in a driver configuration file takes one of three forms:

name=" node name" parent=" parent name" [property-name=value ...];

In this form, the parent name can be either a simple nexus driver name to match
all instances of that parent/node, or the parent name can be a specific full
pathname, beginning with a slash (/) character, identifying a specific instance
of a parent bus.

Alternatively, the parent can be specified by the type of interface it presents
to its children.

name=" node name" class=" class name" [property-name=value ...];

For example, the driver for the SCSI host adapter may have different names
on different platforms, but the target drivers can use class scsi to insulate
themselves from these differences.

Entries of either form above correspond to a device information (devinfo) node
in the kernel device tree. Each node has a name which is usually the name of the
driver, and a parent name which is the name of the parent devinfo node it will
be connected to. Any number of name-value pairs may be specified to create
properties on the prototype devinfo node. These properties can be retrieved
using the DDI property interfaces (for example, ddi_prop_get_int (9F) and
ddi_prop_lookup (9F)). The prototype devinfo node specification must be
terminated with a semicolon (;).

The third form of an entry is simply a list of properties.

Last modified 4 Mar 1997 SunOS 5.8 111

driver.conf(4) File Formats

[property-name=value ...];

A property created in this way is treated as global to the driver. It can be
overridden by a property with the same name on a particular devinfo node,
either by creating one explicitly on the prototype node in the driver.conf file
or by the driver.

Items are separated by any number of newlines, SPACE or TAB characters.

The configuration file may contain several entries to specify different device
configurations and parent nodes. The system may call the driver for each
possible prototype devinfo node, and it is generally the responsibility of the
drivers probe (9E) routine to determine if the hardware described by the
prototype devinfo node is really present.

Property names should obey the same naming convention as Open Boot PROM
properties, in particular they should not contain at-sign (@), or slash (/)
characters. Property values can be decimal integers or strings delimited by
double quotes ("). Hexadecimal integers can be constructed by prefixing the
digits with 0x .

A comma separated list of integers can be used to construct properties whose
value is an integer array. The value of such properties can be retrieved inside the
driver using ddi_prop_lookup_int_array (9F).

Comments are specified by placing a # character at the beginning of the comment
string, the comment string extends for the rest of the line.

EXAMPLES EXAMPLE 1 Configuration file for a PCI bus frame buffer.

The following is an example of a configuration file called ACME,simple.conf
for a PCI bus frame buffer called ACME,simple .

#
Copyright (c) 1993, by ACME Fictitious Devices, Inc.
#
#ident "@(#)ACME,simple.conf 1.3 1999/09/09"

name="ACME,simple" class="pci" unit-address="3,1"
debug-mode=12;

This example creates a prototype devinfo node called ACME,simple under
all parent nodes of class pci . It specifies a property called reg that consists of
an array of three integers. The reg property is interpreted by the parent node;
see pci (4) for further details.

112 SunOS 5.8 Last modified 4 Mar 1997

File Formats driver.conf(4)

CODE EXAMPLE 1 Configuration file for a pseudo device driver

The following is an example of a configuration file called ACME,example.conf
for a pseudo device driver called ACME,example .

#
Copyright (c) 1993, ACME Fictitious Devices, Inc.
#
#ident "@(#)ACME,example.conf 1.2 93/09/09"
name="ACME,example" parent="pseudo" instance=0

debug-level=1;

name="ACME,example" parent="pseudo" instance=1;

whizzy-mode="on";
debug-level=3;

This creates two devinfo nodes called ACME,example which will attach below
the pseudo node in the kernel device tree. The instance property is only
interpreted by the pseudo node, see pseudo (4) for further details. A property
called debug-level will be created on the first devinfo node which will have
the value 1. The example driver will be able to fetch the value of this property
using ddi_prop_get_int (9F).

Two global driver properties are created, whizzy-mode (which will have the
string value "on") and debug-level (which will have the value 3). If the
driver looks up the property whizzy-mode on either node, it will retrieve
the value of the global whizzy-mode property ("on"). If the driver looks up
the debug-level property on the first node, it will retrieve the value of the
debug-level property on that node (1). Looking up the same property on the
second node will retrieve the value of the global debug-level property (3).

SEE ALSO pci (4), pseudo (4), sbus (4), scsi (4), pci (4), probe (9E),
ddi_getlongprop (9F), ddi_getprop (9F), ddi_getproplen (9F),
ddi_prop_op (9F)

Writing Device Drivers

WARNINGS To avoid namespace collisions between multiple driver vendors, it is strongly
recommended that the name property of the driver should begin with a
vendor-unique string. A reasonably compact and unique choice is the vendor
over-the-counter stock symbol.

Last modified 4 Mar 1997 SunOS 5.8 113

environ(4) File Formats

NAME environ, pref, variables – user-preference variables files for AT&T FACE

SYNOPSIS $HOME/pref/.environ

$HOME/pref/.variables

$HOME/FILECABINET/.pref

$HOME/WASTEBASKET/.pref

DESCRIPTION The .environ , .pref , and .variables files contain variables that indicate
user preferences for a variety of operations. The .environ and .variables
files are located under the user’s $HOME/pref directory. The .pref files
are found under $HOME/FILECABINET , $HOME/WASTEBASKET, and any
directory where preferences were set via the organize command. Names and
descriptions for each variable are presented below. Variables are listed one per
line and are of the form variable = value .

.environ Variables Variables found in .environ include:
LOGINWIN[1-4] Windows that are opened when FACE is initialized.

SORTMODE Sort mode for file folder listings. Values include the
following hexadecimal digits:

1 Sorted alphabetically by name.

2 Files most recently modified first.

800 Sorted alphabetically by object type.

The values above may be listed in reverse order by ORing
the following value:

1000 List objects in reverse order. For example, a value
of 1002 will produce a folder listing with files
LEAST recently modified displayed first. A value
of 1001 would produce a "reverse" alphabetical by
name listing of the folder.

DISPLAYMODE Display mode for file folders. Values include the following
hexadecimal digits:

0 File names only.

4 File names and brief description.

8 File names, description, plus additional information.

WASTEPROMPT Prompt before emptying wastebasket (yes/no?).

WASTEDAYS Number of days before emptying wastebasket.

114 SunOS 5.8 Last modified 3 Jul 1990

File Formats environ(4)

PRINCMD
[1-3
]

Print command defined to print files.

UMASK Holds default permissions with which files will be created.

.pref Variables Variables found in .pref are the following:
SORTMODE Contains the same values as the SORTMODEvariable

described in .environ above.

DISPMODE Contains the same values as the DISPLAYMODEvariable
described in .environ above.

.variable Variables Variables found in .variables include:
EDITOR Default editor.

PS1 Shell prompt.

Last modified 3 Jul 1990 SunOS 5.8 115

ethers(4) File Formats

NAME ethers – Ethernet address to hostname database or domain

DESCRIPTION The ethers file is a local source of information about the (48 bit) Ethernet
addresses of hosts on the Internet. The ethers file can be used in conjunction
with or instead of other ethers sources, including the NIS maps ethers.byname
and ethers.byaddr and the NIS+ table ethers . Programs use the
ethers (3SOCKET) routines to access this information.

The ethers file has one line for each host on an Ethernet. The line has the
following format:

Ethernet-address official-host-name

Items are separated by any number of SPACE and/or TAB characters. A ‘#’
indicates the beginning of a comment extending to the end of line.

The standard form for Ethernet addresses is “x: x: x: x: x: x” where x is a
hexadecimal number between 0 and ff, representing one byte. The address bytes
are always in network order. Host names may contain any printable character
other than SPACE, TAB, NEWLINE, or comment character.

FILES /etc/ethers

SEE ALSO ethers (3SOCKET), hosts (4), nsswitch.conf (4)

116 SunOS 5.8 Last modified 10 Dec 1991

File Formats exec_attr(4)

NAME exec_attr – execution profiles database

SYNOPSIS /etc/security/exec_attr

DESCRIPTION /etc/security/exec_attr is a local database that specifies the execution
attributes associated with profiles. The exec_attr file can be used with
other sources for execution profiles, including the exec_attr NIS map and
NIS+ table. Programs use the getexecattr (3SECDB) routines to access this
information.

The search order for multiple execution profile sources is specified in the
/etc/nsswitch.conf file, as described in the nsswitch.conf (4) man page.
The search order follows the entry for prof_attr (4).

A profile is a logical grouping of authorizations and commands that is
interpreted by a profile shell to form a secure execution environment. The shells
that interpret profiles are pfcsh , pfksh , and pfsh . See the pfsh (1) man page.
Each user’s account is assigned zero or more profiles in the user_attr (4)
database file.

Each entry in the exec_attr database consists of one line of text containing
seven fields separated by colons (:). Line continuations using the backslash (\)
character are permitted. The basic format of each entry is:

name:policy:type:res1:res2:id:attr

name The name of the profile. Profile names are case-sensitive.

policy The policy that is associated with the profile entry. The
only valid policy is suser .

type The type of object defined in the profile. The only valid
type is cmd.

res1 Reserved for future use.

res2 Reserved for future use.

id A string that uniquely identifies the object described by
the profile. For a profile of type cmd, the id is either
the full path to the command or the asterisk (*) symbol,
which is used to allow all commands. An asterisk that
replaces the filename component in a pathname indicates
all files in a particular directory. To specify arguments, the
pathname should point to a shell script written to execute
the command with the desired arguments.

Last modified 26 Oct 1999 SunOS 5.8 117

exec_attr(4) File Formats

attr An optional list of semicolon-separated (;) key-value pairs
that describe the security attributes to apply to the object
upon execution. Zero or more keys may be specified. The
list of valid key words depends on the policy enforced. The
following key words are valid: euid , uid, egid, and gid .

euid and uid contain a single user name or a numeric user
ID. Commands designated with euid run with the effective
UID indicated, which is similar to setting the setuid bit on an
executable file. Commands designated with uid run with
both the real and effective UIDs. Setting uid may be more
appropriate than setting the euid on privileged shell scripts.

egid and gid contain a single group name or a numeric
group ID. Commands designated with egid run with the
effective GID indicated, which is similar to setting the setgid
bit on a file. Commands designated with gid run with
both the real and effective GIDs. Setting gid may be more
appropriate than setting guid on privileged shell scripts.

EXAMPLES EXAMPLE 1 Using effective user and group IDs

The following example shows the audit command specified in the Audit
Control profile to execute with an effective user ID of root (0) and effective
group ID of bin (3):

Audit Control:suser:cmd:::/etc/init.d/audit:euid=0;egid=3

FILES /etc/nsswitch.conf

/etc/user_attr

/etc/security/exec_attr

CAVEATS When deciding which authorization source to use (see DESCRIPTION), keep in
mind that NIS+ provides stronger authentication than NIS.

Because the list of legal keys is likely to expand, any code that parses this
database must be written to ignore unknown key-value pairs without error.
When any new keywords are created, the names should be prefixed with a
unique string, such as the company’s stock symbol, to avoid potential naming
conflicts.

The following characters are used in describing the database format and must
be escaped with a backslash if used as data: colon (:), semicolon (;), equals
(=), and backslash (\).

118 SunOS 5.8 Last modified 26 Oct 1999

File Formats exec_attr(4)

SEE ALSO auths (1), profiles (1), roles (1), makedbm(1M), getauthattr (3SECDB),
getauusernam (3BSM), getexecattr (3SECDB), getprofattr (3SECDB),
getuserattr (3SECDB), kva_match (3SECDB), auth_attr (4), prof_attr (4),
user_attr (4)

Last modified 26 Oct 1999 SunOS 5.8 119

fd(4) File Formats

NAME fd – file descriptor files

DESCRIPTION These files, conventionally called /dev/fd/0 , /dev/fd/1 , /dev/fd/2 , and so
on, refer to files accessible through file descriptors. If file descriptor n is open,
these two system calls have the same effect:

fd = open("/dev/fd/ n",mode);
fd = dup(n);

On these files creat (2) is equivalent to open , and mode is ignored. As with
dup , subsequent reads or writes on fd fail unless the original file descriptor
allows the operations.

For convenience in referring to standard input, standard output, and standard
error, an additional set of names is provided: /dev/stdin is a synonym
for /dev/fd/0 , /dev/stdout for /dev/fd/1 , and /dev/stderr for
/dev/fd/2 .

SEE ALSO creat (2), dup (2), open (2)

DIAGNOSTICS open (2) returns −1 and EBADFif the associated file descriptor is not open.

120 SunOS 5.8 Last modified 3 Jul 1990

File Formats format.dat(4)

NAME format.dat – disk drive configuration for the format command

DESCRIPTION format.dat enables you to use your specific disk drives with format (1M).
On Solaris 2.3 and compatible systems, format will automatically configure
and label SCSI drives, so that they need not be defined in format.dat . Three
things can be defined in the data file:

� search paths

� disk types

� partition tables.

Syntax The following syntax rules apply to the data file:

� The pound # sign is the comment character. Any text on a line after a
pound sign is not interpreted by format .

� Each definition in the format.dat file appears on a single logical line. If
the definition is more than one line long, all but the last line of the definition
must end with a backslash (\).

� A definition consists of a series of assignments that have an identifier on the
left side and one or more values on the right side. The assignment operator
is the equal sign (=). Assignments within a definition must be separated
by a colon (:).

� White space is ignored by format (1M). If you want an assigned value to
contain white space, enclose the entire value in double quotes ("). This
will cause the white space within quotes to be preserved as part of the
assignment value.

� Some assignments can have multiple values on the right hand side. Separate
values by a comma (,).

Keywords The data file contains disk definitions that are read in by format (1M) when
it starts up. Each definition starts with one of the following keywords:
search_path , disk_type , and partition .
search_path 4.x: Tells format which disks it should search for when it

starts up. The list in the default data file contains all the
disks in the GENERIC configuration file. If your system has
disks that are not in the GENERIC configuration file, add
them to the search_path definition in your data file. The
data file can contain only one search_path definition.
However, this single definition lets you specify all the disks
you have in your system.

5.x: By default, format (1M) understands all the logical
devices that are of the form /dev/rdsk/cntndnsn ; hence
search_path is not normally defined on a 5.x system.

Last modified 4 Apr 1994 SunOS 5.8 121

format.dat(4) File Formats

disk_type Defines the controller and disk model. Each disk_type
definition contains information concerning the physical
geometry of the disk. The default data file contains
definitions for the controllers and disks that the Solaris
operating environment supports. You need to add a new
disk_type only if you have an unsupported disk. You
can add as many disk_type definitions to the data file
as you want.

The following controller types are supported by
format (1M):

XY450 Xylogics 450 controller (SMD)

XD7053 Xylogics 7053 controller (SMD)

MD21 SCSI, but using ESDI devices (also known
as shoebox)

SCSI True SCSI (CCS or SCSI-2)

ISP-80 IPI panther controller

Note: The disk_type and partition definition entries
must have “ctlr = MD21” for scsi disk devices for 4.1.1
release. But for 4.1.2, 4.1.3 and 5.x releases, the entries should
say “ctlr = SCSI.”

The keyword itself is assigned the name of the disk type.
This name appears in the disk’s label and is used to identify
the disk type whenever format (1M) is run. Enclose the
name in double quotes to preserve any white space in the
name.

Below are lists of identifiers for supported controllers. Note
that an asterisk (’*’) indicates the identifier is mandatory for
that controller – it is not part of the keyword name.

The following identifiers are assigned values in all
disk_type definitions:

acyl* alternate cylinders

asect alternate sectors per track

atrks alternate tracks

fmt_time formatting time per cylinder

122 SunOS 5.8 Last modified 4 Apr 1994

File Formats format.dat(4)

ncyl* number of logical cylinders

nhead* number of logical heads

nsect* number of logical sectors per
track

pcyl* number of physical cylinders

phead number of physical heads

psect number of physical sectors
per track

rpm* drive RPM

These identifiers are for SCSI and MD-21 Controllers

read_retries page 1 byte 3 (read retries)

write_retries page 1 byte 8 (write retries)

cyl_skew page 3 bytes 18-19 (cylinder skew)

trk_skew page 3 bytes 16-17 (track skew)

trks_zone page 3 bytes 2-3 (tracks per zone)

cache page 38 byte 2 (cache parameter)

prefetch page 38 byte 3 (prefetch parameter)

max_prefetch page 38 byte 4 (minimum prefetch)

min_prefetch page 38 byte 6 (maximum prefetch)

Note: The Page 38 values are device-specific. Refer the user
to the particular disk’s manual for these values.

For SCSI disks, the following geometry specifiers may cause
a mode select on the byte(s) indicated:

asect page 3 bytes 4-5 (alternate sectors per
zone)

atrks page 3 bytes 8-9 (alt. tracks per logical
unit)

phead page 4 byte 5 (number of heads)

psect page 3 bytes 10-11 (sectors per track)

Last modified 4 Apr 1994 SunOS 5.8 123

format.dat(4) File Formats

And these identifiers are for SMD Controllers Only

bps* bytes per sector (SMD)

bpt* bytes per track (SMD)

Note: under SunOS 5.x, bpt is only required for SMD disks.
Under SunOS 4.x, bpt was required for all disk types, even
though it was only used for SMD disks.

And this identifier is for XY450 SMD Controllers Only

drive_type* drive type (SMD) (just call this "xy450
drive type")

partition Defines a partition table for a specific disk type. The
partition table contains the partitioning information, plus a
name that lets you refer to it in format (1M). The default
data file contains default partition definitions for several
kinds of disk drives. Add a partition definition if you
repartitioned any of the disks on your system. Add as many
partition definitions to the data file as you need.

Partition naming conventions differ in SunOS 4.x and in
SunOS 5.x.

4.x: the partitions are named as a, b, c , d, e, f , g, h.

5.x: the partitions are referred to by numbers 0, 1, 2, 3,
4, 5, 6, 7.

EXAMPLES EXAMPLE 1 A sample disk_type and partition .

Following is a sample disk_type and partition definition in format.dat
file for SUN0535 disk device.

disk_type = "SUN0535" \
: ctlr = SCSI : fmt_time = 4 \
: ncyl = 1866 : acyl = 2 : pcyl = 2500 : nhead = 7 : nsect = 80 \
: rpm = 5400

partition = "SUN0535" \
: disk = "SUN0535" : ctlr = SCSI \

: 0 = 0, 64400 : 1 = 115, 103600 : 2 = 0, 1044960 : 6 = 300, 876960

FILES /etc/format.dat default data file if format −x is not
specified, nor is there a format.dat
file in the current directory.

124 SunOS 5.8 Last modified 4 Apr 1994

File Formats format.dat(4)

SEE ALSO format (1M) System Administration Guide, Volume 1

Last modified 4 Apr 1994 SunOS 5.8 125

fspec(4) File Formats

NAME fspec – format specification in text files

DESCRIPTION It is sometimes convenient to maintain text files on the system with non-standard
tabs, (tabs that are not set at every eighth column). Such files must generally
be converted to a standard format, frequently by replacing all tabs with
the appropriate number of spaces, before they can be processed by system
commands. A format specification occurring in the first line of a text file specifies
how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks
and surrounded by the brackets <: and :> . Each parameter consists of a
keyletter, possibly followed immediately by a value. The following parameters
are recognized:
t tabs The t parameter specifies the tab settings for the file. The

value of tabs must be one of the following:

� A list of column numbers separated by commas,
indicating tabs set at the specified columns.

� A ’−’ followed immediately by an integer n, indicating
tabs at intervals of n columns.

� A ’−’ followed by the name of a “canned” tab
specification.

Standard tabs are specified by t −8, or equivalently,
t1,9,17,25, etc. The canned tabs that are recognized are
defined by the tabs (1) command.

ssize The s parameter specifies a maximum line size. The value
of size must be an integer. Size checking is performed
after tabs have been expanded, but before the margin is
prepended.

mmargin The mparameter specifies a number of spaces to be
prepended to each line. The value of margin must be an
integer.

d The d parameter takes no value. Its presence indicates that
the line containing the format specification is to be deleted
from the converted file.

e The e parameter takes no value. Its presence indicates that
the current format is to prevail only until another format
specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t −8 and m0.
If the s parameter is not specified, no size checking is performed. If the first
line of a file does not contain a format specification, the above defaults are

126 SunOS 5.8 Last modified 3 Jul 1990

File Formats fspec(4)

assumed for the entire file. The following is an example of a line containing a
format specification:

* <:t5,10,15 s72:> *

If a format specification can be disguised as a comment, it is not necessary to
code the d parameter.

SEE ALSO ed(1), newform (1), tabs (1)

Last modified 3 Jul 1990 SunOS 5.8 127

fstypes(4) File Formats

NAME fstypes – file that registers distributed file system packages

DESCRIPTION fstypes resides in directory /etc/dfs and lists distributed file system utilities
packages installed on the system. For each installed distributed file system type,
there is a line that begins with the file system type name (for example, “nfs”),
followed by white space and descriptive text.

The file system indicated in the first line of the file is the default file system;
when Distributed File System (DFS) Administration commands are entered
without the option −F fstypes, the system takes the file system type from the
first line of the fstypes file.

The default file system can be changed by editing the fstypes file with any
supported text editor.

SEE ALSO dfmounts (1M), dfshares (1M), share (1M), shareall (1M), unshare (1M)

128 SunOS 5.8 Last modified 18 Dec 1991

File Formats fs_ufs(4)

NAME fs_ufs, inode_ufs, inode – format of a ufs file system volume

SYNOPSIS #include <sys/param.h>

#include <sys/types.h>

#include <sys/fs/ufs_fs.h>

#include <sys/fs/ufs_inode.h>

DESCRIPTION Standard UFS file system storage volumes have a common format for certain
vital information. Every volume is divided into a certain number of blocks. The
block size is a parameter of the file system. Sectors 0 to 15 contain primary and
secondary bootstrapping programs.

The actual file system begins at sector 16 with the super-block. The layout of the
super-block is defined by the header <sys/fs/ufs_fs.h> .

Each disk drive contains some number of file systems. A file system consists of a
number of cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, and by the information in the
cylinder group blocks. The super-block is critical data and is replicated before
each cylinder group block to protect against catastrophic loss. This is done at
file system creation time and the critical super-block data does not change, so
the copies need not be referenced.

fs_clean fs_clean indicates the state of the file system. The FSCLEANstate indicates
an undamaged, cleanly unmounted file system. The FSACTIVE state indicates
a mounted file system that has been updated. The FSSTABLEstate indicates
an idle mounted file system. The FSFIX state indicates that this fs is mounted,
contains inconsistent file system data and is being repaired by fsck . The FSBAD
state indicates that this file system contains inconsistent file system data. It is not
necessary to run fsck on any unmounted file systems with a state of FSCLEAN
or FSSTABLE. mount (2) will return ENOSPCif a UFS file system with a state of
FSACTIVE is being mounted for read-write.

To provide additional safeguard, fs_clean could be trusted only if fs_state
contains a value equal to FSOKAY- fs_time , where FSOKAYis a constant
integer. Otherwise, fs_clean is treated as though it contains the value of
FSACTIVE .

Addresses stored in inodes are capable of addressing fragments of "blocks." File
system blocks of at most, size MAXBSIZEcan be optionally broken into 2, 4, or
8 pieces, each of which is addressable; these pieces may be DEV_BSIZE or
some multiple of a DEV_BSIZE unit.

Large files consist exclusively of large data blocks. To avoid undue wasted disk
space, the last data block of a small file is allocated only as many fragments of a
large block as are necessary. The file system format retains only a single pointer

Last modified 17 Nov 1994 SunOS 5.8 129

fs_ufs(4) File Formats

to such a fragment, which is a piece of a single large block that has been divided.
The size of such a fragment is determinable from information in the inode, using
the blksize(fs, ip, lbn) macro.

The file system records space availability at the fragment level; aligned
fragments are examined to determine block availability.

The root inode is the root of the file system. Inode 0 cannot be used for normal
purposes and historically, bad blocks were linked to inode 1. Thus the root inode
is 2 (inode 1 is no longer used for this purpose; however numerous dump tapes
make this assumption, so we are stuck with it). The lost+found directory is given
the next available inode when it is initially created by mkfs (1M) .

fs_minfree fs_minfree gives the minimum acceptable percentage of file system blocks
which may be free. If the freelist drops below this level only the super-user may
continue to allocate blocks. fs_minfree may be set to 0 if no reserve of free
blocks is deemed necessary, however severe performance degradations will
be observed if the file system is run at greater than 90% full; thus the default
value of fs_minfree is 10%.

Empirically the best trade-off between block fragmentation and overall disk
utilization at a loading of 90% comes with a fragmentation of 8; thus the default
fragment size is an eighth of the block size.

fs_optim fs_optim specifies whether the file system should try to minimize the
time spent allocating blocks, or if it should attempt to minimize the space
fragmentation on the disk. If the value of fs_minfree is less than 10%,
then the file system defaults to optimizing for space to avoid running out of
full sized blocks. If the value of fs_minfree is greater than or equal to 10%,
fragmentation is unlikely to be problematical, and the file system defaults to
optimizing for time.

Cylinder group related limits : Each cylinder keeps track of the availability of
blocks at different rotational positions, so that sequential blocks can be laid
out with minimum rotational latency. fs_nrpos is the number of rotational
positions which are distinguished. With the default fs_nrpos of 8, the
resolution of the summary information is 2ms for a typical 3600 rpm drive.

fs_rotdelay fs_rotdelay gives the minimum number of milliseconds to initiate another
disk transfer on the same cylinder. It is used in determining the rotationally
optimal layout for disk blocks within a file; the default value for fs_rotdelay
varies from drive to drive (see tunefs (1M)).

fs_maxcontig fs_maxcontig gives the maximum number of blocks, belonging to one file,
that will be allocated contiguously before inserting a rotational delay.

130 SunOS 5.8 Last modified 17 Nov 1994

File Formats fs_ufs(4)

Each file system has a statically allocated number of inodes. An inode is
allocated for each NBPI bytes of disk space. The inode allocation strategy
is extremely conservative.

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is
possible to create files of size 2^32 with only two levels of indirection. MINBSIZE
must be large enough to hold a cylinder group block, thus changes to (struct
cg) must keep its size within MINBSIZE . Note: super-blocks are never more
than size SBSIZE .

The path name on which the file system is mounted is maintained in fs_fsmnt
. MAXMNTLENdefines the amount of space allocated in the super-block for
this name.

The limit on the amount of summary information per file system is defined
by MAXCSBUFS. It is currently parameterized for a maximum of two million
cylinders.

Per cylinder group information is summarized in blocks allocated from the first
cylinder group’s data blocks. These blocks are read in from fs_csaddr (size
fs_cssize) in addition to the super-block.

Note: sizeof (struct csum) must be a power of two in order for the fs_cs
macro to work.

The inode is the focus of all file activity in the file system. There is a unique inode
allocated for each active file, each current directory, each mounted-on file, text
file, and the root. An inode is "named" by its device/i-number pair. For further
information, see the header <sys/fs/ufs_inode.h> .

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Stability Level Unstable

SEE ALSO fsck_ufs (1M) , mkfs_ufs (1M) , tunefs (1M) , mount (2) , attributes (5)

Last modified 17 Nov 1994 SunOS 5.8 131

ftpusers(4) File Formats

NAME ftpusers – file listing users to be disallowed ftp login privileges

SYNOPSIS /etc/ftpusers

DESCRIPTION The /etc/ftpusers is an ASCII file that lists users for whom ftp login
privileges are disallowed. Each ftpuser entry is a single line of the form:

name

where name is the user’s login name.

The ftp server, in.ftpd (1M), reads the ftpusers file. If the login name of the
user matches one of the entries listed, it rejects the login session and sends the
Login incorrect and Login failed error messages.

The ftpusers file has the following default configuration entries:

root
daemon
bin
sys
adm
lp
uccp
nuucp
listen
nobody
noaccess
nobody4

These entries match the default instantiated entries from passwd (4). The list of
default entries typically contains the superuser root and other administrative
and system application identities.

The root entry is included in /etc/ftpusers as a security measure since the
default policy is to disallow remote logins for this identity. This policy is also set
in the the default value of the CONSOLEentry in the /etc/default/login
file. See login (1). If you allow root login privileges by deleting the root
entry in /etc/ftpusers , you should also should modify the security policy
in /etc/default/login to reflect the site security policy for remote login
access by root .

Other default entries are administrative identities that are typically assumed by
system applications but never used for local or remote login, for example sys
and nobody . Since these entries do not have a valid password field instantiated
in shadow (4), no login can be performed.

132 SunOS 5.8 Last modified 8 Dec 1999

File Formats ftpusers(4)

If a site adds similar administrative or system application identities in passwd (4)
and shadow (4), for example, majordomo , the site should consider including
them in /etc/ftpusers for a consistent security policy.

FILES /etc/ftpusers

/etc/default/login

/etc/passwd

/etc/shadow

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

SEE ALSO login (1), in.ftpd (1M), passwd (4), shadow (4), attributes (5), environ (5)

Last modified 8 Dec 1999 SunOS 5.8 133

geniconvtbl(4) File Formats

NAME geniconvtbl – geniconvtbl input file format

DESCRIPTION An input file to geniconvtbl is an ASCII text file that contains an iconv code
conversion definition from one codeset to another codeset.

The geniconvtbl utility accepts the code conversion definition file(s) and
writes code conversion binary table file(s) that can be used in iconv (1) and
iconv (3C) to support user-defined code conversions. See iconv (1) and
iconv (3C)for more detail on the iconv code conversion and geniconvtbl (1)
for more detail on the utility.

The Lexical
Conventions

The following lexical conventions are used in the iconv code conversion
definition:
CONVERSION_NAME A string of characters representing the name

of the iconv code conversion. The iconv code
conversion name should start with one or
more printable ASCII characters followed by a
percentage character ’%’ followed by another
one or more of printable ASCII characters.
Examples: ISO8859-1%ASCII , 646%eucJP,
CP_939%ASCII .

NAME A string of characters starts with any one of the
ASCII alphabet characters or the underscore
character, ’_’, followed by one or more ASCII
alphanumeric characters and underscore
character, ’_’. Examples: _a1 , ABC_codeset , K1.

HEXADECIMAL A hexadecimal number. The hexadecimal
representation consists of an escape character,
’0’ followed by the constant ’x ’ or ’X’ and one or
more hexadecimal digits. Examples: 0x0 , 0x1 ,
0x1a , 0X1A, 0x1B3 .

DECIMAL A decimal number, represented by one or more
decimal digits. Examples: 0, 123 , 2165 .

Each comment starts with ’// ’ ends at the end of the line.

The following keywords are reserved:

automatic between binary

break condition default

dense direction discard

else error escapeseq

134 SunOS 5.8 Last modified 29 Oct 1999

File Formats geniconvtbl(4)

false if index

init input inputsize

map maptype no_change_copy

operation output output_byte_length

outputsize printchr printhd

printint reset return

true

Additionally, the following symbols are also reserved as tokens:

{ } [] () ; , ...

The precedence and
associativity

The following table shows the precedence and associativity of the operators from
lower precedence at the top to higher precedence at the bottom of the table
allowed in the iconv code conversion definition:

Operator (Symbol) Associativity
--
Assignment (=) Right
--
Logical OR (||) Left
--
Logical AND (&&) Left
--
Bitwise OR (|) Left
--
Exclusive OR (^) Left
--
Bitwise AND (&) Left
--
Equal-to (= =), Left

Inequality (!=)
--
Less-than (<), Left

Less-than-or-equal-to (<=),
Greater-than (>),
Greater-than-or-equal-to (>=)

--
Left-shift (<<), Left

Right-shift (>>)
(continued)

Last modified 29 Oct 1999 SunOS 5.8 135

geniconvtbl(4) File Formats

(Continuation)

--
Addition (+), Left

Subtraction (-)
--
Multiplication (*), Left

Division (/),
Remainder (%)

Logical negation (!), Right

Bitwise complement (~),
Unary minus (-)

The Syntax Each iconv code conversion definition starts with CONVERSION_NAMEfollowed
by one or more semi-colon separated code conversion definition elements:

// a US-ASCII to ISO8859-1 iconv code conversion example:
US-ASCII%ISO8859-1 {

// one or more code conversion definition elements here.

:
:

}

Each code conversion definition element can be any one of the following
elements:

direction
condition
operation
map

To have a meaningful code conversion, there should be at least one direction,
operation, or map element in the iconv code conversion definition.

The direction element contains one or more semi-colon separated
condition-action pairs that direct the code conversion:

direction For_US-ASCII_2_ISO8859-1 {

// one or more condition-action pairs here.
:

136 SunOS 5.8 Last modified 29 Oct 1999

File Formats geniconvtbl(4)

:

}

Each condition-action pair contains a conditional code conversion that consists
of a condition element and an action element.

condition action

If the pre-defined condition is met, the corresponding action is executed. If
there is no pre-defined condition met, iconv (3C) will return -1 with errno set
to EILSEQ. The condition can be a condition element, a name to a pre-defined
condition element, or a condition literal value, true. The ’true’ condition literal
value always yields success and thus the corresponding action is always
executed. The action also can be an action element or a name to a pre-defined
action element.

The condition element specifies one or more condition expression elements.
Since each condition element can have a name and also can exist stand-alone, a
pre-defined condition element can be referenced by the name at any action pairs
later. To be used in that way, the corresponding condition element should be
defined beforehand:

condition For_US-ASCII_2_ISO8859-1 {

// one or more condition expression elements here.
:
:

}

The name of the condition element in the above example is
For_US-ASCII_2_ISO8859-1 . Each condition element can have one or more
condition expression elements. If there are more than one condition expression
elements, the condition expression elements are checked from top to bottom to
see if any one of the condition expression elements will yield a true. Any one of
the following can be a condition expression element:

between
escapeseq
expression

Last modified 29 Oct 1999 SunOS 5.8 137

geniconvtbl(4) File Formats

The between condition expression element defines one or more comma-separated
ranges:

between 0x0...0x1f, 0x7f...0x9f ;
between 0xa1a1...0xfefe ;

In the first expression in the example above, the covered ranges are 0x0 to 0x1f
and 0x7f to 0x9f inclusively. In the second expression, the covered range is
the range whose first byte is 0xa1 to 0xfe and whose second byte is between
0xa1 to 0xfe . This means that the range is defined by each byte. In this case,
the sequence 0xa280 does not meet the range.

The escapeseq condition expression element defines an equal-to condition for
one or more comma-separated escape sequence designators:

// ESC $) C sequence:
escapeseq 0x1b242943;

// ESC $) C sequence or ShiftOut (SO) control character code, 0x0e:
escapeseq 0x1b242943, 0x0e;

The expression can be any one of the following and can be surrounded by a
pair of parentheses, ’(’ and ’)’:

// HEXADECIMAL:
0xa1a1

// DECIMAL
12

// A boolean value, true:
true

// A boolean value, false:
false

// Addition expression:
1 + 2

// Subtraction expression:
10 - 3

// Multiplication expression:
0x20 * 10

// Division expression:
20 / 10

// Remainder expression:
17 % 3

138 SunOS 5.8 Last modified 29 Oct 1999

File Formats geniconvtbl(4)

// Left-shift expression:
1 << 4

// Right-shift expression:
0xa1 >> 2

// Bitwise OR expression:
0x2121 | 0x8080

// Exclusive OR expression:
0xa1a1 ^ 0x8080

// Bitwise AND expression:
0xa1 & 0x80

// Equal-to expression:
0x10 == 16

// Inequality expression:
0x10 != 10

// Less-than expression:
0x20 < 25

// Less-than-or-equal-to expression:
10 <= 0x10

// Bigger-than expression:
0x10 > 12

// Bigger-than-or-equal-to expression:
0x10 >= 0xa

// Logical OR expression:
0x10 || false

// Logical AND expression:
0x10 && false

// Logical negation expression:
! false

// Bitwise complement expression:
~0

// Unary minus expression:
-123

There is a single type available in this expression: integer. The boolean values
are two special cases of integer values. The ’true’ boolean value’s integer value
is 1 and the ’false’ boolean value’s integer value is 0. Also, any integer value
other than 0 is a true boolean value. Consequently, the integer value 0 is the

Last modified 29 Oct 1999 SunOS 5.8 139

geniconvtbl(4) File Formats

false boolean value. Any boolean expression yields integer value 1 for true and
integer value 0 for false as the result.

Any literal value shown at the above expression examples as operands, that is,
DECIMAL, HEXADECIMAL, and boolean values, can be replaced with another
expression. There are a few other special operands that you can use as well in the
expressions: ’input ’, ’inputsize ’, ’outputsize ’, and variables. input is a
keyword pointing to the current input buffer. inputsize is a keyword pointing
to the current input buffer size in bytes. outputsize is a keyword pointing to
the current output buffer size in bytes. The NAME lexical convention is used to
name a variable. The initial value of a variable is 0. The following expressions
are allowed with the special operands:

// Pointer to the third byte value of the current input buffer:
input[2]

// Equal-to expression with the ’input’:
input == 0x8020

// Alternative way to write the above expression:
0x8020 == input

// The size of the current input buffer size:
inputsize

// The size of the current output buffer size:
outputsize

// A variable:
saved_second_byte

// Assignment expression with the variable:
saved_second_byte = input[1]

The input keyword without index value can be used only with the equal-to
operator, ’==’. When used in that way, the current input buffer is consecutively
compared with another operand byte by byte. An expression can be another
operand. If the input keyword is used with an index value n, it is a pointer to
the (n+1)th byte from the beginning of the current input buffer. An expression
can be the index. Only a variable can be placed on the left hand side of an
assignment expression.

The action element specifies an action for a condition and can be any one of the
following elements:

direction
operation

(continued)

140 SunOS 5.8 Last modified 29 Oct 1999

File Formats geniconvtbl(4)

(Continuation)

map

The operation element specifies one or more operation expression elements:

operation For_US-ASCII_2_ISO8859-1 {

// one or more operation expression element definitions here.
:
:

}

If the name of the operation element, in the case of the above example, For_US
-ASCII_2_ISO8859-1 , is either init or reset , it defines the initial operation
and the reset operation of the iconv code conversion:

// The initial operation element:
operation init {

// one or more operation expression element definitions here.
:
:

}

// The reset operation element:
operation reset {

// one or more operation expression element definitions here.
:
:

}

The initial operation element defines the operations that need to be performed
in the beginning of the iconv code conversion. The reset operation element
defines the operations that need to be performed when a user of the iconv(3)
function requests a state reset of the iconv code conversion. For more detail on
the state reset, refer to iconv (3C).

The operation expression can be any one of the following three different
expressions and each operation expression should be separated by an ending
semicolon:

Last modified 29 Oct 1999 SunOS 5.8 141

geniconvtbl(4) File Formats

if-else operation expression
output operation expression
control operation expression

The if-else operation expression makes a selection depend on the boolean
expression result. If the boolean expression result is true, the true task that
follows the ’if’ is executed. If the boolean expression yields false and if a false
task is supplied, the false task that follows the ’else’ is executed. There are three
different kinds of if-else operation expressions:

// The if-else operation expression with only true task:
if (expression) {

// one or more operation expression element definitions here.
:
:

}

// The if-else operation expression with both true and false
// tasks:
if (expression) {

// one or more operation expression element definitions here.
:
:

} else {

// one or more operation expression element definitions here.
:
:

}

// The if-else operation expression with true task and
// another if-else operation expression as the false task:
if (expression) {

// one or more operation expression element definitions here.
:
:

} else if (expression) {

// one or more operation expression element definitions here.
:
:

} else {

142 SunOS 5.8 Last modified 29 Oct 1999

File Formats geniconvtbl(4)

// one or more operation expression element definitions here.
:
:

}

The last if-else operation expression can have another if-else operation
expression as the false task. The other if-else operation expression can be any
one of above three if-else operation expressions.

The output operation expression saves the right hand side expression result
to the output buffer:

// Save 0x8080 at the output buffer:
output = 0x8080;

If the size of the output buffer left is smaller than the necessary output buffer
size resulting from the right hand side expression, the iconv code conversion will
stop with E2BIG errno and (size_t)-1 return value to indicate that the code
conversion needs more output buffer to complete. Any expression can be used
for the right hand side expression. The output buffer pointer will automatically
move forward appropriately once the operation is executed.

The control operation expression can be any one of the following expressions:

// Return (size_t)-1 as the return value with an EINVAL errno:
error;

// Return (size_t)-1 as the return value with an EBADF errno:
error 9;

// Discard input buffer byte operation. This discards a byte from
// the current input buffer and move the input buffer pointer to
// the 2’nd byte of the input buffer:
discard;

// Discard input buffer byte operation. This discards
// 10 bytes from the current input buffer and move the input
// buffer pointer to the 11’th byte of the input buffer:
discard 10;

// Return operation. This stops the execution of the current
// operation:
return;

// Operation execution operation. This executes the init
// operation defined and sets all variables to zero:
operation init;

Last modified 29 Oct 1999 SunOS 5.8 143

geniconvtbl(4) File Formats

// Operation execution operation. This executes the reset
// operation defined and sets all variables to zero:
operation reset;

// Operation execution operation. This executes an operation
// defined and named ’ISO8859_1_to_ISO8859_2’:
operation ISO8859_1_to_ISO8859_2;

// Direction operation. This executes a direction defined and
// named ’ISO8859_1_to_KOI8_R:
direction ISO8859_1_to_KOI8_R;

// Map execution operation. This executes a mapping defined
// and named ’Map_ISO8859_1_to_US_ASCII’:
map Map_ISO8859_1_to_US_ASCII;

// Map execution operation. This executes a mapping defined
// and named ’Map_ISO8859_1_to_US_ASCII’ after discarding
// 10 input buffer bytes:
map Map_ISO8859_1_to_US_ASCII 10;

In case of init and reset operations, if there is no pre-defined init and/or reset
operations in the iconv code conversions, only system-defined internal init and
reset operations will be executed. The execution of the system-defined internal
init and reset operations will clear the system-maintained internal state.

There are three special operators that can be used in the operation:

printchr expression;
printhd expression;
printint expression;

The above three operators will print out the given expression as a character, a
hexadecimal number, and a decimal number, respectively, at the standard error
stream. These three operators are for debugging purposes only and should be
removed from the final version of the iconv code conversion definition file.

In addition to the above operations, any valid expression separated by a
semi-colon can be an operation, including an empty operation, denoted by
a semi-colon alone as an operation.

The map element specifies a direct code conversion mapping by using one or
more map pairs. When used, usually many map pairs are used to represent
an iconv code conversion definition:

map For_US-ASCII_2_ISO8859-1 {

144 SunOS 5.8 Last modified 29 Oct 1999

File Formats geniconvtbl(4)

// one or more map pairs here
:
:

}

Each map element also can have one or two comma-separated map attribute
elements like the following examples:

// Map with densely encoded mapping table map type:
map maptype = dense {

// one or more map pairs here
:
:

}

// Map with hash mapping table map type with hash factor 10.
// Only hash mapping table map type can have hash factor. If
// the hash factor is specified with other map types, it will be
// ignored.
map maptype = hash : 10 {

// one or more map pairs here.
:
:

}

// Map with binary search tree based mapping table map type:
map maptype = binary {

// one more more map pairs here.
:
:

}

// Map with index table based mapping table map type:
map maptype = index {

// one or more map pairs here.
:
:

}

// Map with automatic mapping table map type. If defined,
// system will assign the best possible map type.
map maptype = automatic {

// one or more map pairs here.
:

Last modified 29 Oct 1999 SunOS 5.8 145

geniconvtbl(4) File Formats

:

}

// Map with output_byte_length limit set to 2.
map output_byte_length = 2 {

// one or more map pairs here.
:
:

}

// Map with densely encoded mapping table map type and
// output_bute_length limit set to 2:
map maptype = dense, output_byte_length = 2 {

// one or more map pairs here.
:
:

}

If no maptype is defined, automatic is assumed. If no output_byte_length is
defined, the system figures out the maximum possible output byte length for
the mapping by scanning all the possible output values in the mappings. If the
actual output byte length scanned is bigger than the defined output_byte_length,
the geniconvtbl utility issues an error and stops generating the code
conversion binary table(s).

The following are allowed map pairs:

// Single mapping. This maps an input character denoted by
// the code value 0x20 to an output character value 0x21:
0x20 0x21

// Multiple mapping. This maps 128 input characters to 128
// output characters. In this mapping, 0x0 maps to 0x10, 0x1 maps
// to 0x11, 0x2 maps to 0x12, ..., and, 0x7f maps to 0x8f:
0x0...0x7f 0x10

// Default mapping. If specified, every undefined input character
// in this mapping will be converted to a specified character
// (in the following case, a character with code value of 0x3f):
default 0x3f;

// Default mapping. If specified, every undefined input character
// in this mapping will not be converted but directly copied to
// the output buffer:
default no_change_copy;

// Error mapping. If specified, during the code conversion,

146 SunOS 5.8 Last modified 29 Oct 1999

File Formats geniconvtbl(4)

// if input buffer contains the byte value, in this case, 0x80,
// the iconv(3) will stop and return (size_t)-1 as the return
// value with EILSEQ set to the errno:
0x80 error;

If no default mapping is specified, every undefined input character in the
mapping will be treated as an error mapping. and thus the iconv (3C) will stop
the code conversion and return (size_t)-1 as the return value with EILSEQ
set to the errno.

The syntax of the iconv code conversion definition in extended BNF is illustrated
below:

iconv_conversion_definition
: CONVERSION_NAME ’{’ definition_element_list ’}’
;

definition_element_list
: definition_element ’;’
| definition_element_list definition_element ’;’
;

definition_element
: direction
| condition
| operation
| map
;

direction
: ’direction’ NAME ’{’ direction_unit_list ’}’
| ’direction’ ’{’ direction_unit_list ’}’
;

direction_unit_list
: direction_unit
| direction_unit_list direction_unit
;

direction_unit
: condition action ’;’
| condition NAME ’;’
| NAME action ’;’
| NAME NAME ’;’
| ’true’ action ’;’
| ’true’ NAME ’;’
;

action
: direction
| map
| operation
;

Last modified 29 Oct 1999 SunOS 5.8 147

geniconvtbl(4) File Formats

condition
: ’condition’ NAME ’{’ condition_list ’}’
| ’condition’ ’{’ condition_list ’}’
;

condition_list
: condition_expr ’;’
| condition_list condition_expr ’;’
;

condition_expr
: ’between’ range_list
| expr
| ’escapeseq’ escseq_list ’;’
;

range_list
: range_pair
| range_list ’,’ range_pair
;

range_pair
: HEXADECIMAL ’...’ HEXADECIMAL
;

escseq_list
: escseq
| escseq_list ’,’ escseq
;

escseq : HEXADECIMAL
;

map : ’map’ NAME ’{’ map_list ’}’
| ’map’ ’{’ map_list ’}’
| ’map’ NAME map_attribute ’{’ map_list ’}’
| ’map’ map_attribute ’{’ map_list ’}’
;

map_attribute
: map_type ’,’ ’output_byte_length’ ’=’ DECIMAL
| map_type
| ’output_byte_length’ ’=’ DECIMAL ’,’ map_type
| ’output_byte_length’ ’=’ DECIMAL
;

map_type: ’maptype’ ’=’ map_type_name : DECIMAL
| ’maptype’ ’=’ map_type_name
;

map_type_name
: ’automatic’
| ’index’
| ’hash’

148 SunOS 5.8 Last modified 29 Oct 1999

File Formats geniconvtbl(4)

| ’binary’
| ’dense’
;

map_list
: map_pair
| map_list map_pair
;

map_pair
: HEXADECIMAL HEXADECIMAL
| HEXADECIMAL ’...’ HEXADECIMAL HEXADECIMAL
| ’default’ HEXADECIMAL
| ’default’ ’no_change_copy’
| HEXADECIMAL ’error’
;

operation
: ’operation’ NAME ’{’ op_list ’}’
| ’operation’ ’{’ op_list ’}’
| ’operation’ ’init’ ’{’ op_list ’}’
| ’operation’ ’reset’ ’{’ op_list ’}’
;

op_list : op_unit
| op_list op_unit
;

op_unit : ’;’
| expr ’;’
| ’error’ ’;’
| ’error’ expr ’;’
| ’discard’ ’;’
| ’discard’ expr ’;’
| ’output’ ’=’ expr ’;’
| ’direction’ NAME ’;’
| ’operation’ NAME ’;’
| ’operation’ ’init’ ’;’
| ’operation’ ’reset’ ’;’
| ’map’ NAME ’;’
| ’map’ NAME expr ’;’
| op_if_else
| ’return’ ’;’
| ’printchr’ expr ’;’
| ’printhd’ expr ’;’
| ’printint’ expr ’;’
;

op_if_else
: ’if’ ’(’ expr ’)’ ’{’ op_list ’}’
| ’if’ ’(’ expr ’)’ ’{’ op_list ’}’ ’else’ op_if_else
| ’if’ ’(’ expr ’)’ ’{’ op_list ’}’ ’else’ ’{’ op_list ’}’
;

expr : ’(’ expr ’)’
| NAME

Last modified 29 Oct 1999 SunOS 5.8 149

geniconvtbl(4) File Formats

| HEXADECIMAL
| DECIMAL
| ’input’ ’[’ expr ’]’
| ’outputsize’
| ’inputsize’
| ’true’
| ’false’
| ’input’ ’==’ expr
| expr ’==’ ’input’
| ’!’ expr
| ’~’ expr
| ’-’ expr
| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| expr ’%’ expr
| expr ’<<’ expr
| expr ’>>’ expr
| expr ’|’ expr
| expr ’^’ expr
| expr ’&’ expr
| expr ’==’ expr
| expr ’!=’ expr
| expr ’>’ expr
| expr ’>=’ expr
| expr ’<’ expr
| expr ’<=’ expr
| NAME ’=’ expr
| expr ’||’ expr
| expr ’&&’ expr
;

EXAMPLES EXAMPLE 1 Code conversion from ISO8859-1 to ISO646

ISO8859-1%ISO646 {
// Use dense-encoded internal data structure.
map maptype = dense {

default 0x3f
0x0...0x7f 0x0

};
}

EXAMPLE 2 Code conversion from eucJP to ISO-2022-JP

// Iconv code conversion from eucJP to ISO-2022-JP

#include <sys/errno.h>

eucJP%ISO-2022-JP {
operation init {

codesetnum = 0;
};

150 SunOS 5.8 Last modified 29 Oct 1999

File Formats geniconvtbl(4)

operation reset {
if (codesetnum != 0) {

// Emit state reset sequence, ESC (J, for
// ISO-2022-JP.
output = 0x1b284a;

}
operation init;

};

direction {
condition { // JIS X 0201 Latin (ASCII)

between 0x00...0x7f;
} operation {

if (codesetnum != 0) {
// We will emit four bytes.
if (outputsize <= 3) {

error E2BIG;
}
// Emit state reset sequence, ESC (J.
output = 0x1b284a;
codesetnum = 0;

} else {
if (outputsize <= 0) {

error E2BIG;
}

}
output = input[0];

// Move input buffer pointer one byte.
discard;

};

condition { // JIS X 0208
between 0xa1a1...0xfefe;

} operation {
if (codesetnum != 1) {

if (outputsize <= 4) {
error E2BIG;

}
// Emit JIS X 0208 sequence, ESC $ B.
output = 0x1b2442;
codesetnum = 1;

} else {
if (outputsize <= 1) {

error E2BIG;
}

}
output = (input[0] & 0x7f);
output = (input[1] & 0x7f);

// Move input buffer pointer two bytes.
discard 2;

};

condition { // JIS X 0201 Kana

Last modified 29 Oct 1999 SunOS 5.8 151

geniconvtbl(4) File Formats

between 0x8ea1...0x8edf;
} operation {

if (codesetnum != 2) {
if (outputsize <= 3) {

error E2BIG;
}
// Emit JIS X 0201 Kana sequence,
// ESC (I.
output = 0x1b2849;
codesetnum = 2;

} else {
if (outputsize <= 0) {

error E2BIG;
}

}
output = (input[1] & 127);

// Move input buffer pointer two bytes.
discard 2;

};

condition { // JIS X 0212
between 0x8fa1a1...0x8ffefe;

} operation {
if (codesetnum != 3) {

if (outputsize <= 5) {
error E2BIG;

}
// Emit JIS X 0212 sequence, ESC $ (D.

output = 0x1b242844;
codesetnum = 3;

} else {
if (outputsize <= 1) {

error E2BIG;
}

}
output = (input[1] & 127);
output = (input[2] & 127);
discard 3;

};

true operation { // error
error EILSEQ;

};
};

}

FILES /usr/bin/geniconvtbl
the utility geniconvtbl

/usr/lib/iconv/geniconvtbl/binarytables/*.bt
conversion binary tables

152 SunOS 5.8 Last modified 29 Oct 1999

File Formats geniconvtbl(4)

/usr/lib/iconv/geniconvtbl/srcs/*
conversion source files for user reference

SEE ALSO cpp (1), geniconvtbl (1), iconv (1), iconv (3C), iconv-close (3C),
iconv-open (3C), attributes (5), environ (5)

International Language Environments Guide

NOTES The maximum length of HEXADECIMAL and DECIMAL digit length is 128 .
The maximum length of a variable is 255 . The maximum nest level is 16 .

Last modified 29 Oct 1999 SunOS 5.8 153

group(4) File Formats

NAME group – group file

DESCRIPTION The group file is a local source of group information. The group file can
be used in conjunction with other group sources, including the NIS maps
group.byname and group.bygid and the NIS+ table group . Programs use
the getgrnam (3C) routines to access this information.

The group file contains a one-line entry for each group recognized by the
system, of the form:

groupname:password: gid:user-list

where
groupname The name of the group.

gid The group’s unique numerical ID (GID) within the system.

user-list A comma-separated list of users allowed in the group.

The maximum value of the gid field is 2137483647. To maximize interoperability
and compatibility, administrators are recommended to assign groups using the
range of GIDs below 60000 where possible.

If the password field is empty, no password is demanded. During user
identification and authentication, the supplementary group access list is
initialized sequentially from information in this file. If a user is in more groups
than the system is configured for, {NGROUPS_MAX}, a warning will be given
and subsequent group specifications will be ignored.

Malformed entries cause routines that read this file to halt, in which case group
assignments specified further along are never made. To prevent this from
happening, use grpck (1B) to check the /etc/group database from time to time.

Previous releases used a group entry beginning with a ‘+’ (plus sign) or ‘−’
(minus sign) to selectively incorporate entries from NIS maps for group. If still
required, this is supported by specifying group:compat in nsswitch.conf (4).
The “compat” source may not be supported in future releases. The preferred
sources are, “files” followed by “nisplus”. This has the effect of incorporating the
entire contents of the NIS+ group table after the group file.

EXAMPLES EXAMPLE 1 Sample of a group file.

Here is a sample group file:

root::0:root
stooges:q.mJzTnu8icF.:10:larry,moe,curly

and the sample group entry from nsswitch.conf:

group: files nisplus

154 SunOS 5.8 Last modified 14 May 1998

File Formats group(4)

With these entries, the group stooges will have members larry , moe, and
curly , and all groups listed in the NIS+ group table are effectively incorporated
after the entry for stooges .

If the group file was:

root::0:root
stooges:q.mJzTnu8icF.:10:larry,moe,curly
+:

and the group entry from nsswitch.conf:

group: compat

all the groups listed in the NIS group.bygid and group.byname maps would
be effectively incorporated after the entry for stooges.

SEE ALSO groups (1), grpck (1B), newgrp (1), getgrnam (3C), initgroups (3C),
nsswitch.conf (4), unistd (3HEAD)

System Administration Guide, Volume 1

Last modified 14 May 1998 SunOS 5.8 155

holidays(4) File Formats

NAME holidays – prime/nonprime table for the accounting system

SYNOPSIS /etc/acct/holidays

DESCRIPTION The /etc/acct/holidays file describes which hours are considered prime
time and which days are holidays. Holidays and weekends are considered
non-prime time hours. /etc/acct/holidays is used by the accounting
system.

All lines beginning with an "* " are comments.

The /etc/acct/holidays file consists of two sections. The first non-comment
line defines the current year and the start time of prime and non-prime time
hours, in the form:

current_year prime_start non_prime_start

The remaining non-comment lines define the holidays in the form:

month/day company_holiday

Of these two fields, only the month/day is actually used by the accounting system
programs.

The /etc/acct/holidays file must be updated each year.

EXAMPLES EXAMPLE 1 Example of the /etc/acct/holidays file.

The following is an example of the /etc/acct/holidays file:

* Prime/Nonprime Table for the accounting system
*
* Curr Prime Non-Prime
* Year Start Start
*

1991 0830 1800
*
* only the first column (month/day) is significant.
*
* month/day Company Holiday
*

1/1 New Years Day
5/30 Memorial Day
7/4 Indep. Day
9/5 Labor Day
11/24 Thanksgiving Day
11/25 day after Thanksgiving
12/25 Christmas

156 SunOS 5.8 Last modified 28 Mar 1991

File Formats holidays(4)

12/26 day after Christmas

SEE ALSO acct (1M)

Last modified 28 Mar 1991 SunOS 5.8 157

hosts(4) File Formats

NAME hosts – host name database

SYNOPSIS /etc/inet/hosts

/etc/hosts

DESCRIPTION The hosts file is a local database that associates the names of hosts with their
Internet Protocol (IP) addresses. The hosts file can be used in conjunction with,
or instead of, other hosts databases, including the Domain Name System (DNS),
the NIS hosts map and the NIS+ hosts table. Programs use library interfaces
to access information in the hosts file.

The hosts file has one entry for each IP address of each host. If a host has
more than one IP address, it will have one entry for each, on consecutive lines.
The format of each line is:

IP-address official-host-name nicknames . . .

Items are separated by any number of SPACE and/or TAB characters. The first
item on a line is the host’s IP address. The second entry is the host’s official
name. Subsequent entries on the same line are alternative names for the same
machine, or “nicknames.” Nicknames are optional.

For a host with more than one IP address, consecutive entries for these addresses
may contain the same or differing nicknames. Different nicknames are useful
for assigning distinct names to different addresses.

A call to gethostbyname (3NSL) returns a hostent structure containing the
union of all addresses and nicknames from each line containing a matching
official name or nickname.

A ‘#’ indicates the beginning of a comment; characters up to the end of the line
are not interpreted by routines that search the file.

Network addresses are written in the conventional “decimal dot” notation
and interpreted using the inet_addr routine from the Internet address
manipulation library, inet (3SOCKET).

This interface supports host names as defined in Internet RFC 952 which states:

A “name” (Net, Host, Gateway, or Domain name) is a text string up to 24
characters drawn from the alphabet (A-Z), digits (0-9), minus sign (−), and
period (.). Note that periods are only allowed when they serve to delimit
components of “domain style names”. (See RFC 921, “Domain Name System
Implementation Schedule,” for background). No blank or space characters are
permitted as part of a name. No distinction is made between upper and lower
case. The first character must be an alpha character. The last character must not
be a minus sign or period.

158 SunOS 5.8 Last modified 21 Mar 1995

File Formats hosts(4)

Although the interface accepts host names longer than 24 characters for the host
portion (exclusive of the domain component), choosing names for hosts that
adhere to the 24 character restriction will insure maximum interoperability
on the Internet.

A host which serves as a GATEWAY should have “−GATEWAY“ or “−GW” as
part of its name. Hosts which do not serve as Internet gateways should not use
“−GATEWAY” and “−GW” as part of their names. A host which is a TAC should
have “−TAC” as the last part of its host name, if it is a DoD host. Single character
names or nicknames are not allowed.

RFC 952 has been modified by RFC 1123 to relax the restriction on the first
character being a digit.

EXAMPLES EXAMPLE 1 Example of a typical line from the hosts file.

Here is a typical line from the hosts file:

192.9.1.20 gaia # John Smith

SEE ALSO in.named (1M), gethostbyname (3NSL), inet (3SOCKET),
nsswitch.conf (4), resolv.conf (4)

NOTES /etc/inet/hosts is the official SVR4 name of the hosts file. The symbolic
link /etc/hosts exists for BSD compatibility.

Last modified 21 Mar 1995 SunOS 5.8 159

hosts.equiv(4) File Formats

NAME hosts.equiv, rhosts – trusted remote hosts and users

DESCRIPTION The /etc/hosts.equiv and .rhosts files provide the "remote
authentication" database for rlogin (1) , rsh (1) , rcp (1) , and rcmd (3SOCKET) .
The files specify remote hosts and users that are considered "trusted". Trusted
users are allowed to access the local system without supplying a password. The
library routine ruserok() (see rcmd (3SOCKET)) performs the authentication
procedure for programs by using the /etc/hosts.equiv and .rhosts files.
The /etc/hosts.equiv file applies to the entire system, while individual
users can maintain their own .rhosts files in their home directories.

These files bypass the standard password-based user authentication mechanism.
To maintain system security, care must be taken in creating and maintaining
these files.

The remote authentication procedure determines whether a user from a remote
host should be allowed to access the local system with the identity of a local user.
This procedure first checks the /etc/hosts.equiv file and then checks the
.rhosts file in the home directory of the local user who is requesting access.
Entries in these files can be of two forms. Positive entries allow access, while
negative entries deny access. The authentication succeeds when a matching
positive entry is found. The procedure fails when the first matching negative
entry is found, or if no matching entries are found in either file. The order of
entries is important. If the files contain both positive and negative entries, the
entry that appears first will prevail. The rsh (1) and rcp (1) programs fail if the
remote authentication procedure fails. The rlogin program falls back to the
standard password-based login procedure if the remote authentication fails.

Both files are formatted as a list of one-line entries. Each entry has the form:

hostname [username]

Hostnames must be the official name of the host, not one of its nicknames.

Negative entries are differentiated from positive entries by a ‘-’ character
preceding either the hostname or username field.

Positive Entries If the form:

hostname

is used, then users from the named host are trusted. That is, they may access the
system with the same user name as they have on the remote system. This form
may be used in both the /etc/hosts.equiv and .rhosts files.

If the line is in the form:

hostname username

then the named user from the named host can access the system. This form may
be used in individual .rhosts files to allow remote users to access the system

160 SunOS 5.8 Last modified 23 Jun 1997

File Formats hosts.equiv(4)

as a different local user . If this form is used in the /etc/hosts.equiv file, the
named remote user will be allowed to access the system as any local user.

netgroup (4) can be used in either the hostname or username fields to match a
number of hosts or users in one entry. The form:

+@netgroup

allows access from all hosts in the named netgroup. When used in the username
field, netgroups allow a group of remote users to access the system as a
particular local user. The form:

hostname +@netgroup

allows all of the users in the named netgroup from the named host to access the
system as the local user. The form:

+@netgroup1 +@netgroup2

allows the users in netgroup2 from the hosts in netgroup1 to access the system as
the local user.

The special character ‘+’ can be used in place of either hostname or username to
match any host or user. For example, the entry

+

will allow a user from any remote host to access the system with the same
username. The entry

+ username

will allow the named user from any remote host to access the system. The entry

hostname +

will allow any user from the named host to access the system as the local user.

Negative Entries Negative entries are preceded by a ‘-’ sign. The form:

- hostname

will disallow all access from the named host. The form:

-@netgroup

means that access is explicitly disallowed from all hosts in the named netgroup.
The form:

hostname - username

disallows access by the named user only from the named host, while the form:

+ -@netgroup

will disallow access by all of the users in the named netgroup from all hosts.

Last modified 23 Jun 1997 SunOS 5.8 161

hosts.equiv(4) File Formats

Search Sequence To help maintain system security, the /etc/hosts.equiv file is not checked
when access is being attempted for super-user. If the user attempting access
is not the super-user, /etc/hosts.equiv is searched for lines of the form
described above. Checks are made for lines in this file in the following order:

1. +

2. +@netgroup

3. -@ netgroup

4. - hostname

5. hostname

The user is granted access if a positive match occurrs. Negative entries apply
only to /etc/hosts.equiv and may be overridden by subsequent .rhosts
entries.

If no positive match occurred, the .rhosts file is then searched if the user
attempting access maintains such a file. This file is searched whether or not the
user attempting access is the super-user. As a security feature, the .rhosts file
must be owned by the user who is attempting access. Checks are made for lines
in .rhosts in the following order:

1. +

2. +@netgroup

3. -@ netgroup

4. - hostname

5. hostname

FILES /etc/hosts.equiv system trusted hosts and users

~/.rhosts user’s trusted hosts and users

SEE ALSO rcp (1) , rlogin (1) , rsh (1) , rcmd (3SOCKET) , hosts (4) , netgroup (4) ,
passwd (4)

WARNINGS Positive entries in /etc/hosts.equiv that include a username field (either an
individual named user, a netgroup, or ‘+ ’ sign) should be used with extreme
caution. Because /etc/hosts.equiv applies system-wide, these entries
allow one, or a group of, remote users to access the system as any local user .
This can be a security hole. For example, because of the search sequence, an
/etc/hosts.equiv file consisting of the entries

+
-hostxxx

162 SunOS 5.8 Last modified 23 Jun 1997

File Formats hosts.equiv(4)

will not deny access to "hostxxx".

Last modified 23 Jun 1997 SunOS 5.8 163

inetd.conf(4) File Formats

NAME inetd.conf – Internet servers database

SYNOPSIS /etc/inet/inetd.conf

/etc/inetd.conf

DESCRIPTION The inetd.conf file contains the list of servers that inetd (1M) invokes when
it receives an Internet request over a socket. Each server entry is composed
of a single line of the form:

service-name endpoint-type protocol wait-status uid server-program \
server-arguments

Fields are separated by either SPACE or TAB characters. A ‘#’ (number sign)
indicates the beginning of a comment; characters up to the end of the line are not
interpreted by routines that search this file.
service-name The name of a valid service listed in the

services file. For RPC services, the value of
the service-name field consists of the RPC service
name or program number, followed by a ’/’
(slash) and either a version number or a range of
version numbers (for example, rstatd/2-4).

endpoint-type Can be one of:

stream for a stream socket

dgram for a datagram socket

raw for a raw socket

seqpacket for a sequenced packet socket

tli for all TLI endpoints

protocol A recognized protocol listed in the file
/etc/inet/protocols . For servers capable
of supporting TCP and UDP over IPv6, the
following protocol types are also recognized:

tcp6

udp6

tcp6 and udp6 are not official protocols;
accordingly, they are not listed in the
/etc/inet/protocols file.

164 SunOS 5.8 Last modified 10 Nov 1999

File Formats inetd.conf(4)

Here the inetd program uses an AF_INET6 type
socket endpoint. These servers can also handle
incoming IPv4 client requests in addition to
IPv6 client requests.

For RPC services, the field consists of the
string rpc followed by a ’/’ (slash) and either
a ’*’ (asterisk), one or more nettypes, one or
more netids, or a combination of nettypes and
netids. Whatever the value, it is first treated as
a nettype. If it is not a valid nettype, then it is
treated as a netid. For example, rpc/* for an
RPC service using all the transports supported
by the system (the list can be found in the
/etc/netconfig file), equivalent to saying
rpc/visible rpc/ticots for an RPC service
using the Connection-Oriented Transport Service.

wait-status This field has values wait or nowait . This
entry specifies whether the server that is invoked
by inetd will take over the listening socket
associated with the service, and whether once
launched, inetd will wait for that server to
exit, if ever, before it resumes listening for new
service requests. The wait-status for datagram
servers must be set to wait , as they are always
invoked with the orginal datagram socket that
will participate in delivering the service bound to
the specified service. They do not have separate
"listening" and "accepting" sockets. Accordingly,
do not configure UDP services as nowait. This
causes a race condition by which the inetd
program selects on the socket and the server
program reads from the socket. Many server
programs will be forked, and performance will
be severely compromised. Connection-oriented
services such as TCP stream services can be
designed to be either wait or nowait status.

uid The user ID under which the server should run.
This allows servers to run with access privileges
other than those for root.

server-program Either the pathname of a server program to be
invoked by inetd to perform the requested

Last modified 10 Nov 1999 SunOS 5.8 165

inetd.conf(4) File Formats

service, or the value internal if inetd itself
provides the service.

server-arguments If a server must be invoked with command line
arguments, the entire command line (including
argument 0) must appear in this field (which
consists of all remaining words in the entry). If
the server expects inetd to pass it the address
of its peer (for compatibility with 4.2BSD
executable daemons), then the first argument to
the command should be specified as ‘%A’. No
more than 20 arguments are allowed in this field.

FILES /etc/netconfig network configuration file

/etc/inet/protocols Internet protocols

/etc/inet/services Internet network services

SEE ALSO rlogin (1), rsh (1), in.tftpd (1M), inetd (1M), services (4)

NOTES /etc/inet/inetd.conf is the official SVR4 name of the inetd.conf file.
The symbolic link /etc/inetd.conf exists for BSD compatibility.

166 SunOS 5.8 Last modified 10 Nov 1999

File Formats inet_type(4)

NAME inet_type – default Internet protocol type

SYNOPSIS /etc/default/inet_type

DESCRIPTION The inet_type file defines the default IP protocol to use. Currently this file is
only used by the ifconfig (1M) and netstat (1M) commands.

The inet_type file can contain a number of <variable>=<value> lines.
Currently, the only variable defined is DEFAULT_IP, which can be assigned a
value of IP_VERSION4, IP_VERSION6, or BOTH.

The output displayed by the ifconfig and netstat commands can be
controlled by the value of DEFAULT_IP set in inet_type file. By default, both
commands display the IPv4 and IPv6 information available on the system. The
user can choose to suppress display of IPv6 information by setting the value of
DEFAULT_IP. The following shows the possible values for DEFAULT_IP and the
resulting ifconfig and netstat output that will be displayed:
IP_VERSION4 Displays only IPv4 related information. The output

displayed is backward compatible with older versions of the
ifconfig (1M) and netstat (1M) commands.

IP_VERSION6 Displays both IPv4 and IPv6 related information for
ifconfig and netstat .

BOTH Displays both IPv4 and IPv6 related information for
ifconfig and netstat .

The command-line options to the ifconfig and netstat commands override
the effect of DEFAULT_IP as set in the inet_type file. For example, even if the
value of DEFAULT_IP is IP_VERSION4, the command

example% ifconfig -a6

will display all IPv6 interfaces.

EXAMPLES EXAMPLE 1 Suppressing IPv6 Related Output

This is what the inet_type file must contain if you want to suppress IPv6
related output:

DEFAULT_IP=IP_VERSION4

SEE ALSO ifconfig (1M), netstat (1M)

Last modified 16 Jun 1999 SunOS 5.8 167

init.d(4) File Formats

NAME init.d – initialization and termination scripts for changing init states

SYNOPSIS /etc/init.d

DESCRIPTION /etc/init.d is a directory containing initialization and termination scripts for
changing init states. These scripts are linked when appropriate to files in the
rc?.d directories, where ‘?’ is a single character corresponding to the init state.
See init (1M) for definitions of the states.

File names in rc?.d directories are of the form [SK]nn<init.d filename> ,
where S means start this job, K means kill this job, and nn is the relative sequence
number for killing or starting the job. When entering a state (init S,0,2,3,etc.) the
rc[S0-6] script executes those scripts in /etc/rc[S0-6].d that are prefixed
with K followed by those scripts prefixed with S. When executing each script in
one of the /etc/rc[S0-6] directories, the /sbin/rc[S0-6] script
passes a single argument. It passes the argument ’stop’ for scripts prefixed
with K and the argument ’start’ for scripts prefixed with S. There is no harm in
applying the same sequence number to multiple scripts. In this case the order of
execution is deterministic but unspecified.

Guidelines for selecting sequence numbers are provided in READMEfiles
located in the directory associated with that target state. For example,
/etc/rc[S0-6].d/README . Absence of a READMEfile indicates that there are
currently no established guidelines.

EXAMPLES EXAMPLE 1 Example of /sbin/rc2 .

When changing to init state 2 (multi-user mode, network resources not
exported), /sbin/rc2 is initiated by the init process. The following steps are
performed by /sbin/rc2 .

1. In the directory /etc/rc2.d are files used to stop processes that should
not be running in state 2. The filenames are prefixed with K. Each K file in
the directory is executed (by /sbin/rc2) in alpha-numeric order when the
system enters init state 2. See example below.

2. Also in the rc2.d directory are files used to start processes that should be
running in state 2. As in the Step 1, each S file is executed.

Assume the file /etc/netdaemon is a script that will initiate networking
daemons when given the argument ’start’, and will terminate the daemons
if given the argument ’stop’. It is linked to /etc/rc2.d/S68netdaemon ,
and to /etc/rc0.d/K67netdaemon . The file is executed by
/etc/rc2.d/S68netdaemon start when init state 2 is entered and by
/etc/rc0.d/S67netdaemon stop when shutting the system down.

SEE ALSO init (1M)

168 SunOS 5.8 Last modified 23 Feb 1994

File Formats init.d(4)

NOTES /sbin/rc2 has references to the obsolescent rc.d directory. These references
are for compatibility with old INSTALL scripts. New INSTALL scripts should
use the init.d directory for related executables. The same is true for the
shutdown.d directory.

Last modified 23 Feb 1994 SunOS 5.8 169

inittab(4) File Formats

NAME inittab – script for init

DESCRIPTION The file /etc/inittab controls process dispatching by init . The processes
most typically dispatched by init are daemons.

The inittab file is composed of entries that are position dependent and have
the following format:

id: rstate: action: process

Each entry is delimited by a newline; however, a backslash (\) preceding a
newline indicates a continuation of the entry. Up to 512 characters for each
entry are permitted. Comments may be inserted in the process field using the
convention for comments described in sh (1). There are no limits (other than
maximum entry size) imposed on the number of entries in the inittab file.
The entry fields are:
id

One or two characters used to uniquely identify an entry.

rstate
Define the run level in which this entry is to be processed. Run-levels
effectively correspond to a configuration of processes in the system. That
is, each process spawned by init is assigned a run level(s) in which it is
allowed to exist. The run levels are represented by a number ranging from 0
through 6. For example, if the system is in run level 1, only those entries
having a 1 in the rstate field are processed.

When init is requested to change run levels, all processes that do not
have an entry in the rstate field for the target run level are sent the warning
signal SIGTERMand allowed a 5-second grace period before being forcibly
terminated by the kill signal SIGKILL . The rstate field can define multiple
run levels for a process by selecting more than one run level in any
combination from 0 through 6. If no run level is specified, then the process
is assumed to be valid at all run levels 0 through 6.

There are three other values, a, b and c , which can appear in the rstate
field, even though they are not true run levels. Entries which have these
characters in the rstate field are processed only when an init or telinit
process requests them to be run (regardless of the current run level of the
system). See init (1M). These differ from run levels in that init can
never enter run level a, b or c . Also, a request for the execution of any
of these processes does not change the current run level. Furthermore, a
process started by an a, b or c command is not killed when init changes
levels. They are killed only if their line in inittab is marked off in the
action field, their line is deleted entirely from inittab , or init goes into
single-user state.

170 SunOS 5.8 Last modified 3 Jul 1990

File Formats inittab(4)

action
Key words in this field tell init how to treat the process specified in the
process field. The actions recognized by init are as follows:

respawn

If the process does not exist, then start the process; do not wait for its
termination (continue scanning the inittab file), and when the process
dies, restart the process. If the process currently exists, do nothing and
continue scanning the inittab file.

wait

When init enters the run level that matches the entry’s rstate, start the
process and wait for its termination. All subsequent reads of the inittab
file while init is in the same run level cause init to ignore this entry.

once

When init enters a run level that matches the entry’s rstate, start the
process, do not wait for its termination. When it dies, do not restart the
process. If init enters a new run level and the process is still running
from a previous run level change, the program is not restarted.

boot

The entry is to be processed only at init ’s boot-time read of the inittab
file. init is to start the process and not wait for its termination; when
it dies, it does not restart the process. In order for this instruction to be
meaningful, the rstate should be the default or it must match init ’s
run level at boot time. This action is useful for an initialization function
following a hardware reboot of the system.

bootwait

The entry is to be processed the first time init goes from single-user to
multi-user state after the system is booted. (If initdefault is set to 2,
the process runs right after the boot.) init starts the process, waits for its
termination and, when it dies, does not restart the process.

powerfail

Execute the process associated with this entry only when init receives a
power fail signal, SIGPWR(see signal (3C)).

powerwait

Execute the process associated with this entry only when init receives a
power fail signal, SIGPWR, and wait until it terminates before continuing
any processing of inittab .

Last modified 3 Jul 1990 SunOS 5.8 171

inittab(4) File Formats

off

If the process associated with this entry is currently running, send the
warning signal SIGTERMand wait 5 seconds before forcibly terminating
the process with the kill signal SIGKILL . If the process is nonexistent,
ignore the entry.

ondemand

This instruction is really a synonym for the respawn action. It is
functionally identical to respawn but is given a different keyword in
order to divorce its association with run levels. This instruction is used
only with the a, b or c values described in the rstate field.

initdefault

An entry with this action is scanned only when init is initially invoked.
init uses this entry to determine which run level to enter initially. It
does this by taking the highest run level specified in the rstate field and
using that as its initial state. If the rstate field is empty, this is interpreted
as 0123456 and init will enter run level 6. This will cause the system
to loop (it will go to firmware and reboot continuously). Additionally, if
init does not find an initdefault entry in inittab , it requests an
initial run level from the user at reboot time.

sysinit

Entries of this type are executed before init tries to access the console
(that is, before the Console Login: prompt). It is expected that this
entry will be used only to initialize devices that init might try to ask
the run level question. These entries are executed and init waits for
their completion before continuing.

process
Specify a command to be executed. The entire process field is prefixed
with exec and passed to a forked sh as sh −c ’exec command ’. For this
reason, any legal sh syntax can appear in the process field.

SEE ALSO sh (1), who(1), init (1M), ttymon (1M), exec (2), open (2), signal (3C)

172 SunOS 5.8 Last modified 3 Jul 1990

File Formats ipnodes(4)

NAME ipnodes – local database associating names of nodes with IP addresses

SYNOPSIS /etc/inet/ipnodes

DESCRIPTION The ipnodes file is a local database that associates the names of nodes with
their Internet Protocol (IP) addresses. IP addresses can be either an IPv4 or an
IPv6 address. The ipnodes file can be used in conjunction with, or instead of,
other ipnodes databases, including the Domain Name System (DNS), the NIS
ipnodes map, and the NIS+ ipnodes table. Programs use library interfaces to
access information in the ipnodes file.

The ipnodes file has one entry for each IP address of each node. If a node has
more than one IP address, it will have one entry for each, on consecutive lines.
The format of each line is:

IP-address official-node-name nicknames...

Items are separated by any number of SPACE and/or TAB characters. The first
item on a line is the node’s IP address. The second entry is the node’s official
name. Subsequent entries on the same line are alternative names for the same
machine, or "nicknames." Nicknames are optional.

For a node with more than one IP address, consecutive entries for these
addresses may contain the same or differing nicknames. Different nicknames are
useful for assigning distinct names to different addresses.

A call to getipnodebyname (3SOCKET) returns a hostent structure containing
the union of all addresses and nicknames from each line containing a matching
official name or nickname.

A ‘#’ indicates the beginning of a comment; characters up to the end of the line
are not interpreted by routines that search the file.

Network addresses are written in one of two ways:

� The conventional "decimal dot" notation and interpreted using the inet_addr
routine from the Internet address manipulation library, inet (3SOCKET).

� The IP Version 6 protocol [IPV6], defined in RFC 1884 and interpreted
using the inet_pton() routine from the Internet address manipulation
library. See inet (3SOCKET).

These interfaces supports node names as defined in Internet RFC 952 which
states:

A "name" (Net, Host, Gateway, or Domain name) is a text string up to 24
characters drawn from the alphabet (A-Z), digits (0-9), minus sign (-), and
period (.). Note that periods are only allowed when they serve to delimit

Last modified 25 Oct 1999 SunOS 5.8 173

ipnodes(4) File Formats

components of "domain style names". (See RFC 921, "Domain Name System
Implementation Schedule," for background). No blank or space characters are
permitted as part of a name. No distinction is made between upper and lower
case. The first character must be an alpha character. The last character must not
be a minus sign or period.

Although the interface accepts node names longer than 24 characters for the
node portion (exclusive of the domain component), choosing names for nodes
that adhere to the 24 character restriction will insure maximum interoperability
on the Internet.

A node which serves as a GATEWAY should have "−GATEWAY" or "−GW" as part
of its name. Nodes which do not serve as Internet gateways should not use
"−GATEWAY" and "−GW" as part of their names. A node that is a TAC should have
"−TAC" as the last part of its node name, if it is a DoD node. Single character
names or nicknames are not allowed.

RFC 952 has been modified by RFC 1123 to relax the restriction on the first
character being a digit.

EXAMPLES EXAMPLE 1 A Typical Line from the ipnodes File

The following is a typical line from the ipnodes file:
2::56:a00:20ff:fe7b:b667 foo # John Smith

SEE ALSO in.named (1M), getipnodebyname (3SOCKET), inet (3SOCKET),
nsswitch.conf (4), resolv.conf (4), hosts (4)

Braden, B., editor, RFC 1123, Requirements for Internet Hosts – Application
and Support, Network Working Group, October, 1989.

Harrenstien, K., Stahl, M., and Feinler, E., RFC 952, DOD INTERNET HOST
TABLE SPECIFICATION, Network Working Group, October 1985.

Hinden, R., and Deering, S., editors, RFC 1884, IP Version 6 Addressing
Architecture, Network Working Group, December, 1995.

Postel, Jon, RFC 921, Domain Name System Implementation Schedule —
Revised, Network Working Group, October 1984.

NOTES IPv4 addresses can be defined in the ipnodes file or in the hosts file. See
hosts (4). The ipnodes file will be searched for IPv4 addresses when using the
getipnodebyname (3SOCKET) API. If no matching IPv4 addresses are found in
the ipnodes file, then the hosts file will be searched. To prevent delays in
name resolution and to keep /etc/inet/ipnodes and /etc/inet/hosts
synchronized, IPv4 addresses defined in the hosts file should be copied to the
ipnodes file.

174 SunOS 5.8 Last modified 25 Oct 1999

File Formats issue(4)

NAME issue – issue identification file

DESCRIPTION The file /etc/issue contains the issue or project identification to be printed as
a login prompt. issue is an ASCII file that is read by program getty and then
written to any terminal spawned or respawned from the lines file.

FILES /etc/issue

SEE ALSO login (1)

Last modified 3 Jul 1990 SunOS 5.8 175

keytables(4) File Formats

NAME keytables – keyboard table descriptions for loadkeys and dumpkeys

DESCRIPTION These files are used by loadkeys (1) to modify the translation tables used by
the keyboard streams module and generated by (see loadkeys (1)) from those
translation tables.

Any line in the file beginning with # is a comment, and is ignored. # is treated
specially only at the beginning of a line.

Other lines specify the values to load into the tables for a particular keystation.
The format is either:

key number list_of_entries

or

swap number1 with number2

or

key number1 same as number2

or a blank line, which is ignored.

key number list_of_entries

sets the entries for keystation number from the list given. An entry in that list is
of the form

tablename code

where tablename is the name of a particular translation table, or all . The
translation tables are:
base entry when no shifts are active

shift entry when "Shift" key is down

caps entry when "Caps Lock" is in effect

ctrl entry when "Control" is down

176 SunOS 5.8 Last modified 22 Apr 1999

File Formats keytables(4)

altg entry when "Alt Graph" is down

numl entry when "Num Lock" is in effect

up entry when a key goes up

All tables other than up refer to the action generated when a key goes down.
Entries in the up table are used only for shift keys, since the shift in question goes
away when the key goes up, except for keys such as "Caps Lock" or "Num Lock";
the keyboard streams module makes the key look as if it were a latching key.

A table name of all indicates that the entry for all tables should be set to the
specified value, with the following exception: for entries with a value other
than hole , the entry for the numl table should be set to nonl , and the entry
for the up table should be set to nop .

The code specifies the effect of the key in question when the specified shift key
is down. A code consists of either:

� A character, which indicates that the key should generate the given
character. The character can either be a single character, a single character
preceded by ^ which refers to a "control character" (for instance, ^c is
control-C), or a C-style character constant enclosed in single quote characters
(’), which can be expressed with C-style escape sequences such as \r for
RETURN or \000 for the null character. Note that the single character may
be any character in an 8-bit character set, such as ISO 8859/1.

� A string, consisting of a list of characters enclosed in double quote
characters ("). Note that the use of the double quote character means that a
code of double quote must be enclosed in single quotes.

� One of the following expressions:
shiftkeys+leftshift the key is to be the left-hand "Shift" key

shiftkeys+rightshift the key is to be the right-hand "Shift" key

shiftkeys+leftctrl the key is to be the left-hand "Control" key

shiftkeys+rightctrl the key is to be the right-hand "Control" key

shiftkeys+alt the key is to be the "Alt" shift key

shiftkeys+altgraph the key is to be the "Alt Graph" shift key

shiftkeys+capslock the key is to be the "Caps Lock" key

shiftkeys+shiftlock the key is to be the "Shift Lock" key

shiftkeys+numlock the key is to be the "Num Lock" key

Last modified 22 Apr 1999 SunOS 5.8 177

keytables(4) File Formats

buckybits+systembit the key is to be the "Stop" key in SunView; this
is normally the L1 key, or the SETUP key on
the VT100 keyboard

buckybits+metabit the key is to be the "meta" key. That is, the "Left"
or "Right" key on a Sun-2 or Sun-3 keyboard or
the "diamond" key on a Sun-4 keyboard

compose the key is to be the "Compose" key

ctrlq on the "VT100" keyboard, the key is to transmit
the control-Q character (this would be the entry
for the "Q" key in the ctrl table)

ctrls on the "VT100" keyboard, the key is to transmit
the control-S character (this would be the entry
for the "S" key in the ctrl table)

noscroll on the "VT100" keyboard, the key is to be the
"No Scroll" key

string+uparrow the key is to be the "up arrow" key

string+downarrow the key is to be the "down arrow" key

string+leftarrow the key is to be the "left arrow" key

string+rightarrow the key is to be the "right arrow" key

string+homearrow the key is to be the "home" key

fa_acute the key is to be the acute accent "floating accent"
key

fa_cedilla the key is to be the cedilla "floating accent" key

fa_cflex the key is to be the circumflex "floating accent"
key

fa_grave the key is to be the grave accent "floating accent"
key

fa_tilde the key is to be the tilde "floating accent" key

fa_umlaut the key is to be the umlaut "floating accent" key

nonl this is used only in the Num Lock table; the key
is not to be affected by the state of Num Lock

pad0 the key is to be the "0" key on the numeric
keypad

178 SunOS 5.8 Last modified 22 Apr 1999

File Formats keytables(4)

pad1 the key is to be the "1" key on the numeric
keypad

pad2 the key is to be the "2" key on the numeric
keypad

pad3 the key is to be the "3" key on the numeric
keypad

pad4 the key is to be the "4" key on the numeric
keypad

pad5 the key is to be the "5" key on the numeric
keypad

pad6 the key is to be the "6" key on the numeric
keypad

pad7 the key is to be the "7" key on the numeric
keypad

pad8 the key is to be the "8" key on the numeric
keypad

pad9 the key is to be the "9" key on the numeric
keypad

paddot the key is to be the "." key on the numeric keypad

padenter the key is to be the "Enter" key on the numeric
keypad

padplus the key is to be the "+" key on the numeric
keypad

padminus the key is to be the "−" key on the numeric
keypad

padstar the key is to be the "*" key on the numeric keypad

padslash the key is to be the "/" key on the numeric
keypad

padequal the key is to be the "=" key on the numeric
keypad

padsep the key is to be the "," (separator) key on the
numeric keypad

lf(n) the key is to be the left-hand function key n

rf(n) the key is to be the right-hand function key n

Last modified 22 Apr 1999 SunOS 5.8 179

keytables(4) File Formats

tf(n) the key is to be the top function key n

bf(n) the key is to be the "bottom" function key n

nop the key is to do nothing

error this code indicates an internal error; to be used
only for keystation 126, and must be used there

idle this code indicates that the keyboard is idle (that
is, has no keys down); to be used only for all
entries other than the numl and up table entries
for keystation 127, and must be used there

oops this key exists, but its action is not defined; it has
the same effect as nop

reset this code indicates that the keyboard has just
been reset; to be used only for the up table entry
for keystation 127, and must be used there.

swap number1 with
number2

exchanges the entries for keystations number1 and
number2.

key number1 same as
number2

sets the entries for keystation number1 to be the
same as those for keystation number2. If the file
does not specify entries for keystation number2,
the entries currently in the translation table are
used; if the file does specify entries for keystation
number2, those entries are used.

EXAMPLES EXAMPLE 1 Example of setting multiple keystations.

The following entry sets keystation 15 to be a “hole” (that is, an entry indicating
that there is no keystation 15); sets keystation 30 to do nothing when Alt Graph
is down, generate "!" when Shift is down, and generate "1" under all other
circumstances; and sets keystation 76 to be the left-hand Control key.

key 15 all hole
key 30 base 1 shift ! caps 1 ctrl 1 altg nop
key 76 all shiftkeys+leftctrl up shiftkeys+leftctrl

CODE EXAMPLE 1 Exchange DELETE and BACKSPACE keys

The following entry exchanges the Delete and Back Space keys on the Type 4
keyboard:

swap 43 with 66

180 SunOS 5.8 Last modified 22 Apr 1999

File Formats keytables(4)

Keystation 43 is normally the Back Space key, and keystation 66 is normally
the Delete key.
CODE EXAMPLE 2 Disable CAPS LOCK key

The following entry disables the Caps Lock key on the Type 3 and U.S. Type 4
keyboards:

key 119 all nop

CODE EXAMPLE 3 Standard translation tables for the U.S. Type 4 keyboard

The following specifies the standard translation tables for the U.S. Type 4
keyboard:

key 0 all hole
key 1 all buckybits+systembit up buckybits+systembit
key 2 all hole
key 3 all lf(2)
key 4 all hole
key 5 all tf(1)
key 6 all tf(2)
key 7 all tf(10)
key 8 all tf(3)
key 9 all tf(11)
key 10 all tf(4)
key 11 all tf(12)
key 12 all tf(5)
key 13 all shiftkeys+altgraph up shiftkeys+altgraph
key 14 all tf(6)
key 15 all hole
key 16 all tf(7)
key 17 all tf(8)
key 18 all tf(9)
key 19 all shiftkeys+alt up shiftkeys+alt
key 20 all hole
key 21 all rf(1)
key 22 all rf(2)
key 23 all rf(3)
key 24 all hole
key 25 all lf(3)
key 26 all lf(4)
key 27 all hole
key 28 all hole
key 29 all ^[
key 30 base 1 shift ! caps 1 ctrl 1 altg nop
key 31 base 2 shift @ caps 2 ctrl ^@ altg nop
key 32 base 3 shift # caps 3 ctrl 3 altg nop
key 33 base 4 shift $ caps 4 ctrl 4 altg nop
key 34 base 5 shift % caps 5 ctrl 5 altg nop
key 35 base 6 shift ^ caps 6 ctrl ^^ altg nop

Last modified 22 Apr 1999 SunOS 5.8 181

keytables(4) File Formats

key 36 base 7 shift & caps 7 ctrl 7 altg nop
key 37 base 8 shift * caps 8 ctrl 8 altg nop
key 38 base 9 shift (caps 9 ctrl 9 altg nop
key 39 base 0 shift) caps 0 ctrl 0 altg nop
key 40 base - shift _ caps - ctrl ^_ altg nop
key 41 base = shift + caps = ctrl = altg nop
key 42 base ‘ shift ~ caps ‘ ctrl ^^ altg nop
key 43 all ’\b’
key 44 all hole
key 45 all rf(4) numl padequal
key 46 all rf(5) numl padslash
key 47 all rf(6) numl padstar
key 48 all bf(13)
key 49 all lf(5)
key 50 all bf(10) numl padequal
key 51 all lf(6)
key 52 all hole
key 53 all ’\t’
key 54 base q shift Q caps Q ctrl ^Q altg nop
key 55 base w shift W caps W ctrl ^W altg nop
key 56 base e shift E caps E ctrl ^E altg nop
key 57 base r shift R caps R ctrl ^R altg nop
key 58 base t shift T caps T ctrl ^T altg nop
key 59 base y shift Y caps Y ctrl ^Y altg nop
key 60 base u shift U caps U ctrl ^U altg nop
key 61 base i shift I caps I ctrl ’\t’ altg nop
key 62 base o shift O caps O ctrl ^O altg nop
key 63 base p shift P caps P ctrl ^P altg nop
key 64 base [shift { caps [ctrl ^[altg nop
key 65 base] shift } caps] ctrl ^] altg nop
key 66 all ’\177’
key 67 all compose
key 68 all rf(7) numl pad7
key 69 all rf(8) numl pad8
key 70 all rf(9) numl pad9
key 71 all bf(15) numl padminus
key 72 all lf(7)
key 73 all lf(8)
key 74 all hole
key 75 all hole
key 76 all shiftkeys+leftctrl up shiftkeys+leftctrl
key 77 base a shift A caps A ctrl ^A altg nop
key 78 base s shift S caps S ctrl ^S altg nop
key 79 base d shift D caps D ctrl ^D altg nop
key 80 base f shift F caps F ctrl ^F altg nop
key 81 base g shift G caps G ctrl ^G altg nop
key 82 base h shift H caps H ctrl ’\b’ altg nop
key 83 base j shift J caps J ctrl ’\n’ altg nop
key 84 base k shift K caps K ctrl ’\v’ altg nop
key 85 base l shift L caps L ctrl ^L altg nop
key 86 base ; shift : caps ; ctrl ; altg nop
key 87 base ’\’’ shift ’"’ caps ’\’’ ctrl ’\’’ altg nop
key 88 base ’\\’ shift | caps ’\\’ ctrl ^\ altg nop
key 89 all ’\r’
key 90 all bf(11) numl padenter

182 SunOS 5.8 Last modified 22 Apr 1999

File Formats keytables(4)

key 91 all rf(10) numl pad4
key 92 all rf(11) numl pad5
key 93 all rf(12) numl pad6
key 94 all bf(8) numl pad0
key 95 all lf(9)
key 96 all hole
key 97 all lf(10)
key 98 all shiftkeys+numlock
key 99 all shiftkeys+leftshift up shiftkeys+leftshift
key 100 base z shift Z caps Z ctrl ^Z altg nop
key 101 base x shift X caps X ctrl ^X altg nop
key 102 base c shift C caps C ctrl ^C altg nop
key 103 base v shift V caps V ctrl ^V altg nop
key 104 base b shift B caps B ctrl ^B altg nop
key 105 base n shift N caps N ctrl ^N altg nop
key 106 base m shift M caps M ctrl ’\r’ altg nop
key 107 base , shift < caps , ctrl , altg nop
key 108 base . shift > caps . ctrl . altg nop
key 109 base / shift ? caps / ctrl ^_ altg nop
key 110 all shiftkeys+rightshift up shiftkeys+rightshift
key 111 all ’\n’
key 112 all rf(13) numl pad1
key 113 all rf(14) numl pad2
key 114 all rf(15) numl pad3
key 115 all hole
key 116 all hole
key 117 all hole
key 118 all lf(16)
key 119 all shiftkeys+capslock
key 120 all buckybits+metabit up buckybits+metabit
key 121 base ’ ’ shift ’ ’ caps ’ ’ ctrl ^@ altg ’ ’
key 122 all buckybits+metabit up buckybits+metabit
key 123 all hole
key 124 all hole
key 125 all bf(14) numl padplus
key 126 all error numl error up hole
key 127 all idle numl idle up reset

SEE ALSO loadkeys (1)

Last modified 22 Apr 1999 SunOS 5.8 183

krb5.conf(4) File Formats

NAME krb5.conf – Kerberos configuration file

SYNOPSIS /etc/krb5/krb5.conf

DESCRIPTION The krb5.conf file contains Kerberos configuration information, including
the locations of KDCs and administration daemons for the Kerberos realms
of interest, defaults for the current realm and for Kerberos applications, and
mappings of host names onto Kerberos realms. This file must reside on all
Kerberos clients.

The format of the krb5.conf consists of sections headings in square brackets.
Each section may contain zero or more configuration variables (called relations),
of the form:

relation= relation-value

or

relation-subsection = {
relation= relation-value
relation= relation-value

}

The krb5.conf file may contain any or all of the following seven sections:
libdefaults Contains default values used by the Kerberos

V5 library.

appdefaults Contains subsections for Kerberos V5
applications, where relation-subsection is the name
of an application. Each subsection describes
application-specific defaults.

realms Contains subsections for Kerberos realms, where
relation-subsection is the name of a realm. Each
subsection contains relations that define the
properties for that particular realm.

domain_realm Contains relations which map domain names and
subdomains onto Kerberos realm names. This
is used by programs to determine what realm
a host should be in, given its fully qualified
domain name.

logging Contains relations which determine how Kerberos
programs are to perform logging.

184 SunOS 5.8 Last modified 17 Nov 1999

File Formats krb5.conf(4)

capaths Contains the authentication paths used
with direct (nonhierarchical) cross-realm
authentication. Entries in this section are used by
the client to determine the intermediate realms
which may be used in cross-realm authentication.
It is also used by the end-service when checking
the transited field for trusted intermediate realms.

kdc For a KDC, may contain the location of the
kdc.conf file.

[libdefaults] The [libdefaults] section may contain any of the following relations:
default_realm Identifies the default Kerberos realm for the

client. Set its value to your Kerberos realm.

default_tgs_enctypes Identifies the supported list of session key
encryption types that should be returned by the
KDC. The list may be delimited with commas or
whitespace. The supported encryption types are
des-cbc-crc and des-cbc-md5 .

default_tkt_enctypes Identifies the supported list of session key
encryption types that should be requested
by the client. The format is the same as for
default_tkt_enctypes . The supported
encryption types are des-cbc-crc and
des-cbc-md5 .

clockskew Sets the maximum allowable amount of clock
skew in seconds that the library will tolerate
before assuming that a Kerberos message is
invalid. The default value is 300 seconds, or
five minutes.

[appdefaults] This section contains subsections for Kerberos V5 applications, where
relation-subsection is the name of an application. Each subsection contains
relations that define the default behaviors for that application.

gkadmin = {
help_url = http://localhost:8888/ab2/coll.384.1/SEAM

}

The following application defaults can be set to true or false :

kinit
forwardable
proxiable
renewable

Last modified 17 Nov 1999 SunOS 5.8 185

krb5.conf(4) File Formats

max_life = delta_time
max_renewable_life = delta_time

(See kinit(1) for the valid time duration formats
you can specify for delta_time.)

In the following example, kinit will get forwardable tickets by default, and
telnet has three default behaviors specified:

[appdefaults]
kinit = {

forwardable = true
}

telnet = {
forward = true
encrypt = true
autologin = true

}

The application defaults specified here are overridden by those specified in the
[realms] section.

[realms] This section contains subsections for Kerberos realms, where relation-subsection
is the name of a realm. Each subsection contains relations that define the
properties for that particular realm. The following relations may be specified in
each [realms] subsection:
kdc The name of a host running a KDC for that realm.

An optional port number (separated from the
hostname by a colon) may be included.

admin_server Identifies the host where the Kerberos
administration daemon (kadmind) is running.
Typically, this is the master KDC.

application defaults Application defaults that are specific to a
particular realm may be specified within a
[realms] subsection. Realm-specific application
defaults override the global defaults specified in
the [appdefaults] section.

[domain_realm] This section provides a translation from a domain name or hostname to a
Kerberos realm name. The relation can be a host name, or a domain name,
where domain names are indicated by a period (‘. ’) prefix. relation-value is
the Kerberos realm name for that particular host or domain. Host names and
domain names should be in lower case.

If no translation entry applies, the host’s realm is considered to be the
hostname’s domain portion converted to upper case. For example, the

186 SunOS 5.8 Last modified 17 Nov 1999

File Formats krb5.conf(4)

following [domain_realm] section maps crash.mit.edu into the
TEST.ATHENA.MIT.EDU realm:

[domain_realm]
.mit.edu = ATHENA.MIT.EDU
mit.edu = ATHENA.MIT.EDU
crash.mit.edu = TEST.ATHENA.MIT.EDU
.fubar.org = FUBAR.ORG
fubar.org = FUBAR.ORG

All other hosts in the mit.edu domain will map by default to the
ATHENA.MIT.EDU realm, and all hosts in the fubar.org domain will map
by default into the FUBAR.ORGrealm. Note the entries for the hosts mit.edu
and fubar.org . Without these entries, these hosts would be mapped into the
Kerberos realms EDUand ORG, respectively.

[logging] This section indicates how Kerberos programs are to perform logging. There
are two types of relations for this section: relations to specify how to log and a
relation to specify how to rotate kdc log files.

The following relations may be defined to specify how to log. The same relation
can be repeated if you want to assign it multiple logging methods.
admin_server Specifies how to log the Kerberos administration

daemon (kadmind). The default is
FILE:/var/krb5/kadmin.log.

default Specifies how to perform logging in the absence
of explicit specifications otherwise.

kdc Specifies how the KDC is to perform its logging.
The default is FILE:/var/krb5/kdc.log .

The admin_server , default , and kdc relations may have the following
values:

FILE: filename

or
FILE= filename This value causes the entity’s logging

messages to go to the specified file.
If the ‘=’ form is used, the file is
overwritten. If the ‘:’ form is used,
the file is appended to.

STDERR This value causes the entity’s logging
messages to go to its standard error
stream.

Last modified 17 Nov 1999 SunOS 5.8 187

krb5.conf(4) File Formats

CONSOLE This value causes the entity’s logging
messages to go to the console, if the
system supports it.

DEVICE=devicename This causes the entity’s logging
messages to go to the specified
device.

SYSLOG[: severity[: facility]] This causes the entity’s logging
messages to go to the system log.

The severity argument specifies the default severity of system log messages.
This may be any of the following severities supported by the syslog (3C)
call, minus the LOG_prefix: LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR,
LOG_WARNING, LOG_NOTICE, LOG_INFO, and LOG_DEBUG. For example, a
value of CRIT would specify LOG_CRITseverity.

The facility argument specifies the facility under which the messages are logged.
This may be any of the following facilities supported by the syslog (3C) call
minus the LOG_prefix: LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON,
LOG_AUTH, LOG_LPR, LOG_NEWS, LOG_UUCP, LOG_CRON, and LOG_LOCAL0
through LOG_LOCAL7.

If no severity is specified, the default is ERR. If no facility is specified, the
default is AUTH.

The following relation may be defined to specify how to rotate kdc log files if
the FILE: value is being used to log:
kdc_rotate A relation subsection that enables kdc logging to be rotated

to multiple files based on a time interval. This can be used
to avoid logging to one file, which may grow too large and
bring the KDC to a halt.

The time interval for the rotation is specified by the period relation. The
number of log files to be rotated is specified by the versions relation. Both the
period and versions (described below) should be included in this subsection.
And, this subsection applies only if the kdc relation has a FILE: value.

The following relations may be specified for the kdc_rotate relation
subsection:
period= delta_time Specifies the time interval before a new log file

is created. See the Time Formats section in
kinit (1) for the valid time duration formats
you can specify for delta_time. If period is not
specified or set to "never" , no rotation will
occur.

188 SunOS 5.8 Last modified 17 Nov 1999

File Formats krb5.conf(4)

Specifying a time interval does not mean that the log files will be rotated at the
time interval based on real time. This is because the time interval is checked at
each attempt to write a record to the log, or when logging is actually occurring.
Therefore, rotation occurs only when logging has actually occurred for the
specified time interval.
versions= number Specifies how many previous versions will be

saved before the rotation begins. A number
will be appended to the log file, starting with 0
and ending with (number - 1). For example, if
versions is set to 2, up to three logging files
will be created (filename, filename.0, and filename.1)
before the first one is overwritten to begin the
rotation.

Notice that if versions is not specified or set to 0, only one log file will be
created, but it will be overwritten whenever the time interval is met.

In the following example, the logging messages from the Kerberos administration
daemon will go to the console. The logging messages from the KDC will
be appended to the /var/krb5/kdc.log , which will be rotated between
twenty-one log files with a specified time interval of a day.

[logging]
admin_server = CONSOLE
kdc = FILE:/export/logging/kadmin.log
kdc_rotate = {

period = 1d
versions = 20

}

[capaths] In order to perform direct (non-hierarchical) cross-realm authentication, a
database is needed to construct the authentication paths between the realms.
This section defines that database.

A client will use this section to find the authentication path between its realm
and the realm of the server. The server will use this section to verify the
authentication path used by the client, by checking the transited field of the
received ticket.

There is a subsection for each participating realm, and each subsection has
relations named for each of the realms. The relation-value is an intermediate
realm which may participate in the cross-realm authentication. The relations
may be repeated if there is more than one intermediate realm. A value of ’.’
means that the two realms share keys directly, and no intermediate realms
should be allowed to participate.

There are n**2 possible entries in this table, but only those entries which will
be needed on the client or the server need to be present. The client needs a

Last modified 17 Nov 1999 SunOS 5.8 189

krb5.conf(4) File Formats

subsection named for its local realm, with relations named for all the realms of
servers it will need to authenticate with. A server needs a subsection named for
each realm of the clients it will serve.

For example, ANL.GOV, PNL.GOV, and NERSC.GOVall wish to use the ES.NET
realm as an intermediate realm. ANLhas a sub realm of TEST.ANL.GOV, which
will authenticate with NERSC.GOVbut not PNL.GOV. The [capath] section for
ANL.GOVsystems would look like this:

[capaths]
ANL.GOV = {

TEST.ANL.GOV = .
PNL.GOV = ES.NET
NERSC.GOV = ES.NET
ES.NET = .

}

TEST.ANL.GOV = {
ANL.GOV = .

}

PNL.GOV = {
ANL.GOV = ES.NET

}

NERSC.GOV = {
ANL.GOV = ES.NET

}

ES.NET = {
ANL.GOV = .

}

The [capath] section of the configuration file used on NERSC.GOVsystems
would look like this:

[capaths]
NERSC.GOV = {

ANL.GOV = ES.NET
TEST.ANL.GOV = ES.NET
TEST.ANL.GOV = ANL.GOV
PNL.GOV = ES.NET
ES.NET = .

}

ANL.GOV = {
NERSC.GOV = ES.NET

}

PNL.GOV = {
NERSC.GOV = ES.NET

}

190 SunOS 5.8 Last modified 17 Nov 1999

File Formats krb5.conf(4)

ES.NET = {
NERSC.GOV = .

}

TEST.ANL.GOV = {
NERSC.GOV = ANL.GOV
NERSC.GOV = ES.NET

}

In the above examples, the ordering is not important, except when the same
relation is used more than once. The client will use this to determine the path. (It
is not important to the server, since the transited field is not sorted.)

EXAMPLES EXAMPLE 1 Sample file

Here is an example of a generic krb5.conf file:

[libdefaults]
ticket_lifetime = 600
default_realm = ATHENA.MIT.EDU
default_tkt_enctypes = des-cbc-crc
default_tgs_enctypes = des-cbc-crc

[realms]
ATHENA.MIT.EDU = {

kdc = kerberos.mit.edu
kdc = kerberos-1.mit.edu
kdc = kerberos-2.mit.edu
admin_server = kerberos.mit.edu
default_domain = mit.edu

}

FUBAR.ORG = {
kdc = kerberos.fubar.org
kdc = kerberos-1.fubar.org
admin_server = kerberos.fubar.org

}

[domain_realm]
.mit.edu = ATHENA.MIT.EDU
mit.edu = ATHENA.MIT.EDU

FILES /var/krb5/kdc.log KDC logging file

SEE ALSO kinit (1), syslog (3C), SEAM(5)

NOTES If the krb5.conf file is not formatted properly, the telnet command will fail.
However, the dtlogin and login commands will still succeed, even if the
krb5.conf file is specified as required for the commands. If this occurs, the
following error message will be displayed:

Error initializing krb5: Improper format of

Last modified 17 Nov 1999 SunOS 5.8 191

krb5.conf(4) File Formats

To bypass any other problems that may occur, you should fix the file as soon
as possible.

192 SunOS 5.8 Last modified 17 Nov 1999

File Formats krb.conf(4)

NAME krb.conf – Kerberos configuration file

SYNOPSIS /etc/krb.conf

DESCRIPTION krb.conf contains configuration information describing the Kerberos realm
and the Kerberos key distribution center (KDC) servers for known realms.

krb.conf contains the name of the local realm in the first line, followed by lines
indicating realm/host entries. The first token is a realm name, and the second is
the hostname of a host running a KDC for that realm. There can be multiple lines
for a given realm; the servers are tried in order until an active one is found. The
words admin server following the hostname indicate that the host also provides
an administrative database server. For example:

ATHENA.MIT.EDU
ATHENA.MIT.EDU kerberos-1.mit.edu admin server
ATHENA.MIT.EDU kerberos-2.mit.edu
LCS.MIT.EDU kerberos.lcs.mit.edu admin server

The Kerberos configuration information can also be supplied using the
krb.conf NIS map. If /etc/krb.conf is not found (or the requested
information is not found in it), and the system is running NIS, then the
information will be obtained from the NIS map. If neither the file nor the NIS
map are found, then the Kerberos library will use the domainname (as returned
by domainname (1M)) as the Kerberos realm, and the host kerberos as the
location of the KDC. There is no default for the admin server.

Note that every time krb.conf is modified, kerbd (1M) needs to be restarted.

SEE ALSO domainname (1M), kerbd (1M), ypmake(1M), krb.realms (4)

BUGS There is no NIS+ support yet for the krb.conf map.

Last modified 6 Jan 1992 SunOS 5.8 193

krb.realms(4) File Formats

NAME krb.realms – host to Kerberos realm translation file

SYNOPSIS /etc/krb.realms

DESCRIPTION krb.realms provides a translation from a hostname to the Kerberos realm
name for the services provided by that host.

Each line of the translation file is in one of the following forms:

host_name kerberos_realm
domain_name kerberos_realm

domain_name should be of the form .XXX.YYY, for example, .LCS.MIT.EDU .

If a hostname exactly matches the host_name field in a line of the first form, the
corresponding kerberos_realm is used as the realm of the host. If a hostname
does not match any host_name in the file, but its domain exactly matches the
domain_name field in a line of the second form, the corresponding kerberos_realm
is used as the realm of the host.

If no translation entry applies, the host’s realm is considered to be the hostname’s
domain portion converted to upper case.

SEE ALSO krb_realmofhost (3KRB)

BUGS There is no NIS or NIS+ support for this information.

194 SunOS 5.8 Last modified 6 Jan 1992

File Formats ldapfilter.conf(4)

NAME ldapfilter.conf – configuration file for LDAP filtering routines

SYNOPSIS /etc/opt/SUNWconn/ldap/current/ldapfilter.conf

DESCRIPTION The ldapfilter.conf file contains information used by the LDAP filtering
routines.

Blank lines and lines that begin with a hash character (’#’) are treated as
comments and ignored. The configuration information consists of lines that
contain one to five tokens. Tokens are separated by white space, and double
quotes can be used to include white space inside a token.

The file consists of a sequence of one or more filter sets. A filter set begins with a
line containing a single token called a tag.

The filter set consists of a sequence of one or more filter lists. The first line in a
filter list must contain four or five tokens: the value pattern, the delimiter list, a
filter template, a match description, and an optional search scope. The value pattern
is a regular expression that is matched against the value passed to the LDAP
library call to select the filter list.

The delimiter list is a list of the characters (in the form of a single string) that can
be used to break the value into distinct words.

The filter template is used to construct an LDAP filter (see description below)

The match description is returned to the caller along with a filter as a piece of text
that can be used to describe the sort of LDAP search that took place. It should
correctly compete both of the following phrases: "One match description match
was found for..." and "Three match description matches were found for...."

The search scope is optional, and should be one of "base", "onelevel", or "subtree".
If search scope is not provided, the default is "subtree".

The remaining lines of the filter list should contain two or three tokens, a filter
template, a match description and an optional search scope .

The filter template is similar in concept to a printf (3C) style format string.
Everything is taken literally except for the character sequences:
%v Substitute the entire value string in place of the %v.

%v$ Substitute the last word in this field.

%vN Substitute word N in this field (where N is a single digit 1-9).
Words are numbered from left to right within the value
starting at 1.

%vM-N Substitute the indicated sequence of words where M and N
are both single digits 1-9.

Last modified 25 May 1998 SunOS 5.8 195

ldapfilter.conf(4) File Formats

%vN- Substitute word N through the last word in value where N
is again a single digit 1-9.

EXAMPLES EXAMPLE 1 The following ldap filter configuration file contains two filter sets,
example1 and example2 onelevel , each of which contains four filter lists.

ldap filter file
#
example1
"=" " " "%v" "arbitrary filter"
"[0-9][0-9–]*" " " "(telephoneNumber=*%v)" "phone number"

"@" " " "(mail=%v)" "email address"

"^.[. _].*" ". _" "(cn=%v1* %v2-)" "first initial"

".*[. _].$" ". _" "(cn=%v1-*)" "last initial"

"[. _]" ". _" "(|(sn=%v1-)(cn=%v1-))" "exact"
"(|(sn~=%v1-)(cn~=%v1-))" "approximate"

".*" ". " "(|(cn=%v1)(sn=%v1)(uid=%v1))" "exact"
"(|(cn~=%v1)(sn~=%v1))" "approximate"

"example2 onelevel"
"^..$" " " "(|(o=%v)(c=%v)(l=%v)(co=%v))" "exact" "onelevel"

"(|(o~=%v)(c~=%v)(l~=%v)(co~=%v))" "approximate"
"onelevel"

" " " " "(|(o=%v)(l=%v)(co=%v)" "exact" "onelevel"
"(|(o~=%v)(l~=%v)(co~=%v)" "approximate" "onelevel"

"." " " "(associatedDomain=%v)" "exact" "onelevel"

".*" " " "(|(o=%v)(l=%v)(co=%v)" "exact" "onelevel"
"(|(o~=%v)(l~=%v)(co~=%v)" "approximate" "onelevel"

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap_getfilter (3LDAP), ldap_ufn (3LDAP), attributes (5)

196 SunOS 5.8 Last modified 25 May 1998

File Formats ldapsearchprefs.conf(4)

NAME ldapsearchprefs.conf – configuration file for LDAP search preference routines

SYNOPSIS /etc/opt/SUNWconn/ldap/current/ldapsearchprefs.conf

DESCRIPTION The ldapsearchprefs.conf file contains information used by LDAP when
searching the directory. Blank lines and lines that start with a hash (’#’) character
are treated as comments and ignored. Non-comment lines contain one or more
tokens. Tokens are separated by white space, and double quotes can be used to
include white space inside a token.

Search preferences are typically used by LDAP-based client programs to specify
what a user may search for, which attributes are searched, and which options are
available to the user.

The first non-commment line specifies the version of the template information
and must contain the token Version followed by an integer version number.
For example:

Version 1

The current version is 1, so the above example is always the correct opening line.

The remainder of the file consists of one or more search preference
configurations. The first line of a search preference is a human-readable name for
the type of object being searched for, for example People or Organizations .
This name is stored in the so_objtypeprompt member of the ldap_searchobj
structure (see ldap_searchprefs (3LDAP)). For example,

People

specifies a label for a search preference designed to find X.500 entries for people.

The next line specifies a list of options for this search object. The only
option currently allowed is "internal" which means that this search object
should not be presented directly to a user. Options are placed in the
so_options member of the ldap_searchobj structure and can be tested using the
LDAP_IS_SEARCHOBJ_OPTION_SET()macro. Use "" if no special options
are required.

The next line specifes a label to use for "Fewer Choices" searches. "Fewer
Choices" searches are those where the user’s input is fed to the ldap_filter
routines to determine an appropriate filter to use. This contrasts with
explicitly-constructed LDAP filters, or "More Choices" searches, where the user
can explicitly construct an LDAP filter.

For example:

"Search For:"

can be used by LDAP client programs to label the field into which the user
can type a "Fewer Choices" search.

Last modified 25 May 1998 SunOS 5.8 197

ldapsearchprefs.conf(4) File Formats

The next line specifies an LDAP filter prefix to append to all "More Choices"
searched. This is typically used to limit the types of entries returned to those
containing a specific object class. For example:

"(&(objectClass=person)"

would cause only entries containing the object class person to be returned by
a search. Note that parentheses may be unbalanced here, since this is a filter
prefix, not an entire filter.

The next line is an LDAP filter tag which specifies the set of LDAP filters to be
applied for "Fewer Choices" searching. The line

"x500-People"

would tell the client program to use the set of LDAP filters from the ldap filter
configuration file tagged "x500-People".

The next line specifies an LDAP attribute to retrieve to help the user choose
when several entries match the search terms specified. For example:

"title"

specifies that if more than one entry matches the search criteria, the client
program should retrieve the title attribute that and present that to the user
to allow them to select the appropriate entry. The next line specifies a label
for the above attribute, for example,

"Title:"

Note that the values defined so far in the file are defaults, and are intended to be
overridden by the specific search options that follow.

The next line specifies the scope of the LDAP search to be performed. Acceptable
values are subtree, onelevel, and base.

The next section is a list of "More Choices" search options, terminated by a line
containing only the string END. For example:

"Common Name" cn 11111 "" ""
"Surname" sn 11111 "" ""
"Business Phone" "telephoneNumber" 11101 "" ""
END

Each line represents one method of searching. In this example, there are three
ways of searching - by Common Name, by Surname, and by Business Phone
number. The first field is the text which should be displayed to user. The second
field is the attribute which will be searched. The third field is a bitmap which
specifies which of the match types are permitted for this search type. A "1" value
in a given bit position indicates that a particular match type is valid, and a "0"
indicates that is it not valid. The fourth and fifth fields are, respectively, the
select attribute name and on-screen name for the selected attribute. These values
are intended to override the defaults defined above. If no specific values are
specified, the client software uses the default values above.

198 SunOS 5.8 Last modified 25 May 1998

File Formats ldapsearchprefs.conf(4)

The next section is a list of search match options, terminated by a a line
containing only the string END. Example:

"exactly matches" "(%a=%v))"
"approximately matches" "(%a~=%v))"
"starts with" "(%a=%v*))"
"ends with" "(%a=*%v))"
"contains" "(%a=*%v*))"
END

In this example, there are five ways of refining the search. For each method,
there is an LDAP filter suffix which is appended to the ldap filter.

EXAMPLES EXAMPLE 1 The following example illustrates one possible configuration of search
preferences for "people".

Version number
Version 1
Name for this search object
People
Label to place before text box user types in
"Search For:"
Filter prefix to append to all "More Choices" searches
"(&(objectClass=person)"
Tag to use for "Fewer Choices" searches - from ldapfilter.conf file
"x500-People"
If a search results in > 1 match, retrieve this attribute to help
user distinguish between the entries...
multilineDescription
...and label it with this string:
"Description"
Search scope to use when searching
subtree
Follows a list of "More Choices" search options. Format is:
Label, attribute, select-bitmap, extra attr display name, extra attr ldap name
If last two are null, "Fewer Choices" name/attributes used
"Common Name" cn 11111 "" ""
"Surname" sn 11111 "" ""
"Business Phone" "telephoneNumber" 11101 "" ""
"E-Mail Address" "mail" 11111 "" ""
"Uniqname" "uid" 11111 "" ""
END
Match types
"exactly matches" "(%a=%v))"
"approximately matches" "(%a~=%v))"
"starts with" "(%a=%v*))"
"ends with" "(%a=*%v))"
"contains" "(%a=*%v*))"
END

In this example, the user may search for People. For "fewer choices" searching,
the tag for the ldapfilter.conf (4) file is "x500-People".

ATTRIBUTES See attributes (5) for a description of the following attributes:

Last modified 25 May 1998 SunOS 5.8 199

ldapsearchprefs.conf(4) File Formats

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap_searchprefs (3LDAP) attributes (5)

200 SunOS 5.8 Last modified 25 May 1998

File Formats ldaptemplates.conf(4)

NAME ldaptemplates.conf – configuration file for LDAP display template routines

SYNOPSIS /etc/opt/SUNWconn/ldap/current/ldaptemplates.conf

DESCRIPTION The ldaptemplates.conf file contains information used by the LDAP display
routines.

Blank lines and lines that start with a hash character (’#’) are treated as comments
and ignored. Non-comment lines contain one or more tokens. Tokens are
separated by white space, and double quotes can be used to include white
space inside a token.

The first non-commment line specifies the version of the template information
and must contain the token Version followed by an integer version number.
For example,

Version 1

The current version is 1, so the above example is always the correct first line.

The remainder of the file consists of one or more display templates. The first two
lines of the display template each contain a single token that specifies singular
and plural names for the template in a user-friendly format. For example,

"Person"
"People"

specifies appropriate names for a template designed to display person
information.

The next line specifies the name of the icon or similar element that is associated
with this template. For example,

"person icon"

The next line is a blank-separated list of template options. "" can be used if
no options are desired. Available options are: addable (it is appropriate to
allow entries of this type to be added), modrdn (it is appropriate to offer the
modify rdn operation), altview (this template is an alternate view of another
template). For example,

"addable" "modrdn"

The next portion of the template is a list of X.500 object classes that is used to
determine whether the template should be used to display a given entry. The
object class information consists of one or more lines, followed by a terminating
line that contains the single token END. Each line contains one or more object
class names, all of which must be present in a directory entry. Multiple lines can
be used to associate more than one set of object classes with a given template.
For example,

Last modified 25 May 1998 SunOS 5.8 201

ldaptemplates.conf(4) File Formats

emailPerson
orgPerson
END

means that the template is appropriate for display of emailPerson entries or
orgPerson entries.

The next line after the object class list is the name of the attribute to authenticate
as to make changes (use "" if it is appropriate to authenticate as the entry
itself). For example,

"owner"

The next line is the default attribute to use when naming a new entry, for
example,

"cn"

The next line is the distinguished name of the default location under which
new entries are created. For example,

"o=XYZ, c=US"

The next section is a list of rules used to assign default values to new entries. The
list should be terminated with a line that contains the single token END. Each line
in this section should either begin with the token constant and be followed by
the name of the attribute and a constant value to assign, or the line should begin
with addersdn followed by the name of an attribute whose value will be the
DN of the person who has authenticated to add the entry. For example,

constant associatedDomain XYZ.us
addersdn seeAlso
END

The last portion of the template is a list of items to display. It consists of one or
more lines, followed by a terminating line that contains the single token END.
Each line is must begin with the token samerow or the token item

It is assumed that each item appears on a row by itself unless it was preceded
by a samerow line (in which case it should be displayed on the same line as
the previous item, if possible). Lines that begin with samerow should not have
any other tokens on them.

Lines that begin with item must have at least three more tokens on them: an
item type, a label, and an attribute name. Any extra tokens are taken as extra
arguments.

The item type token must be one of the following strings:

202 SunOS 5.8 Last modified 25 May 1998

File Formats ldaptemplates.conf(4)

cis case-ignore string attributes

mls multiline string attributes

mail RFC-822 conformant mail address attributes

dn distinguished name pointer attributes

bool Boolean attributes

jpeg JPEG photo attributes

jpegbtn a button that will retrieve and show a JPEG photo attribute

fax FAX T.4 format image attributes

faxbtn a button that will retrieve and show a FAX photo attribute

audiobtn audio attributes

time UTC time attributes

date UTC time attributes where only the date portion should
be shown

url labeled Uniform Resource Locator attributes

searchact define an action that will do a directory search for other
entries

linkact define an action which is a link to another display template

protected for an encrypted attribute, with values displayed as asterisks

An example of an item line for the drink attribute (displayed with label "Work
Phone"):

item cis "Work Phone" telephoneNumber

EXAMPLES EXAMPLE 1 The following template configuration file contains a templates for
display of people entries.

#
LDAP display templates
#
Version must be 1 for now
#
Version 1
#
Person template
"Person"
"People"

name of the icon that is associated with this template
"person icon"

Last modified 25 May 1998 SunOS 5.8 203

ldaptemplates.conf(4) File Formats

blank-separated list of template options ("" for none)
"addable"

#
objectclass list
person
END

#
name of attribute to authenticate as ("" means auth as this entry)
""

#
default attribute name to use when forming RDN of a new entry
#
"cn"

#
default location when adding new entries (DN; "" means no default)
"o=XYZ, c=US"

#
rules used to define default values for new entries
END

#
list of items for display
item jpegbtn "View Photo" jpegPhoto "Next Photo"
item audiobtn "Play Sound" audio
item cis "Also Known As" cn
item cis "Title" title
item mls "Work Address" postalAddress
item cis "Work Phone" telephoneNumber
item cis "Fax Number" facsimileTelephoneNumber
item mls "Home Address" homePostalAddress
item cis "Home Phone" homePhone
item cis "User ID" uid
item mail "E-Mail Address" mail
item cis "Description" description
item dn "See Also" seeAlso
END

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap_disptmpl (3LDAP) ldap_entry2text (3LDAP) attributes (5)

204 SunOS 5.8 Last modified 25 May 1998

File Formats limits(4)

NAME limits – header for implementation-specific constants

SYNOPSIS #include <limits.h>

DESCRIPTION The header <limits.h> is a list of minimal magnitude limitations imposed by
a specific implementation of the operating system.

_ARG_MAX32 1048320 /* max length of arguments to
exec 32-bit program */

_ARG_MAX64 2096640 /* max length of arguments to
exec 64-bit program */

CHAR_BIT 8 /* max # of bits in a char */

CHAR_MAX 255 /* max value of a char */

CHAR_MIN 0 /* min value of a char */

CHILD_MAX 25 /* max # of processes per user id */

CLK_TCK _sysconf(3) /* clock ticks per second */

DBL_DIG 15 /* digits of precision of a double */

DBL_MAX 1.7976931348623157E+308 /* max decimal value of a double*/

DBL_MIN 2.2250738585072014E-308 /* min decimal value of a double*/

FCHR_MAX 1048576 /* historical default file size
limit in bytes */

FLT_DIG 6 /* digits of precision of a float */

FLT_MAX 3.40282347e+38F /* max decimal value of a float */

FLT_MIN 1.17549435E-38F /* min decimal value of a float */

INT_MAX 2147483647 /* max value of an int */

INT_MIN (-2147483647-1) /* min value of an int */

LINK_MAX 1000 /* max # of links to a single file */

LOGNAME_MAX 8 /* max # of characters in a
login name */

LONG_BIT 32 /* # of bits in a long */

LONG_MAX 2147483647L /* max value of a long int if
_ILP32 defined */

9223372036854775807L /* max value of a long int if
_LP64 defined */

LONG_MIN (-2147483647-1L) /* min value of a long int if
_ILP32 defined */

Last modified 19 Mar 1999 SunOS 5.8 205

limits(4) File Formats

(-9223372036854775807L-1L) /* min value of a long int if
_LP64 defined */

MAX_CANON 256 /* max bytes in a line for canonical
processing */

MAX_INPUT 512 /* max size of a char input buffer */

MB_LEN_MAX 5 /* max # of bytes in a multibyte
character */

NAME_MAX 14 /* max # of characters in a
file name */

NGROUPS_MAX 16 /* max # of groups for a user */

NL_ARGMAX 9 /* max value of "digit" in calls to the

NLS printf() and scanf() */

NL_LANGMAX 14 /* max # of bytes in a LANG
name */

NL_MSGMAX 32767 /* max message number */

NL_NMAX 1 /* max # of bytes in N-to-1
mapping characters */

NL_SETMAX 255 /* max set number */

NL_TEXTMAX 255 /* max # of bytes in a message
string */

NZERO 20 /* default process priority */

OPEN_MAX 20 /* max # of files a process can
have open */

PASS_MAX 8 /* max # of characters in a
password */

PATH_MAX 1024 /* max # of characters in a
path name */

PID_MAX 999999 /* max value for a process ID */

PIPE_BUF 5120 /* max # bytes atomic in write
to a pipe */

PIPE_MAX 5120 /* max # bytes written to a
pipe in a write */

SCHAR_MAX 127 /* max value of a "signed char" */

SCHAR_MIN (-128) /* min value of a "signed char" */

SHRT_MAX 32767 /* max value of a "short int" */

206 SunOS 5.8 Last modified 19 Mar 1999

File Formats limits(4)

SHRT_MIN (-32768) /* min value of a "short int" */

STD_BLK 1024 /* # bytes in a physical I/O block */

SYS_NMLN 257 /* 4.0 size of utsname elements */

/* also defined in sys/utsname.h */

SYSPID_MAX 1 /* max pid of system processes */

TMP_MAX 17576 /* max # of unique names
generated by tmpnam */

UCHAR_MAX 255 /* max value of an "unsigned
char" */

UID_MAX 2147483647 /* max value for a user or
group ID */

UINT_MAX 4294967295 /* max value of an "unsigned int" */

ULONG_MAX 4294967295UL /* max value of an "unsigned long
int" if _ILP32 defined */

18446744073709551615UL /* max value of an "unsigned long
int" if _LP64 defined */

USHRT_MAX 65535 /* max value of an "unsigned
short int" */

USI_MAX 4294967295 /* max decimal value of an
"unsigned" */

WORD_BIT 32 /* # of bits in a word or int */

The following POSIX definitions are the most restrictive values to be used
by a POSIX-conforming application (see standards (5)). Conforming
implementations shall provide values at least this large.

_POSIX_ARG_MAX 4096 /* max length of arguments to exec */

_POSIX_CHILD_MAX 6 /* max # of processes per user ID */

_POSIX_LINK_MAX 8 /* max # of links to a single file */

_POSIX_MAX_CANON 255 /* max # of bytes in a line of input */

_POSIX_MAX_INPUT 255 /* max # of bytes in terminal
input queue */

_POSIX_NAME_MAX 14 /* # of bytes in a filename */

_POSIX_NGROUPS_MAX 0 /* max # of groups in a process */

_POSIX_OPEN_MAX 16 /* max # of files a process can
have open */

Last modified 19 Mar 1999 SunOS 5.8 207

limits(4) File Formats

_POSIX_PATH_MAX 255 /* max # of characters in a pathname */

_POSIX_PIPE_BUF 512 /* max # of bytes atomic in write
to a pipe */

SEE ALSO standards (5)

208 SunOS 5.8 Last modified 19 Mar 1999

File Formats llc2(4)

NAME llc2 – LLC2 Configuration file

SYNOPSIS /etc/llc2/default/llc2.*

DESCRIPTION The llc2 files contain information needed by LLC2 to establish the appropriate
links to the underlying MAC layer drivers as well as the parameters necessary to
configure the LLC (Logical Link Control) Class II Station Component structures
for that link.

The comments are made up of one or more lines starting with the "#" character
in column 1.

The main section consists of keyword/value pairs of the form keyword=value,
used to initialize the particular adapter.

A sample of the llc2 is presented below:

devicename=/dev/dnet
deviceinstance=1
llc2_on=1 # LLC2: On/Off on this device
deviceloopback=1
timeinterval=0 # LLC2: Timer Multiplier
acktimer=2 # LLC2: Ack Timer
rsptimer=2 # LLC2: Response Timer
polltimer=4 # LLC2: Poll Timer
rejecttimer=6 # LLC2: Reject Timer
rembusytimer=8 # LLC2: Remote Busy Timer
inacttimer=30 # LLC2: Inactivity Timer
maxretry=6 # LLC2: Maximum Retry Value
xmitwindowsz=14 # LLC2: Transmit Window Size
rcvwindowsz=14 # LLC2: Receive Window Size

MAC specific
Parameters

The llc2.ppa file contains 4 parameters directly related to the underlying
MAC-level driver. These are the name of the physical device, the instance of
the device, whether LLC2 can be used with this device, and whether the device
is capable of looping back data addressed to the node’s unique MAC address,
broadcast address, or multicast addresses.

Setting the llc2_on parameter to 1 means that LLC2 can be used with this
device; setting it to 0 means otherwise. Setting the loopback parameter to 1
means that the LLC2 module will loop back data addressed to this node’s unique
MAC address or to a broadcast/multicast address.

The most likely use is for a media that cannot receive its own transmissions (for
example, ethernet) or when the MAC-level driver intentionally does not loop
back data addressed to the local node under the assumption that the upper
layers have already done so.

Host-Based LLC2
Parameters

The LLC2 contains ten parameters in the configuration file
(/etc/llc2/default/llc2. ppa) that apply to configurations using the

Last modified 18 May 1999 SunOS 5.8 209

llc2(4) File Formats

Host-Based LLC2 component for connection-oriented operation over an
Ethernet, Token Ring, or FDDI media.

The ten parameters break down into the following four groups:

� Six parameters deal with timer settings for managing the flow of LLC
elements of procedure (PDUs) on a data link connection.

� One parameter is the multiplier that is used to determine the period of
the interval timer for the station. A value of 1 means that each tick count
represents 100 milliseconds; 5 means each tick count is 500 milliseconds.
Should the parameter be omitted, the default value is 5, except for Token
Ring links which use a default of 1.

� One parameter indicates how many times an operation should be retried
on a data link connection.

� Two parameters are for controlling the number of unacknowledged I PDUs
to send or receive on a data link connection.

Additional information on these parameters can be found in ISO 8802-2 : 1989,
Section 7.8.

The following table of Logical Link Control Parameters provides the
LLC configuration parameter names, default values, and ranges.

Parameter Description Default Range

timeinterval The timer ticks in 100 ms intervals.
This parameter is used to scale the
following 5 timer parameters.

5, except
TPR - 1

0 - 10

acktimer The connection acknowledgment timer
length in (100 * timeinterval) ms.

2 > 0

rsptimer The response acknowledgment timer
length in (100 * timeinterval) ms.

2 > 0

polltimer The connection poll timer length in
(100 * timeinterval) ms.

4 > 0

rejecttimer The connection reject timer length in
(100 * timeinterval) ms.

6 > 0

210 SunOS 5.8 Last modified 18 May 1999

File Formats llc2(4)

Parameter Description Default Range

rembusytimer The connection remote busy timer
length in (100 * timeinterval) ms.

8 > 0

inacttimer The connection inactivity timer length
in (100 * timeinterval) ms.

30 > 0

maxretry The maximum number of retries of
an action on a connection.

6 0 - 100

xmitwindowsz The maximum number of
unacknowledged I-format protocol
data units that can be transmitted
on a connection before awaiting
an acknowledgment.

14 0 - 127

rcvwindowsz The maximum number of
unacknowledged I-format protocol
data units that can be received
on a connection before an
acknowledgment is sent.

14 0 - 127

Default values are set when the following conditions are true:

� The parameter is not set by the user.

� The user requests a default /etc/ildcf file built based on the adapters
installed.

� The user codes a value of 0 for a parameter.

Timer Parameter
Descriptions

acktimer The acktimer parameter is used to manage the following
sample sequences:

1. Attempting to establish, reset, or disconnect a connection.

SABME start acknowledgment timer
or -------------------------------->

DISC

The acknowledgment timer expires before the receipt
of a response.

SABME start acknowledgment timer
or -------------------------------->

DISC

Last modified 18 May 1999 SunOS 5.8 211

llc2(4) File Formats

stop acknowledgment timer
<-------------------------------- UA

2. Sending an FRMR in response to a received PDU of
dubious distinction:

PDU with invalid N(R)
or

I PDU with invalid N(S)
or

<------------------- PDU of invalid length
or

unexpected UA PDU
or

response PDU with
invalid P/F setting

start acknowledgment timer
FRMR -------------------------------->

Acknowledgment timer expires before the receipt of a
PDU.

start acknowledgment timer
FRMR -------------------------------->

stop acknowledgment timer
SABME, FRMR

<------------------------------- DISC, or DM

3. There is also a special case of the acknowledgment
timer, referred to in this implementation as the response
acknowledgment timer (rsptimer). It is used when
sending an I PDU.

start response acknowledgement timer
I -------------------------------------->

Response acknowledgment timer expires before the
receipt of an acknowledgment.

start poll timer
RR -------------------------------->

polltimer The polltimer parameter is used to manage situations
where a Supervisory command PDU (RR, RNR, or REJ) is
sent with the P/F bit set. This type of PDU is typically
sent when:

� There has been a period of inactivity on a connection in
information transfer mode.

212 SunOS 5.8 Last modified 18 May 1999

File Formats llc2(4)

� The remote node must be notified of a local busy
condition occurring in information transfer mode.

The expiration of the poll timer causes another Supervisory
command PDU (which may be of a different type than the
first) to be sent with the P/F bit set, provided the retry count
has not exceeded the maximum retry value. This timer, then,
provides an extended retry mechanism for a connection in
information transfer mode.

rejecttimer The rejecttimer parameter controls the frequency with
which a REJ PDU is sent to a remote node from which an I
PDU with an unexpected N(S) was received and which
has not corrected the situation by sending an I PDU with
the expected N(S).

<----------------------- I PDU with
unexpected N(S)

start reject timer
REJ ------------------------>

Reject timer expires before the receipt of an I PDU with an
expected N(S).

start reject and poll timer
REJ ----------------------------->

stop reject and poll timer
<--------------------------- I PDU with

expected N(S)

rembusytimer The rembusytimer parameter is used to determine how
long the local node should wait, after the remote node sends
an RNR to indicate it is busy, before sending a Supervisory
PDU with the P/F bit set to solicit the current state of the
remote node. If the remote node indicates that it has cleared
its busy condition before the timer expires, the local node
stops the remote busy timer.

inacttimer The inacttimer parameter controls how much time is
allowed to elapse on a connection in information transfer
mode between the issuing of command PDUs by the local
node. If the inactivity timer expires because a command
PDU has not been generated in the configured time interval,
a Supervisory PDU with the P/F bit set is sent to the remote
node to solicit its current state, provided that the connection
is in information transfer mode. Each time a command PDU
is sent by the local node, the inactivity timer is restarted.

Last modified 18 May 1999 SunOS 5.8 213

llc2(4) File Formats

The following rules of thumb should apply for the timer parameters:

� The acktimer , rsptimer , and polltimer parameters should have small
relative values to allow for quick recovery from common transient error
conditions on a connection.

� The rejecttimer and rembusytimer parameters should have
intermediate relative values to allow the local and remote nodes time to
recover without resorting to possibly unnecessary polling cycles.

� The inacttimer parameter should be set to a large relative value to
provide a safety net in information transfer mode.

You may need to shift the values for the timer parameters to higher values if
bridges are included in the network or a user application requires a substantial
amount of time to respond to connection establishment requests or handle
information flow.

Maximum
Retry Parameter

Description

The maxretry parameter determines the number of times a recovery operation
is performed before notifying the user that an error has occurred on a connection.
Typical examples of its use include the following:

� When the remote node fails to respond to a SABME sent by the local node
to establish or reset the connection, the SABME is resent each time the
acknowledgment timer expires, up to maxretry number of times.

� In information transfer mode, if the response acknowledgment timer expires
after an I PDU has been sent, an RR with the P/F bit set is sent (and
resent each time the poll timer expires) until the remote node responds or
maxretry number of RRs have been sent.

In general, the maxretry value should not need to be large. Since the
acknowledgment and poll timers are typically used in recovery operations
that involve the maxretry parameter, the product of maxretry and either
acktimer , rsptimer , or polltimer gives a rough estimate of the length
of time allotted for the connection to attempt internal error recovery before
notifying the user.

Window Size
Parameter

Descriptions

rcvwindowsz The rcvwindowsz parameter is used to set the receive
window size for I PDUs received locally on a connection.
This value should agree with the transmit window size
set for the connection at the remote node. If the local
rcvwindowsz is greater than the remote transmit window
size, I PDUs sent by the remote node are not acknowledged
quickly. If the local rcvwindowsz is less than the remote
transmit window size, there is a greater risk of the local node
generating FRMR PDUs, requiring intervention by the user
application when transient errors on the connection require

214 SunOS 5.8 Last modified 18 May 1999

File Formats llc2(4)

the remote node to retransmit an I PDU. REJ PDUs are
recovered internally.

xmitwindowsz The xmitwindowsz parameter sets the local transmit
window size for a connection. It denotes the number of
unacknowledged I PDUs that the local node may have
outstanding. The configured value should match the receive
window size for the connection at the remote node, based on
the same reasoning as for the rcvwindowsz parameter.

In many cases, the values assigned to rcvwindowsz and xmitwindowsz for
adapters on a server node will depend on the transmit and receive window sizes
specified for another LLC implementation on a client node. In cases where this
LLC implementation is resident in both nodes, larger values for these parameters
are useful in environments where much of the activity on a connection consists
of file transfer operations. Smaller values are warranted if analysis of LLC2
connection component statistics reveals that connections are entering local or
remote busy state frequently.

For a complete explanation of the keywords used, see the publication,
The Logical Link Control Driver for Solaris, Installation and Diagnostics.

FILES /etc/llc2/default/llc2.*

SEE ALSO llc2_autoconfig (1), llc2_config (1), llc2 (7D)

Last modified 18 May 1999 SunOS 5.8 215

logindevperm(4) File Formats

NAME logindevperm, fbtab – login-based device permissions

SYNOPSIS /etc/logindevperm

DESCRIPTION The /etc/logindevperm file contains information that is used by login (1)
and ttymon (1M) to change the owner, group, and permissions of devices upon
logging into or out of a console device. By default, this file contains lines for the
keyboard, mouse, audio, and frame buffer devices.

The owner of the devices listed in /etc/logindevperm is set to the owner
of the console by login (1) . The group of the devices is set to the owner’s
group specified in /etc/passwd . The permissions are set as specified in
/etc/logindevperm .

Fields are separated by TAB and/or SPACE characters. Blank lines and
comments can appear anywhere in the file; comments start with a hashmark, ‘ #
’, and continue to the end of the line.

The first field specifies the name of a console device (for example,
/dev/console). The second field specifies the permissions to which
the devices in the device_list field (third field) will be set. A device_list is a
colon-separated list of device names. A device entry that is a directory name
and ends with "/*" specifies all entries in the directory (except "." and ".."). For
example, "/dev/fbs/*" specifies all frame buffer devices.

Once the devices are owned by the user, their permissions and ownership can be
changed using chmod(1) and chown (1) , as with any other user-owned file.

Upon logout the owner and group of these devices will be reset by ttymon (1M)
to owner root and root’s group as specified in /etc/passwd (typically other
). The permissions are set as specified in the /etc/logindevperm file.

FILES /etc/passwd File that contains user group information.

SEE ALSO chmod(1) , chown (1) , login (1) , ttymon (1M) , passwd (4)

NOTES /etc/logindevperm provides a superset of the functionality provided by
/etc/fbtab in SunOS 4.x releases.

216 SunOS 5.8 Last modified 16 August 1993

File Formats loginlog(4)

NAME loginlog – log of failed login attempts

DESCRIPTION After five unsuccessful login attempts, all the attempts are logged in the file
/var/adm/loginlog . This file contains one record for each failed attempt.
Each record contains the login name, tty specification, and time.

This is an ASCII file. Each field within each entry is separated from the next by a
colon. Each entry is separated from the next by a new-line.

By default, loginlog does not exist, so no logging is done. To enable logging,
the log file must be created with read and write permission for owner only.
Owner must be root and group must be sys .

FILES /var/adm/loginlog

SEE ALSO login (1), passwd (1)

Last modified 3 Jul 1990 SunOS 5.8 217

magic(4) File Formats

NAME magic – file command’s magic number file

SYNOPSIS /etc/magic

DESCRIPTION The file (1) command identifies the type of a file using, among other tests, a
test for whether the file begins with a certain magic number. The /etc/magic
file specifies what magic numbers are to be tested for, what message to print if
a particular magic number is found, and additional information to extract
from the file.

Each line of the file specifies a test to perform. A test compares the data starting
at a particular offset in the file with a 1-byte, 2-byte, or 4-byte numeric value
or a string. If the test succeeds, a message is printed. The line consists of the
following fields (separated by tabs):

offset type value message

offset A number specifying the offset, in bytes, into the file of the
data which is to be tested.

type The type of the data to be tested. The possible values are:

byte A one-byte value.

short A two-byte value.

long A four-byte value.

string A string of bytes.

The types byte , short , and long may optionally be
followed by a mask specifier of the form &number. If a mask
specifier is given, the value is AND’ed with the number
before any comparisons are done. The number is specified
in C form. For instance, 13 is decimal, 013 is octal, and
0x13 is hexadecimal.

value The value to be compared with the value from the file. If
the type is numeric, this value is specified in C form. If it is
a string, it is specified as a C string with the usual escapes
permitted (for instance, \n for NEWLINE).

218 SunOS 5.8 Last modified 8 May 1995

File Formats magic(4)

Numeric values may be preceded by a character indicating
the operation to be performed. It may be ‘=’, to specify that
the value from the file must equal the specified value, ‘<’,
to specify that the value from the file must be less than the
specified value, ‘>’, to specify that the value from the file
must be greater than the specified value, ‘&’, to specify that
all the bits in the specified value must be set in the value
from the file, ‘^ ’, to specify that at least one of the bits in the
specified value must not be set in the value from the file,
or x to specify that any value will match. If the character is
omitted, it is assumed to be ‘=’.

For string values, the byte string from the file must match
the specified byte string. The byte string from the file which
is matched is the same length as the specified byte string.

message The message to be printed if the comparison succeeds. If
the string contains a printf (3C) format specification, the
value from the file (with any specified masking performed)
is printed using the message as the format string.

Some file formats contain additional information which is to be printed along
with the file type. A line which begins with the character ‘>’ indicates additional
tests and messages to be printed. If the test on the line preceding the first line
with a ‘>’ succeeds, the tests specified in all the subsequent lines beginning with
‘>’ are performed, and the messages printed if the tests succeed. The next line
which does not begin with a ‘>’ terminates this.

FILES /etc/magic

SEE ALSO file (1), file (1B), printf (3C)

BUGS There should be more than one level of subtests, with the level indicated by the
number of ‘>’ at the beginning of the line.

Last modified 8 May 1995 SunOS 5.8 219

mech(4) File Formats

NAME mech, qop – mechanism and QOP files

SYNOPSIS /etc/gss/mech/etc/gss/qop

DESCRIPTION The /etc/gss/mech and /etc/gss/qop files contain tables showing installed
security mechanisms and the Quality of Protection (QOP) associated with them,
respectively. As security mechanisms are installed on the system, entries are
added to these two files. Contents of these files may be accessed either manually
(for example, with cat (1) or more (1)) or programmatically (with either
rpc_gss_get_mechanisms (3NSL) or rpc_gss_get_mech_info (3NSL)).

The /etc/gss/mech file contains four fields:
mechanism name ASCII string representing the mechanism.

object identifier RPC OID for this mechanism.

shared library Shared library which implements the services
provided by this mechanism.

kernel module Kernel module which implements the services
provided by this mechanism.

The /etc/gss/qop file contains three fields:
QOP string Name, in ASCII, of this Quality of Protection.

QOP value Numeric value by which RPC identifies this QOP.

mechanism name ASCII string representing the mechanism with
which this QOP is associated.

EXAMPLES EXAMPLE 1 A Typical Entry in /etc/gss/mech

This is a typical entry in a /etc/gss/mech file:
kerberosv5 1.2.840.113554.1.2.2 mech_krb5.so kmech_krb5

EXAMPLE 2 A Typical Entry in /etc/gss/qop

This is a typical entry in a /etc/gss/qop file:
GSS_KRB5_CONF_C_QOP_DES 0 kerberosv5

SEE ALSO rpc (3NSL) , rpc_gss_get_mechanisms (3NSL) ,
rpc_gss_get_mech_info (3NSL) , rpcsec_gss (3NSL) ,
attributes ONC+ Developer’s Guide

220 SunOS 5.8 Last modified 12 May 1998

File Formats mnttab(4)

NAME mnttab – mounted file system table

DESCRIPTION The file /etc/mnttab is really a file system that provides read-only access to
the table of mounted file systems for the current host. /etc/mnttab is read
by programs using the routines described in getmntent (3C). Mounting a
file system adds an entry to this table. Unmounting removes an entry from
this table. Remounting a file system causes the information in the mounted
file system table to be updated to reflect any changes caused by the remount.
The list is maintained by the kernel in order of mount time. That is, the first
mounted file system is first in the list and the most recently mounted file system
is last. When mounted on a mount point the file system appears as a regular file
containing the current mnttab information.

Each entry is a line of fields separated by spaces in the form:

special mount_point fstype options time

where
special The name of the resource to be mounted.

mount_point The pathname of the directory on which the filesystem is
mounted.

fstype The file system type of the mounted file system.

options The mount options. (See respective mount file system man
page in SEE ALSO.)

time The time at which the file system was mounted.

Examples of entries for the special field include the pathname of a block-special
device, the name of a remote file system in the form of host:pathname, or the name
of a swap file (for example, a file made with mkfile (1M)).

IOCTLS The following ioctl (2) calls are supported:
MNTIOC_NMOUNTS Returns the count of mounted resources in the

current snapshot in the uint32_t pointed
to by arg.

MNTIOC_GETDEVLIST Returns an array of uint32_t ’s that is twice as
long as the length returned by MNTIOC_NMOUNTS.
Each pair of numbers is the major and minor
device number for the file system at the
corresponding line in the current /etc/mnttab
snapshot. arg points to the memory buffer to
receive the device number information.

Last modified 29 Sep 1999 SunOS 5.8 221

mnttab(4) File Formats

MNTIOC_SETTAG Sets a tag word into the options list for a
mounted file system. A tag is a notation that will
appear in the options string of a mounted file
system but it is not recognized or interpreted by
the file system code. arg points to a filled in
mnttagdesc structure, as shown in the following
example:

uint_t mtd_major; /* major number for mounted fs */
uint_t mtd_minor; /* minor number for mounted fs */
char *mtd_mntpt; /* mount point of file system */
char *mtd_tag; /* tag to set/clear */

If the tag already exists then it is marked as
set but not re-added. Tags can be at most
MAX_MNTOPT_TAGlong.

MNTIOC_CLRTAG Marks a tag in the options list for a mounted file
system as not set. arg points to the same structure
as MNTIOC_SETTAG, which identifies the file
system and tag to be cleared.

ERRORS EFAULT The arg pointer in an MNTIOC_ ioctl call
pointed to an inaccessible memory location or
a character pointer in a mnttagdesc structure
pointed to an inaccessible memory location.

EINVAL The tag specified in a MNTIOC_SETTAGcall
already exists as a file system option, or the
tag specified in a MNTIOC_CLRTAGcall does
not exist.

ENAMETOOLONG The tag specified in a MNTIOC_SETTAGcall is
too long or the tag would make the total length
of the option string for the mounted file system
too long.

WARNINGS The mnttab file system provides the previously undocumented dev= xxx option
in the option string for each mounted file system. This is provided for legacy
applications that might have been using the dev=information option.

Using dev= option in applications is strongly discouraged. The device number
string represents a 32-bit quantity and might not contain correct information in
64-bit environments.

Applications requiring device number information for mounted file systems
should use the getextmntent (3C) interface, which functions properly in either
32- or 64-bit environments.

222 SunOS 5.8 Last modified 29 Sep 1999

File Formats mnttab(4)

FILES /etc/mnttab
Usual mount point for mnttab file system

/usr/include/sys/mntio.h
Header file that contains IOCTL definitions

SEE ALSO mkfile (1M), mount_cachefs (1M), mount_hsfs (1M), mount_nfs (1M),
mount_pcfs (1M), mount_ufs (1M), mount (1M), ioctl (2), read (2), poll (2),
stat (2), getmntent (3C)

NOTES The snapshot of the mnttab information is taken any time a read (2) is
performed at offset 0 (the beginning) of the mnttab file. The file modification
time returned by stat (2) for the mnttab file is the time of the last change
to mounted file system information. A poll (2) system call requesting a
POLLRDBANDevent can be used to block and wait for the system’s mounted
file system information to be different from the most recent snapshot since
the mnttab file was opened.

Last modified 29 Sep 1999 SunOS 5.8 223

nca.if(4) File Formats

NAME nca.if – the NCA configuration file that specifies physical interfaces

SYNOPSIS /etc/nca/nca.if

DESCRIPTION Specify the physical interfaces for which the Solaris Network Cache and
Accelerator (“NCA”) feature will be configured in the nca.if configuration
file. List the physical interfaces in the file, one per line. To configure
NCA to listen on all physical interfaces present on the system backed by a
hostname.{interface_name} , then list only an asterik (“* ”) in nca.if .

When ncakmod (1) is invoked during system boot, it will attempt to
ifconfig (1M) each physical interface specified in the nca.if file. Note that
there must be an accompanying hostname.{interface_name} file and an
entry in /etc/hosts for the contents of hostname.{interface_name} .

You must reboot in order to implement changes to the nca.if file.

EXAMPLES
IA EXAMPLE 1 IA: nca.if on IA

The following is an example of an nca.if file that would be used on an
IA system:

iprb1
iprb6
iprb8

SPARC EXAMPLE 2 nca.if on SPARC

The following is an example of an nca.if file that would be used on a SPARC
system:

hme2
hme3
hme4

All Platforms EXAMPLE 3 Configuring NCA to Listen on All Physical Interfaces

The following example shows the contents of an nca.if file that would be
used to configure either platform to listen on all physical interfaces present
on the system:

*

FILES /etc/nca/nca.if Lists the physical interfaces on which NCA
will run.

/etc/hostname.{}{0-9} Lists all physical interfaces configured on the
server.

224 SunOS 5.8 Last modified 12 Oct 1999

File Formats nca.if(4)

/etc/hosts Lists all host names associated with the server.
Entries in this file must match with entries in
/etc/hostname.{}{0–9} for NCA to function.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar

Interface Stability Evolving

SEE ALSO ifconfig (1M), nca (1), attributes (5)

System Administration Guide, Volume 3

Last modified 12 Oct 1999 SunOS 5.8 225

ncakmod.conf(4) File Formats

NAME ncakmod.conf – the ncakmod configuration file

SYNOPSIS /etc/nca/ncakmod.conf

DESCRIPTION The ncakmod.conf file is used to configure the Solaris Network Cache and
Accelerator (“NCA”) kernel module. The file contains two fields, key and
value .

The status key is used to indicate if the user wants to have NCA turned on
as a feature. If the value of status key is enabled , then the NCA kernel
module will be pushed on to the specified interfaces. If the value of the status
key is disabled , then the NCA kernel module will not be pushed on to any
interfaces . The default is “disabled”.

The httpd_door_path key specifies the path name of the Solaris Door RPC
mechanism that will be used to communicate with the http daemon. The
default value is /var/run/nca_httpd_1.door .

In order to implement changes to the ncakmod.conf file, you will need
to reboot.

EXAMPLES EXAMPLE 1 A Sample ncakmod.conf File

The following is a sample ncakmod.conf file:
#
NCA Kernel Module Configuration File
#
status=disabled
httpd_door_path=/var/run/nca_httpd_1.door

FILES /etc/nca/ncakmod.conf The NCA kernel module
configuration file.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar

Interface Stability Evolving

SEE ALSO nca (1), door_create (3DOOR), nca.if (4), attributes (5)

System Administration Guide, Volume 3

226 SunOS 5.8 Last modified 12 Oct 1999

File Formats ncalogd.conf(4)

NAME ncalogd.conf – the NCA logging configuration file

SYNOPSIS /etc/nca/ncalogd.conf

DESCRIPTION The ncalogd.conf is used to configure Solaris Network Cache and Accelerator
(“NCA”) logging. The file contains two fields, key and value .

The status key is used to indicate if the user wants to have NCA logging
turned on. If the value of status key is enabled , then NCA logging will be
turned on. If the value of the status key is disabled , then NCA logging will
not be invoked. The default value is “disabled”.

The logd_path_name key specifies the location of the log file. The value of
logd_path_name is the absolute path to the log file. The default value is
/var/nca/log . logd_path_name can also contain a white space delimited list
of values for multiple log files to a maximum of 16. NCA logging moves to the
next file on the list once the file size specified by logd_file_size has been
reached. When the last file is full, NCA logging rotates back to the first file in the
list. A pointer to the current log file is stored in /var/nca/current .

The logd_file_size key specifies the value of the file size, in bytes, allowed
for each log file specified in by the logd_path_name key. The default value is
1000000 bytes.

In order to implement changes to the ncalogd.conf file, you will need to
stop and start NCA logging or reboot.

EXAMPLES EXAMPLE 1 A Sample ncalogd.conf File

The following is a sample ncalogd.conf file that specifies three log files:
#
NCA Log Daemon Configuration File
#

status=disabled
logd_path_name=/var/nca/log1 /var/nca/log2 /var/nca/log3
logd_file_size=1000000

FILES /etc/nca/ncalogd.conf Lists configuration parameters for
NCAlogging.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 12Oct 1999 SunOS 5.8 227

ncalogd.conf(4) File Formats

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar

Interface Stability Evolving

SEE ALSO nca (1), door_create (3X), attributes (5)

System Administration Guide, Volume 3

228 SunOS 5.8 Last modified 12Oct 1999

File Formats ndpd.conf(4)

NAME ndpd.conf – configuration file for IPv6 router autoconfiguration

SYNOPSIS /etc/inet/ndpd.conf

DESCRIPTION The ndpd.conf file contains configuration information for in.ndpd ()1M when
used on a router. This file does not need to exist or can be empty on a host. The
file has one configuration entry per line; note that lines can be extended with “\ "
followed by a newline. There are four forms of configuration entries which are
identified by the first field on the line: ifdefault , prefixdefault , if , or
prefix . The ifdefault and if entries set interface configuration variables;
the former establishes the defaults for all interfaces. Any ifdefault entries
must precede any if entries in the file.

The prefixdefault and prefix entries control per-prefix configuration
variables. prefixdefault establishes the defaults for all prefixes on all
interfaces. Any prefixdefault entries must precede any prefix entries
in the file.

Each ifdefault entry is composed of a single line of the form:

ifdefault [if-variable-name value]*

Each if entry is composed of a single line of the form:

if interface [if-variable-name value]*

Each prefixdefault entry is composed of a single line of the form:

prefixdefault [prefix-variable-name value]*

Each prefix entry is composed of a single line of the form:

prefix prefix/prefix_length interface [prefix-variable-name value]*

Fields are separated by either SPACE or TAB characters. A ‘#’ (number sign)
indicates the beginning of a comment; characters up to the end of the line are not
interpreted by routines that search this file.
interface The name of a network interface, for example,

le0 .

prefix An IPv6 address in standard hexadecimal
notation, for example, fec0:0:0:1::0 .

prefix_length A number between 0 and 128.

Last modified 18 Jun 1999 SunOS 5.8 229

ndpd.conf(4) File Formats

if-variable-name An interface variable as discussed in RFC 2461
and RFC 2462. The following lists the each
interface variable and its default value and unit:

Variable Name Default Unit

DupAddrDetectTransmits 1 Counter

AdvSendAdvertisements false Boolean

MaxRtrAdvInterval 600 Seconds

MinRtrAdvInterval 200 Seconds

AdvManagedFlag false Boolean

AdvOtherConfigFlag false Boolean

AdvLinkMTU 0 Bytes

AdvReachableTime 0 Milliseconds

AdvRetransTimer 0 Milliseconds

AdvCurHopLimit 0 Counter

AdvDefaultLifetime 1800 Seconds

prefix-variable-name A prefix variable as discussed in RFC 2461 and
RFC 2462. The following lists the each interface
variable and its default value and unit:

Variable Name Default Unit

AdvValidLifetime 2592000 Seconds

AdvOnLinkFlag true Boolean

AdvPreferredLifetime 604800 Seconds

AdvAutonomousFlag true Boolean

AdvValidExpiration not set Date/Time

AdvPreferredExpiration not set Date/TIme

The “Expiration” variables are used to specify
that the lifetime should be decremented in real
time as specified in RFC 2461. If an "Expiration"
variable is set then it takes precedence over the
corresponding "Lifetime" variable setting.

230 SunOS 5.8 Last modified 18 Jun 1999

File Formats ndpd.conf(4)

value The value is a function of the unit. Boolean
values are true , false , on , off, 1, or 0.

Values in seconds can have characters appended
for day (d), hour h), minute (m) and second (s).
The default is seconds. For example, 1h means 1
hour. This is equivalent to the value 3600 .

Values in milliseconds can have characters
appended for day (d), hour (h), minute (m)
second (s), and millisecond (ms). The default is
milliseconds. For example, 1h is equivalent to
the value 3600000 .

Date/time values are strings that use the
recommended ISO date format described as
"%Y-%m-%d %R", which represents a 4 digit
year, a dash character, a numeric month, a dash
character, and a numeric day of the month,
followed by one or more whitespace characters
and finally a 24 hour clock with hours, a colon,
and minutes. For example, 1999-01-31 20:00
means 8pm January 31 in 1999. Since the
date/time values contain a space, use single or
double quotes to declare the value. For example:

prefixdefault AdvPreferredExpiration ’1999-01-31 20:00’

EXAMPLES EXAMPLE 1 Sending Router Advertisements for all Interfaces

The following example can be used to send router advertisements out to all
interfaces:

Send router advertisements out all interfaces
ifdefault AdvSendAdvertisements on AdvOnLinkFlag on AdvAutonomousFlag on

Advertise a (bogus) global prefix and a site
local prefix on three interfaces using the default lifetimes
prefix 2:0:0:9255::0/64 hme0
prefix fec0:0:0:9255::0/64 hme0

prefix 2:0:0:9256::0/64 hme1
prefix fec0:0:0:9256::0/64 hme1

prefix 2:0:0:9259::0/64 hme2
prefix fec0:0:0:9259::0/64 hme2

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 18 Jun 1999 SunOS 5.8 231

ndpd.conf(4) File Formats

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

SEE ALSO in.ndpd (1M), attributes (5), icmp6 (7P), ip6 (7P)

Narten, T., Nordmark, E., and Simpson, W., RFC 2461, Neighbor Discovery for
IP Version 6 (IPv6), The Internet Society, December 1998.

Thomson, S., and Narten, T., RFC 2462, IPv6 Stateless Address
Autoconfiguration, The Internet Society, December 1998.

232 SunOS 5.8 Last modified 18 Jun 1999

File Formats netconfig(4)

NAME netconfig – network configuration database

SYNOPSIS /etc/netconfig

DESCRIPTION The network configuration database, /etc/netconfig , is a system file used
to store information about networks that are connected to the system. The
netconfig database and the routines that access it (see getnetconfig (3NSL))
are part of the Network Selection component. The Network Selection component
also includes getnetpath (3NSL) routines to provide application-specific
network search paths. These routines access the netconfig database based on
the environment variable NETPATH. See environ (5).

netconfig contains an entry for each network available on the system.
Entries are separated by newlines. Fields are separated by whitespace and
occur in the order in which they are described below. Whitespace can be
embedded as “\ blank” or “\ tab”. Backslashes may be embedded as “\\ ”. Lines
in /etc/netconfig that begin with a # (hash) in column 1 are treated as
comments.

Each of the valid lines in the netconfig database correspond to an available
transport. Each entry is of the form:

network ID semantics flag protocol-family protocol-name \
network-device translation-libraries

network ID A string used to uniquely identify a network.
network ID consists of non-null characters, and
has a length of at least 1. No maximum length is
specified. This namespace is locally significant
and the local system administrator is the naming
authority. All network IDs on a system must
be unique.

semantics The semantics field is a string identifying the
“semantics” of the network, that is, the set
of services it supports, by identifying the
service interface it provides. The semantics
field is mandatory. The following semantics
are recognized.

tpi_clts Transport Provider Interface,
connectionless

tpi_cots Transport Provider Interface,
connection oriented

Last modified 7 Jun 1999 SunOS 5.8 233

netconfig(4) File Formats

tpi_cots_ord Transport Provider Interface,
connection oriented, supports
orderly release.

flag The flag field records certain two-valued (“true”
and “false”) attributes of networks. flag is a string
composed of a combination of characters, each of
which indicates the value of the corresponding
attribute. If the character is present, the attribute
is “true.” If the character is absent, the attribute is
“false.” “- ” indicates that none of the attributes
are present. Only one character is currently
recognized:

v Visible (“default”) network.
Used when the environment
variable NETPATHis unset.

protocol family The protocol family and protocol name fields are
provided for protocol-specific applications. The
protocol family field contains a string that identifies
a protocol family. The protocol family identifier
follows the same rules as those for network IDs;
the string consists of non-null characters, it has a
length of at least 1, and there is no maximum
length specified. A “−” in the protocol family field
indicates that no protocol family identifier applies
(the network is experimental). The following
are examples:

loopback Loopback (local to host).

inet Internetwork: UDP, TCP, and
the like.

inet6 Internetwork over IPv6: UDP,
TCP, and the like.

implink ARPANET imp addresses

pup PUP protocols: for example,
BSP

chaos MIT CHAOS protocols

ns XEROX NS protocols

234 SunOS 5.8 Last modified 7 Jun 1999

File Formats netconfig(4)

nbs NBS protocols

ecma European Computer
Manufacturers Association

datakit DATAKIT protocols

ccitt CCITT protocols, X.25, and
the like.

sna IBM SNA

decnet DECNET

dli Direct data link interface

lat LAT

hylink NSC Hyperchannel

appletalk Apple Talk

nit Network Interface Tap

ieee802 IEEE 802.2; also ISO 8802

osi Umbrella for all families used
by OSI (for example, protosw
lookup)

x25 CCITT X.25 in particular

osinet AFI = 47, IDI = 4

gosip U.S. Government OSI

protocol name The protocol name field contains a string that
identifies a protocol. The protocol name identifier
follows the same rules as those for network IDs;
that is, the string consists of non-NULL
characters, it has a length of at least 1, and
there is no maximum length specified. A “−”
indicates that none of the names listed apply. The
following protocol names are recognized.

tcp Transmission Control Protocol

udp User Datagram Protocol

icmp Internet Control Message
Protocol

Last modified 7 Jun 1999 SunOS 5.8 235

netconfig(4) File Formats

network device The network device is the full pathname of the
device used to connect to the transport provider.
Typically, this device will be in the /dev
directory. The network device must be specified.

translation libraries The name-to-address translation libraries support a
“directory service” (a name-to-address mapping
service) for the network. A “−” in this field
indicates the absence of any translation libraries.
This has a special meaning for networks of the
protocol family inet : its name-to-address
mapping is provided by the name service
switch based on the entries for hosts and
services in nsswitch.conf (4). For networks
of other families, a “−” indicates non-functional
name-to-address mapping. Otherwise, this field
consists of a comma-separated list of pathnames
to dynamically linked libraries. The pathname of
the library can be either absolute or relative. See
dlopen (3DL).

Each field corresponds to an element in the struct netconfig structure.
struct netconfig and the identifiers described on this manual page are
defined in <netconfig.h> . This structure includes the following members:
char * nc_netid Network ID, including NULL

terminator.

unsigned long nc_semantics Semantics.

unsigned long nc_flag Flags.

char * nc_protofmly Protocol family.

char * nc_proto Protocol name.

char * nc_device Full pathname of the network
device.

unsigned long nc_nlookups Number of directory lookup
libraries.

char ** nc_lookups Names of the name-to-address
translation libraries.

unsigned long nc_unused[9] Reserved for future expansion.

236 SunOS 5.8 Last modified 7 Jun 1999

File Formats netconfig(4)

The nc_semantics field takes the following values, corresponding to the semantics
identified above:

NC_TPI_CLTS
NC_TPI_COTS
NC_TPI_COTS_ORD

The nc_flag field is a bitfield. The following bit, corresponding to the attribute
identified above, is currently recognized. NC_NOFLAGindicates the absence of
any attributes.

NC_VISIBLE

EXAMPLES EXAMPLE 1 A Sample netconfig File

Below is a sample netconfig file:
#
The "Network Configuration" File.
#
Each entry is of the form:
#
<networkid> <semantics> <flags> <protofamily> <protoname><device> \
<nametoaddrlibs>
#
The "-" in <nametoaddrlibs> for inet family transports indicates
redirection to the name service switch policies for "hosts" and
"services". The "-" may be replaced by nametoaddr libraries that
comply with the SVr4 specs, in which case the name service switch
will not be used for netdirgetbyname, netdirgetbyaddr,
gethostbyname, gethostbyaddr, getservbyname, and getservbyport.
There are no nametoaddrlibs for the inet family in Solaris anymore.
#
#
The following two entries starting with udp6 and tcp6 are meant to be
used for IPv6. If you have Ipv6 enabled on your machine then you can
uncomment these two lines to enable RPC and NFS to use the Ipv6 stack.
Consult your network administrator before uncommenting.
#
#udp6 tpi_clts v inet6 udp /dev/udp6 -
#tcp6 tpi_cots_ord v inet6 tcp /dev/tcp6 -

udp tpiclts v inet udp /dev/udp -
tcp tpicotsord v inet tcp /dev/tcp -
rawip tpiraw - inet - /dev/rawip -
ticlts tpiclts v loopback - /dev/ticlts straddr.so
ticotsord tpicotsord v loopback - /dev/ticotsord straddr.so
ticots tpicots v loopback - /dev/ticots straddr.so

FILES <netconfig.h>

Last modified 7 Jun 1999 SunOS 5.8 237

netconfig(4) File Formats

SEE ALSO dlopen (3DL), getnetconfig (3NSL), getnetpath (3NSL),
nsswitch.conf (4)

NFS Administration Guide

Transport Interfaces Programming Guide

238 SunOS 5.8 Last modified 7 Jun 1999

File Formats netgroup(4)

NAME netgroup – list of network groups

SYNOPSIS /etc/netgroup

DESCRIPTION A netgroup defines a network-wide group of hosts and users.

Netgroups may be used to restrict access to shared NFS filesystems and for
restricting remote login and shell access.

Network groups are stored in one of the Network Information Services, either
NIS or NIS+, not in a local file.

This manual page describes the format for a file that may be used to supply
input to the makedbm(1M) or nisaddent (1M) programs that are use to build
the NIS map or NIS+ table, respectively.

Each line of the file defines the name and membership of network group. The
line should have the format:

groupname member ...

The items on a line may be separated by a combination of one or more spaces
or tabs.

The groupname is the name of the group being defined. This is followed by a list
of members of the group. Each member is either another group name, all of whose
members are to be included in the group being defined, or a triple of the form:

(hostname,username,domainname)

In each triple, any of the three fields hostname , username, and domainname ,
can be empty. An empty field signifies a "wildcard" matching any value in
that field. Thus:

everything (, ,this.domain)

defines a group named "everything" for the domain "this.domain" to which
every host and user belongs.

The domainname field refers to the domain in which the triple is valid, not the
domain containing the host or user.

Netgroups can be used to control NFS mount access (see share_nfs (1M)) and
to control remote login and shell access (see hosts.equiv (4)). They can also be

Last modified 17 Mar 1998 SunOS 5.8 239

netgroup(4) File Formats

used to control local login access (see passwd (4), shadow (4), and "compat" in
nsswitch.conf (4)).

When used for these purposes, a host is considered a member of a netgroup if
the netgroup contains any triple in which the hostname field matches the name
of the host requesting access and the domainname field matches the domain of
the host controlling access.

Similarly, a user is considered a member of a netgroup if the netgroup contains
any triple in which the username field matches the name of the user requesting
access and the domainname field matches the domain of the host controlling
access.

Note that when netgroups are used to control NFS mount access, access is
granted depending only on whether the requesting host is a member of the
netgroup. Remote login and shell access can be controlled both on the basis of
host and user membership in separate netgroups.

FILES /etc/netgroup used by /var/yp/Makefile on NIS masters
to build the NIS netgroup map

Note that the netgroup information must always be stored in a network
information service, either NIS or NIS+. The local file is only used to construct
the netgroup NIS maps or NIS+ table; it is never consulted directly.

SEE ALSO nis+ (1), makedbm(1M), nisaddent (1M), share_nfs (1M), innetgr (3C),
hosts (4), hosts.equiv (4), nsswitch.conf (4), passwd (4), shadow (4)

NOTES netgroup requires NIS or NIS+.

Applications may make general membership tests using the innetgr()
function (see innetgr (3C)).

Because the "-" character will not match any specific username or hostname, it is
commonly used as a placeholder that will match only wildcarded membership
queries. So, for example:

onlyhosts (host1,-,our.domain) (host2,-,our.domain)
onlyusers (-,john,our.domain) (-,linda,our.domain)

effectively define netgroups containing only hosts and only users, respectively.
Any other string that is guaranteed not to be a legal username or hostname will
also suffice for this purpose.

Use of placeholders will improve search performance.

When a machine with multiple interfaces and multiple names is defined as
a member of a netgroup, one must list all of the names (see hosts (4)). A
manageable way to do this is to define a netgroup containing all of the machine

240 SunOS 5.8 Last modified 17 Mar 1998

File Formats netgroup(4)

names. For example, for a host "gateway" that has names "gateway-subnet1" and
"gateway-subnet2" one may define the netgroup:

gateway (gateway-subnet1, ,our.domain) (gateway-subnet2, ,our.domain)

and use this netgroup gateway whenever the host is to be included in another
netgroup.

Last modified 17 Mar 1998 SunOS 5.8 241

netid(4) File Formats

NAME netid – netname database

SYNOPSIS /etc/netid

DESCRIPTION The netid file is a local source of information on mappings between netnames
(see secure_rpc (3NSL)) and user ids or hostnames in the local domain.
The netid file can be used in conjunction with, or instead of, the network
source: NIS or NIS+. The publickey entry in the nsswitch.conf (see
nsswitch.conf (4)) file determines which of these sources will be queried by
the system to translate netnames to local user ids or hostnames.

Each entry in the netid file is a single line of the form:

netname uid: gid, gid, gid . . .

or

netname 0:hostname

The first entry associates a local user id with a netname. The second entry
associates a hostname with a netname.

The netid file field descriptions are as follows:
netname The operating system independent network name for the

user or host. netname has one of two formats. The format
used to specify a host is of the form:

unix.hostname@ domain

where hostname is the name of the host and domain is
the network domain name.

The format used to specify a user id is of the form:

unix. uid@domain

where uid is the numerical id of the user and domain is the
network domain name.

uid The numerical id of the user (see passwd (4)). When
specifying a host name, uid is always zero.

group The numerical id of the group the user belongs to (see
group (4)). Several groups, separated by commas, may be
listed for a single uid.

hostname The local hostname (see hosts (4)).

242 SunOS 5.8 Last modified 23 May 1994

File Formats netid(4)

Blank lines are ignored. Any part of a line to the right of a ‘#’ symbol is treated
as a comment.

EXAMPLES EXAMPLE 1 A sample netid file.

Here is a sample netid file:

unix.789@West.Sun.COM 789:30,65
unix.123@Bldg_xy.Sun.COM 123:20,1521
unix.candlestick@campus1.bayarea.EDU 0:candlestick

FILES /etc/group groups file

/etc/hosts hosts database

/etc/netid netname database

/etc/passwd password file

/etc/publickey public key database

SEE ALSO netname2user (3NSL), secure_rpc (3NSL), group (4), hosts (4),
nsswitch.conf (4), passwd (4), publickey (4)

Last modified 23 May 1994 SunOS 5.8 243

netmasks(4) File Formats

NAME netmasks – network mask database

SYNOPSIS /etc/inet/netmasks

/etc/netmasks

DESCRIPTION The netmasks file contains network masks used to implement IP subnetting. It
supports both standard subnetting as specified in RFC-950 and variable length
subnetting as specified in RFC-1519. When using standard subnetting there
should be a single line for each network that is subnetted in this file with the
network number, any number of SPACE or TAB characters, and the network
mask to use on that network. Network numbers and masks may be specified in
the conventional IP ‘.’ (dot) notation (like IP host addresses, but with zeroes for
the host part). For example,

128.32.0.0 255.255.255.0

can be used to specify that the Class B network 128.32.0.0 should have eight bits
of subnet field and eight bits of host field, in addition to the standard sixteen bits
in the network field.

When using variable length subnetting, the format is identical. However, there
should be a line for each subnet with the first field being the subnet and the
second field being the netmask that applies to that subnet. The users of the
database, such as ifconfig (1M), perform a lookup to find the longest possible
matching mask. It is possible to combine the RFC-950 and RFC-1519 form of
subnet masks in the netmasks file. For example,

128.32.0.0 255.255.255.0
128.32.27.0 255.255.255.240
128.32.27.16 255.255.255.240
128.32.27.32 255.255.255.240
128.32.27.48 255.255.255.240
128.32.27.64 255.255.255.240
128.32.27.80 255.255.255.240
128.32.27.96 255.255.255.240
128.32.27.112 255.255.255.240
128.32.27.128 255.255.255.240
128.32.27.144 255.255.255.240
128.32.27.160 255.255.255.240
128.32.27.176 255.255.255.240
128.32.27.192 255.255.255.240
128.32.27.208 255.255.255.240
128.32.27.224 255.255.255.240
128.32.27.240 255.255.255.240
128.32.64.0 255.255.255.192

can be used to specify different netmasks in different parts of the 128.32.0.0 Class
B network number. Addresses 128.32.27.0 through 128.32.27.255 have a subnet

244 SunOS 5.8 Last modified 7 Jan 1997

File Formats netmasks(4)

mask with 28 bits in the combined network and subnet fields (often referred to as
the subnet field) and 4 bits in the host field. Furthermore, addresses 128.32.64.0
through 128.32.64.63 have a 26 bits in the subnet field. Finally, all other addresses
in the range 128.32.0.0 through 128.32.255.255 have a 24 bit subnet field.

Invalid entries are ignored.

SEE ALSO ifconfig (1M), inet (7P)

Postel, Jon, and Mogul, Jeff, Internet Standard Subnetting Procedure, RFC 950,
Network Information Center, SRI International, Menlo Park, Calif., August 1985.

V. Fuller, T. Li, J. Yu, K. Varadhan, Classless Inter-Domain Routing (CIDR): an
Address Assignment and Aggregation Strategy, RFC 1519, Network Information
Center, SRI International, Menlo Park, Calif., September 1993.

T. Pummill, B. Manning, Variable Length Subnet Table For IPv4, RFC 1878,
Network Information Center, SRI International, Menlo Park, Calif., December
1995.

NOTES /etc/inet/netmasks is the official SVr4 name of the netmasks file. The
symbolic link /etc/netmasks exists for BSD compatibility.

Last modified 7 Jan 1997 SunOS 5.8 245

netrc(4) File Formats

NAME netrc – file for ftp remote login data

DESCRIPTION The .netrc file contains data for logging in to a remote host over the network
for file transfers by ftp (1). This file resides in the user’s home directory on the
machine initiating the file transfer. Its permissions should be set to disallow read
access by group and others (see chmod(1)).

The following tokens are recognized; they may be separated by SPACE, TAB, or
NEWLINE characters:
machine name Identify a remote machine name. The auto-login process

searches the .netrc file for a machine token that matches
the remote machine specified on the ftp command line or as
an open command argument. Once a match is made, the
subsequent .netrc tokens are processed, stopping when the
EOF is reached or another machine token is encountered.

login name Identify a user on the remote machine. If this token is
present, the auto-login process will initiate a login using
the specified name.

password
string

Supply a password. If this token is present, the auto-login
process will supply the specified string if the remote server
requires a password as part of the login process. Note: if
this token is present in the .netrc file, ftp will abort the
auto-login process if the .netrc is readable by anyone
besides the user.

account string Supply an additional account password. If this token is
present, the auto-login process will supply the specified
string if the remote server requires an additional account
password, or the auto-login process will initiate an ACCT
command if it does not.

macdef name Define a macro. This token functions the same as ftp
macdef . A macro is defined with the specified name; its
contents begin with the next .netrc line and continue
until a null line (consecutive NEWLINE characters) is
encountered. If a macro named init is defined, it is
automatically executed as the last step in the auto-login
process.

EXAMPLES EXAMPLE 1 A Sample .netrc File

A .netrc file containing the following line:
machine ray login demo password mypassword

allows an autologin to the machine ray using the login name demo with
password mypassword .

246 SunOS 5.8 Last modified 3 Jul 1990

File Formats netrc(4)

FILES ~/.netrc

SEE ALSO chmod(1), ftp (1), in.ftpd (1M)

Last modified 3 Jul 1990 SunOS 5.8 247

networks(4) File Formats

NAME networks – network name database

SYNOPSIS /etc/inet/networks

/etc/networks

DESCRIPTION The networks file is a local source of information regarding the networks which
comprise the Internet. The networks file can be used in conjunction with, or
instead of, other networks sources, including the NIS maps networks.byname
and networks.byaddr and the NIS+ table networks . Programs use the
getnetbyname (3SOCKET) routines to access this information.

The network file has a single line for each network, with the following
information:

official-network-name network-number aliases

Items are separated by any number of SPACE and/or TAB characters. A ‘#’
indicates the beginning of a comment; characters up to the end of the line are not
interpreted by routines which search the file. This file is normally created from
the official network database maintained at the Network Information Control
Center (NIC), though local changes may be required to bring it up to date
regarding unofficial aliases and/or unknown networks.

Network numbers may be specified in the conventional dot (‘. ’) notation using
the inet_network routine from the Internet address manipulation library,
inet (7P). Network names may contain any printable character other than a
field delimiter, NEWLINE, or comment character.

SEE ALSO getnetbyaddr (3SOCKET), getnetbyname (3SOCKET), inet (3SOCKET),
nsswitch.conf (4), inet (7P)

NOTES The official SVR4 name of the networks file is /etc/inet/networks . The
symbolic link /etc/networks exists for BSD compatibility.

The network database does not support subnet masks in general, so
getnetbyaddr (3SOCKET) cannot differentiate between networks of
11.128.0.0/255.192.0.0 and 11.128.0.0/255.240.0.0.

248 SunOS 5.8 Last modified 2 Jun 1997

File Formats nfslog.conf(4)

NAME nfslog.conf – NFS server logging configuration file

SYNOPSIS /etc/nfs/nfslog.conf

DESCRIPTION The nfslog.conf file specifies the location of the NFS server logs, as well as
the location of the private work files used by the NFS server and nfslogd (1M)
daemon during logging. Each entry in the file consists of a mandatory tag
identifier and one or more parameter identifiers. The parameter identifier
specifies the value or location of the specific parameter. For instance, the
parameter identifier "log=/var/nfs/logs/serverLog " specifies the
location of the NFS server activity log. The mandatory tag identifier serves
as an index into the /etc/nfs/nfslog.conf file to identify the various
parameters to be used. At export time, the share_nfs (1M) command specifies
the NFS server logging parameters to use by associating a tag from the
/etc/nfs/nfslog.conf file to the exported file system. It is legal for more
than one file system to be exported using the same logging tag identifier.

A "global" tag identifier is included in /etc/nfs/nfslog.conf . It specifies the
default set of values to be used during logging. If no tag identifier is specified at
export time, then the values in the "global" entry are used. The "global" values
can be modified by updating this entry in /etc/nfs/nfslog.conf .

Each entry in the file must contain a mandatory tag identifier and at least one
parameter/value pair. If a parameter is not specified in a given entry, the global
value of the parameter will be used. The exact entry syntax follows:

<tag> [defaultdir=<path>] [log=<path><file>] [fhtable=<path><file>] \
[buffer=<path><file>] [logformat=basic|extended]

defaultdir=<path> Specifies the directory where the
logging files and working files will be
placed. This path is prepended to
all relative paths specified in other
parameters.

log=<path><file> Specifies the location of the
user-readable log file. The log will be
located in the defaultdir , unless
<path> is an absolute path.

fhtable=<path><file> Specifies the location of the private
file handle to path mapping database
files. These database files are for the
private use of the NFS server kernel
module and the nfslog d daemon.
These files will be located in the
defaultdir , unless <path> is an

Last modified 9 Nov 1999 SunOS 5.8 249

nfslog.conf(4) File Formats

absolute path. These database files
are permanently stored in the file
system. Consult nfslogd (1M) for
information on pruning the database
files.

buffer=<path><file> Specifies the location of the private
work buffer file used by the NFS
server kernel module to record
raw RPC information. This file is
later processed by the nfslog
daemon, which in turn generates the
user-readable log file. This work
buffer file will be located in the
defaultdir , unless <path> is an
absolute path.

logformat=basic|extended Sets the format of the user-readable
log file. If not specified, the basic
format is used. The basic format is
compatible with log files generated
by the Washington University FTPd.
The extended format provides a more
detailed log, which includes directory
modification operations not included
in the basic format, such as mkdir ,
rmdir and remove . Note that the
extended format is not compatible
with Washington University’s FTPd
log format.

EXAMPLES EXAMPLE 1 Using the global Tag

The "global" tag may be modified so that all exported file systems that enabled
logging use a common set of parameters that conform to the specific needs of the
user. These values are used until a specific tag identifier overrides them.

global defaultdir=/var/nfs log=logs/nfslog \
fhtable=tables/fhtable buffer=buffers/nfslog_workbuffer \
logformat=basic

EXAMPLE 2 Overriding the Global defaultdir and logformat

Because log files can become very large, it may be desirable to store the logs
and working files in separate file systems. This can be easily accomplished

250 SunOS 5.8 Last modified 9 Nov 1999

File Formats nfslog.conf(4)

by simply specifying a different defaultdir for every file system exported
by means of a unique tag:

engineering defaultdir=/engineering/logging \
logformat=extended

accounting defaultdir=/accounting/logging
marketing defaultdir=/marketing/logging

File systems shared with the engineering identifier will have their logs and
workfiles located in /engineering/logging . For instance, the log file will be
located at /engineering/logging/logs/nfslog . Note that the engineering
log file will be stored in the extended format, while the rest of the log files will
remain in the basic format.

Any of the parameters can be updated in a tag identifier, which overrides the
global settings.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

SEE ALSO nfslogd (1M), share_nfs (1M), attributes (5)

NOTES Logs, work files, and file handle to path mapping database can become very
large. Be aware of appropriate placement within the file system name space. See
nfslogd (1M)) for information on pruning the database files and cycling logs.

Last modified 9 Nov 1999 SunOS 5.8 251

nisfiles(4) File Formats

NAME nisfiles – NIS+ database files and directory structure

SYNOPSIS /var/nis

DESCRIPTION The Network Information Service Plus (NIS+) uses a memory based, replicated
database. This database uses a set of files in the /var/nis directory
for checkpointing to table storage and for maintaining a transaction log.
Additionally, the NIS+ server and client use files in this directory to store
binding and state information.

The NIS+ service implements an authentication and authorization system that is
built upon Secure RPC. In this implementation, the service uses a table named
cred.org_dir. domain-name to store the public and private keys of principals
that are authorized to access the NIS+ namespace. It stores group access
information in the subdomain groups_dir. domain-name as group objects. These
two tables appear as files in the /var/nis/data directory on the NIS+ server.

Unlike the previous versions of the network information service, in NIS+, the
information in the tables is initially loaded into the service from the ASCII files
on the server and then updated using NIS+ utilities (see nistbladm (1)). Some
sites may wish to periodically regenerate the ASCII files for archival purposes.
To do this, a script should be added in the crontab (1) of the server that lists
these tables and creates the ASCII file from the result.

Note that except for the NIS_COLDSTARTand NIS_SHARED_DIRCACHEfile, no
other files should be manipulated by commands such as cp (1), mv(1) or rm(1).
The transaction log file keeps logs of all changes made, and hence the files
cannot be manipulated independently.

The files described below are stored in the /var/nis directory:
NIS_COLDSTART Contains NIS+ directory objects that are to be

preloaded into the NIS+ cache at startup time.
This file is usually created at NIS+ installation
time. See nisinit (1M) or nisclient (1M).

NIS_SHARED_DIRCACHE Contains the current cache of NIS+
bindings being maintained by the cache
manager. The contents can be viewed with
nisshowcache (1M).

client_info Contains configuration information (preferred
servers, options, etc.) for nis_cachemgr (1M)
and (potentially) other NIS+ clients on the system.
It is manipulated by the nisprefadm (1M)
command.

252 SunOS 5.8 Last modified 7 Jan 1997

File Formats nisfiles(4)

.pref_servers A cached copy of preferred server information.
It is maintained by nis_cachemgr. Do not
edit this file manually.

trans.log Contains a transaction log that is maintained
by the NIS+ service. It can be viewed using
the nislog (1M) command. This file contains
holes. Its apparent size may be a lot higher than
its actual size. There is only one transaction
log per server.

data.dict A dictionary that is used by the NIS+ database
to locate its files. It is created by the default
NIS+ database package.

data.dict.log The log file for the database dictionary. When
the server is checkpointed (see the −C option of
nisping (1M)), this file will be deleted.

data Contains databases that the server uses.

data/root.object On root servers, this file contains a directory
object that describes the root of the name space.

data/parent.object On root servers, this file contains a directory
object that describes the parent namespace. This
file is created by the nisinit (1M) command.

data/ table_name For each table in the directory there is a file with
the same name that stores the information about
that table. If there are subdirectories within this
directory, the database for the table is stored in
the file, table_name.subdirectory.

data/ table_name.log Contains the database log for the table table_name.
The log file maintains the state of individual
transactions to each database. When a database
has been checkpointed (that is, all changes have
been made to the data/table_name stable storage),
this log file will be deleted.

Currently, NIS+ does not automatically do
checkpointing. The system administrator may
want to do nisping −C operations periodically
(such as, once a day) to checkpoint the log file.
This can be done either through a cron (1M)
job, or manually.

Last modified 7 Jan 1997 SunOS 5.8 253

nisfiles(4) File Formats

data/root_dir On root servers, this file stores the database
associated with the root directory. It is similar
to other table databases. The corresponding log
file is called root_dir.log .

data/cred.org_dir Table containing the credentials of principals
in this NIS+ domain.

data/groups_dir Table containing the group authorization objects
needed by NIS+ to authorize group access.

data/serving_list Contains a list of all NIS+ directories that are
being served by the NIS+ server on this server.
When this server is added or deleted from any
NIS+ directory object, this file is updated by
the server.

SEE ALSO cp (1), crontab (1), mv(1), nis (1), nis_cachemgr (1M), niscat (1),
nismatch (1), nistbladm (1), rm(1), cron (1M), nisclient (1M),
nisinit (1M), nislog (1M), nisping (1M), nisprefadm (1M),
nisshowcache (1M), nis_objects (3NSL)

254 SunOS 5.8 Last modified 7 Jan 1997

File Formats nologin(4)

NAME nologin – message displayed to users attempting to log on in the process of
a system shutdown

SYNOPSIS /etc/nologin

DESCRIPTION The /etc/nologin file contains the message displayed to users attempting
to log on to a machine in the process of being shutdown. After displaying the
contents of the nologin file, the login procedure terminates, preventing the
user from logging onto the machine.

This procedure is preferable to terminating a user’s session by shutdown shortly
after the user has logged on.

Logins by super-user are not affected by this procedure.

The message contained in the nologin file is editable by super-user. A typical
nologin file contains a message similar to:

NO LOGINS: System going down in 10 minutes.

SEE ALSO login (1), rlogin (1), telnet (1), shutdown (1M)

Last modified 21 Dec 1995 SunOS 5.8 255

note(4) File Formats

NAME note – specify legal annotations

SYNOPSIS /usr/lib/note

DESCRIPTION Each file in this directory contains the NOTE(also _NOTE) annotations legal for a
single tool. The name of the file, by convention, should be the tool vendor’s
stock name, followed by a hyphen, followed by the tool name. For example, for
Sun’s lock_lint tool the filename should be SUNW-lock_lint .

The file should contain the names of the annotations understood by the tool, one
per line. For example, if a tool understands the following annotations:

NOTE(NOT_REACHED)
NOTE(MUTEX_PROTECTS_DATA(list_lock, list_head))

then its file in /usr/lib/note should contain the entries:

NOT_REACHED
MUTEX_PROTECTS_DATA

Blank lines, and lines beginning with a pound (#), are ignored.

While /usr/lib/note is the default directory tools search for such files, they
can be made to search other directories instead simply by setting environment
variable NOTEPATHto contain the paths, separated by colons, of directories to
be searched, e.g., /usr/mytool/note:/usr/lib/note .

USAGE These files are used by such tools whenever they encounter NOTEs they do not
understand. If a file in /usr/lib/note contains the annotation, then it is valid.
If no such file contains the annotation, then the tool should issue a warning
complaining that it might be invalid.

ENVIRONMENT
VARIABLES

NOTEPATH specify paths to be searched for annotation files. Paths are
separated by colons (“:”).

SEE ALSO NOTE(3EXT)

256 SunOS 5.8 Last modified 17 Jan 1995

File Formats nscd.conf(4)

NAME nscd.conf – name service cache daemon configuration

SYNOPSIS /etc/nscd.conf

DESCRIPTION The nscd.conf file contains the configuration information for nscd (1M). Each
line specifies either an attribute and a value, or an attribute, cachename, and a
value. Fields are separated either by SPACE or TAB characters. A ‘#’ (number
sign) indicates the beginning of a comment; characters up to the end of the line
are not interpreted by nscd .

cachename is represented by hosts , ipnodes , passwd , or groups .

attribute supports the following:
logfile debug-file-name Specifies name of the file to

which debug info should be
written. Use /dev/tty for
standard output.

debug-level value Sets the debug level desired.
value may range from 0 (the
default) to 10 . Use of this
option causes nscd (1M)
to run in the foreground
and not become a daemon.
Note that the output of the
debugging command is not
likely to remain the same from
release-to-release; scripts should
not rely on its format.

enable-cache cachename value Enables or disables the specified
cache. value may be either
yes or no .

positive-time-to-live cachename value Sets the time-to-live for positive
entries (successful queries) in
the specified cache. value is
in integer seconds. Larger
values increase cache hit rates
and reduce mean response
times, but increase problems
with cache coherence. Note
that sites that push (update)
NIS maps nightly can set the
value to be the equivalent of 12

Last modified 9 Nov 1999 SunOS 5.8 257

nscd.conf(4) File Formats

hours or more with very good
performance implications.

negative-time-to-live cachename value Sets the time-to-live for
negative entries (unsuccessful
queries) in the specified cache.
value is in integer seconds.
Can result in significant
performance improvements if
there are several files owned by
uids (user IDs) not in system
databases; should be kept small
to reduce cache coherency
problems.

suggested-size cachename value Sets the suggested number of
hash buckets in the specified
cache. This parameter should be
changed only if the number of
entries in the cache exceeds the
suggested size by more than a
factor of four or five. Since this
is the internal hash table size,
value should remain a prime
number for optimum efficiency.

keep-hot-count cachename value This attribute allows the
administrator to set the number
of entries nscd (1M) is to keep
current in the specified cache.
value is an integer number
which should approximate the
number of entries frequently
used during the day.

check-files cachename value Enables or disables checking the
file belonging to the specified
cachename for changes. If
enabled (which is the default),
changes in the corresponding
file cause the cache to be
invalidated within 10 seconds.
Can be disabled if files are
never modified for a slight
performance boost, particularly

258 SunOS 5.8 Last modified 9 Nov 1999

File Formats nscd.conf(4)

over NFS. value may be either
yes or no .

SEE ALSO nscd (1M), group (4), hosts (4), ipnodes (4), passwd (4)

WARNINGS The nscd.conf interface is included in this release on an uncommitted basis
only and is subject to change or removal in a future minor release.

Last modified 9 Nov 1999 SunOS 5.8 259

nsswitch.conf(4) File Formats

NAME nsswitch.conf – configuration file for the name service switch

SYNOPSIS /etc/nsswitch.conf

DESCRIPTION The operating system uses a number of databases of information about hosts,
ipnodes, passwd /shadow), and groups. Data for these can come from a variety
of sources: host-names and host-addresses, for example, may be found in
/etc/hosts , NIS, NIS+, LDAP, or DNS. Zero or more sources may be used
for each database; the sources and their lookup order are specified in the
/etc/nsswitch.conf file.

The following databases use the switch file:

Database Used By

aliases sendmail (1M)

automount automount (1M)

bootparams rpc.bootparamd (1M)

ethers ethers (3SOCKET)

group getgrnam (3C)

hosts gethostbyname (3NSL). See Interaction
with netconfig .

ipnodes getipnodebyname (3SOCKET)

netgroup innetgr (3C)

netmasks ifconfig (1M)

networks getnetbyname (3SOCKET)

passwd getpwnam (3C), getspnam (3C)

printers lp (1), lpstat (1), cancel (1), lpr (1B), lpq (1B),
lprm (1B), in.lpd (1M), lpadmin (1M),
lpget (1M), lpset (1M)

protocols getprotobyname (3SOCKET)

publickey getpublickey (3NSL), secure_rpc (3NSL)

rpc getrpcbyname (3NSL)

sendmailvars sendmail (1M)

services getservbyname (3SOCKET).

See Interaction with netconfig .

260 SunOS 5.8 Last modified 12 Nov 1999

File Formats nsswitch.conf(4)

The following sources may be used:

Source Uses

files /etc/hosts , /etc/passwd ,
/etc/inet/inodes , /etc/shadow

nis NIS(YP)

nisplus NIS+

ldap LDAP

dns Valid only for hosts ; uses the Internet
Domain Name Service.

compat Valid only for passwd and group ; implements "+"
and "-". See Interaction with +/- syntax .

user Valid only for printers; implements support
for ${HOME}/.printers .

xfn Valid only for printers; implements support for
FNS printer contexts. Provided to allow transition
away from FNS printer contexts.

There is an entry in /etc/nsswitch.conf for each database. Typically these
entries will be simple, such as "protocols: files " or "networks: files
nisplus ". However, when multiple sources are specified, it is sometimes
necessary to define precisely the circumstances under which each source will be
tried. A source can return one of the following codes:

Status Meaning

SUCCESS Requested database entry was found.

UNAVAIL Source is not configured on this system
or internal failure.

NOTFOUND Source responded “no such entry ”

TRYAGAIN Source is busy or not responding, might
respond to retries.

For each status code, two actions are possible:

Last modified 12 Nov 1999 SunOS 5.8 261

nsswitch.conf(4) File Formats

Action Meaning

continue Try the next source in the list.

return Return now.

Additionally, for TRYAGAINonly, the following actions are possible:

Action Meaning

forever Retry the current source forever.

n Retry the current source n more times, where n is
an integer between 0 and MAX_INT (that is, 2.14
billion). After n retries has been exhausted, the
action will continue to the next source.

The complete syntax of an entry is:

<entry> ::= <database> ":" [<source>
[<criteria>]]*
<criteria> ::= "[" <criterion>+ "]"
<criterion> ::= <status> "=" <action>
<status> ::= "success" | "notfound" | "unavail" | "tryagain"

For every status except TRYAGAIN, the action syntax is:

<action> ::= "return" | "continue"

For the TRYAGAINstatus, the action syntax is:

<action> ::= "return" | "continue" | "forever" | <n>
<n> ::= 0...MAX_INT

Each entry occupies a single line in the file. Lines that are blank, or that start
with white space, are ignored. Everything on a line following a # character is
also ignored; the # character can begin anywhere in a line, to be used to begin
comments. The <database> and <source> names are case-sensitive, but <action>
and <status> names are case-insensitive.

262 SunOS 5.8 Last modified 12 Nov 1999

File Formats nsswitch.conf(4)

The library functions contain compiled-in default entries that are used if the
appropriate entry in nsswitch.conf is absent or syntactically incorrect.

The default criteria for DNS and the NIS server in “DNS-forwarding mode” (and
DNS server not responding or busy) is [SUCCESS=return NOTFOUND=continue
UNAVAIL=continue TRYAGAIN=continue].

The default criteria for all other sources is [SUCCESS=return NOTFOUND=continue
UNAVAIL=continue TRYAGAIN=forever].

The default, or explicitly specified, criteria are meaningless following the last
source in an entry; and they are ignored, since the action is always to return to
the caller irrespective of the status code the source returns.

Interaction with
netconfig

In order to ensure that they all return consistent results, gethostbyname (3NSL),
getipnodebyname (3SOCKET), getservbyname (3SOCKET), and
netdir_getbyname (3NSL) functions are all implemented in terms of the same
internal library function. This function obtains the system-wide source lookup
policy for hosts , ipnodes , and services based on the inet family entries
in netconfig (4) and uses the switch entries only if the netconfig entries have
a "-" in the last column for nametoaddr libraries. See the NOTES section in
gethostbyname (3NSL) and getservbyname (3SOCKET) for details.

Interaction with NIS+
NIS/YP-compatibility

Mode

The NIS+ server can be run in "YP-compatibility mode", where it handles NIS
(YP) requests as well as NIS+ requests. In this case, the clients get much the same
results (except for getspnam (3C)) from the "nis" source as from "nisplus";
however, "nisplus" is recommended instead of "nis".

Interaction
with server in

DNS-forwarding
Mode

The NIS (YP) server can be run in "DNS-forwarding mode", where it forwards
lookup requests to DNS for host-names and -addresses that do not exist in its
database. In this case, specifying "nis" as a source for "hosts" is sufficient to get
DNS lookups; "dns" need not be specified explicitly as a source.

In SunOS 5.3 (Solaris 2.3) and compatible versions, the NIS+ server in
"NIS/YP-compatibility mode" can also be run in "DNS-forwarding mode" (see
rpc.nisd (1M)). Forwarding is effective only for requests originating from its
YP clients; "hosts" policy on these clients should be configured appropriately.

Interaction with
Password Aging

When password aging is turned on, only a limited set of possible name services
are permitted for the passwd : database in the /etc/nsswitch.conf file:
passwd: files

passwd: files nis

passwd: files nisplus

passwd: files ldap

passwd: compat

Last modified 12 Nov 1999 SunOS 5.8 263

nsswitch.conf(4) File Formats

passwd_compat: nisplus

passwd_compat: ldap

Any other settings will cause the passwd (1) command to fail when it attempts to
change the password after expiration and will prevent the user from logging in.
These are the only permitted settings when password aging has been turned
on. Otherwise, you can work around incorrect passwd : lines by using the -r
repository argument to the passwd (1) command and using passwd -r
repository to override the nsswitch.conf settings and specify in which
name service you want to modify your password.

Interaction with +/-
syntax

Releases prior to SunOS 5.0 did not have the name service switch but did
allow the user some policy control. In /etc/passwd one could have entries
of the form +user (include the specified user from NIS passwd.byname), -user
(exclude the specified user) and + (include everything, except excluded users,
from NIS passwd.byname). The desired behavior was often "everything in the
file followed by everything in NIS", expressed by a solitary + at the end of
/etc/passwd . The switch provides an alternative for this case ("passwd: files
nis") that does not require + entries in /etc/passwd and /etc/shadow (the
latter is a new addition to SunOS 5.0, see shadow (4)).

If this is not sufficient, the NIS/YP compatibility source provides full
+/- semantics. It reads /etc/passwd for getpwnam (3C) functions and
/etc/shadow for getspnam (3C) functions and, if it finds +/- entries, invokes
an appropriate source. By default, the source is "nis", but this may be overridden
by specifying "nisplus" or “ldap” as the source for the pseudo-database
passwd_compat .

Note that for every /etc/passwd entry, there should be a corresponding
entry in the /etc/shadow file.

The NIS/YP compatibility source also provides full +/- semantics for group ;
the relevant pseudo-database is group_compat .

Useful
Configurations

The compiled-in default entries for all databases use NIS (YP) as the enterprise
level name service and are identical to those in the default configuration of
this file:
passwd: files nis

group: files nis

hosts: nis [NOTFOUND=return] files

ipnodes: nis [NOTFOUND=return] files

networks: nis [NOTFOUND=return] files

264 SunOS 5.8 Last modified 12 Nov 1999

File Formats nsswitch.conf(4)

protocols: nis [NOTFOUND=return] files

rpc: nis [NOTFOUND=return] files

ethers: nis [NOTFOUND=return] files

netmasks: nis [NOTFOUND=return] files

bootparams: nis [NOTFOUND=return] files

publickey: nis [NOTFOUND=return] files

netgroup: nis

automount: files nis

aliases: files nis

services: files nis

sendmailvars: files

printers: user files nis nisplus xfn

The policy "nis [NOTFOUND=return] files" implies "if nis is UNAVAIL, continue
on to files , and if nis returns NOTFOUND, return to the caller; in other words,
treat nis as the authoritative source of information and try files only if nis is
down." This, and other policies listed in the default configuration above, are
identical to the hard-wired policies in SunOS releases prior to 5.0.

If compatibility with the +/- syntax for passwd and group is required, simply
modify the entries for passwd and group to:
passwd: compat

group: compat

If NIS+ is the enterprise level name service, the default configuration should be
modified to use nisplus instead of nis for every database on client machines.
The file /etc/nsswitch.nisplus contains a sample configuration that can be
copied to /etc/nsswitch.conf to set this policy.

If LDAP is the enterprise level name service, the default configuration should
be modified to use ldap instead of nis for every database on client machines.
The file /etc/nsswitch.ldap contains a sample configuration that can be
copied to /etc/nsswitch.conf to set this policy.

If the use of +/- syntax is desired in conjunction with nisplus , use the
following four entries:
passwd: compat

Last modified 12 Nov 1999 SunOS 5.8 265

nsswitch.conf(4) File Formats

passwd_compat: nisplus OR ldap

group: compat

group_compat: nisplus OR ldap

In order to get information from the Internet Domain Name Service for hosts
that are not listed in the enterprise level name service, NIS+ or LDAP, use
the following configuration and set up the /etc/resolv.conf file (see
resolv.conf (4) for more details):
hosts: nisplus dns [NOTFOUND=return] files

or
hosts: ldap dns [NOTFOUND=return] files

Enumeration -
getXXXent()

Many of the databases have enumeration functions: passwd has getpwent() ,
hosts has gethostent() , and so on. These were reasonable when the only
source was files but often make little sense for hierarchically structured
sources that contain large numbers of entries, much less for multiple sources.
The interfaces are still provided and the implementations strive to provide
reasonable results, but the data returned may be incomplete (enumeration for
hosts is simply not supported by the dns source), inconsistent (if multiple
sources are used), formatted in an unexpected fashion (for a host with a canonical
name and three aliases, the nisplus source will return four hostents, and they
may not be consecutive), or very expensive (enumerating a passwd database of
5,000 users is probably a bad idea). Furthermore, multiple threads in the same
process using the same reentrant enumeration function (getXXXent_r() are
supported beginning with SunOS 5.3) share the same enumeration position; if
they interleave calls, they will enumerate disjoint subsets of the same database.

In general, the use of the enumeration functions is deprecated. In the case
of passwd , shadow , and group , it may sometimes be appropriate to use
fgetgrent() , fgetpwent() , and fgetspent() (see getgrnam (3C),
getpwnam (3C), and getspnam (3C), respectively), which use only the files
source.

FILES A source named SSS is implemented by a shared object named nss_SSS.so.1
that resides in /usr/lib .
/etc/nsswitch.conf Configuration file.

/usr/lib/nss_compat.so.1 Implements "compat" source.

/usr/lib/nss_dns.so.1 Implements "dns" source.

/usr/lib/nss_files.so.1 Implements "files" source.

/usr/lib/nss_nis.so.1 Implements "nis" source.

266 SunOS 5.8 Last modified 12 Nov 1999

File Formats nsswitch.conf(4)

/usr/lib/nss_nisplus.so.1 Implements "nisplus" source.

/usr/lib/nss_ldap.so.1 Implements "ldap" source.

/usr/lib/nss_user.so.1 Implements "user" source.

/usr/lib/nss_xfn.so.1 Implements "xfn" source.

/etc/netconfig Configuration file for netdir (3NSL)
functions that redirects hosts/devices
policy to the switch.

/etc/nsswitch.files Sample configuration file that uses
"files" only.

/etc/nsswitch.nis Sample configuration file that uses
"files" and "nis".

/etc/nsswitch.nisplus Sample configuration file that uses
"files" and "nisplus".

/etc/nsswitch.ldap Sample configuration file that uses
"files" and "ldap".

/etc/nsswitch.dns Sample configuration file that uses
“files” and “dns” (but only for
hosts:).

SEE ALSO ldap (1), nis+ (1), passwd (1), automount (1M), ifconfig (1M),
rpc.bootparamd (1M), rpc.nisd (1M), sendmail (1M), ethers (3SOCKET),
getgrnam (3C), gethostbyname (3NSL), getipnodebyname (3SOCKET),
getnetbyname (3SOCKET), getnetgrent (3C), getprotobyname (3SOCKET),
getpublickey (3NSL), getpwnam (3C), getrpcbyname (3NSL),
getservbyname (3SOCKET), getspnam (3C), netdir (3NSL),
secure_rpc (3NSL), netconfig (4), resolv.conf (4), ypfiles (4)

NOTES Within each process that uses nsswitch.conf , the entire file is read only once;
if the file is later changed, the process will continue using the old configuration.

Programs that use the getXXbyYY() functions cannot be linked statically since
the implementation of these functions requires dynamic linker functionality to
access the shared objects /usr/lib/nss_SSS.so.1 at run time.

The use of both nis and nisplus as sources for the same database is strongly
discouraged since both the name services are expected to store similar
information and the lookups on the database may yield different results
depending on which name service is operational at the time of the request. The
same applies for using ldap along with nis or nisplus .

Last modified 12 Nov 1999 SunOS 5.8 267

nsswitch.conf(4) File Formats

Misspelled names of sources and databases will be treated as legitimate names
of (most likely nonexistent) sources and databases.

The following functions do not use the switch: fgetgrent (3C), fgetpwent (3C),
fgetspent (3C), getpw (3C), putpwent (3C), shadow (4).

268 SunOS 5.8 Last modified 12 Nov 1999

File Formats order(4)

NAME order – package installation order description file

DESCRIPTION The package installation order file, .order , is an ASCII file specifying the order
in which packages must be installed based on their prerequisite dependencies.
Any package with prerequisite dependencies must be installed after any
packages it lists as a prerequisite dependency in its depend file.

A .order file is required for the OS product. The .order file must reside in the
top-level directory containing the product.

The ordering is specified as a list of package identifiers, from the first package to
be installed to the last, one package identifier per line.

NOTES The depend file supports incompatible and reverse dependencies. These
dependency types are not recognized in the order file.

SEE ALSO cdtoc (4), clustertoc (4), depend (4), packagetoc (4), pkginfo (4)

Last modified 24 Feb 1993 SunOS 5.8 269

ott(4) File Formats

NAME ott – FACE object architecture information

DESCRIPTION The FACE object architecture stores information about object-types in an ASCII
file named .ott (object type table) that is contained in each directory. This file
describes all of the objects in that directory. Each line of the .ott file contains
information about one object in pipe-separated fields. The fields are (in order):
name the name of the actual system file.

dname the name that should be displayed to the user, or
a dot if it is the same as the name of the file.

description the description of the object, or a dot if
the description is the default (the same as
object-type).

object-type the FACE internal object type name.

flags object specific flags.

mod time the time that FACE last modified the object.
The time is given as number of seconds since
1/1/1970, and is in hexadecimal notation.

object information an optional field, contains a set of semi-colon
separated name=value fields that can be used by
FACE to store any other information necessary to
describe this object.

FILES .ott is created in any directory opened by FACE.

270 SunOS 5.8 Last modified 3 Jul 1990

File Formats packagetoc(4)

NAME packagetoc – package table of contents description file

DESCRIPTION The package table of contents file, .packagetoc, is an ASCII file containing
all of the information necessary for installing a product release distributed in
package form. It centralizes and summarizes all of the relevant information
about each package in the product. This allows the install software to quickly
read one file to obtain all of the relevant information about each package instead
of having to examine each package at run time to obtain this information. The
.packagetoc file resides in the top-level directory containing the product.

If a .packagetoc file exists for a product, there must also be a .order file.

Each entry in the .packagetoc file is a line that establishes the value of a
parameter in the following form:

PARAM=value

A line starting with a pound-sign, “#”, is considered a comment and is ignored.

Parameters are grouped by package. The start of a package description is
defined by a line of the form:

PKG=value

There is no order implied or assumed for specifying the parameters for a package
with the exception of the PKGparameter, which must appear first. Only one
occurrence of a parameter is permitted per package.

The parameters recognized are described below. Those marked with an asterisk
are mandatory.
PKG* The package identifier (for example, SUNWaccu).

The maximum length of the identifier is
nine characters. All the characters must be
alphanumeric. The first character must be
alphabetic. install , new, and all are reserved
identifiers.

PKGDIR* The name of the directory containing the
package. This directory is relative to the directory
containing the product.

NAME* The full name of the package.

VENDOR The name of the package’s vendor.

VERSION The version of the package.

Last modified 14 Mar 1997 SunOS 5.8 271

packagetoc(4) File Formats

PRODNAME The name of the product to which this package
belongs.

PRODVERS The version of the product to which this package
belongs.

SUNW_PKGTYPE The package type. Valid values are:

root indicates that the package will be
installed in the / file system. The root
packages are the only packages installed
during dataless client installations. The
root packages are spooled during a
server installation to allow the later
installation of diskless clients.

usr indicates that the package will be
installed in the /usr file system.

kvm indicates that the package will be
installed in the /usr/platform file
system.

ow indicates a package that is part of the
bundled OpenWindows product release.
If no SUNW_PKGTYPEmacro is present,
the package is assumed to be of type
usr .

ARCH* The architecture(s) supported by the package.
This macro is taken from the package’s
pkginfo (4) file and is subject to the same length
and formatting constraints.

The install program currently assumes that
exactly one architecture token is specified for a
package. For example, ARCH=sparc.sun4c
is acceptable, but ARCH=sparc.sun4c,
sparc.sun4m is not.

DESC A detailed textual description of the package.

BASEDIR* The default installation base directory of the
package.

SUNW_PDEPEND A dependency specification for a prerequisite
package. Each prerequisite dependency must
appear as a separate macro. See depend (4) for

272 SunOS 5.8 Last modified 14 Mar 1997

File Formats packagetoc(4)

more information on dependencies and instance
specifications.

SUNW_IDEPEND A dependency specification for an incompatible
package. Each incompatible dependency should
appear as a separate macro. See depend (4) for
more information on dependencies and instance
specifications.

SUNW_RDEPEND A dependency specification for a reversed
package dependency. Each reverse dependency
should appear as a separate macro. See
depend (4) for more information on dependencies
and instance specifications.

CATEGORY The category of the package.

SUNW_LOC Indicates that this package contains localizations
for other packages. Such localization packages are
treated as special case packages. Each package
which has a SUNW_LOCmacro must have a
corresponding SUNW_PKGLISTmacro. The value
specified by this macro should be a valid locale.

SUNW_PKGLIST A comma separated list of package identifiers.
Currently this macro is used to indicate which
packages are localized by a localization package.

ROOTSIZE* The space used by the package in the / file
system.

USRSIZE* The space used by the package in the /usr
subtree of the file system.

VARSIZE* The space used by the package in the /var
subtree of the file system.

OPTSIZE* The space used by the package in the /opt
subtree of the file system.

EXPORTSIZE* The space used by the package in the /export
subtree of the file system.

USROWNSIZE* The space used by the package in the
/usr/openwin subtree of the file system.

SPOOLEDSIZE* The space used by the spooled version of this
package. This is used during the setup of a server
by the initial system installation programs.

Last modified 14 Mar 1997 SunOS 5.8 273

packagetoc(4) File Formats

All sizes are specified in bytes. Default disk partitions and file system sizes are
derived from the values provided: accuracy is important.

EXAMPLES EXAMPLE 1 A sample .packagetoc file.

The following is an example package entry in a .packagetoc file.

#ident "@(#)packagetoc.4 1.2 92/04/28"
PKG=SUNWaccr
PKGDIR=SUNWaccr
NAME=System Accounting, (Root)
VENDOR=Sun Microsystems, Inc.
VERSION=8.1
PRODNAME=SunOS
PRODVERS=5.0beta2
SUNW_PKGTYPE=root
ARCH=sparc
DESC=System Accounting, (Root)
BASEDIR=/
CATEGORY=system
ROOTSIZE=11264
VARSIZE= 15360
OPTSIZE=0
EXPORTSIZE=0
USRSIZE=0
USROWNSIZE=0

SEE ALSO cdtoc (4), clustertoc (4), depend (4), order (4), pkginfo (4), pkgmap(4)

NOTES The parameters NAME, VENDOR, VERSION, PRODNAME, PRODVERS,
SUNW_PKGTYPE, SUNW_LOC, SUNW_PKGLIST, ARCH, DESC, BASEDIR, and
CATEGORYare assumed to have been taken directly from the package’s
pkginfo (4) file. The length and formatting restrictions placed on the values
for these parameters are identical to those for the corresponding entries in
the pkginfo (4) file.

The value specified for the parameter PKGDIRshould not exceed 255 characters.

The value specified for the parameters ROOTSIZE, VARSIZE, OPTSIZE,
EXPORTSIZE, USRSIZEand USROWNSIZEmust be a single integer value. The
values can be derived from the package’s pkgmap file by counting all space
consumed by any files installed in the applicable file system. The space includes
that used for directory entries and any UFS overhead that exists because of the
way the files are represented (directory allocation scheme; direct, indirect,
double indirect blocks; fragments; etc.)

The following kinds of entries in the pkgmap(4) file should be included in
the space derivation:
f regular file

c character special file

274 SunOS 5.8 Last modified 14 Mar 1997

File Formats packagetoc(4)

b block special file

p pipe

l hard link

s symbolic link

x, d directory

i packaging installation script or information file (copyright, depend,
postinstall, postremove)

Last modified 14 Mar 1997 SunOS 5.8 275

packingrules(4) File Formats

NAME packingrules – packing rules file for cachefs and filesync

SYNOPSIS $HOME/.packingrules

DESCRIPTION $HOME/.packingrules is a packing rules file for filesync and
cachefspack . $HOME/.packingrules contains a list of directories and files
that are to be packed and synchronized. It also contains a list of directories and
files that are to be specifically excluded from packing and synchronization. See
filesync (1) and cachefspack (1M).

The $HOME/.packingrules file is automatically created if users invoke
filesync with filename arguments. By using filesync options, users can
augment the packing rules in $HOME/.packingrules .

Many users choose to manually create the packing rules file and edit it by hand.
Users can edit $HOME/.packingrules (using any editor) to permanently
change the $HOME/.packingrules file, or to gain access to more powerful
options that are not available from the command line (such as IGNORE
commands). It is much easier to enter complex wildcard expressions by editing
the $HOME/.packingrules file.

Blank lines and lines that begin with a pound sign (‘#’) are ignored.

Any line can be continued by placing a backslash (‘\ ’) immediately before
the NEWLINE.

All other lines in the $HOME/.packingrules file have one of the following
formats:
PACKINGRULES major. minor. This line is not actually

required, but it should be the first line
of every packing rules file. This line
identifies the packing rules file for
the file (1) command and specifies a
format version number. The current
version number is 1.1. See file (1).

BASEdirectory-1 [directory-2] This line identifies a directory
(or pair of directories) under
which files should be packed and
synchronized. At least one directory
name must be specified. For rules
that are to be used by filesync a
second directory name (where the
copies are to be kept) must also be
specified. The arguments must be

276 SunOS 5.8 Last modified 23 Dec 1996

File Formats packingrules(4)

fully qualified path names, and may
include environment variables.

LIST name . . . This line enumerates a list of files
and sub-directories (beneath the
current BASE) that are to be kept
synchronized. This specification is
recursive, in that specifying the name
of a directory automatically includes
all files and subdirectories it contains.
Regular expressions (as described in
glob and gmatch) are permitted.
See glob (1) and gmatch (3GEN).

IGNOREname . . . This line enumerates a list of files
that are not to be kept synchronized.
Regular expressions (using glob and
gmatch) are permitted.

There are important differences between the arguments to LIST and IGNORE
statements. The arguments to a LIST statement can contain slashes and are
interpreted as file names relative to the BASEdirectories. The arguments to an
IGNOREstatement are simpler names or expressions that cannot contain slashes.
An IGNOREstatement will not override a LIST statement. IGNOREstatements
only exclude files that are found beneath LISTed directories.

If the first name argument to a LIST statement begins with an exclamation
point (‘! ’), the remainder of the statement will be executed as a command.
The command will be run in the current BASEdirectory. The output of the
command will be treated as a list of newline separated file names to be
packed/synchronized. The resulting file names will be interpreted relative to
the enclosing BASEdirectory.

If the first name argument to an IGNOREstatement begins with an exclamation
point (‘! ’), the remainder of the statement will be executed as a command. The
command will be run in the current BASEdirectory. The command will be
expected to figure out which names should not be synchronized. The output of
the command will be treated as a list of newline separated file names that should
be excluded from the packing and synchronization list.

Commands will be broken into distinct arguments and run directly with sh −c .
Blanks can be embedded in an argument by escaping them with a backslash (‘\ ’)
or enclosing the argument in double quotes (‘ " ’). Double quotes can be passed
in arguments by escaping the double quotes with a backslash (‘\ ’).

LIST lines only apply to the BASEstatement that precedes them. IGNORElines
can appear before any BASEstatement (in which case they apply to all BASEs)

Last modified 23 Dec 1996 SunOS 5.8 277

packingrules(4) File Formats

or after a BASEstatement (in which case they only apply to the BASEthat
precedes them). Any number of these statements can occur in any combination.
The order is not important.

EXAMPLES EXAMPLE 1 A sample $HOME.packingrules file.

The use of these statements is illustrated in the following $HOME.packingrules
file.

#
junk files, not worth copying
#
IGNORE core *.o *.bak *%
#
most of the stuff I want to keep in sync is in my $HOME
#
BASE /net/bigserver/export/home/myname $HOME
everything in my work sub-directory should be maintained
LIST work
a few of my favorite mail boxes should be replicated
LIST m/incoming
LIST m/action
LIST m/pending
#
I like to carry around a couple of project directories
but skip all the postscript output
#
BASE /net/bigserver/export/projects $HOME/projects
LIST poindexter epiphany
IGNORE *.ps
#
the foonly package should always be kept on every machine
#
BASE /net/bigserver/opt/foonly /opt/foonly
LIST !cat .packinglist
#
and the latest executables for the standard build environment
#
BASE /net/bigserver/export/buildenv $HOME/buildenv
LIST !find . -type f -a -perm -111 -a -print

SEE ALSO file (1), filesync (1), cachefspack (1M)

278 SunOS 5.8 Last modified 23 Dec 1996

File Formats pam.conf(4)

NAME pam.conf – configuration file for pluggable authentication modules

SYNOPSIS /etc/pam.conf

DESCRIPTION pam.conf is the configuration file for the Pluggable Authentication Module
architecture, or PAM. A PAM module provides functionality for one or more
of four possible services: authentication, account management, session
management, and password management. An authentication service module
provides functionality to authenticate a user and set up user credentials. An
account management module provides functionality to determine if the
current user’s account is valid. This includes checking for password and
account expiration, as well as verifying access hour restrictions. A session
management module provides functionality to set up and terminate login
sessions. A password management module provides functionality to change
a user’s authentication token or password. Each of the four service modules
can be implemented as a shared library object which can be referenced in the
pam.conf configuration file.

Simplified
PAM.CONF

configuration file

The pam.conf file contains a listing of services. Each service is paired with a
corresponding service module. When a service is requested, its associated
module is invoked. Each entry has the following format:

service_name module_type control_flag module_path options

Below is an example of the pam.conf configuration file with support for
authentication, account management, and session management modules.

login auth required /usr/lib/security/$ISA/pam_unix.so.1 debug
login session required /usr/lib/security/$ISA/pam_unix.so.1
login account required /usr/lib/security/$ISA/pam_unix.so.1
telnet session required /usr/lib/security/$ISA/pam_unix.so.1
other auth required /usr/lib/security/$ISA/pam_unix.so.1
other passwd required /usr/lib/security/$ISA/pam_unix.so.1

The service_name denotes the service (for example, login , dtlogin , or
rlogin). The keyword, other, indicates the module all other applications which
have not been specified should use. The other keyword can also be used if all
services of the same module_type have the same requirements. In the example
above, since all of the services use the same session module, they could have
been replace by a single other line.

module_type denotes the service module type: authentication (auth), account
management (account), session management (session), or password management
(password).

The control_flag field determines the behavior of stacking, and will be discussed
in more detail below.

Last modified 29 Oct 1999 SunOS 5.8 279

pam.conf(4) File Formats

The module_path field specifies the pathname to a shared library object which
implements the service functionality. If the pathname is not absolute, it is
assumed to be relative to /usr/lib/security/$ISA/ . If the pathname
contains the $ISA token, that token is replaced by an implementation defined
directory name which defines the path relative to the calling program’s
instruction set architecture.

The options field is used by the PAM framework layer to pass module specific
options to the modules. It is up to the module to parse and interpret the options.
This field can be used by the modules to turn on debugging or to pass any
module specific parameters such as a TIMEOUT value. It can also be used to
support unified login. The options supported by the modules are documented
in their respective manual pages. For example, pam_unix (5) lists the options
accepted by the UNIX module.

Integrating Multiple
Authentication

Services With
Stacking

When a service_name of the same module_type is defined more than once, the
service is said to be stacked. Each module referenced in the module_path for that
service is then processed in the order that it occurs in the configuration file. The
control_flag field specifies the continuation and failure semantics of the modules,
and may be requisite, required, optional, or sufficient.

The PAM framework processes each service module in the stack. If all requisite
and required modules in the stack succeed, then success is returned, and optional
and sufficient error values are ignored. If one or more requisite or required
modules fail, then the error value from the first requisite or required module
that failed is returned.

If none of the service modules in the stack are designated as requisite or required,
then the PAM framework requires that at least one optional or sufficient module
succeed. If all fail then the error value from the first service module in the
stack is returned.

The requisite and sufficient flags cause two exceptions to the above semantics. If a
service module that is designated as requisite fails, then the PAM framework
immediately returns an error to the application, and all subsequent service
modules in the stack are ignored. If a prior required service module has failed,
then that error is returned. If no prior required service module failed, then the
error from the failed requisite service module is returned.

If a service module that is designated as sufficient succeeds, then the PAM
framework immediately returns success to the application, and all subsequent
services modules in the stack, even requisite and required ones, are ignored, given
that all prior requisite and required modules have also succeeded. If a prior
required module has failed, then the error value from that module is returned.

If any entry in pam.conf is incorrect, or if a module does not exist or cannot be
opened, then all PAM services will fail and users will not be permitted access

280 SunOS 5.8 Last modified 29 Oct 1999

File Formats pam.conf(4)

to the system. An error will be logged through syslog (3C) at the LOG_CRIT
level. To fix incorrect entries in pam.conf , a system administrator may boot the
system in maintenance mode (single user) to edit the file. Below is a sample
configuration file that stacks the su , login , and rlogin services.

su auth requisite /usr/lib/security/$ISA/pam_inhouse.so.1
su auth required /usr/lib/security/$ISA/pam_unix.so.1 debug
login auth required /usr/lib/security/$ISA/pam_unix.so.1 debug
login auth optional /usr/lib/security/$ISA/pam_inhouse.so.1
rlogin auth sufficient /usr/lib/security/$ISA/pam_rhosts_auth.so.1
rlogin auth required /usr/lib/security/$ISA/pam_unix.so.1

In the case of su , the user is authenticated by the Inhouse and UNIX
authentication modules. Because the Inhouse and UNIX authentication modules
are requisite and required, respectively, an error is returned back to the application
if either module fails. In addition, if the requisite authentication (Inhouse
authentication) fails, the UNIX authentication module is never invoked, and the
error is returned immediately back to the application.

In the case of login , the required keyword for control_flag requires that the
user be allowed to login only if the user is authenticated by the UNIX service
module. If UNIX authentication fails, control continues to proceed down the
stack, and the Inhouse authentication module is invoked. Inhouse authentication
is optional by virtue of the optional keyword in the control_flag field. The
user can still log in even if Inhouse authentication fails, assuming the UNIX
authentication succeeded.

In the case of rlogin , the sufficient keyword for control_flag specifies that if
the rhosts authentication check succeeds, then PAM should return success to
rlogin and rlogin should not prompt the user for a password. The UNIX
authentication module, which is the next module in the stack, will only be
invoked if the rhosts check fails. This gives the system administrator the flexibility
to determine if rhosts alone is sufficient enough to authenticate a remote user.

Some modules may return PAM_IGNORE in certain situations. In these cases
the PAM framework ignores the entire entry in pam.conf regardless of whether
or not it is requisite, required, optional or sufficient.

Utilities and Files A following is a list of the utilities that are known to use PAM: include: login ,
passwd , su , rlogind , rshd , telnetd , ftpd , rpc.rexd , uucpd , init , sac ,
and ttymon .

The utility dtlogin also uses PAM. Note however that dtlogin is the login
service utility for the Common Desktop Environment (CDE).

The PAM configuration file does not dictate either the name or the location of the
service specific modules. The convention, however, is the following:

Last modified 29 Oct 1999 SunOS 5.8 281

pam.conf(4) File Formats

/usr/lib/security/$ISA/ pam_module_name.so.x
Implements various function of specific authentication services.

/etc/pam.conf
Configuration file.

/usr/lib/$ISA/libpam.so.1
Implements the PAM framework library.

EXAMPLES EXAMPLE 1 A sample pam.conf configuration file.

The following is a sample pam.conf configuration file. Lines that begin with the
symbol are treated as comments, and therefore ignored.

#
PAM configuration

#
Authentication management for login service is stacked.
Both UNIX and inhouse authentication functions are invoked.
login auth required /usr/lib/security/$ISA/pam_unix.so.1
login auth required /usr/lib/security/$ISA/pam_inhouse.so.1 try_first_pass
dtlogin auth required /usr/lib/security/$ISA/pam_unix.so.1
dtlogin auth required /usr/lib/security/$ISA/pam_inhouse.so.1 try_first_pass
#
Authentication management for rlogin service is stacked.
If the rhost check succeeds, do not continue
rlogin auth sufficient /usr/lib/security/$ISA/pam_rhosts_auth.so.1
rlogin auth required /usr/lib/security/$ISA/pam_unix.so.1
#
Other services use UNIX authentication
other auth required /usr/lib/security/$ISA/pam_unix.so.1
#
Account management for login service is stacked.
UNIX account management is required
Inhouse account management is optional
login account required /usr/lib/security/$ISA/pam_unix.so.1
login account optional /usr/lib/security/$ISA/pam_inhouse.so.1
dtlogin account required /usr/lib/security/$ISA/pam_unix.so.1
dtlogin account optional /usr/lib/security/$ISA/pam_inhouse.so.1
other account required /usr/lib/security/$ISA/pam_unix.so.1
#
Session management
other session required /usr/lib/security/$ISA/pam_unix.so.1
#
Password management
other password required /usr/lib/security/$ISA/pam_unix.so.1

ATTRIBUTES See attributes (5) for description of the following attributes:

282 SunOS 5.8 Last modified 29 Oct 1999

File Formats pam.conf(4)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

SEE ALSO login (1), passwd (1), in.ftpd (1M), in.rlogind (1M), in.rshd (1M),
in.telnetd (1M), in.uucpd (1M), init (1M), rpc.rexd (1M), sac (1M),
su (1M), ttymon (1M), pam(3PAM), syslog (3C), libpam (3LIB),
attributes (5), pam_unix (5)

NOTES The interfaces in libpam() are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

Last modified 29 Oct 1999 SunOS 5.8 283

passwd(4) File Formats

NAME passwd – password file

SYNOPSIS /etc/passwd

DESCRIPTION /etc/passwd is a local source of information about users’ accounts. The
password file can be used in conjunction with other password sources, including
the NIS maps passwd.byname and passwd.bygid and the NIS+ table
passwd . Programs use the getpwnam (3C) routines to access this information.

Each passwd entry is a single line of the form:

username: password: uid:
gid: gcos-field: home-dir:
login-shell

where
username is the user’s login name. It is recommended that this field

conform to the checks performed by pwck (1M).

password is an empty field. The encrypted password for the user
is in the corresponding entry in the /etc/shadow file.
pwconv (1M) relies on a special value of ’x ’ in the password
field of /etc/passwd . If this value of ’x ’ exists in the
password field of /etc/passwd , this indicates that the
password for the user is already in /etc/shadow and
should not be modified.

uid is the user’s unique numerical ID for the system.

gid is the unique numerical ID of the group that the user belongs
to.

gcos-field is the user’s real name, along with information to pass along
in a mail-message heading. (It is called the gcos-field for
historical reasons.) An “&” (ampersand) in this field stands
for the login name (in cases where the login name appears in
a user’s real name).

home-dir is the pathname to the directory in which the user is initially
positioned upon logging in.

login-shell is the user’s initial shell program. If this field is empty, the
default shell is /usr/bin/sh .

The maximum value of the uid and gid fields is 2147483647 . To maximize
interoperability and compatibility, administrators are recommended to assign
users a range of UIDs and GIDs below 60000 where possible.

284 SunOS 5.8 Last modified 14 May 1998

File Formats passwd(4)

The password file is an ASCII file. Because the encrypted passwords are
always kept in the shadow file, /etc/passwd has general read permission on
all systems and can be used by routines that map between numerical user
IDs and user names.

Previous releases used a password entry beginning with a ‘+’ (plus sign)
or ‘−’ (minus sign) to selectively incorporate entries from NIS maps for
password. If still required, this is supported by specifying “passwd : compat”
in nsswitch.conf (4). The "compat" source may not be supported in future
releases. The preferred sources are, "files" followed by "nisplus". This has the
effect of incorporating the entire contents of the NIS+ passwd table after the
password file.

EXAMPLES EXAMPLE 1 A sample passwd file.

Here is a sample passwd file:

root:q.mJzTnu8icF.:0:10:God:/:/bin/csh
fred:6k/7KCFRPNVXg:508:10:& Fredericks:/usr2/fred:/bin/csh

and the sample password entry from nsswitch.conf :

passwd: files nisplus

In this example, there are specific entries for users root and fred to assure that
they can login even when the system is running single-user. In addition, anyone
in the NIS+ table passwd will be able to login with their usual password, shell
and home directory.

If the password file is:

root:q.mJzTnu8icF.:0:10:God:/:/bin/csh
fred:6k/7KCFRPNVXg:508:10:& Fredericks:/usr2/fred:/bin/csh
+

and the password entry from nsswitch.conf is:

passwd: compat

then all the entries listed in the NIS passwd.byuid and passwd.byname maps
will be effectively incorporated after the entries for root and fred .

FILES /etc/nsswitch.conf
/etc/passwd
/etc/shadow

SEE ALSO chgrp (1), chown (1), groups (1), login (1), newgrp (1), nispasswd (1),
passwd (1), sh (1), sort (1), chown (1M), domainname (1M), getent (1M),
in.ftpd (1M), passmgmt (1M), pwck (1M), pwconv (1M), su (1M),
useradd (1M), userdel (1M), usermod (1M), a64l (3C), crypt (3C), getpw (3C),

Last modified 14 May 1998 SunOS 5.8 285

passwd(4) File Formats

getpwnam (3C), getspnam (3C), putpwent (3C), group (4), hosts.equiv (4),
nsswitch.conf (4), shadow (4), environ (5), unistd (3HEAD)

System Administration Guide, Volume 1

286 SunOS 5.8 Last modified 14 May 1998

File Formats pathalias(4)

NAME pathalias – alias file for FACE

SYNOPSIS /usr/vmsys/pathalias

DESCRIPTION The pathalias files contain lines of the form alias= path where path can be
one or more colon-separated directories. Whenever a FACE (Framed Access
Command Environment, see face (1)) user references a path not beginning with
a “/ ”, this file is checked. If the first component of the pathname matches
the left-hand side of the equals sign, the right-hand side is searched much
like $PATH variable in the system. This allows users to reference the folder
$HOME/FILECABINET by typing filecabinet .

There is a system-wide pathalias file called $VMSYS/pathalias , and each
user can also have local alias file called $HOME/pref/pathalias . Settings in
the user alias file override settings in the system-wide file. The system-wide
file is shipped with several standard FACE aliases, such as filecabinet ,
wastebasket , preferences , other_users , etc.

FILES $HOME/pref/pathalias

$VMSYS/pathalias

SEE ALSO face (1)

NOTES Unlike command keywords, partial matching of a path alias is not permitted,
however, path aliases are case insensitive. The name of an alias should be
alphabetic, and in no case can it contain special characters like “/ ”, “\ ”, or “=”.
There is no particular limit on the number of aliases allowed. Alias files are read
once, at login, and are held in core until logout. Thus, if an alias file is modified
during a session, the change will not take effect until the next session.

Last modified 3 Jul 1990 SunOS 5.8 287

path_to_inst(4) File Formats

NAME path_to_inst – device instance number file

SYNOPSIS /etc/path_to_inst

DESCRIPTION /etc/path_to_inst records mappings of physical device names to instance
numbers.

The instance number of a device is encoded in its minor number, and is the way
that a device driver determines which of the possible devices that it may drive
is referred to by a given special file.

In order to keep instance numbers persistent across reboots, the system records
them in /etc/path_to_inst .

This file is read only at boot time, and is updated by add_drv (1M) and
drvconfig (1M).

Note that it is generally not necessary for the system administrator to change this
file, as the system will maintain it.

The system administrator can change the assignment of instance numbers by
editing this file and doing a reconfiguration reboot. However, any changes made
in this file will be lost if add_drv (1M) or drvconfig (1M) is run before the
system is rebooted.

Each instance entry is a single line of the form:

" physical name" instance number " driver binding name"

where
physical name is the absolute physical pathname of a device.

This pathname must be enclosed in double
quotes.

instance number is a decimal or hexadecimal number.

driver binding name is the name used to determine the driver for
the device. This name may be a driver alias or
a driver name. The driver binding name must
be enclosed in double quotes.

EXAMPLES EXAMPLE 1 Sample path_to_inst Entries

Here are some sample path_to_inst entries:

"/iommu@f,e0000000" 0 "iommu"
"/iommu@f,e0000000/sbus@f,e0001000" 0 "sbus"
"/iommu@f,e0000000/sbus@f,e0001000/sbusmem@e,0" 14 "sbusmem"
"/iommu@f,e0000000/sbus@f,e0001000/sbusmem@f,0" 15 "sbusmem"

288 SunOS 5.8 Last modified 2 Nov 1995

File Formats path_to_inst(4)

"/iommu@f,e0000000/sbus@f,e0001000/ledma@f,400010" 0 "ledma"
"/obio/serial@0,100000" 0 "zs"
"/SUNW,sx@f,80000000" 0 "SUNW,sx"

FILES /etc/path_to_inst

SEE ALSO add_drv (1M), boot (1M), drvconfig (1M), mknod(1M)

WARNINGS If the file is removed the system may not be bootable (as it may rely on
information found in this file to find the root, usr or swap device). If it does
successfully boot, it will regenerate the file, but after rebooting devices may end
up having different minor numbers than they did before, and special files created
via mknod(1M) may refer to different devices than expected.

For the same reasons, changes should not be made to this file without careful
consideration.

NOTES This document does not constitute an API. path_to_inst may not exist or may
have a different content or interpretation in a future release. The existence of
this notice does not imply that any other documentation that lacks this notice
constitutes an API.

Last modified 2 Nov 1995 SunOS 5.8 289

pci(4) File Formats

NAME pci – configuration files for PCI device drivers

DESCRIPTION The Peripheral Component Interconnect (PCI) bus is a little endian bus. PCI
devices are self-identifying — that is to say the PCI device provides configuration
parameters to the system which allows the system to identify the device
and its driver. The configuration parameters are represented in the form of
name-value pairs that can be retrieved using the DDI property interfaces. See
ddi_prop_lookup (9F) for details.

The PCI bus properties are derived from PCI Configuration Space, or supplied
by the Fcode PROM if it exists. Therefore, driver configuration files are not
necessary for these devices.

However, on some occasions, drivers for PCI devices may use driver
configuration files to provide driver private properties. This can be done
through global property mechanism. See driver.conf (4) for further details.
Driver configuration files can also be used to augment or override properties for
a specific instance of a driver.

All bus drivers of class pci recognize the following properties:
reg An arbitrary length array where each element of the array

consists of a 5-tuple of 32-bit values. Each array element
describes a logically contiguous mappable resource on the
PCI bus.

The first 3 values in the 5-tuple describe the PCI address of
the mappable resource. The first tuple contains the following
information:

Bits 0 - 7 8-bit Register
number

Bits 8 - 10 3-bit Function
number

Bits 11 - 15 5-bit Device number

Bits 16 - 23 8-bit Bus number

Bits 24 - 25 2-bit Address Space
type identifier

The Address Space type identifier may be interpreted as
follows:

0x0 Configuration Space

0x1 I/O Space

290 SunOS 5.8 Last modified 4 Mar 1997

File Formats pci(4)

0x2 32-bit Memory
Space address

0x3 64-bit Memory
Space address

The Bus number is a unique identifying number assigned
to each PCI bus within a PCI domain.

The Device number is a unique identifying number assigned
to each PCI device on a PCI bus. Note that a Device number
is only unique within the set of Device numbers for a
particular bus.

Each PCI device can have 1 to 8 logically independent
functions, each with its own independent set of configuration
registers. Each function on a device is assigned a Function
number. For a PCI device with only one function, the
Function number must be 0.

The Register number field selects a particular register
within the set of configuration registers corresponding to
the selected function.

The second and third values in the reg property 5-tuple
specify the 64-bit address of the mappable resource
within the PCI address domain. The second 32-bit tuple
corresponds to the high order 4 bytes of the 64-bit address.
The third 32-bit tuple corresponds to the low order bytes.

The fourth and fifth 32-bit values in the 5-tuple reg property
specify the size of the mappable resource. The size is a
64-bit value where the fourth tuple corresponds to the high
order bytes of the 64-bit size and the fifth corresponds to
the low order.

The driver can refer to the elements of this array
by index, and construct kernel mappings to these
addresses using ddi_regs_map_setup (9F). The index
into the array is passed as the rnumber argument of
ddi_regs_map_setup (9F).

At a high-level interrupt context, you can use the ddi_get*
and ddi_put* family of functions to access I/O and
memory space. However, access to configuration space is not
allowed when running at a high-interrupt level.

Last modified 4 Mar 1997 SunOS 5.8 291

pci(4) File Formats

interrupts This property consists of a single integer element array.
Valid interrupt property values are 1, 2, 3, and 4. This
value is derived directly from the contents of the device’s
Configuration Interrupt Pin register.

A driver should use an index value of 0 when registering its
interrupt handler with ddi_add_intr (9F).

All PCI devices support the reg property. The Device number and Function
number as derived from the reg property are used to construct the address part
of the device name under /devices .

Only devices that generate interrupts support an interrupts property.

Occasionally it may be necessary to override or augment the configuration
information supplied by a PCI device. This can be achieved by writing a driver
configuration file that describes a prototype device node specification containing
the additional properties required.

For the system to merge the prototype node specification into an actual device
node, certain conditions must be met. First, the name property must be identical.
Second, the parent property must identify the PCI bus. Third, the unit-address
property must identify the card. The format of the unit-address property is

DD[,F]

where DD is the device number and F is the function number. If the function
number is 0, only DD is specified.

EXAMPLES EXAMPLE 1 A sample configuration file.

An example configuration file called ACME,scsi-hba.conf for a PCI driver
called ACME,scsi-hba follows:

#
Copyright (c) 1995, ACME SCSI Host Bus Adaptor
ident "@(#)ACME,scsi-hba.conf 1.1 96/02/04"
name="ACME,scsi-hba" parent="/pci@1,0/pci@1f,4000"

unit-address="3" scsi-initiator-id=6;
hba-advanced-mode="on";
hba-dma-speed=10;

In this example, we provide a property scsi-initiator-id to specify the SCSI
bus initiator id that the adapter should use, for just one particular instance
of adapter installed in the machine. We use the name property to identify
the driver and the parent property to identify the particular bus the card is
plugged into. This example uses the parent’s full path name to identify the bus.
The unit-address property identifies the card itself, with device number of 3
and function number of 0.

292 SunOS 5.8 Last modified 4 Mar 1997

File Formats pci(4)

Two global driver properties are also created: hba-advanced-mode (which
has the string value on) and hba-dma-speed (which has the value 10 M
bit/s). These properties apply to all device nodes of the ACME,scsi-hba .
The following is an example configuration file called ACME,foo.conf for a
PCI driver called ACME,foo ;

#
Copyright (c) 1996, ACME Foo driver
ident "@(#)ACME,foo.conf 1.1 95/11/14"
name="ACME,foo" class="pci" unit-address="3,1"

debug-mode=12;

In this example, we provide a property debug-mode for all instances of the
ACME,foo driver with parents of class pci and device and function numbers of
3 and 1, respectively.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC, IA

SEE ALSO driver.conf (4), attributes (5), ddi_add_intr (9F),
ddi_prop_lookup (9F), ddi_regs_map_setup (9F)

Writing Device Drivers

IEEE 1275 PCI Bus Binding

Last modified 4 Mar 1997 SunOS 5.8 293

pcmcia(4) File Formats

NAME pcmcia – PCMCIA nexus driver

DESCRIPTION The PCMCIA nexus driver supports PCMCIA card client device drivers. There
are no user-configurable options for this driver.

FILES /kernel/misc/pcmcia pcmcia driver

SEE ALSO pcmciad (1M)

294 SunOS 5.8 Last modified 19 Jul 1996

File Formats phones(4)

NAME phones – remote host phone number database

SYNOPSIS /etc/phones

DESCRIPTION The file /etc/phones contains the system-wide private phone numbers for the
tip (1) program. /etc/phones is normally unreadable, and so may contain
privileged information. The format of /etc/phones is a series of lines of the
form:

<system-name>[\t]*< phone-number>.

The system name is one of those defined in the remote (4) file and the phone
number is constructed from [0123456789 −=*%] . The ‘=’ and ‘* ’ characters are
indicators to the auto call units to pause and wait for a second dial tone (when
going through an exchange). The ‘=’ is required by the DF02-AC and the ‘* ’
is required by the BIZCOMP 1030.

Comment lines are lines containing a ‘#’ sign in the first column of the line.

Only one phone number per line is permitted. However, if more than one line in
the file contains the same system name tip (1) will attempt to dial each one in
turn, until it establishes a connection.

FILES /etc/phones

SEE ALSO tip (1), remote (4)

Last modified 14 Jan 1992 SunOS 5.8 295

pkginfo(4) File Formats

NAME pkginfo – package characteristics file

DESCRIPTION pkginfo is an ASCII file that describes the characteristics of the package along
with information that helps control the flow of installation. It is created by the
software package developer.

Each entry in the pkginfo file is a line that establishes the value of a parameter
in the following form:

PARAM="value"

There is no required order in which the parameters must be specified within the
file. Each parameter is described below. Only fields marked with an asterisk
are mandatory.
PKG* Abbreviation for the package being installed. All characters

in the abbreviation must be alphanumeric and the first may
not be numeric. The abbreviation is limited to a maximum
length of nine characters. install , new, and all are
reserved abbreviations. It is customary to make the first four
letters unique to your company, such as the company’s
stock symbol.

NAME* Text that specifies the package name (maximum length
of 256 ASCII characters). Use the NAMEparameter as the
foundation for describing the functionality and purpose of
the package; spell out any acronyms and avoid internal
product/project code names. The DESCparameter can then
be used to expand the descriptive information. Use the NAME
parameter to state as specifically as possible the use of the
package, why a user would need to load it, and so on.

ARCH* A comma-separated list of alphanumeric tokens that indicate
the architecture associated with the package. The pkgmk(1)
tool may be used to create or modify this value when
actually building the package. The maximum length of a
token is 16 characters and it cannot include a comma.

Solaris 2 and Solaris 7’s installation software meaningfully
uses only one architecture token of the form:

<instruction_set_architecture>[.< platform_group>]

where platform_group is intended only for Solaris installation
packages. Third party application software should restrict
itself to ARCHvalues from the following Solaris-supported
instruction set architectures (uname -p): sparc , i386 , and

296 SunOS 5.8 Last modified 27 Feb 1998

File Formats pkginfo(4)

ppc . Examples of Solaris’ platform groups (uname -m) are
sun4u , sun4d , and sun4m for the SPARC® instruction set
and i86pc for the i386 instruction set. See uname(1) and
isalist (1) for more details.

VERSION* Text that specifies the current version associated with the
software package. The maximum length is 256 ASCII
characters and the first character cannot be a left parenthesis.
The pkgmk(1) tool may be used to create or modify this
value when actually building the package. Current Solaris
and Solaris-compatible software practice is to assign this
parameter monotonically increasing Dewey decimal values
of the form:

<major_revision>.< minor_revision>[.< micro_revision>]

where all the revision fields are integers. The versioning
fields can be extended to an arbitrary string of numbers in
Dewey-decimal format, if necessary.

CATEGORY* A comma-separated list of categories under which a
package may be displayed. A package must at least belong
to the system or application category. Categories are
case-insensitive and may contain only alphanumerics. Each
category is limited in length to 16 characters.

DESC Text that describes the package (maximum length of 256
ASCII characters). This parameter value is used to provide
the installer with a description of what the package contains
and should build on the description provided in the NAME
parameter. Try to make the two parameters work together
so that a pkginfo -l will provide a fairly comprehensive
textual description of the package.

VENDOR Used to identify the vendor that holds the software copyright
(maximum length of 256 ASCII characters).

HOTLINE Phone number and/or mailing address where further
information may be received or bugs may be reported
(maximum length of 256 ASCII characters).

EMAIL An electronic address where further information is available
or bugs may be reported (maximum length of 256 ASCII
characters).

VSTOCK The vendor stock number, if any, that identifies this product
(maximum length of 256 ASCII characters).

Last modified 27 Feb 1998 SunOS 5.8 297

pkginfo(4) File Formats

CLASSES A space-separated list of classes defined for a package. The
order of the list determines the order in which the classes
are installed. Classes listed first will be installed first (on a
media by media basis). This parameter may be modified
by the request script.

ISTATES A list of allowable run states for package installation (for
example, "S s 1" allows run states of S, s or 1). Solaris 2
and Solaris 7 support the run levels s , S, 0, 1, 2, 3, 5, and 6.
Applicable run levels for this parameter are s , S, 1, 2, and 3.
See init (1M) for details.

RSTATES A list of allowable run states for package removal (for
example, "S s 1" allows run states of S, s or 1). Solaris 2
and Solaris 7 support the run levels s , S, 0, 1, 2, 3, 5, and 6.
Applicable run levels for this parameter are s , S, 1, 2, and 3
See init (1M) for details.

BASEDIR The pathname to a default directory where "relocatable" files
may be installed. If blank, the package is not relocatable and
any files that have relative pathnames will not be installed.
An administrator can override the default directory.

ULIMIT If set, this parameter is passed as an argument to the
ulimit (1) command (see limit (1)), which establishes the
maximum size of a file during installation.

ORDER A list of classes defining the order in which they should
be put on the medium. Used by pkgmk(1) in creating the
package. Classes not defined in this field are placed on the
medium using the standard ordering procedures.

MAXINST The maximum number of package instances that should be
allowed on a machine at the same time. By default, only one
instance of a package is allowed. This parameter must be set
in order to have multiple instances of a package. In order
to support multiple instances of packages (for example,
packages that differ in their ARCHor VERSIONparameter
value), the value of this parameter must be high enough to
allow for all instances of a given package, including multiple
versions coexisting on a software server.

PSTAMP Production stamp used to mark the pkgmap(4) file on
the output volumes. Provides a means for distinguishing
between production copies of a version if more than one is
in use at a time. If PSTAMPis not defined, the default is
used. The default consists of the UNIX system machine

298 SunOS 5.8 Last modified 27 Feb 1998

File Formats pkginfo(4)

name followed by the string "YYYYMMDDHHMM" (year,
month, date, hour, minutes).

INTONLY Indicates that the package should only be installed
interactively when set to any non-null value.

SUNW_PRODNAMESolaris 2 and Solaris 7-only parameter indicating the name
of the product this package is a part of or comprises
(maximum length of 256 ASCII characters). A few examples
of currently used SUNW_PRODNAMEvalues are: "SunOS" ,
"OpenWindows" , and "Common Desktop Environment" .

SUNW_PRODVERSSolaris 2 and Solaris 7-only parameter indicating the version
or release of the product described in SUNW_PRODNAME
(maximum length of 256 ASCII characters). For example,
where SUNW_PRODNAME="SunOS" , and the Solaris 2.x
Beta release, this string could be "5.x BETA" , while for
the Solaris 2.x FCS release, the string would be "5.x" .
For Solaris 7, the string is "5.7" . If the SUNW_PRODNAME
parameter is NULL, so should be the SUNW_PRODVERS
parameter.

SUNW_PKGVERSSolaris 2 and Solaris 7–only parameter indicating of version
of the Solaris 2 or Solaris 7 package interface. It is used to
indicate the version of the Solaris 2 or Solaris 7-specific
software packaging interfaces.

SUNW_PKGVERS="<sunw_package_version>"

where <unw_package_version> has the form x.y[.z] and x, y,
and z are integers. For packages built for this release and
previous releases, use SUNW_PKGVERS="1.0".

SUNW_PKGTYPESolaris 2 and Solaris 7-only parameter for Sun internal
use only. Required for packages part of the Solaris 2
and Solaris 7 releases which install into the / , /usr ,
/usr/kvm , and /usr/openwin file systems. The Solaris
2 and Solaris 7 installation software must know which
packages are part of which file system to properly install
a server/client configuration. The currently allowable
values for this parameter are root , usr , kvm, and ow.
If no SUNW_PKGTYPEparameter is present, the package
is assumed to be of BASEDIR= /opt. SUNW_PKGTYPEis
optional only for packages which install into the /opt name
space as is the case for the majority of Solaris 2 and Solaris

Last modified 27 Feb 1998 SunOS 5.8 299

pkginfo(4) File Formats

7-compatible add-on software. See the SUNW_PKGTYPE
parameter in packagetoc (4) for further information.

SUNW_ISA Solaris 2 and Solaris 7-only optional parameter that indicates
a software package contains 64–bit objects if it is set to
sparc9 . If this parameter is not set, the default ISA
(instruction set architecture) is set to the value of the ARCH
parameter.

SUNW_LOC Solaris 2 and Solaris 7-only optional parameter used to
indicate a software package containing localization files for
a given product or application. The parameter value is a
comma-separated list of locales supported by a package. It is
only used for packages containing localization files, typically
the message catalogues. The allowable values for this string
field are those found in the table of Standard Locale Names
located in the International Language Environments Guide.

SUNW_LOC="<locale_name>,< locale_name>,..,< locale_name>"

where

<locale_name>::= < language>[_< territory>][.< codeset>]
<language>::= the set of names from ISO 639
<territory>::= the set of territories specified
in ISO 3166
<codeset>::= is a string corresponding to the coded
character set

Since a value of C specifies the traditional UNIX system
behavior (American English, en_US), packages belonging
to the C locale are viewed as non-localized packages, and
thus must not have SUNW_LOCand SUNW_PKGLISTincluded
in their pkginfo file. See also the SUNW_LOCparameter in
packagetoc (4) and setlocale (3C) for more information.
This keyword is not recognized by the add-on software
utility Software Manager.

SUNW_PKGLIST Solaris 2 and Solaris 7-only optional parameter used
to associate a localization package to the package(s)
from which it is derived. It is required whenever the
SUNW_LOCparameter is defined. This parameter value is an
comma-separated list of package abbreviations of the form:

SUNW_PKGLIST="pkg1[:version], pkg2[: version],..."

300 SunOS 5.8 Last modified 27 Feb 1998

File Formats pkginfo(4)

where version (if specified) should match the version string
in the base package specified (see VERSIONparameter
in this manual page). When in use, SUNW_PKGLIST
helps determine the order of package installation. The
packages listed in the parameter will be installed before the
localization package in question is installed. When left blank,
SUNW_PKGLIST=" ", the package is assumed to be required
for the locale to function correctly. See the SUNW_PKGLIST
parameter in packagetoc (4) for more information. This
keyword is not recognized by the add-on software utility
Software Manager.

EXAMPLES EXAMPLE 1 A sample pkginfo file.

Here is a sample pkginfo file:

SUNW_PRODNAME="SunOS"
SUNW_PRODVERS="5.5"
SUNW_PKGTYPE="usr"
PKG="SUNWesu"
NAME="Extended System Utilities"
VERSION="11.5.1"
ARCH="sparc"
VENDOR="Sun Microsystems, Inc."
HOTLINE="Please contact your local service provider"
EMAIL=""
VSTOCK="0122c3f5566"
CATEGORY="system"
ISTATES="S 2"
RSTATES="S 2"

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability See entries below

PKG value Evolving

VERSION value Evolving

NAME value Evolving

DESC value Evolving

ARCH value Evolving

CATEGORY value Evolving

BASEDIR value Evolving

Last modified 27 Feb 1998 SunOS 5.8 301

pkginfo(4) File Formats

ATTRIBUTE TYPE ATTRIBUTE VALUE

ISTATES value Evolving

RSTATES value Evolving

MAXINST value Evolving

SUNW_PRODNAME Evolving

SUNW_PRODVERS Evolving

SUNW_PKGVERS Evolving

SUNW_PKGTYPE Unstable

SUNW_LOC Evolving

SUNW_PKGLIST Evolving

SEE ALSO isalist (1), limit (1), pkgmk(1), uname(1), init (1M), setlocale (3C),
clustertoc (4), order (4), packagetoc (4), pkgmap(4), attributes (5)

Application Packaging Developer’s Guide

International Language Environments Guide

NOTES Developers may define their own installation parameters by adding a definition
to this file. A developer-defined parameter must begin with a capital letter.

Trailing white space after any parameter value is ignored. For example,
VENDOR="Sun Microsystems, Inc." is the same as VENDOR="Sun
Microsystems, Inc. " .

302 SunOS 5.8 Last modified 27 Feb 1998

File Formats pkgmap(4)

NAME pkgmap – package contents description file

DESCRIPTION pkgmap is an ASCII file that provides a complete listing of the package
contents. It is automatically generated by pkgmk(1) using the information in the
prototype (4) file.

Each entry in pkgmap describes a single “deliverable object file.” A deliverable
object file includes shell scripts, executable objects, data files, directories, and so
forth. The entry consists of several fields of information, each field separated by
a space. The fields are described below and must appear in the order shown.
part An optional field designating the part number in which

the object resides. A part is a collection of files and is the
atomic unit by which a package is processed. A developer
can choose the criteria for grouping files into a part (for
example, based on class). If no value is defined in this field,
part 1 is assumed.

ftype A one-character field that indicates the file type. Valid
values are:

b block special device

c character special device

d directory

e a file to be edited upon installation or removal (may
be shared by several packages)

f a standard executable or data file

i installation script or information file

l linked file

p named pipe

s symbolic link

v volatile file (one whose contents are expected to
change, like a log file)

x an exclusive directory accessible only by this
package

class The installation class to which the file belongs. This name
must contain only alphanumeric characters and be no

Last modified 30 Apr 1999 SunOS 5.8 303

pkgmap(4) File Formats

longer than 12 characters. It is not specified if the ftype is
i (information file).

pathname pathname may contain variables of the form $variable that
support install-time configuration of the file. variable may be
embedded in the pathname structure. (See prototype (4) for
definitions of variable specifications.)

Do not use the following reserved words in pathname,
since they are applied by pkgadd (1M) using a different
mechanism:

PKG_INSTALL_ROOT
BASEDIR
CLIENT_BASEDIR

major The major device number. The field is only specified for
block or character special devices.

minor The minor device number. The field is only specified for
block or character special devices.

mode The octal mode of the file (for example, 0664). A question
mark (?) indicates that the mode will be left unchanged,
implying that the file already exists on the target machine.
This field is not used for linked files, packaging information
files, or non-installable files.

The mode can contain a variable specification. (See
prototype (4) for definitions of variable specifications.)

owner The owner of the file (for example, bin or root). The field
is limited to 14 characters in length. A question mark (?)
indicates that the owner will be left unchanged, implying
that the file already exists on the target machine. This
field is not used for linked files or non-installable files. It
is used optionally with a package information file. If used,
it indicates with what owner an installation script will be
executed.

The owner can contain a variable specification. (See
prototype (4) for definitions of variable specifications.)

group The group to which the file belongs (for example, "bin"
or "sys"). The field is limited to 14 characters in length.
A question mark (?) indicates that the group will be left
unchanged, implying that the file already exists on the

304 SunOS 5.8 Last modified 30 Apr 1999

File Formats pkgmap(4)

target machine. This field is not used for linked files or
non-installable files. It is used optionally with a package
information file. If used, it indicates with what group an
installation script will be executed.

The group can contain a variable specification. (See
prototype (4) for definitions of variable specifications.)

size The actual size of the file in bytes. This field is not specified
for named pipes, special devices, directories or linked files.

cksum The checksum of the file contents. This field is not specified
for named pipes, special devices, directories, or linked files.

modtime The time of last modification, as reported by the stat (2)
function call. This field is not specified for named pipes,
special devices, directories, or linked files.

Each pkgmap file must have one line that provides information about the
number of parts, maximum size of parts that make up the package, and,
optionally, the size of the package after compression (where size is given in
512-byte blocks). This line is in the following format:

: number_of_parts maximum_part_size compressed_pkg_size

Lines that begin with “#” are comment lines and are ignored.

When files are saved during installation before they are overwritten, they are
normally just copied to a temporary pathname. However, for files whose mode
includes execute permission (but which are not editable), the existing version is
linked to a temporary pathname and the original file is removed. This allows
processes which are executing during installation to be overwritten.

EXAMPLES EXAMPLE 1 A sample pkgmap file

: 2 500
1 i pkginfo 237 1179 541296672
1 b class1 /dev/diskette 17 134 0644 root other
1 c class1 /dev/rdiskette 17 134 0644 root other
1 d none bin 0755 root bin
1 f none bin/INSTALL 0755 root bin 11103 17954 541295535
1 f none bin/REMOVE 0755 root bin 3214 50237 541295541
1 l none bin/UNINSTALL=bin/REMOVE
1 f none bin/cmda 0755 root bin 3580 60325 541295567
1 f none bin/cmdb 0755 root bin 49107 51255 541438368
1 f class1 bin/cmdc 0755 root bin 45599 26048 541295599
1 f class1 bin/cmdd 0755 root bin 4648 8473 541461238
1 f none bin/cmde 0755 root bin 40501 1264 541295622
1 f class2 bin/cmdf 0755 root bin 2345 35889 541295574
1 f none bin/cmdg 0755 root bin 41185 47653 541461242
2 d class2 data 0755 root bin

Last modified 30 Apr 1999 SunOS 5.8 305

pkgmap(4) File Formats

2 p class1 data/apipe 0755 root other
2 d none log 0755 root bin
2 v none log/logfile 0755 root bin 41815 47563 541461333
2 d none save 0755 root bin
2 d none spool 0755 root bin
2 d none tmp 0755 root bin

SEE ALSO pkgmk(1), pkgadd (1M), stat (2), pkginfo (4), prototype (4)

Application Packaging Developer’s Guide

NOTES The pkgmap file may contain only one entry per unique pathname.

306 SunOS 5.8 Last modified 30 Apr 1999

File Formats platform(4)

NAME platform – directory of files specifying supported platforms

SYNOPSIS .platform

DESCRIPTION The Solaris 2.5 release includes the .platform directory, a new directory on
the Solaris CD image. This directory contains files (created by SunSoft and
Solaris OEMs) that define platform support. These files are generically referred
to as platform definition files. They provide a means to map different platform
types into a platform group.

Platform definition files in the .platform directory are used by the installation
software to ensure that software appropriate for the architecture of the system
will be installed.

SunSoft provides a platform definition file named .platform/Solaris . This
file is the only one that can define platform groups to which other platform
definition files can refer. For example, an OEM platform definition file can refer
to any platform group specified in the Solaris platform definition file.

Other platform definition files are delivered by OEMs. To avoid name conflicts,
OEMs will name their platform definition file with an OEM-unique string.
OEM’s should use whatever string they use to make their package names
unique. This unique string is often the OEM’s stock symbol.

Comments are allowed in a platform definition file. A "#" begins a comment and
can be placed anywhere on a line.

Platform definition files are composed of keyword-value pairs, and there are
two kinds of stanzas in the file: platform group definitions and platform
identifications.

� Platform group definitions:

The keywords in a platform group definition stanza are:
PLATFORM_GROUPThe PLATFORM_GROUPkeyword must be the first keyword in

the platform group definition stanza. The value assigned to
this keyword is the name of the platform group, for example:

PLATFORM_GROUP=sun4c

The PLATFORM_GROUPname is an arbitrary name assigned
to a group of platforms. However, PLATFORM_GROUP
typically equals the output of the uname -m command.
PLATFORM_GROUPvalue cannot have white space and is
limited to 256 ASCII characters.

INST_ARCH The instruction set architecture of all platforms in the
platform group, for example:

INST_ARCH=sparc

Last modified 30 Aug 1995 SunOS 5.8 307

platform(4) File Formats

The INST_ARCHkeyword value must be the value returned
by the uname -p command on all platforms in the platform
group.

� Platform identifications:

The keywords in a platform identification stanza are:
PLATFORM_NAME The PLATFORM_NAMEkeyword must be the first

keyword in the platform identification stanza.
The PLATFORM_NAMEis the name assigned to the
platform, for example:

PLATFORM_NAME=SUNW,SPARCstation-5

Typically, this name is the same as the value
returned by the uname -i command on the
machine, but it need not be the same.

The PLATFORM_NAMEvalue cannot have white
space and is limited to 256 ASCII characters. If
it contains parentheses, it must contain only
balanced parentheses. For example. the string
"foo(bar)foo" is a valid value for this keyword,
but "foo(bar" is not.

The other keywords in the platform identification
stanza can be in any order, as long as the
PLATFORM_NAMEkeyword is first.

PLATFORM_ID The value returned by the uname -i command
on the machine, for example:

PLATFORM_ID=SUNW,SPARCstation-5

MACHINE_TYPE The value returned by the uname -m command
on the machine, for example:

MACHINE_TYPE=sun4c

IN_PLATFORM_GROUP The platform group of which the platform is a
member, for example:

IN_PLATFORM_GROUP=sun4c

The platform group name must be specified in
the same file as the platform identification stanza
or in the platform definition file with the name
.platform/Solaris .

The IN_PLATFORM_GROUPkeyword is optional.
A platform doesn’t have to belong to a platform

308 SunOS 5.8 Last modified 30 Aug 1995

File Formats platform(4)

group. If a platform isn’t explicitly assigned
to a platform group, it essentially forms its
own platform group, where the platform
group name is the PLATFORM_NAMEvalue.
The IN_PLATFORM_GROUPvalue typically
equals the output of the uname -m command.
IN_PLATFORM_GROUPvalue cannot have white
space and is limited to 256 ASCII characters.

INST_ARCH The instruction set architecture of the platform,
for example:

INST_ARCH=sparc

This field is only required if the platform does
not belong to a platform group. The INST_ARCH
keyword value must be the value returned by
the uname -p command on all platforms in the
platform group.

COMPATIBILITY The installation program will remain compatible with the old Solaris CD
format. If a Solaris CD image does not contain any platform definition files, the
installation and upgrade programs will select the packages to be installed based
on machine type (i.e., the value returned by the uname -m command).

EXAMPLES EXAMPLE 1 The following example shows platform group definitions from the
.platform/Solaris platform definition file.

#
PLATFORM_GROUP=sun4c
INST_ARCH=sparc
#
PLATFORM_GROUP=sun4d
INST_ARCH=sparc
#
PLATFORM_GROUP=sun4m
INST_ARCH=sparc
#
PLATFORM_GROUP=sun4u
INST_ARCH=sparc

EXAMPLE 2 The following example shows platform identification stanzas, which
define systems that belong in a platform group, from the .platform/Solaris platform
definition file.

#
PLATFORM_NAME=SUNW,Sun_4_20
PLATFORM_ID=SUNW,Sun_4_20
IN_PLATFORM_GROUP=sun4c
PLATFORM_NAME=SUNW,Sun_4_25
PLATFORM_ID=SUNW,Sun_4_25

Last modified 30 Aug 1995 SunOS 5.8 309

platform(4) File Formats

IN_PLATFORM_GROUP=sun4c
#
PLATFORM_NAME=SUNW,SPARCstation-5
PLATFORM_ID=SUNW,SPARCstation-5
IN_PLATFORM_GROUP=sun4m
#
PLATFORM_NAME=SUNW,SPARCstation-10
PLATFORM_ID=SUNW,SPARCstation-10
IN_PLATFORM_GROUP=sun4m

FILES The .platform directory must reside as
/ cd_image/Solaris_ vers/.platform , where
cd_image Is the path to the mounted Solaris CD (/cdrom/cdrom0/s0

by default) or the path to a copy of the Solaris CD on a disk.

Solaris_vers Is the version of Solaris: e.g., Solaris_2.5.

NOTES Typically, a platform identification stanza contains either a PLATFORM_IDor a
MACHINE_TYPEstanza, but not both.

If both are specified, both must match for a platform to be identified as this
platform type. Each platform identification stanza must contain either a
PLATFORM_IDvalue or a MACHINE_TYPEvalue. If a platform matches two
different platform identification stanzas—one which matched on the value of
PLATFORM_IDand one which matched on the value of MACHINE_TYPE, the one
that matched on PLATFORM_IDwill take precedence.

The .platform directory is part of the Solaris CD image, whether that be the
Solaris CD or a copy of the Solaris CD on a system’s hard disk.

310 SunOS 5.8 Last modified 30 Aug 1995

SunOS/BSD Compatibility Package File Formats plot(4B)

NAME plot – graphics interface

DESCRIPTION Files of this format are interpreted for various devices by commands described
in plot (1B). A graphics file is a stream of plotting instructions. Each instruction
consists of an ASCII letter usually followed by bytes of binary information.
The instructions are executed in order. A point is designated by four bytes
representing the x and y values; each value is a signed integer. The last
designated point in an l , m, n, or p instruction becomes the “current point” for
the next instruction.
m Move: the next four bytes give a new current point.

n Cont: draw a line from the current point to the point given by the
next four bytes. See plot (1B).

p Point: plot the point given by the next four bytes.

l Line: draw a line from the point given by the next four bytes to the
point given by the following four bytes.

t Label: place the following ASCII string so that its first character falls
on the current point. The string is terminated by a NEWLINE.

a Arc: the first four bytes give the center, the next four give the starting
point, and the last four give the end point of a circular arc. The least
significant coordinate of the end point is used only to determine the
quadrant. The arc is drawn counter-clockwise.

c Circle: the first four bytes give the center of the circle, the next two
the radius.

e Erase: start another frame of output.

f Linemod: take the following string, up to a NEWLINE, as the style for
drawing further lines. The styles are “dotted,” “solid,” “longdashed,”
“shortdashed,” and “dotdashed.” Effective only in plot 4014 and
plot ver .

s Space: the next four bytes give the lower left corner of the plotting
area; the following four give the upper right corner. The plot will be
magnified or reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below for
devices supported by the filters of plot (1B). The upper limit is just outside the
plotting area.

In every case the plotting area is taken to be square; points outside may be
displayable on devices whose face is not square.
4014 space(0, 0, 3120, 3120);

Last modified 9 Feb 1992 SunOS 5.8 311

plot(4B) SunOS/BSD Compatibility Package File Formats

ver space(0, 0, 2048, 2048);

300 , 300s space(0, 0, 4096, 4096);

450 space(0, 0, 4096, 4096);

SEE ALSO graph (1), plot (1B)

312 SunOS 5.8 Last modified 9 Feb 1992

File Formats policy.conf(4)

NAME policy.conf – configuration file for security policy

SYNOPSIS etc/security/policy.conf

DESCRIPTION The policy.conf file provides the security policy configuration for user-level
attributes. Each entry consists of a of a key/value pair in the form:

key=value

The following key is defined:
AUTHS_GRANTED Specifies the default set of authorizations

granted to all users. This entry is interpreted by
chkauthattr (3SECDB). The value is one or
more comma-separated authorizations defined in
auth_attr (4).

The key/value pair must appear on a single line, and the key must start the
line. Lines starting with # are taken as comments and ignored. Option name
comparisons are case-insensitive.

EXAMPLES EXAMPLE 1 Defining a key/value pair

AUTHS_GRANTED=com.sun.date

FILES /etc/user_attr Defines extended user attributes.

/etc/security/auth_attr Defines authorizations.

/etc/security/policy.conf Defines policy for the system.

SEE ALSO pfexec (1), chkauthattr (3SECDB), auth_attr (4), user_attr (4)

Last modified 14 Sep 1999 SunOS 5.8 313

power.conf(4) File Formats

NAME power.conf – Power Management configuration information file

SYNOPSIS /etc/power.conf

DESCRIPTION The power.conf file is used by the Power Management configuration program
pmconfig (1M) to initialize the settings for Power Management. If you make
changes to this file, you must run pmconfig (1M) manually for the changes
to take effect.

The dtpower (1M) GUI allows the configuration of a subset of parameters
allowed by this file. For ease-of-use, it is recommended that you use
dtpower (1M) to configure the parameters.

Power Management addresses two specific management scenarios: management
of individual devices and management of the whole system. An individual
device is power managed if a device supports multiple power levels and if the
device driver uses Power Management interfaces provided by the kernel to save
device power when the device is idle. If the driver uses the original Power
Management interfaces, the device is controlled by the entries described in the
DEVICE POWER MANAGEMENT section of this manual page. If the device
driver uses new automatic device Power Management interfaces, the device
is controlled by the entries described in the AUTOMATIC DEVICE POWER
MANAGEMENT section of this manual page.

To determine if the device driver supports original Power Management
interfaces, contact the device vendor. To find out if the device driver supports the
new automatic device Power Management interfaces, look for “pm-components”
property (pm-components (9F)) under the device name from the output of
prtconf -v command (prtconf (1M).)

The original Power Management interfaces and the corresponding device
Power Management entries in power.conf file that were supported in Solaris
7 and earlier releases are now obsolete. Support for them will be removed
in a future release.

All entries in the power.conf file are processed in the order displayed in
the file.

Device Power
Management

Device Power Management entries are now obsolete and support for them will
be removed in a future release. If a device supports original Power Management
interfaces, it needs to be explicitly configured for Power Management using an
entry of the form shown below. A device will not be power managed if there is
no entry for the device. Be sure you fully understand the Power Management
framework before you attempt to modify device Power Management entries.

Device Power Management entries consist of line-by-line listings of the devices
to be configured. Each line is of the form:

device_name threshold ...dependent_upon...

314 SunOS 5.8 Last modified 20 Sep 1999

File Formats power.conf(4)

The fields must be in the order shown above. Each line must contain a
device_name field and a threshold field; it may also contain a dependent_upon
field. Fields and sub-fields are separated by white space (tabs or spaces). A
line may be more than 80 characters. If a newline character is preceded by a
backslash (\) it will be treated as white space. Comment lines must begin with
a hash character (#).

The device_name field specifies the device to be configured. device_name is either a
pathname specifying the device special file or a relative pathname containing the
name of the device special file. (For the latter format, you can avoid using the
full pathname by omitting the pathname component that specifies the parent
devices. This includes the leading ’/’.) Using the relative pathname format, the
first device found with a full pathname containing device_name as its tail is
matched. In either case, the leading /devices component of the pathname
does not need to be specified.

The threshold field is used to configure the power manageable components of
a device. These components represent entities within a device that may be
power-managed separately. This field may contain as many integer values as the
device has components. Each threshold time specifies the idle time in seconds
before the respective component may be powered down. If there are fewer
component threshold times than device components, the remaining components
are not power managed. Use a value of −1 to explicitly disable power-down for
a component. At least one component threshold must be specified per device
(in the file).

The dependent_upon field contains a list of devices that must be idle and
powered-down before the dependent device in device_name field can be powered
down. A device must previously have been configured before it can be used
in dependent_upon list. This field should only list logical dependents for this
device. A logical dependent is a device that is not physically connected to the
power managed device (for example, the display and the keyboard). Physical
dependents are automatically considered and do not need to be included.

A device Power Management entry is only effective if there is no user process
controlling the device directly. For example, X Window systems directly control
framebuffers and entries in this file are effective only when X Windows are
not running.

Automatic Device
Power Management

Devices whose drivers use the new automatic device Power Management
interfaces (as evident by existence of pm-components (9) property) are
automatically power managed if enabled by the autopm entry described below.

When a component has been idle at a given power level for its threshold time, the
power level of the component will be reduced to the next lower power level of

Last modified 20 Sep 1999 SunOS 5.8 315

power.conf(4) File Formats

that component (if any). For devices which implement multiple components,
each component is power-managed independently.

Default thresholds for components of automatically power managed devices are
computed by the Power Management framework based on the system idleness
threshold. By default, all components of the device are powered off if they have
all been idle for the system’s idleness threshold. The default system idleness
threshold is determined by the applicable United States Environmental Protection
Agency’s (EPA) Energy Star Memorandum of Understanding. See the NOTES
section of this manual page for more information.

To set the system idleness threshold, use one of the following entries:

system-threshold threshold

system-threshold always-on

where threshold is the value of the system idleness threshold in hours, minutes
or seconds as indicated by a trailing h, mor s (defaulting to seconds if only a
number is given). If always-on is specified, then by default, all devices will
be left at full power.

To override the default device component thresholds assigned by the Power
Management framework, a device-thresholds entry may be used. A
device-thresholds entry sets thresholds for a specific automatically
power-managed device or disables automatic Power Management for the
specific device.

A device-thresholds entry has the form:

device-thresholds phys_path (threshold ...) ...

or

device-thresholds phys_path threshold

or

device-thresholds phys_path always-on

where phys_path specifies the physical path (libdevinfo (3)) of a specific device.
For example, /pci@8,600000/scsi@4/ssd@w210000203700c3ee,0
specifies the physical path of a disk. A symbolic link into the /devices tree
(for example /dev/dsk/c1t1d0s0) is also accepted. The thresholds apply (or
keeping the device always on applies) to the specific device only.

In the first form above, each threshold value represents the number of hours,
minutes or seconds (depending on a trailing h, mor s with a default to seconds)
to spend idle at the corresponding power level before power will be reduced to
the next lower level of that component. Parentheses are used to group thresholds
per component, with the first (leftmost) group being applied to component 0, the

316 SunOS 5.8 Last modified 20 Sep 1999

File Formats power.conf(4)

next to component 1, etc. Within a group, the last (rightmost) number represents
the time to be idle in the highest power level of the component before going to
the next-to-highest level, while the first (leftmost) number represents the time to
be idle in the next-to-lowest power level before going to the lowest power level.

If the number of groups does not match the number of components exported
by the device (via pm-components (9) property), or the number of thresholds
in a group is not one less than the number of power levels the corresponding
component supports, then an error message will be printed and the entry will be
ignored.

For example, assume a device called xfb exports the components Frame Buffer
and Monitor. Component Frame Buffer has two power levels: Off and On.
Component Monitor has four power levels: Off , Suspend, Standby , and On.

The following device-thresholds entry:

device-thresholds /pci@f0000/xfb@0 (0) (3m 5m 15m)

would set the threshold time for the Monitor component of the specific xfb card to
go from On to Standby in 15 minutes, the threshold for Monitor to go from
Standby to Suspend in 5 minutes, and the threshold for Monitor to go from
Suspend to Off in 3 minutes. The threshold for Frame Buffer to go from On
to Off will be 0 seconds.

In the second form above, where a single threshold value is specified without
parentheses, the threshold value represents a maximum overall time within
which the entire device should be powered down if it is idle. Because the
system does not know about any internal dependencies there may be among a
device’s components, the device may actually be powered down sooner than the
specified threshold, but will not take longer than the specified threshold, provided
that all device components are idle.

In the third form above, all components of the device are left at full power.

Device Power Management entries are only effective if there is no user process
controlling the device directly. For example, X Window systems directly control
frame buffers and the entries in this file are effective only when X Windows
are not running.

Dependencies among devices may also be defined. A device depends upon
another if none of its components may have their power levels reduced unless
all components of the other device are powered off. A dependency may be
indicated by an entry of the form:

device-dependency dependent_phys_path phys_path [phys_path ...]

where dependent_phys_path is the path name (as above) of the device that is kept
up by the others, and the phys_path entries specify the devices that keep it up. A

Last modified 20 Sep 1999 SunOS 5.8 317

power.conf(4) File Formats

symbolic link into the /devices tree (such as /dev/fb) is also accepted. This
entry is needed only for logical dependents for the device. A logical dependent
is a device that is not physically connected to the power managed device (for
example, the display and the keyboard). Physical dependents are automatically
considered and need not be included.

An autopm entry may be used to enable or disable automatic device Power
Management on a system-wide basis. The format of the autopm entry is:

autopm behavior

Acceptable behavior values and their meanings are:
default The behavior of the system will depend upon its

model. Desktop models that fall under the United
States Environmental Protection Agency’s Energy Star
Memorandum of Understanding #3 will have automatic
device Power Management enabled, and all others will
not. See the NOTES section of this manual page for more
information.

enable Automatic device Power Management will be started when
this entry is encountered.

disable Automatic device Power Management will be stopped when
this entry is encountered.

System Power
Management

The system Power Management entries control power management of the entire
system using the suspend-resume feature. When the system is suspended, the
complete current state is saved on the disk before power is removed. On reboot,
the system automatically starts a resume operation and the system is restored to
the state it was in prior to suspend.

The system can be configured to do an automatic shutdown (autoshutdown)
using the suspend-resume feature by an entry of the following form:

autoshutdown idle_time start_time finish_time behavior

idle_time specifies the time in minutes that system must have been idle before it
will be automatically shutdown. System idleness is determined by the inactivity
of the system and can be configured as discussed below.

start_time and finish_time (each in hh:mm) specify the time period during which
the system may be automatically shutdown. These times are measured from the
start of the day (12:00 a.m.). If the finish_time is less than or equal to the start_time,
the period span from midnight to the finish_time and from the start_time to the
following midnight. To specify continuous operation, the finish_time may be
set equal to the start_time.

Acceptable behavior values and their meanings are:

318 SunOS 5.8 Last modified 20 Sep 1999

File Formats power.conf(4)

shutdown The system will be shut down automatically when it has
been idle for the number of minutes specified in the idle_time
value and the time of day falls between the start_time and
finish_time values.

noshutdown The system is never shut down automatically.

autowakeup If the hardware has the capability to do autowakeup, the
system is shut down as if the value were shutdown and the
system will be restarted automatically the next time the time
of day equals finish_time.

default The behavior of the system will depend upon its model.
Desktop models that fall under the United States
Enviromental Protection Agency’s Energy Star Memorandum
of Understanding #2 will have automatic shutdown enabled
(as if behavior field were set to shutdown), and all others
will not. See NOTES.

unconfigured The system will not be shut down automatically. If the
system has just been installed or upgraded, the value of this
field will be changed upon the next reboot.

You can use the following format to configure the system’s notion of idleness:

idleness_parameter value

Where idleness_parameter can be:
ttychars If the idleness_parameter is ttychars , the value

field will be interpreted as the maximum number
of tty characters that can pass through the
ldterm module while still allowing the system
to be considered idle. This value defaults to 0 if
no entry is provided.

loadaverage If the idleness_parameter is loadaverage , the
(floating point) value field will be interpreted as
the maximum load average that can be seen
while still allowing the system to be considered
idle. This value defaults to 0.04 if no entry is
provided.

diskreads If the idleness_parameter is diskreads , the
value field will be interpreted as the maximum
number of disk reads that can be perform by
the system while still allowing the system to
be considered idle. This value defaults to 0 if
no entry is provided.

Last modified 20 Sep 1999 SunOS 5.8 319

power.conf(4) File Formats

nfsreqs If the idleness_parameter is nfsreqs , the value
field will be interpreted as the maximum number
of NFS requests that can be sent or received by
the system while still allowing the system to be
considered idle. Null requests, access requests,
and getattr requests are excluded from this count.
This value defaults to 0 if no entry is provided.

idlecheck If the idleness_parameter is idlecheck , the value
must be pathname of a program to be executed to
determine if the system is idle. If autoshutdown
is enabled and the console keyboard, mouse, tty,
CPU (as indicated by load average), network
(as measured by NFS requests) and disk (as
measured by read activity) have been idle for the
amount of time specified in the autoshutdown
entry specified above, and the time of day falls
between the start and finish times, then this
program will be executed to check for other
idleness criteria. The value of the idle time
specified in the above autoshutdown entry will
be passed to the program in the environment
variable PM_IDLETIME. The process must
terminate with an exit code that represents the
number of minutes that the process considers the
system to have been idle.

There is no default idlecheck entry.

When the system is suspended, the current system state is saved on the disk
in a statefile. An entry of following form can be used to change the location
of statefile:

statefile pathname

where pathname identifies a block special file, for example,
/dev/dsk/c1t0d0s2 , or is the absolute pathname of a local ufs file. If the
pathname specifies a block special file, it can be a symbolic link as long as
it does not have a file system mounted on it. If pathname specifies a local ufs
file, it cannot be a symbolic link. If the file does not exist, it will be created
during the suspend operation. All the directory components of the path must
already exist.

The actual size of statefile depends on a variety of factors, including the size of
system memory, the number of loadable drivers/modules in use, the number
and type of processes running, and the amount of user memory that has been
locked down. It is recommended that statefile be placed on a file system with at

320 SunOS 5.8 Last modified 20 Sep 1999

File Formats power.conf(4)

least 10 Mbytes of free space. In case there is no statefile entry at boot time, an
appropriate new entry is automatically created by the system.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpmr

Interface stability Evolving (Interfaces under DEVICE POWER
MANAGEMENT are obsolete.)

SEE ALSO pmconfig (1M), powerd (1M), sys-unconfig (1M), uadmin (2,)
attributes (5), cpr (7), ldterm (7M), pm(7D)

Writing Device Drivers

Using Power Management

NOTES SPARC desktop models first shipped after October 1, 1995 and before July 1,
1999 comply with the United States Enviromental Protection Agency’s Energy
Star Memorandum of Understanding #2 guidelines and have autoshutdown
enabled by default after 30 minutes of system idleness. This is achieved by
default keyword of autoshutdown entry behave as shutdown for these
machines. The user is prompted to confirm this default behavior at system
installation reboot, or during the first reboot after the system is unconfigured by
sys-unconfig (1M).

SPARC desktop models first shipped after July 1, 1999 comply with the
United States Enviromental Protection Agency’s Energy Star Memorandum
of Understanding #3 guidelines and have autoshutdown disabled by
default, with autopm enabled after 30 minutes of idleness. This is achieved by
interpreting default keyword of autopm entry behavior as enabled for these
machines. User is not prompted to confirm this default behavior.

To determine the version of the EPA’s Energy Star Memorandum applicable to
your machine, use:

prtconf -pv | grep -i energystar

Absence of a property indicates no Energy Star guidelines are applicable to
your machine.

System Power Management (suspend-resume) is currently supported only on a
limited set of hardware platforms. Please see the book Using Power Management
for a complete list of platforms that support system Power Management. See
uname(2) to programatically determine if the machine supports suspend-resume.

Last modified 20 Sep 1999 SunOS 5.8 321

printers(4) File Formats

NAME printers – user-configurable printer alias database

SYNOPSIS $HOME/.printers

DESCRIPTION The $HOME/.printers file is a simplified version of the system
/etc/printers.conf file (see printers.conf (4)). Users create the
$HOME/.printers file in their home directory. This optional file is
customizable by the user.

The $HOME/.printers file performs the following functions:

1. Sets personal aliases for all print commands.

2. Sets the interest list for the lpget , lpstat , and cancel commands. See
lpget (1M), lpstat (1) and cancel (1).

3. Sets the default printer for the lp , lpr , lpq , and lprm commands. See
lp (1), lpr (1B), lpq (1B), and lprm (1B).

Entries Use a line or full screen editor to create or modify the $HOME/.printers file.

Each entry in $HOME/.printers describes one destination. Entries are one line
consisting of two fields separated by either BLANKs or TABs and terminated
by a NEWLINE. Format for an entry in $HOME/.printers varies according
to the purpose of the entry.

Empty lines can be included for readability. Entries may continue on to
multiple lines by adding a backslash (‘\ ’) as the last character in the line. The
$HOME/.printers file can include comments. Comments have a pound sign
(‘#’) as the first character in the line, and are terminated by a NEWLINE.

Setting Personal Aliases

Specify the alias or aliases in the first field. Separate multiple aliases by a pipe
sign (‘| ’). Specify the destination in the second field. A destination names
a printer or class of printers (see lpadmin (1M)). Specify the destination
using atomic, POSIX-style (server: destination), or Federated Naming Service
(FNS) (.../service /printer /...) names. See printers.conf (4) for
information regarding the naming conventions for atomic and FNS names, and
standards (5) for information regarding POSIX.

Setting the Interest List for lpget, lpstat and cancel

Specify _all in the first field. Specify the list of destinations for the interest
list in the second field. Separate each destinations by a comma (‘, ’). Specify
destinations using atomic, POSIX-style (server: destination), or FNS names
(.../service/printer/ ...). See printers.conf (4) for information regarding
the naming conventions for atomic and FNS names. This list of destinations
may refer to an alias defined in $HOME/.printers .

322 SunOS 5.8 Last modified 10 Nov 1999

File Formats printers(4)

Setting the Default Destination

Specify _default in the first field. Specify the default destination in the
second field. Specify the default destination using atomic, POSIX-style
(server: destination), or FNS names (.../service/printer/ ...). See
printers.conf (4) for information regarding the naming conventions for
atomic and FNS names. The default destination may refer to an alias defined in
$HOME/.printers .

Locating Destination
Information

The print client commands locate destination information based on the “printers”
database entry in the /etc/nsswitch.conf file. See nsswitch.conf (4).

Locating the Personal Default Destination

The default destination is located differently depending on the command.

The lp command locates the default destination in the following order:

1. lp command’s −d destination option.

2. LPDESTenvironment variable.

3. PRINTERenvironment variable.

4. _default destination in $HOME/.printers .

5. _default destination in /etc/printers.conf .

6. _default destination in FNS.

The lpr , lpq , and lprm commands locate the default destination in the
following order:

1. lpr command’s −P destination option.

2. PRINTERenvironment variable.

3. LPDESTenvironment variable.

4. _default destination in $HOME/.printers .

5. _default destination in /etc/printers.conf .

6. _default destination in FNS.

Locating the Interest List for lpget, lpstat, and cancel

The lpget , lpstat , and cancel commands locate the interest list in the
following order:

1. _all list in $HOME/.printers .

2. _all list in /etc/printers.conf .

3. _all list in FNS.

Last modified 10 Nov 1999 SunOS 5.8 323

printers(4) File Formats

EXAMPLES EXAMPLE 1 Setting the interest list

The following entry sets the interest list to destinations ps , secure , and dog at
server west and finance_ps at site bldg2 :

_all ps,secure,west:dog,site/bldg2/service/printer/finance_ps

EXAMPLE 2 Setting aliases to a printer

The following entry sets the aliases ps , lp , and lw to sparc_printer :

ps|lp|lw sparc_printer

EXAMPLE 3 Setting an alias as a default destination

The following entry sets the alias pcl to hplj and sets it as the default
destination:

pcl|_default hplj

EXAMPLE 4 Setting an alias to a server destination

The following entry sets the alias secure to destination catalpa at server
tabloid :

secure tabloid:catalpa

EXAMPLE 5 Setting an alias to a site destination

The following entry sets the alias insecure to destination legal_ps at site
bldg2 :

insecure site/bldg2/service/printer/legal_ps

FILES $HOME/.printers User-configurable printer database.

/etc/printers.conf System printer configuration
database.

printers.conf.byname NIS version of
/etc/printers.conf .

printers.org_dir NIS+ version of
/etc/printers.conf .

fns.ctx_dir. domain FNS version of
/etc/printers.conf .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

324 SunOS 5.8 Last modified 10 Nov 1999

File Formats printers(4)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu

Stability Level Stable

SEE ALSO cancel (1), lp (1), lpq (1B), lpr (1B), lprm (1B), lpstat (1), lpadmin (1M),
lpget (1M), nsswitch.conf (4), printers.conf (4), attributes (5), fns (5),
standards (5)

System Administration Guide, Volume 1

NOTES $HOME/.printers is referenced by the printing commands before further name
resolution is made in /etc/printers.conf or the name service. If the alias
references a destination defined in /etc/printers.conf , it is possible that the
destination is defined differently on different systems. This could cause output to
be sent to an unintended destination if the user is logged in to a different system.

Last modified 10 Nov 1999 SunOS 5.8 325

printers.conf(4) File Formats

NAME printers.conf – system printing configuration database

SYNOPSIS /etc/printers.conf

NIS printers.conf.byname

NIS+ printers.org_dir

FNS fns.ctx_dir.domain

DESCRIPTION The printers.conf file is the system printing configuration database. System
administrators use printers.conf to describe destinations for the print client
commands and the print protocol adaptor. A destination names a printer or
class of printers (see lpadmin (1M)). The LP print spooler uses private LP
configuration data for represented in the printers.conf database.

Entries Each entry in printers.conf describes one destination. Entries are one line
consisting of any number of fields separated by colons (‘: ’) and terminated by a
NEWLINE. The first field of each entry specifies the name of the destination and
aliases to which the entry describes. Specify one or more names or aliases of
the destination in this first field. Specify the destination using atomic names.
POSIX-style names are not acceptable. See standards (5). Separate destination
names by pipe signs (‘| ’).

Two destination names are reserved for special use in the first entry. Use _all
to specify the interest list for lpget , lpstat , and cancel . Use _default to
specify the default destination.

The remaining fields in an entry are key=value pairs. See Specifying
Configuration Options for details regarding key=value pairs.

Empty lines can be included for readability. Entries may continue on to
multiple lines by adding a backslash (‘\ ’) as the last character in the line.
printers.conf can include comments. Comments have a pound sign (‘#’)
as the first character in the line, and are terminated by a NEWLINE. Use the
lpset command to create or modify printers.conf (see lpset (1M)). Do
not make changes in printers.conf using an editor.

Specifying
Configuration

Options

key=value pairs are configuration options defined by the system administrator.
key and value may be of arbitrary length. Separate key and value by the equal
(‘=’) character.

Client/Server Configuration Options

The following client/server configuration options (represented as key=value
pairs) are supported:
bsdaddr= server, destination[,Solaris]

Sets the server and destination name. Sets if the client generates protocol
extensions for use with the lp command (see lp (1)). Solaris specifies a

326 SunOS 5.8 Last modified 10 Nov 1999

File Formats printers.conf(4)

Solaris print server extension. If Solaris is not specified, no protocol
extensions are generated. server is the name of the host containing the queue
for destination. destination is the atomic name by which the server knows
the destination.

use= destination
Sets the destination to continue searching for configuration information.
destination is an atomic or Federated Naming Service (FNS)
(.../service /printer /...) name.

all= destination_list
Sets the interest list for the lpget , lpstat , and cancel commands.
destination_list is a comma-separated list of destinations. Specify destination
using atomic or FNS names (.../service/printer/ ...). See lpget (1M),
lpstat (1), and cancel (1).

General Server Options

The following general server configuration options (represented as key=value
pairs) are supported:
spooling-type= spooler[,version]

Sets the type of spooler under which a destination is configured.
Dynamically loads translation support for the back-end spooling system
from /usr/lib/print/bsd-adaptor/bsd_spooler.so [. version].
Specify spooler as lpsched , cascade , or test . lpsched is used as a
default for locally attached destinations. cascade is used as a default for
destination spooled on a remote host. Use test for the test module to allow
the capture of print requests. If using a versioned spooler module, version
specifies the version of the translation module.

spooling-type-path= dir_list
Sets the location of translation support for the type of spooler defined
by the spooling-type key. Locates translation support for the for the
type of spooler under which a destination is configured. dir_list is a
comma-separated list of absolute pathnames to the directories used to locate
translation support for the spooling system set by the spooling-type key.

LP Server Options

The following LP configuration options (represented as key=value pairs) are
supported:
user-equivalence=true |false

Sets whether or not usernames are considered equivalent when cancelling a
print request submitted from a different host in a networked environment.
true means that usernames are considered equivalent, and permits users to
cancel a print requests submitted from a different host. user-equivalence
is set to false by default. false means that usernames are not considered

Last modified 10 Nov 1999 SunOS 5.8 327

printers.conf(4) File Formats

equivalent, and does not permit users cancel a print request submitted from
a different host. If user-equivalence is set to false , print requests can
only be cancelled by the users on the host on whichs the print prequest was
generated or by the super-user on the print server.

Test Configuration Options

The following test configuration options (represented as key=value pairs) are
supported:
test-spooler-available=true |false

Sets whether or not the protocol adaptor accepts connection requests
to the test adaptor for the destination. true means that the protocol
adaptor accepts connection requests to the test adaptor for the destination.
test-spooler-available is set to true by default. false means that
the protocol adaptor does not accept connection requests to the test adaptor
for the destination.

test-log= dir
Sets the location of the log file generated by the test translation module.
Specify dir as an absolute pathname.

test-dir= dir
Sets the directory to be used during execution of the test translation module.
Specify dir as an absolute pathname.

test-access=true |false
Sets whether or not the requesting client has access to the test translation
module. true means that the requesting client has access to the test
translation module. test-access is set to true by default. false means
that the the requesting client does not have access to the test translation
module.

test-accepting=true |false
Sets whether or not the configured destination is accepting job submission
requests. true means that the configured destination is accepting job
submission requests. test-accepting is set to true by default. false
means that the configured destination is not accepting job submission
requests.

test-restart=true |false
Sets whether or not a protocol request to restart the destination will be
honored or return an error. true means that a protocol request to restart
the destination will be honored. test-restart is set to true by default.
false means that a protocol request to restart the destination return an
error.

test-submit=true |false

328 SunOS 5.8 Last modified 10 Nov 1999

File Formats printers.conf(4)

Sets whether or not a protocol request to submit a job to a destination
will be honored or return an error. true means that a protocol request
to submit a job to a destination will be honored. test-submit is set to
true by default. false means that a protocol request to submit a job to
a destination will not be honored.

test-show-queue-file= file
Sets the name of the file whose contents are to be returned as the result of a
status query. Specify file as an absolute pathname.

test-cancel-cancel-file= file
Sets the name of the file whose contents are returned as the result of a
cancellation request. Specify file as an absolute pathname.

Locating Destination
Information

The print client commands and the print protocol adaptor locate
destination information based on the “printers” database entry in the
/etc/nsswitch.conf file. See nsswitch.conf (4).

Locating the Personal Default Destination

The default destination is located differently depending on the command.

The lp command locates the default destination in the following order:

1. lp command’s −d destination option.

2. LPDESTenvironment variable.

3. PRINTERenvironment variable.

4. _default destination in $HOME/.printers .

5. _default destination in /etc/printers.conf .

6. _default destination in FNS.

The lpr , lpq , and lprm commands locate the default destination in the
following order:

1. lpr command’s −P destination option.

2. PRINTERenvironment variable.

3. LPDESTenvironment variable.

4. _default destination in $HOME/.printers .

5. _default destination in /etc/printers.conf .

6. _default destination in FNS.

Locating the Interest List for lpstat, lpget, and cancel

Last modified 10 Nov 1999 SunOS 5.8 329

printers.conf(4) File Formats

The lpget , lpstat , and cancel commands locate the interest list in the
following order:

1. _all list in $HOME/.printers .

2. _all list in /etc/printers.conf .

3. _all list in FNS.

Looking Up
Destinations Using
Atomic Names and

FNS

Federated Naming Service (FNS) supports resolution of composite names
spanning multiple naming systems. FNS supports several underlying naming
services: NIS+, NIS, and files .

Atomic destination names are resolved using the search order specified by the
“printers” database entry in the /etc/nsswitch.conf file. When the “xfn”
service is configured in the “printers” database, the following Federated Name
Service contexts are searched for the supplied name:

thisuser/service/printer ,
myorgunit/service/printer ,

EXAMPLES EXAMPLE 1 Setting the interest list

The following entry sets the interest list for the lpget , lpstat and cancel
commands to printer1 , printer2 and printer3 :

_all:all=printer1,printer2,printer3

EXAMPLE 2 Setting the server name

The following entry sets the server name to server and and printer name to
ps_printer for destinations printer1 and ps . It does not generate protocol
extensions.

printer1|ps:bsdaddr=server,ps_printer

EXAMPLE 3 Setting server name and destination name

The following entry sets the server name to server and destination name to
pcl_printer , for destination printer2 . It also generates Solaris protocol
extensions.

printer2:bsdaddr=server,pcl_printer,Solaris

EXAMPLE 4 Setting server name and destination name with continuous search

The following entry sets the server name to server and destination name to
new_printer , for destination printer3 . It also sets the printer3 to continue
searching for configuration information to printer another_printer .

330 SunOS 5.8 Last modified 10 Nov 1999

File Formats printers.conf(4)

printer3:bsdaddr=server,new_printer:use=another_printer

EXAMPLE 5 Setting default destination

The following entry sets the default destination to continue searching for
configuration information to destination printer1 .

_default:use=printer1

FILES /etc/printers.conf
System configuration database.

$HOME/.printers
User-configurable printer database.

printers.conf.byname (NIS)
NIS version of /etc/printers.conf .

printers.org_dir (NIS+)
NIS+ version of /etc/printers.conf .

fns.ctx_dir. domain
FNS version of /etc/printers.conf .

/usr/lib/print/bsd-adaptor/bsd_spooler.so*
Spooler translation modules.

/usr/lib/print/in.lpd
BSD print protocol adapter.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu

Stability Level Stable

SEE ALSO cancel (1), lp (1), lpq (1B), lpr (1B), lprm (1B), lpstat (1), in.lpd (1M),
lpadmin (1M), lpget (1M), lpset (1M), nsswitch.conf (4), printers (4),
attributes (5), fns (5), fns_policies (5), standards (5)

System Administration Guide, Volume 1

Last modified 10 Nov 1999 SunOS 5.8 331

proc(4) File Formats

NAME proc – /proc, the process file system

DESCRIPTION /proc is a file system that provides access to the state of each process and
light-weight process (lwp) in the system. The name of each entry in the /proc
directory is a decimal number corresponding to a process-ID. These entries are
themselves subdirectories. Access to process state is provided by additional files
contained within each subdirectory; the hierarchy is described more completely
below. In this document, “/proc file” refers to a non-directory file within the
hierarchy rooted at /proc . The owner of each /proc file and subdirectory is
determined by the user-ID of the process.

/proc can be mounted on any mount point, in addition to the standard /proc
mount point, and can be mounted several places at once. Such additional
mounts are allowed in order to facilitate the confinement of processes to subtrees
of the file system via chroot (1M) and yet allow such processes access to
commands like ps (1).

Standard system calls are used to access /proc files: open (2), close (2),
read (2), and write (2) (including readv (2), writev (2), pread (2), and
pwrite (2)). Most files describe process state and can only be opened for
reading. ctl and lwpctl (control) files permit manipulation of process state
and can only be opened for writing. as (address space) files contain the image of
the running process and can be opened for both reading and writing. An open
for writing allows process control; a read-only open allows inspection but not
control. In this document, we refer to the process as open for reading or writing
if any of its associated /proc files is open for reading or writing.

In general, more than one process can open the same /proc file at the same time.
Exclusive open is an advisory mechanism provided to allow controlling processes
to avoid collisions with each other. A process can obtain exclusive control of
a target process, with respect to other cooperating processes, if it successfully
opens any /proc file in the target process for writing (the as or ctl files, or the
lwpctl file of any lwp) while specifying O_EXCLin the open (2). Such an open
will fail if the target process is already open for writing (that is, if an as , ctl , or
lwpctl file is already open for writing). There can be any number of concurrent
read-only opens; O_EXCLis ignored on opens for reading. It is recommended
that the first open for writing by a controlling process use the O_EXCLflag;
multiple controlling processes usually result in chaos.

If a process opens one of its own /proc files for writing, the open succeeds
regardless of O_EXCLand regardless of whether some other process has the
process open for writing. Self-opens do not count when another process attempts
an exclusive open. (A process cannot exclude a debugger by opening itself
for writing and the application of a debugger cannot prevent a process from
opening itself.) All self-opens for writing are forced to be close-on-exec (see
the F_SETFDoperation of fcntl (2)).

332 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

Data may be transferred from or to any locations in the address space of the
traced process by applying lseek (2) to position the as file at the virtual address
of interest followed by read (2) or write (2) (or by using pread (2) or pwrite (2)
for the combined operation). The address-map file /proc/ pid/map can be read
to determine the accessible areas (mappings) of the address space. I/O transfers
may span contiguous mappings. An I/O request extending into an unmapped
area is truncated at the boundary. A write request beginning at an unmapped
virtual address fails with EIO ; a read request beginning at an unmapped virtual
address returns zero (an end-of-file indication).

Information and control operations are provided through additional files.
<procfs.h> contains definitions of data structures and message formats used
with these files. Some of these definitions involve the use of sets of flags. The
set types sigset_t , fltset_t , and sysset_t correspond, respectively,
to signal, fault, and system call enumerations defined in <sys/signal.h> ,
<sys/fault.h> , and <sys/syscall.h> . Each set type is large enough to
hold flags for its own enumeration. Although they are of different sizes, they
have a common structure and can be manipulated by these macros:

prfillset(&set); /* turn on all flags in set */
premptyset(&set); /* turn off all flags in set */
praddset(&set, flag); /* turn on the specified flag */
prdelset(&set, flag); /* turn off the specified flag */
r = prismember(&set, flag); /* != 0 iff flag is turned on */

One of prfillset() or premptyset() must be used to initialize set before
it is used in any other operation. flag must be a member of the enumeration
corresponding to set .

Every process contains at least one light-weight process, or lwp. Each lwp
represents a flow of execution that is independently scheduled by the operating
system. All lwps in a process share its address space as well as many other
attributes. Through the use of lwpctl and ctl files as described below, it is
possible to affect individual lwps in a process or to affect all of them at once,
depending on the operation.

When the process has more than one lwp, a representative lwp is chosen
by the system for certain process status files and control operations. The
representative lwp is a stopped lwp only if all of the process’s lwps are stopped;
is stopped on an event of interest only if all of the lwps are so stopped (excluding
PR_SUSPENDEDlwps); is in a PR_REQUESTEDstop only if there are no other
events of interest to be found; or, failing everything else, is in a PR_SUSPENDED
stop (implying that the process is deadlocked). See the description of the
status file for definitions of stopped states. See the PCSTOPcontrol operation
for the definition of “event of interest”.

Last modified 11 Aug 1999 SunOS 5.8 333

proc(4) File Formats

The representative lwp remains fixed (it will be chosen again on the next
operation) as long as all of the lwps are stopped on events of interest or are in a
PR_SUSPENDEDstop and the PCRUNcontrol operation is not applied to any of
them.

When applied to the process control file, every /proc control operation that must
act on an lwp uses the same algorithm to choose which lwp to act upon. Together
with synchronous stopping (see PCSET), this enables a debugger to control a
multiple-lwp process using only the process-level status and control files if it so
chooses. More fine-grained control can be achieved using the lwp-specific files.

The system supports two process data models, the traditional 32-bit data model
in which ints, longs and pointers are all 32 bits wide (the ILP32 data model),
and on some platforms the 64-bit data model in which longs and pointers, but
not ints, are 64 bits in width (the LP64 data model). In the LP64 data model
some system data types, notably size_t , off_t , time_t and dev_t , grow
from 32 bits to 64 bits as well.

The /proc interfaces described here are available to both 32-bit and 64-bit
controlling processes. However, many operations attempted by a 32-bit
controlling process on a 64-bit target process will fail with EOVERFLOWbecause
the address space range of a 32-bit process cannot encompass a 64-bit process
or because the data in some 64-bit system data type cannot be compressed to
fit into the corresponding 32-bit type without loss of information. Operations
that fail in this circumstance include reading and writing the address space,
reading the address-map file, and setting the target process’s registers. There
is no restriction on operations applied by a 64-bit process to either a 32-bit
or a 64-bit target processes.

The format of the contents of any /proc file depends on the data model of the
observer (the controlling process), not on the data model of the target process. A
64-bit debugger does not have to translate the information it reads from a /proc
file for a 32-bit process from 32-bit format to 64-bit format. However, it usually
has to be aware of the data model of the target process. The pr_dmodel field of
the status files indicates the target process’s data model.

To help deal with system data structures that are read from 32-bit processes,
a 64-bit controlling program can be compiled with the C preprocessor symbol
_SYSCALL32defined before system header files are included. This makes
explicit 32-bit fixed-width data structures (like cstruct stat32) visible to the
64-bit program. See types32 (3HEAD).

DIRECTORY
STRUCTURE

At the top level, the directory /proc contains entries each of which names an
existing process in the system. These entries are themselves directories. Except
where otherwise noted, the files described below can be opened for reading only.
In addition, if a process becomes a zombie (one that has exited but whose parent
has not yet performed a wait (2) upon it), most of its associated /proc files

334 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

disappear from the hierarchy; subsequent attempts to open them, or to read or
write files opened before the process exited, will elicit the error ENOENT.

Although process state and consequently the contents of /proc files can change
from instant to instant, a single read (2) of a /proc file is guaranteed to return a
sane representation of state; that is, the read will be atomic with respect to the
state of the process. No such guarantee applies to successive reads applied to a
/proc file for a running process. In addition, atomicity is not guaranteed for
I/O applied to the as (address-space) file for a running process or for a process
whose address space contains memory shared by another running process.

A number of structure definitions are used to describe the files. These structures
may grow by the addition of elements at the end in future releases of the system
and it is not legitimate for a program to assume that they will not.

STRUCTURE OF
/proc/ pid

A given directory /proc/ pid contains the following entries. A process can use
the invisible alias /proc/self if it wishes to open one of its own /proc files
(invisible in the sense that the name “self” does not appear in a directory listing
of /proc obtained from ls (1), getdents (2), or readdir (3C)).

as Contains the address-space image of the process; it can be opened for both
reading and writing. lseek (2) is used to position the file at the virtual address of
interest and then the address space can be examined or changed through read (2)
or write (2) (or by using pread (2) or pwrite (2) for the combined operation).

ctl A write-only file to which structured messages are written directing the system
to change some aspect of the process’s state or control its behavior in some way.
The seek offset is not relevant when writing to this file. Individual lwps also
have associated lwpctl files in the lwp subdirectories. A control message
may be written either to the process’s ctl file or to a specific lwpctl file
with operation-specific effects. The effect of a control message is immediately
reflected in the state of the process visible through appropriate status and
information files. The types of control messages are described in detail later.
See CONTROL MESSAGES.

status Contains state information about the process and the representative lwp. The
file contains a pstatus structure which contains an embedded lwpstatus
structure for the representative lwp, as follows:

typedef struct pstatus {
int pr_flags; /* flags (see below) */
int pr_nlwp; /* number of lwps in the process */
pid_tpr_pid; /* process id */
pid_tpr_ppid; /* parent process id */
pid_tpr_pgid; /* process group id */
pid_tpr_sid; /* session id */
id_t pr_aslwpid; /* lwp-id of the aslwp, if any */
id_t pr_agentid; /* lwp-id of the agent lwp, if any */
sigset_t pr_sigpend; /* set of process pending signals */
uintptr_t pr_brkbase; /* virtual address of the process heap */

Last modified 11 Aug 1999 SunOS 5.8 335

proc(4) File Formats

size_t pr_brksize; /* size of the process heap, in bytes */
uintptr_t pr_stkbase; /* virtual address of the process stack */
size_tpr_stksize; /* size of the process stack, in bytes */
timestruc_t pr_utime; /* process user cpu time */
timestruc_t pr_stime; /* process system cpu time */
timestruc_t pr_cutime; /* sum of children’s user times */
timestruc_t r_cstime; /* sum of children’s system times */
sigset_t pr_sigtrace; /* set of traced signals */
fltset_t pr_flttrace; /* set of traced faults */
sysset_t pr_sysentry; /* set of system calls traced on entry */
sysset_t pr_sysexit; /* set of system calls traced on exit */
char pr_dmodel; /* data model of the process */
lwpstatus_t pr_lwp; /* status of the representative lwp */

} pstatus_t;

pr_flags is a bit-mask holding the following process flags. For convenience, it
also contains the lwp flags for the representative lwp, described later.
PR_ISSYS process is a system process (see PCSTOP).

PR_VFORKP process is the parent of a vforked child (see PCWATCH).

PR_FORK process has its inherit-on-fork mode set (see PCSET).

PR_RLC process has its run-on-last-close mode set (see PCSET).

PR_KLC process has its kill-on-last-close mode set (see PCSET).

PR_ASYNC process has its asynchronous-stop mode set (see PCSET).

PR_MSACCT process has microstate accounting enabled (see PCSET).

PR_MSFORK process microstate accounting is inherited on fork (see
PCSET).

PR_BPTADJ process has its breakpoint adjustment mode set (see PCSET).

PR_PTRACE process has its ptrace-compatibility mode set (see PCSET).

pr_nlwp is the total number of lwps in the process.

pr_pid , pr_ppid , pr_pgid , and pr_sid are, respectively, the process ID, the
ID of the process’s parent, the process’s process group ID, and the process’s
session ID.

pr_aslwpid is the lwp-ID for the "asynchronous signal lwp" (aslwp). It is
zero if there is no aslwp in the process. The aslwp is the lwp designated to
redirect asynchronous signals to other lwps in a multi-threaded process. See
signal (3HEAD) for a description of the aslwp.

pr_agentid is the lwp-ID for the /proc agent lwp (see the PCAGENTcontrol
operation). It is zero if there is no agent lwp in the process.

pr_sigpend identifies asynchronous signals pending for the process.

336 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

pr_brkbase is the virtual address of the process heap and pr_brksize is its
size in bytes. The address formed by the sum of these values is the process
break (see brk (2)). pr_stkbase and pr_stksize are, respectively, the virtual
address of the process stack and its size in bytes. (Each lwp runs on a separate
stack; the distinguishing characteristic of the process stack is that the operating
system will grow it when necessary.)

pr_utime , pr_stime , pr_cutime , and pr_cstime are, respectively, the user
CPU and system CPU time consumed by the process, and the cumulative user
CPU and system CPU time consumed by the process’s children, in seconds
and nanoseconds.

pr_sigtrace and pr_flttrace contain, respectively, the set of signals and
the set of hardware faults that are being traced (see PCSTRACEand PCSFAULT).

pr_sysentry and pr_sysexit contain, respectively, the sets of system calls
being traced on entry and exit (see PCSENTRYand PCSEXIT).

pr_dmodel indicates the data model of the process. Possible values are:
PR_MODEL_ILP32 process data model is ILP32.

PR_MODEL_LP64 process data model is LP64.

PR_MODEL_NATIVE process data model is native.

The constant PR_MODEL_NATIVEreflects the data model of the controlling
process, that is, its value is PR_MODEL_ILP32or PR_MODEL_LP64according
to whether the controlling process has been compiled as a 32-bit program or a
64-bit program, respectively.

pr_lwp contains the status information for the representative lwp:

typedef struct lwpstatus {
int pr_flags; /* flags (see below) */
id_t pr_lwpid; /* specific lwp identifier */
short pr_why; /* reason for lwp stop, if stopped */
short pr_what; /* more detailed reason */
short pr_cursig; /* current signal, if any */
siginfo_t pr_info; /* info associated with signal or fault */
sigset_t pr_lwppend; /* set of signals pending to the lwp */
sigset_t pr_lwphold; /* set of signals blocked by the lwp */
struct sigaction pr_action; /* signal action for current signal */
stack_t pr_altstack; /* alternate signal stack info */
uintptr_t pr_oldcontext; /* address of previous ucontext */
short pr_syscall; /* system call number (if in syscall) */
short pr_nsysarg; /* number of arguments to this syscall */
int pr_errno; /* errno for failed syscall */
long pr_sysarg[PRSYSARGS]; /* arguments to this syscall */
long pr_rval1; /* primary syscall return value */
long pr_rval2; /* second syscall return value, if any */
char pr_clname[PRCLSZ]; /* scheduling class name */
timestruc_t pr_tstamp; /* real-time time stamp of stop */
ulong_t pr_instr; /* current instruction */

Last modified 11 Aug 1999 SunOS 5.8 337

proc(4) File Formats

prgregset_t pr_reg; /* general registers */
prfpregset_t pr_fpreg; /* floating-point registers */

} lwpstatus_t;

pr_flags is a bit-mask holding the following lwp flags. For convenience, it
also contains the process flags, described previously.
PR_STOPPED lwp is stopped.

PR_ISTOP lwp is stopped on an event of interest (see PCSTOP).

PR_DSTOP lwp has a stop directive in effect (see PCSTOP).

PR_STEP lwp has a single-step directive in effect (see PCRUN).

PR_ASLEEP lwp is in an interruptible sleep within a system call.

PR_PCINVAL lwp’s current instruction (pr_instr) is undefined.

PR_ASLWP this is the asynchronous signal lwp for the process.

PR_AGENT this is the /proc agent lwp for the process.

pr_lwpid names the specific lwp.

pr_why and pr_what together describe, for a stopped lwp, the reason for the
stop. Possible values of pr_why and the associated pr_what are:
PR_REQUESTEDindicates that the stop occurred in response to a stop

directive, normally because PCSTOPwas applied or because
another lwp stopped on an event of interest and the
asynchronous-stop flag (see PCSET) was not set for the
process. pr_what is unused in this case.

PR_SIGNALLED indicates that the lwp stopped on receipt of a signal (see
PCSTRACE); pr_what holds the signal number that caused
the stop (for a newly-stopped lwp, the same value is in
pr_cursig).

PR_FAULTED indicates that the lwp stopped on incurring a hardware
fault (see PCSFAULT); pr_what holds the fault number
that caused the stop.

PR_SYSENTRY
PR_SYSEXIT indicate a stop on entry to or exit from a system call (see

PCSENTRY and PCSEXIT); pr_what holds the system
call number.

PR_JOBCONTROLindicates that the lwp stopped due to the default action of a
job control stop signal (see sigaction (2)); pr_what holds
the stopping signal number.

338 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

PR_SUSPENDEDindicates that the lwp stopped due to internal
synchronization of lwps within the process. pr_what is
unused in this case.

pr_cursig names the current signal, that is, the next signal to be delivered to
the lwp, if any. pr_info , when the lwp is in a PR_SIGNALLEDor PR_FAULTED
stop, contains additional information pertinent to the particular signal or fault
(see <sys/siginfo.h>).

pr_lwppend identifies any synchronous or directed signals pending for the
lwp. pr_lwphold identifies those signals whose delivery is being blocked by
the lwp (the signal mask).

pr_action contains the signal action information pertaining to the current
signal (see sigaction (2)); it is undefined if pr_cursig is zero. pr_altstack
contains the alternate signal stack information for the lwp (see sigaltstack (2)).

pr_oldcontext , if not zero, contains the address on the lwp stack of
a ucontext structure describing the previous user-level context (see
ucontext (3HEAD)). It is non-zero only if the lwp is executing in the context
of a signal handler.

pr_syscall is the number of the system call, if any, being executed by the lwp;
it is non-zero if and only if the lwp is stopped on PR_SYSENTRYor PR_SYSEXIT,
or is asleep within a system call (PR_ASLEEPis set). If pr_syscall is non-zero,
pr_nsysarg is the number of arguments to the system call and pr_sysarg
contains the actual arguments.

pr_rval1 , pr_rval2 , and pr_errno are defined only if the lwp is stopped
on PR_SYSEXITor if the PR_VFORKPflag is set. If pr_errno is zero,
pr_rval1 and pr_rval2 contain the return values from the system call.
Otherwise, pr_errno contains the error number for the failing system call (see
<sys/errno.h>).

pr_clname contains the name of the lwp’s scheduling class.

pr_tstamp , if the lwp is stopped, contains a time stamp marking when the lwp
stopped, in real time seconds and nanoseconds since an arbitrary time in the past.

pr_instr contains the machine instruction to which the lwp’s program counter
refers. The amount of data retrieved from the process is machine-dependent.
On SPARC based machines, it is a 32-bit word. On IA based machines, it is a
single byte. In general, the size is that of the machine’s smallest instruction. If
PR_PCINVALis set, pr_instr is undefined; this occurs whenever the lwp is not
stopped or when the program counter refers to an invalid virtual address.

pr_reg is an array holding the contents of a stopped lwp’s general registers.
SPARC On SPARC-based machines, the predefined

constants R_G0 ... R_G7, R_O0 ... R_O7, R_L0 ...

Last modified 11 Aug 1999 SunOS 5.8 339

proc(4) File Formats

R_L7, R_I0 ... R_I7 , R_PC, R_nPC, and R_Y can
be used as indices to refer to the corresponding
registers; previous register windows can be
read from their overflow locations on the
stack (however, see the gwindows file in the
/proc/ pid/lwp/ lwpid subdirectory).

SPARC V8 (32-bit) For SPARC V8 (32-bit) controlling processes,
the predefined constants R_PSR, R_WIM, and
R_TBRcan be used as indices to refer to the
corresponding special registers. For SPARC V9
(64-bit) controlling processes, the predefined
constants R_CCR, R_ASI , and R_FPRScan be
used as indices to refer to the corresponding
special registers.

IA On IA based machines, the predefined constants
SS, UESP, EFL, CS, EIP , ERR, TRAPNO, EAX,
ECX, EDX, EBX, ESP, EBP, ESI , EDI , DS, ES, FS,
and GScan be used as indices to refer to the
corresponding registers.

pr_fpreg is a structure holding the contents of the floating-point registers.

SPARC registers, both general and floating-point, as seen by a 64-bit controlling
process are the V9 versions of the registers, even if the target process is a 32-bit
(V8) process. V8 registers are a subset of the V9 registers.

If the lwp is not stopped, all register values are undefined.

psinfo Contains miscellaneous information about the process and the representative
lwp needed by the ps (1) command. psinfo is accessible after a process becomes
a zombie. The file contains a psinfo structure which contains an embedded
lwpsinfo structure for the representative lwp, as follows:

typedef struct psinfo {
int pr_flag; /* process flags */
int pr_nlwp; /* number of lwps in the process */
pid_t pr_pid; /* process id */
pid_t pr_ppid; /* process id of parent */
pid_t pr_pgid; /* process id of process group leader */
pid_t pr_sid; /* session id */
uid_t pr_uid; /* real user id */
uid_t pr_euid; /* effective user id */
gid_t pr_gid; /* real group id */
gid_t pr_egid; /* effective group id */
uintptr_t pr_addr; /* address of process */
size_t pr_size; /* size of process image in Kbytes */
size_t pr_rssize; /* resident set size in Kbytes */
dev_t pr_ttydev; /* controlling tty device (or PRNODEV) */

340 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

ushort_t pr_pctcpu; /* % of recent cpu time used by all lwps */
ushort_t pr_pctmem; /* % of system memory used by process */
timestruc_t pr_start; /* process start time, from the epoch */
timestruc_t pr_time; /* cpu time for this process */
timestruc_t pr_ctime; /* cpu time for reaped children */
char pr_fname[PRFNSZ]; /* name of exec’ed file */
char pr_psargs[PRARGSZ]; /* initial characters of arg list */
int pr_wstat; /* if zombie, the wait() status */
int pr_argc; /* initial argument count */
uintptr_t pr_argv; /* address of initial argument vector */
uintptr_t pr_envp; /* address of initial environment vector */
char pr_dmodel; /* data model of the process */
lwpsinfo_t pr_lwp; /* information for representative lwp */

} psinfo_t;

Some of the entries in psinfo , such as pr_flag and pr_addr , refer to internal
kernel data structures and should not be expected to retain their meanings across
different versions of the operating system.

pr_pctcpu and pr_pctmem are 16-bit binary fractions in the range 0.0 to
1.0 with the binary point to the right of the high-order bit (1.0 == 0x8000).
pr_pctcpu is the summation over all lwps in the process.

pr_lwp contains the ps (1) information for the representative lwp. If the process
is a zombie, pr_nlwp and pr_lwp.pr_lwpid are zero and the other fields
of pr_lwp are undefined:

typedef struct lwpsinfo {
int pr_flag; /* lwp flags */
id_t pr_lwpid; /* lwp id */
uintptr_t pr_addr; /* internal address of lwp */
uintptr_t pr_wchan; /* wait addr for sleeping lwp */
char pr_stype; /* synchronization event type */
char pr_state; /* numeric lwp state */
char pr_sname; /* printable character for pr_state */
char pr_nice; /* nice for cpu usage */
short pr_syscall; /* system call number (if in syscall) */
char pr_oldpri; /* pre-SVR4, low value is high priority */
char pr_cpu; /* pre-SVR4, cpu usage for scheduling */
int pr_pri; /* priority, high value = high priority */
ushort_t pr_pctcpu; /* % of recent cpu time used by this lwp */
timestruc_t pr_start; /* lwp start time, from the epoch */
timestruc_t pr_time; /* cpu time for this lwp */
char pr_clname[PRCLSZ]; /* scheduling class name */
char pr_name[PRFNSZ]; /* name of system lwp */
processorid_t pr_onpro; /* processor which last ran this lwp */
processorid_t pr_bindpro; /* processor to which lwp is bound */
psetid_t pr_bindpset; /* processor set to which lwp is bound */

} lwpsinfo_t;

Some of the entries in lwpsinfo , such as pr_flag , pr_addr , pr_wchan ,
pr_stype , pr_state , and pr_name , refer to internal kernel data structures

Last modified 11 Aug 1999 SunOS 5.8 341

proc(4) File Formats

and should not be expected to retain their meanings across different versions of
the operating system.

pr_pctcpu is a 16-bit binary fraction, as described above. It represents the CPU
time used by the specific lwp. On a multi-processor machine, the maximum
value is 1/N, where N is the number of CPUs.

cred Contains a description of the credentials associated with the process:

typedef struct prcred {
uid_t pr_euid; /* effective user id */
uid_t pr_ruid; /* real user id */
uid_t pr_suid; /* saved user id (from exec) */
gid_t pr_egid; /* effective group id */
gid_t pr_rgid; /* real group id */
gid_t pr_sgid; /* saved group id (from exec) */
int pr_ngroups; /* number of supplementary groups */
gid_t pr_groups[1]; /* array of supplementary groups */

} prcred_t;

The array of associated supplementary groups in pr_groups is of variable
length; the cred file contains all of the supplementary groups. pr_ngroups
indicates the number of supplementary groups. (See also the PCSCREDcontrol
operation.)

sigact Contains an array of sigaction structures describing the current
dispositions of all signals associated with the traced process (see sigaction (2)).
Signal numbers are displaced by 1 from array indices, so that the action for
signal number n appears in position n-1 of the array.

auxv Contains the initial values of the process’s aux vector in an array of auxv_t
structures (see <sys/auxv.h>). The values are those that were passed by the
operating system as startup information to the dynamic linker.

ldt This file exists only on IA based machines. It is non-empty only if the process has
established a local descriptor table (LDT). If non-empty, the file contains the array
of currently active LDT entries in an array of elements of type struct ssd ,
defined in <sys/sysi86.h> , one element for each active LDT entry.

map Contains information about the virtual address map of the process. The file
contains an array of prmap structures, each of which describes a contiguous
virtual address region in the address space of the traced process:

typedef struct prmap {
uintptr_tpr_vaddr; /* virtual address of mapping */
size_t pr_size; /* size of mapping in bytes */
char pr_mapname[PRMAPSZ]; /* name in /proc/pid/object */
offset_t pr_offset; /* offset into mapped object, if any */
int pr_mflags; /* protection and attribute flags */
int pr_pagesize; /* pagesize for this mapping in bytes */

342 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

int pr_shmid; /* SysV shared memory identifier */
} prmap_t;

pr_vaddr is the virtual address of the mapping within the traced process and
pr_size is its size in bytes. pr_mapname , if it does not contain a null string,
contains the name of a file in the object directory (see below) that can be
opened read-only to obtain a file descriptor for the mapped file associated with
the mapping. This enables a debugger to find object file symbol tables without
having to know the real path names of the executable file and shared libraries of
the process. pr_offset is the 64-bit offset within the mapped file (if any) to
which the virtual address is mapped.

pr_mflags is a bit-mask of protection and attribute flags:
MA_READ mapping is readable by the traced process.

MA_WRITE mapping is writable by the traced process.

MA_EXEC mapping is executable by the traced process.

MA_SHARED mapping changes are shared by the mapped object.

MA_ISM mapping is intimate shared memory (shared MMU
resources).

A contiguous area of the address space having the same underlying mapped
object may appear as multiple mappings due to varying read, write, and execute
attributes. The underlying mapped object does not change over the range of a
single mapping. An I/O operation to a mapping marked MA_SHAREDfails if
applied at a virtual address not corresponding to a valid page in the underlying
mapped object. A write to a MA_SHAREDmapping that is not marked MA_WRITE
fails. Reads and writes to private mappings always succeed. Reads and writes to
unmapped addresses fail.

pr_pagesize is the page size for the mapping, currently always the system
pagesize.

pr_shmid is the shared memory identifier, if any, for the mapping. Its value is
−1 if the mapping is not System V shared memory. See shmget (2).

rmap Contains information about the reserved address ranges of the process. The file
contains an array of prmap structures, as defined above for the map file. Each
structure describes a contiguous virtual address region in the address space of the
traced process that is reserved by the system in the sense that an mmap(2) system
call that does not specify MAP_FIXEDwill not use any part of it for the new
mapping. Examples of such reservations include the address ranges reserved for
the process stack and the individual thread stacks of a multi-threaded process.

Last modified 11 Aug 1999 SunOS 5.8 343

proc(4) File Formats

cwd A symbolic link to the process’s current working directory (see chdir (2)). A
readlink (2) of /proc/ pid/cwd yields a null string. However, it can be opened,
listed, and searched as a directory and can be the target of chdir (2).

root A symbolic link to the process’s root directory. /proc/ pid/root can differ
from the system root directory if the process or one of its ancestors executed
chroot (2) as super-user. It has the same semantics as /proc/ pid/cwd .

fd A directory containing references to the open files of the process. Each entry is a
decimal number corresponding to an open file descriptor in the process.

If an entry refers to a regular file, it can be opened with normal file system
semantics but, to ensure that the controlling process cannot gain greater access
than the controlled process, with no file access modes other than its read/write
open modes in the controlled process. If an entry refers to a directory, it
appears as a symbolic link and can be accessed with the same semantics as
/proc/ pid/cwd. An attempt to open any other type of entry fails with EACCES.

object A directory containing read-only files with names corresponding to the
pr_mapname entries in the mapand pagedata files. Opening such a file yields
a file descriptor for the underlying mapped file associated with an address-space
mapping in the process. The file name a.out appears in the directory as an
alias for the process’s executable file.

The object directory makes it possible for a controlling process to gain access
to the object file and any shared libraries (and consequently the symbol tables)
without having to know the actual path names of the executable files.

pagedata Opening the page data file enables tracking of address space references and
modifications on a per-page basis.

A read (2) of the page data file descriptor returns structured page data and
atomically clears the page data maintained for the file by the system. That is to
say, each read returns data collected since the last read; the first read returns data
collected since the file was opened. When the call completes, the read buffer
contains the following structure as its header and thereafter contains a number
of section header structures and associated byte arrays that must be accessed by
walking linearly through the buffer.

typedef struct prpageheader {
timestruc_t pr_tstamp; /* real time stamp, time of read() */
ulong_t pr_nmap; /* number of address space mappings */
ulong_t pr_npage; /* total number of pages */

} prpageheader_t;

The header is followed by pr_nmap prasmap structures and associated data
arrays. The prasmap structure contains at least the following elements:

344 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

typedef struct prasmap {
uintptr_t pr_vaddr; /* virtual address of mapping */
ulong_t pr_npage; /* number of pages in mapping */
char pr_mapname[PRMAPSZ]; /* name in /proc/pid/object */
offset_t pr_offset; /* offset into mapped object, if any */
int pr_mflags; /* protection and attribute flags */
int pr_pagesize; /* pagesize for this mapping in bytes */
int pr_shmid; /* SysV shared memory identifier */

} prasmap_t;

Each section header is followed by pr_npage bytes, one byte for each page in the
mapping, plus 0-7 null bytes at the end so that the next prasmap structure begins
on an eight-byte aligned boundary. Each data byte may contain these flags:
PG_REFERENCED page has been referenced.

PG_MODIFIED page has been modified.

If the read buffer is not large enough to contain all of the page data, the read
fails with E2BIG and the page data is not cleared. The required size of the read
buffer can be determined through fstat (2). Application of lseek (2) to the
page data file descriptor is ineffective; every read starts from the beginning of
the file. Closing the page data file descriptor terminates the system overhead
associated with collecting the data.

More than one page data file descriptor for the same process can be opened, up
to a system-imposed limit per traced process. A read of one does not affect the
data being collected by the system for the others. An open of the page data file
will fail with ENOMEMif the system-imposed limit would be exceeded.

watch Contains an array of prwatch structures, one for each watched area established
by the PCWATCHcontrol operation. See PCWATCHfor details.

usage Contains process usage information described by a prusage structure which
contains at least the following fields:

typedef struct prusage {
id_tpr_lwpid; /* lwp id. 0: process or defunct */
int pr_count; /* number of contributing lwps */
timestruc_t pr_tstamp; /* real time stamp, time of read() */
timestruc_t pr_create; /* process/lwp creation time stamp */
timestruc_t pr_term; /* process/lwp termination time stamp */
timestruc_t pr_rtime; /* total lwp real (elapsed) time */
timestruc_t pr_utime; /* user level CPU time */
timestruc_t pr_stime; /* system call CPU time */
timestruc_t pr_ttime; /* other system trap CPU time */
timestruc_t pr_tftime; /* text page fault sleep time */
timestruc_t pr_dftime; /* data page fault sleep time */
timestruc_t pr_kftime; /* kernel page fault sleep time */
timestruc_t pr_ltime; /* user lock wait sleep time */
timestruc_t pr_slptime; /* all other sleep time */
timestruc_t pr_wtime; /* wait-cpu (latency) time */

Last modified 11 Aug 1999 SunOS 5.8 345

proc(4) File Formats

timestruc_t pr_stoptime; /* stopped time */
ulong_t pr_minf; /* minor page faults */
ulong_t pr_majf; /* major page faults */
ulong_t pr_nswap; /* swaps */
ulong_t pr_inblk; /* input blocks */
ulong_t pr_oublk; /* output blocks */
ulong_t pr_msnd; /* messages sent */
ulong_t pr_mrcv; /* messages received */
ulong_t pr_sigs; /* signals received */
ulong_t pr_vctx; /* voluntary context switches */
ulong_t pr_ictx; /* involuntary context switches */
ulong_t pr_sysc; /* system calls */
ulong_t pr_ioch; /* chars read and written */

} prusage_t;

If microstate accounting has not been enabled for the process (see the
PR_MSACCTflag for the PCSEToperation, below), the usage file contains only
an estimate of times spent in the various states. The usage file is accessible after
a process becomes a zombie.

lstatus Contains a prheader structure followed by an array of lwpstatus structures,
one for each lwp in the process (see also /proc/ pid/lwp/ lwpid/lwpstatus ,
below). The prheader structure describes the number and size of the array
entries that follow.

typedef struct prheader {
long pr_nent; /* number of entries */
size_t pr_entsize; /* size of each entry, in bytes */

} prheader_t;

The lwpstatus structure may grow by the addition of elements at the end in
future releases of the system. Programs must use pr_entsize in the file header
to index through the array. These comments apply to all /proc files that include
a prheader structure (lpsinfo and lusage , below).

lpsinfo Contains a prheader structure followed by an array of lwpsinfo structures,
one for each lwp in the process. (See also /proc/ pid/lwp/ lwpid/lwpsinfo ,
below.)

lusage Contains a prheader structure followed by an array of prusage structures,
one for each lwp in the process plus an additional element at the beginning that
contains the summation over all defunct lwps (lwps that once existed but no
longer exist in the process). Excluding the pr_lwpid , pr_tstamp , pr_create ,
and pr_term entries, the entry-by-entry summation over all these structures is
the definition of the process usage information obtained from the usage file.
(See also /proc/ pid/lwp/ lwpid/lwpusage , below.)

346 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

lwp A directory containing entries each of which names an lwp within the process.
These entries are themselves directories containing additional files as described
below.

STRUCTURE OF
/proc/ pid/lwp/

lwpid

A given directory /proc/ pid/lwp/ lwpid contains the following entries:

lwpctl Write-only control file. The messages written to this file affect the specific lwp
rather than the representative lwp, as is the case for the process’s ctl file.

lwpstatus lwp-specific state information. This file contains the lwpstatus structure for
the specific lwp as described above for the representative lwp in the process’s
status file.

lwpsinfo lwp-specific ps (1) information. This file contains the lwpsinfo structure for
the specific lwp as described above for the representative lwp in the process’s
psinfo file.

lwpusage This file contains the prusage structure for the specific lwp as described above
for the process’s usage file.

gwindows This file exists only on SPARC based machines. If it is non-empty, it contains a
gwindows_t structure, defined in <sys/regset.h> , with the values of those
SPARC register windows that could not be stored on the stack when the lwp
stopped. Conditions under which register windows are not stored on the stack
are: the stack pointer refers to nonexistent process memory or the stack pointer is
improperly aligned. If the lwp is not stopped or if there are no register windows
that could not be stored on the stack, the file is empty (the usual case).

xregs Extra state registers. The extra state register set is architecture dependent;
this file is empty if the system does not support extra state registers. If the
file is non-empty, it contains an architecture dependent structure of type
prxregset_t , defined in <procfs.h> , with the values of the lwp’s extra state
registers. If the lwp is not stopped, all register values are undefined. See also the
PCSXREGcontrol operation, below.

asrs This file exists only for 64-bit SPARC V9 processes. It contains an asrset_t
structure, defined in <sys/regset.h> , containing the values of the lwp’s
platform-dependent ancillary state registers. If the lwp is not stopped, all register
values are undefined. See also the PCSASRScontrol operation, below.

CONTROL
MESSAGES

Process state changes are effected through messages written to a process’s ctl
file or to an individual lwp’s lwpctl file. All control messages consist of a
long that names the specific operation followed by additional data containing
the operand, if any.

Last modified 11 Aug 1999 SunOS 5.8 347

proc(4) File Formats

Multiple control messages may be combined in a single write (2) (or writev (2))
to a control file, but no partial writes are permitted. That is, each control
message, operation code plus operand, if any, must be presented in its entirety to
the write (2) and not in pieces over several system calls. If a control operation
fails, no subsequent operations contained in the same write (2) are attempted.

Descriptions of the allowable control messages follow. In all cases, writing a
message to a control file for a process or lwp that has terminated elicits the
error ENOENT.

PCSTOP PCDSTOP
PCWSTOP

PCTWSTOP

When applied to the process control file, PCSTOPdirects all lwps to stop and
waits for them to stop, PCDSTOPdirects all lwps to stop without waiting for
them to stop, and PCWSTOPsimply waits for all lwps to stop. When applied to
an lwp control file, PCSTOPdirects the specific lwp to stop and waits until it
has stopped, PCDSTOPdirects the specific lwp to stop without waiting for it to
stop, and PCWSTOPsimply waits for the specific lwp to stop. When applied to
an lwp control file, PCSTOPand PCWSTOPcomplete when the lwp stops on an
event of interest, immediately if already so stopped; when applied to the process
control file, they complete when every lwp has stopped either on an event of
interest or on a PR_SUSPENDEDstop.

PCTWSTOPis identical to PCWSTOPexcept that it enables the operation to time
out, to avoid waiting forever for a process or lwp that may never stop on an
event of interest. PCTWSTOPtakes a long operand specifying a number of
milliseconds; the wait will terminate successfully after the specified number of
milliseconds even if the process or lwp has not stopped; a timeout value of zero
makes the operation identical to PCWSTOP.

An “event of interest” is either a PR_REQUESTEDstop or a stop that has been
specified in the process’s tracing flags (set by PCSTRACE, PCSFAULT, PCSENTRY,
and PCSEXIT). PR_JOBCONTROLand PR_SUSPENDEDstops are specifically not
events of interest. (An lwp may stop twice due to a stop signal, first showing
PR_SIGNALLEDif the signal is traced and again showing PR_JOBCONTROLif the
lwp is set running without clearing the signal.) If PCSTOPor PCDSTOPis applied
to an lwp that is stopped, but not on an event of interest, the stop directive takes
effect when the lwp is restarted by the competing mechanism. At that time, the
lwp enters a PR_REQUESTEDstop before executing any user-level code.

A write of a control message that blocks is interruptible by a signal so that, for
example, an alarm (2) can be set to avoid waiting forever for a process or lwp
that may never stop on an event of interest. If PCSTOPis interrupted, the lwp
stop directives remain in effect even though the write (2) returns an error.
(Use of PCTWSTOPwith a non-zero timeout is recommended over PCWSTOP
with an alarm (2).)

A system process (indicated by the PR_ISSYS flag) never executes at user level,
has no user-level address space visible through /proc , and cannot be stopped.

348 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

Applying one of these operations to a system process or any of its lwps elicits
the error EBUSY.

PCRUN Make an lwp runnable again after a stop. This operation takes a long operand
containing zero or more of the following flags:
PRCSIG clears the current signal, if any (see PCCSIG).

PRCFAULT clears the current fault, if any (see PCCFAULT).

PRSTEP directs the lwp to execute a single machine instruction.
On completion of the instruction, a trace trap occurs. If
FLTTRACEis being traced, the lwp stops; otherwise, it is sent
SIGTRAP. If SIGTRAP is being traced and is not blocked,
the lwp stops. When the lwp stops on an event of interest,
the single-step directive is cancelled, even if the stop occurs
before the instruction is executed. This operation requires
hardware and operating system support and may not be
implemented on all processors. It is implemented on SPARC
and IA based machines.

PRSABORT is meaningful only if the lwp is in a PR_SYSENTRYstop or is
marked PR_ASLEEP; it instructs the lwp to abort execution
of the system call (see PCSENTRYand PCSEXIT).

PRSTOP directs the lwp to stop again as soon as possible after
resuming execution (see PCDSTOP). In particular, if the
lwp is stopped on PR_SIGNALLEDor PR_FAULTED, the
next stop will show PR_REQUESTED, no other stop will
have intervened, and the lwp will not have executed any
user-level code.

When applied to an lwp control file, PCRUNclears any outstanding directed-stop
request and makes the specific lwp runnable. The operation fails with EBUSYif
the specific lwp is not stopped on an event of interest or has not been directed to
stop or if the agent lwp exists and this is not the agent lwp (see PCAGENT).

When applied to the process control file, a representative lwp is chosen for the
operation as described for /proc/ pid/status . The operation fails with EBUSY
if the representative lwp is not stopped on an event of interest or has not been
directed to stop or if the agent lwp exists. If PRSTEPor PRSTOPwas requested,
the representative lwp is made runnable and its outstanding directed-stop
request is cleared; otherwise all outstanding directed-stop requests are cleared
and, if it was stopped on an event of interest, the representative lwp is marked
PR_REQUESTED. If, as a consequence, all lwps are in the PR_REQUESTEDor
PR_SUSPENDEDstop state, all lwps showing PR_REQUESTEDare made runnable.

Last modified 11 Aug 1999 SunOS 5.8 349

proc(4) File Formats

PCSTRACE Define a set of signals to be traced in the process. The receipt of one of these
signals by an lwp causes the lwp to stop. The set of signals is defined using an
operand sigset_t contained in the control message. Receipt of SIGKILL
cannot be traced; if specified, it is silently ignored.

If a signal that is included in an lwp’s held signal set (the signal mask) is sent to
the lwp, the signal is not received and does not cause a stop until it is removed
from the held signal set, either by the lwp itself or by setting the held signal set
with PCSHOLD.

PCCSIG The current signal, if any, is cleared from the specific or representative lwp.

PCSSIG The current signal and its associated signal information for the specific or
representative lwp are set according to the contents of the operand siginfo
structure (see <sys/siginfo.h>). If the specified signal number is zero, the
current signal is cleared. The semantics of this operation are different from those
of kill (2) in that the signal is delivered to the lwp immediately after execution
is resumed (even if it is being blocked) and an additional PR_SIGNALLED
stop does not intervene even if the signal is traced. Setting the current signal
to SIGKILL terminates the process immediately.

PCKILL If applied to the process control file, a signal is sent to the process with semantics
identical to those of kill (2). If applied to an lwp control file, a directed signal is
sent to the specific lwp. The signal is named in a long operand contained in the
message. Sending SIGKILL terminates the process immediately.

PCUNKILL A signal is deleted, that is, it is removed from the set of pending signals. If
applied to the process control file, the signal is deleted from the process’s
pending signals. If applied to an lwp control file, the signal is deleted from the
lwp’s pending signals. The current signal (if any) is unaffected. The signal is
named in a long operand in the control message. It is an error (EINVAL) to
attempt to delete SIGKILL .

PCSHOLD Set the set of held signals for the specific or representative lwp (signals whose
delivery will be blocked if sent to the lwp). The set of signals is specified with a
sigset_t operand. SIGKILL and SIGSTOPcannot be held; if specified, they
are silently ignored.

PCSFAULT Define a set of hardware faults to be traced in the process. On incurring one
of these faults, an lwp stops. The set is defined via the operand fltset_t
structure. Fault names are defined in <sys/fault.h> and include the
following. Some of these may not occur on all processors; there may be
processor-specific faults in addition to these.
FLTILL illegal instruction

FLTPRIV privileged instruction

350 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

FLTBPT breakpoint trap

FLTTRACE trace trap (single-step)

FLTWATCH watchpoint trap

FLTACCESS memory access fault (bus error)

FLTBOUNDS memory bounds violation

FLTIOVF integer overflow

FLTIZDIV integer zero divide

FLTFPE floating-point exception

FLTSTACK unrecoverable stack fault

FLTPAGE recoverable page fault

When not traced, a fault normally results in the posting of a signal to the lwp
that incurred the fault. If an lwp stops on a fault, the signal is posted to the lwp
when execution is resumed unless the fault is cleared by PCCFAULTor by the
PRCFAULToption of PCRUN. FLTPAGEis an exception; no signal is posted. The
pr_info field in the lwpstatus structure identifies the signal to be sent and
contains machine-specific information about the fault.

PCCFAULT The current fault, if any, is cleared; the associated signal will not be sent to the
specific or representative lwp.

PCSENTRY PCSEXIT These control operations instruct the process’s lwps to stop on entry to or exit
from specified system calls. The set of system calls to be traced is defined via an
operand sysset_t structure.

When entry to a system call is being traced, an lwp stops after having begun the
call to the system but before the system call arguments have been fetched from
the lwp. When exit from a system call is being traced, an lwp stops on completion
of the system call just prior to checking for signals and returning to user level. At
this point, all return values have been stored into the lwp’s registers.

If an lwp is stopped on entry to a system call (PR_SYSENTRY) or when sleeping
in an interruptible system call (PR_ASLEEPis set), it may be instructed to go
directly to system call exit by specifying the PRSABORTflag in a PCRUNcontrol
message. Unless exit from the system call is being traced, the lwp returns to
user level showing EINTR.

PCWATCH Set or clear a watched area in the controlled process from a prwatch structure
operand:

typedef struct prwatch {
uintptr_t pr_vaddr; /* virtual address of watched area */
size_t pr_size; /* size of watched area in bytes */

Last modified 11 Aug 1999 SunOS 5.8 351

proc(4) File Formats

int pr_wflags; /* watch type flags */
} prwatch_t;

pr_vaddr specifies the virtual address of an area of memory to be watched
in the controlled process. pr_size specifies the size of the area, in bytes.
pr_wflags specifies the type of memory access to be monitored as a bit-mask of
the following flags:
WA_READ read access

WA_WRITE write access

WA_EXEC execution access

WA_TRAPAFTER trap after the instruction completes

If pr_wflags is non-empty, a watched area is established for the virtual address
range specified by pr_vaddr and pr_size . If pr_wflags is empty, any
previously-established watched area starting at the specified virtual address is
cleared; pr_size is ignored.

A watchpoint is triggered when an lwp in the traced process makes a memory
reference that covers at least one byte of a watched area and the memory
reference is as specified in pr_wflags . When an lwp triggers a watchpoint, it
incurs a watchpoint trap. If FLTWATCHis being traced, the lwp stops; otherwise,
it is sent a SIGTRAPsignal; if SIGTRAPis being traced and is not blocked,
the lwp stops.

The watchpoint trap occurs before the instruction completes unless
WA_TRAPAFTERwas specified, in which case it occurs after the instruction
completes. If it occurs before completion, the memory is not modified. If it
occurs after completion, the memory is modified (if the access is a write access).

pr_info in the lwpstatus structure contains information pertinent to the
watchpoint trap. In particular, the si_addr field contains the virtual address
of the memory reference that triggered the watchpoint, and the si_code field
contains one of TRAP_RWATCH, TRAP_WWATCH, or TRAP_XWATCH, indicating
read, write, or execute access, respectively. The si_trapafter field is zero
unless WA_TRAPAFTERis in effect for this watched area; non-zero indicates that
the current instruction is not the instruction that incurred the watchpoint trap.
The si_pc field contains the virtual address of the instruction that incurred
the trap.

A watchpoint trap may be triggered while executing a system call that makes
reference to the traced process’s memory. The lwp that is executing the system
call incurs the watchpoint trap while still in the system call. If it stops as a result,
the lwpstatus structure contains the system call number and its arguments. If
the lwp does not stop, or if it is set running again without clearing the signal or

352 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

fault, the system call fails with EFAULT. If WA_TRAPAFTERwas specified, the
memory reference will have completed and the memory will have been modified
(if the access was a write access) when the watchpoint trap occurs.

If more than one of WA_READ, WA_WRITE, and WA_EXECis specified for a
watched area, and a single instruction incurs more than one of the specified
types, only one is reported when the watchpoint trap occurs. The precedence is
WA_EXEC, WA_READ, WA_WRITE(WA_EXECand WA_READtake precedence over
WA_WRITE), unless WA_TRAPAFTERwas specified, in which case it is WA_WRITE,
WA_READ, WA_EXEC(WA_WRITEtakes precedence).

PCWATCHfails with EINVAL if an attempt is made to specify overlapping
watched areas or if pr_wflags contains flags other than those specified above.
It fails with ENOMEMif an attempt is made to establish more watched areas than
the system can support (the system can support thousands).

The child of a vfork (2) borrows the parent’s address space. When a vfork (2) is
executed by a traced process, all watched areas established for the parent are
suspended until the child terminates or performs an exec (2). Any watched
areas established independently in the child are cancelled when the parent
resumes after the child’s termination or exec (2). PCWATCHfails with EBUSYif
applied to the parent of a vfork (2) before the child has terminated or performed
an exec (2). The PR_VFORKPflag is set in the pstatus structure for such a
parent process.

Certain accesses of the traced process’s address space by the operating system
are immune to watchpoints. The initial construction of a signal stack frame when
a signal is delivered to an lwp will not trigger a watchpoint trap even if the new
frame covers watched areas of the stack. Once the signal handler is entered,
watchpoint traps occur normally. On SPARC based machines, register window
overflow and underflow will not trigger watchpoint traps, even if the register
window save areas cover watched areas of the stack.

Watched areas are not inherited by child processes, even if the traced process’s
inherit-on-fork mode, PR_FORK, is set (see PCSET, below). All watched areas are
cancelled when the traced process performs a successful exec (2).

PCSET PCUNSET PCSETsets one or more modes of operation for the traced process. PCUNSET
unsets these modes. The modes to be set or unset are specified by flags in an
operand long in the control message:
PR_FORK (inherit-on-fork): When set, the process’s tracing flags and its

inherit-on-fork mode are inherited by the child of a fork (2),
fork1 (2), or vfork (2). When unset, child processes start
with all tracing flags cleared.

PR_RLC (run-on-last-close): When set and the last writable /proc file
descriptor referring to the traced process or any of its lwps is

Last modified 11 Aug 1999 SunOS 5.8 353

proc(4) File Formats

closed, all of the process’s tracing flags and watched areas
are cleared, any outstanding stop directives are canceled, and
if any lwps are stopped on events of interest, they are set
running as though PCRUNhad been applied to them. When
unset, the process’s tracing flags and watched areas are
retained and lwps are not set running on last close.

PR_KLC (kill-on-last-close): When set and the last writable /proc file
descriptor referring to the traced process or any of its lwps is
closed, the process is terminated with SIGKILL .

PR_ASYNC (asynchronous-stop): When set, a stop on an event of
interest by one lwp does not directly affect any other lwp
in the process. When unset and an lwp stops on an event
of interest other than PR_REQUESTED, all other lwps in the
process are directed to stop.

PR_MSACCT (microstate accounting): When set, microstate accounting is
enabled for the process. This allows the usage file to contain
accurate values for the times the lwps spent in their various
processing states. When unset (the default), the overhead of
microstate accounting is avoided and the usage file can only
contain an estimate of times spent in the various states.

PR_MSFORK (inherit microstate accounting): When set, and microstate
accounting is enabled for the process, microstate accounting
will be enabled for future child processes. When unset, child
processes start with microstate accounting disabled.

PR_BPTADJ (breakpoint trap pc adjustment): On IA based machines,
a breakpoint trap leaves the program counter (the EIP)
referring to the breakpointed instruction plus one byte.
When PR_BPTADJis set, the system will adjust the program
counter back to the location of the breakpointed instruction
when the lwp stops on a breakpoint. This flag has no effect
on SPARC based machines, where breakpoint traps leave the
program counter referring to the breakpointed instruction.

PR_PTRACE (ptrace-compatibility): When set, a stop on an event of
interest by the traced process is reported to the parent
of the traced process via wait (2), SIGTRAP is sent to the
traced process when it executes a successful exec (2),
setuid/setgid flags are not honored for execs performed by
the traced process, any exec of an object file that the traced
process cannot read fails, and the process dies when its
parent dies. This mode is deprecated; it is provided only to

354 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

allow ptrace (2) to be implemented as a library function
using /proc .

It is an error (EINVAL) to specify flags other than those described above or to
apply these operations to a system process. The current modes are reported in the
pr_flags field of /proc/ pid/status and /proc/ pid/lwp/ lwp/lwpstatus .

PCSREG Set the general registers for the specific or representative lwp according to the
operand prgregset_t structure.

On SPARC based systems, only the condition-code bits of the processor-status
register (R_PSR) of SPARC V8 (32-bit) processes can be modified by PCSREG.
Other privileged registers cannot be modified at all.

On IA based systems, only certain bits of the flags register (EFL) can be modified
by PCSREG: these include the condition codes, direction-bit, and overflow-bit.

PCSREGfails with EBUSYif the lwp is not stopped on an event of interest.

PCSVADDR Set the address at which execution will resume for the specific or representative
lwp from the operand long . On SPARC based systems, both %pc and %npc
are set, with %npc set to the instruction following the virtual address. On
IA based systems, only %eip is set. PCSVADDRfails with EBUSYif the lwp is
not stopped on an event of interest.

PCSFPREG Set the floating-point registers for the specific or representative lwp according
to the operand prfpregset_t structure. An error (EINVAL) is returned
if the system does not support floating-point operations (no floating-point
hardware and the system does not emulate floating-point machine instructions).
PCSFPREGfails with EBUSYif the lwp is not stopped on an event of interest.

PCSXREG Set the extra state registers for the specific or representative lwp according to the
architecture-dependent operand prxregset_t structure. An error (EINVAL) is
returned if the system does not support extra state registers. PCSXREGfails with
EBUSYif the lwp is not stopped on an event of interest.

PCSASRS Set the ancillary state registers for the specific or representative lwp according
to the SPARC V9 platform-dependent operand asrset_t structure. An error
(EINVAL) is returned if either the target process or the controlling process is not
a 64-bit SPARC V9 process. Most of the ancillary state registers are privileged
registers that cannot be modified. Only those that can be modified are set; all
others are silently ignored. PCSASRSfails with EBUSYif the lwp is not stopped
on an event of interest.

PCAGENT Create an agent lwp in the controlled process with register values from the
operand prgregset_t structure (see PCSREG, above). The agent lwp is created
in the stopped state showing PR_REQUESTEDand with its held signal set (the
signal mask) having all signals except SIGKILL and SIGSTOPblocked.

Last modified 11 Aug 1999 SunOS 5.8 355

proc(4) File Formats

The PCAGENToperation fails with EBUSYunless the process is fully stopped
via /proc , that is, unless all of the lwps in the process are stopped either on
events of interest or on PR_SUSPENDED, or are stopped on PR_JOBCONTROL
and have been directed to stop via PCDSTOP. It fails with EBUSYif an agent
lwp already exists. It fails with ENOMEMif system resources for creating new
lwps have been exhausted.

Any PCRUNoperation applied to the process control file or to the control file of
an lwp other than the agent lwp fails with EBUSYas long as the agent lwp exists.
The agent lwp must be caused to terminate by executing the _lwp_exit (2)
system call before the process can be restarted.

Once the agent lwp is created, its lwp-ID can be found by reading the process
status file. To facilitate opening the agent lwp’s control and status files, the
directory name /propc/ pid/lwp/agent is accepted for lookup operations as
an invisible alias for /proc/ pid/lwp/ lwpid, lwpid being the lwp-ID of the agent
lwp (invisible in the sense that the name “agent” does not appear in a directory
listing of /proc/ pid/lwp obtained from ls (1), getdents (2), or readdir (3C)).

The purpose of the agent lwp is to perform operations in the controlled process
on behalf of the controlling process: to gather information not directly available
via /proc files, or in general to make the process change state in ways not
directly available via /proc control operations. To make use of an agent lwp,
the controlling process must be capable of making it execute system calls
(specifically, the _lwp_exit (2) system call). The register values given to the
agent lwp on creation are typically the registers of the representative lwp, so
that the agent lwp can use its stack.

The agent lwp is not allowed to execute any variation of the fork (2), exec (2),
or _lwp_create (2) system calls. Attempts to do so yield ENOTSUPto the
agent lwp.

PCREAD PCWRITE Read or write the target process’s address space via a priovec structure
operand:

typedef struct priovec {
void *pio_base; /* buffer in controlling process */
size_t pio_len; /* size of read/write request in bytes */
off_t pio_offset; /* virtual address in target process */

} priovec_t;

These operations have the same effect as pread (2) and pwrite (2), respectively,
of the target process’s address space file. The difference is that more than one
PCREADor PCWRITEcontrol operation can be written to the control file at
once, and they can be interspersed with other control operations in a single
write to the control file. This is useful, for example, when planting many
breakpoint instructions in the process’s address space, or when stepping over a

356 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

breakpointed instruction. Unlike pread (2) and pwrite (2), no provision is made
for partial reads or writes; if the operation cannot be performed completely, it
fails with EIO .

PCNICE The traced process’s nice (2) value is incremented by the amount in the operand
long . Only the super-user may better a process’s priority in this way, but
any user may lower the priority. This operation is not meaningful for all
scheduling classes.

PCSCRED Set the target process credentials to the values contained in the prcred_t
structure operand (see /proc/ pid/cred). The effective, real, and saved user-IDs
and group-IDs of the target process are set. The target process’s supplementary
groups are not changed; the pr_ngroups and pr_groups members of the
structure operand are ignored. Only the super-user may perform this operation;
for all others it fails with EPERM.

PROGRAMMING
NOTES

For security reasons, except for the psinfo , usage , lpsinfo , lusage ,
lwpsinfo , and lwpusage files, which are world-readable, and except for the
super-user, an open of a /proc file fails unless both the user-ID and group-ID
of the caller match those of the traced process and the process’s object file is
readable by the caller. Except for the world-readable files just mentioned,
files corresponding to setuid and setgid processes can be opened only by the
super-user.

Even if held by the super-user, an open process or lwp file descriptor (other
than file descriptors for the world-readable files) becomes invalid if the traced
process performs an exec (2) of a setuid/setgid object file or an object file that
the traced process cannot read. Any operation performed on an invalid file
descriptor, except close (2), fails with EAGAIN. In this situation, if any tracing
flags are set and the process or any lwp file descriptor is open for writing, the
process will have been directed to stop and its run-on-last-close flag will have
been set (see PCSET). This enables a controlling process (if it has permission) to
reopen the /proc files to get new valid file descriptors, close the invalid file
descriptors, unset the run-on-last-close flag (if desired), and proceed. Just closing
the invalid file descriptors causes the traced process to resume execution with all
tracing flags cleared. Any process not currently open for writing via /proc ,
but that has left-over tracing flags from a previous open, and that executes a
setuid/setgid or unreadable object file, will not be stopped but will have all its
tracing flags cleared.

To wait for one or more of a set of processes or lwps to stop or terminate,
/proc file descriptors (other than those obtained by opening the cwd or root
directories or by opening files in the fd or object directories) can be used in a
poll (2) system call. When requested and returned, either of the polling events
POLLPRI or POLLWRNORMindicates that the process or lwp stopped on an event
of interest. Although they cannot be requested, the polling events POLLHUP,

Last modified 11 Aug 1999 SunOS 5.8 357

proc(4) File Formats

POLLERR, and POLLNVALmay be returned. POLLHUPindicates that the process
or lwp has terminated. POLLERRindicates that the file descriptor has become
invalid. POLLNVALis returned immediately if POLLPRI or POLLWRNORMis
requested on a file descriptor referring to a system process (see PCSTOP). The
requested events may be empty to wait simply for termination.

FILES /proc directory (list of processes)

/proc/ pid specific process directory

/proc/self alias for a process’s own
directory

/proc/ pid/as address space file

/proc/ pid/ctl process control file

/proc/ pid/status process status

/proc/ pid/lstatus array of lwp status structs

/proc/ pid/psinfo process ps (1) info

/proc/ pid/lpsinfo array of lwp ps (1) info structs

/proc/ pid/map address space map

/proc/ pid/rmap reserved address map

/proc/ pid/cred process credentials

/proc/ pid/sigact process signal actions

/proc/ pid/auxv process aux vector

/proc/ pid/ldt process LDT (IA only)

/proc/ pid/usage process usage

/proc/ pid/lusage array of lwp usage structs

/proc/ pid/pagedata process page data

/proc/ pid/watch active watchpoints

/proc/ pid/cwd symlink to the current working
directory

/proc/ pid/root symlink to the root directory

/proc/ pid/fd directory (list of open files)

/proc/ pid/fd/* aliases for process’s open files

/proc/ pid/object directory (list of mapped files)

358 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

/proc/ pid/object/a.out alias for process’s executable file

/proc/ pid/object/* aliases for other mapped files

/proc/ pid/lwp directory (list of lwps)

/proc/ pid/lwp/ lwpid specific lwp directory

/proc/ pid/lwp/agent alias for the agent lwp directory

/proc/ pid/lwp/ lwpid/lwpctl lwp control file

/proc/ pid/lwp/ lwpid/lwpstatus lwp status

/proc/ pid/lwp/ lwpid/lwpsinfo lwp ps (1) info

/proc/ pid/lwp/ lwpid/lwpusage lwp usage

/proc/ pid/lwp/ lwpid/gwindows register windows (SPARC only)

/proc/ pid/lwp/ lwpid/xregs extra state registers

/proc/ pid/lwp/ lwpid/asrs ancillary state registers (SPARC
V9 only)

SEE ALSO ls (1), ps (1), chroot (1M), _lwp_create (2), _lwp_exit (2), alarm (2), brk (2),
chdir (2), chroot (2), close (2), creat (2), dup (2), exec (2), fcntl (2), fork (2),
fork1 (2), fstat (2), getdents (2), kill (2), lseek (2), mmap(2), nice (2),
open (2), poll (2), pread (2), ptrace (2), pwrite (2), read (2), readlink (2),
readv (2), shmget (2), sigaction (2), sigaltstack (2), vfork (2), wait (2),
write (2), writev (2), readdir (3C), siginfo (3HEAD), signal (3HEAD),
types32 (3HEAD), ucontext (3HEAD)

DIAGNOSTICS Errors that can occur in addition to the errors normally associated with file
system access:
ENOENT The traced process or lwp has terminated after being opened.

EIO A write (2) was attempted at an illegal address in the
traced process.

EBUSY PCSTOP, PCDSTOP, PCWSTOP, or PCTWSTOPwas applied to a
system process; an exclusive open (2) was attempted on a
/proc file for a process already open for writing; PCRUN,
PCSREG, PCSVADDR, PCSFPREG, or PCSXREGwas applied
to a process or lwp not stopped on an event of interest; an
attempt was made to mount /proc when it was already
mounted; PCAGENTwas applied to a process that was not
fully stopped or that already had an agent lwp.

Last modified 11 Aug 1999 SunOS 5.8 359

proc(4) File Formats

EPERM Someone other than the super-user issued the PCSCRED
operation; someone other than the super-user attempted to
better a process’s priority by applying PCNICE.

ENOSYS An attempt was made to perform an unsupported operation
(such as creat (2), link (2), or unlink (2)) on an entry in
/proc .

EINVAL In general, this means that some invalid argument was
supplied to a system call. A non-exhaustive list of conditions
eliciting this error includes: a control message operation
code is undefined; an out-of-range signal number was
specified with PCSSIG, PCKILL , or PCUNKILL; SIGKILL
was specified with PCUNKILL; PCSFPREGwas applied on
a system that does not support floating-point operations;
PCSXREGwas applied on a system that does not support
extra state registers.

ENOMEM The system-imposed limit on the number of page
data file descriptors was reached on an open of
/proc/ pid/pagedata ; an attempt was made with PCWATCH
to establish more watched areas than the system can support;
the PCAGENToperation was issued when the system was out
of resources for creating lwps.

E2BIG Data to be returned in a read (2) of the page data file exceeds
the size of the read buffer provided by the caller.

EINTR A signal was received by the controlling process while
waiting for the traced process or lwp to stop via PCSTOP,
PCWSTOP, or PCTWSTOP.

EAGAIN The traced process has performed an exec (2) of a
setuid/setgid object file or of an object file that it cannot
read; all further operations on the process or lwp file
descriptor (except close (2)) elicit this error.

EOVERFLOW A 32-bit controlling process attempted to read or write the
as file or attempted to read the map, rmap , or pagedata
file of a 64-bit target process. A 32-bit controlling process
attempted to apply one of the control operations PCSREG,
PCSXREG, PCSVADDR, PCWATCH, PCAGENT, PCREAD,
PCWRITEto a 64-bit target process.

NOTES Descriptions of structures in this document include only interesting structure
elements, not filler and padding fields, and may show elements out of order

360 SunOS 5.8 Last modified 11 Aug 1999

File Formats proc(4)

for descriptive clarity. The actual structure definitions are contained in
<procfs.h> .

BUGS Because the old ioctl (2)-based version of /proc is currently supported for
binary compatibility with old applications, the top-level directory for a process,
/proc/ pid, is not world-readable, but it is world-searchable. Thus, anyone can
open /proc/ pid/psinfo even though ls (1) applied to /proc/ pid will fail for
anyone but the owner or the super-user. Support for the old ioctl (2)-based
version of /proc will be dropped in a future release, at which time the top-level
directory for a process will be made world-readable.

On SPARC based machines, the types gregset_t and fpregset_t defined in
<sys/regset.h> are similar to but not the same as the types prgregset_t
and prfpregset_t defined in <procfs.h> .

Last modified 11 Aug 1999 SunOS 5.8 361

prof_attr(4) File Formats

NAME prof_attr – profile description database

SYNOPSIS /etc/security/prof_attr

DESCRIPTION /etc/security/prof_attr is a local source for execution profile names,
descriptions, and other attributes of execution profiles. The prof_attr file can
be used with other profile sources, including the prof_attr NIS map and
NIS+ table. Programs use the getprofattr (3SECDB) routines to gain access
to this information.

The search order for multiple prof_attr sources is specified in the
/etc/nsswitch.conf file, as described in the nsswitch.conf (4) man page.

An execution profile is a mechanism used to bundle together the commands
and authorizations needed to peform a specific function. Each entry in the
prof_attr database consists of one line of text containing five fields separated
by colons (:). Line continuations using the backslash (\) character are permitted.
The format of each entry is:

profname:res1:res2:desc:attr

profname The name of the profile. Profile names are case-sensitive.

res1 Reserved for future use.

res2 Reserved for future use.

desc A long description. This field should explain the purpose of
the profile, including what type of user would be interested
in using it. The long description should be suitable for
displaying in the help text of an application.

attr An optional list of semicolon-separated (;) key-value pairs
that describe the security attributes to apply to the object
upon execution. Zero or more keys may be specified. There
are two valid keys, help and auths .

help is assigned the name of a file ending in .htm or
.html .

auths specifies a comma-separated (,) list of authorization
names chosen from those names defined in the
auth_attr (4) database. Authorization names may be
specified using the asterisk (*) character as a wildcard. For
example, solaris.printer.* would mean all of Sun’s
authorizations for printing.

362 SunOS 5.8 Last modified 26 Oct 1999

File Formats prof_attr(4)

EXAMPLES EXAMPLE 1 Allowing execution of all commands

The following entry allows the user to execute all commands:
All:::Use this profile to give a :help=All.html

EXAMPLE 2 Consulting the local prof_attr file first

With the following nsswitch.conf entry, the local prof_attr file is consulted
before the NIS+ table:

prof_attr: files nisplus

FILES /etc/nsswitch.conf

/etc/security/prof_attr

NOTES When deciding which authorization source to use (see DESCRIPTION), keep in
mind that NIS+ provides stronger authentication than NIS.

The root user is usually defined in local databases because root needs to be
able to log in and do system maintenance in single-user mode and at other
times when the network name service databases are not available. So that the
profile definitions for root can be located at such times, root’s profiles should
be defined in the local prof_attr file, and the order shown in the example
nsswitch.conf (4) file entry under EXAMPLES is highly recommended.

Because the list of legal keys is likely to expand, any code that parses this
database must be written to ignore unknown key-value pairs without error.
When any new keywords are created, the names should be prefixed with a
unique string, such as the company’s stock symbol, to avoid potential naming
conflicts.

Each application has its own requirements for whether the help value must be a
relative pathname ending with a filename or the name of a file. The only known
requirement is for the name of a file.

The following characters are used in describing the database format and must
be escaped with a backslash if used as data: colon (:), semicolon (;), equals
(=), and backslash (\).

SEE ALSO auths (1), profiles (1), getauthattr (3SECDB), getprofattr (3SECDB),
getuserattr (3SECDB), auth_attr (4), exec_attr (4), user_attr (4)

Last modified 26 Oct 1999 SunOS 5.8 363

profile(4) File Formats

NAME profile – setting up an environment for user at login time

SYNOPSIS /etc/profile

$HOME/.profile

DESCRIPTION All users who have the shell, sh (1), as their login command have the commands
in these files executed as part of their login sequence.

/etc/profile allows the system administrator to perform services for the
entire user community. Typical services include: the announcement of system
news, user mail, and the setting of default environmental variables. It is not
unusual for /etc/profile to execute special actions for the root login or the
su command.

The file $HOME/.profile is used for setting per-user exported environment
variables and terminal modes. The following example is typical (except for
the comments):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 022
Tell me when new mail comes in
MAIL=/var/mail/$LOGNAME
Add my /usr/usr/bin directory to the shell search sequence
PATH=$PATH:$HOME/bin
Set terminal type
TERM=${L0: −u/n/k/n/o/w/n} # gnar.invalid
while :
do

if [−f ${TERMINFO:-/usr/share/lib/terminfo}/?/$TERM]
then break

elif [−f /usr/share/lib/terminfo/?/$TERM]
then break
else echo "invalid term $TERM" 1>&2
fi
echo "terminal: \c"
read TERM

done
Initialize the terminal and set tabs
Set the erase character to backspace
stty erase ’^H’ echoe

FILES $HOME/.profile user-specific environment

/etc/profile system-wide environment

364 SunOS 5.8 Last modified 20 Dec 1992

File Formats profile(4)

SEE ALSO env (1), login (1), mail (1), sh (1), stty (1), tput (1), su (1M), terminfo (4),
environ (5), term (5)

OpenWindows Advanced User’s Guide

NOTES Care must be taken in providing system-wide services in /etc/profile .
Personal .profile files are better for serving all but the most global needs.

Last modified 20 Dec 1992 SunOS 5.8 365

protocols(4) File Formats

NAME protocols – protocol name database

SYNOPSIS /etc/inet/protocols

/etc/protocols

DESCRIPTION The protocols file is a local source of information regarding the known
protocols used in the DARPA Internet. The protocols file can be used in
conjunction with or instead of other protocols sources, including the NIS
maps “protcols.byname” and “"protocols.bynumber” and the NIS+ table
“protocols”. Programs use the getprotobyname (3SOCKET) routine to access
this information.

The protocols file has one line for each protocol. The line has the following
format:

official-protocol-name protocol-number aliases

Items are separated by any number of blanks and/or TAB characters. A ‘#’
indicates the beginning of a comment; characters up to the end of the line are not
interpreted by routines which search the file. Protocol names may contain any
printable character other than a field delimiter, NEWLINE, or comment character.

EXAMPLES EXAMPLE 1 A Sample Database

The following is a sample database:
#
Internet (IP) protocols
#
ip 0 IP # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol
ggp 3 GGP # gateway-gateway protocol
tcp 6 TCP # transmission control protocol
egp 8 EGP # exterior gateway protocol
pup 12 PUP # PARC universal packet protocol
udp 17 UDP # user datagram protocol

#
Internet (IPv6) extension headers
#
hopopt 0 HOPOPT # Hop-by-hop options for IPv6
ipv6 41 IPv6 # IPv6 in IP encapsulation
ipv6-route 43 IPv6-Route # Routing header for IPv6
ipv6-frag 44 IPv6-Frag # Fragment header for IPv6
esp 50 ESP # Encap Security Payload for IPv6
ah 51 AH # Authentication Header for IPv6
ipv6-icmp 58 IPv6-ICMP # IPv6 internet control message protocol
ipv6-nonxt 59 IPv6-NoNxt # No next header extension header for IPv6
ipv6-opts 60 IPv6-Opts # Destination Options for IPv6

FILES /etc/nsswitch.conf configuration file for name-service switch

366 SunOS 5.8 Last modified 10 Nov 1999

File Formats protocols(4)

SEE ALSO getprotobyname (3SOCKET), nsswitch.conf (4)

NOTES /etc/inet/protocols is the official SVR4 name of the protocols file. The
symbolic link /etc/protocols exists for BSD compatibility.

Last modified 10 Nov 1999 SunOS 5.8 367

prototype(4) File Formats

NAME prototype – package information file

DESCRIPTION prototype is an ASCII file used to specify package information. Each entry
in the file describes a single deliverable object. An object may be a data file,
directory, source file, executable object, and so forth. This file is generated
by the package developer.

Entries in a prototype file consist of several fields of information separated by
white space. Comment lines begin with a “#” and are ignored. The fields are
described below and must appear in the order shown.
part An optional field designating the part number in which the

object resides. A part is a collection of files and is the atomic
unit by which a package is processed. A developer can
choose criteria for grouping files into a part (for example,
based on class). If this field is not used, part 1 is assumed.

ftype A one-character field that indicates the file type. Valid
values are:

b block special device

c character special device

d directory

e a file to be edited upon installation or removal (may
be shared by several packages)

f a standard executable or data file

i installation script or information file

l linked file

p named pipe

s symbolic link

v volatile file (one whose contents are expected to
change, like a log file)

x an exclusive directory accessible only by this
package

class The installation class to which the file belongs. This name
must contain only alphanumeric characters and be no longer
than 12 characters. The field is not specified for installation
scripts. (admin and all classes beginning with capital letters
are reserved class names.)

368 SunOS 5.8 Last modified 4 Oct 1996

File Formats prototype(4)

pathname The pathname where the file will reside on the target
machine, for example, /usr/bin/mail or bin/ras/proc .
Relative pathnames (those that do not begin with a slash)
indicate that the file is relocatable. The form

path1=path2

may be used for two purposes: to define a link and to define
local pathnames.

For linked files, path1 indicates the destination of the link
and path2 indicates the source file. (This format is mandatory
for linked files.)

For local pathnames, path1 indicates the pathname an object
should have on the machine where the entry is to be installed
and path2 indicates either a relative or fixed pathname to a
file on the host machine which contains the actual contents.

A pathname may contain a variable specification of the form
$variable. If variable begins with a lower case letter, it is a
build variable. If variable begins with an upper case letter, it
is an install variable. Build variables are bound at build time.
If an install variable is known at build time, its definition is
inserted into the pkginfo (4) file so that it will be available
at install time. If an install variable is not known at build
time, it will be bound at install time.

major The major device number. The field is only specified for
block or character special devices.

minor The minor device number. The field is only specified for
block or character special devices.

mode The octal mode of the file (for example, 0664). A question
mark (?) indicates that the mode will be left unchanged,
implying that the file already exists on the target machine.
This field is not used for linked files or packaging
information files.

The mode can be a variable specification of the form
$variable. If variable begins with a lower case letter, it is a
build variable. If variable begins with an upper case letter, it
is an install variable. Build variables are bound at build time.
If an install variable is known at build time, its definition is
inserted into the pkginfo (4) file so that it will be available

Last modified 4 Oct 1996 SunOS 5.8 369

prototype(4) File Formats

at install time. If an install variable is not known at build
time, it will be bound at install time.

owner The owner of the file (for example, bin or root). The field
is limited to 14 characters in length. A question mark (?)
indicates that the owner will be left unchanged, implying
that the file already exists on the target machine. This field is
not used for linked files or packaging information files.

The owner can be a variable specification of the form
$variable. If variable begins with a lower case letter, it is a
build variable. If variable begins with an upper case letter, it
is an install variable. Build variables are bound at build time.
If an install variable is known at build time, its definition is
inserted into the pkginfo (4) file so that it will be available
at install time. If an install variable is not known at build
time, it will be bound at install time.

group The group to which the file belongs (for example, bin or
sys). The field is limited to 14 characters in length. A
question mark (?) indicates that the group will be left
unchanged, implying that the file already exists on the target
machine. This field is not used for linked files or packaging
information files.

The group can be a variable specification of the form
$variable. If variable begins with a lower case letter, it is a
build variable. If variable begins with an upper case letter, it
is an install variable. Build variables are bound at build time.
If an install variable is known at build time, its definition is
inserted into the pkginfo (4) file so that it will be available
at install time. If an install variable is not known at build
time, it will be bound at install time.

An exclamation point (!) at the beginning of a line indicates that the line
contains a command. These commands are used to incorporate files in other
directories, to locate objects on a host machine, and to set permanent defaults.
The following commands are available:
search Specifies a list of directories (separated by white space)

to search for when looking for file contents on the host
machine. The base name of the path field is appended to
each directory in the ordered list until the file is located.
Searches are not recursive.

370 SunOS 5.8 Last modified 4 Oct 1996

File Formats prototype(4)

include Specifies a pathname which points to another prototype
file to include. Note that search requests do not span
include files.

default Specifies a list of attributes (mode, owner, and group) to be
used by default if attribute information is not provided
for prototype entries which require the information. The
defaults do not apply to entries in include prototype files.

param=value Places the indicated parameter in the current environment.
Spans to subsequent included prototype files.

The above commands may have variable substitutions embedded within them,
as demonstrated in the two example prototype files below.

Before files are overwritten during installation, they are copied to a temporary
pathname. The exception to this rule is files whose mode includes execute
permission, unless the file is editable (that is, ftype is e). For files which meet
this exception, the existing version is linked to a temporary pathname, and the
original file is removed. This allows processes which are executing during
installation to be overwritten.

EXAMPLES EXAMPLE 1 Example 1:

!PROJDIR=/usr/proj
!BIN=$PROJDIR/bin
!CFG=$PROJDIR/cfg
!LIB=$PROJDIR/lib
!HDRS=$PROJDIR/hdrs
!search /usr/myname/usr/bin /usr/myname/src /usr/myname/hdrs
i pkginfo=/usr/myname/wrap/pkginfo
i depend=/usr/myname/wrap/depend
i version=/usr/myname/wrap/version
d none /usr/wrap 0755 root bin
d none /usr/wrap/usr/bin 0755 root bin
! search $BIN
f none /usr/wrap/bin/INSTALL 0755 root bin
f none /usr/wrap/bin/REMOVE 0755 root bin
f none /usr/wrap/bin/addpkg 0755 root bin
!default 755 root bin
f none /usr/wrap/bin/audit
f none /usr/wrap/bin/listpkg
f none /usr/wrap/bin/pkgmk
the following file starts out zero length but grows
v none /usr/wrap/logfile=/dev/null 0644 root bin
the following specifies a link (dest=src)
l none /usr/wrap/src/addpkg=/usr/wrap/bin/rmpkg
! search $SRC
!default 644 root other
f src /usr/wrap/src/INSTALL.sh
f src /usr/wrap/src/REMOVE.sh
f src /usr/wrap/src/addpkg.c
f src /usr/wrap/src/audit.c

Last modified 4 Oct 1996 SunOS 5.8 371

prototype(4) File Formats

f src /usr/wrap/src/listpkg.c
f src /usr/wrap/src/pkgmk.c
d none /usr/wrap/data 0755 root bin
d none /usr/wrap/save 0755 root bin
d none /usr/wrap/spool 0755 root bin
d none /usr/wrap/tmp 0755 root bin
d src /usr/wrap/src 0755 root bin

EXAMPLE 2 Example 2:

this prototype is generated by ’pkgproto’ to refer
to all prototypes in my src directory
!PROJDIR=/usr/dew/projx
!include $PROJDIR/src/cmd/prototype
!include $PROJDIR/src/cmd/audmerg/protofile
!include $PROJDIR/src/lib/proto

SEE ALSO pkgmk(1), pkginfo (4)

Application Packaging Developer’s Guide

NOTES Normally, if a file is defined in the prototype file but does not exist, that file
is created at the time of package installation. However, if the file pathname
includes a directory that does not exist, the file will not be created. For example,
if the prototype file has the following entry:

f none /usr/dev/bin/command

and that file does not exist, it will be created if the directory /usr/dev/bin
already exists or if the prototype also has an entry defining the directory:

d none /usr/dev/bin

372 SunOS 5.8 Last modified 4 Oct 1996

File Formats pseudo(4)

NAME pseudo – configuration files for pseudo device drivers

DESCRIPTION Pseudo devices are devices that are implemented entirely in software. Drivers
for pseudo devices must provide driver configuration files to inform the system
of each pseudo device that should be created.

Configuration files for pseudo device drivers must identify the parent driver
explicitly as pseudo, and must create an integer property called instance which is
unique to this entry in the configuration file.

Each entry in the configuration file creates a prototype devinfo node. Each
node is assigned an instance number which is determined by the value of the
instance property. This property is only applicable to children of the pseudo
parent, and is required since pseudo devices have no hardware address from
which to determine the instance number. See driver.conf (4) for further
details of configuration file syntax.

EXAMPLES EXAMPLE 1 A sample configuration file.

Here is a configuration file called ramdisk.conf for a pseudo device driver
that implements a RAM disk. This file creates two nodes called "ramdisk". The
first entry creates ramdisk node instance 0, and the second creates ramdisk node,
instance 1, with the additional disk-size property set to 512.

#
Copyright (c) 1993, by Sun Microsystems, Inc.
#
#ident "@(#)ramdisk.conf 1.3 93/06/04 SMI"
name="ramdisk" parent="pseudo" instance=0;
name="ramdisk" parent="pseudo" instance=1 disk-size=512;

SEE ALSO driver.conf (4), ddi_prop_op (9F)

Writing Device Drivers

Last modified 15 Jun 1993 SunOS 5.8 373

publickey(4) File Formats

NAME publickey – public key database

SYNOPSIS /etc/publickey

DESCRIPTION /etc/publickey is a local public key database that is used for secure RPC.
The /etc/publickey file can be used in conjunction with or instead of other
publickey databases, including the NIS publickey map and the NIS+ publickey
map. Each entry in the database consists of a network user name (which may
refer to either a user or a hostname), followed by the user’s public key (in hex
notation), a colon, and then the user’s secret key encrypted with a password
(also in hex notation).

The /etc/publickey file contains a default entry for nobody .

SEE ALSO chkey (1), newkey (1M), getpublickey (3NSL), nsswitch.conf (4)

374 SunOS 5.8 Last modified 6 Mar 1992

File Formats queuedefs(4)

NAME queuedefs – queue description file for at, batch, and cron

SYNOPSIS /etc/cron.d/queuedefs

DESCRIPTION The queuedefs file describes the characteristics of the queues managed by
cron (1M). Each non-comment line in this file describes one queue. The format
of the lines are as follows:

q. [njobj][nicen][nwaitw]

The fields in this line are:
q The name of the queue. a is the default queue for jobs started by

at (1); b is the default queue for jobs started by batch (see at (1)); c is
the default queue for jobs run from a crontab (1) file.

njob The maximum number of jobs that can be run simultaneously in that
queue; if more than njob jobs are ready to run, only the first njob jobs
will be run, and the others will be run as jobs that are currently
running terminate. The default value is 100 .

nice The nice (1) value to give to all jobs in that queue that are not run
with a user ID of super-user. The default value is 2.

nwait The number of seconds to wait before rescheduling a job that was
deferred because more than njob jobs were running in that job’s queue,
or because the system-wide limit of jobs executing has been reached.
The default value is 60 .

Lines beginning with # are comments, and are ignored.

EXAMPLES EXAMPLE 1 A sample file.

#
#
a.4j1n
b.2j2n90w

This file specifies that the a queue, for at jobs, can have up to 4 jobs running
simultaneously; those jobs will be run with a nice value of 1. As no nwait value
was given, if a job cannot be run because too many other jobs are running cron
will wait 60 seconds before trying again to run it.

The b queue, for batch (1) jobs, can have up to 2 jobs running simultaneously;
those jobs will be run with a nice (1) value of 2. If a job cannot be run because too
many other jobs are running, cron (1M) will wait 90 seconds before trying again
to run it. All other queues can have up to 100 jobs running simultaneously; they
will be run with a nice value of 2, and if a job cannot be run because too many
other jobs are running cron will wait 60 seconds before trying again to run it.

Last modified 1 Mar 1994 SunOS 5.8 375

queuedefs(4) File Formats

FILES /etc/cron.d/queuedefs queue description file for at , batch ,
and cron .

SEE ALSO at (1), crontab (1), nice (1), cron (1M)

376 SunOS 5.8 Last modified 1 Mar 1994

File Formats remote(4)

NAME remote – remote host description file

SYNOPSIS /etc/remote

DESCRIPTION The systems known by tip (1) and their attributes are stored in an ASCII file
which is structured somewhat like the termcap file. Each line in the file
provides a description for a single system. Fields are separated by a colon ‘: ’.
Lines ending in a ‘\ ’ character with an immediately following NEWLINE are
continued on the next line.

The first entry is the name(s) of the host system. If there is more than one name
for a system, the names are separated by vertical bars. After the name of the
system comes the fields of the description. A field name followed by an ‘=’ sign
indicates a string value follows. A field name followed by a ‘#’ sign indicates
a following numeric value.

Entries named tip baudrate are used as default entries by tip , as follows. When
tip is invoked with only a phone number, it looks for an entry of the form
tip baudrate, where baudrate is the baud rate with which the connection is to be
made. For example, if the connection is to be made at 300 baud, tip looks for an
entry of the form tip300 .

CAPABILITIES Capabilities are either strings (str) , numbers (num) , or boolean flags
(bool) . A string capability is specified by capability=value; for example,
‘dv=/dev/harris ’. A numeric capability is specified by capability#value; for
example, ‘xa#99 ’. A boolean capability is specified by simply listing the
capability.
at (str) Auto call unit type. The following lists valid ’at ’ types and

their corresponding hardware:

biz31f Bizcomp 1031, tone dialing

biz31w Bizcomp 1031, pulse dialing

biz22f Bizcomp 1022, tone dialing

biz22w Bizcomp 1022, pulse dialing

df02 DEC DF02

df03 DEC DF03

ventel Ventel 212+

v3451 Vadic 3451 Modem

v831 Vadic 831

hayes Any Hayes-compatible modem

Last modified 17 Jan 1995 SunOS 5.8 377

remote(4) File Formats

at Any Hayes-compatible modem

br (num) The baud rate used in establishing a connection to the remote
host. This is a decimal number. The default baud rate is 300 baud.

cm (str) An initial connection message to be sent to the remote host. For
example, if a host is reached through a port selector, this might be set
to the appropriate sequence required to switch to the host.

cu (str) Call unit if making a phone call. Default is the same as the
dv field.

db (bool) Cause tip (1) to ignore the first hangup it sees. db (dialback)
allows the user to remain in tip while the remote machine disconnects
and places a call back to the local machine. For more information
about dialback configuration, see TCP/IP and Data Communications
Administration Guide

di (str) Disconnect message sent to the host when a disconnect is
requested by the user.

du (bool) This host is on a dial-up line.

dv (str) Device(s) to open to establish a connection. If this file refers
to a terminal line, tip attempts to perform an exclusive open on the
device to insure only one user at a time has access to the port.

ec (bool) Initialize the tip variable echocheck to on , so that tip will
synchronize with the remote host during file transfer by waiting for
the echo of the last character transmitted.

el (str) Characters marking an end-of-line. The default is no characters.
tip only recognizes ‘~’ escapes after one of the characters in el , or
after a RETURN.

es (str) The command prefix (escape) character for tip .

et (num) Number of seconds to wait for an echo response when
echo-check mode is on. This is a decimal number. The default value is
10 seconds.

ex (str) Set of non-printable characters not to be discarded when
scripting with beautification turned on. The default value is
“\t\n\b\f ”.

fo (str) Character used to force literal data transmission. The default
value is ‘\377 ’.

378 SunOS 5.8 Last modified 17 Jan 1995

File Formats remote(4)

fs (num) Frame size for transfers. The default frame size is equal to
1024 .

hd (bool) Initialize the tip variable halfduplex to on , so local echo
should be performed.

hf (bool) Initialize the tip variable hardwareflow to on , so hardware
flow control is used.

ie (str) Input end-of-file marks. The default is a null string ("").

nb (bool) Initialize the tip variable beautify to off, so that
unprintable characters will not be discarded when scripting.

nt (bool) Initialize the tip variable tandem to off, so that XON/XOFF
flow control will not be used to throttle data from the remote host.

nv (bool) Initialize the tip variable verbose to off, so that verbose
mode will be turned on.

oe (str) Output end-of-file string. The default is a null string (""). When
tip is transferring a file, this string is sent at end-of-file.

pa (str) The type of parity to use when sending data to the host. This
may be one of even , odd , none , zero (always set bit 8 to 0), one
(always set bit 8 to 1). The default is none .

pn (str) Telephone number(s) for this host. If the telephone number
field contains an ‘@’ sign, tip searches the /etc/phones file for a list
of telephone numbers — see phones (4). A ‘%’ sign in the telephone
number indicates a 5-second delay for the Ventel Modem.

For Hayes-compatible modems, if the telephone number starts with
an ’S’, the telephone number string will be sent to the modem
without the "DT", which allows reconfiguration of the modem’s
S-registers and other parameters; for example, to disable auto-answer:
"pn=S0=0DT5551234 "; or to also restrict the modem to return only
the basic result codes: "pn=S0=0X0DT5551234 ".

pr (str) Character that indicates end-of-line on the remote host. The
default value is ‘ \n’.

ra (bool) Initialize the tip variable raise to on , so that lower case
letters are mapped to upper case before sending them to the remote
host.

rc (str) Character that toggles case-mapping mode. The default value
is ‘\377 ’.

Last modified 17 Jan 1995 SunOS 5.8 379

remote(4) File Formats

re (str) The file in which to record session scripts. The default value
is tip.record .

rw (bool) Initialize the tip variable rawftp to on , so that all characters
will be sent as is during file transfers.

sc (bool) Initialize the tip variable script to on , so that everything
transmitted by the remote host will be recorded.

tb (bool) Initialize the tip variable tabexpand to on , so that tabs will
be expanded to spaces during file transfers.

tc (str) Indicates that the list of capabilities is continued in the named
description. This is used primarily to share common capability
information.

EXAMPLES EXAMPLE 1 The capability continuation feature.

Here is a short example showing the use of the capability continuation feature:
UNIX-1200:\

:dv=/dev/cua0:el=^D^U^C^S^Q^O@:du:at=ventel:ie=#$%:oe=^D:br#1200:
arpavax|ax:\

:pn=7654321%:tc=UNIX-1200

FILES /etc/remote remote host description file.

/etc/phones remote host phone number database.

SEE ALSO tip (1), phones (4)

TCP/IP and Data Communications Administration Guide

380 SunOS 5.8 Last modified 17 Jan 1995

File Formats resolv.conf(4)

NAME resolv.conf – configuration file for name server routines

DESCRIPTION This file helps initialize routines from the resolver (3RESOLV) C library. The
resolver routines provide access to the Internet Domain Name System.

The resolver configuration file contains information that is read by the resolver
routines the first time a process calls them. The file is designed to be human
readable and contains a list of keyword-value pairs that provide various types of
resolver information. Keyword-value pairs are of the form:

keyword value

The different configuration options are:
nameserver address Specifies the Internet address in dot-notation

format of one name server to which the resolver
should direct any queries. Up to MAXNS
(currently three) name servers may be listed,
on as many as MAXNS nameserver lines in
resolv.conf . If multiple servers are specified,
the resolver routines query them in the order
listed. If no nameserver lines are present in the
file, resolver routines use the name server on the
local machine.

The algorithm of the resolver routines is: try the
first name server specified. If the query times out,
try the next server listed in the configuration file,
and so on until the complement of servers there
has been exhausted. If those queries also time
out, try the full complement of name servers
again, until the maximum number of retry passes
has been made.

domain name Specifies a local domain name for use as the
default domain.

Most queries for names within a domain
can use short names relative to the local
domain. If a domain line is missing from the
configuration file, the domain is determined
from the environment variable, LOCALDOMAIN,
if it is defined, from the domain name (see
domainname (1M)) by omitting the first level, or
from the host name (gethostname (3C)) by
using everything after the first dot. Finally, if the

Last modified 7 Jan 1997 SunOS 5.8 381

resolv.conf(4) File Formats

host name does not contain a domain part, the
root domain is assumed.

search searchlist Specifies a search list for host-name lookup.
The search list is normally determined from the
local domain name; by default, it contains only
the local domain name. This may be changed
by listing the desired domains for searches in
searchlist. Spaces or tabs must separate domain
names.

Most resolver queries are attempted using each
component of the search path in turn until a
match is found. Note that this process may be
slow and will generate a lot of network traffic if
the servers for the listed domains are not local.
Also queries will time out if no server is available
for one of the domains.

The search list is currently limited to six domains
with a total of 256 characters.

sortlist addresslist Causes addresses returned by
gethostbyname (3NSL) to be sorted in
accordance with local rules. A sortlist is
specified by IP address netmask pairs. The
netmask is optional and defaults to the
natural netmask of the net. The IP address
and optional network pairs are separated by
slashes. Up to 10 pairs may be specified. For
example, the following specification requires
gethostbyname() to return the netmask pair
130.155.160.0/255.255.240.0 ahead of the
IP address 130.155.0.0 .

sortlist
130.155.160.0/255.255.240.0
130.155.0.0

options optionlist Specifies optional behaviors for various resolver
routines in accordance with optionlist values, each
of which is equivalent to an internal resolver
variable.

The values that may be included as individual
optionlist values are:

382 SunOS 5.8 Last modified 7 Jan 1997

File Formats resolv.conf(4)

debug Sets RES_DEBUGin the
_res.options field.

ndots: n Sets a floor threshold for
the number of dots which
must appear in a name
given to res_query() (see
resolver (3RESOLV)) before
an initial absolute (as-is) query
is performed. The default for n
is 1. Thus, if there are any dots
in a name, the name is tried
first as an absolute name before
any search-list domain names
are appended to it.

retry: n Sets the number of attempts
made to connect to each name
server. While retry:0 is
allowed, it is equivalent to
retry:1 . The default is 4.

retrans: n Sets the basic retransmit
timeout, in seconds. The
default is 5. An exponential
backoff algorithm is used,
so the default values for
retry and retrans result in
5+10+20+40=75 seconds of total
timeout for each name server.
While retrans:0 is allowed,
it is equivalent to retrans:1 .

The domain and search keywords are mutually exclusive. If more than one
instance of these keywords is present, the last instance takes precedence.

The options established through any search lines in the local resolv.conf
file can be overridden on a per-process basis by setting the environment variable,
LOCALDOMAIN, to a space-separated list of search domains.

The options established through any options lines in the local resolv.conf
file can be amended on a per-process basis by setting the environment variable,
RES_OPTIONS, to a space-separated list of resolver options, These options are
listed above under the options keyword.

Last modified 7 Jan 1997 SunOS 5.8 383

resolv.conf(4) File Formats

The keyword-value pair must appear on a single line, and the keyword (for
instance, nameserver) must start the line. The value or value list follows the
keyword, separated from it by white space characters.

FILES /etc/resolv.conf

SEE ALSO domainname (1M), in.named (1M), gethostbyname (3NSL),
gethostname (3C), resolver (3RESOLV)

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide
for BIND (public domain), Internet Software Consortium, 1996.

384 SunOS 5.8 Last modified 7 Jan 1997

File Formats rmmount.conf(4)

NAME rmmount.conf – removable media mounter configuration file

SYNOPSIS /etc/rmmount.conf

DESCRIPTION The rmmount.conf file contains the rmmount (1M) configuration information.
This file describes where to find shared objects that perform actions on file
systems after identifying and mounting them. The rmmount.conf file is also
used to share CD-ROM and floppy file systems. It can also direct the rmmount
utility to run fsck on one or more file systems before mounting them, with the
fsck command line options specified in rmmount.conf .

Actions are executed in the order in which they appear in the configuration file.
The action function can return either 1 or 0. If it returns 0, no further actions will
be executed. This allows the function to control which applications are executed.
For example, action_filemgr always returns 0 if the File Manager is running,
thereby preventing subsequent actions from being executed.

To execute an action after a medium has been inserted and while the File Manager
is not running, list the action after action_filemgr in the rmmount.conf file.
To execute an action before the File Manager becomes aware of the medium, list
the action before action_filemgr in the rmmount.conf file.

The syntax for the rmmount.conf file is as follows.

File system identification
ident filesystem_type shared_object media_type [media_type ...]

Actions
action media_type shared_object args_to_so

File system sharing
share media_or_file_system share_command_options

Mount command options
mount media_or_file_system [file_system_spec] -o mount_command_options

Optionally fsck command options
fsck media_type filesystem_type -o fsck_command_options

Explanations of the syntax for the File system identification fields
are as follows.
filesystem_type An ASCII string used as the file system type

flag of the mount command (see the −F
option of mount (1M)). It is also used to match
names passed to rmmount (1M) from Volume
Management.

Last modified 27 Oct 1999 SunOS 5.8 385

rmmount.conf(4) File Formats

shared_object Programs that identify file systems and
perform actions. This shared_object is found at
/usr/lib/fs/ filesystem_type/shared_object.

media_type The type of medium where this file system
resides. Legal values are cdrom and floppy .

Explanations of the syntax for the Actions fields are as follows.
media_type Type of medium. This argument is passed in from Volume

Management as VOLUME_TYPE.

shared_object Programs that identify file systems and perform actions. If
shared_object starts with ‘/’ (slash), the full path name is used;
otherwise, /usr/lib/rmmount is prepended to the name.

args_to_so Arguments passed to the shared_object. These arguments are
passed in as an argc and argv[].

The definition of the interface to Actions is located in
/usr/include/rmmount.h .

Explanations of the syntax for the File system sharing fields are as follows.
media_or_file_system Either the type of medium (CD-ROM or floppy)

or the specific file system to share.

share_command_options Options of the share command. See share (1M)
for more information about these options.

Explanations of the syntax for the Mount command options fields are as
follows:
media_or_file_system Either the type of medium (CD-ROM or floppy)

or the specific file system to share.

file_system_spec Specifies one or more file systems to which this
line applies. Defaults to "all" file system types.

mount_command_options One or more options to be passed to the mount
command. Multiple options require a space
delimiter.

Explanations of the syntax for the fsck command options fields are as follows:
media_type The type of removable medium. A Bourne shell

regular expression that matches names of file
system media whose aliases are listed under
/vol/dev/aliases . Examples include cdrom0 ,
cdrom1 , cdrom* , floppy0 , and floppy1 , and
floppy* .

386 SunOS 5.8 Last modified 27 Oct 1999

File Formats rmmount.conf(4)

filesystem_type The type of file system, for example, ufs or
hsfs , that resides on the medium specified in
media_type.

fsck_command_options One or more options to be passed to fsck (1M).
Multiple options must be separated by spaces.

The algorithm for the fsck configuration line is as follows:

1. The fsck configuration line tells rmmount to run fsck on filesystem_type,
as described above. The filesystem_type must be correct for the media_type
specified.

2. If filesystem_type is not present, rmmount runs fsck on all file systems on
all media that match media_type.

3. If rmmount.conf contains no fsck configuration line or contains an fsck
configuration line with a media_type that does not match a medium’s alias,
rmmount does not run fsck on the removable medium’s file system, unless
mount reports that the file system’s dirty bit is set.

Default Values The following is an example of an rmmount.conf file.

#
Removable Media Mounter configuration file.
#

File system identification
ident hsfs ident_hsfs.so cdrom
ident ufs ident_ufs.so cdrom floppy rmscsi pcmem
ident pcfs ident_pcfs.so floppy rmscsi pcmem
ident udfs ident_udfs.so cdrom floppy

Actions
action cdrom action_filemgr.so
action floppy action_filemgr.so
action rmscsi action_filemgr.so

EXAMPLES EXAMPLE 1 Sharing of various file systems.

The following examples show how various file systems are shared using the
share syntax for the rmmount.conf file. These lines are added after the
Actions entries.
share cdrom*

Shares all CD-ROMs via NFS and applies no access restrictions.

share solaris_2.x*
Shares CD-ROMs named solaris_2.x* with no access restrictions.

Last modified 27 Oct 1999 SunOS 5.8 387

rmmount.conf(4) File Formats

share cdrom* -o ro=engineering
Shares all CD-ROMs via NFS but exports only to the "engineering" netgroup.

share solaris_2.x* -d distribution CD
Shares CD-ROMs named solaris_2.x* with no access restrictions and with
the description that it is a distribution CD-ROM.

share floppy0
Shares any floppy inserted into floppy drive 0.

EXAMPLE 2 Customizing mount operations

The following examples show how different mount options could be used to
customize how rmmount mounts various media:
mount cdrom* hsfs -o nrr

mounts all High Sierra CD-ROMs with the nrr (no Rock Ridge extensions)
option (see mount_hsfs (1M))

mount floppy1 -o ro
will always mount the second floppy disk read-only (for all file system
types)

mount floppy1 -o ro foldcase
will always mount the second floppy disk read-only (for all file system
types) and pass the foldcase mount option

EXAMPLE 3 Telling rmmount to check file systems before mounting them

The following examples show how to tell rmmount to check file systems with
fsck before mounting them, and how to specify the command line options to
be used with fsck .
fsck floppy* ufs —o f

Performs a full file system check on any UFS floppies, ignoring the clean
flag, before mounting them.

fsck floppy* ufs —o p
Uses the fsck p (preen) flag for all UFS floppies.

fsck cdrom* —o f
Tells rmmount to run fsck before mounting any file system on CD-ROM.

SEE ALSO volcancel (1), volcheck (1), volmissing (1), mount (1M), mount_hsfs (1M),
rmmount (1M), share (1M), vold (1M), vold.conf (4), volfs (7FS)

NOTES When using the mount options line, verify that the specified options will work
with the specified file system types. The mount command will fail if an incorrect
mount option/file system combination is specified. Multiple mount options
require a space delimiter.

388 SunOS 5.8 Last modified 27 Oct 1999

File Formats rmtab(4)

NAME rmtab – remote mounted file system table

SYNOPSIS /etc/rmtab

DESCRIPTION rmtab contains a table of filesystems that are remotely mounted by NFS clients.
This file is maintained by mountd (1M), the mount daemon. The data in this
file should be obtained only from mountd (1M) using the MOUNTPROC_DUMP
remote procedure call.

The file contains a line of information for each remotely mounted filesystem.
There are a number of lines of the form:

hostname: fsname

The mount daemon adds an entry for any client that successfully executes a
mount request and deletes the appropriate entries for an unmount request.

Lines beginning with a hash (’ #’) are commented out. These lines are removed
from the file by mountd (1M) when it first starts up. Stale entries may accumulate
for clients that crash without sending an unmount request.

FILES /etc/rmtab

SEE ALSO mountd (1M), showmount (1M)

Last modified 15 Nov 1990 SunOS 5.8 389

rpc(4) File Formats

NAME rpc – rpc program number data base

SYNOPSIS /etc/rpc

DESCRIPTION The rpc file is a local source containing user readable names that can be used in
place of RPC program numbers. The rpc file can be used in conjunction with
or instead of other rpc sources, including the NIS maps “rpc.byname” and
“rpc.bynumber” and the NIS+ table “rpc”.

The rpc file has one line for each RPC program name. The line has the following
format:

name-of-the-RPC-program RPC-program-number aliases

Items are separated by any number of blanks and/or tab characters. A “#”
indicates the beginning of a comment; characters up to the end of the line are
not interpreted by routines which search the file.

EXAMPLES EXAMPLE 1 RPC Database

Below is an example of an RPC database:

#
rpc
#
rpcbind 100000 portmap sunrpc portmapper
rusersd 100002 rusers
nfs 100003 nfsprog
mountd 100005 mount showmount
walld 100008 rwall shutdown
sprayd 100012 spray
llockmgr 100020
nlockmgr 100021
status 100024
bootparam 100026
keyserv 100029 keyserver

FILES /etc/nsswitch.conf

SEE ALSO nsswitch.conf (4)

390 SunOS 5.8 Last modified 10 Dec 1991

File Formats rpld.conf(4)

NAME rpld.conf – Remote Program Load (RPL) server configuration file

SYNOPSIS /etc/rpld.conf

DESCRIPTION The /etc/rpld.conf file contains the configuration information for operation
of rpld , the RPL-based network boot server. It is a text file containing
keyword-value pairs and comments. The keyword-value pairs specify the value
to use for parameters used by the RPL server. Comments can be entered by
starting the line using the # character. The user can add comments to the file
for customized configurations. Alternate RPL server configuration files can be
specified when running the RPL server by supplying a configuration file similar
to the default configuration file.

Keywords All keywords are case-sensitive. Not all keywords must be present. (However,
note that the end keyword at the end of the file must be present.) If a keyword
is not present, internal defaults, which are the default values described here,
will be used. Keyword-value pairs are specified by:

keyword = value

DebugLevel Specify the number of error, warning, and information
messages to be generated while the RPL server is running.
The valid range is 0-9. A value of 0 means no message at
all, while a value of 9 will generate the most messages. The
default is 0. Note that it is best to limit the value to 8 or
below; use of level 9 may generate so many debug messages
that the performance of the RPL server may be impacted.

DebugDest A numeric value specifying where to send the messages to:

0 = standard output
1 = syslogd
2 = log file

The default is 2.

MaxClients A numeric value specifying the maximum number of
simultaneous network boot clients to be in service. A value
of −1 means unlimited except where system resources is the
limiting factor. Any positive value will set a limit on the
number of clients to be in service at the same time unless
system resource constraints come in before the limit. The
default is −1.

BackGround A numeric value indicating whether the RPL server should
run in the background or not. A 0 means run in the
background and a 1 means do not run in the background.

Last modified 31 Dec 1996 SunOS 5.8 391

rpld.conf(4) File Formats

The difference is whether the server will relinquish the
controlling terminal or not. The default is 1.

FrameSize The default size of data frames to be used to send bootfile
data to the network boot clients. This size should not exceed
the limits imposed by the underlying physical media. For
ethernet/802.3 , the maximum physical frame size is 1500
octets. The default is 1500. Note that the protocol overhead
of LLC1 and RPL is 32 octets, resulting in a maximum data
length of 1468 octets.

LogFile The log file to which messages will be sent if
DebugDest is set to 2 (the default). The default file is
var/spool/rpld.log .

StartDelay The initial delay factor to use to control the speed
of downloading. In the default mode of operation,
the downloading process does not wait for a positive
acknowledgment from the client before the next data frame
is sent. In the case of a fast server and slow client, data
overrun can result and requests for retransmission will be
frequent. By using a delay factor, the speed of data transfer
is controlled to avoid retransmission requests. Note that the
unit of delay is machine dependent and bears no correlation
with the actual time delayed.

DelayGran Delay granularity. If the initial delay factor is not suitable
and the rate of downloading is either too fast or too slow,
retransmission requests from the clients will be used to
adjust the delay factor either upward (to slow down the data
rate) or downward (to speed up the data rate). The delay
granularity is used as the delay delta for adjustment.

end Keyword at the end of the file. It must be present.

FILES /etc/rpld.conf
/usr/sbin/rpld

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO rpld (1M), attributes (5)

392 SunOS 5.8 Last modified 31 Dec 1996

File Formats rt_dptbl(4)

NAME rt_dptbl – real-time dispatcher parameter table

DESCRIPTION The process scheduler (or dispatcher) is the portion of the kernel that controls
allocation of the CPU to processes. The scheduler supports the notion of
scheduling classes where each class defines a scheduling policy, used to schedule
processes within that class. Associated with each scheduling class is a set of
priority queues on which ready to run processes are linked. These priority
queues are mapped by the system configuration into a set of global scheduling
priorities which are available to processes within the class. (The dispatcher
always selects for execution the process with the highest global scheduling
priority in the system.) The priority queues associated with a given class are
viewed by that class as a contiguous set of priority levels numbered from 0
(lowest priority) to n (highest priority—a configuration dependent value).
The set of global scheduling priorities that the queues for a given class are
mapped into might not start at zero and might not be contiguous (depending
on the configuration).

The real-time class maintains an in-core table, with an entry for each priority
level, giving the properties of that level. This table is called the real-time
dispatcher parameter table (rt_dptbl). The rt_dptbl consists of an array
(config_rt_dptbl[]) of parameter structures (struct rtdpent_t),
one for each of the n priority levels. The structure are accessed via a pointer,
(rt_dptbl), to the array. The properties of a given priority level i are specified
by the ith parameter structure in this array (rt_dptbl[i]).

A parameter structure consists of the following members. These are also
described in the /usr/include/sys/rt.h header file.
rt_globpri The global scheduling priority associated with this priority

level. The rt_globpri values cannot be changed with
dispadmin (1M).

rt_quantum The length of the time quantum allocated to processes at this
level in ticks (Hz). The time quantum value is only a default
or starting value for processes at a particular level as the time
quantum of a real-time process can be changed by the user
with the priocntl command or the priocntl system call.

An administrator can affect the behavior of the real-time portion of the scheduler
by reconfiguring the rt_dptbl . There are two methods available for doing this:
reconfigure with a loadable module at boot-time or by using dispadmin (1M)
at run-time.

RT_DPTBL
LOADABLE

MODULE

The rt_dptbl can be reconfigured with a loadable module which contains
a new real time dispatch table. The module containing the dispatch table is
separate from the RT loadable module which contains the rest of the real time
software. This is the only method that can be used to change the number of real
time priority levels or the set of global scheduling priorities used by the real time

Last modified 23 Sep 1991 SunOS 5.8 393

rt_dptbl(4) File Formats

class. The relevant procedure and source code is described in the REPLACING
THE RT_DPTBL LOADABLE MODULEsection.

DISPADMIN
CONFIGURATION

FILE

The rt_quantum values in the rt_dptbl can be examined and modified on a
running system using the dispadmin (1M) command. Invoking dispadmin for
the real-time class allows the administrator to retrieve the current rt_dptbl
configuration from the kernel’s in-core table, or overwrite the in-core table
with values from a configuration file. The configuration file used for input to
dispadmin must conform to the specific format described below.

Blank lines are ignored and any part of a line to the right of a # symbol is
treated as a comment. The first non-blank, non-comment line must indicate the
resolution to be used for interpreting the time quantum values. The resolution
is specified as

RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the
resolution used is the reciprocal of res in seconds. (For example, RES=1000
specifies millisecond resolution.) Although very fine (nanosecond) resolution
may be specified, the time quantum lengths are rounded up to the next integral
multiple of the system clock’s resolution.

The remaining lines in the file are used to specify the rt_quantum values for
each of the real-time priority levels. The first line specifies the quantum for
real-time level 0, the second line specifies the quantum for real-time level 1, etc.
There must be exactly one line for each configured real-time priority level. Each
rt_quantum entry must be either a positive integer specifying the desired time
quantum (in the resolution given by res), or the value -2 indicating an infinite
time quantum for that level.

EXAMPLES EXAMPLE 1 A sample dispadmin configuration file.

The following excerpt from a dispadmin configuration file illustrates the
format. Note that for each line specifying a time quantum there is a comment
indicating the corresponding priority level. These level numbers indicate
priority within the real-time class, and the mapping between these real-time
priorities and the corresponding global scheduling priorities is determined
by the configuration specified in the RT_DPTBLloadable module. The level
numbers are strictly for the convenience of the administrator reading the file and,
as with any comment, they are ignored by dispadmin on input. dispadmin
assumes that the lines in the file are ordered by consecutive, increasing priority
level (from 0 to the maximum configured real-time priority). The level numbers
in the comments should normally agree with this ordering; if for some reason
they don’t, however, dispadmin is unaffected.

394 SunOS 5.8 Last modified 23 Sep 1991

File Formats rt_dptbl(4)

Real-Time Dispatcher Configuration File
RES=1000

TIME QUANTUM PRIORITY

(rt_quantum) LEVEL

100 # 0

100 # 1

100 # 2

100 # 3

100 # 4

100 # 5

90 # 6

90 # 7

. . .

. . .

. . .

10 # 58

10 # 59

REPLACING
THE RT_DPTBL

LOADABLE
MODULE

In order to change the size of the real time dispatch table, the loadable module
which contains the dispatch table information will have to be built. It is
recommended that you save the existing module before using the following
procedure.

1. Place the dispatch table code shown below in a file called rt_dptbl.c An
example of an rt_dptbl.c file follows.

2. Compile the code using the given compilation and link lines supplied.

cc −c −0 −D_KERNEL rt_dptbl.c
ld −r −o RT_DPTBL rt_dptbl.o

3. Copy the current dispatch table in /usr/kernel/sched to
RT_DPTBL.bak .

4. Replace the current RT_DPTBLin /usr/kernel/sched .

5. You will have to make changes in the /etc/system file to reflect the
changes to the sizes of the tables. See system (4). The rt_maxpri variable
may need changing. The syntax for setting this is:

Last modified 23 Sep 1991 SunOS 5.8 395

rt_dptbl(4) File Formats

set RT:rt_maxpri=(class-specific value for maximum
real-time priority)

6. Reboot the system to use the new dispatch table.

NOTE: Great care should be used in replacing the dispatch
table using this method. If you don’t get it right, the
system may not behave properly.

The following is an example of a rt_dptbl.c file used for building the new
rt_dptbl .

/* BEGIN rt_dptbl.c */
#include <sys/proc.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>
#include <sys/rt.h>
#include <sys/rtpriocntl.h>
/*

* This is the loadable module wrapper.
*/

#include <sys/modctl.h>
extern struct mod_ops mod_miscops;
/*

* Module linkage information for the kernel.
*/

static struct modlmisc modlmisc = {
&mod_miscops, "realtime dispatch table"

};
static struct modlinkage modlinkage = {

MODREV_1, &modlmisc, 0
};
_init()
{

return (mod_install(&modlinkage));
}
_info (struct modinfo *modinfop)
{

return (mod_info(&modlinkage, modinfop));
}
rtdpent_t config_rt_dptbl[] = {

/* prilevel Time quantum */

100, 100,

101, 100,

102, 100,

103, 100,

104, 100,

396 SunOS 5.8 Last modified 23 Sep 1991

File Formats rt_dptbl(4)

105, 100,

106, 100,

107, 100,

108, 100,

109, 100,

110, 80,

111, 80,

112, 80,

113, 80,

114, 80,

115, 80,

116, 80,

117, 80,

118, 80,

119, 80,

120, 60,

121, 60,

122, 60,

123, 60,

124, 60,

125, 60,

126, 60,

127, 60,

128, 60,

129, 60,

130, 40,

131, 40,

132, 40,

133, 40,

134, 40,

135, 40,

Last modified 23 Sep 1991 SunOS 5.8 397

rt_dptbl(4) File Formats

136, 40,

137, 40,

138, 40,

139, 40,

140, 20,

141, 20,

142, 20,

143, 20,

144, 20,

145, 20,

146, 20,

147, 20,

148, 20,

149, 20,

150, 10,

151, 10,

152, 10,

153, 10,

154, 10,

155, 10,

156, 10,

157, 10,

158, 10,

159, 10,

};
/*

* Return the address of config_rt_dptbl
*/ rtdpent_t *

rt_getdptbl()
{

return (config_rt_dptbl);
}

FILES <sys/rt.h>

398 SunOS 5.8 Last modified 23 Sep 1991

File Formats rt_dptbl(4)

SEE ALSO priocntl (1), dispadmin (1M), priocntl (2), system (4)

System Administration Guide, Volume 1

System Interface Guide

Last modified 23 Sep 1991 SunOS 5.8 399

sbus(4) File Formats

NAME sbus – configuration files for SBus device drivers

DESCRIPTION The SBus is a geographically addressed peripheral bus present on many SPARC
hardware platforms. SBus devices are self-identifying — that is to say the SBus
card itself provides information to the system so that it can identify the device
driver that needs to be used. The device usually provides additional information
to the system in the form of name-value pairs that can be retrieved using the DDI
property interfaces. See ddi_prop_op (9F) for details.

The information is usually derived from a small Forth program stored in the
FCode PROM on the card, so driver configuration files should be completely
unnecessary for these devices. However, on some occasions, drivers for SBus
devices may need to use driver configuration files to augment the information
provided by the SBus card. See driver.conf (4) for further details.

When they are needed, configuration files for SBus device drivers should
identify the parent bus driver implicitly using the class keyword. This removes
the dependency on the particular bus driver involved since this may be named
differently on different platforms.

All bus drivers of class sbus recognise the following properties:
reg An arbitrary length array where each element of the array

consists of a 3-tuple of integers. Each array element describes
a logically contiguous mappable resource on the SBus.

The first integer of each tuple specifies the slot number the
card is plugged into. The second integer of each 3-tuple
specifies the offset in the slot address space identified by the
first element. The third integer of each 3-tuple specifies the
size in bytes of the mappable resource.

The driver can refer to the elements of this array by index,
and construct kernel mappings to these addresses using
ddi_map_regs (9F). The index into the array is passed as
the rnumber argument of ddi_map_regs() .

You can use the ddi_get* and ddi_put* family of
functions to access register space from a high-level interrupt
context.

interrupts An arbitrary length array where each element of the array
consists of a single integer. Each array element describes a
possible SBus interrupt level that the device might generate.

The driver can refer to the elements of this array by index,
and register interrupt handlers with the system using
ddi_add_intr (9F). The index into the array is passed as
the inumber argument of ddi_add_intr() .

400 SunOS 5.8 Last modified 31 Dec 1996

File Formats sbus(4)

registers An arbitrary length array where each element of the array
consists of a 3-tuple of integers. Each array element describes
a logically contiguous mappable resource on the SBus.

The first integer of each tuple should be set to −1, specifying
that any SBus slot may be matched. The second integer of
each 3-tuple specifies the offset in the slot address space
identified by the first element. The third integer of each
3-tuple specifies the size in bytes of the mappable resoure.

The registers property can only be used to augment an
incompletely specified reg property with information from
a driver configuration file. It may only be specified in a
driver configuration file.

All SBus devices must provide reg properties to the system. The first two
integer elements of the reg property are used to construct the address part of
the device name under /devices .

Only devices that generate interrupts need to provide interrupts properties.

Occasionally, it may be necessary to override or augment the configuration
information supplied by the SBus device. This can be achieved by writing a
driver configuration file that describes a prototype device information (devinfo)
node specification, containing the additional properties required.

For the system to merge the information, certain conditions must be met. First,
the name property must be the same. Second, either the first two integers (slot
number and offset) of the two reg properties must be the same, or the second
integer (offset) of the reg and registers properties must be the same.

In the event that the SBus card has no reg property at all, the self-identifying
information cannot be used, so all the details of the card must be specified in
a driver configuration file.

EXAMPLES EXAMPLE 1 A sample configuration file.

Here is a configuration file for an SBus card called SUNW,netboard . The card
already has a simple FCode PROM that creates name and reg properties, and
will have a complete set of properties for normal use once the driver and
firmware is complete.

In this example, we want to augment the properties given to us by the firmware.
We use the same name property, and use the registers property to match
the firmware reg property. That way we don’t have to worry about which
slot the card is really plugged into.

We want to add an interrupts property while we are developing the firmware
and driver so that we can start to experiment with interrupts. The device can

Last modified 31 Dec 1996 SunOS 5.8 401

sbus(4) File Formats

generate interrupts at SBus level 3. Additionally, we want to set a debug-level
property to 4.

#
Copyright (c) 1992, by Sun Microsystems, Inc.
#ident "@(#)SUNW,netboard.conf 1.4 92/03/10 SMI"
#
name="SUNW,netboard" class="sbus"

registers=-1,0x40000,64,-1,0x80000,1024
interrupts=3 debug-level=4;

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

SEE ALSO driver.conf (4), attributes (5), ddi_add_intr (9F), ddi_map_regs (9F),
ddi_prop_op (9F)

Writing Device Drivers

WARNINGS The wildcarding mechanism of the registers property matches every instance
of the particular device attached to the system. This may not always be what
is wanted.

402 SunOS 5.8 Last modified 31 Dec 1996

File Formats sccsfile(4)

NAME sccsfile – format of an SCCS history file

DESCRIPTION An SCCS file is an ASCII file consisting of six logical parts:
checksum character count used for error detection

delta table log containing version info and statistics about each delta

usernames login names and/or group IDs of users who may add deltas

flags definitions of internal keywords

comments arbitrary descriptive information about the file

body the actual text lines intermixed with control lines

Each section is described in detail below.
Conventions Throughout an SCCS file there are lines which begin with the ASCII SOH (start

of heading) character (octal 001). This character is hereafter referred to as the
control character, and will be represented as ‘^A’. If a line described below is
not depicted as beginning with the control character, it cannot do so and still
be within SCCS file format.

Entries of the form ddddd represent a five digit string (a number between 00000
and 99999).

Checksum The checksum is the first line of an SCCS file. The form of the line is:

^A hddddd

The value of the checksum is the sum of all characters, except those contained in
the first line. The ^Ah provides a magic number of (octal) 064001.

Delta Table The delta table consists of a variable number of entries of the form:

^As inserted / deleted / unchanged

^Ad type sid yr / mo / da hr : mi : se username serial-number predecessor-sn

^Ai include-list

^Ax exclude-list

^Ag ignored-list

^Am mr-number

. . .

^Ac comments . . .
. . .

Last modified 5 Oct 1990 SunOS 5.8 403

sccsfile(4) File Formats

^Ae

The first line (^As) contains the number of lines inserted/deleted/unchanged
respectively. The second line (^Ad) contains the type of the delta (normal: D,
and removed: R), the SCCS ID of the delta, the date and time of creation of the
delta, the user-name corresponding to the real user ID at the time the delta was
created, and the serial numbers of the delta and its predecessor, respectively.
The ^Ai , ^Ax , and ^Ag lines contain the serial numbers of deltas included,
excluded, and ignored, respectively. These lines do not always appear.

The ^Amlines (optional) each contain one MR number associated with the delta;
the ^Ac lines contain comments associated with the delta.

The ^Ae line ends the delta table entry.

User Names The list of user-names and/or numerical group IDs of users who may add deltas
to the file, separated by NEWLINE characters. The lines containing these login
names and/or numerical group IDs are surrounded by the bracketing lines ^Au
and ^AU. An empty list allows anyone to make a delta.

Flags Flags are keywords that are used internally (see sccs-admin (1) for more
information on their use). Each flag line takes the form:

^Af flag
optional text

The following flags are defined in order of appearance:
^Af t type-of-program

Defines the replacement for the 17:21:50 ID keyword.

^Af v program-name
Controls prompting for MR numbers in addition to comments; if the
optional text is present it defines an MR number validity checking program.

^Af i
Indicates that the ‘No id keywords ’ message is to generate an error that
terminates the SCCS command. Otherwise, the message is treated as a
warning only.

^Af b
Indicates that the −b option may be used with the SCCS get command
to create a branch in the delta tree.

^Af m module name
Defines the first choice for the replacement text of the sccsfile.4 ID
keyword.

404 SunOS 5.8 Last modified 5 Oct 1990

File Formats sccsfile(4)

^Af f floor
Defines the “floor” release; the release below which no deltas may be added.

^Af c ceiling
Defines the “ceiling” release; the release above which no deltas may be
added.

^Af d default-sid
The d flag defines the default SID to be used when none is specified on
an SCCS get command.

^Af n
The n flag enables the SCCS delta command to insert a “null” delta (a
delta that applies no changes) in those releases that are skipped when a delta
is made in a new release (for example, when delta 5.1 is made after delta
2.7, releases 3 and 4 are skipped).

^Af j
Enables the SCCS get command to allow concurrent edits of the same
base SID.

^Af l lock-releases
Defines a list of releases that are locked against editing.

^Af q user defined
Defines the replacement for the ID keyword.

^Af e 0|1
The e flag indicates whether a source file is encoded or not. A 1 indicates
that the file is encoded. Source files need to be encoded when they contain
control characters, or when they do not end with a NEWLINE. The e flag
allows files that contain binary data to be checked in.

Comments Arbitrary text surrounded by the bracketing lines ^At and ^AT. The comments
section typically will contain a description of the file’s purpose.

Body The body consists of text lines and control lines. Text lines do not begin with
the control character, control lines do. There are three kinds of control lines:
insert, delete, and end, represented by:

^AI ddddd
^AD ddddd
^AE ddddd

respectively. The digit string is the serial number corresponding to the delta
for the control line.

Last modified 5 Oct 1990 SunOS 5.8 405

sccsfile(4) File Formats

SEE ALSO sccs-admin (1), sccs-cdc (1), sccs-comb (1), sccs-delta (1), sccs-get (1),
sccs-help (1), sccs-prs (1), sccs-prt (1), sccs-rmdel (1), sccs-sact (1),
sccs-sccsdiff (1), sccs-unget (1), sccs-val (1), sccs (1), what (1)

406 SunOS 5.8 Last modified 5 Oct 1990

File Formats scsi(4)

NAME scsi – configuration files for SCSI target drivers

DESCRIPTION The architecture of the Solaris SCSI subsystem distinguishes two types of device
drivers: SCSI target drivers, and SCSI host adapter drivers. Target drivers like
sd (7D) and st (7D) manage the device on the other end of the SCSI bus. Host
adapter drivers manage the SCSI bus on behalf of all the devices that share it.

Drivers for host adapters provide a common set of interfaces for target drivers.
These interfaces comprise the Sun Common SCSI Architecture (SCSA) which
are documented as part of the Solaris DDI/DKI. See scsi_ifgetcap (9F),
scsi_init_pkt (9F), and scsi_transport (9F) for further details of these,
and associated routines.

Target drivers for SCSI devices should use a driver configuration file to enable
them to be recognized by the system.

Configuration files for SCSI target drivers should identify the host adapter
driver implicitly using the class keyword to remove any dependency on the
particular host adapter involved.

All host adapter drivers of class scsi recognize the following properties:
target Integer-valued SCSI target identifier that this driver will

claim.

lun Integer-valued SCSI logical unit number (LUN) that this
driver will claim.

All SCSI target drivers must provide target and lun properties. These
properties are used to construct the address part of the device name under
/devices .

The SCSI target driver configuration files shipped with Solaris have entries for
LUN 0 only. For devices that support other LUNs, such as some CD changers,
the system administrator may edit the driver configuration file to add entries
for other LUNs.

EXAMPLES EXAMPLE 1 A sample configuration file.

Here is a configuration file for a SCSI target driver called toaster.conf .

#
Copyright (c) 1992, by Sun Microsystems, Inc.
#
#ident "@(#)toaster.conf 1.2 92/05/12 SMI"
name="toaster" class="scsi" target=4 lun=0;

Add the following lines to sd.conf for a six- CD changer on target 3 , with
LUNs 0 to 5.

name="sd" class="scsi" target=3 lun=1;
name="sd" class="scsi" target=3 lun=2;

Last modified 31 Jan 1995 SunOS 5.8 407

scsi(4) File Formats

name="sd" class="scsi" target=3 lun=3;
name="sd" class="scsi" target=3 lun=4;
name="sd" class="scsi" target=3 lun=5;

It is not necessary to add the line for LUN 0, as it already exists in the file
shipped with Solaris.

SEE ALSO driver.conf (4), sd (7D), st (7D), scsi_ifgetcap (9F), scsi_init_pkt (9F),
scsi_transport (9F)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2)

NOTES You need to ensure that the target and lun values claimed by your target
driver do not conflict with existing target drivers on the system. For example, if
the target is a direct access device, the standard sd.conf file will usually make
sd claim it before any other driver has a chance to probe it.

408 SunOS 5.8 Last modified 31 Jan 1995

File Formats securenets(4)

NAME securenets – configuration file for NIS security

SYNOPSIS /var/yp/securenets

DESCRIPTION The /var/yp/securenets file defines the networks or hosts which are
allowed access to information by the Network Information Service (“NIS”).

The format of the file is as follows:

� Lines beginning with the “#” character are treated as comments.

� Otherwise, each line contains two fields separated by white space. The first
field is a netmask, the second a network.

� The netmask field may be either 255.255.255.255 (IPv4),
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (IPv6) , or the string
“host” indicating that the second field is a specific host to be allowed access.

Both ypserv (1M) and ypxfrd (1M) use the /var/yp/securenets file.
The file is read when the ypserv (1M) and ypxfrd (1M) daemons begin.
If /var/yp/securenets is present, ypserv (1M) and ypxfrd (1M)
respond only to IP addresses in the range given. In order for a change in the
/var/yp/securenets file to take effect, you must kill and restart any active
daemons using ypstop (1M) and ypstart (1M).

EXAMPLES EXAMPLE 1 Access for Individual Entries

If individual machines are to be give access, the entry could be:
255.255.255.255 192.9.1.20

or
host 192.0.1.20

EXAMPLE 2 Access for a Class C Network

If access is to be given to an entire class C network, the entry could be:
255.255.255.0 192.9.1.0

EXAMPLE 3 Access for a Class B Network

The entry for access to a class B network could be:
255.255.0.0 9.9.0.0

EXAMPLE 4 Access for an Invidual IPv6 Address

Similarly, to allow access for an individual IPv6 address:
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff fec0::111:abba:ace0:fba5e:1

or
host fec0::111:abba:ace0:fba5e:1

Last modified 26 Apr 1999 SunOS 5.8 409

securenets(4) File Formats

EXAMPLE 5 Access for all IPv6 Addresses Starting with fe80

To allow access for all IPv6 addresses starting with fe80:
ffff:: fe80::

FILES /var/yp/securenets Configuration file for NIS security.

SEE ALSO ypserv (1M), ypstart (1M), ypstop (1M), ypxfrd (1M)

NOTES The Network Information Service (NIS) was formerly known as Sun Yellow
Pages (YP). The functionality of the two remains the same; only the name has
changed. The name Yellow Pages is a registered trademark in the United
Kingdom of British Telecommunications plc, and may not be used without
permission.

410 SunOS 5.8 Last modified 26 Apr 1999

File Formats services(4)

NAME services – Internet services and aliases

SYNOPSIS /etc/inet/services

/etc/services

DESCRIPTION The services file is a local source of information regarding each service
available through the Internet. The services file can be used in conjunction with
or instead of other services sources, including the NIS maps “services.byname”
and the NIS+ table “services.“ Programs use the getservbyname (3SOCKET)
routines to access this information.

The services file contains an entry for each service. Each entry has the form:

service-name port/ protocol aliases

service-name This is the official Internet service name.

port / protocol This field is composed of the port number and
protocol through which the service is provided
(for instance, 512/tcp).

aliases This is a list of alternate names by which the
service might be requested.

Fields can be separated by any number of SPACE and/or TAB characters. A ‘#’
(number sign) indicates the beginning of a comment; characters up to the end of
the line are not interpreted by routines which search the file.

Service names may contain any printable character other than a field delimiter,
NEWLINE, or comment character.

FILES /etc/nsswitch.conf configuration file for name-service switch

SEE ALSO getservbyname (3SOCKET), inetd.conf (4), nsswitch.conf (4)

NOTES /etc/inet/services is the official SVR4 name of the services file. The
symbolic link /etc/services exists for BSD compatibility.

Last modified 22 Feb 1994 SunOS 5.8 411

shadow(4) File Formats

NAME shadow – shadow password file

DESCRIPTION /etc/shadow is an access-restricted ASCII system file that stores users’
encrypted passwords and related information. The shadow file can be
used in conjunction with other shadow sources, including the NIS maps
passwd.byname and passwd.byuid and the NIS+ table passwd . Programs
use the getspnam (3C) routines to access this information.

The fields for each user entry are separated by colons. Each user is separated
from the next by a newline. Unlike the /etc/passwd file, /etc/shadow does
not have general read permission.

Each entry in the shadow file has the form:

username: password: lastchg: min: max: warn: inactive: expire: flag

The fields are defined as follows:
username The user’s login name (UID).

password A 13-character encrypted password for the user, a lock string
to indicate that the login is not accessible, or no string, which
shows that there is no password for the login.

lastchg The number of days between January 1, 1970, and the date
that the password was last modified.

min The minimum number of days required between password
changes.

max The maximum number of days the password is valid.

warn The number of days before password expires that the user
is warned.

inactive The number of days of inactivity allowed for that user.

expire An absolute date specifying when the login may no longer
be used.

flag Reserved for future use, set to zero. Currently not used.

The encrypted password consists of 13 characters chosen from a 64-character
alphabet (. , / , 0−9, A−Z, a−z). To update this file, use the passwd (1),
useradd (1M), usermod (1M), or userdel (1M) commands.

In order to make system administration manageable, /etc/shadow entries
should appear in exactly the same order as /etc/passwd entries; this includes
“+” and “-” entries if the compat source is being used (see nsswitch.conf (4)).

412 SunOS 5.8 Last modified 10 Dec 1991

File Formats shadow(4)

FILES /etc/shadow shadow password file

/etc/passwd password file

/etc/nsswitch.conf name-service switch configuration file

SEE ALSO login (1), passwd (1), useradd (1M), userdel (1M), usermod (1M),
getspnam (3C), putspent (3C), nsswitch.conf (4), passwd (4)

NOTES If password aging is turned on in any name service the passwd: line in
the /etc/nsswitch.conf file must have a format specified in the
nsswitch.conf (4) man page.

If the /etc/nsswitch.conf passwd policy is not in one of the supported
formats, logins will not be allowed upon password expiration because the
software does not know how to handle password updates under these
conditions. See nsswitch.conf (4) for additional information.

Last modified 10 Dec 1991 SunOS 5.8 413

sharetab(4) File Formats

NAME sharetab – shared file system table

DESCRIPTION sharetab resides in directory /etc/dfs and contains a table of local resources
shared by the share command.

Each line of the file consists of the following fields:

pathname resource fstype specific_options description

where
pathname Indicate the path name of the shared resource.

resource Indicate the symbolic name by which remote
systems can access the resource.

fstype Indicate the file system type of the shared
resource.

specific_options Indicate file-system-type-specific options that
were given to the share command when the
resource was shared.

description Describe the shared resource provided by the
system administrator when the resource was
shared.

SEE ALSO share (1M)

414 SunOS 5.8 Last modified 3 Jul 1990

File Formats shells(4)

NAME shells – shell database

SYNOPSIS /etc/shells

DESCRIPTION The shells file contains a list of the shells on the system. Applications use this
file to determine whether a shell is valid. See getusershell (3C). For each shell
a single line should be present, consisting of the shell’s path, relative to root.

A hash mark (#) indicates the beginning of a comment; subsequent characters up
to the end of the line are not interpreted by the routines which search the file.
Blank lines are also ignored.

The following default shells are used by utilities: /bin/bash , /bin/csh ,
/bin/jsh , /bin/ksh , /bin/pfcsh , /bin/pfksh , /bin/pfsh , /bin/sh ,
/bin/tcsh , /bin/zsh , /sbin/jsh , /sbin/sh , /usr/bin/bash ,
/usr/bin/csh , /usr/bin/jsh , /usr/bin/ksh , /usr/bin/pfcsh ,
/usr/bin/pfksh , /usr/bin/pfsh , and /usr/bin/sh , /usr/bin/tcsh ,
/usr/bin/zsh .

FILES /etc/shells lists shells on system

SEE ALSO vipw (1B), ftpd (1M), sendmail (1M), getusershell (3C), aliases (4)

Last modified 22 Oct 1999 SunOS 5.8 415

slp.conf(4) File Formats

NAME slp.conf – configuration file for Service Location Protocol agents

SYNOPSIS /etc/inet/slp.conf

DESCRIPTION slp.conf provides all Service Location Protocol (“SLP”) agents with their
operational configuration. slpd (1M) reads slp.conf on startup. Service
Agents (“SAs”) and User Agents (“UAs”) read slp.conf on invocation of
the SA and UA library routines; configuration parameters are then cached on
a per-process basis. All SA’s must use the same set of properties as slpd on
the local machine, since slpd acts as an SA server.

The configuration file format consists of a newline-delimited list of zero or
more property definitions. Each property definition corresponds to a particular
configurable SLP, network, or other parameter in one or more of the three SLP
agents. The file format grammar is shown in RFC 2234 as follows:

config-file = line-list
line-list = line / line line-list
line = property-line / comment-line
comment-line = ("#" / ";") 1*allchar newline
property-line = property newline
property = tag "=" value-list
tag = prop / prop "." tag
prop = 1*tagchar
value-list = value / value "," value-list
value = int / bool /

"(" value-list ")" / string
int = 1*DIGIT
bool = "true" / "false" / "TRUE" / "FALSE"
newline = CR / (CRLF)
string = 1*stringchar
tagchar = DIGIT / ALPHA / tother / escape
tother = %x21-%x2d / %x2f /

%x3a / %x3c-%x40 /
%x5b-%x60 / %7b-%7e
; i.e., all characters except ‘.’,
; and ‘=’.

stringchar = DIGIT / ALPHA / sother / escape
sother = %x21-%x29 / %x2a-%x2b /

%x2d-%x2f / %x3a-%x40 /
%x5b-%x60 / %7b-%7e
; i.e., all characters except ‘,’

allchar = DIGIT / ALPHA / HTAB / SP
escape = "\" HEXDIG HEXDIG

; Used for reserved characters

The properties fall into one of the following categories:

� DA Configuration

416 SunOS 5.8 Last modified 17 Nov 1999

File Formats slp.conf(4)

� Static Scope Configuration

� Tracing and Logging

� Serialized Proxy Registrations

� Networking Configuration Parameters

� UA Configuration

DA Configuration The following are configuration properties and their parameters for DAs:
net.slp.isDA

Setting Type Boolean

Default Value False

Range of Values True or False

A boolean that indicates whether slpd (1M) is to act as a DA. If False ,
slpd (1M) is not run as a DA.

net.slp.DAHeartBeat

Setting Type Integer

Default Value 10800 seconds (3 hours)

Range of Values 2000 – 259200000 seconds

A 32–bit integer giving the number of seconds for the passive DA
advertisement heartbeat. The default value is 10800 seconds. This property
is ignored if net.slp.isDA is False .

net.slp.DAAttributes

Setting Type List of Strings

Default Value Unassigned

Range of Values List of Attribute Tag/Value List Pairs

A comma-separated list of parenthesized attribute tag/value list pairs that
the DA must advertise in DA advertisements. The property must be in
the SLP attribute list wire format, which requires that you use a backslash
(“\”) to escape reserved characters. See RFC 2608 for more information on
reserved characters, or refer to the Service Location Protocol Administration
Guide.

Last modified 17 Nov 1999 SunOS 5.8 417

slp.conf(4) File Formats

Static Scope
Configuration

The following properties and their parameters allow you to configure various
aspects of scope and DA handling:
net.slp.useScopes

Setting Type List of Strings

Default Value Default , for SA and DA; unassigned for UA.

Range of Values List of Strings

A list of strings indicating either the scopes that a UA or an SA is allowed to
use when making requests, or the scopes a DA must support. If not present
for the DA and SA, the default scope Default is used. If not present for the
UA, then the user scoping model is in force, in which active and passive
DA or SA discovery are used for scope discovery. The scope Default
is used if no other information is available. If a DA or SA gets another
scope in a request, a SCOPE_NOT_SUPPORTEDerror is returned, unless the
request was multicast, in which case it is dropped. If a DA receives another
scope in a registration, a SCOPE_NOT_SUPPORTEDerror will be returned.
Unlike other properties, this property is "read-only", so attempts to change it
programmatically after the configuration file has been read are ignored.

net.slp.DAAddresses

Setting Type List of Strings

Default Value Unassigned

Range of Values IPv4 addresses or host names

A list of IP addresses or DNS-resolvable names that denote the DAs to use
for statically configured UAs and SAs. The property is read by slpd (1M),
and registrations are forwarded to the DAs. The DAs are provided to UAs
upon request. Unlike other properties, this property is "read-only", so
attempts to change it after the configuration file has been read are ignored.

The following grammar describes the property:

addr-list = addr / addr "," addr-list
addr = fqdn / hostnumber
fqdn = ALPHA / ALPHA *[anum / "-"] anum
anum = ALPHA / DIGIT
hostnumber = 1*3DIGIT 3("." 1*3DIGIT)

The following is an example using this grammar:

sawah,mandi,sambal

418 SunOS 5.8 Last modified 17 Nov 1999

File Formats slp.conf(4)

IP addresses can be used instead of host names in networks where DNS
is not deployed, but network administrators are reminded that using IP
addresses will complicate machine renumbering, since the SLP configuration
property files in statically configured networks will have to be changed.

Tracing and Logging These properties direct tracing and logging information to be sent to syslogd at
the LOG_INFOpriority. These properties affect slpd (1M) only.
net.slp.traceDATraffic

Setting Type Boolean

Default Value False

Range of Values True or False

Set net.slp.traceDATraffic to True to enable logging of DA traffic
by slpd .

net.slp.traceMsg

Setting Type Boolean

Default Value False

Range of Values True or False

Set net.slp.traceMsg to True to display details about SLP messages.
The fields in all incoming messages and outgoing replies are printed by
slpd .

net.slp.traceDrop

Setting Type Boolean

Default Value False

Range of Values True or False

Set this property to True to display details when an SLPmessage is dropped
by slpd for any reason.

net.slp.traceReg

Setting Type Boolean

Default Value False

Range of Values True or False

Last modified 17 Nov 1999 SunOS 5.8 419

slp.conf(4) File Formats

Set this property to True to display the table of service advertisements
when a registration or deregistration is processed by slpd .

Serialized Proxy
Registrations

The following properties control reading and writing serialized registrations.
net.slp.serializedRegURL

Setting Type String

Default Value Unassigned

Range of Values Valid URL

A string containing a URL pointing to a document, which contains serialized
registrations that should be processed when the slpd starts up.

Networking
Configuration

Parameters

The properties that follow allow you to set various network configuration
parameters:
net.slp.isBroadcastOnly

Setting Type Boolean

Default Value False

Range of Values True or False

A boolean that indicates if broadcast should be used instead of multicast.

net.slp.multicastTTL

Setting Type Positive Integer

Default Value 255

Range of Values A positive integer from 1 to 255.

A positive integer less than or equal to 255 that defines the multicast TTL.

net.slp.DAActiveDiscoveryInterval

Setting Type Integer

Default Value 900 seconds (15 minutes)

Range of Values From 300 to 10800 seconds

A 16–bit positive integer giving the number of seconds between DA active
discovery queries. The default value is 900 seconds (15 minutes). If the

420 SunOS 5.8 Last modified 17 Nov 1999

File Formats slp.conf(4)

property is set to zero, active discovery is turned off. This is useful when
the DAs available are explicitly restricted to those obtained from the
net.slp.DAAddresses property.

net.slp.multicastMaximumWait

Setting Type Integer

Default Value 15000 milliseconds (15 seconds)

Range of Values 1000 to 60000 milliseconds

A 32–bit integer giving the maximum value for the sum
of the net.slp.multicastTimeouts values and
net.slp.DADiscoveryTimeouts values in milliseconds.

net.slp.multicastTimeouts

Setting Type List of Integers

Default Value 3000,3000,3000,3000

Range of Values List of Positive Integers

A list of 32–bit integers used as timeouts, in milliseconds, to implement the
multicast convergence algorithm. Each value specifies the time to wait
before sending the next request, or until nothing new has been learned
from two successive requests. In a fast network the aggressive values of
1000,1250,1500,2000,4000 allow better performance. The sum of the
list must equal net.slp.multicastMaximumWait .

net.slp.passiveDADetection

Setting Type Boolean

Default Value True

Range of Values True or False

A boolean indicating whether slpd should perform passive DA detection.

net.slp.DADiscoveryTimeouts

Setting Type List of Integers.

Default Value 2000,2000,2000,2000,3000,4000

Range of Values List of Positive Integers

Last modified 17 Nov 1999 SunOS 5.8 421

slp.conf(4) File Formats

A list of 32–bit integers used as timeouts, in milliseconds, to implement the
multicast convergence algorithm during active DA discovery. Each value
specifies the time to wait before sending the next request, or until nothing
new has been learned from two successive requests. The sum of the list
must equal net.slp.multicastMaximumWait .

net.slp.datagramTimeouts

Setting Type List of Integers

Default Value 3000,3000,3000

Range of Values List of Positive Integers

A list of 32–bit integers used as timeouts, in milliseconds, to implement
unicast datagram transmission to DAs. The nth value gives the time to block
waiting for a reply on the nth try to contact the DA.

net.slp.randomWaitBound

Setting Type Integer

Default Value 1000 milliseconds (1 second)

Range of Values 1000 to 3000 milliseconds

Sets the upper bound for calculating the random wait time before
attempting to contact a DA.

net.slp.MTU

Setting Type Integer

Default Value 1400

Range of Values 128 to 8192

A 16–bit integer that specifies the network packet size, in bytes. The packet
size includes IP and TCP or UDP headers.

net.slp.interfaces

Setting Type List of Strings

Default Value Default interface

Range of Values IPv4 addresses or host names

List of strings giving the IP addresses or host names of the network interface
cards on which the DA or SA should listen on port 427 for multicast, unicast

422 SunOS 5.8 Last modified 17 Nov 1999

File Formats slp.conf(4)

UDP, and TCP messages. The default value is unassigned, indicating that
the default network interface card should be used. An example is:

195.42.42.42,195.42.142.1,195.42.120.1

The example machine has three interfaces on which the DA should listen.
Note that if IP addresses are used, the property must be renumbered if
the network is renumbered.

UA Configuration The following configuration parameters apply to the UA:
net.slp.locale

Setting Type String

Default Value en

Range of Values See RFC 1766 for a list of the locale language
tag names.

A RFC 1766 Language Tag for the language locale. Setting this property
causes the property value to become the default locale for SLP messages.

net.slp.maxResults

Setting Type Integer

Default Value -1

Range of Values –1 , positive integer

A 32 bit-integer that specifies the maximum number of results to accumulate
and return for a synchronous request before the timeout, or the maximum
number of results to return through a callback if the request results are
reported asynchronously. Positive integers and -1 are legal values. If the
value of net.slp.maxResults is -1 , all results should be returned.

net.slp.typeHint

Setting Type List of Strings

Default Value Unassigned

Range of Values Service type names

A list of service type names. In the absence of any DAs, UAs perform SA
discovery to find scopes. If the net.slp.typeHint property is set, only
SA’s advertising types on the list respond. Note that UAs set this property

Last modified 17 Nov 1999 SunOS 5.8 423

slp.conf(4) File Formats

programmatically. It is not typically set in the configuration file. The default
is unassigned, meaning do not restrict the type.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpr

CSI Enabled

Interface Stability Standard

SEE ALSO slpd (1M), slpd.reg (4), slp_api (3SLP), slp (7P)

Service Location Protocol Administration Guide

Alvestrand, H., RFC 1766: Tags for the Identification of Languages, Network
Working Group, March 1995.

Crocker, D., Overell, P., RFC 2234, Augmented BNF for Syntax Specifications:
ABNF, The Internet Society, 1997.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

424 SunOS 5.8 Last modified 17 Nov 1999

File Formats slpd.reg(4)

NAME slpd.reg – serialized registration file for the service location protocol daemon
(slpd)

SYNOPSIS /etc/inet/slpd.reg

DESCRIPTION The serialized registration file contains a group of registrations that slpd (1M)
registers when it starts. These registrations are primarily for older service
programs that do not internally support SLP and cannot be converted. The
character format of the registration file is required to be ASCII. To use serialized
registrations, set the net.slp.serializedRegURL property in slp.conf (4)
to point at a valid slpd.reg file. The syntax of the serialized registration file, in
ABNFformat (see RFC 2234), is as follows:

ser-file = reg-list
reg-list = reg / reg reg-list
reg = creg / ser-reg
creg = comment-line ser-reg
comment-line = ("#" / ";") 1*allchar newline
ser-reg = url-props [slist] [attr-list] newline
url-props = surl "," lang "," ltime ["," type] newline
surl = ;The registration’s URL. See

; [8] for syntax.
lang = 1*8ALPHA ["-" 1*8ALPHA]

;RFC 1766 Language Tag see [6].
ltime = 1*5DIGIT

; A positive 16-bit integer
; giving the lifetime
; of the registration.

type = ; The service type name, see [7]
; and [8] for syntax.

slist = "scopes" "=" scope-list newline
scope-list = scope-name / scope-name "," scope-list
scope = ; See grammar of [7] for

; scope-name syntax.
attr-list = attr-def / attr-def attr-list
attr-def = (attr / keyword) newline
keyword = attr-id
attr = attr-id "=" attr-val-list
attr-id = ;Attribute id, see [7] for syntax.
attr-val-list = attr-val / attr-val "," attr-val-list
attr-val = ;Attribute value, see [7] for syntax
allchar = char / WSP
char = DIGIT / ALPHA / other
other = %x21-%x2f / %x3a-%x40 /

%x5b-%x60 / %7b-%7e
; All printable, nonwhitespace US-ASCII
; characters.

newline = CR / (CRLF)

The syntax for attributes and attribute values requires that you use a backslash to
escape special characters, in addition to non-ASCII characters, as specified in

Last modified 17 Nov 1999 SunOS 5.8 425

slpd.reg(4) File Formats

RFC 2608. The slpd command handles serialized registrations exactly as if
they were registered by an SA. In the url-props production, the type token is
optional. If the type token is present for a service: URL, a warning is signalled,
and the type name is ignored. If the maximum lifetime of 65535 seconds
is specified, the registration is taken to be permanent, and it is continually
refreshed by the DA or SA server until it exits.

Scopes can be included in a registration by including an attribute definition with
tag scopes followed by a comma-separated list of scope names immediately
after the url-props production. If the optional scope-list is present, the
registations are made in the indicated scopes; otherwise, they are registered
in the scopes with which the DA or SA server was configured through the
net.slp.useScopes property. If any conflicts occur between the scope list
and the net.slp.useScopes property, an error message is issued by way of
syslog (3C). Refer to information regarding LOG_INFOin syslog (3C).

Service advertisements are separated by a single blank line. Additionally, the file
must end with a single blank line.

EXAMPLES EXAMPLE 1 Using a Serialized Registration File

The following serialized registration file shows an instance of the service type
foo , with a lifetime of 65535 seconds, in the en locale, with scope somescope :

register foo
service:foo://fooserver/foopath,en,65535
scopes=somescope
description=bogus
security=kerberos_v5
location=headquarters

next registration...

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpr

CSI Enabled

Interface Stability Standard

SEE ALSO slpd (1M), slp_api (3SLP), syslog (3C), slp.conf (4), attributes (5)

Crocker, D. and Overell, P., RFC 2234, Augmented BNF for Syntax
Specifications: ABNF, The Internet Society, November 1997.

426 SunOS 5.8 Last modified 17 Nov 1999

File Formats slpd.reg(4)

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location
Protocol, Version 2, The Internet Society, June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

Last modified 17 Nov 1999 SunOS 5.8 427

sock2path(4) File Formats

NAME sock2path – file that maps sockets to transport providers

SYNOPSIS /etc/sock2path

DESCRIPTION The socket mapping file, /etc/sock2path , is a system file that contains the
mappings between the socket (3SOCKET) call parameters and the transport
provider driver. Its format is described on the soconfig (1M) manual page.

The init (1M) utility uses the soconfig utility with the sock2path file during
the booting sequence.

EXAMPLES EXAMPLE 1 A Sample sock2path File

The following is a sample sock2path file:

Family Type Protocol Path
2 2 0 /dev/tcp
2 2 6 /dev/tcp

26 2 0 /dev/tcp6
26 2 6 /dev/tcp6

2 1 0 /dev/udp
2 1 17 /dev/udp

26 1 0 /dev/udp6
26 1 17 /dev/udp6

1 2 0 /dev/ticotsord
1 6 0 /dev/ticotsord
1 1 0 /dev/ticlts

2 4 0 /dev/rawip
26 4 0 /dev/rawip6

24 4 0 /dev/rts

27 4 2 /dev/keysock

SEE ALSO soconfig (1M), socket (3SOCKET)

Network Interfaces Programmer’s Guide

428 SunOS 5.8 Last modified 10 Nov 1999

File Formats space(4)

NAME space – disk space requirement file

DESCRIPTION space is an ASCII file that gives information about disk space requirements for
the target environment. The space file defines space needed beyond what is
used by objects defined in the prototype (4) file; for example, files which will
be installed with the installf (1M) command. The space file should define
the maximum amount of additional space that a package will require.

The generic format of a line in this file is:

pathname blocks inodes

Definitions for the fields are as follows:
pathname Specify a directory name which may or may not be the

mount point for a filesystem. Names that do not begin with
a slash (’/ ’) indicate relocatable directories.

blocks Define the number of disk blocks required for installation
of the files and directory entries contained in the pathname
(using a 512-byte block size).

inodes Define the number of inodes required for installation of the
files and directory entries contained in the pathname.

EXAMPLES EXAMPLE 1 A sample file.
extra space required by config data which is
dynamically loaded onto the system
data 500 1

SEE ALSO installf (1M), prototype (4)

Application Packaging Developer’s Guide

Last modified 7 Feb 1997 SunOS 5.8 429

sulog(4) File Formats

NAME sulog – su command log file

SYNOPSIS /var/adm/sulog

DESCRIPTION The sulog file is a record of all attempts by users on the system to execute
the su (1M) command. Each time su (1M) is executed, an entry is added to
the sulog file.

Each entry in the sulog file is a single line of the form:

SU date time
result port user- newuser

where
date The month and date su (1M) was executed. date is

displayed in the form mm/dd where mm is the month
number and dd is the day number in the month.

time The time su (1M) was executed. time is displayed in the
form HH/ MM where HH is the hour number (24 hour
system) and MM is the minute number.

result The result of the su (1M) command. A ‘ + ’ sign is displayed
in this field if the su attempt was successful; otherwise a ‘ -
’ sign is displayed.

port The name of the terminal device from which su (1M) was
executed.

user The user id of the user executing the su (1M) command.

newuser The user id being switched to with su (1M).

EXAMPLES EXAMPLE 1 A sample sulog file.

Here is a sample sulog file:

SU 02/25 09:29 + console root-sys
SU 02/25 09:32 + pts/3 user1-root
SU 03/02 08:03 + pts/5 user1-root
SU 03/03 08:19 + pts/5 user1-root
SU 03/09 14:24 - pts/5 guest3-root
SU 03/09 14:24 - pts/5 guest3-root
SU 03/14 08:31 + pts/4 user1-root

FILES /var/adm/sulog su log file

/etc/default/su contains the default location of sulog

430 SunOS 5.8 Last modified 6 Jun 1994

File Formats sulog(4)

SEE ALSO su (1M)

Last modified 6 Jun 1994 SunOS 5.8 431

sysbus(4) File Formats

NAME sysbus, isa, eisa – device tree properties for ISA and EISA bus device drivers

DESCRIPTION Solaris (Intel Platform Edition) supports the ISA and EISA buses as the system
bus. Drivers for devices on these buses use the device tree built by the booting
system to retrieve the necessary system resources used by the driver. These
resources include device I/O port addresses, any interrupt capabilities that the
device may have, any DMA channels it may require, and any memory-mapped
addresses it may occupy.

Configuration files for ISA and EISA device drivers are only necessary to
describe properties used by a particular driver that are not part of the standard
properties found in the device tree. See driver.conf (4) for further details
of configuration file syntax.

The ISA and EISA nexus drivers all belong to class sysbus . All bus drivers of
class sysbus recognize the following properties:
interrupts An arbitrary-length array where each element of the array

represents a hardware interrupt (IRQ) that is used by the
device. In general, this array only has one entry unless a
particular device uses more than one IRQ.

Solaris defaults all ISA and EISA interrupts to IPL 5.
This interrupt priority may be overridden by placing
an interrupt-priorities property in a .conf file
for the driver. Each entry in the array of integers for the
interrupt-priorities property is matched one-to-one
with the elements in the interrupts property to specify
the IPL value that will be used by the system for this
interrupt in this driver. This is the priority that this device’s
interrupt handler will receive relative to the interrupt
handlers of other drivers. The priority is an integer from 1
to 16 . Generally, disks are assigned a priority of 5 , while
mice and printers are lower, and serial communication
devices are higher, typically 7 . 10 is reserved by the system
and must not be used. Priorities 11 and greater are high
level priorities and are generally not recommended (see
ddi_intr_hilevel (9F)).

The driver can refer to the elements of this array by index
using ddi_add_intr (9F) . The index into the array is
passed as the inumber argument of ddi_add_intr() .

Only devices that generate interrupts will have an
interrupts property.

reg An arbitrary-length array where each element of the array
consists of a 3-tuple of integers. Each array element describes

432 SunOS 5.8 Last modified 23 Feb 1998

File Formats sysbus(4)

a contiguous memory address range associated with the
device on the bus.

The first integer of the tuple specifies the memory type, 0
specifies a memory range and 1 specifies an I/O range. The
second integer specifies the base address of the memory
range. The third integer of each 3-tuple specifies the size, in
bytes, of the mappable region.

The driver can refer to the elements of this array by index,
and construct kernel mappings to these addresses using
ddi_map_regs (9F) . The index into the array is passed as
the rnumber argument of ddi_map_regs() .

All sysbus devices will have reg properties. The first tuple
of this property is used to construct the address part of the
device name under /devices . In the case of Plug and
Play ISA devices, the first tuple is a special tuple that does
not denote a memory range, but is used by the system only
to create the address part of the device name. This special
tuple can be recognized by determining if the top bit of the
first integer is set to a one.

The order of the tuples in the reg property is determined
by the boot system probe code and depends on the
characteristics of each particular device. However, the reg
property will maintain the same order of entries from system
boot to system boot. The recommended way to determine
the reg property for a particular device is to use the
prtconf (1M) command after installing the particular device.
The output of the prtconf command can be examined to
determine the reg property for any installed device.

You can use the ddi_get* and ddi_put* family of
functions to access register space from a high-level interrupt
context.

dma-channels A list of integers that specifies the DMA channels used by
this device. Only devices that use DMA channels will have a
dma-channels property.

It is recommended that drivers for devices connected to the system bus recognize
the following standard property names:
slot The number of the slot containing the device, if known.

(Only for EISA devices).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 23 Feb 1998 SunOS 5.8 433

sysbus(4) File Formats

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO prtconf (1M) , driver.conf (4) , scsi (4) , attributes (5) ,
ddi_add_intr (9F) , ddi_intr_hilevel (9F) , ddi_map_regs (9F) ,
ddi_prop_op (9F)

Writing Device Drivers

434 SunOS 5.8 Last modified 23 Feb 1998

File Formats sysidcfg(4)

NAME sysidcfg – system identification configuration file

DESCRIPTION When a diskless client boots for the first time or a system installs over the
network, the booting software tries to obtain configuration information about the
system (such as the system’s root password or name service) from a sysidcfg
file first and then the name service databases. If the booting software cannot find
the information, it prompts the user to provide the appropriate information.
Like the name service databases, the sysidcfg file can be used to avoid all the
prompts and provide a totally hands-off booting process.

The sysidcfg file preconfigures information through a set of keywords,
and you can specify one or more of the keywords to preconfigure as much
information as you want. Also, every system that requires different configuration
information must have a different sysidcfg file. For example, you can use the
same sysidcfg file to preconfigure the time zone for multiple systems if you
want all the systems to have the same time zone configured. However, if you
want to preconfigure a different root password for each of those systems, then
each system would need its own sysidcfg file.

Where To Put the
sysidcfg File

The sysidcfg file can reside on a shared NFS network directory or the root
directory on a UFS or PCFS diskette in the system’s diskette drive. If you put the
sysidcfg file on a shared NFS network directory, you have to use the −p option
of the add_install_client (1M) command (see install_scripts (1M)) to
specify where the system being installed can find the sysidcfg file. If you put
the sysidcfg file on a diskette, you need to make sure the diskette is in the
system’s diskette drive when the system boots (on IA systems, the sysidcfg
file should reside on the Solaris Device Configuration Assistant diskette).

Only one sysidcfg file can reside in a directory or diskette. If you are creating
more than one sysidcfg file, they must reside in different directories or
diskettes.

Keyword Syntax
Rules

The following rules apply to the keywords in a sysidcfg file:

� Keywords can be in any order

� Keywords are not case sensitive

� Keyword values can be optionally enclosed in single (’) or double (") quotes

� Only the first instance of a keyword is valid; if you specify the same
keyword more than once, the first keyword specified will be used.

Keywords – All
Platforms

Name service, domain name, name server

Keywords Example

name_service=NIS , NIS+ , DNS, NONE

Last modified 22 Sep 1999 SunOS 5.8 435

sysidcfg(4) File Formats

Keywords Example

Options for NIS and NIS+ :
domain_name=domain_name;
name_server=hostname(ip_address)

name_service=NIS
{domain_name=west.arp.com
name_server=timber(129.221.2.1)}

name_service=NIS+
{domain_name=west.arp.com
name_server=timber(129.221.2.1)}

Options for DNS:
domain_name=domain_name;
name_server=ip_address, ip_address,
ip_address (three maximum);
search=domain_name, domain_name,
domain_name, domain_name, domain_name,
domain_name (six maximum, total length
less than or equal to 250 characters)

name_service=DNS
{domain_name=west.arp.com
name_server=10.0.1.10,10.0.1.20
search=arp.com,east.arp.com}

Choose only one value for name_service . Include either, both, or neither of the
domain_name and name_server keywords, as needed. If no keywords are
used, omit the curly braces {}.

Network interface, host name, Internet Protocol (IP) address, netmask,
DHCP, IPv6

Keywords Example

network_interface =NONE,
PRIMARY, value

If DHCP is to be used, the options
for PRIMARYand value are: dhcp ;
protocol_ipv6 =yes_or_no

network_interface=primary {dhcp
protocol_ipv6=yes}

If DHCP is not to be used, the
options for PRIMARYand value
are: hostname =host_name;
ip_address =ip_address;
netmask =netmask;
protocol_ipv6 =yes_or_no

network_interface=le0 {hostname=feron
ip_address=129.222.2.1
netmask=255.255.0.0 protocol_ipv6=no}

Choose only one value for network_interface . Include any combination or
none of the hostname , ip_address , and netmask keywords, as needed. If
you do not use any of these keywords, omit the curly braces {}.

protocol_ipv6 is optional; you do not need to specify it.

Root password

436 SunOS 5.8 Last modified 22 Sep 1999

File Formats sysidcfg(4)

Keywords Values

root_password =root_password Encrypted from /etc/shadow

Language in which to display the install program

Keywords Values

system_locale =locale /usr/lib/locale

Terminal type

Keywords Values

timezone=timezone /usr/share/lib/zoneinfo/*

Date and time

Keywords Values

timeserver =localhost, hostname,
ip_address

If you specify localhost as the time
server, the system’s time is assumed to
be correct. If you specify the hostname
or ip_address (if you are not running a
name service) of a system, that system’s
time is used to set the time.

Keywords — IA
Platform

Monitor type

Keywords Values

monitor =monitor_type Append kdmconfig −d filename
output to sysidcfg file

Keyboard language, keyboard layout

Keywords Values

keyboard =keyboard_language
{layout=value}

Append kdmconfig −d filename
output to sysidcfg file

Graphics card, color depth, display resolution, screen size

Last modified 22 Sep 1999 SunOS 5.8 437

sysidcfg(4) File Formats

Keywords Values

display =graphics_card
{size =screen_size depth =color_depth
resolution =screen_resolution}

Append kdmconfig −d filename
output to sysidcfg file

Printing device, number of buttons, IRQ level

Keywords Values

pointer =pointing_device
{nbuttons =number_buttons irq =value}

Append kdmconfig −d filename
output to sysidcfg file

EXAMPLES EXAMPLE 1 Sample sysidcfg files

The following example is a sysidcfg file for a group of SPARC systems to
install over the network. (The host names, IP addresses, and netmask of these
systems have been preconfigured by editing the name service.) Because all
the system configuration information has been preconfigured, an automated
installation can be created by using a custom JumpStart profile.

system_locale=en_US
timezone=US/Central
timeserver=localhost
terminal=sun-cmd
name_service=NIS {domain_name=marquee.central.sun.com

name_server=connor(129.152.112.3)}
root_password=m4QPOWNY
system_locale=C

The following example is a sysidcfg file created for a group of IA systems to
install over the network that all have the same keyboard, graphics cards, and
pointing devices. The device information (keyboard, display, and pointer)
was captured from running kdmconfig −d (see kdmconfig (1M)). In this
example, users would see only the prompt to select a language (system_locale) for
displaying the rest of the Solaris installation program.

keyboard=ATKBD {layout=US-English}
display=ati {size=15-inch}
pointer=MS-S
timezone=US/Central
timeserver=connor
terminal=AT386
name_service=NIS {domain_name=marquee.central.sun.com

name_server=connor(129.152.112.3)}
root_password=URFUni9

SEE ALSO install_scripts (1M), kdmconfig (1M), sysidtool (1M)

Solaris 8 Advanced Installation Guide

438 SunOS 5.8 Last modified 22 Sep 1999

File Formats syslog.conf(4)

NAME syslog.conf – configuration file for syslogd system log daemon

SYNOPSIS /etc/syslog.conf

DESCRIPTION The file /etc/syslog.conf contains information used by the system log
daemon, syslogd (1M), to forward a system message to appropriate log files
and/or users. syslogd preprocesses this file through m4(1) to obtain the correct
information for certain log files, defining LOGHOSTif the address of "loghost" is
the same as one of the addresses of the host that is running syslogd .

A configuration entry is composed of two TAB-separated fields:

selector action

The selector field contains a semicolon-separated list of priority specifications
of the form:

facility. level [; facility. level]

where facility is a system facility, or comma-separated list of facilities, and level is
an indication of the severity of the condition being logged. Recognized values
for facility include:
user Messages generated by user processes. This is the default

priority for messages from programs or facilities not listed
in this file.

kern Messages generated by the kernel.

mail The mail system.

daemon System daemons, such as in.ftpd (1M)

auth The authorization system: login (1), su (1M), getty (1M),
among others.

lpr The line printer spooling system: lpr (1B), lpc (1B), among
others.

news Reserved for the USENET network news system.

uucp Reserved for the UUCP system; it does not currently use the
syslog mechanism.

cron The cron /at facility; crontab (1), at (1), cron (1M), among
others.

local0-7 Reserved for local use.

Last modified 22 Jan 1997 SunOS 5.8 439

syslog.conf(4) File Formats

mark For timestamp messages produced internally by syslogd .

* An asterisk indicates all facilities except for the mark facility.

Recognized values for level are (in descending order of severity):
emerg For panic conditions that would normally be broadcast to

all users.

alert For conditions that should be corrected immediately, such as
a corrupted system database.

crit For warnings about critical conditions, such as hard device
errors.

err For other errors.

warning For warning messages.

notice For conditions that are not error conditions, but may require
special handling. A configuration entry with a level value of
notice must appear on a separate line.

info Informational messages.

debug For messages that are normally used only when debugging a
program.

none Do not send messages from the indicated facility to the
selected file. For example, a selector of

*.debug;mail.none

will send all messages except mail messages to the selected
file.

The action field indicates where to forward the message. Values for this field
can have one of four forms:

� A filename, beginning with a leading slash, which indicates that messages
specified by the selector are to be written to the specified file. The file will be
opened in append mode.

� The name of a remote host, prefixed with an @, as with: @server, which
indicates that messages specified by the selector are to be forwarded to the
syslogd on the named host. The hostname "loghost" is the hostname
given to the machine that will log syslogd messages. Every machine is
"loghost" by default. See /etc/hosts . It is also possible to specify one
machine on a network to be "loghost" by making the appropriate host table

440 SunOS 5.8 Last modified 22 Jan 1997

File Formats syslog.conf(4)

entries. If the local machine is designated to be "loghost", then syslogd
messages are written to the appropriate files. Otherwise, they are sent to the
machine "loghost" on the network.

� A comma-separated list of usernames, which indicates that messages
specified by the selector are to be written to the named users if they are
logged in.

� An asterisk, which indicates that messages specified by the selector are to
be written to all logged-in users.

Blank lines are ignored. Lines for which the first nonwhite character is a ’#’ are
treated as comments.

EXAMPLES EXAMPLE 1 A Sample Configuration File

With the following configuration file:

*.notice /var/log/notice

mail.info /var/log/notice

*.crit /var/log/critical

kern,mark.debug /dev/console

kern.err @server

*.emerg *

*.alert root,operator

*.alert;auth.warning /var/log/auth

syslogd (1M) will log all mail system messages except debug messages and
all notice (or higher) messages into a file named /var/log/notice . It logs
all critical messages into /var/log/critical , and all kernel messages and
20-minute marks onto the system console.

Kernel messages of err (error) severity or higher are forwarded to the machine
named server . Emergency messages are forwarded to all users. The users
root and operator are informed of any alert messages. All messages from
the authorization system of warning level or higher are logged in the file
/var/log/auth .

FILES /var/log/notice log of all mail system messages (except debug
messages) and all messages of notice level
or higher.

/var/log/critical log of all critical messages

/var/log/auth log of all messages from the authorization system
of warning level or higher

Last modified 22 Jan 1997 SunOS 5.8 441

syslog.conf(4) File Formats

SEE ALSO at (1), crontab (1), logger (1), login (1), lp (1), lpc (1B), lpr (1B), m4(1),
cron (1M), getty (1M), in.ftpd (1M), su (1M), syslogd (1M), syslog (3C),
hosts (4)

442 SunOS 5.8 Last modified 22 Jan 1997

File Formats system(4)

NAME system – system configuration information file

DESCRIPTION The system file is used for customizing the operation of the operating system
kernel. The recommended procedure is to preserve the original system file
before modifying it.

The system file contains commands which are read by the kernel during
initialization and used to customize the operation of your system. These
commands are useful for modifying the system’s treatment of its loadable
kernel modules.

The syntax of the system file consists of a list of keyword/value pairs which
are recognized by the system as valid commands. Comment lines must begin
with an asterisk (’*’) and end with a newline character. All commands are
case-insensitive except where noted. A command line can be no more than 80
characters in length.

Commands that modify the system’s operation with respect to loadable kernel
modules require you to specify the module type by listing the module’s
namespace. The following namespaces are currently supported:
drv Modules in this namespace are device drivers.

exec Modules in this namespace are execution format
modules. The following exec modules are
currently provided by SunSoft:

SPARC system: aoutexec
elfexec
intpexec

IA system: coffexec
elfexec
intpexec

fs These modules are filesystems.

sched These modules implement a process scheduling
algorithm.

strmod These modules are STREAMS modules.

sys These modules implement loadable system-call
modules.

misc These modules do not fit into any of the above
categories, so are considered "miscellaneous"
modules.

Below is a description of each of the supported commands:

Last modified 19 Jun 1997 SunOS 5.8 443

system(4) File Formats

exclude:
<namespace>/<modulename>

Do not allow the listed loadable kernel module to
be loaded. exclude commands are cumulative;
the list of modules to exclude is created by
combining every exclude entry in the system
file.

include:
<namespace>/<modulename>

Include the listed loadable kernel module. This
is the system’s default, so using include does
not modify the system’s operation. include
commands are cumulative.

forceload:
<namespace>/<modulename>

Force this kernel module to be loaded during
kernel initialization. The default action is to
automatically load the kernel module when
its services are first accessed. forceload
commands are cumulative.

rootdev: <device name> Set the root device to the listed value instead of
using the default root device as supplied by the
boot program.

rootfs:
<root filesystem type>

Set the root filesystem type to the listed value.

moddir:
<first module path>[[{:,
}<second ...>]...]

Set the search path for loadable kernel modules.
This command operates very much like the PATH
shell variable. Multiple directories to search can
be listed together, delimited either by blank
spaces or colons.

set [<module>:]<symbol>
{=, |, &} [~][-]<value>

Set an integer or character pointer in the kernel
or in the selected kernel module to a new
value. This command is used to change kernel
and module parameters and thus modify the
operation of your system. Assignment operations
are not cumulative, whereas bitwise AND and
OR operations are cumulative.

Operations that are supported for modifying
integer variables are: simple assignment,
inclusive bitwise OR, bitwise AND, one’s
complement, and negation. Variables in a specific
loadable module can be targeted for modification
by specifying the variable name prefixed with the
kernel module name and a colon (:) separator.
Values can be specified as hexadecimal (0x10),
Octal (046), or Decimal (5).

444 SunOS 5.8 Last modified 19 Jun 1997

File Formats system(4)

The only operation supported for modifying
character pointers is simple assignment. Static
string data such as character arrays cannot be
modified using the set command. Use care and
ensure that the variable you are modifying is in
fact a character pointer. The set command is
very powerful, and will likely cause problems if
used carelessly. The entire command, including
the quoted string, cannot exceed 80 characters.
The following escape sequences are supported
within the quoted string:

\n (newline)
\t (tab)
\b (backspace)

EXAMPLES EXAMPLE 1 A sample system file.

The following is a sample system file.

* Force the ELF exec kernel module to be loaded during kernel
* initialization. Execution type modules are in the exec namespace.
forceload: exec/elfexec
* Change the root device to /sbus@1,f8000000/esp@0,800000/sd@3,0:a.
* You can derive root device names from /devices.
* Root device names must be the fully expanded Open Boot Prom
* device name. This command is platform and configuration specific.
* This example uses the first partition (a) of the SCSI disk at
* SCSI target 3 on the esp host adapter in slot 0 (on board)
* of the SBus of the machine.
* Adapter unit-address 3,0 at sbus unit-address 0,800000.
rootdev: /sbus@1,f8000000/esp@0,800000/sd@3,0:a
* Set the filesystem type of the root to ufs. Note that
* the equal sign can be used instead of the colon.
rootfs:ufs
* Set the search path for kernel modules to look first in
* /usr/phil/mod_test for modules, then in /kernel/modules (the
* default) if not found. Useful for testing new modules.
* Note that you can delimit your module pathnames using
* colons instead of spaces: moddir:/newmodules:/kernel/modules
moddir:/usr/phil/mod_test /kernel/modules.
* Set the configuration option {_POSIX_CHOWN_RESTRICTED} :
* This configuration option is enabled by default.
set rstchown = 1
* Disable the configuration option {_POSIX_CHOWN_RESTRICTED} :
set rstchown = 0
* Set the integer variable "maxusers" in the kernel to 16. This is a
* useful tuning parameter.
set maxusers = 16
* Turn on debugging messages in the modules mydriver. This is useful
* during driver development.

Last modified 19 Jun 1997 SunOS 5.8 445

system(4) File Formats

set mydriver:debug = 1
* Bitwise AND the kernel variable "moddebug" with the
* one’s complement of the hex value 0x880, and set
* "moddebug" to this new value.
set moddebug & ~0x880
* Demonstrate the cumulative effect of the SET
* bitwise AND/OR operations by further modifying "moddebug"
* by ORing it with 0x40.
set moddebug | 0x40

WARNINGS system file lines must be fewer than 80 characters in length.

Use care when modifying the system file; it modifies the operation of the kernel.
If you preserved the original system file, you can boot using boot -a , which
will ask you to specify the path to the saved file. This should allow the system
to boot correctly. If you cannot locate a system file that will work, you may
specify /dev/null . This acts as an empty system file, and the system will
attempt to boot using its default settings.

NOTES /etc/system is only read once; at boot time.

446 SunOS 5.8 Last modified 19 Jun 1997

File Formats telnetrc(4)

NAME telnetrc – file for telnet default options

DESCRIPTION The .telnetrc file contains commands that are executed when a connection is
established on a per-host basis. Each line in the file contains a host name, one or
more spaces or tabs, and a telnet (1) command. The host name, DEFAULT,
matches all hosts. Lines beginning with the pound sign (#) are interpreted as
comments and therefore ignored. telnet (1) commands are case-insensitive to
the contents of the .telnetrc file.

The .telnetrc file is retrieved from each user’s HOME directory.

EXAMPLES EXAMPLE 1 A sample file.

In the following example, a .telnetrc file executes the telnet (1) command,
toggle :

weirdhost toggle crmod
Always export $PRINTER
DEFAULT environ export PRINTER

The lines in this file indicate that the toggle argument crmod , whose default
value is "off" (or FALSE), should be enabled when connecting to the system
weirdhost . In addition, the value of the environment variable PRINTER
should be exported to all systems. In this case, the DEFAULTkeyword is used
in place of the host name.

FILES $HOME/.telnetrc

SEE ALSO telnet (1), in.telnetd (1M), environ (5)

Last modified 9 Jan 1998 SunOS 5.8 447

term(4) File Formats

NAME term – format of compiled term file

SYNOPSIS /usr/share/lib/terminfo/?/*

DESCRIPTION The term file is compiled from terminfo (4) source files using tic (1M).
Compiled files are organized in a directory hierarchy under the first
letter of each terminal name. For example, the vt100 file would have
the pathname /usr/lib/terminfo/v/vt100 . The default directory
is /usr/share/lib/terminfo . Synonyms for the same terminal are
implemented by multiple links to the same compiled file.

The format has been chosen so that it is the same on all hardware. An 8-bit byte
is assumed, but no assumptions about byte ordering or sign extension are
made. Thus, these binary terminfo files can be transported to other hardware
with 8-bit bytes.

Short integers are stored in two 8-bit bytes. The first byte contains the least
significant 8 bits of the value, and the second byte contains the most significant
8 bits. (Thus, the value represented is 256*second+first.) The value −1 is
represented by 0377,0377 , and the value −2 is represented by 0376,0377 ;
other negative values are illegal. The −1 generally means that a capability is
missing from this terminal. The −2 means that the capability has been cancelled
in the terminfo source and also is to be considered missing.

The compiled file is created from the source file descriptions of the terminals
(see the −I option of infocmp) by using the terminfo compiler, tic , and
read by the routine setupterm (see curses (3CURSES)). The file is divided
into six parts in the following order: the header, terminal names, boolean flags,
numbers, strings, and string table.

The header section begins the file six short integers in the format described
below. These integers are:

1. the magic number (octal 0432);

2. the size, in bytes, of the names section;

3. the number of bytes in the boolean section

4. the number of short integers in the numbers section;

5. the number of offsets (short integers) in the strings section;

6. the size, in bytes, of the string table.

The terminal name section comes next. It contains the first line of the terminfo
description, listing the various names for the terminal, separated by the bar (|)
character (see term (5)). The section is terminated with an ASCII NUL character.

448 SunOS 5.8 Last modified 3 Jul 1996

File Formats term(4)

The terminal name section is followed by the Boolean section, number section,
string section, and string table.

The boolean flags section consists of one byte for each flag. This byte is either 0
or 1 as the flag is present or absent. The value of 2 means that the flag has been
cancelled. The capabilities are in the same order as the file <term.h >.

Between the boolean flags section and the number section, a null byte is inserted,
if necessary, to ensure that the number section begins on an even byte offset. All
short integers are aligned on a short word boundary.

The numbers section is similar to the boolean flags section. Each capability takes
up two bytes, and is stored as a short integer. If the value represented is −1 or −2,
the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer,
in the format above. A value of −1 or −2 means the capability is missing.
Otherwise, the value is taken as an offset from the beginning of the string table.
Special characters in ^X or \c notation are stored in their interpreted form,
not the printing representation. Padding information ($<nn>) and parameter
information (%x) are stored intact in uninterpreted form.

The final section is the string table. It contains all the values of string capabilities
referenced in the string section. Each string is null terminated.

Note that it is possible for setupterm to expect a different set of capabilities
than are actually present in the file. Either the database may have been updated
since setupterm has been recompiled (resulting in extra unrecognized entries
in the file) or the program may have been recompiled more recently than the
database was updated (resulting in missing entries). The routine setupterm
must be prepared for both possibilities—this is why the numbers and sizes are
included. Also, new capabilities must always be added at the end of the lists of
boolean, number, and string capabilities.

As an example, here is terminal information on the AT&T Model 37 KSR terminal
as output by the infocmp −I tty37 command:

37|tty37|AT&T model 37 teletype,
hc, os, xon,
bel=^G, cr=\r, cub1=\b, cud1=\n, cuu1=\E7, hd=\E9,
hu=\E8, ind=\n,

The following is an octal dump of the corresponding term file, produced by the
od -c /usr/share/lib/terminfo/t/tty37 command:

0000000 032 001 \0 032 \0 013 \0 021 001 3 \0 3 7 | t
0000020 t y 3 7 | A T & T m o d e l
0000040 3 7 t e l e t y p e \0 \0 \0 \0 \0
0000060 \0 \0 \0 001 \0 \0 \0 \0 \0 \0 \0 001 \0 \0 \0 \0
0000100 001 \0 \0 \0 \0 \0 377 377 377 377 377 377 377 377 377 377

Last modified 3 Jul 1996 SunOS 5.8 449

term(4) File Formats

0000120 377 377 377 377 377 377 377 377 377 377 377 377 377 377 & \0
0000140 \0 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0000160 377 377 " \0 377 377 377 377 (\0 377 377 377 377 377 377
0000200 377 377 0 \0 377 377 377 377 377 377 377 377 - \0 377 377
0000220 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*
0000520 377 377 377 377 377 377 377 377 377 377 377 377 377 377 $ \0
0000540 377 377 377 377 377 377 377 377 377 377 377 377 377 377 * \0
0000560 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*
0001160 377 377 377 377 377 377 377 377 377 377 377 377 377 377 3 7
0001200 | t t y 3 7 | A T & T m o d e
0001220 l 3 7 t e l e t y p e \0 \r \0
0001240 \n \0 \n \0 007 \0 \b \0 033 8 \0 033 9 \0 033 7
0001260 \0 \0
0001261

Some limitations: total compiled entries cannot exceed 4096 bytes; all entries in
the name field cannot exceed 128 bytes.

FILES /usr/share/lib/terminfo/?/* compiled terminal description
database

/usr/include/term.h terminfo header

/usr/xpg4/include/term.h X/Open Curses terminfo header

SEE ALSO infocmp (1M), curses (3CURSES), curses (3XCURSES), terminfo (4), term (5)

450 SunOS 5.8 Last modified 3 Jul 1996

File Formats terminfo(4)

NAME terminfo – terminal and printer capability database

SYNOPSIS /usr/share/lib/terminfo/?/*

DESCRIPTION terminfo is a database that describes the capabilities of devices such as
terminals and printers. Devices are described in terminfo source files by
specifying a set of capabilities, by quantifying certain aspects of the device, and
by specifying character sequences that effect particular results. This database
is often used by screen oriented applications such as vi and curses -based
programs, as well as by some system commands such as ls and more . This
usage allows them to work with a variety of devices without changes to the
programs.

terminfo descriptions are located in the directory pointed to by the
environment variable TERMINFOor in /usr/share/lib/terminfo .
terminfo descriptions are generated by tic (1M).

terminfo source files consist of one or more device descriptions. Each
description consists of a header (beginning in column 1) and one or more lines
that list the features for that particular device. Every line in a terminfo source
file must end in a comma (,). Every line in a terminfo source file except the
header must be indented with one or more white spaces (either spaces or tabs).

Entries in terminfo source files consist of a number of comma-separated fields.
White space after each comma is ignored. Embedded commas must be escaped
by using a backslash. Each device entry has the following format:

alias
1

| alias
2

| . . . | alias
n

| fullname,
capability

1
, capability

2
,

.

.

.
capability

n
,

The first line, commonly referred to as the header line, must begin in column
one and must contain at least two aliases separated by vertical bars. The last
field in the header line must be the long name of the device and it may contain
any string. Alias names must be unique in the terminfo database and they
must conform to system file naming conventions (see tic (1M)); they cannot, for
example, contain white space or slashes.

Every device must be assigned a name, such as "vt100". Device names (except
the long name) should be chosen using the following conventions. The name
should not contain hyphens because hyphens are reserved for use when adding
suffixes that indicate special modes.

Last modified 9 Jul 1996 SunOS 5.8 451

terminfo(4) File Formats

These special modes may be modes that the hardware can be in, or user
preferences. To assign a special mode to a particular device, append a suffix
consisting of a hyphen and an indicator of the mode to the device name. For
example, the -w suffix means "wide mode"; when specified, it allows for a width
of 132 columns instead of the standard 80 columns. Therefore, if you want to
use a "vt100" device set to wide mode, name the device "vt100-w." Use the
following suffixes where possible.

Suffix Meaning Example

-w Wide mode (more than 80 columns) 5410-w

-am With auto. margins (usually default) vt100-am

-nam Without automatic margins vt100-nam

-n Number of lines on the screen 2300-40

-na No arrow keys (leave them in local) c100-na

-np Number of pages of memory c100-4p

-rv Reverse video 4415-rv

The terminfo reference manual page is organized in two sections:

� PART 1: DEVICE CAPABILITIES

� PART 2: PRINTER CAPABILITIES
PART 1: DEVICE

CAPABILITIES
Capabilities in terminfo are of three types: Boolean capabilities (which show
that a device has or does not have a particular feature), numeric capabilities
(which quantify particular features of a device), and string capabilities (which
provide sequences that can be used to perform particular operations on devices).

In the following table, a Variable is the name by which a C programmer
accesses a capability (at the terminfo level). A Capname is the short name
for a capability specified in the terminfo source file. It is used by a person
updating the source file and by the tput command. A Termcap Code is a
two-letter sequence that corresponds to the termcap capability name. (Note
that termcap is no longer supported.)

Capability names have no real length limit, but an informal limit of five
characters has been adopted to keep them short. Whenever possible, capability
names are chosen to be the same as or similar to those specified by the ANSI
X3.64-1979 standard. Semantics are also intended to match those of the ANSI
standard.

All string capabilities listed below may have padding specified, with the
exception of those used for input. Input capabilities, listed under the Strings

452 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

section in the following tables, have names beginning with key_ . The #i symbol
in the description field of the following tables refers to the ith parameter.

Booleans

Cap- Termcap

Variable name Code Description

auto_left_margin bw bw cub1 wraps from column 0

to last column

auto_right_marginam am Terminal has automatic margins

back_color_erase bce be Screen erased with background color

can_change ccc cc Terminal can re-define existing color

ceol_standout_glitchxhp xs Standout not erased by overwriting (hp)

col_addr_glitch xhpa YA Only positive motion for hpa/mhpa caps

cpi_changes_res cpix YF Changing character pitch changes

resolution

cr_cancels_micro_modecrxm YB Using cr turns off micro mode

dest_tabs_magic_smsoxt xt Destructive tabs, magic smso char (t1061)

eat_newline_glitchxenl xn Newline ignored after 80 columns

(Concept)

erase_overstrike eo eo Can erase overstrikes with a blank

generic_type gn gn Generic line type (for example,

dialup, switch)

hard_copy hc hc Hardcopy terminal

hard_cursor chts HC Cursor is hard to see

has_meta_key km km Has a meta key (shift, sets parity bit)

has_print_wheel daisy YC Printer needs operator to change

character set

has_status_line hs hs Has extra "status line"

hue_lightness_saturationhls hl Terminal uses only HLS color

notation (Tektronix)

insert_null_glitch in in Insert mode distinguishes nulls

lpi_changes_res lpix YG Changing line pitch changes resolution

Last modified 9 Jul 1996 SunOS 5.8 453

terminfo(4) File Formats

Cap- Termcap

Variable name Code Description

memory_above da da Display may be retained above the screen

memory_below db db Display may be retained below the screen

move_insert_modemir mi Safe to move while in insert mode

move_standout_modemsgr ms Safe to move in standout modes

needs_xon_xoff nxon nx Padding won’t work, xon/xoff required

no_esc_ctlc xsb xb Beehive (f1=escape, f2=ctrl C)

no_pad_char npc NP Pad character doesn’t exist

non_dest_scroll_regionndscr ND Scrolling region is nondestructive

non_rev_rmcup nrrmc NR smcup does not reverse rmcup

over_strike os os Terminal overstrikes on hard-copy

terminal

prtr_silent mc5i 5i Printer won’t echo on screen

row_addr_glitch xvpa YD Only positive motion for vpa /mvpa caps

semi_auto_right_marginsam YE Printing in last column causes cr

status_line_esc_ok eslok es Escape can be used on the status line

tilde_glitch hz hz Hazeltine; can’t print tilde (~)

transparent_underlineul ul Underline character overstrikes

xon_xoff xon xo Terminal uses xon/xoff handshaking

Numbers

Cap- Termcap

Variable name Code Description

bit_image_entwiningbitwin Yo Number of passes for each
bit-map row

bit_image_type bitype Yp Type of bit image device

buffer_capacity bufsz Ya Number of bytes buffered
before printing

buttons btns BT Number of buttons on
the mouse

columns cols co Number of columns in a line

454 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Cap- Termcap

Variable name Code Description

dot_horz_spacing spinh Yc Spacing of dots horizontally
in dots per inch

dot_vert_spacing spinv Yb Spacing of pins vertically
in pins per inch

init_tabs it it Tabs initially every # spaces

label_height lh lh Number of rows in each label

label_width lw lw Number of columns in
each label

lines lines li Number of lines on a
screen or a page

lines_of_memory lm lm Lines of memory if > lines ;
0 means varies

max_attributes ma ma Maximum combined video
attributes

terminal can display

magic_cookie_glitchxmc sg Number of blank characters
left by

smso or rmso

max_colors colors Co Maximum number of colors
on the screen

max_micro_addressmaddr Yd Maximum value in
micro_..._address

max_micro_jump mjump Ye Maximum value in
parm_..._micro

max_pairs pairs pa Maximum number of
color-pairs on the

screen

maximum_windowswnum MW Maximum number of
definable windows

micro_char_size mcs Yf Character step size when
in micro mode

micro_line_size mls Yg Line step size when in
micro mode

Last modified 9 Jul 1996 SunOS 5.8 455

terminfo(4) File Formats

Cap- Termcap

Variable name Code Description

no_color_video ncv NC Video attributes that can’t
be used

with colors

num_labels nlab Nl Number of labels on screen
(start at 1)

number_of_pins npins Yh Number of pins in print-head

output_res_char orc Yi Horizontal resolution in
units per character

output_res_line orl Yj Vertical resolution in units
per line

output_res_horz_inchorhi Yk Horizontal resolution in
units per inch

output_res_vert_inchorvi Yl Vertical resolution in units
per inch

padding_baud_ratepb pb Lowest baud rate where
padding needed

print_rate cps Ym Print rate in characters
per second

virtual_terminal vt vt Virtual terminal number
(system)

wide_char_size widcs Yn Character step size when
in double

wide mode

width_status_line wsl ws Number of columns in
status line

Strings

Cap- Termcap

Variable name Code Description

acs_chars acsc ac Graphic charset pairs aAbBcC

alt_scancode_esc scesa S8 Alternate escape for scancode
emulation

(default is for vt100)

back_tab cbt bt Back tab

456 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Cap- Termcap

Variable name Code Description

bell bel bl Audible signal (bell)

bit_image_carriage_returnbicr Yv Move to beginning of
same row (use

tparm)

bit_image_newline binel Zz Move to next row of the
bit image (use

tparm)

bit_image_repeat birep Zy Repeat bit-image cell #1
#2 times (use

tparm)

carriage_return cr cr Carriage return

change_char_pitch cpi ZA Change number of characters
per inch

change_line_pitch lpi ZB Change number of lines
per inch

change_res_horz chr ZC Change horizontal resolution

change_res_vert cvr ZD Change vertical resolution

change_scroll_region csr cs Change to lines #1 through
#2 (vt100)

char_padding rmp rP Like ip but when in
replace mode

char_set_names csnm Zy List of character set names

clear_all_tabs tbc ct Clear all tab stops

clear_margins mgc MC Clear all margins (top, bottom,

and sides)

clear_screen clear cl Clear screen and home cursor

clr_bol el1 cb Clear to beginning of line,
inclusive

clr_eol el ce Clear to end of line

clr_eos ed cd Clear to end of display

code_set_init csin ci Init sequence for multiple
codesets

Last modified 9 Jul 1996 SunOS 5.8 457

terminfo(4) File Formats

Cap- Termcap

Variable name Code Description

color_names colornm Yw Give name for color #1

column_address hpa ch Horizontal position absolute

command_character cmdch CC Terminal settable cmd
character

in prototype

create_window cwin CW Define win #1 to go from
#2,#3 to

#4,#5

cursor_address cup cm Move to row #1 col #2

cursor_down cud1 do Down one line

cursor_home home ho Home cursor (if no cup)

cursor_invisible civis vi Make cursor invisible

cursor_left cub1 le Move left one space.

cursor_mem_address mrcup CM Memory relative cursor
addressing

cursor_normal cnorm ve Make cursor appear normal

(undo vs/vi)

cursor_right cuf1 nd Non-destructive space
(cursor or

carriage right)

cursor_to_ll ll ll Last line, first column
(if no cup)

cursor_up cuu1 up Upline (cursor up)

cursor_visible cvvis vs Make cursor very visible

define_bit_image_regiondefbi Yx Define rectangular bit-image
region

(use tparm)

define_char defc ZE Define a character in a
character set*

delete_character dch1 dc Delete character

delete_line dl1 dl Delete line

458 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Cap- Termcap

Variable name Code Description

device_type devt dv Indicate language/codeset
support

dial_phone dial DI Dial phone number #1

dis_status_line dsl ds Disable status line

display_clock dclk DK Display time-of-day clock

display_pc_char dispc S1 Display PC character

down_half_line hd hd Half-line down (forward
1/2 linefeed)

ena_acs enacs eA Enable alternate character set

end_bit_image_region endbi Yy End a bit-image region
(use tparm)

enter_alt_charset_mode smacs as Start alternate character set

enter_am_mode smam SA Turn on automatic margins

enter_blink_mode blink mb Turn on blinking

enter_bold_mode bold md Turn on bold (extra bright)
mode

enter_ca_mode smcup ti String to begin programs
that use cup

enter_delete_mode smdc dm Delete mode (enter)

enter_dim_mode dim mh Turn on half-bright mode

enter_doublewide_modeswidm ZF Enable double wide printing

enter_draft_quality sdrfq ZG Set draft quality print

mode

enter_insert_mode smir im Insert mode (enter)

enter_italics_mode sitm ZH Enable italics

enter_leftward_mode slm ZI Enable leftward carriage
motion

enter_micro_mode smicm ZJ Enable micro motion
capabilities

enter_near_letter_qualitysnlq ZK Set near-letter quality print

enter_normal_quality snrmq ZL Set normal quality print

Last modified 9 Jul 1996 SunOS 5.8 459

terminfo(4) File Formats

Cap- Termcap

Variable name Code Description

enter_pc_charset_mode smpch S2 Enter PC character display
mode

enter_protected_mode prot mp Turn on protected mode

enter_reverse_mode rev mr Turn on reverse video mode

enter_scancode_mode smsc S4 Enter PC scancode mode

enter_secure_mode invis mk Turn on blank mode

(characters invisible)

enter_shadow_mode sshm ZM Enable shadow printing

enter_standout_mode smso so Begin standout mode

enter_subscript_mode ssubm ZN Enable subscript printing

enter_superscript_modessupm ZO Enable superscript printing

enter_underline_mode smul us Start underscore mode

enter_upward_mode sum ZP Enable upward carriage
motion

mode

enter_xon_mode smxon SX Turn on xon/xoff
handshaking

erase_chars ech ec Erase #1 characters

exit_alt_charset_mode rmacs ae End alternate character set

exit_am_mode rmam RA Turn off automatic margins

exit_attribute_mode sgr0 me Turn off all attributes

exit_ca_mode rmcup te String to end programs
that use cup

exit_delete_mode rmdc ed End delete mode

exit_doublewide_mode rwidm ZQ Disable double wide printing

exit_insert_mode rmir ei End insert mode

exit_italics_mode ritm ZR Disable italics

exit_leftward_mode rlm ZS Enable rightward (normal)

carriage motion

460 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Cap- Termcap

Variable name Code Description

exit_micro_mode rmicm ZT Disable micro motion
capabilities

exit_pc_charset_mode rmpch S3 Disable PC character
display mode

exit_scancode_mode rmsc S5 Disable PC scancode mode

exit_shadow_mode rshm ZU Disable shadow printing

exit_standout_mode rmso se End standout mode

exit_subscript_mode rsubm ZV Disable subscript printing

exit_superscript_mode rsupm ZW Disable superscript printing

exit_underline_mode rmul ue End underscore mode

exit_upward_mode rum ZX Enable downward (normal)

carriage motion

exit_xon_mode rmxon RX Turn off xon/xoff
handshaking

fixed_pause pause PA Pause for 2-3 seconds

flash_hook hook fh Flash the switch hook

flash_screen flash vb Visible bell (may not
move cursor)

form_feed ff ff Hardcopy terminal page eject

from_status_line fsl fs Return from status line

get_mouse getm Gm Curses should get button
events

goto_window wingo WG Go to window #1

hangup hup HU Hang-up phone

init_1string is1 i1 Terminal or printer
initialization string

init_2string is2 is Terminal or printer
initialization string

init_3string is3 i3 Terminal or printer
initialization string

init_file if if Name of initialization file

Last modified 9 Jul 1996 SunOS 5.8 461

terminfo(4) File Formats

Cap- Termcap

Variable name Code Description

init_prog iprog iP Path name of program for
initialization

initialize_color initc Ic Initialize the definition
of color

initialize_pair initp Ip Initialize color-pair

insert_character ich1 ic Insert character

insert_line il1 al Add new blank line

insert_padding ip ip Insert pad after character
inserted

The “key_ ” strings are sent by specific keys. The “key_ ” descriptions include
the macro, defined in <curses.h> , for the code returned by the curses routine
getch when the key is pressed (see curs_getch (3CURSES)).

Cap- Termcap

Variable name Code Description

key_a1 ka1 K1 KEY_A1, upper left of keypad

key_a3 ka3 K3 KEY_A3, upper right of
keypad

key_b2 kb2 K2 KEY_B2, center of keypad

key_backspace kbs kb KEY_BACKSPACE, sent
by backspace

key

key_beg kbeg @1 KEY_BEG, sent by beg(inning)
key

key_btab kcbt kB KEY_BTAB, sent by
back-tab key

key_c1 kc1 K4 KEY_C1, lower left of keypad

key_c3 kc3 K5 KEY_C3, lower right of
keypad

key_cancel kcan @2 KEY_CANCEL, sent by
cancel key

key_catab ktbc ka KEY_CATAB, sent by
clear-all-tabs key

462 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Cap- Termcap

Variable name Code Description

key_clear kclr kC KEY_CLEAR, sent by
clear-screen or

erase key

key_close kclo @3 KEY_CLOSE, sent by close key

key_command kcmd @4 KEY_COMMAND, sent by cmd

(command) key

key_copy kcpy @5 KEY_COPY, sent by copy key

key_create kcrt @6 KEY_CREATE, sent by
create key

key_ctab kctab kt KEY_CTAB, sent by
clear-tab key

key_dc kdch1 kD KEY_DC, sent by
delete-character key

key_dl kdl1 kL KEY_DL, sent by delete-line
key

key_down kcud1 kd KEY_DOWN, sent by terminal

down-arrow key

key_eic krmir kM KEY_EIC, sent by rmir
or smir in

insert mode

key_end kend @7 KEY_END, sent by end key

key_enter kent @8 KEY_ENTER, sent by
enter/send key

key_eol kel kE KEY_EOL, sent by
clear-to-end-of-line

key

key_eos ked kS KEY_EOS, sent by
clear-to-end-of-screen

key

key_exit kext @9 KEY_EXIT, sent by exit key

key_f0 kf0 k0 KEY_F(0) , sent by function
key f0

Last modified 9 Jul 1996 SunOS 5.8 463

terminfo(4) File Formats

Cap- Termcap

Variable name Code Description

key_f1 kf1 k1 KEY_F(1) , sent by function
key f1

key_f2 kf2 k2 KEY_F(2) , sent by function
key f2

key_f3 kf3 k3 KEY_F(3) , sent by function
key f3

key_fB kf4 k4 KEY_F(4) , sent by function
key fB

key_f5 kf5 k5 KEY_F(5) , sent by function
key f5

key_f6 kf6 k6 KEY_F(6) , sent by function
key f6

key_f7 kf7 k7 KEY_F(7) , sent by function
key f7

key_f8 kf8 k8 KEY_F(8) , sent by function
key f8

key_f9 kf9 k9 KEY_F(9) , sent by function
key f9

key_f10 kf10 k; KEY_F(10) , sent by
function key f10

key_f11 kf11 F1 KEY_F(11) , sent by
function key f11

key_f12 kf12 F2 KEY_F(12) , sent by
function key f12

key_f13 kf13 F3 KEY_F(13) , sent by
function key f13

key_f14 kf14 F4 KEY_F(14) , sent by
function key f14

key_f15 kf15 F5 KEY_F(15) , sent by
function key f15

key_f16 kf16 F6 KEY_F(16) , sent by
function key f16

key_f17 kf17 F7 KEY_F(17) , sent by
function key f17

464 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Cap- Termcap

Variable name Code Description

key_f18 kf18 F8 KEY_F(18) , sent by
function key f18

key_f19 kf19 F9 KEY_F(19) , sent by
function key f19

key_f20 kf20 FA KEY_F(20) , sent by
function key f20

key_f21 kf21 FB KEY_F(21) , sent by
function key f21

key_f22 kf22 FC KEY_F(22) , sent by
function key f22

key_f23 kf23 FD KEY_F(23) , sent by
function key f23

key_f24 kf24 FE KEY_F(24) , sent by
function key f24

key_f25 kf25 FF KEY_F(25) , sent by
function key f25

key_f26 kf26 FG KEY_F(26) , sent by
function key f26

key_f27 kf27 FH KEY_F(27) , sent by
function key f27

key_f28 kf28 FI KEY_F(28) , sent by
function key f28

key_f29 kf29 FJ KEY_F(29) , sent by
function key f29

key_f30 kf30 FK KEY_F(30) , sent by
function key f30

key_f31 kf31 FL KEY_F(31) , sent by
function key f31

key_f32 kf32 FM KEY_F(32) , sent by
function key f32

key_f33 kf33 FN KEY_F(13) , sent by
function key f13

key_f34 kf34 FO KEY_F(34) , sent by
function key f34

Last modified 9 Jul 1996 SunOS 5.8 465

terminfo(4) File Formats

Cap- Termcap

Variable name Code Description

key_f35 kf35 FP KEY_F(35) , sent by
function key f35

key_f36 kf36 FQ KEY_F(36) , sent by
function key f36

key_f37 kf37 FR KEY_F(37) , sent by
function key f37

key_f38 kf38 FS KEY_F(38) , sent by
function key f38

key_f39 kf39 FT KEY_F(39) , sent by
function key f39

key_fB0 kf40 FU KEY_F(40) , sent by function
key fB0

key_fB1 kf41 FV KEY_F(41) , sent by function
key fB1

key_fB2 kf42 FW KEY_F(42) , sent by function
key fB2

key_fB3 kf43 FX KEY_F(43) , sent by function
key fB3

key_fB4 kf44 FY KEY_F(44) , sent by function
key fB4

key_fB5 kf45 FZ KEY_F(45) , sent by function
key fB5

key_fB6 kf46 Fa KEY_F(46) , sent by function
key fB6

key_fB7 kf47 Fb KEY_F(47) , sent by function
key fB7

key_fB8 kf48 Fc KEY_F(48) , sent by function
key fB8

key_fB9 kf49 Fd KEY_F(49) , sent by function
key fB9

key_f50 kf50 Fe KEY_F(50) , sent by
function key f50

key_f51 kf51 Ff KEY_F(51) , sent by
function key f51

466 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Cap- Termcap

Variable name Code Description

key_f52 kf52 Fg KEY_F(52) , sent by
function key f52

key_f53 kf53 Fh KEY_F(53) , sent by
function key f53

key_f54 kf54 Fi KEY_F(54) , sent by
function key f54

key_f55 kf55 Fj KEY_F(55) , sent by
function key f55

key_f56 kf56 Fk KEY_F(56) , sent by
function key f56

key_f57 kf57 Fl KEY_F(57) , sent by
function key f57

key_f58 kf58 Fm KEY_F(58) , sent by
function key f58

key_f59 kf59 Fn KEY_F(59) , sent by
function key f59

key_f60 kf60 Fo KEY_F(60) , sent by
function key f60

key_f61 kf61 Fp KEY_F(61) , sent by
function key f61

key_f62 kf62 Fq KEY_F(62) , sent by
function key f62

key_f63 kf63 Fr KEY_F(63) , sent by
function key f63

key_find kfnd @0 KEY_FIND, sent by find key

key_help khlp %1 KEY_HELP, sent by help key

key_home khome kh KEY_HOME, sent by home key

key_ic kich1 kI KEY_IC, sent by
ins-char/enter

ins-mode key

key_il kil1 kA KEY_IL , sent by insert-line
key

key_left kcub1 kl KEY_LEFT, sent by terminal
left-arrow

Last modified 9 Jul 1996 SunOS 5.8 467

terminfo(4) File Formats

Cap- Termcap

Variable name Code Description

key

key_ll kll kH KEY_LL, sent by home-down
key

key_mark kmrk %2 KEY_MARK, sent by mark key

key_message kmsg %3 KEY_MESSAGE, sent by
message key

key_mouse kmous Km 0631, Mouse event has
occured

key_move kmov %4 KEY_MOVE, sent by move key

key_next knxt %5 KEY_NEXT, sent by
next-object key

key_npage knp kN KEY_NPAGE, sent by
next-page key

key_open kopn %6 KEY_OPEN, sent by open key

key_options kopt %7 KEY_OPTIONS, sent by
options key

key_ppage kpp kP KEY_PPAGE, sent by
previous-page key

key_previous kprv %8 KEY_PREVIOUS, sent by
previous-object

key

key_print kprt %9 KEY_PRINT, sent by print
or copy key

key_redo krdo %0 KEY_REDO, sent by redo key

key_reference kref &1 KEY_REFERENCE, sent by
reference key

key_refresh krfr &2 KEY_REFRESH, sent by
refresh key

key_replace krpl &3 KEY_REPLACE, sent by
replace key

key_restart krst &4 KEY_RESTART, sent by
restart key

key_resume kres &5 KEY_RESUME, sent by
resume key

468 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Cap- Termcap

Variable name Code Description

key_right kcuf1 kr KEY_RIGHT, sent by terminal

right-arrow key

key_save ksav &6 KEY_SAVE, sent by save key

key_sbeg kBEG &9 KEY_SBEG, sent by shifted
beginning key

key_scancel kCAN &0 KEY_SCANCEL, sent by shifted

cancel key

key_scommand kCMD *1 KEY_SCOMMAND, sent by
shifted

command key

key_scopy kCPY *2 KEY_SCOPY, sent by shifted
copy key

key_screate kCRT *3 KEY_SCREATE, sent by shifted

create key

key_sdc kDC *4 KEY_SDC, sent by shifted
delete-char

key

key_sdl kDL *5 KEY_SDL, sent by shifted
delete-line

key

key_select kslt *6 KEY_SELECT, sent by
select key

key_send kEND *7 KEY_SEND, sent by shifted
end key

key_seol kEOL *8 KEY_SEOL, sent by shifted
clear-line key

key_sexit kEXT *9 KEY_SEXIT, sent by shifted
exit key

key_sf kind kF KEY_SF, sent by
scroll-forward/down

key

key_sfind kFND *0 KEY_SFIND, sent by shifted
find key

Last modified 9 Jul 1996 SunOS 5.8 469

terminfo(4) File Formats

Cap- Termcap

Variable name Code Description

key_shelp kHLP #1 KEY_SHELP, sent by shifted
help key

key_shome kHOM #2 KEY_SHOME, sent by
shifted home key

key_sic kIC #3 KEY_SIC, sent by shifted
input key

key_sleft kLFT #4 KEY_SLEFT, sent by shifted
left-arrow

key

key_smessage kMSG %a KEY_SMESSAGE, sent by
shifted

message key

key_smove kMOV %b KEY_SMOVE, sent by shifted
move key

key_snext kNXT %c KEY_SNEXT, sent by shifted
next key

key_soptions kOPT %d KEY_SOPTIONS, sent by
shifted

options key

key_sprevious kPRV %e KEY_SPREVIOUS, sent by
shifted prev

key

key_sprint kPRT %f KEY_SPRINT, sent by
shifted print key

key_sr kri kR KEY_SR, sent by
scroll-backward/up

key

key_sredo kRDO %g KEY_SREDO, sent by shifted
redo key

key_sreplace kRPL %h KEY_SREPLACE, sent by
shifted replace

key

key_sright kRIT %i KEY_SRIGHT, sent by shifted

470 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Cap- Termcap

Variable name Code Description

right-arrow key

key_srsume kRES %j KEY_SRSUME, sent by
shifted resume

key

key_ssave kSAV !1 KEY_SSAVE, sent by shifted
save key

key_ssuspend kSPD !2 KEY_SSUSPEND, sent by
shifted

suspend key

key_stab khts kT KEY_STAB, sent by set-tab key

key_sundo kUND !3 KEY_SUNDO, sent by shifted
undo key

key_suspend kspd &7 KEY_SUSPEND, sent by

suspend key

key_undo kund &8 KEY_UNDO, sent by undo key

key_up kcuu1 ku KEY_UP, sent by terminal
up-arrow key

keypad_local rmkx ke Out of “keypad-transmit”
mode

keypad_xmit smkx ks Put terminal in
“keypad-transmit” mode

lab_f0 lf0 l0 Labels on function key
f0 if not f0

lab_f1 lf1 l1 Labels on function key
f1 if not f1

lab_f2 lf2 l2 Labels on function key
f2 if not f2

lab_f3 lf3 l3 Labels on function key
f3 if not f3

lab_fB lfB l4 Labels on function key
fB if not fB

lab_f5 lf5 l5 Labels on function key
f5 if not f5

Last modified 9 Jul 1996 SunOS 5.8 471

terminfo(4) File Formats

Cap- Termcap

Variable name Code Description

lab_f6 lf6 l6 Labels on function key
f6 if not f6

lab_f7 lf7 l7 Labels on function key
f7 if not f7

lab_f8 lf8 l8 Labels on function key
f8 if not f8

lab_f9 lf9 l9 Labels on function key
f9 if not f9

lab_f10 lf10 la Labels on function key
f10 if not f10

label_format fln Lf Label format

label_off rmln LF Turn off soft labels

label_on smln LO Turn on soft labels

meta_off rmm mo Turn off "meta mode"

meta_on smm mm Turn on "meta mode" (8th bit)

micro_column_address mhpa ZY Like column_address
for micro

adjustment

micro_down mcud1 ZZ Like cursor_down for
micro adjustment

micro_left mcub1 Za Like cursor_left for
micro adjustment

micro_right mcuf1 Zb Like cursor_right for
micro

adjustment

micro_row_address mvpa Zc Like row_address for
micro adjustment

micro_up mcuu1 Zd Like cursor_up for micro
adjustment

mouse_info minfo Mi Mouse status information

newline nel nw Newline (behaves like
cr followed

by lf)

472 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Cap- Termcap

Variable name Code Description

order_of_pins porder Ze Matches software bits to
print-head pins

orig_colors oc oc Set all color(-pair)s to the
original ones

orig_pair op op Set default color-pair to
the original one

pad_char pad pc Pad character (rather
than null)

parm_dch dch DC Delete #1 chars

parm_delete_line dl DL Delete #1 lines

parm_down_cursor cud DO Move down #1 lines.

parm_down_micro mcud Zf Like parm_down_cursor
for micro

adjust.

parm_ich ich IC Insert #1 blank chars

parm_index indn SF Scroll forward #1 lines.

parm_insert_line il AL Add #1 new blank lines

parm_left_cursor cub LE Move cursor left #1 spaces

parm_left_micro mcub Zg Like parm_left_cursor
for micro

adjust.

parm_right_cursor cuf RI Move right #1 spaces.

parm_right_micro mcuf Zh Like parm_right_cursor
for micro

adjust.

parm_rindex rin SR Scroll backward #1 lines.

parm_up_cursor cuu UP Move cursor up #1 lines.

parm_up_micro mcuu Zi Like parm_up_cursor
for micro adjust.

pc_term_options pctrm S6 PC terminal options

pkey_key pfkey pk Prog funct key #1 to type
string #2

Last modified 9 Jul 1996 SunOS 5.8 473

terminfo(4) File Formats

Cap- Termcap

Variable name Code Description

pkey_local pfloc pl Prog funct key #1 to execute
string #2

pkey_plab pfxl xl Prog key #1 to xmit string
#2 and show

string #3

pkey_xmit pfx px Prog funct key #1 to xmit
string #2

plab_norm pln pn Prog label #1 to show string #2

print_screen mc0 ps Print contents of the screen

prtr_non mc5p pO Turn on the printer for #1 bytes

prtr_off mc4 pf Turn off the printer

prtr_on mc5 po Turn on the printer

pulse pulse PU Select pulse dialing

quick_dial qdial QD Dial phone number #1,
without

progress detection

remove_clock rmclk RC Remove time-of-day clock

repeat_char rep rp Repeat char #1 #2 times

req_for_input rfi RF Send next input char (for ptys)

req_mouse_pos reqmp RQ Request mouse position report

reset_1string rs1 r1 Reset terminal completely
to sane modes

reset_2string rs2 r2 Reset terminal completely
to sane modes

reset_3string rs3 r3 Reset terminal completely
to sane modes

reset_file rf rf Name of file containing
reset string

restore_cursor rc rc Restore cursor to position
of last sc

row_address vpa cv Vertical position absolute

save_cursor sc sc Save cursor position

474 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Cap- Termcap

Variable name Code Description

scancode_escape scesc S7 Escape for scancode
emulation

scroll_forward ind sf Scroll text up

scroll_reverse ri sr Scroll text down

select_char_set scs Zj Select character set

set0_des_seq s0ds s0 Shift into codeset 0 (EUC
set 0, ASCII)

set1_des_seq s1ds s1 Shift into codeset 1

set2_des_seq s2ds s2 Shift into codeset 2

set3_des_seq s3ds s3 Shift into codeset 3

attributes #1-#6

set_a_background setab AB Set background color using
ANSI escape

set_a_foreground setaf AF Set foreground color using
ANSI escape

set_attributes sgr sa Define the video attributes
#1-#9

set_background setb Sb Set current background color

set_bottom_margin smgb Zk Set bottom margin at
current line

set_bottom_margin_parmsmgbp Zl Set bottom margin at line
#1 or #2

lines from bottom

set_clock sclk SC Set time-of-day clock

set_color_band setcolor Yz Change to ribbon color #1

set_color_pair scp sp Set current color-pair

set_foreground setf Sf Set current foreground color1

set_left_margin smgl ML Set left margin at current line

set_left_margin_parm smglp Zm Set left (right) margin at
column #1 (#2)

set_lr_margin smglr ML Sets both left and right
margins

Last modified 9 Jul 1996 SunOS 5.8 475

terminfo(4) File Formats

Cap- Termcap

Variable name Code Description

set_page_length slines YZ Set page length to #1 lines
(use tparm)

of an inch

set_right_margin smgr MR Set right margin at current
column

set_right_margin_parm smgrp Zn Set right margin at column #1

set_tab hts st Set a tab in all rows,
current column

set_tb_margin smgtb MT Sets both top and bottom
margins

set_top_margin smgt Zo Set top margin at current line

set_top_margin_parm smgtp Zp Set top (bottom) margin
at line #1 (#2)

set_window wind wi Current window is lines
#1-#2 cols #3-#4

start_bit_image sbim Zq Start printing bit image
graphics

start_char_set_def scsd Zr Start definition of a
character set

stop_bit_image rbim Zs End printing bit image
graphics

stop_char_set_def rcsd Zt End definition of a
character set

subscript_characters subcs Zu List of “subscript-able”
characters

superscript_characters supcs Zv List of “superscript-able”
characters

tab ht ta Tab to next 8-space hardware
tab stop

these_cause_cr docr Zw Printing any of these chars
causes cr

to_status_line tsl ts Go to status line, col #1

tone tone TO Select touch tone dialing

user0 u0 u0 User string 0

476 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Cap- Termcap

Variable name Code Description

user1 u1 u1 User string 1

user2 u2 u2 User string 2

user3 u3 u3 User string 3

user4 u4 u4 User string 4

user5 u5 u5 User string 5

user6 u6 u6 User string 6

user7 u7 u7 User string 7

user8 u8 u8 User string 8

user9 u9 u9 User string 9

underline_char uc uc Underscore one char and
move past it

up_half_line hu hu Half-line up (reverse 1/2
linefeed)

wait_tone wait WA Wait for dial tone

xoff_character xoffc XF X-off character

xon_character xonc XN X-on character

zero_motion zerom Zx No motion for the subsequent
character

Sample Entry The following entry, which describes the AT&T 610 terminal, is among the more
complex entries in the terminfo file as of this writing.

610|610bct|ATT610|att610|AT&T610;80column;98key keyboard
am, eslok, hs, mir, msgr, xenl, xon,
cols#80, it#8, lh#2, lines#24, lw#8, nlab#8, wsl#80,
acsc=‘‘aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
bel=^G, blink=\E[5m, bold=\E[1m, cbt=\E[Z,
civis=\E[?25l, clear=\E[H\E[J, cnorm=\E[?25h\E[?12l,
cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cub1=\b,
cud=\E[%p1%dB, cud1=\E[B, cuf=\E[%p1%dC, cuf1=\E[C,
cup=\E[%i%p1%d;%p2%dH, cuu=\E[%p1%dA, cuu1=\E[A,
cvvis=\E[?12;25h, dch=\E[%p1%dP, dch1=\E[P, dim=\E[2m,
dl=\E[%p1%dM, dl1=\E[M, ed=\E[J, el=\E[K, el1=\E[1K,
flash=\E[?5h$<200>\E[?5l, fsl=\E8, home=\E[H, ht=\t,
ich=\E[%p1%d@, il=\E[%p1%dL, il1=\E[L, ind=\ED, .ind=\ED$<9>,
invis=\E[8m,
is1=\E[8;0 | \E[?3;4;5;13;15l\E[13;20l\E[?7h\E[12h\E(B\E)0,
is2=\E[0m^O, is3=\E(B\E)0, kLFT=\E[\s@, kRIT=\E[\sA,
kbs=^H, kcbt=\E[Z, kclr=\E[2J, kcub1=\E[D, kcud1=\E[B,
kcuf1=\E[C, kcuu1=\E[A, kf1=\EOc, kf10=\ENp,

Last modified 9 Jul 1996 SunOS 5.8 477

terminfo(4) File Formats

kf11=\ENq, kf12=\ENr, kf13=\ENs, kf14=\ENt, kf2=\EOd,
kf3=\EOe, kf4=\EOf, kf5=\EOg, kf6=\EOh, kf7=\EOi,
kf8=\EOj, kf9=\ENo, khome=\E[H, kind=\E[S, kri=\E[T,
ll=\E[24H, mc4=\E[?4i, mc5=\E[?5i, nel=\EE,
pfxl=\E[%p1%d;%p2%l%02dq%?%p1%{9}%<%t\s\s\sF%p1%1d\s\s\s\s\s

\s\s\s\s\s\s%;%p2%s,
pln=\E[%p1%d;0;0;0q%p2%:-16.16s, rc=\E8, rev=\E[7m,
ri=\EM, rmacs=^O, rmir=\E[4l, rmln=\E[2p, rmso=\E[m,
rmul=\E[m, rs2=\Ec\E[?3l, sc=\E7,
sgr=\E[0%?%p6%t;1%;%?%p5%t;2%;%?%p2%t;4%;%?%p4%t;5%;

%?%p3%p1% | %t;7%;%?%p7%t;8%;m%?%p9%t^N%e^O%;,
sgr0=\E[m^O, smacs=^N, smir=\E[4h, smln=\E[p,
smso=\E[7m, smul=\E[4m, tsl=\E7\E[25;%i%p1%dx,

Types of Capabilities
in the Sample Entry

The sample entry shows the formats for the three types of terminfo capabilities
listed: Boolean, numeric, and string. All capabilities specified in the terminfo
source file must be followed by commas, including the last capability in the
source file. In terminfo source files, capabilities are referenced by their
capability names (as shown in the previous tables).

Boolean capabilities are specified simply by their comma separated cap names.

Numeric capabilities are followed by the character ‘#’ and then a positive integer
value. Thus, in the sample, cols (which shows the number of columns available
on a device) is assigned the value 80 for the AT&T 610. (Values for numeric
capabilities may be specified in decimal, octal, or hexadecimal, using normal C
programming language conventions.)

Finally, string-valued capabilities such as el (clear to end of line sequence) are
listed by a two- to five-character capname, an ‘=’, and a string ended by the next
occurrence of a comma. A delay in milliseconds may appear anywhere in such a
capability, preceded by $ and enclosed in angle brackets, as in el=\EK$<3> .
Padding characters are supplied by tput . The delay can be any of the following:
a number, a number followed by an asterisk, such as 5* , a number followed by
a slash, such as 5/ , or a number followed by both, such as 5*/ . A ‘*’ shows
that the padding required is proportional to the number of lines affected by the
operation, and the amount given is the per-affected-unit padding required. (In
the case of insert characters, the factor is still the number of lines affected. This
is always 1 unless the device has in and the software uses it.) When a ‘*’ is
specified, it is sometimes useful to give a delay of the form 3.5 to specify a delay
per unit to tenths of milliseconds. (Only one decimal place is allowed.)

A ‘/’ indicates that the padding is mandatory. If a device has xon defined,
the padding information is advisory and will only be used for cost estimates
or when the device is in raw mode. Mandatory padding will be transmitted
regardless of the setting of xon . If padding (whether advisory or mandatory)
is specified for bel or flash , however, it will always be used, regardless of
whether xon is specified.

478 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

terminfo offers notation for encoding special characters. Both \E and \e map
to an ESCAPE character, ^x maps to a control x for any appropriate x, and
the sequences \n, \l, \r, \t, \b, \f , and \s give a newline, linefeed,
return, tab, backspace, formfeed, and space, respectively. Other escapes include:
\^ for caret (^); \\ for backslash (\); \ , for comma (,); \: for colon (:); and \0
for null. (\0 will actually produce \200 , which does not terminate a string but
behaves as a null character on most devices, providing CS7 is specified. (See
stty (1)). Finally, characters may be given as three octal digits after a backslash
(for example, \123).

Sometimes individual capabilities must be commented out. To do this, put a
period before the capability name. For example, see the second ind in the
example above. Note that capabilities are defined in a left-to-right order and,
therefore, a prior definition will override a later definition.

Preparing
Descriptions

The most effective way to prepare a device description is by imitating the
description of a similar device in terminfo and building up a description
gradually, using partial descriptions with vi to check that they are correct. Be
aware that a very unusual device may expose deficiencies in the ability of the
terminfo file to describe it or the inability of vi to work with that device. To
test a new device description, set the environment variable TERMINFO to the
pathname of a directory containing the compiled description you are working
on and programs will look there rather than in /usr/share/lib/terminfo .
To get the padding for insert-line correct (if the device manufacturer did not
document it) a severe test is to comment out xon , edit a large file at 9600 baud
with vi , delete 16 or so lines from the middle of the screen, and then press the u
key several times quickly. If the display is corrupted, more padding is usually
needed. A similar test can be used for insert-character.

Section 1-1: Basic
Capabilities

The number of columns on each line for the device is given by the cols numeric
capability. If the device has a screen, then the number of lines on the screen is
given by the lines capability. If the device wraps around to the beginning of the
next line when it reaches the right margin, then it should have the amcapability.
If the terminal can clear its screen, leaving the cursor in the home position, then
this is given by the clear string capability. If the terminal overstrikes (rather
than clearing a position when a character is struck over) then it should have
the os capability. If the device is a printing terminal, with no soft copy unit,
specify both hc and os . If there is a way to move the cursor to the left edge
of the current row, specify this as cr . (Normally this will be carriage return,
control M.) If there is a way to produce an audible signal (such as a bell or
a beep), specify it as bel . If, like most devices, the device uses the xon-xoff
flow-control protocol, specify xon .

If there is a way to move the cursor one position to the left (such as backspace),
that capability should be given as cub1 . Similarly, sequences to move to the

Last modified 9 Jul 1996 SunOS 5.8 479

terminfo(4) File Formats

right, up, and down should be given as cuf1 , cuu1 , and cud1 , respectively.
These local cursor motions must not alter the text they pass over; for example,
you would not normally use “cuf1 =\s” because the space would erase the
character moved over.

A very important point here is that the local cursor motions encoded in
terminfo are undefined at the left and top edges of a screen terminal. Programs
should never attempt to backspace around the left edge, unless bw is specified,
and should never attempt to go up locally off the top. To scroll text up, a program
goes to the bottom left corner of the screen and sends the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends
the ri (reverse index) string. The strings ind and ri are undefined when not on
their respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin . These
versions have the same semantics as ind and ri , except that they take one
parameter and scroll the number of lines specified by that parameter. They are
also undefined except at the appropriate edge of the screen.

The amcapability tells whether the cursor sticks at the right edge of the screen
when text is output, but this does not necessarily apply to a cuf1 from the last
column. Backward motion from the left edge of the screen is possible only when
bw is specified. In this case, cub1 will move to the right edge of the previous
row. If bw is not given, the effect is undefined. This is useful for drawing a box
around the edge of the screen, for example. If the device has switch selectable
automatic margins, amshould be specified in the terminfo source file. In this
case, initialization strings should turn on this option, if possible. If the device has
a command that moves to the first column of the next line, that command can be
given as nel (newline). It does not matter if the command clears the remainder
of the current line, so if the device has no cr and lf it may still be possible to
craft a working nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus the
AT&T 5320 hardcopy terminal is described as follows:

5320|att5320|AT&T 5320 hardcopy terminal,
am, hc, os,
cols#132,
bel=^G, cr=\r, cub1=\b, cnd1=\n,
dch1=\E[P, dl1=\E[M,
ind=\n,

while the Lear Siegler ADM−3 is described as

adm3 | lsi adm3,
am, bel=^G, clear=^Z, cols#80, cr=^M, cub1=^H,
cud1=^J, ind=^J, lines#24,

480 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Section 1-2:
Parameterized Strings

Cursor addressing and other strings requiring parameters are described by a
parameterized string capability, with printf -like escapes (%x) in it. For example,
to address the cursor, the cup capability is given, using two parameters: the row
and column to address to. (Rows and columns are numbered from zero and
refer to the physical screen visible to the user, not to any unseen memory.) If the
terminal has memory relative cursor addressing, that can be indicated by mrcup .

The parameter mechanism uses a stack and special %codes to manipulate the
stack in the manner of Reverse Polish Notation (postfix). Typically a sequence
will push one of the parameters onto the stack and then print it in some format.
Often more complex operations are necessary. Operations are in postfix form
with the operands in the usual order. That is, to subtract 5 from the first
parameter, one would use %p1%{5}%−.

The %encodings have the following meanings:
%% outputs ‘%’

%[[:] flags][width[.precision]][doxXs] as in printf , flags are [−+#]
and space

%c print pop gives %c

%p[1-9] push ith parm

%P[a-z] set dynamic variable [a-z] to
pop

%g[a-z] get dynamic variable [a-z]
and push it

%P[A-Z] set static variable [a-z] to pop

%g[A-Z] get static variable [a-z] and
push it

%’c’ push char constant c

%{nn} push decimal constant nn

%l push strlen(pop)

%+ %− %* %/ %m arithmetic (%mis mod):
push(pop integer2 op pop
integer1)

%& %| %^ bit operations: push(pop
integer2 op pop integer1)

%= %> %< logical operations: push(pop
integer2 op pop integer1)

Last modified 9 Jul 1996 SunOS 5.8 481

terminfo(4) File Formats

%A %O logical operations: and, or

%! %~ unary operations: push(op pop)

%i (for ANSI terminals) add 1 to
first parm, if one parm present,
or first two parms, if more than
one parm present

%? expr %t thenpart %e elsepart %; if-then-else, %eelsepart is
optional; else-if’s are possible
ala Algol 68: %? c1 %t b1 %e c2
%t b2 %e c3 %t b3 %e c4 %t b4
%e b5%; ci are conditions, bi
are bodies.

If the “−” flag is used with “%[doxXs]”, then a colon (:) must be placed between
the “%” and the “−” to differentiate the flag from the binary “%−” operator,
for example “%:−16.16s ”.

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs
to be sent \E&a12c03Y padded for 6 milliseconds. Note that the order of the
rows and columns is inverted here, and that the row and column are zero-padded
as two digits. Thus its cup capability is: cup=\E&a%p2%2.2dc%p1%2.2dY$<6>

The Micro-Term ACT-IV needs the current row and column sent preceded by a
^T , with the row and column simply encoded in binary, “cup=^T%p1%c%p2%c”.
Devices that use “%c” need to be able to backspace the cursor (cub1), and to
move the cursor up one line on the screen (cuu1). This is necessary because
it is not always safe to transmit \n , ^D, and \r , as the system may change or
discard them. (The library routines dealing with terminfo set tty modes
so that tabs are never expanded, so \t is safe to send. This turns out to be
essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus “cup=\E=%p1%’\s’%+%c%p2%’\s’%+%c ”. After sending
“\E= ”, this pushes the first parameter, pushes the ASCII value for a space (32),
adds them (pushing the sum on the stack in place of the two previous values),
and outputs that value as a character. Then the same is done for the second
parameter. More complex arithmetic is possible using the stack.

Section 1-3: Cursor
Motions

If the terminal has a fast way to home the cursor (to very upper left corner of
screen) then this can be given as home; similarly a fast way of getting to the
lower left-hand corner can be given as ll ; this may involve going up with cuu1
from the home position, but a program should never do this itself (unless ll
does) because it can make no assumption about the effect of moving up from
the home position. Note that the home position is the same as addressing to

482 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

(0,0): to the top left corner of the screen, not of memory. (Thus, the \EH sequence
on Hewlett-Packard terminals cannot be used for home without losing some of
the other features on the terminal.)

If the device has row or column absolute-cursor addressing, these can be given
as single parameter capabilities hpa (horizontal position absolute) and vpa
(vertical position absolute). Sometimes these are shorter than the more general
two-parameter sequence (as with the Hewlett-Packard 2645) and can be used in
preference to cup . If there are parameterized local motions (for example, move n
spaces to the right) these can be given as cud , cub , cuf , and cuu with a single
parameter indicating how many spaces to move. These are primarily useful if
the device does not have cup , such as the Tektronix 4025.

If the device needs to be in a special mode when running a program that uses
these capabilities, the codes to enter and exit this mode can be given as smcup
and rmcup . This arises, for example, from terminals, such as the Concept, with
more than one page of memory. If the device has only memory relative cursor
addressing and not screen relative cursor addressing, a one screen-sized window
must be fixed into the device for cursor addressing to work properly. This is
also used for the Tektronix 4025, where smcup sets the command character to be
the one used by terminfo . If the smcup sequence will not restore the screen
after an rmcup sequence is output (to the state prior to outputting rmcup),
specify nrrmc .

Section 1-4: Area
Clears

If the terminal can clear from the current position to the end of the line, leaving
the cursor where it is, this should be given as el . If the terminal can clear from
the beginning of the line to the current position inclusive, leaving the cursor
where it is, this should be given as el1 . If the terminal can clear from the current
position to the end of the display, then this should be given as ed . ed is only
defined from the first column of a line. (Thus, it can be simulated by a request to
delete a large number of lines, if a true ed is not available.)

Section 1-5:
Insert/Delete Line

If the terminal can open a new blank line before the line where the cursor is,
this should be given as il1 ; this is done only from the first position of a line.
The cursor must then appear on the newly blank line. If the terminal can delete
the line which the cursor is on, then this should be given as dl1 ; this is done
only from the first position on the line to be deleted. Versions of il1 and dl1
which take a single parameter and insert or delete that many lines can be given
as il and dl .

If the terminal has a settable destructive scrolling region (like the VT100) the
command to set this can be described with the csr capability, which takes
two parameters: the top and bottom lines of the scrolling region. The cursor
position is, alas, undefined after using this command. It is possible to get the
effect of insert or delete line using this command — the sc and rc (save and
restore cursor) commands are also useful. Inserting lines at the top or bottom of

Last modified 9 Jul 1996 SunOS 5.8 483

terminfo(4) File Formats

the screen can also be done using ri or ind on many terminals without a true
insert/delete line, and is often faster even on terminals with those features.

To determine whether a terminal has destructive scrolling regions or
non-destructive scrolling regions, create a scrolling region in the middle of the
screen, place data on the bottom line of the scrolling region, move the cursor to
the top line of the scrolling region, and do a reverse index (ri) followed by a
delete line (dl1) or index (ind). If the data that was originally on the bottom
line of the scrolling region was restored into the scrolling region by the dl1
or ind , then the terminal has non-destructive scrolling regions. Otherwise,
it has destructive scrolling regions. Do not specify csr if the terminal has
non-destructive scrolling regions, unless ind , ri , indn , rin , dl , and dl1 all
simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which all
commands affect, it should be given as the parameterized string wind . The four
parameters are the starting and ending lines in memory and the starting and
ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be
given; if display memory can be retained below, then db should be given. These
indicate that deleting a line or scrolling a full screen may bring non-blank lines
up from below or that scrolling back with ri may bring down non-blank lines.

Section 1-6:
Insert/Delete

Character

There are two basic kinds of intelligent terminals with respect to insert/delete
character operations which can be described using terminfo. The most
common insert/delete character operations affect only the characters on the
current line and shift characters off the end of the line rigidly. Other terminals,
such as the Concept 100 and the Perkin Elmer Owl, make a distinction between
typed and untyped blanks on the screen, shifting upon an insert or delete only to
an untyped blank on the screen which is either eliminated, or expanded to two
untyped blanks. You can determine the kind of terminal you have by clearing the
screen and then typing text separated by cursor motions. Type “abc def ”
using local cursor motions (not spaces) between the abc and the def . Then
position the cursor before the abc and put the terminal in insert mode. If typing
characters causes the rest of the line to shift rigidly and characters to fall off the
end, then your terminal does not distinguish between blanks and untyped
positions. If the abc shifts over to the def which then move together around
the end of the current line and onto the next as you insert, you have the second
type of terminal, and should give the capability in , which stands for “insert
null.” While these are two logically separate attributes (one line versus multiline
insert mode, and special treatment of untyped spaces) we have seen no terminals
whose insert mode cannot be described with the single attribute.

terminfo can describe both terminals that have an insert mode and terminals
which send a simple sequence to open a blank position on the current line. Give

484 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

as smir the sequence to get into insert mode. Give as rmir the sequence to leave
insert mode. Now give as ich1 any sequence needed to be sent just before
sending the character to be inserted. Most terminals with a true insert mode
will not give ich1 ; terminals that send a sequence to open a screen position
should give it here. (If your terminal has both, insert mode is usually preferable
to ich1 . Do not give both unless the terminal actually requires both to be
used in combination.) If post-insert padding is needed, give this as a number
of milliseconds padding in ip (a string option). Any other sequence which
may need to be sent after an insert of a single character may also be given in
ip . If your terminal needs both to be placed into an ‘insert mode’ and a special
code to precede each inserted character, then both smir /rmir and ich1 can
be given, and both will be used. The ich capability, with one parameter, n,
will insert n blanks.

If padding is necessary between characters typed while not in insert mode, give
this as a number of milliseconds padding in rmp .

It is occasionally necessary to move around while in insert mode to delete
characters on the same line (for example, if there is a tab after the insertion
position). If your terminal allows motion while in insert mode you can give the
capability mir to speed up inserting in this case. Omitting mir will affect only
speed. Some terminals (notably Datamedia’s) must not have mir because
of the way their insert mode works.

Finally, you can specify dch1 to delete a single character, dch with one
parameter, n, to delete n characters, and delete mode by giving smdc and rmdc
to enter and exit delete mode (any mode the terminal needs to be placed in
for dch1 to work).

A command to erase n characters (equivalent to outputting n blanks without
moving the cursor) can be given as ech with one parameter.

Section 1-7:
Highlighting,

Underlining, and
Visible Bells

Your device may have one or more kinds of display attributes that allow you to
highlight selected characters when they appear on the screen. The following
display modes (shown with the names by which they are set) may be available:
a blinking screen (blink), bold or extra-bright characters (bold), dim or
half-bright characters (dim), blanking or invisible text (invis), protected text
(prot), a reverse-video screen (rev), and an alternate character set (smacs to
enter this mode and rmacs to exit it). (If a command is necessary before you
can enter alternate character set mode, give the sequence in enacs or "enable
alternate-character-set" mode.) Turning on any of these modes singly may or
may not turn off other modes.

sgr0 should be used to turn off all video enhancement capabilities. It should
always be specified because it represents the only way to turn off some
capabilities, such as dim or blink .

Last modified 9 Jul 1996 SunOS 5.8 485

terminfo(4) File Formats

You should choose one display method as standout mode and use it to highlight
error messages and other kinds of text to which you want to draw attention.
Choose a form of display that provides strong contrast but that is easy on the
eyes. (We recommend reverse-video plus half-bright or reverse-video alone.)
The sequences to enter and exit standout mode are given as smso and rmso ,
respectively. If the code to change into or out of standout mode leaves one or
even two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then
xmc should be given to tell how many spaces are left.

Sequences to begin underlining and end underlining can be specified as smul
and rmul , respectively. If the device has a sequence to underline the current
character and to move the cursor one space to the right (such as the Micro-Term
MIME), this sequence can be specified as uc .

Terminals with the “magic cookie” glitch (xmc) deposit special “cookies”
when they receive mode-setting sequences, which affect the display algorithm
rather than having extra bits for each character. Some terminals, such as the
Hewlett-Packard 2621, automatically leave standout mode when they move to a
new line or the cursor is addressed. Programs using standout mode should exit
standout mode before moving the cursor or sending a newline, unless the msgr
capability, asserting that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell
replacement), then this can be given as flash ; it must not move the cursor. A
good flash can be done by changing the screen into reverse video, pad for 200
ms, then return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on the
bottom line (to make, for example, a non-blinking underline into an easier to find
block or blinking underline) give this sequence as cvvis . The boolean chts
should also be given. If there is a way to make the cursor completely invisible,
give that as civis . The capability cnorm should be given which undoes the
effects of either of these modes.

If your terminal generates underlined characters by using the underline
character (with no special sequences needed) even though it does not otherwise
overstrike characters, then you should specify the capability ul . For devices
on which a character overstriking another leaves both characters on the screen,
specify the capability os . If overstrikes are erasable with a blank, then this
should be indicated by specifying eo .

If there is a sequence to set arbitrary combinations of modes, this should be given
as sgr (set attributes), taking nine parameters. Each parameter is either 0 or
non-zero, as the corresponding attribute is on or off. The nine parameters are, in
order: standout, underline, reverse, blink, dim, bold, blank, protect, alternate
character set. Not all modes need to be supported by sgr ; only those for which
corresponding separate attribute commands exist should be supported. For

486 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

example, let’s assume that the terminal in question needs the following escape
sequences to turn on various modes.

tparm

parameter attribute escape sequence

none \E[0m

p1 standout \E[0;4;7m

p2 underline \E[0;3m

p3 reverse \E[0;4m

p4 blink \E[0;5m

p5 dim \E[0;7m

p6 bold \E[0;3;4m

p7 invis \E[0;8m

p8 protect not available

p9 altcharset ^O (off) ^N (on)

Note that each escape sequence requires a 0 to turn off other modes before
turning on its own mode. Also note that, as suggested above, standout is set up to
be the combination of reverse and dim. Also, because this terminal has no bold
mode, bold is set up as the combination of reverse and underline. In addition, to
allow combinations, such as underline+blink, the sequence to use would be
\E[0;3;5m . The terminal doesn’t have protect mode, either, but that cannot be
simulated in any way, so p8 is ignored. The altcharset mode is different in that it
is either ^O or ^N, depending on whether it is off or on. If all modes were to be
turned on, the sequence would be \E[0;3;4;5;7;8m^N .

Now look at when different sequences are output. For example, ;3 is output
when either p2 or p6 is true, that is, if either underline or bold modes are turned
on. Writing out the above sequences, along with their dependencies, gives
the following:

sequence when to output terminfo translation

\E[0 always \E[0

;3 if p2 or p6 %?%p2%p6%|%t;3%;

;4 if p1 or p3 or p6 %?%p1%p3%|%p6%|%t;4%;

;5 if p4 %?%p4%t;5%;

;7 if p1 or p5 %?%p1%p5%|%t;7%;

Last modified 9 Jul 1996 SunOS 5.8 487

terminfo(4) File Formats

sequence when to output terminfo translation

;8 if p7 %?%p7%t;8%;

m always m

^N or ^O if p9 ^N , else ^O %?%p9%t^N%e^O%;

Putting this all together into the sgr sequence gives:

sgr=\E[0%?%p2%p6%|%t;3%;%?%p1%p3%|%p6%
|%t;4%;%?%p5%t;5%;%?%p1%p5%
|%t;7%;%?%p7%t;8%;m%?%p9%t^N%e^O%;,

Remember that sgr and sgr0 must always be specified.

Section 1-8: Keypad If the device has a keypad that transmits sequences when the keys are pressed,
this information can also be specified. Note that it is not possible to handle
devices where the keypad only works in local (this applies, for example, to the
unshifted Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not
transmit, specify these sequences as smkx and rmkx . Otherwise the keypad is
assumed to always transmit.

The sequences sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kcub1, kcuf1, kcuu1, kcud1, and khome,
respectively. If there are function keys such as f0, f1, ..., f63, the sequences they
send can be specified as kf0, kf1, ..., kf63 . If the first 11 keys have labels
other than the default f0 through f10, the labels can be given as lf0, lf1,
..., lf10 . The codes transmitted by certain other special keys can be given:
kll (home down), kbs (backspace), ktbc (clear all tabs), kctab (clear the tab
stop in this column), kclr (clear screen or erase key), kdch1 (delete character),
kdl1 (delete line), krmir (exit insert mode), kel (clear to end of line), ked (clear
to end of screen), kich1 (insert character or enter insert mode), kil1 (insert
line), knp (next page), kpp (previous page), kind (scroll forward/down), kri
(scroll backward/up), khts (set a tab stop in this column). In addition, if the
keypad has a 3 by 3 array of keys including the four arrow keys, the other five
keys can be given as ka1 , ka3 , kb2 , kc1 , and kc3 . These keys are useful when
the effects of a 3 by 3 directional pad are needed. Further keys are defined
above in the capabilities list.

Strings to program function keys can be specified as pfkey , pfloc , and pfx . A
string to program screen labels should be specified as pln . Each of these strings
takes two parameters: a function key identifier and a string to program it with.
pfkey causes pressing the given key to be the same as the user typing the given
string; pfloc causes the string to be executed by the terminal in local mode; and
pfx causes the string to be transmitted to the computer. The capabilities nlab ,
lw and lh define the number of programmable screen labels and their width

488 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

and height. If there are commands to turn the labels on and off, give them in
smln and rmln . smln is normally output after one or more pln sequences to
make sure that the change becomes visible.

Section 1-9: Tabs and
Initialization

If the device has hardware tabs, the command to advance to the next tab stop can
be given as ht (usually control I). A “backtab” command that moves leftward to
the next tab stop can be given as cbt . By convention, if tty modes show that
tabs are being expanded by the computer rather than being sent to the device,
programs should not use ht or cbt (even if they are present) because the user
may not have the tab stops properly set. If the device has hardware tabs that
are initially set every n spaces when the device is powered up, the numeric
parameter it is given, showing the number of spaces the tabs are set to. This
is normally used by tput init (see tput (1)) to determine whether to set
the mode for hardware tab expansion and whether to set the tab stops. If the
device has tab stops that can be saved in nonvolatile memory, the terminfo
description can assume that they are properly set. If there are commands to set
and clear tab stops, they can be given as tbc (clear all tab stops) and hts (set a
tab stop in the current column of every row).

Other capabilities include: is1 , is2 , and is3 , initialization strings for the
device; iprog , the path name of a program to be run to initialize the device; and
if , the name of a file containing long initialization strings. These strings are
expected to set the device into modes consistent with the rest of the terminfo
description. They must be sent to the device each time the user logs in and be
output in the following order: run the program iprog ; output is1 ; output
is2 ; set the margins using mgc, smgl and smgr ; set the tabs using tbc and
hts ; print the file if ; and finally output is3 . This is usually done using the
init option of tput .

Most initialization is done with is2 . Special device modes can be set up
without duplicating strings by putting the common sequences in is2 and
special cases in is1 and is3 . Sequences that do a reset from a totally unknown
state can be given as rs1 , rs2 , rf , and rs3 , analogous to is1 , is2 , is3 ,
and if . (The method using files, if and rf , is used for a few terminals, from
/usr/share/lib/tabset/* ; however, the recommended method is to use the
initialization and reset strings.) These strings are output by tput reset, which
is used when the terminal gets into a wedged state. Commands are normally
placed in rs1 , rs2 , rs3 , and rf only if they produce annoying effects on the
screen and are not necessary when logging in. For example, the command to set
a terminal into 80-column mode would normally be part of is2 , but on some
terminals it causes an annoying glitch on the screen and is not normally needed
because the terminal is usually already in 80-column mode.

If a more complex sequence is needed to set the tabs than can be described by
using tbc and hts , the sequence can be placed in is2 or if .

Last modified 9 Jul 1996 SunOS 5.8 489

terminfo(4) File Formats

Any margin can be cleared with mgc. (For instructions on how to specify
commands to set and clear margins, see "Margins" below under "PRINTER
CAPABILITIES.")

Section 1-10: Delays Certain capabilities control padding in the tty driver. These are primarily
needed by hard-copy terminals, and are used by tput init to set tty modes
appropriately. Delays embedded in the capabilities cr , ind , cub1 , ff , and
tab can be used to set the appropriate delay bits to be set in the tty driver. If
pb (padding baud rate) is given, these values can be ignored at baud rates
below the value of pb .

Section 1-11: Status
Lines

If the terminal has an extra “status line” that is not normally used by software,
this fact can be indicated. If the status line is viewed as an extra line below the
bottom line, into which one can cursor address normally (such as the Heathkit
h19’s 25th line, or the 24th line of a VT100 which is set to a 23-line scrolling
region), the capability hs should be given. Special strings that go to a given
column of the status line and return from the status line can be given as tsl and
fsl . (fsl must leave the cursor position in the same place it was before tsl .
If necessary, the sc and rc strings can be included in tsl and fsl to get this
effect.) The capability tsl takes one parameter, which is the column number of
the status line the cursor is to be moved to.

If escape sequences and other special commands, such as tab, work while in the
status line, the flag eslok can be given. A string which turns off the status line
(or otherwise erases its contents) should be given as dsl . If the terminal has
commands to save and restore the position of the cursor, give them as sc and
rc . The status line is normally assumed to be the same width as the rest of the
screen, for example, cols . If the status line is a different width (possibly because
the terminal does not allow an entire line to be loaded) the width, in columns,
can be indicated with the numeric parameter wsl .

Section 1-12: Line
Graphics

If the device has a line drawing alternate character set, the mapping of glyph to
character would be given in acsc . The definition of this string is based on the
alternate character set used in the DEC VT100 terminal, extended slightly with
some characters from the AT&T 4410v1 terminal.

vt100+

glyph name character

arrow pointing right +

arrow pointing left ,

arrow pointing down .

solid square block 0

lantern symbol I

490 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

vt100+

glyph name character

arrow pointing up −

diamond ‘

checker board (stipple) a

degree symbol f

plus/minus g

board of squares h

lower right corner j

upper right corner k

upper left corner l

lower left corner m

plus n

scan line 1 o

horizontal line q

scan line 9 s

left tee t

right tee u

bottom tee v

top tee w

vertical line x

bullet ~

The best way to describe a new device’s line graphics set is to add a third
column to the above table with the characters for the new device that produce
the appropriate glyph when the device is in the alternate character set mode.
For example,

vt100+ new tty

glyph name char char

upper left corner l R

lower left corner m F

upper right corner k T

Last modified 9 Jul 1996 SunOS 5.8 491

terminfo(4) File Formats

vt100+ new tty

glyph name char char

lower right corner j G

horizontal line q ,

vertical line x .

Now write down the characters left to right, as in “acsc=lRmFkTjGq\,x. ”.

In addition, terminfo allows you to define multiple character sets. See Section
2-5 for details.

Section 1-13: Color
Manipulation

Let us define two methods of color manipulation: the Tektronix method and the
HP method. The Tektronix method uses a set of N predefined colors (usually
8) from which a user can select "current" foreground and background colors.
Thus a terminal can support up to N colors mixed into N*N color-pairs to be
displayed on the screen at the same time. When using an HP method the user
cannot define the foreground independently of the background, or vice-versa.
Instead, the user must define an entire color-pair at once. Up to M color-pairs,
made from 2*M different colors, can be defined this way. Most existing color
terminals belong to one of these two classes of terminals.

The numeric variables colors and pairs define the number of colors and
color-pairs that can be displayed on the screen at the same time. If a terminal can
change the definition of a color (for example, the Tektronix 4100 and 4200 series
terminals), this should be specified with ccc (can change color). To change the
definition of a color (Tektronix 4200 method), use initc (initialize color). It
requires four arguments: color number (ranging from 0 to colors −1) and
three RGB (red, green, and blue) values or three HLS colors (Hue, Lightness,
Saturation). Ranges of RGB and HLS values are terminal dependent.

Tektronix 4100 series terminals only use HLS color notation. For such terminals
(or dual-mode terminals to be operated in HLS mode) one must define a boolean
variable hls ; that would instruct the curses init_color routine to convert
its RGB arguments to HLS before sending them to the terminal. The last three
arguments to the initc string would then be HLS values.

If a terminal can change the definitions of colors, but uses a color notation
different from RGB and HLS, a mapping to either RGB or HLS must be
developed.

To set current foreground or background to a given color, use setaf (set ANSI
foreground) and setab (set ANSI background). They require one parameter:
the number of the color. To initialize a color-pair (HP method), use initp
(initialize pair). It requires seven parameters: the number of a color-pair

492 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

(range=0 to pairs −1), and six RGB values: three for the foreground followed
by three for the background. (Each of these groups of three should be in the
order RGB.) When initc or initp are used, RGB or HLS arguments should
be in the order "red, green, blue" or "hue, lightness, saturation"), respectively.
To make a color-pair current, use scp (set color-pair). It takes one parameter,
the number of a color-pair.

Some terminals (for example, most color terminal emulators for PCs) erase areas
of the screen with current background color. In such cases, bce (background
color erase) should be defined. The variable op (original pair) contains a
sequence for setting the foreground and the background colors to what they
were at the terminal start-up time. Similarly, oc (original colors) contains a
control sequence for setting all colors (for the Tektronix method) or color-pairs
(for the HP method) to the values they had at the terminal start-up time.

Some color terminals substitute color for video attributes. Such video attributes
should not be combined with colors. Information about these video attributes
should be packed into the ncv (no color video) variable. There is a one-to-one
correspondence between the nine least significant bits of that variable and the
video attributes. The following table depicts this correspondence.

Bit Decimal

Attribute Position Value

A_STANDOUT 0 1

A_UNDERLINE 1 2

A_REVERSE 2 4

A_BLINK 3 8

A_DIM 4 16

A_BOLD 5 32

A_INVIS 6 64

A_PROTECT 7 128

A_ALTCHARSET 8 256

When a particular video attribute should not be used with colors, the
corresponding ncv bit should be set to 1; otherwise it should be set to zero. To
determine the information to pack into the ncv variable, you must add together
the decimal values corresponding to those attributes that cannot coexist with
colors. For example, if the terminal uses colors to simulate reverse video (bit
number 2 and decimal value 4) and bold (bit number 5 and decimal value 32),
the resulting value for ncv will be 36 (4 + 32).

Last modified 9 Jul 1996 SunOS 5.8 493

terminfo(4) File Formats

Section 1-14:
Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can
be given as pad . Only the first character of the pad string is used. If the terminal
does not have a pad character, specify npc .

If the terminal can move up or down half a line, this can be indicated with hu
(half-line up) and hd (half-line down). This is primarily useful for superscripts
and subscripts on hardcopy terminals. If a hardcopy terminal can eject to the
next page (form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given number of times
(to save time transmitting a large number of identical characters) this can
be indicated with the parameterized string rep . The first parameter is the
character to be repeated and the second is the number of times to repeat it. Thus,
tparm(repeat_char, ’x’, 10) is the same as xxxxxxxxxx.

If the terminal has a settable command character, such as the Tektronix 4025,
this can be indicated with cmdch. A prototype command character is chosen
which is used in all capabilities. This character is given in the cmdch capability
to identify it. The following convention is supported on some systems: If the
environment variable CCexists, all occurrences of the prototype character are
replaced with the character in CC.

Terminal descriptions that do not represent a specific kind of known terminal,
such as switch , dialup, patch , and network, should include the gn (generic)
capability so that programs can complain that they do not know how to talk
to the terminal. (This capability does not apply to virtual terminal descriptions
for which the escape sequences are known.) If the terminal is one of those
supported by the system virtual terminal protocol, the terminal number can be
given as vt . A line-turn-around sequence to be transmitted before doing reads
should be specified in rfi .

If the device uses xon/xoff handshaking for flow control, give xon . Padding
information should still be included so that routines can make better decisions
about costs, but actual pad characters will not be transmitted. Sequences to turn
on and off xon/xoff handshaking may be given in smxon and rmxon . If the
characters used for handshaking are not ^S and ^Q, they may be specified
with xonc and xoffc .

If the terminal has a “meta key” which acts as a shift key, setting the 8th bit of any
character transmitted, this fact can be indicated with km. Otherwise, software
will assume that the 8th bit is parity and it will usually be cleared. If strings exist
to turn this “meta mode” on and off, they can be given as smmand rmm.

If the terminal has more lines of memory than will fit on the screen at once, the
number of lines of memory can be indicated with lm . A value of lm #0 indicates
that the number of lines is not fixed, but that there is still more memory than fits
on the screen.

494 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Media copy strings which control an auxiliary printer connected to the terminal
can be given as mc0: print the contents of the screen, mc4: turn off the printer,
and mc5: turn on the printer. When the printer is on, all text sent to the terminal
will be sent to the printer. A variation, mc5p, takes one parameter, and leaves the
printer on for as many characters as the value of the parameter, then turns the
printer off. The parameter should not exceed 255. If the text is not displayed on
the terminal screen when the printer is on, specify mc5i (silent printer). All text,
including mc4, is transparently passed to the printer while an mc5p is in effect.

Section 1-15: Special
Cases

The working model used by terminfo fits most terminals reasonably well.
However, some terminals do not completely match that model, requiring special
support by terminfo . These are not meant to be construed as deficiencies in the
terminals; they are just differences between the working model and the actual
hardware. They may be unusual devices or, for some reason, do not have all
the features of the terminfo model implemented.

Terminals that cannot display tilde (~) characters, such as certain Hazeltine
terminals, should indicate hz .

Terminals that ignore a linefeed immediately after an amwrap, such as the
Concept 100, should indicate xenl . Those terminals whose cursor remains on
the right-most column until another character has been received, rather than
wrapping immediately upon receiving the right-most character, such as the
VT100, should also indicate xenl .

If el is required to get rid of standout (instead of writing normal text on top
of it), xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks,
should indicate xt (destructive tabs). This capability is also taken to mean that it
is not possible to position the cursor on top of a “magic cookie.” Therefore, to
erase standout mode, it is necessary, instead, to use delete and insert line.

Those Beehive Superbee terminals which do not transmit the escape or control−C
characters, should specify xsb , indicating that the f1 key is to be used for escape
and the f2 key for control C.

Section 1-16: Similar
Terminals

If there are two very similar terminals, one can be defined as being just like the
other with certain exceptions. The string capability use can be given with
the name of the similar terminal. The capabilities given before use override
those in the terminal type invoked by use . A capability can be canceled by
placing xx@to the left of the capability definition, where xx is the capability.
For example, the entry

att4424-2|Teletype4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

Last modified 9 Jul 1996 SunOS 5.8 495

terminfo(4) File Formats

defines an AT&T4424 terminal that does not have the rev , sgr , and smul
capabilities, and hence cannot do highlighting. This is useful for different modes
for a terminal, or for different user preferences. More than one use capability
may be given.

PART 2: PRINTER
CAPABILITIES

The terminfo database allows you to define capabilities of printers as well as
terminals. To find out what capabilities are available for printers as well as for
terminals, see the two lists under "DEVICE CAPABILITIES" that list capabilities
by variable and by capability name.

Section 2-1:
Rounding Values

Because parameterized string capabilities work only with integer values,
we recommend that terminfo designers create strings that expect numeric
values that have been rounded. Application designers should note this and
should always round values to the nearest integer before using them with a
parameterized string capability.

Section 2-2: Printer
Resolution

A printer’s resolution is defined to be the smallest spacing of characters it
can achieve. In general printers have independent resolution horizontally
and vertically. Thus the vertical resolution of a printer can be determined by
measuring the smallest achievable distance between consecutive printing
baselines, while the horizontal resolution can be determined by measuring the
smallest achievable distance between the left-most edges of consecutive printed,
identical, characters.

All printers are assumed to be capable of printing with a uniform horizontal
and vertical resolution. The view of printing that terminfo currently presents
is one of printing inside a uniform matrix: All characters are printed at fixed
positions relative to each “cell” in the matrix; furthermore, each cell has the same
size given by the smallest horizontal and vertical step sizes dictated by the
resolution. (The cell size can be changed as will be seen later.)

Many printers are capable of “proportional printing,” where the horizontal
spacing depends on the size of the character last printed. terminfo does
not make use of this capability, although it does provide enough capability
definitions to allow an application to simulate proportional printing.

A printer must not only be able to print characters as close together as the
horizontal and vertical resolutions suggest, but also of “moving” to a position an
integral multiple of the smallest distance away from a previous position. Thus
printed characters can be spaced apart a distance that is an integral multiple of
the smallest distance, up to the length or width of a single page.

Some printers can have different resolutions depending on different “modes.” In
“normal mode,” the existing terminfo capabilities are assumed to work on
columns and lines, just like a video terminal. Thus the old lines capability
would give the length of a page in lines, and the cols capability would give the
width of a page in columns. In “micro mode,” many terminfo capabilities work

496 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

on increments of lines and columns. With some printers the micro mode may be
concomitant with normal mode, so that all the capabilities work at the same time.

Section 2-3:
Specifying Printer

Resolution

The printing resolution of a printer is given in several ways. Each specifies the
resolution as the number of smallest steps per distance:

Specification of Printer Resolution
Characteristic Number of Smallest Steps

orhi Steps per inch horizontally
orvi Steps per inch vertically
orc Steps per column
orl Steps per line

When printing in normal mode, each character printed causes movement to the
next column, except in special cases described later; the distance moved is the
same as the per-column resolution. Some printers cause an automatic movement
to the next line when a character is printed in the rightmost position; the distance
moved vertically is the same as the per-line resolution. When printing in micro
mode, these distances can be different, and may be zero for some printers.

Specification of Printer Resolution
Automatic Motion after Printing

Normal Mode:

orc Steps moved horizontally
orl Steps moved vertically

Micro Mode:

mcs Steps moved horizontally
mls Steps moved vertically

Some printers are capable of printing wide characters. The distance moved
when a wide character is printed in normal mode may be different from when a
regular width character is printed. The distance moved when a wide character
is printed in micro mode may also be different from when a regular character
is printed in micro mode, but the differences are assumed to be related: If the
distance moved for a regular character is the same whether in normal mode or
micro mode (mcs=orc), then the distance moved for a wide character is also the
same whether in normal mode or micro mode. This doesn’t mean the normal
character distance is necessarily the same as the wide character distance, just that
the distances don’t change with a change in normal to micro mode. However,

Last modified 9 Jul 1996 SunOS 5.8 497

terminfo(4) File Formats

if the distance moved for a regular character is different in micro mode from
the distance moved in normal mode (mcs<orc), the micro mode distance is
assumed to be the same for a wide character printed in micro mode, as the
table below shows.

Specification of Printer Resolution
Automatic Motion after Printing Wide Character

Normal Mode or Micro Mode (mcs = orc):
sp
widcs Steps moved horizontally

Micro Mode (mcs < orc):

mcs Steps moved horizontally

There may be control sequences to change the number of columns per inch (the
character pitch) and to change the number of lines per inch (the line pitch). If
these are used, the resolution of the printer changes, but the type of change
depends on the printer:

Specification of Printer Resolution
Changing the Character/Line Pitches

cpi Change character pitch
cpix If set, cpi changes orhi, otherwise changes
orc
lpi Change line pitch
lpix If set, lpi changes orvi, otherwise changes
orl
chr Change steps per column
cvr Change steps per line

The cpi and lpi string capabilities are each used with a single argument, the
pitch in columns (or characters) and lines per inch, respectively. The chr and
cvr string capabilities are each used with a single argument, the number of
steps per column and line, respectively.

Using any of the control sequences in these strings will imply a change in some
of the values of orc , orhi , orl , and orvi . Also, the distance moved when a
wide character is printed, widcs , changes in relation to orc . The distance
moved when a character is printed in micro mode, mcs, changes similarly, with

498 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

one exception: if the distance is 0 or 1, then no change is assumed (see items
marked with * in the following table).

Programs that use cpi , lpi , chr , or cvr should recalculate the printer
resolution (and should recalculate other values— see "Effect of Changing
Printing Resolution" under "Dot-Mapped Graphics").

Specification of Printer Resolution
Effects of Changing the Character/Line Pitches

Before After

Using cpi with cpix clear:
$bold orhi ’$ orhi
$bold orc ’$ $bold orc = bold orhi over V sub italic cpi$

Using cpi with cpix set:
$bold orhi ’$ $bold orhi = bold orc cdot V sub italic cpi$
$bold orc ’$ $bold orc$

Using lpi with lpix clear:
$bold orvi ’$ $bold orvi$
$bold orl ’$ $bold orl = bold orvi over V sub italic lpi$

Using lpi with lpix set:
$bold orvi ’$ $bold orvi = bold orl cdot V sub italic lpi$
$bold orl ’$ $bold orl$

Using chr:
$bold orhi ’$ $bold orhi$
$bold orc ’$ $V sub italic chr$

Using cvr:
$bold orvi ’$ $bold orvi$
$bold orl ’$ $V sub italic cvr$

Using cpi or chr:
$bold widcs ’$ $bold widcs = bold {widcs ’} bold orc over { bold {orc ’} }$
$bold mcs ’$ $bold mcs = bold {mcs ’} bold orc over { bold {orc ’} }$

$V sub italic cpi$, $V sub italic lpi$, $V sub italic chr$, and $V sub italic cvr$ are
the arguments used with cpi , lpi , chr , and cvr , respectively. The prime marks
(’) indicate the old values.

Section 2-4:
Capabilities that

Cause Movement

In the following descriptions, “movement” refers to the motion of the “current
position.” With video terminals this would be the cursor; with some printers this
is the carriage position. Other printers have different equivalents. In general, the
current position is where a character would be displayed if printed.

terminfo has string capabilities for control sequences that cause movement a
number of full columns or lines. It also has equivalent string capabilities for
control sequences that cause movement a number of smallest steps.

Last modified 9 Jul 1996 SunOS 5.8 499

terminfo(4) File Formats

String Capabilities for Motion

mcub1 Move 1 step left
mcuf1 Move 1 step right
mcuu1 Move 1 step up
mcud1 Move 1 step down
mcub Move N steps left
mcuf Move N steps right
mcuu Move N steps up
mcud Move N steps down
mhpa Move N steps from the left
mvpa Move N steps from the top

The latter six strings are each used with a single argument, N.

Sometimes the motion is limited to less than the width or length of a page. Also,
some printers don’t accept absolute motion to the left of the current position.
terminfo has capabilities for specifying these limits.

Limits to Motion

mjump Limit on use of mcub1, mcuf1, mcuu1, mcud1
maddr Limit on use of mhpa, mvpa
xhpa If set, hpa and mhpa can’t move left
xvpa If set, vpa and mvpa can’t move up

If a printer needs to be in a “micro mode” for the motion capabilities described
above to work, there are string capabilities defined to contain the control
sequence to enter and exit this mode. A boolean is available for those printers
where using a carriage return causes an automatic return to normal mode.

Entering/Exiting Micro Mode

smicm Enter micro mode
rmicm Exit micro mode
crxm Using cr exits micro mode

The movement made when a character is printed in the rightmost position varies
among printers. Some make no movement, some move to the beginning of the
next line, others move to the beginning of the same line. terminfo has boolean
capabilities for describing all three cases.

What Happens After Character
Printed in Rightmost Position

sam Automatic move to beginning of same line

500 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

Some printers can be put in a mode where the normal direction of motion is
reversed. This mode can be especially useful when there are no capabilities for
leftward or upward motion, because those capabilities can be built from the
motion reversal capability and the rightward or downward motion capabilities.
It is best to leave it up to an application to build the leftward or upward
capabilities, though, and not enter them in the terminfo database. This allows
several reverse motions to be strung together without intervening wasted steps
that leave and reenter reverse mode.

Entering/Exiting Reverse Modes

slm Reverse sense of horizontal motions
rlm Restore sense of horizontal motions
sum Reverse sense of vertical motions
rum Restore sense of vertical motions

While sense of horizontal motions reversed:
mcub1 Move 1 step right
mcuf1 Move 1 step left
mcub Move N steps right
mcuf Move N steps left
cub1 Move 1 column right
cuf1 Move 1 column left
cub Move N columns right
cuf Move N columns left

While sense of vertical motions reversed:
mcuu1 Move 1 step down
mcud1 Move 1 step up
mcuu Move N steps down
mcud Move N steps up
cuu1 Move 1 line down
cud1 Move 1 line up
cuu Move N lines down
cud Move N lines up

The reverse motion modes should not affect the mvpa and mhpa absolute motion
capabilities. The reverse vertical motion mode should, however, also reverse
the action of the line “wrapping” that occurs when a character is printed in the
right-most position. Thus printers that have the standard terminfo capability
amdefined should experience motion to the beginning of the previous line
when a character is printed in the right-most position under reverse vertical
motion mode.

The action when any other motion capabilities are used in reverse motion
modes is not defined; thus, programs must exit reverse motion modes before
using other motion capabilities.

Two miscellaneous capabilities complete the list of new motion capabilities. One
of these is needed for printers that move the current position to the beginning

Last modified 9 Jul 1996 SunOS 5.8 501

terminfo(4) File Formats

of a line when certain control characters, such as “line-feed” or “form-feed,”
are used. The other is used for the capability of suspending the motion that
normally occurs after printing a character.

Miscellaneous Motion Strings

docr List of control characters causing cr
zerom Prevent auto motion after printing next single character

Margins terminfo provides two strings for setting margins on terminals: one for the left
and one for the right margin. Printers, however, have two additional margins,
for the top and bottom margins of each page. Furthermore, some printers require
not using motion strings to move the current position to a margin and then
fixing the margin there, but require the specification of where a margin should
be regardless of the current position. Therefore terminfo offers six additional
strings for defining margins with printers.

Setting Margins

smgl Set left margin at current column
smgr Set right margin at current column
smgb Set bottom margin at current line
smgt Set top margin at current line
smgbp Set bottom margin at line N
smglp Set left margin at column N
smgrp Set right margin at column N
smgtp Set top margin at line N

The last four strings are used with one or more arguments that give the position
of the margin or margins to set. If both of smglp and smgrp are set, each is
used with a single argument, N, that gives the column number of the left and
right margin, respectively. If both of smgtp and smgbp are set, each is used
to set the top and bottom margin, respectively: smgtp is used with a single
argument, N, the line number of the top margin; however, smgbp is used with
two arguments, N and M, that give the line number of the bottom margin, the
first counting from the top of the page and the second counting from the bottom.
This accommodates the two styles of specifying the bottom margin in different
manufacturers’ printers. When coding a terminfo entry for a printer that has
a settable bottom margin, only the first or second parameter should be used,
depending on the printer. When writing an application that uses smgbp to set
the bottom margin, both arguments must be given.

If only one of smglp and smgrp is set, then it is used with two arguments, the
column number of the left and right margins, in that order. Likewise, if only
one of smgtp and smgbp is set, then it is used with two arguments that give
the top and bottom margins, in that order, counting from the top of the page.
Thus when coding a terminfo entry for a printer that requires setting both

502 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

left and right or top and bottom margins simultaneously, only one of smglp
and smgrp or smgtp and smgbp should be defined; the other should be left
blank. When writing an application that uses these string capabilities, the
pairs should be first checked to see if each in the pair is set or only one is set,
and should then be used accordingly.

In counting lines or columns, line zero is the top line and column zero is the
left-most column. A zero value for the second argument with smgbp means
the bottom line of the page.

All margins can be cleared with mgc.

Shadows, Italics,
Wide Characters

Five new sets of strings describe the capabilities printers have of enhancing
printed text.

Enhanced Printing

sshm Enter shadow-printing mode
rshm Exit shadow-printing mode
sitm Enter italicizing mode
ritm Exit italicizing mode
swidm Enter wide character mode
rwidm Exit wide character mode
ssupm Enter superscript mode
rsupm Exit superscript mode
supcs List of characters available as superscripts
ssubm Enter subscript mode
rsubm Exit subscript mode
subcs List of characters available as subscripts

If a printer requires the sshm control sequence before every character to be
shadow-printed, the rshm string is left blank. Thus programs that find a control
sequence in sshm but none in rshm should use the sshm control sequence before
every character to be shadow-printed; otherwise, the sshm control sequence
should be used once before the set of characters to be shadow-printed, followed
by rshm . The same is also true of each of the sitm /ritm , swidm /rwidm ,
ssupm/rsupm , and ssubm/ rsubm pairs.

Note that terminfo also has a capability for printing emboldened text (bold).
While shadow printing and emboldened printing are similar in that they
“darken” the text, many printers produce these two types of print in slightly
different ways. Generally, emboldened printing is done by overstriking the
same character one or more times. Shadow printing likewise usually involves
overstriking, but with a slight movement up and/or to the side so that the
character is “fatter.”

It is assumed that enhanced printing modes are independent modes, so that it
would be possible, for instance, to shadow print italicized subscripts.

Last modified 9 Jul 1996 SunOS 5.8 503

terminfo(4) File Formats

As mentioned earlier, the amount of motion automatically made after printing a
wide character should be given in widcs .

If only a subset of the printable ASCII characters can be printed as superscripts
or subscripts, they should be listed in supcs or subcs strings, respectively. If
the ssupm or ssubm strings contain control sequences, but the corresponding
supcs or subcs strings are empty, it is assumed that all printable ASCII
characters are available as superscripts or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to
be the same as for regular characters. Thus, for example, printing any of the
following three examples will result in equivalent motion:

Bi B i Bi

Note that the existing msgr boolean capability describes whether motion control
sequences can be used while in “standout mode.” This capability is extended to
cover the enhanced printing modes added here. msgr should be set for those
printers that accept any motion control sequences without affecting shadow,
italicized, widened, superscript, or subscript printing. Conversely, if msgr is not
set, a program should end these modes before attempting any motion.

Section 2-5: Alternate
Character Sets

In addition to allowing you to define line graphics (described in Section 1-12),
terminfo lets you define alternate character sets. The following capabilities
cover printers and terminals with multiple selectable or definable character sets.

Alternate Character Sets

scs Select character set N
scsd Start definition of character set N, M characters
defc Define character A, B dots wide, descender D
rcsd End definition of character set N
csnm List of character set names
daisy Printer has manually changed print-wheels

The scs , rcsd , and csnm strings are used with a single argument, N, a number
from 0 to 63 that identifies the character set. The scsd string is also used with
the argument N and another, M, that gives the number of characters in the
set. The defc string is used with three arguments: A gives the ASCII code
representation for the character, B gives the width of the character in dots, and
D is zero or one depending on whether the character is a “descender” or not.
The defc string is also followed by a string of “image-data” bytes that describe
how the character looks (see below).

Character set 0 is the default character set present after the printer has been
initialized. Not every printer has 64 character sets, of course; using scs with

504 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

an argument that doesn’t select an available character set should cause a null
result from tparm .

If a character set has to be defined before it can be used, the scsd control
sequence is to be used before defining the character set, and the rcsd is to be
used after. They should also cause a null result from tparm when used with
an argument N that doesn’t apply. If a character set still has to be selected
after being defined, the scs control sequence should follow the rcsd control
sequence. By examining the results of using each of the scs , scsd , and rcsd
strings with a character set number in a call to tparm , a program can determine
which of the three are needed.

Between use of the scsd and rcsd strings, the defc string should be used to
define each character. To print any character on printers covered by terminfo ,
the ASCII code is sent to the printer. This is true for characters in an alternate set
as well as “normal” characters. Thus the definition of a character includes the
ASCII code that represents it. In addition, the width of the character in dots is
given, along with an indication of whether the character should descend below
the print line (such as the lower case letter “g” in most character sets). The width
of the character in dots also indicates the number of image-data bytes that will
follow the defc string. These image-data bytes indicate where in a dot-matrix
pattern ink should be applied to “draw” the character; the number of these bytes
and their form are defined below under “Dot-Mapped Graphics.”

It’s easiest for the creator of terminfo entries to refer to each character set
by number; however, these numbers will be meaningless to the application
developer. The csnm string alleviates this problem by providing names for
each number.

When used with a character set number in a call to tparm , the csnm string will
produce the equivalent name. These names should be used as a reference only.
No naming convention is implied, although anyone who creates a terminfo
entry for a printer should use names consistent with the names found in user
documents for the printer. Application developers should allow a user to specify
a character set by number (leaving it up to the user to examine the csnm string to
determine the correct number), or by name, where the application examines the
csnm string to determine the corresponding character set number.

These capabilities are likely to be used only with dot-matrix printers. If they are
not available, the strings should not be defined. For printers that have manually
changed print-wheels or font cartridges, the boolean daisy is set.

Section 2-6:
Dot-Matrix Graphics

Dot-matrix printers typically have the capability of reproducing
“raster-graphics” images. Three new numeric capabilities and three new string
capabilities can help a program draw raster-graphics images independent of

Last modified 9 Jul 1996 SunOS 5.8 505

terminfo(4) File Formats

the type of dot-matrix printer or the number of pins or dots the printer can
handle at one time.

Dot-Matrix Graphics

npins Number of pins, N, in print-head
spinv Spacing of pins vertically in pins per inch
spinh Spacing of dots horizontally in dots per inch
porder Matches software bits to print-head pins
sbim Start printing bit image graphics, B bits wide
rbim End printing bit image graphics

The sbim sring is used with a single argument, B, the width of the image in dots.

The model of dot-matrix or raster-graphics that terminfo presents is similar
to the technique used for most dot-matrix printers: each pass of the printer’s
print-head is assumed to produce a dot-matrix that is N dots high and B dots
wide. This is typically a wide, squat, rectangle of dots. The height of this
rectangle in dots will vary from one printer to the next; this is given in the npins
numeric capability. The size of the rectangle in fractions of an inch will also vary;
it can be deduced from the spinv and spinh numeric capabilities. With these
three values an application can divide a complete raster-graphics image into
several horizontal strips, perhaps interpolating to account for different dot
spacing vertically and horizontally.

The sbim and rbim strings are used to start and end a dot-matrix image,
respectively. The sbim string is used with a single argument that gives the width
of the dot-matrix in dots. A sequence of “image-data bytes” are sent to the
printer after the sbim string and before the rbim string. The number of bytes is
a integral multiple of the width of the dot-matrix; the multiple and the form of
each byte is determined by the porder string as described below.

The porder string is a comma separated list of pin numbers optionally followed
by an numerical offset. The offset, if given, is separated from the list with a
semicolon. The position of each pin number in the list corresponds to a bit in an
8-bit data byte. The pins are numbered consecutively from 1 to npins , with
1 being the top pin. Note that the term “pin” is used loosely here; “ink-jet”
dot-matrix printers don’t have pins, but can be considered to have an equivalent
method of applying a single dot of ink to paper. The bit positions in porder are
in groups of 8, with the first position in each group the most significant bit and
the last position the least significant bit. An application produces 8-bit bytes in
the order of the groups in porder .

An application computes the “image-data bytes” from the internal image,
mapping vertical dot positions in each print-head pass into 8-bit bytes, using a 1
bit where ink should be applied and 0 where no ink should be applied. This can
be reversed (0 bit for ink, 1 bit for no ink) by giving a negative pin number. If a

506 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

position is skipped in porder , a 0 bit is used. If a position has a lower case ‘x’
instead of a pin number, a 1 bit is used in the skipped position. For consistency, a
lower case ‘o’ can be used to represent a 0 filled, skipped bit. There must be a
multiple of 8 bit positions used or skipped in porder ; if not, 0 bits are used to fill
the last byte in the least significant bits. The offset, if given, is added to each
data byte; the offset can be negative.

Some examples may help clarify the use of the porder string. The AT&T 470,
AT&T 475 and C.Itoh 8510 printers provide eight pins for graphics. The pins are
identified top to bottom by the 8 bits in a byte, from least significant to most. The
porder strings for these printers would be 8,7,6,5,4,3,2,1 . The AT&T
478 and AT&T 479 printers also provide eight pins for graphics. However, the
pins are identified in the reverse order. The porder strings for these printers
would be 1,2,3,4,5,6,7,8 . The AT&T 5310, AT&T 5320, DEC LA100, and
DEC LN03 printers provide six pins for graphics. The pins are identified top to
bottom by the decimal values 1, 2, 4, 8, 16 and 32. These correspond to the low
six bits in an 8-bit byte, although the decimal values are further offset by the
value 63. The porder string for these printers would be ,,6,5,4,3,2,1;63 ,
or alternately o,o,6,5,4,3,2,1;63 .

Section 2-7: Effect of
Changing Printing

Resolution

If the control sequences to change the character pitch or the line pitch are used,
the pin or dot spacing may change:

Dot-Matrix Graphics
Changing the Character/Line Pitches

cpi Change character pitch
cpix If set, cpi changes spinh
lpi Change line pitch
lpix If set, lpi changes spinv

Programs that use cpi or lpi should recalculate the dot spacing:

Dot-Matrix Graphics
Effects of Changing the Character/Line Pitches

Before After

Using cpi with cpix clear:
$bold spinh ’$ $bold spinh$

Using cpi with cpix set:
$bold spinh ’$ $bold spinh = bold spinh ’ cdot bold orhi over

{ bold {orhi ’} }$

Using lpi with lpix clear:
$bold spinv ’$ $bold spinv$

(continued)

Last modified 9 Jul 1996 SunOS 5.8 507

terminfo(4) File Formats

(Continuation)

Using lpi with lpix set:
$bold spinv ’$ $bold spinv = bold {spinv ’} cdot bold orhi over

{ bold {orhi ’}}$

Using chr:
$bold spinh ’$ $bold spinh$

Using cvr:
$bold spinv ’$ $bold spinv$

orhi’ and orhi are the values of the horizontal resolution in steps per inch,
before using cpi and after using cpi , respectively. Likewise, orvi’ and orvi
are the values of the vertical resolution in steps per inch, before using lpi
and after using lpi , respectively. Thus, the changes in the dots per inch for
dot-matrix graphics follow the changes in steps per inch for printer resolution.

Section 2-8: Print
Quality

Many dot-matrix printers can alter the dot spacing of printed text to produce
near “letter quality” printing or “draft quality” printing. Usually it is important
to be able to choose one or the other because the rate of printing generally
falls off as the quality improves. There are three new strings used to describe
these capabilities.

Print Quality

snlq Set near-letter quality print
snrmq Set normal quality print
sdrfq Set draft quality print

The capabilities are listed in decreasing levels of quality. If a printer doesn’t have
all three levels, one or two of the strings should be left blank as appropriate.

Section 2-9: Printing
Rate and Buffer Size

Because there is no standard protocol that can be used to keep a program
synchronized with a printer, and because modern printers can buffer data
before printing it, a program generally cannot determine at any time what
has been printed. Two new numeric capabilities can help a program estimate
what has been printed.

Print Rate/Buffer Size

cps Nominal print rate in characters per second
bufsz Buffer capacity in characters

cps is the nominal or average rate at which the printer prints characters; if this
value is not given, the rate should be estimated at one-tenth the prevailing baud
rate. bufsz is the maximum number of subsequent characters buffered before
the guaranteed printing of an earlier character, assuming proper flow control

508 SunOS 5.8 Last modified 9 Jul 1996

File Formats terminfo(4)

has been used. If this value is not given it is assumed that the printer does not
buffer characters, but prints them as they are received.

As an example, if a printer has a 1000-character buffer, then sending the letter
“a” followed by 1000 additional characters is guaranteed to cause the letter “a”
to print. If the same printer prints at the rate of 100 characters per second, then it
should take 10 seconds to print all the characters in the buffer, less if the buffer is
not full. By keeping track of the characters sent to a printer, and knowing the
print rate and buffer size, a program can synchronize itself with the printer.

Note that most printer manufacturers advertise the maximum print rate, not the
nominal print rate. A good way to get a value to put in for cps is to generate
a few pages of text, count the number of printable characters, and then see
how long it takes to print the text.

Applications that use these values should recognize the variability in the print
rate. Straight text, in short lines, with no embedded control sequences will
probably print at close to the advertised print rate and probably faster than the
rate in cps . Graphics data with a lot of control sequences, or very long lines
of text, will print at well below the advertised rate and below the rate in cps .
If the application is using cps to decide how long it should take a printer to
print a block of text, the application should pad the estimate. If the application is
using cps to decide how much text has already been printed, it should shrink
the estimate. The application will thus err in favor of the user, who wants, above
all, to see all the output in its correct place.

FILES /usr/share/lib/terminfo/?/* compiled terminal description
database

/usr/share/lib/.COREterm/?/* subset of compiled terminal
description database

/usr/share/lib/tabset/* tab settings for some terminals, in a
format appropriate to be output to
the terminal (escape sequences that
set margins and tabs)

SEE ALSO ls (1), pg(1), stty (1), tput (1), tty (1), vi (1), infocmp (1M), tic (1M),
printf (3C), curses (3CURSES), curses (3XCURSES)

NOTES The most effective way to prepare a terminal description is by imitating the
description of a similar terminal in terminfo and to build up a description
gradually, using partial descriptions with a screen oriented editor, such as vi ,
to check that they are correct. To easily test a new terminal description the
environment variable TERMINFOcan be set to the pathname of a directory
containing the compiled description, and programs will look there rather than
in /usr/share/lib/terminfo .

Last modified 9 Jul 1996 SunOS 5.8 509

timezone(4) File Formats

NAME timezone – default timezone data base

SYNOPSIS /etc/timezone

DESCRIPTION The timezone file contains information regarding the default timezone for each
host in a domain. Alternatively, a single default line for the entire domain may
be specified. Each entry has the format:

Timezone-name official-host-or-domain-name

Items are separated by any number of blanks and/or TAB characters. A ‘#’
indicates the beginning of a comment; characters up to the end of the line are
not interpreted by routines which search the file. The timezone is a pathname
relative to the directory /usr/share/lib/zoneinfo .

This file is not actually referenced by any system software; it is merely used as a
source file to construct the NIS timezone.byname map. This map is read by
the program /usr/etc/install/sysIDtool to initialize the timezone of
the client system at installation time.

The timezone file does not set the timezone environment variable TZ. See
TIMEZONE(4) for information to set the TZ environment variable.

EXAMPLES EXAMPLE 1 A sample display of timezone command.

Here is a typical line from the /etc/timezone file:

US/Eastern East.Sun.COM #Sun East Coast

FILES /etc/timezone

SEE ALSO TIMEZONE(4)

510 SunOS 5.8 Last modified 12 May 1992

File Formats TIMEZONE(4)

NAME TIMEZONE – set default system time zone and locale

SYNOPSIS /etc/TIMEZONE /etc/default/init

DESCRIPTION This file sets the time zone environment variable TZ, and the locale-related
environment variables LANG, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, and LC_TIME.

/etc/TIMEZONE is a symbolic link to /etc/default/init .

The number of environments that can be set from /etc/default/init
is limited to 20.

SEE ALSO init (1M), ctime (3C), environ (5)

Last modified 20 Dec 1992 SunOS 5.8 511

tnf_kernel_probes(4) File Formats

NAME tnf_kernel_probes – TNF kernel probes

DESCRIPTION The set of probes (trace instrumentation points) available in the standard kernel.
The probes log trace data to a kernel trace buffer in Trace Normal Form (TNF).
Kernel probes are controlled by prex (1). A snapshot of the kernel trace buffer
can be made using tnfxtract (1) and examined using tnfdump (1).

Each probe has a name and is associated with a set of symbolic keys, or categories.
These are used to select and control probes from prex (1). A probe that is
enabled for tracing generates a TNF record, called an event record. An event
record contains two common members and may contain other probe-specific
data members.

Common Members tnf_probe_event tag
tnf_time_delta time_delta

tag Encodes TNF references to two other records:

tag Describes the layout of the event record.

schedule Identifies the writing thread and also
contains a 64-bit base time in nanoseconds.

time_delta A 32-bit time offset from the base time; the sum of the two
times is the actual time of the event.

Threads thread_create

tnf_kthread_id tid
tnf_pid pid
tnf_symbol start_pc

Thread creation event.
tid The thread identifier for the new thread.

pid The process identifier for the new thread.

start_pc The kernel address of its start routine.

thread_state

tnf_kthread_id tid
tnf_microstate state

Thread microstate transition events.
tid Optional; if it is absent, the event is for the writing thread,

otherwise the event is for the specified thread.

state Indicates the thread state:

� Running in user mode.

� Running in system mode.

� Asleep waiting for a user-mode lock.

512 SunOS 5.8 Last modified 8 Nov1999

File Formats tnf_kernel_probes(4)

� Asleep on a kernel object.

� Runnable (waiting for a cpu).

� Stopped.

The values of this member are defined in <sys/msacct.h> .
Note that to reduce trace output, transitions between the
system and user microstates that are induced by system calls
are not traced. This information is implicit in the system
call entry and exit events.

thread_exit

Thread termination event for writing thread. This probe has no data members
other than the common members.

Scheduling

thread_queue

tnf_kthread_id tid
tnf_cpuid cpuid
tnf_long priority
tnf_ulong queue_length

Thread scheduling events. These are triggered when a runnable thread is placed
on a dispatch queue.
cpuid Specifies the cpu to which the queue is attached.

priority The (global) dispatch priority of the thread.

queue_length The current length of the cpu’s dispatch queue.

Blocking thread_block

tnf_opaque reason
tnf_symbols stack

Thread blockage event. This probe captures a partial stack backtrace when the
current thread blocks.
reason The address of the object on which the thread is blocking.

symbols References a TNF array of kernel addresses representing the
PCs on the stack at the time the thread blocks.

System Calls syscall_start

tnf_sysnum sysnum

System call entry event.
sysnum The system call number. The writing thread implicitly enters

the system microstate with this event.

syscall_end

Last modified 8 Nov1999 SunOS 5.8 513

tnf_kernel_probes(4) File Formats

tnf_long rval1
tnf_long rval2
tnf_long errno

System call exit event.
rval1 and rval2 The two return values of the system call

errno The error return.

The writing thread implicitly enters the user microstate with this event.

Page Faults address_fault

tnf_opaque address
tnf_fault_type fault_type
tnf_seg_access access

Address-space fault event.
address Gives the faulting virtual address.

fault_type Gives the fault type: invalid page, protection fault, software
requested locking or unlocking.

access Gives the desired access protection: read, write, execute or
create. The values for these two members are defined in
<vm/seg_enum.h> .

major_fault

tnf_opaque vnode
tnf_offset offset

Major page fault event. The faulting page is mapped to the file given by the
vnode member, at the given offset into the file. (The faulting virtual address is in
the most recent address_fault event for the writing thread.)

anon_private

tnf_opaque address

Copy-on-write page fault event.
address The virtual address at which the new page is mapped.

anon_zero

tnf_opaque address

Zero-fill page fault event.
address The virtual address at which the new page is mapped.

page_unmap

tnf_opaque vnode
tnf_offset offset

514 SunOS 5.8 Last modified 8 Nov1999

File Formats tnf_kernel_probes(4)

Page unmapping event. This probe marks the unmapping of a file system
page from the system.
vnode and offset Identifies the file and offset of the page being

unmapped.

Pageins and Pageouts pagein

tnf_opaque vnode
tnf_offset offset
tnf_size size

Pagein start event. This event signals the initiation of pagein I/O.
vnodeandoffset Identifyies the file and offset to be paged in.

size Specifies the number of bytes to be paged in.

pageout

tnf_opaque vnode
tnf_ulong pages_pageout
tnf_ulong pages_freed
tnf_ulong pages_reclaimed

Pageout completion event. This event signals the completion of pageout I/O.
vnode Identifies the file of the pageout request.

pages_pageout The number of pages written out.

pages_freed The number of pages freed after being written out.

pages_reclaimed The number of pages reclaimed after being written out.

Page Daemon (Page
Stealer)

pageout_scan_start

tnf_ulong pages_free
tnf_ulong pages_needed

Page daemon scan start event. This event signals the beginning of one iteration
of the page daemon.
pages_free The number of free pages in the system.

pages_needed The number of pages desired free.

pageout_scan_end

tnf_ulong pages_free
tnf_ulong pages_scanned

Page daemon scan end event. This event signals the end of one iteration of the
page daemon.
pages_free The number of free pages in the system.

Last modified 8 Nov1999 SunOS 5.8 515

tnf_kernel_probes(4) File Formats

pages_scanned The number of pages examined by the page daemon.
(Potentially more pages will be freed when any queued
pageout requests complete.)

Swapper swapout_process

tnf_pid pid
tnf_ulong page_count

Address space swapout event. This event marks the swapping out of a process
address space.
pid Identifies the process.

page_count Reports the number of pages either freed or queued for
pageout.

swapout_lwp

tnf_pid pid
tnf_lwpid lwpid
tnf_kthread_id tid
tnf_ulong page_count

Light-weight process swapout event. This event marks the swapping out of
an LWP and its stack.
pid The LWP’s process identifier

lwpid The LWP identifier

tid member The LWP’s kernel thread identifier.

page_count The number of pages swapped out.

swapin_lwp

tnf_pid pid
tnf_lwpid lwpid
tnf_kthread_id tid
tnf_ulong page_count

Light-weight process swapin event. This event marks the swapping in of an
LWP and its stack.
pid The LWP’s process identifier.

lwpid The LWP identifier.

tid The LWP’s kernel thread identifier.

page_count The number of pages swapped in.

Local I/O strategy

tnf_device device
tnf_diskaddr block

516 SunOS 5.8 Last modified 8 Nov1999

File Formats tnf_kernel_probes(4)

tnf_size size
tnf_opaque buf
tnf_bioflags flags

Block I/O strategy event. This event marks a call to the strategy (9E) function
of a block device driver.
device Contains the major and minor numbers of the device.

block The logical block number to be accessed on the device.

size The size of the I/O request.

buf The kernel address of the buf (9S) structure associated with
the transfer.

flags The buf (9S) flags associated with the transfer.

biodone

tnf_device device
tnf_diskaddr block
tnf_opaque buf

Buffered I/O completion event. This event marks calls to the biodone (9F)
function.
device Contains the major and minor numbers of the device.

block The logical block number accessed on the device.

buf The kernel address of the buf (9S) structure associated with
the transfer.

physio_start

tnf_device device
tnf_offset offset
tnf_size size
tnf_bioflags rw

Raw I/O start event. This event marks entry into the physio (9F) fufnction
which performs unbuffered I/O.
device Contains the major and minor numbers of the device of

the transfer.

offset The logical offset on the device for the transfer.

size The number of bytes to be transferred.

rw The direction of the transfer: read or write (see buf (9S)).

physio_end

tnf_device device

Raw I/O end event. This event marks exit from the physio (9F) fufnction.

Last modified 8 Nov1999 SunOS 5.8 517

tnf_kernel_probes(4) File Formats

device The major and minor numbers of the device of the transfer.

USAGE Use the prex utility to control kernel probes. The standard prex commands
to list and manipulate probes are available to you, along with commands to
set up and manage kernel tracing.

Kernel probes write trace records into a kernel trace buffer. You must copy the
buffer into a TNF file for post-processing; use the tnfxtract utility for this.

You use the tnfdump utility to examine a kernel trace file. This is exactly the
same as examining a user-level trace file.

The steps you typically follow to take a kernel trace are:

1. Become superuser (su).

2. Allocate a kernel trace buffer of the desired size (prex).

3. Select the probes you want to trace and enable (prex).

4. Turn kernel tracing on (prex).

5. Run your application.

6. Turn kernel tracing off (prex).

7. Extract the kernel trace buffer (tnfxtract).

8. Disable all probes (prex).

9. Deallocate the kernel trace buffer (prex).

10.Examine the trace file (tnfdump).

A convenient way to follow these steps is to use two shell windows; run an
interactive prex session in one, and run your application and tnfxtract in
the other.

SEE ALSO prex (1), tnfdump (1), tnfxtract (1), libtnfctl (3TNF), TNF_PROBE(3TNF),
tracing (3TNF), strategy (9E), biodone (9F), physio (9F), buf (9S)

518 SunOS 5.8 Last modified 8 Nov1999

File Formats ts_dptbl(4)

NAME ts_dptbl – time-sharing dispatcher parameter table

DESCRIPTION The process scheduler (or dispatcher) is the portion of the kernel that controls
allocation of the CPU to processes. The scheduler supports the notion of
scheduling classes where each class defines a scheduling policy, used to schedule
processes within that class. Associated with each scheduling class is a set of
priority queues on which ready to run processes are linked. These priority
queues are mapped by the system configuration into a set of global scheduling
priorities which are available to processes within the class. (The dispatcher
always selects for execution the process with the highest global scheduling
priority in the system.) The priority queues associated with a given class are
viewed by that class as a contiguous set of priority levels numbered from 0
(lowest priority) to n (highest priority—a configuration-dependent value).
The set of global scheduling priorities that the queues for a given class are
mapped into might not start at zero and might not be contiguous (depending
on the configuration).

Processes in the time-sharing class which are running in user mode (or in
kernel mode before going to sleep) are scheduled according to the parameters
in a time-sharing dispatcher parameter table (ts_dptbl). Processes in the
inter-active scheduling class are also scheduled according to the parameters in
the time-sharing dispatcher parameter table. (Time-sharing processes and
inter-active processes running in kernel mode after sleeping are run within a
special range of priorities reserved for such processes and are not affected by the
parameters in the ts_dptbl until they return to user mode.) The ts_dptbl
consists of an array (config_ts_dptbl[]) of parameter structures (struct
tsdpent_t), one for each of the n priority levels used by time-sharing processes
and inter-active processes in user mode. The structures are accessed via a
pointer, (ts_dptbl), to the array. The properties of a given priority level i are
specified by the ith parameter structure in this array (ts_dptbl[i]).

A parameter structure consists of the following members. These are also
described in the /usr/include/sys/ts.h header.
ts_globpri The global scheduling priority associated with

this priority level. The mapping between
time-sharing priority levels and global scheduling
priorities is determined at boot time by the
system configuration. ts_globpri is the only
member of the ts_dptbl which cannot be
changed with dispadmin (1M).

ts_quantum The length of the time quantum allocated to
processes at this level in ticks (Hz).

ts_tqexp Priority level of the new queue on which to
place a process running at the current level if it

Last modified 26 Apr 1994 SunOS 5.8 519

ts_dptbl(4) File Formats

exceeds its time quantum. Normally this field
links to a lower priority time-sharing level that
has a larger quantum.

ts_slpret Priority level of the new queue on which to place
a process, that was previously in user mode at
this level, when it returns to user mode after
sleeping. Normally this field links to a higher
priority level that has a smaller quantum.

ts_maxwait A per process counter, ts_dispwait is
initialized to zero each time a time-sharing
or inter-active process is placed back on the
dispatcher queue after its time quantum has
expired or when it is awakened (ts_dispwait is
not reset to zero when a process is preempted
by a higher priority process). This counter
is incremented once per second for each
process on the dispatcher queue. If a process’s
ts_dispwait value exceeds the ts_maxwait
value for its level, the process’s priority is
changed to that indicated by ts_lwait . The
purpose of this field is to prevent starvation.

ts_lwait Move a process to this new priority level if
ts_dispwait is greater than ts_maxwait .

An administrator can affect the behavior of the time-sharing portion of the
scheduler by reconfiguring the ts_dptbl . Since processes in the time-sharing
and inter-active scheduling classes share the same dispatch parameter table
(ts_dptbl), changes to this table will affect both scheduling classes. There are
two methods available for doing this: reconfigure with a loadable module at
boot-time or by using dispadmin (1M) at run-time.

TS_DPTBL
LOADABLE

MODULE

The ts_dptbl can be reconfigured with a loadable module which contains a
new time sharing dispatch table. The module containing the dispatch table is
separate from the TS loadable module which contains the rest of the time-sharing
and inter-active software. This is the only method that can be used to change the
number of time-sharing priority levels or the set of global scheduling priorities
used by the time-sharing and inter-active classes. The relevant procedure and
source code is described in the REPLACING THE TS_DPTBL LOADABLE
MODULEsection.

DISPADMIN
CONFIGURATION

FILE

With the exception of ts_globpri all of the members of the ts_dptbl can
be examined and modified on a running system using the dispadmin (1M)
command. Invoking dispadmin for the time-sharing or inter-active class

520 SunOS 5.8 Last modified 26 Apr 1994

File Formats ts_dptbl(4)

allows the administrator to retrieve the current ts_dptbl configuration from
the kernel’s in-core table, or overwrite the in-core table with values from a
configuration file. The configuration file used for input to dispadmin must
conform to the specific format described below.

Blank lines are ignored and any part of a line to the right of a # symbol is
treated as a comment. The first non-blank, non-comment line must indicate the
resolution to be used for interpreting the ts_quantum time quantum values.
The resolution is specified as

RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the
resolution used is the reciprocal of res in seconds (for example, RES=1000
specifies millisecond resolution). Although very fine (nanosecond) resolution
may be specified, the time quantum lengths are rounded up to the next integral
multiple of the system clock’s resolution.

The remaining lines in the file are used to specify the parameter values for each
of the time-sharing priority levels. The first line specifies the parameters for
time-sharing level 0, the second line specifies the parameters for time-sharing
level 1, etc. There must be exactly one line for each configured time-sharing
priority level.

EXAMPLES EXAMPLE 1 A sample from a configuration file.

The following excerpt from a dispadmin configuration file illustrates the
format. Note that for each line specifying a set of parameters there is a comment
indicating the corresponding priority level. These level numbers indicate
priority within the time-sharing and inter-active classes, and the mapping
between these time-sharing priorities and the corresponding global scheduling
priorities is determined by the configuration specified in the ts master file. The
level numbers are strictly for the convenience of the administrator reading the
file and, as with any comment, they are ignored by dispadmin . dispadmin
assumes that the lines in the file are ordered by consecutive, increasing priority
level (from 0 to the maximum configured time-sharing priority). The level
numbers in the comments should normally agree with this ordering; if for some
reason they don’t, however, dispadmin is unaffected.

Time-Sharing Dispatcher Configuration File RES=1000

#
ts_quantum

ts_tqexp ts_slpret ts_maxwait ts_lwait PRIORITY

LEVEL

500 0 10 5 10 # 0

Last modified 26 Apr 1994 SunOS 5.8 521

ts_dptbl(4) File Formats

500 0 11 5 11 # 1

500 1 12 5 12 # 2

500 1 13 5 13 # 3

500 2 14 5 14 # 4

500 2 15 5 15 # 5

450 3 16 5 16 # 6

450 3 17 5 17 # 7

.

.

.

50 48 59 5 59 # 58

50 49 59 5 59 # 59

REPLACING
THE TS_DPTBL

LOADABLE
MODULE

In order to change the size of the time sharing dispatch table, the loadable
module which contains the dispatch table information will have to be built. It
is recommended that you save the existing module before using the following
procedure.

1. Place the dispatch table code shown below in a file called ts_dptbl.c An
example of this file follows.

2. Compile the code using the given compilation and link lines supplied.

cc −c −0 −D_KERNEL
ts_dptbl.c
ld −r −o TS_DPTBL ts_dptbl.o

3. Copy the current dispatch table in /kernel/sched to TS_DPTBL.bak .

4. Replace the current TS_DPTBLin /kernel/sched .

5. You will have to make changes in the /etc/system file to reflect the
changes to the sizes of the tables. See system (4). The two variables affected
are ts_maxupri and ts_maxkmdpri . The syntax for setting these is as
follows:

set TS:ts_maxupri=(value for max time-sharing user priority)
set TS:ts_maxkmdpri=(number of kernel mode priorities - 1)

6. Reboot the system to use the new dispatch table.

NOTE: Great care should be used in replacing the dispatch
table using this method. If you do not get it right,
panics may result, thus making the system unusable.

522 SunOS 5.8 Last modified 26 Apr 1994

File Formats ts_dptbl(4)

The following is an example of a ts_dptbl.c file used for building the new
ts_dptbl .

/* BEGIN ts_dptbl.c */
#include <sys/proc.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>
#include <sys/ts.h>
#include <sys/rtpriocntl.h>
/*

* This is the loadable module wrapper.
*/

#include <sys/modctl.h>
extern struct mod_ops mod_miscops;
/*

* Module linkage information for the kernel.
*/

static struct modlmisc modlmisc = {
&mod_miscops, "Time sharing dispatch table"

};
static struct modlinkage modlinkage = {

MODREV_1, &modlmisc, 0
};
_init()
{

return (mod_install(&modlinkage));
}
_info(modinfop)

struct modinfo *modinfop;
{

return (mod_info(&modlinkage, modinfop));
}
/*

* array of global priorities used by ts procs sleeping or
* running in kernel mode after sleep. Must have at least
* 40 values.
*/

pri_t config_ts_kmdpris[] = {
60,61,62,63,64,65,66,67,68,69,
70,71,72,73,74,75,76,77,78,79,
80,81,82,83,84,85,86,87,88,89,
90,91,92,93,94,95,96,97,98,99,

};
tsdpent_t config_ts_dptbl[] = {

/* glbpri qntm tqexp slprt mxwt lwt */

0, 100, 0, 10, 5, 10,

1, 100, 0, 11, 5, 11,

2, 100, 1, 12, 5, 12,

3, 100, 1, 13, 5, 13,

Last modified 26 Apr 1994 SunOS 5.8 523

ts_dptbl(4) File Formats

4, 100, 2, 14, 5, 14,

5, 100, 2, 15, 5, 15,

6, 100, 3, 16, 5, 16,

7, 100, 3, 17, 5, 17,

8, 100, 4, 18, 5, 18,

9, 100, 4, 19, 5, 19,

10, 80, 5, 20, 5, 20,

11, 80, 5, 21, 5, 21,

12, 80, 6, 22, 5, 22,

13, 80, 6, 23, 5, 23,

14, 80, 7, 24, 5, 24,

15, 80, 7, 25, 5, 25,

16, 80, 8, 26, 5, 26,

17, 80, 8, 27, 5, 27,

18, 80, 9, 28, 5, 28,

19, 80, 9, 29, 5, 29,

20, 60, 10, 30, 5, 30,

21, 60, 11, 31, 5, 31,

22, 60, 12, 32, 5, 32,

23, 60, 13, 33, 5, 33,

24, 60, 14, 34, 5, 34,

25, 60, 15, 35, 5, 35,

26, 60, 16, 36, 5, 36,

27, 60, 17, 37, 5, 37,

28, 60, 18, 38, 5, 38,

29, 60, 19, 39, 5, 39,

30, 40, 20, 40, 5, 40,

31, 40, 21, 41, 5, 41,

32, 40, 22, 42, 5, 42,

33, 40, 23, 43, 5, 43,

34, 40, 24, 44, 5, 44,

524 SunOS 5.8 Last modified 26 Apr 1994

File Formats ts_dptbl(4)

35, 40, 25, 45, 5, 45,

36, 40, 26, 46, 5, 46,

37, 40, 27, 47, 5, 47,

38, 40, 28, 48, 5, 48,

39, 40, 29, 49, 5, 49,

40, 20, 30, 50, 5, 50,

41, 20, 31, 50, 5, 50,

42, 20, 32, 51, 5, 51,

43, 20, 33, 51, 5, 51,

44, 20, 34, 52, 5, 52,

45, 20, 35, 52, 5, 52,

46, 20, 36, 53, 5, 53,

47, 20, 37, 53, 5, 53,

48, 20, 38, 54, 5, 54,

49, 20, 39, 54, 5, 54,

50, 10, 40, 55, 5, 55,

51, 10, 41, 55, 5, 55,

52, 10, 42, 56, 5, 56,

53, 10, 43, 56, 5, 56,

54, 10, 44, 57, 5, 57,

55, 10, 45, 57, 5, 57,

56, 10, 46, 58, 5, 58,

57, 10, 47, 58, 5, 58,

58, 10, 48, 59, 5, 59,

59, 10, 49, 59, 5, 59,

};

short config_ts_maxumdpri = sizeof (config_ts_dptbl)/16 - 1;
/*

* Return the address of config_ts_dptbl
*/

tsdpent_t *
ts_getdptbl()
{

return (config_ts_dptbl);

Last modified 26 Apr 1994 SunOS 5.8 525

ts_dptbl(4) File Formats

}

/*
* Return the address of config_ts_kmdpris
*/
int *
ts_getkmdpris()

{
return (config_ts_kmdpris);

}

/*
* Return the address of ts_maxumdpri
*/

short
ts_getmaxumdpri()
{

return (config_ts_maxumdpri);
}

/* END ts_dptbl.c */

FILES <sys/ts.h>

SEE ALSO priocntl (1), dispadmin (1M), priocntl (2), system (4)

System Administration Guide, Volume 1 System Interface Guide

NOTES dispadmin does some limited sanity checking on the values supplied in the
configuration file. The sanity checking is intended to ensure that the new
ts_dptbl values do not cause the system to panic. The sanity checking does not
attempt to analyze the effect that the new values will have on the performance of
the system. Unusual ts_dptbl configurations may have a dramatic negative
impact on the performance of the system.

No sanity checking is done on the ts_dptbl values specified in the TS_DPTBL
loadable module. Specifying an inconsistent or nonsensical ts_dptbl
configuration through the TS_DPTBLloadable module could cause serious
performance problems and/or cause the system to panic.

526 SunOS 5.8 Last modified 26 Apr 1994

File Formats ttydefs(4)

NAME ttydefs – file contains terminal line settings information for ttymon

DESCRIPTION /etc/ttydefs is an administrative file that contains records divided into
fields by colons (":"). This information used by ttymon to set up the speed
and terminal settings for a TTY port.

The ttydefs file contains the following fields:
ttylabel The string ttymon tries to match against the TTY port’s

ttylabel field in the port monitor administrative file. It often
describes the speed at which the terminal is supposed to run,
for example, 1200 .

initial-flags Contains the initial termio (7I) settings to which the terminal
is to be set. For example, the system administrator will be
able to specify what the default erase and kill characters will
be. initial-flags must be specified in the syntax recognized by
the stty command.

final-flags final-flags must be specified in the same format as initial-flags.
ttymon sets these final settings after a connection request
has been made and immediately prior to invoking a port’s
service.

autobaud If the autobaud field contains the character ’A,’ autobaud
will be enabled. Otherwise, autobaud will be disabled.
ttymon determines what line speed to set the TTY port
to by analyzing the carriage returns entered. If autobaud
has been disabled, the hunt sequence is used for baud rate
determination.

nextlabel If the user indicates that the current terminal setting is not
appropriate by sending a BREAK, ttymon searchs for a
ttydefs entry whose ttylabel field matches the nextlabel
field. If a match is found, ttymon uses that field as its
ttylabel field. A series of speeds is often linked together
in this way into a closed set called a hunt sequence. For
example, 4800 may be linked to 1200 , which in turn is
linked to 2400 , which is finally linked to 4800 .

SEE ALSO sttydefs (1M), ttymon (1M), termio (7I)

System Administration Guide, Volume 1

Last modified 27 Jan 1994 SunOS 5.8 527

ttysrch(4) File Formats

NAME ttysrch – directory search list for ttyname

DESCRIPTION ttysrch is an optional file that is used by the ttyname library routine.
This file contains the names of directories in /dev that contain terminal
and terminal-related device files. The purpose of this file is to improve the
performance of ttyname by indicating which subdirectories in /dev contain
terminal-related device files and should be searched first. These subdirectory
names must appear on separate lines and must begin with /dev . Those path
names that do not begin with /dev will be ignored and a warning will be
sent to the console. Blank lines (lines containing only white space) and lines
beginning with the comment character "#" will be ignored. For each file listed
(except for the special entry /dev), ttyname will recursively search through
subdirectories looking for a match. If /dev appears in the ttysrch file, the
/dev directory itself will be searched but there will not be a recursive search
through its subdirectories.

When ttyname searches through the device files, it tries to find a file whose
major/minor device number, file system identifier, and inode number match
that of the file descriptor it was given as an argument. If a match is not found, it
will settle for a match of just major/minor device and file system identifier, if
one can be found. However, if the file descriptor is associated with a cloned
device, this algorithm does not work efficiently because the inode number of the
device file associated with a clonable device will never match the inode number
of the file descriptor that was returned by the open of that clonable device. To
help with these situations, entries can be put into the /etc/ttysrch file to
improve performance when cloned devices are used as terminals on a system
(for example, for remote login). However, this is only useful if the minor devices
related to a cloned device are put into a subdirectory. (It is important to note that
device files need not exist for cloned devices and if that is the case, ttyname
will eventually fail.) An optional second field is used in the /etc/ttysrch
file to indicate the matching criteria. This field is separated by white space
(any combination of blanks or tabs). The letter Mmeans major/minor device
number, F means file system identifier, and I means inode number. If this field is
not specified for an entry, the default is MFI which means try to match on all
three. For cloned devices the field should be MF, which indicates that it is not
necessary to match on the inode number.

Without the /etc/ttysrch file, ttyname will search the /dev directory by
first looking in the directories /dev/term , /dev/pts , and /dev/xt . If a
system has terminal devices installed in directories other than these, it may help
performance if the ttysrch file is created and contains that list of directories.

EXAMPLES EXAMPLE 1 A sample display of /etc/ttysrch command.

A sample /etc/ttysrch file follows:

528 SunOS 5.8 Last modified 23 Feb 1994

File Formats ttysrch(4)

/dev/term MFI
/dev/pts MFI
/dev/xt MFI
/dev/slan MF

This file tells ttyname that it should first search through those directories
listed and that when searching through the /dev/slan directory, if a file is
encountered whose major/minor devices and file system identifier match
that of the file descriptor argument to ttyname , this device name should be
considered a match.

FILES /etc/ttysrch

SEE ALSO ttyname (3C)

Last modified 23 Feb 1994 SunOS 5.8 529

ufsdump(4) File Formats

NAME ufsdump, dumpdates – incremental dump format

SYNOPSIS #include <sys/types.h>

#include <sys/inode.h>

#include <protocols/dumprestore.h>

/etc/dumpdates

DESCRIPTION Tapes used by ufsdump (1M) and ufsrestore (1M) contain:

� a header record

� two groups of bit map records

� a group of records describing directories

� a group of records describing files

The format of the header record and of the first record of each description as
given in the include file <protocols/dumprestore.h> is:

#define TP_BSIZE 1024

#define NTREC 10

#define HIGHDENSITYTREC 32

#define CARTRIDGETREC 63

#define TP_NINDIR (TP_BSIZE/2)

#define TP_NINOS (TP_NINDIR / sizeop (long))

#define LBLSIZE 16

#define NAMELEN 64

#define NFS_MAGIC (int)60012

#define CHECKSUM (int)84446

union u_data {
char s_addrs[TP_NINDIR];
long s_inos[TP_NINOS];

union u_spcl {
char dummy[TP_BSIZE];
struct s_spcl {

long c_type;
time_t c_date;
time_t c_ddate;
long c_volume;
daddr_t c_tapea;
ino_t c_inumber;
long c_magic;
long c_checksum;

530 SunOS 5.8 Last modified 7 Jan 1994

File Formats ufsdump(4)

struct dinode c_dinode;
long c_count;
union u_data c_data;
char c_label[LBLSIZE];
long c_level;
char c_filesys[NAMELEN];
char c_dev[NAMELEN];
char c_host[NAMELEN];
long c_flags;
long c_firstrec;
long c_spare[32];

} s_spcl;
} u_spcl;

long c_type;

time_t c_date;

time_t c_ddate;

long c_volume;

daddr_t c_tapea;

ino_t c_inumber;

long c_magic;

long c_checksum;

struct dinode c_dinode;

long c_count;

union u_data c_data;

char c_label[LBLSIZE];

long c_level;

char c_filesys[NAMELEN];

char c_dev[NAMELEN];

char c_host[NAMELEN];

long c_flags;

long c_firstrec;

long c_spare[32];

} s_spcl;
} u_spcl;
#define spcl u_spcl.s_spcl
#define c_addr c_data.s_addrs
#define c_inos cdata.s_inos

Last modified 7 Jan 1994 SunOS 5.8 531

ufsdump(4) File Formats

#define TS_TAPE 1

#define TS_INODE 2

#define TS_ADDR 4

#define TS_BITS 3

#define TS_CLRI 6

#define TS_END 5

#define TS_EOM 7

#define DR_NEWHEADER 1

#define DR_INODEINFO 2

#define DR_REDUMP 4

#define DR_TRUELIC 8

#define DUMPOUTFMT "%-24s %c %s"

#define DUMPINFMT "%24s %c %[^\]\ "

The constants are described as follows:
TP_BSIZE Size of file blocks on the dump tapes. Note that

TP_BSIZE must be a multiple of DEV_BSIZE .

NTREC Default number of TP_BSIZE byte records in a
physical tape block, changeable by the b option
to ufsdump (1M) .

HIGHDENSITYNTREC Default number of TP_BSIZE byte records
in a physical tape block on 6250 BPI or higher
density tapes.

CARTRIDGETREC Default number of TP_BSIZE records in a
physical tape block on cartridge tapes.

TP_NINDIR Number of indirect pointers in a TS_INODEor
TS_ADDRrecord. It must be a power of 2.

TP_NINOS The maximum number of volumes on a
tape. Used for tape labeling in hsmdumpand
hsmrestore (available with Online:Backup 2.0
optional software package SUNWhsm).

LBLSIZE The maximum size of a volume label. Used for
tape labeling in hsmdumpand hsmrestore

532 SunOS 5.8 Last modified 7 Jan 1994

File Formats ufsdump(4)

(available with Online:Backup 2.0 optional
software package SUNWhsm).

NAMELEN The maximum size of a host’s name.

NFS_MAGIC All header records have this number in c_magic
.

CHECKSUM Header records checksum to this value.

The TS_ entries are used in the c_type field to indicate what sort of header
this is. The types and their meanings are as follows:
TS_TAPE Tape volume label.

TS_INODE A file or directory follows. The c_dinode field is a copy
of the disk inode and contains bits telling what sort of file
this is.

TS_ADDR A subrecord of a file description. See s_addrs below.

TS_BITS A bit map follows. This bit map has a one bit for each inode
that was dumped.

TS_CLRI A bit map follows. This bit map contains a zero bit for all
inodes that were empty on the file system when dumped.

TS_END End of tape record.

TS_EOM floppy EOM – restore compat with old dump

The flags are described as follows:
DR_NEWHEADERNew format tape header.

DR_INFODEINFOHeader contains starting inode info.

DR_REDUMP Dump contains recopies of active files.

DR_TRUEINC Dump is a "true incremental".

DUMPOUTFMT Name, incon, and ctime (date) for printf.

DUMPINFMT Inverse for scanf.

The fields of the header structure are as follows:
s_addrs An array of bytes describing the blocks of the dumped file.

A byte is zero if the block associated with that byte was not
present on the file system; otherwise, the byte is non-zero. If
the block was not present on the file lsystem, no block was
dumped; the block will be stored as a hole in the file. If there
is not sufficient space in this record to describe all the blocks
in a file, TS_ADDRrecords will be scattered through the file,
each one picking up where the last left off

Last modified 7 Jan 1994 SunOS 5.8 533

ufsdump(4) File Formats

s_inos The starting inodes on tape.

c_type The type of the record.

c_date The date of the previous dump.

c_ddate The date of this dump.

c_volume The current volume number of the dump.

c_tapea The logical block of this record.

c_inumber The number of the inode being dumped if this is of type
TS_INODE .

c_magic This contains the value MAGICabove, truncated as needed.

c_checksum This contains whatever value is needed to make the record
sum to CHECKSUM.

c_dinode This is a copy of the inode as it appears on the file system.

c_count The count of bytes in s_addrs .

u_data c_data The union of either u_data c_data The union of either
s_addrs or s_inos .

c_label Label for this dump.

c_level Level of this dump.

c_filesys Name of dumped file system.

c_dev Name of dumped service.

c_host Name of dumped host.

c_flags Additional information.

c_firstrec First record on volume.

c_spare Reserved for future uses.

Each volume except the last ends with a tapemark (read as an end of file). The
last volume ends with a TS_ENDrecord and then the tapemark.

The dump history is kept in the file /etc/dumpdates . It is an ASCII file with
three fields separated by white space:

� The name of the device on which the dumped file system resides.

� The level number of the dump tape; see ufsdump (1M) .

� The date of the incremental dump in the format generated by ctime (3C) .

534 SunOS 5.8 Last modified 7 Jan 1994

File Formats ufsdump(4)

DUMPOUTFMTis the format to use when using printf (3C) to write an entry to
/etc/dumpdates ; DUMPINFMTis the format to use when using scanf (3C) to
read an entry from /etc/dumpdates .

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Stability Level Unstable

SEE ALSO ufsdump (1M) , ufsrestore (1M) , ctime (3C) , printf (3C) , scanf (3C) ,
attributes (5) , types (3HEAD)

Last modified 7 Jan 1994 SunOS 5.8 535

updaters(4) File Formats

NAME updaters – configuration file for NIS updating

SYNOPSIS /var/yp/updaters

DESCRIPTION The file /var/yp/updaters is a makefile (see make(1S)) which is used for
updating the Network Information Service (NIS) databases. Databases can only
be updated in a secure network, that is, one that has a publickey (4) database.
Each entry in the file is a make target for a particular NIS database. For example,
if there is an NIS database named passwd.byname that can be updated, there
should be a make target named passwd.byname in the updaters file with the
command to update the file.

The information necessary to make the update is passed to the update command
through standard input. The information passed is described below (all items
are followed by a NEWLINE except for 4 and 6):
1. Network name of client wishing to make the update (a string).

2. Kind of update (an integer).

3. Number of bytes in key (an integer).

4. Actual bytes of key.

5. Number of bytes in data (an integer).

6. Actual bytes of data.

After receiving this information through standard input, the command to update
the particular database determines whether the user is allowed to make the
change. If not, it exits with the status YPERR_ACCESS.If the user is allowed
to make the change, the command makes the change and exits with a status of
zero. If there are any errors that may prevent the updaters from making
the change, it should exit with the status that matches a valid NIS error code
described in <rpcsvc/ypclnt.h> .

FILES /var/yp/updaters The makefile used for updating the NIS
databases.

SEE ALSO make(1S), rpc.ypupdated (1M), publickey (4)

NOTES The Network Information Service (NIS) was formerly known as Sun Yellow
Pages (YP). The functionality of the two remains the same; only the name has
changed. The name Yellow Pages is a registered trademark in the United
Kingdom of British Telecommunications plc, and may not be used without
permission.

536 SunOS 5.8 Last modified 24 Oct 1996

File Formats user_attr(4)

NAME user_attr – extended user attributes database

SYNOPSIS /etc/user_attr

DESCRIPTION /etc/user_attr is a local source of extended attributes associated with
users and roles. user_attr can be used with other user attribute sources,
including the user_attr NIS map and NIS+ table. Programs use the
getuserattr (3SECDB) routines to gain access to this information.

The search order for multiple user_attr sources is specified in the
/etc/nsswitch.conf file, as described in the nsswitch.conf (4) man page.
The search order follows that for passwd (4).

Each entry in the user_attr databases consists of a single line with five fields
separated by colons (:). Line continuations using the backslash (\) character are
permitted. Each entry has the form:

user:qualifier:res1:res2:attr

user The name of the user as specified in the passwd (4) database.

qualifier Reserved for future use.

res1 Reserved for future use.

res2 Reserved for future use.

attr An optional list of semicolon-separated (;) key-value pairs
that describe the security attributes to apply to the object
upon execution. Zero or more keys may be specified. There
are four valid keys: auths , profiles , roles , type .

auths Specifies a comma-separated list of
authorization names chosen from those
names defined in the auth_attr (4)
database. Authorization names may
be specified using the asterisk (*)
character as a wildcard. For example,
solaris.printer.* means all of Sun’s
printer authorizations.

profiles Contains an ordered, comma-separated
list of profile names chosen from
prof_attr (4). Profiles are enforced by
the profile shells, pfcsh , pfksh , and
pfsh . (See pfsh (1).) If no profiles are

Last modified 26 Oct 1999 SunOS 5.8 537

user_attr(4) File Formats

assigned, the profile shells do not allow
the user to execute any commands.

roles Can be assigned a comma-separated list of
role names from the set of user accounts in
this database whose type field indicates
the account is a role. If the roles key
value is not specified, the user is not
permitted to assume any role.

type Can be assigned one of these strings:
normal , indicating that this account is for
a normal user, one who logs in; or role ,
indicating that this account is for a role.
Roles can only be assumed by a normal
user after the user has logged in.

EXAMPLES EXAMPLE 1 Assigning a profile to root

The following example entry assigns to root the All profile, which allows root to
use all commands in the system, and also assigns two authorizations:

root::::auths=solaris.*,solaris.grant;profiles=All;type=normal

The solaris.* wildcard authorization shown above gives root all the solaris
authorizations; and the solaris.grant authorization gives root the right to
grant to others any solaris authorizations that root has. The combination of
authorizations enables root to grant to others all the solaris authorizations.
See auth_attr (4) for more about authorizations.

FILES /etc/nsswitch.conf

/etc/user_attr

NOTES When deciding which authorization source to use (see DESCRIPTION), keep in
mind that NIS+ provides stronger authentication than NIS.

The root user is usually defined in local databases for a number of reasons,
including the fact that root needs to be able to log in and do system maintenance
in single-user mode, before the network name service databases are available.
For this reason, an entry should exist for root in the local user_attr file, and
the precedence shown in the example nsswitch.conf (4) file entry under
EXAMPLES is highly recommended.

Because the list of legal keys is likely to expand, any code that parses this
database must be written to ignore unknown key-value pairs without error.
When any new keywords are created, the names should be prefixed with a

538 SunOS 5.8 Last modified 26 Oct 1999

File Formats user_attr(4)

unique string, such as the company’s stock symbol, to avoid potential naming
conflicts.

In the attr field, escape the following symbols with a backslash (\) if you
use them in any value: colon (:), semicolon (;), carriage return (\n), equals
(=), or backslash (\).

SEE ALSO auths (1), pfcsh (1), pfksh (1), pfsh (1), profiles (1), roles (1),
getuserattr (3SECDB), auth_attr (4), exec_attr (4), nsswitch.conf (4),
passwd (4), prof_attr (4)

Last modified 26 Oct 1999 SunOS 5.8 539

utmp(4) File Formats

NAME utmp, wtmp – utmp and wtmp database entry formats

SYNOPSIS #include <utmp.h>/var/adm/utmp/var/adm/wtmp

DESCRIPTION The utmp and wtmp database files are obsolete and are no longer present on the
system. They have been superseded by the extended database contained in the
utmpx and wtmpx database files. See utmpx (4) .

It is possible for /var/adm/utmp to reappear on the system. This would most
likely occur if a third party application that still uses utmp recreates the file if it
finds it missing. This file should not be allowed to remain on the system. The
user should investigate to determine which application is recreating this file.

SEE ALSO utmpx (4)

540 SunOS 5.8 Last modified 22 Feb 1999

File Formats utmpx(4)

NAME utmpx, wtmpx – utmpx and wtmpx database entry formats

SYNOPSIS #include <utmpx.h>/var/adm/utmpx/var/adm/wtmpx

DESCRIPTION The utmpx and wtmpx files are extended database files that have superseded the
obsolete utmp and wtmp database files.

The utmpx database contains user access and accounting information for
commands such as who(1) , write (1) , and login (1) . The wtmpx database
contains the history of user access and accounting information for the utmpx
database.

USAGE Applications should not access these databases directly, but should use the
functions described on the getutxent (3C) manual page to interact with the
utmpx and wtmpx databases to ensure that they are maintained consistently.

FILES /var/adm/utmpx user access and adminstration information

/var/adm/wtmpx history of user access and adminstrative
information

SEE ALSO wait (2) , getutxent (3C) , wstat (3XFN)

Last modified 22 Feb 1999 SunOS 5.8 541

vfstab(4) File Formats

NAME vfstab – table of file system defaults

DESCRIPTION The file /etc/vfstab describes defaults for each file system. The information
is stored in a table with the following column headings:

device device mount FS fsck mount mount
to mount to fsck point type pass at boot options

The fields in the table are space-separated and show the resource name
(device to mount), the raw device to fsck (device to fsck), the default mount
directory (mount point), the name of the file system type (FS type), the number
used by fsck to decide whether to check the file system automatically (fsck pass),
whether the file system should be mounted automatically by mountall
(mount at boot), and the file system mount options (mount options). (See respective
mount file system man page below in SEE ALSOfor mount options.) A ’-’ is used
to indicate no entry in a field. This may be used when a field does not apply to
the resource being mounted.

The getvfsent (3C) family of routines is used to read and write to
/etc/vfstab .

/etc/vfstab may be used to specify swap areas. An entry so specified, (which
can be a file or a device), will automatically be added as a swap area by the
/sbin/swapadd script when the system boots. To specify a swap area, the
device-to-mount field contains the name of the swap file or device, the FS-type is
"swap", mount-at-boot is "no" and all other fields have no entry.

SEE ALSO fsck (1M), mount (1M), mount_cachefs (1M), mount_hsfs (1M),
mount_nfs (1M), mount_tmpfs (1M), mount_ufs (1M), swap(1M),
getvfsent (3C)

System Administration Guide, Volume 1

542 SunOS 5.8 Last modified 17 Aug 1999

File Formats vold.conf(4)

NAME vold.conf – Volume Management configuration file

SYNOPSIS /etc/vold.conf

DESCRIPTION The vold.conf file contains the Volume Management configuration
information used by vold (1M). This information includes the database to
use, labels that are supported, devices to use, actions to take when certain
media events occur, and the list of file systems that are unsafe to eject without
unmounting.

Modify vold.conf to specify which program should be called when media
events happen (actions) or when you need to add another device to your system.
See the example section for more information on adding devices.

If you modify vold.conf , you must tell vold to reread vold.conf by
sending a HUP signal. Use

ps -ef | grep
vold

kill -HUP vold_pid

File Format The syntax for the vold.conf file is shown here.

Database to use
db database

Labels supported
label label_type shared_object device

Devices to use
use device type special shared_object symname [options]

Actions
insert regex [options] program program args
eject regex [options] program program args
notify regex [options] program program args

List of file system types unsafe to eject
unsafe fs_type fs_type

Of these syntax fields, you can safely modify Devices to use and Actions .

Devices to Use Field All use device statements must be grouped together by device type. (For
example, all use cdrom statements must be grouped together; and all use
floppy statements must be grouped together.) Here are the explanations of the
syntax for the Devices to use field.
device The type of removable media device to be used.

Legal values are cdrom and floppy .

Last modified 23 May 1994 SunOS 5.8 543

vold.conf(4) File Formats

type The specific capabilities of the device. Legal
value is drive .

special This sh (1) expression specifies the device or
devices to be used. Path usually begins with
/dev .

shared_object The name of the program that manages this
device. vold (1M) expects to find this program
in /usr/lib/vold .

symname The symbolic name that refers to this device. The
symname is placed in the device directory.

options The user, group, and mode permissions for the
media inserted (optional).

The special and symname parameters are related. If special contains any shell
wildcard characters (i.e., has one or more asterisks or question marks in it),
then the syname must have a "%d" at its end. In this case, the devices that are
found to match the regular expression are sorted, then numbered. The first
device will have a zero filled in for the "%d", the second device found will
have a one, and so on.

If the special specification does not have any shell wildcard characters then the
symname parameter must explicitly specify a number at its end (see EXAMPLES
below).

Actions Field Here are the explanations of the syntax for the Actions field.
insert |eject |notify The media event prompting the event

regex This sh (1) regular expression is matched against
each entry in the /vol file system that is being
affected by this event.

options You can specify what user or group name that
this event is to run as (optional).

program The full path name of an executable program to
be run when regex is matched.

program args Arguments to the program.

Default Values The default vold.conf file is shown here.

#
Volume Daemon Configuration file
#

Database to use (must be first)
db db_mem.so

544 SunOS 5.8 Last modified 23 May 1994

File Formats vold.conf(4)

Labels supported
label dos label_dos.so floppy
label cdrom label_cdrom.so cdrom
label sun label_sun.so floppy

Devices to use
use cdrom drive /dev/dsk/c*s2 dev_cdrom.so cdrom%d
use floppy drive /dev/diskette[0-9] dev_floppy.so floppy%d

Actions
insert /vol*/dev/fd[0-9]/* user=root /usr/sbin/rmmount
insert /vol*/dev/dsk/* user=root /usr/sbin/rmmount
eject /vol*/dev/fd[0-9]/* user=root /usr/sbin/rmmount
eject /vol*/dev/dsk/* user=root /usr/sbin/rmmount
notify /vol*/rdsk/* group=tty user=root /usr/lib/vold/volmissing -p

List of file system types unsafe to eject
unsafe ufs hsfs pcfs

EXAMPLES EXAMPLE 1 A sample vold.conf file.

To add a CD-ROM drive to the vold.conf file that does not match the default
regular expression (/dev/rdsk/c*s2), you must explicitly list its device path
and what symbolic name (with %d) you want the device path to have. For
example, to add a CD-ROM drive that has the path /dev/rdsk/my/cdrom s?
(where s? are the different slices), add the following line to vold.conf (all
on one line):

use cdrom drive /dev/rdsk/my/cdroms2 dev_cdrom.so cdrom%d

Then, when a volume is inserted in this CD-ROM drive. volume management
will assign it the next symbolic name. For example, if two CD-ROMs match the
default regular expression, they would be named cdrom0 and cdrom1 ; and any
that match the added regular expression would be named starting with cdrom2 .

For a diskette that does not match the vold.conf default regular expression
(/dev/floppy [0-9]), a similar line would have to be added for the diskette.
For example, to add a diskette whose path was /dev/my/fd0 , you would add
the following to vold.conf :

use floppy drive /dev/my/fd0 dev_floppy.so floppy%d

SEE ALSO sh (1), volcancel (1), volcheck (1), volmissing (1), rmmount (1M), vold (1M),
rmmount.conf (4), volfs (7FS)

NOTES Volume Management manages both the block and character device for CD-ROMs
and floppy disks; but, to make the configuration file easier to set up and scan,
only one of these devices needs to be specified. If you follow the conventions
specified below, Volume Management figures out both device names if only one

Last modified 23 May 1994 SunOS 5.8 545

vold.conf(4) File Formats

of them is specified. For example, if you specify the block device, it figures
out the pathname to the character device; if you specify the pathname to the
character device, it figures out the block device.

CD-ROM Naming
Conventions

The CD-ROM pathname must have a directory component of rdsk (for the
character device) and dsk for the block device. For example, if you specify
the character device using the line:

use cdrom drive /dev/rdsk/my/cdroms2 dev_cdrom.so cdrom%d

then it is assumed that the block device is at

/dev/dsk/my/cdroms2

Floppy Disk Naming
Conventions

For floppy disks, Volume Management requires that the device pathnames end
in either rfd [0-9] or rdiskette [0-9] for the character device, and fd [0-9]
or diskette [0-9] for the block device. As with the CD-ROM, it generates
either the block name given the character name, or the character name given
the block name.

546 SunOS 5.8 Last modified 23 May 1994

File Formats warn.conf(4)

NAME warn.conf – Kerberos warning configuration file

SYNOPSIS /etc/krb5/warn.conf

DESCRIPTION The warn.conf file contains configuration information specifying how users
will be warned by the ktkt_warnd daemon about ticket expiration on a
Kerberos client. Each Kerberos client host must have a warn.conf file in order
for users on that host to get Kerberos warnings from the client. Entries in the
warn.conf file must have the following format:

principal syslog| terminal|mail time [email_address]
principal The principal name to be warned. The ’*’ wildcard can be

used to specify groups of principals.

syslog Sends the warnings to the system’s syslog. Depending on the
/etc/syslog.conf file, syslog entries are written to the
/var/adm/messages file and/or displayed on the terminal.

terminal Sends the warnings to display on the terminal.

mail Sends the warnings as email to the address specified by
email_address.

time Specifies how much time before the TGT expires when a
warning should be sent. The default time value is seconds,
but you can specify h (hours) and m (minutes) after the
number to specify other time values.

email_address Specifies the email address at which to send the warnings.
This field must be specified only with the mail field.

EXAMPLES EXAMPLE 1 Specifying warnings

The following warn.conf entry specifies that warnings will be sent to the
syslog 5 minutes before the expiration of the TGT for all principals, in the
form: "jdb@ACME.COM: your kerberos credentials expire in 5
minutes ".

* syslog 5m

FILES /usr/lib/krb5/ktkt_warnd Kerberos warning daemon

SEE ALSO ktkt_warnd (1M), SEAM(5)

Last modified 17 Nov 1999 SunOS 5.8 547

ypfiles(4) File Formats

NAME ypfiles – Network Information Service Version 2, formerly knows as YP

DESCRIPTION The NIS network information service uses a distributed, replicated database
of dbm files (in ASCII form) contained in the /var/yp directory hierarchy
on each NIS server. NIS has been replaced by NIS+, the new version of the
Network Information Service. See nis+ (1). This release only supports the
client functionality of NIS, (see ypclnt (3NSL)). The client functions are either
supported by the ypserv process running on a machine with an earlier
version of SunOS or by the NIS+ server in "YP-compatibility" mode, (see
rpc.nisd (1M)).

A dbmdatabase served by the NIS server is called an NIS map. An NIS domain is
a subdirectory of /var/yp containing a set of NIS maps on each NIS server.

Standard nicknames are defined in the file /var/yp/nicknames . These
names can be used in place of the full map name in the ypmatch and ypcat
commands. The command ypwhich −mcan be used to display the full set of
nicknames. Each line of the nickname file contains two fields separated by white
space. The first field is the nickname and the second field is the name of the map
that it expands to. The nickname cannot contain a ".".

FILES /var/yp/nicknames nicknames file

SEE ALSO nis+ (1), nisaddent (1M), nissetup (1M), rpc.nisd (1M), ypbind (1M),
ypinit (1M), dbm(3UCB), secure_rpc (3NSL), ypclnt (3NSL)

NOTES The NIS+ server, rpc.nisd, when run in "YP-compatibility mode", can support
NIS clients only for the standard NIS maps listed below, provided that it has
been set up to serve the corresponding NIS+ tables using nissetup (1M) and
nisaddent (1M). The NIS+ server should serve the directory with the same
name (case sensitive) as the domainname of the NIS client. NIS+ servers use
secure RPC to verify client credentials but the NIS clients do not authenticate
their requests using secure RPC. Therefore, NIS clients can look up the
information stored by the NIS+ server only if the information has "read" access
for an unauthenticated client (i.e. one with "nobody" NIS+ credentials).
NIS maps NIS+ tables

passwd.byname passwd.org_dir

passwd.byuid passwd.org_dir

group.byname group.org_dir

group.bygid group.org_dir

publickey.byname cred.org_dir

hosts.byaddr hosts.org_dir

548 SunOS 5.8 Last modified 12 Nov 1996

File Formats ypfiles(4)

hosts.byname hosts.org_dir

mail.byaddr mail_aliases.org_dir

mail.aliases mail_aliases.org_dir

services.byname services.org_dir

services.byservicename services.org_dir

rpc.bynumber rpc.org_dir

rpc.byname rpc.org_dir

protocols.bynumber protocols.org_dir

protocols.byname protocols.org_dir

networks.byaddr networks.org_dir

networks.byname networks.org_dir

netmasks.bymask netmasks.org_dir

netmasks.byaddr netmasks.org_dir

ethers.byname ethers.org_dir

ethers.byaddr ethers.byname

bootparams bootparams

auto.master auto_master.org_dir

auto.home auto_home.org_dir

auto.direct auto_direct.org_dir

auto.src auto_src.org_dir

Last modified 12 Nov 1996 SunOS 5.8 549

zoneinfo(4) File Formats

NAME zoneinfo – timezone information

DESCRIPTION For notes regarding the zoneinfo timezones, see
/usr/share/lib/zoneinfo/src/README .

550 SunOS 5.8 Last modified 21 Jun 1999

Index

A
a.out — Executable and Linking (ELF) files 27
accounting system

prime/nonprime hours — holidays 156
addresses – addresses for sendmail 22
admin — installation defaults file 18
aliases – sendmail aliases file 22
archives — device header 29
ASET environment file — asetenv 32
ASET master files

– asetmasters 35
– cklist.high 35
– cklist.low 35
– cklist.med 35
– tune.high 35
– tune.low 35
– tune.med 35
– uid_aliases 35

asetenv — ASET environment file 32
audit — audit control file 40, 43
audit trail file

— audit.log 45
audit_class password file 38
audit_event password file 44
audit.log — audit trail file 45
audit_user — per-user auditing data file 51

B
boot parameter database — bootparams 56
BOOTP

network database — dhcp_network 93

bootparams — boot parameter database 56

C
CD-ROM table of contents file — cdtoc 59
cdtoc — CD-ROM table of contents file 59
.clustertoc — listing of software packages

on product distribution
media 62

compatible versions file — compver 66
compver — compatible versions file 66
configuration file for default router(s) —

defaultrouter 74
configuration file for LDAP display template

routines
— ldaptemplates.conf 201

configuration file for LDAP filtering routines
— ldapfilter.conf 195

configuration file for LDAP search preference
routines

— ldapsearchprefs.conf 197
configuration file for NIS security —

securenets 409
configuration file for security policy —

policy.conf 313
configuration file for Service Location Protocol

agents — slp.conf 416
configuration file, system log daemon —

syslogd 439
copyright — copyright information file 67
core — core image of a terminated process

file 68

Index-551

D
d_passwd — dial-up password file 109

Generating An Encrypted Password 110
database parameters for DHCP — dhcp 88
default Internet protocol type — inet_type 167
default_fs – specify the default file system

type for local or remote file
systems 73

defaultrouter — configuration file for default
router(s) 74

depend — software dependencies file 75
devconfig configuration files —

device.cfinfo 80
device instance number file —

path_to_inst 288
device_allocate

device access control file 77
device.cfinfo — devconfig configuration

files 80
device_maps

device access control file 85
devices

access control file — device_allocate 77,
85

devices, capabilities
terminal and printers — terminfo 451

dfs utilities packages
list — fstypes 128

dfstab — file containing commands for sharing
resources 87

parameters for DHCP databases — dhcp 88
DHCP

client identifier to IP address mappings —
dhcp_network 93

configuration parameter table—
dhcptab 96

dhcp_network — dhcp network DHCP
database 93pntadm

dhcptab — DHCP configuration parameter
table 96

dial-up password file — d_passwd 109
dialups — list of terminal devices requiring a

dial-up password 107
dir_ufs – format of ufs directories 108
directory of files specifying supported platforms

— platform 307

disk drive configuration for the format
command — format.dat 121

disk space requirement file — space 429
dispatcher, real-time process

parameters — rt_dptbl 393
dispatcher, time-sharing process

parameters — ts_dptbl 519
driver.conf — driver configuration file 111
drivers

driver for EISA devices – eisa 432
driver for PCI devices — pci 290
driver for pseudo devices — pseudo 373
driver for SBus devices — vme 400
driver for SCSI devices — scsi 407

E
eisa – configuration file for EISA bus device

drivers 432
ELF files — a.out 27
environ – user-preference variables files for

AT&T FACE 114
.environ – user-preference variables files for

AT&T FACE 114
environment

setting up an environment for user at login
time — profile 364

ethers — Ethernet addresses of hosts on
Internet 116

exec_attr — execution profiles database 117
Executable and Linking Format (ELF) files —

a.out 27
execution profiles database — exec_attr 117

F
FACE

alias file — pathalias 287
object architecture information — ott 270

FACE object architecture information
— ott 270

fd — file descriptor files 120
file descriptor files — fd 120
file formats

— intro 17
file listing users to be disallowed ftp login

privileges — ftpusers 132

man pages section 4: File Formats ♦ February 2000

file system
defaults — vfstab 542
mounted— mtab 221

file that maps sockets to transport providers —
sock2path 428

files used by programs
/etc/security/device_allocate —

device_allocate file 78
/etc/security/device_maps —

device_maps file 86
format of a ufs file system volume – fs_ufs 129

inode 129
inode_ufs 129

format.dat — disk drive configuration for the
format command 121

Keywords 121
Syntax 121

forward – mail forwarding file 22
fs_ufs – format of a ufs file system volume 129
fspec — format specification in text files 126
fstypes — file that lists utilities packages for

distributed file system 128
ftpusers — file listing users to be disallowed ftp

login privileges 132

G
geniconvtbl — geniconvtbl input file

format 134
geniconvtbl input file format —

geniconvtbl 134
graphics interface files — plot 311
group — local source of group information 154

H
holidays — prime/nonprime hours for

accounting system 156
host name database — hosts 158
hosts — host name data base 158
hosts.equiv – trusted hosts list 160

I
inet_type — default Internet protocol type 167
inetd.conf — Internet server database 164
init.d — initialization and termination scripts

for changing init states 168

initialization and termination scripts for
changing init states —
init.d 168

inittab — script for init 170
inode – format of a ufs file system volume 129
inode_ufs – format of a ufs file system

volume 129
installation

defaults file — admin 18
Internet

DHCP database — dhcp_network 93
Ethernet addresses of hosts — ethers 116
network name database — networks 248
protocol name database — protocols 366
services and aliases — services 411

Internet servers database — servers 164
ipnodes — local database associating names of

nodes with IP addresses 173
isa – configuration file for ISA bus device

drivers 432
issue — issue identification file 175

K
Kerberos configuration file — krb5.conf 184

— krb.conf 193
Kerberos realm translation file

— krb.realms 194
Kerberos warning configuration file —

warn.conf 547
keyboard table descriptions for loadkeys and

dumpkeys — keytables 176
keytables — keyboard table descriptions for

loadkeys and dumpkeys 176
krb5.conf — Kerberos configuration file 184

L
ldapfilter.conf — configuration file for LDAP

filtering routines 195
ldapsearchprefs.conf — configuration file

for LDAP search preference
routines 197

ldaptemplates.conf — configuration file for
LDAP display template
routines 201

legal annotations

Index-553

specify — note 256
limits — header for implementation-specific

constants 205
link editor output — a.out 27
list of network groups — netgroup 239
list of terminal devices requiring a dial-up

password — dialups 107
llc2 — LLC2 Configuration file 209
LLC2 Configuration file — llc2 209
local database associating names of nodes with

IP addresses — ipnodes 173
login-based device permissions –

logindevperm 216
logindevperm – login-based device

permissions 216
loginlog — log of failed login attempts 217

M
magic — file command’s magic numbers

table 218
message displayed to users attempting to log

on in the process of a system
shutdown — nologin 255

mounted file system table — mtab 221
mtab — mounted file system table 221

N
name servers

configuration file — resolv.conf 381
name service cache daemon configuration —

nscd.conf
nscd.conf 257

name service switch
configuration file — nsswitch.conf 260

nca.if — the NCA configuration file
that specifies physical
interfaces 224

ncakmod.conf — the ncakmod configuration
file 226

ncalogd.conf — the ncalogd configuration
file 227

netconfig — network configuration
database 233

netgroup — list of network groups 239
netgroup — list of network groups 239
netid — netname database 242

netmasks — network masks for subnetting 244
netname database — netid 242
.netrc — ftp remote login data file 246
Network Information Service Version 2,

formerly knows as YP —
ypfiles 548

networks connected to the system —
netconfig 233

networks — network name database 248
NFS

remote monted file systems — rmtab 389
NIS databases

updating — updaters 536
nisfiles — NIS+ database files and directory

structure 252
nologin — message displayed to users

attempting to log on in
the process of a system
shutdown 255

nonprime hours
accounting system — holidays 156

note — specify legal annotations 256
nscd.conf — name service cache daemon

configuration 257
nsswitch.conf — configuration file for the name

service switch 260

O
.order — installation order of software packages

on product distribution
media 269

P
package characteristics file

— pkginfo 296
package contents description file

— pkgmap 303
package information file — prototype 368
package installation order file

— order 269
package table of contents description file

.clustertoc — clustertoc 62
— packagetoc 271

.packagetoc — listing of software packages
on product distribution
media 271

man pages section 4: File Formats ♦ February 2000

packing rules file for cachefs and filesync —
packingrules 276

packingrules — packing rules file for cachefs
and filesync 276

pam.conf — configuration file for pluggable
authentication modules 279

passwd — password file 284
passwords

access-restricted shadow system file —
shadow 412

path_to_inst — device instance number
file 288

pathalias — alias file for FACE 287
PCI devices

driver class — pci 290
pci — drivers for PCI devices 290
pcmcia — PCMCIA nexus driver 294
PCMCIA nexus driver — pcmcia 294
per-user auditing data file — audit_user 51
phones — remote host phone numbers 295
pkginfo — software package characteristics

file 296
pkgmap — listing of software package

contents 303
platform — directory of files specifying

supported platforms 307
plot — graphics interface files 311
policy.conf — configuration file for security

policy 313
Power Management configuration file —

power.conf 314
power.conf — Power Management

configuration file 314
.pref – user-preference variables files for AT&T

FACE 114
prime hours

accounting system — holidays 156
printers — printer alias database 322
printers.conf — printing configuration

database 326
proc — process file system 332

PCAGENT 355
PCCFAULT 351
PCCSIG 350
PCKILL 350
PCNICE 357
PCREAD PCWRITE 356

PCRUN 349
PCSASRS 355
PCSCRED 357
PCSENTRY PCSEXIT 351
PCSET PCUNSET 353
PCSFAULT 350
PCSFPREG 355
PCSHOLD 350
PCSREG 355
PCSSIG 350
PCSTOP PCDSTOP PCWSTOP

PCTWSTOP 348
PCSTRACE 350
PCSVADDR 355
PCSXREG 355
PCUNKILL 350
PCWATCH 351

/proc, the process file system — proc 332
process file system — proc 332
process scheduler (or dispatcher), real-time

parameters — rt_dptbl 393
process scheduler (or dispatcher), time-sharing

parameters — ts_dptbl 519
processes

core image of a terminated process file —
core 68

profile — setting up an environment for user at
login time 364

project identification file — issue 175
protocols — names of known protocols in

Internet 366
prototype — package information file 368
pseudo devices 373
pseudo — drivers for pseudo devices 373
publickey — publickey database for secure

RPC 374

Q
queuedefs — queue description file for at,

batch, and cron spooled by at
or batch or atrm 375

R
real-time process dispatcher

parameters — rt_dptbl 393

Index-555

real-time process scheduler
parameters — rt_dptbl 393

remote authentication for hosts and users –
hosts.equiv, .rhosts 160

remote — remote host descriptions 377
remote host

phone numbers — phones 295
remote login data for ftp — netrc 246
remote mounted file systems

— rmtab 389
Remote Program Load (RPL) server

configuration file —
rpld.conf 391

resolv.conf — configuration file for name server
routines 381

rmmount.conf — removable media mounter
configuration file

Default Values 385
Examples 385

rpc — rpc program number database 390
RPC program names

for program numbers — rpc 390
RPC security

public key database — publickey 374
RPCSEC_GSS mechanism file

– mech 220
RPCSEC_GSS QOP file

– 220
rpld.conf — Remote Program Load (RPL) server

configuration file 391

S
SBus devices

driver class — sbus 400
sbus — drivers for SBus devices 400
sccsfile — format of SCCS history file 403
scheduler, real-time process

parameters — rt_dptbl 393
scheduler, time-sharing process

parameters — ts_dptbl 519
SCSI devices

driver class — scsi 407
scsi — drivers for SCSI devices 407
securenets — configuration file for NIS

security 409
sendmail aliases file – aliases 22

serialized registration file for the service
location protocol daemon
(slpd) — slpd.reg 425

services — Internet services and aliases 411
shadow password file 412
share resources across network, commands —

dfstab 87
shared resources, local

— sharetab 414
sharetab — shared file system table 414
shell database — shells 415
shells — shell database 415
slp.conf — configuration file for Service

Location Protocol agents 416
slpd.reg — serialized registration file for the

service location protocol
daemon (slpd) 425

sock2path — file that maps sockets to transport
providers 428

software dependencies — depend 75
space — disk space requirement file 429
specify the default file system type for local

or remote file systems –
default_fs 73

su command log file — sulog 430
sulog — su command log file 430
sysbus – drivers for system bus 432

eisa 432
isa 432

sysidcfg — system identification configuration
file 435

Keyword Syntax Rules 435
Where To Put the sysidcfg File 435

syslogd.conf — system log daemon
configuration file 439

system — system configuration
information 443

system identification configuration file —
sysidcfg 435

system log configuration file —
syslogd.conf 439

T
telnet default options file — telnetrc 447
telnetrc — file for telnet default options 447
term — format of compiled term file 448

man pages section 4: File Formats ♦ February 2000

terminals
line setting information — ttydefs 527

termination and initialization scripts for
changing init states —
init.d 168

terminfo — System V terminal capability data
base 451

test files
format specification — fspec 126

the NCA configuration file that specifies
physical interfaces —
nca.if 224

the ncakmod configuration file —
ncakmod.conf 226

the ncalogd configuration file —
ncalogd.conf 227

timezone — set default time zone 511
time-sharing process dispatcher

parameters — ts_dptbl 519
time-sharing process scheduler

parameters — ts_dptbl 519
timed event services

queue description file for at, batch and cron
— queuedefs 375

timezone — default timezone data base 510
timezone information — zoneinfo 550
TNF kernel probes — tnf_kernel_probes 512
tnf_kernel_probes — TNF kernel probes 512
ttydefs — terminal line settings

information 527
ttyname

list of directories with terminal-related
device files — ttysrch 528

U
ufs

format – dir_ufs 108
ufsdump – incremental dump format 530
updaters — configuration file for NIS

updating 536

user-preference variables files for AT&T FACE
– environ 114

utmp – utmp and wtmp database entry
formats 540

utmpx – utmpx and wtmpx database entry
formats 541

V
.variables – user-preference variables files for

AT&T FACE 114
vfstab — defaults for each file system 542
vold.conf — Volume Management configuration

file 543
Actions Field 544
CD-ROM Naming Conventions 546
Default Values 544
Devices to Use Field 543
File Format 543
Floppy Disk Naming Conventions 546

Volume Management
configuration file — vold.conf 543

W
warn.conf — Kerberos warning configuration

file 547
wtmp – utmp and wtmp database entry

formats 540
wtmpx – utmpx and wtmpx database entry

formats 541

Y
ypfiles — Network Information Service Version

2, formerly knows as YP 548

Z
zoneinfo — timezone information 550

Index-557

