
man pages section 2: System Calls

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 806-0626-10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 11

Intro(2) 17

access(2) 41

acct(2) 43

acl(2) 44

facl(2) 44

adjtime(2) 46

alarm(2) 48

audit(2) 50

auditon(2) 51

auditsvc(2) 56

brk(2) 58

sbrk(2) 58

chdir(2) 60

fchdir(2) 60

chmod(2) 62

fchmod(2) 62

chown(2) 66

lchown(2) 66

Contents 3

fchown(2) 66

chroot(2) 69

fchroot(2) 69

close(2) 71

creat(2) 73

dup(2) 75

exec(2) 76

execl(2) 76

execv(2) 76

execle(2) 76

execve(2) 76

execlp(2) 76

execvp(2) 76

exit(2) 83

_exit(2) 83

fcntl(2) 86

fork(2) 95

fork1(2) 95

fpathconf(2) 98

pathconf(2) 98

getaudit(2) 101

setaudit(2) 101

getaudit_addr(2) 101

setaudit_addr(2) 101

getauid(2) 103

setauid(2) 103

getcontext(2) 104

setcontext(2) 104

4 man pages section 2: System Calls ♦ February 2000

getdents(2) 106

getgroups(2) 107

setgroups(2) 107

getitimer(2) 108

setitimer(2) 108

getmsg(2) 112

getpmsg(2) 112

getpid(2) 115

getpgrp(2) 115

getppid(2) 115

getpgid(2) 115

getrlimit(2) 116

setrlimit(2) 116

getsid(2) 120

getuid(2) 121

geteuid(2) 121

getgid(2) 121

getegid(2) 121

ioctl(2) 122

kill(2) 124

link(2) 126

llseek(2) 128

lseek(2) 129

_lwp_cond_signal(2) 131

_lwp_cond_broadcast(2) 131

_lwp_cond_wait(2) 132

_lwp_cond_timedwait(2) 132

_lwp_create(2) 134

Contents 5

_lwp_exit(2) 136

_lwp_info(2) 137

_lwp_kill(2) 138

_lwp_makecontext(2) 139

_lwp_mutex_lock(2) 140

_lwp_mutex_unlock(2) 140

_lwp_mutex_trylock(2) 140

_lwp_self(2) 141

_lwp_sema_wait(2) 142

_lwp_sema_trywait(2) 142

_lwp_sema_init(2) 142

_lwp_sema_post(2) 142

_lwp_setprivate(2) 143

_lwp_getprivate(2) 143

_lwp_suspend(2) 144

_lwp_continue(2) 144

_lwp_wait(2) 145

memcntl(2) 146

mincore(2) 150

mkdir(2) 151

mknod(2) 153

mmap(2) 156

mount(2) 162

mprotect(2) 166

msgctl(2) 167

msgget(2) 169

msgrcv(2) 170

msgsnd(2) 172

6 man pages section 2: System Calls ♦ February 2000

munmap(2) 174

nice(2) 175

ntp_adjtime(2) 176

ntp_gettime(2) 177

open(2) 178

pause(2) 185

pcsample(2) 186

pipe(2) 187

poll(2) 188

p_online(2) 191

priocntl(2) 194

priocntlset(2) 205

processor_bind(2) 207

processor_info(2) 209

profil(2) 210

pset_bind(2) 212

pset_create(2) 214

pset_destroy(2) 214

pset_assign(2) 214

pset_info(2) 216

ptrace(2) 217

putmsg(2) 219

putpmsg(2) 219

read(2) 222

readv(2) 222

pread(2) 222

readlink(2) 228

rename(2) 229

Contents 7

resolvepath(2) 232

rmdir(2) 234

semctl(2) 236

semget(2) 239

semop(2) 241

setpgid(2) 244

setpgrp(2) 246

setregid(2) 247

setreuid(2) 248

setsid(2) 249

setuid(2) 250

setegid(2) 250

seteuid(2) 250

setgid(2) 250

shmctl(2) 252

shmget(2) 254

shmop(2) 256

shmat(2) 256

shmdt(2) 256

sigaction(2) 258

sigaltstack(2) 261

_signotifywait(2) 263

_lwp_sigredirect(2) 263

sigpending(2) 265

sigprocmask(2) 266

sigsend(2) 267

sigsendset(2) 267

sigsuspend(2) 269

8 man pages section 2: System Calls ♦ February 2000

sigwait(2) 271

__sparc_utrap_install(2) 275

stat(2) 280

lstat(2) 280

fstat(2) 280

statvfs(2) 284

fstatvfs(2) 284

stime(2) 287

swapctl(2) 288

symlink(2) 292

sync(2) 294

sysfs(2) 295

sysinfo(2) 296

time(2) 300

times(2) 301

uadmin(2) 303

ulimit(2) 305

umask(2) 306

umount(2) 307

umount2(2) 307

uname(2) 309

unlink(2) 310

ustat(2) 312

utime(2) 313

utimes(2) 315

vfork(2) 317

vhangup(2) 319

wait(2) 320

Contents 9

waitid(2) 322

waitpid(2) 324

write(2) 326

pwrite(2) 326

writev(2) 326

yield(2) 332

Index 332

10 man pages section 2: System Calls ♦ February 2000

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page
is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information
it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware
peripherals and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

Preface 11

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there are
no bugs to report, there is no BUGS section. See the intro pages for more information
and detail about each section, and man(1) for more information about man pages in
general.

NAME This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not
exist in the standard path, its full path name is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or
arguments enclosed within braces are

12 man pages section 2: System Calls ♦ February 2000

interdependent, such that everything
enclosed must be treated as a unit.

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES. Interactive
commands, subcommands, requests, macros, and
functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl (2) system call is called
ioctl and generates its own heading. ioctl
calls for a specific device are listed alphabetically
(on the man page for that specific device). ioctl
calls are used for a particular class of devices all
of which have an io ending, such as mtio (7I).

OPTIONS This secton lists the command options with
a concise summary of what each option does.
The options are listed literally and in the order
they appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard
output, standard error, or output files – generated
by the command.

RETURN VALUES If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they

13

failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations.
The subsections listed here are used to explain
built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage
or of how to use a command or function.
Wherever possible a complete example
including command-line entry and machine
response is shown. Whenever an example is
given, the prompt is shown as example% ,
or if the user must be superuser, example# .
Examples are followed by explanations, variable
substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion,
and values other than zero for various error
conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes (5) for more information.

14 man pages section 2: System Calls ♦ February 2000

SEE ALSO This section lists references to other man
pages, in-house documentation, and outside
publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

NOTES This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

15

CHAPTER

System Calls

16

System Calls Intro(2)

NAME Intro – introduction to system calls and error numbers

SYNOPSIS #include <errno.h>

DESCRIPTION This section describes all of the system calls. Most of these calls return one
or more error conditions. An error condition is indicated by an otherwise
impossible return value. This is almost always −1 or the null pointer; the
individual descriptions specify the details. An error number is also made
available in the external variable errno , which is not cleared on successful calls,
so it should be tested only after an error has been indicated.

In the case of multithreaded applications, the _REENTRANTflag must be
defined on the command line at compilation time (−D_REENTRANT). When the
_REENTRANTflag is defined, errno becomes a macro which enables each thread
to have its own errno . This errno macro can be used on either side of the
assignment, just as if it were a variable.

Applications should use bound threads rather than the _lwp_*() functions
(see thr_create (3THR)). Using LWPs (lightweight processes) directly is not
advised because libraries are only safe to use with threads, not LWPs.

Each system call description attempts to list all possible error numbers. The
following is a complete list of the error numbers and their names as defined
in <errno.h> .
1 EPERM Not superuser

Typically this error indicates an attempt to
modify a file in some way forbidden except to its
owner or the super-user. It is also returned for
attempts by ordinary users to do things allowed
only to the super-user.

2 ENOENT No such file or directory

A file name is specified and the file should exist
but doesn’t, or one of the directories in a path
name does not exist.

3 ESRCH No such process, LWP, or thread

No process can be found in the system that
corresponds to the specified PID, LWPID_t ,
or thread_t .

4 EINTR Interrupted system call

An asynchronous signal (such as interrupt
or quit), which the user has elected to catch,
occurred during a system service function. If

Last modified 15 Jun 1999 SunOS 5.8 17

Intro(2) System Calls

execution is resumed after processing the signal,
it will appear as if the interrupted function call
returned this error condition.

In a multithreaded application, EINTR may be
returned whenever another thread or LWP
calls fork (2).

5 EIO I/O error

Some physical I/O error has occurred. This error
may in some cases occur on a call following the
one to which it actually applies.

6 ENXIO No such device or address

I/O on a special file refers to a subdevice which
does not exist, or exists beyond the limit of the
device. It may also occur when, for example, a
tape drive is not on-line or no disk pack is loaded
on a drive.

7 E2BIG Arg list too long

An argument list longer than ARG_MAXbytes is
presented to a member of the exec family of
functions (see exec (2)). The argument list limit is
the sum of the size of the argument list plus the
size of the environment’s exported shell variables.

8 ENOEXEC Exec format error

A request is made to execute a file which,
although it has the appropriate permissions, does
not start with a valid format (see a.out (4)).

9 EBADF Bad file number

Either a file descriptor refers to no open file, or a
read (2) (respectively, write (2)) request is made
to a file that is open only for writing (respectively,
reading).

10 ECHILD No child processes

A wait (2) function was executed by a process
that had no existing or unwaited-for child
processes.

11 EAGAIN No more processes, or no more LWPs

18 SunOS 5.8 Last modified 15 Jun 1999

System Calls Intro(2)

For example, the fork (2) function failed because
the system’s process table is full or the user is
not allowed to create any more processes, or a
call failed because of insufficient memory or
swap space.

12 ENOMEM Not enough space

During execution of brk() or sbrk() (see
brk (2)), or one of the exec family of functions, a
program asks for more space than the system is
able to supply. This is not a temporary condition;
the maximum size is a system parameter. On
some architectures, the error may also occur if the
arrangement of text, data, and stack segments
requires too many segmentation registers,
or if there is not enough swap space during
the fork (2) function. If this error occurs on
a resource associated with Remote File Sharing
(RFS), it indicates a memory depletion which may
be temporary, dependent on system activity at
the time the call was invoked.

13 EACCES Permission denied

An attempt was made to access a file in a way
forbidden by the protection system.

14 EFAULT Bad address

The system encountered a hardware fault in
attempting to use an argument of a routine.
For example, errno potentially may be set to
EFAULTany time a routine that takes a pointer
argument is passed an invalid address, if the
system can detect the condition. Because systems
will differ in their ability to reliably detect a bad
address, on some implementations passing a bad
address to a routine will result in undefined
behavior.

15 ENOTBLK Block device required

A non-block device or file was mentioned where
a block device was required (for example, in a
call to the mount (2) function).

16 EBUSY Device busy

Last modified 15 Jun 1999 SunOS 5.8 19

Intro(2) System Calls

An attempt was made to mount a device that was
already mounted or an attempt was made to
unmount a device on which there is an active
file (open file, current directory, mounted-on
file, active text segment). It will also occur if an
attempt is made to enable accounting when it
is already enabled. The device or resource is
currently unavailable. EBUSYis also used by
mutexes, semaphores, condition variables, and
r/w locks, to indicate that a lock is held, and by
the processor control function P_ONLINE.

17 EEXIST File exists

An existing file was mentioned in an
inappropriate context (for example, call to the
link (2) function).

18 EXDEV Cross-device link

A hard link to a file on another device was
attempted.

19 ENODEV No such device

An attempt was made to apply an inappropriate
operation to a device (for example, read a
write-only device).

20 ENOTDIR Not a directory

A non-directory was specified where a directory
is required (for example, in a path prefix or as an
argument to the chdir (2) function).

21 EISDIR Is a directory

An attempt was made to write on a directory.

22 EINVAL Invalid argument

An invalid argument was specified (for example,
unmounting a non-mounted device), mentioning
an undefined signal in a call to the signal (3C)
or kill (2) function.

23 ENFILE File table overflow

20 SunOS 5.8 Last modified 15 Jun 1999

System Calls Intro(2)

The system file table is full (that is, SYS_OPEN
files are open, and temporarily no more files
can be opened).

24 EMFILE Too many open files

No process may have more than OPEN_MAXfile
descriptors open at a time.

25 ENOTTY Inappropriate ioctl for device

A call was made to the ioctl (2) function
specifying a file that is not a special character
device.

26 ETXTBSY Text file busy (obselete)

An attempt was made to execute a
pure-procedure program that is currently open
for writing. Also an attempt to open for writing
or to remove a pure-procedure program that is
being executed. (This message is obsolete.)

27 EFBIG File too large

The size of the file exceeded the limit specified by
resource RLIMIT_FSIZE ; the file size exceeds
the maximum supported by the file system;
or the file size exceeds the offset maximum of
the file descriptor. See the File Descriptor
subsection of the DEFINITIONS section below.

28 ENOSPC No space left on device

While writing an ordinary file or creating a
directory entry, there is no free space left on the
device. In the fcntl (2) function, the setting or
removing of record locks on a file cannot be
accomplished because there are no more record
entries left on the system.

29 ESPIPE Illegal seek

A call to the lseek (2) function was issued
to a pipe.

30 EROFS Read-only file system

An attempt to modify a file or directory was
made on a device mounted read-only.

Last modified 15 Jun 1999 SunOS 5.8 21

Intro(2) System Calls

31 EMLINK Too many links

An attempt to make more than the maximum
number of links, LINK_MAX, to a file.

32 EPIPE Broken pipe

A write on a pipe for which there is no process to
read the data. This condition normally generates
a signal; the error is returned if the signal is
ignored.

33 EDOM Math arguement out of domain of func

The argument of a function in the math package
(3M) is out of the domain of the function.

34 ERANGE Math result not representable

The value of a function in the math package (3M)
is not representable within machine precision.

35 ENOMSG No message of desired type

An attempt was made to receive a message of a
type that does not exist on the specified message
queue (see msgrcv (2)).

36 EIDRM Identifier removed

This error is returned to processes that resume
execution due to the removal of an identifier from
the file system’s name space (see msgctl (2),
semctl (2), and shmctl (2)).

37 ECHRNG Channel number out of range

38 EL2NSYNC Level 2 not synchronized

39 EL3HLT Level 3 halted

40 EL3RST Level 3 reset

41 ELNRNG Link number out of range

42 EUNATCH Protocol driver not attached

43 ENOCSI No CSI structure available

44 EL2HLT Level 2 halted

45 EDEADLK Deadlock condition

22 SunOS 5.8 Last modified 15 Jun 1999

System Calls Intro(2)

A deadlock situation was detected and avoided.
This error pertains to file and record locking, and
also applies to mutexes, semaphores, condition
variables, and r/w locks.

46 ENOLCK No record locks available

There are no more locks available. The system
lock table is full (see fcntl (2)).

47 ECANCELED Operation canceled

The associated asynchronous operation was
canceled before completion.

48 ENOTSUP Not supported

This version of the system does not support
this feature. Future versions of the system may
provide support.

49 EDQUOT Disc quota exceeded

A write (2) to an ordinary file, the creation of a
directory or symbolic link, or the creation of a
directory entry failed because the user’s quota of
disk blocks was exhausted, or the allocation of an
inode for a newly created file failed because the
user’s quota of inodes was exhausted.

58-59 Reserved

60 ENOSTR Device not a stream

A putmsg (2) or getmsg (2) call was attempted on
a file descriptor that is not a STREAMS device.

61 ENODATA No data available

62 ETIME Timer expired

The timer set for a STREAMS ioctl (2)
call has expired. The cause of this error is
device-specific and could indicate either a
hardware or software failure, or perhaps a
timeout value that is too short for the specific
operation. The status of the ioctl() operation
is indeterminate. This is also returned in
the case of _lwp_cond_timedwait (2) or
cond_timedwait (3THR).

Last modified 15 Jun 1999 SunOS 5.8 23

Intro(2) System Calls

63 ENOSR Out of stream resources

During a STREAMS open (2) call, either no
STREAMS queues or no STREAMS head data
structures were available. This is a temporary
condition; one may recover from it if other
processes release resources.

64 ENONET Machine is not on the network

This error is Remote File Sharing (RFS) specific. It
occurs when users try to advertise, unadvertise,
mount, or unmount remote resources while the
machine has not done the proper startup to
connect to the network.

65 ENOPKG Package not installed

This error occurs when users attempt to use a call
from a package which has not been installed.

66 EREMOTE Object is remote

This error is RFS-specific. It occurs when users
try to advertise a resource which is not on the
local machine, or try to mount/unmount a device
(or pathname) that is on a remote machine.

67 ENOLINK Link has been severed

This error is RFS-specific. It occurs when the link
(virtual circuit) connecting to a remote machine is
gone.

68 EADV Advertise error

This error is RFS-specific. It occurs when users
try to advertise a resource which has been
advertised already, or try to stop RFS while there
are resources still advertised, or try to force
unmount a resource when it is still advertised.

69 ESRMNT Srmount error

This error is RFS-specific. It occurs when an
attempt is made to stop RFS while resources are
still mounted by remote machines, or when a
resource is readvertised with a client list that does
not include a remote machine that currently has
the resource mounted.

24 SunOS 5.8 Last modified 15 Jun 1999

System Calls Intro(2)

70 ECOMM Communication error on send

This error is RFS-specific. It occurs when the
current process is waiting for a message from a
remote machine, and the virtual circuit fails.

71 EPROTO Protocol error

Some protocol error occurred. This error is
device-specific, but is generally not related to
a hardware failure.

76 EDOTDOT Error 76

This error is RFS-specific. A way for the server
to tell the client that a process has transferred
back from mount point.

77 EBADMSG Not a data message

During a read (2), getmsg (2), or ioctl (2)
I_RECVFD call to a STREAMS device, something
has come to the head of the queue that can not be
processed. That something depends on the call:

read() : control information or passed
file descriptor.

getmsg() : passed file descriptor.

ioctl() : control or data information.

78 ENAMETOOLONG File name too long

The length of the path argument exceeds
PATH_MAX, or the length of a path component
exceeds NAME_MAXwhile _POSIX_NO_TRUNCis
in effect; see limits (4).

79 EOVERFLOW Value too large for defined data type.

80 ENOTUNIQ Name not unique on network

Given log name not unique.

81 EBADFD File descriptor in bad state

Either a file descriptor refers to no open file or a
read request was made to a file that is open
only for writing.

82 EREMCHG Remote address changed

Last modified 15 Jun 1999 SunOS 5.8 25

Intro(2) System Calls

83 ELIBACC Cannot access a needed share library

Trying to exec an a.out that requires a static
shared library and the static shared library does
not exist or the user does not have permission
to use it.

84 ELIBBAD Accessing a corrupted shared library

Trying to exec an a.out that requires a static
shared library (to be linked in) and exec could
not load the static shared library. The static
shared library is probably corrupted.

85 ELIBSCN .lib section in a.out corrupted

Trying to exec an a.out that requires a static
shared library (to be linked in) and there was
erroneous data in the .lib section of the a.out .
The .lib section tells exec what static shared
libraries are needed. The a.out is probably
corrupted.

86 ELIBMAX Attempting to link in more shared libraries than
system limit

Trying to exec an a.out that requires more
static shared libraries than is allowed on the
current configuration of the system. See NFS
Administration Guide

87 ELIBEXEC Cannot exec a shared library directly

Attempting to exec a shared library directly.

88 EILSEQ Error 88

Illegal byte sequence. Handle multiple characters
as a single character.

89 ENOSYS Operation not applicable

90 ELOOP Number of symbolic links encountered during
path name traversal exceeds MAXSYMLINKS

91 ESTART Restartable system call

Interrupted system call should be restarted.

92 ESTRPIPE If pipe/FIFO, don’t sleep in stream head

Streams pipe error (not externally visible).

26 SunOS 5.8 Last modified 15 Jun 1999

System Calls Intro(2)

93 ENOTEMPTY Directory not empty

94 EUSERS Too many users

95 ENOTSOCK Socket operation on non-socket

96 EDESTADDRREQ Destination address required

A required address was omitted from an
operation on a transport endpoint. Destination
address required.

97 EMGSIZE Message too long

A message sent on a transport provider was
larger than the internal message buffer or some
other network limit.

98 EPROTOTYPE Protocol wrong type for socket

A protocol was specified that does not support
the semantics of the socket type requested.

99 ENOPROTOOPT Protocol not available

A bad option or level was specified when getting
or setting options for a protocol.

120 EPROTONOSUPPORT Protocol not supported

The protocol has not been configured into the
system or no implementation for it exists.

121 ESOCKTNOSUPPORT Socket type not supported

The support for the socket type has not been
configured into the system or no implementation
for it exists.

122 EOPNOTSUPP Operation not supported on transport endpoint

For example, trying to accept a connection on a
datagram transport endpoint.

123 EPFNOSUPPORT Protocol family not supported

The protocol family has not been configured into
the system or no implementation for it exists.
Used for the Internet protocols.

124 EAFNOSUPPORT Address family not supported by protocol family

Last modified 15 Jun 1999 SunOS 5.8 27

Intro(2) System Calls

An address incompatible with the requested
protocol was used.

125 EADDRINUSE Address already in use

User attempted to use an address already in use,
and the protocol does not allow this.

126 EADDRNOTAVAIL Cannot assign requested address

Results from an attempt to create a transport
endpoint with an address not on the current
machine.

127 ENETDOWN Network is down

Operation encountered a dead network.

128 ENETUNREACH Network is unreachable

Operation was attempted to an unreachable
network.

129 ENETRESET Network dropped connection because of reset

The host you were connected to crashed and
rebooted.

130 ECONNABORTED Software caused connection abort

A connection abort was caused internal to your
host machine.

131 ECONNRESET Connection reset by peer

A connection was forcibly closed by a peer. This
normally results from a loss of the connection on
the remote host due to a timeout or a reboot.

132 ENOBUFS No buffer space available

An operation on a transport endpoint or pipe
was not performed because the system lacked
sufficient buffer space or because a queue was
full.

133 EISCONN Transport endpoint is already connected

A connect request was made on an
already connected transport endpoint; or, a
sendto (3SOCKET) or sendmsg (3SOCKET)

28 SunOS 5.8 Last modified 15 Jun 1999

System Calls Intro(2)

request on a connected transport endpoint
specified a destination when already connected.

134 ENOTCONN Transport endpoint is not connected

A request to send or receive data was disallowed
because the transport endpoint is not connected
and (when sending a datagram) no address was
supplied.

143 ESHUTDOWN Cannot send after transport endpoint shutdown

A request to send data was disallowed because
the transport endpoint has already been shut
down.

144 ETOOMANYREFS Too many references: cannot splice

145 ETIMEDOUT Connection timed out

A connect (3SOCKET) or send (3SOCKET)
request failed because the connected party did
not properly respond after a period of time; or a
write (2) or fsync (3C) request failed because
a file is on an NFS file system mounted with
the soft option.

146 ECONNREFUSED Connection refused

No connection could be made because the target
machine actively refused it. This usually results
from trying to connect to a service that is inactive
on the remote host.

147 EHOSTDOWN Host is down

A transport provider operation failed because
the destination host was down.

148 EHOSTUNREACH No route to host

A transport provider operation was attempted to
an unreachable host.

149 EALREADY Operation already in progress

An operation was attempted on a non-blocking
object that already had an operation in progress.

150 EINPROGRESS Operation now in progress

Last modified 15 Jun 1999 SunOS 5.8 29

Intro(2) System Calls

An operation that takes a long time to complete
(such as a connect()) was attempted on a
non-blocking object.

151 ESTALE Stale NFS file handle

DEFINITIONS
Background Process

Group
Any process group that is not the foreground process group of a session that has
established a connection with a controlling terminal.

Controlling Process A session leader that established a connection to a controlling terminal.

Controlling Terminal A terminal that is associated with a session. Each session may have, at most,
one controlling terminal associated with it and a controlling terminal may be
associated with only one session. Certain input sequences from the controlling
terminal cause signals to be sent to process groups in the session associated with
the controlling terminal; see termio (7I).

Directory Directories organize files into a hierarchical system where directories are the
nodes in the hierarchy. A directory is a file that catalogs the list of files, including
directories (sub-directories), that are directly beneath it in the hierarchy. Entries
in a directory file are called links. A link associates a file identifier with a
filename. By convention, a directory contains at least two links, . (dot) and ..
(dot-dot). The link called dot refers to the directory itself while dot-dot refers
to its parent directory. The root directory, which is the top-most node of the
hierarchy, has itself as its parent directory. The pathname of the root directory is
/ and the parent directory of the root directory is / .

Downstream In a stream, the direction from stream head to driver.

Driver In a stream, the driver provides the interface between peripheral hardware and
the stream. A driver can also be a pseudo-driver, such as a multiplexor or log
driver (see log (7D)), which is not associated with a hardware device.

Effective User ID and
Effective Group ID

An active process has an effective user ID and an effective group ID that are
used to determine file access permissions (see below). The effective user ID and
effective group ID are equal to the process’s real user ID and real group ID,
respectively, unless the process or one of its ancestors evolved from a file that
had the set-user-ID bit or set-group-ID bit set (see exec (2)).

File Access
Permissions

Read, write, and execute/search permissions for a file are granted to a process if
one or more of the following are true:

� The effective user ID of the process is super-user.

� The effective user ID of the process matches the user ID of the owner of
the file and the appropriate access bit of the “owner” portion (0700) of
the file mode is set.

30 SunOS 5.8 Last modified 15 Jun 1999

System Calls Intro(2)

� The effective user ID of the process does not match the user ID of the owner
of the file, but either the effective group ID or one of the supplementary
group IDs of the process match the group ID of the file and the appropriate
access bit of the “group” portion (0070) of the file mode is set.

� The effective user ID of the process does not match the user ID of the owner
of the file, and neither the effective group ID nor any of the supplementary
group IDs of the process match the group ID of the file, but the appropriate
access bit of the “other” portion (0007) of the file mode is set.

Otherwise, the corresponding permissions are denied.

File Descriptor A file descriptor is a small integer used to perform I/O on a file. The value of
a file descriptor is from 0 to (NOFILES−1). A process may have no more than
NOFILES file descriptors open simultaneously. A file descriptor is returned by
calls such as open (2) or pipe (2). The file descriptor is used as an argument by
calls such as read (2), write (2), ioctl (2), and close (2).

Each file descriptor has a corresponding offset maximum. For regular files
that were opened without setting the O_LARGEFILEflag, the offset maximum
is 2 Gbyte − 1 byte (231 −1 bytes). For regular files that were opened with the
O_LARGEFILEflag set, the offset maximum is 263 −1 bytes.

File Name Names consisting of 1 to NAME_MAXcharacters may be used to name an ordinary
file, special file or directory.

These characters may be selected from the set of all character values excluding
\0 (null) and the ASCII code for / (slash).

Note that it is generally unwise to use * , ?, [, or] as part of file names because
of the special meaning attached to these characters by the shell (see sh (1),
csh (1), and ksh (1)). Although permitted, the use of unprintable characters in
file names should be avoided.

A file name is sometimes referred to as a pathname component. The
interpretation of a pathname component is dependent on the values of
NAME_MAXand _POSIX_NO_TRUNCassociated with the path prefix of that
component. If any pathname component is longer than NAME_MAXand
_POSIX_NO_TRUNCis in effect for the path prefix of that component (see
fpathconf (2) and limits (4)), it shall be considered an error condition in that
implementation. Otherwise, the implementation shall use the first NAME_MAX
bytes of the pathname component.

Foreground Process
Group

Each session that has established a connection with a controlling terminal will
distinguish one process group of the session as the foreground process group of
the controlling terminal. This group has certain privileges when accessing its
controlling terminal that are denied to background process groups.

Last modified 15 Jun 1999 SunOS 5.8 31

Intro(2) System Calls

{IOV_MAX} Maximum number of entries in a struct iovec array.

{LIMIT} The braces notation, {LIMIT} , is used to denote a magnitude limitation imposed
by the implementation. This indicates a value which may be defined by a header
file (without the braces), or the actual value may be obtained at runtime by a call
to the configuration inquiry pathconf (2) with the name argument _PC_LIMIT .

Masks The file mode creation mask of the process used during any create function calls
to turn off permission bits in the mode argument supplied. Bit positions that are
set in umask(cmask) are cleared in the mode of the created file.

Message In a stream, one or more blocks of data or information, with associated
STREAMS control structures. Messages can be of several defined types, which
identify the message contents. Messages are the only means of transferring data
and communicating within a stream.

Message Queue In a stream, a linked list of messages awaiting processing by a module or driver.

Message Queue
Identifier

A message queue identifier (msqid) is a unique positive integer created by
a msgget (2) call. Each msqid has a message queue and a data structure
associated with it. The data structure is referred to as msqid_ds and contains
the following members:

struct ipc_perm msg_perm;
struct msg *msg_first;
struct msg *msg_last;
ulong_t msg_cbytes;
ulong_t msg_qnum;
ulong_t msg_qbytes;
pid_t msg_lspid;
pid_t msg_lrpid;
time_t msg_stime;
time_t msg_rtime;
time_t msg_ctime;

The following are descriptions of the msqid_ds structure members:

The msg_perm member is an ipc_perm structure that specifies the message
operation permission (see below). This structure includes the following
members:

uid_t cuid; /* creator user id */
gid_t cgid; /* creator group id */
uid_t uid; /* user id */
gid_t gid; /* group id */
mode_t mode; /* r/w permission */
ulong_t seq; /* slot usage sequence # */
key_t key; /* key */

32 SunOS 5.8 Last modified 15 Jun 1999

System Calls Intro(2)

The *msg_first member is a pointer to the first message on the queue.

The *msg_last member is a pointer to the last message on the queue.

The msg_cbytes member is the current number of bytes on the queue.

The msg_qnummember is the number of messages currently on the queue.

The msg_qbytes member is the maximum number of bytes allowed on the
queue.

The msg_lspid member is the process ID of the last process that performed a
msgsnd() operation.

The msg_lrpid member is the process id of the last process that performed a
msgrcv() operation.

The msg_stime member is the time of the last msgsnd() operation.

The msg_rtime member is the time of the last msgrcv() operation.

The msg_ctime member is the time of the last msgctl() operation that
changed a member of the above structure.

Message Operation
Permissions

In the msgctl (2), msgget (2), msgrcv (2), and msgsnd(2) function descriptions,
the permission required for an operation is given as {token}, where token is the
type of permission needed, interpreted as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

Read and write permissions for a msqid are granted to a process if one or
more of the following are true:

� The effective user ID of the process is super-user.

� The effective user ID of the process matches msg_perm.cuid or
msg_perm.uid in the data structure associated with msqid and the
appropriate bit of the “user” portion (0600) of msg_perm.mode is set.

� Any group ID in the process credentials from the set (cr_gid , cr_groups)
matches msg_perm.cgid or msg_perm.gid and the appropriate bit of the
“group” portion (060) of msg_perm.mode is set.

� The appropriate bit of the “other” portion (006) of msg_perm.mode is set.”

Otherwise, the corresponding permissions are denied.

Module A module is an entity containing processing routines for input and output data.
It always exists in the middle of a stream, between the stream’s head and a driver.

Last modified 15 Jun 1999 SunOS 5.8 33

Intro(2) System Calls

A module is the STREAMS counterpart to the commands in a shell pipeline
except that a module contains a pair of functions which allow independent
bidirectional (downstream and upstream) data flow and processing.

Multiplexor A multiplexor is a driver that allows streams associated with several user
processes to be connected to a single driver, or several drivers to be connected
to a single user process. STREAMS does not provide a general multiplexing
driver, but does provide the facilities for constructing them and for connecting
multiplexed configurations of streams.

Offset Maximum An offset maximum is an attribute of an open file description representing the
largest value that can be used as a file offset.

Orphaned Process
Group

A process group in which the parent of every member in the group is either itself
a member of the group, or is not a member of the process group’s session.

Path Name A path name is a null-terminated character string starting with an optional slash
(/), followed by zero or more directory names separated by slashes, optionally
followed by a file name.

If a path name begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a
non-existent file.

Process ID Each process in the system is uniquely identified during its lifetime by a positive
integer called a process ID. A process ID may not be reused by the system until
the process lifetime, process group lifetime, and session lifetime ends for any
process ID, process group ID, and session ID equal to that process ID. Within a
process, there are threads with thread id’s, called thread_t and LWPID_t. These
threads are not visible to the outside process.

Parent Process ID A new process is created by a currently active process (see fork (2)). The parent
process ID of a process is the process ID of its creator.

Privilege Having appropriate privilege means having the capability to override system
restrictions.

Process Group Each process in the system is a member of a process group that is identified by a
process group ID. Any process that is not a process group leader may create
a new process group and become its leader. Any process that is not a process
group leader may join an existing process group that shares the same session as
the process. A newly created process joins the process group of its parent.

Process Group Leader A process group leader is a process whose process ID is the same as its process
group ID.

34 SunOS 5.8 Last modified 15 Jun 1999

System Calls Intro(2)

Process Group ID Each active process is a member of a process group and is identified by a positive
integer called the process group ID. This ID is the process ID of the group leader.
This grouping permits the signaling of related processes (see kill (2)).

Process Lifetime A process lifetime begins when the process is forked and ends after it exits, when
its termination has been acknowledged by its parent process. See wait (2).

Process Group
Lifetime

A process group lifetime begins when the process group is created by its process
group leader, and ends when the lifetime of the last process in the group ends or
when the last process in the group leaves the group.

Processor Set ID The processors in a system may be divided into subsets, known as processor
sets. A process bound to one of these sets will run only on processors in that set,
and the processors in the set will normally run only processes that have been
bound to the set. Each active processor set is identified by a positive integer.
See pset_create (2).

Read Queue In a stream, the message queue in a module or driver containing messages
moving upstream.

Real User ID and Real
Group ID

Each user allowed on the system is identified by a positive integer (0 to MAXUID)
called a real user ID.

Each user is also a member of a group. The group is identified by a positive
integer called the real group ID.

An active process has a real user ID and real group ID that are set to the real
user ID and real group ID, respectively, of the user responsible for the creation
of the process.

Root Directory and
Current Working

Directory

Each process has associated with it a concept of a root directory and a current
working directory for the purpose of resolving path name searches. The root
directory of a process need not be the root directory of the root file system.

Saved Resource
Limits

Saved resource limits is an attribute of a process that provides some flexibility
in the handling of unrepresentable resource limits, as described in the exec
family of functions and setrlimit (2).

Saved User ID and
Saved Group ID

The saved user ID and saved group ID are the values of the effective user ID and
effective group ID just after an exec of a file whose set user or set group file
mode bit has been set (see exec (2)).

Semaphore Identifier A semaphore identifier (semid) is a unique positive integer created by a
semget (2) call. Each semid has a set of semaphores and a data structure
associated with it. The data structure is referred to as semid_ds and contains
the following members:

struct ipc_perm sem_perm; /* operation permission struct */
struct sem *sem_base; /* ptr to first semaphore in set */

Last modified 15 Jun 1999 SunOS 5.8 35

Intro(2) System Calls

ushort_t sem_nsems; /* number of sems in set */
time_t sem_otime; /* last operation time */
time_t sem_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

The following are descriptions of the semid_ds structure members:

The sem_perm member is an ipc_perm structure that specifies the semaphore
operation permission (see below). This structure includes the following
members:

uid_t uid; /* user id */
gid_t gid; /* group id */
uid_t cuid; /* creator user id */
gid_t cgid; /* creator group id */
mode_t mode; /* r/a permission */
ulong_t seq; /* slot usage sequence number */
key_t key; /* key */

The sem_nsems member is equal to the number of semaphores in the set.
Each semaphore in the set is referenced by a nonnegative integer referred
to as a sem_num. sem_numvalues run sequentially from 0 to the value of
sem_nsems minus 1.

The sem_otime member is the time of the last semop(2) operation.

The sem_ctime member is the time of the last semctl (2) operation that
changed a member of the above structure.

A semaphore is a data structure called sem that contains the following members:

ushort_t semval; /* semaphore value */
pid_t sempid; /* pid of last operation */
ushort_t semncnt; /* # awaiting semval > cval */
ushort_t semzcnt; /* # awaiting semval = 0 */

The following are descriptions of the sem structure members:

The semval member is a non-negative integer that is the actual value of the
semaphore.

The sempid member is equal to the process ID of the last process that performed
a semaphore operation on this semaphore.

The semncnt member is a count of the number of processes that are currently
suspended awaiting this semaphore’s semval to become greater than its
current value.

36 SunOS 5.8 Last modified 15 Jun 1999

System Calls Intro(2)

The semzcnt member is a count of the number of processes that are currently
suspended awaiting this semaphore’s semval to become 0.

Semaphore Operation
Permissions

In the semop(2) and semctl (2) function descriptions, the permission required
for an operation is given as {token}, where token is the type of permission needed
interpreted as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

Read and alter permissions for a semid are granted to a process if one or more of
the following are true:

� The effective user ID of the process is super-user.

� The effective user ID of the process matches sem_perm.cuid or
sem_perm.uid in the data structure associated with semid and the
appropriate bit of the “user” portion (0600) of sem_perm.mode is set.

� The effective group ID of the process matches sem_perm.cgid or
sem_perm.gid and the appropriate bit of the “group” portion (060) of
sem_perm.mode is set.

� The appropriate bit of the “other” portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Session A session is a group of processes identified by a common ID called a session ID,
capable of establishing a connection with a controlling terminal. Any process
that is not a process group leader may create a new session and process group,
becoming the session leader of the session and process group leader of the
process group. A newly created process joins the session of its creator.

Session ID Each session in the system is uniquely identified during its lifetime by a positive
integer called a session ID, the process ID of its session leader.

Session Leader A session leader is a process whose session ID is the same as its process and
process group ID.

Session Lifetime A session lifetime begins when the session is created by its session leader, and
ends when the lifetime of the last process that is a member of the session ends, or
when the last process that is a member in the session leaves the session.

Shared Memory
Identifier

A shared memory identifier (shmid) is a unique positive integer created by a
shmget (2) call. Each shmid has a segment of memory (referred to as a shared
memory segment) and a data structure associated with it. (Note that these

Last modified 15 Jun 1999 SunOS 5.8 37

Intro(2) System Calls

shared memory segments must be explicitly removed by the user after the last
reference to them is removed.) The data structure is referred to as shmid_ds
and contains the following members:

struct ipc_perm shm_perm; /* operation permission struct */
size_t shm_segsz; /* size of segment */
struct anon_map *shm_amp; /* ptr to region structure */
char pad[4]; /* for swap compatibility */
pid_t shm_lpid; /* pid of last operation */
pid_t shm_cpid; /* creator pid */
shmatt_t shm_nattch; /* number of current attaches */
ulong_t shm_cnattch; /* used only for shminfo */
time_t shm_atime; /* last attach time */
time_t shm_dtime; /* last detach time */
time_t shm_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

The following are descriptions of the shmid_ds structure members:

The shm_perm member is an ipc_perm structure that specifies the shared
memory operation permission (see below). This structure includes the following
members:

uid_t cuid; /* creator user id */
gid_t cgid; /* creator group id */
uid_t uid; /* user id */
gid_t gid; /* group id */
mode_t mode; /* r/w permission */
ulong_t seq; /* slot usage sequence # */
key_t key; /* key */

The shm_segsz member specifies the size of the shared memory segment in
bytes.

The shm_cpid member is the process ID of the process that created the shared
memory identifier.

The shm_lpid member is the process ID of the last process that performed a
shmat() or shmdt() operation (see shmop(2)).

The shm_nattch member is the number of processes that currently have this
segment attached.

The shm_atime member is the time of the last shmat() operation (see
shmop(2)).

The shm_dtime member is the time of the last shmdt() operation (see
shmop(2)).

38 SunOS 5.8 Last modified 15 Jun 1999

System Calls Intro(2)

The shm_ctime member is the time of the last shmctl (2) operation that
changed one of the members of the above structure.

Shared Memory
Operation

Permissions

In the shmctl (2), shmat() , and shmdt() (see shmop(2)) function descriptions,
the permission required for an operation is given as {token}, where token is the
type of permission needed interpreted as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

Read and write permissions for a shmid are granted to a process if one or
more of the following are true:

� The effective user ID of the process is super-user.

� The effective user ID of the process matches shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid and the
appropriate bit of the “user” portion (0600) of shm_perm.mode is set.

� The effective group ID of the process matches shm_perm.cgid or
shm_perm.gid and the appropriate bit of the “group” portion (060) of
shm_perm.mode is set.

� The appropriate bit of the “other” portion (06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Special Processes The process with ID 0 and the process with ID 1 are special processes referred to
as proc0 and proc1; see kill (2). proc0 is the process scheduler. proc1 is the
initialization process (init); proc1 is the ancestor of every other process in the
system and is used to control the process structure.

STREAMS A set of kernel mechanisms that support the development of network services
and data communication drivers. It defines interface standards for character
input/output within the kernel and between the kernel and user level processes.
The STREAMS mechanism is composed of utility routines, kernel facilities
and a set of data structures.

Stream A stream is a full-duplex data path within the kernel between a user process and
driver routines. The primary components are a stream head, a driver, and zero
or more modules between the stream head and driver. A stream is analogous to
a shell pipeline, except that data flow and processing are bidirectional.

Stream Head In a stream, the stream head is the end of the stream that provides the interface
between the stream and a user process. The principal functions of the stream

Last modified 15 Jun 1999 SunOS 5.8 39

Intro(2) System Calls

head are processing STREAMS-related system calls and passing data and
information between a user process and the stream.

Super-user A process is recognized as a super-user process and is granted special privileges,
such as immunity from file permissions, if its effective user ID is 0.

Upstream In a stream, the direction from driver to stream head.

Write Queue In a stream, the message queue in a module or driver containing messages
moving downstream.

40 SunOS 5.8 Last modified 15 Jun 1999

System Calls access(2)

NAME access – determine accessibility of a file

SYNOPSIS #include <unistd.h>
int access (const char *path, int amode);

DESCRIPTION The access() function checks the file named by the pathname pointed to by
the path argument for accessibility according to the bit pattern contained in
amode, using the real user ID in place of the effective user ID and the real group
ID in place of the effective group ID. This allows a setuid process to verify that
the user running it would have had permission to access this file.

The value of amode is either the bitwise inclusive OR of the access permissions to
be checked (R_OK, W_OK, X_OK) or the existence test, F_OK.

These constants are defined in <unistd.h> as follows:
R_OK Test for read permission.

W_OK Test for write permission.

X_OK Test for execute or search permission.

F_OK Check existence of file

See intro (2) for additional information about "File Access Permission".

If any access permissions are to be checked, each will be checked individually,
as described in intro (2). If the process has appropriate privileges, an
implementation may indicate success for X_OKeven if none of the execute
file permission bits are set.

RETURN VALUES If the requested access is permitted, access() succeeds and returns 0.
Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS The access() function will fail if:
EACCES Permission bits of the file mode do not permit the

requested access, or search permission is denied
on a component of the path prefix.

EFAULT path points to an illegal address.

EINTR A signal was caught during the access()
function.

ELOOP Too many symbolic links were encountered in
resolving path.

ENAMETOOLONG The length of the path argument exceeds
PATH_MAX, or a pathname component is longer
than NAME_MAXwhile _POSIX_NO_TRUNCis in
effect.

Last modified 28 Dec 1996 SunOS 5.8 41

access(2) System Calls

ENOENT A component of path does not name an existing
file or path is an empty string.

ENOLINK path points to a remote machine and the link to
that machine is no longer active.

ENOTDIR A component of the path prefix is not a directory.

EROFS Write access is requested for a file on a read-only
file system.

The access() function may fail if:
EINVAL The value of the amode argument is invalid.

ENAMETOOLONG Pathname resolution of a symbolic link produced
an intermediate result whose length exceeds
PATH_MAX.

ETXTBSY Write access is requested for a pure procedure
(shared text) file that is being executed.

USAGE Additional values of amode other than the set defined in the description may be
valid, for example, if a system has extended access controls.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO intro (2), chmod(2), stat (2), attributes (5)

42 SunOS 5.8 Last modified 28 Dec 1996

System Calls acct(2)

NAME acct – enable or disable process accounting

SYNOPSIS #include <unistd.h>
int acct (const char *path);

DESCRIPTION The acct() function enables or disables the system process accounting routine.
If the routine is enabled, an accounting record will be written in an accounting
file for each process that terminates. The termination of a process can be caused
by either an exit (2) call or a signal (3C)). The effective user ID of the process
calling acct() must be super-user.

The path argument points to the pathname of the accounting file, whose file
format is described on the acct (3HEAD) manual page.

The accounting routine is enabled if path is non-zero and no errors occur
during the function. It is disabled if path is (char *)NULL and no errors occur
during the function.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The acct() function will fail if:
EACCES The file named by path is not an ordinary file.

EBUSY An attempt is being made to enable accounting
using the same file that is currently being used.

EFAULT The path argument points to an illegal address.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds
PATH_MAX, or the length of a path argument
exceeds NAME_MAXwhile _POSIX_NO_TRUNC
is in effect.

ENOENT One or more components of the accounting file
pathname do not exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user of the calling process is not
super-user.

EROFS The named file resides on a read-only file system.

SEE ALSO exit (2), signal (3C), acct (3HEAD)

Last modified 5 Jul 1990 SunOS 5.8 43

acl(2) System Calls

NAME acl, facl – get or set a file’s Access Control List (ACL)

SYNOPSIS #include <sys/acl.h>
int acl (char *pathp, int cmd, int nentries, aclent_t *aclbufp);

int facl (int fildes, int cmd, int nentries, aclent_t *aclbufp);

DESCRIPTION The acl() and facl() functions get or set the ACL of a file whose name is
given by pathp or referenced by the open file descriptor fildes . The nentries
argument specifies how many ACL entries fit into buffer aclbufp . The acl()
function is used to manipulate ACL on file system objects.

The following values for cmd are supported:
SETACL nentries ACL entries, specified in buffer aclbufp , are stored

in the file’s ACL. This command can only be executed by a
process that has an effective user ID equal to the owner of
the file. All directories in the path name must be searchable.

GETACL Buffer aclbufp is filled with the file’s ACL entries. Read
access to the file is not required, but all directories in the
path name must be searchable.

GETACLCNT The number of entries in the file’s ACL is returned. Read
access to the file is not required, but all directories in the
path name must be searchable.

RETURN VALUES Upon successful completion, acl() and facl() return 0 if cmd is SETACL
. If cmd is GETACLor GETACLCNT, the number of ACL entries is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS The acl() function will fail if:
EACCESS The caller does not have access to a component of the

pathname.

EFAULT The pathp or aclbufp argument points to an illegal address.

EINVAL The cmd argument is not GETACL, SETACL, or GETACLCNT;
the cmd argument is SETACLand nentries is less than 3;
or the cmd argument is SETACLand the ACL specified in
aclbufp is not valid.

EIO A disk I/O error has occurred while storing or retrieving
the ACL.

ENOENT A component of the path does not exist.

ENOSPC The cmd argument is GETACLand nentries is less than the
number of entries in the file’s ACL , or the cmd argument is

44 SunOS 5.8 Last modified 18 Mar 1996

System Calls acl(2)

SETACLand there is insufficient space in the file system to
store the ACL .

ENOTDIR A component of the path specified by pathp is not a directory,
or the cmd argument is SETACLand an attempt is made to
set a default ACL on a file type other than a directory.

ENOSYS The cmd argument is SETACLand the file specified by pathp
resides on a file system that does not support ACLs , or the
acl() function is not supported by this implementation.

EPERM The cmd argument is SETACLand the effective user ID of the
caller does not match the owner of the file.

EROFS The cmd argument is SETACLand the file specified by pathp
resides on a file system that is mounted read-only.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getfacl (1) , setfacl (1) , aclcheck (3SEC) , aclsort (3SEC)

Last modified 18 Mar 1996 SunOS 5.8 45

adjtime(2) System Calls

NAME adjtime – correct the time to allow synchronization of the system clock

SYNOPSIS #include <sys/time.h>
int adjtime (struct timeval *delta, struct timeval *olddelta);

DESCRIPTION The adjtime() function adjusts the system’s notion of the current time as
returned by gettimeofday (3C), advancing or retarding it by the amount of
time specified in the struct timeval pointed to by delta.

The adjustment is effected by speeding up (if that amount of time is positive)
or slowing down (if that amount of time is negative) the system’s clock by
some small percentage, generally a fraction of one percent. The time is always
a monotonically increasing function. A time correction from an earlier call to
adjtime() may not be finished when adjtime() is called again.

If delta is 0, then olddelta returns the status of the effects of the previous
adjtime() call with no effect on the time correction as a result of this call. If
olddelta is not a null pointer, then the structure it points to will contain, upon
successful return, the number of seconds and/or microseconds still to be
corrected from the earlier call. If olddelta is a null pointer, the corresponding
information will not be returned.

This call may be used in time servers that synchronize the clocks of computers
in a local area network. Such time servers would slow down the clocks of
some machines and speed up the clocks of others to bring them to the average
network time.

Only the super-user may adjust the time of day.

The adjustment value will be silently rounded to the resolution of the system
clock.

RETURN VALUES Upon successful completion, adjtime() returns 0. Otherwise, it returns −1
and sets errno to indicate the error.

ERRORS The adjtime() function will fail if:
EFAULT The delta or olddelta argument points outside the process’s

allocated address space, or olddelta points to a region of the
process’s allocated address space that is not writable.

EINVAL The tv_usec member of delta is not within valid range
(−1000000 to 1000000).

EPERM The effective user of the calling process is not super-user.

Additionally, the adjtime() function will fail for 32-bit interfaces if:
EOVERFLOW The size of the tv_sec member of the timeval structure

pointed to by olddelta is too small to contain the correct
number of seconds.

46 SunOS 5.8 Last modified 25 Sep 1997

System Calls adjtime(2)

SEE ALSO date (1), gettimeofday (3C)

Last modified 25 Sep 1997 SunOS 5.8 47

alarm(2) System Calls

NAME alarm – set a process alarm clock

SYNOPSIS #include <unistd.h>
unsigned int alarm (unsigned int sec);

DESCRIPTION The alarm() function instructs the alarm clock of the calling process to send
the signal SIGALRMto the calling process after the number of real time seconds
specified by sec have elapsed (see signal (3C)).

Alarm requests are not stacked; successive calls reset the alarm clock of the
calling process.

If sec is 0, any previously made alarm request is canceled.

The fork (2) function sets the alarm clock of a new process to 0. A process
created by the exec family of routines inherits the time left on the old process’s
alarm clock.

Calling alarm() in a multithreaded process linked with −lthread (Solaris
threads) and not with −lpthread (POSIX threads) currently behaves in the
following fashion:

� if the calling thread is a bound thread, the resulting SIGALRMis delivered to
the bound thread’s LWP, i.e. to the calling thread. There is a bug currently
that this signal is not maskable via thr_sigsetmask (3THR) on this bound
thread.

� if the calling thread is an unbound thread, the resulting SIGALRMis sent
to the LWP on which the thread was running when it issued the call to
alarm() . This is neither a per-process semantic, nor a per-thread semantic,
since the LWP could change threads after the call to alarm() but before the
SIGALRMdelivery, causing some other thread to get it possibly. Hence this
is basically a bug.

The above documents current behavior and the bugs are not going to be fixed
since the above semantics are going to be discontinued in the next release.

The semantic for Solaris threads will move to the per-process semantic specified
by POSIX (see standards (5)) at this future date. New applications should not
rely on the per-thread semantic of alarm() , since this semantic will become
obsolete.

In a process linked with −lpthread (whether or not it is also linked with
−lthread), the semantics of alarm() are per-process; the resulting SIGALRMis
sent to the process, and not necessarily to the calling thread. This semantic will
be supported in the future.

This semantic is obtainable by simply linking with −lpthread . One can
continue to use Solaris thread interfaces by linking with both −lpthread and
−lthread .

48 SunOS 5.8 Last modified 28 Dec 1996

System Calls alarm(2)

RETURN VALUES The alarm() function returns the amount of time previously remaining in
the alarm clock of the calling process.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO exec (2), fork (2), pause (2), signal (3C), thr_sigsetmask (3THR),
attributes (5), standards (5)

Last modified 28 Dec 1996 SunOS 5.8 49

audit(2) System Calls

NAME audit – write a record to the audit log

SYNOPSIS cc [flag ...] file ... −lbsm −lsocket −lnsl −lintl [library...]
#include <sys/param.h>
#include <bsm/audit.h>
int audit (caddr_t record, int length);

DESCRIPTION The audit() function is used to write a record to the system audit log. The data
pointed to by record is written to the log after a minimal consistency check, with
the length parameter specifying the size of the record in bytes. The data should
be a well-formed audit record as described by audit.log (4).

The kernel validates the record header token type and length, and sets the time
stamp value before writing the record to the audit log. The kernel does not do
any preselection for user-level generated events. If the audit policy is set to
include sequence or trailer tokens, the kernel will append them to the record.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The audit() function will fail if:
EFAULT The record argument points outside the process’s allocated

address space.

EINVAL The record header token ID is invalid or the length is
either less than the header token size or greater than
MAXAUDITDATA.

EPERM The process’s effective user ID is not super-user.

USAGE Only the super-user may successfully execute this call.

SEE ALSO bsmconv (1M), auditd (1M), auditon (2), auditsvc (2), getaudit (2),
audit.log (4)

NOTES The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv (1M) for more information.

50 SunOS 5.8 Last modified 28 Dec 1996

System Calls auditon(2)

NAME auditon – manipulate auditing

SYNOPSIS cc [flag ...] file ... −lbsm −lsocket −lnsl −lintl [library ...]
#include <sys/param.h>
#include <bsm/audit.h>
int auditon (int cmd, caddr_t data, int length);

DESCRIPTION The auditon() function performs various audit subsystem control operations.
The cmd argument designates the particular audit control command. The data
argument is a pointer to command-specific data. The length argument is the
length in bytes of the command-specific data.

The following commands are supported:
A_GETCOND Return the system audit on/off/disabled condition in the

integer long pointed to by data. The following values may be
returned:

AUC_AUDITING Auditing has been turned on.

AUC_NOAUDIT Auditing has been turned off.

AUC_DISABLED Auditing package installed, not turned on.

A_SETCOND Set the system’s audit on/off condition to the value in the
integer long pointed to by data. The BSM audit module must
be enabled by bsmconv (1M) before auditing can be turned
on. The following audit states may be set:

AUC_AUDITING Turns on audit record generation.

AUC_NOAUDIT Turns off audit record generation.

A_GETCLASS Return the event to class mapping for the designated audit
event. The data argument points to the au_evclass_map
structure containing the event number. The preselection class
mask is returned in the same structure.

A_SETCLASS Set the event class preselection mask for the designated audit
event. The data argument points to the au_evclass_map
structure containing the event number and class mask.

A_GETKMASK Return the kernel preselection mask in the au_mask
structure pointed to by data. This is the mask used to
preselect non-attributable audit events.

A_SETKMASK Set the kernel preselection mask. The data argument points
to the au_mask structure containing the class mask. This is
the mask used to preselect non-attributable audit events.

Last modified 18 Aug 1999 SunOS 5.8 51

auditon(2) System Calls

A_GETPINFO Return the audit ID, preselection mask, terminal ID and
audit session ID of the specified process in the auditpinfo
structure pointed to by data.

Note that A_GETPINFOmay fail if the termial ID contains
a network address longer than 32 bits. In this case, the
A_GETPINFO_ADDRcommand should be used.

A_GETPINFO_ADDRReturns the audit ID, preselection mask, terminal ID
and audit session ID of the specified process in the
auditpinfo_addr structure pointed to by data.

A_SETPMASK Set the preselection mask of the specified process. The data
argument points to the auditpinfo structure containing the
process ID and the preselection mask. The other fields of the
structure are ignored and should be set to NULL.

A_SETUMASK Set the preselection mask for all processes with the specified
audit ID. The data argument points to the auditinfo
structure containing the audit ID and the preselection mask.
The other fields of the structure are ignored and should be
set to NULL.

A_SETSMASK Set the preselection mask for all processes with the
specified audit session ID. The data argument points to the
auditinfo structure containing the audit session ID and
the preselection mask. The other fields of the structure are
ignored and should be set to NULL.

A_GETQCTRL Return the kernel audit queue control parameters. These
control the high and low water marks of the number of audit
records allowed in the audit queue. The high water mark is
the maximum allowed number of undelivered audit records.
The low water mark determines when threads blocked on
the queue are wakened. Another parameter controls the
size of the data buffer used by auditsvc (2) to write data
to the audit trail. There is also a parameter that specifies a
maximum delay before data is attempted to be written to the
audit trail. The audit queue parameters are returned in the
au_qctrl structure pointed to by data.

A_SETQCTRL Set the kernel audit queue control parameters as described
above in the A_GETQCTRLcommand. The data argument
points to the au_qctrl structure containing the audit queue
control parameters. The default and maximum values ’A/B’
for the audit queue control parameters are:

52 SunOS 5.8 Last modified 18 Aug 1999

System Calls auditon(2)

high water 100/10000 (audit records)

low water 10/1024 (audit records)

output buffer size 1024/1048576 (bytes)

delay 20/20000 (hundredths
second)

A_GETCWD Return the current working directory as kept by the audit
subsystem. This is a path anchored on the real root, rather
than on the active root. The data argument points to a buffer
into which the path is copied. The length argument is the
length of the buffer.

A_GETCAR Return the current active root as kept by the audit
subsystem. This path may be used to anchor an absolute
path for a path token generated by an application. The data
argument points to a buffer into which the path is copied.
The length argument is the length of the buffer.

A_GETSTAT Return the system audit statistics in the audit_stat
structure pointed to by data.

A_SETSTAT Reset system audit statistics values. The kernel statistics
value is reset if the corresponding field in the statistics
structure pointed to by the data argument is CLEAR_VAL.
Otherwise, the value is not changed.

A_SETFSIZE Set the maximum size of an audit trail file. When the audit
file reaches the designated size, it is closed and a new file
started. If the maximum size is unset, the audit trail file
generated by auditsvc() will grow to the size of the
file system. The data argument points to the au_fstat_t
structure containing the maximum audit file size in bytes.
The size can not be set less than 0x80000 bytes.

A_GETFSIZE Return the maximum audit file size and current file size in
the au_fstat_t structure pointed to by the data argument.

A_GETPOLICY Return the audit policy flags in the integer long pointed
to by data.

A_SETPOLICY Set the audit policy flags to the values in the integer long
pointed to by data. The following policy flags are recognized:

AUDIT_CNT Do not suspend processes when audit
storage is full or inaccessible. The default

Last modified 18 Aug 1999 SunOS 5.8 53

auditon(2) System Calls

action is to suspend processes until storage
becomes available.

AUDIT_AHLT Halt the machine when a non-attributable
audit record can not be delivered. The
default action is to count the number of
events that could not be recorded.

AUDIT_ARGV Include in the audit record the argument
list for a member of the exec family of
functions (see exec (2)). The default action
is not to include this information.

AUDIT_ARGE Include the environment variables for the
execv (2) function in the audit record.
The default action is not to include this
information.

AUDIT_SEQ Add a sequence token to each audit record.
The default action is not to include it.

AUDIT_TRAIL Append a trailer token to each audit
record. The default action is not to include
it.

AUDIT_GROUP Include the supplementary groups list in
audit records. The default action is not
to include it.

AUDIT_PATH Include secondary paths in audit
records. Examples of secondary paths
are dynamically loaded shared library
modules and the command shell path for
executable scripts. The default action is
to include only the primary path from
the system call.

RETURN VALUES Upon successful completion, auditon() returns 0. Otherwise, −1 is returned
and errno is set to indicate the error.

ERRORS The auditon() function will fail if:
E2BIG The length field for the command was too small to hold

the returned value.

EFAULT The copy of data to/from the kernel failed.

EINVAL One of the arguments was illegal, or BSM has not been
installed.

54 SunOS 5.8 Last modified 18 Aug 1999

System Calls auditon(2)

EPERM The process’s effective user ID is not super-user.

USAGE The auditon() function may be invoked only by processes with super-user
privileges.

SEE ALSO auditconfig (1M), auditd (1M), bsmconv (1M), audit (2), auditsvc (2),
exec (2), audit.log (4)

NOTES The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv (1M) for more information.

Last modified 18 Aug 1999 SunOS 5.8 55

auditsvc(2) System Calls

NAME auditsvc – write audit log to specified file descriptor

SYNOPSIS cc [flag ...] file... −lbsm −lsocket −lnsl −lintl [library ...]
#include <sys/param.h>
#include <bsm/audit.h>
int auditsvc (int fd, int limit);

DESCRIPTION The auditsvc() function specifies the audit log file to the kernel. The kernel
writes audit records to this file until an exceptional condition occurs and then
the call returns. The fd argument is a file descriptor that identifies the audit file.
Applications should open this file for writing before calling auditsvc() .

The limit argument specifies the number of free blocks that must be available
in the audit file system, and causes auditsvc() to return when the free disk
space on the audit filesystem drops below this limit. Thus, the invoking program
can take action to avoid running out of disk space.

The auditsvc() function does not return until one of the following conditions
occurs:

� The process receives a signal that is not blocked or ignored.

� An error is encountered writing to the audit log file.

� The minimum free space (as specified by limit), has been reached.

RETURN VALUES The auditsvc() function returns only on an error.

ERRORS The auditsvc() function will fail if:
EAGAIN The descriptor referred to a stream, was marked

for System V-style non-blocking I/O, and no data
could be written immediately.

EBADF The fd argument is not a valid descriptor open
for writing.

EBUSY A second process attempted to perform this call.

EFBIG An attempt was made to write a file that exceeds
the process’s file size limit or the maximum
file size.

EINTR The call is forced to terminate prematurely due
to the arrival of a signal whose SV_INTERRUPT
bit in sv_flags is set (see sigvec (3UCB)). The
signal (3C) function sets this bit for any signal
it catches.

EINVAL Auditing is disabled (see auditon (2)), or the fd
argument does not refer to a file of an appropriate
type (regular files are always appropriate.)

56 SunOS 5.8 Last modified 28 Dec 1996

System Calls auditsvc(2)

EIO An I/O error occurred while reading from or
writing to the file system.

ENOSPC The user’s quota of disk blocks on the file system
containing the file has been exhausted; audit
filesystem space is below the specified limit; or
there is no free space remaining on the file system
containing the file.

ENXIO A hangup occurred on the stream being written to.

EPERM The process’s effective user ID is not super-user.

EWOULDBLOCK The file was marked for 4.2 BSD-style
non-blocking I/O, and no data could be written
immediately.

USAGE Only processes with an effective user ID of super-user may execute this call
successfully.

SEE ALSO auditd (1M), bsmconv (1M), audit (2), auditon (2), sigvec (3UCB),
audit.log (4)

NOTES The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv (1M) for more information.

Last modified 28 Dec 1996 SunOS 5.8 57

brk(2) System Calls

NAME brk, sbrk – change the amount of space allocated for the calling process’s data
segment

SYNOPSIS #include <unistd.h>
int brk (void *endds);

void *sbrk (intptr_t incr);

DESCRIPTION The brk() and sbrk() functions are used to change dynamically the amount of
space allocated for the calling process’s data segment (see exec (2)). The change
is made by resetting the process’s break value and allocating the appropriate
amount of space. The break value is the address of the first location beyond the
end of the data segment. The amount of allocated space increases as the break
value increases. Newly allocated space is set to zero. If, however, the same
memory space is reallocated to the same process its contents are undefined.

When a program begins execution using execve() the break is set at the
highest location defined by the program and data storage areas.

The getrlimit (2) function may be used to determine the maximum
permissible size of the data segment; it is not possible to set the break beyond the
rlim_max value returned from a call to getrlimit() , that is to say, "end
+ rlim.rlim_max ." See end (3C) .

The brk() function sets the break value to endds and changes the allocated
space accordingly.

The sbrk() function adds incr function bytes to the break value and changes
the allocated space accordingly. The incr function can be negative, in which case
the amount of allocated space is decreased.

RETURN VALUES Upon successful completion, brk() returns 0 . Otherwise, it returns -1 and sets
errno to indicate the error.

Upon successful completion, sbrk() returns the prior break value. Otherwise,
it returns (void *)-1 and sets errno to indicate the error.

ERRORS The brk() and sbrk() functions will fail and no additional memory will
be allocated if:
ENOMEM The data segment size limit as set by setrlimit() (see

getrlimit (2)) would be exceeded; the maximum possible
size of a data segment (compiled into the system) would
be exceeded; insufficient space exists in the swap area to
support the expansion; or the new break value would extend
into an area of the address space defined by some previously
established mapping (see mmap(2)).

EAGAIN Total amount of system memory available for private pages
is temporarily insufficient. This may occur even though the

58 SunOS 5.8 Last modified 14 Jan 1997

System Calls brk(2)

space requested was less than the maximum data segment
size (see ulimit (2)).

USAGE The behavior of brk() and sbrk() is unspecified if an application also uses
any other memory functions (such as malloc (3C) , mmap(2) , free (3C)). The
brk() and sbrk() functions have been used in specialized cases where no
other memory allocation function provided the same capability. The use of
mmap(2) is now preferred because it can be used portably with all other memory
allocation functions and with any function that uses other allocation functions.

It is unspecified whether the pointer returned by sbrk() is aligned suitably
for any purpose.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO exec (2) , getrlimit (2) , mmap(2) , shmop(2) , ulimit (2) , end (3C) , free (3C) ,
malloc (3C)

NOTES The value of incr may be adjusted by the system before setting the new break
value. Upon successful completion, the implementation guarantees a minimum
of incr bytes will be added to the data segment if incr is a positive value. If incr
is a negative value, a maximum of incr bytes will be removed from the data
segment. This adjustment may not be necessary for all machine architectures.

The value of the arguments to both brk() and sbrk() are rounded up for
alignment with eight-byte boundaries.

BUGS Setting the break may fail due to a temporary lack of swap space. It is not
possible to distinguish this from a failure caused by exceeding the maximum size
of the data segment without consulting getrlimit() .

Last modified 14 Jan 1997 SunOS 5.8 59

chdir(2) System Calls

NAME chdir, fchdir – change working directory

SYNOPSIS #include <unistd.h>
int chdir (const char *path);

int fchdir (int fildes);

DESCRIPTION The chdir() and fchdir() functions cause a directory pointed to by path
or fildes to become the current working directory. The starting point for path
searches for path names not beginning with / (slash). The path argument points
to the path name of a directory. The fildes argument is an open file descriptor
of a directory.

For a directory to become the current directory, a process must have execute
(search) access to the directory.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, -1 is returned, the
current working directory is unchanged, and errno is set to indicate the error.

ERRORS The chdir() function will fail if:
EACCES Search permission is denied for any component

of the path name.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the
chdir() function.

EIO An I/O error occurred while reading from or
writing to the file system.

ELOOP Too many symbolic links were encountered in
translating path .

ENAMETOOLONG The length of the path argument exceeds
PATH_MAX, or the length of a path component
exceeds NAME_MAXwhile _POSIX_NO_TRUNC
is in effect.

ENOENT Either a component of the path prefix or the
directory named by path does not exist or is a
null pathname.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

ENOTDIR A component of the path name is not a directory.

The fchdir() function will fail if:
EACCES Search permission is denied for fildes .

60 SunOS 5.8 Last modified 28 Dec 1996

System Calls chdir(2)

EBADF The fildes argument is not an open file descriptor.

EINTR A signal was caught during the execution of the
fchdir() function.

EIO An I/O error occurred while reading from or
writing to the file system.

ENOLINK The fildes argument points to a remote machine
and the link to that machine is no longer active.

ENOTDIR The open file descriptor fildes does not refer
to a directory.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level chdir() is Async-Signal-Safe

SEE ALSO chroot (2) , attributes (5)

Last modified 28 Dec 1996 SunOS 5.8 61

chmod(2) System Calls

NAME chmod, fchmod – change access permission mode of file

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *path, mode_t mode);

int fchmod (int fildes, mode_t mode);

DESCRIPTION The chmod() and fchmod() functions set the access permission portion of
the mode of the file whose name is given by path or referenced by the open file
descriptor fildes to the bit pattern contained in mode . Access permission bits
are interpreted as follows:

S_ISUID 04000 Set user ID on execution.

S_ISGID 020#0 Set group ID on execution if # is 7 , 5 , 3 , or 1 . Enable
mandatory file/record locking if # is 6 , 4 , 2 , or 0 .

S_ISVTX 01000 Save text image after execution.

S_IRWXU 00700 Read, write, execute by owner.

S_IRUSR 00400 Read by owner.

S_IWUSR 00200 Write by owner.

S_IXUSR 00100 Execute (search if a directory) by owner.

S_IRWXG 00070 Read, write, execute by group.

S_IRGRP 00040 Read by group.

S_IWGRP 00020 Write by group.

S_IXGRP 00010 Execute by group.

S_IRWXO 00007 Read, write, execute (search) by others.

S_IROTH 00004 Read by others.

S_IWOTH 00002 Write by others.

S_IXOTH 00001 Execute by others.

Modes are constructed by the bitwise OR operation of the access permission bits.

The effective user ID of the process must match the owner of the file or the
process must have the appropriate privilege to change the mode of a file.

If the process is not a privileged process and the file is not a directory, mode
bit 01000 (save text image on execution) is cleared.

If neither the process is privileged, nor the file’s group is a member of the
process’s supplementary group list, and the effective group ID of the process

62 SunOS 5.8 Last modified 28 Dec 1996

System Calls chmod(2)

does not match the group ID of the file, mode bit 02000 (set group ID on
execution) is cleared.

If a directory is writable and has S_ISVTX (the sticky bit) set, files within that
directory can be removed or renamed only if one or more of the following is
true (see unlink (2) and rename (2)):

� the user owns the file

� the user owns the directory

� the file is writable by the user

� the user is a privileged user

If a directory has the set group ID bit set, a given file created within that directory
will have the same group ID as the directory, if that group ID is part of the group
ID set of the process that created the file. Otherwise, the newly created file’s
group ID will be set to the effective group ID of the creating process.

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010
(execute or search by group) is not set, mandatory file/record locking will exist
on a regular file. This may affect future calls to open (2) , creat (2) , read (2) ,
and write (2) on this file.

Upon successful completion, chmod() and fchmod() mark for update the
st_ctime field of the file.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, -1 is returned, the file
mode is unchanged, and errno is set to indicate the error.

ERRORS The chmod() function will fail if:
EACCES Search permission is denied on a component of

the path prefix of path .

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during execution of the
function.

EIO An I/O error occurred while reading from or
writing to the file system.

ELOOP Too many symbolic links were encountered in
translating path .

ENAMETOOLONG The length of the path argument exceeds
PATH_MAX, or the length of a path component
exceeds NAME_MAXwhile _POSIX_NO_TRUNC
is in effect.

Last modified 28 Dec 1996 SunOS 5.8 63

chmod(2) System Calls

ENOENT Either a component of the path prefix or the file
referred to by path does not exist or is a null
pathname.

ENOLINK The fildes argument points to a remote machine
and the link to that machine is no longer active.

ENOTDIR A component of the prefix of path is not a
directory.

EPERM The effective user ID does not match the owner of
the file and is not super-user.

EROFS The file referred to by path resides on a read-only
file system.

The fchmod() function will fail if:
EBADF The fildes argument is not an open file descriptor

EIO An I/O error occurred while reading from or
writing to the file system.

EINTR A signal was caught during execution of the
fchmod() function.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

EPERM The effective user ID does not match the owner of
the file and the process does not have appropriate
privilege.

EROFS The file referred to by fildes resides on a read-only
file system.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level chmod() is Async-Signal-Safe

SEE ALSO chmod(1) , chown (2) , creat (2) , fcntl (2) , mknod(2) , open (2) , read (2) ,
rename (2) , stat (2) , write (2) , mkfifo (3C) , attributes (5) , stat (3HEAD)

System Interface Guide

NOTES If you use chmod() to change the file group owner permissions on a file with
ACL entries, both the file group owner permissions and the ACL mask are
changed to the new permissions. Be aware that the new ACL mask permissions

64 SunOS 5.8 Last modified 28 Dec 1996

System Calls chmod(2)

may change the effective permissions for additional users and groups who
have ACL entries on the file.

Last modified 28 Dec 1996 SunOS 5.8 65

chown(2) System Calls

NAME chown, lchown, fchown – change owner and group of a file

SYNOPSIS #include <unistd.h>
#include <sys/types.h>
int chown (const char *path, uid_t owner, gid_t group);

int lchown (const char *path, uid_t owner, gid_t group);

int fchown (int fildes, uid_t owner, gid_t group);

DESCRIPTION The chown() function sets the owner ID and group ID of the file specified
by path or referenced by the open file descriptor fildes to owner and group
respectively. If owner or group is specified as -1, chown() does not change the
corresponding ID of the file.

The lchown() function sets the owner ID and group ID of the named file in the
same manner as chown() , unless the named file is a symbolic link. In this case,
lchown() changes the ownership of the symbolic link file itself, while chown()
changes the ownership of the file or directory to which the symbolic link refers.

If chown() , lchown() , or fchown() is invoked by a process other than
super-user, the set-user-ID and set-group-ID bits of the file mode, S_ISUID and
S_ISGID respectively, are cleared (see chmod(2)).

The operating system provides a configuration option,
{_POSIX_CHOWN_RESTRICTED}, to restrict ownership changes for the chown()
, lchown() , and fchown() functions. When {_POSIX_CHOWN_RESTRICTED}
is not in effect, either the effective user ID of the process must match the owner
of the file or the process must be the super-user to change the ownership of a
file. When {_POSIX_CHOWN_RESTRICTED} is in effect (the default behavior),
the chown() , lchown() , and fchown() functions, for users other than
super-user, prevent the owner of the file from changing the owner ID of the file
and restrict the change of the group of the file to the list of supplementary
group IDs. To set this configuration option, include the following line in
/etc/system :

set rstchown = 1

To disable this option, include the following line in /etc/system :

set rstchown = 0

See system (4) and fpathconf (2) .

Upon successful completion, chown() , fchown() and lchown() mark for
update the st_ctime field of the file.

66 SunOS 5.8 Last modified 28 Dec 1996

System Calls chown(2)

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, -1 is returned, the
owner and group of the named file remain unchanged, and errno is set
to indicate the error.

ERRORS The chown() and lchown() functions will fail if:
EACCES Search permission is denied on a component of

the path prefix of path .

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the
chown() or lchown() function.

EINVAL The group or owner argument is out of range.

EIO An I/O error occurred while reading from or
writing to the file system.

ELOOP Too many symbolic links were encountered in
translating path .

ENAMETOOLONG The length of the path argument exceeds
{PATH_MAX}, or the length of a path component
exceeds {NAME_MAX} while {_POSIX_NO_TRUNC
} is in effect.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

ENOENT Either a component of the path prefix or the file
referred to by path does not exist or is a null
pathname.

ENOTDIR A component of the path prefix of path is not a
directory.

EPERM The effective user ID does not match the owner of
the file or the process is not the super-user and
_POSIX_CHOWN_RESTRICTEDindicates that such
privilege is required.

EROFS The named file resides on a read-only file system.

The fchown() function will fail if:
EBADF The fildes argument is not an open file descriptor.

EIO An I/O error occurred while reading from or
writing to the file system.

EINTR A signal was caught during execution of the
function.

Last modified 28 Dec 1996 SunOS 5.8 67

chown(2) System Calls

ENOLINK The fildes argument points to a remote machine
and the link to that machine is no longer active.

EINVAL The group or owner argument is out of range.

EPERM The effective user ID does not match the owner of
the file, or the process is not the super-user and
_POSIX_CHOWN_RESTRICTEDindicates that such
privilege is required.

EROFS The named file referred to by fildes resides on a
read-only file system.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level chown() is Async-Signal-Safe

SEE ALSO chgrp (1) , chown (1) , chmod(2) , fpathconf (2) , system (4) , attributes (5)

68 SunOS 5.8 Last modified 28 Dec 1996

System Calls chroot(2)

NAME chroot, fchroot – change root directory

SYNOPSIS #include <unistd.h>
int chroot (const char *path);

int fchroot (int fildes);

DESCRIPTION The chroot() and fchroot() functions cause a directory to become the
root directory, the starting point for path searches for path names beginning
with / (slash). The user’s working directory is unaffected by the chroot()
and fchroot() functions.

The path argument points to a path name naming a directory. The fildes argument
to fchroot() is the open file descriptor of the directory which is to become
the root.

The effective user ID of the process must be super-user to change the root
directory. While it is always possible to change to the system root using the
fchroot() function, it is not guaranteed to succeed in any other case, even
should fildes be valid in all respects.

The ".." entry in the root directory is interpreted to mean the root directory itself.
Therefore, ".." cannot be used to access files outside the subtree rooted at the root
directory. Instead, fchroot() can be used to reset the root to a directory that
was opened before the root directory was changed.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, -1 is returned, the root
directory remains unchanged, and errno is set to indicate the error.

ERRORS The chroot() function will fail if:
EACCES Search permission is denied for a component of

the path prefix of dirname , or search permission
is denied for the directory referred to by dirname .

EBADF The descriptor is not valid.

EFAULT The path argument points to an illegal address.

EINVAL The fchroot() function attempted to change to
a directory the is not the system root and external
circumstances do not allow this.

EINTR A signal was caught during the execution of the
chroot() function.

EIO An I/O error occurred while reading from or
writing to the file system.

ELOOP Too many symbolic links were encountered in
translating path .

Last modified 4 May 1994 SunOS 5.8 69

chroot(2) System Calls

ENAMETOOLONG The length of the path argument exceeds
PATH_MAX, or the length of a path component
exceeds NAME_MAXwhile _POSIX_NO_TRUNC
is in effect.

ENOENT The named directory does not exist or is a null
pathname.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

ENOTDIR Any component of the path name is not a
directory.

EPERM The effective user of the calling process is not
super-user.

SEE ALSO chroot (1M) , chdir (2)

WARNINGS The only use of fchroot() that is appropriate is to change back to the system
root.

70 SunOS 5.8 Last modified 4 May 1994

System Calls close(2)

NAME close – close a file descriptor

SYNOPSIS #include <unistd.h>
int close (int fildes);

DESCRIPTION The close() function will deallocate the file descriptor indicated by fildes. To
deallocate means to make the file descriptor available for return by subsequent
calls to open (2) or other functions that allocate file descriptors. All outstanding
record locks owned by the process on the file associated with the file descriptor
will be removed (that is, unlocked).

If close() is interrupted by a signal that is to be caught, it will return −1 with
errno set to EINTR and the state of fildes is unspecified.

When all file descriptors associated with a pipe or FIFO special file are closed,
any data remaining in the pipe or FIFO will be discarded.

When all file descriptors associated with an open file description have been
closed the open file description will be freed.

If the link count of the file is 0, when all file descriptors associated with the
file are closed, the space occupied by the file will be freed and the file will no
longer be accessible.

If a STREAMS-based (see intro (3)) fildes is closed and the calling process
was previously registered to receive a SIGPOLL signal (see signal (3C)) for
events associated with that STREAM (see I_SETSIG in streamio (7I)), the
calling process will be unregistered for events associated with the STREAM. The
last close() for a STREAM causes the STREAM associated with fildes to be
dismantled. If O_NONBLOCKand O_NDELAYare not set and there have been no
signals posted for the STREAM, and if there is data on the module’s write queue,
close() waits up to 15 seconds (for each module and driver) for any output to
drain before dismantling the STREAM. The time delay can be changed via an
I_SETCLTIME ioctl (2) request (see streamio (7I)). If the O_NONBLOCKor
O_NDELAYflag is set, or if there are any pending signals, close() does not wait
for output to drain, and dismantles the STREAM immediately.

If fildes is associated with one end of a pipe, the last close() causes a hangup to
occur on the other end of the pipe. In addition, if the other end of the pipe has
been named by fattach (3C), then the last close() forces the named end to
be detached by fdetach (3C). If the named end has no open file descriptors
associated with it and gets detached, the STREAM associated with that end is
also dismantled.

If fildes refers to the master side of a pseudo-terminal, a SIGHUPsignal is sent to
the process group, if any, for which the slave side of the pseudo-terminal is the
controlling terminal. It is unspecified whether closing the master side of the
pseudo-terminal flushes all queued input and output.

Last modified 4 Apr 1997 SunOS 5.8 71

close(2) System Calls

If fildes refers to the slave side of a STREAMS-based pseudo-terminal, a
zero-length message may be sent to the master.

If fildes refers to a socket, close() causes the socket to be destroyed. If the
socket is connection-mode, and the SOCK_LINGERoption is set for the socket,
and the socket has untransmitted data, then close() will block for up to the
current linger interval until all data is transmitted.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The close() function will fail if:
EBADF The fildes argument is not a valid file descriptor.

EINTR The close() function was interrupted by a signal.

ENOLINK The fildes argument is on a remote machine and the link to
that machine is no longer active.

ENOSPC There was no free space remaining on the device containing
the file.

The close() function may fail if:
EIO An I/O error occurred while reading from or writing to

the file system.

USAGE An application that used the stdio function fopen (3C) to open a file should
use the corresponding fclose (3C) function rather than close() .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO intro (3), creat (2), dup (2), exec (2), fcntl (2), ioctl (2), open (2) pipe (2),
fattach (3C), fclose (3C), fdetach (3C), fopen (3C), signal (3C),
attributes (5), signal (3HEAD), streamio (7I)

72 SunOS 5.8 Last modified 4 Apr 1997

System Calls creat(2)

NAME creat – create a new file or rewrite an existing one

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int creat (const char *path, mode_t mode);

DESCRIPTION The creat() function creates a new ordinary file or prepares to rewrite an
existing file named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged.

If the file does not exist the file’s owner ID is set to the effective user ID of the
process. The group ID of the file is set to the effective group ID of the process, or
if the S_ISGID bit is set in the parent directory then the group ID of the file is
inherited from the parent directory. The access permission bits of the file mode
are set to the value of mode modified as follows:

� If the group ID of the new file does not match the effective group ID or one
of the supplementary group IDs, the S_ISGID bit is cleared.

� All bits set in the process’s file mode creation mask (see umask(2)) are
correspondingly cleared in the file’s permission mask.

� The “save text image after execution bit” of the mode is cleared (see
chmod(2) for the values of mode).

Upon successful completion, a write-only file descriptor is returned and the
file is open for writing, even if the mode does not permit writing. The file
pointer is set to the beginning of the file. The file descriptor is set to remain open
across exec functions (see fcntl (2)). A new file may be created with a mode
that forbids writing.

The call creat(path , mode) is equivalent to:

open(path , O_WRONLY | O_CREAT | O_TRUNC,mode)

RETURN VALUES Upon successful completion, a non-negative integer representing the lowest
numbered unused file descriptor is returned. Otherwise, −1 is returned, no files
are created or modified, and errno is set to indicate the error.

ERRORS The creat() function will fail:
EACCES Search permission is denied on a component of the path

prefix; the file does not exist and the directory in which the
file is to be created does not permit writing; or the file exists
and write permission is denied.

EAGAIN The file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file (see chmod(2)).

Last modified 28 Jan 1998 SunOS 5.8 73

creat(2) System Calls

EDQUOT The directory where the new file entry is being placed
cannot be extended because the user’s quota of disk blocks
on that file system has been exhausted, or the user’s quota
of inodes on the file system where the file is being created
has been exhausted.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the creat()
function.

EISDIR The named file is an existing directory.

ELOOP Too many symbolic links were encountered in translating
path.

EMFILE The process has too many open files (see getrlimit (2)).

ENFILE The system file table is full.

ENOENT A component of the path prefix does not exist, or the path
name is null.

ENOLINK The path argument points to a remote machine and the link
to that machine is no longer active.

ENOSPC The file system is out of inodes.

ENOTDIR A component of the path prefix is not a directory.

EOVERFLOW The file is a large file at the time of creat() .

EROFS The named file resides or would reside on a read-only file
system.

USAGE The creat() function has a transitional interface for 64-bit file offsets. See
lf64 (5).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO chmod(2), close (2), dup (2), fcntl (2), getrlimit (2), lseek (2), open (2),
read (2), umask(2), write (2), attributes (5), largefile (5), lf64 (5), stat (5)

74 SunOS 5.8 Last modified 28 Jan 1998

System Calls dup(2)

NAME dup – duplicate an open file descriptor

SYNOPSIS #include <unistd.h>
int dup (int fildes);

DESCRIPTION The dup() function returns a new file descriptor having the following in
common with the original open file descriptor fildes:

� same open file (or pipe)

� same file pointer (that is, both file descriptors share one file pointer)

� same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec functions (see fcntl (2)).

The file descriptor returned is the lowest one available.

The dup(fildes) function call is equivalent to:

fcntl(fildes , F_DUPFD, 0)

RETURN VALUES Upon successful completion, a non-negative integer representing the file
descriptor is returned. Otherwise, −1 is returned and errno is set to indicate the
error.

ERRORS The dup() function will fail if:
EBADF The fildes argument is not a valid open file descriptor.

EINTR A signal was caught during the execution of the dup()
function.

EMFILE The process has too many open files (see getrlimit (2)).

ENOLINK The fildes argument is on a remote machine and the link to
that machine is no longer active.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO close (2), creat (2), exec (2), fcntl (2), getrlimit (2), open (2), pipe (2),
dup2 (3C), lockf (3C), attributes (5)

Last modified 28 Dec 1996 SunOS 5.8 75

exec(2) System Calls

NAME exec, execl, execv, execle, execve, execlp, execvp – execute a file

SYNOPSIS #include <unistd.h>
int execl (const char *path, const char *arg0, ..., const char *argn, char * /*NULL*/);

int execv (const char *path, char *const argv[]);

int execle (const char *path, const char *arg0, ..., const char *argn, char * /*NULL*/,
char *const envp[]);

int execve (const char *path, char *const argv[], char *const envp[]);

int execlp (const char *file, const char *arg0, ..., const char *argn, char * /*NULL*/);

int execvp (const char *file, char *const argv[]);

DESCRIPTION Each of the functions in the exec family replace the current process image with a
new process image. The new image is constructed from a regular, executable file
called the new process image file . This file is either an executable object file or a file
of data for an interpreter. There is no return from a successful call to one of these
functions because the calling process image is overlaid by the new process image.

An interpreter file begins with a line of the form

#! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument.
When an interpreter file is executed, the system invokes the specified interpreter.
The pathname specified in the interpreter file is passed as arg0 to the interpreter.
If arg was specified in the interpreter file, it is passed as arg1 to the interpreter.
The remaining arguments to the interpreter are arg0 through argn of the originally
exec’d file. The interpreter named by pathname must not be an interpreter file.

When a C-language program is executed as a result of this call, it is entered as a
C-language function call as follows:

int main (int argc, char *argv[], char *envp[]);

where argc is the argument count, argv is an array of character pointers to
the arguments themselves, and envp is an array of character pointers to the
environment strings. The argv and environ arrays are each terminated by a null
pointer. The null pointer terminating the argv array is not counted in argc .
As indicated, argc is at least one and the first member of the array points to a
string containing the name of the file.

The arguments specified by a program with one of the exec functions are passed
on to the new process image in the main() arguments.

76 SunOS 5.8 Last modified 21 Jul 1999

System Calls exec(2)

The path argument points to a path name that identifies the new process image
file.

The file argument is used to construct a pathname that identifies the new
process image file . If the file argument contains a slash character, it is used as
the pathname for this file. Otherwise, the path prefix for this file is obtained
by a search of the directories passed in the PATHenvironment variable (see
environ (5)). The environment is supplied typically by the shell. If the process
image file is not a valid executable object file, execlp() and execvp() use
the contents of that file as standard input to the shell. In this case, the shell
becomes the new process image. In a standard-conforming application (see
standards (5)), the exec family of functions use /usr/bin/ksh (see ksh (1)
); otherwise, they use /usr/bin/sh (see sh (1)).

The arguments represented by arg0 ... are pointers to null-terminated character
strings. These strings constitute the argument list available to the new process
image. The list is terminated by a null pointer. The arg0 argument should
point to a filename that is associated with the process being started by one of
the exec functions.

The argv argument is an array of character pointers to null-terminated strings.
The last member of this array must be a null pointer. These strings constitute
the argument list available to the new process image. The value in argv [0]
should point to a filename that is associated with the process being started by
one of the exec functions.

The envp argument is an array of character pointers to null-terminated strings.
These strings constitute the environment for the new process image. The envp
array is terminated by a null pointer. For execl() , execv() , execvp() ,
and execlp() , the C-language run-time start-off routine places a pointer
to the environment of the calling process in the global object extern char
**environ , and it is used to pass the environment of the calling process
to the new process image.

The number of bytes available for the new process’s combined argument and
environment lists is ARG_MAX. It is implementation-dependentwhether null
terminators, pointers, and/or any alignment bytes are included in this total.

File descriptors open in the calling process image remain open in the new
process image, except for those whose close-on-exec flag FD_CLOEXECis set;
(see fcntl (2)). For those file descriptors that remain open, all attributes of the
open file description, including file locks, remain unchanged.

Directory streams open in the calling process image are closed in the new
process image.

The state of conversion descriptors and message catalogue descriptors in the
new process image is undefined. For the new process, the equivalent of:

Last modified 21 Jul 1999 SunOS 5.8 77

exec(2) System Calls

setlocale(LC_ALL, "C")

is executed at startup.

Signals set to the default action (SIG_DFL) in the calling process image are set
to the default action in the new process image (see signal (3C)). Signals set
to be ignored (SIG_IGN) by the calling process image are set to be ignored by
the new process image. Signals set to be caught by the calling process image
are set to the default action in the new process image (see signal (3HEAD)).
After a successful call to any of the exec functions, alternate signal stacks are not
preserved and the SA_ONSTACKflag is cleared for all signals.

After a successful call to any of the exec functions, any functions previously
registered by atexit (3C) are no longer registered.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft resource limits.

If the ST_NOSUIDbit is set for the file system containing the new process image
file, then the effective user ID , effective group ID , saved set-user-ID , and saved
set-group-ID are unchanged in the new process image. If the set-user-ID mode
bit of the new process image file is set (see chmod(2)), the effective user ID of the
new process image is set to the owner ID of the new process image file. Similarly,
if the set-group-ID mode bit of the new process image file is set, the effective
group ID of the new process image is set to the group ID of the new process
image file. The real user ID and real group ID of the new process image remain
the same as those of the calling process image. The effective user ID and effective
group ID of the new process image are saved (as the saved set-user-ID and the
saved set-group-ID for use by setuid (2) .

If the effective user-ID is root or super-user, the set-user-ID and set-group-ID
bits will be honored when the process is being controlled by ptrace .

Any shared memory segments attached to the calling process image will not be
attached to the new process image (see shmop(2)). Any mappings established
through mmap() are not preserved across an exec . Memory mappings created
in the process are unmapped before the address space is rebuilt for the new
process image. (see mmap(2)).

Memory locks established by the calling process via calls to mlockall (3C) or
mlock (3C) are removed. If locked pages in the address space of the calling
process are also mapped into the address spaces the locks established by the
other processes will be unaffected by the call by this process to the exec
function. If the exec function fails, the effect on memory locks is unspecified.

If _XOPEN_REALTIMEis defined and has a value other than -1, any named
semaphores open in the calling process are closed as if by appropriate calls
to sem_close (3RT)

78 SunOS 5.8 Last modified 21 Jul 1999

System Calls exec(2)

Profiling is disabled for the new process; see profil (2) .

Timers created by the calling process with timer_create (3RT) are deleted
before replacing the current process image with the new process image.

For the SCHED_FIFOand SCHED_RRscheduling policies, the policy and priority
settings are not changed by a call to an exec function.

All open message queue descriptors in the calling process are closed, as
described in mq_close (3RT) .

Any outstanding asynchronous I/O operations may be cancelled. Those
asynchronous I/O operations that are not canceled will complete as if the exec
function had not yet occurred, but any associated signal notifications are
suppressed. It is unspecified whether the exec function itself blocks awaiting
such I/O completion. In no event, however, will the new process image created
by the at the time the exec function is called.

The new process also inherits the following attributes from the calling process:

� nice value (see nice (2))

� scheduler class and priority (see priocntl (2))

� process ID

� parent process ID

� process group ID

� supplementary group IDs

� semadj values (see semop(2))

� session membership (see exit (2) and signal (3C))

� real user ID

� real group ID

� trace flag (see ptrace (2) request 0)

� time left until an alarm clock signal (see alarm (2))

� current working directory

� root directory

� file mode creation mask (see umask(2))

� file size limit (see ulimit (2))

� resource limits (see getrlimit (2))

� tms_utime , tms_stime , tms_cutime , and tms_cstime (see times (2))

� file-locks (see fcntl (2) and lockf (3C))

� controlling terminal

� process signal mask (see sigprocmask (2))

Last modified 21 Jul 1999 SunOS 5.8 79

exec(2) System Calls

� pending signals (see sigpending (2))

A call to any exec function from a process with more than one thread results in
all threads being terminated and the new executable image being loaded and
executed. No destructor functions will be called.

Upon successful completion, each of the functions in the exec family marks
for update the st_atime field of the file. If an exec function failed but was
able to locate the process image file , whether the st_atime field is marked for
update is unspecified. Should the function succeed, the process image file is
considered to have been opened with open (2) . The corresponding close (2) is
considered to occur at a time after this open, but before process termination or
successful completion of a subsequent call to one of the exec functions. The
argv [] and envp [] arrays of pointers and the strings to which those arrays
point will not be modified by a call to one of the exec functions, except as a
consequence of replacing the process image.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft limits.

RETURN VALUES If a function in the exec family returns to the calling process image, an error has
occurred; the return value is -1 and errno is set to indicate the error.

ERRORS The exec functions will fail if:
E2BIG The number of bytes in the new process’s

argument list is greater than the system-imposed
limit of ARG_MAXbytes. The argument list limit is
sum of the size of the argument list plus the size
of the environment’s exported shell variables.

EACCES Search permission is denied for a directory listed
in the new process file’s path prefix; the new
process file is not an ordinary file; or the new
process file mode denies execute permission.

EAGAIN Total amount of system memory available when
reading using raw I/O is temporarily insufficient.

EFAULT An argument points to an illegal address.

EINTR A signal was caught during the execution of one
of the functions in the exec family.

ELOOP Too many symbolic links were encountered in
translating path or file .

ENAMETOOLONG The length of the file or path argument
exceeds PATH_MAX, or the length of a file or

80 SunOS 5.8 Last modified 21 Jul 1999

System Calls exec(2)

path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT One or more components of the new process
path name of the file do not exist or is a null
pathname.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

ENOTDIR A component of the new process path of the file
prefix is not a directory.

The exec functions, except for execlp() and execvp() , will fail if:
ENOEXEC The new process image file has the appropriate

access permission but is not in the proper format.

The exec functions may fail if:
ENAMETOOLONG Pathname resolution of a symbolic link produced

an intermediate result whose length exceeds
PATH_MAX.

ENOMEM The new process image requires more
memory than is allowed by the hardware or
system-imposed by memory management
constraints. (see brk (2)).

ETXTBSY The new process image file is a pure procedure
(shared text) file that is currently open for writing
by some process.

USAGE As the state of conversion descriptors and message catalogue escriptors in the
new process image is undefined, portable applications should not rely on their
use and should close them prior to calling one of the exec functions.

Applications that require other than the default POSIX locale should call
setlocale (3C) with the appropriate parameters to establish the locale of
thenew process.

The environ array should not be accessed directly by the application.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level execle() and execve() are
Async-Signal-Safe

Last modified 21 Jul 1999 SunOS 5.8 81

exec(2) System Calls

SEE ALSO ksh (1) , ps (1) , sh (1) , alarm (2) , brk (2) , chmod(2) , exit (2) , fcntl (2)
, fork (2) , getrlimit (2) , mmap(2) , nice (2) , priocntl (2) , profil (2)
, ptrace (2) , semop(2) , shmop(2) , sigpending (2) , sigprocmask (2) ,
times (2) , umask(2) , lockf (3C) , setlocale (3C) , signal (3C) , system (3C) ,
timer_create (3RT) , a.out (4) , attributes (5) , environ (5) , standards (5)

WARNINGS If a program is setuid to a user ID other than the super-user, and the program
is executed when the real user ID is super-user, then the program has some of
the powers of a super-user as well.

82 SunOS 5.8 Last modified 21 Jul 1999

System Calls exit(2)

NAME exit, _exit – terminate process

SYNOPSIS #include <stdlib.h>
void exit (int status);

#include <unistd.h>
void _exit (int status);

DESCRIPTION The exit() function first calls all functions registered by atexit (3C) , in the
reverse order of their registration. Each function is called as many times as it
was registered.

If a function registered by a call to atexit (3C) fails to return, the remaining
registered functions are not called and the rest of the exit() processing is not
completed. If exit() is called more than once, the effects are undefined.

The exit() function then flushes all output streams, closes all open streams,
and removes all files created by tmpfile (3C) .

The _exit() and exit() functions terminate the calling process with the
following consequences:

� All of the file descriptors, directory streams, conversion descriptors and
message catalogue descriptors open in the calling process are closed.

� If the parent process of the calling process is executing a wait (2)
, wait3 (3C) , waitid (2) or waitpid (2) , and has neither set its
SA_NOCLDWAITflag nor set SIGCHLDto SIG_IGN , it is notified of the
calling process’s termination and the low-order eight bits (that is, bits 0377)
of status are made available to it. If the parent is not waiting, the child’s
status will be made available to it when the parent subsequently executes
wait (2) , wait3 (3C) , waitid (2) or waitpid (2) .

� If the parent process of the calling process is not executing a wait (2) ,
wait3 (3C) , waitid (2) or waitpid (2) , and has not set its SA_NOCLDWAIT
flag, or set SIGCHLDto SIG_IGN , the calling process is transformed into a
zombie process . A zombie process is an inactive process and it will be deleted
at some later time when its parent process executes wait (2) , wait3 (3C)
, waitid (2) or waitpid (2) . A zombie process only occupies a slot in
the process table; it has no other space allocated either in user or kernel
space. The process table slot that it occupies is partially overlaid with time
accounting information (see <sys/proc.h>) to be used by the times (2)
function.

� Termination of a process does not directly terminate its children. The
sending of a SIGHUPsignal as described below indirectly terminates
children in some circumstances.

� A SIGCHLDwill be sent to the parent process.

Last modified 28 Dec 1996 SunOS 5.8 83

exit(2) System Calls

� The parent process ID of all of the calling process’s existing child processes
and zombie processes is set to 1. That is, these processes are inherited by the
initialization process (see intro (3)).

� Each mapped memory object is unmapped.

� Each attached shared-memory segment is detached and the value of
shm_nattch (see shmget (2)) in the data structure associated with its
shared memory ID is decremented by 1.

� For each semaphore for which the calling process has set a semadj
value (see semop(2)), that value is added to the semval of the specified
semaphore.

� If the process is a controlling process, the SIGHUPsignal will be sent to
each process in the foreground process group of the controlling terminal
belonging to the calling process.

� If the process is a controlling process, the controlling terminal associated
with the session is disassociated from the session, allowing it to be acquired
by a new controlling process.

� If the exit of the process causes a process group to become orphaned, and
if any member of the newly-orphaned process group is stopped, then a
SIGHUPsignal followed by a SIGCONTsignal will be sent to each process in
the newly-orphaned process group.

� If the parent process has set its SA_NOCLDWAITflag, or set SIGCHLDto
SIG_IGN , the status will be discarded, and the lifetime of the calling
process will end immediately.

� If the process has process, text or data locks, an UNLOCKis performed (see
plock (3C) and memcntl (2)).

� All open named semaphores in the process are closed as if by appropriate
calls to sem_close (3RT) . All open message queues in the process are
closed as if by appropriate calls to mq_close (3RT) . Any outstanding
asynchronous I/O operations may be cancelled.

� An accounting record is written on the accounting file if the system’s
accounting routine is enabled (see acct (2)).

RETURN VALUES These functions do not return.

ERRORS No errors are defined.

USAGE Normally applications should use exit() rather than _exit() .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

84 SunOS 5.8 Last modified 28 Dec 1996

System Calls exit(2)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level _exit() is Async-Signal Safe

SEE ALSO intro (3) , acct (2) , close (2) , memcntl (2) , semop(2) , shmget (2) ,
sigaction (2) , times (2) , wait (2) , waitid (2) , waitpid (2) , atexit (3C)
, fclose (3C) , mq_close (3RT) , plock (3C) , tmpfile (3C) , wait3 (3C) ,
attributes (5) , signal (3HEAD)

Last modified 28 Dec 1996 SunOS 5.8 85

fcntl(2) System Calls

NAME fcntl – file control

SYNOPSIS #include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
int fcntl (int fildes, int cmd, /* arg */ ...);

DESCRIPTION The fcntl() function provides for control over open files. The fildes argument
is an open file descriptor.

The fcntl() function may take a third argument, arg, whose data type,
value and use depend upon the value of cmd. The cmd argument specifies the
operation to be performed by fcntl() .

The available values for cmd are defined in the header <fcntl.h> , which
include:
F_DUPFD Return a new file descriptor which is the lowest numbered

available (that is, not already open) file descriptor greater
than or equal to the third argument, arg, taken as an integer
of type int . The new file descriptor refers to the same open
file description as the original file descriptor, and shares any
locks. The FD_CLOEXECflag associated with the new file
descriptor is cleared to keep the file open across calls to one
of the exec (2) functions.

F_DUP2FD Similar to F_DUPFD, but always returns arg. F_DUP2FD
closes arg if it is open and not equal to fildes. F_DUP2FDis
equivalent to dup2(fildes , arg) .

F_GETFD Get the file descriptor flags defined in <fcntl.h> that are
associated with the file descriptor fildes. File descriptor flags
are associated with a single file descriptor and do not affect
other file descriptors that refer to the same file.

F_SETFD Set the file descriptor flags defined in <fcntl.h> , that are
associated with fildes, to the third argument, arg, taken as
type int . If the FD_CLOEXECflag in the third argument is
0, the file will remain open across the exec() functions;
otherwise the file will be closed upon successful execution of
one of the exec() functions.

F_GETFL Get the file status flags and file access modes, defined in
<fcntl.h> , for the file description associated with fildes.
The file access modes can be extracted from the return value
using the mask O_ACCMODE, which is defined in <fcntl.h> .
File status flags and file access modes are associated with the

86 SunOS 5.8 Last modified 21 Jul 1999

System Calls fcntl(2)

file description and do not affect other file descriptors that
refer to the same file with different open file descriptions.

F_SETFL Set the file status flags, defined in <fcntl.h> , for the file
description associated with fildes from the corresponding
bits in the third argument, arg, taken as type int . Bits
corresponding to the file access mode and the oflag values
that are set in arg are ignored. If any bits in arg other than
those mentioned here are changed by the application, the
result is unspecified.

F_GETOWN If fildes refers to a socket, get the process or process group ID
specified to receive SIGURGsignals when out-of-band data
is available. Positive values indicate a process ID; negative
values, other than −1, indicate a process group ID. If fildes
does not refer to a socket, the results are unspecified.

F_SETOWN If fildes refers to a socket, set the process or process group ID
specified to receive SIGURGsignals when out-of-band data is
available, using the value of the third argument, arg, taken
as type int . Positive values indicate a process ID; negative
values, other than −1, indicate a process group ID. If fildes
does not refer to a socket, the results are unspecified.

F_FREESP Free storage space associated with a section of the ordinary
file fildes. The section is specified by a variable of data
type struct flock pointed to by arg. The data type
struct flock is defined in the <fcntl.h> header (see
fcntl (3HEAD)) and is described below. Note that all
file systems might not support all possible variations of
F_FREESParguments. In particular, many file systems allow
space to be freed only at the end of a file.

The following commands are available for advisory record locking. Record
locking is supported for regular files, and may be supported for other files.
F_GETLK Get the first lock which blocks the lock description pointed

to by the third argument, arg, taken as a pointer to type
struct flock , defined in <fcntl.h> . The information
retrieved overwrites the information passed to fcntl() in
the structure flock . If no lock is found that would prevent
this lock from being created, then the structure will be left
unchanged except for the lock type which will be set to
F_UNLCK.

F_GETLK64 Equivalent to F_GETLK, but takes a struct flock64
argument rather than a struct flock argument.

Last modified 21 Jul 1999 SunOS 5.8 87

fcntl(2) System Calls

F_SETLK Set or clear a file segment lock according to the lock
description pointed to by the third argument, arg, taken as
a pointer to type struct flock , defined in <fcntl.h> .
F_SETLK is used to establish shared (or read) locks
(F_RDLCK) or exclusive (or write) locks (F_WRLCK), as well
as to remove either type of lock (F_UNLCK). F_RDLCK,
F_WRLCKand F_UNLCKare defined in <fcntl.h> . If a
shared or exclusive lock cannot be set, fcntl() will return
immediately with a return value of −1.

F_SETLK64 Equivalent to F_SETLK, but takes a struct flock64
argument rather than a struct flock argument.

F_SETLKW This command is the same as F_SETLK except that if a
shared or exclusive lock is blocked by other locks, the
process will wait until the request can be satisfied. If a signal
that is to be caught is received while fcntl() is waiting for
a region, fcntl() will be interrupted. Upon return from
the process’ signal handler, fcntl() will return −1 with
errno set to EINTR, and the lock operation will not be done.

F_SETLKW64 Equivalent to F_SETLKW, but takes a struct flock64
argument rather than a struct flock argument.

When a shared lock is set on a segment of a file, other processes will be able
to set shared locks on that segment or a portion of it. A shared lock prevents
any other process from setting an exclusive lock on any portion of the protected
area. A request for a shared lock will fail if the file descriptor was not opened
with read access.

An exclusive lock will prevent any other process from setting a shared lock or an
exclusive lock on any portion of the protected area. A request for an exclusive
lock will fail if the file descriptor was not opened with write access.

The flock structure contains at least the following elements:

short l_type; /* lock operation type */
short l_whence; /* lock base indicator */
off_t l_start; /* starting offset from base */
off_t l_len; /* lock length; l_len == 0 means

until end of file */
long l_sysid; /* system ID running process holding lock */
pid_t l_pid; /* process ID of process holding lock */

The value of l_whence is SEEK_SET, SEEK_CUR, or SEEK_END, to indicate
that the relative offset l_start bytes will be measured from the start of the

88 SunOS 5.8 Last modified 21 Jul 1999

System Calls fcntl(2)

file, current position or end of the file, respectively. The value of l_len is the
number of consecutive bytes to be locked. The value of l_len may be negative
(where the definition of off_t permits negative values of l_len). After a
successful F_GETLKor F_GETLK64 request, that is, one in which a lock was
found, the value of l_whence will be SEEK_SET.

The l_pid and l_sysid fields are used only with F_GETLKor F_GETLK64
to return the process ID of the process holding a blocking lock and to indicate
which system is running that process.

If l_len is positive, the area affected starts at l_start and ends at l_start +
l_len − 1. If l_len is negative, the area affected starts at l_start + l_len
and ends at l_start − 1. Locks may start and extend beyond the current end
of a file, but must not be negative relative to the beginning of the file. A lock
will be set to extend to the largest possible value of the file offset for that file
by setting l_len to 0. If such a lock also has l_start set to 0 and l_whence
is set to SEEK_SET, the whole file will be locked.

If a process has an existing lock in which l_len is 0 and which includes the last
byte of the requested segment, and an unlock (F_UNLCK) request is made in
which l_len is non-zero and the offset of the last byte of the requested segment
is the maximum value for an object of type off_t , then the F_UNLCKrequest
will be treated as a request to unlock from the start of the requested segment
with an l_len equal to 0. Otherwise, the request will attempt to unlock only the
requested segment.

There will be at most one type of lock set for each byte in the file. Before a
successful return from an F_SETLK, F_SETLK64, F_SETLKW, or F_SETLKW64
request when the calling process has previously existing locks on bytes in the
region specified by the request, the previous lock type for each byte in the
specified region will be replaced by the new lock type. As specified above under
the descriptions of shared locks and exclusive locks, an F_SETLK, F_SETLK64,
F_SETLKW, or F_SETLKW64request will (respectively) fail or block when
another process has existing locks on bytes in the specified region and the type of
any of those locks conflicts with the type specified in the request.

All locks associated with a file for a given process are removed when a file
descriptor for that file is closed by that process or the process holding that
file descriptor terminates. Locks are not inherited by a child process created
using fork (2).

A potential for deadlock occurs if a process controlling a locked region is put
to sleep by attempting to lock another process’ locked region. If the system
detects that sleeping until a locked region is unlocked would cause a deadlock,
fcntl() will fail with an EDEADLKerror.

Last modified 21 Jul 1999 SunOS 5.8 89

fcntl(2) System Calls

The following values for cmd are used for file share reservations. A share
reservation is placed on an entire file to allow cooperating processes to control
access to the file.
F_SHARE Sets a share reservation on a file with the specified access

mode and designates which types of access to deny.

F_UNSHARE Remove an existing share reservation.

File share reservations are an advisory form of access control among cooperating
processes, on both local and remote machines. They are most often used by
DOS or Windows emulators and DOS based NFS clients. However, native
UNIX versions of DOS or Windows applications may also choose to use this
form of access control.

A share reservation is described by an fshare structure defined in
<sys/fcntl.h> , which is included in <fcntl.h> as follows:

typedef struct fshare {
short f_access;
short f_deny;
long f_id;

} fshare_t;

A share reservation specifies the type of access, f_access , to be requested on
the open file descriptor. If access is granted, it further specifies what type of
access to deny other processes, f_deny . A single process on the same file may
hold multiple non-conflicting reservations by specifying an identifier, f_id ,
unique to the process, with each request.

An F_UNSHARErequest releases the reservation with the specified f_id . The
f_access and f_deny fields are ignored.

Valid f_access values are:
F_RDACC Set a file share reservation for read-only access.

F_WRACC Set a file share reservation for write-only access.

F_RWACC Set a file share reservation for read and write access.

Valid f_deny values are:
F_COMPAT Set a file share reservation to compatibility mode.

F_RDDNY Set a file share reservation to deny read access to other
processes.

F_WRDNY Set a file share reservation to deny write access to other
processes.

90 SunOS 5.8 Last modified 21 Jul 1999

System Calls fcntl(2)

F_RWDNY Set a file share reservation to deny read and write access
to other processes.

F_NODNY Do not deny read or write access to any other process.

RETURN VALUES Upon successful completion, the value returned depends on cmd as follows:
F_DUPFD A new file descriptor.

F_GETFD Value of flags defined in <fcntl.h> . The return value
will not be negative.

F_SETFD Value other than −1.

F_GETFL Value of file status flags and access modes. The return value
will not be negative.

F_SETFL Value other than −1.

F_GETOWN Value of the socket owner process or process group; this
will not be −1.

F_SETOWN Value other than −1.

F_FREESP Value of 0.

F_GETLK Value other than −1.

F_GETLK64 Value other than −1.

F_SETLK Value other than −1.

F_SETLK64 Value other than −1.

F_SETLKW Value other than −1.

F_SETLKW64 Value other than −1.

F_SHARE Value other than −1.

F_UNSHARE Value other than −1.

Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS The fcntl() function will fail if:
EAGAIN The cmd argument is F_SETLK or F_SETLK64, the type

of lock (l_type) is a shared (F_RDLCK) or exclusive
(F_WRLCK) lock, and the segment of a file to be locked is
already exclusive-locked by another process; or the type is
an exclusive lock and some portion of the segment of a file
to be locked is already shared-locked or exclusive-locked
by another process.

Last modified 21 Jul 1999 SunOS 5.8 91

fcntl(2) System Calls

The cmd argument is F_FREESP, the file exists, mandatory
file/record locking is set, and there are outstanding
record locks on the file; or the cmd argument is F_SETLK,
F_SETLK64, F_SETLKW, or F_SETLKW64, mandatory
file/record locking is set, and the file is currently being
mapped to virtual memory using mmap(2).

The cmd argument is F_SHAREand f_access conflicts with
an existing f_deny share reservation.

EBADF The fildes argument is not a valid open file descriptor; or the
cmd argument is F_SETLK, F_SETLK64, F_SETLKW, or
F_SETLKW64, the type of lock, l_type , is a shared lock
(F_RDLCK), and fildes is not a valid file descriptor open for
reading; or the type of lock l_type is an exclusive lock
(F_WRLCK) and fildes is not a valid file descriptor open for
writing.

The cmd argument is F_FREESPand fildes is not a valid file
descriptor open for writing.

The cmd argument is F_DUP2FD, and arg is negative or is not
less than the current resource limit for RLIMIT_NOFILE.

The cmd argument is F_SHARE, the f_access share
reservation is for write access, and fildes is not a valid file
descriptor open for writing.

The cmd argument is F_SHARE, the f_access share
reservation is for read access, and fildes is not a valid file
descriptor open for reading.

EFAULT The cmd argument is F_GETLK, F_GETLK64, F_SETLK,
F_SETLK64, F_SETLKW, F_SETLKW64, or F_FREESPand
the arg argument points to an illegal address.

The cmd argument is F_SHAREor F_UNSHAREand arg points
to an illegal address.

EINTR The cmd argument is F_SETLKWor F_SETLKW64and the
function was interrupted by a signal.

EINVAL The cmd argument is invalid; or the cmd argument is
F_DUPFDand arg is negative or greater than or equal to
OPEN_MAX; or the cmd argument is F_GETLK, F_GETLK64,
F_SETLK, F_SETLK64, F_SETLKW, or F_SETLKW64and the
data pointed to by arg is not valid; or fildes refers to a file
that does not support locking.

92 SunOS 5.8 Last modified 21 Jul 1999

System Calls fcntl(2)

The cmd argument is F_UNSHAREand a reservation with this
f_id for this process does not exist.

EIO An I/O error occurred while reading from or writing to
the file system.

EMFILE The cmd argument is F_DUPFDand either OPEN_MAXfile
descriptors are currently open in the calling process, or no
file descriptors greater than or equal to arg are available.

ENOLCK The cmd argument is F_SETLK, F_SETLK64, F_SETLKW,
or F_SETLKW64and satisfying the lock or unlock request
would result in the number of locked regions in the system
exceeding a system-imposed limit.

ENOLINK Either the fildes argument is on a remote machine and the
link to that machine is no longer active; or the cmd argument
is F_FREESP, the file is on a remote machine, and the link to
that machine is no longer active.

EOVERFLOW One of the values to be returned cannot be represented
correctly.

The cmd argument is F_GETLK, F_SETLK, or F_SETLKWand
the smallest or, if l_len is non-zero, the largest, offset of
any byte in the requested segment cannot be represented
correctly in an object of type off_t .

The cmd argument is F_GETLK64, F_SETLK64, or
F_SETLKW64and the smallest or, if l_len is non-zero, the
largest, offset of any byte in the requested segment cannot be
represented correctly in an object of type off64_t .

The fcntl() function may fail if:
EAGAIN The cmd argument is F_SETLK, F_SETLK64, F_SETLKW, or

F_SETLKW64, and the file is currently being mapped to
virtual memory using mmap(2).

EDEADLK The cmd argument is F_SETLKWor F_SETLKW64, the lock is
blocked by some lock from another process and putting the
calling process to sleep, waiting for that lock to become free
would cause a deadlock.

The cmd argument is F_FREESP, mandatory record locking
is enabled, O_NDELAYand O_NONBLOCKare clear and a
deadlock condition was detected.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 21 Jul 1999 SunOS 5.8 93

fcntl(2) System Calls

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal Safe

SEE ALSO lockd (1M), chmod(2), close (2), creat (2), dup (2), exec (2), fork (2),
mmap(2), open (2), pipe (2), read (2), sigaction (2), write (2), dup2 (3C),
attributes (5), fcntl (3HEAD)

System Interface Guide

NOTES In the past, the variable errno was set to EACCESrather than EAGAINwhen
a section of a file is already locked by another process. Therefore, portable
application programs should expect and test for either value.

Advisory locks allow cooperating processes to perform consistent operations
on files, but do not guarantee exclusive access. Files can be accessed without
advisory locks, but inconsistencies may result. The network share locking
protocol does not support the f_deny value of F_COMPAT. For network file
systems, if f_access is F_RDACC, f_deny is mapped to F_RDDNY. Otherwise,
it is mapped to F_RWDNY.

To prevent possible file corruption, the system may reject mmap() requests for
advisory locked files, or it may reject advisory locking requests for mapped files.
Applications that require a file be both locked and mapped should lock the entire
file (l_start and l_len both set to 0). If a file is mapped, the system may reject
an unlock request, resulting in a lock that does not cover the entire file.

If the file server crashes and has to be rebooted, the lock manager (see
lockd (1M)) attempts to recover all locks that were associated with that server. If
a lock cannot be reclaimed, the process that held the lock is issued a SIGLOST
signal.

94 SunOS 5.8 Last modified 21 Jul 1999

System Calls fork(2)

NAME fork, fork1 – create a new process

SYNOPSIS #include <sys/types.h>
#include <unistd.h>
pid_t fork (void);

pid_t fork1 (void);

DESCRIPTION The fork() and fork1() functions create a new process. The new process
(child process) is an exact copy of the calling process (parent process). The child
process inherits the following attributes from the parent process:

� real user ID, real group ID, effective user ID, effective group ID

� environment

� open file descriptors

� close-on-exec flags (see exec (2))

� signal handling settings (that is, SIG_DFL , SIG_IGN , SIG_HOLD, function
address)

� supplementary group IDs

� set-user-ID mode bit

� set-group-ID mode bit

� profiling on/off status

� nice value (see nice (2))

� scheduler class (see priocntl (2))

� all attached shared memory segments (see shmop(2))

� process group ID – memory mappings (see mmap(2))

� session ID (see exit (2))

� current working directory

� root directory

� file mode creation mask (see umask(2))

� resource limits (see getrlimit (2))

� controlling terminal

� saved user ID and group ID

Scheduling priority and any per-process scheduling parameters that are specific
to a given scheduling class may or may not be inherited according to the policy
of that particular class (see priocntl (2)). The child process differs from the
parent process in the following ways:

� The child process has a unique process ID which does not match any active
process group ID .

Last modified 18 May 1999 SunOS 5.8 95

fork(2) System Calls

� The child process has a different parent process ID (that is, the process
ID of the parent process).

� The child process has its own copy of the parent’s file descriptors and
directory streams. Each of the child’s file descriptors shares a common file
pointer with the corresponding file descriptor of the parent.

� Each shared memory segment remains attached and the value of
shm_nattach is incremented by 1.

� All semadj values are cleared (see semop(2)).

� Process locks, text locks, data locks, and other memory locks are not
inherited by the child (see plock (3C) and memcntl (2)).

� The child process’s tms structure is cleared: tms_utime , stime , cutime ,
and cstime are set to 0 (see times (2)).

� The child processes resource utilizations are set to 0; see getrlimit (2) .
The it_value and it_interval values for the ITIMER_REAL timer
are reset to 0; see getitimer (2) .

� The set of signals pending for the child process is initialized to the empty
set.

� Timers created by timer_create (3RT) are not inherited by the child
process.

� No asynchronous input or asynchronous output operations are inherited by
the child.

Record locks set by the parent process are not inherited by the child process
(see fcntl (2)).

Solaris Threads In applications that use the Solaris threads API rather than the POSIX threads
API (applications linked with −lthread but not −lpthread),fork()
duplicates in the child process all threads (see thr_create (3THR)) and LWPs
in the parent process. The fork1() function duplicates only the calling thread
(LWP) in the child process.

POSIX Threads In applications that use the POSIX threads API rather than the Solaris threads
API (applications linked with −lpthread , whether or not linked with
−lthread), a call to fork() is like a call to fork1() , which replicates only
the calling thread. There is no call that forks a child with all threads and LWPs
duplicated in the child.

Note that if a program is linked with both libraries (−lthread and −lpthread
), the POSIX semantic of fork() prevails.

fork() Safety If a Solaris threads application calls fork1() or a POSIX threads application
calls fork() , and the child does more than simply call exec() , there is
a possibility of deadlock occurring in the child. The application should use
pthread_atfork (3THR) to ensure safety with respect to this deadlock.

96 SunOS 5.8 Last modified 18 May 1999

System Calls fork(2)

A Solaris threads application must explicitly link with −lpthread to access
pthread_atfork() . Should there be any outstanding mutexes throughout
the process, the application should call pthread_atfork() to wait for and
acquire those mutexes prior to calling fork() or fork1() . See "MT-Level
of Libraries" on the attributes (5) manual page.

RETURN VALUES Upon successful completion, fork() and fork1() return 0 to the child process
and return the process ID of the child process to the parent process. Otherwise,
(pid_t)-1 is returned to the parent process, no child process is created, and
errno is set to indicate the error.

ERRORS The fork() function will fail if:
EAGAIN The system-imposed limit on the total number of processes

under execution by a single user has been exceeded; or the
total amount of system memory available is temporarily
insufficient to duplicate this process.

ENOMEM There is not enough swap space.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level fork() is Async-Signal-Safe

SEE ALSO alarm (2) , exec (2) , exit (2) , fcntl (2) , getitimer (2) , getrlimit (2)
, memcntl (2) , mmap(2) , nice (2) , priocntl (2) , ptrace (2) , semop(2)
, shmop(2) , times (2) , umask(2) , wait (2) , exit (3C) , plock (3C) ,
pthread_atfork (3THR) , signal (3C) , system (3C) , thr_create (3THR)
timer_create (3RT) , attributes (5) , standards (5)

NOTES An applications should call _exit() rather than exit (3C) if it cannot
execve() , since exit() will flush and close standard I/O channels and
thereby corrupt the parent process’s standard I/O data structures. Using
exit (3C) will flush buffered data twice. See exit (2) .

The thread (or LWP) in the child that calls fork1() must not depend on
any resources held by threads (or LWPs) that no longer exist in the child. In
particular, locks held by these threads (or LWPs) will not be released.

In a multithreaded process, fork() or fork1() can cause blocking system
calls to be interrupted and return with an EINTR error.

The fork() and fork1() functions suspend all threads in the process
before proceeding. Threads that are executing in the kernel and are in an
uninterruptible wait cannot be suspended immediately and therefore cause a
delay before fork() and fork1() can complete. During this delay, since all
other threads will have already been suspended, the process will appear "hung."

Last modified 18 May 1999 SunOS 5.8 97

fpathconf(2) System Calls

NAME fpathconf, pathconf – get configurable pathname variables

SYNOPSIS #include <unistd.h>
long int fpathconf (int fildes, int name);

long int pathconf (const char *path, int name);

DESCRIPTION The fpathconf() and pathconf() functions provide a method for the
application to determine the current value of a configurable limit or option I (
variable) that is associated with a file or directory.

For pathconf() , the path argument points to the pathname of a file or directory.

For fpathconf() , the fildes argument is an open file descriptor.

The name argument represents the variable to be queried relative to that file or
directory. The variables in the following table come from <limits.h> or
<unistd.h> and the symbolic constants, defined in <unistd.h> , are the
corresponding values used for name:

Variable Value of name Notes

FILESIZEBITS _PC_FILESIZEBITS 3,4

LINK_MAX _PC_LINK_MAX 1

MAX_CANON _PC_MAX_CANON 2

MAX_INPUT _PC_MAX_INPUT 2

NAME_MAX _PC_NAME_MAX 3,4

PATH_MAX _PC_PATH_MAX 4,5

PIPE_BUF _PC_PIPE_BUF 6

_POSIX_CHOWN_RESTRICTED _PC_CHOWN_RESTRICTED 7

_POSIX_NO_TRUNC _PC_NO_TRUNC 3,4

_POSIX_VDISABLE _PC_VDISABLE 2

_POSIX_ASYNC_IO _PC_ASYNC_IO 8

_POSIX_PRIO_IO _PC_PRIO_IO 8

_POSIX_SYNC_IO _PC_SYNC_IO 8

Notes:

1. If path or fildes refers to a directory, the value returned applies to the
directory itself.

98 SunOS 5.8 Last modified 25 Feb 1998

System Calls fpathconf(2)

2. If path or fildes does not refer to a terminal file, it is unspecified whether
an implementation supports an association of the variable name with the
specified file.

3. If path or fildes refers to a directory, the value returned applies to filenames
within the directory.

4. If path or fildes does not refer to a directory, it is unspecified whether an
implementation supports an association of the variable name with the
specified file.

5. If path or fildes refers to a directory, the value returned is the maximum
length of a relative pathname when the specified directory is the working
directory.

6. If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned
applies to the referenced object. If path or fildes refers to a directory, the
value returned applies to any FIFO that exists or can be created within the
directory. If path or fildes refers to any other type of file, it is unspecified
whether an implementation supports an association of the variable name
with the specified file.

7. If path or fildes refers to a directory, the value returned applies to any files,
other than directories, that exist or can be created within the directory.

8. If path or fildes refers to a directory, it is unspecified whether an
implementation supports an association of the variable name with the
specified file.

RETURN VALUES If name is an invalid value, both pathconf() and fpathconf() return -1
and errno is set to indicate the error.

If the variable corresponding to name has no limit for the path or file descriptor,
both pathconf() and fpathconf() return -1 without changing errno . If
the implementation needs to use path to determine the value of name and the
implementation does not support the association of name with the file specified
by path , or if the process did not have appropriate privileges to query the
appropriate privileges file specified by path , or path does not exist, pathconf()
returns -1 and errno is set to indicate the error.

If the implementation needs to use fildes to determine the value of name and the
implementation does not support the association of name with the file specified
by fildes , or if fildes is an invalid file descriptor, fpathconf() will return -1
and errno is set to indicate the error.

Otherwise pathconf() or fpathconf() returns the current variable value for
the file or directory without changing errno . The value returned will not be
more restrictive than the corresponding value available to the application when
it was compiled with the implementation’s <limits.h> or <unistd.h> .

ERRORS The pathconf() function will fail if:

Last modified 25 Feb 1998 SunOS 5.8 99

fpathconf(2) System Calls

EINVAL The value of name is not valid.

ELOOP Too many symbolic links were encountered in
resolving path .

The pathconf() function may fail if:
EACCES Search permission is denied for a component of

the path prefix.

EINVAL The implementation does not support an
association of the variable name with the specified
file.

ENAMETOOLONG The length of the path argument exceeds
PATH_MAXor a pathname component is longer
than NAME_MAX.

ENAMETOOLONG Pathname resolution of a symbolic link produced
an intermediate result whose length exceeds
PATH_MAX.

ENOENT A component of path does not name an existing
file or path is an empty string.

ENOTDIR A component of the path prefix is not a directory.

The fpathconf() function will fail if:
EINVAL The value of name is not valid.

The fpathconf() function may fail if:
EBADF The fildes argument is not a valid file descriptor.

EINVAL The implementation does not support an
association of the variable name with the specified
file.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level pathconf() is Async-Signal-Safe

SEE ALSO sysconf (3C) , limits (4) , attributes (5) , standards (5)

100 SunOS 5.8 Last modified 25 Feb 1998

System Calls getaudit(2)

NAME getaudit, setaudit, getaudit_addr, setaudit_addr – get and set process audit
information

SYNOPSIS cc [flag ...] file ... −lbsm −lsocket −lnsl −lintl [library ...]
#include <sys/param.h>
#include <bsm/audit.h>
int getaudit (struct auditinfo *info);

int setaudit (struct auditinfo *info);

int getaudit_addr (struct auditinfo_addr *info, int length);

int setaudit_addr (struct auditinfo_addr *info, int length);

DESCRIPTION The getaudit() function gets the audit ID , the preselection mask, the terminal
ID and the audit session ID for the current process.

Note that getaudit() may fail and return an E2BIG errno if the address
field in the terminal ID is larger than 32 bits. In this case, getaudit_addr()
should be used.

The setaudit() function sets the audit ID , the preselection mask, the terminal
ID and the audit session ID for the current process.

The getaudit_addr() function returns a variable length auditinfo_addr
structure that contains the audit ID , the preselection mask, the terminal ID ,
and the audit session ID for the current process. The terminal ID contains a size
field that indicates the size of the network address.

The setaudit_addr() function sets the audit ID , the preselection mask, the
terminal ID , and the audit session ID for the current process. The values are
taken from the variable length struture auditinfo_addr. The terminal ID
contains a size field that indicates the size of the network address.

The auditinfo structure is used to pass the process audit information and
contains the following members:

au_id_t ai_auid; /* audit user ID */
au_mask_t ai_mask; /* preselection mask */
au_tid_t ai_termid; /* terminal ID */
au_asid_t ai_asid; /* audit session ID */

The auditinfo_addr structure is used to pass the process audit information
and contains the following members:

au_id_t ai_auid; /* audit user ID */
au_mask_t ai_mask; /* preselection mask */
au_tid_addr_t ai_termid; /* terminal ID */
au_asid_t ai_asid; /* audit session ID */

Last modified 18 Aug 1999 SunOS 5.8 101

getaudit(2) System Calls

RETURN VALUES Upon successful completion, getaudit() and setaudit() return 0 .
Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS The getaudit() and setaudit() functions will fail if:
EFAULT The info parameter points outside the process’s allocated

address space.

EPERM The process’s effective user ID is not super-user.

USAGE Only processes with the effective user ID of the super-user may successfully
execute these calls.

SEE ALSO bsmconv (1M) , audit (2)

NOTES The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv (1M) for more information.

102 SunOS 5.8 Last modified 18 Aug 1999

System Calls getauid(2)

NAME getauid, setauid – get and set user audit identity

SYNOPSIS cc [flag ...] file ... −lbsm −lsocket −lnsl −lintl [library ...]
#include <sys/param.h>
#include <bsm/audit.h>
int getauid (au_id_t *auid);

int setauid (au_id_t *auid);

DESCRIPTION The getauid() function returns the audit user ID for the current process. This
value is initially set at login time and inherited by all child processes. This value
does not change when the real/effective user IDs change, so it can be used to
identify the logged-in user even when running a setuid program. The audit user
ID governs audit decisions for a process.

The setauid() function sets the audit user ID for the current process.

RETURN VALUES Upon successful completion, the getauid() function returns the audit user
ID of the current process on success. Otherwise, it returns -1 and sets errno
to indicate the error.

Upon successful completion the setauid() function returns 0 . Otherwise, -1
is returned and errno is set to indicate the error.

ERRORS The getauid() and setauid() functions will fail if:
EFAULT The auid argument points to an invalid address.

EPERM The process’s effective user ID is not super-user.

USAGE Only the super-user may successfully execute these calls.

SEE ALSO bsmconv (1M) , audit (2) , getaudit (2)

NOTES The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv (1M) for more information.

These system calls have been superseded by getaudit() and setaudit() .

Last modified 28 Dec 1996 SunOS 5.8 103

getcontext(2) System Calls

NAME getcontext, setcontext – get and set current user context

SYNOPSIS #include <ucontext.h>
int getcontext (ucontext_t *ucp);

int setcontext (const ucontext_t *ucp);

DESCRIPTION The getcontext() function initializes the structure pointed to by ucp to the
current user context of the calling process. The ucontext_t type that ucp points
to defines the user context and includes the contents of the calling process’
machine registers, the signal mask, and the current execution stack.

The setcontext() function restores the user context pointed to by ucp . A
successful call to setcontext() does not return; program execution resumes at
the point specified by the ucp argument passed to setcontext() . The ucp
argument should be created either by a prior call to getcontext() , or by
being passed as an argument to a signal handler. If the ucp argument was created
with getcontext() , program execution continues as if the corresponding
call of getcontext() had just returned. If the ucp argument was created with
makecontext (3C) , program execution continues with the function passed
to makecontext (3C) . When that function returns, the process continues as
if after a call to setcontext() with the ucp argument that was input to
makecontext (3C) . If the ucp argument was passed to a signal handler, program
execution continues with the program instruction following the instruction
interrupted by the signal. If the uc_link member of the ucontext_t structure
pointed to by the ucp argument is equal to 0, then this context is the main context,
and the process will exit when this context returns. The effects of passing a ucp
argument obtained from any other source are unspecified.

RETURN VALUES On successful completion, setcontext() does not return and getcontext()
returns 0 . Otherwise, -1 is returned.

ERRORS No errors are defined.

USAGE When a signal handler is executed, the current user context is saved and a new
context is created. If the process leaves the signal handler via longjmp (3UCB) ,
then it is unspecified whether the context at the time of the corresponding
setjmp (3UCB) call is restored and thus whether future calls to getcontext()
will provide an accurate representation of the current context, since the
context restored by longjmp (3UCB) may not contain all the information
that setcontext() requires. Signal handlers should use siglongjmp (3C)
or setcontext() instead.

Portable applications should not modify or access the uc_mcontext member
of ucontext_t . A portable application cannot assume that context includes
any process-wide static data, possibly including errno . Users manipulating
contexts should take care to handle these explicitly when required.

104 SunOS 5.8 Last modified 8 Oct 1996

System Calls getcontext(2)

SEE ALSO sigaction (2) , sigaltstack (2) , sigprocmask (2) , bsd_signal (3C) ,
makecontext (3C) , setjmp (3UCB) , sigsetjmp (3C) , ucontext (3HEAD)

Last modified 8 Oct 1996 SunOS 5.8 105

getdents(2) System Calls

NAME getdents – read directory entries and put in a file system independent format

SYNOPSIS #include <sys/dirent.h>
int getdents (int fildes, struct dirent *buf, size_t nbyte);

DESCRIPTION The getdents() function attempts to read nbyte bytes from the directory
associated with the file descriptor fildes and to format them as file system
independent directory entries in the buffer pointed to by buf. Since the file system
independent directory entries are of variable lengths, in most cases the actual
number of bytes returned will be less than nbyte. The file system independent
directory entry is specified by the dirent structure. See dirent (3HEAD).

On devices capable of seeking, getdents() starts at a position in the file given
by the file pointer associated with fildes. Upon return from getdents() , the file
pointer is incremented to point to the next directory entry.

RETURN VALUES Upon successful completion, a non-negative integer is returned indicating
the number of bytes actually read. A return value of 0 indicates the end of
the directory has been reached. Otherwise, −1 is returned and errno is set
to indicate the error.

ERRORS The getdents() function will fail if:
EBADF The fildes argument is not a valid file descriptor open for

reading.

EFAULT The buf argument points to an illegal address.

EINVAL The nbyte argument is not large enough for one directory
entry.

EIO An I/O error occurred while accessing the file system.

ENOENT The current file pointer for the directory is not located at
a valid entry.

ENOLINK The fildes argument points to a remote machine and the link
to that machine is no longer active.

ENOTDIR The fildes argument is not a directory.

EOVERFLOW The value of the dirent structure member d_ino or d_off
cannot be represented in an ino_t or off_t .

USAGE The getdents() function was developed to implement the readdir (3C)
function and should not be used for other purposes.

The getdents() function has a transitional interface for 64-bit file offsets.
See lf64 (5).

SEE ALSO readdir (3C), dirent (3HEAD), lf64 (5)

106 SunOS 5.8 Last modified 28 Jan 1998

System Calls getgroups(2)

NAME getgroups, setgroups – get or set supplementary group access list IDs

SYNOPSIS #include <unistd.h>
int getgroups (int gidsetsize, gid_t *grouplist);

int setgroups (int ngroups, const gid_t *grouplist);

DESCRIPTION The getgroups() function gets the current supplemental group access list of
the calling process and stores the result in the array of group IDs specified by
grouplist . This array has gidsetsize entries and must be large enough to contain
the entire list. This list cannot be larger than NGROUPS_MAX. If gidsetsize equals
0, getgroups() will return the number of groups to which the calling process
belongs without modifying the array pointed to by grouplist .

The setgroups() function sets the supplementary group access list of the
calling process from the array of group IDs specified by grouplist . The number of
entries is specified by ngroups and can not be greater than NGROUPS_MAX.

RETURN VALUES Upon successful completion, getgroups() returns the number of
supplementary group IDs set for the calling process and setgroups() returns
0 . Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS The getgroups() and setgroups() functions will fail if:
EFAULT A referenced part of the array pointed to by grouplist is

an illegal address.

The getgroups() function will fail if:
EINVAL The value of gidsetsize is non-zero and less than the number

of supplementary group IDs set for the calling process.

The setgroups() function will fail if:
EINVAL The value of ngroups is greater than NGROUPS_MAX.

EPERM The effective user of the calling process is not super-user.

USAGE This function may be invoked only by the super-user.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO groups (1) , chown (2) , getuid (2) , setuid (2) , getgrnam (3C) ,
initgroups (3C) , attributes (5)

Last modified 28 Dec 1996 SunOS 5.8 107

getitimer(2) System Calls

NAME getitimer, setitimer – get or set value of interval timer

SYNOPSIS #include <sys/time.h>
int getitimer (int which, struct itimerval *value);

int setitimer (int which, const struct itimerval *value, struct itimerval *ovalue);

DESCRIPTION The system provides each process with four interval timers, defined in
sys/time.h . The getitimer() function stores the current value of the timer
specified by which into the structure pointed to by value . The setitimer()
function call sets the value of the timer specified by which to the value specified
in the structure pointed to by value , and if ovalue is not NULL , stores the previous
value of the timer in the structure pointed to by ovalue .

A timer value is defined by the itimerval structure (see gettimeofday (3C))
for the definition of timeval), which includes the following members:

struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

The it_value member indicates the time to the next timer expiration. The
it_interval member specifies a value to be used in reloading it_value
when the timer expires. Setting it_value to 0 disables a timer, regardless of the
value of it_interval . Setting it_interval to 0 disables a timer after its
next expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to the
resolution of the system clock, except for ITIMER_REALPROF, whose values are
rounded up to the resolution of the profiling clock. The four timers are as follows:
ITIMER_REAL

Decrements in real time. A SIGALRMsignal is delivered when this timer
expires.

In the current and previous releases, when setitimer(ITIMER_REAL,
...) is called in a multithreaded process linked with −lthread
(Solaris threads) or −lpthread (POSIX threads; see standards (5)), the
resulting SIGALRMis sent to the bound thread that called setitimer()
; setitimer() has a per-thread semantic when called from a bound
thread. This semantic will become obsolete in a future release. The semantic
will move to a per-process semantic, with the resulting SIGALRMbeing
sent to the process. The SIGALRMso generated is not maskable on this
bound thread by any signal masking function, pthread_sigmask (3THR)
, thr_sigsetmask (3THR) , or sigprocmask (2) . This is a bug that will
not be fixed, since the per-thread semantic will be discontinued in the next
release.

108 SunOS 5.8 Last modified 28 Dec 1996

System Calls getitimer(2)

Also, calling this routine from an unbound thread is not guaranteed to work
as in the case of bound threads. The resulting SIGALRMmay be sent to some
other thread (see alarm (2)). This is a bug and will not be fixed since the
per-thread semantic is going to be discontinued.

Calling setitimer(ITIMER_REAL, ...) from a process linked with
-lpthread (POSIX threads) has the same behavior as Solaris threads
described above, where a Solaris bound thread is the same as a POSIX
thread in system scheduling scope and a Solaris unbound thread is the same
as a POSIX thread in local scheduling scope.

Hence, for multithreaded (Solaris or POSIX) programs in the current and
previous releases, the only reliable way to use the ITIMER_REAL flag is to
call it from a bound thread which does not mask SIGALRMand to expect the
SIGALRMto be delivered to this bound thread.

The current working of this flag is not being improved since some
applications might depend on the current (slightly broken) semantic.
When this semantic is discontinued in the future, it will be replaced with
a per-process semantic, i.e. using this flag from any thread, bound or
unbound, will result in the SIGALRMbeing sent to the process.

New MT applications should not use this flag, and should use alarm (2)
instead.

ITIMER_VIRTUAL
Decrements in process virtual time. It runs only when the process is
executing. A SIGVTALRMsignal is delivered when it expires. (For
multithreaded programs see the WARNINGSsection below).

ITIMER_PROF
Decrements both in process virtual time and when the system is running
on behalf of the process. It is designed to be used by interpreters in
statistically profiling the execution of interpreted programs. Each time the
ITIMER_PROF timer expires, the SIGPROFsignal is delivered. Because this
signal may interrupt in-progress functions, programs using this timer must
be prepared to restart interrupted functions. (For multithreaded programs
see the WARNINGSsection below).

ITIMER_REALPROF
Decrements in real time. It is designed to be used for real-time profiling
of multithreaded programs. Each time the ITIMER_REALPROFtimer
expires, one counter in a set of counters maintained by the system for each
lightweight process (lwp) is incremented. The counter corresponds to the
state of the lwp at the time of the timer tick. All lwps executing in user
mode when the timer expires are interrupted into system mode. When
each lwp resumes execution in user mode, if any of the elements in its set

Last modified 28 Dec 1996 SunOS 5.8 109

getitimer(2) System Calls

of counters are non-zero, the SIGPROFsignal is delivered to the lwp. The
SIGPROFsignal is delivered before any other signal except SIGKILL . This
signal does not interrupt any in-progress function. A siginfo structure,
defined in <sys/siginfo.h> , is associated with the delivery of the
SIGPROFsignal, and includes the following members:

si_tstamp; /* high resolution timestamp */
si_syscall; /* current syscall */
si_nsysarg; /* number of syscall arguments */
si_sysarg[]; /* actual syscall arguments */
si_fault; /* last fault type */
si_faddr; /* last fault address */
si_mstate[]; /* ticks in each microstate */

The enumeration of microstates (indices into si_mstate) is defined in
<sys/msacct.h> . (For multithreaded programs see the WARNINGSsection
below).

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno
is set to indicate the error.

ERRORS The getitimer() and setitimer() functions will fail if:
EINVAL The specified number of seconds is greater than 100,000,000,

the number of microseconds is greater than or equal to
1,000,000, or the which argument is unrecognized.

The setitimer() function will fail if:
EACCES Either an unbound Solaris thread or a POSIX thread in local

scheduling scope with a flag other than ITIMER_REAL
called setitimer() .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO alarm (2) , sigprocmask (2) , gettimeofday (3C) ,
pthread_attr_setscope (3THR) , pthread_sigmask (3THR) ,
sleep (3C) , sysconf (3C) , attributes (5) , standards (5)

WARNINGS All flags to setitimer() other than ITIMER_REAL behave as documented
only with "bound" threads. Their ability to mask the signal works only with
bound threads. If the call is made using one of these flags from an unbound
thread, the system call returns -1 and sets errno to EACCES.

These behaviors are the same for bound or unbound POSIX threads. A POSIX
thread with system-wide scope, created by the call

110 SunOS 5.8 Last modified 28 Dec 1996

System Calls getitimer(2)

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

is equivalent to a Solaris bound thread. A POSIX thread with local process
scope, created by the call

pthread_attr_setscope(&attr, PTHREAD_SCOPE_PROCESS);

is equivalent to a Solaris unbound thread.

NOTES The microseconds field should not be equal to or greater than one second.

The setitimer() function is independent of the alarm() function.

Do not use setitimer(ITIMER_REAL) with the sleep() routine. A
sleep (3C) call wipes out knowledge of the user signal handler for SIGALRM.

The ITIMER_PROFand ITIMER_REALPROFtimers deliver the same signal and
have different semantics. They cannot be used together.

The granularity of the resolution of alarm time is platform-dependent.

Last modified 28 Dec 1996 SunOS 5.8 111

getmsg(2) System Calls

NAME getmsg, getpmsg – get next message off a stream

SYNOPSIS #include <stropts.h>
int getmsg (int fildes, struct strbuf *ctlptr, struct strbuf *dataptr, int *flagsp);

int getpmsg (int fildes, struct strbuf *ctlptr, struct strbuf *dataptr, int *bandp, int *flagsp);

DESCRIPTION The getmsg() function retrieves the contents of a message (see intro (2)
) located at the stream head read queue from a STREAMS file, and places the
contents into user specified buffer(s). The message must contain either a data
part, a control part, or both. The data and control parts of the message are placed
into separate buffers, as described below. The semantics of each part is defined
by the STREAMS module that generated the message.

The getpmsg() function behaved like getmsg() , but provides finer control
over the priority of the messages received. Except where noted, all information
pertaining to getmsg() also pertains to getpmsg() .

The fildes argument specifies a file descriptor referencing an open stream. The
ctlptr and dataptr arguments each point to a strbuf structure, which contains
the following members:

int maxlen; /* maximum buffer length */
int len; /* length of data */
char *buf; /* ptr to buffer */

The buf member points to a buffer into which the data or control information is
to be placed, and the maxlen member indicates the maximum number of bytes
this buffer can hold. On return, the len member contains the number of bytes of
data or control information actually received; 0 if there is a zero-length control or
data part; or -1 if no data or control information is present in the message. The
flagsp argument should point to an integer that indicates the type of message the
user is able to receive, as described below.

The ctlptr argument holds the control part from the message and the dataptr
argument holds the data part from the message. If ctlptr (or dataptr) is NULL
or the maxlen member is -1, the control (or data) part of the message is not
processed and is left on the stream head read queue. If ctlptr (or dataptr) is not
NULLand there is no corresponding control (or data) part of the messages on the
stream head read queue, len is set to -1. If the maxlen member is set to 0 and
there is a zero-length control (or data) part, that zero-length part is removed
from the read queue and len is set to 0. If the maxlen member is set to 0 and
there are more than zero bytes of control (or data) information, that information
is left on the read queue and len is set to 0. If the maxlen member in ctlptr or
dataptr is less than, respectively, the control or data part of the message, maxlen

112 SunOS 5.8 Last modified 29 Jul 1991

System Calls getmsg(2)

bytes are retrieved. In this case, the remainder of the message is left on the
stream head read queue and a non-zero return value is provided, as described
below under RETURN VALUES.

By default, getmsg() processes the first available message on the stream head
read queue. A user may, however, choose to retrieve only high priority messages
by setting the integer pointed to by flagsp to RS_HIPRI . In this case, getmsg()
processes the next message only if it is a high priority message.

If the integer pointed to by flagsp is 0, getmsg() retrieves any message available
on the stream head read queue. In this case, on return, the integer pointed to
by flagsp will be set to RS_HIPRI if a high priority message was retrieved, or
to 0 otherwise.

For getpmsg() , the flagsp argument points to a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI , MSG_BAND, and MSG_ANY. Like
getmsg() , getpmsg() processes the first available message on the stream
head read queue. A user may choose to retrieve only high-priority messages by
setting the integer pointed to by flagsp to MSG_HIPRI and the integer pointed to
by bandp to 0. In this case, getpmsg() will only process the next message if it
is a high-priority message. In a similar manner, a user may choose to retrieve
a message from a particular priority band by setting the integer pointed to by
flagsp to MSG_BANDand the integer pointed to by bandp to the priority band of
interest. In this case, getpmsg() will only process the next message if it is in a
priority band equal to, or greater than, the integer pointed to by bandp , or if it
is a high-priority message. If a user just wants to get the first message off the
queue, the integer pointed to by flagsp should be set to MSG_ANYand the integer
pointed to by bandp should be set to 0. On return, if the message retrieved was a
high-priority message, the integer pointed to by flagsp will be set to MSG_HIPRI
and the integer pointed to by bandp will be set to 0. Otherwise, the integer
pointed to by flagsp will be set to MSG_BANDand the integer pointed to by bandp
will be set to the priority band of the message.

If O_NDELAYand O_NONBLOCKare clear, getmsg() blocks until a message
of the type specified by flagsp is available on the stream head read queue. If
O_NDELAYor O_NONBLOCKhas been set and a message of the specified type is
not present on the read queue, getmsg() fails and sets errno to EAGAIN .

If a hangup occurs on the stream from which messages are to be retrieved,
getmsg() continues to operate normally, as described above, until the stream
head read queue is empty. Thereafter, it returns 0 in the len member of ctlptr
and dataptr .

RETURN VALUES Upon successful completion, a non-negative value is returned. A return value of
0 indicates that a full message was read successfully. A return value of MORECTL
indicates that more control information is waiting for retrieval. A return value of
MOREDATAindicates that more data are waiting for retrieval. A return value

Last modified 29 Jul 1991 SunOS 5.8 113

getmsg(2) System Calls

of MORECTL| MOREDATAindicates that both types of information remain.
Subsequent getmsg() calls retrieve the remainder of the message. However, if
a message of higher priority has been received by the stream head read queue,
the next call to getmsg() will retrieve that higher priority message before
retrieving the remainder of the previously received partial message.

ERRORS The getmsg() and getpmsg() functions will fail if:
EAGAIN The O_NDELAYor O_NONBLOCKflag is set and no messages

are available.

EBADF The fildes argument is not a valid file descriptor open for
reading.

EBADMSG Queued message to be read is not valid for getmsg .

EFAULT The ctlptr , dataptr , bandp , or flagsp argument points to
an illegal address.

EINTR A signal was caught during the execution of the getmsg
function.

EINVAL An illegal value was specified in flagsp , or the stream
referenced by fildes is linked under a multiplexor.

ENOSTR A stream is not associated with fildes .

The getmsg() function can also fail if a STREAMS error message had been
received at the stream head before the call to getmsg() . The error returned is
the value contained in the STREAMS error message.

SEE ALSO intro (2) , poll (2) , putmsg (2) , read (2) , write (2)

STREAMS Programming Guide

114 SunOS 5.8 Last modified 29 Jul 1991

System Calls getpid(2)

NAME getpid, getpgrp, getppid, getpgid – get process, process group, and parent
process IDs

SYNOPSIS #include <unistd.h>
pid_t getpid (void);

pid_t getpgrp (void);

pid_t getppid (void);

pid_t getpgid (pid_t pid);

DESCRIPTION The getpid() function returns the process ID of the calling process.

The getpgrp() function returns the process group ID of the calling process.

The getppid() function returns the parent process ID of the calling process.

The getpgid() function returns the process group ID of the process whose
process ID is equal to pid, or the process group ID of the calling process, if
pid is equal to 0.

RETURN VALUES Upon successful completion, these functions return the process group ID.
Otherwise, getpgid() returns (pid_t)-1 and sets errno to indicate the error.

ERRORS The getpgid() function will fail if:
EPERM The process whose process ID is equal to pid is not in the

same session as the calling process, and the implementation
does not allow access to the process group ID of that process
from the calling process.

ESRCH There is no process with a process ID equal to pid .

The getpgid() function may fail if:
EINVAL The value of the pid argument is invalid.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO intro (3) , exec (2) , fork (2) , getsid (2) , setpgid (2) , setpgrp (2) , setsid
(2) , signal (3C) , attributes (5)

Last modified 28 Dec 1996 SunOS 5.8 115

getrlimit(2) System Calls

NAME getrlimit, setrlimit – control maximum system resource consumption

SYNOPSIS #include <sys/resource.h>
int getrlimit (int resource, struct rlimit *rlp);

int setrlimit (int resource, const struct rlimit *rlp);

DESCRIPTION Limits on the consumption of a variety of system resources by a process and
each process it creates may be obtained with the getrlimit() and set with
setrlimit() functions.

Each call to either getrlimit() or setrlimit() identifies a specific resource
to be operated upon as well as a resource limit. A resource limit is a pair of
values: one specifying the current (soft) limit, the other a maximum (hard) limit.
Soft limits may be changed by a process to any value that is less than or equal to
the hard limit. A process may (irreversibly) lower its hard limit to any value that
is greater than or equal to the soft limit. Only a process with an effective user ID
of super-user can raise a hard limit. Both hard and soft limits can be changed in a
single call to setrlimit() subject to the constraints described above. Limits
may have an "infinite" value of RLIM_INFINITY . The rlp argument is a pointer
to struct rlimit that includes the following members:

rlim_t rlim_cur; /* current (soft) limit */
rlim_t rlim_max; /* hard limit */

The type rlim_t is an arithmetic data type to which objects of type int ,
size_t , and off_t can be cast without loss of information.

The possible resources, their descriptions, and the actions taken when the current
limit is exceeded are summarized as follows:
RLIMIT_CORE The maximum size of a core file in bytes that may be created

by a process. A limit of 0 will prevent the creation of a core
file. The writing of a core file will terminate at this size.

RLIMIT_CPU The maximum amount of CPU time in seconds used by a
process. This is a soft limit only. The SIGXCPUsignal is sent
to the process. If the process is holding or ignoring SIGXCPU
, the behavior is scheduling class defined.

RLIMIT_DATA The maximum size of a process’s heap in bytes. The brk (2)
function will fail with errno set to ENOMEM.

RLIMIT_FSIZE The maximum size of a file in bytes that may be created by
a process. A limit of 0 will prevent the creation of a file.
The SIGXFSZ signal is sent to the process. If the process
is holding or ignoring SIGXFSZ , continued attempts to

116 SunOS 5.8 Last modified 28 Jan 1998

System Calls getrlimit(2)

increase the size of a file beyond the limit will fail with
errno set to EFBIG .

RLIMIT_NOFILE One more than the maximum value that the system may
assign to a newly created descriptor. This limit constrains the
number of file descriptors that a process may create.

RLIMIT_STACK The maximum size of a process’s stack in bytes. The system
will not automatically grow the stack beyond this limit.

Within a process, setrlimit() will increase the limit on
the size of your stack, but will not move current memory
segments to allow for that growth. To guarantee that the
process stack can grow to the limit, the limit must be altered
prior to the execution of the process in which the new stack
size is to be used.

Within a multithreaded process, setrlimit() has
no impact on the stack size limit for the calling thread
if the calling thread is not the main thread. A call to
setrlimit() for RLIMIT_STACK impacts only the main
thread’s stack, and should be made only from the main
thread, if at all.

The SIGSEGVsignal is sent to the process. If the process is
holding or ignoring SIGSEGV, or is catching SIGSEGVand
has not made arrangements to use an alternate stack (see
sigaltstack (2)), the disposition of SIGSEGVwill be set to
SIG_DFL before it is sent.

RLIMIT_VMEM The maximum size of a process’s mapped address space
in bytes. If this limit is exceeded, the brk (2) and mmap(2)
functions will fail with errno set to ENOMEM. In addition,
the automatic stack growth will fail with the effects outlined
above.

RLIMIT_AS This is the maximum size of a process’s total available
memory, in bytes. If this limit is exceeded, the brk (2) ,
malloc (3C) , mmap(2) and sbrk (2) functions will fail with
errno set to ENOMEM. In addition, the automatic stack
growth will fail with the effects outlined above.

Because limit information is stored in the per-process information, the shell
builtin ulimit command must directly execute this system call if it is to affect
all future processes created by the shell.

The value of the current limit of the following resources affect these
implementation defined parameters:

Last modified 28 Jan 1998 SunOS 5.8 117

getrlimit(2) System Calls

Limit Implementation Defined Constant

RLIMIT_FSIZE FCHR_MAX

RLIMIT_NOFILE OPEN_MAX

When using the getrlimit() function, if a resource limit can be represented
correctly in an object of type rlim_t , then its representation is returned;
otherwise, if the value of the resource limit is equal to that of the corresponding
saved hard limit, the value returned is RLIM_SAVED_MAX; otherwise the value
returned is RLIM_SAVED_CUR.

When using the setrlimit() function, if the requested new limit is
RLIM_INFINITY , the new limit will be "no limit"; otherwise if the requested
new limit is RLIM_SAVED_MAX, the new limit will be the corresponding saved
hard limit; otherwise, if the requested new limit is RLIM_SAVED_CUR, the new
limit will be the corresponding saved soft limit; otherwise, the new limit will
be the requested value. In addition, if the corresponding saved limit can be
represented correctly in an object of type rlim_t , then it will be overwritten
with the new limit.

The result of setting a limit to RLIM_SAVED_MAXor RLIM_SAVED_CURis
unspecified unless a previous call to getrlimit() returned that value as the
soft or hard limit for the corresponding resource limit.

A limit whose value is greater than RLIM_INFINITY is permitted.

The exec family of functions also cause resource limits to be saved. See exec (2) .

RETURN VALUES Upon successful completion, getrlimit() and setrlimit() return 0 .
Otherwise, these functions return -1 and set errno to indicate the error.

ERRORS The getrlimit() and setrlimit() functions will fail if:
EFAULT The rlp argument points to an illegal address.

EINVAL An invalid resource was specified; or in a setrlimit() call,
the new rlim_cur exceeds the new rlim_max .

EPERM The limit specified to setrlimit() would have raised the
maximum limit value, and the effective user of the calling
process is not super-user.

The setrlimit() function may fail if:
EINVAL The limit specified cannot be lowered because current usage

is already higher than the limit.

USAGE The getrlimit() and setrlimit() functions have transitional interfaces
for 64-bit file offsets. See lf64 (5) .

118 SunOS 5.8 Last modified 28 Jan 1998

System Calls getrlimit(2)

SEE ALSO brk (2) , exec (2) , fork (2) , open (2) , sigaltstack (2) , ulimit (2) ,
getdtablesize (3C) , malloc (3C) , signal (3C) , sysconf (3C) , lf64 (5) ,
signal (3HEAD)

Last modified 28 Jan 1998 SunOS 5.8 119

getsid(2) System Calls

NAME getsid – get process group ID of session leader

SYNOPSIS #include <unistd.h>
pid_t getsid (pid_t pid);

DESCRIPTION The getsid() function obtains the process group ID of the process that is the
session leader of the process specified by pid. If pid is (pid_t) 0 , it specifies
the calling process.

RETURN VALUES Upon successful completion, getsid() returns the process group ID of the
session leader of the specified process. Otherwise, it returns (pid_t) −1 and
sets errno to indicate the error.

ERRORS The getsid() function will fail if:
EPERM The process specified by pid is not in the same session as

the calling process, and the implementation does not allow
access to the process group ID of the session leader of that
process from the calling process.

ESRCH There is no process with a process ID equal to pid.

SEE ALSO exec (2), fork (2), getpid (2), getpgid (2), setpgid (2), setsid (2)

120 SunOS 5.8 Last modified 22 Jan 1996

System Calls getuid(2)

NAME getuid, geteuid, getgid, getegid – get real user, effective user, real group, and
effective group IDs

SYNOPSIS #include <sys/types.h>
#include <unistd.h>
uid_t getuid (void);

uid_t geteuid (void);

gid_t getgid (void);

gid_t getegid (void);

DESCRIPTION The getuid() function returns the real user ID of the calling process. The real
user ID identifies the person who is logged in.

The geteuid() function returns the effective user ID of the calling process.
The effective user ID gives the process various permissions during execution of
"set-user-ID" mode processes which use getuid() to determine the real user
ID of the process that invoked them.

The getgid() function returns the real group ID of the calling process.

The getegid() function returns the effective group ID of the calling process.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO intro (2) , setuid (2) , attributes (5)

Last modified 28 Dec 1996 SunOS 5.8 121

ioctl(2) System Calls

NAME ioctl – control device

SYNOPSIS #include <unistd.h>
#include <stropts.h>
int ioctl (int fildes, int request, /* arg */ ...);

DESCRIPTION The ioctl() function performs a variety of control functions on devices and
STREAMS. For non-STREAMS files, the functions performed by this call are
device-specific control functions. The request argument and an optional third
argument with varying type are passed to the file designated by fildes and
are interpreted by the device driver.

For STREAMS files, specific functions are performed by the ioctl() function
as described in streamio (7I).

The fildes argument is an open file descriptor that refers to a device. The request
argument selects the control function to be performed and depends on the
device being addressed. The arg argument represents a third argument that has
additional information that is needed by this specific device to perform the
requested function. The data type of arg depends upon the particular control
request, but it is either an int or a pointer to a device-specific data structure.

In addition to device-specific and STREAMS functions, generic functions are
provided by more than one device driver (for example, the general terminal
interface.) See termio (7I)).

RETURN VALUES Upon successful completion, the value returned depends upon the device
control function, but must be a non-negative integer. Otherwise, −1 is returned
and errno is set to indicate the error.

ERRORS The ioctl() function will fail for any type of file if:
EBADF The fildes argument is not a valid open file descriptor.

EINTR A signal was caught during the execution of the ioctl()
function.

EINVAL The STREAM or multiplexer referenced by fildes is linked
(directly or indirectly) downstream from a multiplexer.

The ioctl() function will also fail if the device driver detects an error. In this
case, the error is passed through ioctl() without change to the caller. A
particular driver might not have all of the following error cases. Under the
following conditions, requests to device drivers may fail and set errno to
indicate the error
EFAULT The request argument requires a data transfer to or from a

buffer pointed to by arg, but arg points to an illegal address.

EINVAL The request or arg argument is not valid for this device.

122 SunOS 5.8 Last modified 15 Feb 1996

System Calls ioctl(2)

EIO Some physical I/O error has occurred.

ENOLINK The fildes argument is on a remote machine and the link to
that machine is no longer active.

ENOTTY The fildes argument is not associated with a STREAMS
device that accepts control functions.

ENXIO The request and arg arguments are valid for this device
driver, but the service requested can not be performed on
this particular subdevice.

ENODEV The fildes argument refers to a valid STREAMS device,
but the corresponding device driver does not support the
ioctl() function.

STREAMS errors are described in streamio (7I).

SEE ALSO streamio (7I), termio (7I)

Last modified 15 Feb 1996 SunOS 5.8 123

kill(2) System Calls

NAME kill – send a signal to a process or a group of processes

SYNOPSIS #include <sys/types.h>
#include <signal.h>
int kill (pid_t pid, int sig);

DESCRIPTION The kill() function sends a signal to a process or a group of processes. The
process or group of processes to which the signal is to be sent is specified by
pid. The signal that is to be sent is specified by sig and is either one from the
list given in signal (see signal (3HEAD)), or 0. If sig is 0 (the null signal),
error checking is performed but no signal is actually sent. This can be used
to check the validity of pid.

The real or effective user ID of the sending process must match the real or saved
(from one of functions in the exec family, see exec (2)) user ID of the receiving
process unless the effective user ID of the sending process is super-user, (see
intro (3)), or sig is SIGCONTand the sending process has the same session
ID as the receiving process.

If pid is greater than 0, sig will be sent to the process whose process ID is equal
to pid.

If pid is negative but not (pid_t) −1, sig will be sent to all processes whose
process group ID is equal to the absolute value of pid and for which the process
has permission to send a signal.

If pid is 0, sig will be sent to all processes excluding special processes (see
intro (3)) whose process group ID is equal to the process group ID of the sender.

If pid is (pid_t) −1 and the effective user ID of the sender is not super-user, sig
will be sent to all processes excluding special processes whose real user ID is
equal to the effective user ID of the sender.

If pid is (pid_t) −1 and the effective user ID of the sender is super-user, sig will
be sent to all processes excluding special processes.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned, no signal
is sent, and errno is set to indicate the error.

ERRORS The kill() function will fail if:
EINVAL The sig argument is not a valid signal number.

EPERM The sig argument is SIGKILL and the pid argument is
(pid_t)1 (that is, the calling process does not have
permission to send the signal to any of the processes
specified by pid); or the effective user of the calling process
does not match the real or saved user and is not super-user,
and the calling process is not sending SIGCONTto a process
that shares the same session ID.

124 SunOS 5.8 Last modified 28 Dec 1996

System Calls kill(2)

ESRCH No process or process group can be found corresponding to
that specified by pid.

USAGE The sigsend (2) function provides a more versatile way to send signals to
processes.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO kill (1), intro (3), exec (2), getpid (2), getsid (2), setpgrp (2),
sigaction (2), sigsend (2), signal (3C), attributes (5), signal (3HEAD)

Last modified 28 Dec 1996 SunOS 5.8 125

link(2) System Calls

NAME link – link to a file

SYNOPSIS #include <unistd.h>
int link (const char *existing, const char *new);

DESCRIPTION The link() function creates a new link (directory entry) for the existing file and
increments its link count by one. The existing argument points to a path name
naming an existing file. The new argument points to a pathname naming the
new directory entry to be created.

To create hard links, both files must be on the same file system. Both the old
and the new link share equal access and rights to the underlying object. The
super-user may make multiple links to a directory. Unless the caller is the
super-user, the file named by existing must not be a directory.

Upon successful completion, link() marks for update the st_ctime field of
the file. Also, the st_ctime and st_mtime fields of the directory that contains
the new entry are marked for update.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned, no link is
created, and errno is set to indicate the error.

ERRORS The link() function will fail if:
EACCES A component of either path prefix denies search

permission, or the requested link requires writing
in a directory with a mode that denies write
permission.

EDQUOT The directory where the entry for the new link
is being placed cannot be extended because the
user’s quota of disk blocks on that file system
has been exhausted.

EEXIST The link named by new exists.

EFAULT The existing or new argument points to an illegal
address.

EINTR A signal was caught during the execution of
the link() function.

ELOOP Too many symbolic links were encountered in
translating path.

EMLINK The maximum number of links to a file would be
exceeded.

ENAMETOOLONG The length of the existing or new argument
exceeds PATH_MAX, or the length of a existing

126 SunOS 5.8 Last modified 28 Dec 1996

System Calls link(2)

or new component exceeds NAME_MAXwhile
_POSIX_NO_TRUNCis in effect.

ENOENT The existing or new argument is a null pathname;
a component of either path prefix does not exist;
or the file named by existing does not exist.

ENOLINK The existing or new argument points to a remote
machine and the link to that machine is no
longer active.

ENOSPC The directory that would contain the link cannot
be extended.

ENOTDIR A component of either path prefix is not a
directory.

EPERM The file named by existing is a directory and
the effective user of the calling process is not
super-user.

EROFS The requested link requires writing in a directory
on a read-only file system.

EXDEV The link named by new and the file named by
existing are on different logical devices (file
systems).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO symlink (2), unlink (2), attributes (5)

Last modified 28 Dec 1996 SunOS 5.8 127

llseek(2) System Calls

NAME llseek – move extended read/write file pointer

SYNOPSIS #include <sys/types.h>
#include <unistd.h>
offset_t llseek (int fildes, offset_t offset, int whence);

DESCRIPTION The llseek() function sets the 64-bit extended file pointer associated with the
open file descriptor specified by fildes as follows:

� If whence is SEEK_SET, the pointer is set to offset bytes.

� If whence is SEEK_CUR, the pointer is set to its current location plus offset.

� If whence is SEEK_END, the pointer is set to the size of the file plus offset.

Although each file has a 64-bit file pointer associated with it, some existing file
system types (such as tmpfs) do not support the full range of 64-bit offsets. In
particular, on such file systems, non-device files remain limited to offsets of less
than two gigabytes. Device drivers may support offsets of up to 1024 gigabytes
for device special files.

Some devices are incapable of seeking. The value of the file pointer associated
with such a device is undefined.

RETURN VALUES Upon successful completion, llseek() returns the resulting pointer location as
measured in bytes from the beginning of the file. Remote file descriptors are the
only ones that allow negative file pointers. Otherwise, −1 is returned, the file
pointer remains unchanged, and errno is set to indicate the error.

ERRORS The llseek() function will fail if:
EBADF The fildes argument is not an open file descriptor.

EINVAL The whence argument is not SEEK_SET, SEEK_CUR, or
SEEK_END; the offset argument is not a valid offset for this
file system type; or the fildes argument is not a remote file
descriptor and the resulting file pointer would be negative.

ESPIPE The fildes argument is associated with a pipe or FIFO.

SEE ALSO creat (2), dup (2), fcntl (2), lseek (2), open (2)

128 SunOS 5.8 Last modified 6 Jan 1999

System Calls lseek(2)

NAME lseek – move read/write file pointer

SYNOPSIS #include <sys/types.h>
#include <unistd.h>
off_t lseek (int fildes, off_t offset, int whence);

DESCRIPTION The lseek() function sets the file pointer associated with the open file
descriptor specified by fildes as follows:

� If whence is SEEK_SET, the pointer is set to offset bytes.

� If whence is SEEK_CUR, the pointer is set to its current location plus offset.

� If whence is SEEK_END, the pointer is set to the size of the file plus offset.

The symbolic constants SEEK_SET, SEEK_CUR, and SEEK_ENDare defined
in the header <unistd.h> .

Some devices are incapable of seeking. The value of the file pointer associated
with such a device is undefined.

The lseek() function allows the file pointer to be set beyond the existing
data in the file. If data are later written at this point, subsequent reads in the
gap between the previous end of data and the newly written data will return
bytes of value 0 until data are written into the gap.

If fildes is a remote file descriptor and offset is negative, lseek() returns the
file pointer even if it is negative. The lseek() function will not, by itself,
extend the size of a file.

RETURN VALUES Upon successful completion, the resulting offset, as measured in bytes from the
beginning of the file, is returned. Otherwise, (off_t) −1 is returned, the file
offset remains unchanged, and errno is set to indicate the error.

ERRORS The lseek() function will fail if:
EBADF The fildes argument is not an open file descriptor.

EINVAL The whence argument is not SEEK_SET, SEEK_CUR, or
SEEK_END; or the fildes argument is not a remote file
descriptor and the resulting file pointer would be negative.

EOVERFLOW The resulting file offset would be a value which cannot
be represented correctly in an object of type off_t for
regular files.

ESPIPE The fildes argument is associated with a pipe, a FIFO, or
a socket.

USAGE The lseek() function has a transitional interface for 64-bit file offsets. See
lf64 (5).

Last modified 28 Jan 1998 SunOS 5.8 129

lseek(2) System Calls

In multithreaded applications, using lseek() in conjunction with a read (2)
or write (2) call on a file descriptor shared by more than one thread is not an
atomic operation. To ensure atomicity, use pread() or pwrite() .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO creat (2), dup (2), fcntl (2), open (2), read (2), write (2), attributes (5),
lf64 (5)

130 SunOS 5.8 Last modified 28 Jan 1998

System Calls _lwp_cond_signal(2)

NAME _lwp_cond_signal, _lwp_cond_broadcast – signal a condition variable

SYNOPSIS #include <sys/lwp.h>
int _lwp_cond_signal (lwp_cond_t *cvp);

int _lwp_cond_broadcast (lwp_cond_t *cvp);

DESCRIPTION The _lwp_cond_signal() function unblocks one LWP that is blocked on the
LWP condition variable pointed to by cvp .

The _lwp_cond_broadcast() function unblocks all LWPs that are blocked
on the LWP condition variable pointed to by cvp .

If no LWPs are blocked on the LWP condition variable, then
_lwp_cond_signal() and _lwp_cond_broadcast() have no effect.

Both functions should be called under the protection of the same LWP mutex
lock that is used with the LWP condition variable being signaled. Otherwise, the
condition variable may be signalled between the test of the associated condition
and blocking in _lwp_cond_wait() . This can cause an infinite wait.

RETURN VALUES Upon successful completion, 0 is returned. A non-zero value indicates an error.

ERRORS The _lwp_cond_signal() and _lwp_cond_broadcast() functions will
fail if:
EINVAL The cvp argument points to an invalid LWP condition

variable.

EFAULT The cvp argument points to an invalid address.

SEE ALSO _lwp_cond_wait (2) , _lwp_mutex_lock (2)

Last modified 8 Dec 1995 SunOS 5.8 131

_lwp_cond_wait(2) System Calls

NAME _lwp_cond_wait, _lwp_cond_timedwait – wait on a condition variable

SYNOPSIS #include <sys/lwp.h>
int _lwp_cond_wait (lwp_cond_t *cvp, lwp_mutex_t *mp);

int _lwp_cond_timedwait (lwp_cond_t *cvp, lwp_mutex_t *mp, timestruc_t *abstime);

DESCRIPTION These functions are used to wait for the occurrence of a condition represented
by an LWP condition variable. LWP condition variables must be initialized
to 0 before use.

The _lwp_cond_wait() function atomically releases the LWP mutex
pointed to by mp and causes the calling LWP to block on the LWP condition
variable pointed to by cvp . The blocked LWP may be awakened by
_lwp_cond_signal (2) , _lwp_cond_broadcast (2) , or when interrupted
by delivery of a signal. Any change in value of a condition associated with the
condition variable cannot be inferred by the return of _lwp_cond_wait() and
any such condition must be re-evaluated.

The _lwp_cond_timedwait() function is similar to _lwp_cond_wait() ,
except that the calling LWP will not block past the time of day specified by abstime
. If the time of day becomes greater than abstime , _lwp_cond_timedwait()
returns with the error code ETIME .

The _lwp_cond_wait() and _lwp_cond_timedwait() functions always
return with the mutex locked and owned by the calling lightweight process.

RETURN VALUES Upon successful completion, 0 is returned. A non-zero value indicates an error.

ERRORS If any of the following conditions are detected, _lwp_cond_wait() and
_lwp_cond_timedwait() fail and return the corresponding value:
EINVAL The cvp argument points to an invalid LWP condition

variable or the mp argument points to an invalid LWP mutex.

EFAULT The mp , cvp , or abstime argument points to an illegal
address.

If any of the following conditions occur, _lwp_cond_wait() and
_lwp_cond_timedwait() fail and return the corresponding value:
EINTR The call was interrupted by a signal or fork (2) .

If any of the following conditions occur, _lwp_cond_timedwait() fails
and returns the corresponding value:
ETIME The time specified in abstime has passed.

132 SunOS 5.8 Last modified 30 Jul 1992

System Calls _lwp_cond_wait(2)

EXAMPLES EXAMPLE 1 Using the _lwp_cond_wait() function in a loop testing some
condition.

The _lwp_cond_wait() function is normally used in a loop testing some
condition, as follows:

lwp_mutex_t m;
lwp_cond_t cv;
int cond;
(void) _lwp_mutex_lock(&m);
while (cond == FALSE) {

(void) _lwp_cond_wait(&cv, &m);
}
(void) _lwp_mutex_unlock(&m);

EXAMPLE 2 Using the _lwp_cond_timedwait() function in a loop testing some
condition.

The _lwp_cond_timedwait() function is also normally used in a loop testing
some condition. It uses an absolute timeout value as follows:

timestruc_t to;
lwp_mutex_t m;
lwp_cond_t cv;
int cond, err;
(void) _lwp_mutex_lock(&m);
to.tv_sec = time(NULL) + TIMEOUT;
to.tv_nsec = 0;
while (cond == FALSE) {

err = _lwp_cond_timedwait(&cv, &m, &to);
if (err == ETIME) {

/* timeout, do something */
break;

SENDwhom}
}
(void) _lwp_mutex_unlock(&m);

This example sets a bound on the total wait time even though the
_lwp_cond_timedwait() may return several times due to the condition being
signalled or the wait being interrupted.

SEE ALSO _lwp_cond_broadcast (2) , _lwp_cond_signal (2) , _lwp_kill (2) ,
_lwp_mutex_lock (2) , fork (2) , kill (2)

Last modified 30 Jul 1992 SunOS 5.8 133

_lwp_create(2) System Calls

NAME _lwp_create – create a new light-weight process

SYNOPSIS #include <sys/lwp.h>
int _lwp_create (ucontext_t *contextp, unsigned long flags, lwpid_t *new_lwp);

DESCRIPTION The _lwp_create() function adds a lightweight process (LWP) to the current
process. The contextp argument specifies the initial signal mask, stack, and
machine context (including the program counter and stack pointer) for the new
LWP. The new LWP inherits the scheduling class and priority of the caller.

If _lwp_create() is successful and new_lwp is not null, the ID of the new LWP
is stored in the location pointed to by new_lwp.

The flags argument specifies additional attributes for the new LWP. The value in
flags is constructed by the bitwise inclusive OR operation of the following values:
LWP_DETACHEDThe LWP is created detached.

LWP_SUSPENDEDThe LWP is created suspended.

__LWP_ASLWP The LWP created is the ASLWP (Asynchronous Signals
LWP) (see signal (3HEAD)). The ASLWP should always
be created with all signals blocked. If __LWP_ASLWPis
specified, then the LWP created is the special, designated
LWP that handles signals sent to a multithreaded process
(ASLWP). There can be only one ASLWP in a multithreaded
process, so the creation of another ASLWP will return
EINVAL. It should never exit by way of _lwp_exit (2) or
exit (2). This is a reserved flag and should not be used by
any user program. It is documented here for the sake of
completion and not for use by an application.

If LWP_DETACHEDis specified, then the LWP is created in the detached state.
Otherwise the LWP is created in the undetached state. The ID (and system
resources) associated with a detached LWP can be automatically reclaimed when
the LWP exits. The ID of an undetached LWP cannot be reclaimed until it exits
and another LWP has reported its termination by way of _lwp_wait (2). This
allows the waiting LWP to determine that the waited for LWP has terminated
and to reclaim any process resources that it was using.

If LWP_SUSPENDEDis specified, then the LWP is created in a suspended
state. This allows the creator to change the LWP’s inherited attributes before
it starts to execute. The suspended LWP can only be resumed by way of
_lwp_continue (2). If LWP_SUSPENDEDis not specified the LWP can begin to
run immediately after it has been created.

RETURN VALUES Upon successful completion, 0 is returned. A non-zero value indicates an error.

134 SunOS 5.8 Last modified 28 Nov 1995

System Calls _lwp_create(2)

ERRORS If any of the following conditions are detected, _lwp_create() fails and
returns the corresponding value:
EFAULT Either the context parameter or the new_lwp parameter point

to invalid addresses.

EAGAIN A system limit is exceeded, (for example, too many LWP
were created for this real user ID).

EINVAL The __LWP_ASLWPflag was used to create more than one
ASLWP in the process. There can be only one ASLWP within
a process.

EXAMPLES EXAMPLE 1 How a stack is allocated to a new LWP.

This example shows how a stack is allocated to a new LWP. The
_lwp_makecontext() function is used to set up the context parameter so that
the new LWP begins executing a function.

contextp = (ucontext_t *)malloc(sizeof(ucontext_t));
stackbase = malloc(stacksize);
sigprocmask(SIGSETMASK, NULL, &contextp->uc_sigmask);
_lwp_makecontext(contextp, func, arg, private, stackbase, stacksize);
error = _lwp_create(contextp, NULL, &new_lwp);

SEE ALSO _lwp_cond_timedwait (2), _lwp_continue (2), _lwp_exit (2),
_lwp_makecontext (2), _lwp_wait (2), alarm (2), exit (2), poll (2),
sleep (3C), thr_create (3THR), signal (3HEAD), ucontext (3HEAD)

NOTES Applications should use bound threads rather than the _lwp_*() functions
(see thr_create (3THR)). Using LWPs directly is not advised because libraries
are only safe to use with threads, not LWPs.

In Solaris releases 2.5 through 7, the signal SIGALRMis defined to be per-process.
This does not affect the behavior of single-threaded or multithreaded
applications. If the application was using LWPs directly, and was relying on
alarm (2) or sleep (3C), then the application’s behavior might be impacted.
The calling LWP will not necessarily be the recipient of the SIGARLMsignal
when SIGALRMis sent to the process. You might have to use a substitute like
poll (2), or _lwp_cond_timedwait (2) to simulate the old per-LWP semantic
of SIGALRM.

Last modified 28 Nov 1995 SunOS 5.8 135

_lwp_exit(2) System Calls

NAME _lwp_exit – terminate the calling LWP

SYNOPSIS #include <sys/lwp.h>
void _lwp_exit (void);

DESCRIPTION The _lwp_exit() function causes the calling LWP to terminate. If it is the last
LWP in the process, then the process exits with a status of 0 (see exit (2)).

If the LWP was created undetached, it is transformed into a “zombie LWP”
that retains at least the LWP’s ID until it is waited for (see _lwp_wait (2)).
Otherwise, its ID and system resources may be reclaimed immediately.

SEE ALSO _lwp_create (2), _lwp_wait (2), exit (2)

136 SunOS 5.8 Last modified 30 Jul 1992

System Calls _lwp_info(2)

NAME _lwp_info – return the time-accounting information of a single LWP

SYNOPSIS #include <sys/time.h>
#include <sys/lwp.h>
int _lwp_info (struct lwpinfo *buffer);

DESCRIPTION The _lwp_info() function fills the lwpinfo structure pointed to by buffer
with time-accounting information pertaining to the calling LWP. This call may be
extended in the future to return other information to the lwpinfo structure
as needed. The lwpinfo structure in <sys/lwp.h> includes the following
members:

timestruct_t lwp_utime;
timestruct_t lwp_stime;

The lwp_utime member is the CPU time used while executing instructions
in the user space of the calling LWP.

The lwp_stime member is the CPU time used by the system on behalf of
the calling LWP.

RETURN VALUES Upon successful completion, _lwp_info() returns 0 and fills in the lwpinfo
structure pointed to by buffer.

ERRORS If the following condition is detected, _lwp_info() returns the corresponding
value:
EFAULT The buffer argument points to an illegal address.

Additionally, the _lwp_info() function will fail for 32-bit interfaces if:
EOVERFLOW The size of the tv_sec member of the timestruct_t type

pointed to by lwp_utime and lwp_stime is too small to
contain the correct number of seconds.

SEE ALSO times (2)

Last modified 25 Sep 1997 SunOS 5.8 137

_lwp_kill(2) System Calls

NAME _lwp_kill – send a signal to a LWP

SYNOPSIS #include <sys/lwp.h>
#include <signal.h>
int _lwp_kill (lwpid_t target_lwp, int sig);

DESCRIPTION The _lwp_kill() function sends a signal to the LWP specified by target_lwp.
The signal that is to be sent is specified by sig and must be one from the list given
in signal (5). If sig is 0 (the null signal), error checking is performed but no
signal is actually sent. This can be used to check the validity of target_lwp.

The target_lwp must be an LWP within the same process as the calling LWP.

RETURN VALUES Upon successful completion, 0 is returned. A non-zero value indicates an error.

ERRORS If any of the following conditions occur, _lwp_kill() fails and returns the
corresponding value:
EINVAL The sig argument is not a valid signal number.

ESRCH The target_lwp argument cannot be found in the current
process.

SEE ALSO kill (2), sigaction (2), sigprocmask (2), signal (5)

138 SunOS 5.8 Last modified 30 Jul 1992

System Calls _lwp_makecontext(2)

NAME _lwp_makecontext – initialize an LWP context

SYNOPSIS #include <sys/types.h>
#include <sys/lwp.h>
#include <ucontext.h>
void _lwp_makecontext (ucontext_t *ucp, void (*start_routine)(void *), void *arg, void
*private, caddr_t stack_base, size_t stack_size);

DESCRIPTION The _lwp_makecontext() function initializes the user context structure
pointed to by ucp. The user context is defined by ucontext (5). The resulting
user context can be used by _lwp_create (2) for specifying the initial state of the
new LWP. The user context is set up to start executing the function start_routine
with a single argument, arg, and to call _lwp_exit (2) if start_routine returns.
The new LWP will use the storage starting at stack_base and continuing for
stack_size bytes as an execution stack. The initial value in LWP-private memory
will be set to private (see _lwp_setprivate (2)). The signal mask in the user
context is not initialized.

SEE ALSO _lwp_create (2), _lwp_exit (2), _lwp_setprivate (2), ucontext (5)

Last modified 27 Jan 1994 SunOS 5.8 139

_lwp_mutex_lock(2) System Calls

NAME _lwp_mutex_lock, _lwp_mutex_unlock, _lwp_mutex_trylock – mutual exclusion

SYNOPSIS #include <sys/lwp.h>
int _lwp_mutex_lock (lwp_mutex_t *mp);

int _lwp_mutex_trylock (lwp_mutex_t *mp);

int _lwp_mutex_unlock (lwp_mutex_t *mp);

DESCRIPTION These functions serialize the execution of lightweight processes. They are useful
for ensuring that only one lightweight process can execute a critical section of
code at any one time (mutual exclusion). LWP mutexes must be initialized
to 0 before use.

The _lwp_mutex_lock() function locks the LWP mutex pointed to by mp . If
the mutex is already locked, the calling LWP blocks until the mutex becomes
available. When _lwp_mutex_lock() returns, the mutex is locked and the
calling LWP is the "owner".

The _lwp_mutex_trylock() function attempts to lock the mutex. If the
mutex is already locked it returns with an error. If the mutex is unlocked, it is
locked and _lwp_mutex_trylock() returns.

The _lwp_mutex_unlock() function unlocks a locked mutex. The mutex
must be locked and the calling LWP must be the one that last locked the mutex
(the owner). If any other LWPs are waiting for the mutex to become available,
one of them is unblocked.

RETURN VALUES Upon successful completion, 0 is returned. A non-zero value indicates an error.

ERRORS If any of the following conditions are detected, _lwp_mutex_lock() ,
_lwp_mutex_trylock() , and _lwp_mutex_unlock() fail and return the
corresponding value:
EINVAL The mp argument points to an invalid LWP mutex.

EFAULT The mp argument points to an illegal address.

If any of the following conditions occur, _lwp_mutex_trylock() fails and
returns the corresponding value:
EBUSY The mp argument points to a locked mutex.

SEE ALSO intro (2) , _lwp_cond_wait (2)

140 SunOS 5.8 Last modified 30 Jul 1992

System Calls _lwp_self(2)

NAME _lwp_self – get LWP identifier

SYNOPSIS #include <sys/lwp.h>
lwpid_t _lwp_self (void);

DESCRIPTION The _lwp_self() function returns the ID of the calling LWP.

SEE ALSO _lwp_create (2)

Last modified 30 Jul 1992 SunOS 5.8 141

_lwp_sema_wait(2) System Calls

NAME _lwp_sema_wait, _lwp_sema_trywait, _lwp_sema_init, _lwp_sema_post –
semaphore operations

SYNOPSIS #include <sys/lwp.h>
int _lwp_sema_wait (lwp_sema_t *sema);

int _lwp_sema_trywait (lwp_sema_t *sema);

int _lwp_sema_init (lwp_sema_t *sema, int count);

int _lwp_sema_post (lwp_sema_t *sema);

DESCRIPTION Conceptually, a semaphore is an non-negative integer count that is atomically
incremented and decremented. Typically this represents the number
of resources available. The _lwp_sema_init() function initializes
the count, _lwp_sema_post() atomically increments the count, and
_lwp_sema_wait() waits for the count to become greater than 0 and then
atomically decrements it.

LWP semaphores must be initialized before use. The _lwp_sema_init()
function initializes the count associated with the LWP semaphore pointed to by
sema to count .

The _lwp_sema_wait() function blocks the calling LWP until the semaphore
count becomes greater than 0 and then atomically decrements it.

The _lwp_sema_trywait() function atomically decrements the count if it
is greater than zero. Otherwise it returns an error.

The _lwp_sema_post() function atomically increments the semaphore count.
If there are any LWPs blocked on the semaphore, one is unblocked.

RETURN VALUES Upon successful completion, 0 is returned. A non-zero value indicates an error.

ERRORS The _lwp_sema_init() , _lwp_sema_trywait() , _lwp_sema_wait() ,
and _lwp_sema_post() functions will fail if:
EINVAL The sema argument points to an invalid semaphore.

EFAULT The sema argument points to an illegal address.

The _lwp_sema_wait() function will fail if:
EINTR The function execution was interrupted by a signal or

fork (2) .

The _lwp_sema_trywait() function will fail if:
EBUSY The function was called on a semaphore with a zero count.

The _lwp_sema_post() function will fail if:
EOVERFLOW The value of the sema argument exceeds SEM_VALUE_MAX.

SEE ALSO fork (2)

142 SunOS 5.8 Last modified 8 May 1998

System Calls _lwp_setprivate(2)

NAME _lwp_setprivate, _lwp_getprivate – set or get LWP specific storage

SYNOPSIS #include <sys/lwp.h>
void _lwp_setprivate (void *buffer);

void *_lwp_getprivate (void);

DESCRIPTION The _lwp_setprivate() function stores the value specified by buffer in
LWP-private memory that is unique to the calling LWP. This is typically used
by thread library implementations to maintain a pointer to information about
the thread currently running on the calling LWP.

The _lwp_getprivate() function returns the value stored in LWP-private
memory.

SEE ALSO _lwp_makecontext (2)

Last modified 30 Jul 1992 SunOS 5.8 143

_lwp_suspend(2) System Calls

NAME _lwp_suspend, _lwp_continue – continue or suspend LWP execution

SYNOPSIS #include <sys/lwp.h>
int _lwp_suspend (lwpid_t target_lwp);

int _lwp_continue (lwpid_t target_lwp);

DESCRIPTION The _lwp_suspend() function immediately suspends the execution of the
LWP specified by target_lwp . On successful return from _lwp_suspend() ,
target_lwp is no longer executing. Once a thread is suspended, subsequent calls
to _lwp_suspend() have no affect.

The _lwp_continue() function resumes the execution of a suspended LWP.
Once a suspended LWP is continued, subsequent calls to _lwp_continue()
have no effect.

A suspended LWP will not be awakened by a signal. The signal stays pending
until the execution of the LWP is resumed by _lwp_continue() .

RETURN VALUES Upon successful completion, 0 is returned. A non-zero value indicates an error.

ERRORS If the following condition occurs, _lwp_suspend() and _lwp_continue()
fail and return the corresponding value:
ESRCH The target_lwpid argument cannot be found in the current

process.

If the following condition is detected, _lwp_suspend() fails and returns the
corresponding value:
EDEADLK Suspending target_lwpid will cause all LWPs in the process to

be suspended.

SEE ALSO _lwp_create (2)

144 SunOS 5.8 Last modified 30 Jul 1992

System Calls _lwp_wait(2)

NAME _lwp_wait – wait for a LWP to terminate

SYNOPSIS #include <sys/lwp.h>
int _lwp_wait (lwpid_t wait_for, lwpid_t *departed_lwp);

DESCRIPTION The _lwp_wait() function blocks the current LWP until the LWP specified
by wait_for terminates. If the specified LWP terminated prior to the call to
_lwp_wait() , then _lwp_wait() returns immediately. If wait_for is NULL,
then _lwp_wait() waits for any undetached LWP in the current process. If
wait_for is not NULL, then it must specify an undetached LWP in the current
process. If departed_lwp is not NULL, then it points to location where the ID of the
exited LWP is stored (see _lwp_exit (2)).

When an LWP exits and there are one or more LWPs in this process waiting
for this specific LWP to exit, then one of the waiting LWPs is unblocked and
it returns from _lwp_wait() successfully. Any other LWPs waiting for this
same LWP to exit are also unblocked, however, they return from _lwp_wait()
with an error (ESRCH) indicating the waited for LWP no longer exists. If there
are no LWPs in this process waiting for this specific LWP to exit but there are
one or more LWPs waiting for any LWP to exit, then one of the waiting LWPs is
unblocked and it returns from _lwp_wait() successfully.

The ID of an LWP that has exited may be reused via _lwp_create() after the
LWP has been successfully waited for.

RETURN VALUES Upon successful completion, 0 is returned. A non-zero value indicates an error.

ERRORS If any of the following conditions are detected, _lwp_wait() fails and returns
the corresponding value:
EINTR The _lwp_wait() function was interrupted by a signal.

EDEADLK All LWPs in this process would be blocked waiting for LWPs
to terminate, or the calling LWP is attempting to wait for
itself.

If any of the following conditions occur, _lwp_wait() fails and returns the
corresponding value:
ESRCH The wait_for argument cannot be found in the current process

or it was detached.

SEE ALSO _lwp_create (2), _lwp_exit (2)

Last modified 30 Jul 1992 SunOS 5.8 145

memcntl(2) System Calls

NAME memcntl – memory management control

SYNOPSIS #include <sys/types.h>
#include <sys/mman.h>
int memcntl (caddr_t addr, size_t len, int cmd, caddr_t arg, int attr, int mask);

DESCRIPTION The memcntl() function allows the calling process to apply a variety of control
operations over the address space identified by the mappings established for
the address range [addr, addr + len).

The addr argument must be a multiple of the pagesize as returned by
sysconf (3C). The scope of the control operations can be further defined with
additional selection criteria (in the form of attributes) according to the bit pattern
contained in attr.

The following attributes specify page mapping selection criteria:
SHARED Page is mapped shared.

PRIVATE Page is mapped private.

The following attributes specify page protection selection criteria. The selection
criteria are constructed by a bitwise OR operation on the attribute bits and
must match exactly.
PROT_READ Page can be read.

PROT_WRITE Page can be written.

PROT_EXEC Page can be executed.

The following criteria may also be specified:
PROC_TEXT Process text.

PROC_DATA Process data.

The PROC_TEXTattribute specifies all privately mapped segments with read
and execute permission, and the PROC_DATAattribute specifies all privately
mapped segments with write permission.

Selection criteria can be used to describe various abstract memory objects within
the address space on which to operate. If an operation shall not be constrained
by the selection criteria, attr must have the value 0.

The operation to be performed is identified by the argument cmd. The symbolic
names for the operations are defined in <sys/mman.h> as follows:
MC_LOCK Lock in memory all pages in the range with attributes

attr. A given page may be locked multiple times through
different mappings; however, within a given mapping, page
locks do not nest. Multiple lock operations on the same
address in the same process will all be removed with a
single unlock operation. A page locked in one process

146 SunOS 5.8 Last modified 28 Dec 1996

System Calls memcntl(2)

and mapped in another (or visible through a different
mapping in the locking process) is locked in memory as
long as the locking process does neither an implicit nor
explicit unlock operation. If a locked mapping is removed,
or a page is deleted through file removal or truncation,
an unlock operation is implicitly performed. If a writable
MAP_PRIVATEpage in the address range is changed, the
lock will be transferred to the private page.

At present arg is unused, but must be 0 to ensure
compatibility with potential future enhancements.

MC_LOCKAS Lock in memory all pages mapped by the address space
with attributes attr. At present addr and len are unused, but
must be NULL and 0 respectively, to ensure compatibility
with potential future enhancements. The arg argument is a
bit pattern built from the flags:

MCL_CURRENT Lock current mappings

MCL_FUTURE Lock future mappings

The value of arg determines whether the pages to be locked
are those currently mapped by the address space, those
that will be mapped in the future, or both. If MCL_FUTURE
is specified, then all mappings subsequently added to the
address space will be locked, provided sufficient memory is
available.

MC_SYNC Write to their backing storage locations all modified pages in
the range with attributes attr. Optionally, invalidate cache
copies. The backing storage for a modified MAP_SHARED
mapping is the file the page is mapped to; the backing
storage for a modified MAP_PRIVATEmapping is its swap
area. The arg argument is a bit pattern built from the flags
used to control the behavior of the operation:

MS_ASYNC perform asynchronous writes

MS_SYNC perform synchronous writes

MS_INVALIDATE invalidate mappings

MS_ASYNCreturns immediately once all write operations
are scheduled; with MS_SYNCthe function will not return
until all write operations are completed.

Last modified 28 Dec 1996 SunOS 5.8 147

memcntl(2) System Calls

MS_INVALIDATE invalidates all cached copies of data
in memory, so that further references to the pages will be
obtained by the system from their backing storage locations.
This operation should be used by applications that require a
memory object to be in a known state.

MC_UNLOCK Unlock all pages in the range with attributes attr. At present
arg is unused, but must be 0 to ensure compatibility with
potential future enhancements.

MC_UNLOCKAS Remove address space memory locks, and locks on all pages
in the address space with attributes attr. At present addr, len,
and arg are unused, but must be NULL, 0 and 0 respectively,
to ensure compatibility with potential future enhancements.

The mask argument must be 0; it is reserved for future use.

Locks established with the lock operations are not inherited by a child process
after fork (2). The memcntl() function fails if it attempts to lock more memory
than a system-specific limit.

Due to the potential impact on system resources, all operations, with the
exception of MC_SYNC, are restricted to processes with super-user effective
user ID.

USAGE The memcntl() function subsumes the operations of plock (3C) and
mctl (3UCB).

RETURN VALUES Upon successful completion, memcntl() returns 0; otherwise, it returns −1
and sets errno to indicate an error.

ERRORS The memcntl() function will fail if:
EAGAIN Some or all of the memory identified by the operation could

not be locked when MC_LOCKor MC_LOCKASwas specified.

EBUSY Some or all of the addresses in the range [addr, addr + len)
are locked and MC_SYNCwith the MS_INVALIDATE option
was specified.

EINVAL The addr argument specifies invalid selection criteria or is
not a multiple of the page size as returned by sysconf (3C);
the addr and/or len argument does not have the value 0
when MC_LOCKASor MC_UNLOCKASis specified; or the arg
argument is not valid for the function specified.

ENOMEM Some or all of the addresses in the range [addr, addr + len)
are invalid for the address space of a process or specify one
or more pages which are not mapped.

148 SunOS 5.8 Last modified 28 Dec 1996

System Calls memcntl(2)

EPERM The process’s effective user ID is not super-user and
MC_LOCK, MC_LOCKAS, MC_UNLOCK, or MC_UNLOCKASwas
specified.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO fork (2) mmap(2), mprotect (2), mctl (3UCB), mlock (3C), mlockall (3C),
msync (3C), plock (3C), sysconf (3C), attributes (5)

Last modified 28 Dec 1996 SunOS 5.8 149

mincore(2) System Calls

NAME mincore – determine residency of memory pages

SYNOPSIS #include <sys/types.h>
int mincore (caddr_t addr, size_t len, char *vec);

DESCRIPTION The mincore() function determines the residency of the memory pages in the
address space covered by mappings in the range [addr, addr + len]. The status is
returned as a character-per-page in the character array referenced by *vec (which
the system assumes to be large enough to encompass all the pages in the address
range). The least significant bit of each character is set to 1 to indicate that the
referenced page is in primary memory, and to 0 to indicate that it is not. The
settings of other bits in each character are undefined and may contain other
information in future implementations.

Because the status of a page can change between the time mincore() checks
and returns the information, returned information might be outdated. Only
locked pages are guaranteed to remain in memory; see mlock (3C).

RETURN VALUES Upon successful completion, mincore() returns 0. Otherwise, −1 is returned
and errno is set to indicate the error.

ERRORS The mincore() function will fail if:
EFAULT The vec argument points to an illegal address.

EINVAL The addr argument is not a multiple of the page size as
returned by sysconf (3C), or the len argument has a value
less than or equal to 0.

ENOMEM Addresses in the range [addr, addr + len] are invalid for the
address space of a process or specify one or more pages
which are not mapped.

SEE ALSO mmap(2), mlock (3C), sysconf (3C)

150 SunOS 5.8 Last modified 12 Aug 1990

System Calls mkdir(2)

NAME mkdir – make a directory

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>
int mkdir (const char *path, mode_t mode);

DESCRIPTION The mkdir() function creates a new directory named by the path name pointed
to by path. The mode of the new directory is initialized from mode (see chmod(2)
for values of mode). The protection part of the mode argument is modified by the
process’s file creation mask (see umask(2)).

The directory’s owner ID is set to the process’s effective user ID. The directory’s
group ID is set to the process’s effective group ID, or if the S_ISGID bit is set
in the parent directory, then the group ID of the directory is inherited from the
parent. The S_ISGID bit of the new directory is inherited from the parent
directory.

If path is a symbolic link, it is not followed.

The newly created directory is empty with the exception of entries for itself (.)
and its parent directory (. .).

Upon successful completion, mkdir() marks for update the st_atime ,
st_ctime and st_mtime fields of the directory. Also, the st_ctime and
st_mtime fields of the directory that contains the new entry are marked for
update.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned, no
directory is created, and errno is set to indicate the error.

ERRORS The mkdir() function will fail if:
EACCES Either a component of the path prefix denies

search permission or write permission is denied
on the parent directory of the directory to be
created.

EDQUOT The directory where the new file entry is being
placed cannot be extended because the user’s
quota of disk blocks on that file system has been
exhausted; the new directory cannot be created
because the user’s quota of disk blocks on that
file system has been exhausted; or the user’s
quota of inodes on the file system where the file
is being created has been exhausted.

EEXIST The named file already exists.

EFAULT The path argument points to an illegal address.

Last modified 28 Dec 1996 SunOS 5.8 151

mkdir(2) System Calls

EIO An I/O error has occurred while accessing the
file system.

ELOOP Too many symbolic links were encountered in
translating path.

EMLINK The maximum number of links to the parent
directory would be exceeded.

ENAMETOOLONG The length of the path argument exceeds
PATH_MAX, or the length of a path component
exceeds NAME_MAXwhile _POSIX_NO_TRUNC
is in effect.

ENOENT A component of the path prefix does not exist or
is a null pathname.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

ENOSPC No free space is available on the device
containing the directory.

ENOTDIR A component of the path prefix is not a directory.

EROFS The path prefix resides on a read-only file system.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO chmod(2), mknod(2), umask(2), attributes (5), stat (5)

152 SunOS 5.8 Last modified 28 Dec 1996

System Calls mknod(2)

NAME mknod – make a directory, or a special or ordinary file

SYNOPSIS #include <sys/stat.h>
int mknod(const char *path, mode_t mode, dev_t dev);

DESCRIPTION The mknod() function creates a new file named by the path name pointed to by
path. The file type and permissions of the new file are initialized from mode.

The file type is specified in mode by the S_IFMT bits, which must be set to
one of the following values:
S_IFIFO fifo special

S_IFCHR character special

S_IFDIR directory

S_IFBLK block special

S_IFREG ordinary file

The file access permissions are specified in mode by the 0007777 bits, and may be
constructed by a bitwise OR operation of the following values:

S_ISUID 04000 Set user ID on execution.

S_ISGID 020#0 Set group ID on execution if # is 7, 5, 3, or 1. Enable
mandatory file/record locking if # is 6, 4, 2, or 0

S_ISVTX 01000 On directories, restricted deletion flag; on regular
files on a UFS file system, do not cache flag.

S_IRWXU 00700 Read, write, execute by owner.

S_IRUSR 00400 Read by owner.

S_IWUSR 00200 Write by owner.

S_IXUSR 00100 Execute (search if a directory) by owner.

S_IRWXG 00070 Read, write, execute by group.

S_IRGRP 00040 Read by group.

S_IWGRP 00020 Write by group.

S_IXGRP 00010 Execute by group.

S_IRWXO 00007 Read, write, execute (search) by others.

S_IROTH 00004 Read by others.

S_IWOTH 00002 Write by others

S_IXOTH 00001 Execute by others.

Last modified 19 May 1999 SunOS 5.8 153

mknod(2) System Calls

The owner ID of the file is set to the effective user ID of the process. The group ID
of the file is set to the effective group ID of the process. However, if the S_ISGID
bit is set in the parent directory, then the group ID of the file is inherited from the
parent. If the group ID of the new file does not match the effective group ID or
one of the supplementary group IDs, the S_ISGID bit is cleared.

The access permission bits of mode are modified by the process’s file mode
creation mask: all bits set in the process’s file mode creation mask are cleared
(see umask(2)). If mode indicates a block or character special file, dev is a
configuration-dependent specification of a character or block I/O device. If mode
does not indicate a block special or character special device, dev is ignored. See
makedev (3C).

If path is a symbolic link, it is not followed.

RETURN VALUES Upon successful completion, mknod() returns 0. Otherwise, it returns −1, the
new file is not created, and errno is set to indicate the error.

ERRORS The mknod() function will fail if:
EACCES A component of the path prefix denies search

permission, or write permission is denied on
the parent directory.

EDQUOT The directory where the new file entry is being
placed cannot be extended because the user’s
quota of disk blocks on that file system has been
exhausted, or the user’s quota of inodes on the
file system where the file is being created has
been exhausted.

EEXIST The named file exists.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the
mknod() function.

EINVAL An invalid argument exists.

EIO An I/O error occurred while accessing the file
system.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds
PATH_MAX, or the length of a path component
exceeds NAME_MAXwhile _POSIX_NO_TRUNC
is in effect.

154 SunOS 5.8 Last modified 19 May 1999

System Calls mknod(2)

ENOENT A component of the path prefix specified by
path does not name an existing directory or path
is an empty string.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

ENOSPC The directory that would contain the new file
cannot be extended or the file system is out of file
allocation resources.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user of the calling process is not
super-user.

EROFS The directory in which the file is to be created is
located on a read-only file system.

The mknod() function may fail if:
ENAMETOOLONG Pathname resolution of a symbolic link produced

an intermediate result whose length exceeds
PATH_MAX.

USAGE Normally, applications should use the mkdir (2) routine to make a directory,
since the function mknod() may not establish directory entries for the directory
itself (.) and the parent directory (. .), and appropriate permissions are not
required. Similarly, mkfifo (3C) should be used in place of mknod() in order
to create FIFOs.

The mknod() function may be invoked only by a privileged user for file types
other than FIFO special.

SEE ALSO chmod(2), creat (2), exec (2), mkdir (2), open (2), stat (2), umask(2),
makedev (3C), mkfifo (3C), stat (3HEAD)

Last modified 19 May 1999 SunOS 5.8 155

mmap(2) System Calls

NAME mmap – map pages of memory

SYNOPSIS #include <sys/mman.h>
void *mmap(void *addr, size_t len, int prot, int flags, int fildes, off_t off);

DESCRIPTION The mmap() function establishes a mapping between a process’s address space
and a file or shared memory object. The format of the call is as follows:

pa = mmap(addr , len , prot , flags , fildes , off);

The mmap() function establishes a mapping between the address space of the
process at an address pa for len bytes to the memory object represented by the file
descriptor fildes at offset off for len bytes. The value of pa is a function of the addr
argument and values of flags, further described below. A successful mmap() call
returns pa as its result. The address range starting at pa and continuing for len
bytes will be legitimate for the possible (not necessarily current) address space of
the process. The range of bytes starting at off and continuing for len bytes will be
legitimate for the possible (not necessarily current) offsets in the file or shared
memory object represented by fildes.

The mmap() function allows [pa, pa + len) to extend beyond the end of the object
both at the time of the mmap() and while the mapping persists, such as when
the file is created prior to the mmap() call and has no contents, or when the file is
truncated. Any reference to addresses beyond the end of the object, however,
will result in the delivery of a SIGBUSor SIGSEGVsignal. The mmap() function
cannot be used to implicitly extend the length of files.

The mapping established by mmap() replaces any previous mappings for those
whole pages containing any part of the address space of the process starting
at pa and continuing for len bytes.

If the size of the mapped file changes after the call to mmap() as a result of
some other operation on the mapped file, the effect of references to portions of
the mapped region that correspond to added or removed portions of the file
is unspecified.

The mmap() function is supported for regular files and shared memory objects.
Support for any other type of file is unspecified.

The prot argument determines whether read, write, execute, or some combination
of accesses are permitted to the data being mapped. The prot argument should
be either PROT_NONEor the bitwise inclusive OR of one or more of the other
flags in the following table, defined in the header <sys/mman.h> .
PROT_READ Data can be read.

PROT_WRITE Data can be written.

PROT_EXEC Data can be executed.

156 SunOS 5.8 Last modified 21 Jul 1999

System Calls mmap(2)

PROT_NONE Data cannot be accessed.

If an implementation of mmap() for a specific platform cannot support the
combination of access types specified by prot, the call to mmap() fails. An
implementation may permit accesses other than those specified by prot; however,
the implementation will not permit a write to succeed where PROT_WRITE
has not been set or permit any access where PROT_NONEalone has been set.
Each platform-specific implementation of mmap() supports the following
values of prot: PROT_NONE, PROT_READ, PROT_WRITE, and the inclusive
OR of PROT_READand PROT_WRITE. On some platforms, the PROT_WRITE
protection option is implemented as PROT_READ|PROT_WRITEand PROT_EXEC
as PROT_READ|PROT_EXEC. The file descriptor fildes is opened with read
permission, regardless of the protection options specified. If PROT_WRITEis
specified, the application must have opened the file descriptor fildes with write
permission unless MAP_PRIVATEis specified in the flags argument as described
below.

The flags argument provides other information about the handling of the
mapped data. The value of flags is the bitwise inclusive OR of these options,
defined in <sys/mman.h> :
MAP_SHARED Changes are shared.

MAP_PRIVATE Changes are private.

MAP_FIXED Interpret addr exactly.

MAP_NORESERVE Do not reserve swap space.

MAP_ANON Map anonymous memory.

The MAP_SHAREDand MAP_PRIVATEoptions describe the disposition of write
references to the underlying object. If MAP_SHAREDis specified, write references
will change the memory object. If MAP_PRIVATEis specified, the initial write
reference will create a private copy of the memory object page and redirect the
mapping to the copy. The private copy is not created until the first write; until
then, other users who have the object mapped MAP_SHAREDcan change the
object. Either MAP_SHAREDor MAP_PRIVATEmust be specified, but not both.
The mapping type is retained across fork (2).

When MAP_FIXEDis set in the flags argument, the system is informed that the
value of pa must be addr, exactly. If MAP_FIXEDis set, mmap() may return
(void *)−1 and set errno to EINVAL. If a MAP_FIXEDrequest is successful,
the mapping established by mmap() replaces any previous mappings for the
process’s pages in the range [pa, pa + len). The use of MAP_FIXEDis discouraged,
since it may prevent a system from making the most effective use of its resources.

Last modified 21 Jul 1999 SunOS 5.8 157

mmap(2) System Calls

When MAP_FIXEDis set and the requested address is the same as previous
mapping, the previous address is unmapped and the new mapping is created
on top of the old one.

When MAP_FIXEDis not set, the system uses addr to arrive at pa. The pa so
chosen will be an area of the address space that the system deems suitable for
a mapping of len bytes to the file. The mmap() function interprets an addr
value of 0 as granting the system complete freedom in selecting pa, subject to
constraints described below. A non-zero value of addr is taken to be a suggestion
of a process address near which the mapping should be placed. When the
system selects a value for pa, it will never place a mapping at address 0, nor
will it replace any extant mapping, nor map into areas considered part of the
potential data or stack “segments”.

The MAP_NORESERVEoption specifies that no swap space be reserved for a
mapping. Without this flag, the creation of a writable MAP_PRIVATEmapping
reserves swap space equal to the size of the mapping; when the mapping is
written into, the reserved space is employed to hold private copies of the data.
A write into a MAP_NORESERVEmapping produces results which depend on
the current availability of swap space in the system. If space is available, the
write succeeds and a private copy of the written page is created; if space is not
available, the write fails and a SIGBUSor SIGSEGVsignal is delivered to the
writing process. MAP_NORESERVEmappings are inherited across fork() ; at
the time of the fork() , swap space is reserved in the child for all private
pages that currently exist in the parent; thereafter the child’s mapping behaves
as described above.

When MAP_ANONis set in flags, and fd is set to -1, mmap() provides a direct path
to return anonymous pages to the caller. This operation is equivalent to passing
mmap() an open file descriptor on /dev/zero with MAP_ANONelided from
the flags argument.

The off argument is constrained to be aligned and sized according to the value
returned by sysconf (3C) when passed _SC_PAGESIZEor _SC_PAGE_SIZE.
When MAP_FIXEDis specified, the addr argument must also meet these
constraints. The system performs mapping operations over whole pages.
Thus, while the len argument need not meet a size or alignment constraint, the
system will include, in any mapping operation, any partial page specified
by the range [pa, pa + len).

The system will always zero-fill any partial page at the end of an object. Further,
the system will never write out any modified portions of the last page of an
object which are beyond its end. References to whole pages following the end of
an object will result in the delivery of a SIGBUSor SIGSEGVsignal. SIGBUS
signals may also be delivered on various file system conditions, including
quota exceeded errors.

158 SunOS 5.8 Last modified 21 Jul 1999

System Calls mmap(2)

The mmap() function adds an extra reference to the file associated with the file
descriptor fildes which is not removed by a subsequent close (2) on that file
descriptor. This reference is removed when there are no more mappings to the
file by a call to the munmap(2) function.

The st_atime field of the mapped file may be marked for update at any time
between the mmap() call and the corresponding munmap(2) call. The initial read
or write reference to a mapped region will cause the file’s st_atime field to be
marked for update if it has not already been marked for update.

The st_ctime and st_mtime fields of a file that is mapped with MAP_SHARED
and PROT_WRITE, will be marked for update at some point in the interval
between a write reference to the mapped region and the next call to msync (3C)
with MS_ASYNCor MS_SYNCfor that portion of the file by any process. If there is
no such call, these fields may be marked for update at any time after a write
reference if the underlying file is modified as a result.

If the process calls mlockall (3C) with the MCL_FUTUREflag, the pages mapped
by all future calls to mmap() will be locked in memory. In this case, if not
enough memory could be locked, mmap() fails and sets errno to EAGAIN.

RETURN VALUES Upon successful completion, the mmap() function returns the address at which
the mapping was placed (pa); otherwise, it returns a value of MAP_FAILED
and sets errno to indicate the error. The symbol MAP_FAILEDis defined in
the header <sys/mman.h> . No successful return from mmap() will return the
value MAP_FAILED.

If mmap() fails for reasons other than EBADF, EINVAL or ENOTSUP, some of
the mappings in the address range starting at addr and continuing for len bytes
may have been unmapped.

ERRORS The mmap() function will fail if:
EACCES The fildes file descriptor is not open for read, regardless

of the protection specified, or fildes is not open for write
and PROT_WRITEwas specified for a MAP_SHAREDtype
mapping.

EAGAIN The mapping could not be locked in memory.

There was insufficient room to reserve swap space for the
mapping.

EBADF The fildes file descriptor is not open (and MAP_ANONwas
not specified).

EINVAL The arguments addr (if MAP_FIXEDwas specified) or off are
not multiples of the page size as returned by sysconf() .

Last modified 21 Jul 1999 SunOS 5.8 159

mmap(2) System Calls

The field in flags is invalid (neither MAP_PRIVATEor
MAP_SHAREDis set).

The argument len has a value less than or equal to 0.

MAP_ANONwas specified, but the file descriptor was not −1.

EMFILE The number of mapped regions would exceed an
implementation-dependent limit (per process or per system).

ENODEV The fildes argument refers to an object for which mmap() is
meaningless, such as a terminal.

ENOMEM The MAP_FIXEDoption was specified and the range
[addr, addr + len) exceeds that allowed for the address space
of a process.

The MAP_FIXEDoption was not specified and there is
insufficient room in the address space to effect the mapping.

The mapping could not be locked in memory, if required by
mlockall (3C), because it would require more space than
the system is able to supply.

The composite size of len plus the lengths obtained from
all previous calls to mmap() exceeds RLIMIT_VMEM(see
getrlimit (2)).

ENOTSUP The system does not support the combination of accesses
requested in the prot argument.

ENXIO Addresses in the range [off, off + len) are invalid for the
object specified by fildes.

The MAP_FIXEDoption was specified in flags and the
combination of addr, len and off is invalid for the object
specified by fildes.

EOVERFLOW The file is a regular file and the value of off plus len exceeds
the offset maximum establish in the open file description
associated with fildes.

The mmap() function may fail if:
EAGAIN The file to be mapped is already locked using

advisory or mandatory record locking. See
fcntl (2).

USAGE Use of mmap() may reduce the amount of memory available to other memory
allocation functions.

160 SunOS 5.8 Last modified 21 Jul 1999

System Calls mmap(2)

Use of MAP_FIXEDmay result in unspecified behaviour in further use of brk (2),
sbrk (2), malloc (3C), and shmat (2). The use of MAP_FIXEDis discouraged, as it
may prevent an implementation from making the most effective use of resources.

The application must ensure correct synchronization when using mmap() in
conjunction with any other file access method, such as read (2) and write (2),
standard input/output, and shmat (2).

The mmap() function has a transitional interface for 64-bit file offsets. See
lf64 (5).

The mmap() function allows access to resources using address space
manipulations instead of the read() /write() interface. Once a file is
mapped, all a process has to do to access it is use the data at the address to
which the object was mapped.

Consider the following pseudo-code:

fildes = open(. . .)
lseek(fildes, offset, whence)
read(fildes, buf, len)
/* use data in buf */

The following is a rewrite using mmap() :

fildes = open(. . .)
address = mmap((caddr_t) 0, len, (PROT_READ | PROT_WRITE),

MAP_PRIVATE, fildes, offset)
/* use data at address */

SEE ALSO close (2), exec (2), fcntl (2), fork (2), getrlimit (2), mprotect (2),
munmap(2), shmat (2), lockf (3C), mlockall (3C), msync (3C), plock (3C),
sysconf (3C), lf64 (5)

Last modified 21 Jul 1999 SunOS 5.8 161

mount(2) System Calls

NAME mount – mount a file system

SYNOPSIS #include <sys/types.h>
#include <sys/mount.h>
#include <sys/mntent.h>
int mount (const char *spec, const char *dir, int mflag, char *fstype, char *dataptr, int datalen,
char *optptr, int optlen);

DESCRIPTION The mount() function requests that a removable file system contained on the
block special file identified by spec be mounted on the directory identified by
dir. The spec and dir arguments are pointers to path names. After a successful
call to mount() , all references to the file dir refer to the root directory on the
mounted file system. The mounted file system is inserted into the kernel list
of all mounted file systems. This list can be examined through the mounted
file system table (see mnttab (4)). The fstype argument is the file system type
name. Standard file system names are defined with the prefix MNTTYPE_in
<sys/mntent.h> . The dataptr argument is 0 if no file system-specific data is
to be passed; otherwise it points to an area of size datalen that contains the file
system-specific data for this mount and the MS_DATAflag should be set. If the
MS_OPTIONSTRflag is set, then optptr points to a buffer containing the list of
options to be used for this mount. The optlen argument specifies the length of the
buffer. On completion of the mount() call, the options in effect for the mounted
file system are returned in this buffer. If MS_OPTIONSTRis not specified, then
the options for this mount will not appear in the mounted file systems table.
The mflag argument is constructed by a bitwise-inclusive-OR of flags from the
following list, defined in <sys/mount.h> .
MS_DATA If this flag is set, the dataptr and datalen

arguments describe a block of file system-specific
binary data at address dataptr of length datalen.
This is interpreted by file system-specific code
within the operating system and its format
depends on the file system type. If a particular
file system type does not require this data, dataptr
and datalen should both be 0.

MS_OPTIONSTR If this flag is set, the optptr and optlen arguments
describe a character buffer at address optptr of
size optlen. When calling mount() , the character
buffer should contain a null-terminated string of
options to be passed to the file system-specific
code within the operating system. On a successful
return, the file system-specific code will return
the list of options recognized. Unrecognized
options are ignored. The format of the string is
a list of option names separated by commas.

162 SunOS 5.8 Last modified 10 Aug 1999

System Calls mount(2)

Options that have values (rather than binary
options such as suid or nosuid), are separated
by "=" such as dev=2c4046c . Standard option
names are defined in <sys/mntent.h> . Only
strings defined in the "C" locale are supported.
The maximum length option string that can
be passed to or returned from a mount() call
is defined by the MAX_MNTOPT_STRconstant.
The buffer should be long enough to contain
more options than were passed in, as the state of
any default options that were not passed in the
input option string may also be returned in the
recognized options list that is returned.

MS_RDONLY The file system should be mounted for reading
only. This flag should also be specified for
file systems that are incapable of writing
(for example, CDROM). Without this flag,
writing is permitted according to individual
file accessibility.

MS_NOSUID This option prevents programs taht are marked
set-user-ID or set-group-ID from executing (see
chmod(1)). It also causes open (2) to return ENXIO
when attempting to open block or character
special files.

MS_REMOUNT Remounts a read-only file system as read-write.

MS_OVERLAY Allow the file system to be mounted over an
existing file system mounted on dir, making the
underlying file system inaccessible. If a mount is
attempted on a pre-existing mount point without
setting this flag, the mount will fail.

MS_GLOBAL Mount a file system globally if the system is
configured and booted as part of a cluster (see
clinfo (1M)).

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The mount() function will fail if:
EBUSY The dir argument is currently mounted on,

is someone’s current working directory, or is
otherwise busy; the device associated with spec

Last modified 10 Aug 1999 SunOS 5.8 163

mount(2) System Calls

is currently mounted; or there are no more
mount table entries.

EFAULT The spec, dir, fstype, dataptr, or optptr argument
points outside the allocated address space of
the process.

EINVAL The super block has an invalid magic number or
the fstype is invalid.

ELOOP Too many symbolic links were encountered in
translating spec or dir.

ENAMETOOLONG The length of the path argument exceeds
PATH_MAX, or the length of a path component
exceeds NAME_MAXwhile _POSIX_NO_TRUNC
is in effect.

ENOENT None of the named files exists or is a null
pathname.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

ENOSPC The file system state in the super-block is not
FsOKAYand mflag requests write permission.

ENOTBLK The spec argument is not a block special device.

ENOTDIR The dir argument is not a directory, or a
component of a path prefix is not a directory.

ENOTSUP A global mount is attempted (the MS_GLOBAL
flag is set in mflag) on a machine which is not
booted as a cluster or a local mount is attempted
and dir is within a globally mounted file system.

ENXIO The device associated with spec does not exist.

EOVERFLOW The length of the option string to be returned in
the dataptr argument exceeds the size of the
buffer specified by datalen.

EPERM The effective user ID is not super-user.

EREMOTE The spec argument is remote and cannot be
mounted.

EROFS The spec argument is write protected and mflag
requests write permission.

164 SunOS 5.8 Last modified 10 Aug 1999

System Calls mount(2)

USAGE The mount() function can be invoked only by processes with super-user
privileges.

SEE ALSO mount (1M), umount (2), mnttab (4)

NOTES MS_OPTIONSTR-type option strings should be used.

Some flag bits set file system options that can also be passed in an option string.
Options are first set from the option string with the last setting of an option in
the string determining the value to be set by the option string. Any options
controlled by flags are then applied, overriding any value set by the option string.

Last modified 10 Aug 1999 SunOS 5.8 165

mprotect(2) System Calls

NAME mprotect – set protection of memory mapping

SYNOPSIS #include <sys/mman.h>
int mprotect (void *addr, size_t len, int prot);

DESCRIPTION The mprotect() function changes the access protections on the mappings
specified by the range [addr, addr + len), rounding len up to the next multiple
of the page size as returned by sysconf (3C), to be that specified by prot.
Legitimate values for prot are the same as those permitted for mmap(2) and
are defined in <sys/mman.h> as:
PROT_READ /* page can be read */

PROT_WRITE /* page can be written */

PROT_EXEC /* page can be executed */

PROT_NONE /* page can not be accessed */

When mprotect() fails for reasons other than EINVAL, the protections on
some of the pages in the range [addr, addr + len) may have been changed. If the
error occurs on some page at addr2, then the protections of all whole pages in the
range [addr, addr2] will have been modified.

RETURN VALUES Upon successful completion, mprotect() returns 0. Otherwise, it returns −1
and sets errno to indicate the error.

ERRORS The mprotect() function will fail if:
EACCES The prot argument specifies a protection that violates the

access permission the process has to the underlying memory
object.

EINVAL The len argument has a value equal to 0, or addr is not a
multiple of the page size as returned by sysconf (3C).

ENOMEM Addresses in the range [addr, addr + len) are invalid for the
address space of a process, or specify one or more pages
which are not mapped.

The mprotect() function may fail if:
EAGAIN The address range [addr, addr + len) includes one or more

pages that have been locked in memory and that were
mapped MAP_PRIVATE; prot includes PROT_WRITE; and the
system has insufficient resources to reserve memory for the
private pages that may be created. These private pages
may be created by store operations in the now-writable
address range.

SEE ALSO mmap(2), plock (3C), mlock (3C), mlockall (3C), sysconf (3C)

166 SunOS 5.8 Last modified 12 Jan 1998

System Calls msgctl(2)

NAME msgctl – message control operations

SYNOPSIS #include <sys/msg.h>
int msgctl (int msqid, int cmd, struct msqid_ds *buf);

DESCRIPTION The msgctl() function provides a variety of message control operations as
specified by cmd. The following cmds are available:
IPC_STAT Place the current value of each member of the data structure

associated with msqid into the structure pointed to by buf.
The contents of this structure are defined in intro (2).

IPC_SET Set the value of the following members of the data structure
associated with msqid to the corresponding value found in
the structure pointed to by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode /* access permission bits only */
msg_qbytes

This cmd can only be executed by a process that has an
effective user ID equal to either that of super-user, or to the
value of msg_perm.cuid or msg_perm.uid in the data
structure associated with msqid. Only super-user can raise
the value of msg_qbytes .

IPC_RMID Remove the message queue identifier specified by msqid
from the system and destroy the message queue and data
structure associated with it. This cmd can only be executed
by a process that has an effective user ID equal to either
that of super-user, or to the value of msg_perm.cuid or
msg_perm.uid in the data structure associated with msqid.
The buf argument is ignored.

RETURN VALUES Upon successful completion, msgctl() returns 0. Otherwise, it returns −1
and sets errno to indicate the error.

ERRORS The msgctl() function will fail if:
EACCES The cmd argument is IPC_STAT and operation permission is

denied to the calling process (see intro (2)).

EFAULT The buf argument points to an illegal address.

EINVAL The msqid argument is not a valid message queue identifier;
or the cmd argument is not a valid command or is IPC_SET
and msg_perm.uid or msg_perm.gid is not valid.

EPERM The cmd argument is IPC_RMID or IPC_SET and the
effective user ID of the calling process is not super-user

Last modified 2 Feb 1996 SunOS 5.8 167

msgctl(2) System Calls

and is not equal to the value of msg_perm.cuid or
msg_perm.uid in the data structure associated with msqid.

EPERM The cmd argument is IPC_SET, an attempt is being made to
increase to the value of msg_qbytes , and the effective user
ID of the calling process is not super-user.

EOVERFLOW The cmd argument is IPC_STAT and uid or gid is too large to
be stored in the structure pointed to by buf.

SEE ALSO intro (2), msgget (2), msgrcv (2), msgsnd(2)

168 SunOS 5.8 Last modified 2 Feb 1996

System Calls msgget(2)

NAME msgget – get message queue

SYNOPSIS #include <sys/msg.h>
int msgget (key_t key, int msgflg);

DESCRIPTION The msgget() argument returns the message queue identifier associated with
key.

A message queue identifier and associated message queue and data structure
(see intro (3)) are created for key if one of the following are true:

� key is IPC_PRIVATE .

� key does not already have a message queue identifier associated with it,
and (msgflg&IPC_CREAT) is true.

On creation, the data structure associated with the new message queue identifier
is initialized as follows:

� msg_perm.cuid , msg_perm.uid , msg_perm.cgid , and msg_perm.gid
are set to the effective user ID and effective group ID, respectively, of the
calling process.

� The low-order 9 bits of msg_perm.mode are set to the low-order 9 bits
of msgflg.

� msg_qnum, msg_lspid , msg_lrpid , msg_stime , and msg_rtime are
set to 0.

� msg_ctime is set to the current time.

� msg_qbytes is set to the system limit.

RETURN VALUES Upon successful completion, a non-negative integer representing a message
queue identifier is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS The msgget() function will fail if:
EACCES A message queue identifier exists for key, but operation

permission (see intro (3)) as specified by the low-order 9
bits of msgflg would not be granted.

EEXIST A message queue identifier exists for key but
(msgflg&IPC_CREAT) and (msgflg&IPC_EXCL) are both true.

ENOENT A message queue identifier does not exist for key and
(msgflg&IPC_CREAT) is false.

ENOSPC A message queue identifier is to be created but the
system-imposed limit on the maximum number of allowed
message queue identifiers system wide would be exceeded.

SEE ALSO intro (3), msgctl (2), msgrcv (2), msgsnd(2), ftok (3C)

Last modified 5 Feb 1996 SunOS 5.8 169

msgrcv(2) System Calls

NAME msgrcv – message receive operation

SYNOPSIS #include <sys/msg.h>
ssize_t msgrcv (int msqid, void *msgp, size_t msgsz, long int msgtyp, int msgflg);

DESCRIPTION The msgrcv() function reads a message from the queue associated with the
message queue identifier specified by msqid and places it in the user-defined
buffer pointed to by msgp.

The msgp argument points to a user-defined buffer that must contain first a field
of type long int that will specify the type of the message, and then a data
portion that will hold the data bytes of the message. The structure below is an
example of what this user-defined buffer might look like:

struct mymsg {
long int mtype; /* message type */
char mtext[1]; /* message text */

}

The mtype member is the received message’s type as specified by the sending
process.

The mtext member is the text of the message.

The msgsz argument specifies the size in bytes of mtext . The received message
is truncated to msgsz bytes if it is larger than msgsz and (msgflg&MSG_NOERROR)
is non-zero. The truncated part of the message is lost and no indication of the
truncation is given to the calling process.

The msgtyp argument specifies the type of message requested as follows:

� If msgtyp is 0, the first message on the queue is received.

� If msgtyp is greater than 0, the first message of type msgtyp is received.

� If msgtyp is less than 0, the first message of the lowest type that is less than
or equal to the absolute value of msgtyp is received.

The msgflg argument specifies which of the following actions is to be taken if
a message of the desired type is not on the queue:

� If (msgflg&IPC_NOWAIT) is non-zero, the calling process will return
immediately with a return value of −1 and errno set to ENOMSG.

� If (msgflg&IPC_NOWAIT) is 0, the calling process will suspend execution
until one of the following occurs:

� A message of the desired type is placed on the queue.

� The message queue identifier msqid is removed from the system (see
msgctl (2)); when this occurs, errno is set equal to EIDRMand −1 is
returned.

170 SunOS 5.8 Last modified 19 May 1999

System Calls msgrcv(2)

� The calling process receives a signal that is to be caught; in this case a
message is not received and the calling process resumes execution in the
manner prescribed in sigaction (2).

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid (see intro (2)):

� msg_qnum is decremented by 1.

� msg_lrpid is set equal to the process ID of the calling process.

� msg_rtime is set equal to the current time.

RETURN VALUES Upon successful completion, msgrcv() returns a value equal to the number
of bytes actually placed into the buffer mtext. Otherwise, −1 is returned, no
message is received, and errno is set to indicate the error.

ERRORS The msgrcv() function will fail if:
E2BIG The value of mtext is greater than msgsz and

(msgflg&MSG_NOERROR) is 0.

EACCES Operation permission is denied to the calling process. See
intro (2).

EIDRM The message queue identifier msqid is removed from the
system.

EINTR The msgrcv() function was interrupted by a signal.

EINVAL The msqid argument is not a valid message queue identifier.

ENOMSG The queue does not contain a message of the desired type
and (msgflg&IPC_NOWAIT) is non-zero.

The msgrcv() function may fail if:
EFAULT The msgp argument points to an illegal address.

USAGE The value passed as the msgp argument should be converted to type void * .

SEE ALSO intro (2), msgctl (2), msgget (2), msgsnd(2), sigaction (2)

Last modified 19 May 1999 SunOS 5.8 171

msgsnd(2) System Calls

NAME msgsnd – message send operation

SYNOPSIS #include <sys/msg.h>
int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

DESCRIPTION The msgsnd() function is used to send a message to the queue associated with
the message queue identifier specified by msqid.

The msgp argument points to a user-defined buffer that must contain first a field
of type long int that will specify the type of the message, and then a data
portion that will hold the data bytes of the message. The structure below is an
example of what this user-defined buffer might look like:

struct mymsg {
long mtype; /* message type */
char mtext[1]; /* message text */

}

The mtype member is a non-zero positive type long int that can be used by
the receiving process for message selection.

The mtext member is any text of length msgsz bytes. The msgsz argument can
range from 0 to a system-imposed maximum.

The msgflg argument specifies the action to be taken if one or more of the
following are true:

� The number of bytes already on the queue is equal to msg_qbytes ; see
intro (2).

� The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:

� If (msgflg&IPC_NOWAIT) is non-zero, the message will not be sent and the
calling process will return immediately.

� If (msgflg&IPC_NOWAIT) is 0, the calling process will suspend execution
until one of the following occurs:

� The condition responsible for the suspension no longer exists, in which
case the message is sent.

� The message queue identifier msqid is removed from the system (see
msgctl (2)); when this occurs, errno is set equal to EIDRMand −1 is
returned.

� The calling process receives a signal that is to be caught; in this case the
message is not sent and the calling process resumes execution in the manner
prescribed in sigaction (2).

172 SunOS 5.8 Last modified 22 Jan 1996

System Calls msgsnd(2)

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid (see intro (2)):

� msg_qnum is incremented by 1.

� msg_lspid is set equal to the process ID of the calling process.

� msg_stime is set equal to the current time.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned, no
message is sent, and errno is set to indicate the error.

ERRORS The msgsnd() function will fail if:
EACCES Operation permission is denied to the calling process. See

intro (2).

EAGAIN The message cannot be sent for one of the reasons cited
above and (msgflg&IPC_NOWAIT) is non-zero.

EIDRM The message queue identifier msgid is removed from the
system.

EINTR The msgsnd() function was interrupted by a signal.

EINVAL The value of msqid is not a valid message queue identifier, or
the value of mtype is less than 1; or the value of msgsz is less
than 0 or greater than the system-imposed limit.

The msgsnd() function may fail if:
EFAULT The msgp argument points to an illegal address.

USAGE The value passed as the msgp argument should be converted to type void * .

SEE ALSO intro (2), msgctl (2), msgget (2), msgrcv (2), sigaction (2)

Last modified 22 Jan 1996 SunOS 5.8 173

munmap(2) System Calls

NAME munmap – unmap pages of memory

SYNOPSIS #include <sys/mman.h>
int munmap(void *addr, size_t len);

DESCRIPTION The munmap() function removes the mappings for pages in the range
[addr, addr + len), rounding the len argument up to the next multiple of the
page size as returned by sysconf (3C). If addr is not the address of a mapping
established by a prior call to mmap(2), the behavior is undefined. After a
successful call to munmap() and before any subsequent mapping of the
unmapped pages, further references to these pages will result in the delivery of a
SIGBUSor SIGSEGVsignal to the process.

The mmap(2) function often performs an implicit munmap() .

RETURN VALUES Upon successful completion, munmap() returns 0; otherwise, it returns −1
and sets errno to indicate an error.

ERRORS The munmap() function will fail if:
EINVAL The addr argument is not a multiple of the page size

as returned by sysconf (3C); addresses in the range
[addr, addr + len) are outside the valid range for the address
space of a process; or the len argument has a value less
than or equal to 0.

SEE ALSO mmap(2), sysconf (3C)

174 SunOS 5.8 Last modified 5 Jan 1998

System Calls nice(2)

NAME nice – change priority of a process

SYNOPSIS #include <unistd.h>
int nice (int incr);

DESCRIPTION The nice() function allows a process to change its priority. The invoking
process must be in a scheduling class that supports the nice() .

The nice() function adds the value of incr to the nice value of the calling
process. A process’s nice value is a non-negative number for which a greater
positive value results in lower CPU priority.

A maximum nice value of (2 * NZERO)−1 and a minimum nice value of 0 are
imposed by the system. NZEROis defined in <limits.h> with a default value
of 20. Requests for values above or below these limits result in the nice value
being set to the corresponding limit. A nice value of 40 is treated as 39.

Only a process with super-user privileges can lower the nice value.

RETURN VALUES Upon successful completion, nice() returns the new nice value minus NZERO.
Otherwise, −1 is returned, the process’s nice value is not changed, and errno
is set to indicate the error.

ERRORS The nice() function will fail if:
EINVAL The nice() function is called by a process in a scheduling

class other than time-sharing.

EPERM The inc argument is negative or greater than 40 and the
effective user ID of the calling process is not super-user.

USAGE The priocntl (2) function is a more general interface to scheduler functions.

Since −1 is a permissible return value in a successful situation, an application
wishing to check for error situations should set errno to 0, then call nice() ,
and if it returns −1, check to see if errno is non-zero.

SEE ALSO nice (1), exec (2), priocntl (2)

Last modified 5 Feb 1996 SunOS 5.8 175

ntp_adjtime(2) System Calls

NAME ntp_adjtime – adjust local clock parameters

SYNOPSIS #include <sys/timex.h>
int ntp_adjtime (struct timex *tptr);

DESCRIPTION The ntp_adjtime() function adjusts the parameters used to discipline the
local clock, according to the values in the struct timex pointed to by tptr. Before
returning, it fills in the structure with the most recent values kept in the kernel.

The adjustment is effected in part by speeding up or slowing down the clock,
as necessary, and in part by phase-locking onto a once-per second pulse (PPS)
provided by a driver, if available.

struct timex {
uint32_t modes; /* clock mode bits (w) */
int32_t offset; /* time offset (us) (rw) */
int32_t freq; /* frequency offset (scaled ppm) (rw) */
int32_t maxerror; /* maximum error (us) (rw) */
int32_t esterror; /* estimated error (us) (rw) */
int32_t status; /* clock status bits (rw) */
int32_t constant; /* pll time constant (rw) */
int32_t precision; /* clock precision (us) (r) */
int32_t tolerance; /* clock frequency tolerance

(scaled ppm) (r) */
int32_t ppsfreq; /* pps frequency (scaled ppm) (r) */
int32_t jitter; /* pps jitter (us) (r) */
int32_t shift; /* interval duration (s) (shift) (r) */
int32_t stabil; /* pps stability (scaled ppm) (r) */
int32_t jitcnt; /* jitter limit exceeded (r) */
int32_t calcnt; /* calibration intervals (r) */
int32_t errcnt; /* calibration errors (r) */
int32_t stbcnt; /* stability limit exceeded (r) */

};

RETURN VALUES Upon successful completion, ntp_adjtime() returns the current clock state
(see <sys/timex.h>). Otherwise, it returns −1 and sets errno to indicate the
error.

ERRORS The ntp_adjtime() function will fail if:
EFAULT The tptr argument is an invalid pointer.

EINVAL The constant member of the structure pointed to by tptr is
less than 0 or greater than 30.

EPERM The user is not super-user.

SEE ALSO xntpd (1M), ntp_gettime (2)

176 SunOS 5.8 Last modified 9 Nov 1999

System Calls ntp_gettime(2)

NAME ntp_gettime – get local clock values

SYNOPSIS #include <sys/timex.h>
int ntp_gettime (struct ntptimeval *tptr);

DESCRIPTION The ntp_gettime() function reads the local clock value and dispersion,
returning the information in tptr.

The ntptimeval structure contains the following members:

struct ntptimeval {
struct timeval time; /* current time (ro) */
int32_t maxerror; /* maximum error (us) (ro) */
int32_t esterror; /* estimated error (us) (ro) */

};

RETURN VALUES Upon successful completion, ntp_gettime() returns the current clock state
(see <sys/timex.h>). Otherwise, it returns −1 and sets errno to indicate the
error.

ERRORS The ntp_gettime() function will fail if:
EFAULT The tptr argument points to an invalid address.

The ntp_gettime() function will fail for 32-bit interfaces if:
EOVERFLOW The size of the time.tv_sec member of the ntptimeval

structure pointed to by tptr is too small to contain the correct
number of seconds.

SEE ALSO xntpd (1M), ntp_adjtime (2)

Last modified 9 Nov 1999 SunOS 5.8 177

open(2) System Calls

NAME open – open a file

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open (const char *path, int oflag, /* mode_t mode */...);

DESCRIPTION The open() function establishes the connection between a file and a file
descriptor. It creates an open file description that refers to a file and a file
descriptor that refers to that open file description. The file descriptor is used
by other I/O functions to refer to that file. The path argument points to a
pathname naming the file.

The open() function returns a file descriptor for the named file that is the lowest
file descriptor not currently open for that process. The open file description is
new, and therefore the file descriptor does not share it with any other process in
the system. The FD_CLOEXECfile descriptor flag associated with the new file
descriptor is cleared.

The file offset used to mark the current position within the file is set to the
beginning of the file.

The file status flags and file access modes of the open file description are set
according to the value of oflag. The mode argument is used only when O_CREAT
is specified (see below.)

Values for oflag are constructed by a bitwise-inclusive-OR of flags from the
following list, defined in <fcntl.h> . Applications must specify exactly one of
the first three values (file access modes) below in the value of oflag:
O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing. The result is undefined if this
flag is applied to a FIFO.

Any combination of the following may be used:
O_APPEND If set, the file offset is set to the end of the file prior to each

write.

O_CREAT Create the file if it does not exist. This flag requires that the
mode argument be specified.

If the file exists, this flag has no effect except as noted under
O_EXCLbelow. Otherwise, the file is created with the user
ID of the file set to the effective user ID of the process. The
group ID of the file is set to the effective group IDs of the
process, or if the S_ISGID bit is set in the directory in which
the file is being created, the file’s group ID is set to the group

178 SunOS 5.8 Last modified 16 Apr 1998

System Calls open(2)

ID of its parent directory. If the group ID of the new file does
not match the effective group ID or one of the supplementary
groups IDs, the S_ISGID bit is cleared. The access
permission bits (see <sys/stat.h>) of the file mode are
set to the value of mode, modified as follows (see creat (2)):
a bitwise-AND is performed on the file-mode bits and the
corresponding bits in the complement of the process’s file
mode creation mask. Thus, all bits set in the process’s file
mode creation mask (see umask(2)) are correspondingly
cleared in the file’s permission mask. The “save text image
after execution bit” of the mode is cleared (see chmod(2)).
O_SYNCWrite I/O operations on the file descriptor complete
as defined by synchronized I/O file integrity completion (see
fcntl (3HEAD) definition of O_SYNC.) When bits other than
the file permission bits are set, the effect is unspecified. The
mode argument does not affect whether the file is open for
reading, writing or for both.

O_DSYNC Write I/O operations on the file descriptor complete as
defined by synchronized I/O data integrity completion.

O_EXCL If O_CREATand O_EXCLare set, open() fails if the file
exists. The check for the existence of the file and the creation
of the file if it does not exist is atomic with respect to other
processes executing open() naming the same filename
in the same directory with O_EXCLand O_CREATset. If
O_CREATis not set, the effect is undefined.

O_LARGEFILE If set, the offset maximum in the open file description is the
largest value that can be represented correctly in an object of
type off64_t .

O_NOCTTY If set and path identifies a terminal device, open() does not
cause the terminal device to become the controlling terminal
for the process.

O_NONBLOCK
or O_NDELAY

These flags may affect subsequent reads and writes (see
read (2) and write (2)). If both O_NDELAYand O_NONBLOCK
are set, O_NONBLOCKtakes precedence.

When opening a FIFO with O_RDONLYor O_WRONLYset:

If O_NONBLOCKor O_NDELAYis set:

An open() for reading only returns without delay. An
open() for writing only returns an error if no process
currently has the file open for reading.

Last modified 16 Apr 1998 SunOS 5.8 179

open(2) System Calls

If O_NONBLOCKand O_NDELAYare clear:

An open() for reading only blocks until a process opens the
file for writing. An open() for writing only blocks until a
process opens the file for reading.

After both ends of a FIFO have been opened, there is
no guarantee that further calls to open() O_RDONLY
(O_WRONLY) will synchronize with later calls to open()
O_WRONLY(O_RDONLY) until both ends of the FIFO have
been closed by all readers and writers. Any data written
into a FIFO will be lost if both ends of the FIFO are closed
before the data is read.

When opening a block special or character special file that
supports non-blocking opens:

If O_NONBLOCKor O_NDELAYis set:

The open() function returns without blocking for the
device to be ready or available. Subsequent behavior of the
device is device-specific.

If O_NONBLOCKand O_NDELAYare clear:

The open() function blocks until the device is ready or
available before returning.

Otherwise, the behavior of O_NONBLOCKand O_NDELAY
is unspecified.

O_RSYNC Read I/O operations on the file descriptor complete at the
same level of integrity as specified by the O_DSYNCand
O_SYNCflags. If both O_DSYNCand O_RSYNCare set in oflag,
all I/O operations on the file descriptor complete as defined
by synchronized I/O data integrity completion. If both
O_SYNCand O_RSYNCare set in oflag, all I/O operations on
the file descriptor complete as defined by synchronized I/O
file integrity completion.

O_SYNC If O_SYNCis set on a regular file, writes to that file cause the
process to block until the data is delivered to the underlying
hardware.

O_TRUNC If the file exists and is a regular file, and the file is
successfully opened O_RDWRor O_WRONLY, its length is
truncated to 0 and the mode and owner are unchanged. It
has no effect on FIFO special files or terminal device files. Its

180 SunOS 5.8 Last modified 16 Apr 1998

System Calls open(2)

effect on other file types is implementation-dependent. The
result of using O_TRUNCwith O_RDONLYis undefined.

If O_CREATis set and the file did not previously exist, upon successful
completion, open() marks for update the st_atime , st_ctime , and
st_mtime fields of the file and the st_ctime and st_mtime fields of the
parent directory.

If O_TRUNCis set and the file did previously exist, upon successful completion,
open() marks for update the st_ctime and st_mtime fields of the file.

If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCKor
O_NODELAYOR-ed with either O_RDONLY, O_WRONLY, or O_RDWR. Other flag
values are not applicable to STREAMS devices and have no effect on them. The
values O_NONBLOCKand O_NODELAYaffect the operation of STREAMS drivers
and certain functions (see read (2), getmsg (2), putmsg (2), and write (2))
applied to file descriptors associated with STREAMS files. For STREAMS
drivers, the implementation of O_NONBLOCKand O_NODELAYis device-specific.

When open() is invoked to open a named stream, and the connld module
(see connld (7M)) has been pushed on the pipe, open() blocks until the server
process has issued an I_RECVFD ioctl() (see streamio (7I)) to receive the
file descriptor.

If path names the master side of a pseudo-terminal device, then it is unspecified
whether open() locks the slave side so that it cannot be opened. Portable
applications must call unlockpt (3C) before opening the slave side.

If path is a symbolic link and O_CREATand O_EXCLare set, the link is not
followed.

Certain flag values can be set following open() as described in fcntl (2).

The largest value that can be represented correctly in an object of type off_t is
established as the offset maximum in the open file description.

RETURN VALUES Upon successful completion, the open() function opens the file and return a
non-negative integer representing the lowest numbered unused file descriptor.
Otherwise, −1 is returned, errno is set to indicate the error, and no files are
created or modified.

ERRORS The open() function will fail if:
EACCES Search permission is denied on a component of the path

prefix, or the file exists and the permissions specified by oflag
are denied, or the file does not exist and write permission is
denied for the parent directory of the file to be created, or
O_TRUNCis specified and write permission is denied.

Last modified 16 Apr 1998 SunOS 5.8 181

open(2) System Calls

EDQUOT The file does not exist, O_CREATis specified, and either the
directory where the new file entry is being placed cannot
be extended because the user’s quota of disk blocks on
that file system has been exhausted, or the user’s quota of
inodes on the file system where the file is being created
has been exhausted.

EEXIST The O_CREATand O_EXCLflags are set, and the named
file exists.

EINTR A signal was caught during open() .

EFAULT The path argument points to an illegal address.

EIO The path argument names a STREAMS file and a hangup
or error occurred during the open() .

EISDIR The named file is a directory and oflag includes O_WRONLYor
O_RDWR.

ELOOP Too many symbolic links were encountered in resolving path.

EMFILE OPEN_MAXfile descriptors are currently open in the calling
process.

EMULTIHOP Components of path require hopping to multiple remote
machines and the file system does not allow it.

ENAMETOOLONGThe length of the path argument exceeds PATH_MAXor a
pathname component is longer than NAME_MAX.

ENFILE The maximum allowable number of files is currently open
in the system.

ENOENT The O_CREATflag is not set and the named file does not
exist; or the O_CREATflash is set and either the path prefix
does not exist or the path argument points to an empty
string.

ENOLINK The path argument points to a remote machine, and the link
to that machine is no longer active.

ENOSR The path argument names a STREAMS-based file and the
system is unable to allocate a STREAM.

ENOSPC The directory or file system that would contain the new file
cannot be expanded, the file does not exist, and O_CREATis
specified.

ENOTDIR A component of the path prefix is not a directory.

182 SunOS 5.8 Last modified 16 Apr 1998

System Calls open(2)

ENXIO The O_NONBLOCKflag is set, the named file is a FIFO, the
O_WRONLYflag is set, and no process has the file open for
reading; or the named file is a character special or block
special file and the device associated with this special file
does not exist.

EOPNOTSUPP An attempt was made to open a path that corresponds to
a AF_UNIX socket.

EOVERFLOW The named file is a regular file and either O_LARGEFILEis
not set and the size of the file cannot be represented correctly
in an object of type off_t or O_LARGEFILEis set and the
size of the file cannot be represented correctly in an object of
type off64_t .

EROFS The named file resides on a read-only file system and either
O_WRONLY, O_RDWR, O_CREAT(if file does not exist), or
O_TRUNCis set in the oflag argument.

The open() function may fail if:
EAGAIN The path argument names the slave side of a pseudo-terminal

device that is locked.

EINVAL The value of the oflag argument is not valid.

ENAMETOOLONGPathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

ENOMEM The path argument names a STREAMS file and the system is
unable to allocate resources.

ETXTBSY The file is a pure procedure (shared text) file that is being
executed and oflag is O_WRONLYor O_RDWR.

USAGE The open() function has a transitional interface for 64-bit file offsets. See
lf64 (5). Note that using open64() is equivalent to using open() with
O_LARGEFILEset in oflag.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO intro (3), chmod(2), close (2), creat (2), dup (2), exec (2), fcntl (2), getmsg (2),
getrlimit (2), lseek (2), putmsg (2), read (2), stat (2), umask(2), write (2),
unlockpt (3C), attributes (5), fcntl (3HEAD), lf64 (5), stat (3HEAD),
connld (7M), streamio (7I)

Last modified 16 Apr 1998 SunOS 5.8 183

open(2) System Calls

NOTES Hierarchical Storage Management (HSM) file systems can sometimes cause long
delays when opening a file, since HSM files must be recalled from secondary
storage.

184 SunOS 5.8 Last modified 16 Apr 1998

System Calls pause(2)

NAME pause – suspend process until signal

SYNOPSIS #include <unistd.h>
int pause (void);

DESCRIPTION The pause() function suspends the calling process until it receives a signal. The
signal must be one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause() does not return.

If the signal is caught by the calling process and control is returned from the
signal-catching function (see signal (3C)), the calling process resumes execution
from the point of suspension.

RETURN VALUES Since pause() suspends thread execution indefinitely unless interrupted by a
signal, there is no successful completion return value. If interrupted, it returns
−1 and sets errno to indicate the error.

ERRORS The pause() function will fail if:
EINTR A signal is caught by the calling process and control is

returned from the signal-catching function.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO alarm (2), kill (2), wait (2), signal (3C), attributes (5)

Last modified 28 Dec 1996 SunOS 5.8 185

pcsample(2) System Calls

NAME pcsample – program execution time profile

SYNOPSIS #include <pcsample.h>
long pcsample (uintptr_t samples[], long nsamples);

DESCRIPTION The pcsample() function provides CPU-use statistics by profiling the amount
of CPU time expended by a program.

For profiling dynamically-linked programs and 64-bit programs, it is superior to
the profil (2) function, which assumes that the entire program is contained
in a small, contiguous segment of the address space, divides this segment into
“bins”, and on each clock tick increments the counter in the bin where the
program is currently executing. With shared libraries creating discontinuous
program segments spread throughout the address space, and with 64-bit address
spaces so large that the size of “bins” would be measured in megabytes, the
profil() function is of limited value.

The pcsample() function is passed an array samples containing nsamples
pointer-sized elements. During program execution, the kernel samples the
program counter of the process, storing unadulterated values in the array on
each clock tick. The kernel stops writing to the array when it is full, which occurs
after nsamples / HZ seconds of process virtual time. The HZvalue is obtained by
invoking the call sysconf(_SC_CLK_TCK) . See sysconf (3C).

The sampling can be stopped by a subsequent call to pcsample() with the
nsamples argument set to 0. Like profil() , sampling continues across a call
to fork (2), but is disabled by a call to one of the exec family of functions
(see exec (2)). It is also disabled if an update of the samples[] array causes a
memory fault.

RETURN VALUES The pcsample() function always returns 0 the first time it is called. On
subsequent calls, it returns the number of samples that were stored during
the previous invocation. If nsamples is invalid, it returns −1 and sets errno
to indicate the error.

ERRORS The pcsample() function will fail if:
EINVAL The value of nsamples is not valid.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Interface Stability Stable

SEE ALSO exec (2), fork (2), profil (2), sysconf (3C), attributes (5)

186 SunOS 5.8 Last modified 10 Mar 1998

System Calls pipe(2)

NAME pipe – create an interprocess channel

SYNOPSIS #include <unistd.h>
int pipe (int fildes[2]);

DESCRIPTION The pipe() function creates an I/O mechanism called a pipe and returns
two file descriptors, fildes[0] and fildes[1]. The files associated with fildes[0]
and fildes[1] are streams and are both opened for reading and writing. The
O_NDELAYand O_NONBLOCKflags are cleared.

A read from fildes[0] accesses the data written to fildes[1] on a first-in-first-out
(FIFO) basis and a read from fildes[1] accesses the data written to fildes[0] also
on a FIFO basis.

The FD_CLOEXECflag will be clear on both file descriptors.

Upon successful completion pipe() marks for update the st_atime ,
st_ctime , and st_mtime fields of the pipe.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The pipe() function will fail if:
EMFILE There are OPEN_MAX−1 or more file descriptors currently

open for this process.

ENFILE A file table entry could not be allocated.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO sh (1), fcntl (2), fstat (2), getmsg (2), poll (2), putmsg (2), read (2), write (2),
attributes (5), streamio (7I)

NOTES Since a pipe is bi-directional, there are two separate flows of data. Therefore,
the size (st_size) returned by a call to fstat (2) with argument fildes[0] or
fildes[1] is the number of bytes available for reading from fildes[0] or fildes[1]
respectively. Previously, the size (st_size) returned by a call to fstat()
with argument fildes[1] (the write-end) was the number of bytes available for
reading from fildes[0] (the read-end).

Last modified 28 Dec 1996 SunOS 5.8 187

poll(2) System Calls

NAME poll – input/output multiplexing

SYNOPSIS #include <poll.h>
int poll (struct pollfd fds[], nfds_t nfds, int timeout);

DESCRIPTION The poll() function provides applications with a mechanism for multiplexing
input/output over a set of file descriptors. For each member of the array pointed
to by fds, poll() examines the given file descriptor for the event(s) specified in
events. The number of pollfd structures in the fds array is specified by nfds. The
poll() function identifies those file descriptors on which an application can
read or write data, or on which certain events have occurred.

The fds argument specifies the file descriptors to be examined and the events of
interest for each file descriptor. It is a pointer to an array with one member for
each open file descriptor of interest. The array’s members are pollfd structures,
which contain the following members:

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

The fd member specifies an open file descriptor and the events and revents
members are bitmasks constructed by a logical OR operation of any combination
of the following event flags:
POLLIN Data other than high priority data may be read without

blocking. For STREAMS, this flag is set in revents even if
the message is of zero length.

POLLRDNORM Normal data (priority band equals 0) may be read without
blocking. For STREAMS, this flag is set in revents even if
the message is of zero length.

POLLRDBAND Data from a non-zero priority band may be read without
blocking. For STREAMS, this flag is set in revents even if
the message is of zero length.

POLLPRI High priority data may be received without blocking. For
STREAMS, this flag is set in revents even if the message is
of zero length.

POLLOUT Normal data (priority band equals 0) may be written without
blocking.

POLLWRNORM The same as POLLOUT.

POLLWRBAND Priority data (priority band > 0) may be written. This event
only examines bands that have been written to at least once.

188 SunOS 5.8 Last modified 4 Apr 1997

System Calls poll(2)

POLLERR An error has occurred on the device or stream. This flag is
only valid in the revents bitmask; it is not used in the
events member.

POLLHUP A hangup has occurred on the stream. This event and
POLLOUTare mutually exclusive; a stream can never be
writable if a hangup has occurred. However, this event and
POLLIN, POLLRDNORM, POLLRDBAND, or POLLPRI are not
mutually exclusive. This flag is only valid in the revents
bitmask; it is not used in the events member.

POLLNVAL The specified fd value does not belong to an open file. This
flag is only valid in the revents member; it is not used in
the events member.

If the value fd is less than zero, events is ignored and revents is set to 0 in
that entry on return from poll() .

The results of the poll() query are stored in the revents member in the
pollfd structure. Bits are set in the revents bitmask to indicate which of the
requested events are true. If none are true, none of the specified bits are set in
revents when the poll() call returns. The event flags POLLHUP, POLLERR,
and POLLNVALare always set in revents if the conditions they indicate are
true; this occurs even though these flags were not present in events .

If none of the defined events have occurred on any selected file descriptor,
poll() waits at least timeout milliseconds for an event to occur on any of the
selected file descriptors. On a computer where millisecond timing accuracy is
not available, timeout is rounded up to the nearest legal value available on that
system. If the value timeout is 0, poll() returns immediately. If the value of
timeout is INFTIM (or −1), poll() blocks until a requested event occurs or until
the call is interrupted. The poll() function is not affected by the O_NDELAY
and O_NONBLOCKflags.

The poll() function supports regular files, terminal and pseudo-terminal
devices, STREAMS-based files, FIFOs and pipes. The behavior of poll() on
elements of fds that refer to other types of file is unspecified.

The poll() function supports sockets.

A file descriptor for a socket that is listening for connections will indicate that it
is ready for reading, once connections are available. A file descriptor for a socket
that is connecting asynchronously will indicate that it is ready for writing, once
a connection has been established.

Regular files always poll TRUEfor reading and writing.

RETURN VALUES Upon successful completion, a non-negative value is returned. A positive value
indicates the total number of file descriptors that has been selected (that is, file

Last modified 4 Apr 1997 SunOS 5.8 189

poll(2) System Calls

descriptors for which the revents member is non-zero). A value of 0 indicates
that the call timed out and no file descriptors have been selected. Upon failure,
−1 is returned and errno is set to indicate the error.

ERRORS The poll() function will fail if:
EAGAIN Allocation of internal data structures failed, but the request

may be attempted again.

EFAULT Some argument points to an illegal address.

EINTR A signal was caught during the poll() function.

EINVAL The argument nfds is greater than {OPEN_MAX}, or one
of the fd members refers to a STREAM or multiplexer
that is linked (directly or indirectly) downstream from
a multiplexer.

SEE ALSO intro (3), getmsg (2), getrlimit (2), putmsg (2), read (2), write (2),
select (3C), chpoll (9E)

STREAMS Programming Guide

NOTES Non-STREAMS drivers use chpoll (9E) to implement poll() on these devices.

190 SunOS 5.8 Last modified 4 Apr 1997

System Calls p_online(2)

NAME p_online – return or change processor operational status

SYNOPSIS #include <sys/types.h>
#include <sys/processor.h>
int p_online (processorid_t processorid, int flag);

DESCRIPTION The p_online() function changes or returns the operational status of
processors. The state of the processor specified by the processorid argument is
changed to the state represented by the flag argument.

Legal values for flag are P_STATUS, P_ONLINE, P_OFFLINE, and P_NOINTR.

When flag is P_STATUS, no processor status change occurs, but the current
processor status is returned.

The P_ONLINE, P_OFFLINE, and P_NOINTRvalues for flag refer to valid
processor states. A processor in the P_ONLINEstate is allowed to process LWPs
(lightweight processes) and perform system activities. The processor is also
interruptible by I/O devices attached to the system.

A processor in the P_OFFLINE state is not allowed to process LWPs. The
processor is as inactive as possible. If the hardware supports such a feature, the
processor is not interruptible by attached I/O devices.

A processor in the P_NOINTRstate is allowed to process LWPs, but it is not
interruptible by attached I/O devices. Typically, interrupts, when they occur
are routed to other processors in the system. Not all systems support putting a
processor into the P_NOINTRstate. It is not permitted to put all the processors
of a system into the P_NOINTRstate. At least one processor must always be
available to service system clock interrupts.

Processor numbers are integers, greater than or equal to 0, and are defined by the
hardware platform. Processor numbers are not necessarily contiguous, but “not
too sparse.” Processor numbers should always be printed in decimal.

The number of processors present can be determined by calling
sysconf(_SC_NPROCESSORS_CONF). The list of valid processor numbers can
be determined by calling p_online() with processorid values starting at 0
until all processors have been found. The EINVAL error is returned for invalid
processor numbers. See EXAMPLESbelow.

RETURN VALUES On successful completion, the value returned is the previous state of the
processor, P_ONLINE, P_OFFLINE, P_NOINTR, or P_POWEROFF. Otherwise, −1
is returned and errno is set to indicate the error.

ERRORS The p_online() function will fail if:
EPERM The effective user of the calling process is not super-user.

EINVAL A non-existent processor ID was specified or flag was invalid.

Last modified 16 Mar 1998 SunOS 5.8 191

p_online(2) System Calls

EBUSY The flag was P_OFFLINE and the specified processor is the
only on-line processor, there are currently LWPs bound to
the processor, or the processor performs some essential
function that cannot be performed by another processor.

EBUSY The flag was P_NOINTRand the specified processor is the
only interruptible processor in the system, or it handles
interrupts that cannot be handled by another processor.

EBUSY The specified processor is powered off and cannot be
powered on because some platform- specific resource is
not available.

ENOTSUP The specified processor is powered off, and the platform
does not support power on of individual processors.

EXAMPLES EXAMPLE 1 List the legal processor numbers.

The following code sample will list the legal processor numbers:

#include <sys/unistd.h>
#include <sys/processor.h>
#include <sys/types.h>
#include <stdio.h>
#include <errno.h>

int
main()
{

processorid_t i;
int status;
int n = sysconf(_SC_NPROCESSORS_ONLN);
for (i = 0; n > 0; i++) {

status = p_online(i, P_STATUS);
if (status == −1 && errno == EINVAL)

continue;
printf("processor %d present\n", i);
n--;

}
return (0);

}

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

192 SunOS 5.8 Last modified 16 Mar 1998

System Calls p_online(2)

SEE ALSO psradm (1M), psrinfo (1M), processor_bind (2), processor_info (2),
pset_create (2), sysconf (3C), attributes (5)

Last modified 16 Mar 1998 SunOS 5.8 193

priocntl(2) System Calls

NAME priocntl – process scheduler control

SYNOPSIS #include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>
long priocntl (idtype_t idtype, id_t id, int cmd, /* arg */ ...);

DESCRIPTION The priocntl() function provides for control over the scheduling of an active
light weight process (LWP).

LWPs fall into distinct classes with a separate scheduling policy applied to
each class. The two classes currently supported are the realtime class and the
time-sharing class. The characteristics of these classes are described under the
corresponding headings below. The class attribute of an LWP is inherited across
the fork (2) and _lwp_create (2) functions and the exec family of functions (see
exec (2)). The priocntl() function can be used to dynamically change the
class and other scheduling parameters associated with a running LWP or set of
LWPs given the appropriate permissions as explained below.

In the default configuration, a runnable realtime LWP runs before any other
LWP. Therefore, inappropriate use of realtime LWP can have a dramatic negative
impact on system performance.

The priocntl() function provides an interface for specifying a process, set of
processes or an LWP to which the function is to apply. The priocntlset (2)
function provides the same functions as priocntl() , but allows a more general
interface for specifying the set of LWPs to which the function is to apply.

For priocntl() , the idtype and id arguments are used together to specify the
set of LWPs. The interpretation of id depends on the value of idtype. The possible
values for idtype and corresponding interpretations of id are as follows:
P_LWPID The id argument is an LWP ID. The priocntl function applies

to the LWP with the specified ID within the calling process.

P_PID The id argument is a process ID specifying a single process.
The priocntl() function applies to all LWPs currently
associated with the specified process.

P_PPID The id argument is a parent process ID. The priocntl()
function applies to all LWPs currently associated with
processes with the specified parent process ID.

P_PGID The id argument is a process group ID. The priocntl()
function applies to all LWPs currently associated with
processes in the specified process group.

194 SunOS 5.8 Last modified 22 Sep 1997

System Calls priocntl(2)

P_SID The id argument is a session ID. The priocntl() function
applies to all LWPs currently associated with processes in
the specified session.

P_CID The id argument is a class ID (returned by the priocntl()
PC_GETCIDcommand as explained below). The
priocntl() function applies to all LWPs in the specified
class.

P_UID The id argument is a user ID. The priocntl() function
applies to all LWPs with this effective user ID.

P_GID The id argument is a group ID. The priocntl() function
applies to all LWPs with this effective group ID.

P_ALL The priocntl() function applies to all existing LWPs. The
value of id is ignored. The permission restrictions described
below still apply.

An id value of P_MYIDcan be used in conjunction with the idtype value to specify
the calling LWP’s LWP ID, parent process ID, process group ID, session ID,
class ID, user ID, or group ID.

In order to change the scheduling parameters of an LWP (using the
PC_SETPARMScommand as explained below) the real or effective user ID of
the LWP calling priocntl() must match the real or effective user ID of the
receiving LWP or the effective user ID of the calling LWP must be super-user.
These are the minimum permission requirements enforced for all classes. An
individual class may impose additional permissions requirements when setting
LWPs to that class and/or when setting class-specific scheduling parameters.

A special sys scheduling class exists for the purpose of scheduling the execution
of certain special system processes (such as the swapper process). It is not
possible to change the class of any LWP to sys . In addition, any processes in
the sys class that are included in a specified set of processes are disregarded
by priocntl() . For example, an idtype of P_UID and an id value of 0 would
specify all processes with a user ID of 0 except processes in the sys class and (if
changing the parameters using PC_SETPARMS) the init (1M) process.

The init process is a special case. In order for a priocntl() call to change the
class or other scheduling parameters of the init process (process ID 1), it must be
the only process specified by idtype and id. The init process may be assigned to
any class configured on the system, but the time-sharing class is almost always
the appropriate choice. (Other choices may be highly undesirable; see the System
Administration Guide, Volume 1 for more information.)

The data type and value of arg are specific to the type of command specified
by cmd.

Last modified 22 Sep 1997 SunOS 5.8 195

priocntl(2) System Calls

A structure with the following members is used by the PC_GETCIDand
PC_GETCLINFOcommands.

id_t pc_cid; /* Class id */
char pc_clname[PC_CLNMSZ]; /* Class name */
int pc_clinfo[PC_CLINFOSZ]; /* Class information */

The pc_cid member is a class ID returned by the priocntl() PC_GETCID
command. The pc_clname member is a buffer of size PC_CLNMSZ(defined in
<sys/priocntl.h>) used to hold the class name (RT for realtime or TS for
time-sharing).

The pc_clinfo member is a buffer of size PC_CLINFOSZ(defined in
<sys/priocntl.h>) used to return data describing the attributes of a specific
class. The format of this data is class-specific and is described under the
appropriate heading (REALTIME CLASSor TIME-SHARING CLASS) below.

A structure with the following elements is used by the PC_SETPARMSand
PC_GETPARMScommands.

id_t pc_cid; /* LWP class */
int pc_clparms[PC_CLPARMSZ]; /* Class-specific params */

The pc_cid member is a class ID (returned by the priocntl() PC_GETCID
command). The special class ID PC_CLNULLcan also be assigned to pc_cid
when using the PC_GETPARMScommand as explained below.

The pc_clparms buffer holds class-specific scheduling parameters. The format
of this parameter data for a particular class is described under the appropriate
heading below. PC_CLPARMSZis the length of the pc_clparms buffer and
is defined in <sys/priocntl.h> .

COMMANDS Available priocntl() commands are:
PC_GETCID

Get class ID and class attributes for a specific class given class name. The
idtype and id arguments are ignored. If arg is non-null, it points to a structure
of type pcinfo_t . The pc_clname buffer contains the name of the class
whose attributes you are getting.

On success, the class ID is returned in pc_cid , the class attributes are
returned in the pc_clinfo buffer, and the priocntl() call returns
the total number of classes configured in the system (including the sys
class). If the class specified by pc_clname is invalid or is not currently
configured the priocntl() call returns −1 with errno set to EINVAL.

196 SunOS 5.8 Last modified 22 Sep 1997

System Calls priocntl(2)

The format of the attribute data returned for a given class is defined in the
<sys/rtpriocntl.h> or <sys/tspriocntl.h> header and described
under the appropriate heading below.

If arg is a null pointer, no attribute data is returned but the priocntl()
call still returns the number of configured classes.

PC_GETCLINFO
Get class name and class attributes for a specific class given class ID.
The idtype and id arguments are ignored. If arg is non-null, it points to a
structure of type pcinfo_t . The pc_cid member is the class ID of the class
whose attributes you are getting.

On success, the class name is returned in the pc_clname buffer, the class
attributes are returned in the pc_clinfo buffer, and the priocntl() call
returns the total number of classes configured in the system (including the
sys class). The format of the attribute data returned for a given class is
defined in the <sys/rtpriocntl.h> or <sys/tspriocntl.h> header
file and described under the appropriate heading below.

If arg is a null pointer, no attribute data is returned but the priocntl()
call still returns the number of configured classes.

PC_SETPARMS
Set the class and class-specific scheduling parameters of the specified
LWP(s) associated with the specified process(es). When this command is
used with the idtype of P_LWPID, it will set the class and class-specific
scheduling parameters of the LWP. The arg argument points to a structure of
type pcparms_t . The pc_cid member specifies the class you are setting
and the pc_clparms buffer contains the class-specific parameters you are
setting. The format of the class-specific parameter data is defined in the
<sys/rtpriocntl.h> or <sys/tspriocntl.h> header and described
under the appropriate class heading below.

When setting parameters for a set of LWPs, priocntl() acts on the LWPs
in the set in an implementation-specific order. If priocntl() encounters
an error for one or more of the target processes, it may or may not continue
through the set of LWPs, depending on the nature of the error. If the error
is related to permissions (EPERM), priocntl() continues through the
LWP set, resetting the parameters for all target LWPs for which the calling
LWP has appropriate permissions. The priocntl() function then returns
−1 with errno set to EPERMto indicate that the operation failed for one
or more of the target LWPs. If priocntl() encounters an error other
than permissions, it does not continue through the set of target LWPs but
returns the error immediately.

PC_GETPARMS

Last modified 22 Sep 1997 SunOS 5.8 197

priocntl(2) System Calls

Get the class and/or class-specific scheduling parameters of an LWP. The arg
member points to a structure of type pcparms_t .

If pc_cid specifies a configured class and a single LWP belonging to that
class is specified by the idtype and id values or the procset structure, then
the scheduling parameters of that LWP are returned in the pc_clparms
buffer. If the LWP specified does not exist or does not belong to the specified
class, the priocntl() call returns −1 with errno set to ESRCH.

If pc_cid specifies a configured class and a set of LWPs is specified,
the scheduling parameters of one of the specified LWP belonging to the
specified class are returned in the pc_clparms buffer and the priocntl()
call returns the process ID of the selected LWP. The criteria for selecting an
LWP to return in this case is class dependent. If none of the specified LWPs
exist or none of them belong to the specified class the priocntl() call
returns −1 with errno set to ESRCH.

If pc_cid is PC_CLNULLand a single LWP is specified the class of the
specified LWP is returned in pc_cid and its scheduling parameters are
returned in the pc_clparms buffer.

PC_ADMIN
This command provides functionality needed for the implementation of
the dispadmin (1M) utility. It is not intended for general use by other
applications.

REALTIME CLASS The realtime class provides a fixed priority preemptive scheduling policy
for those LWPS requiring fast and deterministic response and absolute
user/application control of scheduling priorities. If the realtime class is
configured in the system it should have exclusive control of the highest range of
scheduling priorities on the system. This ensures that a runnable realtime LWP is
given CPU service before any LWP belonging to any other class.

The realtime class has a range of realtime priority (rt_pri) values that may be
assigned to an LWP within the class. Real-time priorities range from 0 to x, where
the value of x is configurable and can be determined for a specific installation by
using the priocntl() PC_GETCID or PC_GETCLINFOcommand.

The realtime scheduling policy is a fixed priority policy. The scheduling priority
of a realtime LWP is never changed except as the result of an explicit request by
the user/application to change the rt_pri value of the LWP.

For an LWP in the realtime class, the rt_pri value is, for all practical purposes,
equivalent to the scheduling priority of the LWP. The rt_pri value completely
determines the scheduling priority of a realtime LWP relative to other LWPs
within its class. Numerically higher rt_pri values represent higher priorities.
Since the realtime class controls the highest range of scheduling priorities in the

198 SunOS 5.8 Last modified 22 Sep 1997

System Calls priocntl(2)

system it is guaranteed that the runnable realtime LWP with the highest rt_pri
value is always selected to run before any other LWPs in the system.

In addition to providing control over priority, priocntl() provides for control
over the length of the time quantum allotted to the LWP in the realtime class. The
time quantum value specifies the maximum amount of time an LWP may run
assuming that it does not complete or enter a resource or event wait state (sleep).
Note that if another LWP becomes runnable at a higher priority, the currently
running LWP may be preempted before receiving its full time quantum.

The system’s process scheduler keeps the runnable realtime LWPs on a set of
scheduling queues. There is a separate queue for each configured realtime
priority and all realtime LWPs with a given rt_pri value are kept together on
the appropriate queue. The LWPs on a given queue are ordered in FIFO order
(that is, the LWP at the front of the queue has been waiting longest for service and
receives the CPU first). Real-time LWPs that wake up after sleeping, LWPs which
change to the realtime class from some other class, LWPs which have used their
full time quantum, and runnable LWPs whose priority is reset by priocntl()
are all placed at the back of the appropriate queue for their priority. An LWP
that is preempted by a higher priority LWP remains at the front of the queue
(with whatever time is remaining in its time quantum) and runs before any other
LWP at this priority. Following a fork (2) or _lwp_create (2) function call by
a realtime LWP, the parent LWP continues to run while the child LWP (which
inherits its parent’s rt_pri value) is placed at the back of the queue.

A structure with the following members (defined in <sys/rtpriocntl.h>)
defines the format used for the attribute data for the realtime class.

short rt_maxpri; /* Maximum realtime priority */

The priocntl() PC_GETCID and PC_GETCLINFOcommands return realtime
class attributes in the pc_clinfo buffer in this format.

The rt_maxpri member specifies the configured maximum rt_pri value for
the realtime class (if rt_maxpri is x, the valid realtime priorities range from 0
to x).

A structure with the following members (defined in <sys/rtpriocntl.h>)
defines the format used to specify the realtime class-specific scheduling
parameters of an LWP.

short rt_pri; /* Real-Time priority */
uint_t rt_tqsecs; /* Seconds in time quantum */
int rt_tqnsecs; /* Additional nanoseconds in quantum */

Last modified 22 Sep 1997 SunOS 5.8 199

priocntl(2) System Calls

When using the priocntl() PC_SETPARMS or PC_GETPARMScommands,
if pc_cid specifies the realtime class, the data in the pc_clparms buffer is
in this format.

The above commands can be used to set the realtime priority to the specified
value or get the current rt_pri value. Setting the rt_pri value of an LWP that
is currently running or runnable (not sleeping) causes the LWP to be placed at
the back of the scheduling queue for the specified priority. The LWP is placed at
the back of the appropriate queue regardless of whether the priority being set is
different from the previous rt_pri value of the LWP. Note that a running LWP
can voluntarily release the CPU and go to the back of the scheduling queue at the
same priority by resetting its rt_pri value to its current realtime priority value.
In order to change the time quantum of an LWP without setting the priority or
affecting the LWP’s position on the queue, the rt_pri member should be
set to the special value RT_NOCHANGE(defined in <sys/rtpriocntl.h>).
Specifying RT_NOCHANGEwhen changing the class of an LWP to realtime from
some other class results in the realtime priority being set to 0.

For the priocntl() PC_GETPARMS command, if pc_cid specifies the realtime
class and more than one realtime LWP is specified, the scheduling parameters of
the realtime LWP with the highest rt_pri value among the specified LWPs
are returned and the LWP ID of this LWP is returned by the priocntl() call.
If there is more than one LWP sharing the highest priority, the one returned is
implementation-dependent.

The rt_tqsecs and rt_tqnsecs members are used for getting or setting the
time quantum associated with an LWP or group of LWPs. rt_tqsecs is the
number of seconds in the time quantum and rt_tqnsecs is the number of
additional nanoseconds in the quantum. For example setting rt_tqsecs to
2 and rt_tqnsecs to 500,000,000 (decimal) would result in a time quantum
of two and one-half seconds. Specifying a value of 1,000,000,000 or greater in
the rt_tqnsecs member results in an error return with errno set to EINVAL.
Although the resolution of the tq_nsecs member is very fine, the specified
time quantum length is rounded up by the system to the next integral multiple
of the system clock’s resolution. The maximum time quantum that can be
specified is implementation-specific and equal to LONG_MAX1 ticks (defined in
<limits.h>). Requesting a quantum greater than this maximum results in
an error return with errno set to ERANGE(although infinite quantums may be
requested using a special value as explained below). Requesting a time quantum
of 0 (setting both rt_tqsecs and rt_tqnsecs to 0) results in an error return
with errno set to EINVAL.

200 SunOS 5.8 Last modified 22 Sep 1997

System Calls priocntl(2)

The rt_tqnsecs member can also be set to one of the following special values
(defined in <sys/rtpriocntl.h>), in which case the value of rt_tqsecs
is ignored:
RT_TQINF Set an infinite time quantum.

RT_TQDEF Set the time quantum to the default for this priority (see
rt_dptbl (4)).

RT_NOCHANGE Do not set the time quantum. This value is useful when you
wish to change the realtime priority of an LWP without
affecting the time quantum. Specifying this value when
changing the class of an LWP to realtime from some other
class is equivalent to specifying RT_TQDEF.

In order to change the class of an LWP to realtime (from any other class) the LWP
invoking priocntl() must have super-user privileges. In order to change
the priority or time quantum setting of a realtime LWP, the LWP invoking
priocntl() must have super-user privileges or must itself be a realtime
LWP whose real or effective user ID matches the real of effective user ID of
the target LWP.

The realtime priority and time quantum are inherited across fork (2) and the
exec family of functions (see exec (2)).

TIME-SHARING
CLASS

The time-sharing scheduling policy provides for a fair and effective allocation of
the CPU resource among LWPs with varying CPU consumption characteristics.
The objectives of the time-sharing policy are to provide good response time to
interactive LWPs and good throughput to CPU-bound jobs while providing a
degree of user/application control over scheduling.

The time-sharing class has a range of time-sharing user priority (see ts_upri
below) values that may be assigned to LWPs within the class. A ts_upri
value of 0 is defined as the default base priority for the time-sharing class. User
priorities range from −x to +x where the value of x is configurable and can be
determined for a specific installation by using the priocntl() PC_GETCID or
PC_GETCLINFOcommand.

The purpose of the user priority is to provide some degree of user/application
control over the scheduling of LWPs in the time-sharing class. Raising or
lowering the ts_upri value of an LWP in the time-sharing class raises or lowers
the scheduling priority of the LWP. It is not guaranteed, however, that an LWP
with a higher ts_upri value will run before one with a lower ts_upri value.
This is because the ts_upri value is just one factor used to determine the
scheduling priority of a time-sharing LWP. The system may dynamically adjust
the internal scheduling priority of a time-sharing LWP based on other factors
such as recent CPU usage.

Last modified 22 Sep 1997 SunOS 5.8 201

priocntl(2) System Calls

In addition to the system-wide limits on user priority (returned by the
PC_GETCIDand PC_GETCLINFOcommands) there is a per LWP user priority
limit (see ts_uprilim below), which specifies the maximum ts_upri value
that may be set for a given LWP; by default, ts_uprilim is 0.

A structure with the following members (defined in <sys/tspriocntl.h>)
defines the format used for the attribute data for the time-sharing class.

short ts_maxupri; /* Limits of user priority range */

The priocntl() PC_GETCID and PC_GETCLINFOcommands return
time-sharing class attributes in the pc_clinfo buffer in this format.

ts_maxupri specifies the configured maximum user priority value for the
time-sharing class. If ts_maxupri is x, the valid range for both user priorities
and user priority limits is from −x to +x.

A structure with the following members (defined in <sys/tspriocntl.h>)
defines the format used to specify the time-sharing class-specific scheduling
parameters of an LWP.

short ts_uprilim; /* Time-Sharing user priority limit */
short ts_upri; /* Time-Sharing user priority */

When using the priocntl() PC_SETPARMS or PC_GETPARMScommands, if
pc_cid specifies the time-sharing class, the data in the pc_clparms buffer is
in this format.

For the priocntl() PC_GETPARMS command, if pc_cid specifies the
time-sharing class and more than one time-sharing LWP is specified, the
scheduling parameters of the time-sharing LWP with the highest ts_upri value
among the specified LWPs is returned and the LWP ID of this LWP is returned
by the priocntl() call. If there is more than one LWP sharing the highest user
priority, the one returned is implementation-dependent.

Any time-sharing LWP may lower its own ts_uprilim (or that of another LWP
with the same user ID). Only a time-sharing LWP with super-user privileges
may raise a ts_uprilim . When changing the class of an LWP to time-sharing
from some other class, super-user privileges are required in order to set the
initial ts_uprilim to a value greater than 0. Attempts by a non-super-user

202 SunOS 5.8 Last modified 22 Sep 1997

System Calls priocntl(2)

LWP to raise a ts_uprilim or set an initial ts_uprilim greater than 0 fail
with a return value of −1 and errno set to EPERM.

Any time-sharing LWP may set its own ts_upri (or that of another LWP with
the same user ID) to any value less than or equal to the LWP’s ts_uprilim .
Attempts to set the ts_upri above the ts_uprilim (and/or set the
ts_uprilim below the ts_upri) result in the ts_upri being set equal to the
ts_uprilim .

Either of the ts_uprilim or ts_upri members may be set to the special
value TS_NOCHANGE(defined in <sys/tspriocntl.h>) in order to set one
of the values without affecting the other. Specifying TS_NOCHANGEfor the
ts_upri when the ts_uprilim is being set to a value below the current
ts_upri causes the ts_upri to be set equal to the ts_uprilim being set.
Specifying TS_NOCHANGEfor a parameter when changing the class of an LWP
to time-sharing (from some other class) causes the parameter to be set to a
default value. The default value for the ts_uprilim is 0 and the default for the
ts_upri is to set it equal to the ts_uprilim which is being set.

The time-sharing user priority and user priority limit are inherited across
fork() and the exec family of functions.

RETURN VALUES Unless otherwise noted above, priocntl() returns a value of 0 on success. On
failure, priocntl() returns −1 and sets errno to indicate the error.

ERRORS The priocntl() function fails if:
EAGAIN An attempt to change the class of an LWP failed because of

insufficient resources other than memory (for example,
class-specific kernel data structures).

EFAULT One of the arguments points to an illegal address.

EINVAL The argument cmd was invalid, an invalid or unconfigured
class was specified, or one of the parameters specified was
invalid.

ENOMEM An attempt to change the class of an LWP failed because of
insufficient memory.

EPERM The effective user of the calling LWP is not super-user.

ERANGE The requested time quantum is out of range.

ESRCH None of the specified LWPs exist.

SEE ALSO priocntl (1), dispadmin (1M), init (1M), _lwp_create (2), exec (2), fork (
2), nice (2), priocntlset (2), rt_dptbl (4)

System Administration Guide, Volume 1

Last modified 22 Sep 1997 SunOS 5.8 203

priocntl(2) System Calls

System Interface Guide

204 SunOS 5.8 Last modified 22 Sep 1997

System Calls priocntlset(2)

NAME priocntlset – generalized process scheduler control

SYNOPSIS #include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>
long priocntlset (procset_t *psp, int cmd, /* arg */ ...);

DESCRIPTION The priocntlset() function changes the scheduling properties of running
processes. priocntlset() has the same functions as the priocntl()
function, but a more general way of specifying the set of processes whose
scheduling properties are to be changed.

cmd specifies the function to be performed. arg is a pointer to a structure whose
type depends on cmd. See priocntl (2) for the valid values of cmd and the
corresponding arg structures.

psp is a pointer to a procset structure, which priocntlset() uses to specify
the set of processes whose scheduling properties are to be changed. The
procset structure contains the following members:

idop_t p_op; /* operator connecting left/right sets */
idtype_t p_lidtype; /* left set ID type */
id_t p_lid; /* left set ID */
idtype_t p_ridtype; /* right set ID type */
id_t p_rid; /* right set ID */

The p_lidtype and p_lid members specify the ID type and ID of one (“left”)
set of processes; the p_ridtype and p_rid members specify the ID type and
ID of a second (“right”) set of processes. ID types and IDs are specified just as
for the priocntl() function. The p_op member specifies the operation to be
performed on the two sets of processes to get the set of processes the function is
to apply to. The valid values for p_op and the processes they specify are:
POP_DIFF Set difference: processes in left set and not in right set.

POP_AND Set intersection: processes in both left and right sets.

POP_OR Set union: processes in either left or right sets or both.

POP_XOR Set exclusive-or: processes in left or right set but not in both.

The following macro, which is defined in <procset.h> , offers a convenient
way to initialize a procset structure:

#define setprocset(psp, op, ltype, lid, rtype, rid) \
(psp) ⇒p_op = (op), \
(psp) ⇒p_lidtype = (ltype), \
(psp) ⇒p_lid = (lid), \
(psp) ⇒p_ridtype = (rtype), \

Last modified 29 Jul 1991 SunOS 5.8 205

priocntlset(2) System Calls

(psp) ⇒p_rid = (rid),

RETURN VALUES Unless otherwise noted above, priocntlset() returns 0 on success.
Otherwise, it returns −1 and sets errno to indicate the error.

ERRORS The priocntlset() function will fail if:
EAGAIN An attempt to change the class of a process failed because

of insufficient resources other than memory (for example,
class-specific kernel data structures).

EFAULT One of the arguments points to an illegal address.

EINVAL The argument cmd was invalid, an invalid or unconfigured
class was specified, or one of the parameters specified was
invalid.

ENOMEM An attempt to change the class of a process failed because of
insufficient memory.

EPERM The effective user of the calling process is not super-user.

ERANGE The requested time quantum is out of range.

ESRCH None of the specified processes exist.

SEE ALSO priocntl (1), priocntl (2)

206 SunOS 5.8 Last modified 29 Jul 1991

System Calls processor_bind(2)

NAME processor_bind – bind LWPs to a processor

SYNOPSIS #include <sys/types.h>
#include <sys/processor.h>
#include <sys/procset.h>
int processor_bind (idtype_t idtype, id_t id, processorid_t processorid, processorid_t
*obind);

DESCRIPTION The processor_bind() function binds the LWP (lightweight process) or set of
LWPs specified by idtype and id to the processor specified by processorid. If obind
is not NULL, this function also sets the processorid_t variable pointed to by
obind to the previous binding of one of the specified LWPs, or to PBIND_NONE
if the selected LWP was not bound.

If idtype is P_PID , the binding effects all LWPs of the process with process
ID (PID) id.

If idtype is P_LWPID, the binding effects the LWP of the current process with
LWP ID id.

If id is P_MYID, the specified LWP or process is the current one.

If processorid is PBIND_NONE, the processor bindings of the specified LWPs
are cleared.

If processorid is PBIND_QUERY, the processor bindings are not changed.

The effective user of the calling process must be superuser, or its real or effective
user ID must match the real or effective user ID of the LWPs being bound. If the
calling process does not have permission to change all of the specified LWPs, the
bindings of the LWPs for which it does have permission will be changed even
though an error is returned.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The processor_bind() function will fail if:
ESRCH No processes or LWPs were found to match the criteria

specified by idtype and id.

EINVAL The specified processor is not on-line, or the idtype argument
was not P_PID or P_LWPID.

EFAULT The location pointed to by obind was not NULL and not
writable by the user.

EPERM The effective user of the calling process is not superuser,
and its real or effective user ID does not match the real or
effective user ID of one of the LWPs being bound.

Last modified 10 Jan 1997 SunOS 5.8 207

processor_bind(2) System Calls

SEE ALSO psradm (1M), psrinfo (1M), p_online (2), pset_bind (2), sysconf (3C)

208 SunOS 5.8 Last modified 10 Jan 1997

System Calls processor_info(2)

NAME processor_info – determine type and status of a processor

SYNOPSIS #include <sys/types.h>
#include <sys/processor.h>
int processor_info (processorid_t processorid, processor_info_t *infop);

DESCRIPTION The processor_info() function returns the status of the processor specified
by processorid in the processor_info_t structure pointed to by infop.

The structure processor_info_t contains the following members:

int pi_state;
char pi_processor_type[PI_TYPELEN];
char pi_fputypes[PI_FPUTYPE];
int pi_clock;

The pi_state member is the current state of the processor, either P_ONLINE,
P_OFFLINE, or P_POWEROFF.

The pi_processor_type member is a null-terminated ASCII string specifying
the type of the processor.

The pi_fputypes member is a null-terminated ASCII string containing the
comma-separated types of floating-point units (FPUs) attached to the processor.
This string will be empty if no FPU is attached.

The pi_clock member is the processor clock frequency rounded to the nearest
megahertz. It may be 0 if not known.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The processor_info() function will fail if:
EINVAL An non-existent processor ID was specified.

EFAULT The processor_info_t structure pointed to by infop was
not writable by the user.

SEE ALSO psradm (1M), psrinfo (1M), p_online (2), sysconf (3C)

Last modified 10 Jan 1997 SunOS 5.8 209

profil(2) System Calls

NAME profil – execution time profile

SYNOPSIS #include <unistd.h>
void profil (unsigned short *buff, unsigned int bufsiz, unsigned int offset, unsigned int
scale);

DESCRIPTION The profil() function provides CPU-use statistics by profiling the amount
of CPU time expended by a program. The profil() function generates the
statistics by creating an execution histogram for a current process. The histogram
is defined for a specific region of program code to be profiled, and the identified
region is logically broken up into a set of equal size subdivisions, each of which
corresponds to a count in the histogram. With each clock tick, the current
subdivision is identified and its corresponding histogram count is incremented.
These counts establish a relative measure of how much time is being spent in
each code subdivision. The resulting histogram counts for a profiled region can
be used to identify those functions that consume a disproportionately high
percentage of CPU time.

The buff argument is a buffer of bufsiz bytes in which the histogram counts are
stored in an array of unsigned short int .

The offset, scale, and bufsiz arguments specify the region to be profiled.

The offset argument is effectively the start address of the region to be profiled.

The scale argument is a contraction factor that indicates how much smaller
the histogram buffer is than the region to be profiled. More precisely, scale is
interpreted as an unsigned 16-bit fixed-point fraction with the decimal point
implied on the left. Its value is the reciprocal of the number of bytes in a
subdivision, per byte of histogram buffer. Since there are two bytes per histogram
counter, the effective ratio of subdivision bytes per counter is one half the scale.

The values of scale are as follows:

� the maximum value of scale, 0xffff (approximately 1), maps subdivisions
2 bytes long to each counter.

� the minimum value of scale (for which profiling is performed), 0x0002
(1/32,768), maps subdivision 65,536 bytes long to each counter.

� the default value of scale (currently used by cc −qp), 0x4000 , maps
subdivisions 8 bytes long to each counter.

The values are used within the kernel as follows: when the process is interrupted
for a clock tick, the value of offset is subtracted from the current value of the
program counter (pc), and the remainder is multiplied by scale to derive a result.
That result is used as an index into the histogram array to locate the cell to be
incremented. Therefore, the cell count represents the number of times that the

210 SunOS 5.8 Last modified 11 Feb 1998

System Calls profil(2)

process was executing code in the subdivision associated with that cell when
the process was interrupted.

The value of scale can be computed as (RATIO * 0200000L), where RATIO is
the desired ratio of bufsiz to profiled region size, and has a value between 0 and
1. Qualitatively speaking, the closer RATIO is to 1, the higher the resolution
of the profile information.

The value of bufsiz can be computed as (size_of_region_to_be_profiled * RATIO).

Profiling is turned off by giving a scale value of 0 or 1, and is rendered ineffective
by giving a bufsiz value of 0. Profiling is turned off when one of the exec
family of functions (see exec (2)) is executed, but remains on in both child and
parent processes after a fork (2). Profiling is turned off if a buff update would
cause a memory fault.

USAGE The pcsample (2) function should be used when profiling dynamically-linked
programs and 64-bit programs.

SEE ALSO exec (2), fork (2), pcsample (2), times (2), monitor (3C), prof (5)

NOTES In Solaris releases prior to 2.6, calling profil() in a multithreaded program
would impact only the calling LWP; the profile state was not inherited at LWP
creation time. To profile a multithreaded program with a global profile buffer,
each thread needed to issue a call to profil() at threads start-up time, and
each thread had to be a bound thread. This was cumbersome and did not
easily support dynamically turning profiling on and off. In Solaris 2.6, the
profil() system call for multithreaded processes has global impact — that
is, a call to profil() impacts all LWPs/threads in the process. This may
cause applications that depend on the previous per-LWP semantic to break, but
it is expected to improve multithreaded programs that wish to turn profiling
on and off dynamically at runtime.

Last modified 11 Feb 1998 SunOS 5.8 211

pset_bind(2) System Calls

NAME pset_bind – bind LWPs to a set of processors

SYNOPSIS #include <sys/pset.h>
int pset_bind (psetid_t pset, idtype_t idtype, id_t id, psetid_t *opset);

DESCRIPTION The pset_bind() function binds the LWP or set of LWPs specified by idtype and
id to the processor set specified by pset. If obind is not NULL, pset_bind() sets
the psetid_t variable pointed to by opset to the previous processor set binding
of one of the specified LWP, or to PS_NONEif the selected LWP was not bound.

If idtype is P_PID , the binding affects all LWPs of the process with process
ID (PID) id.

If idtype is P_LWPID, the binding affects the LWP of the current process with
LWP ID id.

If id is P_MYID, the specified LWP or process is the current one.

If pset is PS_NONE, the processor set bindings of the specified LWPs are cleared.

If pset is PS_QUERY, the processor set bindings are not changed.

The effective user of the calling process must be super-user, or its real or effective
user ID must match the real or effective user ID of the LWPs being bound, or pset
must be PS_QUERY. If the calling process does not have permission to change
all of the specified LWPs, the bindings of the LWPs for which it does have
permission will be changed even though an error is returned.

If the processor set type of pset is PS_PRIVATE(see pset_info (2)), the effective
user of the calling process must be super-user.

LWPs that have been bound to a processor with processor_bind (2) may also
be bound to a processor set if the processor is part of the processor set. If this
occurs, the binding to the processor remains in effect. If the processor binding is
later removed, the processor set binding becomes effective.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The pset_bind() function will fail if:
EBUSY One of the LWPs is bound to a processor, and the specified

processor set does not include that processor.

EFAULT The location pointed to by opset was not NULL and not
writable by the user.

EINVAL An invalid processor set ID was specified; or idtype was not
P_PID or P_LWPID.

EPERM The effective user of the calling process is not super-user,
and either the processor set type of pset is PS_USER, or the

212 SunOS 5.8 Last modified 17 May 1996

System Calls pset_bind(2)

real or effective user ID of the calling process does not match
the real or effective user ID of one of the LWPs being bound.

ESRCH No processes or LWPs were found to match the criteria
specified by idtype and id.

SEE ALSO pbind (1M), psrset (1M), processor_bind (2), pset_create (2),
pset_info (2)

Last modified 17 May 1996 SunOS 5.8 213

pset_create(2) System Calls

NAME pset_create, pset_destroy, pset_assign – manage sets of processors

SYNOPSIS #include <sys/pset.h>
int pset_create (psetid_t *newpset);

int pset_destroy (psetid_t pset);

int pset_assign (psetid_t pset, processorid_t cpu, psetid_t *opset);

DESCRIPTION These functions control the creation and management of sets of processors.
Processor sets allow a subset of the system’s processors to be set aside for
exclusive use by specified LWP s and processes. The binding of LWP s and
processes to processor sets is controlled by pset_bind (2) .

The pset_create() function creates an empty processor set that contains
no processors. On successful return, newpset will contain the ID of the new
processor set.

Only a limited number of processor sets may be active (created and not
destroyed) at a given time. This limit will always be greater than the number
of processors in the system. If pset_create() is called when the maximum
number of processor sets is already active, the function will return -1 and
errno will be set to ENOMEM.

The pset_destroy() function destroys the processor set pset , releasing its
constituent processors and processes.

The pset_assign() function assigns the processor cpu to the processor set
pset . A processor that has been assigned to a processor set will run only LWP s
and processes that have been explicitly bound to that processor set, unless
another LWP requires a resource that is only available on that processor. On
successful return, if opset is non-null, opset will contain the processor set ID of the
former processor set of the processor.

If pset is PS_NONE, pset_assign() releases processor cpu from its current
processor set.

If pset is PS_QUERY, pset_assign() makes no change to processor sets, but
returns the current processor set ID of processor cpu in opset .

These functions are restricted to super-user use, except for pset_assign()
when pset is PS_QUERY.

RETURN VALUES Upon successful completion, these functions return 0 . Otherwise, -1 is returned
and errno is set to indicate the error.

ERRORS These functions will fail if:
EBUSY The processor could not be moved to the specified processor

set.

214 SunOS 5.8 Last modified 10 Jan 1997

System Calls pset_create(2)

EFAULT The location pointed to by newpset was not writable by the
user, or the location pointed to by opset was not NULL and
not writable by the user.

EINVAL The specified processor does not exist, the specified
processor is not on-line, or an invalid processor set was
specified.

ENOMEM There was insufficient space for pset_create to create a
new processor set.

EPERM The effective user of the calling process is not super-user.

SEE ALSO psradm (1M) , psrinfo (1M) , psrset (1M) , p_online (2) ,
processor_bind (2) , pset_bind (2) , pset_info (2)

NOTES Processors belonging to different processor sets of type PS_SYSTEM(see
pset_info (2)) cannot be assigned to the same processor set of type
PS_PRIVATE . If this is attempted, pset_assign() will fail and set errno to
EINVAL .

Processors with LWP s bound to them using processor_bind (2) cannot be
assigned to a new processor set. If this is attempted, pset_assign() will fail
and set errno to EBUSY.

Last modified 10 Jan 1997 SunOS 5.8 215

pset_info(2) System Calls

NAME pset_info – get information about a processor set

SYNOPSIS #include <sys/pset.h>
int pset_info (psetid_t pset, int *type, uint_t *numcpus, processorid_t *cpulist);

DESCRIPTION The pset_info() function returns information on the processor set pset.

If type is non-null, then on successful completion the type of the processor set
will be stored in the location pointed to by type. Processor set types can have
the following values:
PS_SYSTEM The processor set was created by the system. Processor

sets of this type cannot be modified or removed by the
user, but LWPs and processes can be bound to them using
pset_bind (2).

PS_PRIVATE The processor set was created by pset_create (2) and
can be modified by pset_assign (2) and removed by
pset_destroy (2). LWPs and processes can also be bound
to this processor set using pset_bind() .

If numcpus is non-null, then on successful completion the number of processors
in the processor set will be stored in the location pointed to by numcpus.

If numcpus and cpulist are both non-null, then cpulist points to a buffer where a
list of processors assigned to the processor set is to be stored, and numcpus points
to the maximum number of processor IDs the buffer can hold. On successful
completion, the list of processors up to the maximum buffer size is stored in the
buffer pointed to by cpulist.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The pset_info() function will fail if:
EFAULT The location pointed to by type, numcpus, or cpulist was not

null and not writable by the user.

EINVAL An invalid processor set ID was specified.

SEE ALSO psrinfo (1M), psrset (1M), processor_info (2), pset_assign (2),
pset_bind (2), pset_create (2), pset_destroy (2)

216 SunOS 5.8 Last modified 17 May 1996

System Calls ptrace(2)

NAME ptrace – allows a parent process to control the execution of a child process

SYNOPSIS #include <unistd.h>
#include <sys/types.h>
int ptrace (int request, pid_t pid, int addr, int data);

DESCRIPTION The ptrace() function allows a parent process to control the execution
of a child process. Its primary use is for the implementation of breakpoint
debugging. The child process behaves normally until it encounters a signal
(see signal (3HEAD)), at which time it enters a stopped state and its parent
is notified via the wait (2) function. When the child is in the stopped state, its
parent can examine and modify its “core image” using ptrace() . Also, the
parent can cause the child either to terminate or continue, with the possibility of
ignoring the signal that caused it to stop.

The request argument determines the action to be taken by ptrace() and is
one of the following:
0 This request must be issued by the child process if it is to be traced

by its parent. It turns on the child’s trace flag that stipulates that the
child should be left in a stopped state on receipt of a signal rather than
the state specified by func (see signal (3C)). The pid, addr, and data
arguments are ignored, and a return value is not defined for this
request. Peculiar results ensue if the parent does not expect to trace
the child.

The remainder of the requests can only be used by the parent process. For each,
pid is the process ID of the child. The child must be in a stopped state before
these requests are made.
1, 2 With these requests, the word at location addr in the address space of

the child is returned to the parent process. If instruction and data
space are separated, request 1 returns a word from instruction space,
and request 2 returns a word from data space. If instruction and
data space are not separated, either request 1 or request 2 may be
used with equal results. The data argument is ignored. These two
requests fail if addr is not the start address of a word, in which case −1
is returned to the parent process and the parent’s errno is set to EIO .

3 With this request, the word at location addr in the child’s user area
in the system’s address space (see <sys/user.h>) is returned to
the parent process. The data argument is ignored. This request fails
if addr is not the start address of a word or is outside the user area,
in which case −1 is returned to the parent process and the parent’s
errno is set to EIO .

4, 5 With these requests, the value given by the data argument is written
into the address space of the child at location addr. If instruction and

Last modified 5 Jul 1990 SunOS 5.8 217

ptrace(2) System Calls

data space are separated, request 4 writes a word into instruction
space, and request 5 writes a word into data space. If instruction and
data space are not separated, either request 4 or request 5 may be
used with equal results. On success, the value written into the address
space of the child is returned to the parent. These two requests fail if
addr is not the start address of a word. On failure −1 is returned to the
parent process and the parent’s errno is set to EIO .

6 With this request, a few entries in the child’s user area can be written.
data gives the value that is to be written and addr is the location of the
entry. The few entries that can be written are the general registers and
the condition codes of the Processor Status Word.

7 This request causes the child to resume execution. If the data argument
is 0, all pending signals including the one that caused the child to stop
are canceled before it resumes execution. If the data argument is a
valid signal number, the child resumes execution as if it had incurred
that signal, and any other pending signals are canceled. The addr
argument must be equal to 1 for this request. On success, the value
of data is returned to the parent. This request fails if data is not 0 or a
valid signal number, in which case −1 is returned to the parent process
and the parent’s errno is set to EIO .

8 This request causes the child to terminate with the same consequences
as exit (2).

9 This request sets the trace bit in the Processor Status Word of the child
and then executes the same steps as listed above for request 7. The
trace bit causes an interrupt on completion of one machine instruction.
This effectively allows single stepping of the child.

To forestall possible fraud, ptrace() inhibits the set-user-ID facility on
subsequent calls to one of the exec family of functions (see exec (2)). If a
traced process calls one of the exec functions, it stops before executing the first
instruction of the new image showing signal SIGTRAP.

ERRORS The ptrace() function will fail if:
EIO The request argument is an illegal number.

EPERM The effective user of the calling process is not super-user.

ESRCH The pid argument identifies a child that does not exist or has
not executed a ptrace() call with request 0.

SEE ALSO exec (2), exit (2), wait (2), signal (3C), signal (3HEAD)

218 SunOS 5.8 Last modified 5 Jul 1990

System Calls putmsg(2)

NAME putmsg, putpmsg – send a message on a stream

SYNOPSIS #include <stropts.h>
int putmsg (int fildes, const struct strbuf *ctlptr, const struct strbuf *dataptr, int flags);

int putpmsg (int fildes, const struct strbuf *ctlptr, const struct strbuf *dataptr, int band, int
flags);

DESCRIPTION The putmsg() function creates a message from user-specified buffer(s) and
sends the message to a STREAMS file. The message may contain either a
data part, a control part, or both. The data and control parts to be sent are
distinguished by placement in separate buffers, as described below. The
semantics of each part is defined by the STREAMS module that receives the
message.

The putpmsg() function does the same thing as putmsg() , but provides the
user the ability to send messages in different priority bands. Except where noted,
all information pertaining to putmsg() also pertains to putpmsg() .

The fildes argument specifies a file descriptor referencing an open stream. The
ctlptr and dataptr arguments each point to a strbuf structure, which contains
the following members:

int maxlen; /* not used here */
int len; /* length of data */
void *buf; /* ptr to buffer */

The ctlptr argument points to the structure describing the control part, if any, to
be included in the message. The buf member in the strbuf structure points to
the buffer where the control information resides, and the len member indicates
the number of bytes to be sent. The maxlen member is not used in putmsg()
(see getmsg (2)). In a similar manner, dataptr specifies the data, if any, to be
included in the message. The flags argument indicates what type of message
should be sent and is described later.

To send the data part of a message, dataptr must not be NULL , and the len
member of dataptr must have a value of 0 or greater. To send the control part of
a message, the corresponding values must be set for ctlptr . No data (control)
part is sent if either dataptr (ctlptr) is NULLor the len member of dataptr
(ctlptr) is negative.

For putmsg() , if a control part is specified, and flags is set to RS_HIPRI , a
high priority message is sent. If no control part is specified, and flags is set to
RS_HIPRI , putmsg() fails and sets errno to EINVAL . If flags is set to 0, a
normal (non-priority) message is sent. If no control part and no data part are
specified, and flags is set to 0, no message is sent, and 0 is returned.

The stream head guarantees that the control part of a message generated by
putmsg() is at least 64 bytes in length.

Last modified 17 Oct 1996 SunOS 5.8 219

putmsg(2) System Calls

For putpmsg() , the flags are different. The flags argument is a bitmask with
the following mutually-exclusive flags defined: MSG_HIPRI and MSG_BAND. If
flags is set to 0, putpmsg() fails and sets errno to EINVAL . If a control part
is specified and flags is set to MSG_HIPRI and band is set to 0, a high-priority
message is sent. If flags is set to MSG_HIPRI and either no control part is
specified or band is set to a non-zero value, putpmsg() fails and sets errno to
EINVAL . If flags is set to MSG_BAND, then a message is sent in the priority band
specified by band . If a control part and data part are not specified and flags is set
to MSG_BAND, no message is sent and 0 is returned.

Normally, putmsg() will block if the stream write queue is full due to internal
flow control conditions. For high-priority messages, putmsg() does not
block on this condition. For other messages, putmsg() does not block when
the write queue is full and O_NDELAYor O_NONBLOCKis set. Instead, it fails
and sets errno to EAGAIN .

The putmsg() or putpmsg() function also blocks, unless prevented by lack of
internal resources, waiting for the availability of message blocks in the stream,
regardless of priority or whether O_NDELAYor O_NONBLOCKhas been specified.
No partial message is sent.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno
is set to indicate the error.

ERRORS The putmsg() and putpmsg() functions will fail if:
EAGAIN A non-priority message was specified, the O_NDELAYor

O_NONBLOCKflag is set and the stream write queue is full
due to internal flow control conditions.

EBADF The fildes argument is not a valid file descriptor open for
writing.

EFAULT The ctlptr or dataptr argument points to an illegal address.

EINTR A signal was caught during the execution of the putmsg()
function.

EINVAL An undefined value was specified in flags ; flags is set to
RS_HIPRI and no control part was supplied; or the stream
referenced by fildes is linked below a multiplexor.

ENOSR Buffers could not be allocated for the message that was to be
created due to insufficient STREAMS memory resources.

ENOSTR The fildes argument is not associated with a STREAM.

ENXIO A hangup condition was generated downstream for the
specified stream, or the other end of the pipe is closed.

220 SunOS 5.8 Last modified 17 Oct 1996

System Calls putmsg(2)

EPIPE
or EIO

The fildes argument refers to a STREAMS-based pipe and
the other end of the pipe is closed. A SIGPIPE signal is
generated for the calling process. This error condition occurs
only with SUS-compliant applications. See standards (5) .

ERANGE The size of the data part of the message does not fall within
the range specified by the maximum and minimum packet
sizes of the topmost stream module. This value is also
returned if the control part of the message is larger than the
maximum configured size of the control part of a message,
or if the data part of a message is larger than the maximum
configured size of the data part of a message.

In addition, putmsg() and putpmsg() will fail if the STREAM head had
processed an asynchronous error before the call. In this case, the value of errno
does not reflect the result of putmsg() or putpmsg() but reflects the prior
error.

The putpmsg() function will fail if:
EINVAL The flags argument is set to MSG_HIPRI and band is

non-zero.

SEE ALSO intro (2) , getmsg (2) , poll (2) , read (2) , write (2) , standards (5)

STREAMS Programming Guide

Last modified 17 Oct 1996 SunOS 5.8 221

read(2) System Calls

NAME read, readv, pread – read from file

SYNOPSIS #include <unistd.h>
ssize_t read (int fildes, void *buf, size_t nbyte);

ssize_t pread (int fildes, void *buf, size_t nbyte, off_t offset);

#include <sys/uio.h>
ssize_t readv (int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION The read() function attempts to read nbyte bytes from the file associated with
the open file descriptor, fildes , into the buffer pointed to by buf .

If nbyte is 0, read() will return 0 and have no other results.

On files that support seeking (for example, a regular file), the read() starts at a
position in the file given by the file offset associated with fildes . The file offset is
incremented by the number of bytes actually read.

Files that do not support seeking (for example, terminals) always read from the
current position. The value of a file offset associated with such a file is undefined.

If fildes refers to a socket, read() is equivalent to recv (3SOCKET) with
no flags set.

No data transfer will occur past the current end-of-file. If the starting position is
at or after the end-of-file, 0 will be returned. If the file refers to a device special
file, the result of subsequent read() requests is implementation-dependent.

If the value of nbyte is greater than SSIZE_MAX , the result is
implementation-dependent.

When attempting to read from a regular file with mandatory file/record locking
set (see chmod(2)), and there is a write lock owned by another process on the
segment of the file to be read:

� If O_NDELAYor O_NONBLOCKis set, read() returns -1 and sets errno to
EAGAIN .

� If O_NDELAYand O_NONBLOCKare clear, read() sleeps until the blocking
record lock is removed.

When attempting to read from an empty pipe (or FIFO):

� If no process has the pipe open for writing, read() returns 0 to indicate
end-of-file.

� If some process has the pipe open for writing and O_NDELAYis set, read()
returns 0 .

� If some process has the pipe open for writing and O_NONBLOCKis set,
read() returns -1 and sets errno to EAGAIN .

222 SunOS 5.8 Last modified 28 Jan 1998

System Calls read(2)

� If O_NDELAYand O_NONBLOCKare clear, read() blocks until data is
written to the pipe or the pipe is closed by all processes that had opened
the pipe for writing.

When attempting to read a file associated with a terminal that has no data
currently available:

� If O_NDELAYis set, read() returns 0 .

� If O_NONBLOCKis set, read() returns -1 and sets errno to EAGAIN .

� If O_NDELAYand O_NONBLOCKare clear, read() blocks until data become
available.

When attempting to read a file associated with a socket or a stream that is not a
pipe, a FIFO, or a terminal, and the file has no data currently available:

� If O_NDELAYor O_NONBLOCKis set, read() returns -1 and sets errno to
EAGAIN .

� If O_NDELAYand O_NONBLOCKare clear, read() blocks until data becomes
available.

The read() function reads data previously written to a file. If any portion of a
regular file prior to the end-of-file has not been written, read() returns bytes
with value 0. For example, lseek (2) allows the file offset to be set beyond the
end of existing data in the file. If data is later written at this point, subsequent
reads in the gap between the previous end of data and the newly written data
will return bytes with value 0 until data is written into the gap.

For regular files, no data transfer will occur past the offset maximum established
in the open file description associated with fildes .

Upon successful completion, where nbyte is greater than 0, read() will mark
for update the st_atime field of the file, and return the number of bytes read.
This number will never be greater than nbyte . The value returned may be less
than nbyte if the number of bytes left in the file is less than nbyte , if the read()
request was interrupted by a signal, or if the file is a pipe or FIFO or special file
and has fewer than nbyte bytes immediately available for reading. For example, a
read() from a file associated with a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it will return -1
with errno set to EINTR .

If a read() is interrupted by a signal after it has successfully read some data, it
will return the number of bytes read.

A read() from a STREAMS file can read data in three different modes:
byte-stream mode, message-nondiscard mode, and message-discard mode. The
default is byte-stream mode. This can be changed using the I_SRDOPT ioctl (2)
request, and can be tested with the I_GRDOPT ioctl() . In byte-stream mode,

Last modified 28 Jan 1998 SunOS 5.8 223

read(2) System Calls

read() retrieves data from the STREAM until as many bytes as were requested
are transferred, or until there is no more data to be retrieved. Byte-stream
mode ignores message boundaries.

In STREAMS message-nondiscard mode, read() retrieves data until as many
bytes as were requested are transferred, or until a message boundary is reached.
If read() does not retrieve all the data in a message, the remaining data is left
on the STREAM, and can be retrieved by the next read() call. Message-discard
mode also retrieves data until as many bytes as were requested are transferred,
or a message boundary is reached. However, unread data remaining in a
message after the read() returns is discarded, and is not available for a
subsequent read() , readv() or getmsg (2) call.

How read() handles zero-byte STREAMS messages is determined by the
current read mode setting. In byte-stream mode, read() accepts data until it
has read nbyte bytes, or until there is no more data to read, or until a zero-byte
message block is encountered. The read() function then returns the number
of bytes read, and places the zero-byte message back on the STREAM to be
retrieved by the next read() , readv() or getmsg (2) . In message-nondiscard
mode or message-discard mode, a zero-byte message returns 0 and the message
is removed from the STREAM. When a zero-byte message is read as the first
message on a STREAM, the message is removed from the STREAM and 0 is
returned, regardless of the read mode.

A read() from a STREAMS file returns the data in the message at the front of
the STREAM head read queue, regardless of the priority band of the message.

By default, STREAMs are in control-normal mode, in which a read() from a
STREAMS file can only process messages that contain a data part but do not
contain a control part. The read() fails if a message containing a control part
is encountered at the STREAM head. This default action can be changed by
placing the STREAM in either control-data mode or control-discard mode with
the I_SRDOPT ioctl() command. In control-data mode, read() converts
any control part to data and passes it to the application before passing any
data part originally present in the same message. In control-discard mode,
read() discards message control parts but returns to the process any data
part in the message.

In addition, read() and readv() will fail if the STREAM head had processed
an asynchronous error before the call. In this case, the value of errno does not
reflect the result of read() or readv() but reflects the prior error. If a hangup
occurs on the STREAM being read, read() continues to operate normally until
the STREAM head read queue is empty. Thereafter, it returns 0 .

readv() The readv() function is equivalent to read() , but places the input data
into the iovcnt buffers specified by the members of the iov array: iov 0 , iov 1 ,

224 SunOS 5.8 Last modified 28 Jan 1998

System Calls read(2)

..., iov [iovcnt -1]. The iovcnt argument is valid if greater than 0 and less than or
equal to IOV_MAX.

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory
where data should be placed. The readv() function always fills an area
completely before proceeding to the next.

Upon successful completion, readv() marks for update the st_atime field
of the file.

pread() The pread() function performs the same action as read() , except that it
reads from a given position in the file without changing the file pointer. The
first three arguments to pread() are the same as read() with the addition of
a fourth argument offset for the desired position inside the file. pread() will
read up to the maximum offset value that can be represented in an off_t for
regular files. An attempt to perform a pread() on a file that is incapable of
seeking results in an error.

RETURN VALUES Upon successful completion, read() and readv() return a non-negative
integer indicating the number of bytes actually read. Otherwise, the functions
return -1 and set errno to indicate the error.

ERRORS The read() , readv() , and pread() functions will fail if:
EAGAIN Mandatory file/record locking was set, O_NDELAYor

O_NONBLOCKwas set, and there was a blocking record
lock; total amount of system memory available when
reading using raw I/O is temporarily insufficient; no data is
waiting to be read on a file associated with a tty device and
O_NONBLOCKwas set; or no message is waiting to be read on
a stream and O_NDELAYor O_NONBLOCKwas set.

EBADF The fildes argument is not a valid file descriptor open for
reading.

EBADMSG Message waiting to be read on a stream is not a data
message.

EDEADLK The read was going to go to sleep and cause a deadlock
to occur.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the read operation and no data
was transferred.

Last modified 28 Jan 1998 SunOS 5.8 225

read(2) System Calls

EINVAL An attempt was made to read from a stream linked to
a multiplexor.

EIO A physical I/O error has occurred, or the process is in a
background process group and is attempting to read from
its controlling terminal, and either the process is ignoring
or blocking the SIGTTIN signal or the process group of the
process is orphaned.

EISDIR The fildes argument refers to a directory on a file system type
that does not support read operations on directories.

ENOLCK The system record lock table was full, so the read() or
readv() could not go to sleep until the blocking record
lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to
that machine is no longer active.

ENXIO The device associated with fildes is a block special or
character special file and the value of the file pointer is
out of range.

The read() and readv() functions will fail if:
EOVERFLOW The file is a regular file, nbyte is greater than 0, the starting

position is before the end-of-file, and the starting position is
greater than or equal to the offset maximum established in
the open file description associated with fildes .

The readv() function may fail if:
EFAULT The iov argument points outside the allocated address space.

EINVAL The iovcnt argument was less than or equal to 0, or greater
than or equal to {IOV_MAX} . (See intro (3) for a definition
of {IOV_MAX}).

EINVAL The sum of the iov_len values in the iov array overflowed
an int.

The pread() function will fail and the file pointer remain unchanged if:
ESPIPE The fildes argument is associated with a pipe or FIFO.

USAGE The pread() function has a transitional interface for 64-bit file offsets. See
lf64 (5) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

226 SunOS 5.8 Last modified 28 Jan 1998

System Calls read(2)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level read() is Async-Signal-Safe

SEE ALSO intro (3) , chmod(2) , creat (2) , dup (2) , fcntl (2) , getmsg (2) , ioctl (2) ,
lseek (2) , open (2) , pipe (2) , recv (3SOCKET) , attributes (5) , lf64 (5) ,
streamio (7I) , termio (7I)

Last modified 28 Jan 1998 SunOS 5.8 227

readlink(2) System Calls

NAME readlink – read the contents of a symbolic link

SYNOPSIS #include <unistd.h>
int readlink (const char *path, char *buf, size_t bufsiz);

DESCRIPTION The readlink() function places the contents of the symbolic link referred to by
path in the buffer buf which has size bufsiz. If the number of bytes in the symbolic
link is less than bufsiz, the contents of the remainder of buf are unspecified.

RETURN VALUES Upon successful completion, readlink() returns the count of bytes placed
in the buffer. Otherwise, it returns −1, leaves the buffer unchanged, and sets
errno to indicate the error.

ERRORS The readlink() function will fail if:
EACCES Search permission is denied for a component of

the path prefix of path.

EFAULT path or buf points to an illegal address.

EINVAL The path argument names a file that is not a
symbolic link.

EIO An I/O error occurred while reading from the
file system.

ENOENT A component of path does not name an existing
file or path is an empty string.

ELOOP Too many symbolic links were encountered in
resolving path.

ENAMETOOLONG The length of path exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX
while _POSIX_NO_TRUNCis in effect.

ENOTDIR A component of the path prefix is not a directory.

ENOSYS The file system does not support symbolic links.

The readlink() function may fail if:
EACCES Read permission is denied for the directory.

ENAMETOOLONG Path name resolution of a symbolic link produced
an intermediate result whose length exceeds
PATH_MAX.

USAGE Portable applications should not assume that the returned contents of the
symbolic link are null-terminated.

SEE ALSO stat (2), symlink (2)

228 SunOS 5.8 Last modified 22 Jan 1996

System Calls rename(2)

NAME rename – change the name of a file

SYNOPSIS #include <stdio.h>
int rename (const char *old, const char *new);

DESCRIPTION The rename() function changes the name of a file. The old argument points
to the pathname of the file to be renamed. The new argument points to the
new pathname of the file.

If old and new both refer to the same existing file, the rename() function returns
successfully and performs no other action.

If old points to the pathname of a file that is not a directory, new must not point to
the pathname of a directory. If the link named by new exists, it will be removed
and old will be renamed to new. In this case, a link named new must remain visible
to other processes throughout the renaming operation and will refer to either the
file referred to by new or the file referred to as old before the operation began.

If old points to the pathname of a directory, new must not point to the pathname
of a file that is not a directory. If the directory named by new exists, it will be
removed and old will be renamed to new. In this case, a link named new will exist
throughout the renaming operation and will refer to either the file referred to by
new or the file referred to as old before the operation began. Thus, if new names
an existing directory, it must be an empty directory.

The new pathname must not contain a path prefix that names old. Write
access permission is required for both the directory containing old and the
directory containing new. If old points to the pathname of a directory, write
access permission is required for the directory named by old, and, if it exists,
the directory named by new.

If the directory containing old has the sticky bit set, at least one of the following
conditions listed below must be true:

� the user must own old

� the user must own the directory containing old

� old must be writable by the user

� the user must be a privileged user

If new exists, and the directory containing new is writable and has the sticky bit
set, at least one of the following conditions must be true:

� the user must own new

� the user must own the directory containing new

� new must be writable by the user

� the user must be a privileged user

Last modified 28 Dec 1996 SunOS 5.8 229

rename(2) System Calls

If the link named by new exists, the file’s link count becomes zero when it is
removed, and no process has the file open, then the space occupied by the file
will be freed and the file will no longer be accessible. If one or more processes
have the file open when the last link is removed, the link will be removed before
rename() returns, but the removal of the file contents will be postponed until
all references to the file have been closed.

Upon successful completion, the rename() function will mark for update the
st_ctime and st_mtime fields of the parent directory of each file.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and
errno is set to indicate an error.

ERRORS The rename() function will fail if:
EACCES A component of either path prefix denies search

permission; one of the directories containing
old and new denies write permissions; or write
permission is denied by a directory pointed to
by old or new.

EBUSY The new argument is a directory and the mount
point for a mounted file system.

EDQUOT The directory where the new name entry is
being placed cannot be extended because the
user’s quota of disk blocks on that file system
has been exhausted.

EEXIST The link named by new is a directory containing
entries other than ‘. ’ (the directory itself) and
‘.. ’ (the parent directory).

EINVAL The new argument directory pathname contains a
path prefix that names the old directory.

EISDIR The new argument points to a directory but old
points to a file that is not a directory.

ELOOP Too many symbolic links were encountered in
translating the pathname.

ENAMETOOLONG The length of old or new exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX
while _POSIX_NO_TRUNCis in effect.

EMLINK The file named by old is a directory, and the
link count of the parent directory of new would
exceed LINK_MAX.

230 SunOS 5.8 Last modified 28 Dec 1996

System Calls rename(2)

ENOENT The link named by old does not exist, or either old
or new points to an empty string.

ENOSPC The directory that would contain new cannot be
extended.

ENOTDIR A component of either path prefix is not a
directory, or old names a directory and new names
a nondirectory file.

EROFS The requested operation requires writing in a
directory on a read-only file system.

EXDEV The links named by old and new are on different
file systems.

EIO An I/O error occurred while making or updating
a directory entry.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO chmod(2), link (2), unlink (2), attributes (5)

NOTES The system can deadlock if there is a loop in the file system graph. Such a loop
can occur if there is an entry in directory a, a/name1 , that is a hard link to
directory b, and an entry in directory b, b/name2 , that is a hard link to directory
a. When such a loop exists and two separate processes attempt to rename
a/name1 to b/name2 and b/name2 to a/name1 , the system may deadlock
attempting to lock both directories for modification. Use symbolic links instead
of hard links for directories.

Last modified 28 Dec 1996 SunOS 5.8 231

resolvepath(2) System Calls

NAME resolvepath – resolve all symbolic links of a path name

SYNOPSIS #include <unistd.h>
int resolvepath (const char *path, char *buf, size_t bufsiz);

DESCRIPTION The resolvepath() function fully resolves all symbolic links in the path name
path into a resulting path name free of symbolic links and places the resulting
path name in the buffer buf which has size bufsiz. The resulting path name names
the same file or directory as the original path name. All “. ” components are
eliminated and every non-leading “.. ” component is eliminated together with
its preceding directory component. If leading “.. ” components reach to the root
directory, they are replaced by “/ ”. If the number of bytes in the resulting path
name is less than bufsiz, the contents of the remainder of buf are unspecified.

RETURN VALUES Upon successful completion, resolvepath() returns the count of bytes placed
in the buffer. Otherwise, it returns −1, leaves the buffer unchanged, and sets
errno to indicate the error.

ERRORS The resolvepath() function will fail if:
EACCES Search permission is denied for a component

of the path prefix of path or for a path prefix
component resulting from the resolution of a
symbolic link.

EFAULT The path or buf argument points to an illegal
address.

EIO An I/O error occurred while reading from the
file system.

ENOENT The path argument is an empty string or a
component of path or a path name component
produced by resolving a symbolic link does not
name an existing file.

ELOOP Too many symbolic links were encountered in
resolving path.

ENAMETOOLONG The length of path exceeds PATH_MAX, or a path
name component is longer than NAME_MAX. Path
name resolution of a symbolic link produced
an intermediate result whose length exceeds
PATH_MAXor a component whose length exceeds
NAME_MAX.

ENOTDIR A component of the path prefix of path or of
a path prefix component resulting from the
resolution of a symbolic link is not a directory.

232 SunOS 5.8 Last modified 12 May 1997

System Calls resolvepath(2)

USAGE No more than PATH_MAXbytes will be placed in the buffer. Applications should
not assume that the returned contents of the buffer are null-terminated.

SEE ALSO readlink (2), realpath (3C)

Last modified 12 May 1997 SunOS 5.8 233

rmdir(2) System Calls

NAME rmdir – remove a directory

SYNOPSIS #include <unistd.h>
int rmdir (const char *path);

DESCRIPTION The rmdir() function removes the directory named by the path name pointed
to by path. The directory must not have any entries other than “. ” and “.. ”.

If the directory’s link count becomes zero and no process has the directory open,
the space occupied by the directory is freed and the directory is no longer
accessible. If one or more processes have the directory open when the last link is
removed, the “. ” and “.. ” entries, if present, are removed before rmdir()
returns and no new entries may be created in the directory, but the directory is
not removed until all references to the directory have been closed.

Upon successful completion rmdir() marks for update the st_ctime and
st_mtime fields of the parent directory.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is
set to indicate the error, and the named directory is not changed.

ERRORS The rmdir() function will fail if:
EACCES Search permission is denied for a component of

the path prefix; write permission is denied on the
directory containing the directory to be removed;
the parent directory has the S_ISVTX variable set
and is not owned by the user; the directory is
not owned by the user and is not writable by the
user; or the user is not a super-user.

EBUSY The directory to be removed is the mount point
for a mounted file system.

EEXIST The directory contains entries other than those for
“. ” and “.. ”.

EFAULT The path argument points to an illegal address.

EINVAL The directory to be removed is the current
directory, or the final component of path is “. ”.

EIO An I/O error occurred while accessing the file
system.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds
PATH_MAX, or the length of a path component

234 SunOS 5.8 Last modified 28 Dec 1996

System Calls rmdir(2)

exceeds NAME_MAXwhile _POSIX_NO_TRUNC
is in effect.

ENOENT The named directory does not exist or is the
null pathname.

ENOLINK The path argument points to a remote machine,
and the connection to that machine is no longer
active.

ENOTDIR A component of the path prefix is not a directory.

EROFS The directory entry to be removed is part of a
read-only file system.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO mkdir (1), rm(1), mkdir (2), attributes (5)

Last modified 28 Dec 1996 SunOS 5.8 235

semctl(2) System Calls

NAME semctl – semaphore control operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semctl (int semid, int semnum, int cmd, ...);

DESCRIPTION The semctl() function provides a variety of semaphore control operations
as specified by cmd. The fourth argument is optional, depending upon the
operation requested. If required, it is of type union semun , which must be
explicitly declared by the application program.

union semun {
int val;
struct semid_ds *buf;
ushort_t *array;

} arg ;

The permission required for a semaphore operation is given as {token}, where
token is the type of permission needed. The types of permission are interpreted
as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

See the Semaphore Operation Permissions subsection of the
DEFINITIONS section of intro (2) for more information. The following
semaphore operations as specified by cmd are executed with respect to the
semaphore specified by semid and semnum.
GETVAL Return the value of semval (see intro (2)). {READ}

SETVAL Set the value of semval to arg.val. {ALTER} When this
command is successfully executed, the semadj value
corresponding to the specified semaphore in all processes
is cleared.

GETPID Return the value of (int) sempid . {READ}

GETNCNT Return the value of semncnt . {READ}

GETZCNT Return the value of semzcnt . {READ}

The following operations return and set, respectively, every semval in the set
of semaphores.
GETALL Place semval s into array pointed to by arg.array . {READ}

236 SunOS 5.8 Last modified 24 Mar 1994

System Calls semctl(2)

SETALL Set semval s according to the array pointed to by arg.array .
{ALTER}. When this cmd is successfully executed, the
semadj values corresponding to each specified semaphore
in all processes are cleared.

The following operations are also available.
IPC_STAT Place the current value of each member of the data

structure associated with semid into the structure pointed
to by arg.buf . The contents of this structure are defined in
intro (2). {READ}

IPC_SET Set the value of the following members of the data structure
associated with semid to the corresponding value found in
the structure pointed to by arg.buf :

sem_perm.uid
sem_perm.gid
sem_perm.mode /* access permission bits only */

This command can be executed only by a process that has an
effective user ID equal to either that of super-user, or to the
value of sem_perm.cuid or sem_perm.uid in the data
structure associated with semid.

IPC_RMID Remove the semaphore identifier specified by semid from the
system and destroy the set of semaphores and data structure
associated with it. This command can only be executed
by a process that has an effective user ID equal to either
that of super-user, or to the value of sem_perm.cuid or
sem_perm.uid in the data structure associated with semid.

RETURN VALUES Upon successful completion, the value returned depends on cmd as follows:
GETVAL the value of semval

GETPID the value of (int) sempid

GETNCNT the value of semncnt

GETZCNT the value of semzcnt

All other successful completions return 0; otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The semctl() function will fail if:
EACCES Operation permission is denied to the calling process (see

intro (2)).

EINVAL The semid argument is not a valid semaphore identifier; the
semnum argument is less than 0 or greater than sem_nsems

Last modified 24 Mar 1994 SunOS 5.8 237

semctl(2) System Calls

−1; or the cmd argument is not a valid command or is
IPC_SET and sem_perm.uid or sem_perm.gid is not
valid.

EPERM The cmd argument is equal to IPC_RMID or IPC_SET and
the effective user of the calling process is not super-user,
or cmd is equal to the value of sem_perm.cuid or
sem_perm.uid in the data structure associated with semid.

EOVERFLOW The cmd argument is IPC_STAT and uid or gid is too large to
be stored in the structure pointed to by arg.buf.

ERANGE The cmd argument is SETVALor SETALL and the value
to which semval is to be set is greater than the system
imposed maximum.

SEE ALSO ipcs (1), intro (2), semget (2), semop(2)

238 SunOS 5.8 Last modified 24 Mar 1994

System Calls semget(2)

NAME semget – get set of semaphores

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semget (key_t key, int nsems, int semflg);

DESCRIPTION The semget() function returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems
semaphores (see intro (3)) are created for key if one of the following is true:

� key is equal to IPC_PRIVATE .

� key does not already have a semaphore identifier associated with it, and
(semflg&IPC_CREAT) is true.

On creation, the data structure associated with the new semaphore identifier is
initialized as follows:

� sem_perm.cuid , sem_perm.uid , sem_perm.cgid , and sem_perm.gid
are set equal to the effective user ID and effective group ID, respectively, of
the calling process.

� The access permission bits of sem_perm.mode are set equal to the access
permission bits of semflg.

� sem_nsems is set equal to the value of nsems.

� sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

RETURN VALUES Upon successful completion, a non-negative integer representing a semaphore
identifier is returned. Otherwise, −1 is returned and errno is set to indicate the
error.

ERRORS The semget() function will fail if:
EACCES A semaphore identifier exists for key, but operation

permission (see intro (3)) as specified by the low-order 9
bits of semflg would not be granted.

EEXIST A semaphore identifier exists for key but both
(semflg&IPC_CREAT) and (semflg&IPC_EXCL) are both true.

EINVAL The nsems argument is either less than or equal to 0 or
greater than the system-imposed limit; or a semaphore
identifier exists for key, but the number of semaphores in
the set associated with it is less than nsems and nsems is
not equal to 0.

ENOENT A semaphore identifier does not exist for key and
(semflg&IPC_CREAT) is false.

Last modified 30 Nov 1993 SunOS 5.8 239

semget(2) System Calls

ENOSPC A semaphore identifier is to be created but the
system-imposed limit on the maximum number of allowed
semaphores or semaphore identifiers system-wide would
be exceeded.

SEE ALSO ipcrm (1), ipcs (1), intro (3), semctl (2), semop(2), ftok (3C)

240 SunOS 5.8 Last modified 30 Nov 1993

System Calls semop(2)

NAME semop – semaphore operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semop(int semid, struct sembuf *sops, size_t nsops);

DESCRIPTION The semop() function is used to perform atomically an array of semaphore
operations on the set of semaphores associated with the semaphore
identifier specified by semid. The sops argument is a pointer to the array of
semaphore-operation structures. The nsops argument is the number of such
structures in the array.

Each sembuf structure contains the following members:

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sem_op is performed on the
corresponding semaphore specified by semid and sem_num. The permission
required for a semaphore operation is given as {token}, where token is the type of
permission needed. The types of permission are interpreted as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

See the Semaphore Operation Permissions section of intro (3) for more information.

The sem_op member specifies one of three semaphore operations:

1. The sem_op member is a negative integer; {ALTER}

� If semval (see intro (3)) is greater than or equal to the absolute value of
sem_op, the absolute value of sem_op is subtracted from semval . Also,
if (sem_flg&SEM_UNDO) is true, the absolute value of sem_op is added
to the calling process’s semadj value (see exit (2)) for the specified
semaphore.

� If semval is less than the absolute value of sem_op and
(sem_flg&IPC_NOWAIT) is true, semop() returns immediately.

Last modified 3 Feb 1994 SunOS 5.8 241

semop(2) System Calls

� If semval is less than the absolute value of sem_op and
(sem_flg&IPC_NOWAIT) is false, semop() increments the semncnt
associated with the specified semaphore and suspends execution of the
calling process until one of the following conditions occur:

� The value of semval becomes greater than or equal to the absolute
value of sem_op. When this occurs, the value of semncnt associated
with the specified semaphore is decremented, the absolute value of
sem_op is subtracted from semval and, if (sem_flg&SEM_UNDO) is
true, the absolute value of sem_op is added to the calling process’s
semadj value for the specified semaphore.

� The semid for which the calling process is awaiting action is removed
from the system (see semctl (2)). When this occurs, errno is set to
EIDRMand −1 is returned.

� The calling process receives a signal that is to be caught. When this
occurs, the value of semncnt associated with the specified semaphore
is decremented, and the calling process resumes execution in the
manner prescribed in signal (3C).

2. The sem_op member is a positive integer; {ALTER}

The value of sem_op is added to semval and, if (sem_flg&SEM_UNDO) is
true, the value of sem_op is subtracted from the calling process’s semadj
value for the specified semaphore.

3. The sem_op member is 0; {READ}

� If semval is 0, semop() returns immediately.

� If semval is not equal to 0 and (sem_flg&IPC_NOWAIT) is true, semop()
returns immediately.

� If semval is not equal to 0 and (sem_flg&IPC_NOWAIT) is false, semop()
increments the semzcnt associated with the specified semaphore and
suspends execution of the calling process until one of the following
occurs:

� The value of semval becomes 0, at which time the value of semzcnt
associated with the specified semaphore is decremented.

� The semid for which the calling process is awaiting action is removed
from the system. When this occurs, errno is set to EIDRMand −1
is returned.

� The calling process receives a signal that is to be caught. When this
occurs, the value of semzcnt associated with the specified semaphore
is decremented, and the calling process resumes execution in the
manner prescribed in signal (3C).

242 SunOS 5.8 Last modified 3 Feb 1994

System Calls semop(2)

Upon successful completion, the value of sempid for each semaphore specified
in the array pointed to by sops is set to the process ID of the calling process.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The semop() function will fail if:
E2BIG The nsops argument is greater than the system-imposed

maximum.

EACCES Operation permission is denied to the calling process (see
intro (3)).

EAGAIN The operation would result in suspension of the calling
process but (sem_flg&IPC_NOWAIT) is true.

EFAULT The sops argument points to an illegal address.

EFBIG The value of sem_num is less than 0 or greater than or equal
to the number of semaphores in the set associated with semid.

EIDRM A semid was removed from the system.

EINTR A signal was received.

EINVAL The semid argument is not a valid semaphore identifier, or
the number of individual semaphores for which the calling
process requests a SEM_UNDOwould exceed the limit.

ENOSPC The limit on the number of individual processes requesting
an SEM_UNDOwould be exceeded.

ERANGE An operation would cause a semval or a semadj value to
overflow the system-imposed limit.

SEE ALSO ipcs (1), intro (3), exec (2), exit (2), fork (2), semctl (2), semget (2)

Last modified 3 Feb 1994 SunOS 5.8 243

setpgid(2) System Calls

NAME setpgid – set process group ID

SYNOPSIS #include <sys/types.h>
#include <unistd.h>
int setpgid (pid_t pid, pid_t pgid);

DESCRIPTION The setpgid() function sets the process group ID of the process with ID
pid to pgid.

If pgid is equal to pid, the process becomes a process group leader. See intro (2)
for more information on session leaders and process group leaders.

If pgid is not equal to pid, the process becomes a member of an existing process
group.

If pid is equal to 0, the process ID of the calling process is used. If pgid is equal to
0, the process specified by pid becomes a process group leader.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The setpgid() function will fail if:
EACCES The pid argument matches the process ID of a child process

of the calling process and the child process has successfully
executed one of the exec family of functions (see exec (2)).

EINVAL The pgid argument is less than (pid_t) 0 or greater than or
equal to PID_MAX, or the calling process has a controlling
terminal that does not support job control.

EPERM The process indicated by the pid argument is a session leader.

EPERM The pid argument matches the process ID of a child process
of the calling process and the child process is not in the same
session as the calling process.

EPERM The pgid argument does not match the process ID of the
process indicated by the pid argument, and there is no
process with a process group ID that matches pgid in the
same session as the calling process.

ESRCH The pid argument does not match the process ID of the
calling process or of a child process of the calling process.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

244 SunOS 5.8 Last modified 28 Dec 1996

System Calls setpgid(2)

SEE ALSO intro (2), exec (2), exit (2), fork (2), getpid (2), getsid (2), attributes (5)

Last modified 28 Dec 1996 SunOS 5.8 245

setpgrp(2) System Calls

NAME setpgrp – set process group ID

SYNOPSIS #include <sys/types.h>
#include <unistd.h>
pid_t setpgrp (void);

DESCRIPTION If the calling process is not already a session leader, the setpgrp() function
makes it one by setting its process group ID and session ID to the value of
its process ID, and releases its controlling terminal. See intro (3) for more
information on process group IDs and session leaders.

RETURN VALUES The setpgrp() function returns the value of the new process group ID.

SEE ALSO intro (3), exec (2), fork (2), getpid (2), getsid (2), kill (2), signal (3C)

NOTES The setpgrp() function will be phased out in favor of the setsid (2) function.

246 SunOS 5.8 Last modified 29 Jul 1991

System Calls setregid(2)

NAME setregid – set real and effective group IDs

SYNOPSIS #include <unistd.h>
int setregid (gid_t rgid, gid_t egid);

DESCRIPTION The setregid() function is used to set the real and effective group IDs of the
calling process. If rgid is −1, the real group ID is not changed; if egid is −1, the
effective group ID is not changed. The real and effective group IDs may be set
to different values in the same call.

If the effective user ID of the calling process is super-user, the real group ID and
the effective group ID can be set to any legal value.

If the effective user ID of the calling process is not super-user, either the real
group ID can be set to the saved set-group-ID from execve (2), or the effective
group ID can either be set to the saved set-group-ID or the real group ID.

In either case, if the real group ID is being changed (that is, if rgid is not −1), or
the effective group ID is being changed to a value not equal to the real group ID,
the saved set-group-ID is set equal to the new effective group ID.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is
set to indicate the error, and neither of the group IDs will be changed.

ERRORS The setregid() function will fail if:
EINVAL The value of rgid or egid is less than 0 or greater than

UID_MAX(defined in <limits.h>).

EPERM The calling process’s effective UID is not the super-user and
a change other than changing the real group ID to the saved
set-group-ID or changing the effective group ID to the real
group ID or the saved group ID, was specified.

USAGE If a set-group-ID process sets its effective group ID to its real group ID, it can still
set its effective group ID back to the saved set-group-ID.

SEE ALSO execve (2), getgid (2), setreuid (2), setuid (2)

Last modified 21 Nov 1996 SunOS 5.8 247

setreuid(2) System Calls

NAME setreuid – set real and effective user IDs

SYNOPSIS #include <unistd.h>
int setreuid (uid_t ruid, uid_t euid);

DESCRIPTION The setreuid() function is used to set the real and effective user IDs of the
calling process. If ruid is −1, the real user ID is not changed; if euid is −1, the
effective user ID is not changed. The real and effective user IDs may be set
to different values in the same call.

If the effective user ID of the calling process is super-user, the real user ID and
the effective user ID can be set to any legal value.

If the effective user ID of the calling process is not super-user, either the real user
ID can be set to the effective user ID, or the effective user ID can either be set to
the saved set-user ID from execve() (seeexec (2)) or the real user ID.

In either case, if the real user ID is being changed (that is, if ruid is not −1), or the
effective user ID is being changed to a value not equal to the real user ID, the
saved set-user ID is set equal to the new effective user ID.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is
set to indicate the error, and neither of the user IDs will be changed.

ERRORS The setreuid() function will fail if:
EINVAL The value of ruid or euid is less than 0 or greater than

UID_MAX(defined in <limits.h>).

EPERM The calling process’s effective user ID is not the super-user
and a change other than changing the real user ID to the
effective user ID, or changing the effective user ID to the real
user ID or the saved set-user ID, was specified.

USAGE If a set-user-ID process sets its effective user ID to its real user ID, it can still set
its effective user ID back to the saved set-user ID.

SEE ALSO exec (2), getuid (2), setregid (2), setuid (2)

248 SunOS 5.8 Last modified 21 Nov 1996

System Calls setsid(2)

NAME setsid – create session and set process group ID

SYNOPSIS #include <sys/types.h>
#include <unistd.h>
pid_t setsid (void);

DESCRIPTION The setsid() function creates a new session, if the calling process is not
a process group leader. Upon return the calling process will be the session
leader of this new session, will be the process group leader of a new process
group, and will have no controlling terminal. The process group ID of the
calling process will be set equal to the process ID of the calling process. The
calling process will be the only process in the new process group and the only
process in the new session.

RETURN VALUES Upon successful completion, setsid() returns the value of the process group
ID of the calling process. Otherwise it returns (pid_t) −1 and sets errno
to indicate the error.

ERRORS The setsid() function will fail if:
EPERM The calling process is already a process group leader, or the

process group ID of a process other than the calling process
matches the process ID of the calling process.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO getsid (2), setpgid (2), setpgrp (2), attributes (5)

WARNINGS A call to setsid() by a process that is a process group leader will fail. A
process can become a process group leader by being the last member of a pipeline
started by a job control shell. Thus, a process that expects to be part of a pipeline,
and that calls setsid() , should always first fork; the parent should exit and the
child should call setsid() . This will ensure that the calling process will work
reliably when started by both job control shells and non-job control shells.

Last modified 28 Dec 1996 SunOS 5.8 249

setuid(2) System Calls

NAME setuid, setegid, seteuid, setgid – set user and group IDs

SYNOPSIS #include <sys/types.h>
#include <unistd.h>
int setuid (uid_t uid);

int setegid (gid_t egid);

int seteuid (uid_t euid);

int setgid (gid_t gid);

DESCRIPTION The setuid() function sets the real user ID , effective user ID , and saved
user ID of the calling process. The setgid() function sets the real group ID ,
effective group ID , and saved group ID of the calling process. The setegid()
and seteuid() functions set the effective group and user ID s respectively for
the calling process. See intro (2) for more information on real, effective, and
saved user and group ID s.

At login time, the real user ID , effective user ID , and saved user ID of the login
process are set to the login ID of the user responsible for the creation of the
process. The same is true for the real, effective, and saved group ID s; they are set
to the group ID of the user responsible for the creation of the process.

When a process calls one of the exec family of functions (see exec (2)) to
execute a file (program), the user and/or group identifiers associated with the
process can change. If the file executed is a set-user-ID file, the effective and
saved user ID s of the process are set to the owner of the file executed. If the file
executed is a set-group-ID file, the effective and saved group ID s of the process
are set to the group of the file executed. If the file executed is not a set-user-ID
or set-group-ID file, the effective user ID , saved user ID , effective group ID ,
and saved group ID are not changed.

If the effective user ID of the process calling setuid() is the super-user, the
real, effective, and saved user IDs are set to the uid argument.

If the effective user ID of the calling process is not the super-user, but uid is
either the real user ID or the saved user ID of the calling process, the effective
user ID is set to uid .

If the effective user ID of the process calling setgid() is the super-user, the
real, effective, and saved group ID s are set to the gid argument.

If the effective user ID of the calling process is not the super-user, but gid is either
the real group ID or the saved group ID of the calling process, the effective
group ID is set to gid .

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno
is set to indicate the error.

250 SunOS 5.8 Last modified 28 Dec 1996

System Calls setuid(2)

ERRORS The setuid() and setgid() functions will fail if:
EINVAL The value of uid or gid is out of range.

EPERM For setuid() and seteuid() the effective user of the
calling process is not super-user, and the uid argument does
not match either the real or saved user ID s. For setgid()
and setegid() the effective user of the calling process is
not the super-user, and the gid argument does not match
either the real or saved group ID s.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level setuid() and setgid() and
Async-Signal-Safe

SEE ALSO intro (2) , exec (2) , getgroups (2) , getuid (2) , attributes (5) , stat (5)

Last modified 28 Dec 1996 SunOS 5.8 251

shmctl(2) System Calls

NAME shmctl – shared memory control operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmctl (int shmid, int cmd, struct shmid_ds *buf);

DESCRIPTION The shmctl() function provides a variety of shared memory control operations
as specified by cmd. The permission required for a shared memory control
operation is given as {token}, where token is the type of permission needed. The
types of permission are interpreted as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

See the Shared Memory Operation Permissions section of intro (2) for more
information.

The following operations require the specified tokens:
IPC_STAT Place the current value of each member of the data structure

associated with shmid into the structure pointed to by buf.
The contents of this structure are defined in intro (2).
{READ}

IPC_SET Set the value of the following members of the data structure
associated with shmid to the corresponding value found in
the structure pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode /* access permission bits only */

This command can be executed only by a process that has
an effective user ID equal to that of super-user, or to the
value of shm_perm.cuid or shm_perm.uid in the data
structure associated with shmid.

IPC_RMID Remove the shared memory identifier specified by shmid
from the system and destroy the shared memory segment
and data structure associated with it. This command can be
executed only by a process that has an effective user ID equal
to that of super-user, or to the value of shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid.

252 SunOS 5.8 Last modified 29 Jul 1991

System Calls shmctl(2)

SHM_LOCK Lock the shared memory segment specified by shmid in
memory. This command can be executed only by a process
that has an effective user ID equal to super-user.

SHM_UNLOCK Unlock the shared memory segment specified by shmid. This
command can be executed only by a process that has an
effective user ID equal to super-user.

Shared memory segments must be explicitly removed after the last reference
to them has been removed.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The shmctl() function will fail if:
EACCES The cmd argument is equal to IPC_STAT and {READ}

operation permission is denied to the calling process.

EFAULT The buf argument points to an illegal address.

EINVAL The shmid argument is not a valid shared memory identifier;
or the cmd argument is not a valid command or is IPC_SET
and shm_perm.uid or shm_perm.gid is not valid.

ENOMEM The cmd argument is equal to SHM_LOCKand there is not
enough memory.

EOVERFLOW The cmd argument is IPC_STAT and uid or gid is too large to
be stored in the structure pointed to by buf.

EPERM The cmd argument is equal to IPC_RMID or IPC_SET and
the effective user ID of the calling process is not super-user
and it is not equal to the value of shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid.

EPERM The cmd argument is equal to SHM_LOCKor SHM_UNLOCK
and the effective user ID of the calling process is not equal to
that of super-user.

SEE ALSO ipcs (1), intro (2), shmget (2), shmop(2)

Last modified 29 Jul 1991 SunOS 5.8 253

shmget(2) System Calls

NAME shmget – get shared memory segment identifier

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmget (key_t key, size_t size, int shmflg);

DESCRIPTION The shmget() function returns the shared memory identifier associated with
key.

A shared memory identifier and associated data structure and shared memory
segment of at least size bytes (see intro (3)) are created for key if one of the
following are true:

� The key argument is equal to IPC_PRIVATE .

� The key argument does not already have a shared memory identifier
associated with it, and (shmflg&IPC_CREAT) is true.

Upon creation, the data structure associated with the new shared memory
identifier is initialized as follows:

� The values of shm_perm.cuid , shm_perm.uid , shm_perm.cgid , and
shm_perm.gid are set equal to the effective user ID and effective group ID,
respectively, of the calling process.

� The access permission bits of shm_perm.mode are set equal to the access
permission bits of shmflg. shm_segsz is set equal to the value of size.

� The values of shm_lpid , shm_nattch shm_atime , and shm_dtime are
set equal to 0.

� The shm_ctime is set equal to the current time.

Shared memory segments must be explicitly removed after the last reference
to them has been removed.

RETURN VALUES Upon successful completion, a non-negative integer representing a shared
memory identifier is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

ERRORS The shmget() function will fail if:
EACCES A shared memory identifier exists for key but operation

permission (see intro (3)) as specified by the low-order 9
bits of shmflg would not be granted.

EEXIST A shared memory identifier exists for key but both
(shmflg&IPC_CREATE) and (shmflg&IPC_EXCL) are true.

EINVAL The size argument is less than the system-imposed minimum
or greater than the system-imposed maximum.

254 SunOS 5.8 Last modified 21 Mar 1996

System Calls shmget(2)

EINVAL A shared memory identifier exists for key but the size of
the segment associated with it is less than size and size is
not equal to 0.

ENOENT A shared memory identifier does not exist for key and
(shmflg&IPC_CREATE) is false.

ENOMEM A shared memory identifier and associated shared memory
segment are to be created but the amount of available
memory is not sufficient to fill the request.

ENOSPC A shared memory identifier is to be created but the
system-imposed limit on the maximum number of allowed
shared memory identifiers system-wide would be exceeded.

SEE ALSO intro (3), shmctl (2), shmop(2), ftok (3C)

Last modified 21 Mar 1996 SunOS 5.8 255

shmop(2) System Calls

NAME shmop, shmat, shmdt – shared memory operations

SYNOPSIS #include <sys/types.h>
#include <sys/shm.h>
void *shmat (int shmid, const void *shmaddr, int shmflg);

Default int shmdt (char *shmaddr);

Standard-conforming int shmdt (const void *shmaddr);

DESCRIPTION The shmat() function attaches the shared memory segment associated with
the shared memory identifier specified by shmid to the data segment of the
calling process.

The permission required for a shared memory control operation is given as
{token }, where token is the type of permission needed. The types of permission
are interpreted as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

See the Shared Memory Operation Permissions section of intro (2) for more
information.

When (shmflg &SHM_SHARE_MMU) is true, virtual memory resources in addition
to shared memory itself are shared among processes that use the same shared
memory.

The shared memory segment is attached to the data segment of the calling
process at the address specified based on one of the following criteria:

� If shmaddr is equal to (void *) 0 , the segment is attached to the first
available address as selected by the system.

� If shmaddr is equal to (void *) 0 and (shmflg &SHM_SHARE_MMU) is true,
then the segment is attached to the first available suitably aligned address.
When (shmflg &SHM_SHARE_MMU) is set, however, the permission given by
shmget() determines whether the segment is attached for reading or
reading and writing.

� If shmaddr is not equal to (void *) 0 and (shmflg &SHM_RND) is true, the
segment is attached to the address given by (shmaddr - (shmaddr modulus
SHMLBA)).

� If shmaddr is not equal to (void *) 0 and (shmflg &SHM_RND) is false, the
segment is attached to the address given by shmaddr .

256 SunOS 5.8 Last modified 27 May 1997

System Calls shmop(2)

� The segment is attached for reading if (shmflg &SHM_RDONLY) is true
{READ} , otherwise it is attached for reading and writing {READ/WRITE} .

The shmdt() function detaches from the calling process’s data segment the
shared memory segment located at the address specified by shmaddr . If the
application is standard-conforming (see standards (5)), the shmaddr argument
is of type const void * . Otherwise it is of type char * .

Shared memory segments must be explicitly removed after the last reference
to them has been removed.

RETURN VALUES Upon successful completion, shmat() returns the data segment start address
of the attached shared memory segment; shmdt() returns 0 . Otherwise, -1
is returned, the shared memory segment is not attached, and errno is set
to indicate the error.

ERRORS The shmat() function will fail if:
EACCES Operation permission is denied to the calling process (see

intro (2)).

EINVAL The shmid argument is not a valid shared memory identifier.

EINVAL The shmaddr argument is not equal to 0, and the value of
(shmaddr - (shmaddr modulus SHMLBA)) is an illegal address.

EINVAL The shmaddr argument is not equal to 0, is an illegal address,
and (shmflg &SHM_RND) is false.

EINVAL The shmaddr argument is not equal to 0, is not properly
aligned, and (shmfg &SHM_SHARE_MMU) is true.

EINVAL SHM_SHARE_MMUis not supported in certain architectures.

EMFILE The number of shared memory segments attached to the
calling process would exceed the system-imposed limit.

ENOMEM The available data space is not large enough to accommodate
the shared memory segment.

The shmdt() function will fail if:
EINVAL The shmaddr argument is not the data segment start address

of a shared memory segment.

SEE ALSO intro (2) , exec (2) , exit (2) , fork (2) , shmctl (2) , shmget (2) , standards (5)

Last modified 27 May 1997 SunOS 5.8 257

sigaction(2) System Calls

NAME sigaction – detailed signal management

SYNOPSIS #include <signal.h>
int sigaction (int sig, const struct sigaction *act, struct sigaction *oact);

DESCRIPTION The sigaction() function allows the calling process to examine or specify the
action to be taken on delivery of a specific signal. (See signal (3HEAD) for an
explanation of general signal concepts.)

The sig argument specifies the signal and can be assigned any of the signals
specified in signal (3HEAD) except SIGKILL and SIGSTOP. In a multithreaded
process, sig cannot be SIGWAITING, SIGCANCEL, or SIGLWP.

If the argument act is not NULL, it points to a structure specifying the new action
to be taken when delivering sig. If the argument oact is not NULL, it points to
a structure where the action previously associated with sig is to be stored on
return from sigaction() .

The sigaction structure includes the following members:

void (*sa_handler)();
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;

The sa_handler member identifies the action to be associated with the specified
signal, if the SA_SIGINFO flag (see below) is cleared in the sa_flags field of the
sigaction structure. It may take any of the values specified in signal (3HEAD)
or that of a user specified signal handler. If the SA_SIGINFO flag is set in the
sa_flags field, the sa_sigaction field specifies a signal-catching function.

The sa_mask member specifies a set of signals to be blocked while the signal
handler is active. On entry to the signal handler, that set of signals is added to
the set of signals already being blocked when the signal is delivered. In addition,
the signal that caused the handler to be executed will also be blocked, unless
the SA_NODEFERflag has been specified. SIGSTOPand SIGKILL cannot be
blocked (the system silently enforces this restriction).

The sa_flags member specifies a set of flags used to modify the delivery of the
signal. It is formed by a logical OR of any of the following values:
SA_ONSTACK If set and the signal is caught, and if the LWP that is

chosen to processes a delivered signal has an alternate
signal stack declared with sigaltstack (2), then it will
process the signal on that stack. Otherwise, the signal is
delivered on the LWP main stack. Unbound threads (see
thr_create (3THR)) may not have alternate signal stacks.

258 SunOS 5.8 Last modified 19 Mar 1998

System Calls sigaction(2)

SA_RESETHANDIf set and the signal is caught, the disposition of the signal
is reset to SIG_DFL and the signal will not be blocked on
entry to the signal handler (SIGILL , SIGTRAP, and SIGPWR
cannot be automatically reset when delivered; the system
silently enforces this restriction).

SA_NODEFER If set and the signal is caught, the signal will not be
automatically blocked by the kernel while it is being caught.

SA_RESTART If set and the signal is caught, functions that are interrupted
by the execution of this signal’s handler are transparently
restarted by the system, namely fcntl (2), ioctl (2),
wait (2), waitid (2), and the following functions on slow
devices like terminals: getmsg() and getpmsg() (see
getmsg (2)); putmsg() and putpmsg() (see putmsg (2));
pread() , read() , and readv() (see read (2)); pwrite() ,
write() , and writev() (see write (2)); recv() ,
recvfrom() , and recvmsg() (see recv (3SOCKET)); and
send() , sendto() , and sendmsg() (see send (3SOCKET).
Otherwise, the function returns an EINTR error.

SA_SIGINFO If cleared and the signal is caught, sig is passed as the only
argument to the signal-catching function. If set and the
signal is caught, two additional arguments are passed
to the signal-catching function. If the second argument
is not equal to NULL, it points to a siginfo_t structure
containing the reason why the signal was generated
(see siginfo (3HEAD)); the third argument points
to a ucontext_t structure containing the receiving
process’s context when the signal was delivered (see
ucontext (3HEAD)).

SA_NOCLDWAIT If set and sig equals SIGCHLD, the system will not create
zombie processes when children of the calling process exit. If
the calling process subsequently issues a wait (2), it blocks
until all of the calling process’s child processes terminate,
and then returns −1 with errno set to ECHILD.

SA_NOCLDSTOPIf set and sig equals SIGCHLD, SIGCHLDwill not be sent to
the calling process when its child processes stop or continue.

SA_WAITSIG If set and sig equals SIGWAITING, enables generation of
SIGWAITING signals. Reserved for use by the threads library.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is
set to indicate the error, and no new signal handler is installed.

Last modified 19 Mar 1998 SunOS 5.8 259

sigaction(2) System Calls

ERRORS The sigaction() function will fail if:
EINVAL The value of the sig argument is not a valid signal number

or is equal to SIGKILL or SIGSTOP. In addition, if in
a multithreaded process, it is equal to SIGWAITING,
SIGCANCEL, or SIGLWP.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO kill (1), intro (3), exit (2), fcntl (2), getmsg (2), ioctl (2), kill (2),
pause (2), putmsg (2), read (2), sigaltstack (2), sigprocmask (2),
sigsend (2), sigsuspend (2), wait (2), waitid (2), write (2), recv (3SOCKET),
recv (3SOCKET), signal (3C), sigsetops (3C), thr_create (3THR),
attributes (5), siginfo (3HEAD), signal (3HEAD), ucontext (3HEAD)

NOTES The handler routine can be declared:

void handler (int sig, siginfo_t * sip, ucontext_t * uap);

The sig argument is the signal number. The sip argument is a pointer (to space on
the stack) to a siginfo_t structure, which provides additional detail about the
delivery of the signal. The uap argument is a pointer (again to space on the stack)
to a ucontext_t structure (defined in <sys/ucontext.h>) which contains
the context from before the signal. It is not recommended that uap be used by the
handler to restore the context from before the signal delivery.

260 SunOS 5.8 Last modified 19 Mar 1998

System Calls sigaltstack(2)

NAME sigaltstack – set or get signal alternate stack context

SYNOPSIS #include <signal.h>
int sigaltstack (const stack_t *ss, stack_t *oss);

DESCRIPTION The sigaltstack() function allows an LWP to define and examine the state
of an alternate stack area on which signals are processed. If ss is non-zero, it
specifies a pointer to and the size of a stack area on which to deliver signals, and
informs the system whether the LWP is currently executing on that stack. When
a signal’s action indicates its handler should execute on the alternate signal stack
(specified with a sigaction (2) call), the system checks whether the LWP
chosen to execute the signal handler is currently executing on that stack. If the
LWP is not currently executing on the signal stack, the system arranges a switch
to the alternate signal stack for the duration of the signal handler’s execution.

The stack_t structure includes the following members:

int *ss_sp
long ss_size
int ss_flags

If ss is not NULL, it points to a structure specifying the alternate signal stack that
will take effect upon successful return from sigaltstack() . The ss_sp
and ss_size members specify the new base and size of the stack, which is
automatically adjusted for direction of growth and alignment. The ss_flags
member specifies the new stack state and may be set to the following:
SS_DISABLE The stack is to be disabled and ss_sp and ss_size are

ignored. If SS_DISABLE is not set, the stack will be enabled.

If oss is not NULL, it points to a structure specifying the alternate signal stack that
was in effect prior to the call to sigaltstack() . The ss_sp and ss_size
members specify the base and size of that stack. The ss_flags member
specifies the stack’s state, and may contain the following values:
SS_ONSTACK The LWP is currently executing on the alternate signal stack.

Attempts to modify the alternate signal stack while the LWP
is executing on it will fail.

SS_DISABLE The alternate signal stack is currently disabled.

RETURN VALUES Upon successful completion, 0 is return. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The sigaltstack() function will fail if:
EFAULT The ss or oss argument points to an illegal address.

EINVAL The ss argument is not a null pointer, and the ss_flags
member pointed to by ss contains flags other than
SS_DISABLE.

Last modified 10 Jun 1999 SunOS 5.8 261

sigaltstack(2) System Calls

ENOMEM The size of the alternate stack area is less than
MINSIGSTKSZ.

EPERM An attempt was made to modify an active stack.

SEE ALSO getcontext (2), sigaction (2), ucontext (5)

NOTES The value SIGSTKSZ is defined to be the number of bytes that would be used
to cover the usual case when allocating an alternate stack area. The value
MINSIGSTKSZ is defined to be the minimum stack size for a signal handler. In
computing an alternate stack size, a program should add that amount to its stack
requirements to allow for the operating system overhead.

The sigaltstack() function creates an alternate signal stack for the
calling LWP, with the implication that in a multithreaded application, only
bound threads (or in POSIX terminology, only threads whose scheduling
contention scope is PTHREAD_SCOPE_SYSTEM, see thr_create (3THR) and
pthread_create (3THR)) should call sigaltstack() . The behavior of an
application that calls sigaltstack() from an unbound thread (that is, a POSIX
thread whose scheduling contention scope is PTHREAD_SCOPE_PROCESS) is
undefined. In a future release, sigaltstack() may return a new error value if
it is called from an unbound thread.

The following code fragment is typically used to allocate an alternate stack:

if ((sigstk.ss_sp = (char *)malloc(SIGSTKSZ)) == NULL)
/* error return */;

sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = 0;
if (sigaltstack(&sigstk, (stack_t *)0) < 0)

perror("sigaltstack");

262 SunOS 5.8 Last modified 10 Jun 1999

System Calls _signotifywait(2)

NAME _signotifywait, _lwp_sigredirect – deliver process signals to specific LWPs

SYNOPSIS #include <sys/lwp.h>
int _signotifywait (void);

int _lwp_sigredirect (lwpid_t target_lwp, int signo , int *queued);

DESCRIPTION In a multithreaded process, signals that are generated for a process are delivered
to one of the threads that does not have that signal masked. If all of the
application threads are masking that signal, its delivery waits until one of
them unmasks it.

The disposition of the each thread’s signal mask is unknown to the kernel
when it generates signals for the process. The _signotifywait() and
_lwp_sigredirect() functions provide a mechanism to direct instances of
signals generated for the process to application-specified LWPs. Each process
has a set of signals pending for the process, and for each LWP there is a set of
signals pending for that LWP. If no signals are pending, these sets are empty.

There is also a process-wide signal set, termed the notification set, manipulated
by these functions. A signal generated for the process where the signal number
is not in the notification set is called an unnotified signal.

In a multithreaded program there is an aslwp , a special LWP endowed
with powers to handle signals that are generated for a process. The
_signotifywait() function is used to await signals generated for the process,
and should be called only from the aslwp . In general, these functions are not to
be called from the application-level.

If there is a pending unnotified signal when _signotifywait() is called,
that signal is selected and the call returns immediately. If there is not a signal
pending, the call suspends the calling LWP until the generation of an unnotified
signal; that signal then is selected and the function returns. In both cases, the
selected signal number is set in the notification set and returned as the value of
_signotifywait() . The signal remains pending for the process, and any
associated siginfo (3HEAD) information remains queued at the process.

The _lwp_sigredirect() function requests that a signal pending for the
process be delivered to the LWP specified by target_lwp . If target_lwp is 0 , the
signal is discarded. It is an error if signo is not currently in the notification
set of the process. The signal specified by signo is removed from pending for
the process and is made pending for the target_lwp . If there is an associated
siginfo information structure queued at the process, that siginfo is queued to
the target_lwp .

Whenever a signal is cleared from the set of signals pending for the process, the
corresponding signal is cleared from the notification set. After a successful call to
_lwp_sigredirect() , the signal signo is cleared from the notification set and

Last modified 21 Oct 1998 SunOS 5.8 263

_signotifywait(2) System Calls

from the set of signals pending for the process. If another instance of signo is
queued for the process, the signal number is again set in the process pending
mask, and if another LWP is blocked in a call to _signotifywait() , its wait
for an unnotified signal will be satisfied. The effects described in this paragraph
also apply when the signal signo is returned by a call to sigtimedwait() and
signo was not pending for the calling LWP.

When queued is non-NULL, and there is another instance of the signal (signo), a
non-zero value will be place in queued to indicate that more than one instance of
the signal is pending on the process.

RETURN VALUES The _signotifywait() function returns the signal number of the pending
but hitherto unnotified signal. The _lwp_sigredirect() function returns 0
when successful. A non-zero value indicates an error.

ERRORS No error conditions are specified for _signotifywait() .

If the following conditions occurs, _lwp_sigredirect() fails and return the
corresponding value:
EINVAL The signal signo was not pending for the process, or signo

was not in the notification set.

ESRCH The target_lwp cannot be found in the current process.

SEE ALSO _lwp_create (2) , _lwp_kill (2) , sigtimedwait (3RT) , siginfo (3HEAD) ,
signal (3HEAD)

NOTES This mechanism for delivering signals to multithreaded processes is subject to
change in future versions of Solaris. Any process with explicit knowledge of this
mechanism may not be compatible from release to release.

264 SunOS 5.8 Last modified 21 Oct 1998

System Calls sigpending(2)

NAME sigpending – examine signals that are blocked and pending

SYNOPSIS #include <signal.h>
int sigpending (sigset_t *set);

DESCRIPTION The sigpending() function retrieves those signals that have been sent to the
calling process but are being blocked from delivery by the calling process’s signal
mask. The signals are stored in the space pointed to by the set argument.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The sigpending() function will fail if:
EFAULT The set argument points to an illegal address.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO sigaction (2), sigprocmask (2), sigsetops (3C), attributes (5)

Last modified 28 Dec 1996 SunOS 5.8 265

sigprocmask(2) System Calls

NAME sigprocmask – change and/or examine caller’s signal mask

SYNOPSIS #include <signal.h>
int sigprocmask (int how, const sigset_t *set, sigset_t *oset);

DESCRIPTION The sigprocmask() function is used to examine and/or change the caller’s
signal mask. If the value is SIG_BLOCK, the set pointed to by the set argument is
added to the current signal mask. If the value is SIG_UNBLOCK, the set pointed
by the set argument is removed from the current signal mask. If the value is
SIG_SETMASK, the current signal mask is replaced by the set pointed to by the
set argument. If the oset argument is not NULL, the previous mask is stored in the
space pointed to by oset. If the value of the set argument is NULL, the value how
is not significant and the caller’s signal mask is unchanged; thus, the call can
be used to inquire about currently blocked signals.

If there are any pending unblocked signals after the call to sigprocmask() , at
least one of those signals will be delivered before the call to sigprocmask()
returns.

It is not possible to block those signals that cannot be ignored this restriction is
silently imposed by the system. See sigaction (2).

If sigprocmask() fails, the caller’s signal mask is not changed.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The sigprocmask() function will fail if:
EFAULT The set or oset argument points to an illegal address.

EINVAL The value of the how argument is not equal to one of the
defined values.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO sigaction (2), signal (3C), sigsetops (3C), thr_sigsetmask (3THR),
attributes (5), signal (3HEAD)

NOTES In a multithreaded program, the call to sigpromask() impacts only
the calling thread’s signal mask and is therefore identical to a call to
thr_sigsetmask (3THR).

Signals that are generated synchronously should not be masked. If such a signal
is blocked and delivered, the receiving process is killed.

266 SunOS 5.8 Last modified 23 May 1997

System Calls sigsend(2)

NAME sigsend, sigsendset – send a signal to a process or a group of processes

SYNOPSIS #include <signal.h>
int sigsend (idtype_t idtype, id_t id, int sig);

int sigsendset (procset_t *psp, int sig);

DESCRIPTION The sigsend() function sends a signal to the process or group of processes
specified by id and idtype . The signal to be sent is specified by sig and is either 0
or one of the values listed in signal (3HEAD) . If sig is 0 (the null signal), error
checking is performed but no signal is actually sent. This value can be used to
check the validity of id and idtype .

The real or effective user ID of the sending process must match the real or saved
user ID of the receiving process, unless the effective user ID of the sending
process is super-user, or sig is SIGCONTand the sending process has the same
session ID as the receiving process.

If idtype is P_PID , sig is sent to the process with process ID id .

If idtype is P_PGID , sig is sent to all process with process group ID id .

If idtype is P_SID , sig is sent to all process with session ID id .

If idtype is P_UID , sig is sent to any process with effective user ID id .

If idtype is P_GID , sig is sent to any process with effective group ID id .

If idtype is P_CID , sig is sent to any process with scheduler class ID id (see
priocntl (2)).

If idtype is P_ALL , sig is sent to all processes and id is ignored.

If id is P_MYID , the value of id is taken from the calling process.

The process with a process ID of 0 is always excluded. The process with a
process ID of 1 is excluded unless idtype is equal to P_PID .

The sigsendset() function provides an alternate interface for sending
signals to sets of processes. This function sends signals to the set of processes
specified by psp . psp is a pointer to a structure of type procset_t , defined in
<sys/procset.h> , which includes the following members:

idop_t p_op;
idtype_t p_lidtype;
id_t p_lid;
idtype_t p_ridtype;
id_t p_rid;

The p_lidtype and p_lid members specify the ID type and ID of one ("left")
set of processes; the p_ridtype and p_rid members specify the ID type
and ID of a second ("right") set of processes. ID types and ID s are specified

Last modified 20 Feb 1997 SunOS 5.8 267

sigsend(2) System Calls

just as for the idtype and id arguments to sigsend() . The p_op member
specifies the operation to be performed on the two sets of processes to get the
set of processes the function is to apply to. The valid values for p_op and the
processes they specify are:
POP_DIFF Set difference: processes in left set and not in right set.

POP_AND Set intersection: processes in both left and right sets.

POP_OR Set union: processes in either left or right set or both.

POP_XOR Set exclusive-or: processes in left or right set but not in both.

RETURN VALUES Upon successful completion, 0 is return. Otherwise, -1 is returned and errno
is set to indicate the error.

ERRORS The sigsend() and sigsendset() functions will fail if:
EINVAL The sig argument is not a valid signal number, or the idtype

argument is not a valid idtype field.

EINVAL The sig argument is SIGKILL, idtype is P_PID and id is
1 (proc1).

EPERM The effective user of the calling process is not super-user
and its real or effective user ID does not match the real or
effective user ID of the receiving process, and the calling
process is not sending SIGCONTto a process that shares the
same session.

ESRCH No process can be found corresponding to that specified by
id and idtype .

The sigsendset() function will fail if:
EFAULT The psp argument points to an illegal address.

SEE ALSO kill (1) , getpid (2) , kill (2) , priocntl (2) , signal (3C) , signal (3HEAD)

268 SunOS 5.8 Last modified 20 Feb 1997

System Calls sigsuspend(2)

NAME sigsuspend – install a signal mask and suspend caller until signal

SYNOPSIS #include <signal.h>
int sigsuspend (const sigset_t *set);

DESCRIPTION The sigsuspend() function replaces the caller’s signal mask with the set of
signals pointed to by the set argument and suspends the caller until delivery
of a signal whose action is either to execute a signal catching function or to
terminate the process.

If the action is to terminate the process, sigsuspend() does not return. If the
action is to execute a signal catching function, sigsuspend() returns after the
signal catching function returns. On return, the signal mask is restored to the
set that existed before the call to sigsuspend() . See NOTESfor the precise
semantics of signal mask restoration in a multithreaded process.

It is not possible to block those signals that cannot be ignored (see
signal (3HEAD)); this restriction is silently imposed by the system.

RETURN VALUES Since sigsuspend() suspends process execution indefinitely, there is no
successful completion return value. On failure, it returns −1 and sets errno
to indicate the error.

ERRORS The sigsuspend() function will fail if:
EFAULT The set argument points to an illegal address.

EINTR A signal was caught by the calling process and control was
returned from the signal catching function.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO sigaction (2), sigprocmask (2), sigwait (2), signal (3C), sigsetops (3C),
attributes (5), signal (3HEAD)

NOTES In a multithreaded application, the sigwait (2), function should be used instead
of sigsuspend() . Should sigsuspend() be used, however, its semantics of
signal mask restoration are slightly different from those for a single-threaded
process on return from the signal catching function, the signal mask is restored
to the set that existed before the call to sigsuspend() . This action raises
the following implications:

� If a thread specifies two signals in the mask to sigsuspend() , both signals
could interrupt its call to sigsuspend() simultaneously. In the traditional

Last modified 28 Dec 1996 SunOS 5.8 269

sigsuspend(2) System Calls

program that does not use threads, a call to sigsuspend() with two
signals in the mask always returns with only one signal delivered. The other
signal remains pending if masked earlier, unlike the MT case.

� While a thread is executing the signal handler that interrupted its call to
sigsuspend() , its signal mask is the one passed to sigsuspend() . It
does not get restored to the previous mask until it returns from all the signal
handlers that interrupted sigsuspend() .

270 SunOS 5.8 Last modified 28 Dec 1996

System Calls sigwait(2)

NAME sigwait – wait until a signal is posted

SYNOPSIS
Default #include <signal.h>

int sigwait (sigset_t *set);

POSIX cc [flag ...] file ... −D_POSIX_PTHREAD_SEMANTICS[library...]
#include <signal.h>
int sigwait (const sigset_t *set, int *sig);

DESCRIPTION The sigwait() function selects a signal in set that is pending on the calling
thread (see thr_create (3THR)) or LWP. If no signal in set is pending, then
sigwait() blocks until a signal in set becomes pending. The selected signal is
cleared from the set of signals pending on the calling thread or LWP and the
number of the signal is returned, or in the POSIX version (see standards (5))
placed in sig. The selection of a signal in set is independent of the signal mask of
the calling thread or LWP. This means a thread or LWP can synchronously wait
for signals that are being blocked by the signal mask of the calling thread or
LWP. To ensure that only the caller receives the signals defined in set, all threads
should have signals in set masked including the calling thread.

If sigwait() is called on an ignored signal, then the occurrence of the signal
will be ignored, unless sigaction() changes the disposition. If more than
one thread or LWP waits for the same signal, only one is unblocked when the
signal arrives.

RETURN VALUES Upon successful completion, the default version of sigwait() returns a signal
number; the POSIX version returns 0 and stores the received signal number
at the location pointed to by sig. Otherwise, −1 is returned and errno is set
to indicate an error.

ERRORS The sigwait() function will fail if:
EINVAL The set argument contains an unsupported signal number.

EFAULT The set argument points to an invalid address.

EXAMPLES EXAMPLE 1 Creating a thread to handle receipt of a signal

The following sample C code creates a thread to handle the receipt of a signal.
More specifically, it catches the asynchronously generated signal, SIGINT .

/**
*
* compile with −D_POSIX_PTHREAD_SEMANTICS switch;
* required by sigwait()
*
* sigint thread handles delivery of signal. uses sigwait() to wait
* for SIGINT signal.
*
**/

Last modified 24 Jan 1997 SunOS 5.8 271

sigwait(2) System Calls

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <synch.h>

static void *threadTwo(void *);
static void *threadThree(void *);
static void *sigint(void *);

sigset_t signalSet;

void *
main(void)
{

pthread_t t;
pthread_t t2;
pthread_t t3;

thr_setconcurrency(3);
sigfillset (&signalSet);
/*

* Block signals in initial thread. New threads will
* inherit this signal mask.
*/

pthread_sigmask (SIG_BLOCK, &signalSet, NULL);

printf("Creating threads\n");

/* POSIX thread create arguments:
* thr_id, attr, strt_func, arg
*/

pthread_create(&t, NULL, sigint, NULL);
pthread_create(&t2, NULL, threadTwo, NULL);
pthread_create(&t3, NULL, threadThree, NULL);

printf("##################\n");
printf("press CTRL-C to deliver SIGINT to sigint thread\n");
printf("##################\n");

thr_exit((void *)0);
}
static void *
threadTwo(void *arg)
{

printf("hello world, from threadTwo [tid: %d]\n",
pthread_self());

printf("threadTwo [tid: %d} is now complete and exiting\n",
pthread_self());

thr_exit((void *)0);
}

static void *

272 SunOS 5.8 Last modified 24 Jan 1997

System Calls sigwait(2)

threadThree(void *arg)
{

printf("hello world, from threadThree [tid: %d]\n",
pthread_self());

printf("threadThree [tid: %d} is now complete and exiting\n",
pthread_self());

thr_exit((void *)0);
}

void *
sigint(void *arg)
{

int sig;
int err;

printf("thread sigint [tid: %d] awaiting SIGINT\n",
pthread_self());

/* use POSIX sigwait() -- 2 args
* signal set, signum
*/

err = sigwait (&signalSet, &sig);

/* test for SIGINT; could catch other signals */
if (err || sig != SIGINT)

abort();

printf("\nSIGINT signal %d caught by sigint thread [tid: %d]\n",
sig, pthread_self());

thr_exit((void *)0);
}

SEE ALSO sigaction (2), sigpending (2), sigprocmask (2), sigsuspend (2),
thr_create (3THR), thr_sigsetmask (3THR), signal (3HEAD),
standards (5)

NOTES The sigwait() function cannot be used to wait for signals that cannot be
caught (see sigaction (2)). This restriction is silently imposed by the system.

Solaris 2.4 and earlier releases provided a sigwait() facility as specified
in POSIX.1c Draft 6. The final POSIX.1c standard changed the interface as
described above. Support for the Draft 6 interface is provided for compatibility
only and may not be supported in future releases. New applications and libraries
should use the POSIX standard interface.

In Solaris 2.4 and earlier releases, the call to sigwait() from a multithreaded
process overrode the signal’s ignore disposition; even if a signal’s disposition was
SIG_IGN , a call to sigwait() resulted in catching the signal, if generated. This
is unspecified behavior from the standpoint of the POSIX 1003.1c specification.

In Solaris 2.5, the behavior of sigwait() was corrected, so that it does not
override the signal’s ignore disposition. This change can cause applications that

Last modified 24 Jan 1997 SunOS 5.8 273

sigwait(2) System Calls

rely on the old behavior to break. Applications should employ sigwait() as
follows: Install a dummy signal handler, thereby changing the disposition
from SIG_IGN to having a handler. Then, any calls to sigwait() for this
signal would catch it upon generation.

274 SunOS 5.8 Last modified 24 Jan 1997

System Calls __sparc_utrap_install(2)

NAME __sparc_utrap_install – install a SPARC V9 user trap handler

SYNOPSIS #include <sys/utrap.h>
int __sparc_utrap_install (utrap_entry_t type, utrap_handler_t new_precise,
utrap_handler_t new_deferred, utrap_handler_t *old_precise, utrap_handler_t *old_deferred);

DESCRIPTION The __sparc_utrap_install() function establishes new_precise and
new_deferred user trap handlers as the new values for the specified type and
returns the existing user trap handler values in * old_precise and * old_deferred
in a single atomic operation. A new handler address of NULLmeans no user
handler of that type will be installed. A new handler address of UTH_NOCHANGE
means that the user handler for that type should not be changed. An old handler
pointer of NULLmeans that the user is not interested in the old handler address.

A precise trap is caused by a specific instruction and occurs before any
program-visible state has been changed by this instruction. When a precise
trap occurs, the program counter (PC) saved in the Trap Program Counter
(TPC) register points to the instruction that induced the trap; all instructions
prior to this trapping instruction have been executed. The next program counter
(nPC) saved in the Trap Next Program Counter (TnPC) register points to the
next instruction following the trapping instruction, which has not yet been
executed. A deferred trap is also caused by a particular instruction, but unlike a
precise trap, a deferred trap may occur after the program-visible state has been
changed. See the SPARC Architecture Manual, Version 9 for further information on
precise and deferred traps.

The list that follows contains hardware traps and their corresponding user trap
types. User trap types marked with a plus-sign (+) are required and must
be provided by all ABI-conforming implementations. The others may not be
present on every implementation; an attempt to install a user trap handler for
those conditions will return EINVAL. User trap types marked with an asterisk (*)
are implemented as precise traps only.

Trap Name User Trap Type (utrap_entry_t)

illegal_instruction UT_ILLTRAP_INSTRUCTION +* or
UT_ILLEGAL_INSTRUCTION

fp_disabled UT_FP_DISABLED+*

fp_exception_ieee_754 UT_FP_EXCEPTION_IEEE_754+

fp_exception_other UT_FP_EXCEPTION_OTHER

tag_overflow UT_TAG_OVERFLOW+*

division_by_zero UT_DIVISION_BY_ZERO +

Last modified 11 Nov 1997 SunOS 5.8 275

__sparc_utrap_install(2) System Calls

Trap Name User Trap Type (utrap_entry_t)

mem_address_not_aligned UT_MEM_ADDRESS_NOT_ALIGNED+

privileged_action UT_PRIVILEGED_ACTION+

privileged_opcode UT_PRIVILEGED_OPCODE

async_data_error UT_ASYNC_DATA_ERROR

trap_instruction UT_TRAP_INSTRUCTION_16 through
UT_TRAP_INSTRUCTION_31+*

instruction_access_exception
instruction_access_MMU_miss
instruction_access_error

UT_INSTRUCTION_EXCEPTIONor
UT_INSTRUCTION_PROTECTIONor
UT_INSTRUCTION_ERROR

data_access_exception
data_access_MMU_miss
data_access_error
data_access_protection

UT_DATA_EXCEPTIONor
UT_DATA_PROTECTIONor
UT_DATA_ERROR

The following explanations are provided for those user trap types that are
not self-explanatory.
UT_ILLTRAP_INSTRUCTION

This trap is raised by user execution of the ILLTRAP INSTRUCTION. It is
always precise.

UT_ILLEGAL_INSTRUCTION
This trap will be raised by the execution of otherwise undefined opcodes. It
is implementation-dependent as to what opcodes raise this trap; the ABI
only specifies the interface. The trap may be precise or deferred.

UT_PRIVILEGED_OPCODE
All opcodes declared to be privileged in SPARC V9 will raise this trap. It
is implementation-dependent whether other opcodes will raise it as well;
the ABI only specifies the interface.

UT_DATA_EXCEPTION, UT_INSTRUCTION_EXCEPTION
No valid user mapping can be made to this address, for a data or instruction
access, respectively.

UT_DATA_PROTECTION, UT_INSTRUCTION_PROTECTION
A valid mapping exists, and user privilege to it exists, but the type of
access (read, write, or execute) is denied, for a data or instruction access,
respectively.

UT_DATA_ERROR, UT_INSTRUCTION_ERROR

276 SunOS 5.8 Last modified 11 Nov 1997

System Calls __sparc_utrap_install(2)

A valid mapping exists, and both user privilege and the type of access are
allowed, but an unrecoverable error occurred in attempting the access,
for a data or instruction access, respectively. %l1 will contain either
BUS_ADDRERRor BUS_OBJERR.

UT_FP_DISABLED
This trap is raised when an application issues a floating point instruction
(including load or store) and the SPARC V9 Floating Point Registers State
(FPRS) FEF bit is 0. If a user handler is installed for this trap, it will be given
control. Otherwise the system will set FEF to one and retry the instruction.

For all traps, the handler executes in a new register window, where the in
registers are the out registers of the previous frame and have the value they
contained at the time of the trap, similar to a normal subroutine call after the
save instruction. The global registers (including the special registers %ccr ,
%asi , and %y) and the floating-point registers have their values from the
time of the trap. The stack pointer register %sp plus the BIAS will point to
a properly-aligned 128-byte register save area; if the handler needs scratch
space, it should decrement the stack pointer to obtain it. If the handler needs
access to the previous frame’s in registers or local registers, it should execute
a FLUSHWinstruction, and then access them off of the frame pointer. If the
handler calls an ABI-conforming function, it must set the %asi register to
ASI_PRIMARY_NOFAULTbefore the call.

On entry to a precise user trap handler %l6 contains the %pcand %l7 contains
the %npc at the time of the trap. To return from a handler and reexecute the
trapped instruction, the handler would execute:

jmpl %l6, %g0 ! Trapped PC supplied to user trap handler
return %l7 ! Trapped nPC supplied to user trap handler

To return from a handler and skip the trapped instruction, the handler would
execute:

jmpl %l7, %g0 ! Trapped nPC supplied to user trap handler
return %l7 + 4 ! Trapped nPC + 4

On entry to a deferred trap handler %o0contains the address of the instruction
that caused the trap and %o1contains the actual instruction (right-justified,
zero-extended), if the information is available. Otherwise %o0contains the value
−1 and %o1is undefined. Additional information may be made available for
certain cases of deferred traps, as indicated in the following table.

Instructions Additional Information

LD-type (LDSTUB) %o2contains the effective address (rs1 + rs2 | simm13).

ST-type (CAS, SWAP) %o2contains the effective address (rs1 + rs2 |simm13).

Last modified 11 Nov 1997 SunOS 5.8 277

__sparc_utrap_install(2) System Calls

Integer arithmetic %o2contains the rs1 value. %o3contains the rs2 | simm13
value. %o4contains the contents of the %yregister.

Floating-point arithmetic %o2contains the address of rs1 value. %o3contains
the address of rs2 value.

Control-transfer %o2contains the target address (rs1 + rs2 | simm13).

Asynchronous data errors %o2contains the address that caused the error. %o3
contains the effective ASI, if available, else −1.

To return from a deferred trap, the trap handler issues:

ta 68 ! ST_RETURN_FROM_DEFERRED_TRAP

The following pseudo-code explains how the operating system dispatches traps:

if (precise trap) {
if (precise_handler) {

invoke(precise_handler);
/* not reached */

} else {
convert_to_signal(precise_trap);

}
} else if (deferred_trap) {

invoke(deferred_handler);
/* not reached */

} else {
convert_to_signal(deferred_trap);

}
}
if (signal)

send(signal);

User trap handlers must preserve all registers except the locals (%l0-7) and the
outs (%o0-7), that is, %i0-7 , %g1-7 , %d0-d62 , %asi , %fsr , %fprs , %ccr , and
%y, except to the extent that modifying the registers is part of the desired
functionality of the handler. For example, the handler for UT_FP_DISABLED
may load floating-point registers.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, a non-zero value is
returned and errno is set to indicate the error.

ERRORS The __sparc_utrap_install() function will fail if:
EINVAL The type argument is not a supported user trap type; the

new user trap handler address is not word aligned; the old
user trap handler address cannot be returned; or the user
program is not a 64-bit executable.

278 SunOS 5.8 Last modified 11 Nov 1997

System Calls __sparc_utrap_install(2)

EXAMPLES EXAMPLE 1 A sample program using the __sparc_utrap_install() function.

The __sparc_utrap_install() function is normally used by user programs
that wish to provide their own tailored exception handlers as a faster alternative
to signal (3C), or to handle exceptions that are not directly supported by the
signal() interface, such as fp_disabled .

extern void *fpdis_trap_handler();
utrap_handler_t new_precise = (utrap_handler_t)fpdis_trap_handler;
double d;
int err;
err = __sparc_utrap_install(UT_FP_DISABLED, new_precise,

UTH_NOCHANGE, NULL, NULL);
if (err == EINVAL) {

/* unexpected error, do something */
exit (1);

}
d = 1.0e-300;
ENTRY(fpdis_trap_handler)
wr %g0, FPRS_FEF, %fprs
jmpl %l6, %g0
return %l7
SET_SIZE(fpdis_trap_handler)

This example turns on bit 2, FEF, in the Floating-Point Registers State (FPRS)
Register, after a floating-point instruction causes an fp_disabled trap. (Note
that this example simulates part of the default system behavior; programs do not
need such a handler. The example is for illustrative purposes only.)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO signal (3C), attributes (5)

SPARC Architecture Manual, Version 9

Manufacturer’s processor chip user manuals

NOTES The Exceptions and Interrupt Descriptions section of the SPARC V9 manual
documents which hardware traps are mandatory or optional, and whether they
can be implemented as precise or deferred traps, or both. The manufacturer’s
processor chip user manuals describe the details of the traps supported for the
specific processor implementation.

Last modified 11 Nov 1997 SunOS 5.8 279

stat(2) System Calls

NAME stat, lstat, fstat – get file status

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>
int stat (const char *path, struct stat *buf);

int lstat (const char *path, struct stat *buf);

int fstat (int fildes, struct stat *buf);

DESCRIPTION The stat() function obtains information about the file pointed to by path
. Read, write, or execute permission of the named file is not required, but all
directories listed in the path name leading to the file must be searchable.

The lstat() function obtains file attributes similar to stat() , except when
the named file is a symbolic link; in that case lstat() returns information about
the link, while stat() returns information about the file the link references.

The fstat() function obtains information about an open file known by the
file descriptor fildes , obtained from a successful open (2) , creat (2) , dup (2) ,
fcntl (2) , or pipe (2) function.

The buf argument is a pointer to a stat structure into which information is
placed concerning the file. A stat structure includes the following members:

mode_t st_mode; /* File mode (see mknod(2)) */
ino_t st_ino; /* Inode number */
dev_t st_dev; /* ID of device containing */

/* a directory entry for this file */
dev_t st_rdev; /* ID of device */

/* This entry is defined only for */
/* char special or block special files */

nlink_t st_nlink; /* Number of links */
uid_t st_uid; /* User ID of the file’s owner */
gid_t st_gid; /* Group ID of the file’s group */
off_t st_size; /* File size in bytes */
time_t st_atime; /* Time of last access */
time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /* Time of last file status change */

/* Times measured in seconds since */
/* 00:00:00 UTC, Jan. 1, 1970 */

long st_blksize; /* Preferred I/O block size */
blkcnt_t st_blocks; /* Number of 512 byte blocks allocated*/

Descriptions of structure members are as follows:
st_mode The mode of the file as described in mknod(2) . In addition

to the modes described in mknod() , the mode of a file may
also be S_IFLNK if the file is a symbolic link. S_IFLNK may
only be returned by lstat() .

280 SunOS 5.8 Last modified 28 Jan 1998

System Calls stat(2)

st_ino This field uniquely identifies the file in a given file system.
The pair st_ino and st_dev uniquely identifies regular
files.

st_dev This field uniquely identifies the file system that contains the
file. Its value may be used as input to the ustat() function
to determine more information about this file system. No
other meaning is associated with this value.

st_rdev This field should be used only by administrative commands.
It is valid only for block special or character special files
and only has meaning on the system where the file was
configured.

st_nlink This field should be used only by administrative commands.

st_uid The user ID of the file’s owner.

st_gid The group ID of the file’s group.

st_size For regular files, this is the address of the end of the file. For
block special or character special, this is not defined. See
also pipe (2) .

st_atime Time when file data was last accessed. Changed by the
following functions: creat() , mknod() , pipe() ,
utime (2) , and read (2) .

st_mtime Time when data was last modified. Changed by the
following functions: creat() , mknod() , pipe() ,
utime() , and write (2) .

st_ctime Time when file status was last changed. Changed by the
following functions: chmod() , chown() , creat() ,
link (2) , mknod() , pipe() , unlink (2) , utime() ,
and write() .

st_blksize A hint as to the "best" unit size for I/O operations. This field
is not defined for block special or character special files.

st_blocks The total number of physical blocks of size 512 bytes actually
allocated on disk. This field is not defined for block special
or character special files.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno
is set to indicate the error.

ERRORS The stat() , fstat() , and lstat() functions will fail if:

Last modified 28 Jan 1998 SunOS 5.8 281

stat(2) System Calls

EOVERFLOW The file size in bytes or the number of blocks
allocated to the file or the file serial number
cannot be represented correctly in the structure
pointed to by buf .

The stat() and lstat() functions will fail if:
EACCES Search permission is denied for a component of

the path prefix.

EFAULT The buf or path argument points to an illegal
address.

EINTR A signal was caught during the execution of the
stat() or lstat() function.

ELOOP Too many symbolic links were encountered in
translating path .

ENAMETOOLONG The length of the path argument exceeds
PATH_MAX, or the length of a path component
exceeds NAME_MAXwhile _POSIX_NO_TRUNC
is in effect.

ENOENT The named file does not exist or is the null
pathname.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

ENOTDIR A component of the path prefix is not a directory.

EOVERFLOW A component is too large to store in the structure
pointed to by buf .

The fstat() function will fail if:
EBADF The fildes argument is not a valid open file

descriptor.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the execution of the
fstat() function.

ENOLINK The fildes argument points to a remote machine
and the link to that machine is no longer active.

EOVERFLOW A component is too large to store in the structure
pointed to by buf .

282 SunOS 5.8 Last modified 28 Jan 1998

System Calls stat(2)

USAGE The stat() , fstat() , and lstat() functions have transitional interfaces
for 64-bit file offsets. See lf64 (5) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level stat() and fstat() are
Async-Signal-Safe

SEE ALSO chmod(2) , chown (2) , creat (2) , link (2) , mknod(2) , pipe (2) , read (2) ,
time (2) , unlink (2) , utime (2) , write (2) , fattach (3C) , attributes (5)
, lf64 (5) , stat (3HEAD)

NOTES If you use chmod(2) to change the file group owner permissions on a file with
ACL entries, both the file group owner permissions and the ACL mask are
changed to the new permissions. Be aware that the new ACL mask permissions
may change the effective permissions for additional users and groups who
have ACL entries on the file.

Last modified 28 Jan 1998 SunOS 5.8 283

statvfs(2) System Calls

NAME statvfs, fstatvfs – get file system information

SYNOPSIS #include <sys/types.h>
#include <sys/statvfs.h>
int statvfs (const char *path, struct statvfs *buf);

int fstatvfs (int fildes, struct statvfs *buf);

DESCRIPTION The statvfs() function returns a "generic superblock" describing a file
system; it can be used to acquire information about mounted file systems.
The buf argument is a pointer to a structure (described below) that is filled
by the function.

The path argument should name a file that resides on that file system. The
file system type is known to the operating system. Read, write, or execute
permission for the named file is not required, but all directories listed in the path
name leading to the file must be searchable.

The statvfs structure pointed to by buf includes the following members:

u_long f_bsize; /* preferred file system block size */
u_long f_frsize; /* fundamental filesystem block

(size if supported) */
fsblkcnt_t f_blocks; /* total # of blocks on file system

in units of f_frsize */
fsblkcnt_t f_bfree; /* total # of free blocks */
fsblkcnt_t f_bavail; /* # of free blocks avail to

non-super-user */
fsfilcnt_t f_files; /* total # of file nodes (inodes) */
fsfilcnt_t f_ffree; /* total # of free file nodes */
fsfilcnt_t f_favail; /* # of inodes avail to

non-super-user*/
u_long f_fsid; /* file system id (dev for now) */
char f_basetype[FSTYPSZ]; /* target fs type name,

null-terminated */
u_long f_flag; /* bit mask of flags */
u_long f_namemax; /* maximum file name length */
char f_fstr[32]; /* file system specific string */
u_long f_filler[16]; /* reserved for future expansion */

The f_basetype member contains a null-terminated FSType name of the
mounted target.

The following values can be returned in the f_flag field:

ST_RDONLY 0x01 /* read-only file system */
ST_NOSUID 0x02 /* does not support setuid/setgid semantics */
ST_NOTRUNC 0x04 /* does not truncate file names longer than

NAME_MAX */

The fstatvfs() function is similar to statvfs() , except that the file
named by path in statvfs() is instead identified by an open file descriptor

284 SunOS 5.8 Last modified 28 Jan 1998

System Calls statvfs(2)

fildes obtained from a successful open (2) , creat (2) , dup (2) , fcntl (2) , or
pipe (2) function call.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno
is set to indicate the error.

ERRORS The statvfs() and fstatvfs() functions will fail if:
EOVERFLOW One of the values to be returned cannot be

represented correctly in the structure pointed
to by buf .

The statvfs() function will fail if:
EACCES Search permission is denied on a component of

the path prefix.

EFAULT The path or buf argument points to an illegal
address.

EINTR A signal was caught during the execution of the
statvfs() function.

EIO An I/O error occurred while reading the file
system.

ELOOP Too many symbolic links were encountered in
translating path .

ENAMETOOLONG The length of a path component exceeds
NAME_MAXcharacters, or the length of path The
exceeds PATH_MAXcharacters.

ENOENT Either a component of the path prefix or the file
referred to by path does not exist.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

ENOTDIR A component of the path prefix of path is not a
directory.

The fstatvfs() function will fail if:
EBADF The fildes argument is not an open file descriptor.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the execution of the
fstatvfs() function.

EIO An I/O error occurred while reading the file
system.

Last modified 28 Jan 1998 SunOS 5.8 285

statvfs(2) System Calls

USAGE The statvfs() and fstatvfs() functions have transitional interfaces for
64-bit file offsets. See lf64 (5) .

SEE ALSO chmod(2) , chown (2) , creat (2) , dup (2) , fcntl (2) , link (2) , mknod(2) , open (2)
, pipe (2) , read (2) , time (2) , unlink (2) , utime (2) , write (2) , lf64 (5)

BUGS The values returned for f_files , f_ffree , and f_favail may not be
valid for NFS mounted file systems.

286 SunOS 5.8 Last modified 28 Jan 1998

System Calls stime(2)

NAME stime – set system time and date

SYNOPSIS #include <unistd.h>
int stime (const time_t *tp);

DESCRIPTION The stime() function sets the system’s idea of the time and date. The tp
argument points to the value of time as measured in seconds from 00:00:00
UTC January 1, 1970.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The stime() function will fail if:
EINVAL The tp argument points to an invalid (negative) time value.

EPERM The effective user of the calling process is not super-user.

SEE ALSO time (2)

Last modified 5 Jul 1990 SunOS 5.8 287

swapctl(2) System Calls

NAME swapctl – manage swap space

SYNOPSIS #include <sys/stat.h>
#include <sys/swap.h>
int swapctl (int cmd, void *arg);

DESCRIPTION The swapctl() function adds, deletes, or returns information about
swap resources. cmd specifies one of the following options contained in
<sys/swap.h> :

SC_ADD /* add a resource for swapping */
SC_LIST /* list the resources for swapping */
SC_REMOVE /* remove a resource for swapping */
SC_GETNSWP /* return number of swap resources */

When SC_ADDor SC_REMOVEis specified, arg is a pointer to a swapres
structure containing the following members:

char *sr_name; /* pathname of resource */
off_t sr_start; /* offset to start of swap area */
off_t sr_length; /* length of swap area */

The sr_start and sr_length members are specified in 512-byte blocks.
A swap resource can only be removed by specifying the same values for the
sr_start and sr_length members as were specified when it was added.
Swap resources need not be removed in the order in which they were added.

When SC_LIST is specified, arg is a pointer to a swaptable structure containing
the following members:

int swt_n; /* number of swapents following */
struct swapent swt_ent[]; /* array of swt_n swapents */

A swapent structure contains the following members:

char *ste_path; /* name of the swap file */
off_t ste_start; /* starting block for swapping */
off_t ste_length; /* length of swap area */
long ste_pages; /* number of pages for swapping */
long ste_free; /* number of ste_pages free */
long ste_flags; /* ST_INDEL bit set if swap file */

/* is now being deleted */

288 SunOS 5.8 Last modified 25 Sep 1997

System Calls swapctl(2)

The SC_LIST function causes swapctl() to return at most swt_n entries. The
return value of swapctl() is the number actually returned. The ST_INDEL bit
is turned on in ste_flags if the swap file is in the process of being deleted.

When SC_GETNSWPis specified, swapctl() returns as its value the number of
swap resources in use. arg is ignored for this operation.

The SC_ADDand SC_REMOVEfunctions will fail if calling process does not
have appropriate privileges.

RETURN VALUES Upon successful completion, the function swapctl() returns a value of 0
for SC_ADDor SC_REMOVE, the number of struct swapent entries actually
returned for SC_LIST , or the number of swap resources in use for SC_GETNSWP.
Upon failure, the function swapctl() returns a value of −1 and sets errno
to indicate an error.

ERRORS Under the following conditions, the function swapctl() fails and sets errno to:
EEXIST Part of the range specified by sr_start and

sr_length is already being used for swapping
on the specified resource (SC_ADD).

EFAULT Either arg, sr_name , or ste_path points to an
illegal address.

EINVAL The specified function value is not valid, the path
specified is not a swap resource (SC_REMOVE),
part of the range specified by sr_start and
sr_length lies outside the resource specified
(SC_ADD), or the specified swap area is less than
one page (SC_ADD).

EISDIR The path specified for SC_ADDis a directory.

ELOOP Too many symbolic links were encountered in
translating the pathname provided to SC_ADD
or SC_REMOVE.

ENAMETOOLONG The length of a component of the path specified
for SC_ADDor SC_REMOVEexceeds NAME_MAX
characters or the length of the path exceeds
PATH_MAXcharacters and _POSIX_NO_TRUNC
is in effect.

ENOENT The pathname specified for SC_ADDor
SC_REMOVEdoes not exist.

ENOMEM An insufficient number of struct swapent
structures were provided to SC_LIST , or there
were insufficient system storage resources

Last modified 25 Sep 1997 SunOS 5.8 289

swapctl(2) System Calls

available during an SC_ADDor SC_REMOVE, or
the system would not have enough swap space
after an SC_REMOVE.

ENOSYS The pathname specified for SC_ADDor
SC_REMOVEis not a file or block special device.

ENOTDIR Pathname provided to SC_ADDor SC_REMOVE
contained a component in the path prefix that
was not a directory.

EPERM The effective user of the calling process is not
super-user.

EROFS The pathname specified for SC_ADDis a
read-only file system.

Additionally, the swapctl() function will fail for 32-bit interfaces if:
EOVERFLOW The amount of swap space configured on the

machine is too large to be represented by a 32-bit
quantity.

EXAMPLES EXAMPLE 1 The usage of the SC_GETNSWPand SC_LIST commands.

The following example demonstrates the usage of the SC_GETNSWPand
SC_LIST commands.

#include <sys/stat.h>
#include <sys/swap.h>
#include <stdio.h>

#define MAXSTRSIZE 80

main(argc, argv)
int argc;
char *argv[];

{
swaptbl_t *s;
int i, n, num;
char *strtab; /* string table for path names */

again:
if ((num = swapctl(SC_GETNSWP, 0)) == -1) {

perror("swapctl: GETNSWP");
exit(1);

}
if (num == 0) {

fprintf(stderr, "No Swap Devices Configured\n");
exit(2);

}
/* allocate swaptable for num+1 entries */
if ((s = (swaptbl_t *)

malloc(num * sizeof(swapent_t) +

290 SunOS 5.8 Last modified 25 Sep 1997

System Calls swapctl(2)

sizeof(struct swaptable))) ==
(void *) 0) {
fprintf(stderr, "Malloc Failed\n");
exit(3);

}
/* allocate num+1 string holders */
if ((strtab = (char *)

malloc((num + 1) * MAXSTRSIZE)) == (void *) 0) {
fprintf(stderr, "Malloc Failed\n");
exit(3);

}
/* initialize string pointers */
for (i = 0; i < (num + 1); i++) {

s->swt_ent[i].ste_path = strtab + (i * MAXSTRSIZE);
}

s->swt_n = num + 1;
if ((n = swapctl(SC_LIST, s)) < 0) {

perror("swapctl");
exit(1);

}
if (n > num) { /* more were added */

free(s);
free(strtab);
goto again;

}
for (i = 0; i < n; i++)

printf("%s %ld\n",
s->swt_ent[i].ste_path, s->swt_ent[i].ste_pages);

}

Last modified 25 Sep 1997 SunOS 5.8 291

symlink(2) System Calls

NAME symlink – make a symbolic link to a file

SYNOPSIS #include <unistd.h>
int symlink (const char *name1, const char *name2);

DESCRIPTION The symlink() function creates a symbolic link name2 to the file name1. Either
name may be an arbitrary pathname, the files need not be on the same file
system, and name1 may be nonexistent.

The file to which the symbolic link points is used when an open (2) operation
is performed on the link. A stat() operation performed on a symbolic link
returns the linked-to file, while an lstat() operation returns information about
the link itself. See stat (2). Unexpected results may occur when a symbolic link
is made to a directory. To avoid confusion in applications, the readlink (2) call
can be used to read the contents of a symbolic link.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is
set to indicate the error, and the symbolic link is not made.

ERRORS EACCES Search permission is denied for a component of
the path prefix of name2.

EDQUOT The directory where the entry for the new
symbolic link is being placed cannot be extended
because the user’s quota of disk blocks on
that file system has been exhausted; the new
symbolic link cannot be created because the
user’s quota of disk blocks on that file system
has been exhausted; or the user’s quota of inodes
on the file system where the file is being created
has been exhausted.

EEXIST The file referred to by name2 already exists.

EFAULT The name1 or name2 argument points to an
illegal address.

EIO An I/O error occurs while reading from or
writing to the file system.

ELOOP Too many symbolic links are encountered in
translating name2.

ENAMETOOLONG The length of the name2 argument exceeds
PATH_MAX, or the length of a name2 component
exceeds NAME_MAXwhile _POSIX_NO_TRUNC
is in effect.

292 SunOS 5.8 Last modified 14 Apr 1995

System Calls symlink(2)

ENOENT A component of the path prefix of name2 does
not exist.

ENOSPC The directory in which the entry for the new
symbolic link is being placed cannot be extended
because no space is left on the file system
containing the directory; the new symbolic link
cannot be created because no space is left on the
file system which will contain the link; or there
are no free inodes on the file system on which the
file is being created.

ENOSYS The file system does not support symbolic links

ENOTDIR A component of the path prefix of name2 is not a
directory.

EROFS The file name2 would reside on a read-only file
system.

SEE ALSO cp (1), link (2), open (2), readlink (2), stat (2), unlink (2)

Last modified 14 Apr 1995 SunOS 5.8 293

sync(2) System Calls

NAME sync – update super block

SYNOPSIS #include <unistd.h>
void sync (void);

DESCRIPTION The sync() function writes all information in memory that should be on disk,
including modified super blocks, modified inodes, and delayed block I/O.

Unlike fsync (3C), which completes the writing before it returns, sync()
schedules but does not necessarily complete the writing before returning.

USAGE The sync() function should be used by applications that examine a file system,
such as fsck (1M), and df (1M), and is mandatory before rebooting.

SEE ALSO df (1M), fsck (1M), fsync (3C)

294 SunOS 5.8 Last modified 5 Jul 1990

System Calls sysfs(2)

NAME sysfs – get file system type information

SYNOPSIS #include <sys/fstyp.h>
#include <sys/fsid.h>
int sysfs (int opcode, const char *fsname);

int sysfs (int opcode, int fs_index, char *buf);

int sysfs (int opcode);

DESCRIPTION The sysfs() function returns information about the file system types
configured in the system. The number of arguments accepted by sysfs()
depends on the opcode argument, which can take the following values:
GETFSIND Translate fsname, a null-terminated file-system type identifier,

into a file-system type index.

GETFSTYP Translate fs_index, a file-system type index, into a
null-terminated file-system type identifier and write it into
the buffer pointed to by buf, which must be at least of size
FSTYPSZas defined in <sys/fstyp.h> .

GETNFSTYP Return the total number of file system types configured
in the system.

RETURN VALUES Upon successful completion, the value returned depends upon the opcode
argument as follows:
GETFSIND the file-system type index

GETFSTYP 0

GETNFSTYP the number of file system types configured

Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS The sysfs() function will fail if:
EFAULT The buf or fsname argument points to an illegal address.

EINVAL The fsname argument points to an invalid file-system
identifier; the fs_index argument is 0 or invalid; or the opcode
argument is invalid.

Last modified 5 Jul 1990 SunOS 5.8 295

sysinfo(2) System Calls

NAME sysinfo – get and set system information strings

SYNOPSIS #include <sys/systeminfo.h>
long sysinfo (int command, char *buf, long count);

DESCRIPTION The sysinfo() function copies information relating to the operating system
on which the process is executing into the buffer pointed to by buf. It can also
set certain information where appropriate commands are available. The count
parameter indicates the size of the buffer.

The POSIX P1003.1 interface (see standards (5)) sysconf (3C) provides a
similar class of configuration information, but returns an integer rather than a
string.

The values for command are as follows:
SI_SYSNAME Copy into the array pointed to by buf the

string that would be returned by uname(2)
in the sysname field. This is the name of the
implementation of the operating system, for
example, SunOSor UTS.

SI_HOSTNAME Copy into the array pointed to by buf a string that
names the present host machine. This is the
string that would be returned by uname(2) in the
nodename field. This hostname or nodename is
often the name the machine is known by locally.
The hostname is the name of this machine as a
node in some network. Different networks may
have different names for the node, but presenting
the nodename to the appropriate network
directory or name-to-address mapping service
should produce a transport end point address.
The name may not be fully qualified. Internet
host names may be up to 256 bytes in length
(plus the terminating null).

SI_SET_HOSTNAME Copy the null-terminated contents of the array
pointed to by buf into the string maintained
by the kernel whose value will be returned
by succeeding calls to sysinfo() with the
command SI_HOSTNAME.This command
requires that the effective-user-id be super-user.

SI_RELEASE Copy into the array pointed to by buf the string
that would be returned by uname(2) in the
release field. Typical values might be 5.2 or 4.1 .

296 SunOS 5.8 Last modified 5 Nov 1998

System Calls sysinfo(2)

SI_VERSION Copy into the array pointed to by buf the string
that would be returned by uname(2) in the
version field. The syntax and semantics of this
string are defined by the system provider.

SI_MACHINE Copy into the array pointed to by buf the string
that would be returned by uname(2) in the
machine field, for example, sun4c , sun4d , or
sun4m.

SI_ARCHITECTURE Copy into the array pointed to by buf a string
describing the basic instruction set architecture of
the current system, for example, sparc, mc68030 ,
m32100, or i386. These names may not match
predefined names in the C language compilation
system.

SI_ISALIST Copy into the array pointed to by buf the names
of the variant instruction set architectures
executable on the current system.

The names are space-separated and are ordered
in the sense of best performance. That is,
earlier-named instruction sets may contain more
instructions than later-named instruction sets; a
program that is compiled for an earlier-named
instruction set will most likely run faster on this
machine than the same program compiled for
a later-named instruction set.

Programs compiled for an instruction set that
does not appear in the list will most likely
experience performance degradation or not run at
all on this machine.

The instruction set names known to the system
are listed in isalist (5); these names may or
may not match predefined names or compiler
options in the C language compilation system.

SI_PLATFORM Copy into the array pointed to by buf a string
describing the specific model of the hardware
platform, for example, SUNW,Sun_4_75,
SUNW,SPARCsystem-600, or i86pc .

SI_HW_PROVIDER Copies the name of the hardware manufacturer
into the array pointed to by buf.

Last modified 5 Nov 1998 SunOS 5.8 297

sysinfo(2) System Calls

SI_HW_SERIAL Copy into the array pointed to by buf a string
which is the ASCII representation of the
hardware-specific serial number of the physical
machine on which the function is executed. Note
that this may be implemented in Read-Only
Memory, using software constants set when
building the operating system, or by other means,
and may contain non-numeric characters. It is
anticipated that manufacturers will not issue
the same “serial number” to more than one
physical machine. The pair of strings returned
by SI_HW_PROVIDERand SI_HW_SERIAL is
likely to be unique across all vendor’s SVR4
implementations.

SI_SRPC_DOMAIN Copies the Secure Remote Procedure Call domain
name into the array pointed to by buf.

SI_SET_SRPC_DOMAIN Set the string to be returned by sysinfo()
with the SI_SRPC_DOMAINcommand to the
value contained in the array pointed to by buf.
This command requires that the effective-user-id
be super-user.

SI_DHCP_CACHE Copy into the array pointed to by buf an ASCII
string consisting of the ASCII hexidecimal
encoding of the name of the interface configured
by boot (1M) followed by the DHCPACK reply
from the server. This command is intended for
use only by the dhcpagent (1M) DHCP client
daemon for the purpose of adopting the DHCP
maintenance of the interface configured by boot .

RETURN VALUES Upon successful completion, the value returned indicates the buffer size in bytes
required to hold the complete value and the terminating null character. If this
value is no greater than the value passed in count, the entire string was copied. If
this value is greater than count, the string copied into buf has been truncated
to count −1 bytes plus a terminating null character.

Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS The sysinfo() function will fail if:
EFAULT The buf argument does not point to a valid address.

EINVAL The data for a SET command exceeds the limits established
by the implementation.

298 SunOS 5.8 Last modified 5 Nov 1998

System Calls sysinfo(2)

EPERM The effective user of the calling process is not super-user.

USAGE In many cases there is no corresponding programming interface to set these
values; such strings are typically settable only by the system administrator
modifying entries in the /etc/system directory or the code provided by the
particular OEM reading a serial number or code out of read-only memory, or
hard-coded in the version of the operating system.

A good estimation for count is 257, which is likely to cover all strings returned by
this interface in typical installations.

SEE ALSO boot (1M), dhcpagent (1M), uname(2), gethostid (3C), gethostname (3C),
sysconf (3C), isalist (5), standards (5)

Last modified 5 Nov 1998 SunOS 5.8 299

time(2) System Calls

NAME time – get time

SYNOPSIS #include <sys/types.h>
#include <time.h>
time_t time (time_t *tloc);

DESCRIPTION The time() function returns the value of time in seconds since 00:00:00 UTC,
January 1, 1970.

If tloc is non-zero, the return value is also stored in the location to which tloc
points. If tloc points to an illegal address, time() fails and its actions are
undefined.

RETURN VALUES Upon successful completion, time() returns the value of time. Otherwise,
(time_t) −1 is returned and errno is set to indicate the error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO stime (2), ctime (3C), attributes (5)

300 SunOS 5.8 Last modified 28 Dec 1996

System Calls times(2)

NAME times – get process and child process times

SYNOPSIS #include <sys/times.h>
#include <limits.h>
clock_t times (struct tms *buffer);

DESCRIPTION The times() function fills the tms structure pointed to by buffer with
time-accounting information. The tms structure, defined in <sys/times.h> ,
contains the following members:

clock_t tms_utime;
clock_t tms_stime;
clock_t tms_cutime;
clock_t tms_cstime;

All times are reported in clock ticks. The specific value for a clock tick is defined
by the variable CLK_TCK, found in the header <limits.h> .

The times of a terminated child process are included in the tms_cutime and
tms_cstime members of the parent when wait (2) or waitpid (2) returns the
process ID of this terminated child. If a child process has not waited for its
children, their times will not be included in its times.

The tms_utime member is the CPU time used while executing instructions in
the user space of the calling process.

The tms_stime member is the CPU time used by the system on behalf of
the calling process.

The tms_cutime member is the sum of the tms_utime and the tms_cutime
of the child processes.

The tms_cstime member is the sum of the tms_stime and the tms_cstime
of the child processes.

RETURN VALUES Upon successful completion, times() returns the elapsed real time, in clock
ticks, since an arbitrary point in the past (for example, system start-up time). This
point does not change from one invocation of times() within the process to
another. The return value may overflow the possible range of type clock_t . If
times() fails, (clock_t) −1 is returned and errno is set to indicate the error.

ERRORS The times() function will fail if:
EFAULT The buffer argument points to an illegal address.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 14 May 1997 SunOS 5.8 301

times(2) System Calls

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO time (1), timex (1), exec (2), fork (2), time (2), wait (2), waitid (2),
waitpid (2), attributes (5)

302 SunOS 5.8 Last modified 14 May 1997

System Calls uadmin(2)

NAME uadmin – administrative control

SYNOPSIS #include <sys/uadmin.h>
int uadmin (int cmd, int fcn, uintptr_t mdep);

DESCRIPTION The uadmin() function provides control for basic administrative functions. This
function is tightly coupled to the system administrative procedures and is not
intended for general use. The argument mdep is provided for machine-dependent
use and is not defined here.

As specified by cmd, the following commands are available:
A_SHUTDOWN The system is shut down. All user processes are killed,

the buffer cache is flushed, and the root file system is
unmounted. The action to be taken after the system has been
shut down is specified by fcn. The functions are generic; the
hardware capabilities vary on specific machines.

AD_HALT Halt the processor(s).

AD_POWEROFF Halt the processor(s) and turn off the
power.

AD_BOOT Reboot the system, using the kernel file.

AD_IBOOT Interactive reboot; user is prompted for
bootable program name.

A_REBOOT The system stops immediately without any further
processing. The action to be taken next is specified by fcn
as above.

A_DUMP The system is forced to panic immediately without any
further processing and a crash dump is written to the dump
device (see dumpadm(1M)). The action to be taken next is
specified by fcn as above.

A_REMOUNT The root file system is mounted again after having been
fixed. This should be used only during the startup process.

A_FREEZE Suspend the whole system. The system state is preserved
in the state file. The following three subcommands are
available.

AD_COMPRESS Save the system state to the state file with
compression of data.

AD_CHECK Check if your system supports suspend
and resume. Without performing a system

Last modified 30 Mar 1999 SunOS 5.8 303

uadmin(2) System Calls

suspend/resume, this command checks
if this feature is currently available on
your system.

AD_FORCE Force AD_COMPRESSeven when threads of
drivers are not suspendable.

RETURN VALUES Upon successful completion, the value returned depends on cmd as follows:
A_SHUTDOWN Never returns.

A_REBOOT Never returns.

A_FREEZE 0upon resume.

A_REMOUNT 0.

Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS The uadmin() function will fail if:
EPERM The effective user of the calling process is not super-user.

ENOMEM Suspend/resume ran out of physical memory.

ENOSPC Suspend/resume could not allocate enough space on the root
file system to store system information.

ENOTSUP Suspend/resume not supported on this platform.

ENXIO Unable to successfully suspend system.

EBUSY Suspend already in progress.

SEE ALSO dumpadm(1M), kernel (1M), uadmin (1M)

304 SunOS 5.8 Last modified 30 Mar 1999

System Calls ulimit(2)

NAME ulimit – get and set process limits

SYNOPSIS #include <ulimit.h>
long ulimit (int cmd, /* newlimit */...);

DESCRIPTION The ulimit() function provides for control over process limits. It is effective in
limiting the growth of regular files. Pipes are limited to PIPE_MAXbytes.

The cmd values, defined in <ulimit.h> , include:
UL_GETFSIZE Return the soft file size limit of the process. The limit

is in units of 512-byte blocks and is inherited by child
processes. Files of any size can be read. The return value is
the integer part of the soft file size limit divided by 512. If
the result cannot be represented as a long int , the result
is unspecified.

UL_SETFSIZE Set the hard and soft file size limits for output operations of
the process to the value of the second argument, taken as a
long int . Any process may decrease its own hard limit,
but only a process with appropriate privileges may increase
the limit. The new file size limit is returned. The hard and
soft file size limits are set to the specified value multiplied
by 512. If the result would overflow an rlimit_t , the
actual value set is unspecified.

UL_GMEMLIM Get the maximum possible break value (see brk (2)).

UL_GDESLIM Get the current value of the maximum number of open files
per process configured in the system.

RETURN VALUES Upon successful completion, ulimit() returns the value of the requested
limit. Otherwise, −1 is returned, the limit is not changed, and errno is set
to indicate the error.

ERRORS The ulimit() function will fail if:
EINVAL The cmd argument is not valid.

EPERM A process not having appropriate privileges attempts to
increase its file size limit.

USAGE Since all return values are permissible in a successful situation, an application
wishing to check for error situations should set errno to 0, then call ulimit() ,
and if it returns −1, check if errno is non-zero.

The getrlimit() and setrlimit() functions provide a more general
interface for controlling process limits, and are preferred over ulimit() .
See getrlimit (2).

SEE ALSO brk (2), getrlimit (2), write (2)

Last modified 18 Apr 1997 SunOS 5.8 305

umask(2) System Calls

NAME umask – set and get file creation mask

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>
mode_t umask(mode_t cmask);

DESCRIPTION The umask() function sets the process’s file mode creation mask to cmask and
returns the previous value of the mask. Only the access permission bits of
cmask and the file mode creation mask are used. The mask is inherited by child
processes. See intro (2) for more information on masks.

RETURN VALUES The previous value of the file mode creation mask is returned.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO mkdir (1), sh (1), intro (2), chmod(2), creat (2), mknod(2), open (2),
attributes (5), stat (5)

306 SunOS 5.8 Last modified 28 Dec 1996

System Calls umount(2)

NAME umount, umount2 – unmount a file system

SYNOPSIS #include <sys/mount.h>
int umount (const char *file);

int umount2 (const char *file, int mflag);

DESCRIPTION The umount() function requests that a previously mounted file system
contained on a block special device or directory be unmounted. The file
argument is a pointer to the absolute pathname of the file system to be
unmounted. After unmounting the file system, the directory upon which the file
system was mounted reverts to its ordinary interpretation.

The umount2() function is identical to umount() , with the additional
capability of unmounting file systems even if there are open files active. The
mflag argument must contain one of the following values:
0 Perform a normal unmount that is equivalent to umount() .

The umount2() function returns EBUSYif there are open
files active within the file system to be unmounted.

MS_FORCE Unmount the file system, even if there are open files active.
A forced unmount may resort in loss of data, so it should
be used only when a regular unmount is unsuccessful. The
umount2() function returns ENOTSUPif the specified file
systems does not support MS_FORCE. Currently only nfs -
and ufs -type file systems support MS_FORCE.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno
is set to indicate the error.

ERRORS The umount() and umount2() functions will fail if:
EBUSY A file on file is busy.

EFAULT The file pointed to by file points to an illegal
address.

EINVAL The file pointed to by file is not mounted.

ENOENT The file pointed to by file does not exist.

ELOOP Too many symbolic links were encountered in
translating the path pointed to by file .

ENAMETOOLONG The length of the file argument exceeds
PATH_MAX, or the length of a file component
exceeds NAME_MAXwhile _POSIX_NO_TRUNC
is in effect.

Last modified 9 Jun 1999 SunOS 5.8 307

umount(2) System Calls

ENOLINK The file pointed to by file is on a remote machine
and the link to that machine is no longer active.

ENOTBLK The file pointed to by file is not a block special
device.

EPERM The process’s effective user ID is not superuser.

EREMOTE The file pointed to by file is remote.

The umount2() function will fail if:
ENOTSUP The file pointed to by file does not support this

operation.

USAGE The umount() and umount2() functions may be invoked only by the
superuser. Because it provides greater functionality, the umount2() function is
preferred.

SEE ALSO mount (2)

308 SunOS 5.8 Last modified 9 Jun 1999

System Calls uname(2)

NAME uname – get name of current operating system

SYNOPSIS #include <sys/utsname.h>
int uname(struct utsname *name);

DESCRIPTION The uname() function stores information identifying the current operating
system in the structure pointed to by name.

The uname() function uses the utsname structure, defined in
<sys/utsname.h> , whose members include:

char sysname[SYS_NMLN];
char nodename[SYS_NMLN];
char release[SYS_NMLN];
char version[SYS_NMLN];
char machine[SYS_NMLN];

The uname() function returns a null-terminated character string naming
the current operating system in the character array sysname . Similarly, the
nodename member contains the name by which the system is known on a
communications network. The release and version members further
identify the operating system. The machine member contains a standard name
that identifies the hardware on which the operating system is running.

RETURN VALUES Upon successful completion, a non-negative value is returned. Otherwise, −1
is returned and errno is set to indicate the error.

ERRORS The uname() function will fail if:
EFAULT The name argument points to an illegal address.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO uname(1), sysinfo (2), sysconf (3C), attributes (5)

Last modified 21 Jul 1999 SunOS 5.8 309

unlink(2) System Calls

NAME unlink – remove directory entry

SYNOPSIS #include <unistd.h>
int unlink (const char *path);

DESCRIPTION The unlink() function removes a link to a file. If path names a symbolic link,
unlink() removes the symbolic link named by path and does not affect any file
or directory named by the contents of the symbolic link. Otherwise, unlink()
removes the link named by the pathname pointed to by path and decrements the
link count of the file referenced by the link.

When the file’s link count becomes 0 and no process has the file open, the space
occupied by the file will be freed and the file will no longer be accessible. If one
or more processes have the file open when the last link is removed, the link will
be removed before unlink() returns, but the removal of the file contents will
be postponed until all references to the file are closed.

The path argument must not name a directory unless the process has appropriate
privileges and the implementation supports using unlink() on directories.

Upon successful completion, unlink() will mark for update the st_ctime
and st_mtime fields of the parent directory. If the file’s link count is not 0, the
st_ctime field of the file will be marked for update.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is
set to indicate the error, and the file is not unlinked.

ERRORS The unlink() function will fail if:
EACCES Search permission is denied for a component of

the path prefix; write permission is denied on the
directory containing the link to be removed;
the parent directory has the sticky bit set and
the file is not writable by the user; or the user
does not own the parent directory and the user
does not own the file.

EBUSY The entry to be unlinked is the mount point for a
mounted file system.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the
unlink() function.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds
PATH_MAX, or the length of a path component

310 SunOS 5.8 Last modified 28 Dec 1996

System Calls unlink(2)

exceeds NAME_MAXwhile _POSIX_NO_TRUNC
is in effect.

ENOENT The named file does not exist or is a null
pathname.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

ENOTDIR A component of the path prefix is not a directory.

EPERM The named file is a directory and the effective
user of the calling process is not super-user.

EROFS The directory entry to be unlinked is part of a
read-only file system.

The unlink() function may fail if:
ENAMETOOLONG Pathname resolution of a symbolic link produced

an intermediate result whose length exceeds
PATH_MAX.

ETXTBSY The entry to be unlinked is the last directory
entry to a pure procedure (shared text) file that is
being executed.

USAGE Applications should use rmdir (2) to remove a directory.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO rm(1), close (2), link (2), open (2), rmdir (2), remove (3C), attributes (5)

Last modified 28 Dec 1996 SunOS 5.8 311

ustat(2) System Calls

NAME ustat – get file system statistics

SYNOPSIS #include <sys/types.h>
#include <ustat.h>
int ustat (dev_t dev, struct ustat *buf);

DESCRIPTION The ustat() function returns information about a mounted file system. The
dev argument is a device number identifying a device containing a mounted file
system (see makedev (3C)). The buf argument is a pointer to a ustat structure
that includes the following members:

daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char f_fname[6]; /* Filsys name */
char f_fpack[6]; /* Filsys pack name */

The f_fname and f_fpack members may not contain significant information
on all systems; in this case, these members will contain the null character as the
first character.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The ustat() function will fail if:
ECOMM The dev argument is on a remote machine and the link to

that machine is no longer active.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the execution of the ustat()
function.

EINVAL The dev argument is not the device number of a device
containing a mounted file system.

ENOLINK The dev argument refers to a device on a remote machine
and the link to that machine is no longer active.

EOVERFLOW One of the values returned cannot be represented in the
structure pointed to by buf.

USAGE The statvfs (2) function should be used in favor of ustat() .

SEE ALSO stat (2), statvfs (2), makedev (3C)

BUGS The NFS revision 2 protocol does not permit the number of free files to be
provided to the client; therefore, when ustat() has completed on an NFS
file system, f_tinode is always −1.

312 SunOS 5.8 Last modified 2 Nov 1999

System Calls utime(2)

NAME utime – set file access and modification times

SYNOPSIS #include <sys/types.h>
#include <utime.h>
int utime (const char *path, const struct utimbuf *times);

DESCRIPTION The utime() function sets the access and modification times of the file pointed
to by path, and causes the time of the last file status change (st_ctime) to
be updated.

If times is NULL, the access and modification times of the file are set to the current
time. A process must be the owner of the file or have write permission to use
utime() in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure
(defined in <utime.h>) and the access and modification times are set to the
values contained in the designated structure. Only the owner of the file or the
super-user may use utime() in this manner.

The utimbuf structure contains the following members:

time_t actime; /* access time */
time_t modtime; /* modification time */

The times contained in the members of the utimbuf structure are measured in
seconds since 00:00:00 UTC, January 1, 1970.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The utime() function will fail if:
EACCES Search permission is denied by a component of

the path prefix; or the effective user ID of the
process is not super-user and not the owner of
the file, write permission is denied for the file,
and times is NULL.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the
utime() function.

EIO An I/O error occurred while reading from or
writing to the file system.

ELOOP Too many symbolic links were encountered in
translating path.

Last modified 28 Dec 1996 SunOS 5.8 313

utime(2) System Calls

ENAMETOOLONG The length of the path argument exceeds
PATH_MAX, or the length of a path component
exceeds NAME_MAXwhile _POSIX_NO_TRUNC
is in effect.

ENOENT The named file does not exist or is a null
pathname.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user of the calling process is not
super-user and not the owner of the file, and
times is not NULL.

EROFS The file system containing the file is mounted
read-only.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO stat (2), attributes (5)

314 SunOS 5.8 Last modified 28 Dec 1996

System Calls utimes(2)

NAME utimes – set file access and modification times

SYNOPSIS #include <sys/time.h>
int utimes (const char *path, const struct timeval times[2]);

DESCRIPTION The utimes() function sets the access and modification times of the file
pointed to by the path argument to the value of the times argument. It allows
time specifications accurate to the microsecond.

The times argument is an array of timeval structures. The first array member
represents the date and time of last access, and the second member represents
the date and time of last modification. The times in the timeval structure are
measured in seconds and microseconds since the Epoch, although rounding
toward the nearest second may occur.

If the times argument is a null pointer, the access and modification times of the
file are set to the current time. The effective user ID of the process must be the
same as the owner of the file, or must have write access to the file or super-user
privileges to use this call in this manner. Upon completion, utimes() will mark
the time of the last file status change, st_ctime , for update.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is
set to indicate the error, and the file times will not be affected.

ERRORS The utimes() function will fail if:
EACCES Search permission is denied by a component of

the path prefix; or the times argument is a null
pointer and the effective user ID of the process
does not match the owner of the file and write
access is denied.

EFAULT The path or times argument points to an illegal
address.

EINTR A signal was caught during the execution of the
utimes() function.

EINVAL The number of microseconds specified in one
or both of the timeval structures pointed to
by times was greater than or equal to 1,000,000
or less than 0.

EIO An I/O error occurred while reading from or
writing to the file system.

ELOOP Too many symbolic links were encountered in
resolving path.

Last modified 9 Apr 1999 SunOS 5.8 315

utimes(2) System Calls

ENAMETOOLONG The length of the path argument exceeds
PATH_MAXor a pathname component is longer
than NAME_MAX.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

ENOENT A component of path does not name an existing
file or path is an empty string.

ENOTDIR A component of the path prefix is not a directory.

EPERM The times argument is not a null pointer and the
calling process’s effective user ID has write access
to the file but does not match the owner of the
file and the calling process does not have the
appropriate privileges.

EROFS The file system containing the file is read-only.

The utimes() function may fail if:
ENAMETOOLONG Path name resolution of a symbolic link produced

an intermediate result whose length exceeds
PATH_MAX.

SEE ALSO stat (2)

316 SunOS 5.8 Last modified 9 Apr 1999

System Calls vfork(2)

NAME vfork – spawn new process in a virtual memory efficient way

SYNOPSIS #include <unistd.h>
pid_t vfork (void);

DESCRIPTION The vfork() function creates new processes without fully copying the address
space of the old process. This function is useful in instances where the purpose of
a fork (2) operation would be to create a new system context for an execve()
operation (see exec (2)).

Unlike with the fork() function, the child process borrows the parent’s
memory and thread of control until a call to execve() or an exit (either
abnormally or by a call to _exit() (see exit (2)). The parent process is
suspended while the child is using its resources.

In a multithreaded application, vfork() borrows only the thread of control that
called vfork() in the parent; that is, the child contains only one thread. In that
sense, vfork() behaves like fork() .

The vfork() function can normally be used the same way as fork() . The
procedure that called vfork() , however, should not return while running in the
child’s context, since the eventual return from vfork() would be to a stack
frame that no longer exists. The _exit() function should be used in favor of
exit (3C) if unable to perform an execve() operation, since exit() will flush
and close standard I/O channels, and thereby corrupt the parent process’s
standard I/O data structures. The _exit() function should be used even with
fork() to avoid flushing the buffered data twice.

RETURN VALUES Upon successful completion, vfork() returns 0 to the child process and
returns the process ID of the child process to the parent process. Otherwise, −1
is returned to the parent process, no child process is created, and errno is set
to indicate the error.

ERRORS The vfork() function will fail if:
EAGAIN The system-imposed limit on the total number of processes

under execution (either system-quality or by a single user)
would be exceeded. This limit is determined when the
system is generated.

ENOMEM There is insufficient swap space for the new process.

SEE ALSO exec (2), exit (2), fork (2), ioctl (2), wait (2), exit (3C)

NOTES The use of vfork() for any purpose other than as a prelude to an immediate
call to a function from the exec family or to _exit() is not advised.

The vfork() function is unsafe in multithreaded applications.

Last modified 22 May 1996 SunOS 5.8 317

vfork(2) System Calls

This function will be eliminated in a future release. The memory sharing
semantics of vfork() can be obtained through other mechanisms.

To avoid a possible deadlock situation, processes that are children in the middle
of a vfork() are never sent SIGTTOUor SIGTTIN signals; rather, output or
ioctls are allowed and input attempts result in an EOF indication.

On some systems, the implementation of vfork() causes the parent to inherit
register values from the child. This can create problems for certain optimizing
compilers if <unistd.h> is not included in the source calling vfork() .

318 SunOS 5.8 Last modified 22 May 1996

System Calls vhangup(2)

NAME vhangup – virtually “hangup” the current controlling terminal

SYNOPSIS #include <unistd.h>
void vhangup (void);

DESCRIPTION The vhangup() function is used by the initialization process init (1M)
(among others) to ensure that users are given “clean” terminals at login by
revoking access of the previous users’ processes to the terminal. To effect this,
vhangup() searches the system tables for references to the controlling terminal
of the invoking process and revokes access permissions on each instance of the
terminal that it finds. Further attempts to access the terminal by the affected
processes will yield I/O errors (EBADFor EIO). A SIGHUP(hangup signal) is
sent to the process group of the controlling terminal.

SEE ALSO init (1M)

BUGS Access to the controlling terminal using /dev/tty is still possible.

This call should be replaced by an automatic mechanism that takes place on
process exit.

Last modified 19 Mar 1998 SunOS 5.8 319

wait(2) System Calls

NAME wait – wait for child process to stop or terminate

SYNOPSIS #include <sys/types.h>
#include <sys/wait.h>
pid_t wait (int *stat_loc);

DESCRIPTION The wait() function will suspend execution of the calling thread until status
information for one of its terminated child processes is available, or until
delivery of a signal whose action is either to execute a signal-catching function or
to terminate the process. If more than one thread is suspended in wait() or
waitpid (2) awaiting termination of the same process, exactly one thread will
return the process status at the time of the target process termination. If status
information is available prior to the call to wait() , return will be immediate.

If wait() returns because the status of a child process is available, it returns
the process ID of the child process. If the calling process specified a non-zero
value for stat_loc, the status of the child process is stored in the location pointed
to by stat_loc. That status may be evaluated with the macros described on the
wstat (3XFN) manual page.

In the following, status is the object pointed to by stat_loc:

� If the child process stopped, the high order 8 bits of status will contain the
number of the signal that caused the process to stop and the low order 8
bits will be set equal to WSTOPFLG.

� If the child process terminated due to an _exit() call, the low order 8 bits
of status will be 0 and the high order 8 bits will contain the low order 8 bits
of the argument that the child process passed to _exit() ; see exit (2).

� If the child process terminated due to a signal, the high order 8 bits of status
will be 0 and the low order 8 bits will contain the number of the signal that
caused the termination. In addition, if WCOREFLGis set, a “core image” will
have been produced; see signal (3HEAD) and wstat (3XFN).

If the calling process has SA_NOCLDWAITset or has SIGCHLDset to SIG_IGN ,
and the process has no unwaited children that were transformed into zombie
processes, it will block until all of its children terminate, and wait() will fail
and set errno to ECHILD.

If a parent process terminates without waiting for its child processes to terminate,
the parent process ID of each child process is set to 1, with the initialization
process inheriting the child processes; see intro (3).

RETURN VALUES When wait() returns due to a terminated child process, the process ID of the
child is returned to the calling process. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The wait() function will fail if:

320 SunOS 5.8 Last modified 11 Feb 1999

System Calls wait(2)

ECHILD The calling process has no existing unwaited-for child
processes.

EINTR The function was interrupted by a signal.

USAGE Since wait() blocks on a stopped child, a calling process wishing to see the
return results of such a call should use waitid (2) or waitpid (2) instead
of wait() .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO intro (3), exec (2), exit (2), fork (2), pause (2), ptrace (2), waitid (2),
waitpid (2), signal (3C), attributes (5), signal (3HEAD), wstat (3XFN)

Last modified 11 Feb 1999 SunOS 5.8 321

waitid(2) System Calls

NAME waitid – wait for child process to change state

SYNOPSIS #include <wait.h>
int waitid (idtype_t idtype, id_t id, siginfo_t *infop, int options);

DESCRIPTION The waitid() function suspends the calling process until one of its child
processes changes state. It records the current state of a child in the structure
pointed to by infop. It returns immediately if a child process changed state
prior to the call.

The idtype and id arguments specify which children waitid() is to wait for,
as follows:

� If idtype is P_PID , waitid() waits for the child with a process ID equal
to (pid_t) id.

� If idtype is P_PGID, waitid() waits for any child with a process group ID
equal to (pid_t) id.

� If idtype is P_ALL, waitid() waits for any child and id is ignored.

The options argument is used to specify which state changes waitid() is to wait
for. It is formed by bitwise OR operation of any of the following flags:
WCONTINUED Return the status for any child that was stopped and has

been continued.

WEXITED Wait for process(es) to exit.

WNOHANG Return immediately.

WNOWAIT Keep the process in a waitable state.

WSTOPPED Wait for and return the process status of any child that has
stopped upon receipt of a signal.

WTRAPPED Wait for traced process(es) to become trapped or reach a
breakpoint (see ptrace (2)).

The infop argument must point to a siginfo_t structure, as defined in
siginfo (3HEAD). If waitid() returns because a child process was found that
satisfies the conditions indicated by the arguments idtype and options, then the
structure pointed to by infop will be filled by the system with the status of the
process. The si_signo member will always be equal to SIGCHLD.

RETURN VALUES If waitid() returns due to a change of state of one of its children and WNOHANG
was not used, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error. If WNOHANGwas used, 0 can be returned (indicating no error);
however, no children may have changed state if info->si_pid is 0.

ERRORS The waitid() function will fail if:

322 SunOS 5.8 Last modified 27 Jun 1996

System Calls waitid(2)

ECHILD The set of processes specified by idtype and id does not
contain any unwaited processes.

EFAULT The infop argument points to an illegal address.

EINTR The waitid() function was interrupted due to the receipt
of a signal by the calling process.

EINVAL An invalid value was specified for options, or idtype and id
specify an invalid set of processes.

USAGE With idtype equal to P_ALL and options equal to WEXITED| WTRAPPED,
waitid() is equivalent to wait (2).

SEE ALSO intro (3), exec (2), exit (2), fork (2), pause (2), ptrace (2), sigaction (2),
wait (2), signal (3C), siginfo (3HEAD)

Last modified 27 Jun 1996 SunOS 5.8 323

waitpid(2) System Calls

NAME waitpid – wait for child process to change state

SYNOPSIS #include <sys/types.h>
#include <sys/wait.h>
pid_t waitpid (pid_t pid, int *stat_loc, int options);

DESCRIPTION The waitpid() function will suspend execution of the calling thread until
status information for one of its terminated child processes is available, or until
delivery of a signal whose action is either to execute a signal-catching function or
to terminate the process. If more than one thread is suspended in waitpid()
or wait (2) awaiting termination of the same process, exactly one thread will
return the process status at the time of the target process termination. If status
information is available prior to the call to waitpid() , return will be immediate.

The pid argument specifies a set of child processes for which status is requested,
as follows:

� If pid is equal to (pid_t) −1, status is requested for any child process.

If pid is greater than (pid_t)0 , it specifies the process ID of the child
process for which status is requested.

� If pid is equal to (pid_t)0 status is requested for any child process whose
process group ID is equal to that of the calling process.

� If pid is less than (pid_t) −1, status is requested for any child process
whose process group ID is equal to the absolute value of pid.

If the calling process has SA_NOCLDWAITset or has SIGCHLDset to SIG_IGN
and the process has no unwaited children that were transformed into zombie
processes, it will block until all of its children terminate, and waitpid() will
fail and set errno to ECHILD.

If waitpid() returns because the status of a child process is available, then that
status may be evaluated with the macros defined by wstat (3XFN) If the calling
process had specified a non-zero value of stat_loc, the status of the child process
will be stored in the location pointed to by stat_loc.

The options argument is constructed from the bitwise inclusive OR of zero or
more of the following flags, defined in the header <sys/wait.h> :
WCONTINUED The status of any continued child process specified by pid,

whose status has not been reported since it continued, is also
reported to the calling process.

WNOHANG waitpid() will not suspend execution of the calling
process if status is not immediately available for one of the
child processes specified by pid.

324 SunOS 5.8 Last modified 24 Feb 1998

System Calls waitpid(2)

WNOWAIT Keep the process whose status is returned in stat_loc in a
waitable state. The process may be waited for again with
identical results.

WUNTRACED The status of any child processes specified by pid that are
stopped, and whose status has not yet been reported since
they stopped, is also reported to the calling process.

RETURN VALUES If waitpid() returns because the status of a child process is available, it returns
a value equal to the process ID of the child process for which status is reported.
If waitpid() returns due to the delivery of a signal to the calling process, −1 is
returned and errno is set to EINTR. If waitpid() was invoked with WNOHANG
set in options, it has at least one child process specified by pid for which status is
not available, and status is not available for any process specified by pid, then 0
is returned. Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS The waitpid() function will fail if:
ECHILD The process or process group specified by pid does not exist

or is not a child of the calling process or can never be in the
states specified by options.

EINTR The waitpid() function was interrupted due to the receipt
of a signal sent by the calling process.

EINVAL An invalid value was specified for options.

USAGE With options equal to 0 and pid equal to (pid_t) −1, waitpid() is identical
to wait (2).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

SEE ALSO intro (3), exec (2), exit (2), fork (2), pause (2), ptrace (2), sigaction (2),
wait (2), signal (3C), attributes (5), siginfo (3HEAD), wstat (3XFN)

Last modified 24 Feb 1998 SunOS 5.8 325

write(2) System Calls

NAME write, pwrite, writev – write on a file

SYNOPSIS #include <unistd.h>
ssize_t write (int fildes, const void *buf, size_t nbyte);

ssize_t pwrite (int fildes, const void *buf, size_t nbyte, off_t offset);

#include <sys/uio.h>
ssize_t writev (int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION The write() function attempts to write nbyte bytes from the buffer pointed to
by buf to the file associated with the open file descriptor, fildes .

If nbyte is 0, write() will return 0 and have no other results if the file is a
regular file; otherwise, the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data
proceeds from the position in the file indicated by the file offset associated with
fildes . Before successful return from write() , the file offset is incremented
by the number of bytes actually written. On a regular file, if this incremented
file offset is greater than the length of the file, the length of the file will be
set to this file offset.

If the O_SYNCflag of the file status flags is set and fildes refers to a regular
file, a successful write() does not return until the data is delivered to the
underlying hardware.

If fildes refers to a socket, write() is equivalent to send (3SOCKET) with
no flags set.

On a file not capable of seeking, writing always takes place starting at the current
position. The value of a file offset associated with such a device is undefined.

If the O_APPENDflag of the file status flags is set, the file offset will be set to the
end of the file prior to each write and no intervening file modification operation
will occur between changing the file offset and the write operation.

For regular files, no data transfer will occur past the offset maximum established
in the open file description with fildes .

A write() to a regular file is blocked if mandatory file/record locking is
set (see chmod(2)), and there is a record lock owned by another process on
the segment of the file to be written:

� If O_NDELAYor O_NONBLOCKis set, write() returns -1 and sets errno to
EAGAIN .

� If O_NDELAYand O_NONBLOCKare clear, write() sleeps until all blocking
locks are removed or the write() is terminated by a signal.

326 SunOS 5.8 Last modified 19 Mar 1999

System Calls write(2)

If a write() requests that more bytes be written than there is room for–for
example, if the write would exceed the process file size limit (see getrlimit (2)
and ulimit (2)), the system file size limit, or the free space on the device–only
as many bytes as there is room for will be written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A write() of 512-bytes
returns 20. The next write() of a non-zero number of bytes gives a failure
return (except as noted for pipes and FIFO below).

If write() is interrupted by a signal before it writes any data, it will return -1
with errno set to EINTR .

If write() is interrupted by a signal after it successfully writes some data, it
will return the number of bytes written.

If the value of nbyte is greater than SSIZE_MAX , the result is
implementation-dependent.

After a write() to a regular file has successfully returned:

� Any successful read (2) from each byte position in the file that was modified
by that write will return the data specified by the write() for that position
until such byte positions are again modified.

� Any subsequent successful write() to the same byte position in the file
will overwrite that file data.

Write requests to a pipe or FIFO are handled the same as a regular file with the
following exceptions:

� There is no file offset associated with a pipe, hence each write request
appends to the end of the pipe.

� Write requests of {PIPE_BUF} bytes or less are guaranteed not to be
interleaved with data from other processes doing writes on the same pipe.
Writes of greater than {PIPE_BUF} bytes may have data interleaved, on
arbitrary boundaries, with writes by other processes, whether or not the
O_NONBLOCKor O_NDELAYflags are set.

� If O_NONBLOCKand O_NDELAYare clear, a write request may cause the
process to block, but on normal completion it returns nbyte .

� If O_NONBLOCKand O_NDELAYare set, write() does not block the
process. If a write() request for PIPE_BUF or fewer bytes succeeds
completely write() returns nbyte . Otherwise, if O_NONBLOCKis set, it
returns -1 and sets errno to EAGAINor if O_NDELAYis set, it returns 0 .
A write() request for greater than {PIPE_BUF} bytes transfers what it
can and returns the number of bytes written or it transfers no data and, if
O_NONBLOCKis set, returns -1 with errno set to EAGAINor if O_NDELAYis

Last modified 19 Mar 1999 SunOS 5.8 327

write(2) System Calls

set, it returns 0 . Finally, if a request is greater than PIPE_BUF bytes and
all data previously written to the pipe has been read, write() transfers
at least PIPE_BUF bytes.

When attempting to write to a file descriptor (other than a pipe, a FIFO, a
socket, or a STREAM) that supports nonblocking writes and cannot accept
the data immediately:

� If O_NONBLOCKand O_NDELAYare clear, write() blocks until the data
can be accepted.

� If O_NONBLOCKor O_NDELAYis set, write() does not block the process.
If some data can be written without blocking the process, write()
writes what it can and returns the number of bytes written. Otherwise, if
O_NONBLOCKis set, it returns -1 and sets errno to EAGAINor if O_NDELAY
is set, it returns 0 .

Upon successful completion, where nbyte is greater than 0, write() will mark
for update the st_ctime and st_mtime fields of the file, and if the file is a
regular file, the S_ISUID and S_ISGID bits of the file mode may be cleared.

For STREAMS files (see intro (3) and streamio (7I)), the operation of
write() is determined by the values of the minimum and maximum nbyte
range ("packet size") accepted by the STREAM. These values are contained in
the topmost STREAM module, and can not be set or tested from user level. If
nbyte falls within the packet size range, nbyte bytes are written. If nbyte does
not fall within the range and the minimum packet size value is zero, write()
breaks the buffer into maximum packet size segments prior to sending the data
downstream (the last segment may be smaller than the maximum packet size).
If nbyte does not fall within the range and the minimum value is non-zero,
write() fails and sets errno to ERANGE. Writing a zero-length buffer (nbyte is
zero) to a STREAMS device sends a zero length message with zero returned.
However, writing a zero-length buffer to a pipe or FIFO sends no message and
zero is returned. The user program may issue the I_SWROPT ioctl (2) to enable
zero-length messages to be sent across the pipe or FIFO (see streamio (7I)).

When writing to a STREAM, data messages are created with a priority band of
zero. When writing to a socket or to a STREAM that is not a pipe or a FIFO:

� If O_NDELAYand O_NONBLOCKare not set, and the STREAM cannot
accept data (the STREAM write queue is full due to internal flow control
conditions), write() blocks until data can be accepted.

� If O_NDELAYor O_NONBLOCKis set and the STREAM cannot accept data,
write() returns -1 and sets errno to EAGAIN .

328 SunOS 5.8 Last modified 19 Mar 1999

System Calls write(2)

� If O_NDELAYor O_NONBLOCKis set and part of the buffer has already
been written when a condition occurs in which the STREAM cannot
accept additional data, write() terminates and returns the number of
bytes written.

The write() and writev() functions will fail if the STREAM head had
processed an asynchronous error before the call. In this case, the value of errno
does not reflect the result of write() or writev() but reflects the prior error.

pwrite() The pwrite() function performs the same action as write() , except that it
writes into a given position without changing the file pointer. The first three
arguments to pwrite() are the same as write() with the addition of a fourth
argument offset for the desired position inside the file.

writev() The writev() function performs the same action as write() , but gathers the
output data from the iovcnt buffers specified by the members of the iov array: iov
[0], iov [1], ..., iov [iovcnt -1]. The iovcnt buffer is valid if greater than 0 and less
than or equal to {IOV_MAX} . See intro (3) for a definition of {IOV_MAX} .

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory
from which data should be written. The writev() function always writes all
data from an area before proceeding to the next.

If fildes refers to a regular file and all of the iov_len members in the array
pointed to by iov are 0, writev() will return 0 and have no other effect. For
other file types, the behavior is unspecified.

If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails
and no data is transferred.

RETURN VALUES Upon successful completion, write() returns the number of bytes actually
written to the file associated with fildes . This number is never greater than nbyte
. Otherwise, -1 is returned, the file-pointer remains unchanged, and errno
is set to indicate the error.

Upon successful completion, writev() returns the number of bytes actually
written. Otherwise, it returns -1 , the file-pointer remains unchanged, and
errno is set to indicate an error.

ERRORS The write() , pwrite() , and writev() functions will fail if:
EAGAIN Mandatory file/record locking is set, O_NDELAYor

O_NONBLOCKis set, and there is a blocking record lock; an
attempt is made to write to a STREAM that can not accept
data with the O_NDELAYor O_NONBLOCKflag set; or a write

Last modified 19 Mar 1999 SunOS 5.8 329

write(2) System Calls

to a pipe or FIFO of PIPE_BUF bytes or less is requested and
less than nbytes of free space is available.

EBADF The fildes argument is not a valid file descriptor open for
writing.

EDEADLK The write was going to go to sleep and cause a deadlock
situation to occur.

EDQUOT The user’s quota of disk blocks on the file system containing
the file has been exhausted.

EFAULT The buf argument points to an illegal address.

EFBIG An attempt is made to write a file that exceeds the process’s
file size limit or the maximum file size (see getrlimit (2)
and ulimit (2)).

EFBIG The file is a regular file, nbyte is greater than 0, and the
starting position is greater than or equal to the offset
maximum established in the file description associated with
fildes .

EINTR A signal was caught during the write operation and no
data was transferred.

EIO The process is in the background and is attempting to write
to its controlling terminal whose TOSTOPflag is set, or the
process is neither ignoring nor blocking SIGTTOUsignals
and the process group of the process is orphaned.

ENOLCK Enforced record locking was enabled and {LOCK_MAX}
regions are already locked in the system, or the system
record lock table was full and the write could not go to sleep
until the blocking record lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to
that machine is no longer active.

ENOSPC During a write to an ordinary file, there is no free space left
on the device.

ENOSR An attempt is made to write to a STREAMS with insufficient
STREAMS memory resources available in the system.

ENXIO A hangup occurred on the STREAM being written to.

EPIPE An attempt is made to write to a pipe or a FIFO that is not
open for reading by any process, or that has only one end
open (or to a file descriptor created by socket (3SOCKET) ,

330 SunOS 5.8 Last modified 19 Mar 1999

System Calls write(2)

using type SOCK_STREAMthat is no longer connected to a
peer endpoint). A SIGPIPE signal will also be sent to the
process. The process dies unless special provisions were
taken to catch or ignore the signal.

ERANGE The transfer request size was outside the range supported by
the STREAMS file associated with fildes .

The pwrite() function fails and the file pointer remains unchanged if:
ESPIPE The fildes argument is associated with a pipe or FIFO.

The writev() function will fail if:
EINVAL The sum of the iov_len values in the iov array would

overflow an ssize_t .

The write() and writev() functions may fail if:
EINVAL The STREAM or multiplexer referenced by fildes is linked

(directly or indirectly) downstream from a multiplexer.

ENXIO A request was made of a non-existent device, or the request
was outside the capabilities of the device.

ENXIO A hangup occurred on the STREAM being written to.

A write to a STREAMS file may fail if an error message has been received at
the STREAM head. In this case, errno is set to the value included in the
error message.

The writev() function may fail if:
EINVAL The iovcnt argument was less than or equal to 0 or greater

than {IOV_MAX}; one of the iov_len values in the iov array
was negative; or the sum of the iov_len values in the iov
array overflowed an int .

USAGE The pwrite() function has a transitional interface for 64-bit file offsets. See
lf64 (5) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level write() is Async-Signal-Safe

SEE ALSO Intro (3) , chmod(2) , creat (2) , dup (2) , fcntl (2) , getrlimit (2) ,
ioctl (2) , lseek (2) , open (2) , pipe (2) , ulimit (2) , send (3SOCKET) ,
socket (3SOCKET) , attributes (5) , lf64 (5) , streamio (7I)

Last modified 19 Mar 1999 SunOS 5.8 331

yield(2) System Calls

NAME yield – yield execution to another lightweight process

SYNOPSIS #include <unistd.h>
void yield (void);

DESCRIPTION The yield() function causes the current lightweight process to yield its
execution in favor of another lightweight process with the same or greater
priority.

SEE ALSO thr_yield (3THR)

332 SunOS 5.8 Last modified 20 Jul 1993

Index

A
access — determine accessibility of a file 41
access permission mode of file

change – chmod 62
accounting

enable or disable process accounting —
acct 43

acct — enable or disable process accounting 43
acl – get or set a file’s Access Control List

(ACL) 44
adjtime — correct the time to allow

synchronization of the system
clock 46

adjust local clock parameters —
ntp_adjtime 176

alarm — set a process alarm clock 48
audit — write an audit record 50
auditon — manipulate auditing 51
auditsvc() function 56

B
bind LWPs to a processor —

processor_bind 207
bind LWPs to a set of processors —

pset_bind 212
brk – change the amount of space allocated

for the calling process’s data
segment 58

C
chdir – change working directory 60

child processes
allows a parent process to control the

execution of a child process
— ptrace 217

get time — times 301
wait for child process to change state —

waitid 322, 324
wait for child process to stop or terminate

— wait 320
chmod – change access permission mode of

file 62
chown – change owner and group of a file 66
chroot – change root directory 69
clock

get local clock values — ntp_gettime 177
continue or suspend LWP execution

– _lwp_continue 144
– _lwp_suspend 144

CPU-use
process execution time profile —

profil 210
creat — create a new file or rewrite an existing

one 73
create a new process – fork 95

fork1 95
create a new light-weight process —

_lwp_create 134
create session and set process group ID —

setsid 249

D
deliver process signals to specific LWPs

Index-333

– _lwp_sigredirect 263
– _signotifywait 263

determine accessibility of a file — access 41
devices

I/O control functions — ioctl 122
directories

change working directory – chdir 60
create a new one — mknod 153
get configurable pathname variables –

pathconf 98
make a new one — mkdir 151
read directory entries and put in a file

system independent format —
getdents 106

remove — rmdir 234
dup — duplicate an open file descriptor 75

E
effective group ID

set — setregid() 247
effective user ID

set — setreuid() 248
exec – execute a file 76
execl – execute a file 76
execle – execute a file 76
execlp – execute a file 76
execv – execute a file 76
execve – execute a file 76
execvp – execute a file 76
exit – terminate process 83
_exit – terminate process 83

F
facl – get or set a file’s Access Control List

(ACL) 44
fchdir – change working directory 60
fchmod – change access permission mode of

file 62
fchown – change owner and group of a file 66
fcntl — file control 86
file control — fcntl 86
file descriptor

duplicate an open one — dup 75
file pointer, read/write

move — lseek 128–129
file status

get – stat, lstat, fstat 280
file system

get information – statvfs, fstatvfs 284
get statistics — ustat 312
make a symbolic link to a file —

symlink 292
remove link — unlink 310
returns information about the file system

types configured in the system
— sysfs 295

update super block — sync 294
files

change access permission mode of file –
chmod 62, 66

change the name of a file — rename 229
create a new file or rewrite an existing one

— creat 73
execute – exec 76
get configurable pathname variables –

pathconf 98
link to a file — link 126
move read/write file pointer —

lseek 128–129
set file access and modification times —

utime 313
fork – create a new process 95

spawn new process in a virtual memory
efficient way — vfork 317

fork1 – create a new process 95
fpathconf – get configurable pathname

variables 98
fstat – get status on open file known by file

descriptor 280
fstatvfs – get file system information 284

G
get and set process audit information –

getaudit 101
get and set process limits — ulimit 305
get information about a processor set —

pset_info 216
get LWP identifier — _lwp_self 141
get or change processor operational status —

p_online 191
get or set a file’s Access Control List (ACL)

– acl 44

man pages section 2: System Calls ♦ February 2000

– facl 44
get process group ID of session leader —

getsid 120
getaudit – get and set process audit

information 101
getaudit_addr – get and set process audit

information 101
getauid – get user audit identity 103
getdents — read directory entries and put in

a file system independent
format 106

getegid – get effective group ID 121
geteuid – get effective user ID 121
getgid – get real group ID 121
getgroups – get supplementary group access

list IDs 107
getitimer – get value of interval timer 108
getmsg – get next message off a stream 112
getpgid – get process group IDs 115
getpgrp – get process group IDs 115
getpid – get process IDs 115
getpmsg – get next message off a stream 112
getppid – get parent process IDs 115
getrlimit – control maximum system resource

consumption 116
getsid — get process group ID of session

leader 120
getuid – get real user ID 121
group ID

set real and effective — setregid() 247
group IDs

get – getgid, getegid 121
set – setgid 250
supplementary group access list IDs –

getgroups, setgroups 107

H
halt system

— uadmin 303
hangup signal

the current controlling terminal —
vhangup 319

I
I/O

audit — audit 50
multiplexing — poll 188

initialize an LWP context —
_lwp_makecontext 139

interprocess communication
— pipe 187

interval timer
get or set value of interval timer – getitimer,

setitimer 108
ioctl — control device 122

K
kill — send a signal to a process or a group of

processes 124

L
lchown – change owner and group of a file 66
link — link to a file 126

remove — unlink 310
link, symbolic

make one to a file — symlink 292
lseek — move extended read/write file

pointer 128
lseek — move read/write file pointer 129
lstat – get status on symbolic link file 280
LWP

scheduler control — priocntl 194
_lwp_cond_broadcast – signal a condition

variable 131
_lwp_cond_signal – signal a condition

variable 131
_lwp_cond_timedwait – wait on a condition

variable 132
_lwp_cond_wait – wait on a condition

variable 132
_lwp_continue – continue or suspend LWP

execution 144
_lwp_create — create a new light-weight

process 134
_lwp_exit — terminate the calling LWP 136
_lwp_getprivate – set/get LWP specific

storage 143
_lwp_info — return the time-accounting

information of a single
LWP 137

Index-335

_lwp_kill — send a signal to a LWP 138
_lwp_makecontext — initialize an LWP

context 139
_lwp_mutex_lock – mutual exclusion 140
_lwp_mutex_trylock – mutual exclusion 140
_lwp_mutex_unlock – mutual exclusion 140
_lwp_self — get LWP identifier 141
_lwp_sema_init – semaphore operations 142
_lwp_sema_post – semaphore operations 142
_lwp_sema_trywait – semaphore

operations 142
_lwp_sema_wait – semaphore operations 142
_lwp_setprivate – set/get LWP specific

storage 143
_lwp_sigredirect – deliver process signals to

specific LWPs 263
_lwp_suspend – continue or suspend LWP

execution 144
_lwp_wait — wait for a LWP to terminate 145

M
make a directory, or a special or ordinary file —

mknod 153
manage sets of processors

– pset_assign 214
– pset_create 214
– pset_destroy 214

manipulate auditing — auditon 51
masks

set and get file creation mask —
umask 306

memcntl — memory management control 146
memory

management control — memcntl 146
memory management

change the amount of space allocated for
the calling process’s data
segment – brk, sbrk 58

memory mapping
set protection — mprotect 166

memory pages
determine residency — mincore 150
map — mmap 156
unmap — munmap 174

memory, shared
control operations — shmctl 252

get segment identifier — sjmget 254
operations – shmop 256

message control operations
— msgctl 167

message queue
get — msgget 169

message receive operation — msgrcv 170
message send operation — msgsnd 172
messages

send a message on a stream – putmsg 219
mincore — determine residency of memory

pages 150
mkdir — make a directory 151
mknod — make a directory, or a special or

ordinary file 153
mmap — map pages of memory 156
mount — mount a file system 162
mount a file system — mount 162
mprotect — set protection of memory

mapping 166
msgctl — message control operations 167
msgget — get message queue 169
msgrcv — message receive operation 170
msgsnd — message send operation 172
munmap — unmap pages of memory 174
mutual exclusion

– _lwp_mutex_lock 140
– _lwp_mutex_trylock 140
– _lwp_mutex_unlock 140

N
nice — change priority of a time-sharing

process 175
ntp_adjtime — adjust local clock

parameters 176
ntp_gettime — get local clock values 177

O
open — open a file 178
open a file — open 178
operating system

get name of current one — uname 309
owner of file

change – chown 66

man pages section 2: System Calls ♦ February 2000

P
p_online — get or change processor operational

status 191
pathconf – get configurable pathname

variables 98
pathname

get configurable variables – pathconf 98
pause — suspend process until signal 185
pipe — create an interprocess channel 187
poll — input/output multiplexing 188
pread – read from file 222
priocntl — process scheduler control 194
priocntlset — generalized process scheduler

control 205
process accounting

enable or disable — acct 43
process alarm clock

set — alarm 48
process group ID

set — setpgid 244, 246
process scheduler

control — priocntl 194
generalized control — priocntlset 205

process statistics
process execution time profile —

profil 210
process, time-sharing

change priority — nice 175
processes

allows a parent process to control the
execution of a child process
— ptrace 217

change priority of a time-sharing process
— nice 175

create a new one – fork 95
create an interprocess channel — pipe 187
execute a file – exec 76
execution time profile — profil 210
generalized scheduler control —

priocntlset 205
get or set value of interval timer – getitimer,

setitimer 108, 112, 115, 121
get time — times 301
read from file – read 222
read directory entries and put in a file

system independent format —
getdents 106

send a signal to a process or a group of
processes — kill 124

set a process alarm clock — alarm 48
set and get file creation mask —

umask 306
set process group ID — setpgid 244, 246
spawn new process in a virtual memory

efficient way — vfork 317
supplementary group access list IDs –

getgroups, setgroups 107
suspend process until signal — pause 185
the current controlling terminal —

vhangup 319
wait for child process to change state —

waitid 322, 324
wait for child process to stop or terminate

— wait 320
processes and protection

— setregid() 247
— setreuid() 248

processor_bind — bind LWPs to a
processor 207

processor_info — determine type and status of
a processor 209

profil — process execution time profile 210
profiling utilities

execution time profile — profil 210
pset_assign – manage sets of processors 214
pset_bind — bind LWPs to a set of

processors 212
pset_create – manage sets of processors 214
pset_destroy – manage sets of processors 214
pset_info — get information about a processor

set 216
ptrace — allows a parent process to control

the execution of a child
process 217

putmsg – send a message on a stream 219
putpmsg – send a message on a stream 219
pwrite – write on a file 326

R
read from file – read 222

pread 222
readv 222

Index-337

read the contents of a symbolic link —
readlink 228

read/write file pointer
move — lseek 128–129

readlink — read the contents of a symbolic
link 228

read – read from file 222
real group ID

set — setregid() 247
real user ID

set — setreuid() 248
reboot system

— uadmin 303
remount root file system

— uadmin 303
rename — change the name of a file 229
resolve all symbolic links of a path name —

resolvepath 232
resolvepath — resolve all symbolic links of a

path name 232
rmdir — remove a directory 234
root directory

change – chroot 69

S
sbrk – change the amount of space allocated

for the calling process’s data
segment 58

semaphore operations
– _lwp_sema_init 142
– _lwp_sema_post 142
– _lwp_sema_trywait 142
– _lwp_sema_wait 142

semaphores
control operations — semctl 236
get a set — semget 239
operations — semop 241

semctl — semaphore control operations 236
semget — get set of semaphores 239
semop — semaphore operations 241
send a signal to a LWP — _lwp_kill 138
set file access and modification times —

utimes 315
set/get LWP specific storage

– _lwp_getprivate 143
– _lwp_setprivate 143

setaudit – get and set process audit
information 101

setaudit_addr – get and set process audit
information 101

setauid – set user audit identity 103
setegid – set effective group ID 250
seteuid – set effective user ID 250
setgid – set group ID 250
setgroups – set supplementary group access

list IDs 107
setitimer – set value of interval timer 108
setpgid — set process group ID 244
setpgrp — set process group ID 246
setregid() — set real and effective group

ID 247
setreuid() — set real and effective user IDs 248
setrlimit – control maximum system resource

consumption 116
setsid — create session and set process group

ID 249
setuid – set user ID 250
shared memory

control operations — shmctl 252
get segment identifier — sjmget 254
operations – shmop 256

shmctl — shared memory control
operations 252

shmget — get shared memory segment
identifier 254

shmop – shared memory operations 256
shutdown

— uadmin 303
sigaction — detailed signal management 258
sigaltstack — set or get signal alternate stack

context 261
signal a condition variable

– _lwp_cond_broadcast 131
– _lwp_cond_signal 131

signal alternate stack
set or get context — sigaltstack 261

signal management
detailed — sigaction 258

signal mask
change and/or examine —

sigprocmask 266
install, and suspend process until signal —

sigsuspend 269

man pages section 2: System Calls ♦ February 2000

signals
examine blocked and pending ones —

sigpending 265
_signotifywait – deliver process signals to

specific LWPs 263
sigpending — examine signals that are blocked

and pending 265
sigprocmask — change and/or examine calling

process’s signal mask 266
sigsend – send a signal to a process or a group

of processes 267
sigsendset – provides an alternate interface to

sigsend for sending signals to
sets of processes 267

sigsuspend — install a signal mask and suspend
process until signal 269

sigwait() — wait until a signal is posted 271
install a SPARC V9 user trap handler 275
special files

create a new one — mknod 153
stat – get file status 280
statistics

get for mounted file system — ustat 312
statvfs – get file system information 284
stime — set system time and date 287
STREAMS

get next message off a stream – getmsg 112
I/O control functions — ioctl 122
send a message on a stream – putmsg 219

super block
update — sync 294

swap space
manage — swapctl 288

swapctl — manage swap space 288
symbolic link

make one to a file — symlink 292
symlink — make a symbolic link to a file 292
sync — update super block 294
sysinfo — get and set system information

strings 296
system administration

administrative control — uadmin 303
system clock

synchronization — adjtime 46
system information

get and set strings — sysinfo 296

system operation
update super block — sync 294

system resources
control maximum system resource

consumption – getrlimit,
setrlimit 116

T
terminate process

– exit 83
– _exit 83

terminate the calling LWP — _lwp_exit 136
time — get time 300

correct the time to allow synchronization
of the system clock —
adjtime 46

set system time and date — stime 287
time-accounting

single LWP — _lwp_info 137
times — get process and child process

times 301

U
ulimit — get and set process limits 305
umask — set and get file creation mask 306
umount – unmount a file system 307
umount2 – unmount a file system 307
uname — get name of current operating

system 309
unlink — remove directory entry 310
unmount a file system – umount2 307
user audit identity

get user audit identity – getauid 103
set user audit identity – setauid 103

user ID
set real and effective — setreuid() 248

user IDs
get – getuid, geteuid 121
set – setuid 250

utime — set file access and modification
times 313

utimes — set file access and modification
times 315

Index-339

V
vfork — spawn new process in a virtual

memory efficient way 317
vhangup — the current controlling

terminal 319

W
wait — wait for child process to stop or

terminate 320
wait for a LWP to terminate — _lwp_wait 145
wait on a condition variable

– _lwp_cond_timedwait 132
– _lwp_cond_wait 132

waitid — wait for child process to change
state 322

waitpid — wait for child process to change
state 324

write on a file
– write 326
– write 326
– write 326

write – write on a file 326

Y
yield — yield execution to another lightweight

process 332
yield execution to another lightweight process

— yield 332

man pages section 2: System Calls ♦ February 2000

